├── README.md ├── LICENSE └── Customer Behaviour Prediction ├── Customer_Behaviour.csv └── Customer_Behaviour_Prediction.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # Feature-Engineering 2 | All feature engineering related Notebooks. I have tried to see if performance of the model increases or not by performing the feature engineering steps. 3 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2021 Sonu Kumar 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /Customer Behaviour Prediction/Customer_Behaviour.csv: -------------------------------------------------------------------------------- 1 | User ID,Gender,Age,EstimatedSalary,Purchased 2 | 15624510,Male,19,19000,0 3 | 15810944,Male,35,20000,0 4 | 15668575,Female,26,43000,0 5 | 15603246,Female,27,57000,0 6 | 15804002,Male,19,76000,0 7 | 15728773,Male,27,58000,0 8 | 15598044,Female,27,84000,0 9 | 15694829,Female,32,150000,1 10 | 15600575,Male,25,33000,0 11 | 15727311,Female,35,65000,0 12 | 15570769,Female,26,80000,0 13 | 15606274,Female,26,52000,0 14 | 15746139,Male,20,86000,0 15 | 15704987,Male,32,18000,0 16 | 15628972,Male,18,82000,0 17 | 15697686,Male,29,80000,0 18 | 15733883,Male,47,25000,1 19 | 15617482,Male,45,26000,1 20 | 15704583,Male,46,28000,1 21 | 15621083,Female,48,29000,1 22 | 15649487,Male,45,22000,1 23 | 15736760,Female,47,49000,1 24 | 15714658,Male,48,41000,1 25 | 15599081,Female,45,22000,1 26 | 15705113,Male,46,23000,1 27 | 15631159,Male,47,20000,1 28 | 15792818,Male,49,28000,1 29 | 15633531,Female,47,30000,1 30 | 15744529,Male,29,43000,0 31 | 15669656,Male,31,18000,0 32 | 15581198,Male,31,74000,0 33 | 15729054,Female,27,137000,1 34 | 15573452,Female,21,16000,0 35 | 15776733,Female,28,44000,0 36 | 15724858,Male,27,90000,0 37 | 15713144,Male,35,27000,0 38 | 15690188,Female,33,28000,0 39 | 15689425,Male,30,49000,0 40 | 15671766,Female,26,72000,0 41 | 15782806,Female,27,31000,0 42 | 15764419,Female,27,17000,0 43 | 15591915,Female,33,51000,0 44 | 15772798,Male,35,108000,0 45 | 15792008,Male,30,15000,0 46 | 15715541,Female,28,84000,0 47 | 15639277,Male,23,20000,0 48 | 15798850,Male,25,79000,0 49 | 15776348,Female,27,54000,0 50 | 15727696,Male,30,135000,1 51 | 15793813,Female,31,89000,0 52 | 15694395,Female,24,32000,0 53 | 15764195,Female,18,44000,0 54 | 15744919,Female,29,83000,0 55 | 15671655,Female,35,23000,0 56 | 15654901,Female,27,58000,0 57 | 15649136,Female,24,55000,0 58 | 15775562,Female,23,48000,0 59 | 15807481,Male,28,79000,0 60 | 15642885,Male,22,18000,0 61 | 15789109,Female,32,117000,0 62 | 15814004,Male,27,20000,0 63 | 15673619,Male,25,87000,0 64 | 15595135,Female,23,66000,0 65 | 15583681,Male,32,120000,1 66 | 15605000,Female,59,83000,0 67 | 15718071,Male,24,58000,0 68 | 