├── InsightReport.docx ├── Consumer Price Index.xlsx ├── HPI-brisbane-sydney-melbourne.csv ├── README.md └── House Price Index and Local economy.ipynb /InsightReport.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Abinaya-Krishnan/Australian-House_Price_Index_Analysis-using-Python/HEAD/InsightReport.docx -------------------------------------------------------------------------------- /Consumer Price Index.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Abinaya-Krishnan/Australian-House_Price_Index_Analysis-using-Python/HEAD/Consumer Price Index.xlsx -------------------------------------------------------------------------------- /HPI-brisbane-sydney-melbourne.csv: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Abinaya-Krishnan/Australian-House_Price_Index_Analysis-using-Python/HEAD/HPI-brisbane-sydney-melbourne.csv -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | The two excel files 'Consumer Price Index' and 'HPI-brisbane-sydney-melbourne' are required input files for the analysis 2 | The .ipynb file contains the analysis code 3 | -------------------------------------------------------------------------------- /House Price Index and Local economy.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Analysis of Australian House Price Index " 8 | ] 9 | }, 10 | { 11 | "cell_type": "markdown", 12 | "metadata": {}, 13 | "source": [ 14 | "Analysis focus\n", 15 | "\n", 16 | "i) What do housing-market indicators say about the economic conditions in different geographical locations ? \n", 17 | "ii) how can they be used to provide forecasts of future economic conditions?" 18 | ] 19 | }, 20 | { 21 | "cell_type": "markdown", 22 | "metadata": {}, 23 | "source": [ 24 | "DESCRIPTION \n", 25 | "\n", 26 | "Housing markets generally describes the supply and demands for houses in a specific geographic location. Housing market trends can be analysed using various indicators like House Price Index, construction, local sales and so on. This question specifically focuses on housing market and its correlation with economic condition of different geographical location. It also mentions about how efficient the analysis made on housing markets can be used in future economic prediction.\n", 27 | "Considering House Price Index(HPI) as a key indicator of housing market, analysing how a fall/growth of a HPI creates a impact on economic condition. Finally, providing valuable insights for business stakeholders like real estate owners, government and property buyers who may be interested in this analysis.\n", 28 | "For eg: real estate owners or property buyers who wants to sell or buy property, to identify the right time to buy or sell.DATA SOURCES " 29 | ] 30 | }, 31 | { 32 | "cell_type": "markdown", 33 | "metadata": {}, 34 | "source": [ 35 | "DATA SOURCES \n", 36 | "\n", 37 | "Two different set of sources are utilised in this analysis. The first set of data is derived from Queensland Government site (https://www.qgso.qld.gov.au/statistics/theme/economy/prices-indexes/housing) which describes about the house price index of Sydney, Brisbane and Melbourne from the year 2002 to 2019. The second set of data is derived from economy.id community (https://economy.id.com.au/sydney/consumer-price-index), which describes about the Consumer Price Index(CPI) of Sydney and whole Australia. " 38 | ] 39 | }, 40 | { 41 | "cell_type": "code", 42 | "execution_count": 1, 43 | "metadata": {}, 44 | "outputs": [], 45 | "source": [ 46 | "#library imports\n", 47 | "import pandas as pd # used for data manipulation and data analysis\n", 48 | "import matplotlib.pyplot as plt # used for visualisation\n", 49 | "\n", 50 | "#code to obtain HPI data \n", 51 | "file_path = \"HPI-brisbane-sydney-melbourne.csv\"\n", 52 | "import chardet #To overcome unicode-decode error\n", 53 | "with open(file_path, 'rb') as rawdata:\n", 54 | " result = chardet.detect(rawdata.read(100000))\n", 55 | "result\n", 56 | "\n", 57 | "data1 = pd.read_csv(file_path, encoding = 'Windows-1252') #HPI data\n", 58 | "\n", 59 | "#code to obtain CPI data\n", 60 | "file_path = \"Consumer Price Index.xlsx\"\n", 61 | "import chardet\n", 62 | "with open(file_path, 'rb') as rawdata:\n", 63 | " result = chardet.detect(rawdata.read(100000))\n", 64 | "result\n", 65 | "\n", 66 | "data2 = pd.read_excel(file_path, encoding = 'Windows-1252') #CPI data" 67 | ] 68 | }, 69 | { 70 | "cell_type": "markdown", 71 | "metadata": {}, 72 | "source": [ 73 | "ANALYSIS for HPI DATA" 74 | ] 75 | }, 76 | { 77 | "cell_type": "code", 78 | "execution_count": 2, 79 | "metadata": { 80 | "collapsed": true 81 | }, 82 | "outputs": [ 83 | { 84 | "data": { 85 | "text/html": [ 86 | "
\n", 87 | "\n", 100 | "\n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | "
House Price Index (a)(b): Brisbane, Sydney and Melbourne, 2002–03 to 2018–19Unnamed: 1Unnamed: 2Unnamed: 3Unnamed: 4Unnamed: 5Unnamed: 6
0NaNNaNNaNNaNNaNNaNNaN
1Financial year (c)Capital cityNaNNaNNaNNaNNaN
2NaNBrisbaneNaNSydneyNaNMelbourneNaN
3NaNIndexAnnual % changeIndexAnnual % changeIndexAnnual % change
42002–0352.6n.a.78.2n.a.54.1n.a.
52003–0469.732.587.511.960.111.1
62004–0572.64.284.1–3.961.21.8
72005–0675.43.981.6–3.063.94.4
82006–0783.110.283.62.570.410.2
92007–0898.818.989.16.684.119.5
102008–0997.4–1.485.8–3.783.5–0.7
112009–10105.78.597.814.0100.220.0
122010–11104.6–1.0102.24.5104.84.6
132011–12100.0–4.4100.0–2.2100.0–4.6
142012–13101.81.8104.44.4100.50.5
152013–14108.06.1120.415.3110.39.8
162014–15113.24.8140.016.3118.17.1
172015–16118.44.6157.312.4131.211.1
182016–17123.24.1175.411.5148.913.5
192017–18126.62.8178.81.9162.18.9
202018–19126.1–0.4163.5–8.6149.7–7.6
21NaNNaNNaNNaNNaNNaNNaN
22n.a. = not available.NaNNaNNaNNaNNaNNaN
23(a) Established houses.NaNNaNNaNNaNNaNNaN
24(b) Base of each index: 2011–12 = 100.NaNNaNNaNNaNNaNNaN
25(c) Average four quarters.NaNNaNNaNNaNNaNNaN
26NaNNaNNaNNaNNaNNaN
27Source: ABS 6416.0, Residential Property Price...NaNNaNNaNNaNNaNNaN
28NaNNaNNaNNaNNaNNaNNaN
29NaNNaNNaNNaNNaNNaNNaN
30NaNNaNNaNNaNNaNNaNNaN
31NaNNaNNaNNaNNaNNaNNaN
32NaNNaNNaNNaNNaNNaNNaN
33NaNNaNNaNNaNNaNNaNNaN
34NaNNaNNaNNaNNaNNaNNaN
\n", 466 | "
" 467 | ], 468 | "text/plain": [ 469 | " House Price Index (a)(b): Brisbane, Sydney and Melbourne, 2002–03 to 2018–19 \\\n", 470 | "0 NaN \n", 471 | "1 Financial year (c) \n", 472 | "2 NaN \n", 473 | "3 NaN \n", 474 | "4 2002–03 \n", 475 | "5 2003–04 \n", 476 | "6 2004–05 \n", 477 | "7 2005–06 \n", 478 | "8 2006–07 \n", 479 | "9 2007–08 \n", 480 | "10 2008–09 \n", 481 | "11 2009–10 \n", 482 | "12 2010–11 \n", 483 | "13 2011–12 \n", 484 | "14 2012–13 \n", 485 | "15 2013–14 \n", 486 | "16 2014–15 \n", 487 | "17 2015–16 \n", 488 | "18 2016–17 \n", 489 | "19 2017–18 \n", 490 | "20 2018–19 \n", 491 | "21 NaN \n", 492 | "22 n.a. = not available. \n", 493 | "23 (a) Established houses. \n", 494 | "24 (b) Base of each index: 2011–12 = 100. \n", 495 | "25 (c) Average four quarters. \n", 496 | "26 \n", 497 | "27 Source: ABS 6416.0, Residential Property Price... \n", 498 | "28 NaN \n", 499 | "29 NaN \n", 500 | "30 NaN \n", 501 | "31 NaN \n", 502 | "32 NaN \n", 503 | "33 NaN \n", 504 | "34 NaN \n", 505 | "\n", 506 | " Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4 Unnamed: 5 \\\n", 507 | "0 NaN NaN NaN NaN NaN \n", 508 | "1 Capital city NaN NaN NaN NaN \n", 509 | "2 Brisbane NaN Sydney NaN Melbourne \n", 510 | "3 Index Annual % change Index Annual % change Index \n", 511 | "4 52.6 n.a. 78.2 n.a. 54.1 \n", 512 | "5 69.7 32.5 87.5 11.9 60.1 \n", 513 | "6 72.6 4.2 84.1 –3.9 61.2 \n", 514 | "7 75.4 3.9 81.6 –3.0 63.9 \n", 515 | "8 83.1 10.2 83.6 2.5 70.4 \n", 516 | "9 98.8 18.9 89.1 6.6 84.1 \n", 517 | "10 97.4 –1.4 85.8 –3.7 83.5 \n", 518 | "11 105.7 8.5 97.8 14.0 100.2 \n", 519 | "12 104.6 –1.0 102.2 4.5 104.8 \n", 520 | "13 100.0 –4.4 100.0 –2.2 100.0 \n", 521 | "14 101.8 1.8 104.4 4.4 100.5 \n", 522 | "15 108.0 6.1 120.4 15.3 110.3 \n", 523 | "16 113.2 4.8 140.0 16.3 118.1 \n", 524 | "17 118.4 4.6 157.3 12.4 131.2 \n", 525 | "18 123.2 4.1 175.4 11.5 148.9 \n", 526 | "19 126.6 2.8 178.8 1.9 162.1 \n", 527 | "20 126.1 –0.4 163.5 –8.6 149.7 \n", 528 | "21 NaN NaN NaN NaN NaN \n", 529 | "22 NaN NaN NaN NaN NaN \n", 530 | "23 NaN NaN NaN NaN NaN \n", 531 | "24 NaN NaN NaN NaN NaN \n", 532 | "25 NaN NaN NaN NaN NaN \n", 533 | "26 NaN NaN NaN NaN NaN \n", 534 | "27 NaN NaN NaN NaN NaN \n", 535 | "28 NaN NaN NaN NaN NaN \n", 536 | "29 NaN NaN NaN NaN NaN \n", 537 | "30 NaN NaN NaN NaN NaN \n", 538 | "31 NaN NaN NaN NaN NaN \n", 539 | "32 NaN NaN NaN NaN NaN \n", 540 | "33 NaN NaN NaN NaN NaN \n", 541 | "34 NaN NaN NaN NaN NaN \n", 542 | "\n", 543 | " Unnamed: 6 \n", 544 | "0 NaN \n", 545 | "1 NaN \n", 546 | "2 NaN \n", 547 | "3 Annual % change \n", 548 | "4 n.a. \n", 549 | "5 11.1 \n", 550 | "6 1.8 \n", 551 | "7 4.4 \n", 552 | "8 10.2 \n", 553 | "9 19.5 \n", 554 | "10 –0.7 \n", 555 | "11 20.0 \n", 556 | "12 4.6 \n", 557 | "13 –4.6 \n", 558 | "14 0.5 \n", 559 | "15 9.8 \n", 560 | "16 7.1 \n", 561 | "17 11.1 \n", 562 | "18 13.5 \n", 563 | "19 8.9 \n", 564 | "20 –7.6 \n", 565 | "21 NaN \n", 566 | "22 NaN \n", 567 | "23 NaN \n", 568 | "24 NaN \n", 569 | "25 NaN \n", 570 | "26 NaN \n", 571 | "27 NaN \n", 572 | "28 NaN \n", 573 | "29 NaN \n", 574 | "30 NaN \n", 575 | "31 NaN \n", 576 | "32 NaN \n", 577 | "33 NaN \n", 578 | "34 NaN " 579 | ] 580 | }, 581 | "execution_count": 2, 582 | "metadata": {}, 583 | "output_type": "execute_result" 584 | } 585 | ], 586 | "source": [ 587 | "#Viewing HPI data\n", 588 | "data1" 589 | ] 590 | }, 591 | { 592 | "cell_type": "code", 593 | "execution_count": 3, 594 | "metadata": { 595 | "collapsed": true 596 | }, 597 | "outputs": [ 598 | { 599 | "name": "stdout", 600 | "output_type": "stream", 601 | "text": [ 602 | "\n", 603 | "RangeIndex: 35 entries, 0 to 34\n", 604 | "Data columns (total 7 columns):\n", 605 | "House Price Index (a)(b): Brisbane, Sydney and Melbourne, 2002–03 to 2018–19 24 non-null object\n", 606 | "Unnamed: 1 20 non-null object\n", 607 | "Unnamed: 2 18 non-null object\n", 608 | "Unnamed: 3 19 non-null object\n", 609 | "Unnamed: 4 18 non-null object\n", 610 | "Unnamed: 5 19 non-null object\n", 611 | "Unnamed: 6 18 non-null object\n", 612 | "dtypes: object(7)\n", 613 | "memory usage: 2.0+ KB\n" 614 | ] 615 | } 616 | ], 617 | "source": [ 618 | "#knowing the datasets\n", 619 | "data1.info()" 620 | ] 621 | }, 622 | { 623 | "cell_type": "code", 624 | "execution_count": 4, 625 | "metadata": { 626 | "collapsed": true 627 | }, 628 | "outputs": [ 629 | { 630 | "data": { 631 | "text/html": [ 632 | "
\n", 633 | "\n", 646 | "\n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | "
House Price Index (a)(b): Brisbane, Sydney and Melbourne, 2002–03 to 2018–19Unnamed: 1Unnamed: 2Unnamed: 3Unnamed: 4Unnamed: 5Unnamed: 6
42002–0352.6n.a.78.2n.a.54.1n.a.
52003–0469.732.587.511.960.111.1
62004–0572.64.284.1–3.961.21.8
72005–0675.43.981.6–3.063.94.4
82006–0783.110.283.62.570.410.2
92007–0898.818.989.16.684.119.5
102008–0997.4–1.485.8–3.783.5–0.7
112009–10105.78.597.814.0100.220.0
122010–11104.6–1.0102.24.5104.84.6
132011–12100.0–4.4100.0–2.2100.0–4.6
142012–13101.81.8104.44.4100.50.5
152013–14108.06.1120.415.3110.39.8
162014–15113.24.8140.016.3118.17.1
172015–16118.44.6157.312.4131.211.1
182016–17123.24.1175.411.5148.913.5
192017–18126.62.8178.81.9162.18.9
202018–19126.1–0.4163.5–8.6149.7–7.6
\n", 832 | "
" 833 | ], 834 | "text/plain": [ 835 | " House Price Index (a)(b): Brisbane, Sydney and Melbourne, 2002–03 to 2018–19 \\\n", 836 | "4 2002–03 \n", 837 | "5 2003–04 \n", 838 | "6 2004–05 \n", 839 | "7 2005–06 \n", 840 | "8 2006–07 \n", 841 | "9 2007–08 \n", 842 | "10 2008–09 \n", 843 | "11 2009–10 \n", 844 | "12 2010–11 \n", 845 | "13 2011–12 \n", 846 | "14 2012–13 \n", 847 | "15 2013–14 \n", 848 | "16 2014–15 \n", 849 | "17 2015–16 \n", 850 | "18 2016–17 \n", 851 | "19 2017–18 \n", 852 | "20 2018–19 \n", 853 | "\n", 854 | " Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4 Unnamed: 5 Unnamed: 6 \n", 855 | "4 52.6 n.a. 78.2 n.a. 54.1 n.a. \n", 856 | "5 69.7 32.5 87.5 11.9 60.1 11.1 \n", 857 | "6 72.6 4.2 84.1 –3.9 61.2 1.8 \n", 858 | "7 75.4 3.9 81.6 –3.0 63.9 4.4 \n", 859 | "8 83.1 10.2 83.6 2.5 70.4 10.2 \n", 860 | "9 98.8 18.9 89.1 6.6 84.1 19.5 \n", 861 | "10 97.4 –1.4 85.8 –3.7 83.5 –0.7 \n", 862 | "11 105.7 8.5 97.8 14.0 100.2 20.0 \n", 863 | "12 104.6 –1.0 102.2 4.5 104.8 4.6 \n", 864 | "13 100.0 –4.4 100.0 –2.2 100.0 –4.6 \n", 865 | "14 101.8 1.8 104.4 4.4 100.5 0.5 \n", 866 | "15 108.0 6.1 120.4 15.3 110.3 9.8 \n", 867 | "16 113.2 4.8 140.0 16.3 118.1 7.1 \n", 868 | "17 118.4 4.6 157.3 12.4 131.2 11.1 \n", 869 | "18 123.2 4.1 175.4 11.5 148.9 13.5 \n", 870 | "19 126.6 2.8 178.8 1.9 162.1 8.9 \n", 871 | "20 126.1 –0.4 163.5 –8.6 149.7 –7.6 " 872 | ] 873 | }, 874 | "execution_count": 4, 875 | "metadata": {}, 876 | "output_type": "execute_result" 877 | } 878 | ], 879 | "source": [ 880 | "#pre-processing data- removing unnecessary columns, rows and replacing missing values\n", 881 | "#changing column names\n", 882 | "data1 = data1[4:21] #removing descriptions and empty cells\n", 883 | "data1" 884 | ] 885 | }, 886 | { 887 | "cell_type": "code", 888 | "execution_count": 5, 889 | "metadata": { 890 | "collapsed": true 891 | }, 892 | "outputs": [ 893 | { 894 | "data": { 895 | "text/html": [ 896 | "
