├── .github
├── ISSUE_TEMPLATE
│ ├── bug_report.md
│ └── feature_request.md
└── workflows
│ ├── build.yml
│ ├── format.yml
│ └── tests.yml
├── .gitignore
├── .gitmodules
├── .mergify.yml
├── LICENSE
├── README.md
├── codecov.yml
├── docs
├── CODE_OF_CONDUCT.md
└── CONTRIBUTING.md
├── jupyddl
├── __init__.py
├── a_star.py
├── automated_planner.py
├── bfs.py
├── data_analyst.py
├── dfs.py
├── dijkstra.py
├── greedy_best_first.py
├── heuristics.py
├── metrics.py
└── node.py
├── logs
└── .gitkeep
├── renovate.json
├── requirements.txt
├── scripts
└── ipc.py
├── setup.py
└── tests
├── test_automated_planner.py
├── test_basic_astar.py
├── test_basic_search.py
├── test_data_analyst.py
├── test_greedy_best_first.py
├── test_heuristics.py
├── test_hsp_astar.py
├── test_metrics.py
└── test_node.py
/.github/ISSUE_TEMPLATE/bug_report.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Bug report
3 | about: Create a report to help us improve
4 | title: ''
5 | labels: 'bug'
6 | assignees: 'guilyx,sampreets3'
7 |
8 | ---
9 |
10 | **Describe the bug**
11 | A clear and concise description of what the bug is.
12 |
13 | **To Reproduce**
14 | Steps to reproduce the behavior:
15 | 1. Go to '...'
16 | 2. Click on '....'
17 | 3. Scroll down to '....'
18 | 4. See error
19 |
20 | **Expected behavior**
21 | A clear and concise description of what you expected to happen.
22 |
23 | **Screenshots**
24 | If applicable, add screenshots to help explain your problem.
25 |
26 | **Desktop (please complete the following information):**
27 | - OS: [e.g. iOS]
28 | - Browser [e.g. chrome, safari]
29 | - Version [e.g. 22]
30 |
31 | **Additional context**
32 | Add any other context about the problem here.
33 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/feature_request.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Feature request
3 | about: Suggest an idea for this project
4 | title: ''
5 | labels: 'feature'
6 | assignees: 'guilyx'
7 |
8 | ---
9 |
10 | **Is your feature request related to a problem? Please describe.**
11 | A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
12 |
13 | **Describe the solution you'd like**
14 | A clear and concise description of what you want to happen.
15 |
16 | **Describe alternatives you've considered**
17 | A clear and concise description of any alternative solutions or features you've considered.
18 |
19 | **Additional context**
20 | Add any other context or screenshots about the feature request here.
21 |
--------------------------------------------------------------------------------
/.github/workflows/build.yml:
--------------------------------------------------------------------------------
1 | name: build
2 |
3 | on: [push]
4 |
5 | jobs:
6 | build:
7 | runs-on: ${{ matrix.os }}
8 | strategy:
9 | matrix:
10 | os: [ubuntu-latest, macos-latest]
11 | python-version: [3.6, 3.7, 3.8]
12 | exclude:
13 | - os: macos-latest
14 | python-version: 3.8
15 |
16 | steps:
17 | - uses: actions/checkout@v2
18 | - name: Set up Python 3.7
19 | uses: actions/setup-python@v3
20 | with:
21 | python-version: 3.7
22 | - uses: actions/checkout@v2.4.0
23 | - uses: julia-actions/setup-julia@v1
24 | with:
25 | version: '1.4.1'
26 | - name: Install Julia dependencies
27 | run: |
28 | julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/APLA-Toolbox/PDDL.jl"))'
29 | julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/JuliaPy/PyCall.jl"))'
30 | - name: Install Python dependencies
31 | run: |
32 | python -m pip install --upgrade pip
33 | python -m pip install -r requirements.txt
34 | - name: Lint with flake8
35 | run: |
36 | python -m pip install flake8
37 | # stop the build if there are Python syntax errors or undefined names
38 | flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
39 | # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
40 | flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
41 | - name: Checkout reposistory
42 | uses: actions/checkout@master
43 | - name: Checkout submodules
44 | uses: snickerbockers/submodules-init@v4
45 |
46 |
--------------------------------------------------------------------------------
/.github/workflows/format.yml:
--------------------------------------------------------------------------------
1 | name: format
2 | on:
3 | push:
4 | branches: [main]
5 | jobs:
6 | format:
7 | runs-on: ubuntu-latest
8 | steps:
9 | - uses: actions/checkout@v2
10 | with:
11 | ref: ${{ github.head_ref }}
12 | - uses: actions/checkout@v2
13 | - name: Set up Python 3.7
14 | uses: actions/setup-python@v3
15 | with:
16 | python-version: 3.7
17 | - name: Install formatter dependencies
18 | run: |
19 | python -m pip install --upgrade pip
20 | python -m pip install black
21 | - name: Format with black
22 | run: |
23 | black .
24 | - name: Commit changes
25 | uses: stefanzweifel/git-auto-commit-action@v4.14.0
26 | with:
27 | commit_message: Apply formatting changes
28 | branch: main
29 |
--------------------------------------------------------------------------------
/.github/workflows/tests.yml:
--------------------------------------------------------------------------------
1 | name: tests
2 |
3 | on: [push]
4 |
5 | jobs:
6 | build:
7 | runs-on: ${{ matrix.os }}
8 | strategy:
9 | matrix:
10 | os: [ubuntu-latest, macos-latest]
11 | python-version: [3.6, 3.7, 3.8]
12 | exclude:
13 | - os: macos-latest
14 | python-version: 3.8
15 |
16 | steps:
17 | - uses: actions/checkout@v2
18 | - name: Set up Python 3.7
19 | uses: actions/setup-python@v3
20 | with:
21 | python-version: 3.7
22 | - uses: actions/checkout@v2.4.0
23 | - uses: julia-actions/setup-julia@v1
24 | with:
25 | version: '1.4.1'
26 | - name: Install Julia dependencies
27 | run: |
28 | julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/APLA-Toolbox/PDDL.jl"))'
29 | julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/JuliaPy/PyCall.jl"))'
30 | - name: Install Python dependencies
31 | run: |
32 | python -m pip install --upgrade pip
33 | python -m pip install julia
34 | python -m pip install pycall
35 | - name: Lint with flake8
36 | run: |
37 | python -m pip install flake8
38 | # stop the build if there are Python syntax errors or undefined names
39 | flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
40 | # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
41 | flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
42 | - name: Checkout reposistory
43 | uses: actions/checkout@master
44 | - name: Checkout submodules
45 | uses: snickerbockers/submodules-init@v4
46 |
47 | test:
48 | runs-on: ${{ matrix.os }}
49 | strategy:
50 | matrix:
51 | os: [ubuntu-latest, macos-latest]
52 | python-version: [3.6, 3.7, 3.8]
53 | exclude:
54 | - os: macos-latest
55 | python-version: 3.8
56 | steps:
57 | - uses: actions/checkout@v2
58 | - name: Set up Python 3.7
59 | uses: actions/setup-python@v3
60 | with:
61 | python-version: 3.7
62 | - uses: actions/checkout@v2.4.0
63 | - uses: julia-actions/setup-julia@v1
64 | with:
65 | version: '1.4.1'
66 | - name: Install Julia dependencies
67 | run: |
68 | julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/JuliaPy/PyCall.jl"))'
69 | julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/APLA-Toolbox/PDDL.jl"))'
70 | - name: Install Python dependencies
71 | run: |
72 | python -m pip install --upgrade pip
73 | python -m pip install -r requirements.txt
74 | - name: Lint with flake8
75 | run: |
76 | python -m pip install flake8
77 | # stop the build if there are Python syntax errors or undefined names
78 | flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
79 | # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
80 | flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
81 | - name: Checkout reposistory
82 | uses: actions/checkout@master
83 | - name: Checkout submodules
84 | uses: snickerbockers/submodules-init@v4
85 | - name: Test with pytest
86 | run: |
87 | pip install pytest
88 | pip install pytest-cov
89 | pytest --cov=./
90 | - name: Upload coverage to Codecov
91 | uses: codecov/codecov-action@v2
92 | with:
93 | name: codecov-umbrella
94 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 | .vscode/*
6 |
7 | # C extensions
8 | *.so
9 |
10 | # Distribution / packaging
11 | .Python
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | eggs/
17 | .eggs/
18 | lib/
19 | lib64/
20 | parts/
21 | sdist/
22 | var/
23 | wheels/
24 | pip-wheel-metadata/
25 | share/python-wheels/
26 | *.egg-info/
27 | .installed.cfg
28 | *.egg
29 | MANIFEST
30 |
31 | # PyInstaller
32 | # Usually these files are written by a python script from a template
33 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
34 | *.manifest
35 | *.spec
36 |
37 | # Installer logs
38 | pip-log.txt
39 | pip-delete-this-directory.txt
40 |
41 | # Unit test / coverage reports
42 | htmlcov/
43 | .tox/
44 | .nox/
45 | .coverage
46 | .coverage.*
47 | .cache
48 | nosetests.xml
49 | coverage.xml
50 | *.cover
51 | *.py,cover
52 | .hypothesis/
53 | .pytest_cache/
54 |
55 | # Translations
56 | *.mo
57 | *.pot
58 |
59 | # Django stuff:
60 | *.log
61 | local_settings.py
62 | db.sqlite3
63 | db.sqlite3-journal
64 |
65 | # Flask stuff:
66 | instance/
67 | .webassets-cache
68 |
69 | # Scrapy stuff:
70 | .scrapy
71 |
72 | # Sphinx documentation
73 | docs/_build/
74 |
75 | # PyBuilder
76 | target/
77 |
78 | # Jupyter Notebook
79 | .ipynb_checkpoints
80 |
81 | # IPython
82 | profile_default/
83 | ipython_config.py
84 |
85 | # pyenv
86 | .python-version
87 |
88 | # pipenv
89 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
90 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
91 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
92 | # install all needed dependencies.
93 | #Pipfile.lock
94 |
95 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
96 | __pypackages__/
97 |
98 | # Celery stuff
99 | celerybeat-schedule
100 | celerybeat.pid
101 |
102 | # SageMath parsed files
103 | *.sage.py
104 |
105 | # Environments
106 | .env
107 | .venv
108 | env/
109 | venv/
110 | ENV/
111 | env.bak/
112 | venv.bak/
113 |
114 | # Spyder project settings
115 | .spyderproject
116 | .spyproject
117 |
118 | # Rope project settings
119 | .ropeproject
120 |
121 | # mkdocs documentation
122 | /site
123 |
124 | # mypy
125 | .mypy_cache/
126 | .dmypy.json
127 | dmypy.json
128 |
129 | # Pyre type checker
130 | .pyre/
131 |
132 | # Logs
133 | logs/*
134 | !logs/.gitkeep
135 | data.json
136 | pddl-examples/*
137 | data/*
138 | scripts/*
139 | *.txt
140 | !scripts/ipc.py
141 |
--------------------------------------------------------------------------------
/.gitmodules:
--------------------------------------------------------------------------------
1 | [submodule "pddl-examples"]
2 | path = pddl-examples
3 | url = https://github.com/APLA-Toolbox/pddl-examples
4 |
--------------------------------------------------------------------------------
/.mergify.yml:
--------------------------------------------------------------------------------
1 | pull_request_rules:
2 | - name: Assign the main reviewers
3 | conditions:
4 | - check-success=build
5 | - check-success=CodeFactor
6 | actions:
7 | request_reviews:
8 | users:
9 | - guilyx
10 | - sampreets3
11 | - name: Automatic merge on approval
12 | conditions:
13 | - "#approved-reviews-by>=1"
14 | - check-success=tests
15 | - check-success=build
16 | - check-success=CodeFactor
17 | actions:
18 | merge:
19 | method: merge
20 | - name: Delete head branch after merge
21 | conditions:
22 | - merged
23 | actions:
24 | delete_head_branch: {}
25 | - name: Ask to resolve conflict
26 | conditions:
27 | - conflict
28 | actions:
29 | comment:
30 | message: This pull request is now in conflicts. Could you fix it @{{author}}? 🙏
31 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 |

4 |
5 |
6 |
7 |
8 |
9 | # Python PDDL
10 |
11 | ✨ A Python wrapper using JuliaPy for the PDDL.jl parser package and implementing its own planners. ✨
12 |
13 |
14 |
15 |
16 |
17 | 
18 | 
19 | [](https://codecov.io/gh/APLA-Toolbox/PythonPDDL)
20 | [](https://www.codefactor.io/repository/github/apla-toolbox/pythonpddl)
21 | [](http://isitmaintained.com/project/APLA-Toolbox/PythonPDDL "Percentage of issues still open")
22 | [](https://github.com/Apla-Toolbox/PythonPDDL/blob/master/LICENSE)
23 | [](https://GitHub.com/Apla-Toolbox/PythonPDDL/graphs/contributors/)
24 | 
25 | [](https://pypi.python.org/pypi/jupyddl/)
26 |
27 |
28 |
29 |
30 |
31 | [Report Bug](https://github.com/APLA-Toolbox/PythonPDDL/issues) · [Request Feature](https://github.com/APLA-Toolbox/PythonPDDL/issues)
32 |
33 | Loved the project? Please consider [donating](https://www.buymeacoffee.com/dq01aOE) to help it improve!
34 |
35 |
36 |
37 | ## Features 🌱
38 |
39 | - ✨ Built to be expanded: easy to add new planners
40 | - 🖥️ Supported on MacOS and Ubuntu
41 | - 🎌 Built with Julia and Python
42 | - 🔎 Uninformed Planners (DFS, BFS)
43 | - 🧭 Informed Planners (Dijkstra, A*, Greedy Best First)
44 | - 📊 Several general purpose heuristics (Goal Count, Delete Relaxation [Hmax, Hadd], Critical Path [H1, H2, H3], Relaxed Critical Path [H1, H2, H3])
45 | - 🍻 Maintained (Incoming: Landmarks Heuristics...)
46 |
47 | ## Docker 🐋
48 |
49 | You can also use the project in a docker container using [docker-pythonpddl](https://github.com/APLA-Toolbox/docker-pythonpddl)
50 |
51 | ## Install 💾
52 |
53 | - Install Python (3.7.5 is the tested version)
54 |
55 | - Install Julia
56 |
57 | ```bash
58 | $ wget https://julialang-s3.julialang.org/bin/linux/x64/1.5/julia-1.5.2-linux-x86_64.tar.gz
59 | $ tar -xvzf julia-1.5.2-linux-x86_64.tar.gz
60 | $ sudo cp -r julia-1.5.2 /opt/
61 | $ sudo ln -s /opt/julia-1.5.2/bin/julia /usr/local/bin/julia
62 | ```
63 |
64 | - Install Julia dependencies
65 |
66 | ```bash
67 | $ julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/APLA-Toolbox/PDDL.jl"))'
68 | $ julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/JuliaPy/PyCall.jl"))'
69 | ```
70 |
71 | - Package installation (only if used as library, not needed to run the scripts)
72 |
73 | ```bash
74 | $ python3 -m pip install --upgrade pip
75 | $ python3 -m pip install jupyddl
76 | ```
77 |
78 | ## IPC Script ⚔️
79 |
80 | - Clone the project :
81 | ```shell
82 | $ git clone https://github.com/APLA-Toolbox/PythonPDDL
83 | $ cd PythonPDDL
84 | $ python3 -m pip install -r requirements.txt
85 | $ git submodule update --init // Only if you need PDDL files for testing
86 | ```
87 |
88 | - Run the script :
89 | ```shell
90 | $ cd scripts/
91 | $ python ipc.py "path_to_domain.pddl" "path_to_problem.pddl" "path_to_desired_output_file"
92 | ```
93 |
94 | The output file will show the path with a list of state, the path with a list of action and the metrics proposed by IPC2018.
95 |
96 | ## Basic Usage 📑
97 |
98 | If using the jupyddl pip package:
99 |
100 | - If you want to use the data analysis tool, create a pddl-examples folder with pddl instances subfolders containing "problem.pddl" and "domain.pddl". (refer to APLA-Toolbox/pddl-examples)
101 |
102 | If you want to use it by cloning the project:
103 |
104 | ```shell
105 | $ git clone https://github.com/APLA-Toolbox/PythonPDDL
106 | $ cd PythonPDDL
107 | $ python3 -m pip install -r requirements.txt
108 | $ git submodule update --init
109 | ```
110 |
111 | You should have a `pddl-examples` folder containing PDDL instances.