15679760,Male,24,19000,0 69 | 15654574,Female,23,82000,0 70 | 15577178,Female,22,63000,0 71 | 15595324,Female,31,68000,0 72 | 15756932,Male,25,80000,0 73 | 15726358,Female,24,27000,0 74 | 15595228,Female,20,23000,0 75 | 15782530,Female,33,113000,0 76 | 15592877,Male,32,18000,0 77 | 15651983,Male,34,112000,1 78 | 15746737,Male,18,52000,0 79 | 15774179,Female,22,27000,0 80 | 15667265,Female,28,87000,0 81 | 15655123,Female,26,17000,0 82 | 15595917,Male,30,80000,0 83 | 15668385,Male,39,42000,0 84 | 15709476,Male,20,49000,0 85 | 15711218,Male,35,88000,0 86 | 15798659,Female,30,62000,0 87 | 15663939,Female,31,118000,1 88 | 15694946,Male,24,55000,0 89 | 15631912,Female,28,85000,0 90 | 15768816,Male,26,81000,0 91 | 15682268,Male,35,50000,0 92 | 15684801,Male,22,81000,0 93 | 15636428,Female,30,116000,0 94 | 15809823,Male,26,15000,0 95 | 15699284,Female,29,28000,0 96 | 15786993,Female,29,83000,0 97 | 15709441,Female,35,44000,0 98 | 15710257,Female,35,25000,0 99 | 15582492,Male,28,123000,1 100 | 15575694,Male,35,73000,0 101 | 15756820,Female,28,37000,0 102 | 15766289,Male,27,88000,0 103 | 15593014,Male,28,59000,0 104 | 15584545,Female,32,86000,0 105 | 15675949,Female,33,149000,1 106 | 15672091,Female,19,21000,0 107 | 15801658,Male,21,72000,0 108 | 15706185,Female,26,35000,0 109 | 15789863,Male,27,89000,0 110 | 15720943,Male,26,86000,0 111 | 15697997,Female,38,80000,0 112 | 15665416,Female,39,71000,0 113 | 15660200,Female,37,71000,0 114 | 15619653,Male,38,61000,0 115 | 15773447,Male,37,55000,0 116 | 15739160,Male,42,80000,0 117 | 15689237,Male,40,57000,0 118 | 15679297,Male,35,75000,0 119 | 15591433,Male,36,52000,0 120 | 15642725,Male,40,59000,0 121 | 15701962,Male,41,59000,0 122 | 15811613,Female,36,75000,0 123 | 15741049,Male,37,72000,0 124 | 15724423,Female,40,75000,0 125 | 15574305,Male,35,53000,0 126 | 15678168,Female,41,51000,0 127 | 15697020,Female,39,61000,0 128 | 15610801,Male,42,65000,0 129 | 15745232,Male,26,32000,0 130 | 15722758,Male,30,17000,0 131 | 15792102,Female,26,84000,0 132 | 15675185,Male,31,58000,0 133 | 15801247,Male,33,31000,0 134 | 15725660,Male,30,87000,0 135 | 15638963,Female,21,68000,0 136 | 15800061,Female,28,55000,0 137 | 15578006,Male,23,63000,0 138 | 15668504,Female,20,82000,0 139 | 15687491,Male,30,107000,1 140 | 15610403,Female,28,59000,0 141 | 15741094,Male,19,25000,0 142 | 15807909,Male,19,85000,0 143 | 15666141,Female,18,68000,0 144 | 15617134,Male,35,59000,0 145 | 15783029,Male,30,89000,0 146 | 15622833,Female,34,25000,0 147 | 15746422,Female,24,89000,0 148 | 15750839,Female,27,96000,1 149 | 15749130,Female,41,30000,0 150 | 15779862,Male,29,61000,0 151 | 15767871,Male,20,74000,0 152 | 15679651,Female,26,15000,0 153 | 15576219,Male,41,45000,0 154 | 