\n", 897 | "\n", 910 | "\n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | " \n", 935 | " \n", 936 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 940 | " \n", 941 | " \n", 942 | " \n", 943 | " \n", 944 | " \n", 945 | " \n", 946 | " \n", 947 | " \n", 948 | " \n", 949 | " \n", 950 | " \n", 951 | " \n", 952 | " \n", 953 | " \n", 954 | " \n", 955 | " \n", 956 | " \n", 957 | " \n", 958 | " \n", 959 | " \n", 960 | " \n", 961 | " \n", 962 | " \n", 963 | " \n", 964 | " \n", 965 | " \n", 966 | " \n", 967 | " \n", 968 | " \n", 969 | " \n", 970 | " \n", 971 | " \n", 972 | " \n", 973 | " \n", 974 | " \n", 975 | " \n", 976 | " \n", 977 | " \n", 978 | " \n", 979 | " \n", 980 | " \n", 981 | " \n", 982 | " \n", 983 | " \n", 984 | " \n", 985 | " \n", 986 | " \n", 987 | " \n", 988 | " \n", 989 | " \n", 990 | " \n", 991 | " \n", 992 | " \n", 993 | " \n", 994 | " \n", 995 | " \n", 996 | " \n", 997 | " \n", 998 | " \n", 999 | " \n", 1000 | " \n", 1001 | " \n", 1002 | " \n", 1003 | " \n", 1004 | " \n", 1005 | " \n", 1006 | " \n", 1007 | " \n", 1008 | " \n", 1009 | " \n", 1010 | " \n", 1011 | " \n", 1012 | " \n", 1013 | " \n", 1014 | " \n", 1015 | " \n", 1016 | " \n", 1017 | " \n", 1018 | " \n", 1019 | " \n", 1020 | " \n", 1021 | " \n", 1022 | " \n", 1023 | " \n", 1024 | " \n", 1025 | " \n", 1026 | " \n", 1027 | " \n", 1028 | " \n", 1029 | " \n", 1030 | " \n", 1031 | " \n", 1032 | " \n", 1033 | " \n", 1034 | " \n", 1035 | " \n", 1036 | " \n", 1037 | " \n", 1038 | " \n", 1039 | " \n", 1040 | " \n", 1041 | "
House Price Index (a)(b): Brisbane, Sydney and Melbourne, 2002–03 to 2018–19Unnamed: 1Unnamed: 3Unnamed: 5
42002–0352.678.254.1
52003–0469.787.560.1
62004–0572.684.161.2
72005–0675.481.663.9
82006–0783.183.670.4
92007–0898.889.184.1
102008–0997.485.883.5
112009–10105.797.8100.2
122010–11104.6102.2104.8
132011–12100.0100.0100.0
142012–13101.8104.4100.5
152013–14108.0120.4110.3
162014–15113.2140.0118.1
172015–16118.4157.3131.2
182016–17123.2175.4148.9
192017–18126.6178.8162.1
202018–19126.1163.5149.7
\n", 1042 | "
" 1043 | ], 1044 | "text/plain": [ 1045 | " House Price Index (a)(b): Brisbane, Sydney and Melbourne, 2002–03 to 2018–19 \\\n", 1046 | "4 2002–03 \n", 1047 | "5 2003–04 \n", 1048 | "6 2004–05 \n", 1049 | "7 2005–06 \n", 1050 | "8 2006–07 \n", 1051 | "9 2007–08 \n", 1052 | "10 2008–09 \n", 1053 | "11 2009–10 \n", 1054 | "12 2010–11 \n", 1055 | "13 2011–12 \n", 1056 | "14 2012–13 \n", 1057 | "15 2013–14 \n", 1058 | "16 2014–15 \n", 1059 | "17 2015–16 \n", 1060 | "18 2016–17 \n", 1061 | "19 2017–18 \n", 1062 | "20 2018–19 \n", 1063 | "\n", 1064 | " Unnamed: 1 Unnamed: 3 Unnamed: 5 \n", 1065 | "4 52.6 78.2 54.1 \n", 1066 | "5 69.7 87.5 60.1 \n", 1067 | "6 72.6 84.1 61.2 \n", 1068 | "7 75.4 81.6 63.9 \n", 1069 | "8 83.1 83.6 70.4 \n", 1070 | "9 98.8 89.1 84.1 \n", 1071 | "10 97.4 85.8 83.5 \n", 1072 | "11 105.7 97.8 100.2 \n", 1073 | "12 104.6 102.2 104.8 \n", 1074 | "13 100.0 100.0 100.0 \n", 1075 | "14 101.8 104.4 100.5 \n", 1076 | "15 108.0 120.4 110.3 \n", 1077 | "16 113.2 140.0 118.1 \n", 1078 | "17 118.4 157.3 131.2 \n", 1079 | "18 123.2 175.4 148.9 \n", 1080 | "19 126.6 178.8 162.1 \n", 1081 | "20 126.1 163.5 149.7 " 1082 | ] 1083 | }, 1084 | "execution_count": 5, 1085 | "metadata": {}, 1086 | "output_type": "execute_result" 1087 | } 1088 | ], 1089 | "source": [ 1090 | "#This analysis focuses on House price index alone, hence dropping Annual % change column \n", 1091 | "#(Unnamed:2,Unnamed:4, Unnamed:6)\n", 1092 | "data1 = data1.drop(columns = [\"Unnamed: 2\", 'Unnamed: 4','Unnamed: 6' ])\n", 1093 | "data1" 1094 | ] 1095 | }, 1096 | { 1097 | "cell_type": "code", 1098 | "execution_count": 6, 1099 | "metadata": { 1100 | "collapsed": true 1101 | }, 1102 | "outputs": [ 1103 | { 1104 | "data": { 1105 | "text/html": [ 1106 | "
\n", 1107 | "\n", 1120 | "\n", 1121 | " \n", 1122 | " \n", 1123 | " \n", 1124 | " \n", 1125 | " \n", 1126 | " \n", 1127 | " \n", 1128 | " \n", 1129 | " \n", 1130 | " \n", 1131 | " \n", 1132 | " \n", 1133 | " \n", 1134 | " \n", 1135 | " \n", 1136 | " \n", 1137 | " \n", 1138 | " \n", 1139 | " \n", 1140 | " \n", 1141 | " \n", 1142 | " \n", 1143 | " \n", 1144 | " \n", 1145 | " \n", 1146 | " \n", 1147 | " \n", 1148 | " \n", 1149 | " \n", 1150 | " \n", 1151 | " \n", 1152 | " \n", 1153 | " \n", 1154 | " \n", 1155 | " \n", 1156 | " \n", 1157 | " \n", 1158 | " \n", 1159 | " \n", 1160 | " \n", 1161 | " \n", 1162 | " \n", 1163 | " \n", 1164 | " \n", 1165 | " \n", 1166 | " \n", 1167 | " \n", 1168 | " \n", 1169 | " \n", 1170 | " \n", 1171 | " \n", 1172 | " \n", 1173 | " \n", 1174 | " \n", 1175 | " \n", 1176 | " \n", 1177 | " \n", 1178 | " \n", 1179 | " \n", 1180 | " \n", 1181 | " \n", 1182 | " \n", 1183 | " \n", 1184 | " \n", 1185 | " \n", 1186 | " \n", 1187 | " \n", 1188 | " \n", 1189 | " \n", 1190 | " \n", 1191 | " \n", 1192 | " \n", 1193 | " \n", 1194 | " \n", 1195 | " \n", 1196 | " \n", 1197 | " \n", 1198 | " \n", 1199 | " \n", 1200 | " \n", 1201 | " \n", 1202 | " \n", 1203 | " \n", 1204 | " \n", 1205 | " \n", 1206 | " \n", 1207 | " \n", 1208 | " \n", 1209 | " \n", 1210 | " \n", 1211 | " \n", 1212 | " \n", 1213 | " \n", 1214 | " \n", 1215 | " \n", 1216 | " \n", 1217 | " \n", 1218 | " \n", 1219 | " \n", 1220 | " \n", 1221 | " \n", 1222 | " \n", 1223 | " \n", 1224 | " \n", 1225 | " \n", 1226 | " \n", 1227 | " \n", 1228 | " \n", 1229 | " \n", 1230 | " \n", 1231 | " \n", 1232 | " \n", 1233 | " \n", 1234 | " \n", 1235 | " \n", 1236 | " \n", 1237 | " \n", 1238 | " \n", 1239 | " \n", 1240 | " \n", 1241 | " \n", 1242 | " \n", 1243 | " \n", 1244 | " \n", 1245 | " \n", 1246 | " \n", 1247 | " \n", 1248 | " \n", 1249 | " \n", 1250 | " \n", 1251 | "
Financial_YearBrisbane_HPISydney_HPIMelbourne_HPI
42002–0352.678.254.1
52003–0469.787.560.1
62004–0572.684.161.2
72005–0675.481.663.9
82006–0783.183.670.4
92007–0898.889.184.1
102008–0997.485.883.5
112009–10105.797.8100.2
122010–11104.6102.2104.8
132011–12100.0100.0100.0
142012–13101.8104.4100.5
152013–14108.0120.4110.3
162014–15113.2140.0118.1
172015–16118.4157.3131.2
182016–17123.2175.4148.9
192017–18126.6178.8162.1
202018–19126.1163.5149.7
\n", 1252 | "
" 1253 | ], 1254 | "text/plain": [ 1255 | " Financial_Year Brisbane_HPI Sydney_HPI Melbourne_HPI\n", 1256 | "4 2002–03 52.6 78.2 54.1\n", 1257 | "5 2003–04 69.7 87.5 60.1\n", 1258 | "6 2004–05 72.6 84.1 61.2\n", 1259 | "7 2005–06 75.4 81.6 63.9\n", 1260 | "8 2006–07 83.1 83.6 70.4\n", 1261 | "9 2007–08 98.8 89.1 84.1\n", 1262 | "10 2008–09 97.4 85.8 83.5\n", 1263 | "11 2009–10 105.7 97.8 100.2\n", 1264 | "12 2010–11 104.6 102.2 104.8\n", 1265 | "13 2011–12 100.0 100.0 100.0\n", 1266 | "14 2012–13 101.8 104.4 100.5\n", 1267 | "15 2013–14 108.0 120.4 110.3\n", 1268 | "16 2014–15 113.2 140.0 118.1\n", 1269 | "17 2015–16 118.4 157.3 131.2\n", 1270 | "18 2016–17 123.2 175.4 148.9\n", 1271 | "19 2017–18 126.6 178.8 162.1\n", 1272 | "20 2018–19 126.1 163.5 149.7" 1273 | ] 1274 | }, 1275 | "execution_count": 6, 1276 | "metadata": {}, 1277 | "output_type": "execute_result" 1278 | } 1279 | ], 1280 | "source": [ 1281 | "#Renaming the columns\n", 1282 | "data1 = data1.rename(columns={'House Price Index (a)(b): Brisbane, Sydney and Melbourne, 2002–03 to 2018–19' : 'Financial_Year', \"Unnamed: 1\": \"Brisbane_HPI\", \"Unnamed: 3\" :\"Sydney_HPI\", \"Unnamed: 5\":\"Melbourne_HPI\"})\n", 1283 | "data1" 1284 | ] 1285 | }, 1286 | { 1287 | "cell_type": "code", 1288 | "execution_count": 7, 1289 | "metadata": { 1290 | "collapsed": true 1291 | }, 1292 | "outputs": [ 1293 | { 1294 | "name": "stdout", 1295 | "output_type": "stream", 1296 | "text": [ 1297 | "\n", 1298 | "RangeIndex: 17 entries, 4 to 20\n", 1299 | "Data columns (total 4 columns):\n", 1300 | "Financial_Year 17 non-null object\n", 1301 | "Brisbane_HPI 17 non-null object\n", 1302 | "Sydney_HPI 17 non-null object\n", 1303 | "Melbourne_HPI 17 non-null object\n", 1304 | "dtypes: object(4)\n", 1305 | "memory usage: 676.0+ bytes\n" 1306 | ] 1307 | } 1308 | ], 1309 | "source": [ 1310 | "#viewing pre-processed dataset\n", 1311 | "data1.info()" 1312 | ] 1313 | }, 1314 | { 1315 | "cell_type": "code", 1316 | "execution_count": 8, 1317 | "metadata": { 1318 | "collapsed": true 1319 | }, 1320 | "outputs": [ 1321 | { 1322 | "name": "stdout", 1323 | "output_type": "stream", 1324 | "text": [ 1325 | "\n", 1326 | "RangeIndex: 17 entries, 4 to 20\n", 1327 | "Data columns (total 4 columns):\n", 1328 | "Financial_Year 17 non-null object\n", 1329 | "Brisbane_HPI 17 non-null float64\n", 1330 | "Sydney_HPI 17 non-null float64\n", 1331 | "Melbourne_HPI 17 non-null float64\n", 1332 | "dtypes: float64(3), object(1)\n", 1333 | "memory usage: 676.0+ bytes\n" 1334 | ] 1335 | } 1336 | ], 1337 | "source": [ 1338 | "#converting datatypes of Brisbane_HPI, Sydney_HPI, Melbourne_HPI to float (for easy plotting)\n", 1339 | "\n", 1340 | "data1['Brisbane_HPI'] = data1.Brisbane_HPI.astype(float)\n", 1341 | "data1['Sydney_HPI'] = data1.Sydney_HPI.astype(float)\n", 1342 | "data1['Melbourne_HPI']= data1.Melbourne_HPI.astype(float)\n", 1343 | "data1.info()" 1344 | ] 1345 | }, 1346 | { 1347 | "cell_type": "markdown", 1348 | "metadata": {}, 1349 | "source": [ 1350 | "VISUALISATION" 1351 | ] 1352 | }, 1353 | { 1354 | "cell_type": "code", 1355 | "execution_count": 9, 1356 | "metadata": { 1357 | "collapsed": true 1358 | }, 1359 | "outputs": [ 1360 | { 1361 | "data": { 1362 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAE4CAYAAACAOFMOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3yT1RrA8d9J000pdLBHGWUrFylDRECGioIyFPW6wIGCiiLgwAsKiKKAIiLOi1sBgaJXAWWILBUpUJBddimlFLroSJvk3D/eFENJWwpJBzzfzycfknec8yQNfZ+e9wyltUYIIYQQorwwlXUAQgghhBDOJDkRQgghRLkiyYkQQgghyhVJToQQQghRrkhyIoQQQohyRZITIYQQQpQrkpxc4ZRS/ZVSR5VSZ5RSbVzs10qpxiUo716l1C8XcNxnSqlXSxpvRaCUinB8buayjuViKaUGK6XWlVJdZ79jl/P3Qghx4SQ5KQeUUoeUUj0LbDvn4uA4JtuRRJxQSn2qlKrk2LdaKfXIRVY/DXhSa11Ja73l4t+FQWv9tdb6xkstRwghxJVLkpOKpa/WuhJwDdAO+I8byqwP7HBDOVTklgJxZZHvqhDlmyQnFZDW+hiwFGhV3LFKKZNS6j9KqcNKqSSl1BdKqWCllK9S6gzgBcQqpfYXUcwtSqkDSqlkpdRUpZTJUfZgpdR6pdTbSqnTwCvOLT7K8Laj3jSl1DallHPMYUqp5UqpDKXUb0qp+k5xv+O43ZSulIpRSl3vtO8VpdR8x3vJUErtUEpFOe2vpZRaqJQ6qZQ6qJQacYEfLUqp55VSxxzl7lFK9VBK1VBKZSmlQp2Oa+so31sp5aWUmub4fA4AtxYoc7VSapLjs8pQSv2ilApz2t9RKbVBKZWqlIpVSnVzbL9TKRVToKxRSqnFhcQ+RCm1y1HHAaXUY077uiml4h3nJymljiulhjjtD1VK/eD4vDcCjYr4jPJvWw1x/IxSlFKPK6XaOX7GqUqpWQXOecgRW4pS6mfnn7ULRX0vOiml/nJ8n/5SSnVy2ndOC6Tje/JVgZgfVkodAVY5bXtQKXXE8fN7yel8k1LqBaXUfqXUKcd3LqSIuIUQbiLJSQWklKoL3AJcyG2YwY7HDUBDoBIwS2ttcbTCALTWWhd6MQL6A1EYLTa3Aw857esAHACqAZMLnHcj0AVoAlQB7gJOOe2/F5gEhAFbga+d9v0F/AsIAb4BvlNK+Tntvw2Y6yj3B2AWGBcU4H9ALFAb6AE8o5S6qYj3h+PcpsCTQDutdRBwE3BIa50IrAYGOR1+HzBXa50HPAr0AdpgfE53uCj+38AQjM/JBxjtqLM28BPwquO9jgYWKqXCHe+rgVKqeYF6vyzkLSQ54qjsqOttpdQ1TvtrAMEYn8vDwHtKqaqOfe8BOUBNjJ+v88+4MB2ASIyf6wzgJaAn0BIYpJTq6niP/YCxwAAgHFgLfFtEuS6/F47E4CdgJhAKvAX85Jw0XoCuQHOMn22+zkBTjO/KeKfPewTQz3FOLSAF43MSQnia1loeZfwADgFngFSnRxawrpBjDgOzAX/HvtXAI4WUvRIY7vS6KZAHmB2vNdC4iNg0cLPT6+HASsfzwcCRAscPzo8b6A7sBToCpgLHfYZxcc9/XQmwAXULiSMFI4kCeAVY4bSvBZDteN7BRUwvAp9ewM+hMcYFvifgXWDfXcB6x3MvIBFo73i9Cnjc6dgbHZ9b/me8GvhPgc9wmeP588CXBer6GXjQ8fx9YLLjeUvH5+B7gd+rxcDTjufdgOz8mBzbkhw/Gy/Hd6KZ077XnL9/BcqNcLy/2k7bTgF3Ob1eCDzjeL4UeNhpnwnj+12/4HewqO8FcD+wsUAsvwODnf6P9HTa9wrwVYGYG7p4H3Wctm0E7nY83wX0cNpXE6f/O/KQhzw895CWk/Kjn9a6Sv4D4wJW2DH1tdbDtdbZF1BuLYxkJt9hwAxUL0FsRwucX6uQfefQWq/CaNF4DzihlPpIKVXZ1bla6zPA6fyyHbcfdjma71Mx/uIPczo30el5FuCnjH4E9YFajlsLqY5zx3IB71drHQc8g3FRS1JKzVVK5b/X74EWSqmGQC8gTWu90bGvFud/RgUVjDe/1ao+cGeBeDtjXAgBPgf+rZRSGBfn+Vpri6v4lVK9lVJ/KKVOO8q5hXM/s1Naa6uLOMIxvhPFvYeCTjg9z3bx2vk9vuP0/k4DCqMFx5XCvhcFv8v5cRZWTpFlOynqZxPtFPcujESpJP93hBAXQZKTy18Cxi/ZfPUAK+deSIpTt8D5CU6vi1zWWms9U2vdFuOv/ibAGFflKmPkUQiQoIz+Jc9j3Eap6kjW0jAuaMU5Chx0TvS01kFa61su4Fy01t9orTtjfGYaeMOxPQeYj3HL4X7OvbVynPM/owt1FKPlxDneQK31FEe9fwC5wPUYt4Zc3tJRSvlitFZMA6o7PrMlXNhndhLjO3Gx76E4R4HHCrxHf631hkKOd/m94Pzvcn6cxxzPM4EAp301XJRdkmXYjwK9C8Ttp40+X0IID5Lk5PL3LTBSKdXA8Yv+NWBegb+gizNGKVXV0dflaWDehZzk6CDZQSnljXHhyMH4yzPfLUqpzkopH4w+Bn9qrY8CQRgXy5OAWSk1HqMfxYXYCKQro2OrvzI6q7ZSSrVzxNRNKeXyAqWUaqqU6u640Odg/PXvHO8XGLetbgO+cto+HxihlKrj6MPxwgXGiqOcvkqpmxyx+jlirFOg3lmAVWtd2NwjPoAvjkRDKdUb4/ZSsbTWNmARRofmAKVUC+DBEryH4nwAvKiUagmgjA7ZdxZxfGHfiyVAE6XUv5VSZqXUXRi39H50nLcVuFsZnZQL6/tT0rgn53fIVUqFK6Vuv8QyhRAXQIbTXf7mYDSHrwH8MPozPFXCMr4HYjBurXwG/PcCz6sMvI3RETfHUfc0p/3fAC8D1wKbMVolcBy3FKO/SqajjEJvHznTWtuUUn2B6cBBjAv2Hv4Zdl0Xo5+CK77AFIwOk3nABmCoU9nrlVJ2YLPW+pDTeR9jtArFAumO99j9AuM96rjgvYmRSNowEqxhTod9iXGRnlREORnKGJU03/E+/ofRofZCPQl8inGLY7fj+Q0lOL9QWutoR2I813GhTwOWA98VcorL74XW+pRSqg/wDkZfnDigj9Y62XHeOIzPMAX4zVHOpYyueQej5ekXx+29JIzE/PtLKFNUIDExMdXMZvMnGCMj5Y9597EDf1ut1kfatm2b5OoApXVJWjmFqNiUUp8A32mtf77I81cB32itP3FvZEXW6Y9xYbxGa72vtOoV4koXGxv7Q40aNZqHh4enm0wmuVi6id1uVydPngxOTEzc2bp169tcHSMtJ+KKorW+2Jl0cdwayh9OXZqGAX9JYiJEqWsVHh6eIomJe5lMJh0eHp6WmJhY6FxdkpwIcQGUUp9jzHnxtNY6oxTrPYRxa6FfadUphDjLJImJZzg+10JvlUlyIsQF0Fq7s4NoSeqNKIt6hRCiLEkHHyGEEKKc8vLyatusWbMWTZs2bdGiRYvmy5cvDyzs2DZt2jQrqqyAgIDzVp4vryp0y0lYWJiOiIgo6zCEEKJCiYmJSdZah5d1HJebr/44HDJz5b7aJzMsPuFBvrkjekQeu69j/dOXUqavr6999+7dOwEWLlxYeezYsXV69eq1x/kYq9WK2Wxmy5Ytuy+lrvKkQicnERERbNq0qazDEEKICkUpdSEzAIsS+OqPwyGTftxZ32K1mwCSMiw+k37cWR/gUhOUfGlpaV7BwcFWgB9//DFo0qRJNatVq5a3c+fOgP379+8ICAhok5WVteXw4cPeAwcObHjmzBkvm82m3n333cM333zzGYBHH320zvr164OCg4NtCxcuPFCrVi3r9OnTwz799NPwvLw8FRERYVmwYMHBoKAg+8CBAyOCgoJssbGxgSdPnvSeNGlS/JAhQ1IAxo0bVz06OjokNzdX3Xrrralvv/12QlGxl1SFTk6EEEKI0jBmQWzdvYkZAYXt33k8PTDPps+ZkdlitZsm/G9HxHebjrpspWpSIyhr6h2ti5zDyWKxmJo1a9bCYrGo5ORk7yVLluzN37dt27bALVu27GjWrFmu8zlz5swJ6dGjR9obb7yRaLVaycjIMAFkZ2ebrrnmmqyPP/44fvTo0TVfeOGFWl988cWRe++9N2XUqFHJACNGjKg1c+bMsJdeeikJ4MSJE96bNm3avXXrVr/+/fs3HjJkSMqiRYsqx8XF+W3btm2X1pqePXs2Xrp0aaXevXufKe5zvFCSnAghhBCXqGBiUtz2C+V8W2fFihWBQ4YMabB3794dAFdffXVmwcQEoGPHjpmPPfZYRF5enumOO+5I6dSpUzaAyWTikUceOQ3w0EMPnRowYEBjgJiYGP/x48fXzsjI8MrMzPTq2rVrWn5Zt912W6qXlxdt27bNOXXqlDfAsmXLKq9Zs6ZyixYtWgBkZWWZdu/e7SfJiRBCCFGKimvhaD95xVVJGRafgturBfnmfv9k5z2uzimpnj17ZqakpJiPHz9uBggICLC7Oq53795n1qxZs2fhwoXBgwcPbjBixIgTTz755KmCxxnricLQoUMbLFiwIO7aa6/NnjlzZuhvv/0WlH+Mn5/f2aHU+ZO2aq155plnjo8ZMya5YJnu4rHROkqpOUqpJKXU307b/uVYNXWrUmqTUqq9Y7tSSs1USsUppbYppa7xVFxCCCGEu43oEXnM12w6J1nwNZvsI3pEum2hyC1btvjZ7XaqV69e5Npoe/fu9aldu3beqFGjku+7777kzZs3BwDY7XY+/fTTqgCfffZZaPv27TPAaPmoV69ensViUXPnzi12yYfevXunf/nll2FpaWkmgIMHD3ofO3bMrY0dnmw5+QxjsbIvnLa9CUzQWi9VSt3ieN0N6A1EOh4dMNbN6ODB2IQQQgi3ye/06u7ROvl9TsBosXj//fcPmc1FX7p//vnnoJkzZ9Ywm806ICDA9vXXXx8E8Pf3t+/YscO/ZcuWNYKCgmyLFi06APDCCy8ktG/fvnnt2rVzmzdvnnXmzBmvosofMGBA+o4dO/zatWvXDIwWnK+//vpg7dq1S7KgbJE8uraOUioC+FFr3crx+mdgjtZ6nlLqHqCv1vrfSqkPgdVa628dx+0BummtjxdVflRUlJbROkKIcm1qJGS6WNsssBqMKZsVCZRSMVrrqDKpvAKJjY091Lp1a4/durjSxcbGhrVu3TrC1b7S7nPyDPCzUmoaxi2lTo7ttTl31dl4x7bzkhOl1FAcK8XWq1fPo8EKIcQlc5WYFLVdCFHqM8QOA0ZqresCI4H/Ora76s3ssklHa/2R1jpKax0VHi5zCAkhhBCXm9JuOXkQeNrx/Dsgf9n5eKCu03F1ALdO6CKEEKUm/TjsXwlxK8s6EiEqpNJOThKArsBqoDuQf8P1B+BJpdRcjI6wacX1NxFCiHLDaoEjf0DcCti/Ck44BilWql62cQlRQXksOVFKfYsxEidMKRUPvAw8CryjlDIDOTj6jgBLgFuAOCALGOKpuIQQwi1OHzBaRuJWwMG1kJcJJm+o1xF6ToDGPaB6K5hQpawjFaLC8VhyorW+p5BdbV0cq4EnPBWLEEKUSGEjbPyC4apBxi2b0weMbVXqw7/ugUY9oMH14Bt07jmB1VyX5VvZ/XELcZmQGWKFEKKgwkbS5KTB1q8h4nroMMxoHQlpCKqIGcoLDhe2WuCzW+HETuNRvYX74haXneeff77GwoULQ00mkzaZTMyePftw9+7dM4s7b+bMmaGbNm0K/OKLL46URpzuJsmJEEKUxPOHwOx78eebfWHQl/BhF5h3Lzz6K/jLrZ8K740Grck+ff411T/EyvMHYy+myBUrVgT+/PPPVbZv377T399fHz9+3GyxWC5prZ6KorSHEgshRMV2KYlJvso1YdAXkHoEFg0Fu8slUkRF4ioxKWr7BTh27Jh3SEiI1d/fXwPUrFnTGhsb69erV69G+cdER0dXvvHGGxsBvPPOO6ERERGt2rVr13TDhg2V8o8ZOHBgxODBg+u2adOmWZ06da7Kn8IeYNy4cdVbtWrVvEmTJi1GjhxZC+Dpp5+uNWnSpGr5xzz11FO1X3311bOvS4O0nAghRFmofy3cPAWWjIbfpsANY8s6IlGUxU/UJWlnwEWd+9ENTV1ur9Yii37vFbqgYL9+/dJff/31WhEREa06d+6cfs8995zu27dvxjPPPFMvISHBXKtWLeucOXNCBw8enHz48GHvKVOm1IqJidkVEhJi69SpU9NWrVpl5Zd14sQJ702bNu3eunWrX//+/RsPGTIkZdGiRZXj4uL8tm3btktrTc+ePRsvXbq00vDhw5P79+/faNy4cUk2m43FixdX/euvv3Zd1Hu/SNJyIoQQzhK3l15d7R6B1v+G396A3UtKr15RIQQHB9v//vvvnbNmzTocHh5uffDBBxvNmjUrdNCgQac+/vjjkOTkZK/NmzdXuvPOO9PWrFkT2LFjx4xatWpZ/fz89IABA85Z0+e2225L9fLyom3btjmnTp3yBli2bFnlNWvWVG7RokWLli1btti/f7/f7t27/Zo2bZpbpUoV6/r16/2jo6Mrt2zZMqtGjRq20nzv0nIihBD5rLmweBjGpNUuJqkOdHPLtlLQ5y1I2gHRj8GjqyAs0r11CPcoooUDgFeCzxuJetbQX/dcbLVms5k+ffpk9OnTJ+Pqq6/O/vLLL0PnzJlz+NZbb23s5+en+/btm+Lt7Q2AKqJjtp+f39kvdP6aelprnnnmmeNjxow5b/2gIUOGJH/yySdhSUlJ3kOGDDl1sfFfLGk5EUKIfGunGy0nd38Nr6Sd//DEQn3e/nDXV+DlDXPvBUuG++sQFVJsbKzv9u3bz3Zy2rJli3+dOnVyIyIi8qpXr543ffr0mo8++mgyQJcuXTL/+OOPoMTERC+LxaKio6OrFl6yoXfv3ulffvllWFpamgng4MGD3seOHTMD3H///am//vprcGxsbODAgQPTPPUeCyMtJ0IIAXA8FtZOg6vvgma3lm7dVerBHZ/Cl/2MlptBXxY9PFmUP/4h1kJH61yk9PR0rxEjRtRLT0/38vLy0hEREZbPP//8MMDdd9996r333jO3bds2B6B+/fp5zz//fELHjh2bh4eH51199dVZNputyC/RgAED0nfs2OHXrl27ZgABAQH2r7/++mDt2rWtfn5+ulOnTulVqlSxmc2lnyqo/OadiigqKkpv2rSprMMQQlR01lz4qBtknYLhv0NASNnEseFd+OU/0GM8XD/KY9UopWK01lEeq+AyERsbe6h169bn3fIoDx544IF6bdq0yRo5cqRH4rPZbLRs2bLFd999t/+qq66yeKKO2NjYsNatW0e42ie3dYQQYs2bRr+Pvu+UXWICcO2T0GogrJxkTIsvhAstW7ZsvnPnTv/HH3/cI31BYmJi/OrXr3/V9ddfn+6pxKQ4cltHCHFlO7YZ1r5ljJppenPZxqIU3PYuJO2GBQ/D0NUQ0qBsYxLlzo4dOzw6rLdt27Y58fHxpThs7XzSciKEuHJZLbB4OFSqBje/XtbRGHwC4e6vAA3z7ofcrGJPEeJyI8mJEOLKtXoKnNxltFaUpynkQxrCwDlw4m/43wiowH0DhbgYkpwIIa5M8TGwfga0uR8ie5V1NOeL7AndX4Lt38Efs8s6GiFKlSQnQogrT14OLH4cgmrCTZPLOprCdR4FzfrAL+Pg4JqyjkaIUiPJiRDiyvPrZEjea9zO8Qsu62gKZzJBv/chtBF8NwTS4ss6IlGMHck7/G5ZdEuLHck7/NxRnlKqbb9+/c72is7Ly6Nq1aqtb7jhhsZFnffjjz8G5R/z7LPP1ho/fnx1d8RTWiQ5EUJcWY5uhN9nQdvB0LhHWUdTPL/KcPc3RufdefcZrT6iXDqTe8b05KonI+Mz4v2fWvVU5JncM5d8jfX397fv2bPH/8yZMwqMVYirV6+ed+nRXjqr9aLnlyuWJCdCiCtHXrYxA2vlOnDjq2UdzYULi4QBH0LCFphcHV4JPvcxVdbjKQ/GrBkTkWZJ89ZoUi2p3s+tea6+O8rt0aNH2nfffVcF4Ntvvw0ZOHDg2UX90tPTTXfeeWdEq1atmjdv3rzFV1995bJn97Zt2wI6duzYpH79+q2mT58eBmC323nsscfqREZGtmzSpEmLjz/+uCqc2+oCxoRvM2fODAWoXbv2VaNHj67Ztm3bpnPmzKnavn37psOGDat91VVXNY+IiGi1bNmySmAkLo899lidVq1aNW/SpEmLqVOnhpXkPcs8J0KIK8eqV+FUHDzwPfgGlWrVcSlxjF4zmmldptG4apEt8q4VNaV+ZtLFByYuyLj14+rGpcQFFLb/dM5p8/HM437asWBknj1PrTu2LuSmBTcFhPi5nsK+cdXGWZOum1T0goLA/ffff/rll1+uedddd6Xu2rUr4OGHHz61YcOGSgBjx46tecMNN6R/9913h5KTk72ioqKa33bbbekFy9i1a5d/TEzMroyMDK82bdq0GDhwYNrq1asDt2/f7r9r164dx48fN7dv3775jTfeeKa4ePz8/OwxMTF7AD755JNqVqtVbd++fde8efOCJ06cWOvmm2/eO2PGjLDg4GDb33//vSs7O1u1a9euWd++fdObNWuWW1z5IC0nQogrxeHf4ff3IOphaNitVKvOysti+MrhHEg9wBMrnyArT+YuudycyDrhqwusZK3RnMg64VvIKResQ4cO2fHx8b4ff/xxSM+ePc9ZhG/16tWV33777ZrNmjVr0blz56YWi0XFxcX5FCyjd+/eqZUqVdI1a9a0Xnvttelr164NXLt2bdCgQYNOm81m6tata+3QocOZdevWFZqA5XvggQdSnF/feeedKQCdOnXKjI+P9wFYsWJF5fnz54c2a9asRZs2bZqnpKSYd+7cecH9cKTlRAhx+cvNgu+HQ5W60GtiqVc/fsN4TuecRqM5lX2Klze8zNSuU0s9DnHximvh+HLnl6HvbH6nnsVmOftHv6+Xr/2Zts8cua/5fZc8zfzNN9+c+vLLL9f95Zdf9iQlJZ29dmutWbBgQVzr1q3PmWY+ISHB2/m1KrCQpFKKwtbW8/b21na7/exri8VyzslBQUF259d+fn4awGw2k7/YoNZaTZ8+/cjAgQPPa8W5ENJyIoS4/K2cCKcPwO2zwbdSqVYdvS+aNfFrsNiMa4fFbmH10dVE74su1TiEZ93f4v5T7Wq0S/M2eWsAb5O3bl+jfao7EhOAYcOGJY8aNSqhffv22c7bb7jhhvTp06dXz08m1q9f7+/q/KVLl1bJyspSiYmJXn/88UdQ586dM7t27ZqxYMGCEKvVSkJCgnnjxo2Vrr/++sxGjRpZ4uLi/LOzs9WpU6e81q1bV7mk8fbq1Svt/fffD89PbLZt2+abnp5+wTmHtJwIIS5vh9bBn+9D+6HQ4PpSr37G5hlkW8+5npBjy2HG5hn0j+xf6vEIz5naZeqhvov7tkzOTvap4lsl780ubx52V9mNGjXKGzdu3Hmdi6ZMmZIwdOjQes2aNWuhtVZ16tSx/Prrr3EFj2vTpk1mjx49IhMSEnxGjx59PCIiIq9evXqpGzZsqNS8efOWSik9YcKE+Hr16lkB+vbtm9K8efOWDRo0yGnZsmWJ70OOHDky+dChQ75XXXVVc621CgkJyVuyZMn+Cz1fFdasc6mUUnOAPkCS1rqV0/angCcBK/CT1vo5x/YXgYcBGzBCa/1zcXVERUXpTZs2eSJ8IcTlwHIGPrjOeD5sg7FuTSmb/Mdk5u6Ze842Py8/Xur4Ev0a9ytZYVMjXXd+DawGY/ZdcDFKqRitdVTJKr/yxMbGHmrdunVySc7ZkbzDb8yaMQ2ndpl6oGVYSxn3XYTY2Niw1q1bR7ja58mWk8+AWcAX+RuUUjcAtwNXa60tSqlqju0tgLuBlkAtYIVSqonW2ubB+IQQl7sVr0DKYRiypEwSk43HN7Jw30KCfYPJtmaTazMGKphNZrrW6VryAkuQgIiy0TKsZc6SAUt2lnUcFZ3H+pxordcApwtsHgZM0VpbHMfk/wlwOzBXa23RWh8E4oD2nopNCHEFOPAb/PUxdBwG9TuVevU7Tu1gxK8jqF+5Pgv6LiDULxSFItQvlFxbLkOXDyXNklZ8QUJcgUq7Q2wT4Hql1J9Kqd+UUu0c22sDzj2h4x3bzqOUGqqU2qSU2nTy5EkPhyuEqJAsGfDDkxDSCLqPK/XqD6UdYviK4QT7BPNBzw+oEViD2T1m07BKQz658RNmdp/J/tT9DF0+lPTcixrMIEqH3W63q+IPEyXl+Fzthe0v7eTEDFQFOgJjgPnKGN/k6ofvsjOM1vojrXWU1joqPDzcc5EKISqWqZH/zJj6eh1IPQKn98M7rUs1jMTMRIYuHwrAh70+pHqgsaRJ46qNWXz7YhpXbcx1ta/j7W5vszdlL8OWD+NMbrHzXomy8ffJkyeDJUFxL7vdrk6ePBkM/F3YMaU9WiceWKSNXrgblVJ2IMyxva7TcXWAhFKOTQhRkRU2S2opzp6ampPK48sfJz03nTk3zSEiOKLQY7vW7cq0rtMYvXo0w1cO54OeHxDgXez8V6IUWa3WRxITEz9JTExshUy94U524G+r1fpIYQeUdnKyGOgOrFZKNQF8gGTgB+AbpdRbGB1iI4GNpRybEEJctKy8LJ5Y+QRHM47yQa8PaBHaothzetTrwRtd3uC5Nc8xfOVwZveYLQlKOdK2bdsk4LayjuNK5LFMUCn1LfA70FQpFa+UehiYAzRUSv0NzAUe1IYdwHxgJ7AMeEJG6gghKoo8Wx4jV4/k71N/82bXN2lXo13xJzncGHEjr3V+jS1JWxixagQ5Vhl9KoTHWk601vcUsuu+Qo6fDEz2VDxCCOEJNruNsevGsiFhAxM7TaRHvR4lLuOWhrdg0zZeWvcST//6NDO7z8TX65KXZBGiwpJ7aEKIii/tWJlUq7Xm9Y2vs+zQMka2HXlJM772bdSXCZ0msCFhAyN/HXl2ThQhrkSSnAghKpbmTrQAACAASURBVDa7HRY/Xvj+wGoeq3p27Gzm7ZnHkJZDeKjVQ5dcXv/I/oy/djxrj61l1G+jyLPluSFKISoeWVtHCFGx/fk+HFwDfWdC2wdLrdqvd33NB7Ef0L9xf0a2Hem2cu9scidWu5XX/nyN59Y8x5td38Tb5F38iUJcRqTlRAhRcZ3YYUxR3/RWuOaBUqv2pwM/MWXjFLrX7c74a8eftxz9pbqn2T081+45VhxZwdi1Y7HarW4tX4jyTlpOhBAVU14OLHwU/KrAbTPBzQlCYdbGr+U/6/5DVPUo3uz6JmaTZ36N3t/ifqx2K2/FvIWXyYvJ103Gy+TlkbqEKG8kORFCVEyrJkHSDvj3dxAYVipVbk3ayrOrnyWyaiTvdn/X4yNqhrQagtVuZeaWmZiVmYnXTcSkpMFbXP7kWy6EqHgOrIbfZ0G7R6DJjaVS5d6UvQxfOZzqgdV5v+f7VPKpVCr1Pnr1owxrPYzv93/PxN8nYtd24lLi6Pd9P+JS4kolBiFKm7ScCCEqluwUiB4GoZHQa5JHq4pLiWP0mtGMiRrDuPXj8Pfy58NeHxLqH+rRegsa1noYVruVj7d/DMCGhA0kZibyxMoniL49WmaVFZcdSU6EEBWH1vDjs8Z6OfesAB/PXZSz8rIYvnL42SQgwBzA570/p3Yllwume5RSiqfaPIXVbuXTHZ/ipbzQaE5ln+LlDS8ztevUUo9JCE+S2zpCiIpj+3ewYxF0exFqtfFoVeM3jOdUzik0Gpu20SK0BZFVIz1aZ1GUUkQER2BWZmyO1T0sdgurj64mel90mcUlhCdIciKEqBhSj8BPo6BuR+jsvnlFXIneF82a+DXnzNIaezK2zJOAdza/g1WfO6w4x5bDjM0zyigiITxDkhMhRPlntxn9TLSGAR+Ch4fUztg8g2xr9jnbykMS8Mw1z+Bv9j9nm5+Xn1sngROiPJDkRAhR/m14Fw6vg1vehKoRHq/uziZ3nretPCQB/SP706VOl7NDmH1NvnSr241+jfuVaVxCuJskJ0KI8u14LKx6FVrcDq0LW+zcfSw2CysOr8DX5IuPlw9QvpKAiZ0mEuIXgkIR6h/KhE4TyjokIdxOkhMhRPmVl23MAhsYBn1mlMossO9ufpf9aft5s+ubhPqFlrskIMA7gNk9ZtOwSkPe6/GeDCMWlyUZSiyEKL9WvALJe+D+aAgI8Xh1fyX+xRc7v2BQk0F0r9edekH1GL1mNNO6TCtXSUDjqo1ZfPvisg5DCI+R5EQIUT7FrYA/P4AOw6BRd49Xl5mXybj146gTVIdRUaMASQKEKCuSnAghyp+s07D4CQhvDj1fLpUqp/41lYQzCXze+/Ny1UoixJVIkhMhRPmiNfxvBGSfhvsWgLd/8edcojXxa1i4byEPtXqINtU8O7mbEKJ40iFWCFG+bP0Gdv0Puv8Halzl8epSclIYv348kVUjeeJfT3i8PiFE8aTlRAhRfpw+CEufg4jr4donPV6d1ppJf0wiLTeND3t9eHbosBCibEnLiRCifLBZIfpxUF7Q732PzwILsOTgEpYfXs4T/3qCpiFNPV6fEOLCeKzlRCk1B+gDJGmtWxXYNxqYCoRrrZOVUgp4B7gFyAIGa603eyo2IUQ5MTXSWGG4oI+7w5h9Hq36ROYJJv85mdbhrRnccrBH6xJClIwnW04+A24uuFEpVRfoBRxx2twbiHQ8hgLvezAuIUR54SoxKWq7m2itGb9hPFa7lcmdJ2M2yR1uIcoTjyUnWus1wGkXu94GngO007bbgS+04Q+gilKqpqdiE0Jc2ebvmc+GhA082/ZZ6leuX9bhCCEKKNU+J0qp24BjWuvYArtqA0edXsc7trkqY6hSapNSatPJkyc9FKkQ4nJ1JP0I02Omc23Na7mr6V1lHY4QwoVSS06UUgHAS8B4V7tdbNMutqG1/khrHaW1jgoPD3dniEKIy5zNbuOldS9hVmYmXjcRVQpr9QghSq40W04aAQ2AWKXUIaAOsFkpVQOjpaSu07F1gIRSjE0IUdq0y78/POqzHZ+x9eRWxnYcS43AGqVevxDiwpRacqK13q61rqa1jtBaR2AkJNdorROBH4AHlKEjkKa1Pl5asQkhykDst4XvC6zm9ur2nN7DrK2z6FW/F7c2uNXt5Qsh3MeTQ4m/BboBYUqpeOBlrfV/Czl8CcYw4jiMocRDPBWXEKIcyDoNv/wH6naAIcvA5Nm/k3JtuYxdN5Zgn2DGdRwnt3OEKOc8lpxore8pZn+E03MNyLzRQlwplo+HnDTo87bHExOA92PfZ2/KXt7t/i5V/ap6vD4hxKWRGWKFEKXr8O+w5Uu49gmo3tLj1W1N2sqcv+cwIHIA3ep283h9QohLJ8mJEKL0WHPhx5EQXA+6Pu/x6rLyshi7biw1AmowJmqMx+sTQriHTIsohCg9v8+Ck7vgnnngE+jx6t6KeYv4jHj+e9N/qeRTyeP1CSHcQ1pOhBClI+UQ/PYmNO8LTc9b2cLt1h9bz7w987i/xf20q9HO4/UJIdxHWk6EEJ6nNSwZY6w0fPMbHq0qLiWOZ1c/S5oljYbBDRlxzQiP1ieEcD9JToQQnrfze9j3C9z0OgS7XJnCLbLyshi+cjjHM41pkt664S18vXw9Vp8QwjPkto4QwrNy0mHZC1Djamg/1KNVjd8wnpNZxppbXsqLubvnerQ+IYRnSHIihPCsXydDRiL0mQFenmusjd4Xzeqjq7FqKwA2bWP10dVE74v2WJ1CCM+Q5EQI4TkJW2DjR9DuEajT1qNVvRXzFhab5ZxtObYcZmye4dF6hRDuJ8mJEMIz7Db43zMQGA49xnm0qpScFLyU13nb/bz8GNl2pEfrFkK4nyQnQgjP+OsTOL4Vbn4d/II9Vk1mXibDVgzjTN4Z2lVvd7YDrK/Jl251u9GvcT+P1S2E8AxJToQQ7pd+HFZOgkY9oOUAj1VjsVkYsWoEu0/vZnrX6czqMYsQvxAUilD/UCZ0muCxuoUQniPJiRDC/Za9APY8uHUaeGgFYKvdypjfxrAxcSOvdn6VrnW7EuAdwOwes2lYpSHv9XiPAO8Aj9RdUou3HOO6Kato8MJPXDdlFYu3HCvrkIQo12SeEyGEe+1bDjsXQ/f/QEhDj1Rh13Ze2fAKvx79lRfav0Cfhn3O7mtctTGLb1/skXovxuItx3hx0Xay82wAHEvN5sVF2wHo16bkc74s3nKMqT/vISE1m1pV/BlzU9OLKkeI8kySEyGE++RmwU+jIKwpdHraI1VorZm+aTrf7/+e4a2Hc2/zez1SjztorXltya6ziUm+7DwbLy7aTszhFPx9vPD39sLfx4sAHy/8vI1/87f5e3sR4GMmwMeLX/ck8dqSXeTk2YFLT3SEKK8kORFCuM+aqZB6GAb/BGYfj1TxyfZP+GLnF/y72b95vPXjHqnjUqRl5bEuLpnf9iaxZm8ySRkWl8dl59n4cVsC2Xm2s8nGxcjOszH15z2SnIjLiiQnQgj3SNoFG2bCv+6FiM4eqWLe7nnM3DKTPg378Hz751Ee6s9SEja7Zlt8Kmv2GgnJ1qOp2DVU9jNzfWQ46+OSSc3OO++82lX8Wf9CdwDsdk2O1UZWro3sXBvZec7PrWTn2snKtTJmwTaXMSSkZnv0PQpR2iQ5EUJcOrsdfhwJvkHQa5JHqlh6cCmT/5xM1zpdmXjdREzKs/35i+rbkZSew297T7JmXzJr950kNSsPpeDqOlV4snskXZuE0bpOFcxepvP6nAD4e3sx5qamZ1+bTMpx66boX8kzVuzjmItEpFYVfze9ayHKB0lOhBCXbuvXcOR3uG0WBIa6vfh1x9Yxdu1Yrql+DdO6TsPb5O32Opy56sT63MJt/BB7jITUHHYnZgAQHuRLj2bV6do0nM6NwwgJPP9WVn5C445OrGNualpsoiPE5UBprcs6hosWFRWlN23aVNZhCHFlyzwFs9pCeHOjr4nJvS0aW5K2MPSXoTQIbsB/b/ovQT5Bbi3fleumrHLZQgFwbcNQujQJp2uTcJrXDCr1W0vuGK2jlIrRWkd5KEQhLpm0nAghLs3ycWDJgD5vuT0x2XN6D0+sfILqgdV5v+f7Hk9MtNbEHE4pNDFRwLdDO3o0huL0a1NbOr+Ky54kJ0KIi3donXFLp/OzUK25W4s+mn6Ux5Y/hr/Zn496fUSov/tvF+VLycxl0ZZjzN14hH1JZ1CAqzZl6dshROnwWHKilJoD