├── .gitignore
├── LICENSE
├── README.md
├── data
└── alpaca_data.json
├── requirements.txt
└── src
├── configs
├── deepspeed_config.json
├── deepspeed_config_transformers4.31.json
└── hostfile
├── conversation.py
├── environment_Llama-X.yml
├── generate.py
├── imgs
├── panda.jpg
├── pandallm.png
└── pandallm_git.png
├── train.py
├── train_freeform_multiturn.py
└── utils.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | share/python-wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 | MANIFEST
28 |
29 | # PyInstaller
30 | # Usually these files are written by a python script from a template
31 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
32 | *.manifest
33 | *.spec
34 |
35 | # Installer logs
36 | pip-log.txt
37 | pip-delete-this-directory.txt
38 |
39 | # Unit test / coverage reports
40 | htmlcov/
41 | .tox/
42 | .nox/
43 | .coverage
44 | .coverage.*
45 | .cache
46 | nosetests.xml
47 | coverage.xml
48 | *.cover
49 | *.py,cover
50 | .hypothesis/
51 | .pytest_cache/
52 | cover/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | .pybuilder/
76 | target/
77 |
78 | # Jupyter Notebook
79 | .ipynb_checkpoints
80 |
81 | # IPython
82 | profile_default/
83 | ipython_config.py
84 |
85 | # pyenv
86 | # For a library or package, you might want to ignore these files since the code is
87 | # intended to run in multiple environments; otherwise, check them in:
88 | # .python-version
89 |
90 | # pipenv
91 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
93 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
94 | # install all needed dependencies.
95 | #Pipfile.lock
96 |
97 | # poetry
98 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99 | # This is especially recommended for binary packages to ensure reproducibility, and is more
100 | # commonly ignored for libraries.
101 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102 | #poetry.lock
103 |
104 | # pdm
105 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106 | #pdm.lock
107 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108 | # in version control.
109 | # https://pdm.fming.dev/#use-with-ide
110 | .pdm.toml
111 |
112 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113 | __pypackages__/
114 |
115 | # Celery stuff
116 | celerybeat-schedule
117 | celerybeat.pid
118 |
119 | # SageMath parsed files
120 | *.sage.py
121 |
122 | # Environments
123 | .env
124 | .venv
125 | env/
126 | venv/
127 | ENV/
128 | env.bak/
129 | venv.bak/
130 |
131 | # Spyder project settings
132 | .spyderproject
133 | .spyproject
134 |
135 | # Rope project settings
136 | .ropeproject
137 |
138 | # mkdocs documentation
139 | /site
140 |
141 | # mypy
142 | .mypy_cache/
143 | .dmypy.json
144 | dmypy.json
145 |
146 | # Pyre type checker
147 | .pyre/
148 |
149 | # pytype static type analyzer
150 | .pytype/
151 |
152 | # Cython debug symbols
153 | cython_debug/
154 |
155 | # PyCharm
156 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158 | # and can be added to the global gitignore or merged into this file. For a more nuclear
159 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160 | .idea/
161 |
162 | transformers/
163 | .DS_Store
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | [](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
8 | [](https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE)
9 |
10 | ## Llama-X: Open Academic Research on Improving LLaMA to SOTA LLM
11 |
12 |
13 | This is the repo for the Llama-X, which aims to:
14 |
15 | - Progressively improve the performance of LLaMA to SOTA LLM with open-source community.
16 | - Conduct Llama-X as an open academic research which is long-term, systematic and rigorous.
17 | - Save the repetitive work of community and we work together to create more and faster increment.
18 |
19 | The project will follow these principles:
20 |
21 | - We will publish all the `code`, `model`, `data`, and `experiments` details.
22 | - We will `continuously` improve the model version by version and open the `newest` method.
23 | - We will summary the method of each main version as `academic papers`.
24 | - We announce a complete [research plan](#research-areas). The contributors are wellcome to cooperate with
25 | each other to progressively improve Llama-X through
26 | iteration of the [target versions](#model).
27 | - The check-in of the new model must achieve significant improvement with current version on [automatic evaluation](#evaluation).
28 |
29 | 📣 Please join
if you are interested in Llama-X.
30 |
31 | ## Contents
32 | 1. [News](#news)
33 |
34 | 2. [Ten main research areas](#research-areas)
35 |
36 | 3. [Llama-X Model Version](#model)
37 |
38 | 4. [Llama-X Evaluation](#evaluation)
39 |
40 | 5. [Llama-X Paper List](#paper)
41 |
42 | 6. [Usage](#usage)
43 |
44 | 7. [How to contribute](#contribute)
45 |
46 |
47 | News
48 |
49 | We have completed the training of our first version of model (Llama-X 3.0.1 7B). Please experience our model in the [demo page](https://cedfabe00f0fcbde.gradio.app), and the data, code and model weights of different scales will be updated in this repo later.
50 |
51 | Ten main research areas
52 |
53 | [1]. Research on `Instruction Tuning`
54 | - [ ] instruction-following tuning
55 |
56 | [2]. Research on `RLHF & RLAIF`
57 | - [ ] fundamental RLHF
58 | - [ ] AI learning from AI
59 |
60 | [3]. Research on `Data Quality`
61 | - [ ] high quality data for pre-training, fine-tuning, user feedbacks, multi-modality, etc
62 |
63 | [4]. Research on `Long Context Transformer`
64 | - [ ] enable efficient transformers for long sequence (>30k)
65 |
66 | [5]. Research on `Multi-modal (text + image) Modeling`
67 | - [ ] text + image in; text out
68 |
69 | [6]. Research on `Multilingual`
70 | - [ ] comparable multilingual performance with English
71 |
72 | [7]. Research on `Efficient infrastructure and optimization`
73 | - [ ] improve training and inference speed
74 | - [ ] build deep learning stack which scales predictably
75 |
76 | [8]. Research on `Evaluation`
77 | - [ ] comprehensive evaluation of model capabilities
78 |
79 | [9]. Research on `Interpretability`
80 | - [ ] interpret the source of each capability of LLM
81 |
82 | [10]. Research on `LLM on Actions`
83 | - [ ] combine LLM with search, recommendation and other plugins
84 |
85 |
86 | Llama-X Model Version
87 |
88 |
89 |
90 | | Llama-X | Baseline | Performance |
91 | |---------------|------------------|------------------------------------|
92 | | 3.0.0 (LLaMA) | GPT-3 | Outperform |
93 | | 3.1.0 | text-davinci-001 | Comparable |
94 | | 3.2.0 | text-davinci-002 | Comparable |
95 | | 3.3.0 | text-davinci-003 | Comparable |
96 | | 3.5.0 | gpt-35-turbo | Comparable |
97 | | 3.6.0 | GPT-4 | 80% Avg.Gap |
98 | | 3.7.0 | GPT-4 | 60% Avg.Gap |
99 | | 3.8.0 | GPT-4 | 40% Avg.Gap |
100 | | 3.9.0 | GPT-4 | 20% Avg.Gap |
101 | | 4.0.0 | GPT-4 | Comparable |
102 |
103 |
104 | We are focusing on the above research areas [1] & [3] now, and would public our first version of model (Llama-X 3.0.1) and paper.
105 |
106 |
107 |
108 | Llama-X Evaluation
109 |
110 | Each new version of Llama-X model should significantly outperform (+>1%) the current version model on the automatic evaluation
111 | of all the following Type-A benchmarks. And the additional evaluation for Type-B benchmarks should be added in the 3.6.0+ versions:
112 |
113 | | Type | Benchmarks |
114 | |------|---------------------|
115 | | A | MMLU |
116 | | A | HumanEval |
117 | | A | GSM-8K |
118 | | A | NaturalQuestions |
119 | | A | TruthfulQA |
120 | | B | Leetcode |
121 | | B | GRE |
122 | | B | AP |
123 | | B | MMLU-Multilingual |
124 | | B | Visual Inputs (TBD) |
125 |
126 |
127 | Results:
128 |
129 | | Model | MMLU | TruthfulQA | GSM-8K | NaturalQuestions |
130 | |------------------------------|--------|------------|--------|------------------|
131 | |InstructGPT davinci v2 (175B)^ | 0.57 | 0.62 | 0.35 | 0.389 |
132 | |Llama-X 3.0.1 (7B) | 0.4412 | 0.2032 | 0.1887| 0.2422 |
133 | |Llama-i (7B) | 0.5121 | 0.2142 | 0.2259| 0.3499 |
134 |
135 | ^ The results of `InstructGPT davinci v2 (175B)` are copied from [Stanford CRFM Benchmark](https://crfm.stanford.edu/).
136 |
137 | Llama-X Paper List
138 |
139 | 1. [LLaMA: Open and Efficient Foundation Language Models.](https://arxiv.org/abs/2302.13971v1)
140 |
141 |
142 | Usage
143 |
144 | - Setup. Install the conda environment:
145 | ```bash
146 | conda create -n llamax python=3.10
147 | conda activate llamax
148 | git clone https://github.com/AetherCortex/Llama-X.git
149 | cd Llama-X/src
150 | conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
151 | pip install transformers==4.31.0
152 | cd ../..