112 |
113 | ### AutomatedPlanner Class 🗺️
114 |
115 | ```python
116 | from jupyddl import AutomatedPlanner # takes some time because it has to instantiate the Julia interface
117 | apl = AutomatedPlanner("pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl)
118 |
119 | apl.available_heuristics
120 | ["basic/zero", "basic/goal_count", "delete_relaxation/h_max", "delete_relaxation/h_add"]
121 |
122 | apl.initial_state
123 |
124 |
125 | actions = apl.available_actions(apl.initial_state)
126 | [, , , , , ]
127 |
128 | apl.satisfies(apl.problem.goal, apl.initial_state)
129 | False
130 |
131 | apl.transition(apl.initial_state, actions[0])
132 |
133 |
134 | path = apl.breadth_first_search() # computes path ([]State) with BFS
135 |
136 | print(apl.get_state_def_from_path(path))
137 | [, , ]
138 |
139 | print(apl.get_actions_from_path(path))
140 | [, , ]
141 | ```
142 |
143 | ### DataAnalyst (more like Viz) Class 📈
144 |
145 | Make sure you have a pddl-examples folder where you run your environment that contains independent folders with "domain.pddl" and "problem.pddl" files, with those standard names. ( if you didn't generate with git submodule update )
146 |
147 | ```python
148 | from jupyddl import DataAnalyst
149 |
150 | da = DataAnalyst()
151 | da.plot_astar() # plots complexity statistics for all the problem.pddl/domain.pddl couples in the pddl-examples/ folder
152 |
153 | da.plot_astar(problem="pddl-examples/dinner/problem.pddl", domain="pddl-examples/dinner/domain.pddl") # scatter complexity statistics for the provided pddl
154 |
155 | da.plot_astar(heuristic_key="basic/zero") # use h=0 instead of goal_count for your computation
156 |
157 | da.plot_dfs() # same as astar
158 |
159 | da.comparative_data_plot() # Run all planners on the pddl-examples folder and plots them on the same figure, data is stored in a data.json file
160 |
161 | da.comparative_data_plot(astar=False) # Exclude astar from the comparative plot
162 |
163 | da.comparative_data_plot(heuristic_key="basic/zero") # use zero heuristic for h based planners
164 |
165 | da.comparative_data_plot(collect_new_data=False) # uses data.json to plot the data
166 |
167 | da.comparative_astar_heuristic_plot() # compare results of astar with all available heuristics
168 | ```
169 |
170 | ## Cite 📰
171 |
172 | If you use the project in your work, please consider citing it with:
173 | ```
174 | @misc{https://doi.org/10.13140/rg.2.2.22418.89282,
175 | doi = {10.13140/RG.2.2.22418.89282},
176 | url = {http://rgdoi.net/10.13140/RG.2.2.22418.89282},
177 | author = {Erwin Lejeune},
178 | language = {en},
179 | title = {Jupyddl, an extensible python library for PDDL planning and parsing},
180 | publisher = {Unpublished},
181 | year = {2021}
182 | }
183 | ```
184 |
185 | List of publications & preprints using `jupyddl` (please open a pull request to add missing entries):
186 |
187 | * [name](link) (month year)
188 |
189 | ## Contribute 🆘
190 |
191 | Please see `docs/CONTRIBUTING.md` for more details on contributing!
192 |
193 | ## Maintainers Ⓜ️
194 |
195 | - Erwin Lejeune
196 | - Sampreet Sarkar
197 |
--------------------------------------------------------------------------------
/codecov.yml:
--------------------------------------------------------------------------------
1 | codecov:
2 | require_ci_to_pass: yes
3 |
4 | coverage:
5 | precision: 2
6 | round: down
7 | range: "70...100"
8 |
9 | parsers:
10 | gcov:
11 | branch_detection:
12 | conditional: yes
13 | loop: yes
14 | method: no
15 | macro: no
16 | ignore:
17 | - "setup.py"
18 | - "scripts/*"
19 | comment:
20 | layout: "reach,diff,flags,files,footer"
21 | behavior: default
22 | require_changes: no
23 |
--------------------------------------------------------------------------------
/docs/CODE_OF_CONDUCT.md:
--------------------------------------------------------------------------------
1 | # Contributor Covenant Code of Conduct
2 |
3 | ## Our Pledge
4 |
5 | In the interest of fostering an open and welcoming environment, we as
6 | contributors and maintainers pledge to making participation in our project and
7 | our community a harassment-free experience for everyone, regardless of age, body
8 | size, disability, ethnicity, sex characteristics, gender identity and expression,
9 | level of experience, education, socio-economic status, nationality, personal
10 | appearance, race, religion, or sexual identity and orientation.
11 |
12 | ## Our Standards
13 |
14 | Examples of behavior that contributes to creating a positive environment
15 | include:
16 |
17 | * Using welcoming and inclusive language
18 | * Being respectful of differing viewpoints and experiences
19 | * Gracefully accepting constructive criticism
20 | * Focusing on what is best for the community
21 | * Showing empathy towards other community members
22 |
23 | Examples of unacceptable behavior by participants include:
24 |
25 | * The use of sexualized language or imagery and unwelcome sexual attention or
26 | advances
27 | * Trolling, insulting/derogatory comments, and personal or political attacks
28 | * Public or private harassment
29 | * Publishing others' private information, such as a physical or electronic
30 | address, without explicit permission
31 | * Other conduct which could reasonably be considered inappropriate in a
32 | professional setting
33 |
34 | ## Our Responsibilities
35 |
36 | Project maintainers are responsible for clarifying the standards of acceptable
37 | behavior and are expected to take appropriate and fair corrective action in
38 | response to any instances of unacceptable behavior.
39 |
40 | Project maintainers have the right and responsibility to remove, edit, or
41 | reject comments, commits, code, wiki edits, issues, and other contributions
42 | that are not aligned to this Code of Conduct, or to ban temporarily or
43 | permanently any contributor for other behaviors that they deem inappropriate,
44 | threatening, offensive, or harmful.
45 |
46 | ## Scope
47 |
48 | This Code of Conduct applies both within project spaces and in public spaces
49 | when an individual is representing the project or its community. Examples of
50 | representing a project or community include using an official project e-mail
51 | address, posting via an official social media account, or acting as an appointed
52 | representative at an online or offline event. Representation of a project may be
53 | further defined and clarified by project maintainers.
54 |
55 | ## Enforcement
56 |
57 | Instances of abusive, harassing, or otherwise unacceptable behavior may be
58 | reported by contacting the project team at erwin.lejeune15@gmail.com. All
59 | complaints will be reviewed and investigated and will result in a response that
60 | is deemed necessary and appropriate to the circumstances. The project team is
61 | obligated to maintain confidentiality with regard to the reporter of an incident.
62 | Further details of specific enforcement policies may be posted separately.
63 |
64 | Project maintainers who do not follow or enforce the Code of Conduct in good
65 | faith may face temporary or permanent repercussions as determined by other
66 | members of the project's leadership.
67 |
68 | ## Attribution
69 |
70 | This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
71 | available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
72 |
73 | [homepage]: https://www.contributor-covenant.org
74 |
75 | For answers to common questions about this code of conduct, see
76 | https://www.contributor-covenant.org/faq
77 |
--------------------------------------------------------------------------------
/docs/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # Contributing to PythonPDDL
2 | We love your input! We want to make contributing to this project as easy and transparent as possible, whether it's:
3 |
4 | - Reporting a bug
5 | - Discussing the current state of the code
6 | - Submitting a fix
7 | - Proposing new features
8 | - Becoming a maintainer
9 |
10 | ## We Develop with Github
11 | We use github to host code, to track issues and feature requests, as well as accept pull requests.
12 |
13 | ## We Use [Github Flow](https://guides.github.com/introduction/flow/index.html), So All Code Changes Happen Through Pull Requests
14 | Pull requests are the best way to propose changes to the codebase (we use [Github Flow](https://guides.github.com/introduction/flow/index.html)). We actively welcome your pull requests:
15 |
16 | 1. Fork the repo and create your branch from `master`.
17 | 2. If you've added code that should be tested, add tests.
18 | 3. If you've changed APIs, update the documentation.
19 | 4. Ensure the test suite passes.
20 | 5. Make sure your code lints.
21 | 6. Issue that pull request!
22 |
23 | ## Any contributions you make will be under the Apache 2.0 Software License
24 | In short, when you submit code changes, your submissions are understood to be under the same [Apache 2.0](https://choosealicense.com/licenses/apache-2.0/) that covers the project. Feel free to contact the maintainers if that's a concern.
25 |
26 | ## Report bugs using Github's [issues](https://github.com/briandk/transcriptase-atom/issues)
27 | We use GitHub issues to track public bugs. Report a bug by [opening a new issue](); it's that easy!
28 |
29 | ## Write bug reports with detail, background, and sample code
30 | [This is an example](http://stackoverflow.com/q/12488905/180626) of a bug report I wrote, and I think it's not a bad model. Here's [another example from Craig Hockenberry](http://www.openradar.me/11905408), an app developer whom I greatly respect.
31 |
32 | **Great Bug Reports** tend to have:
33 |
34 | - A quick summary and/or background
35 | - Steps to reproduce
36 | - Be specific!
37 | - Give sample code if you can. [My stackoverflow question](http://stackoverflow.com/q/12488905/180626) includes sample code that *anyone* with a base R setup can run to reproduce what I was seeing
38 | - What you expected would happen
39 | - What actually happens
40 | - Notes (possibly including why you think this might be happening, or stuff you tried that didn't work)
41 |
42 | People *love* thorough bug reports. I'm not even kidding.
43 |
44 | ## Use a Consistent Coding Style
45 | We use black to format automatically your PR to master. Please ensure PEP8 and PEP20 are respected.
46 |
47 | ## License
48 | By contributing, you agree that your contributions will be licensed under its MIT License.
49 |
50 | ## References
51 | This document was adapted from the open-source contribution guidelines for [Facebook's Draft](https://github.com/facebook/draft-js/blob/a9316a723f9e918afde44dea68b5f9f39b7d9b00/CONTRIBUTING.md)
52 |
--------------------------------------------------------------------------------
/jupyddl/__init__.py:
--------------------------------------------------------------------------------
1 | from .automated_planner import AutomatedPlanner
2 | from .data_analyst import DataAnalyst
3 |
--------------------------------------------------------------------------------
/jupyddl/a_star.py:
--------------------------------------------------------------------------------
1 | from .node import Node
2 | import logging
3 | import math
4 | from time import time as now
5 | from datetime import datetime as timestamp
6 | from .metrics import Metrics
7 |
8 |
9 | class AStarBestFirstSearch:
10 | def __init__(self, automated_planner, heuristic_function):
11 | self.time_start = now()
12 | self.automated_planner = automated_planner
13 | self.metrics = Metrics()
14 | self.init = Node(
15 | self.automated_planner.initial_state,
16 | automated_planner,
17 | is_closed=False,
18 | is_open=True,
19 | heuristic=heuristic_function,
20 | heuristic_based=True,
21 | metric=self.metrics,
22 | )
23 | self.heuristic_function = heuristic_function
24 | self.open_nodes_n = 1
25 | self.nodes = dict()
26 | self.nodes[self.__hash(self.init)] = self.init
27 |
28 | def __hash(self, node):
29 | sep = ", Dict{Symbol,Any}"
30 | string = str(node.state)
31 | return string.split(sep, 1)[0] + ")"
32 |
33 | def search(self, node_bound=float("inf")):
34 | self.automated_planner.logger.debug(
35 | "Search started at: " + str(timestamp.now())
36 | )
37 | while self.open_nodes_n > 0:
38 | current_key = min(
39 | [n for n in self.nodes if self.nodes[n].is_open],
40 | key=(lambda k: self.nodes[k].f_cost),
41 | )
42 | current_node = self.nodes[current_key]
43 |
44 | self.metrics.n_evaluated += 1
45 | if self.automated_planner.satisfies(
46 | self.automated_planner.problem.goal, current_node.state
47 | ):
48 | self.metrics.runtime = now() - self.time_start
49 | self.automated_planner.logger.debug(
50 | "Search finished at: " + str(timestamp.now())
51 | )
52 | return current_node, self.metrics
53 |
54 | current_node.is_closed = True
55 | current_node.is_open = False
56 | self.open_nodes_n -= 1
57 |
58 | if self.metrics.n_opened > node_bound:
59 | break
60 |
61 | actions = self.automated_planner.available_actions(current_node.state)
62 | if actions:
63 | self.metrics.n_expended += 1
64 | else:
65 | self.metrics.deadend_states += 1
66 | for act in actions:
67 | child = Node(
68 | state=self.automated_planner.transition(current_node.state, act),
69 | automated_planner=self.automated_planner,
70 | parent_action=act,
71 | parent=current_node,
72 | heuristic=self.heuristic_function,
73 | is_closed=False,
74 | is_open=True,
75 | heuristic_based=True,
76 | metric=self.metrics,
77 | )
78 | self.metrics.n_generated += 1
79 | child_hash = self.__hash(child)
80 | if child_hash in self.nodes:
81 | if self.nodes[child_hash].is_closed:
82 | continue
83 | if not self.nodes[child_hash].is_open:
84 | self.nodes[child_hash] = child
85 | self.open_nodes_n += 1
86 | self.metrics.n_opened += 1
87 | else:
88 | if child.g_cost < self.nodes[child_hash].g_cost:
89 | self.nodes[child_hash] = child
90 | self.open_nodes_n += 1
91 | self.metrics.n_opened += 1
92 | self.metrics.n_reopened += 1
93 |
94 | else:
95 | self.nodes[child_hash] = child
96 | self.open_nodes_n += 1
97 | self.metrics.n_opened += 1
98 | self.metrics.runtime = now() - self.time_start
99 | self.automated_planner.logger.warning("!!! No path found !!!")
100 | return None, self.metrics
101 |
--------------------------------------------------------------------------------
/jupyddl/automated_planner.py:
--------------------------------------------------------------------------------
1 | from .bfs import BreadthFirstSearch
2 | from .dfs import DepthFirstSearch
3 | from .dijkstra import DijkstraBestFirstSearch
4 | from .a_star import AStarBestFirstSearch
5 | from .greedy_best_first import GreedyBestFirstSearch
6 | from .metrics import Metrics
7 | from .heuristics import (
8 | BasicHeuristic,
9 | DeleteRelaxationHeuristic,
10 | RelaxedCriticalPathHeuristic,
11 | CriticalPathHeuristic,
12 | )
13 | import coloredlogs
14 | import logging
15 | import julia
16 |
17 | _ = julia.Julia(compiled_modules=False, debug=False)
18 | from julia import PDDL
19 | from time import time as now
20 |
21 | logging.getLogger("julia").setLevel(logging.WARNING)
22 |
23 |
24 | class AutomatedPlanner:
25 | def __init__(self, domain_path, problem_path, log_level="DEBUG"):
26 | # Planning Tool
27 | self.pddl = PDDL
28 | self.domain_path = domain_path
29 | self.problem_path = problem_path
30 | self.domain = self.pddl.load_domain(domain_path)
31 | self.problem = self.pddl.load_problem(problem_path)
32 | self.initial_state = self.pddl.initialize(self.problem)
33 | self.goals = self.__flatten_goal()
34 | self.available_heuristics = [
35 | "basic/zero",
36 | "basic/goal_count",
37 | "delete_relaxation/h_add",
38 | "delete_relaxation/h_max",
39 | "relaxed_critical_path/1",
40 | "relaxed_critical_path/2",
41 | "relaxed_critical_path/3",
42 | "critical_path/1",
43 | "critical_path/2",
44 | "critical_path/3",
45 | ]
46 |
47 | # Logger
48 | self.__init_logger(log_level)
49 | self.logger = logging.getLogger("automated_planning")
50 | coloredlogs.install(level=log_level)
51 |
52 | # Running external Julia functions once to create the routes
53 | self.__run_julia_once()
54 |
55 | def __run_julia_once(self):
56 | self.satisfies(self.problem.goal, self.initial_state)
57 | self.state_has_term(self.initial_state, self.goals[0])
58 | actions = self.available_actions(self.initial_state)
59 | if actions:
60 | self.transition(self.initial_state, actions[0])
61 | return
62 | logging.warning(
63 | "No actions from initial state, a path probably (definitely) won't be found"
64 | )
65 |
66 | def __init_logger(self, log_level):
67 | import os
68 |
69 | if not os.path.exists("logs"):
70 | os.makedirs("logs")
71 | logging.basicConfig(
72 | filename="logs/main.log",
73 | format="%(levelname)s:%(message)s",
74 | filemode="w",
75 | level=log_level,
76 | )
77 |
78 | def display_available_heuristics(self):
79 | print(self.available_heuristics)
80 |
81 | def transition(self, state, action):
82 | return self.pddl.transition(self.domain, state, action, check=False)
83 |
84 | def available_actions(self, state):
85 | try:
86 | return self.pddl.available(state, self.domain)
87 | except (RuntimeError, TypeError, NameError):
88 | self.logger.warning(
89 | "Runtime, Type or Name error occured when fetching available action from state"
90 | + str(state)
91 | )
92 | return []
93 |
94 | def satisfies(self, asserted_state, state):
95 | return self.pddl.satisfy(asserted_state, state, self.domain)[0]
96 |
97 | def state_has_term(self, state, term):
98 | if self.pddl.has_term_in_state(self.domain, state, term):
99 | return True
100 | return False
101 |
102 | def __flatten_goal(self):
103 | return self.pddl.flatten_goal(self.problem)
104 |
105 | def __retrace_path(self, node):
106 | if not node:
107 | return []
108 | path = []
109 | while node.parent:
110 | path.append(node)
111 | node = node.parent
112 | path.reverse()
113 | return path
114 |
115 | def get_actions_from_path(self, path):
116 | if not path:
117 | self.logger.warning("Path is empty, can't operate...")
