├── .Rbuildignore
├── .gitignore
├── CRAN-SUBMISSION
├── DESCRIPTION
├── LICENSE.md
├── NAMESPACE
├── NEWS.md
├── R
├── arml.R
├── fit_conformal_reg.R
├── forecast.R
├── predict_conformal.R
└── utils.R
├── README.Rmd
├── README.md
├── caretForecast.Rproj
├── cran-comments.md
├── data
├── retail.rda
└── retail_wide.rda
├── man
├── ARml.Rd
├── conformalRegressor.Rd
├── figures
│ ├── README-example-1.png
│ ├── README-example-2.png
│ ├── README-example-3.png
│ ├── README-example-4.png
│ ├── README-example-5.png
│ ├── README-example-6.png
│ ├── README-example2-1.png
│ ├── README-example3-1.png
│ ├── README-example4-1.png
│ ├── README-example4-2.png
│ ├── README-example5-1.png
│ ├── README-example5-2.png
│ ├── README-example6-1.png
│ ├── README-example6-2.png
│ └── README-example7-1.png
├── forecast.ARml.Rd
├── get_var_imp.Rd
├── predict.conformalRegressor.Rd
├── reexports.Rd
├── retail.Rd
├── retail_wide.Rd
├── split_ts.Rd
└── suggested_methods.Rd
└── tests
├── testthat.R
└── testthat
├── test-ARml.R
├── test-conformal_pred.R
├── test-forecast.ARml.R
├── test-get_var_imp.R
├── test-split_ts.R
└── test-suggested_method.R
/.Rbuildignore:
--------------------------------------------------------------------------------
1 | ^caretForecast\.Rproj$
2 | ^\.Rproj\.user$
3 | ^LICENSE\.md$
4 | ^\.travis\.yml$
5 | ^cran-comments\.md$
6 | ^README\.Rmd$
7 | ^_pkgdown\.yml$
8 | ^docs$
9 | ^pkgdown$
10 | ^\.github$
11 | ^_config.yml
12 | ^CRAN-RELEASE$
13 | ^CRAN-SUBMISSION$
14 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | .Rhistory
2 | .Rapp.history.RData.Ruserdata
3 | *-Ex.R/*.tar.gz/*.Rcheck/.Rproj.user/
4 | vignettes/*.html
5 | vignettes/*.pdf
6 | .httr-oauth
7 | *_cache/
8 | /cache/
9 | *.utf8.md
10 | *.knit.md
11 | .Renviron
12 | po/*~
13 | .Rapp.history
14 | .RData
15 | .Ruserdata
16 | *-Ex.R
17 | /*.tar.gz
18 | /*.Rcheck/
19 | .Rproj.user/
20 | .DS_Store
21 | docs
22 |
--------------------------------------------------------------------------------
/CRAN-SUBMISSION:
--------------------------------------------------------------------------------
1 | Version: 0.1.1
2 | Date: 2022-10-23 19:55:28 UTC
3 | SHA: 8f9d65c189202cc31ce9d95940002e2dbfc29d4c
4 |
--------------------------------------------------------------------------------
/DESCRIPTION:
--------------------------------------------------------------------------------
1 | Package: caretForecast
2 | Title: Conformal Time Series Forecasting Using State of Art Machine Learning Algorithms
3 | Version: 0.1.1
4 | Authors@R:
5 | person(given = "Resul",
6 | family = "Akay",
7 | role = c("aut", "cre"),
8 | email = "resulakay1@gmail.com")
9 | Description: Conformal time series forecasting using the caret infrastructure.
10 | It provides access to state-of-the-art machine learning models for forecasting
11 | applications. The hyperparameter of each model is selected based on time
12 | series cross-validation, and forecasting is done recursively.
13 | License: GPL (>= 3)
14 | URL: https://github.com/Akai01/caretForecast
15 | BugReports: https://github.com/Akai01/caretForecast/issues
16 | Depends:
17 | R (>= 3.6)
18 | Imports:
19 | forecast (>= 8.15),
20 | caret (>= 6.0.88),
21 | magrittr (>= 2.0.1),
22 | methods (>= 4.1.1),
23 | dplyr (>= 1.0.9),
24 | generics (>= 0.1.3)
25 | Suggests:
26 | Cubist (>= 0.3.0),
27 | knitr (>= 1.29),
28 | testthat (>= 2.3.2)
29 | Encoding: UTF-8
30 | LazyData: true
31 | Roxygen: list(markdown = TRUE)
32 | RoxygenNote: 7.2.1
33 |
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | GNU General Public License
2 | ==========================
3 |
4 | _Version 3, 29 June 2007_
5 | _Copyright © 2007 Free Software Foundation, Inc. <>_
6 |
7 | Everyone is permitted to copy and distribute verbatim copies of this license
8 | document, but changing it is not allowed.