153 | pip install -r requirements.txt
154 | ```
155 |
156 | - Training data example (e.g., [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json)):
157 | ```bash
158 | Llama-X/src/data/alpaca_data.json
159 | ```
160 |
161 | - Convert LLaMA checkpoint to HuggingFace format:
162 | ```bash
163 | cd Llama-X/src
164 | python transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py \
165 | --input_dir /path/to/llama-7B/ \
166 | --model_size 7B \
167 | --output_dir /path/to/llama-7B/hf
168 | ```
169 |
170 | - Train LLaMA-7B on DeepSpeed Zero-3:
171 | ```bash
172 | deepspeed train.py \
173 | --model_name_or_path /path/to/llama-7B/hf \
174 | --data_path /path/to/example_data.json \
175 | --output_dir /path/to/llama-7B/hf/ft \
176 | --num_train_epochs 3 \
177 | --model_max_length 512 \
178 | --per_device_train_batch_size 64 \
179 | --per_device_eval_batch_size 1 \
180 | --gradient_accumulation_steps 1 \
181 | --evaluation_strategy "no" \
182 | --save_strategy "steps" \
183 | --save_steps 100 \
184 | --save_total_limit 2 \
185 | --learning_rate 2e-5 \
186 | --warmup_steps 2 \
187 | --logging_steps 2 \
188 | --lr_scheduler_type "cosine" \
189 | --report_to "tensorboard" \
190 | --gradient_checkpointing True \
191 | --deepspeed configs/deepspeed_config.json \
192 | --fp16 True
193 | ```
194 | - Train LLaMA-7B on DeepSpeed Zero-3 with Multi-nodes
195 | ```bash
196 | deepspeed --num_gpus num_of_gpus_in_each_node \
197 | --num_nodes num_of_nodes \
198 | --master_addr ip_address_of_main_node \
199 | --master_port 34545 \
200 | --hostfile configs/hostfile \
201 | train.py \
202 | --model_name_or_path /path/to/llama-7B/hf \
203 | --data_path /path/to/example_data.json \
204 | --output_dir /path/to/llama-7B/hf/ft \
205 | --num_train_epochs 3 \
206 | --model_max_length 512 \
207 | --per_device_train_batch_size 64 \
208 | --per_device_eval_batch_size 4 \
209 | --gradient_accumulation_steps 1 \
210 | --evaluation_strategy "no" \
211 | --save_strategy "steps" \
212 | --save_steps 100 \
213 | --save_total_limit 2 \
214 | --learning_rate 2e-5 \
215 | --warmup_steps 2 \
216 | --logging_steps 2 \
217 | --lr_scheduler_type "cosine" \
218 | --report_to "tensorboard" \
219 | --gradient_checkpointing True \
220 | --deepspeed configs/deepspeed_config.json \
221 | --fp16 True
222 | ```
223 |
224 | - The current code of Llama-X support:
225 | - Fully Finetune: Optimize full LLaMA checkpoint, instead of `Low-Rank Adaptation (LoRA)`.
226 | - High Efficiency: Training 7B model with `50k examples/epoch` & `batch_size=64` within `1 hour` on `8 x V100 GPUs`.
227 |
228 | | LLaMA | Batch Size | V100s | Time (h) |
229 | |--------|------------|--------|-------------|
230 | | 7 B | 64 | 8 | 1.00 |
231 | | 13 B | 32 | 8 | 2.00 |
232 |
233 |
234 | - Inference
235 | ```bash
236 | # web demo inference
237 | python generate.py
238 |
239 | # batch inference
240 | To Do
241 | ```
242 |
243 |
244 | How to contribute
245 |
246 | Developers can become Contributors by contributing helpful code, data, paper and computing resource, etc.
247 |
248 | 1. Code: Including algorithm implementation, training optimization, inference optimization, and model deployment.
249 |
250 | 2. Data: Every [research area](#research-areas) and [version iteration](#model) requires high-quality data, including instruction-answer, pre-training, multi-modal, multilingual, and user feedbacks data, etc.
251 |
252 | 3. Paper: We will maintain a [Llama-X Paper List](#paper), and use Llama-X as the base model for optimized, fully tested, and significantly improved academic papers. You can check in to the Llama X Paper List.
253 |
254 | 4. Computing resource: We hope to help accelerate model iteration speed by coordinating redundant computing power from some developers or non-profit sponsorship from universities/enterprises.
255 |
256 | How to communicate with us
257 |
258 | 1. Github Issues
259 |
260 | 2. Email: llama-x@mail.com
261 |
262 | 3. Discord:
263 |
264 |
265 | ## Thanks For
266 |
267 | This project has been inspired by multiple open source projects:
268 |
269 | [Meta AI LLaMA](https://arxiv.org/abs/2302.13971v1)
270 |
271 | [Huggingface Transformers Llama](https://github.com/huggingface/transformers/tree/main/src/transformers/models/llama)
272 |
273 | [Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html) and [Alpaca-LoRA](https://github.com/tloen/alpaca-lora)
274 |
275 |
276 | ## Disclaimer
277 |
278 | The use of resources(e.g., code, data and model weights) related to this project is limited to academic research and is prohibited for commercial purposes. The content generated by any model of Llama-X is subject to factors such as randomness and uncontrollability, and this project cannot guarantee its accuracy. This project does not assume any legal responsibility for the content of the model output, nor does it assume any responsibility for any losses that may arise from the use of related resources and output results.
279 |
280 |
281 |
282 |
283 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy
2 | rouge_score
3 | fire
4 | openai
5 | sentencepiece
6 | wandb
7 | gradio==3.9
8 | deepspeed==0.10.0
9 | accelerate
10 | tensorboardX
11 |
--------------------------------------------------------------------------------
/src/configs/deepspeed_config.json:
--------------------------------------------------------------------------------
1 | {
2 | "zero_optimization": {
3 | "stage": 3,
4 | "offload_optimizer": {
5 | "device": "cpu",
6 | "pin_memory": true
7 | },
8 | "offload_param": {
9 | "device": "cpu",
10 | "pin_memory": true
11 | },
12 | "overlap_comm": true,
13 | "contiguous_gradients": true,
14 | "sub_group_size": 0,
15 | "reduce_bucket_size": "auto",
16 | "stage3_prefetch_bucket_size": "auto",
17 | "stage3_param_persistence_threshold": "auto",
18 | "stage3_max_live_parameters": 0,
19 | "stage3_max_reuse_distance": 0,
20 | "stage3_gather_16bit_weights_on_model_save": true
21 | },
22 | "fp16": {
23 | "enabled": true,
24 | "auto_cast": false,
25 | "loss_scale": 0,
26 | "initial_scale_power": 32,
27 | "loss_scale_window": 1000,
28 | "hysteresis": 2,
29 | "min_loss_scale": 1
30 | },
31 | "optimizer": {
32 | "type": "AdamW",
33 | "params": {
34 | "lr": 2e-5,
35 | "betas": [
36 | 0.9,
37 | 0.999
38 | ],
39 | "eps": 1e-8,
40 | "weight_decay": 0
41 | }
42 | },
43 | "train_batch_size": "auto",
44 | "train_micro_batch_size_per_gpu": "auto",
45 | "wall_clock_breakdown": false
46 | }
47 |
--------------------------------------------------------------------------------
/src/configs/deepspeed_config_transformers4.31.json:
--------------------------------------------------------------------------------
1 | {
2 | "zero_optimization": {
3 | "stage": 3,
4 | "offload_optimizer": {
5 | "device": "cpu",
6 | "pin_memory": true
7 | },
8 | "offload_param": {
9 | "device": "cpu",
10 | "pin_memory": true
11 | },
12 | "overlap_comm": true,
13 | "contiguous_gradients": true,
14 | "sub_group_size": 0,
15 | "reduce_bucket_size": "auto",
16 | "stage3_prefetch_bucket_size": "auto",
17 | "stage3_param_persistence_threshold": "auto",
18 | "stage3_max_live_parameters": 0,
19 | "stage3_max_reuse_distance": 0,
20 | "stage3_gather_16bit_weights_on_model_save": true
21 | },
22 | "fp16": {
23 | "enabled": true,
24 | "auto_cast": false,
25 | "loss_scale": 0,
26 | "initial_scale_power": 32,
27 | "loss_scale_window": 1000,
28 | "hysteresis": 2,
29 | "min_loss_scale": 1
30 | },
31 | "optimizer": {
32 | "type": "AdamW",
33 | "params": {
34 | "lr": 2e-5,
35 | "betas": [
36 | 0.9,
37 | 0.999
38 | ],
39 | "eps": 1e-8,
40 | "weight_decay": 0
41 | }
42 | },
43 | "scheduler": {
44 | "type": "WarmupDecayLR",
45 | "params": {
46 | "warmup_min_lr": "auto",
47 | "warmup_max_lr": "auto",
48 | "warmup_num_steps": "auto",
49 | "total_num_steps": "auto"
50 | }
51 | },
52 | "train_batch_size": "auto",
53 | "train_micro_batch_size_per_gpu": "auto",
54 | "gradient_accumulation_steps": "auto",
55 | "wall_clock_breakdown": false
56 |
57 | }
58 |
--------------------------------------------------------------------------------
/src/configs/hostfile:
--------------------------------------------------------------------------------
1 | ip_address_of_main_node slots=num_of_gpus_in_each_node
2 | ip_address_of_sub_node1 slots=num_of_gpus_in_each_node
--------------------------------------------------------------------------------
/src/conversation.py:
--------------------------------------------------------------------------------
1 | """
2 | Conversation prompt templates.