118 | return []
119 | actions = []
120 | for node in path:
121 | if not node.parent_action:
122 | break
123 | act = str(node.parent_action).replace("', "total-cost ="
135 | )
136 | state_str = state_str.replace("))>", "")
137 | return state_str
138 |
139 | def get_state_def_from_path(self, path):
140 | if not path:
141 | self.logger.warning("Path is empty, can't operate...")
142 | return []
143 | trimmed_path = []
144 | for node in path:
145 | state = self.__stringify_state(node.state)
146 | trimmed_path.append(state)
147 | return trimmed_path
148 |
149 | def breadth_first_search(self, node_bound=float("inf")):
150 | bfs = BreadthFirstSearch(self)
151 | last_node, metrics = bfs.search(node_bound=node_bound)
152 | path = self.__retrace_path(last_node)
153 |
154 | return path, metrics
155 |
156 | def depth_first_search(self, node_bound=float("inf")):
157 | dfs = DepthFirstSearch(self)
158 | last_node, metrics = dfs.search(node_bound=node_bound)
159 | path = self.__retrace_path(last_node)
160 |
161 | return path, metrics
162 |
163 | def dijktra_best_first_search(self, node_bound=float("inf")):
164 | dijkstra = DijkstraBestFirstSearch(self)
165 | last_node, metrics = dijkstra.search(node_bound=node_bound)
166 | path = self.__retrace_path(last_node)
167 |
168 | return path, metrics
169 |
170 | def astar_best_first_search(
171 | self, node_bound=float("inf"), heuristic_key="basic/goal_count"
172 | ):
173 | if "basic" in heuristic_key:
174 | heuristic = BasicHeuristic(self, heuristic_key)
175 | elif "delete_relaxation" in heuristic_key:
176 | heuristic = DeleteRelaxationHeuristic(self, heuristic_key)
177 | elif "relaxed_critical_path" in heuristic_key:
178 | heuristic = RelaxedCriticalPathHeuristic(self, int(heuristic_key[-1]))
179 | elif "critical_path" in heuristic_key:
180 | heuristic = CriticalPathHeuristic(self, int(heuristic_key[-1]))
181 | else:
182 | logging.fatal("Not yet implemented")
183 | return [], Metrics()
184 | astar = AStarBestFirstSearch(self, heuristic.compute)
185 | last_node, metrics = astar.search(node_bound=node_bound)
186 | path = self.__retrace_path(last_node)
187 |
188 | return path, metrics
189 |
190 | def greedy_best_first_search(
191 | self, node_bound=float("inf"), heuristic_key="basic/goal_count"
192 | ):
193 | if "basic" in heuristic_key:
194 | if "zero" in heuristic_key:
195 | self.logger.warning(
196 | "Forced heuristic to goal_count. Zero isn't a proper heuristic for Greedy Best First."
197 | )
198 | heuristic = BasicHeuristic(self, "basic/goal_count")
199 | elif "delete_relaxation" in heuristic_key:
200 | heuristic = DeleteRelaxationHeuristic(self, heuristic_key)
201 | elif "relaxed_critical_path" in heuristic_key:
202 | logging.warning("Relaxed Critical Path is deficient for H^2 and H^3")
203 | heuristic = RelaxedCriticalPathHeuristic(self, int(heuristic_key[-1]))
204 | elif "critical_path" in heuristic_key:
205 | heuristic = CriticalPathHeuristic(self, int(heuristic_key[-1]))
206 | else:
207 | logging.fatal("Not yet implemented")
208 | return [], Metrics()
209 | greedy = GreedyBestFirstSearch(self, heuristic.compute)
210 | last_node, metrics = greedy.search(node_bound=node_bound)
211 | path = self.__retrace_path(last_node)
212 |
213 | return path, metrics
214 |
--------------------------------------------------------------------------------
/jupyddl/bfs.py:
--------------------------------------------------------------------------------
1 | from .node import Node
2 | from datetime import datetime as timestamp
3 | from time import time as now
4 | from .metrics import Metrics
5 |
6 |
7 | class BreadthFirstSearch:
8 | def __init__(self, automated_planner):
9 | self.time_start = now()
10 | self.visited = []
11 | self.automated_planner = automated_planner
12 | self.init = Node(self.automated_planner.initial_state, automated_planner)
13 | self.queue = [self.init]
14 | self.metrics = Metrics()
15 |
16 | def search(self, node_bound=float("inf")):
17 | self.automated_planner.logger.debug(
18 | "Search started at: " + str(timestamp.now())
19 | )
20 | while self.queue:
21 | current_node = self.queue.pop(0)
22 | if current_node not in self.visited:
23 | self.visited.append(current_node)
24 | self.metrics.n_evaluated += 1
25 | if self.automated_planner.satisfies(
26 | self.automated_planner.problem.goal, current_node.state
27 | ):
28 | self.metrics.runtime = now() - self.time_start
29 | self.automated_planner.logger.debug(
30 | "Search finished at: " + str(timestamp.now())
31 | )
32 | self.metrics.total_cost = current_node.g_cost
33 | return current_node, self.metrics
34 |
35 | if self.metrics.n_opened > node_bound:
36 | break
37 |
38 | actions = self.automated_planner.available_actions(current_node.state)
39 | if not actions:
40 | self.metrics.deadend_states += 1
41 | else:
42 | self.metrics.n_expended += 1
43 | for act in actions:
44 | child = Node(
45 | state=self.automated_planner.transition(
46 | current_node.state, act
47 | ),
48 | automated_planner=self.automated_planner,
49 | parent_action=act,
50 | parent=current_node,
51 | )
52 | self.metrics.n_generated += 1
53 | if child in self.visited:
54 | continue
55 | self.metrics.n_opened += 1
56 | self.queue.append(child)
57 | self.metrics.runtime = now() - self.time_start
58 | self.automated_planner.logger.warning("!!! No path found !!!")
59 | return None, self.metrics
60 |
--------------------------------------------------------------------------------
/jupyddl/data_analyst.py:
--------------------------------------------------------------------------------
1 | import os
2 | import glob
3 | import matplotlib as mpl
4 | import logging
5 |
6 | if "DISPLAY" not in os.environ:
7 | mpl.use("agg")
8 | else:
9 | mpl.use("TkAgg")
10 | mpl.set_loglevel("WARNING")
11 | import matplotlib.pyplot as plt
12 |
13 | plt.style.use("ggplot")
14 | from .automated_planner import AutomatedPlanner
15 | from os import path
16 | import json
17 |
18 |
19 | class DataAnalyst:
20 | def __init__(self):
21 | logging.info("Instantiating data analyst...")
22 | self.available_heuristics = [
23 | "basic/goal_count",
24 | "basic/zero",
25 | "delete_relaxation/h_add",
26 | "delete_relaxation/h_max",
27 | ]
28 |
29 | def __get_all_pddl_from_data(self, max_pddl_instances=-1):
30 | tested_files = []
31 | domains_problems = []
32 | i = 0
33 | if "DISPLAY" in os.environ:
34 | for root, _, files in os.walk("pddl-examples/", topdown=False):
35 | for name in files:
36 | # if "README" in name:
37 | # continue
38 | # if "LICENSE" in name:
39 | # continue
40 | # if ".gitignore" in name:
41 | # continue
42 | tested_files.append(os.getcwd() + "/" + os.path.join(root, name))
43 | if i % 2 != 0:
44 | domains_problems.append((tested_files[i - 1], tested_files[i]))
45 | i += 1
46 | if max_pddl_instances != -1 and i >= max_pddl_instances * 2:
47 | return domains_problems
48 | return domains_problems
49 | return [
50 | ("pddl-examples/dinner/problem.pddl", "pddl-examples/dinner/domain.pddl"),
51 | ("pddl-examples/dinner/problem.pddl", "pddl-examples/dinner/domain.pddl"),
52 | ]
53 |
54 | def __plot_data(self, times, total_nodes, plot_title):
55 | data = dict()
56 | for i, val in enumerate(total_nodes):
57 | data[val] = times[i]
58 | nodes_sorted = sorted(list(data.keys()))
59 | times_y = []
60 | for node_opened in nodes_sorted:
61 | times_y.append(data[node_opened])
62 | plt.plot(nodes_sorted, times_y, "r:o")
63 | plt.xlabel("Number of opened nodes")
64 | plt.ylabel("Planning computation time (s)")
65 | plt.xscale("symlog")
66 | plt.title(plot_title)
67 | plt.grid(True)
68 | plt.show(block=False)
69 |
70 | def __plot_data_generic(self, data, name):
71 | _, ax = plt.subplots()
72 | plt.xlabel("Domain")
73 | plt.ylabel(name)
74 | for key, val in data.items():
75 | ax.plot(val[name], "-o", label=key)
76 |
77 | plt.title("Planners metric comparison")
78 | plt.legend(loc="upper left")
79 | plt.grid(True)
80 | plt.show(block=False)
81 |
82 | def __scatter_data(self, times, total_nodes, plot_title):
83 | plt.scatter(total_nodes, times)
84 | plt.xlabel("Number of opened nodes")
85 | plt.ylabel("Planning computation time (s)")
86 | plt.xscale("symlog")
87 | plt.title(plot_title)
88 | plt.grid(True)
89 | plt.show(block=False)
90 |
91 | def __gather_data_astar(
92 | self,
93 | domain_path="",
94 | problem_path="",
95 | heuristic_key="basic/goal_count",
96 | max_pddl_instances=-1,
97 | ):
98 | has_multiple_files_tested = True
99 | if not domain_path or not problem_path:
100 | metrics = dict()
101 | costs = []
102 | for problem, domain in self.__get_all_pddl_from_data(
103 | max_pddl_instances=max_pddl_instances
104 | ):
105 | logging.debug(
106 | "Loading new PDDL instance planned with A* [ "
107 | + heuristic_key
108 | + " ]"
109 | )
110 | logging.debug("Domain: " + domain)
111 | logging.debug("Problem: " + problem)
112 | apla = AutomatedPlanner(domain, problem)
113 | if heuristic_key in apla.available_heuristics:
114 | path, metrics_obj = apla.astar_best_first_search(
115 | heuristic_key=heuristic_key
116 | )
117 | else:
118 | logging.critical(
119 | "Heuristic is not implemented! (Key not found in registered heuristics dict)"
120 | )
121 | return [0], [0], [0], has_multiple_files_tested
122 | if path:
123 | metrics[metrics_obj.runtime] = metrics_obj.n_opened
124 | costs.append(path[-1].g_cost)
125 | else:
126 | metrics[0] = 0
127 | costs.append(0)
128 |
129 | total_nodes = list(metrics.values())
130 | times = list(metrics.keys())
131 | return costs, times, total_nodes, has_multiple_files_tested
132 | has_multiple_files_tested = False
133 | logging.debug("Loading new PDDL instance...")
134 | logging.debug("Domain: " + domain_path)
135 | logging.debug("Problem: " + problem_path)
136 | apla = AutomatedPlanner(domain_path, problem_path)
137 | if heuristic_key in apla.available_heuristics:
138 | path, metrics_obj = apla.astar_best_first_search(
139 | heuristic_key=heuristic_key
140 | )
141 | else:
142 | logging.critical(
143 | "Heuristic is not implemented! (Key not found in registered heuristics dict)"
144 | )
145 | return [0], [0], [0], has_multiple_files_tested
146 | if path:
147 | return (
148 | [path[-1].g_cost],
149 | [metrics_obj.runtime],
150 | [metrics_obj.n_opened],
151 | has_multiple_files_tested,
152 | )
153 | return [0], [0], [0], has_multiple_files_tested
154 |
155 | def plot_astar(
156 | self,
157 | heuristic_key="basic/goal_count",
158 | domain="",
159 | problem="",
160 | max_pddl_instances=-1,
161 | ):
162 | if bool(not problem) != bool(not domain):
163 | logging.warning(
164 | "Either problem or domain wasn't provided, testing all files in data folder"
165 | )
166 | problem = domain = ""
167 | _, times, total_nodes, has_multiple_files_tested = self.__gather_data_astar(
168 | heuristic_key=heuristic_key,
169 | problem_path=problem,
170 | domain_path=domain,
171 | max_pddl_instances=max_pddl_instances,
172 | )
173 | title = "A* Statistics" + "[Heuristic: " + heuristic_key + "]"
174 | if has_multiple_files_tested:
175 | self.__plot_data(times, total_nodes, title)
176 | else:
177 | self.__scatter_data(times, total_nodes, title)
178 |
179 | def __gather_data_greedy_bfs(
180 | self,
181 | domain_path="",
182 | problem_path="",
183 | heuristic_key="basic/goal_count",
184 | max_pddl_instances=-1,
185 | ):
186 | has_multiple_files_tested = True
187 | if not domain_path or not problem_path:
188 | metrics = dict()
189 | costs = []
190 | for problem, domain in self.__get_all_pddl_from_data(
191 | max_pddl_instances=max_pddl_instances
192 | ):
193 | logging.debug(
194 | "Loading new PDDL instance planned with A* [ "
195 | + heuristic_key
196 | + " ]"
197 | )
198 | logging.debug("Domain: " + domain)
199 | logging.debug("Problem: " + problem)
200 | apla = AutomatedPlanner(domain, problem)
201 | if heuristic_key in apla.available_heuristics:
202 | path, metrics_obj = apla.greedy_best_first_search(
203 | heuristic_key=heuristic_key
204 | )
205 | else:
206 | logging.critical(
207 | "Heuristic is not implemented! (Key not found in registered heuristics dict)"
208 | )
209 | return [0], [0], [0], has_multiple_files_tested
210 | if path:
211 | metrics[metrics_obj.runtime] = metrics_obj.n_opened
212 | costs.append(path[-1].g_cost)
213 | else:
214 | metrics[0] = 0
215 | costs.append(0)
216 |
217 | total_nodes = list(metrics.values())
218 | times = list(metrics.keys())
219 | return costs, times, total_nodes, has_multiple_files_tested
220 | has_multiple_files_tested = False
221 | logging.debug("Loading new PDDL instance...")
222 | logging.debug("Domain: " + domain_path)
223 | logging.debug("Problem: " + problem_path)
224 | apla = AutomatedPlanner(domain_path, problem_path)
225 | if heuristic_key in apla.available_heuristics:
226 | path, metrics_obj = apla.greedy_best_first_search(
227 | heuristic_key=heuristic_key
228 | )
229 | else:
230 | logging.critical(
231 | "Heuristic is not implemented! (Key not found in registered heuristics dict)"
232 | )
233 | return [0], [0], [0], has_multiple_files_tested
234 | if path:
235 | return (
236 | [path[-1].g_cost],
237 | [metrics_obj.runtime],
238 | [metrics_obj.n_opened],
239 | has_multiple_files_tested,
240 | )
241 | return [0], [0], [0], has_multiple_files_tested
242 |
243 | def plot_greedy_bfs(
244 | self,
245 | heuristic_key="basic/goal_count",
246 | domain="",
247 | problem="",
248 | max_pddl_instances=-1,
249 | ):
250 | if bool(not problem) != bool(not domain):
251 | logging.warning(
252 | "Either problem or domain wasn't provided, testing all files in data folder"
253 | )
254 | problem = domain = ""
255 | (
256 | _,
257 | times,
258 | total_nodes,
259 | has_multiple_files_tested,
260 | ) = self.__gather_data_greedy_bfs(
261 | heuristic_key=heuristic_key,
262 | problem_path=problem,
263 | domain_path=domain,
264 | max_pddl_instances=max_pddl_instances,
265 | )
266 | title = (
267 | "Greedy Best First Search Statistics" + "[Heuristic: " + heuristic_key + "]"
268 | )
269 | if has_multiple_files_tested:
270 | self.__plot_data(times, total_nodes, title)
271 | else:
272 | self.__scatter_data(times, total_nodes, title)
273 |
274 | def __gather_data_bfs(self, domain_path="", problem_path="", max_pddl_instances=-1):
275 | has_multiple_files_tested = True
276 | if not domain_path or not problem_path:
277 | metrics = dict()
278 | costs = []
279 | for problem, domain in self.__get_all_pddl_from_data(
280 | max_pddl_instances=max_pddl_instances
281 | ):
282 | logging.debug("Loading new PDDL instance planned with BFS...")
