├── requirements.txt
├── README.md
├── LICENSE
├── app.py
├── .gitignore
└── 🐭_a_human_can_create_a_DPO_dataset_with_smaller_models_by_looking_at_it.ipynb
/requirements.txt:
--------------------------------------------------------------------------------
1 | openai
2 | python-dotenv
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Synthetic-Data-Generation-using-LLM
2 | Synthetic Data Generation using LLM via Argilla, Distilabel, ChatGPT, etc.
3 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2024 AI Anytime
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/app.py:
--------------------------------------------------------------------------------
1 | import os
2 | import openai
3 |
4 | def generate_reviews(prompt, count=1):
5 | reviews = []
6 |
7 | for i in range(count):
8 | review_generated = False
9 | while not review_generated:
10 |
11 | # Generate a response using the ChatCompletion method
12 | response = openai.ChatCompletion.create(
13 | model="gpt-3.5-turbo",
14 | messages=[
15 | {"role": "system", "content": "You are a helpful assistant."},
16 | {"role": "user", "content": prompt}
17 | ]
18 | )
19 |
20 | review = response.choices[0].message['content'].strip()
21 | word_count = len(review.split())
22 | print("word count:", word_count)
23 |
24 | # Check if the word count is within the desired range
25 | if 15 <= word_count <= 70:
26 | print("counted")
27 | reviews.append(review)
28 | review_generated = True
29 |
30 | # Optional: Add a slight variation to the prompt for next iteration
31 | prompt += " Provide another perspective."
32 |
33 | return reviews
34 |
35 | prompt_text = "Write a 25 word positive review for a wireless earbud highlighting its battery life."
36 | num_datapoints = 5
37 | generated_reviews = generate_reviews(prompt_text, num_datapoints)
38 |
39 | for idx, review in enumerate(generated_reviews):
40 | print(f"Review {idx + 1}: {review}")
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | share/python-wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 | MANIFEST
28 |
29 | # PyInstaller
30 | # Usually these files are written by a python script from a template
31 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
32 | *.manifest
33 | *.spec
34 |
35 | # Installer logs
36 | pip-log.txt
37 | pip-delete-this-directory.txt
38 |
39 | # Unit test / coverage reports
40 | htmlcov/
41 | .tox/
42 | .nox/
43 | .coverage
44 | .coverage.*
45 | .cache
46 | nosetests.xml
47 | coverage.xml
48 | *.cover
49 | *.py,cover
50 | .hypothesis/
51 | .pytest_cache/
52 | cover/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | .pybuilder/
76 | target/
77 |
78 | # Jupyter Notebook
79 | .ipynb_checkpoints
80 |
81 | # IPython
82 | profile_default/
83 | ipython_config.py
84 |
85 | # pyenv
86 | # For a library or package, you might want to ignore these files since the code is
87 | # intended to run in multiple environments; otherwise, check them in:
88 | # .python-version
89 |
90 | # pipenv
91 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
93 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
94 | # install all needed dependencies.
95 | #Pipfile.lock
96 |
97 | # poetry
98 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99 | # This is especially recommended for binary packages to ensure reproducibility, and is more
100 | # commonly ignored for libraries.
101 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102 | #poetry.lock
103 |
104 | # pdm
105 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106 | #pdm.lock
107 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108 | # in version control.
109 | # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
110 | .pdm.toml
111 | .pdm-python
112 | .pdm-build/
113 |
114 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
115 | __pypackages__/
116 |
117 | # Celery stuff
118 | celerybeat-schedule
119 | celerybeat.pid
120 |
121 | # SageMath parsed files
122 | *.sage.py
123 |
124 | # Environments
125 | .env
126 | .venv
127 | env/
128 | venv/
129 | ENV/
130 | env.bak/
131 | venv.bak/
132 |
133 | # Spyder project settings
134 | .spyderproject
135 | .spyproject
136 |
137 | # Rope project settings
138 | .ropeproject
139 |
140 | # mkdocs documentation
141 | /site
142 |
143 | # mypy
144 | .mypy_cache/
145 | .dmypy.json
146 | dmypy.json
147 |
148 | # Pyre type checker
149 | .pyre/
150 |
151 | # pytype static type analyzer
152 | .pytype/
153 |
154 | # Cython debug symbols
155 | cython_debug/
156 |
157 | # PyCharm
158 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
159 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
160 | # and can be added to the global gitignore or merged into this file. For a more nuclear
161 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162 | #.idea/
163 |
--------------------------------------------------------------------------------
/🐭_a_human_can_create_a_DPO_dataset_with_smaller_models_by_looking_at_it.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "source": [
6 | "
I recomend starting from the default configuration and experiment from there.\n",
164 | "\n",
165 | "---\n",
166 | "\n"
167 | ],
168 | "metadata": {
169 | "id": "q1ZwXW3TLCna"
170 | }
171 | },
172 | {
173 | "cell_type": "code",
174 | "source": [
175 | "# @markdown ---\n",
176 | "# @markdown ### 🧹 Define the dataset to cleanup:\n",
177 | "\n",
178 | "# @markdown What's the name of your project? This will be used to create datasets and spaces so it should be unique.\n",
179 | "PROJECT_NAME = \"prometheus-text-generation-project\" # @param {type:\"string\"}\n",
180 | "\n",
181 | "# @markdown What SFT dataset on the hub should we start from:\n",
182 | "INPUT_DATASET_REPO_ID = \"openbmb/UltraInteract_sft\" # @param {type:\"string\"}\n",
183 | "\n",
184 | "# @markdown What are the instruction and response columns named in the dataset?\n",
185 | "RESPONSE_COLUMN_NAME = \"response\" # @param {type:\"string\"}\n",
186 | "INSTRUCTION_COLUMN_NAME = \"instruction\" # @param {type:\"string\"}\n",
187 | "EVALUATION_RUBRIC = \"factual-validity\" # @param [\"helpfulness\", \"harmlessness\", \"honesty\", \"factual-validity\", \"reasoning\"]\n",
188 | "\n",
189 | "# @markdown ---\n",
190 | "\n",
191 | "# @markdown 🤗 Model Selection\n",
192 | "\n",
193 | "# @markdown Define the quantized models that you want to use for generation and evaluation. Note this notebook is based on Llama-cpp so you will need gguf files, or to adapt the implementation.\n",
194 | "\n",
195 | "# @markdown **Prometheus Evaluation Model**\n",
196 | "PROMETHEUS_MODEL_REPO = \"AlekseiPravdin/prometheus-7b-v2_0-gguf\" # @param {type:\"string\"}\n",
197 | "PROMETHEUS_MODEL_PATH = \"prometheus-7b-v2_0.q2_k.gguf\" # @param {type:\"string\"}\n",
198 | "\n",
199 | "# @markdown **Text Generation Model**\n",
200 | "GENERATION_MODEL_REPO = \"microsoft/Phi-3-mini-4k-instruct-gguf\"# @param {type:\"string\"}\n",
201 | "GENERATION_MODEL_PATH = \"Phi-3-mini-4k-instruct-q4.gguf\" # @param {type:\"string\"}\n",
202 | "\n",
203 | "# @markdown You could advantage of different compute options by using other GGUF files in https://huggingface.co/AlekseiPravdin/prometheus-7b-v2_0-gguf\n",
204 | "\n",
205 | "# @markdown ---\n",
206 | "\n",
207 | "# @markdown 📖 Prometheus Model Configuration\n",
208 | "\n",
209 | "# @markdown Refine the promethus configuration based on feedback. Start from the defaults.\n",
210 | "TEMPERATURE = 0.7 # @param {type:\"slider\", min:0, max:1, step:0.1}\n",
211 | "MAX_TOKENS = 512 # @param {type:\"slider\", min:64, max:2048, step:64}\n",
212 | "NUM_SAMPLES = 10 # @param {type:\"slider\", min:5, max:500, step:10}\n",
213 | "# @markdown ---\n",
214 | "\n",
215 | "DATASET_REPO_ID = f\"{HF_USERNAME}/{PROJECT_NAME}\"\n",
216 | "SPACE_REPO_ID = f\"{HF_USERNAME}/{PROJECT_NAME}-argilla\"\n",
217 | "ARGILLA_URL = f\"https://{HF_USERNAME}-{PROJECT_NAME}-argilla.hf.space\"\n",
218 | "\n",
219 | "prometheus_path = hf_hub_download(\n",
220 | " repo_id=PROMETHEUS_MODEL_REPO, filename=PROMETHEUS_MODEL_PATH, repo_type=\"model\"\n",
221 | ")\n",
222 | "phi3_path = hf_hub_download(\n",
223 | " repo_id=GENERATION_MODEL_REPO, filename=GENERATION_MODEL_PATH, repo_type=\"model\"\n",
224 | ")\n",
225 | "duplicate_space(\n",
226 | " from_id=\"argilla/argilla-template-space\",\n",
227 | " to_id=SPACE_REPO_ID,\n",
228 | " private=False,\n",
229 | " exist_ok=True,\n",
230 | ")"
231 | ],
232 | "metadata": {
233 | "id": "UXUQGa_KGjkK",
234 | "outputId": "c911df47-635f-43fb-c2a6-43be7bece972",
235 | "colab": {
236 | "base_uri": "https://localhost:8080/",
237 | "height": 116,
238 | "referenced_widgets": [
239 | "d8b33bb641c945ee85bb94cfe0ff58cf",
240 | "264e3e750bd143f09d822ee8ac39200a",
241 | "ac9dbf10d9224fa58671a8c3fe381c0c",
242 | "1f89b563ab7a4734876d12bd1adfbd82",
243 | "85d28ff296bf4fac905e894d5cc8191c",
244 | "1173fe912b6f46e694100d84f95ba9c2",
245 | "31c99b8242f2486ba9e7d9790a5c6932",
246 | "fa50c42a7aa04fb385fd91ae1e6b6657",
247 | "239a38f9d1b64ac3b1ef91d87d3a604a",
248 | "07dc27a7a5e646f19c87531dfc904391",
249 | "d9fd216c8fe2415a9f0b47b161bd3345",
250 | "b09ea4131057463fb44f565ac75a0cfa",
251 | "3273f8c539304f70bfd000b3f599bc30",
252 | "5b3edbf8b1394ba99222e1f1ff001817",
253 | "79c40c09a18149ce8fc5a4f28012fe55",
254 | "76030354886d4d40aaabdaa71df53534",
255 | "94c66744dcbd422194f15d5bc0c51916",
256 | "069bbd4936ec4039a43b75a43eb92ce7",
257 | "1b83de7e86f2436b974cd3c214961b82",
258 | "231738af3e2341b09e8d9973cd32ad61",
259 | "60a5def5fd41426ba469f287d3f425eb",
260 | "8374678db4124801a9f252e4c65237e3"
261 | ]
262 | }
263 | },
264 | "execution_count": 3,
265 | "outputs": [
266 | {
267 | "output_type": "display_data",
268 | "data": {
269 | "text/plain": [
270 | "prometheus-7b-v2_0.q2_k.gguf: 0%| | 0.00/2.72G [00:00, ?B/s]"
271 | ],
272 | "application/vnd.jupyter.widget-view+json": {
273 | "version_major": 2,
274 | "version_minor": 0,
275 | "model_id": "d8b33bb641c945ee85bb94cfe0ff58cf"
276 | }
277 | },
278 | "metadata": {}
279 | },
280 | {
281 | "output_type": "display_data",
282 | "data": {
283 | "text/plain": [
284 | "Phi-3-mini-4k-instruct-q4.gguf: 0%| | 0.00/2.39G [00:00, ?B/s]"
285 | ],
286 | "application/vnd.jupyter.widget-view+json": {
287 | "version_major": 2,
288 | "version_minor": 0,
289 | "model_id": "b09ea4131057463fb44f565ac75a0cfa"
290 | }
291 | },
292 | "metadata": {}
293 | },
294 | {
295 | "output_type": "execute_result",
296 | "data": {
297 | "text/plain": [
298 | "RepoUrl('https://huggingface.co/spaces/skuma307/prometheus-text-generation-project-argilla', endpoint='https://huggingface.co', repo_type='space', repo_id='skuma307/prometheus-text-generation-project-argilla')"
299 | ],
300 | "application/vnd.google.colaboratory.intrinsic+json": {
301 | "type": "string"
302 | }
303 | },
304 | "metadata": {},
305 | "execution_count": 3
306 | }
307 | ]
308 | },
309 | {
310 | "cell_type": "markdown",
311 | "source": [
312 | "## 2. Define human feedback task in Argilla\n",
313 | "\n",
314 | "We will use Argilla to review the dataset that we distil."