9AGStNatHNumAn2BXGA/MERrnerY9yLwMGADRmitf/ZUbEKISzA1EjKTzt227i3Y8hWM2eeWKpKyknh0+aPYtI05veZQq1Itt5TrTGvN7wdOMXfjUZb9nUiuzc6/6lbhzYFXo7Xmlf/tlL4dQpQRT7acfAbMAr5w2rYceFFrbVVKvQG8CDyvlGoB3A20BGoBK5RSTbTWNoQQ5UvBxKS47SWUZknjseWPkZKTwn9v+i8Nq7h3ltmTGRYWxMQz768jHDqVRWU/M//uUI+729elWY3KZ4/z9faSmViFKCMeS0601muUUhEFtv3i9PIP4A7H89uBuVprC3BQKRUHtAd+91R8QojyIy4ljtFrRvNqp1d5/a/XOZx+mPd7vk+rsFZuKd9u16yNS2buxiMs33kCq13TPiKEp3tG0rtVTfy8vc47R/p2CFF2yrLPyUPAPMfz2hjJSr54x7bzKKWGAkMB6tWr58n4hBClICsvi+Erh5OYmcjgnweTa8vl7RvepkPNDiUuq+BIlke7NCA928q8v45yLDWbkEAfhlwXwV3t6tG4WiUPvBshhDuUSXKilHoJsAJf529ycZjLMc5a64+Aj8AYSuyRAIUQrnlg6oHxG8ZzOuc0Go3FZqFVaCt61OtR4nJczU3yyg87AejcOIwXb2lGrxbV8TWf30oihChfikxOlFLPFrVfa/1WSStUSj2I0VG2h/5nkpV4oK7TYXWAhJKWLYTwsE3/dWtx0fui+S3+Nyy2f9afiUuNI3pfNP0j+5eorCnLdp+3wB5A9cq+fPVIyVthhBBlp7hJCYKKeZSIUupm4HngNq11ltOuH4C7lVK+SqkGQCSwsaTlCyE8KGELLHsRvApZ0C+wWomLnLZpGjnWnHO25dhymLF5xgWXsT0+jVHzY0lMy3G5Pynd9cJ7Qojyq8iWE631BAClVJjWOrkkBSulvgW6AWFKqXjgZYzROb7Acsesin9orR/XWu9QSs0HdmLc7nlCRuoIUY5kp8D8B40E5PG1EBByScVl5WUxa+ss0nPTz9vn5+XHyLYjizw/z2Zn2d+JfLbhEDGHUwjw8SLQx4vM3PN/bcjcJEJUPMXd1ukDfArkKaXswCCt9YYLKVhrfY+LzYW2CWutJwOTL6RsIUQp0hoWPwHpx2DIsktOTDYc28DEPyZy7Mwx7mp6FyezTrI+YT0WmwVfky/d6najX+N+Ls9NPmPh2z+P8NWfhzmRbqF+aADj+rTgzqg6rNqVJOvOCHGZKK5D7GvA9Vrr3UqpDsCbQFfPhyWEKDd+fw/2/AQ3vQ512110Mak5qUzdNJUf9v9AROUIPrv5M9pWb0tWXhb9vu9HYmYiof6hTOg04bxzt8en8emGg/wYe5xcm53rI8N4fcBVdGtSDZPJ6E/vzgX2hBBlq7jkxKq13g2gtf5TKeX5FbeEEOXHkT9hxcvQvC90HHZRRWitWXZoGVM2TiHdks6jVz3KY60fw9fLF4AA7wBm95jN6DWjmdZlGgHeAYBx62bp34l8tv4gm4+kEujjxd3t6/LAtRGFDgOWuUmEuDwUl5xUKzBi55zXFzNaRwhRQWQmw3eDIbgO3P4eXMTqu4mZibz6x6v8Fv8brUJb8VGvj2gacu5tFmNukiMkpD7Kg7uO8FhXM6lZeXztdOtmfJ8W3BFVh8p+3m56c0KI8qy45ORjzh2VU/C1EOJyZLfDoqGQdQoe/gX8gkt2urYzb888ZsTMQKMZEzWGe5vfi5fp3DlGXM1NMv77HQB0aRLOlAERdG0SfvbWjRDiynBBo3WEEFeYtdNh/0ro8zbU+leJTj2QeoCXN7zM1pNbubbmtYy/djx1guq4PPbNQuYmqRbkyxcPtb+o0IUQFV9xo3VmFrVfaz3CveEIIcrcgd9g9Wtw1SBoO+SCT8uz5fHJ35/w8baPCfAOYHLnyfRt2Bfl4nbQyQwL3248QkIhc5OczJC5SYS4khV3WyfG6fkEjLlKhBCXq4xEWPgIhDY2Wk2K6GeSv1jftC7TyLRm8sqGV4hLjaN3RG+ea/8cYf5h550TezSVzzcc4sdtxqgbX7MJi9V+3nEyN4kQV7bibut8nv9cKfWM82shxGXGZoUFD0PuGXjwB/AtfGE858X67lt6H5l5mVQPqM6s7rPoWvfc2QZyrXaW/n2czzYcYotj1M2/O9Tj/mvrsz0+TeYmEUKcpyQL/8kie0Jczla/BofXQf8PoVrzIg8dv2E8ydnJaDSZeZnUDarL/D7zqeTzT0JzMsPCN44J005mWGgQFsgrfVswsG0dghyjbhqFG8fL3CRCCGdlsiqxEKKc2bfc6AR7zQPQ+u4iD124dyErD6/Eqq1nt53MOsnyw8vpH9mf2KOpfLbhED9uSyDPpunaJJzBd0TQNdL1qBuZm0QIUZDSRSyBrpTK4J8WkwAgf7E+BWitdWXPhle0qKgovWnTprIMQYiKLy0ePugMlevAI8vBu/D+Hum56XSb1408e955+wLNVaiZNoUtR1Kp5GvmjrZ1eODa+jQML/z2kCgbSqkYrXVUWcchRGGK63Mic5oIcTmz5hoTrdmsMOjzIhOTA6kHePrXp8mzW9F2L5Tpn34i2u5N8pGe+HvnnXfrRgghSkpu6whxJVvxCsT/BXd+BqGNCj1s9dHVvLD2BXy9fAk49SRp5t8wB+1EmaxouxlrRnOCrZ1Y+XxXmTBNCHHJTGUdgBCijOz6H/zxHrR/DFr2d3mIXdv5MPZDRqwaQb2geky7bg4nkmqTc/wOtLUSWoO2ViLn+B2czsyVxEQI4RaSnAiBMY36dVNW0eCFn7huyioWbzl2SeXFpcTR7/t+xKXEuSlCNzt9ABYPh1rXwI2TXB6SlZfFqNWjmLV1Ft1q30S9nDHcPXuPsVP7kH10CHZLdbKPDgHtI3OTCCHcRm7riCueq/VdXly0HeCiRpHMj9nPq1sfwu6VyoBFD/Gff33KoLaF3zIpdXk5MP9BUCbjdo7Z97xDjqYfZcSvIziQeoCWfvey9NerUCRzf8f6NAwL4PWle8jOrU7WwZGAzE0ihHAvSU7EFe/Nn89f3yU7z8YLC7fx58HThFfyISzIl7BKxiM8yJewSj5U8jWfNzX74i3HmPD7eFRgBkpp7KYMJvz+Mj6mN8p2uOzUSMhMOn/7Jz1hzL5zNm1I2MDo1WPIsdrIOfYQMZmRDIqqy5PdG1Mz2GgdqezvI3OTCCE8RpITcUU7lJxJQqrr9V1yrHaW70zkVGYurkbc+5pNRsIS5Et4JR/Cg3z5cX80KszoKAoY/wbuZPKaz+nXZqwn30rRXCUmBbZrrZm95b98uH0mdkt1co49wMCrWvNk98bUDQk45zSZm0QI4UmSnIgrktaar/44zGtLdhuT9rg4pnYVf9a/0B2rzc7prFySM3JJPmNxeuRyMsN4fijtKJvS1qPDl6PUuaUpUx5Zlb4Hyig5sVmLPeRERjqPLnmBgzlrsaa3ole1p3l2wFVEhAWWQoBCCHEuSU7EFed4WjbPLdjG2n3JdGkSTvdm4byxdE+h67uYvUxUC/KjWpDfOeVk5WWx/PByFsct5sSJTSgUDSxWErwVuSanvuZaYzJn0fObu7iv5SDuadUHX6/z+3m4ldaQuB22zYPt3xV56MSl65l/dBL4JNDQfAfTBz1LZHWZ4kgIUXaKnCG2vJMZYkVJaK2J3nKMl3/Ygc2uGXtLc+7tUA+lFIu3HLugPhRaazYnbWZx3GJ+OfQLWdYs6gXVo1/jfvRt1JcaU5syOjyU1QH+WEwmfO12OmXncLUll7crNcTkcxqTDiAqtCdPt7+fq6s3c++bTDsG2+dD7Dw4uQtM3tDkJtj9o8vDN/n58mB4Q7zNNsa0mci9V/d2bzyiXJIZYkV5J8mJuCKcOmNhbPR2ft5xgqj6VZk+qDX1Q8+9ZRGXEsfoNaOZ1mUajas2PmdfYmYiP+z/ge/jvudIxhECzAHcFHET/Rr3o021Nv90jH0lmCyl6Fe7JolmL2pabUQfO06A1iQ8c5x3f1/GL0e+x+ITizLZqGKKpF+jATwe1Z9An4u8hZKTDrt+MFpJDq4FNNTtAFffZcxfEhACrwQb79Hbm9HVQpmadIpNfr68GVqV8MB6fHDjLBoGN7y4+kWFI8mJKO8kORGXvZ93JDJ20XYycqyMurEJj1zfEK8Ck4Vl5WXR7/t+JGYmUjOwJtG3R+Nl8mLVkVUsjlvM7wm/o9FEVY+iX+N+9KrfiwBvp06iKYdh23z49VXgnyRgWtIpGuc51qFp1geqt0JXb8GGnKq8s3s9OzNXoHySUHY/mgV15Ymoe+ka0eac2FwmTbY82P8rbJsLu5eANRuqNjAW7bt6EDlB9Tl0KpODJzM5kJzJoNXdCTSln02a/LUmy2SiY1Yebz38F0E+chvnSiLJiSjvPJacKKXmAH2AJK11K8e2EGAeEAEcAgZprVOU8WfnO8AtGIsLDtZaby6uDklORFHSsvOY8L8dLNp8jJa1KvPWoH/RtIbri/Do30az+uhqLDYL3iZvagTWINWSSkZuBjUDa3J749u5rdFt1A2q+89J2SmwY7HRYnHk9+IDCo2E0/tB243X3oFYqzVjmTmcL/LS2e19HG2y4a/r06vubbywZSpemSfPb4Ux+4F3IGQlY/OryvG6t7Clyk1szG3IwVNZHEzO5Fhq9nnV+9X65uyU8wC2nHCyD47k4JS+Jf5sRcUmyYko7zyZnHQBzgBfOCUnbwKntdZTlFIvAFW11s8rpW4BnsJITjoA72itOxRXhyQnojDr9iUzZkEsSRkWnujWiCe7R+Jjdj0hcvS+aF7f+DrZ1nMv6FeHXc1T1zxF+xrtMSnHudZc2PeLkZDsXQa2XAhrYtxCuXoQzLiq8KBeSYPcLKMvyIkdkPi38e+J7ZCTRppJ8VNgIHMrV+Ggjwl/u50Qm40kLy/yTCa87Xba5OTycHo6m8zNWW1txE5dE5uyoUy5+PrYqBygCfK34+djw8fbitlsBVMu2xMPo71ScZ6WRdu98U+/g7+eLsMhzqJMSHIiyjuPjdbRWq9RSkUU2Hw70M3x/HNgNfC8Y/sX2siU/lBKVVFK1dRaH/dUfKJsXGjH04uVlWtlytLdfPH7YRqFB7JoWCda161S5DkzNs84LzEBiD8TT8eaHY2RL0c3Quxc2LHIaDEJDIeoh6H1XVDzX5y96gdWcz2nSGA141+fAKjd1njk0xrSjxF8Ygf/PvE3dx/fTkxiLO/5nCHGz/ds2XkmExsD/NgY4AecAk7hDeSv/eulvLCb/bGY/TCZ/fHy8sfbyw9/sz9e3mewFfg7RJny8ApdSpkNcRZCiEKU9lDi6vkJh9b6uFLK8Rub2sBRp+PiHdvOS06UUkOBoQD16tXzbLTCrdw9TXxBMYdTGDV/K4dPZ/Fw5waMuakpft5exZ43IPkEnwSacW5W8LPbGXniOPz6utFKknIQzP7Q7FajlaRRd/By8d+nwGyrF0QpCK5jPJrchAloBxyc0+KcmPJVttn45PaF+Jv98Tf742f2I8AcgNl0/oy1+aL3RTPpj9fIs/8z4Zy38uWFjqNKHq8QQnhYeZnnxNVvVJf3m7TWHwEfgXFbx5NBCfea+vMel9PEj1kQy/KdJ6gZ7EetKv7UqmL8WzPYn7BKPoVecJ1bYQJ9zZyxWKlT1Z9vHunItY1CLyim9Nx0lvgq/LTGrjW5juG/3bKy6Xf6FPz2BjToAl3GQPO+4Ff5kj+HC/XM6VReD61KttOcKX52O2NOp9I8tHmJyuof2Z/1CevP9qvxNflyQ70b6Ne4n7vDFkKIS1baycmJ/Ns1SqmaQH77dzzg1NOQOkBCKccmPCzBRSdNgDybZtfxdFbuPkFOnv2cfT5mk5G0BPufk7gcTD7D5xsOY7Eax5+xWPEyKZ68ofEFJyZaayb9PokksxcfJibxn7BQEpUi1GZnQvJp46CROyC4bKZp738mk/X+fufMmdItK5t+ZzIvqryJnSaeHZEU6h/KhE4T3ByxEEK4R2knJz8ADwJTHP9+77T9SaXUXIwOsWnS3+TykpKZi0kpbC46YNeu4s+q0d3QWpOSlUdCajYJqdkcT8sxnjv+/X1/MonpOdgLaS+z2TXvrorj7vYXdrsvOi6aZYeW8XRKGu1zLMw+cfLs8N+A/DjLKDEBILAaE5Mdo3Wck6b8/islFOAdwOwes88OSz5nKLQQQpQjHktOlFLfYnR+DVNKxQMvYyQl85VSDwNHgDsdhy/BGKkThzGUeIin4hKlz2bXPD1vK6DxNZvOtnbAudPEK6UICfQhJNCHVrWDXZZltdlJyrBw3ZRVLu/7FdY6U9CB1ANM2TiFjtWu4aGDiwFonJfH4mOJJXpvHjVmHwHAbKd5TgIKTA5XUo2rNmbx7YvdE58QQniIJ0fr3FPIrh4ujtXAE56KRZStd1ftY83ek7zW/yoCfLwuabSO2cvkuL3j73Iuj1pV/Istw2Kz8Nya5/Az+fDagR24HmBcfkhCIYS40pSXDrHiMrV6TxLvrNzHwGvqcE/7uiil3DIyZ8xNTc8Z+QPntsIU5e2Yt9mTsof3ssyEpyWBX1XISTn/wIu8fSKEEOLSSHIiPCY+JYtn5m2lafUgXu3XqtBRNxcjP8EpaSvM6qOr+XrX19xnMdEl5STctxDqdXRbXEIIIS6dJCfCIyxWG8O/3ozNCLDoFAAAIABJREFUpvngvrb4+xQ/30hJ9WtTu0StMCcyTzBu3Us0s8LI5FNw/yKo297tcQkhhLg0kpwIj5jwv51si0/jo/vbEhF2kavtupHNbmPs6mexWNJ581Q6Pg8shjoye7cQQpRH5b0voKiAFsTE882fR3i8ayNubFmjrMMBYM5fb7ExeRtj07JocO8iSUyEEKIck5YT4VY7E9J5KXo7HRuGMPrGJmUdDgBb45by3q7P6Z1j5fY7voPa15R1SEIIIYogyYlwm7TsPIZ9HUOwvzfv3nMNZq+yb5hLP7GN59eMoYbWjLvlU5QkJkIIUe5JciLcQmvN6O9iOZaSzdyhHQkP8i3rkNDJcUz6/h7+3959x0dVpv0f/1wppBBa6L0q4tJFRfBBFFbFtYCLq7v7rKIsKhZc29pWV9TH/rj29tj7zwLYFiwoNhakN6lKh0BIAkISQsr1++M+gSEkIWcYMieZ6/16nVdOzsx8556TSebKfe5zn611hFf730O9didEu0nGGGOqwIoTExHPffsLX/y0hdvPPJp+HdLLv9NDR0Du1gO3120W3tV8K7NtJRPfOZsp9RK45ogL6HnUiMjmG2OMOWyi3+9uarz//JzFg1OW8bseLblkYIeK71heYVLZ9nBlruCX18/k/rR4jm/cnUtOuCWy+cYYYw4r6zkJV3X2AgTYll93c/Xbc+nQpC4PjOwZ0YnWwrJ1GQWvnsXfG9UhuU597jvlceLEanBjjKlJ7K92uKqrFyDACotLuPLNueTtKea5/z6GtKRyal1VWPkFvHpW5WFv/B6mPwlbfnKPCceWn+DVM/lXWiLLE+O4Z9D9NE1tGl6WMcaYqLGeExO2+ycvY/baHB67oDdHNK+3/41FBbDoPVdwZC6Feq0qD9u+Dj6/za2ntYDOJ0PnU6DTYEirwjVutiyBV89iWkoSb6bG89/d/ptBbQaF87KMMcZEmRUnh8PM56DLUEjvBNE+zHGYfLpwMy9+v5pRAzpwTu+QKeTzsmHOy24f7NoCzXvAiOfhNyPgnkp6Ma6aBTs2wM9fw89fwYrPYMHb7rbmPaDzYFestDsBElPKPay2JT6e25u24qj0o7j2mGsj/6KNMcZUCytOwlFSUvntk//uvjZs74qULkOh439BUr3KH1dDrNq6i7+/v4A+7Rpy6xnd3MacNTDjGZj7OhTmQuchMOI51/NRWqDVbVbxOB2ABm2g71/cUlICGQv2FSszn4PpT0BCsitQyuQUA7c2bUwByoODHqROfJ3D9OqNMcYcblac+JWXDRMvq/w+4+bBqqluWfAOzH4R4hLd1W+7DHHFSvPuNbJXJbegiLFvzCEpMZ6n/9yXOhnzYPrjsPQjkHjocR6ccCW06H7gg72BwqtyVnHDtzfw8KCH6dKoS/lPFBcHrfq45b+ugz25sHb6vmLFsyoxkRuaNaZ//m5+TEnmrswsOjboeDheujHGmGoiGu7gwwDo16+fzp49u/qecOMceHcU7MqA+CTYs/PA+5Q9W6eoANbPhFVfwqqvYMsitz2tuetd6DIEJt8EedsOnhUNFZyVVJRYn4SW3WHddEhqAP0uhuMvg/qVjy3JK8xj+IfDycjNoGXdlkw8ZyKpian+23VnA/JEGN66JRkJ8Sjw29w8/jczC7lzh/88Y2KIiMxRVbvAlAks6zmpClWY9QJ8dqsrKi6ZAq2PqdpjE5Kg4yC3/PYu+HWz+8//56mwYjIseKvixwbhzJ8K2pBQ+CvsWA+n3ecOw1TxkNUd0+8gKz8LRdmWv41bv7+Vh096mIQ4/2/FO5qkkxUfh4qAKiUCNa8vyhhjTFlWnBxMwS74+BpY/D4ccaobR5FawQyoVVG/JfT5s1tKimHTPHhhSMX3n/OqO7TRrBvEJ4b/vOE4WK/auPkQX/W30MSVE/lq3VcUlhQCsKdkD1PXTaXP631Iik+ibmJdUhNSSU1MdeuJqaQmpO7dHrptWeN0vk5NYU+cdza8CD+kpDAxrS42F6wxxtRsVpxUZusyePdCyFoJp9wOJ17nxkJESlw8tDlIz+rH49zXhGRo0dMVKq37Qqu+0LjLge0JZ3I4Vfh1o3u9maXLcrdUxkdhAvDgrAf3FiahUhJSOL/r+eQV5pFblEtuYS75hfns2L2DzUWbyS3M3XtbiXqDkeunHZCzOy6OR9PTrTgxxpgazoqTiix8zxUGderCXyZBp5Oi046r57relU3zYONcmPcG/Picu61OPWjVO6Rg6VP55HAlJe5QzH4FiPd1z659901tAs26UdR9JAlzXozIy5idMZu8wjziiKOEfWc7Jccnc+vxtzK8y/CDZqgqBcUF5BbmMmnVJJ5Z8AwFxQX7ZV078LaItNcYY0z0WHFSVlGBG1sy6wV3yurIl92hmGhp3NktPUa670uKXTGxaR5smusKlpnPQvGeg2fd1xoK8/Z9n9YCmnaF3n92X5se5b7WbcKMX7K4deIivuLQi5NVOasY9/U42tVvR8cGHZm+aToFxQUkxSUxuO3gKhUmACJCckIyyQnJjO4xmqXZS5m2flpYWcYYY4IrKsWJiFwL/BVQYBFwMdASeAdIB+YCf1HVKnziRlDOWnjvIvfBP2AcDLmjesZ5HGz+j1Bx8dD8aLf0+bPbVrQHti5xhcqn11X8PMeM8oqQbtD0SEhpdMBdduQVct8HC3ln1nrapqewKzGdtMLsA+63O6kxyVV4aVvztjJ26ljqxNXhmaHPkJ6cvvdsncYpjRk/YHwVUsp314C7IpZljDEmOKr9VGIRaQ18Dxytqvki8i7wb+AMYIKqviMizwILVPWZyrIieirxis9gwqVu/MXwp6HbmZHJrW53NqjktopPsVVVPlm4mfEf/0RO3h7+emJHrhl6BKl1Epg0byMPfbacTdvzadUwhRtP68rwPq0rzCq1a88uLppyERt2buDl01/m6MZHA1Wc56SKIpllTKywU4lN0EWrOJkB9AJ+BSYBTwBvAi1UtUhETgDuVNXTKsuKSHFSXATT7oXv/hda9IA/vOamna+pwihONm7P5/ZJi/lq2VZ6tG7Afef2oHvrSnKqoLC4kLFTxzInYw5PDnmSga0HHlKeMSZyrDgxQVfth3VUdaOIPAysA/KBz4E5wHZVLfLutgEo919zEbkUuBSgXbt2/p68ojNZAPpeBMMecNdtqcl8HCIqLlFenb6Ghz9fjir843fdGDWgAwnxh3ZGkqpyx/Q7mLl5JncPvNsKE2OMMb5Ue3EiIo2Ac4COwHbgPWBYOXctt0tHVZ8HngfXc+LrySub1Ozsx31FBVYVZ5RdsmkHt0xYxMINOxjctSl3n9OdtulhzNRajsfmPsYnv3zCVb2vsgGqxhhjfIvGgNihwGpVzQQQkQnAAKChiCR4vSdtgE1RaFutl7+nmEenruCF71bTKDWRx//Yh7N6tkQidJ2fd5a9w4uLX2TkkSO5tOelEck0xhgTW6JRnKwD+otIKu6wzhBgNvA1MBJ3xs5FwIdRaFut9t3KTG6buJh12Xmc368tt5xxFA1TI3f13qnrpnLvzHsZ3GYwtx1/W8QKHmOMMbElGmNOZorI+7jThYuAebjDNJ8C74jIPd62yMz+FYPKnl0zdnBn5q7NYcK8jXRqUpe3x/TnhM6NI/qc87fO56Zvb6J7k+48MOiBsK6VY4wxxkCU5jlR1X8C/yyz+RfguCg0p1aZNG8jt0xYRH5hMeDOxPnHpMUIcPUpXbjy5C4kJ8ZH9DlX71jNVV9dRfPU5jw55MnwrjJsjDHGeCJ4oZgaoLxJzSrbXgM99NmyvYVJqKb1krj+1K4RL0y25W9j7JdjiZd4nh36LOnJh3BRRGOMMYZYm76+imey1CQFRcUs3vgrc9ZmM3tNDhu37y73fpk7C8rdfihyC3O54ssryN6dzUunvUTb+m0j/hzGGGNiT2wVJ7VATu4e5qzNYfbaHOaszWbBhh3sKXIX0mvfOJWUxPhye05aNYzs/C2FJYVcP+16VuSs4PFTHqd7k+4RzTfGGBO7rDgJiPKmiD+ndyvWZOUxa002c9bkMHttNj9n5gKQECd0b92AC/u3p1+HRvRt34hm9ZIPGHMCkJIYz42ndY1YW1WV8dPH88OmH7jzhDsZ1GZQxLKNMcaYap++PpIiem2dKCqvoIgTV1Tk7nHb6icncEz7RvTrkE6/9o3o1bZhheNHwr0WTlU9Oe9Jnlv4HJf3upwre18ZsVxjTPWw6etN0FnPSRTlFhQxd10Ot09afMChmBJ1y70jetCvQyO6NE0jLq5q84YM79M6osUI7LvA3qntT+W5hc8xossIruh1RUSfwxhjjAErTqpV1q4CZq3JYdaabGatyWbJpl8pLqm452p3YTF/Ot7n9YMOg7zCPK6YegUZuRk8s/0Z+rfsz+0n3G6TrBljjDksrDg5BAc7fLIhx40X+XG1K0hWbd0FQJ2EOHq3bcjYkzpzbMd0bv5gIZt3HHiWTaQHsYbrjul3sC1/G4oiCGmJaSTGJUa7WcYYY2opK07CVN5kZzd9sJDvV22jsLiEWauz2eQVHPWSEujXoRHn9m3NcR3S6dGmAUkJ+8aL3HT6UYd9EGu4JqycwNfrvqawpBAARfl+4/dMXDmREUeMiHLrjDHG1EY2IDZMA+//io3b88u9rWm9JI7rkM6xHRpxbMd0jmpRn/iDjBc53INYwzE7YzZjPh9DkRYdcFt6cjrfnP9NFFpljDlUNiDWBJ31nIRpUwWFiQA/3jrE93iMwzGINVzLs5fz2NzH+G7jd9RLqMfukt17e04AkuOTufaYa6PYQmOMMbVZbE1fH0EVjQdp1TClxg4U3bhrI7d8dwvnfXwe8zPn87e+f2Pq+VM5pd0pJMUnAZAUl8TgtoMZ3mV4lFtrjDGmtrLiJEznH9vmgG1BGSfiV/bubB748QHOnHgmX6z9glHdRzH53MmM7jGalIQU7hpwF+nJ6QhC45TGjB8wPtpNNsYYU4vZYZ0w5BYUMXHeJhqmJJBSJ4GMHbsDM07Ej9zCXF5b8hqvLHmF3cW7GdFlBJf3upwWdVvsd7/UxFSeHvI0N3x7Aw8PetiuOmyMMeawsuIkDHd/8hNrsnJ5e0x/+ndqHO3m+FZYXMi7K97l+YXPk707m6HthnJ136vp1KBThY/p0qgLk86ZVI2tNMYYE6usOPFpyuLNvDNrPWMHdw50YVI6o+vDgx6mS6MuAJRoCZNXT+bJeU+yYdcGjm1xLE/0fYKeTXtGubXGGGPMPlac+JCxYzc3T1hEj9YNuHbokdFuToVCZ3S9cuqVTDh7AvMy5/HY3MdYlr2Mro268szQZxjYamCNHbxrjDGm9rLipIpKSpTr35tPQWEJj17QmzoJwR1LfMf0O8jenY2iZOZncsaEM8guyKZ1Wmvu/6/7GdZxGHES3PYbY4yJbVacVNFLP6zmh1VZ3HduDzo3TYt2cyo0YeUEpq2fRkFxAQCFJYVkF2RzRsczuGfgPSTG27Tzxhhjgs2KkypYsmkHD05ZzqlHN+eCY9setucpb5zIweQV5rF422IWZC5gQeYCvt3wLcqBs/7O2DzDChNjjDE1ghUnB5G/p5hr3plPw9RE7v99z8M2RqPsOJGJ50w84JRdVWXdznWuENnqipGV21dSoiUAdGzQkd5Ne7M4a7HN6GqMMabGsuLkIO6bvJRVW3fx+ujjSK9b54Dbw+ntKE/oOJGs/Cz+Of2fjB8wfr9ekYWZC8kpyAGgbmJdejTpwZgeY+jVtBc9m/akQVIDAG745oa9h3ZsRldjjDE1TVQu/CciDYEXgO6AApcAy4H/B3QA1gB/UNWcynIO94X/pi7dwuhXZzP6xI7cfubRB9yeV5jH8A+Hk5GbQcu6Lcvt7TgYVeWtpW/xr7n/2jtOBECQ/Q7PdGzQkZ5NetKrWS96Ne1F5wadiY+