15699247,Male,31,76000,0 155 | 15619087,Female,36,50000,0 156 | 15605327,Male,40,47000,0 157 | 15610140,Female,31,15000,0 158 | 15791174,Male,46,59000,0 159 | 15602373,Male,29,75000,0 160 | 15762605,Male,26,30000,0 161 | 15598840,Female,32,135000,1 162 | 15744279,Male,32,100000,1 163 | 15670619,Male,25,90000,0 164 | 15599533,Female,37,33000,0 165 | 15757837,Male,35,38000,0 166 | 15697574,Female,33,69000,0 167 | 15578738,Female,18,86000,0 168 | 15762228,Female,22,55000,0 169 | 15614827,Female,35,71000,0 170 | 15789815,Male,29,148000,1 171 | 15579781,Female,29,47000,0 172 | 15587013,Male,21,88000,0 173 | 15570932,Male,34,115000,0 174 | 15794661,Female,26,118000,0 175 | 15581654,Female,34,43000,0 176 | 15644296,Female,34,72000,0 177 | 15614420,Female,23,28000,0 178 | 15609653,Female,35,47000,0 179 | 15594577,Male,25,22000,0 180 | 15584114,Male,24,23000,0 181 | 15673367,Female,31,34000,0 182 | 15685576,Male,26,16000,0 183 | 15774727,Female,31,71000,0 184 | 15694288,Female,32,117000,1 185 | 15603319,Male,33,43000,0 186 | 15759066,Female,33,60000,0 187 | 15814816,Male,31,66000,0 188 | 15724402,Female,20,82000,0 189 | 15571059,Female,33,41000,0 190 | 15674206,Male,35,72000,0 191 | 15715160,Male,28,32000,0 192 | 15730448,Male,24,84000,0 193 | 15662067,Female,19,26000,0 194 | 15779581,Male,29,43000,0 195 | 15662901,Male,19,70000,0 196 | 15689751,Male,28,89000,0 197 | 15667742,Male,34,43000,0 198 | 15738448,Female,30,79000,0 199 | 15680243,Female,20,36000,0 200 | 15745083,Male,26,80000,0 201 | 15708228,Male,35,22000,0 202 | 15628523,Male,35,39000,0 203 | 15708196,Male,49,74000,0 204 | 15735549,Female,39,134000,1 205 | 15809347,Female,41,71000,0 206 | 15660866,Female,58,101000,1 207 | 15766609,Female,47,47000,0 208 | 15654230,Female,55,130000,1 209 | 15794566,Female,52,114000,0 210 | 15800890,Female,40,142000,1 211 | 15697424,Female,46,22000,0 212 | 15724536,Female,48,96000,1 213 | 15735878,Male,52,150000,1 214 | 15707596,Female,59,42000,0 215 | 15657163,Male,35,58000,0 216 | 15622478,Male,47,43000,0 217 | 15779529,Female,60,108000,1 218 | 15636023,Male,49,65000,0 219 | 15582066,Male,40,78000,0 220 | 15666675,Female,46,96000,0 221 | 15732987,Male,59,143000,1 222 | 15789432,Female,41,80000,0 223 | 15663161,Male,35,91000,1 224 | 15694879,Male,37,144000,1 225 | 15593715,Male,60,102000,1 226 | 15575002,Female,35,60000,0 227 | 15622171,Male,37,53000,0 228 | 15795224,Female,36,126000,1 229 | 15685346,Male,56,133000,1 230 | 15691808,Female,40,72000,0 231 | 15721007,Female,42,80000,1 232 | 15794253,Female,35,147000,1 233 | 15694453,Male,39,42000,0 234 | 15813113,Male,40,107000,1 235 | 15614187,Male,49,86000,1 236 | 15619407,Female,38,112000,0 237 | 15646227,Male,46,79000,1 238 | 