├── Bayesian
├── Deep Learning
│ └── Droupout.md
├── Deeplearning
│ └── Droupout.md
└── InverseProblem
│ └── Basic.md
├── DeeplearningModels
├── Bath normalization
│ └── BN.md
├── Read me.md
├── ResidualLearning
│ ├── Readme.md
│ └── Resnet.pdf
└── papers.md
├── Diffusion Maps
├── Diffusion maps.md
├── HarmonicOnManifold
│ └── GraphCNN.md
└── Inferring interaction rules from observations of evolutive systems I: The variational approach.md
├── LICENSE.md
├── Optimization
├── DynamicSysmtemModelling
│ └── HJ.md
├── Lowrank
│ └── Readme.md
└── Opt For DL.md
├── Other Topics
└── readme.md
├── README.md
├── computer vision
├── Object Detection.md
├── Style Transfer.md
└── denoising.md
├── generative models
├── GAN.md
└── readme.md
└── learningtheory
├── approximation(NN).md
└── dl.md
/Bayesian/Deep Learning/Droupout.md:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/Bayesian/Deeplearning/Droupout.md:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/Bayesian/InverseProblem/Basic.md:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/DeeplearningModels/Bath normalization/BN.md:
--------------------------------------------------------------------------------
1 | 1. - [x] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
2 | 1. - [ ] Riemannian approach to batch normalization
3 | 1. - [ ] On the Effects of Batch and Weight Normalization in Generative Adversarial Networks
4 | 1. - [ ] Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
5 | 1. - [x] Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models
6 | 1. - [ ] Streaming Normalization: Towards Simpler and More Biologically-plausible Normalizations for Online and Recurrent Learning
7 | 1. - [ ] Revisiting Batch Normalization For Practical Domain Adaptation
8 |
--------------------------------------------------------------------------------
/DeeplearningModels/Read me.md:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/DeeplearningModels/ResidualLearning/Readme.md:
--------------------------------------------------------------------------------
1 | # Deep Residual Learning
2 |
3 | ## Resnet.pdf
4 |
5 | > Yiping Lu's Talk at Bin Dong's Group
6 |
7 | K He,X Zhang,S Ren,J Sun (2015,MSRA)
8 | Deep Residual Learning for Image Recognition
9 |
10 | K He,X Zhang,S Ren,J Sun (2015,MSRA)
11 | Identity Mappings in Deep Residual Networks
12 |
13 | RK Srivastava,K Gre↵,J Schmidhuber (2015)
14 | Highway Networks
15 |
16 | Yunjin Chen, Wei Yu and Thomas Pock
17 | On learning optimized reaction di↵usion processes for e↵ective image restoration
18 |
19 | Qianli Liao, Tomaso Poggio
20 | Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex
21 |
22 |
23 | G Huang,Z Liu, KQ Weinberger
24 | Densely Connected Convolutional Networks
25 |
26 |
27 | M Abdi, S Nahavandi
28 | Multi-Residual Networks: Improving the Speed and Accuracy of Residual Networks
29 |
30 |
31 | G Larsson, M Maire, G Shakhnarovich
32 | FractalNet:Ultra-Deep Neural Networks without Residuals
33 |
34 | Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger
35 | Deep Networks with Stochastic Depth
36 |
37 |
38 | Kaiming He,Xiangyu Zhang,Shaoqing Ren,Jian Sun
39 | Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet
40 |
41 |
42 | E Haber, L Ruthotto, E Holtham
43 | Learning across scales - A multiscale method for Convolution Neural Network
44 |
45 | E Haber, L Ruthotto
46 | Stable Architectures for Deep Neural Networks
47 |
--------------------------------------------------------------------------------
/DeeplearningModels/ResidualLearning/Resnet.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/2prime/Paper-Reading/f729d9b96d3d732a097db80c99b468f0ffa32e98/DeeplearningModels/ResidualLearning/Resnet.pdf
--------------------------------------------------------------------------------
/DeeplearningModels/papers.md:
--------------------------------------------------------------------------------
1 | 1. - [x] Krizhevsky, Alex, et al. "**Imagenet classification with deep convolutional neural networks**." Advances in neural information processing systems. 2012. [[pdf]](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) (**AlexNet**)
2 |
3 | 1. - [ ] Zeiler, Matthew D., and R. Fergus. "**Visualizing and Understanding Convolutional Networks**." arXiv:1311.2901 (2013). [[pdf]](https://arxiv.org/abs/1311.2901) (**ZFNet**)
4 |
5 | 1. - [ ] Simonyan, Karen, and Andrew Zisserman. "**Very deep convolutional networks for large-scale image recognition**." arXiv preprint arXiv:1409.1556 (2014). [[pdf]](https://arxiv.org/pdf/1409.1556) (**VGGNet**)
6 |
7 | 1. - [ ] Szegedy, Christian, et al. "**Going deeper with convolutions**." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. [[pdf]](https://arxiv.org/abs/1409.4842) (**GoogLeNet/Inception**)
8 |
9 | 1. - [x] Srivastava, Rupesh Kumar, K. Greff, and J. Schmidhuber. "**Highway Networks**." Computer Science (2015). [[pdf]](https://arxiv.org/abs/1505.00387) (**Highway Networks**)
10 | 1. - [x] GregorK, LecunY. Learning fast approximations of sparse coding ICML 2010
11 | 1. - [x] KaimingHe,XiangyuZhang,ShaoqingRen,JianSun Delving Deep into Rectifiers:SurpassingHuman-Level Performance on ImageNet Classification ICCV2015
12 | 1. - [x] K He,XZhang,SRen,JSun Deep Residual Learning for Image Recognition CVPR 2016
13 | 1. - [x] K He,XZhang,SRen,JSun Identity Mappings in Deep Residual Networks ECCV 2016
14 | 1. - [x] VeitA, Wilber M, BelongieS. Residual Networks Behave Like Ensembles of Relatively Shallow Networks. NIPS2016
15 | 1. - [x] RK Srivastava,KGre,JSchmidhuberHighway Networks
16 | 1. - [x] GreffK, Srivastava R K, SchmidhuberJ. Highway and Residual Networks learn Unrolled Iterative Estimation. ICLR2017.