9 |
10 | ## Preamble
11 |
12 | The GNU General Public License is a free, copyleft license for software and other
13 | kinds of works.
14 |
15 | The licenses for most software and other practical works are designed to take away
16 | your freedom to share and change the works. By contrast, the GNU General Public
17 | License is intended to guarantee your freedom to share and change all versions of a
18 | program--to make sure it remains free software for all its users. We, the Free
19 | Software Foundation, use the GNU General Public License for most of our software; it
20 | applies also to any other work released this way by its authors. You can apply it to
21 | your programs, too.
22 |
23 | When we speak of free software, we are referring to freedom, not price. Our General
24 | Public Licenses are designed to make sure that you have the freedom to distribute
25 | copies of free software (and charge for them if you wish), that you receive source
26 | code or can get it if you want it, that you can change the software or use pieces of
27 | it in new free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you these rights or
30 | asking you to surrender the rights. Therefore, you have certain responsibilities if
31 | you distribute copies of the software, or if you modify it: responsibilities to
32 | respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether gratis or for a fee,
35 | you must pass on to the recipients the same freedoms that you received. You must make
36 | sure that they, too, receive or can get the source code. And you must show them these
37 | terms so they know their rights.
38 |
39 | Developers that use the GNU GPL protect your rights with two steps: **(1)** assert
40 | copyright on the software, and **(2)** offer you this License giving you legal permission
41 | to copy, distribute and/or modify it.
42 |
43 | For the developers' and authors' protection, the GPL clearly explains that there is
44 | no warranty for this free software. For both users' and authors' sake, the GPL
45 | requires that modified versions be marked as changed, so that their problems will not
46 | be attributed erroneously to authors of previous versions.
47 |
48 | Some devices are designed to deny users access to install or run modified versions of
49 | the software inside them, although the manufacturer can do so. This is fundamentally
50 | incompatible with the aim of protecting users' freedom to change the software. The
51 | systematic pattern of such abuse occurs in the area of products for individuals to
52 | use, which is precisely where it is most unacceptable. Therefore, we have designed
53 | this version of the GPL to prohibit the practice for those products. If such problems
54 | arise substantially in other domains, we stand ready to extend this provision to
55 | those domains in future versions of the GPL, as needed to protect the freedom of
56 | users.
57 |
58 | Finally, every program is threatened constantly by software patents. States should
59 | not allow patents to restrict development and use of software on general-purpose
60 | computers, but in those that do, we wish to avoid the special danger that patents
61 | applied to a free program could make it effectively proprietary. To prevent this, the
62 | GPL assures that patents cannot be used to render the program non-free.
63 |
64 | The precise terms and conditions for copying, distribution and modification follow.
65 |
66 | ## TERMS AND CONDITIONS
67 |
68 | ### 0. Definitions
69 |
70 | “This License” refers to version 3 of the GNU General Public License.
71 |
72 | “Copyright” also means copyright-like laws that apply to other kinds of
73 | works, such as semiconductor masks.
74 |
75 | “The Program” refers to any copyrightable work licensed under this
76 | License. Each licensee is addressed as “you”. “Licensees” and
77 | “recipients” may be individuals or organizations.
78 |
79 | To “modify” a work means to copy from or adapt all or part of the work in
80 | a fashion requiring copyright permission, other than the making of an exact copy. The
81 | resulting work is called a “modified version” of the earlier work or a
82 | work “based on” the earlier work.
83 |
84 | A “covered work” means either the unmodified Program or a work based on
85 | the Program.
86 |
87 | To “propagate” a work means to do anything with it that, without
88 | permission, would make you directly or secondarily liable for infringement under
89 | applicable copyright law, except executing it on a computer or modifying a private
90 | copy. Propagation includes copying, distribution (with or without modification),
91 | making available to the public, and in some countries other activities as well.
92 |
93 | To “convey” a work means any kind of propagation that enables other
94 | parties to make or receive copies. Mere interaction with a user through a computer
95 | network, with no transfer of a copy, is not conveying.
96 |
97 | An interactive user interface displays “Appropriate Legal Notices” to the
98 | extent that it includes a convenient and prominently visible feature that **(1)**
99 | displays an appropriate copyright notice, and **(2)** tells the user that there is no
100 | warranty for the work (except to the extent that warranties are provided), that
101 | licensees may convey the work under this License, and how to view a copy of this
102 | License. If the interface presents a list of user commands or options, such as a
103 | menu, a prominent item in the list meets this criterion.