315 | ],
316 | "metadata": {
317 | "id": "dnLBBX-aLEWP"
318 | }
319 | },
320 | {
321 | "cell_type": "code",
322 | "source": [
323 | "import argilla as rg\n",
324 | "\n",
325 | "rg.init(api_url=ARGILLA_URL,api_key=\"owner.apikey\")\n",
326 | "\n",
327 | "dataset = rg.FeedbackDataset(\n",
328 | " fields=[\n",
329 | " rg.TextField(name=\"instruction\"),\n",
330 | " rg.TextField(name=\"generation\"),\n",
331 | " ],\n",
332 | " questions=[\n",
333 | " rg.RatingQuestion(\n",
334 | " name=\"result\",\n",
335 | " description=\"How would you rate the quality of the answer?\",\n",
336 | " values=[1, 2, 3, 4, 5],\n",
337 | " ),\n",
338 | " rg.TextQuestion(\n",
339 | " name=\"feedback\",\n",
340 | " description=\"Feedback on the quality.\",\n",
341 | " required=False,\n",
342 | " ),\n",
343 | " ],\n",
344 | " guidelines=\"Please, read the question carefully and try to answer it as accurately as possible.\"\n",
345 | ")\n",
346 | "\n",
347 | "dataset.push_to_argilla(name=PROJECT_NAME, workspace=\"admin\")"
348 | ],
349 | "metadata": {
350 | "id": "varUzS0VMWeL",
351 | "outputId": "c860c1ab-284d-4d78-b7b5-4024161e6c0f",
352 | "colab": {
353 | "base_uri": "https://localhost:8080/"
354 | }
355 | },
356 | "execution_count": 4,
357 | "outputs": [
358 | {
359 | "output_type": "stream",
360 | "name": "stderr",
361 | "text": [
362 | "/usr/local/lib/python3.10/dist-packages/argilla/client/client.py:178: UserWarning: No workspace configuration was detected. To work with Argilla datasets, specify a valid workspace name on `rg.init` or set it up through the `rg.set_workspace` function.\n",
363 | " warnings.warn(\n",
364 | "INFO:argilla.client.feedback.dataset.local.mixins:✓ Dataset succesfully pushed to Argilla\n",
365 | "INFO:argilla.client.feedback.dataset.local.mixins:RemoteFeedbackDataset(\n",
366 | " id=887b32a1-de98-4002-ab0b-bc3d021e744c\n",
367 | " name=prometheus-text-generation-project\n",
368 | " workspace=Workspace(id=fa94ed90-0503-4789-88fb-5cfc50cb6847, name=admin, inserted_at=2024-05-29 11:40:08.087356, updated_at=2024-05-29 11:40:08.087356)\n",
369 | " url=https://skuma307-prometheus-text-generation-project-argilla.hf.space/dataset/887b32a1-de98-4002-ab0b-bc3d021e744c/annotation-mode\n",
370 | " fields=[RemoteTextField(id=UUID('04464e4e-58c5-4ad9-8d9c-1027894aebc5'), client=None, name='instruction', title='Instruction', required=True, type='text', use_markdown=False), RemoteTextField(id=UUID('a7397084-96dc-4442-825c-b222f6ea8828'), client=None, name='generation', title='Generation', required=True, type='text', use_markdown=False)]\n",
371 | " questions=[RemoteRatingQuestion(id=UUID('45fa0406-14c3-489c-9c1d-c24bd3019289'), client=None, name='result', title='Result', description='How would you rate the quality of the answer?', required=True, type='rating', values=[1, 2, 3, 4, 5]), RemoteTextQuestion(id=UUID('4f988d27-2e5e-4c95-853a-98e1fff6084a'), client=None, name='feedback', title='Feedback', description='Feedback on the quality.', required=False, type='text', use_markdown=False)]\n",
372 | " guidelines=Please, read the question carefully and try to answer it as accurately as possible.\n",
373 | " metadata_properties=[]\n",
374 | " vectors_settings=[]\n",
375 | ")\n"
376 | ]
377 | },
378 | {
379 | "output_type": "execute_result",
380 | "data": {
381 | "text/plain": [
382 | "RemoteFeedbackDataset(\n",
383 | " id=887b32a1-de98-4002-ab0b-bc3d021e744c\n",
384 | " name=prometheus-text-generation-project\n",
385 | " workspace=Workspace(id=fa94ed90-0503-4789-88fb-5cfc50cb6847, name=admin, inserted_at=2024-05-29 11:40:08.087356, updated_at=2024-05-29 11:40:08.087356)\n",
386 | " url=https://skuma307-prometheus-text-generation-project-argilla.hf.space/dataset/887b32a1-de98-4002-ab0b-bc3d021e744c/annotation-mode\n",
387 | " fields=[RemoteTextField(id=UUID('04464e4e-58c5-4ad9-8d9c-1027894aebc5'), client=None, name='instruction', title='Instruction', required=True, type='text', use_markdown=False), RemoteTextField(id=UUID('a7397084-96dc-4442-825c-b222f6ea8828'), client=None, name='generation', title='Generation', required=True, type='text', use_markdown=False)]\n",
388 | " questions=[RemoteRatingQuestion(id=UUID('45fa0406-14c3-489c-9c1d-c24bd3019289'), client=None, name='result', title='Result', description='How would you rate the quality of the answer?', required=True, type='rating', values=[1, 2, 3, 4, 5]), RemoteTextQuestion(id=UUID('4f988d27-2e5e-4c95-853a-98e1fff6084a'), client=None, name='feedback', title='Feedback', description='Feedback on the quality.', required=False, type='text', use_markdown=False)]\n",
389 | " guidelines=Please, read the question carefully and try to answer it as accurately as possible.\n",
390 | " metadata_properties=[]\n",
391 | " vectors_settings=[]\n",
392 | ")"
393 | ]
394 | },
395 | "metadata": {},
396 | "execution_count": 4
397 | }
398 | ]
399 | },
400 | {
401 | "cell_type": "markdown",
402 | "source": [
403 | "## 3. Define distilabel pipeline"
404 | ],
405 | "metadata": {
406 | "id": "o7yTgFu2LJz4"
407 | }
408 | },
409 | {
410 | "cell_type": "code",
411 | "execution_count": 5,
412 | "metadata": {
413 | "id": "kQkMCPdUVlwW"
414 | },
415 | "outputs": [],
416 | "source": [
417 | "from distilabel.pipeline import Pipeline\n",
418 | "from distilabel.steps import KeepColumns, LoadHubDataset, LoadDataFromDicts, CombineColumns, PreferenceToArgilla, step, StepInput\n",
419 | "from distilabel.steps.tasks import PrometheusEval, TextGeneration\n",
420 | "from distilabel.llms import LlamaCppLLM\n",
421 | "\n",
422 | "@step(inputs=[\"instruction\", \"generations\", \"feedback\", \"result\", \"model_name\"], outputs=[\"instruction\", \"generations\", \"feedback\", \"result\", \"model_name\"])\n",
423 | "def DPOToArgilla(inputs: StepInput):\n",
424 | " if inputs is None:\n",
425 | " yield inputs\n",
426 | "\n",
427 | " import argilla as rg\n",
428 | "\n",
429 | " rg.init(\n",
430 | " api_url=ARGILLA_URL,\n",
431 | " api_key=\"owner.apikey\"\n",
432 | " )\n",
433 | "\n",
434 | " records = []\n",
435 | "\n",
436 | " for input in inputs:\n",
437 | " result = input.get(\"result\")\n",
438 | " if result is None:\n",
439 | " continue\n",
440 | " chosen_index = 1 if result == \"B\" else 0\n",
441 | " rejected_index = 1 if result == \"A\" else 0\n",
442 | " record = rg.FeedbackRecord(\n",
443 | " fields={\n",
444 | " \"prompt\" : input[\"instruction\"],\n",
445 | " \"chosen\": input[\"generations\"][chosen_index],\n",
446 | " \"rejected\": input[\"generations\"][rejected_index]\n",
447 | " },\n",
448 | " suggestions = [\n",
449 | " {\n",
450 | " \"question_name\": \"preference\",\n",
451 | " \"value\":[\n",
452 | " {\"rank\": 1, \"value\": \"chosen\"},\n",
453 | " {\"rank\": 2, \"value\": \"rejected\"},\n",
454 | " ],\n",
455 | " },\n",
456 | " {\n",
457 | " \"question_name\": \"feedback\",\n",
458 | " \"value\": input[\"feedback\"]\n",
459 | " }\n",
460 | " ]\n",
461 | " )\n",
462 | " records.append(record)\n",
463 | " dataset = rg.FeedbackDataset.from_argilla(name=\"honest_preferences\", workspace=\"admin\")\n",
464 | " dataset.add_records(records)\n",
465 | " yield inputs\n",
466 | "\n",
467 | "\n",
468 | "with Pipeline(name=\"prometheus\") as pipeline:\n",
469 | "\n",
470 | " load_dataset = LoadHubDataset(\n",
471 | " name=\"load_dataset\",\n",
472 | " repo_id=INPUT_DATASET_REPO_ID,\n",
473 | " split=\"train\",\n",
474 | " batch_size=3,\n",
475 | " num_examples=3,\n",
476 | " output_mappings={RESPONSE_COLUMN_NAME:\"generation\", INSTRUCTION_COLUMN_NAME:\"instruction\"}\n",
477 | " )\n",
478 | "\n",
479 | "\n",
480 | " generate_with_phi3 = TextGeneration(\n",
481 | " name=\"generate_with_phi3\",\n",
482 | " llm=LlamaCppLLM(\n",
483 | " model_path=phi3_path,\n",
484 | " n_ctx=4092\n",
485 | " )\n",
486 | " )\n",
487 | "\n",
488 | " combine_columns = CombineColumns(\n",
489 | " name=\"combine_columns\",\n",
490 | " columns=[\"generation\", \"model_name\"],\n",
491 | " output_columns=[\"generations\", \"generation_models\"],\n",
492 | " )\n",
493 | "\n",
494 | " prometheus = PrometheusEval(\n",
495 | " name=\"prometheus\",\n",
496 | " llm=LlamaCppLLM(\n",
497 | " model_path=prometheus_path,\n",
498 | " n_ctx=4092\n",
499 | " ),\n",
500 | " mode=\"relative\",\n",
501 | " rubric=\"factual-validity\",\n",
502 | " reference=False,\n",
503 | " num_generations=1,\n",
504 | " group_generations=False,\n",
505 | " )\n",
506 | "\n",
507 | " keep_columns = KeepColumns(\n",
508 | " name=\"keep_columns\",\n",
509 | " columns=[\"instruction\", \"generations\", \"feedback\", \"result\", \"model_name\"],\n",
510 | " )\n",
511 | "\n",
512 | " push_to_argilla = DPOToArgilla(\n",
513 | " name=\"push_to_argilla\"\n",
514 | " )\n",
515 | "\n",
516 | " load_dataset.connect(combine_columns)\n",
517 | " load_dataset.connect(generate_with_phi3)\n",
518 | " generate_with_phi3.connect(combine_columns)\n",
519 | " combine_columns.connect(prometheus)\n",
520 | " prometheus.connect(keep_columns)\n",
521 | " keep_columns.connect(push_to_argilla)\n"
522 | ]
523 | },
524 | {
525 | "cell_type": "markdown",
526 | "source": [
527 | "## 4. Run the distilabel pipeline"
528 | ],
529 | "metadata": {
530 | "id": "rKKvA-xHMoDL"
531 | }
532 | },
533 | {
534 | "cell_type": "code",
535 | "source": [
536 | "distiset = pipeline.run(\n",
537 | " parameters={\n",
538 | " generate_with_phi3.name: {\n",
539 | " \"llm\": {\n",
540 | " \"generation_kwargs\": {\"max_new_tokens\": 1024, \"temperature\": 0.7}\n",
541 | " }\n",
542 | " },\n",
543 | " prometheus.name: { # type: ignore\n",
544 | " \"llm\": {\n",
545 | " \"model_path\": prometheus_path,\n",
546 | " \"generation_kwargs\": {\n",
547 | " \"max_new_tokens\": 512,\n",
548 | " \"temperature\": 0.7,\n",
549 | " },\n",
550 | " },\n",
551 | " },\n",
552 | " },\n",
553 | ")"
554 | ],
555 | "metadata": {
556 | "id": "rHdCdy2g8FcO",
557 | "outputId": "bef34c5e-bb4b-409e-dc87-ae94ccbce754",
558 | "colab": {
559 | "base_uri": "https://localhost:8080/",
560 | "height": 1000,
561 | "referenced_widgets": [
562 | "c657f93dbc124dbab5675fff5db70643",
563 | "cdad238cd7f545b188c16104855e97c7",
564 | "b120480b077344899a6cd7fcc02afe6b",
565 | "fe277f79fb8e4a5f8824c6d7242c738a",
566 | "a94aa938805548aaa0de040004d4b712",
567 | "3f816fa857884ed5a19977210f3fac66",
568 | "d1cdc0ad1fa94b6ba9035fd8d7de11e0",
569 | "3ed461cd434c463eb28228ae38c4cb7d",
570 | "d0c8a30572574f828a95692c4bcdda06",
571 | "ab24d3de500e45de8d9e9bd2f2a71fbf",
572 | "cdc619ef065248638ad0b6e3a085869e"
573 | ]
574 | }
575 | },
576 | "execution_count": 6,
577 | "outputs": [
578 | {
579 | "output_type": "display_data",
580 | "data": {
581 | "text/plain": [
582 | "\u001b[2;36m[05/29/24 11:40:40]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.pipeline.local'\u001b[0m\u001b[1m]\u001b[0m 📝 Pipeline data will be written to \u001b]8;id=340114;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=219628;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n",
583 | "\u001b[2;36m \u001b[0m \u001b[32m'/root/.cache/distilabel/pipelines/prometheus/5e039100df81858364b22fa557f\u001b[0m \u001b[2m \u001b[0m\n",
584 | "\u001b[2;36m \u001b[0m \u001b[32m58461f827ed58/data'\u001b[0m \u001b[2m \u001b[0m\n"
585 | ],
586 | "text/html": [
587 | "[05/29/24 11:40:40] INFO ['distilabel.pipeline.local'] 📝 Pipeline data will be written to local.py:128\n",
588 | " '/root/.cache/distilabel/pipelines/prometheus/5e039100df81858364b22fa557f \n",
589 | " 58461f827ed58/data' \n",
590 | "
\n"
591 | ]
592 | },
593 | "metadata": {}
594 | },
595 | {
596 | "output_type": "display_data",
597 | "data": {
598 | "text/plain": [
599 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.pipeline.local'\u001b[0m\u001b[1m]\u001b[0m ⏳ Waiting for all the steps to load\u001b[33m...\u001b[0m \u001b]8;id=74635;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=151061;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#467\u001b\\\u001b[2m467\u001b[0m\u001b]8;;\u001b\\\n"
600 | ],
601 | "text/html": [
602 | " INFO ['distilabel.pipeline.local'] ⏳ Waiting for all the steps to load... local.py:467\n",
603 | "
\n"
604 | ]
605 | },
606 | "metadata": {}
607 | },
608 | {
609 | "output_type": "display_data",
610 | "data": {
611 | "text/plain": [
612 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.pipeline.local'\u001b[0m\u001b[1m]\u001b[0m ⏳ Steps loaded: \u001b[1;36m3\u001b[0m/\u001b[1;36m6\u001b[0m \u001b]8;id=553059;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=532527;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#481\u001b\\\u001b[2m481\u001b[0m\u001b]8;;\u001b\\\n"
613 | ],
614 | "text/html": [
615 | " INFO ['distilabel.pipeline.local'] ⏳ Steps loaded: 3/6 local.py:481\n",
616 | "
\n"
617 | ]
618 | },
619 | "metadata": {}
620 | },
621 | {
622 | "output_type": "display_data",
623 | "data": {
624 | "text/plain": [
625 | "\u001b[2;36m[05/29/24 11:40:43]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.pipeline.local'\u001b[0m\u001b[1m]\u001b[0m ⏳ Steps loaded: \u001b[1;36m5\u001b[0m/\u001b[1;36m6\u001b[0m \u001b]8;id=39982;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=575391;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#481\u001b\\\u001b[2m481\u001b[0m\u001b]8;;\u001b\\\n"
626 | ],
627 | "text/html": [
628 | "[05/29/24 11:40:43] INFO ['distilabel.pipeline.local'] ⏳ Steps loaded: 5/6 local.py:481\n",
629 | "
\n"
630 | ]
631 | },
632 | "metadata": {}
633 | },
634 | {
635 | "output_type": "display_data",
636 | "data": {
637 | "text/plain": [
638 | "\u001b[2;36m[05/29/24 11:40:50]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.pipeline.local'\u001b[0m\u001b[1m]\u001b[0m ⏳ Steps loaded: \u001b[1;36m6\u001b[0m/\u001b[1;36m6\u001b[0m \u001b]8;id=640314;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=906319;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#481\u001b\\\u001b[2m481\u001b[0m\u001b]8;;\u001b\\\n"
639 | ],
640 | "text/html": [
641 | "[05/29/24 11:40:50] INFO ['distilabel.pipeline.local'] ⏳ Steps loaded: 6/6 local.py:481\n",
642 | "
\n"
643 | ]
644 | },
645 | "metadata": {}
646 | },
647 | {
648 | "output_type": "display_data",
649 | "data": {
650 | "text/plain": [
651 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.pipeline.local'\u001b[0m\u001b[1m]\u001b[0m ✅ All the steps have been loaded! \u001b]8;id=483226;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=971132;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#485\u001b\\\u001b[2m485\u001b[0m\u001b]8;;\u001b\\\n"