LLy8yIu0yxtReduE/E3TR6jl5DJiiqiNFpA6QCtwKTFXV+0XkZuBm4KYotY/MnQX8/f2FHNWiXoVT0pfX2/HQSQ9RoiXsKNhBVn4WWbuzyMrPYlv+tr3re7/mZ5G9O7vcq/4qSnJ8Mo8MfmS/XpGqsBldjTHG1GTV3nMiIvWBBUAnDXlyEVkODFbVzSLSEpimqpVeqOZw9ZyoKpe8MovpP2fx8dUncmTzegfcZ+LKidz3433kF+27OrEgpCWkkV+cX27BkRCXQOPkxjROabz3a5OUJmzcuZGp66ayp2TP3vsmxydzW//b7HCMMSbirOfEBF00ek46AZnAyyLSC5gDXAM0V9XNAF6B0qy8B4vIpcClAO3atTssDXx9xlq+Xp7J+LN/U25hAvDQ7If2K0zA9Xbs0T2M6j6KJilNDihE6tepX+GAWhsnYowxxjjR6DnpB8wABqrqTBF5DPgVuFpVG4bcL0dVG1WWdTh6TlZs2clZT3zPgM6NeWnUsfsVE6rKzIyZPLvgWeZsmXPAYw+lt8PGiRhjqov1nJigi8Y0oRuADao60/v+faAvsMU7nIP3dWt1N6ygqJhxb88jLSmBB0f22luYqCrTN07noikXMebzMazfuZ5bjruFoe2GkhSfBHDIvR2l40Q6NezEU0OessLEGGNMzKr2wzqqmiEi60Wkq6ouB4YAP3nLRcD93tcPq7ttD01ZzrKMnbw0qh9N6yWhqny/8XueXfgsCzMX0jy1ObcdfxsjjhhBUnwSw7sM39vb0TilMeMHjD+k57cr/xpjjDHRO1vnauBN70ydX4CLcb0474rIaGAdcF51Nui7lZm88P1q/tK/PSd3bcY367/h2QXPsjhrMS3rtuT2/rczvMtw6sTvm+vEzooxxhhjIi8q85xESqTGnOTk7uG0R7+lXkoCNw4v4qUlz7M0eymt01ozpscYzu58tk39boypNWzMiQm6mLw07aqcVQz/cDirclahqtz0wXx2xM0lpf1j3Pjdtewq3MXdA+/m4xEf8/sjf2+FiTHGGFONYm76+tBr2Fwx9QqOrf9Hvs9/izqtMpC4Dtx74r0M6ziMhLiY2zXGGGNMIMTcJ3DorK6bczP4KPcRUpNacOeJ9zGs47AKp4Q3xhhjTPWIqeJk4sqJfLXuGwpLSq9ho2hJPFf0Hc2Znc+MatuMMcYY48TUmJMHZj5CYcnu/bZJXDHPL3oqSi0yxhhjTFkxVZwUZw1DS/Yf3KoliRRnDYtSi4wxxhhTVkwVJ9s296JoZze0xB3N0pIEinZ2Y9vmXlFumTHGGGNKxVRx0qphCrs3j0SL0lAFLUpj9+aRtGqYEu2mGWOMMcYTU8XJjad1JSUhhfz1F1NS0Jz89ReTkpDCjad1jXbTjDHGGOOJqbN1hvdpDcBDn9Vh0+pradXQFSal240xxhgTfTFVnIArUKwYMcYYY4Irpg7rGGOMMSb4rDgxxhhjTKBYcWKMMcaYQLHixBhjjDGBYsWJMcYYYwJFVDXabQibiGQCa8N8eBNgW4SaEgtZkc6zLMuyrOhltVfVphFqhzERV6OLk0MhIrNVtZ9lRSfPsizLsoKTZUzQ2GEdY4wxxgSKFSfGGGOMCZRYLk6et6yo5lmWZVlWcLKMCZSYHXNijDHGmGCK5Z4TY4wxxgSQFSfGGGOMCRQrTowxxhgTKFacRICINIt2G2oSEWkS7TYYY4wJrpgoTkTkKBGZLCKfikhnEXlFRLaLyI8i0s1nVnqZpTHwo4g0EpF0n1mnh6w3EJEXRWShiLwlIs39ZJWTXV9EjhGRRoeSc6hEZJiIrBaR70Wkj4gsAWaKyAYRGeIzK01E7hKRJSKyQ0QyRWSGiIw6hPY1F5G+XtsOaZ9XkJ8W5uMSy9nmu6gTkTgRifPW63iv1df7tJLssyOR42WF1SbvNUnI9yeLyPUiMiyMrJ7htOEgme1EpKG33kFERopI90PIa+q9V3uE+94ypkZQ1Vq/AN8CZwF/xE13fwEg3rapPrNKgNVllkLv6y8+s+aGrL8A3AO0B64FJvnMegNo4q2fBqwHvvRe73k+s7K99gzBO6PrEPb9fKAbcAKQBfT3tncLff1VzPoQGAW0Aa4DbgeOAF4F7vWZ1RuYASz19tOXwDJvW98IvvfW+bz/ycAGIBP4HOhQ3vulilnDgS3AZuAcYCbwlZd/ls+sc8ssvwcySr/3mfWPkPWjgRXe788a4HifWQuARt76jcB04B/AF8B9PrOKgVXA3cDREfjZ3+y9rmXAX72vLwJLgOt8Zh3tvUdXAXu8n+Vq4BWgQaTer7bYEpQl6g2olhcJ80LWV5W5ze8f/BuAKUCPkG2rw2xXaHEyv8xt831mLQpZn176oYa7/sYCn1nLgauAH4CNwGOlRcUhvsb1h/gaF5T5fpb3NQ5Y5jNrfnkfhED/MPbXdRUs1wPZPrNmAb/x1kcCK9lX0M3zmTUPaAF0BH4Funrb2wOzfWYVAZ8ALwEve8tO7+tLh/Ce+BQY5q0fB0z3mbU4ZH02kOKtJwALw9hf3YH/8YqABV6B0cFPTkjeEiAFaOztq6be9rqh7a5i1oyQn99xwKve+hjg/XDaZ4stQV5i4rAOEB+y/kiZ2+r4CVLVh3H/Bd0hIo+ISD0g3MlimonIdSJyPVA/tHsa/4fc4kSkvrdeAqzz2rsN94faj1xVfVJVB+J6PDYCT4vILyJyr8+s7SJymYjcCOSIyLUi0lpELgJ2+W2XiJwIICJn4Xp4UNUSXE+YH3VVdWbZjao6A/fh4ce9QCOgXpklDf8/xzqqusRry/u43o9XRWQEYbzPVDVDVVfjenCWe9vWhtGuE3AftLOAS1T1YmCbql6sqpf4bVeIVqo62WvXj95z+PFryGGSbUCyt56A/9eoqrpYVW9T1S64D/5mwHciMt1nFkCxquYD24F8XM8hqpobRlZKyM/vR6CHt/5/uF4VY2oVvx9aNdVTIpKmqrtU9enSjSLSBddV6ouqbgDO8465fwGkhtmu/8N9iIE7NNEEyBSRFrj/7P0YD3wtIk/hejzeE5EPgVNwPT1+7P2gV9V1wIPAgyLSFXdIzI+LcN3sCpyKO7T2Ge5w0xifWZcDL3jtWASMBnccHnjKZ9ZkEfkUeA13CAygLXAh/vfXXNxhuDllbxCRv/rMKhSRFqqaAaCqS7yxOZ8AnX1mISJxXvF2Sci2ePwX5bNE5LfA1cBXInIT4RflnUTkI9z7rI2IpKpqnnfbAWNtDuJy4E0RWQBsBWaLyDdAT1zR6Md+Ba5XBPzo/fMwyGcWwFwReQtX7E7FFZlTcL+TP/nM+llEbvdyzsX7++CNTYqVv+MmhtgMsYdIRFKAzqq6OABtOQLXq3Mk7g/WBtyH5mc+cx5R1esOQxMDxRs0eQ7QGvfBtAH4SFX/7TOnK5Dl9VKVva25qm7xkTUUyFTVBWW2NwCuUtX/8ZF1LO5w3+4y2zsAJ6rqG1XNKvP4VsCjQD9V7RTG408qs2mOqu7yBiSPVFVfhaZXbJ3K/u/7z1R1u8+cP6nqW34ec5C8BOA8XBH3Pu5wzJ9wvZpP+elB8QbV3orrJVkA3K+qO733RTevx8+YWiMmihPvj8RoYATQCvfHYhNugOWLqlroM+80XHd769AsVfX7H3dEs4IoZN+XfY2TcGMVorbvjTHGBFOsFCdv4477vor7rwrcGR8XAemqer6PrEdx/6G9VibrQmClql4TpayKigDfBVgki7mg7vuDPM/zqnppALMmq6rvU2SrIcv2VxTzIrnPjAmKWClOlqtq1wpuW6GqR/rIKvf+3mDWFap6RJSyIlkERDIrqPu+onk1BHe2TpsoZfWtJOsTVW0ZpSzbXz6yDkPbIrbPjKkJYmUgVY6InAd84A0ORNzEVOcBOT6zdovIcd5guVDHArvLe0A1ZfUtpwjYAMwQkRVRzArqvs/EDcoNHQSp3vd+Z/yNZNYs4JsyWaUaRjHL9pd/Qd3/xgRerBQnFwAP4E6HLf1AbISbkMrv2SejgGe8U4hLexXa4uaRGBXFrEgWAZHMCuq+/wUY4p2NtB8RWV/O/asraylwmaquDFiW7S//grr/jQm8mChOVHUNcD6AuOnmpbwzK6qYNRc43jvdd+9ZHqWnfkYri8gWARHLCuq+x51t0ghvPpgyHoxi1p1UPD/H1VHMsv3lXyTzIrnPjAm8mBhzUh4ReVFVR0co625VvT0oWYdaBByurJDMQO57Y4wxwRArM8SWp08Es34XpCxVzVLVbSLyYpCyQgRy30fyNUY4a3JAs2x/RTEvwr+TxgRKLBcnsSCSRUAks4IqqPurRUCzbH9FNy8WfidNjIrl4sTvtVhqYlZQ2f7yJ5LHXmPhOG6Q91cs7H9jDlksFyeXRTBrfECzgloEBHXfB3V/WVbtyIp0XiwU5iZGxUxxIiL1RWTvhdNK58oQkZ5hZLXwzhgpvehcnIj8JkJNPS5CORDZIiCsLBE5W0SSQ7eVM0+Jn7xB3rVsEHeF4i4iEqlxJ1HfXxU4K6BZtr+imxfJfWZMoMTE2Toi8gfcqXhbcVc9HaWqs7zb5qpqRTM5lpd1GXAz7r+WB3DzaywBBgIPqmqVB6mJyONlNwF/wU3PjqqOq2pWOdkdccekf1LVZT4f2w7Yqqq7vdlXRwF9cVdS/T9VLfKRlQ/kApOBt3EXZCv2056QrEdxxVsC7srGQ7zck4B5qnqjz7w04HTcXClFwErg89K5XXxmHcW+iwiWTvf/kaou9ZtVyXNcrKovh9Gu1sBMVd0Vsv10v9cjEpHjAPWuUHw0bt8t83uhxAqyX1PVCyOQcyLuPbJYVT/3+djjgaWq+qu4C3rezL73/b2qusNn3jhgoqoe8jwkIlIHdxr/JlX9UkT+BAzAzaXyvN9rVBkTdLFSnMwHhqnqZu8P7GvArao6QUTmqWqVB5aJyCLgeCAFN2NjF1XNEJFGwNeq2ttH1gZgGvA5+7poHwZuAFDVV31kTVLV4d76ObhibBp88BivAAALMElEQVTuD9h9qvqKj6zFwHGqmiciDwCdcRfqO8Vr1yU+suZ5jxuJ++PaHZgIvK2q31Q1x8ta4j0+BdgItPbamIgrTrr7yPoDcCPuCq8nA9NxPYk9gD+r6iIfWTcBfwTeYf/p/i8A3lHV+6uadZDnWaeq7XzcfxxwJe4DrDdwjap+6N3mtyj/JzAMVxh+gfsdmAYMxRWcfq6W/FHZTbifwVcAqnq2j6wfVfU4b30M7vVOxF2l+GM/+957f/VS1SIReR7Iw11NeIi3/dyqZnl5O3CF+c+4wvw9Vc30kxGS9SZu36fiLi2RBkzw2iaqelE4ucYElqrW+gV32fjQ71sCc4BxwFyfWXND1heUuW2ez6x6uCLiLdwHLcAvYb7GeSHr04GO3nqTsu2sQtZPIetzgLiKXrOf/eV938Lb7/8B1vvMWux9TcbNVJvifR8f2uYqZi0EUkP20Wfeek9gus+sFUBiOdvr4C5I6Ldd5S2LgAKfWYuANG+9AzAbV6CE815d5O3nVNyMvPW97SnAQr/vCeANYDCu12swsNlbP8lnVuj7fhbQ1FuvW/b3vgpZSyt53873k1XaNlzBeyrwIm4K+im4a1TV8/u+8L4mAFuAeO978bv/bbGlJiwxMUMssFNEOqvqzwDqelAG43oD/I4VKRGRRHXdqHvHOnjjKnyN4VHVncDfROQY4A0R+dRvRmhcyHqCqq72nmObiPg9TLFeRE5R1a+ANbjDHmu9Cdn82m/QnrrZXB8HHheR9j6zPhWR73DFyQvAuyIyA/eh9m0Y7cr31nPxrk+iqgtFpL7PrBLc1ZvXltne0rvNj+bAaRx4mQDBFZ1+xKt3KEdV13jv+fe9/e53MGWRusNxeSLys6r+6uXmh/H+6gdcA9wG3Kiq80UkX332pHnivF7LOFwPQqbXrlwRqfLhR8/ikENnC0Skn6rOFpEjgXAOm6i6Q4SfA597PXzDcL1sDwNNfWTFeYd26uIKxAZANpCEO1RtTK0SK8XJWMp86KvqThE5HfiDz6y9XbuquiFke2Pg+nAap6pzROQU4Arg+3AygF4i8ivuQydJRFqoO9xUB/cfrx9/BV4TkTuBHcB87/BMI+A6n1nXVnSDqpb9MK+Uqt4kIie4VZ3hDXAegStU3vfZrn8DU0TkG9wHxntA6dVf/X5w/w2YKiIrgdLxBe2ALsBVPrM+wfV2zC97g4hM85mVISK9S7NUdZeInAm8hDt85cceEUlV1TzgmJA2NcBnAeZ9YP9LRN7zvm4h/L9FDXC9ewJoyPs+Df8/x78Cj4nIP4BtwH/EXbdmvXebX2UL80LgI+Ajb0yLHy8Cy3C/y7cB74nIL0B/3OFEY2qVmBhzUkpEmhMyYFFVt9S2rHKyGwLdVPU/YTy2G3Ak7oNjAzBLwxgs6mUFbn+JyBnA0bhDVV942+Jwh2gKfGbF4QZi7r3mD25/hTX4NxJEpA2ux+OAaw+JyEBV/cFHVlJ5+0REmgAt1ccYnXIyfgcMVNVbw80oJzMVaF7ag+jzsfWATnjv+0N4fx2pqn6v4l1ZXisAVd3k/V4PBdbpIZz9ZkxQxURxIiK9gWdx/2Vt9Da3wQ0sG6uq8wKYdYW6C935ErQiIJKvMej7q4L8NA05S8ayLCvSeZFumzFBECvFyXzcpctnltneH3hOVXvVgqw+wDMErGgK8P6KeKFTwfP4OsPGsmp/VqTzIt02Y4IgVsac1C37gQbgjVuoW0uyXqbiD+5XgCp/cHv3ryjrZZ9ZQd1frxCh1ygiFY3DEdwpn1VmWbUjK9J5kW6bMUEXK8XJZO9MmNfYN2CxLXAh7tS+2pAV1CIgFvbXvcBDuIncyvJ79pVl1Y6sSOdFum3GBFpMHNYBEJFh7JvBs3TA4kcaxuyWQcwSN9tsZ8r/4F6tqlU+aySSWV5ebd9f04GrVXVOObetV9W2lhVbWUFvmzFBFzPFSSwIYhEQZBEsdLoC2VrO7J8i0tzPIFvLqh1ZQW+bMUEXE8WJuLkYbsF9EDXzNm8FPgTuV9XtNT0rqGx/GWOM8StWjlW+i5tx82RVbayqjXHX8tiON/lWTc8SkQYicr+ILBWRLG9Z6m1rGK0sYmt/LbMsy6oJbTMm6GKlOOmgqg9oyGRUqpqh7qJgfk/BC2pWIIsAYmt/DS6TlWNZMZsV9LYZE2wagAv8HO4Fd22Lv+NmjCzd1hy4CfiylmQtD+e2asiy/WVZMZcV9LbZYkvQl1jpOTkfd+2bb0QkR0SycZd7T8f/tXWCmrVWRP4ubsZTwA2UE5Gb2Hc2SjSybH9ZVixmBb1txgRbtKuj6lqAo3DXokgrs/302pCFuyjfA7iLg+Xgrli61NuWHq0s21+WFYtZQW+bLbYEfYl6A6rlRcI4YDkwCVgDnBNy29zakOU9JohFgO0vy4rJrKC3zRZbgrxEvQHV8iJhUekvNNABmA1c430/r5ZkBbIIsP1lWbGYFfS22WJL0JeoN6BaXiT8VOb7NNx0548A82tJVlCLANtflhVzWUFvmy22BH2JlWvrZIhIb1WdD6Cqu0TkTOAloEctyYpX77LpqrpGRAYD74tIe9zsp9HKsv1lWbGYFfS2GRNosXK2zoVARugGVS1S1QuBQbUkK0NEeofk7ALOBJoQZhEQoSzbX5YVi1lBb5sxgRYT09fHAhFpAxRpyARlIbcNVNUfopEVVEHdX5ZVO7KC3jZjgs6KE2OMMcYESqwc1jHGGGNMDWHFiTHGGGMCxYoTY4wxxgSKFSemxhORYhGZH7J0EJF+IvJ4NbZhehXus6s62mKMMTWdDYg1NZ6I7FLVtGi342Cqu50iIrjf8ZLqek5jjIkE6zkxtZKIDBaRT7z1O0XkJRGZJiK/iMi4kPtNEpE5IrJERC4N2b5LRP5HRBaIyIzSq8F6V4Kd6G1fICIDSu/vfU0TkakiMldEFonIOVVs7+uh9xWRN0XkbBGJF5GHRGSWiCwUkcsqex6v12ipiDwNzAXaisgrIrLYu9+1h7pvjTHmcLPixNQGKSGHdCZWcJ+jgNOA44B/ikiit/0SVT0G6AeME5HG3va6wAxV7QV8C4zxtj8OfONt7wssKfM8u4ERqtoXOBn4X68H42BeAC4GEJEGwADg38BoYIeqHgscC4wRkY4HeZ6uwGuq2gc3SVdrVe2uqj2Al6vQFmOMiapYmb7e1G75qtr7IPf5VFULgAIR2Qo0BzbgCpIR3n3aAkcAWcAe4BNv+xzgt976KbiZalHVYmBHmecR4F4RGQSUAK295zpg8qxQqvqNiDwlIs2Ac4EPVLVIRE4FeorISO+uDbw2bqjgeQDWquoMb/0XoJOIPAF8Cnx+kP1kjDFRZ8WJiRUFIevFQIJ3fZKhwAmqmici04Bk7z6Fum9AVjFV/135M9AUOEZVC0VkTUjmwbzuPf4C4BJvmwBXq+pnoXcUkVGVPE9u6f1UNUdEeuF6ja4E/hCSbYwxgWSHdUwsawDkeIXJUUD/KjxmKjAWwBsPUr+czK1ewXAy0N5He14B/gagqqWHiz4DxpYehhKRI0WkblWfR0SaAHGq+gFwO+5QlDHGBJr1nJhYNgW4XEQWAsuBGQe5P8A1wPMiMhrXozIW+E/I7W8CH4vIbGA+sKyqjVHVLSKyFJgUsvkFoAMw1xtTkgkM9/E8rYGXRaT0H5FbqtoeY4yJFjuV2JiAEJFUYBHQV1XLjmUxxpiYYYd1jAkAERmK6/14wgoTY0yss54TY6qRiPTADXwNVaCqx0ejPcYYE0RWnBhjjDEmUOywjjHGGGMCxYoTY4wxxgSKFSfGGGOMCRQrTowxxhgTKP8fUdR1sGwH9i4AAAAASUVORK5CYII=\n", 1363 | "text/plain": [ 1364 | "
" 1365 | ] 1366 | }, 1367 | "metadata": { 1368 | "needs_background": "light" 1369 | }, 1370 | "output_type": "display_data" 1371 | } 1372 | ], 1373 | "source": [ 1374 | "plt.plot(data1.Financial_Year,data1['Brisbane_HPI'],\"o-\",label = \"Brisbane\")\n", 1375 | "plt.plot(data1.Financial_Year,data1['Sydney_HPI'], \"s-\",label = \"Sydney\")\n", 1376 | "plt.plot(data1.Financial_Year,data1['Melbourne_HPI'],\"d-\", label =\"Melbourne\")\n", 1377 | "plt.ylabel('HPI')\n", 1378 | "plt.xlabel('Financial_years')\n", 1379 | "plt.xticks(rotation = 90)\n", 1380 | "plt.title('HPI of brisbane, sydney and melbourne')\n", 1381 | "plt.legend(bbox_to_anchor=(1.5, 1.05))\n", 1382 | "plt.show()" 1383 | ] 1384 | }, 1385 | { 1386 | "cell_type": "markdown", 1387 | "metadata": {}, 1388 | "source": [ 1389 | "Observation: The above visualisation shows the trends of House Price Index of Brisbane, Sydney and Melbourne from the year 2002 to 2019. From the line chart, it is clear that HPI of Sydney and Melbourne had faced a great fall during the year 2018-19, whereas it also had a gradual rise till 2017-18.\n", 1390 | "\n", 1391 | "CPI of either Sydney or melbourne can be analysed to check whether fall in HPI have created a impact on CPI." 1392 | ] 1393 | }, 1394 | { 1395 | "cell_type": "markdown", 1396 | "metadata": {}, 1397 | "source": [ 1398 | "ANALYSIS for CPI DATA" 1399 | ] 1400 | }, 1401 | { 1402 | "cell_type": "code", 1403 | "execution_count": 10, 1404 | "metadata": { 1405 | "collapsed": true 1406 | }, 1407 | "outputs": [ 1408 | { 1409 | "data": { 1410 | "text/html": [ 1411 | "
\n", 1412 | "\n", 1425 | "\n", 1426 | " \n", 1427 | " \n", 1428 | " \n", 1429 | " \n", 1430 | " \n", 1431 | " \n", 1432 | " \n", 1433 | " \n", 1434 | " \n", 1435 | " \n", 1436 | " \n", 1437 | " \n", 1438 | " \n", 1439 | " \n", 1440 | " \n", 1441 | " \n", 1442 | " \n", 1443 | " \n", 1444 | " \n", 1445 | " \n", 1446 | " \n", 1447 | " \n", 1448 | " \n", 1449 | " \n", 1450 | " \n", 1451 | " \n", 1452 | " \n", 1453 | " \n", 1454 | " \n", 1455 | " \n", 1456 | " \n", 1457 | " \n", 1458 | " \n", 1459 | " \n", 1460 | " \n", 1461 | " \n", 1462 | " \n", 1463 | " \n", 1464 | " \n", 1465 | " \n", 1466 | " \n", 1467 | " \n", 1468 | " \n", 1469 | " \n", 1470 | " \n", 1471 | " \n", 1472 | " \n", 1473 | " \n", 1474 | " \n", 1475 | " \n", 1476 | " \n", 1477 | " \n", 1478 | " \n", 1479 | " \n", 1480 | " \n", 1481 | " \n", 1482 | " \n", 1483 | " \n", 1484 | " \n", 1485 | " \n", 1486 | " \n", 1487 | " \n", 1488 | " \n", 1489 | " \n", 1490 | " \n", 1491 | " \n", 1492 | " \n", 1493 | " \n", 1494 | " \n", 1495 | " \n", 1496 | " \n", 1497 | " \n", 1498 | " \n", 1499 | " \n", 1500 | " \n", 1501 | " \n", 1502 | " \n", 1503 | " \n", 1504 | " \n", 1505 | " \n", 1506 | " \n", 1507 | " \n", 1508 | " \n", 1509 | " \n", 1510 | " \n", 1511 | " \n", 1512 | " \n", 1513 | " \n", 1514 | " \n", 1515 | " \n", 1516 | " \n", 1517 | " \n", 1518 | " \n", 1519 | " \n", 1520 | " \n", 1521 | " \n", 1522 | " \n", 1523 | " \n", 1524 | " \n", 1525 | " \n", 1526 | " \n", 1527 | " \n", 1528 | " \n", 1529 | " \n", 1530 | " \n", 1531 | " \n", 1532 | " \n", 1533 | " \n", 1534 | " \n", 1535 | " \n", 1536 | " \n", 1537 | " \n", 1538 | " \n", 1539 | " \n", 1540 | " \n", 1541 | " \n", 1542 | " \n", 1543 | " \n", 1544 | " \n", 1545 | " \n", 1546 | " \n", 1547 | " \n", 1548 | " \n", 1549 | " \n", 1550 | "
Consumer Price Index (CPI)Unnamed: 1Unnamed: 2Unnamed: 3Unnamed: 4Unnamed: 5Unnamed: 6
0NaNSydneyNaNAustraliaNaNNaNNaN
1Quarter endingIndex number% change from previous yearIndex number% change from previous yearNaNNaN
22019-06-01 00:00:00115.91.7114.81.6NaNNaN
32019-03-01 00:00:00115.11.3114.11.3NaNNaN
42018-12-01 00:00:00115.21.7114.11.8NaNNaN
........................