17 | 1. - [x] QianliLiao, Tomaso PoggioBridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex
18 | 1. - [x] G Huang,ZLiu, KQ WeinbergeDensely Connected Convolutional Networks CVPR2017
19 | 1. - [x] G Larsson, M Maire, G ShakhnarovichFractalNet:Ultra-DeepNeural Networks without Residuals ICLR2017
20 | 1. - [x] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger Deep Networks with Stochastic Depth ECCV2016
21 | 1. - [x] XieS, GirshickR, DollárP, et al. Aggregated Residual Transformations for Deep Neural Networks. CVPR2016.
22 | 1. - [x] GregorK, LecunY. Learning fast approximations of sparse coding ICML 2010
23 | 1. - [x] BalduzziD, FreanM, Leary L, et al. The Shattered Gradients Problem: If resnetsare the answer, then what is the question? ICML2017.
24 | 1. - [x] ZagoruykoS, KomodakisN. DiracNets: Training Very Deep Neural Networks Without Skip-Connections[J]. 2017.
25 | 1. - [x] Improving training of deep neural networks via Singular Value Bounding
26 | 1. - [x] Liming Zhao Jingdong Wang Xi Li Zhuowen Tu Wenjun Zeng. Deep Convolutional Neural Networks with Merge-and-Run Mappings
27 | 1. - [x] TheReversibleResidualNetwork: BackpropagationWithoutStoringActivations
28 | 1. - [ ] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
29 | 1. - [ ] Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation
30 | 1. - [ ] MULTI-SCALE DENSE NETWORKS FOR RESOURCE EFFICIENT IMAGE CLASSIFICATION
31 | 1. - [ ] CRESCENDONET: A NEW DEEP CONVOLUTIONAL NEURAL NETWORK WITH ENSEMBLE BEHAVIOR
32 | 1. - [ ] CondenseNet: An Efficient DenseNet using Learned Group Convolutions
33 |
--------------------------------------------------------------------------------
/Diffusion Maps/Diffusion maps.md:
--------------------------------------------------------------------------------
1 | # Diffusion Maps
2 |
3 | > A General manifold learning framework by R.R.Coifman
4 |
5 | Idea: Building the bridge between random walk and Diffusion on manifold
6 |
7 | ### Related Papers:
8 | - Nadler B, Lafon S, Coifman R R, et al. Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck operators
9 | - Coifman R R, Lafon S, Lee A B, et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps
10 | - Nadler B, Lafon S, Coifman R R, et al. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems
11 | - Coifman R R, Lafon S. Diffusion maps
12 |
13 | $M=D^{-1}L$ adjoint to $D^{1/2}MD^{-1/2}$(symmetric)
14 |
15 | left and right eignvectors are bi-orhtnormal
16 |
17 | Generate Operator: $H_f=lim (T_f-I)/eps$
18 |
19 |
--------------------------------------------------------------------------------
/Diffusion Maps/HarmonicOnManifold/GraphCNN.md:
--------------------------------------------------------------------------------
1 |
2 | #### Reference:
3 | - https://github.com/mdeff/cnn_graph
4 | - 3d deep learning tutorial in cvpr2017:http://3ddl.stanford.edu/
5 | - geometric deep learning tutorial in cvpr2017:http://geometricdeeplearning.com/
6 |
7 | **Review Paper**
8 | M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, Geometric deep learning: going beyond Euclidean data, IEEE Signal Processing Magazine 2017 (Review paper) http://cims.nyu.edu/~bruna/Media/graph_cnn_ieee.pdf
9 |
10 | **Paper list**
11 | R. Levie*, F. Monti*, X. Bresson, M. M. Bronstein, CayleyNets: Graph convolutional neural networks with complex rational spectral filters, 2017 (CayleyNet framework)
12 |
13 | F. Monti, X. Bresson, M. M. Bronstein, Geometric matrix completion with recurrent multi-graph neural networks, NIPS 2017 (CNNs on multiple graphs) [CODE]
14 |
15 | Y. Seo, M. Defferrard , P. Vandergheynst, X. Bresson, Structured Sequence Modeling with Graph Convolutional Recurrent Networks , 2016 (recurrent single graph CNN)
16 |
17 | L. Yi, H. Su, X. Guo, L. Guibas, SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation , CVPR 2017 (spectral transformer networks)
18 |
19 | F. Monti*, D. Boscaini*, J. Masci, E. Rodolà, J. Svoboda, M. M. Bronstein, Geometric deep learning on graphs and manifolds using mixture model CNNs, CVPR 2017 (MoNet framework) [CODE] [VIDEO]
20 |
21 | T. Kipf, M. Welling, Semi-supervised Classification with Graph Convolutional Networks, ICLR 2017 (simplification of ChebNet) [CODE]
22 |
23 | M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NIPS 2017 (ChebNet framework) [CODE]
24 |
25 | D. Boscaini, J. Masci, E. Rodolà, M. M. Bronstein, Learning shape correspondence with anisotropic convolutional neural networks, NIPS 2016 (Anisotropic CNN framework)
26 |
27 | J. Masci, D. Boscaini, M. M. Bronstein, P. Vandergheynst, Geodesic convolutional neural networks on Riemannian manifolds, 3dRR 2015 (Geodesic CNN framework)
28 |
29 | D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gomez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, R. P. Adams, Convolutional Networks on Graphs for Learning Molecular Fingerprints, NIPS 2015 (molecular fingerprints using graph CNNs)
30 |
31 | J. Atwood, D. Towsley, Diffusion-Convolutional Neural Networks, 2015