652 | ],
653 | "text/html": [
654 | " INFO ['distilabel.pipeline.local'] ✅ All the steps have been loaded! local.py:485\n",
655 | "
\n"
656 | ]
657 | },
658 | "metadata": {}
659 | },
660 | {
661 | "output_type": "stream",
662 | "name": "stderr",
663 | "text": [
664 | "/usr/local/lib/python3.10/dist-packages/distilabel/steps/tasks/base.py:160: UserWarning: `use_system_prompt` is set to `True`, but no `system_prompt` in input batch, so it will be ignored.\n",
665 | " return [self.format_input(input) for input in inputs]\n"
666 | ]
667 | },
668 | {
669 | "output_type": "display_data",
670 | "data": {
671 | "text/plain": [
672 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.load_dataset'\u001b[0m\u001b[1m]\u001b[0m 🧬 Starting yielding batches from \u001b]8;id=754853;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=251552;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#904\u001b\\\u001b[2m904\u001b[0m\u001b]8;;\u001b\\\n",
673 | "\u001b[2;36m \u001b[0m generator step \u001b[32m'load_dataset'\u001b[0m. Offset: \u001b[1;36m0\u001b[0m \u001b[2m \u001b[0m\n"
674 | ],
675 | "text/html": [
676 | " INFO ['distilabel.step.load_dataset'] 🧬 Starting yielding batches from local.py:904\n",
677 | " generator step 'load_dataset'. Offset: 0 \n",
678 | "
\n"
679 | ]
680 | },
681 | "metadata": {}
682 | },
683 | {
684 | "output_type": "display_data",
685 | "data": {
686 | "text/plain": [
687 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.load_dataset'\u001b[0m\u001b[1m]\u001b[0m 📨 Step \u001b[32m'load_dataset'\u001b[0m sending batch \u001b[1;36m0\u001b[0m \u001b]8;id=669877;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=748219;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#991\u001b\\\u001b[2m991\u001b[0m\u001b]8;;\u001b\\\n",
688 | "\u001b[2;36m \u001b[0m to output queue \u001b[2m \u001b[0m\n"
689 | ],
690 | "text/html": [
691 | " INFO ['distilabel.step.load_dataset'] 📨 Step 'load_dataset' sending batch 0 local.py:991\n",
692 | " to output queue \n",
693 | "
\n"
694 | ]
695 | },
696 | "metadata": {}
697 | },
698 | {
699 | "output_type": "display_data",
700 | "data": {
701 | "text/plain": [
702 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.load_dataset'\u001b[0m\u001b[1m]\u001b[0m 🏁 Finished running step \u001b[32m'load_dataset'\u001b[0m \u001b]8;id=145469;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=587463;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#873\u001b\\\u001b[2m873\u001b[0m\u001b]8;;\u001b\\\n"
703 | ],
704 | "text/html": [
705 | " INFO ['distilabel.step.load_dataset'] 🏁 Finished running step 'load_dataset' local.py:873\n",
706 | "
\n"
707 | ]
708 | },
709 | "metadata": {}
710 | },
711 | {
712 | "output_type": "display_data",
713 | "data": {
714 | "text/plain": [
715 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.generate_with_phi3'\u001b[0m\u001b[1m]\u001b[0m 📦 Processing batch \u001b[1;36m0\u001b[0m in \u001b]8;id=650558;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=766321;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#953\u001b\\\u001b[2m953\u001b[0m\u001b]8;;\u001b\\\n",
716 | "\u001b[2;36m \u001b[0m \u001b[32m'generate_with_phi3'\u001b[0m \u001b[2m \u001b[0m\n"
717 | ],
718 | "text/html": [
719 | " INFO ['distilabel.step.generate_with_phi3'] 📦 Processing batch 0 in local.py:953\n",
720 | " 'generate_with_phi3' \n",
721 | "
\n"
722 | ]
723 | },
724 | "metadata": {}
725 | },
726 | {
727 | "output_type": "display_data",
728 | "data": {
729 | "text/plain": [
730 | "\u001b[2;36m[05/29/24 11:41:16]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.generate_with_phi3'\u001b[0m\u001b[1m]\u001b[0m 📨 Step \u001b[32m'generate_with_phi3'\u001b[0m \u001b]8;id=993796;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=282385;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#991\u001b\\\u001b[2m991\u001b[0m\u001b]8;;\u001b\\\n",
731 | "\u001b[2;36m \u001b[0m sending batch \u001b[1;36m0\u001b[0m to output queue \u001b[2m \u001b[0m\n"
732 | ],
733 | "text/html": [
734 | "[05/29/24 11:41:16] INFO ['distilabel.step.generate_with_phi3'] 📨 Step 'generate_with_phi3' local.py:991\n",
735 | " sending batch 0 to output queue \n",
736 | "
\n"
737 | ]
738 | },
739 | "metadata": {}
740 | },
741 | {
742 | "output_type": "display_data",
743 | "data": {
744 | "text/plain": [
745 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.generate_with_phi3'\u001b[0m\u001b[1m]\u001b[0m 🏁 Finished running step \u001b]8;id=994845;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=253743;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#873\u001b\\\u001b[2m873\u001b[0m\u001b]8;;\u001b\\\n",
746 | "\u001b[2;36m \u001b[0m \u001b[32m'generate_with_phi3'\u001b[0m \u001b[2m \u001b[0m\n"
747 | ],
748 | "text/html": [
749 | " INFO ['distilabel.step.generate_with_phi3'] 🏁 Finished running step local.py:873\n",
750 | " 'generate_with_phi3' \n",
751 | "
\n"
752 | ]
753 | },
754 | "metadata": {}
755 | },
756 | {
757 | "output_type": "display_data",
758 | "data": {
759 | "text/plain": [
760 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.combine_columns'\u001b[0m\u001b[1m]\u001b[0m 📦 Processing batch \u001b[1;36m0\u001b[0m in \u001b]8;id=51829;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=250973;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#953\u001b\\\u001b[2m953\u001b[0m\u001b]8;;\u001b\\\n",
761 | "\u001b[2;36m \u001b[0m \u001b[32m'combine_columns'\u001b[0m \u001b[2m \u001b[0m\n"
762 | ],
763 | "text/html": [
764 | " INFO ['distilabel.step.combine_columns'] 📦 Processing batch 0 in local.py:953\n",
765 | " 'combine_columns' \n",
766 | "
\n"
767 | ]
768 | },
769 | "metadata": {}
770 | },
771 | {
772 | "output_type": "display_data",
773 | "data": {
774 | "text/plain": [
775 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.combine_columns'\u001b[0m\u001b[1m]\u001b[0m 📨 Step \u001b[32m'combine_columns'\u001b[0m sending \u001b]8;id=424713;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=696176;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#991\u001b\\\u001b[2m991\u001b[0m\u001b]8;;\u001b\\\n",
776 | "\u001b[2;36m \u001b[0m batch \u001b[1;36m0\u001b[0m to output queue \u001b[2m \u001b[0m\n"
777 | ],
778 | "text/html": [
779 | " INFO ['distilabel.step.combine_columns'] 📨 Step 'combine_columns' sending local.py:991\n",
780 | " batch 0 to output queue \n",
781 | "
\n"
782 | ]
783 | },
784 | "metadata": {}
785 | },
786 | {
787 | "output_type": "display_data",
788 | "data": {
789 | "text/plain": [
790 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.combine_columns'\u001b[0m\u001b[1m]\u001b[0m 🏁 Finished running step \u001b]8;id=342046;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=214979;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#873\u001b\\\u001b[2m873\u001b[0m\u001b]8;;\u001b\\\n",
791 | "\u001b[2;36m \u001b[0m \u001b[32m'combine_columns'\u001b[0m \u001b[2m \u001b[0m\n"
792 | ],
793 | "text/html": [
794 | " INFO ['distilabel.step.combine_columns'] 🏁 Finished running step local.py:873\n",
795 | " 'combine_columns' \n",
796 | "
\n"
797 | ]
798 | },
799 | "metadata": {}
800 | },
801 | {
802 | "output_type": "display_data",
803 | "data": {
804 | "text/plain": [
805 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.prometheus'\u001b[0m\u001b[1m]\u001b[0m 📦 Processing batch \u001b[1;36m0\u001b[0m in \u001b[32m'prometheus'\u001b[0m \u001b]8;id=292510;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=79730;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#953\u001b\\\u001b[2m953\u001b[0m\u001b]8;;\u001b\\\n"
806 | ],
807 | "text/html": [
808 | " INFO ['distilabel.step.prometheus'] 📦 Processing batch 0 in 'prometheus' local.py:953\n",
809 | "
\n"
810 | ]
811 | },
812 | "metadata": {}
813 | },
814 | {
815 | "output_type": "display_data",
816 | "data": {
817 | "text/plain": [
818 | "\u001b[2;36m[05/29/24 11:41:37]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.prometheus'\u001b[0m\u001b[1m]\u001b[0m 📨 Step \u001b[32m'prometheus'\u001b[0m sending batch \u001b[1;36m0\u001b[0m to \u001b]8;id=806904;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=571779;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#991\u001b\\\u001b[2m991\u001b[0m\u001b]8;;\u001b\\\n",
819 | "\u001b[2;36m \u001b[0m output queue \u001b[2m \u001b[0m\n"
820 | ],
821 | "text/html": [
822 | "[05/29/24 11:41:37] INFO ['distilabel.step.prometheus'] 📨 Step 'prometheus' sending batch 0 to local.py:991\n",
823 | " output queue \n",
824 | "
\n"
825 | ]
826 | },
827 | "metadata": {}
828 | },
829 | {
830 | "output_type": "display_data",
831 | "data": {
832 | "text/plain": [
833 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.prometheus'\u001b[0m\u001b[1m]\u001b[0m 🏁 Finished running step \u001b[32m'prometheus'\u001b[0m \u001b]8;id=127410;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=60507;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#873\u001b\\\u001b[2m873\u001b[0m\u001b]8;;\u001b\\\n"
834 | ],
835 | "text/html": [
836 | " INFO ['distilabel.step.prometheus'] 🏁 Finished running step 'prometheus' local.py:873\n",
837 | "
\n"
838 | ]
839 | },
840 | "metadata": {}
841 | },
842 | {
843 | "output_type": "display_data",
844 | "data": {
845 | "text/plain": [
846 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.keep_columns'\u001b[0m\u001b[1m]\u001b[0m 📦 Processing batch \u001b[1;36m0\u001b[0m in \u001b[32m'keep_columns'\u001b[0m \u001b]8;id=919915;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=252819;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#953\u001b\\\u001b[2m953\u001b[0m\u001b]8;;\u001b\\\n"
847 | ],
848 | "text/html": [
849 | " INFO ['distilabel.step.keep_columns'] 📦 Processing batch 0 in 'keep_columns' local.py:953\n",
850 | "
\n"
851 | ]
852 | },
853 | "metadata": {}
854 | },
855 | {
856 | "output_type": "display_data",
857 | "data": {
858 | "text/plain": [
859 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.keep_columns'\u001b[0m\u001b[1m]\u001b[0m 📨 Step \u001b[32m'keep_columns'\u001b[0m sending batch \u001b[1;36m0\u001b[0m \u001b]8;id=623940;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=427737;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#991\u001b\\\u001b[2m991\u001b[0m\u001b]8;;\u001b\\\n",
860 | "\u001b[2;36m \u001b[0m to output queue \u001b[2m \u001b[0m\n"
861 | ],
862 | "text/html": [
863 | " INFO ['distilabel.step.keep_columns'] 📨 Step 'keep_columns' sending batch 0 local.py:991\n",
864 | " to output queue \n",
865 | "
\n"
866 | ]
867 | },
868 | "metadata": {}
869 | },
870 | {
871 | "output_type": "display_data",
872 | "data": {
873 | "text/plain": [
874 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.keep_columns'\u001b[0m\u001b[1m]\u001b[0m 🏁 Finished running step \u001b[32m'keep_columns'\u001b[0m \u001b]8;id=190972;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=874701;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#873\u001b\\\u001b[2m873\u001b[0m\u001b]8;;\u001b\\\n"
875 | ],
876 | "text/html": [
877 | " INFO ['distilabel.step.keep_columns'] 🏁 Finished running step 'keep_columns' local.py:873\n",
878 | "
\n"
879 | ]
880 | },
881 | "metadata": {}
882 | },
883 | {
884 | "output_type": "display_data",
885 | "data": {
886 | "text/plain": [
887 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.push_to_argilla'\u001b[0m\u001b[1m]\u001b[0m 📦 Processing batch \u001b[1;36m0\u001b[0m in \u001b]8;id=851415;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=214778;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#953\u001b\\\u001b[2m953\u001b[0m\u001b]8;;\u001b\\\n",
888 | "\u001b[2;36m \u001b[0m \u001b[32m'push_to_argilla'\u001b[0m \u001b[2m \u001b[0m\n"
889 | ],
890 | "text/html": [
891 | " INFO ['distilabel.step.push_to_argilla'] 📦 Processing batch 0 in local.py:953\n",
892 | " 'push_to_argilla' \n",
893 | "
\n"
894 | ]
895 | },
896 | "metadata": {}
897 | },
898 | {
899 | "output_type": "stream",
900 | "name": "stderr",
901 | "text": [
902 | "/usr/local/lib/python3.10/dist-packages/argilla/client/client.py:178: UserWarning: No workspace configuration was detected. To work with Argilla datasets, specify a valid workspace name on `rg.init` or set it up through the `rg.set_workspace` function.\n",
903 | " warnings.warn(\n"
904 | ]
905 | },
906 | {
907 | "output_type": "display_data",
908 | "data": {
909 | "text/plain": [
910 | "\u001b[2;36m[05/29/24 11:41:39]\u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.push_to_argilla'\u001b[0m\u001b[1m]\u001b[0m ⚠️ Processing batch \u001b[1;36m0\u001b[0m with step \u001b]8;id=116607;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=135234;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#975\u001b\\\u001b[2m975\u001b[0m\u001b]8;;\u001b\\\n",
911 | "\u001b[2;36m \u001b[0m \u001b[32m'push_to_argilla'\u001b[0m failed. Sending empty batch filled with `\u001b[3;35mNone\u001b[0m`s\u001b[33m...\u001b[0m \u001b[2m \u001b[0m\n"
912 | ],
913 | "text/html": [
914 | "[05/29/24 11:41:39] WARNING ['distilabel.step.push_to_argilla'] ⚠️ Processing batch 0 with step local.py:975\n",
915 | " 'push_to_argilla' failed. Sending empty batch filled with `None`s... \n",
916 | "
\n"
917 | ]
918 | },
919 | "metadata": {}
920 | },
921 | {
922 | "output_type": "display_data",
923 | "data": {
924 | "text/plain": [
925 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.push_to_argilla'\u001b[0m\u001b[1m]\u001b[0m Subprocess traceback: \u001b]8;id=788385;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=57921;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#979\u001b\\\u001b[2m979\u001b[0m\u001b]8;;\u001b\\\n",
926 | "\u001b[2;36m \u001b[0m \u001b[2m \u001b[0m\n",
927 | "\u001b[2;36m \u001b[0m Traceback \u001b[1m(\u001b[0mmost recent call last\u001b[1m)\u001b[0m: \u001b[2m \u001b[0m\n",
928 | "\u001b[2;36m \u001b[0m File \u001b[2m \u001b[0m\n",
929 | "\u001b[2;36m \u001b[0m \u001b[32m\"/usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\"\u001b[0m, \u001b[2m \u001b[0m\n",
930 | "\u001b[2;36m \u001b[0m line \u001b[1;36m959\u001b[0m, in _non_generator_process_loop \u001b[2m \u001b[0m\n",
931 | "\u001b[2;36m \u001b[0m result = \u001b[1;35mnext\u001b[0m\u001b[1m(\u001b[0m\u001b[1;35mself.step.process_applying_mappings\u001b[0m\u001b[1m(\u001b[0m*batch.data\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m \u001b[2m \u001b[0m\n",