722001-12-01 00:00:0076.33.475.43.1NaNNaN
732001-09-01 00:00:0075.62.974.72.5NaNNaN
742001-06-01 00:00:0075.46.374.56.1NaNNaN
752001-03-01 00:00:0074.86.473.96NaNNaN
76Source: Australian Bureau of Statistics.Consum...NaNNaNNaNNaNNaNNaN
\n", 1551 | "

77 rows × 7 columns

\n", 1552 | "
" 1553 | ], 1554 | "text/plain": [ 1555 | " Consumer Price Index (CPI) Unnamed: 1 \\\n", 1556 | "0 NaN Sydney \n", 1557 | "1 Quarter ending Index number \n", 1558 | "2 2019-06-01 00:00:00 115.9 \n", 1559 | "3 2019-03-01 00:00:00 115.1 \n", 1560 | "4 2018-12-01 00:00:00 115.2 \n", 1561 | ".. ... ... \n", 1562 | "72 2001-12-01 00:00:00 76.3 \n", 1563 | "73 2001-09-01 00:00:00 75.6 \n", 1564 | "74 2001-06-01 00:00:00 75.4 \n", 1565 | "75 2001-03-01 00:00:00 74.8 \n", 1566 | "76 Source: Australian Bureau of Statistics.Consum... NaN \n", 1567 | "\n", 1568 | " Unnamed: 2 Unnamed: 3 Unnamed: 4 \\\n", 1569 | "0 NaN Australia NaN \n", 1570 | "1 % change from previous year Index number % change from previous year \n", 1571 | "2 1.7 114.8 1.6 \n", 1572 | "3 1.3 114.1 1.3 \n", 1573 | "4 1.7 114.1 1.8 \n", 1574 | ".. ... ... ... \n", 1575 | "72 3.4 75.4 3.1 \n", 1576 | "73 2.9 74.7 2.5 \n", 1577 | "74 6.3 74.5 6.1 \n", 1578 | "75 6.4 73.9 6 \n", 1579 | "76 NaN NaN NaN \n", 1580 | "\n", 1581 | " Unnamed: 5 Unnamed: 6 \n", 1582 | "0 NaN NaN \n", 1583 | "1 NaN NaN \n", 1584 | "2 NaN NaN \n", 1585 | "3 NaN NaN \n", 1586 | "4 NaN NaN \n", 1587 | ".. ... ... \n", 1588 | "72 NaN NaN \n", 1589 | "73 NaN NaN \n", 1590 | "74 NaN NaN \n", 1591 | "75 NaN NaN \n", 1592 | "76 NaN NaN \n", 1593 | "\n", 1594 | "[77 rows x 7 columns]" 1595 | ] 1596 | }, 1597 | "execution_count": 10, 1598 | "metadata": {}, 1599 | "output_type": "execute_result" 1600 | } 1601 | ], 1602 | "source": [ 1603 | "#Viewing dataset\n", 1604 | "data2" 1605 | ] 1606 | }, 1607 | { 1608 | "cell_type": "code", 1609 | "execution_count": 11, 1610 | "metadata": { 1611 | "collapsed": true 1612 | }, 1613 | "outputs": [ 1614 | { 1615 | "name": "stdout", 1616 | "output_type": "stream", 1617 | "text": [ 1618 | "\n", 1619 | "RangeIndex: 77 entries, 0 to 76\n", 1620 | "Data columns (total 7 columns):\n", 1621 | "Consumer Price Index (CPI) 76 non-null object\n", 1622 | "Unnamed: 1 76 non-null object\n", 1623 | "Unnamed: 2 75 non-null object\n", 1624 | "Unnamed: 3 76 non-null object\n", 1625 | "Unnamed: 4 75 non-null object\n", 1626 | "Unnamed: 5 0 non-null float64\n", 1627 | "Unnamed: 6 0 non-null float64\n", 1628 | "dtypes: float64(2), object(5)\n", 1629 | "memory usage: 4.3+ KB\n" 1630 | ] 1631 | } 1632 | ], 1633 | "source": [ 1634 | "#knowing the data\n", 1635 | "data2.info()" 1636 | ] 1637 | }, 1638 | { 1639 | "cell_type": "code", 1640 | "execution_count": 12, 1641 | "metadata": { 1642 | "collapsed": true 1643 | }, 1644 | "outputs": [ 1645 | { 1646 | "data": { 1647 | "text/html": [ 1648 | "
\n", 1649 | "\n", 1662 | "\n", 1663 | " \n", 1664 | " \n", 1665 | " \n", 1666 | " \n", 1667 | " \n", 1668 | " \n", 1669 | " \n", 1670 | " \n", 1671 | " \n", 1672 | " \n", 1673 | " \n", 1674 | " \n", 1675 | " \n", 1676 | " \n", 1677 | " \n", 1678 | " \n", 1679 | " \n", 1680 | " \n", 1681 | " \n", 1682 | " \n", 1683 | " \n", 1684 | " \n", 1685 | " \n", 1686 | " \n", 1687 | " \n", 1688 | " \n", 1689 | " \n", 1690 | " \n", 1691 | " \n", 1692 | " \n", 1693 | " \n", 1694 | " \n", 1695 | " \n", 1696 | " \n", 1697 | " \n", 1698 | " \n", 1699 | " \n", 1700 | " \n", 1701 | " \n", 1702 | " \n", 1703 | " \n", 1704 | " \n", 1705 | " \n", 1706 | " \n", 1707 | " \n", 1708 | " \n", 1709 | " \n", 1710 | " \n", 1711 | " \n", 1712 | " \n", 1713 | " \n", 1714 | " \n", 1715 | " \n", 1716 | " \n", 1717 | " \n", 1718 | " \n", 1719 | " \n", 1720 | " \n", 1721 | " \n", 1722 | " \n", 1723 | " \n", 1724 | " \n", 1725 | " \n", 1726 | " \n", 1727 | " \n", 1728 | " \n", 1729 | " \n", 1730 | " \n", 1731 | " \n", 1732 | " \n", 1733 | " \n", 1734 | " \n", 1735 | " \n", 1736 | " \n", 1737 | " \n", 1738 | " \n", 1739 | " \n", 1740 | " \n", 1741 | " \n", 1742 | " \n", 1743 | " \n", 1744 | " \n", 1745 | " \n", 1746 | " \n", 1747 | " \n", 1748 | " \n", 1749 | " \n", 1750 | " \n", 1751 | " \n", 1752 | " \n", 1753 | " \n", 1754 | " \n", 1755 | " \n", 1756 | " \n", 1757 | " \n", 1758 | " \n", 1759 | " \n", 1760 | " \n", 1761 | " \n", 1762 | " \n", 1763 | " \n", 1764 | " \n", 1765 | " \n", 1766 | " \n", 1767 | " \n", 1768 | " \n", 1769 | " \n", 1770 | " \n", 1771 | " \n", 1772 | " \n", 1773 | " \n", 1774 | " \n", 1775 | " \n", 1776 | " \n", 1777 | " \n", 1778 | " \n", 1779 | " \n", 1780 | " \n", 1781 | " \n", 1782 | " \n", 1783 | " \n", 1784 | " \n", 1785 | " \n", 1786 | " \n", 1787 | "
Consumer Price Index (CPI)Unnamed: 1Unnamed: 2Unnamed: 3Unnamed: 4Unnamed: 5Unnamed: 6
22019-06-01 00:00:00115.91.7114.81.6NaNNaN
32019-03-01 00:00:00115.11.3114.11.3NaNNaN
42018-12-01 00:00:00115.21.7114.11.8NaNNaN
52018-09-01 00:00:00114.72113.51.9NaNNaN
62018-06-01 00:00:001142.11132.1NaNNaN
........................
712002-03-01 00:00:00772.976.13NaNNaN
722001-12-01 00:00:0076.33.475.43.1NaNNaN
732001-09-01 00:00:0075.62.974.72.5NaNNaN
742001-06-01 00:00:0075.46.374.56.1NaNNaN
752001-03-01 00:00:0074.86.473.96NaNNaN
\n", 1788 | "

74 rows × 7 columns

\n", 1789 | "
" 1790 | ], 1791 | "text/plain": [ 1792 | " Consumer Price Index (CPI) Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4 \\\n", 1793 | "2 2019-06-01 00:00:00 115.9 1.7 114.8 1.6 \n", 1794 | "3 2019-03-01 00:00:00 115.1 1.3 114.1 1.3 \n", 1795 | "4 2018-12-01 00:00:00 115.2 1.7 114.1 1.8 \n", 1796 | "5 2018-09-01 00:00:00 114.7 2 113.5 1.9 \n", 1797 | "6 2018-06-01 00:00:00 114 2.1 113 2.1 \n", 1798 | ".. ... ... ... ... ... \n", 1799 | "71 2002-03-01 00:00:00 77 2.9 76.1 3 \n", 1800 | "72 2001-12-01 00:00:00 76.3 3.4 75.4 3.1 \n", 1801 | "73 2001-09-01 00:00:00 75.6 2.9 74.7 2.5 \n", 1802 | "74 2001-06-01 00:00:00 75.4 6.3 74.5 6.1 \n", 1803 | "75 2001-03-01 00:00:00 74.8 6.4 73.9 6 \n", 1804 | "\n", 1805 | " Unnamed: 5 Unnamed: 6 \n", 1806 | "2 NaN NaN \n", 1807 | "3 NaN NaN \n", 1808 | "4 NaN NaN \n", 1809 | "5 NaN NaN \n", 1810 | "6 NaN NaN \n", 1811 | ".. ... ... \n", 1812 | "71 NaN NaN \n", 1813 | "72 NaN NaN \n", 1814 | "73 NaN NaN \n", 1815 | "74 NaN NaN \n", 1816 | "75 NaN NaN \n", 1817 | "\n", 1818 | "[74 rows x 7 columns]" 1819 | ] 1820 | }, 1821 | "execution_count": 12, 1822 | "metadata": {}, 1823 | "output_type": "execute_result" 1824 | } 1825 | ], 1826 | "source": [ 1827 | "#pre-processing data- removing unnecessary columns, rows and replacing missing values\n", 1828 | "#changing column names\n", 1829 | "data2 = data2[2:76] #removing descriptions and empty cells\n", 1830 | "data2" 1831 | ] 1832 | }, 1833 | { 1834 | "cell_type": "code", 1835 | "execution_count": 13, 1836 | "metadata": { 1837 | "collapsed": true 1838 | }, 1839 | "outputs": [ 1840 | { 1841 | "data": { 1842 | "text/html": [ 1843 | "
\n", 1844 | "\n", 1857 | "\n", 1858 | " \n", 1859 | " \n", 1860 | " \n", 1861 | " \n", 1862 | " \n", 1863 | " \n", 1864 | " \n", 1865 | " \n", 1866 | " \n", 1867 | " \n", 1868 | " \n", 1869 | " \n", 1870 | " \n", 1871 | " \n", 1872 | " \n", 1873 | " \n", 1874 | " \n", 1875 | " \n", 1876 | " \n", 1877 | " \n", 1878 | " \n", 1879 | " \n", 1880 | " \n", 1881 | " \n", 1882 | " \n", 1883 | " \n", 1884 | " \n", 1885 | " \n", 1886 | " \n", 1887 | " \n", 1888 | " \n", 1889 | " \n", 1890 | " \n", 1891 | " \n", 1892 | " \n", 1893 | " \n", 1894 | " \n", 1895 | " \n", 1896 | " \n", 1897 | " \n", 1898 | " \n", 1899 | " \n", 1900 | " \n", 1901 | " \n", 1902 | " \n", 1903 | " \n", 1904 | " \n", 1905 | " \n", 1906 | " \n", 1907 | " \n", 1908 | " \n", 1909 | " \n", 1910 | " \n", 1911 | " \n", 1912 | " \n", 1913 | " \n", 1914 | " \n", 1915 | " \n", 1916 | " \n", 1917 | " \n", 1918 | " \n", 1919 | " \n", 1920 | " \n", 1921 | " \n", 1922 | " \n", 1923 | " \n", 1924 | " \n", 1925 | " \n", 1926 | " \n", 1927 | " \n", 1928 | " \n", 1929 | " \n", 1930 | " \n", 1931 | " \n", 1932 | " \n", 1933 | " \n", 1934 | "
Consumer Price Index (CPI)Unnamed: 1Unnamed: 2
22019-06-01 00:00:00115.91.7
32019-03-01 00:00:00115.11.3
42018-12-01 00:00:00115.21.7
52018-09-01 00:00:00114.72
62018-06-01 00:00:001142.1
............
712002-03-01 00:00:00772.9
722001-12-01 00:00:0076.33.4
732001-09-01 00:00:0075.62.9
742001-06-01 00:00:0075.46.3
752001-03-01 00:00:0074.86.4
\n", 1935 | "

74 rows × 3 columns

\n", 1936 | "
" 1937 | ], 1938 | "text/plain": [ 1939 | " Consumer Price Index (CPI) Unnamed: 1 Unnamed: 2\n", 1940 | "2 2019-06-01 00:00:00 115.9 1.7\n", 1941 | "3 2019-03-01 00:00:00 115.1 1.3\n", 1942 | "4 2018-12-01 00:00:00 115.2 1.7\n", 1943 | "5 2018-09-01 00:00:00 114.7 2\n", 1944 | "6 2018-06-01 00:00:00 114 2.1\n", 1945 | ".. ... ... ...\n", 1946 | "71 2002-03-01 00:00:00 77 2.9\n", 1947 | "72 2001-12-01 00:00:00 76.3 3.4\n", 1948 | "73 2001-09-01 00:00:00 75.6 2.9\n", 1949 | "74 2001-06-01 00:00:00 75.4 6.3\n", 1950 | "75 2001-03-01 00:00:00 74.8 6.4\n", 1951 | "\n", 1952 | "[74 rows x 3 columns]" 1953 | ] 1954 | }, 1955 | "execution_count": 13, 1956 | "metadata": {}, 1957 | "output_type": "execute_result" 1958 | } 1959 | ], 1960 | "source": [ 1961 | "# The current dataset contains CPI of sydney and whole Australia. This analysis focus on Sydney.Hence remove unwanted columns\n", 1962 | "data2=data2.drop(columns = ['Unnamed: 3', 'Unnamed: 4','Unnamed: 5', 'Unnamed: 6'])\n", 1963 | "data2" 1964 | ] 1965 | }, 1966 | { 1967 | "cell_type": "code", 1968 | "execution_count": 14, 1969 | "metadata": { 1970 | "collapsed": true 1971 | }, 1972 | "outputs": [ 1973 | { 1974 | "data": { 1975 | "text/html": [ 1976 | "
\n", 1977 | "\n", 1990 | "\n", 1991 | " \n", 1992 | " \n", 1993 | " \n", 1994 | " \n", 1995 | " \n", 1996 | " \n", 1997 | " \n", 1998 | " \n", 1999 | " \n", 2000 | " \n", 2001 | " \n", 2002 | " \n", 2003 | " \n", 2004 | " \n", 2005 | " \n", 2006 | " \n", 2007 | " \n", 2008 | " \n", 2009 | " \n", 2010 | " \n", 2011 | " \n", 2012 | " \n", 2013 | " \n", 2014 | " \n", 2015 | " \n", 2016 | " \n", 2017 | " \n", 2018 | " \n", 2019 | " \n", 2020 | " \n", 2021 | " \n", 2022 | " \n", 2023 | " \n", 2024 | " \n", 2025 | " \n", 2026 | " \n", 2027 | " \n", 2028 | " \n", 2029 | " \n", 2030 | " \n", 2031 | " \n", 2032 | " \n", 2033 | " \n", 2034 | " \n", 2035 | " \n", 2036 | " \n", 2037 | " \n", 2038 | " \n", 2039 | " \n", 2040 | " \n", 2041 | " \n", 2042 | " \n", 2043 | " \n", 2044 | " \n", 2045 | " \n", 2046 | " \n", 2047 | " \n", 2048 | " \n", 2049 | " \n", 2050 | " \n", 2051 | " \n", 2052 | " \n", 2053 | " \n", 2054 | " \n", 2055 | " \n", 2056 | " \n", 2057 | " \n", 2058 | " \n", 2059 | " \n", 2060 | " \n", 2061 | " \n", 2062 | " \n", 2063 | " \n", 2064 | " \n", 2065 | " \n", 2066 | " \n", 2067 | "
Quarter_endindex_numberpercent_change_from_previous_year
22019-06-01 00:00:00115.91.7
32019-03-01 00:00:00115.11.3
42018-12-01 00:00:00115.21.7
52018-09-01 00:00:00114.72
62018-06-01 00:00:001142.1
............