15660541,Male,40,57000,0 239 | 15753874,Female,37,80000,0 240 | 15617877,Female,46,82000,0 241 | 15772073,Female,53,143000,1 242 | 15701537,Male,42,149000,1 243 | 15736228,Male,38,59000,0 244 | 15780572,Female,50,88000,1 245 | 15769596,Female,56,104000,1 246 | 15586996,Female,41,72000,0 247 | 15722061,Female,51,146000,1 248 | 15638003,Female,35,50000,0 249 | 15775590,Female,57,122000,1 250 | 15730688,Male,41,52000,0 251 | 15753102,Female,35,97000,1 252 | 15810075,Female,44,39000,0 253 | 15723373,Male,37,52000,0 254 | 15795298,Female,48,134000,1 255 | 15584320,Female,37,146000,1 256 | 15724161,Female,50,44000,0 257 | 15750056,Female,52,90000,1 258 | 15609637,Female,41,72000,0 259 | 15794493,Male,40,57000,0 260 | 15569641,Female,58,95000,1 261 | 15815236,Female,45,131000,1 262 | 15811177,Female,35,77000,0 263 | 15680587,Male,36,144000,1 264 | 15672821,Female,55,125000,1 265 | 15767681,Female,35,72000,0 266 | 15600379,Male,48,90000,1 267 | 15801336,Female,42,108000,1 268 | 15721592,Male,40,75000,0 269 | 15581282,Male,37,74000,0 270 | 15746203,Female,47,144000,1 271 | 15583137,Male,40,61000,0 272 | 15680752,Female,43,133000,0 273 | 15688172,Female,59,76000,1 274 | 15791373,Male,60,42000,1 275 | 15589449,Male,39,106000,1 276 | 15692819,Female,57,26000,1 277 | 15727467,Male,57,74000,1 278 | 15734312,Male,38,71000,0 279 | 15764604,Male,49,88000,1 280 | 15613014,Female,52,38000,1 281 | 15759684,Female,50,36000,1 282 | 15609669,Female,59,88000,1 283 | 15685536,Male,35,61000,0 284 | 15750447,Male,37,70000,1 285 | 15663249,Female,52,21000,1 286 | 15638646,Male,48,141000,0 287 | 15734161,Female,37,93000,1 288 | 15631070,Female,37,62000,0 289 | 15761950,Female,48,138000,1 290 | 15649668,Male,41,79000,0 291 | 15713912,Female,37,78000,1 292 | 15586757,Male,39,134000,1 293 | 15596522,Male,49,89000,1 294 | 15625395,Male,55,39000,1 295 | 15760570,Male,37,77000,0 296 | 15566689,Female,35,57000,0 297 | 15725794,Female,36,63000,0 298 | 15673539,Male,42,73000,1 299 | 15705298,Female,43,112000,1 300 | 15675791,Male,45,79000,0 301 | 15747043,Male,46,117000,1 302 | 15736397,Female,58,38000,1 303 | 15678201,Male,48,74000,1 304 | 15720745,Female,37,137000,1 305 | 15637593,Male,37,79000,1 306 | 15598070,Female,40,60000,0 307 | 15787550,Male,42,54000,0 308 | 15603942,Female,51,134000,0 309 | 15733973,Female,47,113000,1 310 | 15596761,Male,36,125000,1 311 | 15652400,Female,38,50000,0 312 | 15717893,Female,42,70000,0 313 | 15622585,Male,39,96000,1 314 | 15733964,Female,38,50000,0 315 | 15753861,Female,49,141000,1 316 | 15747097,Female,39,79000,0 317 | 15594762,Female,39,75000,1 318 | 15667417,Female,54,104000,1 319 | 15684861,Male,35,55000,0 320 | 15742204,Male,45,32000,1 321 | 15623502,Male,36,60000,0 322 | 