932 | "\u001b[2;36m \u001b[0m File \u001b[2m \u001b[0m\n",
933 | "\u001b[2;36m \u001b[0m \u001b[32m\"/usr/local/lib/python3.10/dist-packages/distilabel/steps/base.py\"\u001b[0m, line \u001b[2m \u001b[0m\n",
934 | "\u001b[2;36m \u001b[0m \u001b[1;36m555\u001b[0m, in process_applying_mappings \u001b[2m \u001b[0m\n",
935 | "\u001b[2;36m \u001b[0m for output_rows in generator: \u001b[2m \u001b[0m\n",
936 | "\u001b[2;36m \u001b[0m File \u001b[32m\"\u001b[0m\u001b[32m<\u001b[0m\u001b[32mipython-input-5-a12f50551f63\u001b[0m\u001b[32m>\u001b[0m\u001b[32m\"\u001b[0m, line \u001b[1;36m47\u001b[0m, in DPOToArgilla \u001b[2m \u001b[0m\n",
937 | "\u001b[2;36m \u001b[0m dataset = \u001b[1;35mrg.FeedbackDataset.from_argilla\u001b[0m\u001b[1m(\u001b[0m\u001b[33mname\u001b[0m=\u001b[32m\"honest_preferences\"\u001b[0m, \u001b[2m \u001b[0m\n",
938 | "\u001b[2;36m \u001b[0m \u001b[33mworkspace\u001b[0m=\u001b[32m\"admin\"\u001b[0m\u001b[1m)\u001b[0m \u001b[2m \u001b[0m\n",
939 | "\u001b[2;36m \u001b[0m File \u001b[2m \u001b[0m\n",
940 | "\u001b[2;36m \u001b[0m \u001b[32m\"/usr/local/lib/python3.10/dist-packages/argilla/client/feedback/dataset/\u001b[0m \u001b[2m \u001b[0m\n",
941 | "\u001b[2;36m \u001b[0m \u001b[32mlocal/mixins.py\"\u001b[0m, line \u001b[1;36m339\u001b[0m, in from_argilla \u001b[2m \u001b[0m\n",
942 | "\u001b[2;36m \u001b[0m raise \u001b[1;35mValueError\u001b[0m\u001b[1m(\u001b[0m \u001b[2m \u001b[0m\n",
943 | "\u001b[2;36m \u001b[0m ValueError: Could not find a `FeedbackDataset` in Argilla with \u001b[2m \u001b[0m\n",
944 | "\u001b[2;36m \u001b[0m \u001b[33mname\u001b[0m=\u001b[32m'honest_preferences'\u001b[0m and \u001b[33mworkspace\u001b[0m=\u001b[32m'admin'\u001b[0m. \u001b[2m \u001b[0m\n",
945 | "\u001b[2;36m \u001b[0m \u001b[2m \u001b[0m\n"
946 | ],
947 | "text/html": [
948 | " WARNING ['distilabel.step.push_to_argilla'] Subprocess traceback: local.py:979\n",
949 | " \n",
950 | " Traceback (most recent call last): \n",
951 | " File \n",
952 | " \"/usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\", \n",
953 | " line 959, in _non_generator_process_loop \n",
954 | " result = next(self.step.process_applying_mappings(*batch.data)) \n",
955 | " File \n",
956 | " \"/usr/local/lib/python3.10/dist-packages/distilabel/steps/base.py\", line \n",
957 | " 555, in process_applying_mappings \n",
958 | " for output_rows in generator: \n",
959 | " File \"<ipython-input-5-a12f50551f63>\", line 47, in DPOToArgilla \n",
960 | " dataset = rg.FeedbackDataset.from_argilla(name=\"honest_preferences\", \n",
961 | " workspace=\"admin\") \n",
962 | " File \n",
963 | " \"/usr/local/lib/python3.10/dist-packages/argilla/client/feedback/dataset/ \n",
964 | " local/mixins.py\", line 339, in from_argilla \n",
965 | " raise ValueError( \n",
966 | " ValueError: Could not find a `FeedbackDataset` in Argilla with \n",
967 | " name='honest_preferences' and workspace='admin'. \n",
968 | " \n",
969 | "
\n"
970 | ]
971 | },
972 | "metadata": {}
973 | },
974 | {
975 | "output_type": "display_data",
976 | "data": {
977 | "text/plain": [
978 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.push_to_argilla'\u001b[0m\u001b[1m]\u001b[0m 📨 Step \u001b[32m'push_to_argilla'\u001b[0m sending \u001b]8;id=895650;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=631627;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#991\u001b\\\u001b[2m991\u001b[0m\u001b]8;;\u001b\\\n",
979 | "\u001b[2;36m \u001b[0m batch \u001b[1;36m0\u001b[0m to output queue \u001b[2m \u001b[0m\n"
980 | ],
981 | "text/html": [
982 | " INFO ['distilabel.step.push_to_argilla'] 📨 Step 'push_to_argilla' sending local.py:991\n",
983 | " batch 0 to output queue \n",
984 | "
\n"
985 | ]
986 | },
987 | "metadata": {}
988 | },
989 | {
990 | "output_type": "display_data",
991 | "data": {
992 | "text/plain": [
993 | "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0m\u001b[32m'distilabel.step.push_to_argilla'\u001b[0m\u001b[1m]\u001b[0m 🏁 Finished running step \u001b]8;id=290102;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py\u001b\\\u001b[2mlocal.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=75768;file:///usr/local/lib/python3.10/dist-packages/distilabel/pipeline/local.py#873\u001b\\\u001b[2m873\u001b[0m\u001b]8;;\u001b\\\n",
994 | "\u001b[2;36m \u001b[0m \u001b[32m'push_to_argilla'\u001b[0m \u001b[2m \u001b[0m\n"
995 | ],
996 | "text/html": [
997 | " INFO ['distilabel.step.push_to_argilla'] 🏁 Finished running step local.py:873\n",
998 | " 'push_to_argilla' \n",
999 | "
\n"
1000 | ]
1001 | },
1002 | "metadata": {}
1003 | },
1004 | {
1005 | "output_type": "display_data",
1006 | "data": {
1007 | "text/plain": [
1008 | "Generating train split: 0 examples [00:00, ? examples/s]"
1009 | ],
1010 | "application/vnd.jupyter.widget-view+json": {
1011 | "version_major": 2,
1012 | "version_minor": 0,
1013 | "model_id": "c657f93dbc124dbab5675fff5db70643"
1014 | }
1015 | },
1016 | "metadata": {}
1017 | }
1018 | ]
1019 | },
1020 | {
1021 | "cell_type": "code",
1022 | "source": [
1023 | "distiset[\"default\"][\"train\"].to_pandas()"
1024 | ],
1025 | "metadata": {
1026 | "id": "AB2MfaW_RyzN",
1027 | "colab": {
1028 | "base_uri": "https://localhost:8080/",
1029 | "height": 143
1030 | },
1031 | "outputId": "6a285cab-e022-4606-a8e6-98800bbd6443"
1032 | },
1033 | "execution_count": 7,
1034 | "outputs": [
1035 | {
1036 | "output_type": "execute_result",
1037 | "data": {
1038 | "text/plain": [
1039 | " instruction generations feedback result model_name\n",
1040 | "0 None None None None None\n",
1041 | "1 None None None None None\n",
1042 | "2 None None None None None"
1043 | ],
1044 | "text/html": [
1045 | "\n",
1046 | " \n",
1047 | "
\n",
1048 | "\n",
1061 | "
\n",
1062 | " \n",
1063 | " \n",
1064 | " | \n",
1065 | " instruction | \n",
1066 | " generations | \n",
1067 | " feedback | \n",
1068 | " result | \n",
1069 | " model_name | \n",
1070 | "
\n",
1071 | " \n",
1072 | " \n",
1073 | " \n",
1074 | " | 0 | \n",
1075 | " None | \n",
1076 | " None | \n",
1077 | " None | \n",
1078 | " None | \n",
1079 | " None | \n",
1080 | "
\n",
1081 | " \n",
1082 | " | 1 | \n",
1083 | " None | \n",
1084 | " None | \n",
1085 | " None | \n",
1086 | " None | \n",
1087 | " None | \n",
1088 | "
\n",
1089 | " \n",
1090 | " | 2 | \n",
1091 | " None | \n",
1092 | " None | \n",
1093 | " None | \n",
1094 | " None | \n",
1095 | " None | \n",
1096 | "
\n",
1097 | " \n",
1098 | "
\n",
1099 | "
\n",
1100 | "
\n",
1308 | "
\n"
1309 | ],
1310 | "application/vnd.google.colaboratory.intrinsic+json": {
1311 | "type": "dataframe",
1312 | "repr_error": "Out of range float values are not JSON compliant: nan"
1313 | }
1314 | },
1315 | "metadata": {},
1316 | "execution_count": 7
1317 | }
1318 | ]
1319 | },
1320 | {
1321 | "cell_type": "markdown",
1322 | "source": [
1323 | "## 5. Look at the results (Human Feedback)\n",
1324 | "\n",
1325 | "\n",
1326 | "You can review your records in thr Argilla UI."
1327 | ],
1328 | "metadata": {
1329 | "id": "UgJ4tV86Mop5"
1330 | }
1331 | },
1332 | {
1333 | "cell_type": "code",
1334 | "source": [
1335 | "print(ARGILLA_URL)"
1336 | ],
1337 | "metadata": {
1338 | "id": "dpXMY9jzMp1v"
1339 | },
1340 | "execution_count": null,
1341 | "outputs": []
1342 | }
1343 | ],
1344 | "metadata": {
1345 | "accelerator": "GPU",
1346 | "colab": {
1347 | "gpuType": "L4",
1348 | "machine_shape": "hm",
1349 | "provenance": []
1350 | },
1351 | "kernelspec": {
1352 | "display_name": "Python 3",
1353 | "name": "python3"
1354 | },
1355 | "language_info": {
1356 | "name": "python"
1357 | },
1358 | "widgets": {
1359 | "application/vnd.jupyter.widget-state+json": {
1360 | "e4d9805eb6f24907bc733e3f2f767246": {
1361 | "model_module": "@jupyter-widgets/controls",
1362 | "model_name": "VBoxModel",
1363 | "model_module_version": "1.5.0",
1364 | "state": {
1365 | "_dom_classes": [],
1366 | "_model_module": "@jupyter-widgets/controls",
1367 | "_model_module_version": "1.5.0",
1368 | "_model_name": "VBoxModel",
1369 | "_view_count": null,
1370 | "_view_module": "@jupyter-widgets/controls",
1371 | "_view_module_version": "1.5.0",
1372 | "_view_name": "VBoxView",
1373 | "box_style": "",
1374 | "children": [
1375 | "IPY_MODEL_02c0de3c9ccd44ac80420f70055b13a5",
1376 | "IPY_MODEL_3ed5b651922d43b1bd8e829f273b65e3",
1377 | "IPY_MODEL_f2300c433d2848c2b8e2620d1ccda9fb",
1378 | "IPY_MODEL_07c9ef86722142659c31edc23ab4a4e3"
1379 | ],
1380 | "layout": "IPY_MODEL_9c7b9c7b390340a59fe091d837b58725"
1381 | }
1382 | },
1383 | "c8a80891ec4b4170b2aa13a01e4083f0": {
1384 | "model_module": "@jupyter-widgets/controls",
1385 | "model_name": "HTMLModel",
1386 | "model_module_version": "1.5.0",
1387 | "state": {
1388 | "_dom_classes": [],
1389 | "_model_module": "@jupyter-widgets/controls",
1390 | "_model_module_version": "1.5.0",
1391 | "_model_name": "HTMLModel",
1392 | "_view_count": null,
1393 | "_view_module": "@jupyter-widgets/controls",
1394 | "_view_module_version": "1.5.0",
1395 | "_view_name": "HTMLView",
1396 | "description": "",
1397 | "description_tooltip": null,
1398 | "layout": "IPY_MODEL_a1eb05d046a44d1390cf9a9d07ff424a",
1399 | "placeholder": "",
1400 | "style": "IPY_MODEL_454824dc47884005a988132b68db50c7",
1401 | "value": "
Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. "
1402 | }
1403 | },
1404 | "721f360d4c114fde8c653eb556e49ca8": {
1405 | "model_module": "@jupyter-widgets/controls",
1406 | "model_name": "PasswordModel",
1407 | "model_module_version": "1.5.0",
1408 | "state": {
1409 | "_dom_classes": [],
1410 | "_model_module": "@jupyter-widgets/controls",
1411 | "_model_module_version": "1.5.0",
1412 | "_model_name": "PasswordModel",
1413 | "_view_count": null,
1414 | "_view_module": "@jupyter-widgets/controls",
1415 | "_view_module_version": "1.5.0",
1416 | "_view_name": "PasswordView",
1417 | "continuous_update": true,
1418 | "description": "Token:",
1419 | "description_tooltip": null,
1420 | "disabled": false,
1421 | "layout": "IPY_MODEL_6631c5904cc34bdcbfba337cc7adcfd5",
1422 | "placeholder": "",
1423 | "style": "IPY_MODEL_48ead913aaed42468df1d2de2447036f",
1424 | "value": ""
1425 | }
1426 | },
1427 | "44a869e66a16403aa0afdc1b4f1c7cb1": {
1428 | "model_module": "@jupyter-widgets/controls",
1429 | "model_name": "CheckboxModel",
1430 | "model_module_version": "1.5.0",
1431 | "state": {
1432 | "_dom_classes": [],
1433 | "_model_module": "@jupyter-widgets/controls",
1434 | "_model_module_version": "1.5.0",
1435 | "_model_name": "CheckboxModel",
1436 | "_view_count": null,
1437 | "_view_module": "@jupyter-widgets/controls",
1438 | "_view_module_version": "1.5.0",
1439 | "_view_name": "CheckboxView",
1440 | "description": "Add token as git credential?",
1441 | "description_tooltip": null,
1442 | "disabled": false,
1443 | "indent": true,
1444 | "layout": "IPY_MODEL_aedae1c750f44e039626c2e1306728e4",
1445 | "style": "IPY_MODEL_82a9ffe888f9466fb0cd3465555df187",
1446 | "value": true
1447 | }
1448 | },
1449 | "4f95510802c84f6fba0b70343ef2d3d4": {
1450 | "model_module": "@jupyter-widgets/controls",
1451 | "model_name": "ButtonModel",
1452 | "model_module_version": "1.5.0",
1453 | "state": {
1454 | "_dom_classes": [],
1455 | "_model_module": "@jupyter-widgets/controls",
1456 | "_model_module_version": "1.5.0",
1457 | "_model_name": "ButtonModel",
1458 | "_view_count": null,
1459 | "_view_module": "@jupyter-widgets/controls",
1460 | "_view_module_version": "1.5.0",
1461 | "_view_name": "ButtonView",
1462 | "button_style": "",
1463 | "description": "Login",
1464 | "disabled": false,
1465 | "icon": "",
1466 | "layout": "IPY_MODEL_438b939577554e039d8a7a0d355f2921",
1467 | "style": "IPY_MODEL_b99b8e793e20427cbd1533ede726cbe3",
1468 | "tooltip": ""
1469 | }
1470 | },
1471 | "75e591e1a9ba4cbc97cb7c5f5487b690": {
1472 | "model_module": "@jupyter-widgets/controls",
1473 | "model_name": "HTMLModel",
1474 | "model_module_version": "1.5.0",
1475 | "state": {
1476 | "_dom_classes": [],
1477 | "_model_module": "@jupyter-widgets/controls",
1478 | "_model_module_version": "1.5.0",
1479 | "_model_name": "HTMLModel",
1480 | "_view_count": null,
1481 | "_view_module": "@jupyter-widgets/controls",
1482 | "_view_module_version": "1.5.0",
1483 | "_view_name": "HTMLView",
1484 | "description": "",
1485 | "description_tooltip": null,
1486 | "layout": "IPY_MODEL_764e6c6586ab49aba717d18c6ac25a1a",
1487 | "placeholder": "",
1488 | "style": "IPY_MODEL_35751d39de294ac088c67e5c547ba388",
1489 | "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. "
1490 | }
1491 | },
1492 | "9c7b9c7b390340a59fe091d837b58725": {
1493 | "model_module": "@jupyter-widgets/base",
1494 | "model_name": "LayoutModel",
1495 | "model_module_version": "1.2.0",
1496 | "state": {
1497 | "_model_module": "@jupyter-widgets/base",
1498 | "_model_module_version": "1.2.0",
1499 | "_model_name": "LayoutModel",
1500 | "_view_count": null,
1501 | "_view_module": "@jupyter-widgets/base",
1502 | "_view_module_version": "1.2.0",
1503 | "_view_name": "LayoutView",
1504 | "align_content": null,
1505 | "align_items": "center",
1506 | "align_self": null,
1507 | "border": null,
1508 | "bottom": null,
1509 | "display": "flex",
1510 | "flex": null,
1511 | "flex_flow": "column",
1512 | "grid_area": null,
1513 | "grid_auto_columns": null,
1514 | "grid_auto_flow": null,
1515 | "grid_auto_rows": null,
1516 | "grid_column": null,
1517 | "grid_gap": null,
1518 | "grid_row": null,
1519 | "grid_template_areas": null,
1520 | "grid_template_columns": null,
1521 | "grid_template_rows": null,
1522 | "height": null,
1523 | "justify_content": null,
1524 | "justify_items": null,
1525 | "left": null,
1526 | "margin": null,
1527 | "max_height": null,
1528 | "max_width": null,
1529 | "min_height": null,
1530 | "min_width": null,
1531 | "object_fit": null,
1532 | "object_position": null,
1533 | "order": null,
1534 | "overflow": null,
1535 | "overflow_x": null,
1536 | "overflow_y": null,
1537 | "padding": null,
1538 | "right": null,
1539 | "top": null,
1540 | "visibility": null,
1541 | "width": "50%"
1542 | }
1543 | },
1544 | "a1eb05d046a44d1390cf9a9d07ff424a": {
1545 | "model_module": "@jupyter-widgets/base",
1546 | "model_name": "LayoutModel",
1547 | "model_module_version": "1.2.0",
1548 | "state": {
1549 | "_model_module": "@jupyter-widgets/base",
1550 | "_model_module_version": "1.2.0",
1551 | "_model_name": "LayoutModel",