32 |
33 | M. Henaff, J. Bruna, Y. LeCun: Deep Convolutional Networks on Graph-Structured Data, 2015
34 |
35 | J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral Networks and Deep Locally Connected Networks on Graphs, ICLR 2014 (spectral CNN on graphs)
36 |
37 | F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural network model, Trans. Neural Networks 20(1):61-80, 2009 (first neural networks on graphs)
38 |
39 |
--------------------------------------------------------------------------------
/Diffusion Maps/Inferring interaction rules from observations of evolutive systems I: The variational approach.md:
--------------------------------------------------------------------------------
1 | # Inferring interaction rules from observations of evolutive systems I: The variational approach
2 |
3 |
4 | [arxiv link]
5 |
6 | @article{Bongini2017Inferring,
7 | title={Inferring interaction rules from observations of evolutive systems I: The variational approach},
8 | author={Bongini, Mattia and Fornasier, Massimo and Hansen, Markus and Maggioni, Mauro},
9 | journal={Mathematical Models & Methods in Applied Sciences},
10 | year={2017},
11 | }
12 |
13 |
14 | A gradient flow is $\dot x(t)\in -\partial_x J(x(t),t)$ controled by some function [a]
15 |
16 | Using optimal control to get the best [a]
17 |
18 | Preliminaries:
19 | - Optimal Transport
20 | - Wasserstein Distance
21 | - Mean-field Equation
22 |
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) [2017-2019] [2prime Lab]
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/Optimization/DynamicSysmtemModelling/HJ.md:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/Optimization/Lowrank/Readme.md:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/Optimization/Opt For DL.md:
--------------------------------------------------------------------------------
1 | 1. - [ ] Riemannian approach to batch normalization
2 | 1. - [ ] The Marginal Value of Adaptive Gradient Methods in Machine Learning
3 | 1. - [ ] Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
4 | 1. - [ ] Train faster, generalize better: Stability of stochastic gradient descent
5 | 1. - [x] Generalization Bounds of SGLD for Non-convex Learning: Two Theoretical Viewpoints
6 | 1. - [ ] A Variational Analysis of Stochastic Gradient Algorithms
7 |
--------------------------------------------------------------------------------
/Other Topics/readme.md:
--------------------------------------------------------------------------------
1 | Deep Residual Networks and Weight Initialization
2 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Paper-Reading
2 | Paper Reading Reviews From 2prime. link
3 |
4 |
5 |
6 | **Attention:** Didn't upadted from 2017.10. *Out of date!*
7 |
8 | **New version will come out soon, with application in low level computer vision(denoising, compression, optical flow, stereo and etc.)**
9 |
10 | ## Topics:
11 | - Machine learning
12 | - Deep Learning Models
13 | - UQ
14 | - Dynamic Systems
15 | - optimization
16 | - Bayesian Stat
17 | - etc.
18 |
19 |
20 | Reference:
21 | 1. -[ ] https://github.com/WarBean/Unsupervised-Learning-Research
22 | 1. -[ ] https://github.com/joanbruna/stat212b
23 |
--------------------------------------------------------------------------------
/computer vision/Object Detection.md:
--------------------------------------------------------------------------------
1 | 1. - [x] Girshick, Ross, et al. "**Rich feature hierarchies for accurate object detection and semantic segmentation**." Proceedings of the IEEE conference on computer vision and pattern recognition. (2014). [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper) (**RCNN**)
2 |
3 | 1. - [ ] He, K., et al. "**Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition**." IEEE Transactions on Pattern Analysis & Machine Intelligence. (2014). [[pdf]](https://arxiv.org/abs/1406.4729) (**SPPNet**)
4 |
5 | 1. - [x] Girshick, Ross. "**Fast r-cnn**." Proceedings of the IEEE International Conference on Computer Vision. 2015. [[pdf]](https://pdfs.semanticscholar.org/8f67/64a59f0d17081f2a2a9d06f4ed1cdea1a0ad) (**Fast RCNN**)
6 |
7 | 1. - [x] Ren, Shaoqing, et al. "**Faster R-CNN: Towards real-time object detection with region proposal networks**." Advances in neural information processing systems. 2015. [[pdf]](https://arxiv.org/pdf/1506.01497.pdf) (**Faster RCNN**)
8 |
9 | 1. - [ ] Redmon, Joseph, et al. "**You only look once: Unified, real-time object detection**." arXiv preprint arXiv:1506.02640 (2015). [[pdf]](http://homes.cs.washington.edu/~ali/papers/YOLO) (**YOLO**)
10 |
11 | 1. - [x] Liu, Wei, et al. "**SSD: Single Shot MultiBox Detector**." arXiv preprint arXiv:1512.02325 (2015). [[pdf]](http://arxiv.org/pdf/1512.02325)(**SSD**)
12 |
13 | 1. - [x] Hong, Sanghoon, et al. "PVANet: Lightweight Deep Neural Networks for Real-time Object Detection." arXiv:1611.08588 (2016). [[pdf]](https://arxiv.org/abs/1611.08588)(**PVANet**)
14 |