104 |
105 | ### 1. Source Code
106 |
107 | The “source code” for a work means the preferred form of the work for
108 | making modifications to it. “Object code” means any non-source form of a
109 | work.
110 |
111 | A “Standard Interface” means an interface that either is an official
112 | standard defined by a recognized standards body, or, in the case of interfaces
113 | specified for a particular programming language, one that is widely used among
114 | developers working in that language.
115 |
116 | The “System Libraries” of an executable work include anything, other than
117 | the work as a whole, that **(a)** is included in the normal form of packaging a Major
118 | Component, but which is not part of that Major Component, and **(b)** serves only to
119 | enable use of the work with that Major Component, or to implement a Standard
120 | Interface for which an implementation is available to the public in source code form.
121 | A “Major Component”, in this context, means a major essential component
122 | (kernel, window system, and so on) of the specific operating system (if any) on which
123 | the executable work runs, or a compiler used to produce the work, or an object code
124 | interpreter used to run it.
125 |
126 | The “Corresponding Source” for a work in object code form means all the
127 | source code needed to generate, install, and (for an executable work) run the object
128 | code and to modify the work, including scripts to control those activities. However,
129 | it does not include the work's System Libraries, or general-purpose tools or
130 | generally available free programs which are used unmodified in performing those
131 | activities but which are not part of the work. For example, Corresponding Source
132 | includes interface definition files associated with source files for the work, and
133 | the source code for shared libraries and dynamically linked subprograms that the work
134 | is specifically designed to require, such as by intimate data communication or
135 | control flow between those subprograms and other parts of the work.
136 |
137 | The Corresponding Source need not include anything that users can regenerate
138 | automatically from other parts of the Corresponding Source.
139 |
140 | The Corresponding Source for a work in source code form is that same work.
141 |
142 | ### 2. Basic Permissions
143 |
144 | All rights granted under this License are granted for the term of copyright on the
145 | Program, and are irrevocable provided the stated conditions are met. This License
146 | explicitly affirms your unlimited permission to run the unmodified Program. The
147 | output from running a covered work is covered by this License only if the output,
148 | given its content, constitutes a covered work. This License acknowledges your rights
149 | of fair use or other equivalent, as provided by copyright law.
150 |
151 | You may make, run and propagate covered works that you do not convey, without
152 | conditions so long as your license otherwise remains in force. You may convey covered
153 | works to others for the sole purpose of having them make modifications exclusively
154 | for you, or provide you with facilities for running those works, provided that you
155 | comply with the terms of this License in conveying all material for which you do not
156 | control copyright. Those thus making or running the covered works for you must do so
157 | exclusively on your behalf, under your direction and control, on terms that prohibit
158 | them from making any copies of your copyrighted material outside their relationship
159 | with you.
160 |
161 | Conveying under any other circumstances is permitted solely under the conditions
162 | stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
163 |
164 | ### 3. Protecting Users' Legal Rights From Anti-Circumvention Law
165 |
166 | No covered work shall be deemed part of an effective technological measure under any
167 | applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
168 | adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
169 | of such measures.
170 |
171 | When you convey a covered work, you waive any legal power to forbid circumvention of
172 | technological measures to the extent such circumvention is effected by exercising
173 | rights under this License with respect to the covered work, and you disclaim any
174 | intention to limit operation or modification of the work as a means of enforcing,
175 | against the work's users, your or third parties' legal rights to forbid circumvention
176 | of technological measures.
177 |
178 | ### 4. Conveying Verbatim Copies
179 |
180 | You may convey verbatim copies of the Program's source code as you receive it, in any
181 | medium, provided that you conspicuously and appropriately publish on each copy an
182 | appropriate copyright notice; keep intact all notices stating that this License and
183 | any non-permissive terms added in accord with section 7 apply to the code; keep
184 | intact all notices of the absence of any warranty; and give all recipients a copy of
185 | this License along with the Program.
186 |
187 | You may charge any price or no price for each copy that you convey, and you may offer
188 | support or warranty protection for a fee.
189 |
190 | ### 5. Conveying Modified Source Versions
191 |
192 | You may convey a work based on the Program, or the modifications to produce it from
193 | the Program, in the form of source code under the terms of section 4, provided that
194 | you also meet all of these conditions:
195 |
196 | * **a)** The work must carry prominent notices stating that you modified it, and giving a
197 | relevant date.
198 | * **b)** The work must carry prominent notices stating that it is released under this
199 | License and any conditions added under section 7. This requirement modifies the
200 | requirement in section 4 to “keep intact all notices”.