1552 | "_view_count": null,
1553 | "_view_module": "@jupyter-widgets/base",
1554 | "_view_module_version": "1.2.0",
1555 | "_view_name": "LayoutView",
1556 | "align_content": null,
1557 | "align_items": null,
1558 | "align_self": null,
1559 | "border": null,
1560 | "bottom": null,
1561 | "display": null,
1562 | "flex": null,
1563 | "flex_flow": null,
1564 | "grid_area": null,
1565 | "grid_auto_columns": null,
1566 | "grid_auto_flow": null,
1567 | "grid_auto_rows": null,
1568 | "grid_column": null,
1569 | "grid_gap": null,
1570 | "grid_row": null,
1571 | "grid_template_areas": null,
1572 | "grid_template_columns": null,
1573 | "grid_template_rows": null,
1574 | "height": null,
1575 | "justify_content": null,
1576 | "justify_items": null,
1577 | "left": null,
1578 | "margin": null,
1579 | "max_height": null,
1580 | "max_width": null,
1581 | "min_height": null,
1582 | "min_width": null,
1583 | "object_fit": null,
1584 | "object_position": null,
1585 | "order": null,
1586 | "overflow": null,
1587 | "overflow_x": null,
1588 | "overflow_y": null,
1589 | "padding": null,
1590 | "right": null,
1591 | "top": null,
1592 | "visibility": null,
1593 | "width": null
1594 | }
1595 | },
1596 | "454824dc47884005a988132b68db50c7": {
1597 | "model_module": "@jupyter-widgets/controls",
1598 | "model_name": "DescriptionStyleModel",
1599 | "model_module_version": "1.5.0",
1600 | "state": {
1601 | "_model_module": "@jupyter-widgets/controls",
1602 | "_model_module_version": "1.5.0",
1603 | "_model_name": "DescriptionStyleModel",
1604 | "_view_count": null,
1605 | "_view_module": "@jupyter-widgets/base",
1606 | "_view_module_version": "1.2.0",
1607 | "_view_name": "StyleView",
1608 | "description_width": ""
1609 | }
1610 | },
1611 | "6631c5904cc34bdcbfba337cc7adcfd5": {
1612 | "model_module": "@jupyter-widgets/base",
1613 | "model_name": "LayoutModel",
1614 | "model_module_version": "1.2.0",
1615 | "state": {
1616 | "_model_module": "@jupyter-widgets/base",
1617 | "_model_module_version": "1.2.0",
1618 | "_model_name": "LayoutModel",
1619 | "_view_count": null,
1620 | "_view_module": "@jupyter-widgets/base",
1621 | "_view_module_version": "1.2.0",
1622 | "_view_name": "LayoutView",
1623 | "align_content": null,
1624 | "align_items": null,
1625 | "align_self": null,
1626 | "border": null,
1627 | "bottom": null,
1628 | "display": null,
1629 | "flex": null,
1630 | "flex_flow": null,
1631 | "grid_area": null,
1632 | "grid_auto_columns": null,
1633 | "grid_auto_flow": null,
1634 | "grid_auto_rows": null,
1635 | "grid_column": null,
1636 | "grid_gap": null,
1637 | "grid_row": null,
1638 | "grid_template_areas": null,
1639 | "grid_template_columns": null,
1640 | "grid_template_rows": null,
1641 | "height": null,
1642 | "justify_content": null,
1643 | "justify_items": null,
1644 | "left": null,
1645 | "margin": null,
1646 | "max_height": null,
1647 | "max_width": null,
1648 | "min_height": null,
1649 | "min_width": null,
1650 | "object_fit": null,
1651 | "object_position": null,
1652 | "order": null,
1653 | "overflow": null,
1654 | "overflow_x": null,
1655 | "overflow_y": null,
1656 | "padding": null,
1657 | "right": null,
1658 | "top": null,
1659 | "visibility": null,
1660 | "width": null
1661 | }
1662 | },
1663 | "48ead913aaed42468df1d2de2447036f": {
1664 | "model_module": "@jupyter-widgets/controls",
1665 | "model_name": "DescriptionStyleModel",
1666 | "model_module_version": "1.5.0",
1667 | "state": {
1668 | "_model_module": "@jupyter-widgets/controls",
1669 | "_model_module_version": "1.5.0",
1670 | "_model_name": "DescriptionStyleModel",
1671 | "_view_count": null,
1672 | "_view_module": "@jupyter-widgets/base",
1673 | "_view_module_version": "1.2.0",
1674 | "_view_name": "StyleView",
1675 | "description_width": ""
1676 | }
1677 | },
1678 | "aedae1c750f44e039626c2e1306728e4": {
1679 | "model_module": "@jupyter-widgets/base",
1680 | "model_name": "LayoutModel",
1681 | "model_module_version": "1.2.0",
1682 | "state": {
1683 | "_model_module": "@jupyter-widgets/base",
1684 | "_model_module_version": "1.2.0",
1685 | "_model_name": "LayoutModel",
1686 | "_view_count": null,
1687 | "_view_module": "@jupyter-widgets/base",
1688 | "_view_module_version": "1.2.0",
1689 | "_view_name": "LayoutView",
1690 | "align_content": null,
1691 | "align_items": null,
1692 | "align_self": null,
1693 | "border": null,
1694 | "bottom": null,
1695 | "display": null,
1696 | "flex": null,
1697 | "flex_flow": null,
1698 | "grid_area": null,
1699 | "grid_auto_columns": null,
1700 | "grid_auto_flow": null,
1701 | "grid_auto_rows": null,
1702 | "grid_column": null,
1703 | "grid_gap": null,
1704 | "grid_row": null,
1705 | "grid_template_areas": null,
1706 | "grid_template_columns": null,
1707 | "grid_template_rows": null,
1708 | "height": null,
1709 | "justify_content": null,
1710 | "justify_items": null,
1711 | "left": null,
1712 | "margin": null,
1713 | "max_height": null,
1714 | "max_width": null,
1715 | "min_height": null,
1716 | "min_width": null,
1717 | "object_fit": null,
1718 | "object_position": null,
1719 | "order": null,
1720 | "overflow": null,
1721 | "overflow_x": null,
1722 | "overflow_y": null,
1723 | "padding": null,
1724 | "right": null,
1725 | "top": null,
1726 | "visibility": null,
1727 | "width": null
1728 | }
1729 | },
1730 | "82a9ffe888f9466fb0cd3465555df187": {
1731 | "model_module": "@jupyter-widgets/controls",
1732 | "model_name": "DescriptionStyleModel",
1733 | "model_module_version": "1.5.0",
1734 | "state": {
1735 | "_model_module": "@jupyter-widgets/controls",
1736 | "_model_module_version": "1.5.0",
1737 | "_model_name": "DescriptionStyleModel",
1738 | "_view_count": null,
1739 | "_view_module": "@jupyter-widgets/base",
1740 | "_view_module_version": "1.2.0",
1741 | "_view_name": "StyleView",
1742 | "description_width": ""
1743 | }
1744 | },
1745 | "438b939577554e039d8a7a0d355f2921": {
1746 | "model_module": "@jupyter-widgets/base",
1747 | "model_name": "LayoutModel",
1748 | "model_module_version": "1.2.0",
1749 | "state": {
1750 | "_model_module": "@jupyter-widgets/base",
1751 | "_model_module_version": "1.2.0",
1752 | "_model_name": "LayoutModel",
1753 | "_view_count": null,
1754 | "_view_module": "@jupyter-widgets/base",
1755 | "_view_module_version": "1.2.0",
1756 | "_view_name": "LayoutView",
1757 | "align_content": null,
1758 | "align_items": null,
1759 | "align_self": null,
1760 | "border": null,
1761 | "bottom": null,
1762 | "display": null,
1763 | "flex": null,
1764 | "flex_flow": null,
1765 | "grid_area": null,
1766 | "grid_auto_columns": null,
1767 | "grid_auto_flow": null,
1768 | "grid_auto_rows": null,
1769 | "grid_column": null,
1770 | "grid_gap": null,
1771 | "grid_row": null,
1772 | "grid_template_areas": null,
1773 | "grid_template_columns": null,
1774 | "grid_template_rows": null,
1775 | "height": null,
1776 | "justify_content": null,
1777 | "justify_items": null,
1778 | "left": null,
1779 | "margin": null,
1780 | "max_height": null,
1781 | "max_width": null,
1782 | "min_height": null,
1783 | "min_width": null,
1784 | "object_fit": null,
1785 | "object_position": null,
1786 | "order": null,
1787 | "overflow": null,
1788 | "overflow_x": null,
1789 | "overflow_y": null,
1790 | "padding": null,
1791 | "right": null,
1792 | "top": null,
1793 | "visibility": null,
1794 | "width": null
1795 | }
1796 | },
1797 | "b99b8e793e20427cbd1533ede726cbe3": {
1798 | "model_module": "@jupyter-widgets/controls",
1799 | "model_name": "ButtonStyleModel",
1800 | "model_module_version": "1.5.0",
1801 | "state": {
1802 | "_model_module": "@jupyter-widgets/controls",
1803 | "_model_module_version": "1.5.0",
1804 | "_model_name": "ButtonStyleModel",
1805 | "_view_count": null,
1806 | "_view_module": "@jupyter-widgets/base",
1807 | "_view_module_version": "1.2.0",
1808 | "_view_name": "StyleView",
1809 | "button_color": null,
1810 | "font_weight": ""
1811 | }
1812 | },
1813 | "764e6c6586ab49aba717d18c6ac25a1a": {
1814 | "model_module": "@jupyter-widgets/base",
1815 | "model_name": "LayoutModel",
1816 | "model_module_version": "1.2.0",
1817 | "state": {
1818 | "_model_module": "@jupyter-widgets/base",
1819 | "_model_module_version": "1.2.0",
1820 | "_model_name": "LayoutModel",
1821 | "_view_count": null,
1822 | "_view_module": "@jupyter-widgets/base",
1823 | "_view_module_version": "1.2.0",
1824 | "_view_name": "LayoutView",
1825 | "align_content": null,
1826 | "align_items": null,
1827 | "align_self": null,
1828 | "border": null,
1829 | "bottom": null,
1830 | "display": null,
1831 | "flex": null,
1832 | "flex_flow": null,
1833 | "grid_area": null,
1834 | "grid_auto_columns": null,
1835 | "grid_auto_flow": null,
1836 | "grid_auto_rows": null,
1837 | "grid_column": null,
1838 | "grid_gap": null,
1839 | "grid_row": null,
1840 | "grid_template_areas": null,
1841 | "grid_template_columns": null,
1842 | "grid_template_rows": null,
1843 | "height": null,
1844 | "justify_content": null,
1845 | "justify_items": null,
1846 | "left": null,
1847 | "margin": null,
1848 | "max_height": null,
1849 | "max_width": null,
1850 | "min_height": null,
1851 | "min_width": null,
1852 | "object_fit": null,
1853 | "object_position": null,
1854 | "order": null,
1855 | "overflow": null,
1856 | "overflow_x": null,
1857 | "overflow_y": null,
1858 | "padding": null,
1859 | "right": null,
1860 | "top": null,
1861 | "visibility": null,
1862 | "width": null
1863 | }
1864 | },
1865 | "35751d39de294ac088c67e5c547ba388": {
1866 | "model_module": "@jupyter-widgets/controls",
1867 | "model_name": "DescriptionStyleModel",
1868 | "model_module_version": "1.5.0",
1869 | "state": {
1870 | "_model_module": "@jupyter-widgets/controls",
1871 | "_model_module_version": "1.5.0",
1872 | "_model_name": "DescriptionStyleModel",
1873 | "_view_count": null,
1874 | "_view_module": "@jupyter-widgets/base",
1875 | "_view_module_version": "1.2.0",
1876 | "_view_name": "StyleView",
1877 | "description_width": ""
1878 | }
1879 | },
1880 | "0d6a569abec040fea9b83f777b47eb1e": {
1881 | "model_module": "@jupyter-widgets/controls",
1882 | "model_name": "LabelModel",
1883 | "model_module_version": "1.5.0",
1884 | "state": {
1885 | "_dom_classes": [],
1886 | "_model_module": "@jupyter-widgets/controls",
1887 | "_model_module_version": "1.5.0",
1888 | "_model_name": "LabelModel",
1889 | "_view_count": null,
1890 | "_view_module": "@jupyter-widgets/controls",
1891 | "_view_module_version": "1.5.0",
1892 | "_view_name": "LabelView",
1893 | "description": "",
1894 | "description_tooltip": null,
1895 | "layout": "IPY_MODEL_dd44c362014e4b9e8ec0efcf3d424701",
1896 | "placeholder": "",
1897 | "style": "IPY_MODEL_a31247571b5b4ecc8b5832d893083627",
1898 | "value": "Connecting..."
1899 | }
1900 | },
1901 | "dd44c362014e4b9e8ec0efcf3d424701": {
1902 | "model_module": "@jupyter-widgets/base",
1903 | "model_name": "LayoutModel",
1904 | "model_module_version": "1.2.0",
1905 | "state": {
1906 | "_model_module": "@jupyter-widgets/base",
1907 | "_model_module_version": "1.2.0",
1908 | "_model_name": "LayoutModel",
1909 | "_view_count": null,
1910 | "_view_module": "@jupyter-widgets/base",
1911 | "_view_module_version": "1.2.0",
1912 | "_view_name": "LayoutView",
1913 | "align_content": null,
1914 | "align_items": null,
1915 | "align_self": null,
1916 | "border": null,
1917 | "bottom": null,
1918 | "display": null,
1919 | "flex": null,
1920 | "flex_flow": null,
1921 | "grid_area": null,
1922 | "grid_auto_columns": null,
1923 | "grid_auto_flow": null,
1924 | "grid_auto_rows": null,
1925 | "grid_column": null,
1926 | "grid_gap": null,
1927 | "grid_row": null,
1928 | "grid_template_areas": null,
1929 | "grid_template_columns": null,
1930 | "grid_template_rows": null,
1931 | "height": null,
1932 | "justify_content": null,
1933 | "justify_items": null,
1934 | "left": null,
1935 | "margin": null,
1936 | "max_height": null,
1937 | "max_width": null,
1938 | "min_height": null,
1939 | "min_width": null,
1940 | "object_fit": null,
1941 | "object_position": null,
1942 | "order": null,
1943 | "overflow": null,
1944 | "overflow_x": null,
1945 | "overflow_y": null,
1946 | "padding": null,
1947 | "right": null,
1948 | "top": null,
1949 | "visibility": null,
1950 | "width": null
1951 | }
1952 | },
1953 | "a31247571b5b4ecc8b5832d893083627": {
1954 | "model_module": "@jupyter-widgets/controls",
1955 | "model_name": "DescriptionStyleModel",
1956 | "model_module_version": "1.5.0",
1957 | "state": {
1958 | "_model_module": "@jupyter-widgets/controls",
1959 | "_model_module_version": "1.5.0",
1960 | "_model_name": "DescriptionStyleModel",
1961 | "_view_count": null,
1962 | "_view_module": "@jupyter-widgets/base",
1963 | "_view_module_version": "1.2.0",
1964 | "_view_name": "StyleView",
1965 | "description_width": ""
1966 | }
1967 | },
1968 | "02c0de3c9ccd44ac80420f70055b13a5": {
1969 | "model_module": "@jupyter-widgets/controls",
1970 | "model_name": "LabelModel",
1971 | "model_module_version": "1.5.0",
1972 | "state": {
1973 | "_dom_classes": [],
1974 | "_model_module": "@jupyter-widgets/controls",
1975 | "_model_module_version": "1.5.0",
1976 | "_model_name": "LabelModel",
1977 | "_view_count": null,
1978 | "_view_module": "@jupyter-widgets/controls",
1979 | "_view_module_version": "1.5.0",
1980 | "_view_name": "LabelView",
1981 | "description": "",
1982 | "description_tooltip": null,
1983 | "layout": "IPY_MODEL_0785f89002724084bef32bf4fca9a627",
1984 | "placeholder": "",
1985 | "style": "IPY_MODEL_af630d3259e140ca8335f204cfd6bab5",
1986 | "value": "Token is valid (permission: write)."
1987 | }
1988 | },
1989 | "3ed5b651922d43b1bd8e829f273b65e3": {
1990 | "model_module": "@jupyter-widgets/controls",
1991 | "model_name": "LabelModel",
1992 | "model_module_version": "1.5.0",
1993 | "state": {
1994 | "_dom_classes": [],
1995 | "_model_module": "@jupyter-widgets/controls",
1996 | "_model_module_version": "1.5.0",
1997 | "_model_name": "LabelModel",
1998 | "_view_count": null,
1999 | "_view_module": "@jupyter-widgets/controls",
2000 | "_view_module_version": "1.5.0",
2001 | "_view_name": "LabelView",
2002 | "description": "",
2003 | "description_tooltip": null,
2004 | "layout": "IPY_MODEL_ca98c022721d4fd98ab0fa9c2881d687",
2005 | "placeholder": "",
2006 | "style": "IPY_MODEL_32685f46223042519cbb5f8575d7c603",
2007 | "value": "Your token has been saved in your configured git credential helpers (store)."