15 | 1. - [ ] Dai, Jifeng, et al. "**R-FCN: Object Detection via Region-based Fully Convolutional Networks**." arXiv preprint arXiv:1605.06409 (2016). [[pdf]](https://arxiv.org/abs/1605.06409) (**R-FCN**)
16 |
17 | 1. - [x] Lin, Tsung Yi, et al. "**Feature Pyramid Networks for Object Detection**." (2016). [[pdf]](https://arxiv.org/abs/1612.03144) (**FPN**)
18 |
19 | 1. - [ ] He, Gkioxari, et al. "**Mask R-CNN**." arXiv preprint arXiv:1703.06870 (2017). [[pdf]](https://arxiv.org/abs/1703.06870) (**Mask RCNN**)
20 |
21 | 1. - [x] Lin, Tsung Yi, et al. "**Focal Loss for Dense Object Detection**." (2017). [[pdf]](https://arxiv.org/abs/1708.02002) (**Focal Loss**)
22 |
23 | **Review**
24 |
25 | 1. - [x] Huang, Jonathan, et al. "**Speed/accuracy trade-offs for modern convolutional object detectors**." (2016).. [[pdf]](https://arxiv.org/abs/1611.10012)
26 |
--------------------------------------------------------------------------------
/computer vision/Style Transfer.md:
--------------------------------------------------------------------------------
1 | 1. - [x] Texture synthesis using convolutional neural networks
2 | 1. - [ ] A neural algorithm of artistic style
3 | 1. - [ ] Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis
4 | 1. - [ ] Texture networks: Feed-forward synthesis of textures and stylized images
5 | 1. - [ ] A Learned Representation For Artistic Style
6 | 1. - [ ] Fast Patch-based Style Transfer of Arbitrary Style
7 | 1. - [ ] Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
8 | 1. - [ ] Visual Attribute Transfer through Deep Image Analogy
9 | 1. - [x] Demystifying Neural Sytle Transfer
10 |
11 | ### Review
12 | 1. - [ ] Neural Style Transfer: A Review arXiv:1703.06870
13 |
--------------------------------------------------------------------------------
/computer vision/denoising.md:
--------------------------------------------------------------------------------
1 | # Image Denoising State-of-the-art
2 |
3 | A curated list of image denoising resources and a benchmark for image denoising approaches.
4 |
5 | ## State-of-the-art algorithms
6 | #### Filter
7 | * BD3M [[Web]](http://www.cs.tut.fi/~foi/GCF-BM3D/) [[Code]](http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D.zip) [[PDF]](http://www.cs.tut.fi/~foi/GCF-BM3D/SPIE08_deblurring.pdf)
8 | * Image restoration by sparse 3D transform-domain collaborative filtering (SPIE Electronic Imaging 2008), Dabov et al.
9 | * Activity-tuned Image Filtering [[PDF]](https://arxiv.org/pdf/1707.02637.pdf)
10 | * Local Activity-tuned Image Filtering for Noise Removal and Image Smoothing (Arxiv 2017), Lijun Zhao, Jie Liang, Huihui Bai, Lili Meng, Anhong Wang, and Yao Zhao.
11 |
12 | #### Sparse Coding
13 | * KSVD [[Web]](http://www.cs.technion.ac.il/~ronrubin/software.html) [[Code]](https://github.com/jbhuang0604/SelfSimSR/tree/master/Lib/KSVD) [[PDF]](http://www.egr.msu.edu/~aviyente/elad06.pdf)
14 | * Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries (TIP2006), Elad et al.
15 | * SAINT [[Web]](http://see.xidian.edu.cn/faculty/wsdong/wsdong_Publication.htm) [Code] [[PDF]](http://see.xidian.edu.cn/faculty/wsdong/Papers/Journal/TIP_LASSC.pdf)
16 | * Nonlocal image restoration with bilateral variance estimation: a low-rank approach (TIP2013), Dong et al.
17 | * NCSR [[Web]](http://www4.comp.polyu.edu.hk/~cslzhang/NCSR.htm) [[Code]](http://www4.comp.polyu.edu.hk/~cslzhang/code/NCSR.rar) [[PDF]](http://www4.comp.polyu.edu.hk/~cslzhang/paper/NCSR_TIP_final.pdf)
18 | * Nonlocally Centralized Sparse Representation for Image Restoration (TIP2012), Dong et al.
19 | * LSSC [[Web]](http://www.di.ens.fr/~fbach/) [Code] [[PDF]](http://www.di.ens.fr/~fbach/iccv09_mairal.pdf)
20 | * Non-local Sparse Models for Image Restoration (ICCV2009), Mairal et al.
21 |
22 | #### Effective Prior
23 | * EPLL [[Web]](https://people.csail.mit.edu/danielzoran/) [[Code]](https://people.csail.mit.edu/danielzoran/epllcode.zip) [[PDF]](http://people.ee.duke.edu/~lcarin/EPLICCVCameraReady.pdf)
24 | * From Learning Models of Natural Image Patches to Whole Image Restoration (ICCV2011), Zoran et al.
25 | * Bayesian Hyperprior [[PDF]](https://arxiv.org/pdf/1706.03261.pdf)
26 | * A Bayesian Hyperprior Approach for Joint Image Denoising and Interpolation with an Application to HDR Imaging, Cecilia Aguerrebere, Andres Almansa, Julie Delon, Yann Gousseau and Pablo Muse.
27 | * External Prior Guided [[PDF]](https://arxiv.org/pdf/1705.04505.pdf)
28 | * External Prior Guided Internal Prior Learning for Real Noisy Image Denoising, Jun Xu, Lei Zhang, and David Zhang.
29 | * Multi-Layer Image Representation [[PDF]](https://arxiv.org/pdf/1707.02194.pdf)
30 | * A Multi-Layer Image Representation Using Regularized Residual Quantization: Application to Compression and Denoising, Sohrab Ferdowsi, Slava Voloshynovskiy, Dimche Kostadinov.
31 | * A Faster Patch Ordering [[PDF]](https://arxiv.org/ftp/arxiv/papers/1704/1704.08090.pdf)
32 | * A Faster Patch Ordering Method for Image Denoising, Badre Munir.