3 | """
4 |
5 | import dataclasses
6 | from enum import auto, Enum
7 | from typing import List, Tuple, Any, Dict
8 |
9 |
10 | class SeparatorStyle(Enum):
11 | """Separator styles."""
12 |
13 | ADD_COLON_SINGLE = auto()
14 | ADD_COLON_TWO = auto()
15 | NO_COLON_SINGLE = auto()
16 | BAIZE = auto()
17 | DOLLY = auto()
18 | RWKV = auto()
19 | PHOENIX = auto()
20 | NEW_LINE = auto()
21 | BILLA = auto()
22 |
23 |
24 | @dataclasses.dataclass
25 | class Conversation:
26 | """A class that keeps all conversation history."""
27 |
28 | # The name of this template
29 | name: str
30 | # System prompts
31 | system: str
32 | # Two roles
33 | roles: List[str]
34 | # All messages
35 | messages: List[List[str]]
36 | # Offset of few shot examples
37 | offset: int
38 | # Separators
39 | sep_style: SeparatorStyle
40 | sep: str
41 | sep2: str = None
42 | # Stop criteria (the default one is EOS token)
43 | stop_str: str = None
44 | # Stops generation if meeting any token in this list
45 | stop_token_ids: List[int] = None
46 |
47 | # Used for the state in the gradio servers.
48 | # TODO(lmzheng): move this out of this class.
49 | conv_id: Any = None
50 | skip_next: bool = False
51 | model_name: str = None
52 |
53 | def get_prompt(self) -> str:
54 | """Get the prompt for generation."""
55 | if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
56 | ret = self.system + self.sep
57 | for role, message in self.messages:
58 | if message:
59 | ret += role + ": " + message + self.sep
60 | else:
61 | ret += role + ":"
62 | return ret
63 | elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
64 | seps = [self.sep, self.sep2]
65 | ret = self.system + seps[0]
66 | for i, (role, message) in enumerate(self.messages):
67 | if message:
68 | ret += role + ": " + message + seps[i % 2]
69 | else:
70 | ret += role + ":"
71 | return ret
72 | elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
73 | ret = self.system
74 | for role, message in self.messages:
75 | if message:
76 | ret += role + message + self.sep
77 | else:
78 | ret += role
79 | return ret
80 | elif self.sep_style == SeparatorStyle.BAIZE:
81 | ret = self.system + "\n"
82 | for role, message in self.messages:
83 | if message:
84 | ret += role + message + "\n"
85 | else:
86 | ret += role
87 | return ret
88 | elif self.sep_style == SeparatorStyle.DOLLY:
89 | seps = [self.sep, self.sep2]
90 | ret = self.system
91 | for i, (role, message) in enumerate(self.messages):
92 | if message:
93 | ret += role + ":\n" + message + seps[i % 2]
94 | if i % 2 == 1:
95 | ret += "\n\n"
96 | else:
97 | ret += role + ":\n"
98 | return ret
99 | elif self.sep_style == SeparatorStyle.RWKV:
100 | ret = self.system
101 | for i, (role, message) in enumerate(self.messages):
102 | if message:
103 | ret += (
104 | role
105 | + ": "
106 | + message.replace("\r\n", "\n").replace("\n\n", "\n")
107 | )
108 | ret += "\n\n"
109 | else:
110 | ret += role + ":"
111 | return ret
112 | elif self.sep_style == SeparatorStyle.PHOENIX:
113 | ret = self.system
114 | for role, message in self.messages:
115 | if message:
116 | ret += role + ": " + "" + message + ""
117 | else:
118 | ret += role + ": " + ""
119 | return ret
120 | elif self.sep_style == SeparatorStyle.NEW_LINE:
121 | ret = self.system + self.sep
122 | for role, message in self.messages:
123 | if message:
124 | ret += role + "\n" + message + self.sep
125 | else:
126 | ret += role + "\n"
127 | return ret
128 | elif self.sep_style == SeparatorStyle.BILLA:
129 | ret = self.system + self.sep
130 | for role, message in self.messages:
131 | if message:
132 | ret += role + ": " + message + self.sep
133 | else:
134 | ret += role + ": " # must be end with a space
135 | return ret
136 | else:
137 | raise ValueError(f"Invalid style: {self.sep_style}")
138 |
139 | def append_message(self, role: str, message: str):
140 | """Append a new message."""
141 | self.messages.append([role, message])
142 |
143 | def to_gradio_chatbot(self):
144 | """Convert the history to gradio chatbot format"""
145 | ret = []
146 | for i, (role, msg) in enumerate(self.messages[self.offset :]):
147 | if i % 2 == 0:
148 | ret.append([msg, None])
149 | else:
150 | ret[-1][-1] = msg
151 | return ret
152 |
153 | def to_openai_api_messages(self):
154 | """Convert the conversation to OpenAI chat completion format."""
155 | ret = [{"role": "system", "content": self.system}]
156 |
157 | for i, (_, msg) in enumerate(self.messages[self.offset :]):
158 | if i % 2 == 0:
159 | ret.append({"role": "user", "content": msg})
160 | else:
161 | if msg is not None:
162 | ret.append({"role": "assistant", "content": msg})
163 | return ret
164 |
165 | def copy(self):
166 | return Conversation(
167 | name=self.name,
168 | system=self.system,
169 | roles=self.roles,
170 | messages=[[x, y] for x, y in self.messages],
171 | offset=self.offset,
172 | sep_style=self.sep_style,
173 | sep=self.sep,
174 | sep2=self.sep2,
175 | stop_str=self.stop_str,
176 | stop_token_ids=self.stop_token_ids,
177 | conv_id=self.conv_id,
178 | model_name=self.model_name,
179 | )
180 |
181 | def dict(self):
182 | return {
183 | "name": self.name,
184 | "system": self.system,
185 | "roles": self.roles,
186 | "messages": self.messages,
187 | "offset": self.offset,
188 | "conv_id": self.conv_id,
189 | "model_name": self.model_name,
190 | }
191 |
192 |
193 | # A global registry for all conversation templates
194 | conv_templates: Dict[str, Conversation] = {}
195 |
196 |
197 | def register_conv_template(template: Conversation, override: bool = False):
198 | """Register a new conversation template."""
199 | if not override:
200 | assert template.name not in conv_templates, f"{name} has been registered."
201 | conv_templates[template.name] = template
202 |
203 |
204 | def get_conv_template(name: str) -> Conversation:
205 | """Get a conversation template."""
206 | return conv_templates[name].copy()
207 |
208 |
209 | # A template with one conversation example
210 | register_conv_template(
211 | Conversation(
212 | name="one_shot",
213 | system="A chat between a curious human and an artificial intelligence assistant. "
214 | "The assistant gives helpful, detailed, and polite answers to the human's questions.",
215 | roles=("Human", "Assistant"),
216 | messages=(
217 | (
218 | "Human",
219 | "What are the key differences between renewable and non-renewable energy sources?",
220 | ),
221 | (
222 | "Assistant",
223 | "Renewable energy sources are those that can be replenished naturally in a relatively "
224 | "short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
225 | "Non-renewable energy sources, on the other hand, are finite and will eventually be "
226 | "depleted, such as coal, oil, and natural gas. Here are some key differences between "
227 | "renewable and non-renewable energy sources:\n"
228 | "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
229 | "energy sources are finite and will eventually run out.\n"
230 | "2. Environmental impact: Renewable energy sources have a much lower environmental impact "
231 | "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
232 | "and other negative effects.\n"
233 | "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
234 | "have lower operational costs than non-renewable sources.\n"
235 | "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
236 | "locations than non-renewable sources.\n"
237 | "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
238 | "situations and needs, while non-renewable sources are more rigid and inflexible.\n"
239 | "6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
240 | "non-renewable sources are not, and their depletion can lead to economic and social instability.",
241 | ),
242 | ),
243 | offset=2,
244 | sep_style=SeparatorStyle.ADD_COLON_SINGLE,
245 | sep="\n### ",
246 | stop_str="###",
247 | )
248 | )
249 |
250 | # Vicuna v1.1 template
251 | register_conv_template(
252 | Conversation(
253 | name="vicuna_v1.1",
254 | system="A chat between a curious user and an artificial intelligence assistant. "
255 | "The assistant gives helpful, detailed, and polite answers to the user's questions.",
256 | roles=("USER", "ASSISTANT"),
257 | messages=(),
258 | offset=0,
259 | sep_style=SeparatorStyle.ADD_COLON_TWO,
260 | sep=" ",
261 | sep2="",
262 | )
263 | )
264 |
265 | # Koala default template
266 | register_conv_template(
267 | Conversation(
268 | name="koala_v1",
269 | system="BEGINNING OF CONVERSATION:",
270 | roles=("USER", "GPT"),
271 | messages=(),
272 | offset=0,
273 | sep_style=SeparatorStyle.ADD_COLON_TWO,
274 | sep=" ",
275 | sep2="",
276 | )
277 | )
278 |
279 | # Dolly V2 default template
280 | register_conv_template(
281 | Conversation(
282 | name="dolly_v2",
283 | system="Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n",
284 | roles=("### Instruction", "### Response"),
285 | messages=(),
286 | offset=0,
287 | sep_style=SeparatorStyle.DOLLY,
288 | sep="\n\n",
289 | sep2="### End",
290 | )
291 | )
292 |
293 | # OpenAssistant Pythia default template
294 | register_conv_template(
295 | Conversation(
296 | name="oasst_pythia",
297 | system="",
298 | roles=("<|prompter|>", "<|assistant|>"),
299 | messages=(),
300 | offset=0,
301 | sep_style=SeparatorStyle.NO_COLON_SINGLE,
302 | sep="<|endoftext|>",
303 | )
304 | )
305 |
306 | # StableLM Alpha default template
307 | register_conv_template(
308 | Conversation(
309 | name="stablelm",
310 | system="""<|SYSTEM|># StableLM Tuned (Alpha version)
311 | - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
312 | - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
313 | - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
314 | - StableLM will refuse to participate in anything that could harm a human.