15774872,Female,52,138000,1 323 | 15611191,Female,53,82000,1 324 | 15674331,Male,41,52000,0 325 | 15619465,Female,48,30000,1 326 | 15575247,Female,48,131000,1 327 | 15695679,Female,41,60000,0 328 | 15713463,Male,41,72000,0 329 | 15785170,Female,42,75000,0 330 | 15796351,Male,36,118000,1 331 | 15639576,Female,47,107000,1 332 | 15693264,Male,38,51000,0 333 | 15589715,Female,48,119000,1 334 | 15769902,Male,42,65000,0 335 | 15587177,Male,40,65000,0 336 | 15814553,Male,57,60000,1 337 | 15601550,Female,36,54000,0 338 | 15664907,Male,58,144000,1 339 | 15612465,Male,35,79000,0 340 | 15810800,Female,38,55000,0 341 | 15665760,Male,39,122000,1 342 | 15588080,Female,53,104000,1 343 | 15776844,Male,35,75000,0 344 | 15717560,Female,38,65000,0 345 | 15629739,Female,47,51000,1 346 | 15729908,Male,47,105000,1 347 | 15716781,Female,41,63000,0 348 | 15646936,Male,53,72000,1 349 | 15768151,Female,54,108000,1 350 | 15579212,Male,39,77000,0 351 | 15721835,Male,38,61000,0 352 | 15800515,Female,38,113000,1 353 | 15591279,Male,37,75000,0 354 | 15587419,Female,42,90000,1 355 | 15750335,Female,37,57000,0 356 | 15699619,Male,36,99000,1 357 | 15606472,Male,60,34000,1 358 | 15778368,Male,54,70000,1 359 | 15671387,Female,41,72000,0 360 | 15573926,Male,40,71000,1 361 | 15709183,Male,42,54000,0 362 | 15577514,Male,43,129000,1 363 | 15778830,Female,53,34000,1 364 | 15768072,Female,47,50000,1 365 | 15768293,Female,42,79000,0 366 | 15654456,Male,42,104000,1 367 | 15807525,Female,59,29000,1 368 | 15574372,Female,58,47000,1 369 | 15671249,Male,46,88000,1 370 | 15779744,Male,38,71000,0 371 | 15624755,Female,54,26000,1 372 | 15611430,Female,60,46000,1 373 | 15774744,Male,60,83000,1 374 | 15629885,Female,39,73000,0 375 | 15708791,Male,59,130000,1 376 | 15793890,Female,37,80000,0 377 | 15646091,Female,46,32000,1 378 | 15596984,Female,46,74000,0 379 | 15800215,Female,42,53000,0 380 | 15577806,Male,41,87000,1 381 | 15749381,Female,58,23000,1 382 | 15683758,Male,42,64000,0 383 | 15670615,Male,48,33000,1 384 | 15715622,Female,44,139000,1 385 | 15707634,Male,49,28000,1 386 | 15806901,Female,57,33000,1 387 | 15775335,Male,56,60000,1 388 | 15724150,Female,49,39000,1 389 | 15627220,Male,39,71000,0 390 | 15672330,Male,47,34000,1 391 | 15668521,Female,48,35000,1 392 | 15807837,Male,48,33000,1 393 | 15592570,Male,47,23000,1 394 | 15748589,Female,45,45000,1 395 | 15635893,Male,60,42000,1 396 | 15757632,Female,39,59000,0 397 | 15691863,Female,46,41000,1 398 | 15706071,Male,51,23000,1 399 | 15654296,Female,50,20000,1 400 | 15755018,Male,36,33000,0 401 | 15594041,Female,49,36000,1 402 | -------------------------------------------------------------------------------- /Customer Behaviour Prediction/Customer_Behaviour_Prediction.