33 |
34 | #### Low Rank
35 | * WNNM [[Web]](https://sites.google.com/site/shuhanggu/home) [[Code]](http://www4.comp.polyu.edu.hk/~cslzhang/code/WNNM_code.zip) [[PDF]](https://pdfs.semanticscholar.org/6d55/6272625b672ba54b5ab3d9e6474088a4b78f.pdf)
36 | * Weighted Nuclear Norm Minimization with Application to Image Denoising (CVPR2014), Gu et al.
37 | * Multi-channel Weighted Nuclear Norm [[PDF]](https://arxiv.org/pdf/1705.09912.pdf)
38 | * Multi-channel Weighted Nuclear Norm Minimization for Real Color Image Denoising (Arxiv 2017), Jun Xu, Lei Zhang, David Zhang, and Xiangchu Feng.
39 |
40 | #### Deep Learning
41 | * TNRD [[Web]](http://www.icg.tugraz.at/Members/Chenyunjin/about-yunjin-chen) [[Code]](https://www.dropbox.com/s/8j6b880m6ddxtee/TNRD-Codes.zip?dl=0) [[PDF]](https://arxiv.org/pdf/1508.02848.pdf)
42 | * Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration (TPAMI2016), Chen et al.
43 | * DnCNN [[Web]](https://github.com/cszn/DnCNN) [[PDF]](https://arxiv.org/pdf/1608.03981v1.pdf)
44 | * Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising (TIP2017), Zhang et al.
45 | * DAAM [[Web]](https://arxiv.org/abs/1612.06508) [[PDF]](https://arxiv.org/pdf/1612.06508.pdf)
46 | * Deeply Aggregated Alternating Minimization for Image Restoration (Arxiv2016), Youngjung Kim et al.
47 | * Adversirial Denoising [[PDF]](https://arxiv.org/pdf/1708.00159.pdf)
48 | * Image Denoising via CNNs: An Adversarial Approach (Arxiv2017), Nithish Divakar, R. Venkatesh Babu.
49 | * Unrolled Optimization Deep Priors [[PDF]](https://arxiv.org/pdf/1705.08041.pdf)
50 | * Unrolled Optimization with Deep Priors (Arxiv2017), Steven Diamond, Vincent Sitzmann, Felix Heide, Gordon Wetzstein.
51 | * Wider Network [[PDF]](https://arxiv.org/pdf/1707.05414.pdf)
52 | * Going Wider with Convolution for Image Denoising (Arxiv2017), Peng Liu, Ruogu Fang.
53 | * Recurrent Inference Machines [[PDF]](https://arxiv.org/pdf/1706.04008.pdf)
54 | * Recurrent Inference Machines for Solving Inverse Problems, Patrick Putzky, Max Welling.
55 | * Learning Pixel-Distribution Prior
56 | * Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising (Arxiv2017), Peng Liu, Ruogu Fang.
57 |
58 | #### Combined with High-Level Tasks
59 | * Meets High-level Tasks [[PDF]](https://arxiv.org/pdf/1706.04284.pdf)
60 | * When Image Denoising Meets High-Level Vision Tasks: A Deep Learning Approach, Ding Liu (Arxiv2017), Bihan Wen, Xianming Liu, Thomas S. Huang.
61 | * Class-Specific Denoising
62 | * Class-Specific Poisson Denoising By Patch-Based Importance Sampling (Arxiv2017), Milad Niknejad, Jose M. Bioucas-Dias, Mario A. T. Figueiredo.
63 |
64 | #### Benchmark
65 | * Benchmark [[PDF]](https://arxiv.org/pdf/1707.01313.pdf)
66 | * Benchmarking Denoising Algorithms with Real Photographs (Arxiv2017), Tobias Plotz, Stefan Roth.
67 |
--------------------------------------------------------------------------------
/generative models/GAN.md:
--------------------------------------------------------------------------------
1 | # AdversarialNetsPapers
2 | The classical Papers about adversarial nets
3 |
4 | The First paper
5 | --------------------------------------------
6 | :white_check_mark: [Generative Adversarial Nets] [[Paper]](https://arxiv.org/abs/1406.2661)
7 | [[Code]](https://github.com/goodfeli/adversarial)(the first paper about it)
8 |
9 | ## Unclassified
10 |
11 | :white_check_mark: [Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks] [[Paper]](https://arxiv.org/abs/1506.05751)[[Code]](https://github.com/facebook/eyescream)
12 |
13 | :white_check_mark: [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks] [[Paper]](https://arxiv.org/abs/1511.06434)[[Code]](https://github.com/jacobgil/keras-dcgan)(Gan with convolutional networks)(ICLR)
14 |
15 | :white_check_mark: [Adversarial Autoencoders] [[Paper]](http://arxiv.org/abs/1511.05644)[[Code]](https://github.com/musyoku/adversarial-autoencoder)
16 |
17 |
18 | :white_check_mark: [Generating Images with Perceptual Similarity Metrics based on Deep Networks] [[Paper]](https://arxiv.org/pdf/1602.02644v2.pdf)
19 |
20 |
21 | :white_check_mark: [Generating images with recurrent adversarial networks] [[Paper]](https://arxiv.org/abs/1602.05110)[[Code]](https://github.com/ofirnachum/sequence_gan)
22 |
23 | :white_check_mark: [Generative Visual Manipulation on the Natural Image Manifold] [[Paper]](https://people.eecs.berkeley.edu/~junyanz/projects/gvm/eccv16_gvm.pdf)[[Code]](https://github.com/junyanz/iGAN)
24 |
25 | :white_check_mark: [Generative Adversarial Text to Image Synthesis] [[Paper]](https://arxiv.org/abs/1605.05396)[[Code]](https://github.com/reedscot/icml2016)[[code]](https://github.com/paarthneekhara/text-to-image)
26 |
27 |
28 | :white_check_mark: [Learning What and Where to Draw] [[Paper]](http://www.scottreed.info/files/nips2016.pdf)[[Code]](https://github.com/reedscot/nips2016)
29 |