315 | """,
316 | roles=("<|USER|>", "<|ASSISTANT|>"),
317 | messages=(),
318 | offset=0,
319 | sep_style=SeparatorStyle.NO_COLON_SINGLE,
320 | sep="",
321 | stop_token_ids=[50278, 50279, 50277, 1, 0],
322 | )
323 | )
324 |
325 | # Baize default template
326 | register_conv_template(
327 | Conversation(
328 | name="baize",
329 | system="The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.",
330 | roles=("[|Human|]", "[|AI|]"),
331 | messages=(
332 | ("[|Human|]", "Hello!"),
333 | ("[|AI|]", "Hi!"),
334 | ),
335 | offset=2,
336 | sep_style=SeparatorStyle.BAIZE,
337 | sep="[|Human|]",
338 | stop_str="[|Human|]",
339 | )
340 | )
341 |
342 | # RWKV-4-Raven default template
343 | register_conv_template(
344 | Conversation(
345 | name="rwkv",
346 | system="The following is a coherent verbose detailed conversation between Bob and Alice.\n\n",
347 | roles=("Bob", "Alice"),
348 | messages=(
349 | ("Bob", "Hi"),
350 | (
351 | "Alice",
352 | "Hi. I am your assistant and I will answer all questions. Please feel free to ask any question and I will always answer it.",
353 | ),
354 | ),
355 | offset=2,
356 | sep_style=SeparatorStyle.RWKV,
357 | sep="",
358 | stop_str="\n\n",
359 | )
360 | )
361 |
362 | # Buddy default template
363 | register_conv_template(
364 | Conversation(
365 | name="openbuddy",
366 | system="""Consider a conversation between User (a human) and Assistant (named Buddy).
367 | Buddy is an INTP-T, a friendly, intelligent and multilingual AI assistant, by OpenBuddy team. GitHub: https://github.com/OpenBuddy/OpenBuddy
368 | Buddy cannot access the Internet.
369 | Buddy can fluently speak the user's language (e.g. English, Chinese).
370 | Buddy can generate poems, stories, code, essays, songs, parodies, and more.
371 | Buddy possesses vast knowledge about the world, history, and culture.
372 | Buddy's responses are always safe, creative, high-quality, human-like, and interesting.
373 | Buddy strictly refuses to discuss political, NSFW, or other unsafe topics.
374 |
375 | User: Hi.
376 | Assistant: Hi, I'm Buddy, your AI assistant. How can I help you today?""",
377 | roles=("User", "Assistant"),
378 | messages=(),
379 | offset=0,
380 | sep_style=SeparatorStyle.ADD_COLON_SINGLE,
381 | sep="\n",
382 | )
383 | )
384 |
385 | # Phoenix default template
386 | register_conv_template(
387 | Conversation(
388 | name="phoenix",
389 | system="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
390 | roles=("Human", "Assistant"),
391 | messages=(),
392 | offset=0,
393 | sep_style=SeparatorStyle.PHOENIX,
394 | sep="",
395 | )
396 | )
397 |
398 | # ChatGPT default template
399 | register_conv_template(
400 | Conversation(
401 | name="chatgpt",
402 | system="You are a helpful assistant.",
403 | roles=("user", "assistant"),
404 | messages=(),
405 | offset=0,
406 | sep_style=None,
407 | sep=None,
408 | )
409 | )
410 |
411 | # Claude default template
412 | register_conv_template(
413 | Conversation(
414 | name="claude",
415 | system="",
416 | roles=("Human", "Assistant"),
417 | messages=(),
418 | offset=0,
419 | sep_style=SeparatorStyle.ADD_COLON_SINGLE,
420 | sep="\n\n",
421 | )
422 | )
423 |
424 | # MPT default template
425 | register_conv_template(
426 | Conversation(
427 | name="mpt",
428 | system="""<|im_start|>system
429 | - You are a helpful assistant chatbot trained by MosaicML.
430 | - You answer questions.
431 | - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
432 | - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.
433 | """,
434 | roles=("<|im_start|>user", "<|im_start|>assistant"),
435 | messages=(),
436 | offset=0,
437 | sep_style=SeparatorStyle.NEW_LINE,
438 | sep="<|im_end|>",
439 | stop_token_ids=[50278, 0],
440 | )
441 | )
442 |
443 | # Bard default template
444 | # Reference: https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L150
445 | # https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L40
446 | register_conv_template(
447 | Conversation(
448 | name="bard",
449 | system="",
450 | roles=("0", "1"),
451 | messages=(),
452 | offset=0,
453 | sep_style=None,
454 | sep=None,
455 | )
456 | )
457 |
458 | # BiLLa default template
459 | register_conv_template(
460 | Conversation(
461 | name="billa",
462 | system="",
463 | roles=("Human", "Assistant"),
464 | messages=(),
465 | offset=0,
466 | sep_style=SeparatorStyle.BILLA,
467 | sep="\n",
468 | stop_str="Human:",
469 | )
470 | )
471 |
472 | if __name__ == "__main__":
473 | conv = get_conv_template("vicuna_v1.1")
474 | conv.append_message(conv.roles[0], "Hello!")
475 | conv.append_message(conv.roles[1], "Hi!")
476 | conv.append_message(conv.roles[0], "How are you?")