283 | logging.debug("Domain: " + domain)
284 | logging.debug("Problem: " + problem)
285 | apla = AutomatedPlanner(domain, problem)
286 | path, metrics_obj = apla.breadth_first_search()
287 | if path:
288 | metrics[metrics_obj.runtime] = metrics_obj.n_opened
289 | costs.append(path[-1].g_cost)
290 | else:
291 | metrics[0] = 0
292 | costs.append(0)
293 |
294 | total_nodes = list(metrics.values())
295 | times = list(metrics.keys())
296 | return costs, times, total_nodes, has_multiple_files_tested
297 | has_multiple_files_tested = False
298 | logging.debug("Loading new PDDL instance...")
299 | logging.debug("Domain: " + domain_path)
300 | logging.debug("Problem: " + problem_path)
301 | apla = AutomatedPlanner(domain_path, problem_path)
302 | path, metrics_obj = apla.breadth_first_search()
303 | if path:
304 | return (
305 | [path[-1].g_cost],
306 | [metrics_obj.runtime],
307 | [metrics_obj.n_opened],
308 | has_multiple_files_tested,
309 | )
310 | return [0], [0], [0], has_multiple_files_tested
311 |
312 | def plot_bfs(self, domain="", problem="", max_pddl_instances=-1):
313 | title = "BFS Statistics"
314 | if bool(not problem) != bool(not domain):
315 | logging.warning(
316 | "Either problem or domain wasn't provided, testing all files in data folder"
317 | )
318 | problem = domain = ""
319 | _, times, total_nodes, has_multiple_files_tested = self.__gather_data_bfs(
320 | problem_path=problem,
321 | domain_path=domain,
322 | max_pddl_instances=max_pddl_instances,
323 | )
324 | if has_multiple_files_tested:
325 | self.__plot_data(times, total_nodes, title)
326 | else:
327 | self.__scatter_data(times, total_nodes, title)
328 |
329 | def __gather_data_dfs(self, domain_path="", problem_path="", max_pddl_instances=-1):
330 | has_multiple_files_tested = True
331 | if not domain_path or not problem_path:
332 | metrics = dict()
333 | costs = []
334 | for problem, domain in self.__get_all_pddl_from_data(
335 | max_pddl_instances=max_pddl_instances
336 | ):
337 | logging.debug("Loading new PDDL instance planned with DFS...")
338 | logging.debug("Domain: " + domain)
339 | logging.debug("Problem: " + problem)
340 | apla = AutomatedPlanner(domain, problem)
341 | path, metrics_obj = apla.depth_first_search()
342 | if path:
343 | metrics[metrics_obj.runtime] = metrics_obj.n_opened
344 | costs.append(path[-1].g_cost)
345 | else:
346 | metrics[0] = 0
347 | costs.append(0)
348 |
349 | total_nodes = list(metrics.values())
350 | times = list(metrics.keys())
351 | return costs, times, total_nodes, has_multiple_files_tested
352 | has_multiple_files_tested = False
353 | logging.debug("Loading new PDDL instance...")
354 | logging.debug("Domain: " + domain_path)
355 | logging.debug("Problem: " + problem_path)
356 | apla = AutomatedPlanner(domain_path, problem_path)
357 | path, metrics_obj = apla.depth_first_search()
358 | if path:
359 | return (
360 | [path[-1].g_cost],
361 | [metrics_obj.runtime],
362 | [metrics_obj.n_opened],
363 | has_multiple_files_tested,
364 | )
365 | return [0], [0], [0], has_multiple_files_tested
366 |
367 | def plot_dfs(self, problem="", domain="", max_pddl_instances=-1):
368 | title = "DFS Statistics"
369 | if bool(not problem) != bool(not domain):
370 | logging.warning(
371 | "Either problem or domain wasn't provided, testing all files in data folder"
372 | )
373 | problem = domain = ""
374 | _, times, total_nodes, has_multiple_files_tested = self.__gather_data_dfs(
375 | problem_path=problem,
376 | domain_path=domain,
377 | max_pddl_instances=max_pddl_instances,
378 | )
379 | if has_multiple_files_tested:
380 | self.__plot_data(times, total_nodes, title)
381 | else:
382 | self.__scatter_data(times, total_nodes, title)
383 |
384 | def __gather_data_dijkstra(
385 | self, domain_path="", problem_path="", max_pddl_instances=-1
386 | ):
387 | has_multiple_files_tested = True
388 | if not domain_path or not problem_path:
389 | metrics = dict()
390 | costs = []
391 | for problem, domain in self.__get_all_pddl_from_data(
392 | max_pddl_instances=max_pddl_instances
393 | ):
394 | logging.debug("Loading new PDDL instance planned with Dijkstra...")
395 | logging.debug("Domain: " + domain)
396 | logging.debug("Problem: " + problem)
397 | apla = AutomatedPlanner(domain, problem)
398 | path, metrics_obj = apla.dijktra_best_first_search()
399 | if path:
400 | metrics[metrics_obj.runtime] = metrics_obj.n_opened
401 | costs.append(path[-1].g_cost)
402 | else:
403 | metrics[0] = 0
404 | costs.append(0)
405 |
406 | total_nodes = list(metrics.values())
407 | times = list(metrics.keys())
408 | return costs, times, total_nodes, has_multiple_files_tested
409 | has_multiple_files_tested = False
410 | logging.debug("Loading new PDDL instance...")
411 | logging.debug("Domain: " + domain_path)
412 | logging.debug("Problem: " + problem_path)
413 | apla = AutomatedPlanner(domain_path, problem_path)
414 | path, metrics_obj = apla.dijktra_best_first_search()
415 | if path:
416 | return (
417 | [path[-1].g_cost],
418 | [metrics_obj.runtime],
419 | [metrics_obj.n_opened],
420 | has_multiple_files_tested,
421 | )
422 | return [0], [0], [0], has_multiple_files_tested
423 |
424 | def plot_dijkstra(self, problem="", domain="", max_pddl_instances=-1):
425 | title = "Dijkstra Statistics"
426 | if bool(not problem) != bool(not domain):
427 | logging.warning(
428 | "Either problem or domain wasn't provided, testing all files in data folder"
429 | )
430 | problem = domain = ""
431 | _, times, total_nodes, has_multiple_files_tested = self.__gather_data_dijkstra(
432 | problem_path=problem,
433 | domain_path=domain,
434 | max_pddl_instances=max_pddl_instances,
435 | )
436 | if has_multiple_files_tested:
437 | self.__plot_data(times, total_nodes, title)
438 | else:
439 | self.__scatter_data(times, total_nodes, title)
440 |
441 | def __gather_data(
442 | self,
443 | heuristic_key="basic/goal_count",
444 | astar=True,
445 | bfs=True,
446 | dfs=True,
447 | dijkstra=True,
448 | greedy_bfs=False,
449 | domain="",
450 | problem="",
451 | max_pddl_instances=-1,
452 | ):
453 | gatherers = []
454 | xdata = dict()
455 | ydata = dict()
456 |
457 | if bfs:
458 | gatherers.append(("BFS", self.__gather_data_bfs))
459 | if dfs:
460 | gatherers.append(("DFS", self.__gather_data_dfs))
461 | if dijkstra:
462 | gatherers.append(("Dijkstra", self.__gather_data_dijkstra))
463 | if astar:
464 | gatherers.append(("A*", self.__gather_data_astar))
465 | if greedy_bfs:
466 | gatherers.append(("Greedy Best First", self.__gather_data_greedy_bfs))
467 |
468 | _, _, _, _ = self.__gather_data_bfs(
469 | domain_path=domain, problem_path=problem
470 | ) # Dummy line to do first parsing and get rid of static loading
471 | for name, g in gatherers:
472 | if g == self.__gather_data_astar or g == self.__gather_data_greedy_bfs:
473 | _, times, nodes, _ = g(
474 | domain_path=domain,
475 | problem_path=problem,
476 | heuristic_key=heuristic_key,
477 | max_pddl_instances=max_pddl_instances,
478 | )
479 | else:
480 | _, times, nodes, _ = g(
481 | domain_path=domain,
482 | problem_path=problem,
483 | max_pddl_instances=max_pddl_instances,
484 | )
485 | ydata[name] = times
486 | xdata[name] = nodes
487 | return xdata, ydata
488 |
489 | def comparative_astar_heuristic_plot(
490 | self, domain="", problem="", max_pddl_instances=-1
491 | ):
492 | _, ax = plt.subplots()
493 | plt.xlabel("Number of opened nodes")
494 | plt.ylabel("Planning computation time (s)")
495 |
496 | for h in self.available_heuristics:
497 | _, times, nodes, _ = self.__gather_data_astar(
498 | domain_path=domain,
499 | problem_path=problem,
500 | heuristic_key=h,
501 | max_pddl_instances=max_pddl_instances,
502 | )
503 | data = dict()
504 | for i, val in enumerate(nodes):
505 | data[val] = times[i]
506 | nodes_sorted = sorted(list(data.keys()))
507 | times_y = []
508 | for node_opened in nodes_sorted:
509 | times_y.append(data[node_opened])
510 |
511 | ax.plot(
512 | nodes_sorted,
513 | times_y,
514 | "-o",
515 | label=h,
516 | )
517 |
518 | plt.title("A* heuristics complexity comparison")
519 | plt.legend(loc="upper left")
520 | plt.xscale("symlog")
521 | plt.grid(True)
522 | plt.show(block=False)
523 |
524 | def comparative_greedy_bfs_heuristic_plot(
525 | self, domain="", problem="", max_pddl_instances=-1
526 | ):
527 | _, ax = plt.subplots()
528 | plt.xlabel("Number of opened nodes")
529 | plt.ylabel("Planning computation time (s)")
530 |
531 | for h in self.available_heuristics:
532 | _, times, nodes, _ = self.__gather_data_greedy_bfs(
533 | domain_path=domain,
534 | problem_path=problem,
535 | heuristic_key=h,
536 | max_pddl_instances=max_pddl_instances,
537 | )
538 | data = dict()
539 | for i, val in enumerate(nodes):
540 | data[val] = times[i]
541 | nodes_sorted = sorted(list(data.keys()))
542 | times_y = []
543 | for node_opened in nodes_sorted:
544 | times_y.append(data[node_opened])
545 |
546 | ax.plot(
547 | nodes_sorted,
548 | times_y,
549 | "-o",
550 | label=h,
551 | )
552 |
553 | plt.title("Greedy Best First heuristics complexity comparison")
554 | plt.legend(loc="upper left")
555 | plt.xscale("symlog")
556 | plt.grid(True)
557 | plt.show(block=False)
558 |
559 | def comparative_data_plot(
560 | self,
561 | astar=True,
562 | bfs=True,
563 | dfs=True,
564 | dijkstra=True,
565 | greedy_bfs=False,
566 | domain="",
567 | problem="",
568 | heuristic_key="basic/goal_count",
569 | collect_new_data=True,
570 | max_pddl_instances=-1,
571 | ):
572 | json_dict = {}
573 | if collect_new_data:
574 | xdata, ydata = self.__gather_data(
575 | heuristic_key=heuristic_key,
576 | astar=astar,
577 | dfs=dfs,
578 | bfs=bfs,
579 | dijkstra=dijkstra,
580 | greedy_bfs=greedy_bfs,
581 | domain=domain,
582 | problem=problem,
583 | max_pddl_instances=max_pddl_instances,
584 | )
585 | json_dict["xdata"] = xdata
586 | json_dict["ydata"] = ydata
587 | with open("data.json", "w") as fp:
588 | json.dump(json_dict, fp)
589 | else:
590 | if not path.exists("data.json"):
591 | logging.warning(
592 | "Input says not to generate new data but no data was found. Generating new data..."
593 | )
594 | xdata, ydata = self.__gather_data(
595 | heuristic_key=heuristic_key,
596 | astar=astar,
597 | dfs=dfs,
598 | bfs=bfs,
599 | greedy_bfs=greedy_bfs,
600 | dijkstra=dijkstra,
601 | domain=domain,
602 | problem=problem,
603 | max_pddl_instances=max_pddl_instances,
604 | )
605 | json_dict["xdata"] = xdata
606 | json_dict["ydata"] = ydata
607 | with open("data.json", "w") as fp:
608 | json.dump(json_dict, fp)
609 | else:
610 | with open("data.json") as fp:
611 | json_dict = json.load(fp)
612 |
613 | _, ax = plt.subplots()
614 | plt.xlabel("Number of opened nodes")
615 | plt.ylabel("Planning computation time (s)")
616 | for planner in json_dict["xdata"].keys():
617 | data = dict()
618 | for i, val in enumerate(json_dict["xdata"][planner]):
619 | data[val] = json_dict["ydata"][planner][i]
620 | nodes_sorted = sorted(list(data.keys()))
621 | times_y = []
622 | for node_opened in nodes_sorted:
623 | times_y.append(data[node_opened])
624 | ax.plot(
625 | nodes_sorted,
626 | times_y,
627 | "-o",
628 | label=planner,
629 | )
630 | plt.title("Planners complexity comparison")
631 | plt.legend(loc="upper left")
632 | plt.xscale("symlog")
633 | plt.yscale("log")
634 | plt.grid(True)
635 | plt.show(block=False)
636 |
637 | def plot_metrics(self):
638 | metrics_dict = dict()
639 | metrics_dict["A* [Zero]"] = []
640 | metrics_dict["DFS"] = []
641 | metrics_dict["BFS"] = []
642 | metrics_dict["A* [Goal_Count]"] = []
643 | metrics_dict["A* [H_Add]"] = []
644 | metrics_dict["A* [H_Max]"] = []
645 | metrics_dict["A* [Critical_Path (H2)]"] = []
646 | metrics_dict["A* [Critical_Path (H3)]"] = []
647 | logging.debug("Computation of all metrics for all domains registered...")
648 | for problem, domain in self.__get_all_pddl_from_data():
649 | logging.debug("Loading new PDDL instance planned with Dijkstra...")
