├── table.jpg ├── someExamples ├── 155.jpg ├── 158.jpg ├── 175.jpg ├── 205.jpg ├── 305.jpg ├── 371.jpg ├── 451.jpg ├── 579.jpg ├── 601.jpg ├── 616.jpg ├── 624.jpg └── 626.jpg ├── inferenceCode ├── inference.py └── loadModel.py └── README.md /table.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/table.jpg -------------------------------------------------------------------------------- /someExamples/155.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/someExamples/155.jpg -------------------------------------------------------------------------------- /someExamples/158.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/someExamples/158.jpg -------------------------------------------------------------------------------- /someExamples/175.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/someExamples/175.jpg -------------------------------------------------------------------------------- /someExamples/205.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/someExamples/205.jpg -------------------------------------------------------------------------------- /someExamples/305.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/someExamples/305.jpg -------------------------------------------------------------------------------- /someExamples/371.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/someExamples/371.jpg -------------------------------------------------------------------------------- /someExamples/451.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/someExamples/451.jpg -------------------------------------------------------------------------------- /someExamples/579.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/someExamples/579.jpg -------------------------------------------------------------------------------- /someExamples/601.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/someExamples/601.jpg -------------------------------------------------------------------------------- /someExamples/616.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/someExamples/616.jpg -------------------------------------------------------------------------------- /someExamples/624.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/someExamples/624.jpg -------------------------------------------------------------------------------- /someExamples/626.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/99eren99/DIS25k/HEAD/someExamples/626.jpg -------------------------------------------------------------------------------- /inferenceCode/inference.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import cv2 3 | from PIL import Image 4 | import pandas as pd 5 | import os 6 | from loadModel import model as model 7 | import torch 8 | 9 | 10 | model = model.to("cuda") 11 | 12 | 13 | metaData=pd.read_csv(r"C:\newDataset\metaDataTrain.csv") 14 | oldLabels=[] 15 | newLabels=[] 16 | for row in metaData.values: 17 | oldPath=os.path.join(r"C:\data\new_OPA\composite\train_set",row[5].split("/")[-1]) 18 | print(row[5].split("/")[-1], row[-1]) 19 | oldImg=Image.open(oldPath).resize((512,512)).convert("RGB") 20 | newPath=os.path.join(r"C:\newDataset\images",str(row[-1])+".jpg") 21 | newImg=Image.open(newPath).resize((512,512)).convert("RGB") 22 | with torch.no_grad(): 23 | _,labelOld,__=model(oldImg) 24 | tup1=(_,labelOld,__) 25 | print(labelOld,__) 26 | _,labelNew,__=model(newImg) 27 | tup2=(_,labelNew,__) 28 | print(labelNew,__) 29 | oldLabels.append(labelOld) 30 | newLabels.append(labelNew) 31 | 32 | oldLabels=np.array(oldLabels) 33 | newLabels=np.array(newLabels) 34 | print(sum(oldLabels==0)) 35 | print(sum(newLabels==0)) -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 |