├── README.md └── assets ├── network.pdf └── network.png /README.md: -------------------------------------------------------------------------------- 1 | # AdaMatcher: Adaptive Assignment for Geometry Aware Local Feature Matching 2 | ### [Paper](https://arxiv.org/abs/2207.08427) 3 | 4 |
5 | 6 | > Adaptive Assignment for Geometry Aware Local Feature Matching 7 | > Dihe Huang\*, Ying Chen\*, Yong Liu, Jianlin Liu, Shang Xu, Wenlong Wu, Yikang Ding, Fan Tang, Chengjie Wang 8 | > CVPR 2023 9 | 10 | :triangular_flag_on_post: **Updates** 11 | Code has been migrated to official repository: https://github.com/TencentYoutuResearch/AdaMatcher 12 | 13 | ![network](assets/network.png) 14 | 15 | 16 | 17 | ## Installation 18 | For environment and data setup, please refer to [LoFTR](https://github.com/zju3dv/LoFTR). 19 | 20 | 21 | ## Run AdaMatcher 22 | 23 | ### Download Pretrained model 24 | We have provide pretrained model in megadepth dataset, you can download it from [weights](https://drive.google.com/drive/folders/1067_GfX7i_ZLj6Sp68S3d9cofdaPlDZW?usp=share_link). 25 | 26 | ### Download Datasets 27 | You need to setup the testing subsets of ScanNet, MegaDepth and YFCC first from [driven](https://drive.google.com/drive/folders/1TE_zJlKfPFRLeIrtq5iMBBjg-XaovNon). 28 | 29 | For the data utilized for training, we use the same training data as [LoFTR](https://github.com/zju3dv/LoFTR) does. 30 | 31 | 32 | ### Megadepth validation 33 | For different scales, you need edit [megadepth_test_scale_1000](configs/data/megadepth_test_scale_1000.py). 34 | 35 | ```shell 36 | # with shell script 37 | bash ./scripts/reproduce_test/outdoor_ada_scale.sh 38 | ``` 39 | 40 | 41 | ### Reproduce the testing results for yfcc datasets 42 | ```shell 43 | # with shell script 44 | bash ./scripts/reproduce_test/yfcc100m.sh 45 | ``` 46 | 47 |
48 | 49 | 50 | ## Training 51 | We train AdaMatcher on the MegaDepth datasets following [LoFTR](https://github.com/zju3dv/LoFTR/blob/master/docs/TRAINING.md). And the results can be reproduced when training with 32gpus. Please run the following commands: 52 | 53 | ``` 54 | sh scripts/reproduce_train/outdoor_ada.sh 55 | ``` 56 | ## Acknowledgement 57 | 58 | This repository is developed from `LoFTR`, and we are grateful to its authors for their [implementation](https://github.com/zju3dv/LoFTR). 59 | 60 | ## Citation 61 | 62 | If you find this code useful for your research, please use the following BibTeX entry. 63 | 64 | ```bibtex 65 | @article{Huang2023adamatcher, 66 | title={Adaptive Assignment for Geometry Aware Local Feature Matching}, 67 | author={Dihe Huang, Ying Chen, Yong Liu, Jianlin Liu, Shang Xu, Wenlong Wu, Yikang Ding, Fan Tang, Chengjie Wang}, 68 | journal={{CVPR}}, 69 | year={2023} 70 | } 71 | ``` 72 | -------------------------------------------------------------------------------- /assets/network.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/AbyssGaze/AdaMatcher/19cb67cb76586da484d931d3d346a258224ac976/assets/network.pdf -------------------------------------------------------------------------------- /assets/network.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/AbyssGaze/AdaMatcher/19cb67cb76586da484d931d3d346a258224ac976/assets/network.png --------------------------------------------------------------------------------