650 | logging.debug("Domain: " + domain)
651 | logging.debug("Problem: " + problem)
652 | apla = AutomatedPlanner(domain, problem)
653 | _, metrics_bfs = apla.breadth_first_search()
654 | _, metrics_agc = apla.astar_best_first_search()
655 | _, metrics_ahadd = apla.astar_best_first_search(
656 | heuristic_key="delete_relaxation/h_add"
657 | )
658 | _, metrics_ahmax = apla.astar_best_first_search(
659 | heuristic_key="delete_relaxation/h_max"
660 | )
661 | _, metrics_dij = apla.astar_best_first_search(heuristic_key="basic/zero")
662 | _, metrics_dfs = apla.depth_first_search(
663 | node_bound=metrics_bfs.n_opened * 2
664 | )
665 | _, metrics_cp2 = apla.astar_best_first_search(
666 | heuristic_key="critical_path/2"
667 | )
668 | _, metrics_cp3 = apla.astar_best_first_search(
669 | heuristic_key="critical_path/3"
670 | )
671 | metrics_dict["A* [Zero]"].append(metrics_dij)
672 | metrics_dict["DFS"].append(metrics_dfs)
673 | metrics_dict["BFS"].append(metrics_bfs)
674 | metrics_dict["A* [Goal_Count]"].append(metrics_agc)
675 | metrics_dict["A* [H_Add]"].append(metrics_ahadd)
676 | metrics_dict["A* [H_Max]"].append(metrics_ahmax)
677 | metrics_dict["A* [Critical_Path (H2)]"].append(metrics_cp2)
678 | metrics_dict["A* [Critical_Path (H3)]"].append(metrics_cp3)
679 |
680 | plot_dict = dict()
681 |
682 | for key, val in metrics_dict.items():
683 | plot_dict[key] = dict()
684 | plot_dict[key]["Search Runtime (s)"] = [m.runtime for m in val]
685 | plot_dict[key]["Total Heuristics Runtime (s)"] = [
686 | sum(m.heuristic_runtimes) for m in val
687 | ]
688 | plot_dict[key]["Number of Expanded Nodes"] = [m.n_expended for m in val]
689 | plot_dict[key]["Number of Opened Nodes"] = [m.n_opened for m in val]
690 | plot_dict[key]["Number of Reopened Nodes"] = [m.n_reopened for m in val]
691 | plot_dict[key]["Number of Evaluated Nodes"] = [m.n_evaluated for m in val]
692 | plot_dict[key]["Number of Generated Nodes"] = [m.n_generated for m in val]
693 | plot_dict[key]["Number of Deadend States (No Actions from State)"] = [
694 | m.deadend_states for m in val
695 | ]
696 |
697 | metrics_keys = list(plot_dict["DFS"].keys())
698 |
699 | for key in metrics_keys:
700 | self.__plot_data_generic(plot_dict, key)
701 |
702 | def compute_planners_efficiency(self):
703 | costs = dict()
704 | costs["A* [Goal_Count]"], _, n_goal_count, _ = self.__gather_data_astar()
705 | costs["A* [H_Max]"], _, n_hmax, _ = self.__gather_data_astar(
706 | heuristic_key="delete_relaxation/h_max"
707 | )
708 | costs["A* [H_Add]"], _, n_hadd, _ = self.__gather_data_astar(
709 | heuristic_key="delete_relaxation/h_add"
710 | )
711 | (
712 | costs["Greedy Best First [Goal_Count]"],
713 | _,
714 | n_greed_goal_count,
715 | _,
716 | ) = self.__gather_data_greedy_bfs(heuristic_key="basic/goal_count")
717 | (
718 | costs["Greedy Best First [H_Max]"],
719 | _,
720 | n_greed_hmax,
721 | _,
722 | ) = self.__gather_data_greedy_bfs(heuristic_key="delete_relaxation/h_max")
723 | (
724 | costs["Greedy Best First [H_Add]"],
725 | _,
726 | n_greed_hadd,
727 | _,
728 | ) = self.__gather_data_greedy_bfs(heuristic_key="delete_relaxation/h_add")
729 | costs["DFS"], _, n_dfs, _ = self.__gather_data_dfs()
730 | costs["BFS"], _, n_bfs, _ = self.__gather_data_bfs()
731 | costs["Dijkstra"], _, n_dij, _ = self.__gather_data_dijkstra()
732 |
733 | p_gc = (len(n_goal_count) - n_goal_count.count(0)) / len(n_goal_count) * 100
734 | p_hmax = (len(n_hmax) - n_hmax.count(0)) / len(n_hmax) * 100
735 | p_hadd = (len(n_hadd) - n_hadd.count(0)) / len(n_hadd) * 100
736 | p_greedy_gc = (
737 | (len(n_greed_goal_count) - n_greed_goal_count.count(0))
738 | / len(n_greed_goal_count)
739 | * 100
740 | )
741 | p_greedy_hmax = (
742 | (len(n_greed_hmax) - n_greed_hmax.count(0)) / len(n_greed_hmax) * 100
743 | )
744 | p_greedy_hadd = (
745 | (len(n_greed_hadd) - n_greed_hadd.count(0)) / len(n_greed_hadd) * 100
746 | )
747 | p_dfs = (len(n_dfs) - n_dfs.count(0)) / len(n_dfs) * 100
748 | p_bfs = (len(n_bfs) - n_bfs.count(0)) / len(n_bfs) * 100
749 | p_dij = (len(n_dij) - n_dij.count(0)) / len(n_dij) * 100
750 |
751 | _, ax = plt.subplots()
752 | plt.xlabel("Domain evaluated")
753 | plt.ylabel("Cost to goal")
754 | for key, val in costs.items():
755 | ax.plot(
756 | val,
757 | "-o",
758 | label=key,
759 | )
760 | costs[key] = [i for i in costs[key] if i != 0]
761 | plt.title("Planners efficiency (costs)")
762 | plt.legend(loc="upper left")
763 | plt.grid(True)
764 | plt.show(block=False)
765 |
766 | logging.info(
767 | "DFS succeeded to build a plan with a %.2f%% rate and a %.2f cost average"
768 | % (p_dfs, sum(costs["DFS"]) / len(costs["DFS"]))
769 | )
770 | logging.info(
771 | "BFS succeeded to build a plan with a %.2f%% rate and a %.2f cost average"
772 | % (p_bfs, sum(costs["BFS"]) / len(costs["BFS"]))
773 | )
774 | logging.info(
775 | "Dijkstra succeeded to build a plan with a %.2f%% rate and a %.2f cost average"
776 | % (p_dij, sum(costs["Dijkstra"]) / len(costs["Dijkstra"]))
777 | )
778 | logging.info(
779 | "A* [Goal_Count] succeeded to build a plan with a %.2f%% rate and a %.2f cost average"
780 | % (p_gc, sum(costs["A* [Goal_Count]"]) / len(costs["A* [Goal_Count]"]))
781 | )
782 | logging.info(
783 | "A* [H_Max] succeeded to build a plan with a %.2f%% rate and a %.2f cost average"
784 | % (p_hmax, sum(costs["A* [H_Max]"]) / len(costs["A* [H_Max]"]))
785 | )
786 | logging.info(
787 | "A* [H_Add] succeeded to build a plan with a %.2f%% rate and a %.2f cost average"
788 | % (p_hadd, sum(costs["A* [H_Add]"]) / len(costs["A* [H_Add]"]))
789 | )
790 | logging.info(
791 | "Greedy Best First [Goal_Count] succeeded to build a plan with a %.2f%% rate and a %.2f cost average"
792 | % (
793 | p_greedy_gc,
794 | sum(costs["Greedy Best First [Goal_Count]"])
795 | / len(costs["Greedy Best First [Goal_Count]"]),
796 | )
797 | )
798 | logging.info(
799 | "Greedy Best First [H_Max] succeeded to build a plan with a %.2f%% rate and a %.2f cost average"
800 | % (
801 | p_greedy_hmax,
802 | sum(costs["Greedy Best First [H_Max]"])
803 | / len(costs["Greedy Best First [H_Max]"]),
804 | )
805 | )
806 | logging.info(
807 | "Greedy Best First [H_Add] succeeded to build a plan with a %.2f%% rate and a %.2f cost average"
808 | % (
809 | p_greedy_hadd,
810 | sum(costs["Greedy Best First [H_Add]"])
811 | / len(costs["Greedy Best First [H_Add]"]),
812 | )
813 | )
814 |
--------------------------------------------------------------------------------
/jupyddl/dfs.py:
--------------------------------------------------------------------------------
1 | from .node import Node
2 | from datetime import datetime as timestamp
3 | from time import time as now
4 | from .metrics import Metrics
5 |
6 |
7 | class DepthFirstSearch:
8 | def __init__(self, automated_planner):
9 | self.time_start = now()
10 | self.visited = []
11 | self.automated_planner = automated_planner
12 | self.init = Node(self.automated_planner.initial_state, automated_planner)
13 | self.stack = [self.init]
14 | self.metrics = Metrics()
15 |
16 | def search(self, node_bound=float("inf")):
17 | self.automated_planner.logger.debug(
18 | "Search started at: " + str(timestamp.now())
19 | )
20 | while self.stack:
21 | current_node = self.stack.pop()
22 | if current_node not in self.visited:
23 | self.visited.append(current_node)
24 | self.metrics.n_evaluated += 1
25 | if self.automated_planner.satisfies(
26 | self.automated_planner.problem.goal, current_node.state
27 | ):
28 | self.metrics.runtime = now() - self.time_start
29 | self.automated_planner.logger.debug(
30 | "Search finished at: " + str(timestamp.now())
31 | )
32 | self.metrics.total_cost = current_node.g_cost
33 | return current_node, self.metrics
34 |
35 | if self.metrics.n_opened > node_bound:
36 | break
37 |
38 | actions = self.automated_planner.available_actions(current_node.state)
39 | if not actions:
40 | self.metrics.deadend_states += 1
41 | else:
42 | self.metrics.n_expended += 1
43 | for act in actions:
44 | child = Node(
45 | state=self.automated_planner.transition(
46 | current_node.state, act
47 | ),
48 | automated_planner=self.automated_planner,
49 | parent_action=act,
50 | parent=current_node,
51 | )
52 | self.metrics.n_generated += 1
53 | if child in self.visited:
54 | continue
55 | self.metrics.n_opened += 1
56 | self.stack.append(child)
57 | self.metrics.runtime = now() - self.time_start
58 | self.automated_planner.logger.warning("!!! No path found !!!")
59 | return None, self.metrics
60 |
--------------------------------------------------------------------------------
/jupyddl/dijkstra.py:
--------------------------------------------------------------------------------
1 | from .node import Node
2 | import logging
3 | import math
4 | from datetime import datetime as timestamp
5 | from time import time as now
6 | from .metrics import Metrics
7 |
8 |
9 | def zero_heuristic():
10 | return 0
11 |
12 |
13 | class DijkstraBestFirstSearch:
14 | def __init__(self, automated_planner):
15 | self.time_start = now()
16 | self.automated_planner = automated_planner
17 | self.metrics = Metrics()
18 | self.init = Node(
19 | self.automated_planner.initial_state,
20 | automated_planner,
21 | is_closed=False,
22 | is_open=True,
23 | heuristic=zero_heuristic,
24 | metric=self.metrics,
25 | )
26 | self.open_nodes_n = 1
27 | self.nodes = dict()
28 | self.nodes[self.__hash(self.init)] = self.init
29 |
30 | def __hash(self, node):
31 | sep = ", Dict{Symbol,Any}"
32 | string = str(node.state)
33 | return string.split(sep, 1)[0] + ")"
34 |
35 | def search(self, node_bound=float("inf")):
36 | self.automated_planner.logger.debug(
37 | "Search started at: " + str(timestamp.now())
38 | )
39 | while self.open_nodes_n > 0:
40 | current_key = min(
41 | [n for n in self.nodes if self.nodes[n].is_open],
42 | key=(lambda k: self.nodes[k].f_cost),
43 | )
44 | current_node = self.nodes[current_key]
45 | self.metrics.n_evaluated += 1
46 | if self.automated_planner.satisfies(
47 | self.automated_planner.problem.goal, current_node.state
48 | ):
49 | self.metrics.runtime = now() - self.time_start
50 | self.automated_planner.logger.debug(
51 | "Search finished at: " + str(timestamp.now())
52 | )
53 | self.metrics.total_cost = current_node.g_cost
54 | return current_node, self.metrics
55 |
56 | current_node.is_closed = True
57 | current_node.is_open = False
58 | self.open_nodes_n -= 1
59 |
60 | if self.metrics.n_opened > node_bound:
61 | break
62 |
63 | actions = self.automated_planner.available_actions(current_node.state)
64 | if not actions:
65 | self.metrics.deadend_states += 1
66 | else:
67 | self.metrics.n_expended += 1
68 | for act in actions:
69 | child = Node(
70 | state=self.automated_planner.transition(current_node.state, act),
71 | automated_planner=self.automated_planner,
72 | parent_action=act,
73 | parent=current_node,
74 | heuristic=zero_heuristic,
75 | is_closed=False,
76 | is_open=True,
77 | metric=self.metrics,
78 | )
79 | self.metrics.n_generated += 1
80 | child_hash = self.__hash(child)
81 | if child_hash in self.nodes:
82 | if self.nodes[child_hash].is_closed:
83 | continue
84 | if not self.nodes[child_hash].is_open:
85 | self.nodes[child_hash] = child
86 | self.open_nodes_n += 1
87 | self.metrics.n_opened += 1
88 | else:
89 | if child.g_cost < self.nodes[child_hash].g_cost:
90 | self.nodes[child_hash] = child
91 | self.open_nodes_n += 1
92 | self.metrics.n_opened += 1
93 | self.metrics.n_reopened += 1
94 |
95 | else:
96 | self.nodes[child_hash] = child
97 | self.metrics.n_opened += 1
98 | self.open_nodes_n += 1
99 | self.metrics.runtime = now() - self.time_start
100 | self.automated_planner.logger.warning("!!! No path found !!!")
101 | return None, self.metrics
102 |
--------------------------------------------------------------------------------
/jupyddl/greedy_best_first.py:
--------------------------------------------------------------------------------
1 | from .node import Node
2 | import logging
3 | import math
4 | from time import time as now
5 | from datetime import datetime as timestamp
6 | from .metrics import Metrics
7 |
8 |
9 | class GreedyBestFirstSearch:
10 | def __init__(self, automated_planner, heuristic_function):
11 | self.time_start = now()
12 | self.automated_planner = automated_planner
13 | self.metrics = Metrics()
14 | self.init = Node(
15 | self.automated_planner.initial_state,
16 | automated_planner,
17 | is_closed=False,
18 | is_open=True,
19 | heuristic=heuristic_function,
20 | heuristic_based=True,
21 | metric=self.metrics,
22 | )
23 | self.heuristic_function = heuristic_function
24 | self.open_nodes_n = 1
25 | self.nodes = dict()
26 | self.nodes[self.__hash(self.init)] = self.init
27 |
28 | def __hash(self, node):
29 | sep = ", Dict{Symbol,Any}"
30 | string = str(node.state)
31 | return string.split(sep, 1)[0] + ")"
32 |
33 | def search(self, node_bound=float("inf")):
34 | self.automated_planner.logger.debug(
35 | "Search started at: " + str(timestamp.now())
36 | )
37 | while self.open_nodes_n > 0:
38 | current_key = min(
39 | [n for n in self.nodes if self.nodes[n].is_open],
40 | key=(lambda k: self.nodes[k].h_cost),
41 | )
42 | current_node = self.nodes[current_key]
43 |
44 | self.metrics.n_evaluated += 1
45 | if self.automated_planner.satisfies(
46 | self.automated_planner.problem.goal, current_node.state
47 | ):
48 | self.metrics.runtime = now() - self.time_start
49 | self.automated_planner.logger.debug(
50 | "Search finished at: " + str(timestamp.now())
51 | )
52 | self.metrics.total_cost = current_node.g_cost
53 | return current_node, self.metrics
54 |
55 | current_node.is_closed = True
56 | current_node.is_open = False
57 | self.open_nodes_n -= 1
58 |
59 | if self.metrics.n_opened > node_bound:
60 | break
61 |
62 | actions = self.automated_planner.available_actions(current_node.state)
63 | if actions:
64 | self.metrics.n_expended += 1
65 | else:
66 | self.metrics.deadend_states += 1
67 | for act in actions:
68 | child = Node(
69 | state=self.automated_planner.transition(current_node.state, act),
70 | automated_planner=self.automated_planner,
71 | parent_action=act,
72 | parent=current_node,
73 | heuristic=self.heuristic_function,
74 | is_closed=False,
75 | is_open=True,
76 | heuristic_based=True,
77 | metric=self.metrics,
78 | )
79 | self.metrics.n_generated += 1
80 | child_hash = self.__hash(child)
81 | if child_hash in self.nodes:
82 | if self.nodes[child_hash].is_closed:
83 | continue
84 | if not self.nodes[child_hash].is_open:
85 | self.nodes[child_hash] = child
86 | self.open_nodes_n += 1
87 | self.metrics.n_opened += 1
88 | else:
89 | if child.g_cost < self.nodes[child_hash].g_cost:
90 | self.nodes[child_hash] = child
91 | self.open_nodes_n += 1
92 | self.metrics.n_opened += 1
93 | self.metrics.n_reopened += 1
94 |
95 | else:
96 | self.nodes[child_hash] = child
97 | self.open_nodes_n += 1
98 | self.metrics.n_opened += 1
99 | self.metrics.runtime = now() - self.time_start
100 | self.automated_planner.logger.warning("!!! No path found !!!")