2008 | }
2009 | },
2010 | "f2300c433d2848c2b8e2620d1ccda9fb": {
2011 | "model_module": "@jupyter-widgets/controls",
2012 | "model_name": "LabelModel",
2013 | "model_module_version": "1.5.0",
2014 | "state": {
2015 | "_dom_classes": [],
2016 | "_model_module": "@jupyter-widgets/controls",
2017 | "_model_module_version": "1.5.0",
2018 | "_model_name": "LabelModel",
2019 | "_view_count": null,
2020 | "_view_module": "@jupyter-widgets/controls",
2021 | "_view_module_version": "1.5.0",
2022 | "_view_name": "LabelView",
2023 | "description": "",
2024 | "description_tooltip": null,
2025 | "layout": "IPY_MODEL_b5ea8a8d735b430e89f302770e538a6d",
2026 | "placeholder": "",
2027 | "style": "IPY_MODEL_519e24ca644a4a839ed54f8f46717d19",
2028 | "value": "Your token has been saved to /root/.cache/huggingface/token"
2029 | }
2030 | },
2031 | "07c9ef86722142659c31edc23ab4a4e3": {
2032 | "model_module": "@jupyter-widgets/controls",
2033 | "model_name": "LabelModel",
2034 | "model_module_version": "1.5.0",
2035 | "state": {
2036 | "_dom_classes": [],
2037 | "_model_module": "@jupyter-widgets/controls",
2038 | "_model_module_version": "1.5.0",
2039 | "_model_name": "LabelModel",
2040 | "_view_count": null,
2041 | "_view_module": "@jupyter-widgets/controls",
2042 | "_view_module_version": "1.5.0",
2043 | "_view_name": "LabelView",
2044 | "description": "",
2045 | "description_tooltip": null,
2046 | "layout": "IPY_MODEL_69f947f7a7414e40955b97e1d6a57c77",
2047 | "placeholder": "",
2048 | "style": "IPY_MODEL_7386d6ec9f2a4c5ead98693ee69361fd",
2049 | "value": "Login successful"
2050 | }
2051 | },
2052 | "0785f89002724084bef32bf4fca9a627": {
2053 | "model_module": "@jupyter-widgets/base",
2054 | "model_name": "LayoutModel",
2055 | "model_module_version": "1.2.0",
2056 | "state": {
2057 | "_model_module": "@jupyter-widgets/base",
2058 | "_model_module_version": "1.2.0",
2059 | "_model_name": "LayoutModel",
2060 | "_view_count": null,
2061 | "_view_module": "@jupyter-widgets/base",
2062 | "_view_module_version": "1.2.0",
2063 | "_view_name": "LayoutView",
2064 | "align_content": null,
2065 | "align_items": null,
2066 | "align_self": null,
2067 | "border": null,
2068 | "bottom": null,
2069 | "display": null,
2070 | "flex": null,
2071 | "flex_flow": null,
2072 | "grid_area": null,
2073 | "grid_auto_columns": null,
2074 | "grid_auto_flow": null,
2075 | "grid_auto_rows": null,
2076 | "grid_column": null,
2077 | "grid_gap": null,
2078 | "grid_row": null,
2079 | "grid_template_areas": null,
2080 | "grid_template_columns": null,
2081 | "grid_template_rows": null,
2082 | "height": null,
2083 | "justify_content": null,
2084 | "justify_items": null,
2085 | "left": null,
2086 | "margin": null,
2087 | "max_height": null,
2088 | "max_width": null,
2089 | "min_height": null,
2090 | "min_width": null,
2091 | "object_fit": null,
2092 | "object_position": null,
2093 | "order": null,
2094 | "overflow": null,
2095 | "overflow_x": null,
2096 | "overflow_y": null,
2097 | "padding": null,
2098 | "right": null,
2099 | "top": null,
2100 | "visibility": null,
2101 | "width": null
2102 | }
2103 | },
2104 | "af630d3259e140ca8335f204cfd6bab5": {
2105 | "model_module": "@jupyter-widgets/controls",
2106 | "model_name": "DescriptionStyleModel",
2107 | "model_module_version": "1.5.0",
2108 | "state": {
2109 | "_model_module": "@jupyter-widgets/controls",
2110 | "_model_module_version": "1.5.0",
2111 | "_model_name": "DescriptionStyleModel",
2112 | "_view_count": null,
2113 | "_view_module": "@jupyter-widgets/base",
2114 | "_view_module_version": "1.2.0",
2115 | "_view_name": "StyleView",
2116 | "description_width": ""
2117 | }
2118 | },
2119 | "ca98c022721d4fd98ab0fa9c2881d687": {
2120 | "model_module": "@jupyter-widgets/base",
2121 | "model_name": "LayoutModel",
2122 | "model_module_version": "1.2.0",
2123 | "state": {
2124 | "_model_module": "@jupyter-widgets/base",
2125 | "_model_module_version": "1.2.0",
2126 | "_model_name": "LayoutModel",
2127 | "_view_count": null,
2128 | "_view_module": "@jupyter-widgets/base",
2129 | "_view_module_version": "1.2.0",
2130 | "_view_name": "LayoutView",
2131 | "align_content": null,
2132 | "align_items": null,
2133 | "align_self": null,
2134 | "border": null,
2135 | "bottom": null,
2136 | "display": null,
2137 | "flex": null,
2138 | "flex_flow": null,
2139 | "grid_area": null,
2140 | "grid_auto_columns": null,
2141 | "grid_auto_flow": null,
2142 | "grid_auto_rows": null,
2143 | "grid_column": null,
2144 | "grid_gap": null,
2145 | "grid_row": null,
2146 | "grid_template_areas": null,
2147 | "grid_template_columns": null,
2148 | "grid_template_rows": null,
2149 | "height": null,
2150 | "justify_content": null,
2151 | "justify_items": null,
2152 | "left": null,
2153 | "margin": null,
2154 | "max_height": null,
2155 | "max_width": null,
2156 | "min_height": null,
2157 | "min_width": null,
2158 | "object_fit": null,
2159 | "object_position": null,
2160 | "order": null,
2161 | "overflow": null,
2162 | "overflow_x": null,
2163 | "overflow_y": null,
2164 | "padding": null,
2165 | "right": null,
2166 | "top": null,
2167 | "visibility": null,
2168 | "width": null
2169 | }
2170 | },
2171 | "32685f46223042519cbb5f8575d7c603": {
2172 | "model_module": "@jupyter-widgets/controls",
2173 | "model_name": "DescriptionStyleModel",
2174 | "model_module_version": "1.5.0",
2175 | "state": {
2176 | "_model_module": "@jupyter-widgets/controls",
2177 | "_model_module_version": "1.5.0",
2178 | "_model_name": "DescriptionStyleModel",
2179 | "_view_count": null,
2180 | "_view_module": "@jupyter-widgets/base",
2181 | "_view_module_version": "1.2.0",
2182 | "_view_name": "StyleView",
2183 | "description_width": ""
2184 | }
2185 | },
2186 | "b5ea8a8d735b430e89f302770e538a6d": {
2187 | "model_module": "@jupyter-widgets/base",
2188 | "model_name": "LayoutModel",
2189 | "model_module_version": "1.2.0",
2190 | "state": {
2191 | "_model_module": "@jupyter-widgets/base",
2192 | "_model_module_version": "1.2.0",
2193 | "_model_name": "LayoutModel",
2194 | "_view_count": null,
2195 | "_view_module": "@jupyter-widgets/base",
2196 | "_view_module_version": "1.2.0",
2197 | "_view_name": "LayoutView",
2198 | "align_content": null,
2199 | "align_items": null,
2200 | "align_self": null,
2201 | "border": null,
2202 | "bottom": null,
2203 | "display": null,
2204 | "flex": null,
2205 | "flex_flow": null,
2206 | "grid_area": null,
2207 | "grid_auto_columns": null,
2208 | "grid_auto_flow": null,
2209 | "grid_auto_rows": null,
2210 | "grid_column": null,
2211 | "grid_gap": null,
2212 | "grid_row": null,
2213 | "grid_template_areas": null,
2214 | "grid_template_columns": null,
2215 | "grid_template_rows": null,
2216 | "height": null,
2217 | "justify_content": null,
2218 | "justify_items": null,
2219 | "left": null,
2220 | "margin": null,
2221 | "max_height": null,
2222 | "max_width": null,
2223 | "min_height": null,
2224 | "min_width": null,
2225 | "object_fit": null,
2226 | "object_position": null,
2227 | "order": null,
2228 | "overflow": null,
2229 | "overflow_x": null,
2230 | "overflow_y": null,
2231 | "padding": null,
2232 | "right": null,
2233 | "top": null,
2234 | "visibility": null,
2235 | "width": null
2236 | }
2237 | },
2238 | "519e24ca644a4a839ed54f8f46717d19": {
2239 | "model_module": "@jupyter-widgets/controls",
2240 | "model_name": "DescriptionStyleModel",
2241 | "model_module_version": "1.5.0",
2242 | "state": {
2243 | "_model_module": "@jupyter-widgets/controls",
2244 | "_model_module_version": "1.5.0",
2245 | "_model_name": "DescriptionStyleModel",
2246 | "_view_count": null,
2247 | "_view_module": "@jupyter-widgets/base",
2248 | "_view_module_version": "1.2.0",
2249 | "_view_name": "StyleView",
2250 | "description_width": ""
2251 | }
2252 | },
2253 | "69f947f7a7414e40955b97e1d6a57c77": {
2254 | "model_module": "@jupyter-widgets/base",
2255 | "model_name": "LayoutModel",
2256 | "model_module_version": "1.2.0",
2257 | "state": {
2258 | "_model_module": "@jupyter-widgets/base",
2259 | "_model_module_version": "1.2.0",
2260 | "_model_name": "LayoutModel",
2261 | "_view_count": null,
2262 | "_view_module": "@jupyter-widgets/base",
2263 | "_view_module_version": "1.2.0",
2264 | "_view_name": "LayoutView",
2265 | "align_content": null,
2266 | "align_items": null,
2267 | "align_self": null,
2268 | "border": null,
2269 | "bottom": null,
2270 | "display": null,
2271 | "flex": null,
2272 | "flex_flow": null,
2273 | "grid_area": null,
2274 | "grid_auto_columns": null,
2275 | "grid_auto_flow": null,
2276 | "grid_auto_rows": null,
2277 | "grid_column": null,
2278 | "grid_gap": null,
2279 | "grid_row": null,
2280 | "grid_template_areas": null,
2281 | "grid_template_columns": null,
2282 | "grid_template_rows": null,
2283 | "height": null,
2284 | "justify_content": null,
2285 | "justify_items": null,
2286 | "left": null,
2287 | "margin": null,
2288 | "max_height": null,
2289 | "max_width": null,
2290 | "min_height": null,
2291 | "min_width": null,
2292 | "object_fit": null,
2293 | "object_position": null,
2294 | "order": null,
2295 | "overflow": null,
2296 | "overflow_x": null,
2297 | "overflow_y": null,
2298 | "padding": null,
2299 | "right": null,
2300 | "top": null,
2301 | "visibility": null,
2302 | "width": null
2303 | }
2304 | },
2305 | "7386d6ec9f2a4c5ead98693ee69361fd": {
2306 | "model_module": "@jupyter-widgets/controls",
2307 | "model_name": "DescriptionStyleModel",
2308 | "model_module_version": "1.5.0",
2309 | "state": {
2310 | "_model_module": "@jupyter-widgets/controls",
2311 | "_model_module_version": "1.5.0",
2312 | "_model_name": "DescriptionStyleModel",
2313 | "_view_count": null,
2314 | "_view_module": "@jupyter-widgets/base",
2315 | "_view_module_version": "1.2.0",
2316 | "_view_name": "StyleView",
2317 | "description_width": ""
2318 | }
2319 | },
2320 | "d8b33bb641c945ee85bb94cfe0ff58cf": {
2321 | "model_module": "@jupyter-widgets/controls",
2322 | "model_name": "HBoxModel",
2323 | "model_module_version": "1.5.0",
2324 | "state": {
2325 | "_dom_classes": [],
2326 | "_model_module": "@jupyter-widgets/controls",
2327 | "_model_module_version": "1.5.0",
2328 | "_model_name": "HBoxModel",
2329 | "_view_count": null,
2330 | "_view_module": "@jupyter-widgets/controls",
2331 | "_view_module_version": "1.5.0",
2332 | "_view_name": "HBoxView",
2333 | "box_style": "",
2334 | "children": [
2335 | "IPY_MODEL_264e3e750bd143f09d822ee8ac39200a",
2336 | "IPY_MODEL_ac9dbf10d9224fa58671a8c3fe381c0c",
2337 | "IPY_MODEL_1f89b563ab7a4734876d12bd1adfbd82"
2338 | ],
2339 | "layout": "IPY_MODEL_85d28ff296bf4fac905e894d5cc8191c"
2340 | }
2341 | },
2342 | "264e3e750bd143f09d822ee8ac39200a": {
2343 | "model_module": "@jupyter-widgets/controls",
2344 | "model_name": "HTMLModel",
2345 | "model_module_version": "1.5.0",
2346 | "state": {
2347 | "_dom_classes": [],
2348 | "_model_module": "@jupyter-widgets/controls",
2349 | "_model_module_version": "1.5.0",
2350 | "_model_name": "HTMLModel",
2351 | "_view_count": null,
2352 | "_view_module": "@jupyter-widgets/controls",
2353 | "_view_module_version": "1.5.0",
2354 | "_view_name": "HTMLView",
2355 | "description": "",
2356 | "description_tooltip": null,
2357 | "layout": "IPY_MODEL_1173fe912b6f46e694100d84f95ba9c2",
2358 | "placeholder": "",
2359 | "style": "IPY_MODEL_31c99b8242f2486ba9e7d9790a5c6932",
2360 | "value": "prometheus-7b-v2_0.q2_k.gguf: 100%"
2361 | }
2362 | },
2363 | "ac9dbf10d9224fa58671a8c3fe381c0c": {
2364 | "model_module": "@jupyter-widgets/controls",
2365 | "model_name": "FloatProgressModel",
2366 | "model_module_version": "1.5.0",
2367 | "state": {
2368 | "_dom_classes": [],
2369 | "_model_module": "@jupyter-widgets/controls",
2370 | "_model_module_version": "1.5.0",
2371 | "_model_name": "FloatProgressModel",
2372 | "_view_count": null,
2373 | "_view_module": "@jupyter-widgets/controls",
2374 | "_view_module_version": "1.5.0",
2375 | "_view_name": "ProgressView",
2376 | "bar_style": "success",
2377 | "description": "",
2378 | "description_tooltip": null,
2379 | "layout": "IPY_MODEL_fa50c42a7aa04fb385fd91ae1e6b6657",
2380 | "max": 2719242432,
2381 | "min": 0,
2382 | "orientation": "horizontal",
2383 | "style": "IPY_MODEL_239a38f9d1b64ac3b1ef91d87d3a604a",
2384 | "value": 2719242432
2385 | }
2386 | },
2387 | "1f89b563ab7a4734876d12bd1adfbd82": {
2388 | "model_module": "@jupyter-widgets/controls",
2389 | "model_name": "HTMLModel",
2390 | "model_module_version": "1.5.0",
2391 | "state": {
2392 | "_dom_classes": [],
2393 | "_model_module": "@jupyter-widgets/controls",
2394 | "_model_module_version": "1.5.0",
2395 | "_model_name": "HTMLModel",
2396 | "_view_count": null,
2397 | "_view_module": "@jupyter-widgets/controls",
2398 | "_view_module_version": "1.5.0",
2399 | "_view_name": "HTMLView",
2400 | "description": "",
2401 | "description_tooltip": null,
2402 | "layout": "IPY_MODEL_07dc27a7a5e646f19c87531dfc904391",
2403 | "placeholder": "",
2404 | "style": "IPY_MODEL_d9fd216c8fe2415a9f0b47b161bd3345",
2405 | "value": " 2.72G/2.72G [02:30<00:00, 15.8MB/s]"
2406 | }
2407 | },
2408 | "85d28ff296bf4fac905e894d5cc8191c": {
2409 | "model_module": "@jupyter-widgets/base",
2410 | "model_name": "LayoutModel",
2411 | "model_module_version": "1.2.0",
2412 | "state": {
2413 | "_model_module": "@jupyter-widgets/base",
2414 | "_model_module_version": "1.2.0",
2415 | "_model_name": "LayoutModel",
2416 | "_view_count": null,
2417 | "_view_module": "@jupyter-widgets/base",
2418 | "_view_module_version": "1.2.0",
2419 | "_view_name": "LayoutView",
2420 | "align_content": null,
2421 | "align_items": null,
2422 | "align_self": null,
2423 | "border": null,
2424 | "bottom": null,
2425 | "display": null,
2426 | "flex": null,
2427 | "flex_flow": null,
2428 | "grid_area": null,
2429 | "grid_auto_columns": null,
2430 | "grid_auto_flow": null,
2431 | "grid_auto_rows": null,
2432 | "grid_column": null,
2433 | "grid_gap": null,
2434 | "grid_row": null,
2435 | "grid_template_areas": null,
2436 | "grid_template_columns": null,
2437 | "grid_template_rows": null,
2438 | "height": null,
2439 | "justify_content": null,
2440 | "justify_items": null,
2441 | "left": null,
2442 | "margin": null,
2443 | "max_height": null,
2444 | "max_width": null,
2445 | "min_height": null,