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Customer Behaviour Prediction.ipynb", 7 | "provenance": [] 8 | }, 9 | "kernelspec": { 10 | "name": "python3", 11 | "display_name": "Python 3" 12 | } 13 | }, 14 | "cells": [ 15 | { 16 | "cell_type": "code", 17 | "metadata": { 18 | "id": "Jq2bZura6Feu" 19 | }, 20 | "source": [ 21 | "import pandas as pd\n", 22 | "import numpy as np\n", 23 | "import matplotlib.pyplot as plt\n", 24 | "%matplotlib inline\n", 25 | "from sklearn.preprocessing import StandardScaler\n", 26 | "from sklearn.linear_model import LogisticRegression\n", 27 | "from sklearn.model_selection import train_test_split" 28 | ], 29 | "execution_count": 1, 30 | "outputs": [] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "metadata": { 35 | "id": "E-aj4zwE7aua" 36 | }, 37 | "source": [ 38 | "data = pd.read_csv(\"drive/My Drive/Colab Notebooks/Customer_Behaviour.csv\")" 39 | ], 40 | "execution_count": 2, 41 | "outputs": [] 42 | }, 43 | { 44 | "cell_type": "code", 45 | "metadata": { 46 | "colab": { 47 | "base_uri": "https://localhost:8080/", 48 | "height": 419 49 | }, 50 | "id": "_9yncnQz7j8l", 51 | "outputId": "cc74e7dd-ee16-4035-b037-8366692572a9" 52 | }, 53 | "source": [ 54 | "data" 55 | ], 56 | "execution_count": 3, 57 | "outputs": [ 58 | { 59 | "output_type": "execute_result", 60 | "data": { 61 | "text/html": [ 62 | "
| \n", 80 | " | User ID | \n", 81 | "Gender | \n", 82 | "Age | \n", 83 | "EstimatedSalary | \n", 84 | "Purchased | \n", 85 | "
|---|---|---|---|---|---|
| 0 | \n", 90 | "15624510 | \n", 91 | "Male | \n", 92 | "19 | \n", 93 | "19000 | \n", 94 | "0 | \n", 95 | "
| 1 | \n", 98 | "15810944 | \n", 99 | "Male | \n", 100 | "35 | \n", 101 | "20000 | \n", 102 | "0 | \n", 103 | "
| 2 | \n", 106 | "15668575 | \n", 107 | "Female | \n", 108 | "26 | \n", 109 | "43000 | \n", 110 | "0 | \n", 111 | "
| 3 | \n", 114 | "15603246 | \n", 115 | "Female | \n", 116 | "27 | \n", 117 | "57000 | \n", 118 | "0 | \n", 119 | "
| 4 | \n", 122 | "15804002 | \n", 123 | "Male | \n", 124 | "19 | \n", 125 | "76000 | \n", 126 | "0 | \n", 127 | "
| ... | \n", 130 | "... | \n", 131 | "... | \n", 132 | "... | \n", 133 | "... | \n", 134 | "... | \n", 135 | "
| 395 | \n", 138 | "15691863 | \n", 139 | "Female | \n", 140 | "46 | \n", 141 | "41000 | \n", 142 | "1 | \n", 143 | "
| 396 | \n", 146 | "15706071 | \n", 147 | "Male | \n", 148 | "51 | \n", 149 | "23000 | \n", 150 | "1 | \n", 151 | "
| 397 | \n", 154 | "15654296 | \n", 155 | "Female | \n", 156 | "50 | \n", 157 | "20000 | \n", 158 | "1 | \n", 159 | "
| 398 | \n", 162 | "15755018 | \n", 163 | "Male | \n", 164 | "36 | \n", 165 | "33000 | \n", 166 | "0 | \n", 167 | "
| 399 | \n", 170 | "15594041 | \n", 171 | "Female | \n", 172 | "49 | \n", 173 | "36000 | \n", 174 | "1 | \n", 175 | "