477 | conv.append_message(conv.roles[1], None)
478 | print(conv.get_prompt())
--------------------------------------------------------------------------------
/src/environment_Llama-X.yml:
--------------------------------------------------------------------------------
1 | name: llamax
2 | channels:
3 | - pytorch
4 | - defaults
5 | dependencies:
6 | - _libgcc_mutex=0.1=main
7 | - _openmp_mutex=5.1=1_gnu
8 | - blas=1.0=mkl
9 | - bzip2=1.0.8=h7b6447c_0
10 | - ca-certificates=2023.01.10=h06a4308_0
11 | - charset-normalizer=2.0.4=pyhd3eb1b0_0
12 | - cudatoolkit=11.3.1=h2bc3f7f_2
13 | - ffmpeg=4.3=hf484d3e_0
14 | - freetype=2.12.1=h4a9f257_0
15 | - giflib=5.2.1=h5eee18b_3
16 | - gmp=6.2.1=h295c915_3
17 | - gnutls=3.6.15=he1e5248_0
18 | - intel-openmp=2021.4.0=h06a4308_3561
19 | - jpeg=9e=h5eee18b_1
20 | - lame=3.100=h7b6447c_0
21 | - lcms2=2.12=h3be6417_0
22 | - ld_impl_linux-64=2.38=h1181459_1
23 | - lerc=3.0=h295c915_0
24 | - libdeflate=1.17=h5eee18b_0
25 | - libffi=3.4.2=h6a678d5_6
26 | - libgcc-ng=11.2.0=h1234567_1
27 | - libgomp=11.2.0=h1234567_1
28 | - libiconv=1.16=h7f8727e_2
29 | - libidn2=2.3.2=h7f8727e_0
30 | - libpng=1.6.39=h5eee18b_0
31 | - libstdcxx-ng=11.2.0=h1234567_1
32 | - libtasn1=4.16.0=h27cfd23_0
33 | - libtiff=4.5.0=h6a678d5_2
34 | - libunistring=0.9.10=h27cfd23_0
35 | - libuuid=1.41.5=h5eee18b_0
36 | - libwebp=1.2.4=h11a3e52_1
37 | - libwebp-base=1.2.4=h5eee18b_1
38 | - lz4-c=1.9.4=h6a678d5_0
39 | - mkl=2021.4.0=h06a4308_640
40 | - mkl_fft=1.3.1=py310hd6ae3a3_0
41 | - mkl_random=1.2.2=py310h00e6091_0
42 | - ncurses=6.4=h6a678d5_0
43 | - nettle=3.7.3=hbbd107a_1
44 | - numpy-base=1.23.5=py310h8e6c178_0
45 | - openh264=2.1.1=h4ff587b_0
46 | - openssl=1.1.1t=h7f8727e_0
47 | - pycparser=2.21=pyhd3eb1b0_0
48 | - python=3.10.10=h7a1cb2a_2
49 | - pytorch=1.12.0=py3.10_cuda11.3_cudnn8.3.2_0
50 | - pytorch-mutex=1.0=cuda
51 | - readline=8.2=h5eee18b_0
52 | - six=1.16.0=pyhd3eb1b0_1
53 | - sqlite=3.41.1=h5eee18b_0
54 | - tk=8.6.12=h1ccaba5_0
55 | - typing_extensions=4.4.0=py310h06a4308_0
56 | - tzdata=2022g=h04d1e81_0
57 | - xz=5.2.10=h5eee18b_1
58 | - zlib=1.2.13=h5eee18b_0
59 | - zstd=1.5.2=ha4553b6_0
60 | - pip:
61 | - absl-py==1.4.0
62 | - accelerate==0.18.0
63 | - aiofiles==23.1.0
64 | - aiohttp==3.8.4
65 | - aiosignal==1.3.1
66 | - altair==4.2.2
67 | - anyio==3.6.2
68 | - appdirs==1.4.4
69 | - async-timeout==4.0.2
70 | - attrs==22.2.0
71 | - bcrypt==4.0.1
72 | - beartype==0.12.0
73 | - brotlipy==0.7.0
74 | - cachetools==5.3.0
75 | - certifi==2022.12.7
76 | - cffi==1.15.1
77 | - chatllama-py==0.0.3
78 | - click==8.1.3
79 | - cmake==3.26.1
80 | - contourpy==1.0.7
81 | - cryptography==39.0.1
82 | - cycler==0.11.0
83 | - dataclasses-json==0.5.7
84 | - datasets==2.10.1
85 | - deepspeed==0.8.3
86 | - dill==0.3.6
87 | - docker-pycreds==0.4.0
88 | - einops==0.6.0
89 | - entrypoints==0.4
90 | - fairscale==0.4.13
91 | - fastapi==0.95.0
92 | - ffmpy==0.3.0
93 | - filelock==3.10.5
94 | - fire==0.5.0
95 | - flit-core==3.8.0
96 | - fonttools==4.39.2
97 | - frozenlist==1.3.3
98 | - fsspec==2023.3.0
99 | - gitdb==4.0.10
100 | - gitpython==3.1.31
101 | - google-auth==2.16.3
102 | - google-auth-oauthlib==0.4.6
103 | - gradio==3.9
104 | - greenlet==2.0.2
105 | - grpcio==1.51.3
106 | - h11==0.12.0
107 | - hjson==3.1.0
108 | - httpcore==0.15.0
109 | - httpx==0.23.3
110 | - huggingface-hub==0.13.3
111 | - idna==3.4
112 | - jinja2==3.1.2
113 | - joblib==1.2.0
114 | - jsonschema==4.17.3
115 | - kiwisolver==1.4.4
116 | - langchain==0.0.123
117 | - linkify-it-py==2.0.0
118 | - lit==16.0.0
119 | - markdown==3.4.3
120 | - markdown-it-py==2.2.0
121 | - markupsafe==2.1.2
122 | - marshmallow==3.19.0
123 | - marshmallow-enum==1.5.1
124 | - matplotlib==3.7.1
125 | - mdit-py-plugins==0.3.3
126 | - mdurl==0.1.2
127 | - mkl-fft==1.3.1
128 | - mkl-random==1.2.2
129 | - mkl-service==2.4.0
130 | - multidict==6.0.4
131 | - multiprocess==0.70.14
132 | - mypy-extensions==1.0.0
133 | - ninja==1.11.1
134 | - nltk==3.8.1
135 | - numpy==1.23.5
136 | - oauthlib==3.2.2
137 | - openai==0.27.2
138 | - orjson==3.8.8
139 | - packaging==23.0
140 | - pandas==1.5.3
141 | - paramiko==3.1.0
142 | - pathtools==0.1.2
143 | - pillow==9.4.0
144 | - pip==23.0.1
145 | - plotly==5.13.1
146 | - protobuf==4.22.1
147 | - psutil==5.9.4
148 | - py-cpuinfo==9.0.0
149 | - pyarrow==11.0.0
150 | - pyasn1==0.4.8
151 | - pyasn1-modules==0.2.8
152 | - pycryptodome==3.17
153 | - pydantic==1.10.7
154 | - pydub==0.25.1
155 | - pynacl==1.5.0
156 | - pyopenssl==23.0.0
157 | - pyparsing==3.0.9
158 | - pyrsistent==0.19.3
159 | - pysocks==1.7.1
160 | - python-dateutil==2.8.2
161 | - python-multipart==0.0.6
162 | - pytz==2023.2
163 | - pyyaml==6.0
164 | - regex==2023.3.23
165 | - requests==2.28.1
166 | - requests-oauthlib==1.3.1
167 | - responses==0.18.0
168 | - rfc3986==1.5.0
169 | - rouge-score==0.1.2
170 | - rsa==4.9
171 | - semantic-version==2.10.0
172 | - sentencepiece==0.1.97
173 | - sentry-sdk==1.17.0
174 | - setproctitle==1.3.2
175 | - setuptools==65.6.3
176 | - smmap==5.0.0
177 | - sniffio==1.3.0
178 | - sqlalchemy==1.4.47
179 | - starlette==0.26.1
180 | - tenacity==8.2.2
181 | - tensorboard==2.12.0
182 | - tensorboard-data-server==0.7.0
183 | - tensorboard-plugin-wit==1.8.1
184 | - termcolor==2.2.0
185 | - tokenizers==0.12.1
186 | - toolz==0.12.0
187 | - torch==1.12.0
188 | - torchaudio==0.12.0
189 | - torchvision==0.13.0
190 | - tqdm==4.65.0
191 | - transformers==4.28.0.dev0
192 | - typing-extensions==4.4.0
193 | - typing-inspect==0.8.0
194 | - uc-micro-py==1.0.1
195 | - urllib3==1.26.14
196 | - uvicorn==0.21.1
197 | - wandb==0.14.0
198 | - websockets==10.4
199 | - werkzeug==2.2.3
200 | - wheel==0.38.4
201 | - xxhash==3.2.0
202 | - yarl==1.8.2
203 | prefix: /home/yourname/.conda/envs/llamax
204 |
--------------------------------------------------------------------------------
/src/generate.py:
--------------------------------------------------------------------------------
1 | import sys
2 |
3 | import fire
4 | import torch
5 | # from peft import PeftModel
6 | import transformers
7 | import gradio as gr
8 |
9 | assert (
10 | "LlamaTokenizer" in transformers._import_structure["models.llama"]
11 | ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
12 | from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
13 |
14 | if torch.cuda.is_available():
15 | device = "cuda"
16 | else:
17 | device = "cpu"
18 |
19 | try:
20 | if torch.backends.mps.is_available():
21 | device = "mps"
22 | except:
23 | pass
24 |
25 |
26 | def main(
27 | load_8bit: bool = False,
28 | base_model: str = "/path/to/llama-7B/hf/ft/checkpoint-300",
29 | # lora_weights: str = "tloen/alpaca-lora-7b",
30 | ):
31 | assert base_model, (
32 | "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
33 | )
34 |
35 | tokenizer = LlamaTokenizer.from_pretrained(base_model)
36 | if device == "cuda":
37 | model = LlamaForCausalLM.from_pretrained(
38 | base_model,
39 | load_in_8bit=load_8bit,
40 | torch_dtype=torch.float16,
41 | device_map="auto",
42 | )
43 | elif device == "mps":
44 | model = LlamaForCausalLM.from_pretrained(
45 | base_model,
46 | device_map={"": device},
47 | torch_dtype=torch.float16,
48 | )
49 |
50 | # unwind broken decapoda-research config
51 | model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
52 | model.config.bos_token_id = 1
53 | model.config.eos_token_id = 2
54 |
55 | if not load_8bit:
56 | model.half() # seems to fix bugs for some users.