30 | :white_check_mark: [Adversarial Training for Sketch Retrieval] [[Paper]](http://link.springer.com/chapter/10.1007/978-3-319-46604-0_55)
31 |
32 | :white_check_mark: [Generative Image Modeling using Style and Structure Adversarial Networks] [[Paper]](https://arxiv.org/pdf/1603.05631.pdf)[[Code]](https://github.com/xiaolonw/ss-gan)
33 |
34 | :white_check_mark: [Generative Adversarial Networks as Variational Training of Energy Based Models] [[Paper]](http://www.mathpubs.com/detail/1611.01799v1/Generative-Adversarial-Networks-as-Variational-Training-of-Energy-Based-Models)(ICLR 2017)
35 |
36 | :white_check_mark: [Adversarial Training Methods for Semi-Supervised Text Classification] [[Paper]](https://arxiv.org/abs/1605.07725)[[Note]](https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/adversarial-text-classification.md)( Ian Goodfellow Paper)
37 |
38 | :white_check_mark: [Learning from Simulated and Unsupervised Images through Adversarial Training] [[Paper]](https://arxiv.org/abs/1612.07828)[[code]](https://github.com/carpedm20/simulated-unsupervised-tensorflow)(Apple paper)
39 |
40 | :white_check_mark: [Synthesizing the preferred inputs for neurons in neural networks via deep generator networks] [[Paper]](https://arxiv.org/pdf/1605.09304v5.pdf)[[Code]](https://github.com/Evolving-AI-Lab/synthesizing)
41 |
42 | :white_check_mark: [SalGAN: Visual Saliency Prediction with Generative Adversarial Networks] [[Paper]](https://arxiv.org/abs/1701.01081)[[Code]](https://github.com/imatge-upc/saliency-salgan-2017)
43 |
44 |
45 | :white_check_mark: [Adversarial Feature Learning] [[Paper]](https://arxiv.org/abs/1605.09782)
46 |
47 | ## Ensemble
48 |
49 | :white_check_mark: [AdaGAN: Boosting Generative Models] [[Paper]](https://arxiv.org/abs/1701.02386)[[Code]](Google Brain)
50 |
51 | ## Clustering
52 |
53 | :white_check_mark: [Unsupervised Learning Using Generative Adversarial Training And Clustering] [[Paper]](https://openreview.net/forum?id=SJ8BZTjeg¬eId=SJ8BZTjeg)[[Code]](https://github.com/VittalP/UnsupGAN)(ICLR)
54 | :white_check_mark: [Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks] [[Paper]](https://arxiv.org/abs/1511.06390)(ICLR)
55 |
56 | ## Image Inpainting
57 |
58 | :white_check_mark: [Semantic Image Inpainting with Perceptual and Contextual Losses] [[Paper]](https://arxiv.org/abs/1607.07539)[[Code]](https://github.com/bamos/dcgan-completion.tensorflow)
59 |
60 | :white_check_mark: [Context Encoders: Feature Learning by Inpainting] [[Paper]](https://arxiv.org/abs/1604.07379)[[Code]](https://github.com/jazzsaxmafia/Inpainting)
61 |
62 | :white_check_mark: [Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks] [[Paper]](https://arxiv.org/abs/1611.06430v1)
63 |
64 | ## Joint Probability
65 |
66 | :white_check_mark: [Adversarially Learned Inference][[Paper]](https://arxiv.org/abs/1606.00704)[[Code]](https://github.com/IshmaelBelghazi/ALI)
67 |
68 | ## Super-Resolution
69 |
70 | :white_check_mark: [Image super-resolution through deep learning ][[Code]](https://github.com/david-gpu/srez)(Just for face dataset)
71 |
72 | :white_check_mark: [Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network] [[Paper]](https://arxiv.org/abs/1609.04802)[[Code]](https://github.com/leehomyc/Photo-Realistic-Super-Resoluton)(Using Deep residual network)
73 |
74 | :white_check_mark: [EnhanceGAN] [[Docs]](https://medium.com/@richardherbert/faces-from-noise-super-enhancing-8x8-images-with-enhancegan-ebda015bb5e0#.io6pskvin)[[Code]]
75 |
76 |
77 | ## Disocclusion
78 |
79 | :white_check_mark: [Robust LSTM-Autoencoders for Face De-Occlusion in the Wild] [[Paper]](https://arxiv.org/abs/1612.08534)
80 |
81 | ## Semantic Segmentation
82 |
83 | :white_check_mark: [Semantic Segmentation using Adversarial Networks] [[Paper]](https://arxiv.org/abs/1611.08408)(soumith's paper)
84 |
85 | ## Object Detection
86 |
87 | :white_check_mark: [Perceptual generative adversarial networks for small object detection] [[Paper]](Submitted)
88 |
89 | :white_check_mark: [A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection] [[Paper]](http://abhinavsh.info/papers/pdfs/adversarial_object_detection.pdf)(CVPR2017)
90 |
91 | ## RNN
92 |
93 | :white_check_mark: [C-RNN-GAN: Continuous recurrent neural networks with adversarial training] [[Paper]](https://arxiv.org/abs/1611.09904)[[Code]](https://github.com/olofmogren/c-rnn-gan)
94 |
95 | ## Conditional adversarial
96 |
97 | :white_check_mark: [Conditional Generative Adversarial Nets] [[Paper]](https://arxiv.org/abs/1411.1784)[[Code]](https://github.com/zhangqianhui/Conditional-Gans)
98 |
99 | :white_check_mark: [InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets] [[Paper]](https://arxiv.org/abs/1606.03657)[[Code]](https://github.com/buriburisuri/supervised_infogan)
100 |