2446 | "min_width": null,
2447 | "object_fit": null,
2448 | "object_position": null,
2449 | "order": null,
2450 | "overflow": null,
2451 | "overflow_x": null,
2452 | "overflow_y": null,
2453 | "padding": null,
2454 | "right": null,
2455 | "top": null,
2456 | "visibility": null,
2457 | "width": null
2458 | }
2459 | },
2460 | "1173fe912b6f46e694100d84f95ba9c2": {
2461 | "model_module": "@jupyter-widgets/base",
2462 | "model_name": "LayoutModel",
2463 | "model_module_version": "1.2.0",
2464 | "state": {
2465 | "_model_module": "@jupyter-widgets/base",
2466 | "_model_module_version": "1.2.0",
2467 | "_model_name": "LayoutModel",
2468 | "_view_count": null,
2469 | "_view_module": "@jupyter-widgets/base",
2470 | "_view_module_version": "1.2.0",
2471 | "_view_name": "LayoutView",
2472 | "align_content": null,
2473 | "align_items": null,
2474 | "align_self": null,
2475 | "border": null,
2476 | "bottom": null,
2477 | "display": null,
2478 | "flex": null,
2479 | "flex_flow": null,
2480 | "grid_area": null,
2481 | "grid_auto_columns": null,
2482 | "grid_auto_flow": null,
2483 | "grid_auto_rows": null,
2484 | "grid_column": null,
2485 | "grid_gap": null,
2486 | "grid_row": null,
2487 | "grid_template_areas": null,
2488 | "grid_template_columns": null,
2489 | "grid_template_rows": null,
2490 | "height": null,
2491 | "justify_content": null,
2492 | "justify_items": null,
2493 | "left": null,
2494 | "margin": null,
2495 | "max_height": null,
2496 | "max_width": null,
2497 | "min_height": null,
2498 | "min_width": null,
2499 | "object_fit": null,
2500 | "object_position": null,
2501 | "order": null,
2502 | "overflow": null,
2503 | "overflow_x": null,
2504 | "overflow_y": null,
2505 | "padding": null,
2506 | "right": null,
2507 | "top": null,
2508 | "visibility": null,
2509 | "width": null
2510 | }
2511 | },
2512 | "31c99b8242f2486ba9e7d9790a5c6932": {
2513 | "model_module": "@jupyter-widgets/controls",
2514 | "model_name": "DescriptionStyleModel",
2515 | "model_module_version": "1.5.0",
2516 | "state": {
2517 | "_model_module": "@jupyter-widgets/controls",
2518 | "_model_module_version": "1.5.0",
2519 | "_model_name": "DescriptionStyleModel",
2520 | "_view_count": null,
2521 | "_view_module": "@jupyter-widgets/base",
2522 | "_view_module_version": "1.2.0",
2523 | "_view_name": "StyleView",
2524 | "description_width": ""
2525 | }
2526 | },
2527 | "fa50c42a7aa04fb385fd91ae1e6b6657": {
2528 | "model_module": "@jupyter-widgets/base",
2529 | "model_name": "LayoutModel",
2530 | "model_module_version": "1.2.0",
2531 | "state": {
2532 | "_model_module": "@jupyter-widgets/base",
2533 | "_model_module_version": "1.2.0",
2534 | "_model_name": "LayoutModel",
2535 | "_view_count": null,
2536 | "_view_module": "@jupyter-widgets/base",
2537 | "_view_module_version": "1.2.0",
2538 | "_view_name": "LayoutView",
2539 | "align_content": null,
2540 | "align_items": null,
2541 | "align_self": null,
2542 | "border": null,
2543 | "bottom": null,
2544 | "display": null,
2545 | "flex": null,
2546 | "flex_flow": null,
2547 | "grid_area": null,
2548 | "grid_auto_columns": null,
2549 | "grid_auto_flow": null,
2550 | "grid_auto_rows": null,
2551 | "grid_column": null,
2552 | "grid_gap": null,
2553 | "grid_row": null,
2554 | "grid_template_areas": null,
2555 | "grid_template_columns": null,
2556 | "grid_template_rows": null,
2557 | "height": null,
2558 | "justify_content": null,
2559 | "justify_items": null,
2560 | "left": null,
2561 | "margin": null,
2562 | "max_height": null,
2563 | "max_width": null,
2564 | "min_height": null,
2565 | "min_width": null,
2566 | "object_fit": null,
2567 | "object_position": null,
2568 | "order": null,
2569 | "overflow": null,
2570 | "overflow_x": null,
2571 | "overflow_y": null,
2572 | "padding": null,
2573 | "right": null,
2574 | "top": null,
2575 | "visibility": null,
2576 | "width": null
2577 | }
2578 | },
2579 | "239a38f9d1b64ac3b1ef91d87d3a604a": {
2580 | "model_module": "@jupyter-widgets/controls",
2581 | "model_name": "ProgressStyleModel",
2582 | "model_module_version": "1.5.0",
2583 | "state": {
2584 | "_model_module": "@jupyter-widgets/controls",
2585 | "_model_module_version": "1.5.0",
2586 | "_model_name": "ProgressStyleModel",
2587 | "_view_count": null,
2588 | "_view_module": "@jupyter-widgets/base",
2589 | "_view_module_version": "1.2.0",
2590 | "_view_name": "StyleView",
2591 | "bar_color": null,
2592 | "description_width": ""
2593 | }
2594 | },
2595 | "07dc27a7a5e646f19c87531dfc904391": {
2596 | "model_module": "@jupyter-widgets/base",
2597 | "model_name": "LayoutModel",
2598 | "model_module_version": "1.2.0",
2599 | "state": {
2600 | "_model_module": "@jupyter-widgets/base",
2601 | "_model_module_version": "1.2.0",
2602 | "_model_name": "LayoutModel",
2603 | "_view_count": null,
2604 | "_view_module": "@jupyter-widgets/base",
2605 | "_view_module_version": "1.2.0",
2606 | "_view_name": "LayoutView",
2607 | "align_content": null,
2608 | "align_items": null,
2609 | "align_self": null,
2610 | "border": null,
2611 | "bottom": null,
2612 | "display": null,
2613 | "flex": null,
2614 | "flex_flow": null,
2615 | "grid_area": null,
2616 | "grid_auto_columns": null,
2617 | "grid_auto_flow": null,
2618 | "grid_auto_rows": null,
2619 | "grid_column": null,
2620 | "grid_gap": null,
2621 | "grid_row": null,
2622 | "grid_template_areas": null,
2623 | "grid_template_columns": null,
2624 | "grid_template_rows": null,
2625 | "height": null,
2626 | "justify_content": null,
2627 | "justify_items": null,
2628 | "left": null,
2629 | "margin": null,
2630 | "max_height": null,
2631 | "max_width": null,
2632 | "min_height": null,
2633 | "min_width": null,
2634 | "object_fit": null,
2635 | "object_position": null,
2636 | "order": null,
2637 | "overflow": null,
2638 | "overflow_x": null,
2639 | "overflow_y": null,
2640 | "padding": null,
2641 | "right": null,
2642 | "top": null,
2643 | "visibility": null,
2644 | "width": null
2645 | }
2646 | },
2647 | "d9fd216c8fe2415a9f0b47b161bd3345": {
2648 | "model_module": "@jupyter-widgets/controls",
2649 | "model_name": "DescriptionStyleModel",
2650 | "model_module_version": "1.5.0",
2651 | "state": {
2652 | "_model_module": "@jupyter-widgets/controls",
2653 | "_model_module_version": "1.5.0",
2654 | "_model_name": "DescriptionStyleModel",
2655 | "_view_count": null,
2656 | "_view_module": "@jupyter-widgets/base",
2657 | "_view_module_version": "1.2.0",
2658 | "_view_name": "StyleView",
2659 | "description_width": ""
2660 | }
2661 | },
2662 | "b09ea4131057463fb44f565ac75a0cfa": {
2663 | "model_module": "@jupyter-widgets/controls",
2664 | "model_name": "HBoxModel",
2665 | "model_module_version": "1.5.0",
2666 | "state": {
2667 | "_dom_classes": [],
2668 | "_model_module": "@jupyter-widgets/controls",
2669 | "_model_module_version": "1.5.0",
2670 | "_model_name": "HBoxModel",
2671 | "_view_count": null,
2672 | "_view_module": "@jupyter-widgets/controls",
2673 | "_view_module_version": "1.5.0",
2674 | "_view_name": "HBoxView",
2675 | "box_style": "",
2676 | "children": [
2677 | "IPY_MODEL_3273f8c539304f70bfd000b3f599bc30",
2678 | "IPY_MODEL_5b3edbf8b1394ba99222e1f1ff001817",
2679 | "IPY_MODEL_79c40c09a18149ce8fc5a4f28012fe55"
2680 | ],
2681 | "layout": "IPY_MODEL_76030354886d4d40aaabdaa71df53534"
2682 | }
2683 | },
2684 | "3273f8c539304f70bfd000b3f599bc30": {
2685 | "model_module": "@jupyter-widgets/controls",
2686 | "model_name": "HTMLModel",
2687 | "model_module_version": "1.5.0",
2688 | "state": {
2689 | "_dom_classes": [],
2690 | "_model_module": "@jupyter-widgets/controls",
2691 | "_model_module_version": "1.5.0",
2692 | "_model_name": "HTMLModel",
2693 | "_view_count": null,
2694 | "_view_module": "@jupyter-widgets/controls",
2695 | "_view_module_version": "1.5.0",
2696 | "_view_name": "HTMLView",
2697 | "description": "",
2698 | "description_tooltip": null,
2699 | "layout": "IPY_MODEL_94c66744dcbd422194f15d5bc0c51916",
2700 | "placeholder": "",
2701 | "style": "IPY_MODEL_069bbd4936ec4039a43b75a43eb92ce7",
2702 | "value": "Phi-3-mini-4k-instruct-q4.gguf: 100%"
2703 | }
2704 | },
2705 | "5b3edbf8b1394ba99222e1f1ff001817": {
2706 | "model_module": "@jupyter-widgets/controls",
2707 | "model_name": "FloatProgressModel",
2708 | "model_module_version": "1.5.0",
2709 | "state": {
2710 | "_dom_classes": [],
2711 | "_model_module": "@jupyter-widgets/controls",
2712 | "_model_module_version": "1.5.0",
2713 | "_model_name": "FloatProgressModel",
2714 | "_view_count": null,
2715 | "_view_module": "@jupyter-widgets/controls",
2716 | "_view_module_version": "1.5.0",
2717 | "_view_name": "ProgressView",
2718 | "bar_style": "success",
2719 | "description": "",
2720 | "description_tooltip": null,
2721 | "layout": "IPY_MODEL_1b83de7e86f2436b974cd3c214961b82",
2722 | "max": 2393231072,
2723 | "min": 0,
2724 | "orientation": "horizontal",
2725 | "style": "IPY_MODEL_231738af3e2341b09e8d9973cd32ad61",
2726 | "value": 2393231072
2727 | }
2728 | },
2729 | "79c40c09a18149ce8fc5a4f28012fe55": {
2730 | "model_module": "@jupyter-widgets/controls",
2731 | "model_name": "HTMLModel",
2732 | "model_module_version": "1.5.0",
2733 | "state": {
2734 | "_dom_classes": [],
2735 | "_model_module": "@jupyter-widgets/controls",
2736 | "_model_module_version": "1.5.0",
2737 | "_model_name": "HTMLModel",
2738 | "_view_count": null,
2739 | "_view_module": "@jupyter-widgets/controls",
2740 | "_view_module_version": "1.5.0",
2741 | "_view_name": "HTMLView",
2742 | "description": "",
2743 | "description_tooltip": null,
2744 | "layout": "IPY_MODEL_60a5def5fd41426ba469f287d3f425eb",
2745 | "placeholder": "",
2746 | "style": "IPY_MODEL_8374678db4124801a9f252e4c65237e3",
2747 | "value": " 2.39G/2.39G [00:07<00:00, 324MB/s]"
2748 | }
2749 | },
2750 | "76030354886d4d40aaabdaa71df53534": {
2751 | "model_module": "@jupyter-widgets/base",
2752 | "model_name": "LayoutModel",
2753 | "model_module_version": "1.2.0",
2754 | "state": {
2755 | "_model_module": "@jupyter-widgets/base",
2756 | "_model_module_version": "1.2.0",
2757 | "_model_name": "LayoutModel",
2758 | "_view_count": null,
2759 | "_view_module": "@jupyter-widgets/base",
2760 | "_view_module_version": "1.2.0",
2761 | "_view_name": "LayoutView",
2762 | "align_content": null,
2763 | "align_items": null,
2764 | "align_self": null,
2765 | "border": null,
2766 | "bottom": null,
2767 | "display": null,
2768 | "flex": null,
2769 | "flex_flow": null,
2770 | "grid_area": null,
2771 | "grid_auto_columns": null,
2772 | "grid_auto_flow": null,
2773 | "grid_auto_rows": null,
2774 | "grid_column": null,
2775 | "grid_gap": null,
2776 | "grid_row": null,
2777 | "grid_template_areas": null,
2778 | "grid_template_columns": null,
2779 | "grid_template_rows": null,
2780 | "height": null,
2781 | "justify_content": null,
2782 | "justify_items": null,
2783 | "left": null,
2784 | "margin": null,
2785 | "max_height": null,
2786 | "max_width": null,
2787 | "min_height": null,
2788 | "min_width": null,
2789 | "object_fit": null,
2790 | "object_position": null,
2791 | "order": null,
2792 | "overflow": null,
2793 | "overflow_x": null,
2794 | "overflow_y": null,
2795 | "padding": null,
2796 | "right": null,
2797 | "top": null,
2798 | "visibility": null,
2799 | "width": null
2800 | }
2801 | },
2802 | "94c66744dcbd422194f15d5bc0c51916": {
2803 | "model_module": "@jupyter-widgets/base",
2804 | "model_name": "LayoutModel",
2805 | "model_module_version": "1.2.0",
2806 | "state": {
2807 | "_model_module": "@jupyter-widgets/base",
2808 | "_model_module_version": "1.2.0",
2809 | "_model_name": "LayoutModel",
2810 | "_view_count": null,
2811 | "_view_module": "@jupyter-widgets/base",
2812 | "_view_module_version": "1.2.0",
2813 | "_view_name": "LayoutView",
2814 | "align_content": null,
2815 | "align_items": null,
2816 | "align_self": null,
2817 | "border": null,
2818 | "bottom": null,
2819 | "display": null,
2820 | "flex": null,
2821 | "flex_flow": null,
2822 | "grid_area": null,
2823 | "grid_auto_columns": null,
2824 | "grid_auto_flow": null,
2825 | "grid_auto_rows": null,
2826 | "grid_column": null,
2827 | "grid_gap": null,
2828 | "grid_row": null,
2829 | "grid_template_areas": null,
2830 | "grid_template_columns": null,
2831 | "grid_template_rows": null,
2832 | "height": null,
2833 | "justify_content": null,
2834 | "justify_items": null,
2835 | "left": null,
2836 | "margin": null,
2837 | "max_height": null,
2838 | "max_width": null,
2839 | "min_height": null,
2840 | "min_width": null,
2841 | "object_fit": null,
2842 | "object_position": null,
2843 | "order": null,
2844 | "overflow": null,
2845 | "overflow_x": null,
2846 | "overflow_y": null,
2847 | "padding": null,
2848 | "right": null,
2849 | "top": null,
2850 | "visibility": null,
2851 | "width": null
2852 | }
2853 | },
2854 | "069bbd4936ec4039a43b75a43eb92ce7": {
2855 | "model_module": "@jupyter-widgets/controls",
2856 | "model_name": "DescriptionStyleModel",
2857 | "model_module_version": "1.5.0",
2858 | "state": {
2859 | "_model_module": "@jupyter-widgets/controls",
2860 | "_model_module_version": "1.5.0",
2861 | "_model_name": "DescriptionStyleModel",
2862 | "_view_count": null,
2863 | "_view_module": "@jupyter-widgets/base",
2864 | "_view_module_version": "1.2.0",
2865 | "_view_name": "StyleView",
2866 | "description_width": ""
2867 | }
2868 | },
2869 | "1b83de7e86f2436b974cd3c214961b82": {
2870 | "model_module": "@jupyter-widgets/base",
2871 | "model_name": "LayoutModel",
2872 | "model_module_version": "1.2.0",
2873 | "state": {
2874 | "_model_module": "@jupyter-widgets/base",
2875 | "_model_module_version": "1.2.0",
2876 | "_model_name": "LayoutModel",
2877 | "_view_count": null,
2878 | "_view_module": "@jupyter-widgets/base",
2879 | "_view_module_version": "1.2.0",
2880 | "_view_name": "LayoutView",
2881 | "align_content": null,
2882 | "align_items": null,
2883 | "align_self": null,
2884 | "border": null,
2885 | "bottom": null,
2886 | "display": null,
2887 | "flex": null,
2888 | "flex_flow": null,
2889 | "grid_area": null,
2890 | "grid_auto_columns": null,
2891 | "grid_auto_flow": null,
2892 | "grid_auto_rows": null,
2893 | "grid_column": null,
2894 | "grid_gap": null,
2895 | "grid_row": null,
2896 | "grid_template_areas": null,
2897 | "grid_template_columns": null,