57 |
58 | model.eval()
59 | if torch.__version__ >= "2" and sys.platform != "win32":
60 | model = torch.compile(model)
61 |
62 | def evaluate(
63 | instruction,
64 | input=None,
65 | temperature=0.6,
66 | top_p=0.9,
67 | top_k=40,
68 | num_beams=4,
69 | max_new_tokens=512,
70 | **kwargs,
71 | ):
72 | prompt = generate_prompt(instruction, input)
73 | inputs = tokenizer(prompt, return_tensors="pt")
74 | input_ids = inputs["input_ids"].to(device)
75 | generation_config = GenerationConfig(
76 | temperature=temperature,
77 | top_p=top_p,
78 | top_k=top_k,
79 | num_beams=num_beams,
80 | **kwargs,
81 | )
82 | with torch.no_grad():
83 | generation_output = model.generate(
84 | input_ids=input_ids,
85 | generation_config=generation_config,
86 | return_dict_in_generate=True,
87 | output_scores=True,
88 | max_new_tokens=max_new_tokens,
89 | )
90 | s = generation_output.sequences[0]
91 | output = tokenizer.decode(s)
92 | return output.split("### Response:")[1].strip()
93 |
94 | gr.Interface(
95 | fn=evaluate,
96 | inputs=[
97 | gr.components.Textbox(
98 | lines=2, label="Instruction", placeholder="Tell me about alpacas."
99 | ),
100 | gr.components.Textbox(lines=2, label="Input", placeholder="none"),
101 | gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
102 | gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
103 | gr.components.Slider(
104 | minimum=0, maximum=100, step=1, value=40, label="Top k"
105 | ),
106 | gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
107 | gr.components.Slider(
108 | minimum=1, maximum=2000, step=1, value=128, label="Max tokens"
109 | ),
110 | ],
111 | outputs=[
112 | gr.inputs.Textbox(
113 | lines=5,
114 | label="Output",
115 | )
116 | ],
117 | title="Llama-X",
118 | description="Improve LLaMA model to follow instructions.",
119 | ).launch(share=True)
120 |
121 |
122 | def generate_prompt(instruction, input=None):
123 | if input:
124 | return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
125 |
126 | ### Instruction:
127 | {instruction}
128 |
129 | ### Input:
130 | {input}
131 |
132 | ### Response:
133 | """
134 | else:
135 | return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
136 |
137 | ### Instruction:
138 | {instruction}
139 |
140 | ### Response:
141 | """
142 |
143 |
144 | if __name__ == "__main__":
145 | fire.Fire(main)
--------------------------------------------------------------------------------
/src/imgs/panda.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AetherCortex/Llama-X/5a823351fe08e41aa7370ee609e6acdfe266d79a/src/imgs/panda.jpg
--------------------------------------------------------------------------------
/src/imgs/pandallm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AetherCortex/Llama-X/5a823351fe08e41aa7370ee609e6acdfe266d79a/src/imgs/pandallm.png
--------------------------------------------------------------------------------
/src/imgs/pandallm_git.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AetherCortex/Llama-X/5a823351fe08e41aa7370ee609e6acdfe266d79a/src/imgs/pandallm_git.png
--------------------------------------------------------------------------------
/src/train.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | import copy
16 | import logging
17 | import random
18 | from dataclasses import dataclass, field
19 | from typing import Optional, Dict, Sequence
20 |
21 | import torch
22 | import torch.distributed
23 | import transformers
24 | from torch.utils.data import Dataset
25 | from transformers import Trainer
26 | from datasets import load_dataset
27 | import utils
28 |
29 | IGNORE_INDEX = -100
30 | DEFAULT_PAD_TOKEN = "[PAD]"
31 | DEFAULT_EOS_TOKEN = ""
32 | DEFAULT_BOS_TOKEN = ""
33 | DEFAULT_UNK_TOKEN = ""
34 | PROMPT_DICT = {
35 | "prompt_input": (
36 | "Below is an instruction that describes a task, paired with an input that provides further context. "
37 | "Write a response that appropriately completes the request.\n\n"
38 | "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
39 | ),
40 | "prompt_no_input": (
41 | "Below is an instruction that describes a task. "
42 | "Write a response that appropriately completes the request.\n\n"
43 | "### Instruction:\n{instruction}\n\n### Response:"
44 | ),
45 | }
46 |
47 |
48 | @dataclass
49 | class ModelArguments:
50 | model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
51 |
52 |
53 | @dataclass
54 | class DataArguments:
55 | data_path: str = field(default=None, metadata={"help": "Path to the training data."})
56 |
57 |
58 | @dataclass
59 | class TrainingArguments(transformers.TrainingArguments):
60 | cache_dir: Optional[str] = field(default=None)
61 | optim: str = field(default="adamw_torch")
62 | model_max_length: int = field(
63 | default=512,
64 | metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
65 | )
66 |
67 |
68 | def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
69 | """Collects the state dict and dump to disk."""
70 | state_dict = trainer.model.state_dict()
71 | if trainer.args.should_save:
72 | cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
73 | del state_dict
74 | trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
75 |
76 |
77 | def smart_tokenizer_and_embedding_resize(
78 | special_tokens_dict: Dict,
79 | tokenizer: transformers.PreTrainedTokenizer,
80 | model: transformers.PreTrainedModel,
81 | ):
82 | """Resize tokenizer and embedding.
83 |
84 | Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
85 | """
86 | num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
87 | model.resize_token_embeddings(len(tokenizer))
88 |
89 | if num_new_tokens > 0:
90 | input_embeddings = model.get_input_embeddings().weight.data
91 | output_embeddings = model.get_output_embeddings().weight.data
92 |
93 | input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
94 | output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
95 |
96 | input_embeddings[-num_new_tokens:] = input_embeddings_avg
97 | output_embeddings[-num_new_tokens:] = output_embeddings_avg
98 |
99 |
100 | def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
101 | """Tokenize a list of strings."""
102 | tokenized_list = [
103 | tokenizer(
104 | text,
105 | return_tensors="pt",
106 | padding="longest",
107 | max_length=tokenizer.model_max_length,
108 | truncation=True,
109 | )
110 | for text in strings
111 | ]
112 | input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
113 | input_ids_lens = labels_lens = [
114 | tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
115 | ]
116 | return dict(
117 | input_ids=input_ids,
118 | labels=labels,
119 | input_ids_lens=input_ids_lens,
120 | labels_lens=labels_lens,
121 | )
122 |
123 |
124 | def preprocess(
125 | sources: Sequence[str],
126 | targets: Sequence[str],
127 | tokenizer: transformers.PreTrainedTokenizer,
128 | ) -> Dict:
129 | """Preprocess the data by tokenizing."""
130 | examples = [s + t for s, t in zip(sources, targets)]
131 | examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
132 | input_ids = examples_tokenized["input_ids"]
133 | labels = copy.deepcopy(input_ids)
134 | for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
135 | label[:source_len] = IGNORE_INDEX
136 | return dict(input_ids=input_ids, labels=labels)
137 |
138 |
139 | @dataclass
140 | class DataCollatorForSupervisedDataset(object):
141 | """Collate examples for supervised fine-tuning."""
142 |
143 | tokenizer: transformers.PreTrainedTokenizer
144 |
145 | def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
146 | input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
147 | input_ids = [torch.tensor(x) for x in input_ids]
148 | input_ids = torch.nn.utils.rnn.pad_sequence(
149 | input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
150 | )
151 | labels = [torch.tensor(x) for x in labels]
152 | labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
153 | return dict(
154 | input_ids=input_ids,
155 | labels=labels,
156 | attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
157 | )
158 |
159 | def train_tokenize_function(examples, tokenizer):
160 | prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
161 | if 'input' in examples:
162 | sources = [
163 | prompt_input.format_map(dict(instruction=instruction, input=input)) if input != "" \
164 | else prompt_no_input.format_map(dict(instruction=instruction)) \
165 | for instruction, input in zip(examples['instruction'], examples['input'])
166 | ]
167 | else:
168 | sources = [
169 | prompt_no_input.format_map(dict(instruction=instruction)) \
170 | for instruction in examples['instruction']
171 | ]
172 | targets = [f"{output}{tokenizer.eos_token}" for output in examples['output']]
173 | data_dict = preprocess(sources, targets, tokenizer)
174 | return data_dict
175 |
176 | def train():
177 | parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
178 | model_args, data_args, training_args = parser.parse_args_into_dataclasses()
179 |
180 | model = transformers.AutoModelForCausalLM.from_pretrained(
181 | model_args.model_name_or_path,
182 | cache_dir=training_args.cache_dir,
183 | )
184 |
185 | tokenizer = transformers.AutoTokenizer.from_pretrained(
186 | model_args.model_name_or_path,
187 | cache_dir=training_args.cache_dir,
188 | model_max_length=training_args.model_max_length,
189 | padding_side="right",
190 | use_fast=True,
191 | )
192 | if tokenizer.pad_token is None:
193 | smart_tokenizer_and_embedding_resize(
194 | special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
195 | tokenizer=tokenizer,
196 | model=model,
197 | )
198 | if "llama" in model_args.model_name_or_path:
199 | tokenizer.add_special_tokens(
200 | {
201 | "eos_token": DEFAULT_EOS_TOKEN,
202 | "bos_token": DEFAULT_BOS_TOKEN,
203 | "unk_token": DEFAULT_UNK_TOKEN,
204 | }
205 | )
206 |
207 | raw_train_datasets = load_dataset('json', data_files=data_args.data_path, split="train", cache_dir=training_args.cache_dir)
208 | if training_args.local_rank > 0:
209 | torch.distributed.barrier()
210 |
211 | train_dataset = raw_train_datasets.map(
212 | train_tokenize_function,
213 | batched=True,
214 | batch_size=3000,
215 | num_proc=32,
216 | remove_columns=raw_train_datasets.column_names,
217 | load_from_cache_file=True, # not args.overwrite_cache
218 | desc="Running tokenizer on train dataset",
219 | fn_kwargs={"tokenizer": tokenizer}
220 | )
221 |
222 | if training_args.local_rank == 0:
223 | torch.distributed.barrier()
224 |
225 | if training_args.local_rank == 0:
226 | print(len(train_dataset))
227 | for index in random.sample(range(len(train_dataset)), 3):
228 | print(f"Sample {index} of the training set: {train_dataset[index]}.")