201 | * **c)** You must license the entire work, as a whole, under this License to anyone who
202 | comes into possession of a copy. This License will therefore apply, along with any
203 | applicable section 7 additional terms, to the whole of the work, and all its parts,
204 | regardless of how they are packaged. This License gives no permission to license the
205 | work in any other way, but it does not invalidate such permission if you have
206 | separately received it.
207 | * **d)** If the work has interactive user interfaces, each must display Appropriate Legal
208 | Notices; however, if the Program has interactive interfaces that do not display
209 | Appropriate Legal Notices, your work need not make them do so.
210 |
211 | A compilation of a covered work with other separate and independent works, which are
212 | not by their nature extensions of the covered work, and which are not combined with
213 | it such as to form a larger program, in or on a volume of a storage or distribution
214 | medium, is called an “aggregate” if the compilation and its resulting
215 | copyright are not used to limit the access or legal rights of the compilation's users
216 | beyond what the individual works permit. Inclusion of a covered work in an aggregate
217 | does not cause this License to apply to the other parts of the aggregate.
218 |
219 | ### 6. Conveying Non-Source Forms
220 |
221 | You may convey a covered work in object code form under the terms of sections 4 and
222 | 5, provided that you also convey the machine-readable Corresponding Source under the
223 | terms of this License, in one of these ways:
224 |
225 | * **a)** Convey the object code in, or embodied in, a physical product (including a
226 | physical distribution medium), accompanied by the Corresponding Source fixed on a
227 | durable physical medium customarily used for software interchange.
228 | * **b)** Convey the object code in, or embodied in, a physical product (including a
229 | physical distribution medium), accompanied by a written offer, valid for at least
230 | three years and valid for as long as you offer spare parts or customer support for
231 | that product model, to give anyone who possesses the object code either **(1)** a copy of
232 | the Corresponding Source for all the software in the product that is covered by this
233 | License, on a durable physical medium customarily used for software interchange, for
234 | a price no more than your reasonable cost of physically performing this conveying of
235 | source, or **(2)** access to copy the Corresponding Source from a network server at no
236 | charge.
237 | * **c)** Convey individual copies of the object code with a copy of the written offer to
238 | provide the Corresponding Source. This alternative is allowed only occasionally and
239 | noncommercially, and only if you received the object code with such an offer, in
240 | accord with subsection 6b.
241 | * **d)** Convey the object code by offering access from a designated place (gratis or for
242 | a charge), and offer equivalent access to the Corresponding Source in the same way
243 | through the same place at no further charge. You need not require recipients to copy
244 | the Corresponding Source along with the object code. If the place to copy the object
245 | code is a network server, the Corresponding Source may be on a different server
246 | (operated by you or a third party) that supports equivalent copying facilities,
247 | provided you maintain clear directions next to the object code saying where to find
248 | the Corresponding Source. Regardless of what server hosts the Corresponding Source,
249 | you remain obligated to ensure that it is available for as long as needed to satisfy
250 | these requirements.
251 | * **e)** Convey the object code using peer-to-peer transmission, provided you inform
252 | other peers where the object code and Corresponding Source of the work are being
253 | offered to the general public at no charge under subsection 6d.
254 |
255 | A separable portion of the object code, whose source code is excluded from the
256 | Corresponding Source as a System Library, need not be included in conveying the
257 | object code work.
258 |
259 | A “User Product” is either **(1)** a “consumer product”, which
260 | means any tangible personal property which is normally used for personal, family, or
261 | household purposes, or **(2)** anything designed or sold for incorporation into a
262 | dwelling. In determining whether a product is a consumer product, doubtful cases
263 | shall be resolved in favor of coverage. For a particular product received by a
264 | particular user, “normally used” refers to a typical or common use of
265 | that class of product, regardless of the status of the particular user or of the way
266 | in which the particular user actually uses, or expects or is expected to use, the
267 | product. A product is a consumer product regardless of whether the product has
268 | substantial commercial, industrial or non-consumer uses, unless such uses represent
269 | the only significant mode of use of the product.
270 |
271 | “Installation Information” for a User Product means any methods,
272 | procedures, authorization keys, or other information required to install and execute
273 | modified versions of a covered work in that User Product from a modified version of
274 | its Corresponding Source. The information must suffice to ensure that the continued
275 | functioning of the modified object code is in no case prevented or interfered with
276 | solely because modification has been made.
277 |
278 | If you convey an object code work under this section in, or with, or specifically for
279 | use in, a User Product, and the conveying occurs as part of a transaction in which
280 | the right of possession and use of the User Product is transferred to the recipient
281 | in perpetuity or for a fixed term (regardless of how the transaction is
282 | characterized), the Corresponding Source conveyed under this section must be
283 | accompanied by the Installation Information. But this requirement does not apply if
284 | neither you nor any third party retains the ability to install modified object code
285 | on the User Product (for example, the work has been installed in ROM).