101 | :white_check_mark: [Image-to-image translation using conditional adversarial nets] [[Paper]](https://arxiv.org/pdf/1611.07004v1.pdf)[[Code]](https://github.com/phillipi/pix2pix)[[Code]](https://github.com/yenchenlin/pix2pix-tensorflow)
102 |
103 | :white_check_mark: [Conditional Image Synthesis With Auxiliary Classifier GANs] [[Paper]](https://arxiv.org/abs/1610.09585)[[Code]](https://github.com/buriburisuri/ac-gan)(GoogleBrain ICLR 2017)
104 |
105 | :white_check_mark: [Pixel-Level Domain Transfer] [[Paper]](https://arxiv.org/pdf/1603.07442v2.pdf)[[Code]](https://github.com/fxia22/pldtgan)
106 |
107 | :white_check_mark: [Invertible Conditional GANs for image editing] [[Paper]](https://arxiv.org/abs/1611.06355)[[Code]](https://github.com/Guim3/IcGAN)
108 |
109 | :white_check_mark: [Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space] [[Paper]](https://arxiv.org/abs/1612.00005v1)[[Code]](https://github.com/Evolving-AI-Lab/ppgn)
110 |
111 | :white_check_mark: [StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] [[Paper]](https://arxiv.org/pdf/1612.03242v1.pdf)[[Code]](https://github.com/hanzhanggit/StackGAN)
112 |
113 | :white_check_mark: [Unsupervised Image-to-Image Translation with Generative Adversarial Networks] [[Paper]](https://arxiv.org/pdf/1701.02676.pdf)
114 |
115 | :white_check_mark: [Learning to Discover Cross-Domain Relations with Generative Adversarial Networks] [[Paper]](https://arxiv.org/abs/1703.05192)[[Code]](https://github.com/carpedm20/DiscoGAN-pytorch)
116 |
117 | ## Video Prediction
118 |
119 | :white_check_mark: [Deep multi-scale video prediction beyond mean square error] [[Paper]](https://arxiv.org/abs/1511.05440)[[Code]](https://github.com/dyelax/Adversarial_Video_Generation)(Yann LeCun's paper)
120 |
121 | :white_check_mark: [Unsupervised Learning for Physical Interaction through Video Prediction] [[Paper]](https://arxiv.org/abs/1605.07157)(Ian Goodfellow's paper)
122 |
123 | :white_check_mark: [Generating Videos with Scene Dynamics] [[Paper]](https://arxiv.org/abs/1609.02612)[[Web]](http://web.mit.edu/vondrick/tinyvideo/)[[Code]](https://github.com/cvondrick/videogan)
124 |
125 | ## Texture Synthesis & style transfer
126 |
127 | :white_check_mark: [Precomputed real-time texture synthesis with markovian generative adversarial networks] [[Paper]](https://arxiv.org/abs/1604.04382)[[Code]](https://github.com/chuanli11/MGANs)(ECCV 2016)
128 |
129 |
130 | ## GAN Theory
131 |
132 | :white_check_mark: [Energy-based generative adversarial network] [[Paper]](https://arxiv.org/pdf/1609.03126v2.pdf)[[Code]](https://github.com/buriburisuri/ebgan)(Lecun paper)
133 |
134 | :white_check_mark: [Improved Techniques for Training GANs] [[Paper]](https://arxiv.org/abs/1606.03498)[[Code]](https://github.com/openai/improved-gan)(Goodfellow's paper)
135 |
136 | :white_check_mark: [Mode RegularizedGenerative Adversarial Networks] [[Paper]](https://openreview.net/pdf?id=HJKkY35le)(Yoshua Bengio , ICLR 2017)
137 |
138 | :white_check_mark: [Improving Generative Adversarial Networks with Denoising Feature Matching] [[Paper]](https://openreview.net/pdf?id=S1X7nhsxl)[[Code]](https://github.com/hvy/chainer-gan-denoising-feature-matching)(Yoshua Bengio , ICLR 2017)
139 |
140 | :white_check_mark: [Sampling Generative Networks] [[Paper]](https://arxiv.org/abs/1609.04468)[[Code]](https://github.com/dribnet/plat)
141 |
142 | :white_check_mark: [Mode Regularized Generative Adversarial Networkss] [[Paper]](https://arxiv.org/abs/1612.02136)( Yoshua Bengio's paper)
143 |
144 | :white_check_mark: [How to train Gans] [[Docu]](https://github.com/soumith/ganhacks#authors)
145 |
146 | :white_check_mark: [Towards Principled Methods for Training Generative Adversarial Networks] [[Paper]](http://openreview.net/forum?id=Hk4_qw5xe)(ICLR 2017)
147 |
148 | :white_check_mark: [Unrolled Generative Adversarial Networks] [[Paper]](https://arxiv.org/abs/1611.02163)[[Code]](https://github.com/poolio/unrolled_gan)
149 |
150 | :white_check_mark: [Wasserstein GAN] [[Paper]](https://arxiv.org/abs/1701.07875)[[Code]](https://github.com/martinarjovsky/WassersteinGAN)
151 |
152 | :white_check_mark: [Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities] [[Paper]](https://arxiv.org/abs/1701.06264)[[Code]](https://github.com/guojunq/lsgan)(The same as WGan)
153 |
154 | :white_check_mark: [Towards Principled Methods for Training Generative Adversarial Networks] [[Paper]](https://arxiv.org/abs/1701.04862)
155 |
156 |
157 | ## 3D
158 |
159 | :white_check_mark: [Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling] [[Paper]](https://arxiv.org/abs/1610.07584)[[Web]](http://3dgan.csail.mit.edu/)[[code]](https://github.com/zck119/3dgan-release)(2016 NIPS)
160 |
161 | ## Face Generative and Editing
162 |
163 | :white_check_mark: [Autoencoding beyond pixels using a learned similarity metric] [[Paper]](https://arxiv.org/abs/1512.09300)[[code]](https://github.com/andersbll/autoencoding_beyond_pixels)
164 |