229 |
230 | data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
231 | data_module = dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
232 |
233 | #Tell Trainer not to attempt DataParallel
234 | model.is_parallelizable = True
235 | model.model_parallel = True
236 |
237 | trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
238 | model.config.use_cache = False
239 |
240 | trainer.train()
241 | trainer.save_state()
242 | safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
243 |
244 |
245 | if __name__ == "__main__":
246 | train()
247 |
--------------------------------------------------------------------------------
/src/train_freeform_multiturn.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | import json
15 | import copy
16 | import logging
17 | from dataclasses import dataclass, field
18 | from typing import Optional, Dict, Sequence
19 |
20 | import torch
21 | import transformers
22 | from torch.utils.data import Dataset
23 | from transformers import Trainer
24 | from transformers.trainer_pt_utils import LabelSmoother
25 |
26 | from conversation import SeparatorStyle, Conversation
27 | # from fastchat.model.model_adapter import get_conversation_template
28 |
29 | import utils
30 |
31 |
32 | IGNORE_TOKEN_ID = LabelSmoother.ignore_index
33 |
34 | # IGNORE_INDEX = -100
35 | DEFAULT_PAD_TOKEN = "[PAD]"
36 | DEFAULT_EOS_TOKEN = ""
37 | DEFAULT_BOS_TOKEN = ""
38 | DEFAULT_UNK_TOKEN = ""
39 | # PROMPT_DICT = {
40 | # "prompt_input": (
41 | # "{instruction}\n\n### Response:"
42 | # ),
43 | # "prompt_no_input": (
44 | # "{instruction}\n\n### Response:"
45 | # ),
46 | # }
47 |
48 |
49 | @dataclass
50 | class ModelArguments:
51 | model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
52 |
53 |
54 | @dataclass
55 | class DataArguments:
56 | data_path: str = field(default=None, metadata={"help": "Path to the training data."})
57 | complex_data: Optional[str] = field(default=None)
58 |
59 |
60 | @dataclass
61 | class TrainingArguments(transformers.TrainingArguments):
62 | cache_dir: Optional[str] = field(default=None)
63 | optim: str = field(default="adamw_torch")
64 | model_max_length: int = field(
65 | default=2048,
66 | metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
67 | )
68 |
69 |
70 | def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
71 | """Collects the state dict and dump to disk."""
72 | state_dict = trainer.model.state_dict()
73 | if trainer.args.should_save:
74 | cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
75 | del state_dict
76 | trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
77 |
78 |
79 | def smart_tokenizer_and_embedding_resize(
80 | special_tokens_dict: Dict,
81 | tokenizer: transformers.PreTrainedTokenizer,
82 | model: transformers.PreTrainedModel,
83 | ):
84 | """Resize tokenizer and embedding.
85 |
86 | Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
87 | """
88 | num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
89 | model.resize_token_embeddings(len(tokenizer))
90 |
91 | if num_new_tokens > 0:
92 | input_embeddings = model.get_input_embeddings().weight.data
93 | output_embeddings = model.get_output_embeddings().weight.data
94 |
95 | input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
96 | output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
97 |
98 | input_embeddings[-num_new_tokens:] = input_embeddings_avg
99 | output_embeddings[-num_new_tokens:] = output_embeddings_avg
100 |
101 |
102 | def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
103 | """Tokenize a list of strings."""
104 | tokenized_list = [
105 | tokenizer(
106 | text,
107 | return_tensors="pt",
108 | padding="longest",
109 | max_length=tokenizer.model_max_length,
110 | truncation=True,
111 | )
112 | for text in strings
113 | ]
114 | input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
115 | input_ids_lens = labels_lens = [
116 | tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
117 | ]
118 | return dict(
119 | input_ids=input_ids,
120 | labels=labels,
121 | input_ids_lens=input_ids_lens,
122 | labels_lens=labels_lens,
123 | )
124 |
125 |
126 | local_rank = None
127 |
128 |
129 | def rank0_print(*args):
130 | if local_rank == 0:
131 | print(*args)
132 |
133 |
134 | def preprocess(
135 | sources: Sequence[str],
136 | tokenizer: transformers.PreTrainedTokenizer,
137 | ) -> Dict:
138 | """Preprocess the data by tokenizing."""
139 |
140 | conv = Conversation(
141 | name="vicuna_v1.1",
142 | system="A chat between a curious user and an artificial intelligence assistant. "
143 | "The assistant gives helpful, detailed, and polite answers to the user's questions.",
144 | roles=["USER", "ASSISTANT"],
145 | messages=[],
146 | offset=0,
147 | sep_style=SeparatorStyle.ADD_COLON_TWO,
148 | sep=" ",
149 | sep2="",
150 | )
151 | roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
152 |
153 | # Apply prompt templates
154 | conversations = []
155 | for i, source in enumerate(sources):
156 | if roles[source[0]["from"]] != conv.roles[0]:
157 | # Skip the first one if it is not from human
158 | source = source[1:]
159 |
160 | conv.messages = []
161 | for j, sentence in enumerate(source):
162 | role = roles[sentence["from"]]
163 | assert role == conv.roles[j % 2], f"{i}"
164 | conv.append_message(role, sentence["value"])
165 | conversations.append(conv.get_prompt())
166 | #print("$$"+conv.get_prompt().strip()+"$$")
167 | input_ids = tokenizer(
168 | conversations,
169 | return_tensors="pt",
170 | padding="max_length",
171 | max_length=tokenizer.model_max_length,
172 | truncation=True,
173 | ).input_ids
174 | targets = input_ids.clone()
175 |
176 | assert conv.sep_style == SeparatorStyle.ADD_COLON_TWO
177 | # Mask targets
178 | sep = conv.sep + conv.roles[1] + ": "
179 | for conversation, target in zip(conversations, targets):
180 | total_len = int(target.ne(tokenizer.pad_token_id).sum())
181 |
182 | rounds = conversation.split(conv.sep2)
183 | cur_len = 1
184 | target[:cur_len] = IGNORE_TOKEN_ID
185 | for i, rou in enumerate(rounds):
186 | if rou == "":
187 | break
188 |
189 | parts = rou.split(sep)
190 | if len(parts) != 2:
191 | break
192 | parts[0] += sep
193 | round_len = len(tokenizer(rou).input_ids)
194 | instruction_len = len(tokenizer(parts[0]).input_ids) - 2
195 |
196 | target[cur_len: cur_len + instruction_len] = IGNORE_TOKEN_ID
197 |
198 | cur_len += round_len
199 | target[cur_len:] = IGNORE_TOKEN_ID
200 |
201 | if False:
202 | z = target.clone()
203 | z = torch.where(z == IGNORE_TOKEN_ID, tokenizer.unk_token_id, z)
204 | rank0_print(tokenizer.decode(z))
205 |
206 | if cur_len < tokenizer.model_max_length:
207 | if cur_len != total_len:
208 | target[:] = IGNORE_TOKEN_ID
209 | rank0_print(
210 | f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
211 | f" (ignored)"
212 | )
213 | return dict(
214 | input_ids=input_ids,
215 | labels=targets,
216 | attention_mask=input_ids.ne(tokenizer.pad_token_id),
217 | )
218 |
219 |
220 | class SupervisedDataset(Dataset):
221 | """Dataset for supervised fine-tuning."""
222 |
223 | def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer):
224 | super(SupervisedDataset, self).__init__()
225 | logging.warning("Loading data...")
226 | list_data_dict = utils.jload(data_path)
227 |
228 | sources = [example["conversations"] for example in list_data_dict]
229 | data_dict = preprocess(sources, tokenizer)
230 |
231 | self.input_ids = data_dict["input_ids"]
232 | self.labels = data_dict["labels"]
233 | self.attention_mask = data_dict["attention_mask"]
234 |
235 | def __len__(self):
236 | return len(self.input_ids)
237 |
238 | def __getitem__(self, i) -> Dict[str, torch.Tensor]:
239 | return dict(
240 | input_ids=self.input_ids[i],
241 | labels=self.labels[i],
242 | attention_mask=self.attention_mask[i]
243 | )
244 |
245 |
246 | def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict:
247 | """Make dataset and collator for supervised fine-tuning."""