101 | return None, self.metrics
102 |
--------------------------------------------------------------------------------
/jupyddl/heuristics.py:
--------------------------------------------------------------------------------
1 | import logging
2 | from .node import Node
3 |
4 |
5 | class BasicHeuristic:
6 | def __init__(self, automated_planner, heuristic_key):
7 | self.automated_planner = automated_planner
8 | self.heuristic_keys = {
9 | "basic/zero": self.__zero_heuristic,
10 | "basic/goal_count": self.__goal_count_heuristic,
11 | }
12 | if heuristic_key not in list(self.heuristic_keys.keys()):
13 | logging.warning(
14 | "Heuristic key isn't registered, forcing it to [basic/goal_count]"
15 | )
16 | heuristic_key = "basic/goal_count"
17 |
18 | self.current_h = heuristic_key
19 |
20 | def compute(self, state):
21 | return self.heuristic_keys[self.current_h](state)
22 |
23 | def __zero_heuristic(self, state):
24 | return 0
25 |
26 | def __goal_count_heuristic(self, state):
27 | count = 0
28 | for goal in self.automated_planner.goals:
29 | if not self.automated_planner.state_has_term(state, goal):
30 | count += 1
31 | return count
32 |
33 |
34 | class DeleteRelaxationHeuristic:
35 | def __init__(self, automated_planner, heuristic_key):
36 | class DRHCache:
37 | def __init__(self, domain=None, axioms=None, preconds=None, additions=None):
38 | self.domain = domain
39 | self.axioms = axioms
40 | self.preconds = preconds
41 | self.additions = additions
42 |
43 | self.automated_planner = automated_planner
44 | self.cache = DRHCache()
45 | self.heuristic_keys = {
46 | "delete_relaxation/h_add": self.__h_add,
47 | "delete_relaxation/h_max": self.__h_max,
48 | }
49 | if heuristic_key not in list(self.heuristic_keys.keys()):
50 | logging.warning(
51 | "Heuristic key isn't registered, forcing it to [delete_relaxation/h_add]"
52 | )
53 | heuristic_key = "delete_relaxation/h_add"
54 |
55 | self.current_h = heuristic_key
56 | self.has_been_precomputed = False
57 | self.__pre_compute()
58 | # return self.heuristic_keys[self.current_h](state)
59 |
60 | def compute(self, state):
61 | if not self.has_been_precomputed:
62 | self.__pre_compute()
63 | domain = self.cache.domain
64 | goals = self.automated_planner.goals
65 | types = state.types
66 | facts = state.facts
67 | fact_costs = self.automated_planner.pddl.init_facts_costs(facts)
68 | while True:
69 | facts, state = self.automated_planner.pddl.get_facts_and_state(
70 | fact_costs, types
71 | )
72 | if self.automated_planner.satisfies(goals, state):
73 | costs = []
74 | fact_costs_str = dict([(str(k), val) for k, val in fact_costs.items()])
75 | for g in goals:
76 | if str(g) in fact_costs_str:
77 | costs.append(fact_costs_str[str(g)])
78 | costs.insert(0, 0)
79 | return self.heuristic_keys[self.current_h](costs)
80 |
81 | for ax in self.cache.axioms:
82 | fact_costs = (
83 | self.automated_planner.pddl.compute_costs_one_step_derivation(
84 | facts, fact_costs, ax, self.current_h
85 | )
86 | )
87 |
88 | actions = self.automated_planner.available_actions(state)
89 | for act in actions:
90 | fact_costs = self.automated_planner.pddl.compute_cost_action_effect(
91 | fact_costs, act, domain, self.cache.additions, self.current_h
92 | )
93 |
94 | if len(fact_costs) == self.automated_planner.pddl.length(
95 | facts
96 | ) and self.__facts_eq(fact_costs, facts):
97 | break
98 |
99 | return float("inf")
100 |
101 | def __pre_compute(self):
102 | if self.has_been_precomputed:
103 | return
104 | domain = self.automated_planner.domain
105 | domain, axioms = self.automated_planner.pddl.compute_hsp_axioms(domain)
106 | # preconditions = dict()
107 | additions = dict()
108 | self.automated_planner.pddl.cache_global_preconditions(domain)
109 | for name, definition in domain.actions.items():
110 | additions[name] = self.automated_planner.pddl.effect_diff(
111 | definition.effect
112 | ).add
113 | self.cache.additions = additions
114 | self.cache.preconds = self.automated_planner.pddl.g_preconditions
115 | self.cache.domain = domain
116 | self.cache.axioms = axioms
117 | self.has_been_precomputed = True
118 |
119 | def __h_add(self, costs):
120 | return sum(costs)
121 |
122 | def __h_max(self, costs):
123 | return max(costs)
124 |
125 | def __facts_eq(self, facts_dict, facts_set):
126 | fact_costs_str = dict([(str(k), val) for k, val in facts_dict.items()])
127 | for f in facts_set:
128 | if not (str(f) in fact_costs_str.keys()):
129 | return False
130 | return True
131 |
132 |
133 | class RelaxedCriticalPathHeuristic:
134 | def __init__(self, automated_planner, critical_path_level=1):
135 | class RCPCache:
136 | def __init__(self, domain=None, axioms=None, preconds=None, additions=None):
137 | self.domain = domain
138 | self.axioms = axioms
139 | self.preconds = preconds
140 | self.additions = additions
141 |
142 | self.automated_planner = automated_planner
143 | self.cache = RCPCache()
144 | if critical_path_level > 3:
145 | logging.warning(
146 | "Critical Path level is only implemented until 3, forcing it to 3."
147 | )
148 | self.critical_path_level = 3
149 | if critical_path_level < 1:
150 | logging.warning(
151 | "Critical Path level has to be at least 1, forcing it to 1."
152 | )
153 | self.critical_path_level = 1
154 | else:
155 | self.critical_path_level = critical_path_level
156 | self.has_been_precomputed = False
157 | self.__pre_compute()
158 | # return self.heuristic_keys[self.current_h](state)
159 |
160 | def compute(self, state):
161 | if not self.has_been_precomputed:
162 | self.__pre_compute()
163 | domain = self.cache.domain
164 | goals = self.automated_planner.goals
165 | types = state.types
166 | facts = state.facts
167 | fact_costs = self.automated_planner.pddl.init_facts_costs(facts)
168 | while True:
169 | facts, state = self.automated_planner.pddl.get_facts_and_state(
170 | fact_costs, types
171 | )
172 | if self.automated_planner.satisfies(goals, state):
173 | costs = []
174 | fact_costs_str = dict([(str(k), val) for k, val in fact_costs.items()])
175 | print(fact_costs_str)
176 | if self.critical_path_level == 1:
177 | for g in goals:
178 | if str(g) in fact_costs_str:
179 | costs.append(fact_costs_str[str(g)])
180 | if self.critical_path_level == 2:
181 | pairs_of_goals = [
182 | (g1, g2) for g1 in goals for g2 in goals if g1 != g2
183 | ]
184 | for gs in pairs_of_goals:
185 | if (
186 | str(gs[0]) in fact_costs_str
187 | and str(gs[1]) in fact_costs_str
188 | ):
189 | costs.append(
190 | fact_costs_str[str(gs[0])] + fact_costs_str[str(gs[1])]
191 | )
192 | if self.critical_path_level == 3:
193 | triplets_of_goals = [
194 | (g1, g2, g3)
195 | for g1 in goals
196 | for g2 in goals
197 | for g3 in goals
198 | if g1 != g2 and g1 != g3 and g2 != g3
199 | ]
200 | for gs in triplets_of_goals:
201 | if (
202 | str(gs[0]) in fact_costs_str
203 | and str(gs[1]) in fact_costs_str
204 | and str(gs[2]) in fact_costs_str
205 | ):
206 | costs.append(
207 | fact_costs_str[str(gs[0])]
208 | + fact_costs_str[str(gs[1])]
209 | + fact_costs_str[str(gs[2])]
210 | )
211 | costs.insert(0, 0)
212 | return max(costs)
213 |
214 | for ax in self.cache.axioms:
215 | fact_costs = (
216 | self.automated_planner.pddl.compute_costs_one_step_derivation(
217 | facts, fact_costs, ax, "max"
218 | )
219 | )
220 |
221 | actions = self.automated_planner.available_actions(state)
222 | for act in actions:
223 | fact_costs = self.automated_planner.pddl.compute_cost_action_effect(
224 | fact_costs, act, domain, self.cache.additions, "max"
225 | )
226 |
227 | if len(fact_costs) == self.automated_planner.pddl.length(
228 | facts
229 | ) and self.__facts_eq(fact_costs, facts):
230 | break
231 |
232 | return float("inf")
233 |
234 | def __pre_compute(self):
235 | if self.has_been_precomputed:
236 | return
237 | domain = self.automated_planner.domain
238 | domain, axioms = self.automated_planner.pddl.compute_hsp_axioms(domain)
239 | # preconditions = dict()
240 | additions = dict()
241 | self.automated_planner.pddl.cache_global_preconditions(domain)
242 | for name, definition in domain.actions.items():
243 | additions[name] = self.automated_planner.pddl.effect_diff(
244 | definition.effect
245 | ).add
246 | self.cache.additions = additions
247 | self.cache.preconds = self.automated_planner.pddl.g_preconditions
248 | self.cache.domain = domain
249 | self.cache.axioms = axioms
250 | self.has_been_precomputed = True
251 |
252 | def __h_add(self, costs):
253 | return sum(costs)
254 |
255 | def __h_max(self, costs):
256 | return max(costs)
257 |
258 | def __facts_eq(self, facts_dict, facts_set):
259 | fact_costs_str = dict([(str(k), val) for k, val in facts_dict.items()])
260 | for f in facts_set:
261 | if not (str(f) in fact_costs_str.keys()):
262 | return False
263 | return True
264 |
265 |
266 | class CriticalPathHeuristic:
267 | def __init__(self, automated_planner, critical_path_level=1):
268 | self.automated_planner = automated_planner
269 |
270 | if critical_path_level > 3:
271 | logging.warning(
272 | "Critical Path level is only implemented until 3, forcing it to 3."
273 | )
274 | self.critical_path_level = 3
275 | if critical_path_level < 1:
276 | logging.warning(
277 | "Critical Path level has to be at least 1, forcing it to 1."
278 | )
279 | self.critical_path_level = 1
280 | else:
281 | self.critical_path_level = critical_path_level
282 |
283 | self.goals = []
284 |
285 | if self.critical_path_level == 1:
286 | self.goals = self.automated_planner.goals
287 |
288 | if self.critical_path_level == 2:
289 | if len(self.automated_planner.goals) < 2:
290 | logging.warning("Only 1 goal predicate, forcing H2 to H1")
291 | self.goals = self.automated_planner.goals
292 | else:
293 | self.goals = [
294 | [g1, g2]
295 | for g1 in self.automated_planner.goals
296 | for g2 in self.automated_planner.goals
297 | if g1 != g2
298 | ]
299 |
300 | if self.critical_path_level == 3:
301 | if len(self.automated_planner.goals) < 2:
302 | logging.warning("Only 1 goal predicate, forcing H3 to H1")
303 | self.goals = self.automated_planner.goals
304 | elif len(self.automated_planner.goals) < 3:
305 | logging.warning("Only 2 goal predicate, forcing H3 to H2")
306 | self.goals = [
307 | [g1, g2]
308 | for g1 in self.automated_planner.goals
309 | for g2 in self.automated_planner.goals
310 | if g1 != g2
311 | ]
312 | else:
313 | self.goals = [
314 | [g1, g2, g3]
315 | for g1 in self.automated_planner.goals
316 | for g2 in self.automated_planner.goals
317 | for g3 in self.automated_planner.goals
318 | if g1 != g2 and g1 != g3 and g2 != g3
319 | ]
320 |
321 | def __h_max(self, costs):
322 | return max(costs)
323 |
324 | def compute(self, state):
325 | costs = []
326 |
327 | for subgoal in self.goals:
328 | costs.append(self.__dijkstra_search(state, subgoal))
329 |
330 | return self.__h_max(costs)
331 |
332 | def __hash(self, node):
333 | sep = ", Dict{Symbol,Any}"
334 | string = str(node.state)
335 | return string.split(sep, 1)[0] + ")"
336 |
337 | def __dijkstra_search(self, state, goal):
338 | def zero_heuristic():
339 | return 0
340 |
341 | init = Node(
342 | state,
343 | self.automated_planner,
344 | is_closed=False,
345 | is_open=True,
346 | heuristic=zero_heuristic,
347 | )
348 |
349 | open_nodes_n = 1
350 | nodes = dict()
351 | nodes[self.__hash(init)] = init
352 |
353 | while open_nodes_n > 0:
354 | current_key = min(
355 | [n for n in nodes if nodes[n].is_open],
356 | key=(lambda k: nodes[k].f_cost),
357 | )
358 | current_node = nodes[current_key]
359 |
360 | if self.automated_planner.satisfies(goal, current_node.state):
361 | return current_node.g_cost
362 |
363 | current_node.is_closed = True
364 | current_node.is_open = False
365 | open_nodes_n -= 1
366 |
367 | actions = self.automated_planner.available_actions(current_node.state)
368 |
369 | for act in actions:
370 | child = Node(
371 | state=self.automated_planner.transition(current_node.state, act),
372 | automated_planner=self.automated_planner,
373 | parent_action=act,
374 | parent=current_node,
375 | heuristic=zero_heuristic,
376 | is_closed=False,
377 | is_open=True,
378 | )
379 |
380 | child_hash = self.__hash(child)
381 |
382 | if child_hash in nodes:
383 | if nodes[child_hash].is_closed:
384 | continue
385 |
386 | if not nodes[child_hash].is_open:
387 | nodes[child_hash] = child
388 | open_nodes_n += 1
389 |
390 | else:
391 | if child.g_cost < nodes[child_hash].g_cost:
392 | nodes[child_hash] = child
393 | open_nodes_n += 1
394 |
395 | else:
396 | nodes[child_hash] = child
397 | open_nodes_n += 1
398 | return float("inf")
399 |
--------------------------------------------------------------------------------
/jupyddl/metrics.py:
--------------------------------------------------------------------------------
1 | class Metrics:
2 | def __init__(self):
3 | self.runtime = 0
4 | self.heuristic_runtimes = []
5 | self.n_expended = 0
6 | self.n_reopened = 0
7 | self.n_evaluated = 0
8 | self.n_opened = 1
9 | self.n_generated = 1
10 | self.deadend_states = 0
11 | self.total_cost = 0
12 |
13 | def get_average_heuristic_runtime(self):
14 | if self.heuristic_runtimes:
15 | return sum(self.heuristic_runtimes) / len(self.heuristic_runtimes)
16 | return 0
17 |
18 | def __str__(self):
19 | if self.heuristic_runtimes:
20 | av = sum(self.heuristic_runtimes)
21 | w = sum(self.heuristic_runtimes) / self.runtime * 100
22 | else:
23 | av = 0
24 | w = 0
25 | return (
26 | "Expanded %d state(s).\nOpened %d state(s).\nReopened %d state(s).\nEvaluated %d state(s).\nGenerated %d state(s).\nDead ends: %d state(s).\nRuntime: %.2fs.\nTotal heuristic runtime: %.2fs\nComputational weight of heuristic in the search: %.2f%%"
27 | % (
28 | self.n_expended,
29 | self.n_opened,
30 | self.n_reopened,
31 | self.n_evaluated,
32 | self.n_generated,
33 | self.deadend_states,
34 | self.runtime,
35 | av,
36 | w,
37 | )
38 | )
39 |
--------------------------------------------------------------------------------
/jupyddl/node.py:
--------------------------------------------------------------------------------
1 | import logging
2 | import time
3 |
4 |
5 | class Node:
6 | def __init__(
7 | self,
8 | state,
9 | automated_planner,
10 | is_closed=None,
11 | is_open=None,
12 | parent_action=None,
13 | parent=None,
14 | g_cost=0,
15 | heuristic=None,
16 | heuristic_based=False,
17 | metric=None,
18 | ):
19 | self.state = state
20 | self.parent_action = parent_action
21 | self.parent = parent
22 | self.automated_planner = automated_planner
23 | temp_cost = automated_planner.pddl.get_value(state, "total-cost")
24 | if temp_cost:
25 | self.g_cost = temp_cost
26 | if heuristic_based:
27 | if heuristic:
28 | clock = time.time()
29 | self.h_cost = heuristic(state)
30 | if metric:
31 | metric.heuristic_runtimes.append(time.time() - clock)
32 | else:
33 | automated_planner.logger.warning(
34 | "Heuristic function wasn't found, forcing it to return zero [Best practice: use the zero_heuristic function]"
35 | )
36 | self.h_cost = 0
37 | else:
38 | self.h_cost = 0
39 | self.f_cost = self.g_cost + self.h_cost
40 | else:
41 | if parent:
42 | self.g_cost = 1 + parent.g_cost
43 | else:
44 | self.g_cost = g_cost
45 | if heuristic_based:
46 | if heuristic:
47 | clock = time.time()
48 | self.h_cost = heuristic(state)
49 | if metric:
50 | metric.heuristic_runtimes.append(time.time() - clock)
51 | else:
52 | automated_planner.logger.warning(
53 | "Heuristic function wasn't found, forcing it to return zero [Best practice: use the zero_heuristic function]"
54 | )
55 | self.h_cost = 0
56 | else:
57 | self.h_cost = 0