400 rows × 5 columns
\n", 179 | "| \n", 276 | " | User ID | \n", 277 | "Age | \n", 278 | "EstimatedSalary | \n", 279 | "Purchased | \n", 280 | "
|---|---|---|---|---|
| count | \n", 285 | "4.000000e+02 | \n", 286 | "400.000000 | \n", 287 | "400.000000 | \n", 288 | "400.000000 | \n", 289 | "
| mean | \n", 292 | "1.569154e+07 | \n", 293 | "37.655000 | \n", 294 | "69742.500000 | \n", 295 | "0.357500 | \n", 296 | "
| std | \n", 299 | "7.165832e+04 | \n", 300 | "10.482877 | \n", 301 | "34096.960282 | \n", 302 | "0.479864 | \n", 303 | "
| min | \n", 306 | "1.556669e+07 | \n", 307 | "18.000000 | \n", 308 | "15000.000000 | \n", 309 | "0.000000 | \n", 310 | "
| 25% | \n", 313 | "1.562676e+07 | \n", 314 | "29.750000 | \n", 315 | "43000.000000 | \n", 316 | "0.000000 | \n", 317 | "
| 50% | \n", 320 | "1.569434e+07 | \n", 321 | "37.000000 | \n", 322 | "70000.000000 | \n", 323 | "0.000000 | \n", 324 | "
| 75% | \n", 327 | "1.575036e+07 | \n", 328 | "46.000000 | \n", 329 | "88000.000000 | \n", 330 | "1.000000 | \n", 331 | "
| max | \n", 334 | "1.581524e+07 | \n", 335 | "60.000000 | \n", 336 | "150000.000000 | \n", 337 | "1.000000 | \n", 338 | "
| \n", 453 | " | Gender | \n", 454 | "Age | \n", 455 | "EstimatedSalary | \n", 456 | "
|---|---|---|---|
| 247 | \n", 461 | "-0.986754 | \n", 462 | "1.892589 | \n", 463 | "1.521894 | \n", 464 | "
| 110 | \n", 467 | "-0.986754 | \n", 468 | "0.125038 | \n", 469 | "0.032132 | \n", 470 | "
| 16 | \n", 473 | "1.013423 | \n", 474 | "0.910616 | \n", 475 | "-1.311575 | \n", 476 | "
| 66 | \n", 479 | "1.013423 | \n", 480 | "-1.347922 | \n", 481 | "-1.486841 | \n", 482 | "
| 153 | \n", 485 | "-0.986754 | \n", 486 | "-0.169554 | \n", 487 | "-0.581299 | \n", 488 | "
| ... | \n", 491 | "... | \n", 492 | "... | \n", 493 | "... | \n", 494 | "
| 71 | \n", 497 | "-0.986754 | \n", 498 | "-1.347922 | \n", 499 | "-1.253153 | \n", 500 | "
| 106 | \n", 503 | "-0.986754 | \n", 504 | "-1.151527 | \n", 505 | "-1.019465 | \n", 506 | "
| 270 | \n", 509 | "-0.986754 | \n", 510 | "0.517827 | \n", 511 | "1.843215 | \n", 512 | "
| 348 | \n", 515 | "1.013423 | \n", 516 | "0.125038 | \n", 517 | "0.207398 | \n", 518 | "
| 102 | \n", 521 | "-0.986754 | \n", 522 | "-0.562343 | \n", 523 | "0.470297 | \n", 524 | "
300 rows × 3 columns
\n", 528 | "| \n", 591 | " | Gender | \n", 592 | "Age | \n", 593 | "EstimatedSalary | \n", 594 | "
|---|---|---|---|
| 209 | \n", 599 | "-0.986754 | \n", 600 | "0.812419 | \n", 601 | "-1.399208 | \n", 602 | "
| 280 | \n", 605 | "-0.986754 | \n", 606 | "2.088984 | \n", 607 | "0.528719 | \n", 608 | "
| 33 | \n", 611 | "-0.986754 | \n", 612 | "-0.955132 | \n", 613 | "-0.756565 | \n", 614 | "