165 | :white_check_mark: [Coupled Generative Adversarial Networks] [[Paper]](http://mingyuliu.net/)[[Caffe Code]](https://github.com/mingyuliutw/CoGAN)[[Tensorflow Code]](https://github.com/andrewliao11/CoGAN-tensorflow)(NIPS)
166 |
167 | :white_check_mark: [Invertible Conditional GANs for image editing] [[Paper]](https://drive.google.com/file/d/0B48XS5sLi1OlRkRIbkZWUmdoQmM/view)[[Code]](https://github.com/Guim3/IcGAN)
168 |
169 | :white_check_mark: [Learning Residual Images for Face Attribute Manipulation] [[Paper]](https://arxiv.org/abs/1612.05363)
170 |
171 | :white_check_mark: [Neural Photo Editing with Introspective Adversarial Networks] [[Paper]](https://arxiv.org/abs/1609.07093)[[Code]](https://github.com/ajbrock/Neural-Photo-Editor)(ICLR 2017)
172 |
173 | ## For discrete distributions
174 |
175 | :white_check_mark: [Maximum-Likelihood Augmented Discrete Generative Adversarial Networks] [[Paper]](https://arxiv.org/abs/1702.07983v1)
176 |
177 | :white_check_mark: [Boundary-Seeking Generative Adversarial Networks] [[Paper]](https://arxiv.org/abs/1702.08431)
178 |
179 | :white_check_mark: [GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution] [[Paper]](https://arxiv.org/abs/1611.04051)
180 |
181 | # Project
182 |
183 | :white_check_mark: [cleverhans] [[Code]](https://github.com/openai/cleverhans)(A library for benchmarking vulnerability to adversarial examples)
184 |
185 | :white_check_mark: [reset-cppn-gan-tensorflow] [[Code]](https://github.com/hardmaru/resnet-cppn-gan-tensorflow)(Using Residual Generative Adversarial Networks and Variational Auto-encoder techniques to produce high resolution images)
186 |
187 | :white_check_mark: [HyperGAN] [[Code]](https://github.com/255bits/HyperGAN)(Open source GAN focused on scale and usability)
188 |
189 | # Blogs
190 | | Author | Address |
191 | |:----:|:---:|
192 | | **inFERENCe** | [Adversarial network](http://www.inference.vc/) |
193 | | **inFERENCe** | [InfoGan](http://www.inference.vc/infogan-variational-bound-on-mutual-information-twice/) |
194 | | **distill** | [Deconvolution and Image Generation](http://distill.pub/2016/deconv-checkerboard/) |
195 | | **yingzhenli** | [Gan theory](http://www.yingzhenli.net/home/blog/?p=421http://www.yingzhenli.net/home/blog/?p=421) |
196 | | **OpenAI** | [Generative model](https://openai.com/blog/generative-models/) |
197 |
198 |
199 | # Other
200 |
201 | :white_check_mark: [1] http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf (NIPS Goodfellow Slides)[[Chinese Trans]](http://c.m.163.com/news/a/C7UE2MLT0511AQHO.html?spss=newsapp&spsw=1)[[details]](https://arxiv.org/pdf/1701.00160v1.pdf)
202 |
203 | :white_check_mark: [2] [[PDF]](https://drive.google.com/file/d/0BxKBnD5y2M8NbzBUbXRwUDBZOVU/view)(NIPS Lecun Slides)
204 |
205 |
206 |
207 |
--------------------------------------------------------------------------------
/generative models/readme.md:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/learningtheory/approximation(NN).md:
--------------------------------------------------------------------------------
1 | 1. - [ ] How regularization affects the critical points in linear networks
2 | 1. - [ ] Norm-Based Capacity Control in Neural Networks
3 | 1. - [ ] Exploring Generalization in Deep Learning
4 | 1. - [ ] Convexified Convolutional Neural Networks
5 | 1. - [ ] The Expressive Power of Neural Networks: A View from the Width
6 | 1. - [ ] Approximation and estimation bounds for artificial neural networks.
7 | 1. - [ ] On the Expressive Power of Deep Learning: A Tensor Analysis.
8 | 1. - [ ] The Power of Depth for Feedforward Neural Networks
9 | 1. - [ ] Why deep neural networks for funtion approximation?
10 | 1. - [ ] Benefits of depth in neural networks
11 | 1. - [ ] Error bounds for approximations with deep ReLU networks
12 | 1. - [ ] Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity
13 | 1. - [ ] Breaking the curse of dimensionality with convex neural networks.
14 | 1. - [ ] Learning polynomials with neural networks.
15 | 1. - [ ] Provable bounds for learning some deep representations.
16 | 1. - [ ] The Loss Surfaces of Multilayer Networks
17 | 1. - [ ] Short and Deep: Sketching and Neural Networks
18 | 1. - [ ] On the energy landscape of deep networks
19 |
--------------------------------------------------------------------------------
/learningtheory/dl.md:
--------------------------------------------------------------------------------
1 | 1. - [ ] ON LARGE-BATCH TRAINING FOR DEEP LEARNING: GENERALIZATION GAP AND SHARP MINIMA
2 | 1. - [ ] Mixing Complexity and its Applications to Neural Networks
3 | 1. - [ ] Opening the black box of Deep Neural Networks via Information
4 | 1. - [ ] On the Emergence of Invariance and Disentangling in Deep Representations
5 | 1. - [ ] Visual Representations: Defining Properties and Deep Approximations
6 |
7 |
--------------------------------------------------------------------------------