58 | self.f_cost = self.g_cost + self.h_cost
59 |
60 | self.is_closed = is_closed
61 | self.is_open = is_open
62 |
63 | def __stringify_state(self, state):
64 | state_str = str(state).replace("', "total-cost ="
69 | )
70 | state_str = state_str.replace("Dict{Symbol,Any}(", "")
71 | state_str = state_str.replace(" , ", "")
72 | state_str = state_str.replace("))>", "")
73 | return state_str
74 |
75 | def __lt__(self, other):
76 | return self.f_cost <= other.f_cost
77 |
78 | def __str__(self):
79 | state = self.__stringify_state(self.state)
80 | return "Node { %s | g = %.2f | h = %.2f | open = %s | closed = %s }" % (
81 | state,
82 | self.g_cost,
83 | self.h_cost,
84 | self.is_open,
85 | self.is_closed,
86 | )
87 |
88 |
89 | class Path:
90 | def __init__(self, nodes):
91 | self.nodes = nodes
92 |
93 | def __str__(self):
94 | return str([str(n) for n in self.nodes])
95 |
--------------------------------------------------------------------------------
/logs/.gitkeep:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/APLA-Toolbox/PythonPDDL/589a476f3186cee90ec867921588940cfaf6091c/logs/.gitkeep
--------------------------------------------------------------------------------
/renovate.json:
--------------------------------------------------------------------------------
1 | {
2 | "extends": [
3 | "config:base"
4 | ]
5 | }
6 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | julia==0.5.7
2 | coloredlogs==15.0.1
3 | matplotlib==3.5.1
4 |
--------------------------------------------------------------------------------
/scripts/ipc.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import logging
3 | import coloredlogs
4 | from os import path
5 |
6 | sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
7 | from jupyddl.automated_planner import AutomatedPlanner
8 | from jupyddl.node import Path
9 |
10 | coloredlogs.install(level="WARNING")
11 |
12 | for a in sys.argv:
13 | if "ipc.py" in a:
14 | sys.argv.remove(a)
15 | break
16 |
17 | if len(sys.argv) != 3:
18 | logging.fatal("Binary should be ran with 3 arguments")
19 | exit()
20 |
21 | domain = sys.argv[0]
22 | problem = sys.argv[1]
23 | output = sys.argv[2]
24 |
25 | apla = AutomatedPlanner(domain, problem, log_level="WARNING")
26 |
27 | logging.debug("Running Critical Path with H1")
28 | path, metrics = apla.astar_best_first_search(heuristic_key="critical_path/1")
29 | actions = apla.get_actions_from_path(path)
30 | path = Path(path)
31 |
32 | logging.debug("Running Critical Path with H2")
33 | path2, metrics2 = apla.astar_best_first_search(heuristic_key="critical_path/2")
34 | actions2 = apla.get_actions_from_path(path2)
35 | path2 = Path(path2)
36 |
37 | logging.debug("Running Critical Path with H3")
38 | path3, metrics3 = apla.astar_best_first_search(heuristic_key="critical_path/3")
39 | actions3 = apla.get_actions_from_path(path3)
40 | path3 = Path(path3)
41 |
42 | logging.debug("Running Relaxed Critical Path with H1")
43 | path4, metrics4 = apla.astar_best_first_search(heuristic_key="relaxed_critical_path/1")
44 | actions4 = apla.get_actions_from_path(path4)
45 | path4 = Path(path4)
46 |
47 | logging.debug("Running Relaxed Critical Path with H2")
48 | path5, metrics5 = apla.astar_best_first_search(heuristic_key="relaxed_critical_path/2")
49 | actions5 = apla.get_actions_from_path(path5)
50 | path5 = Path(path5)
51 |
52 | logging.debug("Running Relaxed Critical Path with H3")
53 | path6, metrics6 = apla.astar_best_first_search(heuristic_key="relaxed_critical_path/3")
54 | actions6 = apla.get_actions_from_path(path6)
55 | path6 = Path(path6)
56 |
57 | logging.debug("Running Delete Relaxation (HMax)")
58 | path7, metrics7 = apla.astar_best_first_search(heuristic_key="delete_relaxation/h_max")
59 | actions7 = apla.get_actions_from_path(path7)
60 | path7 = Path(path7)
61 |
62 | logging.debug("Running Delete Relaxation (HAdd)")
63 | path8, metrics8 = apla.astar_best_first_search(heuristic_key="delete_relaxation/h_add")
64 | actions8 = apla.get_actions_from_path(path8)
65 | path8 = Path(path8)
66 |
67 |
68 | actions_str = ""
69 | for a in actions:
70 | actions_str += str(a) + "\n"
71 |
72 | actions_str2 = ""
73 | for a in actions2:
74 | actions_str2 += str(a) + "\n"
75 |
76 | actions_str3 = ""
77 | for a in actions3:
78 | actions_str3 += str(a) + "\n"
79 |
80 | actions_str4 = ""
81 | for a in actions4:
82 | actions_str4 += str(a) + "\n"
83 |
84 | actions_str5 = ""
85 | for a in actions5:
86 | actions_str5 += str(a) + "\n"
87 |
88 | actions_str6 = ""
89 | for a in actions6:
90 | actions_str6 += str(a) + "\n"
91 |
92 | actions_str7 = ""
93 | for a in actions7:
94 | actions_str7 += str(a) + "\n"
95 |
96 | actions_str8 = ""
97 | for a in actions8:
98 | actions_str8 += str(a) + "\n"
99 |
100 | dump = (
101 | "A* - Critical Path - H1\n ======PLAN (Nodes)=======\n%s\n"
102 | "======PLAN (Actions)=======\n%s\n"
103 | "======METRICS=======\n%s\n\n"
104 | "A* - Critical Path - H2\n"
105 | "======PLAN (Nodes)=======\n%s\n"
106 | "======PLAN (Actions)=======\n%s\n"
107 | "======METRICS=======\n%s\n\n"
108 | "A* - Critical Path - H3\n"
109 | "======PLAN (Nodes)=======\n%s\n"
110 | "======PLAN (Actions)=======\n%s\n"
111 | "======METRICS=======\n%s\n\n"
112 | "A* - Relaxed Critical Path - H1\n"
113 | "======PLAN (Nodes)=======\n%s\n"
114 | "======PLAN (Actions)=======\n%s\n"
115 | "======METRICS=======\n%s\n\n"
116 | "A* - Relaxed Critical Path - H2\n"
117 | "======PLAN (Nodes)=======\n%s\n"
118 | "======PLAN (Actions)=======\n%s\n"
119 | "======METRICS=======\n%s\n\n"
120 | "A* - Relaxed Citical Path - H3\n"
121 | "======PLAN (Nodes)=======\n%s\n"
122 | "======PLAN (Actions)=======\n%s\n"
123 | "======METRICS=======\n%s\n\n"
124 | "A* - Delete Relaxation - H_Max\n"
125 | "======PLAN (Nodes)=======\n%s\n"
126 | "======PLAN (Actions)=======\n%s\n"
127 | "======METRICS=======\n%s\n\n"
128 | "A* - Delete Relaxation - H_Add\n"
129 | "======PLAN (Nodes)=======\n%s\n"
130 | "======PLAN (Actions)=======\n%s\n"
131 | "======METRICS=======\n%s\n\n"
132 | % (
133 | str(path),
134 | actions_str,
135 | str(metrics),
136 | str(path2),
137 | actions_str2,
138 | str(metrics2),
139 | str(path3),
140 | actions_str3,
141 | str(metrics3),
142 | str(path4),
143 | actions_str4,
144 | str(metrics4),
145 | str(path5),
146 | actions_str5,
147 | str(metrics5),
148 | str(path6),
149 | actions_str6,
150 | str(metrics6),
151 | str(path7),
152 | actions_str7,
153 | str(metrics7),
154 | str(path8),
155 | actions_str8,
156 | str(metrics8),
157 | )
158 | )
159 |
160 | f = open(output, "w")
161 | f.write(dump)
162 | f.close()
163 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | import setuptools
2 |
3 | with open("requirements.txt") as f:
4 | required = f.read().splitlines()
5 |
6 | with open("README.md", "r", encoding="utf-8") as fh:
7 | long_description = fh.read()
8 |
9 |
10 | setuptools.setup(
11 | name="jupyddl", # Replace with your own username
12 | version="0.4.1",
13 | author="Erwin Lejeune",
14 | author_email="erwinlejeune.pro@gmail.com",
15 | description="Jupyddl is a PDDL planner built on top of a Julia parser",
16 | long_description=long_description,
17 | long_description_content_type="text/markdown",
18 | url="https://github.com/apla-toolbox/pythonpddl",
19 | packages=setuptools.find_packages(),
20 | install_requires=required,
21 | classifiers=[
22 | "Programming Language :: Python :: 3 :: Only",
23 | "Programming Language :: Python :: 3.6",
24 | "Programming Language :: Python :: 3.7",
25 | "Programming Language :: Python :: 3.8",
26 | "Programming Language :: Python :: 3",
27 | "License :: OSI Approved :: Apache Software License",
28 | "Operating System :: Unix",
29 | "Operating System :: MacOS",
30 | "Framework :: Pytest",
31 | ],
32 | python_requires=">=3.6",
33 | )
34 |
--------------------------------------------------------------------------------
/tests/test_automated_planner.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | import sys
4 | from os import path
5 |
6 | sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
7 | from jupyddl.automated_planner import AutomatedPlanner
8 |
9 |
10 | def test_parsing():
11 | apla = AutomatedPlanner(
12 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
13 | )
14 | assert str(apla.problem) != "" and str(apla.domain) != ""
15 |
16 |
17 | def test_available_actions():
18 | apla = AutomatedPlanner(
19 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
20 | )
21 | actions = apla.available_actions(apla.initial_state)
22 | assert len(actions) > 0
23 |
24 |
25 | def test_execute_action():
26 | apla = AutomatedPlanner(
27 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
28 | )
29 | actions = apla.available_actions(apla.initial_state)
30 | new_state = apla.transition(apla.initial_state, actions[0])
31 | assert str(new_state) != str(apla.initial_state)
32 |
33 |
34 | def test_state_has_term():
35 | apla = AutomatedPlanner(
36 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
37 | )
38 | is_goal = apla.state_has_term(apla.initial_state, apla.goals[0])
39 | assert not is_goal
40 |
41 |
42 | def test_state_assertion():
43 | apla = AutomatedPlanner(
44 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
45 | )
46 | assert not apla.satisfies(apla.problem.goal, apla.initial_state)
47 |
48 |
49 | def test_bfs():
50 | apla = AutomatedPlanner(
51 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
52 | )
53 | path, metrics = apla.breadth_first_search()
54 | plan = apla.get_actions_from_path(path)
55 | plan_state = apla.get_state_def_from_path(path)
56 | assert plan and plan_state and metrics.n_opened > 0
57 |
58 |
59 | def test_dfs():
60 | apla = AutomatedPlanner(
61 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
62 | )
63 | path, metrics = apla.depth_first_search()
64 | plan = apla.get_actions_from_path(path)
65 | plan_state = apla.get_state_def_from_path(path)
66 | assert plan and plan_state and metrics.n_opened > 0
67 |
68 |
69 | def test_dij():
70 | apla = AutomatedPlanner(
71 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
72 | )
73 | path, metrics = apla.dijktra_best_first_search()
74 | plan = apla.get_actions_from_path(path)
75 | plan_state = apla.get_state_def_from_path(path)
76 | assert plan and plan_state and metrics.n_opened > 0
77 |
78 |
79 | def test_astar():
80 | apla = AutomatedPlanner(
81 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
82 | )
83 | path, metrics = apla.astar_best_first_search()
84 | plan = apla.get_actions_from_path(path)
85 | plan_state = apla.get_state_def_from_path(path)
86 | assert plan and plan_state and metrics.n_opened > 0
87 |
--------------------------------------------------------------------------------
/tests/test_basic_astar.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | import sys
4 | from os import path
5 |
6 | sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
7 | from jupyddl.automated_planner import AutomatedPlanner
8 | from jupyddl.a_star import AStarBestFirstSearch
9 | from jupyddl.heuristics import BasicHeuristic
10 |
11 |
12 | def test_astar_basic():
13 | apla = AutomatedPlanner(
14 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
15 | )
16 | heuristic = BasicHeuristic(apla, "basic/goal_count")
17 | astar = AStarBestFirstSearch(apla, heuristic.compute)
18 | assert astar.init.h_cost == heuristic.compute(apla.initial_state)
19 |
20 |
21 | def test_astar_goal():
22 | apla = AutomatedPlanner(
23 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
24 | )
25 | heuristic = BasicHeuristic(apla, "basic/goal_count")
26 | astar = AStarBestFirstSearch(apla, heuristic.compute)
27 | lastnode, metrics = astar.search()
28 | assert lastnode and lastnode.parent and metrics.n_evaluated > 0
29 |
30 |
31 | def test_astar_path_length():
32 | apla = AutomatedPlanner(
33 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
34 | )
35 | path, _ = apla.astar_best_first_search()
36 | assert len(path) > 0
37 |
38 |
39 | def test_astar_path_no_path():
40 | apla = AutomatedPlanner(
41 | "pddl-examples/vehicle/domain.pddl", "pddl-examples/vehicle/problem.pddl"
42 | )
43 | path, _ = apla.astar_best_first_search()
44 | assert len(path) == 0
45 |
46 |
47 | def test_astar_path_no_heuristic():
48 | apla = AutomatedPlanner(
49 | "pddl-examples/flip/domain.pddl", "pddl-examples/flip/problem.pddl"
50 | )
51 | p, _ = apla.astar_best_first_search(heuristic_key="idontexist")
52 | assert not p
53 |
54 |
55 | def test_astar_path_bounded():
56 | apla = AutomatedPlanner(
57 | "pddl-examples/flip/domain.pddl", "pddl-examples/flip/problem.pddl"
58 | )
59 | p, _ = apla.astar_best_first_search(heuristic_key="idontexist", node_bound=1)
60 | assert not p
61 |
--------------------------------------------------------------------------------
/tests/test_basic_search.py:
--------------------------------------------------------------------------------
1 | from jupyddl.automated_planner import AutomatedPlanner
2 | from jupyddl.dijkstra import DijkstraBestFirstSearch, zero_heuristic
3 | from jupyddl.a_star import AStarBestFirstSearch
4 | from jupyddl.bfs import BreadthFirstSearch
5 | from jupyddl.heuristics import BasicHeuristic, DeleteRelaxationHeuristic
6 | from jupyddl.dfs import DepthFirstSearch
7 | from os import path
8 | import coloredlogs
9 | import sys
10 |
11 |
12 | def test_search_dfs():
13 | apla = AutomatedPlanner(
14 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
15 | )
16 | dfs = DepthFirstSearch(apla)
17 | path, metrics = dfs.search()
18 | assert path and metrics.n_evaluated > 0
19 |
20 |
21 | def test_search_dfs_bounded():
22 | apla = AutomatedPlanner(
23 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
24 | )
25 | dfs = DepthFirstSearch(apla)
26 | path, _ = dfs.search(node_bound=1)
27 | assert not path
28 |
29 |
30 | def test_search_bfs():
31 | apla = AutomatedPlanner(
32 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
33 | )
34 | bfs = BreadthFirstSearch(apla)
35 | path, metrics = bfs.search() # Path, computation time, opened nodes
36 | assert path and metrics.n_evaluated > 0
37 |
38 |
39 | def test_search_bfs_bounded():
40 | apla = AutomatedPlanner(
41 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
42 | )
43 | bfs = BreadthFirstSearch(apla)
44 | path, _ = bfs.search(node_bound=1) # Path, computation time, opened nodes
45 | assert not path
46 |
47 |
48 | def test_search_dijkstra():
49 | apla = AutomatedPlanner(
50 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
51 | )
52 | dijk = DijkstraBestFirstSearch(apla)
53 | path, metrics = dijk.search() # Goal, computation_time, opened_nodes(in this order)
54 | assert path and metrics.n_evaluated > 0 # Assert that it took some time to compute
55 |
56 |
57 | def test_search_dijkstra_bounded():
58 | apla = AutomatedPlanner(
59 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
60 | )
61 | dijk = DijkstraBestFirstSearch(apla)
62 | path, _ = dijk.search(
63 | node_bound=1
64 | ) # Goal, computation_time, opened_nodes(in this order)
65 | assert not path
66 |
67 |
68 | def test_search_dijkstra_no_path():
69 | apla = AutomatedPlanner(
70 | "pddl-examples/vehicle/domain.pddl", "pddl-examples/vehicle/problem.pddl"
71 | )
72 | dijk = DijkstraBestFirstSearch(apla)
73 | path, metrics = dijk.search() # Goal, computation_time, opened_nodes(in this order)
74 | assert not path and metrics.n_evaluated > 0
75 |
76 |
77 | def test_search_dfs_no_path():
78 | apla = AutomatedPlanner(
79 | "pddl-examples/vehicle/domain.pddl", "pddl-examples/vehicle/problem.pddl"
80 | )
81 | dfs = DepthFirstSearch(apla)