| 210 | \n", 617 | "-0.986754 | \n", 618 | "1.008814 | \n", 619 | "0.762408 | \n", 620 | "
| 93 | \n", 623 | "-0.986754 | \n", 624 | "-0.856935 | \n", 625 | "-1.223942 | \n", 626 | "
| ... | \n", 629 | "... | \n", 630 | "... | \n", 631 | "... | \n", 632 | "
| 314 | \n", 635 | "-0.986754 | \n", 636 | "0.125038 | \n", 637 | "0.265820 | \n", 638 | "
| 373 | \n", 641 | "1.013423 | \n", 642 | "2.088984 | \n", 643 | "1.755582 | \n", 644 | "
| 380 | \n", 647 | "1.013423 | \n", 648 | "0.419630 | \n", 649 | "-0.172345 | \n", 650 | "
| 239 | \n", 653 | "-0.986754 | \n", 654 | "1.499800 | \n", 655 | "2.135325 | \n", 656 | "
| 75 | \n", 659 | "1.013423 | \n", 660 | "-0.365949 | \n", 661 | "1.229784 | \n", 662 | "
100 rows × 3 columns
\n", 666 | "| \n", 831 | " | Gender | \n", 832 | "Age | \n", 833 | "EstimatedSalary | \n", 834 | "High Income | \n", 835 | "Old Age | \n", 836 | "Young Age | \n", 837 | "
|---|---|---|---|---|---|---|
| 247 | \n", 842 | "-0.986754 | \n", 843 | "1.892589 | \n", 844 | "1.521894 | \n", 845 | "-0.229416 | \n", 846 | "1.763403 | \n", 847 | "-0.546536 | \n", 848 | "
| 110 | \n", 851 | "-0.986754 | \n", 852 | "0.125038 | \n", 853 | "0.032132 | \n", 854 | "-0.229416 | \n", 855 | "-0.567085 | \n", 856 | "-0.546536 | \n", 857 | "
| 16 | \n", 860 | "1.013423 | \n", 861 | "0.910616 | \n", 862 | "-1.311575 | \n", 863 | "-0.229416 | \n", 864 | "1.763403 | \n", 865 | "-0.546536 | \n", 866 | "
| 66 | \n", 869 | "1.013423 | \n", 870 | "-1.347922 | \n", 871 | "-1.486841 | \n", 872 | "-0.229416 | \n", 873 | "-0.567085 | \n", 874 | "1.829707 | \n", 875 | "
| 153 | \n", 878 | "-0.986754 | \n", 879 | "-0.169554 | \n", 880 | "-0.581299 | \n", 881 | "-0.229416 | \n", 882 | "-0.567085 | \n", 883 | "-0.546536 | \n", 884 | "
| ... | \n", 887 | "... | \n", 888 | "... | \n", 889 | "... | \n", 890 | "... | \n", 891 | "... | \n", 892 | "... | \n", 893 | "
| 71 | \n", 896 | "-0.986754 | \n", 897 | "-1.347922 | \n", 898 | "-1.253153 | \n", 899 | "-0.229416 | \n", 900 | "-0.567085 | \n", 901 | "1.829707 | \n", 902 | "
| 106 | \n", 905 | "-0.986754 | \n", 906 | "-1.151527 | \n", 907 | "-1.019465 | \n", 908 | "-0.229416 | \n", 909 | "-0.567085 | \n", 910 | "1.829707 | \n", 911 | "
| 270 | \n", 914 | "-0.986754 | \n", 915 | "0.517827 | \n", 916 | "1.843215 | \n", 917 | "-0.229416 | \n", 918 | "-0.567085 | \n", 919 | "-0.546536 | \n", 920 | "
| 348 | \n", 923 | "1.013423 | \n", 924 | "0.125038 | \n", 925 | "0.207398 | \n", 926 | "-0.229416 | \n", 927 | "-0.567085 | \n", 928 | "-0.546536 | \n", 929 | "
| 102 | \n", 932 | "-0.986754 | \n", 933 | "-0.562343 | \n", 934 | "0.470297 | \n", 935 | "-0.229416 | \n", 936 | "-0.567085 | \n", 937 | "-0.546536 | \n", 938 | "
300 rows × 6 columns
\n", 942 | "