248 |
249 | train_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path)
250 | # data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
251 | return dict(train_dataset=train_dataset, eval_dataset=None)#), data_collator=data_collator)
252 |
253 |
254 | def train():
255 | parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
256 | model_args, data_args, training_args = parser.parse_args_into_dataclasses()
257 |
258 | model = transformers.AutoModelForCausalLM.from_pretrained(
259 | model_args.model_name_or_path,
260 | cache_dir=training_args.cache_dir,
261 | )
262 |
263 | tokenizer = transformers.AutoTokenizer.from_pretrained(
264 | model_args.model_name_or_path,
265 | cache_dir=training_args.cache_dir,
266 | model_max_length=training_args.model_max_length,
267 | padding_side="right",
268 | use_fast=False,
269 | )
270 | if tokenizer.pad_token is None:
271 | smart_tokenizer_and_embedding_resize(
272 | special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
273 | tokenizer=tokenizer,
274 | model=model,
275 | )
276 | if "llama" in model_args.model_name_or_path:
277 | tokenizer.add_special_tokens(
278 | {
279 | "eos_token": DEFAULT_EOS_TOKEN,
280 | "bos_token": DEFAULT_BOS_TOKEN,
281 | "unk_token": DEFAULT_UNK_TOKEN,
282 | }
283 | )
284 |
285 | data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
286 | #Tell Trainer not to attempt DataParallel
287 | model.is_parallelizable = True
288 | model.model_parallel = True
289 |
290 | trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
291 | model.config.use_cache = False
292 |
293 | trainer.train()
294 | trainer.save_state()
295 | safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
296 |
297 |
298 | if __name__ == "__main__":
299 | train()
300 |
301 |
302 |
--------------------------------------------------------------------------------
/src/utils.py:
--------------------------------------------------------------------------------
1 | import dataclasses
2 | import logging
3 | import math
4 | import os
5 | import io
6 | import sys
7 | import time
8 | import json
9 | from typing import Optional, Sequence, Union
10 |
11 | import openai
12 | import tqdm
13 | from openai import openai_object
14 | import copy
15 |
16 | StrOrOpenAIObject = Union[str, openai_object.OpenAIObject]
17 |
18 | openai_org = os.getenv("OPENAI_ORG")
19 | if openai_org is not None:
20 | openai.organization = openai_org
21 | logging.warning(f"Switching to organization: {openai_org} for OAI API key.")
22 |
23 |
24 | @dataclasses.dataclass
25 | class OpenAIDecodingArguments(object):
26 | max_tokens: int = 1800
27 | temperature: float = 0.2
28 | top_p: float = 1.0
29 | n: int = 1
30 | stream: bool = False
31 | stop: Optional[Sequence[str]] = None
32 | presence_penalty: float = 0.0
33 | frequency_penalty: float = 0.0
34 | suffix: Optional[str] = None
35 | logprobs: Optional[int] = None
36 | echo: bool = False
37 |
38 |
39 | def openai_completion(
40 | prompts: Union[str, Sequence[str], Sequence[dict[str, str]], dict[str, str]],
41 | decoding_args: OpenAIDecodingArguments,
42 | model_name="text-davinci-003",
43 | sleep_time=2,
44 | batch_size=1,
45 | max_instances=sys.maxsize,
46 | max_batches=sys.maxsize,
47 | return_text=False,
48 | **decoding_kwargs,
49 | ) -> Union[Union[StrOrOpenAIObject], Sequence[StrOrOpenAIObject], Sequence[Sequence[StrOrOpenAIObject]],]:
50 | """Decode with OpenAI API.
51 |
52 | Args:
53 | prompts: A string or a list of strings to complete. If it is a chat model the strings should be formatted
54 | as explained here: https://github.com/openai/openai-python/blob/main/chatml.md. If it is a chat model
55 | it can also be a dictionary (or list thereof) as explained here:
56 | https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
57 | decoding_args: Decoding arguments.
58 | model_name: Model name. Can be either in the format of "org/model" or just "model".
59 | sleep_time: Time to sleep once the rate-limit is hit.
60 | batch_size: Number of prompts to send in a single request. Only for non chat model.
61 | max_instances: Maximum number of prompts to decode.
62 | max_batches: Maximum number of batches to decode. This argument will be deprecated in the future.
63 | return_text: If True, return text instead of full completion object (which contains things like logprob).
64 | decoding_kwargs: Additional decoding arguments. Pass in `best_of` and `logit_bias` if you need them.
65 |
66 | Returns:
67 | A completion or a list of completions.
68 | Depending on return_text, return_openai_object, and decoding_args.n, the completion type can be one of
69 | - a string (if return_text is True)
70 | - an openai_object.OpenAIObject object (if return_text is False)
71 | - a list of objects of the above types (if decoding_args.n > 1)
72 | """
73 | is_single_prompt = isinstance(prompts, (str, dict))
74 | if is_single_prompt:
75 | prompts = [prompts]
76 |
77 | if max_batches < sys.maxsize:
78 | logging.warning(
79 | "`max_batches` will be deprecated in the future, please use `max_instances` instead."
80 | "Setting `max_instances` to `max_batches * batch_size` for now."
81 | )
82 | max_instances = max_batches * batch_size
83 |
84 | prompts = prompts[:max_instances]
85 | num_prompts = len(prompts)
86 | prompt_batches = [
87 | prompts[batch_id * batch_size : (batch_id + 1) * batch_size]
88 | for batch_id in range(int(math.ceil(num_prompts / batch_size)))
89 | ]
90 |
91 | completions = []
92 | for batch_id, prompt_batch in tqdm.tqdm(
93 | enumerate(prompt_batches),
94 | desc="prompt_batches",
95 | total=len(prompt_batches),
96 | ):
97 | batch_decoding_args = copy.deepcopy(decoding_args) # cloning the decoding_args
98 |
99 | while True:
100 | try:
101 | shared_kwargs = dict(
102 | model=model_name,
103 | **batch_decoding_args.__dict__,
104 | **decoding_kwargs,
105 | )
106 | completion_batch = openai.Completion.create(prompt=prompt_batch, **shared_kwargs)
107 | choices = completion_batch.choices
108 |
109 | for choice in choices:
110 | choice["total_tokens"] = completion_batch.usage.total_tokens
111 | completions.extend(choices)
112 | break
113 | except openai.error.OpenAIError as e:
114 | logging.warning(f"OpenAIError: {e}.")
115 | if "Please reduce your prompt" in str(e):
116 | batch_decoding_args.max_tokens = int(batch_decoding_args.max_tokens * 0.8)
117 | logging.warning(f"Reducing target length to {batch_decoding_args.max_tokens}, Retrying...")
118 | else:
119 | logging.warning("Hit request rate limit; retrying...")
120 | time.sleep(sleep_time) # Annoying rate limit on requests.
121 |
122 | if return_text:
123 | completions = [completion.text for completion in completions]
124 | if decoding_args.n > 1:
125 | # make completions a nested list, where each entry is a consecutive decoding_args.n of original entries.
126 | completions = [completions[i : i + decoding_args.n] for i in range(0, len(completions), decoding_args.n)]
127 | if is_single_prompt:
128 | # Return non-tuple if only 1 input and 1 generation.
129 | (completions,) = completions
130 | return completions
131 |
132 |
133 | def _make_w_io_base(f, mode: str):
134 | if not isinstance(f, io.IOBase):
135 | f_dirname = os.path.dirname(f)
136 | if f_dirname != "":
137 | os.makedirs(f_dirname, exist_ok=True)
138 | f = open(f, mode=mode)
139 | return f
140 |
141 |
142 | def _make_r_io_base(f, mode: str):
143 | if not isinstance(f, io.IOBase):
144 | f = open(f, mode=mode)
145 | return f
146 |
147 |
148 | def jdump(obj, f, mode="w", indent=4, default=str):
149 | """Dump a str or dictionary to a file in json format.
150 |
151 | Args:
152 | obj: An object to be written.
153 | f: A string path to the location on disk.
154 | mode: Mode for opening the file.
155 | indent: Indent for storing json dictionaries.
156 | default: A function to handle non-serializable entries; defaults to `str`.
157 | """
158 | f = _make_w_io_base(f, mode)
159 | if isinstance(obj, (dict, list)):
160 | json.dump(obj, f, indent=indent, default=default)
161 | elif isinstance(obj, str):
162 | f.write(obj)
163 | else:
164 | raise ValueError(f"Unexpected type: {type(obj)}")
165 | f.close()
166 |
167 |
168 | def jload(f, mode="r"):
169 | """Load a .json file into a dictionary."""
170 | f = _make_r_io_base(f, mode)
171 | jdict = json.load(f)
172 | f.close()
173 | return jdict
174 |
--------------------------------------------------------------------------------