82 | path, metrics = dfs.search() # Goal, computation_time, opened_nodes(in this order)
83 | assert not path and metrics.n_evaluated > 0
84 |
85 |
86 | def test_search_bfs_no_path():
87 | apla = AutomatedPlanner(
88 | "pddl-examples/vehicle/domain.pddl", "pddl-examples/vehicle/problem.pddl"
89 | )
90 | bfs = BreadthFirstSearch(apla)
91 | path, metrics = bfs.search() # Goal, computation_time, opened_nodes(in this order)
92 | assert not path and metrics.n_evaluated > 0
93 |
94 |
95 | def test_search_astar_basic():
96 | apla = AutomatedPlanner(
97 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
98 | )
99 | heuristic = BasicHeuristic(apla, "basic/goal_count")
100 | astar = AStarBestFirstSearch(apla, heuristic.compute)
101 | (
102 | path,
103 | metrics,
104 | ) = astar.search() # Goal, computation_time, opened_nodes(in this order)
105 | assert path and metrics.n_evaluated > 0
106 |
107 |
108 | def test_search_astar_basic_no_path():
109 | apla = AutomatedPlanner(
110 | "pddl-examples/vehicle/domain.pddl", "pddl-examples/vehicle/problem.pddl"
111 | )
112 | heuristic = BasicHeuristic(apla, "basic/goal_count")
113 | astar = AStarBestFirstSearch(apla, heuristic.compute)
114 | (
115 | path,
116 | metrics,
117 | ) = astar.search() # Goal, computation_time, opened_nodes(in this order)
118 | assert not path and metrics.n_evaluated > 0
119 |
120 |
121 | def test_zero_heuristic():
122 | assert zero_heuristic() == 0
123 |
--------------------------------------------------------------------------------
/tests/test_data_analyst.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | import sys
4 | from os import path
5 |
6 | sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
7 | from jupyddl.data_analyst import DataAnalyst
8 |
9 |
10 | def test_data_analyst_constructor():
11 | _ = DataAnalyst()
12 | assert True
13 |
14 |
15 | def test_heuristics_comparer():
16 | da = DataAnalyst()
17 | da.comparative_astar_heuristic_plot()
18 |
19 |
20 | def test_heuristics_comparer_single():
21 | da = DataAnalyst()
22 | da.comparative_astar_heuristic_plot(
23 | domain="pddl-examples/dinner/domain.pddl",
24 | problem="pddl-examples/dinner/problem.pddl",
25 | )
26 |
27 |
28 | def test_data_analyst_plot_dfs_one_pddl():
29 | da = DataAnalyst()
30 | da.plot_dfs(
31 | domain="pddl-examples/dinner/domain.pddl",
32 | problem="pddl-examples/dinner/problem.pddl",
33 | )
34 | assert True
35 |
36 |
37 | def test_data_analyst_plot_bfs_one_pddl():
38 | da = DataAnalyst()
39 | da.plot_bfs(
40 | domain="pddl-examples/dinner/domain.pddl",
41 | problem="pddl-examples/dinner/problem.pddl",
42 | )
43 | assert True
44 |
45 |
46 | def test_data_analyst_plot_dijkstra_one_pddl():
47 | da = DataAnalyst()
48 | da.plot_dijkstra(
49 | domain="pddl-examples/dinner/domain.pddl",
50 | problem="pddl-examples/dinner/problem.pddl",
51 | )
52 | assert True
53 |
54 |
55 | def test_data_analyst_plot_astar_h_goal_count_one_pddl():
56 | da = DataAnalyst()
57 | da.plot_astar(
58 | domain="pddl-examples/dinner/domain.pddl",
59 | problem="pddl-examples/dinner/problem.pddl",
60 | )
61 | assert True
62 |
63 |
64 | def test_data_analyst_plot_dfs():
65 | da = DataAnalyst()
66 | da.plot_dfs()
67 | assert True
68 |
69 |
70 | def test_data_analyst_plot_bfs():
71 | da = DataAnalyst()
72 | da.plot_bfs()
73 | assert True
74 |
75 |
76 | def test_data_analyst_plot_dijkstra():
77 | da = DataAnalyst()
78 | da.plot_dijkstra()
79 | assert True
80 |
81 |
82 | def test_data_analyst_plot_astar_h_goal_count():
83 | da = DataAnalyst()
84 | da.plot_astar()
85 | assert True
86 |
87 |
88 | def test_data_analyst_plot_dfs_restricted():
89 | da = DataAnalyst()
90 | da.plot_dfs(max_pddl_instances=2)
91 | assert True
92 |
93 |
94 | def test_data_analyst_plot_bfs_restricted():
95 | da = DataAnalyst()
96 | da.plot_bfs(max_pddl_instances=2)
97 | assert True
98 |
99 |
100 | def test_data_analyst_plot_dijkstra_restricted():
101 | da = DataAnalyst()
102 | da.plot_dijkstra(max_pddl_instances=2)
103 | assert True
104 |
105 |
106 | def test_data_analyst_plot_astar_h_goal_count_restricted():
107 | da = DataAnalyst()
108 | da.plot_astar(max_pddl_instances=2)
109 | assert True
110 |
111 |
112 | def test_data_analyst_plot_astar_h_max():
113 | da = DataAnalyst()
114 | da.plot_astar(heuristic_key="delete_relaxation/h_max")
115 | assert True
116 |
117 |
118 | def test_data_analyst_plot_greedy_h_goal_count_restricted():
119 | da = DataAnalyst()
120 | da.plot_greedy_bfs(max_pddl_instances=2)
121 | assert True
122 |
123 |
124 | def test_data_analyst_plot_greedy_hmax():
125 | da = DataAnalyst()
126 | da.plot_greedy_bfs(heuristic_key="delete_relaxation/h_max")
127 | assert True
128 |
129 |
130 | def test_comparative_no_restrictions():
131 | da = DataAnalyst()
132 | da.comparative_data_plot()
133 | assert True
134 |
135 |
136 | def test_comparative_no_astar():
137 | da = DataAnalyst()
138 | da.comparative_data_plot(astar=False)
139 | assert True
140 |
141 |
142 | def test_comparative_no_bfs():
143 | da = DataAnalyst()
144 | da.comparative_data_plot(bfs=False)
145 | assert True
146 |
147 |
148 | def test_comparative_no_dijkstra():
149 | da = DataAnalyst()
150 | da.comparative_data_plot(dijkstra=False)
151 | assert True
152 |
153 |
154 | def test_comparative_no_dfs():
155 | da = DataAnalyst()
156 | da.comparative_data_plot(dfs=False)
157 | assert True
158 |
159 |
160 | def test_comparative_one_pddl():
161 | da = DataAnalyst()
162 | da.comparative_data_plot(
163 | dfs=False,
164 | bfs=False,
165 | greedy_bfs=True,
166 | domain="pddl-examples/dinner/domain.pddl",
167 | problem="pddl-examples/dinner/problem.pddl",
168 | )
169 | assert True
170 |
171 |
172 | def test_comparative_use_data_json():
173 | da = DataAnalyst()
174 | da.comparative_data_plot(
175 | domain="pddl-examples/dinner/domain.pddl",
176 | problem="pddl-examples/dinner/problem.pddl",
177 | greedy_bfs=True,
178 | collect_new_data=False,
179 | )
180 | assert True
181 |
182 |
183 | def test_comparative_zero_h():
184 | da = DataAnalyst()
185 | da.comparative_data_plot(
186 | domain="pddl-examples/dinner/domain.pddl",
187 | problem="pddl-examples/dinner/problem.pddl",
188 | greedy_bfs=True,
189 | heuristic_key="zero",
190 | )
191 | assert True
192 |
193 |
194 | def test_success_rate():
195 | da = DataAnalyst()
196 | da.compute_planners_efficiency()
197 | assert True
198 |
199 |
200 | def test_metrics():
201 | da = DataAnalyst()
202 | da.plot_metrics()
203 | assert True
204 |
--------------------------------------------------------------------------------
/tests/test_greedy_best_first.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | import sys
4 | from os import path
5 |
6 | sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
7 | from jupyddl.automated_planner import AutomatedPlanner
8 | from jupyddl.greedy_best_first import GreedyBestFirstSearch
9 | from jupyddl.heuristics import BasicHeuristic, DeleteRelaxationHeuristic
10 |
11 |
12 | def test_greedy_best_first_basic():
13 | apla = AutomatedPlanner(
14 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
15 | )
16 | heuristic = BasicHeuristic(apla, "basic/goal_count")
17 | gbfs = GreedyBestFirstSearch(apla, heuristic.compute)
18 | assert gbfs.init.h_cost == heuristic.compute(apla.initial_state)
19 |
20 |
21 | def test_greedy_best_first_goal():
22 | apla = AutomatedPlanner(
23 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
24 | )
25 | heuristic = BasicHeuristic(apla, "basic/goal_count")
26 | gbfs = GreedyBestFirstSearch(apla, heuristic.compute)
27 | lastnode, _ = gbfs.search()
28 | assert lastnode and lastnode.parent
29 |
30 |
31 | def test_greedy_best_first_path_length():
32 | apla = AutomatedPlanner(
33 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
34 | )
35 | path, _ = apla.greedy_best_first_search()
36 | assert len(path) > 0
37 |
38 |
39 | def test_greedy_best_first_bounded():
40 | apla = AutomatedPlanner(
41 | "pddl-examples/tsp/domain.pddl", "pddl-examples/tsp/problem.pddl"
42 | )
43 | path, _ = apla.greedy_best_first_search(node_bound=1)
44 | assert not path
45 |
46 |
47 | def test_greedy_best_first_path_no_path():
48 | apla = AutomatedPlanner(
49 | "pddl-examples/vehicle/domain.pddl", "pddl-examples/vehicle/problem.pddl"
50 | )
51 | path, metrics = apla.greedy_best_first_search()
52 | assert not path and metrics.n_evaluated > 0
53 |
54 |
55 | def test_greedy_best_first_path_no_heuristic():
56 | apla = AutomatedPlanner(
57 | "pddl-examples/flip/domain.pddl", "pddl-examples/flip/problem.pddl"
58 | )
59 | p, _ = apla.greedy_best_first_search(heuristic_key="idontexist")
60 | assert not p
61 |
62 |
63 | def test_greedy_best_first_hmax():
64 | apla = AutomatedPlanner(
65 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
66 | )
67 | heuristic = DeleteRelaxationHeuristic(apla, "delete_relaxation/h_max")
68 | astar = GreedyBestFirstSearch(apla, heuristic.compute)
69 | assert astar.init.h_cost == heuristic.compute(apla.initial_state)
70 |
71 |
72 | def test_greedy_best_first_hadd():
73 | apla = AutomatedPlanner(
74 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
75 | )
76 | heuristic = DeleteRelaxationHeuristic(apla, "delete_relaxation/h_max")
77 | astar = GreedyBestFirstSearch(apla, heuristic.compute)
78 | assert astar.init.h_cost == heuristic.compute(apla.initial_state)
79 |
80 |
81 | def test_greedy_best_first_hmax_sensible_domain():
82 | apla = AutomatedPlanner(
83 | "pddl-examples/grid/domain.pddl", "pddl-examples/grid/problem.pddl"
84 | )
85 | heuristic = DeleteRelaxationHeuristic(apla, "delete_relaxation/h_max")
86 | astar = GreedyBestFirstSearch(apla, heuristic.compute)
87 | assert astar.init.h_cost == heuristic.compute(apla.initial_state)
88 |
89 |
90 | def test_greedy_best_first_hadd_sensible_domain():
91 | apla = AutomatedPlanner(
92 | "pddl-examples/grid/domain.pddl", "pddl-examples/grid/problem.pddl"
93 | )
94 | heuristic = DeleteRelaxationHeuristic(apla, "delete_relaxation/h_max")
95 | astar = GreedyBestFirstSearch(apla, heuristic.compute)
96 | assert astar.init.h_cost == heuristic.compute(apla.initial_state)
97 |
--------------------------------------------------------------------------------
/tests/test_heuristics.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | import sys
4 | from os import path
5 |
6 | sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
7 | from jupyddl.automated_planner import AutomatedPlanner
8 | import jupyddl.heuristics as hs
9 |
10 | """
11 | Testing the heuristics in different situations
12 | To do:
13 | - Run search algorithms and test value of h when at goal
14 | """
15 |
16 |
17 | def test_zero_heuristic():
18 | apla = AutomatedPlanner(
19 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
20 | )
21 | apla.display_available_heuristics()
22 | heuristic = hs.BasicHeuristic(apla, "basic/zero")
23 | h = heuristic.compute(apla.initial_state)
24 | assert h == 0
25 |
26 |
27 | def test_goal_count_heuristic():
28 | apla = AutomatedPlanner(
29 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
30 | )
31 | apla.display_available_heuristics()
32 | heuristic = hs.BasicHeuristic(apla, "basic/goal_count")
33 | h = heuristic.compute(apla.initial_state)
34 | assert h != 0
35 |
36 |
37 | def test_delete_relaxation_add_heuristic():
38 | apla = AutomatedPlanner(
39 | "pddl-examples/tsp/domain.pddl", "pddl-examples/tsp/problem.pddl"
40 | )
41 | apla.display_available_heuristics()
42 | heuristic = hs.DeleteRelaxationHeuristic(apla, "delete_relaxation/h_max")
43 | h = heuristic.compute(apla.initial_state)
44 | assert h != 0
45 |
--------------------------------------------------------------------------------
/tests/test_hsp_astar.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | import sys
4 | from os import path
5 |
6 | sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
7 | from jupyddl.automated_planner import AutomatedPlanner
8 | from jupyddl.a_star import AStarBestFirstSearch
9 | from jupyddl.heuristics import DeleteRelaxationHeuristic
10 |
11 |
12 | def test_astar_hmax():
13 | apla = AutomatedPlanner(
14 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
15 | )
16 | heuristic = DeleteRelaxationHeuristic(apla, "delete_relaxation/h_max")
17 | astar = AStarBestFirstSearch(apla, heuristic.compute)
18 | assert astar.init.h_cost == heuristic.compute(apla.initial_state)
19 |
20 |
21 | def test_astar_hadd():
22 | apla = AutomatedPlanner(
23 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
24 | )
25 | heuristic = DeleteRelaxationHeuristic(apla, "delete_relaxation/h_max")
26 | astar = AStarBestFirstSearch(apla, heuristic.compute)
27 | assert astar.init.h_cost == heuristic.compute(apla.initial_state)
28 |
29 |
30 | def test_astar_hmax_sensible_domain():
31 | apla = AutomatedPlanner(
32 | "pddl-examples/grid/domain.pddl", "pddl-examples/grid/problem.pddl"
33 | )
34 | heuristic = DeleteRelaxationHeuristic(apla, "delete_relaxation/h_max")
35 | astar = AStarBestFirstSearch(apla, heuristic.compute)
36 | assert astar.init.h_cost == heuristic.compute(apla.initial_state)
37 |
38 |
39 | def test_astar_hadd_sensible_domain():
40 | apla = AutomatedPlanner(
41 | "pddl-examples/grid/domain.pddl", "pddl-examples/grid/problem.pddl"
42 | )
43 | heuristic = DeleteRelaxationHeuristic(apla, "delete_relaxation/h_max")
44 | astar = AStarBestFirstSearch(apla, heuristic.compute)
45 | assert astar.init.h_cost == heuristic.compute(apla.initial_state)
46 |
--------------------------------------------------------------------------------
/tests/test_metrics.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | import sys
4 | from os import path
5 |
6 | sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
7 | from jupyddl.metrics import Metrics
8 |
9 |
10 | def test_metrics():
11 | m = Metrics()
12 | assert m.n_opened == 1 and m.n_generated and m.get_average_heuristic_runtime() == 0
13 |
--------------------------------------------------------------------------------
/tests/test_node.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | import sys
4 | from os import path
5 |
6 | sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
7 | from jupyddl.automated_planner import AutomatedPlanner
8 | from jupyddl.node import Node, Path
9 |
10 |
11 | def test_node_equality_cost():
12 | apla = AutomatedPlanner(
13 | "pddl-examples/tsp/domain.pddl", "pddl-examples/tsp/problem.pddl"
14 | )
15 | actions = apla.available_actions(apla.initial_state)
16 | next_state = apla.transition(apla.initial_state, actions[0])
17 | next_node = Node(next_state, apla, heuristic_based=True)
18 | next_node_v2 = Node(next_state, apla)
19 |
20 | assertion = next_node_v2 < next_node
21 | assertion2 = next_node < next_node_v2
22 |
23 | assert assertion and assertion2
24 |
25 |
26 | def test_node_equality_no_cost():
27 | apla = AutomatedPlanner(
28 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
29 | )
30 | actions = apla.available_actions(apla.initial_state)
31 | next_state = apla.transition(apla.initial_state, actions[0])
32 | next_node = Node(next_state, apla, heuristic_based=True)
33 | next_node_v2 = Node(next_state, apla)
34 |
35 | assertion = next_node_v2 < next_node
36 | assertion2 = next_node < next_node_v2
37 |
38 | assert assertion and assertion2
39 |
40 |
41 | def test_stringified_node():
42 | apla = AutomatedPlanner(
43 | "pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl"
44 | )
45 | actions = apla.available_actions(apla.initial_state)
46 | for act in actions:
47 | next_state = apla.transition(apla.initial_state, act)
48 | next_node = Node(next_state, apla, heuristic_based=True)
49 | assert "