712002-03-01 00:00:00772.9
722001-12-01 00:00:0076.33.4
732001-09-01 00:00:0075.62.9
742001-06-01 00:00:0075.46.3
752001-03-01 00:00:0074.86.4
\n", 2068 | "

74 rows × 3 columns

\n", 2069 | "
" 2070 | ], 2071 | "text/plain": [ 2072 | " Quarter_end index_number percent_change_from_previous_year\n", 2073 | "2 2019-06-01 00:00:00 115.9 1.7\n", 2074 | "3 2019-03-01 00:00:00 115.1 1.3\n", 2075 | "4 2018-12-01 00:00:00 115.2 1.7\n", 2076 | "5 2018-09-01 00:00:00 114.7 2\n", 2077 | "6 2018-06-01 00:00:00 114 2.1\n", 2078 | ".. ... ... ...\n", 2079 | "71 2002-03-01 00:00:00 77 2.9\n", 2080 | "72 2001-12-01 00:00:00 76.3 3.4\n", 2081 | "73 2001-09-01 00:00:00 75.6 2.9\n", 2082 | "74 2001-06-01 00:00:00 75.4 6.3\n", 2083 | "75 2001-03-01 00:00:00 74.8 6.4\n", 2084 | "\n", 2085 | "[74 rows x 3 columns]" 2086 | ] 2087 | }, 2088 | "execution_count": 14, 2089 | "metadata": {}, 2090 | "output_type": "execute_result" 2091 | } 2092 | ], 2093 | "source": [ 2094 | "#renaming column names\n", 2095 | "data2 = data2.rename(columns={'Unnamed: 1':\"index_number\", 'Unnamed: 2':\"percent_change_from_previous_year\",'Consumer Price Index (CPI)':'Quarter_end'})\n", 2096 | "data2\n", 2097 | "\n", 2098 | "\n", 2099 | "#column names are chosen as same as provided in the original dataset (index 1)" 2100 | ] 2101 | }, 2102 | { 2103 | "cell_type": "code", 2104 | "execution_count": 15, 2105 | "metadata": { 2106 | "collapsed": true 2107 | }, 2108 | "outputs": [ 2109 | { 2110 | "name": "stdout", 2111 | "output_type": "stream", 2112 | "text": [ 2113 | "\n", 2114 | "RangeIndex: 74 entries, 2 to 75\n", 2115 | "Data columns (total 3 columns):\n", 2116 | "Quarter_end 74 non-null object\n", 2117 | "index_number 74 non-null object\n", 2118 | "percent_change_from_previous_year 74 non-null object\n", 2119 | "dtypes: object(3)\n", 2120 | "memory usage: 1.9+ KB\n" 2121 | ] 2122 | } 2123 | ], 2124 | "source": [ 2125 | "#knowing processed data\n", 2126 | "data2.info()" 2127 | ] 2128 | }, 2129 | { 2130 | "cell_type": "code", 2131 | "execution_count": 16, 2132 | "metadata": { 2133 | "collapsed": true 2134 | }, 2135 | "outputs": [ 2136 | { 2137 | "name": "stdout", 2138 | "output_type": "stream", 2139 | "text": [ 2140 | "\n", 2141 | "RangeIndex: 74 entries, 2 to 75\n", 2142 | "Data columns (total 4 columns):\n", 2143 | "Quarter_end 74 non-null object\n", 2144 | "index_number 74 non-null float64\n", 2145 | "percent_change_from_previous_year 74 non-null object\n", 2146 | "% change_from_previous_year 74 non-null float64\n", 2147 | "dtypes: float64(2), object(2)\n", 2148 | "memory usage: 2.4+ KB\n" 2149 | ] 2150 | } 2151 | ], 2152 | "source": [ 2153 | "#converting object datatypes to float\n", 2154 | "data2['index_number']=data2.index_number.astype(float)\n", 2155 | "data2['% change_from_previous_year'] = data2.percent_change_from_previous_year.astype(float)\n", 2156 | "data2.info()" 2157 | ] 2158 | }, 2159 | { 2160 | "cell_type": "code", 2161 | "execution_count": 17, 2162 | "metadata": {}, 2163 | "outputs": [], 2164 | "source": [ 2165 | "data2['Year'] = data2.Quarter_end.dt.year #extracting year from Quarter_end" 2166 | ] 2167 | }, 2168 | { 2169 | "cell_type": "code", 2170 | "execution_count": 18, 2171 | "metadata": { 2172 | "collapsed": true 2173 | }, 2174 | "outputs": [ 2175 | { 2176 | "data": { 2177 | "text/html": [ 2178 | "
\n", 2179 | "\n", 2192 | "\n", 2193 | " \n", 2194 | " \n", 2195 | " \n", 2196 | " \n", 2197 | " \n", 2198 | " \n", 2199 | " \n", 2200 | " \n", 2201 | " \n", 2202 | " \n", 2203 | " \n", 2204 | " \n", 2205 | " \n", 2206 | " \n", 2207 | " \n", 2208 | " \n", 2209 | " \n", 2210 | " \n", 2211 | " \n", 2212 | " \n", 2213 | " \n", 2214 | " \n", 2215 | " \n", 2216 | " \n", 2217 | " \n", 2218 | " \n", 2219 | " \n", 2220 | " \n", 2221 | " \n", 2222 | " \n", 2223 | " \n", 2224 | " \n", 2225 | " \n", 2226 | " \n", 2227 | " \n", 2228 | " \n", 2229 | " \n", 2230 | " \n", 2231 | " \n", 2232 | " \n", 2233 | " \n", 2234 | " \n", 2235 | " \n", 2236 | " \n", 2237 | " \n", 2238 | " \n", 2239 | " \n", 2240 | " \n", 2241 | " \n", 2242 | " \n", 2243 | " \n", 2244 | " \n", 2245 | " \n", 2246 | " \n", 2247 | " \n", 2248 | " \n", 2249 | " \n", 2250 | " \n", 2251 | " \n", 2252 | " \n", 2253 | " \n", 2254 | " \n", 2255 | " \n", 2256 | " \n", 2257 | " \n", 2258 | " \n", 2259 | " \n", 2260 | " \n", 2261 | " \n", 2262 | " \n", 2263 | " \n", 2264 | " \n", 2265 | " \n", 2266 | " \n", 2267 | " \n", 2268 | " \n", 2269 | " \n", 2270 | " \n", 2271 | " \n", 2272 | " \n", 2273 | " \n", 2274 | " \n", 2275 | " \n", 2276 | " \n", 2277 | " \n", 2278 | " \n", 2279 | " \n", 2280 | " \n", 2281 | " \n", 2282 | " \n", 2283 | " \n", 2284 | " \n", 2285 | " \n", 2286 | " \n", 2287 | " \n", 2288 | " \n", 2289 | " \n", 2290 | " \n", 2291 | " \n", 2292 | " \n", 2293 | " \n", 2294 | " \n", 2295 | " \n", 2296 | " \n", 2297 | " \n", 2298 | " \n", 2299 | " \n", 2300 | " \n", 2301 | " \n", 2302 | "
index_number% change_from_previous_year
Year
2001302.119.0
2002310.811.5
2003318.510.0
2004326.09.4
2005334.210.0
2006345.613.6
2007352.27.6
2008367.116.9
2009373.77.2
2010383.810.8
2011397.113.9
2012404.97.8
2013415.110.1
2014425.09.5
2015433.17.7
2016439.35.7
2017448.88.7
2018457.57.9
2019231.03.0
\n", 2303 | "
" 2304 | ], 2305 | "text/plain": [ 2306 | " index_number % change_from_previous_year\n", 2307 | "Year \n", 2308 | "2001 302.1 19.0\n", 2309 | "2002 310.8 11.5\n", 2310 | "2003 318.5 10.0\n", 2311 | "2004 326.0 9.4\n", 2312 | "2005 334.2 10.0\n", 2313 | "2006 345.6 13.6\n", 2314 | "2007 352.2 7.6\n", 2315 | "2008 367.1 16.9\n", 2316 | "2009 373.7 7.2\n", 2317 | "2010 383.8 10.8\n", 2318 | "2011 397.1 13.9\n", 2319 | "2012 404.9 7.8\n", 2320 | "2013 415.1 10.1\n", 2321 | "2014 425.0 9.5\n", 2322 | "2015 433.1 7.7\n", 2323 | "2016 439.3 5.7\n", 2324 | "2017 448.8 8.7\n", 2325 | "2018 457.5 7.9\n", 2326 | "2019 231.0 3.0" 2327 | ] 2328 | }, 2329 | "execution_count": 18, 2330 | "metadata": {}, 2331 | "output_type": "execute_result" 2332 | } 2333 | ], 2334 | "source": [ 2335 | "#Grouping data based on Year\n", 2336 | "sydney_cpi = data2.groupby( data2.Year ).sum()\n", 2337 | "sydney_cpi" 2338 | ] 2339 | }, 2340 | { 2341 | "cell_type": "code", 2342 | "execution_count": 19, 2343 | "metadata": { 2344 | "collapsed": true 2345 | }, 2346 | "outputs": [ 2347 | { 2348 | "data": { 2349 | "text/html": [ 2350 | "
\n", 2351 | "\n", 2364 | "\n", 2365 | " \n", 2366 | " \n", 2367 | " \n", 2368 | " \n", 2369 | " \n", 2370 | " \n", 2371 | " \n", 2372 | " \n", 2373 | " \n", 2374 | " \n", 2375 | " \n", 2376 | " \n", 2377 | " \n", 2378 | " \n", 2379 | " \n", 2380 | " \n", 2381 | " \n", 2382 | " \n", 2383 | " \n", 2384 | " \n", 2385 | " \n", 2386 | " \n", 2387 | " \n", 2388 | " \n", 2389 | " \n", 2390 | " \n", 2391 | " \n", 2392 | " \n", 2393 | " \n", 2394 | " \n", 2395 | " \n", 2396 | " \n", 2397 | " \n", 2398 | " \n", 2399 | " \n", 2400 | " \n", 2401 | " \n", 2402 | " \n", 2403 | " \n", 2404 | " \n", 2405 | " \n", 2406 | " \n", 2407 | " \n", 2408 | " \n", 2409 | " \n", 2410 | " \n", 2411 | " \n", 2412 | " \n", 2413 | " \n", 2414 | " \n", 2415 | " \n", 2416 | " \n", 2417 | " \n", 2418 | " \n", 2419 | " \n", 2420 | " \n", 2421 | " \n", 2422 | " \n", 2423 | " \n", 2424 | " \n", 2425 | " \n", 2426 | " \n", 2427 | " \n", 2428 | " \n", 2429 | "
index_number% change_from_previous_year
Year
2010383.810.8
2011397.113.9
2012404.97.8
2013415.110.1
2014425.09.5
2015433.17.7
2016439.35.7
2017448.88.7
2018457.57.9
2019231.03.0
\n", 2430 | "
" 2431 | ], 2432 | "text/plain": [ 2433 | " index_number % change_from_previous_year\n", 2434 | "Year \n", 2435 | "2010 383.8 10.8\n", 2436 | "2011 397.1 13.9\n", 2437 | "2012 404.9 7.8\n", 2438 | "2013 415.1 10.1\n", 2439 | "2014 425.0 9.5\n", 2440 | "2015 433.1 7.7\n", 2441 | "2016 439.3 5.7\n", 2442 | "2017 448.8 8.7\n", 2443 | "2018 457.5 7.9\n", 2444 | "2019 231.0 3.0" 2445 | ] 2446 | }, 2447 | "execution_count": 19, 2448 | "metadata": {}, 2449 | "output_type": "execute_result" 2450 | } 2451 | ], 2452 | "source": [ 2453 | "#Analysing data from year 2010 to 2018\n", 2454 | "sydney_cpi = sydney_cpi[9:19]\n", 2455 | "sydney_cpi" 2456 | ] 2457 | }, 2458 | { 2459 | "cell_type": "markdown", 2460 | "metadata": {}, 2461 | "source": [ 2462 | "VISUALISATION" 2463 | ] 2464 | }, 2465 | { 2466 | "cell_type": "code", 2467 | "execution_count": 20, 2468 | "metadata": { 2469 | "collapsed": true 2470 | }, 2471 | "outputs": [ 2472 | { 2473 | "data": { 2474 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxcZ3n3/8+l3ZZGkrV4ZFuWV42cOLHjxNkDoQkFsrOWFEKB8jRtf1AIO7RPadhKH14tW8vDjwAtYSmBhhASCGtIyC+rYzux4yze7VheZEu2ZMm2ZC3X749zNJ4okmZsazSLvu/Xa16aOet1jmbmmnPf97lvc3dEREQACjIdgIiIZA8lBRERiVNSEBGROCUFERGJU1IQEZE4JQUREYlTUpCUmFnUzB4ys24z+7c07meHmb06XdsfY5+3mtkPJnOfItlKSSEHmdnbzGy1mfWY2V4z+5WZXRbOu9XM+sN5nWb2qJldHM57l5k9fIq7vRloByrd/cMTdCgyQcxsppn9yMz2mFmXmT1iZheOWOZtZrbTzI6Y2d1mVpMw733he6rPzL47yvavNLMXzOyomT1gZvPGieWUE/skHMf/MrMt4efj12Y2+1TizGdKCjnGzD4EfAX4ZyAKNAH/F7ghYbEfu3sFUA88DNxlZnaau54HPOe62zHjzKxolMkVwJPAeUANcDvwSzOrCNdZCnwTeAfB++Yowftm2B7gc8B/jrK/OuAu4B/Dba8GfjxBhzOZx3E5wefmhnDb24Efpek4cpe765EjD6AK6AHeMs4ytwI/SHi9FHCgDngX8PA4615C8IHsCv9eEk7/LtAPHA/3/+pR1r0aeA7oBnYDHwmnbwCuS1iumOCK45zw9TuAnUAH8A/AjuHth8fyE+B74XafBVYmbGs28FPgAMEH/P3h9AaCL4vahGXPC5crHuOc3UnwRdcNrAWWh/M+Cvx0xPL/DnxllO2Mu2z4//sOsDc8R58DCsN5i4A/hOehHfghUJ2wnR3Ax4H1QB9QlML75TBwXvj8n4H/Tpi3KPx/Rkas8znguyOm3Qw8mvC6HDgGLBlln98HhsL5PcDHwunXh/+/TuBB4IyTeN9P1HH8K/D1Ee8fBxZl+rOdTQ9dKeSWi4Ey4GepLGxmpQSJoNXd25MsWwP8EvgaUAt8ieAXWq27v4vgS+qL7l7h7r8fZRPfAf7a3SPAWQRfcBB8od+UsNzVwF53f9rMzgS+QZAYZof7bRyx3euBO4Bq4B7gP8J4C4B7gXXAHOBK4BYze6277yP44vmzhO3cBNzh7v1jnIIbgP8h+AX538DdZlYM/AB4nZlVh/stAt5K8OU3UrJlbwcGgMXACuA1wP8K5xnwhfA8nAHMJUhWif4cuIYgWQyMcRyE+z4HKAG2hJOWEpwrANx9K8GXaWy87Yyx7hFgazj9Jdz9HcCLBD8EKtz9i2YWI/hFfgvB1et9wL1mVpJsxxN8HBY+El9D8H6VkJJCbqkF2pN9IQB/ZmadwC6CX8ivT2Hb1wCb3f377j7g7j8CXgCuSzG2fuBMM6t090Puvjac/gPgajOrDF+/gxNfkm8GfuHuD7l7H0HxxNCI7T7s7ve5+2C43vJw+vlAvbt/xt2Pu/s24FvAjeH82wmTkZkVEnyhjvZFPmyNu98ZJo0vESTfi9x9L/AQ8JZwudcR/A/WjNzAeMuaWRS4CrjF3Y+4+37gy8PxuvsWd/+du/e5+4EwhstH7OJr7r7L3Y+NcxyE5/r7wKfdvSucXEFwBZioC4iMt60JWBeCxPjL8Pj6CX6xTyO4Mh1TGo7jPoLPxjIzmwZ8iuBKYXqKxzElKCnklg6gbowy5UQ/cfdqd5/p7leM9gU2itkExTiJdhL8Ck/FmwiuAnaa2R+HK7fdfQ/wCPCm8Bf0VQRXHcP73DW8gfAXaMeI7e5LeH4UKAuPfx4wO6xM7wyT4N8TlDMD/JwgSS0E/hTocvdV48SfGMcQ0BrGBwkJJvw7XnIZa9l5BEVnexPi/SYwE+IVrHeY2W4zO0yQTOvGinEs4ZfdvcDj7v6FhFk9QOWIxSsJisuSOZ11YcR7Kzy/uxjnvZWO43D3+4F/Iihy3ElQJNdN8L+WkJJCbnkM6CW1X/4naw/BF1eiJoKy76Tc/Ul3v4HgS+5ugrqAYcNflG8BHnP34W3uJSgmAcDMphNcDaViF7A9TH7Dj4i7Xx3G0xvG8HZeenUylsQ4CgiKsfaEk+4GlpnZWcC1nEhqoxlr2V0EdQF1CfFWuvtwEcwXCH61LnP3SoLzNbJxwLiV/GFx4d0E/7O/HjH7WU5cZREmy1Jg03jbHGPdcoKy/GfHWH5knC95b4WNHuYyxnsrjceBu3/d3ZvdfSZBcigiqPeSkJJCDgkvoT8FfN3MXm9m082s2MyuMrMvnubm7wNiYXO/IjN7K3Am8ItkK5pZiZm93cyqwuKBw8BgwiJ3A+cCHyCoYxh2J3CtmV0Wli9/htTfk6uAw2b2cTObZmaFZnaWmZ2fsMz3COpUrif45T2e88zsjeFVyC0EX+CPQzzB3ElQ17DK3V8cayNjLRsWLf0W+DczqzSzAjNbFLaIgaD4owfoNLM5BJXWKQvrP+4kqOD9i/DXeKIfAteZ2SvCL/XPAHe5e3e4fpGZlQGFQKGZDV+RQVCHdZaZvSlc5lPAend/YYxw2oCFCa9/AlwTNmstBj5McH4fnczjCJ+fZYEm4Dbgq+5+aIzjmJoyXdOtx8k/CH79rgaOEBSv/JITLYVuJaH10Yj13sX4rY8uA9YQlNGuAS5LmPdd4HNjrFcC/Bo4RJAQnkxcN1zm22G8FSOmv5OgYnKs1keJLanmE/wKLQpfzyaowNwX7vtxRrSMAjYDf0xyPm/lpa2PngLOHeXcOPDuFP4/oy5L0ProGwTFFV3hfm4M5y0Nz3kP8DTBF2drwrrx8zLGPi8P93k03Mbw4xUJy7wtPNdHCIrXakacAx/xuDVh/qsJ6piOEVTizx8nlhvC/XRyohXaGwhap3UBfwSWTvZxEDRWWM+Jz80XCFt/6XHiYeHJEkkrM/sUEHP3m5IuPLH7/QNBE8Zvn+Z2mgi+FBvc/fBELSuSbZJVWIqctrC563sIyvYnc7/nExRb3ZBs2STbKQA+RNCkNVlCSHlZkWykpCBpZWZ/RXAH9vfd/aFJ3O/tBBXyH/CwvPkUt1NOUEa+k6CJ6YQsK5KtVHwkIiJxan0kIiJxOV18VFdX5/Pnz890GCIiOWXNmjXt7l4/2rycTgrz589n9erVmQ5DRCSnmNnI3gviVHwkIiJxSgoiIhKnpCAiInFKCiIiEqekICIicUoKIiISp6QgIiJxOX2fgojIZOgfHOKFvd08vesQyxqrWT63OtMhpY2SgojICAePHGftzkOsefEQa3ceYl1rJ739wXg/K+fN4M6/HXd46ZympCAiU9rgkLOprZu1Lx5izc5DPPViJ9vbjwBQVGAsnV3Jjec3cd68GfzuuTYe2Lg/GIzGRo6Wmh+UFERkSuk61s9T4RXA2hc7eXpXJz19AwDUVZSwomkGbz1/Luc2zWBZYxVlxYXxdTuP9XPPuj3sO9zLrKppmTqEtFJSEJG8NTTkbGvvYe3OTtbsPMTaFw+xeX8PAAUGSxoqef2K2Zw3bwbnNs2gqWb6uFcAsZkVAGzc162kcKrMrJBgPOHd7n6tmX2XYBzWrnCRd7n70xb8J74KXE0wPuu73H1tuuMTkfzR0zfAul2d8fqAp17spOtYPwBV04o5t6ma65cHSWDZ3GoqSk/uKzAWjQCwqa2bV7XMnPD4s8FkXCl8AHgeqEyY9lF3v3PEclcBzeHjQoIBzi+chPhEJAe5Ozs7jrL2xUNhfUAnG/cdZigcNywWreCqsxo4N7wKWFhXTkHB6dUDzCgvYWaklE1tPRNwBNkprUnBzBqBa4DPE4xbO54bgO95MBTc42ZWbWaz3H1vOmMUkdxw7Pgg61s7WftiZ1ghfIiOI8cBqCgtYkVTNX96RTPnzZvBOXOrqZpWnJY4WhoibGo75RFes166rxS+AnwMiIyY/nkz+xRwP/AJd+8D5gC7EpZpDae9JCmY2c3AzQBNTU1pCltEMu1wbz+rdxzkiW0HeWL7QTbs7mIgvAxYUFfOq1pmcu68as6bN4PmmREKT/MqIFWxaIQfPrGToSE/7SuPbJS2pGBm1wL73X2Nmb0qYdYngX1ACXAb8HHgM8BoZ/dlA0i7+23heqxcuVIDTIvkiUNHjrMqTAKrdnTw3J6gKKi40FjeWM1fvXIh5zXNYEVTNbUVpRmLMxatoLd/iF2HjjKvtjxjcaRLOq8ULgWuN7OrgTKg0sx+4O43hfP7zOy/gI+Er1uBuQnrNwJ70hifiGTQge4+Vm0/yBPbO1i1/SAv7AuKZEqLCljRVM3fXdHMhQtqWNE0g2klhUm2NnmGK5s37utWUjgZ7v5JgqsCwiuFj7j7TcP1BGFro9cDG8JV7gHeZ2Z3EFQwd6k+QSR/7Ovq5YntHTyx/SBPbOtg64HgBrFpxYWsnD+Da5fN4oIFtSyfW0VpUfYkgZGaw6SweX8Pr1ma4WDSIBP3KfzQzOoJioueBv4mnH4fQXPULQRNUt+dgdhEZILsOniUJ7YfZFWYCHZ2HAUgUlrEyvkzeMvKuVywoIaz51RRXJg7fXNWlBbROGMaG/flZ2XzpCQFd38QeDB8fsUYyzjw3smIR0Qmlruzo+NokADCiuHdnceA4P6ACxbU8I6L5nHhglrOnF05aZXC6dISzd8WSLqjWUROmruzZX9PUBQUFgft7+4DoLa8hAsX1vBXr1jAhQtraYlG8q6VTnM0wkObD9A/OJRTVzmpUFIQkaSGhpwX9nXHi4JWbT8Yv0cgWlnKRQtruWBBDRctrGFRfUXedhY3rKWhgv5BZ0f7kXgdQ75QUhCRl+jtH2TbgSNsOdDDlv09PLfnME/uOBjvLmJO9TQub6nnwgU1XLiglnm14/cXlI9OdHfRo6QgIvmh61g/W/b3sHV/TzwBbNnfw65DR/HwDqACg/m15bx2aZQLF9Ry4cIaGmdMz2zgWWBRfQUFBhvburmGWZkOZ0IpKYjkMXen7XBf+IXfnfDlf4T2nr74ciVFBSysK+fsxiresGIOi2dWsHhmBQvqyl/SdbQEyooLmV9bzqY8bIGkpCCSBwYGh9h16Fj81/6W8Nf/tv09dIdjBUDQHHTRzApe1VIffPHXB1/+c2um53yLoMkWy9MWSEoKIjlkZHn/1jABbG8/wvHBofhyMyOlLJ5ZwRvOnfOSL//6SOmUK/9Pl1hDhN8+t4/e/sG8uppSUhDJQseOD/L8vsNsaRu/vH9uzXQW1we//BeFRT6L6ivS1kOonNASjTDksPVAD0tnV2U6nAmjpCCSYQODQ2xq62FdayfrWzt5elcXm9q6GQx7BFV5f3ZqaQhGYdvU1q2kICKnZnhgmHWtnazb1cX61k427Omitz8o+qksK2L53GquXLKIsxuraIlGVN6fpebVllNcaGzcl18D7igpiKTR/sO9rGvtCq8AOlnf2hVv719aVMBZc6r48wuaOGduNcsaq5k/Bdv856riwgIW1VfkXWWzkoLIBDnc28+G1i6ebu1k/a4u1rV2srerF4DCAqN5ZjA85LLGapbPrSIWjeRdFwlTTSwaYc3OQ5kOY0IpKYicgt7+QZ7fe5j1rV2s29XJutbOeFfQAPNqp7Nyfg3LG6tYPreapbMrmV6ij1u+aWmIcM+6PfT0DVBRmh//3/w4CpE0Ghxyth7oCYt/grqAF/Ydpn8wqAiuqyjlnLlV3HDOHJbPrWbZnCpmlJdkOGqZDMPdXWxu62ZF04wMRzMxlBRERtjdeYynX+wMK4M72bC7iyPHB4GgL/2z51TxnssWxq8CZlWVqR5giopFT7RAUlIQyRNth3t5bGsHj25t57FtHew6GIwDUFJYwBmzK3nTeY0sD+sBFtZV5F030HLq5s6YTllxQV61QFJSkCmnvaePx7d18NjW4LGtPagLqCwr4sKFtbz7kgWsnD+DloZIVg8LKZlXUGB5192FkoLkva6j/Ty+/UQS2Bh+gMtLCrlgQQ03XjCXSxbVccas3B8RTCZfLBrhoU0HMh3GhFFSkLzT3dvPkzsOBklgWwfP7jmMO5QVF7ByXg3XnzObixfV5tzYwJKdWqIR7lzTyqEjx/OigYGSguS8Y8cHWb3zYFgv0MEzu7sYHHJKCgtY0VTNB65s5pJFdSyfW6XiIJlwzQmVzRcurM1wNKfvpJKCmZUDve4+mKZ4RJLqGxjkqRc7eXRrB49v7eCpXYfoH3SKCoxljVX87eWLuHhRLefNm6G+gSTtWhqGR2GbAknBzAqAG4G3A+cDfUCpmR0A7gNuc/fNaY9SprT+wSHWt3bGrwTW7DxE38AQBQZnzaniLy9dwEWLajl/fk3e3EAkuaOhsoxIWVG8rirXJfsEPQD8HvgksMHdhwDMrAb4E+BfzOxn7v6D9IYpU8ngkPPsni4eDSuGn9xxkKPhfQJLGiK87cImLllUxwULatRFtGScmdESjbCpLT+apSZLCq929/6RE939IPBT4Kdmpk+lnBZ3Z1NbD49saefRrR08sb2D7t5gtLDFMyt407mNXLyolgsX1FBbUZrhaEVeLtYQ4b5n9uLuOX8jY7KkEBnvAN394GhJQySZ1kNHeXRLB49sbeeRLR3x8YKbaqZzzdmzuHhRLRcvrGVmZVmGIxVJLjazgv8+2s+B7r6cf88mSwprxpnnwMIJjEXy2KEjx3lsWwcPb2nn0S3t7Og4CgT9Bl26uJZLF9VxyeJaGmdMz3CkIicvFlY2b2zrzu+k4O4LJisQyS/Hjg+yasdBHt3SzsNb2nlub3CvQEVpERcuqOEvLp7PpYvriEUrcv5yW6QlOtwCqYdXNNdnOJrTk6z10Uzg74HFwHrgX9z98GQEJrllYHCIda1dPLKlnUe2tPPUi50cHxyiuNA4t2kGH3x1jEsX17KssVo3jEneqa0opa6ihE37cr8FUrLio+8RFCH9O3At8DXgXWmOSXKAu7N5fw8Pb27n0a3tPL7tID19A5jBmbMqefel87lkcR3nz5+hcQRkSohFI3nRLDXZp7XB3f8hfP4bM1ub7oAke+3uPBa/Enh0awcHuoPK4fm107n+nNlcuqiOixfVUpMHt/qLnKxYNML/rN7F0JDndE+6yZKCmdkMYPgICxNfh01TJU8NVw4PJ4HtYW+idRUlXLq4TpXDIgli0QhHjg+yu/MYc2ty9zORLClUERQfJaa94asFtT7KM8eOD/LkjoNhM9H2eEdyw5XDN100j8tUOSwyqpaGoA+kzfu78zcpuPv8SYpDJpm703a4j2d2d/FMayerdhxk7U5VDoucquawBdLGfT1csSSa4WhOXbLWR68FIu5+54jpbwMOuPvv0hmcTJz9h3tZ39oVJIHwMVwnUGBwxqxK3nVp0ExUlcMiJ6+yrJhZVWU5P+BOsk/+p4HrRpn+B+BnQNKkYGaFwGpgt7tfa2YLgDuAGoKiqHe4+3EzKyVo7XQe0AG81d13pHogcsKB7j6e2d3JM62HeWZ3J+tbu9ifkAAWz6zgFc11LJtTxdmNVZw5q4ppJepNVOR0xaIRNuZ4s9RkSWG6u79sSCF33xd2o52KDwDPA5Xh6/8DfNnd7zCz/xd4D/CN8O8hd19sZjeGy701xX1MWe09w0VAXfG/+w73AmAGi+oruGxxHWfNqWJZYxVnzq7UVYBImrQ0RHhsWweDQ56zo/gl+3YoM7Midx9InBh2gjct2cbNrBG4Bvg88CELaievAN4WLnI7cCtBUrghfA5wJ/AfZmbu7qkdSv47eOR4vA5gfWsXG3Z3safrRAJYUFfORQtrwgRQzZmzK9WVtMgkikUjHB8YYmfHERbWV2Q6nFOS7BvjLuBbZvY+dz8C8YF2vhbOS+YrwMeASPi6FuhMSDKtwJzw+RxgF4C7D5hZV7h8e+IGzexm4GaApqamFELITYeGE0DCVcDuzmPx+Qvrylk5v4ZljVWcNaeKpbMriZSpw1qRTDrR3UV33iaF/w18DthpZjvDaU3Ad4B/HG9FM7sW2O/ua8zsVcOTR1nUU5h3YoL7bcBtACtXrsyLq4iuo/08s7uL9bs72bC7i/WtXbQeOpEA5tdOZ0VTNe+8ZB5nzQmSQKUSgEjWWTyzArOgBdLrzsp0NKcmWZPUAeATZvZpgv6PALa4+7FxVht2KXC9mV0NlBHUKXwFqE4okmoE9oTLtwJzgVYzKyK4RyIvb44bGnJW7TjIL9bv4aFN7bx48Gh8XlPNdJbPreami+axbE4VS+dUaSAZkRwxraSQpprpOd0CKVmT1Mvc/eEwCTwzyvxKoMndN4yc5+6fJBixjfBK4SPu/nYz+x/gzQQtkN4J/Dxc5Z7w9WPh/D/kU32Cu/P0rk7uXbeXXz6zh7bDfZQVF/DK5npuvGAuy+ZUc9acSqqnq4sIkVyW630gJSs+epOZfRH4NcGdzQcIfvUvJhiOcx7w4ZPc58eBO8zsc8BTBEVRhH+/b2ZbCK4QbjzJ7WYdd+f5vd3cu34P967bQ+uhY5QUFnB5Sz3XLZ/NlUtmUq6KYJG80hKN8MAL++kbGKS0KPeaeicrPvpg2NfRm4G3ALOAYwRNTL/p7g+nshN3fxB4MHy+DbhglGV6w33kvC37e7h33R5+sX4PWw8cobDAuHRxHR+4spnXLG1QcZBIHos1RBgYcra3H2FJQ2XyFbJM0p+p7n4I+Fb4kDHsOng0vCLYy/N7D2MGFy6o4S8vW8DrljZobGGRKSIWDVodbdzXnZ9JQca2r6uXXz6zl3vX7eHpXZ0ArGiq5lPXnsk1y2YRzfFh+UTk5C2sq6CowHK2sllJ4SR19PRx34Z93LtuD0/uOIg7LJ1dySeuWsI1Z8/K6d4RReT0lRQVsKCunI37ejIdyilRUkhB17F+fvNskAge3Rrcwr6ovpxbroxx7fJZLMrRm1REJD1iDRE27O7KdBinJKWkYGafBT49fCdy2BT1q+7+7nQGl0lH+gb4/fNt3LtuLw9tOsDxwSGaaqbzN5cv5Npls1nSENGYAiIyqpZohPue2cvR4wM519dYqtEWAU+Y2buBBoIxm/89bVFlSG//IA9u3M+96/Zy/wtt9PYP0VBZxl9cPI/rls9mWWOVEoGIJBWLVuAetERc1lid6XBOSkpJwd0/aWb3A08Ah4BXuvuWtEY2SY4PDPHIlnbuXbeH3z7XRk/fAHUVJbzlvLlct3w2K+fNyOnxVkVk8sXiA+5052dSMLNXAl8FPgOcTdCD6V+6+57x18xOg0PO49s6uHfdHn61YR9dx/qpLCvimrNncd3y2Vy0sIYijTQmIqdoXm05JUUFOdkCKdXio38F3uLuzwGY2RsJBtpZkq7A0umna1r52E/XU15SyJ+eGeW65bN5RXM9JUVKBCJy+goLjOaZFWxqy70WSKkmhYvdfXD4hbvfZWZ/TFNMafeapVEiZefyJ0tmUlace7ehi0j2a4kGA+7kmlR/GteZ2XfM7NcAZnYm8Pr0hZVe1dNLuOrsWUoIIpI2zdEIe7t66TrWn+lQTkqqSeG7wG8I+j4C2ATcko6ARETyQUtDcP/S5hyrV0j5SsHdfwIMQXychcHxVxERmbriLZDyNCkcMbNawpHQzOwiIDdv1xMRmQRzqqdRXlLI5hyrbE61ovlDBIPgLDKzR4B6gu60RURkFGZGrCHCxn25daWQ6s1ra83scqCFYCzlje6eW7UnIiKTLDYzwu+fb8t0GCcl2XCcbxxjVszMcPe70hCTiEheiDVE+PHqXbT39FGXI2OqJLtSuC78OxO4hOCGNQiG4nwQUFIQERlDS1jZvGlfN3WLcyMpjFvR7O7vDntCdeBMd3+Tu78JWDop0YmI5LBY2Cw1l7q7SLX10Xx335vwug2IpSEeEZG8UV9RSvX0YjbmUAukVFsfPWhmvwF+RHDVcCPwQNqiEhHJA2ZGLBrJvysFd38f8E1gOXAOcJu7/106AxMRyQct0Qib9nXj7pkOJSUpDwkUtjRSxbKIyEmINUTo7htgb1cvs6unZTqcpFK6UjCzN5rZZjPrMrPDZtZtZofTHZyISK6Lt0DKkSKkVCuavwhc7+5V7l7p7hF3r0xnYCIi+SAWza0WSKkmhTZ3fz6tkYiI5KHq6SXMjJSycV9utEBKtU5htZn9GLgb6BueqDuaRUSSa2nInRZIqSaFSuAo8JqEaY4qnkVEkopFI/zwiZ0MDTkFBZbpcMaVaod47053ICIi+aolGqG3f4hdh44yr7Y80+GMK1mHeP9OOIbCaNz9/RMekYhInmkOK5s37uvO7aQArJ6UKERE8lhzQrPU1yxtyHA04xs3Kbj77ZMViIhIvqooLaJxxrSc6AMp1SapIiJyGoa7u8h2SgoiIpMg1hBhW3sP/YNDmQ5lXEoKIiKTIBatoH/Q2dF+JNOhjCvVvo9iZna/mW0IXy8zs/+dZJ0yM1tlZuvM7Fkz+3Q4/btmtt3Mng4f54TTzcy+ZmZbzGy9mZ17ugcnIpItYmFl88Ysv4kt1SuFbwGfBPoB3H09wZgK4+kDrnD34e62X2dmF4XzPuru54SPp8NpVwHN4eNm4BupH4aISHZbVF9BgZH19QqpJoXp7r5qxLSB8VbwwHBVe3H4GK9D8RuA74XrPQ5Um9msFOMTEclqZcWFzK8rz5srhXYzW0T4pW5mbwb2jr8KmFmhmT0N7Ad+5+5PhLM+HxYRfdnMhkezngPsSli9NZw2cps3m9lqM1t94MCBFMMXEcm8lmiEzVneLDXVpPBegpHXlpjZbuAW4G+TreTug+5+DtAIXGBmZxEUQy0BzgdqgI+Hi4/WIcjLrizc/TZ3X+nuK+vr61MMX0Qk85qjEXZ0HKG3fzDToYwp1eE4t7n7q4F6YIm7X+buO1Ldibt3Ag8Cr3P3vWERUR/wX8AF4WKtwNyE1RqBPanuQ0Qk27VEIww5bNmfvVcLqbY++mczq3b3I+7ebWYzzOxzSdapN7Pq8Pk04NXAC8P1BGZmwOuBDeEq9wB/EbZCugjocvekRTM50tAAABIPSURBVFQiIrmipSH7B9xJtfjoqvDXPgDufgi4Osk6s4AHzGw98CRBncIvgB+a2TPAM0AdMJxc7gO2AVsIWjv9PykfhYhIDphXW05JYUFWVzanOp5CoZmVhkU+w7/8S8dbIWy2umKU6VeMsbwT1F2IiOSl4sICFtaXZ3Vlc6pJ4QfA/Wb2XwSVv38JqLM8EZGTFItGWLPzUKbDGFOqg+x8MSzyuZKgldBn3f03aY1MRCQPtTREuGfdHrp7+4mUFWc6nJdJ9UoBd/8V8Ks0xiIikveGu7vYvL+Hc5tmZDialxu3otnMHg7/dpvZ4YRHt5kdnpwQRUTyR8vwgDtZ2t1FskF2Lgv/RiYnHBGR/NY4YxrTigvZlKWVzUmbpJpZwXDvqCIicnoKCozmaEXW3quQNCm4+xCwzsyaJiEeEZG8F4tGsvZehVQrmmcBz5rZKiA+QoS7X5+WqERE8lhLNMKda1o5eOQ4NeUlmQ7nJVJNCp9OaxQiIlNIrCGsbG7r5qKFtRmO5qWSJgUzez2wGHhG9yaIiJy+WDToA2lzFiaFZE1S/y/wQaAW+KyZ/eOkRCUikscaKsuIlBVlZb1CsiuFVwLL3X3QzKYD/x/w2fSHJSKSv8yMlmiETfuyr1lqstZHx919EMDdjzL6QDgiInKSYg1BC6SgL9DskexKYUnY9TUECWFR+NoIOjZdltboRETyVEs0wn8fe5H93X1EK8syHU5csqRwxqREISIyxTRHTwy4kzNJwd13TlYgIiJTyXAfSBv3dfOK5uwZbz7VkddERGQC1VaUUldRknXdXSgpiIhkSNDdRXa1QEqlQ7xCM/vBZAQjIjKVxKIRNrd1MzSUPS2QUukQbxCoN7Ps6qBDRCTHxaIRjh4fZHfnsUyHEpdq30c7gEfM7B5e2iHel9IRlIjIVNDScKIF0tya6RmOJpBqncIe4Bfh8pGEh4iInKLm4RZIWVTZnNKVgrt/GsDMyt39SLLlRUQkucqyYmZXlWXV0JwpXSmY2cVm9hzwfPh6edhZnoiInIagu4vsaYGUavHRV4DXAh0A7r6OoLM8ERE5DbFohK0HehgYHMp0KMBJ3Kfg7rtGTBqc4FhERKacWDTC8YEhdh48mulQgNSTwi4zuwRwMysxs48QFiWJiMipG+7uIlvqFVJNCn8DvBeYA7QC54SvRUTkNCyeWYFZ9rRASrX1UTvw9jTHIiIy5UwrKWRezfSs6QMppaRgZguAvwPmJ67j7tenJywRkamjORphU5a0QEr1jua7ge8A9wLZUUUuIpInWqIR/vDCfvoGBiktKsxoLKkmhV53/1paIxERmaJiDREGh5xtB45wxqzKjMaSalL4qpn9E/BboG94oruvTUtUIiJTSLwFUlt3ziSFs4F3AFdwovjIw9ciInIaFtSVU1RgbMyCZqmpJoU3AAvd/Xg6gxERmYpKigpYUFeeFZXNqd6nsA6oPpkNm1mZma0ys3Vm9qyZDXeqt8DMnjCzzWb24+FxGsysNHy9JZw//2T2JyKSy2INkaxolppqUogCL5jZb8zsnuFHknX6gCvcfTnBzW6vM7OLgP8DfNndm4FDwHvC5d8DHHL3xcCXw+VERKaElmiEFw8e5ejxgYzGkWrx0T+d7Ibd3YHha6Hi8DFcD/G2cPrtwK3AN4AbwucAdwL/YWYWbkdEJK/FwsrmzW09LJ97UgUzEyrVO5r/eCobN7NCYA2wGPg6sBXodPfhVNhK0HUG4d9d4f4GzKwLqAXaR2zzZuBmgKamplMJS0Qk68SiwShsG9u6M5oUUh1PodvMDoePXjMbNLPDydZz90F3PwdoBC4AzhhtseHdjDMvcZu3uftKd19ZX1+fSvgiIllvXm05JUUFbM5wvUKqVwovGXrTzF5P8CWfEnfvNLMHgYuAajMrCq8WGgmG+oTgqmEu0GpmRUAVcDDVfYiI5LLCAqN5ZkXGB9xJeTyFRO5+N0nuUTCzejOrDp9PA15N0N32A8Cbw8XeCfw8fH5P+Jpw/h9UnyAiU0lLNJLxLrRT7RDvjQkvC4CVjFK0M8Is4PawXqEA+Im7/yIc1vMOM/sc8BRBn0qEf79vZlsIrhBuTP0wRERyX6whwl1P7abraD9V04szEkOqrY+uS3g+AOwgaC00JndfD6wYZfo2Ril6cvde4C0pxiMikneGK5s37e/m/Pk1GYkh1TqFd6c7EBGRqS6W0AdSppJCqq2PvmhmlWZWbGb3m1m7md2U7uBERKaSOdXTKC8pzGi9QqoVza9x98PAtQSthGLAR9MWlYjIFGRmxBoiGR2aM9WkMFzjcTXwI3dXU1ERkTRoyfAobKkmhXvN7AWCVkf3m1k90Ju+sEREpqbmaISDR47T3tOXfOE0SCkpuPsngIuBle7eDxwhSesjERE5efEBdzJUr5Bqk1QIuqiYH95tPOx7ExyPiMiUFms40QfSJYvrJn3/qd689n1gEfA0MBhOdpQUREQmVH1FKTOmF2dsbIVUrxRWAmeq2wkRkfQyM2LRSMaG5ky1onkD0JDOQEREJBCLRtjc1kMmfoeneqVQBzxnZqsIRlQDwN2vT0tUIiJTWKwhQnffAHu7epldPW1S951qUrg1nUGIiMgJwy2QNrZ1T3pSSLVJ6h+BF4BI+Hj+VEdjExGR8cU7xstAvUKqfR/9GbCKoBfTPwOeMLM3j7+WiIiciurpJUQrSzPS3UWqxUf/AJzv7vshGEAH+D1wZ7oCExGZyoYrmydbqq2PCoYTQqjjJNYVEZGTFItG2Ly/m8GhyW2BlOqVwq/N7DfAj8LXbwV+lZ6QRESkJRqht3+IXQePMr+ufNL2m+ogOx8Nh+S8DDDgNnf/WVojExGZwmINJ1ogTWZSGLcIyMwWm9mlAO5+l7t/yN0/CHSY2aJJiVBEZApqnpmZFkjJ6gW+AowW0dFwnoiIpEF5aRGNM6axaf/kVjYnSwrz3X39yInuvhqYn5aIREQECAfcybIrhbJx5k3ubXYiIlNMrCHC1gM9HB8YmrR9JksKT5rZX42caGbvAdakJyQREYHgSmFgyNnRcWTS9pms9dEtwM/M7O2cSAIrgRLgDekMTERkqmsOu7vYuK+bWNgfUrqNmxTcvQ24xMz+BDgrnPxLd/9D2iMTEZniFtVXUGCweRK7u0j1PoUHgAfSHIuIiCQoKy5kfl35pPaBpK4qRESyWEs0wqZJ7ANJSUFEJIvFohF2dByht39wUvanpCAiksVi0QjusGWSbmJTUhARyWItDWF3F5NUr6CkICKSxebVllNSWDBplc1KCiIiWay4sICF9eWT1t2FkoKISJZraZi8FkhKCiIiWS4WjbC78xjdvf1p31fakoKZzTWzB8zseTN71sw+EE6/1cx2m9nT4ePqhHU+aWZbzGyjmb02XbGJiOSS4S4uNk9CC6RUh+M8FQPAh919rZlFgDVm9rtw3pfd/V8TFzazM4EbgaXAbOD3ZhZz98lpnCsikqVawqSwaV835zbNSOu+0nal4O573X1t+LwbeB6YM84qNwB3uHufu28HtgAXpCs+EZFc0ThjGtOKCyelBdKk1CmY2XxgBfBEOOl9ZrbezP7TzIbT3hxgV8JqrYySRMzsZjNbbWarDxw4kMaoRUSyQ0GBEYtWTMq9CmlPCmZWAfwUuMXdDwPfABYB5wB7gX8bXnSU1f1lE9xvc/eV7r6yvr4+TVGLiGSX5miEjfvSX6eQ1qRgZsUECeGH7n4XBN1xu/uguw8B3+JEEVErMDdh9UZgTzrjExHJFS3RCO09fRw8cjyt+0ln6yMDvgM87+5fSpg+K2GxNwAbwuf3ADeaWamZLQCagVXpik9EJJfEGsLK5jQXIaWz9dGlwDuAZ8zs6XDa3wN/bmbnEBQN7QD+GsDdnzWznwDPEbRceq9aHomIBOItkNq6uWhhbdr2k7ak4O4PM3o9wX3jrPN54PPpiklEJFdFK0upLCtiY5q7u9AdzSIiOcDMiEUjaS8+UlIQEckRsbAPJPeXNcycMEoKIiI5oiUaoetYP/u7+9K2DyUFEZEcMdwHUjrrFZQURERyRCya/lHYlBRERHJEbUUpdRUlulIQEZFALBphUxq70FZSEBHJIbFohM1t3QwNpacFkpKCiEgOaWmIcPT4ILs7j6Vl+0oKIiI5ZLiyOV31CkoKIiI5pHm4WWqaWiApKYiI5JDKsmJuOGc2c6qnpWX76ewlVURE0uCrN65I27Z1pSAiInFKCiIiEqekICIicUoKIiISp6QgIiJxSgoiIhKnpCAiInFKCiIiEmfpHOsz3czsALDzFFevA9onMJxcp/PxUjofJ+hcvFQ+nI957l4/2oycTgqnw8xWu/vKTMeRLXQ+Xkrn4wSdi5fK9/Oh4iMREYlTUhARkbipnBRuy3QAWUbn46V0Pk7QuXipvD4fU7ZOQUREXm4qXymIiMgISgoiIhKXV0nBzOaa2QNm9ryZPWtmHwin15jZ78xsc/h3Rjh9iZk9ZmZ9ZvaREdt6nZltNLMtZvaJTBzP6ZioczHWdnLNRL43wvmFZvaUmf1iso/ldE3w56TazO40sxfC7V2ciWM6HRN8Pj4YbmODmf3IzMoycUynI6+SAjAAfNjdzwAuAt5rZmcCnwDud/dm4P7wNcBB4P3AvyZuxMwKga8DVwFnAn8ebieXTMi5GGc7uWaizsewDwDPpzfktJnIc/FV4NfuvgRYTm6ek4n63pgTTl/p7mcBhcCNk3MIEyevkoK773X3teHzboI36BzgBuD2cLHbgdeHy+x39yeB/hGbugDY4u7b3P04cEe4jZwxUedinO3klAl8b2BmjcA1wLcnIfQJN1HnwswqgVcC3wmXO+7unZNyEBNoIt8bBEMcTzOzImA6sCfN4U+4vEoKicxsPrACeAKIuvteCN4AwMwkq88BdiW8biUHvwiHnea5GGs7OWsCzsdXgI8BQ2kKcdKc5rlYCBwA/issSvu2mZWnMdy0O53z4e67Ca4eXgT2Al3u/tt0xpsOeZkUzKwC+Clwi7sfPpVNjDItJ9vuTsC5mNDtZNrpHoeZXQvsd/c1Ex7cJJuA/2kRcC7wDXdfARzhRBFLzpmA98YMgquLBcBsoNzMbprYKNMv75KCmRUT/GN/6O53hZPbzGxWOH8WsD/JZlqBuQmvG8nBy8AJOhdjbSfnTND5uBS43sx2EBQrXmFmP0hTyGkzgZ+TVncfvnK8kyBJ5JwJOh+vBra7+wF37wfuAi5JV8zpkldJwcyMoHzzeXf/UsKse4B3hs/fCfw8yaaeBJrNbIGZlRBUFt0z0fGm00Sdi3G2k1Mm6ny4+yfdvdHd5xO8L/7g7jn1a3ACz8U+YJeZtYSTrgSem+Bw024CvzdeBC4ys+nhNq8kFyve3T1vHsBlBMU864Gnw8fVQC1B64HN4d+acPkGgl87h4HO8HllOO9qYBOwFfiHTB9bps7FWNvJ9PFl8r2RsM1XAb/I9LFl8lwA5wCrw23dDczI9PFl+Hx8GngB2AB8HyjN9PGd7EPdXIiISFxeFR+JiMjpUVIQEZE4JQUREYlTUhARkTglBRERiVNSEBGROCUFkQwIe+IVyTpKCiJJmNlnE8eRMLPPm9n7zeyjZvakma03s08nzL/bzNaE/erfnDC9x8w+Y2ZPABeb2b+Y2XPh+mN10S0yqXTzmkgSYc+Zd7n7uWZWQHCH698TdGPw1wQdKN4DfNHdHzKzGnc/aGbTCLpMudzdO8zMgbe6+0/MrAZ4DFji7m5m1Z6D3U5L/inKdAAi2c7dd5hZh5mtAKLAU8D5wGvC5wAVQDPwEPB+M3tDOH1uOL0DGCTodA2CLhJ6gW+b2S+BnBvBTfKTkoJIar4NvIug35v/JLhK+IK7fzNxITN7FUFvmRe7+1EzexAYHpKx190HAdx9wMwuCLdzI/A+4Ir0H4bI+JQURFLzM+AzQDHwNoIhHD9rZj90955wKMZ+oAo4FCaEJQTDO75M2Hf/dHe/z8weB7ZMylGIJKGkIJICdz9uZg8AneGv/d+a2RnAY0EvyfQANwG/Bv7GzNYDG4HHx9hkBPh5OLC7AR9M9zGIpEIVzSIpCCuY1wJvcffNmY5HJF3UJFUkCTM7k6B4534lBMl3ulIQEZE4XSmIiEickoKIiMQpKYiISJySgoiIxCkpiIhI3P8PPnAtmyQN1ugAAAAASUVORK5CYII=\n", 2475 | "text/plain": [ 2476 | "
" 2477 | ] 2478 | }, 2479 | "metadata": { 2480 | "needs_background": "light" 2481 | }, 2482 | "output_type": "display_data" 2483 | } 2484 | ], 2485 | "source": [ 2486 | "plt.plot(sydney_cpi.index, sydney_cpi.index_number)\n", 2487 | "plt.xlabel(\"years\")\n", 2488 | "plt.ylabel(\"Consumer Price Index (CPI)\")\n", 2489 | "plt.title(\"CPI of sydney by year 2010 to 2019\")\n", 2490 | "plt.show()" 2491 | ] 2492 | }, 2493 | { 2494 | "cell_type": "markdown", 2495 | "metadata": {}, 2496 | "source": [ 2497 | "Observation: From the above graph, it is clear that CPI have dropped steadily after 2018.\n", 2498 | "Conclusion of two visuals: House Price Index (HPI) of sydney has rised from the year 2012 and has reached its peak in 2017-18. CPI of sydney has steadily rised from 2010 till 2017 and faced a fall towards 2019\n", 2499 | "\n", 2500 | "INSIGHTS\n", 2501 | "\n", 2502 | "Rise in HPI encourages consumer spending which leads to economic growth\n", 2503 | "Fall in HPI affects consumer confidence and local retail sales, which causes a drop in CPI and hence the economic growth\n", 2504 | "Drop in HPI may create a high level of negative impact in local economy as HPI are linked with other key indicators of socio-economic conditions like local sales, Construction, household wealth and so on." 2505 | ] 2506 | }, 2507 | { 2508 | "cell_type": "markdown", 2509 | "metadata": {}, 2510 | "source": [ 2511 | "NOTE: REFER INSIGHT REPORT FOR MORE DETAILED INSIGHTS\n", 2512 | " \n", 2513 | "------------------------------------END OF NOTEBOOK-----------------------------------------------" 2514 | ] 2515 | } 2516 | ], 2517 | "metadata": { 2518 | "kernelspec": { 2519 | "display_name": "Python 3", 2520 | "language": "python", 2521 | "name": "python3" 2522 | }, 2523 | "language_info": { 2524 | "codemirror_mode": { 2525 | "name": "ipython", 2526 | "version": 3 2527 | }, 2528 | "file_extension": ".py", 2529 | "mimetype": "text/x-python", 2530 | "name": "python", 2531 | "nbconvert_exporter": "python", 2532 | "pygments_lexer": "ipython3", 2533 | "version": "3.7.4" 2534 | } 2535 | }, 2536 | "nbformat": 4, 2537 | "nbformat_minor": 2 2538 | } 2539 | --------------------------------------------------------------------------------