2898 | "grid_template_rows": null,
2899 | "height": null,
2900 | "justify_content": null,
2901 | "justify_items": null,
2902 | "left": null,
2903 | "margin": null,
2904 | "max_height": null,
2905 | "max_width": null,
2906 | "min_height": null,
2907 | "min_width": null,
2908 | "object_fit": null,
2909 | "object_position": null,
2910 | "order": null,
2911 | "overflow": null,
2912 | "overflow_x": null,
2913 | "overflow_y": null,
2914 | "padding": null,
2915 | "right": null,
2916 | "top": null,
2917 | "visibility": null,
2918 | "width": null
2919 | }
2920 | },
2921 | "231738af3e2341b09e8d9973cd32ad61": {
2922 | "model_module": "@jupyter-widgets/controls",
2923 | "model_name": "ProgressStyleModel",
2924 | "model_module_version": "1.5.0",
2925 | "state": {
2926 | "_model_module": "@jupyter-widgets/controls",
2927 | "_model_module_version": "1.5.0",
2928 | "_model_name": "ProgressStyleModel",
2929 | "_view_count": null,
2930 | "_view_module": "@jupyter-widgets/base",
2931 | "_view_module_version": "1.2.0",
2932 | "_view_name": "StyleView",
2933 | "bar_color": null,
2934 | "description_width": ""
2935 | }
2936 | },
2937 | "60a5def5fd41426ba469f287d3f425eb": {
2938 | "model_module": "@jupyter-widgets/base",
2939 | "model_name": "LayoutModel",
2940 | "model_module_version": "1.2.0",
2941 | "state": {
2942 | "_model_module": "@jupyter-widgets/base",
2943 | "_model_module_version": "1.2.0",
2944 | "_model_name": "LayoutModel",
2945 | "_view_count": null,
2946 | "_view_module": "@jupyter-widgets/base",
2947 | "_view_module_version": "1.2.0",
2948 | "_view_name": "LayoutView",
2949 | "align_content": null,
2950 | "align_items": null,
2951 | "align_self": null,
2952 | "border": null,
2953 | "bottom": null,
2954 | "display": null,
2955 | "flex": null,
2956 | "flex_flow": null,
2957 | "grid_area": null,
2958 | "grid_auto_columns": null,
2959 | "grid_auto_flow": null,
2960 | "grid_auto_rows": null,
2961 | "grid_column": null,
2962 | "grid_gap": null,
2963 | "grid_row": null,
2964 | "grid_template_areas": null,
2965 | "grid_template_columns": null,
2966 | "grid_template_rows": null,
2967 | "height": null,
2968 | "justify_content": null,
2969 | "justify_items": null,
2970 | "left": null,
2971 | "margin": null,
2972 | "max_height": null,
2973 | "max_width": null,
2974 | "min_height": null,
2975 | "min_width": null,
2976 | "object_fit": null,
2977 | "object_position": null,
2978 | "order": null,
2979 | "overflow": null,
2980 | "overflow_x": null,
2981 | "overflow_y": null,
2982 | "padding": null,
2983 | "right": null,
2984 | "top": null,
2985 | "visibility": null,
2986 | "width": null
2987 | }
2988 | },
2989 | "8374678db4124801a9f252e4c65237e3": {
2990 | "model_module": "@jupyter-widgets/controls",
2991 | "model_name": "DescriptionStyleModel",
2992 | "model_module_version": "1.5.0",
2993 | "state": {
2994 | "_model_module": "@jupyter-widgets/controls",
2995 | "_model_module_version": "1.5.0",
2996 | "_model_name": "DescriptionStyleModel",
2997 | "_view_count": null,
2998 | "_view_module": "@jupyter-widgets/base",
2999 | "_view_module_version": "1.2.0",
3000 | "_view_name": "StyleView",
3001 | "description_width": ""
3002 | }
3003 | },
3004 | "c657f93dbc124dbab5675fff5db70643": {
3005 | "model_module": "@jupyter-widgets/controls",
3006 | "model_name": "HBoxModel",
3007 | "model_module_version": "1.5.0",
3008 | "state": {
3009 | "_dom_classes": [],
3010 | "_model_module": "@jupyter-widgets/controls",
3011 | "_model_module_version": "1.5.0",
3012 | "_model_name": "HBoxModel",
3013 | "_view_count": null,
3014 | "_view_module": "@jupyter-widgets/controls",
3015 | "_view_module_version": "1.5.0",
3016 | "_view_name": "HBoxView",
3017 | "box_style": "",
3018 | "children": [
3019 | "IPY_MODEL_cdad238cd7f545b188c16104855e97c7",
3020 | "IPY_MODEL_b120480b077344899a6cd7fcc02afe6b",
3021 | "IPY_MODEL_fe277f79fb8e4a5f8824c6d7242c738a"
3022 | ],
3023 | "layout": "IPY_MODEL_a94aa938805548aaa0de040004d4b712"
3024 | }
3025 | },
3026 | "cdad238cd7f545b188c16104855e97c7": {
3027 | "model_module": "@jupyter-widgets/controls",
3028 | "model_name": "HTMLModel",
3029 | "model_module_version": "1.5.0",
3030 | "state": {
3031 | "_dom_classes": [],
3032 | "_model_module": "@jupyter-widgets/controls",
3033 | "_model_module_version": "1.5.0",
3034 | "_model_name": "HTMLModel",
3035 | "_view_count": null,
3036 | "_view_module": "@jupyter-widgets/controls",
3037 | "_view_module_version": "1.5.0",
3038 | "_view_name": "HTMLView",
3039 | "description": "",
3040 | "description_tooltip": null,
3041 | "layout": "IPY_MODEL_3f816fa857884ed5a19977210f3fac66",
3042 | "placeholder": "",
3043 | "style": "IPY_MODEL_d1cdc0ad1fa94b6ba9035fd8d7de11e0",
3044 | "value": "Generating train split: "
3045 | }
3046 | },
3047 | "b120480b077344899a6cd7fcc02afe6b": {
3048 | "model_module": "@jupyter-widgets/controls",
3049 | "model_name": "FloatProgressModel",
3050 | "model_module_version": "1.5.0",
3051 | "state": {
3052 | "_dom_classes": [],
3053 | "_model_module": "@jupyter-widgets/controls",
3054 | "_model_module_version": "1.5.0",
3055 | "_model_name": "FloatProgressModel",
3056 | "_view_count": null,
3057 | "_view_module": "@jupyter-widgets/controls",
3058 | "_view_module_version": "1.5.0",
3059 | "_view_name": "ProgressView",
3060 | "bar_style": "success",
3061 | "description": "",
3062 | "description_tooltip": null,
3063 | "layout": "IPY_MODEL_3ed461cd434c463eb28228ae38c4cb7d",
3064 | "max": 1,
3065 | "min": 0,
3066 | "orientation": "horizontal",
3067 | "style": "IPY_MODEL_d0c8a30572574f828a95692c4bcdda06",
3068 | "value": 1
3069 | }
3070 | },
3071 | "fe277f79fb8e4a5f8824c6d7242c738a": {
3072 | "model_module": "@jupyter-widgets/controls",
3073 | "model_name": "HTMLModel",
3074 | "model_module_version": "1.5.0",
3075 | "state": {
3076 | "_dom_classes": [],
3077 | "_model_module": "@jupyter-widgets/controls",
3078 | "_model_module_version": "1.5.0",
3079 | "_model_name": "HTMLModel",
3080 | "_view_count": null,
3081 | "_view_module": "@jupyter-widgets/controls",
3082 | "_view_module_version": "1.5.0",
3083 | "_view_name": "HTMLView",
3084 | "description": "",
3085 | "description_tooltip": null,
3086 | "layout": "IPY_MODEL_ab24d3de500e45de8d9e9bd2f2a71fbf",
3087 | "placeholder": "",
3088 | "style": "IPY_MODEL_cdc619ef065248638ad0b6e3a085869e",
3089 | "value": " 3/0 [00:00<00:00, 182.64 examples/s]"
3090 | }
3091 | },
3092 | "a94aa938805548aaa0de040004d4b712": {
3093 | "model_module": "@jupyter-widgets/base",
3094 | "model_name": "LayoutModel",
3095 | "model_module_version": "1.2.0",
3096 | "state": {
3097 | "_model_module": "@jupyter-widgets/base",
3098 | "_model_module_version": "1.2.0",
3099 | "_model_name": "LayoutModel",
3100 | "_view_count": null,
3101 | "_view_module": "@jupyter-widgets/base",
3102 | "_view_module_version": "1.2.0",
3103 | "_view_name": "LayoutView",
3104 | "align_content": null,
3105 | "align_items": null,
3106 | "align_self": null,
3107 | "border": null,
3108 | "bottom": null,
3109 | "display": null,
3110 | "flex": null,
3111 | "flex_flow": null,
3112 | "grid_area": null,
3113 | "grid_auto_columns": null,
3114 | "grid_auto_flow": null,
3115 | "grid_auto_rows": null,
3116 | "grid_column": null,
3117 | "grid_gap": null,
3118 | "grid_row": null,
3119 | "grid_template_areas": null,
3120 | "grid_template_columns": null,
3121 | "grid_template_rows": null,
3122 | "height": null,
3123 | "justify_content": null,
3124 | "justify_items": null,
3125 | "left": null,
3126 | "margin": null,
3127 | "max_height": null,
3128 | "max_width": null,
3129 | "min_height": null,
3130 | "min_width": null,
3131 | "object_fit": null,
3132 | "object_position": null,
3133 | "order": null,
3134 | "overflow": null,
3135 | "overflow_x": null,
3136 | "overflow_y": null,
3137 | "padding": null,
3138 | "right": null,
3139 | "top": null,
3140 | "visibility": null,
3141 | "width": null
3142 | }
3143 | },
3144 | "3f816fa857884ed5a19977210f3fac66": {
3145 | "model_module": "@jupyter-widgets/base",
3146 | "model_name": "LayoutModel",
3147 | "model_module_version": "1.2.0",
3148 | "state": {
3149 | "_model_module": "@jupyter-widgets/base",
3150 | "_model_module_version": "1.2.0",
3151 | "_model_name": "LayoutModel",
3152 | "_view_count": null,
3153 | "_view_module": "@jupyter-widgets/base",
3154 | "_view_module_version": "1.2.0",
3155 | "_view_name": "LayoutView",
3156 | "align_content": null,
3157 | "align_items": null,
3158 | "align_self": null,
3159 | "border": null,
3160 | "bottom": null,
3161 | "display": null,
3162 | "flex": null,
3163 | "flex_flow": null,
3164 | "grid_area": null,
3165 | "grid_auto_columns": null,
3166 | "grid_auto_flow": null,
3167 | "grid_auto_rows": null,
3168 | "grid_column": null,
3169 | "grid_gap": null,
3170 | "grid_row": null,
3171 | "grid_template_areas": null,
3172 | "grid_template_columns": null,
3173 | "grid_template_rows": null,
3174 | "height": null,
3175 | "justify_content": null,
3176 | "justify_items": null,
3177 | "left": null,
3178 | "margin": null,
3179 | "max_height": null,
3180 | "max_width": null,
3181 | "min_height": null,
3182 | "min_width": null,
3183 | "object_fit": null,
3184 | "object_position": null,
3185 | "order": null,
3186 | "overflow": null,
3187 | "overflow_x": null,
3188 | "overflow_y": null,
3189 | "padding": null,
3190 | "right": null,
3191 | "top": null,
3192 | "visibility": null,
3193 | "width": null
3194 | }
3195 | },
3196 | "d1cdc0ad1fa94b6ba9035fd8d7de11e0": {
3197 | "model_module": "@jupyter-widgets/controls",
3198 | "model_name": "DescriptionStyleModel",
3199 | "model_module_version": "1.5.0",
3200 | "state": {
3201 | "_model_module": "@jupyter-widgets/controls",
3202 | "_model_module_version": "1.5.0",
3203 | "_model_name": "DescriptionStyleModel",
3204 | "_view_count": null,
3205 | "_view_module": "@jupyter-widgets/base",
3206 | "_view_module_version": "1.2.0",
3207 | "_view_name": "StyleView",
3208 | "description_width": ""
3209 | }
3210 | },
3211 | "3ed461cd434c463eb28228ae38c4cb7d": {
3212 | "model_module": "@jupyter-widgets/base",
3213 | "model_name": "LayoutModel",
3214 | "model_module_version": "1.2.0",
3215 | "state": {
3216 | "_model_module": "@jupyter-widgets/base",
3217 | "_model_module_version": "1.2.0",
3218 | "_model_name": "LayoutModel",
3219 | "_view_count": null,
3220 | "_view_module": "@jupyter-widgets/base",
3221 | "_view_module_version": "1.2.0",
3222 | "_view_name": "LayoutView",
3223 | "align_content": null,
3224 | "align_items": null,
3225 | "align_self": null,
3226 | "border": null,
3227 | "bottom": null,
3228 | "display": null,
3229 | "flex": null,
3230 | "flex_flow": null,
3231 | "grid_area": null,
3232 | "grid_auto_columns": null,
3233 | "grid_auto_flow": null,
3234 | "grid_auto_rows": null,
3235 | "grid_column": null,
3236 | "grid_gap": null,
3237 | "grid_row": null,
3238 | "grid_template_areas": null,
3239 | "grid_template_columns": null,
3240 | "grid_template_rows": null,
3241 | "height": null,
3242 | "justify_content": null,
3243 | "justify_items": null,
3244 | "left": null,
3245 | "margin": null,
3246 | "max_height": null,
3247 | "max_width": null,
3248 | "min_height": null,
3249 | "min_width": null,
3250 | "object_fit": null,
3251 | "object_position": null,
3252 | "order": null,
3253 | "overflow": null,
3254 | "overflow_x": null,
3255 | "overflow_y": null,
3256 | "padding": null,
3257 | "right": null,
3258 | "top": null,
3259 | "visibility": null,
3260 | "width": "20px"
3261 | }
3262 | },
3263 | "d0c8a30572574f828a95692c4bcdda06": {
3264 | "model_module": "@jupyter-widgets/controls",
3265 | "model_name": "ProgressStyleModel",
3266 | "model_module_version": "1.5.0",
3267 | "state": {
3268 | "_model_module": "@jupyter-widgets/controls",
3269 | "_model_module_version": "1.5.0",
3270 | "_model_name": "ProgressStyleModel",
3271 | "_view_count": null,
3272 | "_view_module": "@jupyter-widgets/base",
3273 | "_view_module_version": "1.2.0",
3274 | "_view_name": "StyleView",
3275 | "bar_color": null,
3276 | "description_width": ""
3277 | }
3278 | },
3279 | "ab24d3de500e45de8d9e9bd2f2a71fbf": {
3280 | "model_module": "@jupyter-widgets/base",
3281 | "model_name": "LayoutModel",
3282 | "model_module_version": "1.2.0",
3283 | "state": {
3284 | "_model_module": "@jupyter-widgets/base",
3285 | "_model_module_version": "1.2.0",
3286 | "_model_name": "LayoutModel",
3287 | "_view_count": null,
3288 | "_view_module": "@jupyter-widgets/base",
3289 | "_view_module_version": "1.2.0",
3290 | "_view_name": "LayoutView",
3291 | "align_content": null,
3292 | "align_items": null,
3293 | "align_self": null,
3294 | "border": null,
3295 | "bottom": null,
3296 | "display": null,
3297 | "flex": null,
3298 | "flex_flow": null,
3299 | "grid_area": null,
3300 | "grid_auto_columns": null,
3301 | "grid_auto_flow": null,
3302 | "grid_auto_rows": null,
3303 | "grid_column": null,
3304 | "grid_gap": null,
3305 | "grid_row": null,
3306 | "grid_template_areas": null,
3307 | "grid_template_columns": null,
3308 | "grid_template_rows": null,
3309 | "height": null,
3310 | "justify_content": null,
3311 | "justify_items": null,
3312 | "left": null,
3313 | "margin": null,
3314 | "max_height": null,
3315 | "max_width": null,
3316 | "min_height": null,
3317 | "min_width": null,
3318 | "object_fit": null,
3319 | "object_position": null,
3320 | "order": null,
3321 | "overflow": null,
3322 | "overflow_x": null,
3323 | "overflow_y": null,
3324 | "padding": null,
3325 | "right": null,
3326 | "top": null,
3327 | "visibility": null,
3328 | "width": null
3329 | }
3330 | },
3331 | "cdc619ef065248638ad0b6e3a085869e": {
3332 | "model_module": "@jupyter-widgets/controls",
3333 | "model_name": "DescriptionStyleModel",
3334 | "model_module_version": "1.5.0",
3335 | "state": {
3336 | "_model_module": "@jupyter-widgets/controls",
3337 | "_model_module_version": "1.5.0",
3338 | "_model_name": "DescriptionStyleModel",
3339 | "_view_count": null,
3340 | "_view_module": "@jupyter-widgets/base",
3341 | "_view_module_version": "1.2.0",
3342 | "_view_name": "StyleView",
3343 | "description_width": ""
3344 | }
3345 | }
3346 | }
3347 | }
3348 | },
3349 | "nbformat": 4,
3350 | "nbformat_minor": 0
3351 | }
--------------------------------------------------------------------------------