286 |
287 | The requirement to provide Installation Information does not include a requirement to
288 | continue to provide support service, warranty, or updates for a work that has been
289 | modified or installed by the recipient, or for the User Product in which it has been
290 | modified or installed. Access to a network may be denied when the modification itself
291 | materially and adversely affects the operation of the network or violates the rules
292 | and protocols for communication across the network.
293 |
294 | Corresponding Source conveyed, and Installation Information provided, in accord with
295 | this section must be in a format that is publicly documented (and with an
296 | implementation available to the public in source code form), and must require no
297 | special password or key for unpacking, reading or copying.
298 |
299 | ### 7. Additional Terms
300 |
301 | “Additional permissions” are terms that supplement the terms of this
302 | License by making exceptions from one or more of its conditions. Additional
303 | permissions that are applicable to the entire Program shall be treated as though they
304 | were included in this License, to the extent that they are valid under applicable
305 | law. If additional permissions apply only to part of the Program, that part may be
306 | used separately under those permissions, but the entire Program remains governed by
307 | this License without regard to the additional permissions.
308 |
309 | When you convey a copy of a covered work, you may at your option remove any
310 | additional permissions from that copy, or from any part of it. (Additional
311 | permissions may be written to require their own removal in certain cases when you
312 | modify the work.) You may place additional permissions on material, added by you to a
313 | covered work, for which you have or can give appropriate copyright permission.
314 |
315 | Notwithstanding any other provision of this License, for material you add to a
316 | covered work, you may (if authorized by the copyright holders of that material)
317 | supplement the terms of this License with terms:
318 |
319 | * **a)** Disclaiming warranty or limiting liability differently from the terms of
320 | sections 15 and 16 of this License; or
321 | * **b)** Requiring preservation of specified reasonable legal notices or author
322 | attributions in that material or in the Appropriate Legal Notices displayed by works
323 | containing it; or
324 | * **c)** Prohibiting misrepresentation of the origin of that material, or requiring that
325 | modified versions of such material be marked in reasonable ways as different from the
326 | original version; or
327 | * **d)** Limiting the use for publicity purposes of names of licensors or authors of the
328 | material; or
329 | * **e)** Declining to grant rights under trademark law for use of some trade names,
330 | trademarks, or service marks; or
331 | * **f)** Requiring indemnification of licensors and authors of that material by anyone
332 | who conveys the material (or modified versions of it) with contractual assumptions of
333 | liability to the recipient, for any liability that these contractual assumptions
334 | directly impose on those licensors and authors.
335 |
336 | All other non-permissive additional terms are considered “further
337 | restrictions” within the meaning of section 10. If the Program as you received
338 | it, or any part of it, contains a notice stating that it is governed by this License
339 | along with a term that is a further restriction, you may remove that term. If a
340 | license document contains a further restriction but permits relicensing or conveying
341 | under this License, you may add to a covered work material governed by the terms of
342 | that license document, provided that the further restriction does not survive such
343 | relicensing or conveying.
344 |
345 | If you add terms to a covered work in accord with this section, you must place, in
346 | the relevant source files, a statement of the additional terms that apply to those
347 | files, or a notice indicating where to find the applicable terms.
348 |
349 | Additional terms, permissive or non-permissive, may be stated in the form of a
350 | separately written license, or stated as exceptions; the above requirements apply
351 | either way.
352 |
353 | ### 8. Termination
354 |
355 | You may not propagate or modify a covered work except as expressly provided under
356 | this License. Any attempt otherwise to propagate or modify it is void, and will
357 | automatically terminate your rights under this License (including any patent licenses
358 | granted under the third paragraph of section 11).
359 |
360 | However, if you cease all violation of this License, then your license from a
361 | particular copyright holder is reinstated **(a)** provisionally, unless and until the
362 | copyright holder explicitly and finally terminates your license, and **(b)** permanently,
363 | if the copyright holder fails to notify you of the violation by some reasonable means
364 | prior to 60 days after the cessation.
365 |
366 | Moreover, your license from a particular copyright holder is reinstated permanently
367 | if the copyright holder notifies you of the violation by some reasonable means, this
368 | is the first time you have received notice of violation of this License (for any
369 | work) from that copyright holder, and you cure the violation prior to 30 days after
370 | your receipt of the notice.
371 |
372 | Termination of your rights under this section does not terminate the licenses of
373 | parties who have received copies or rights from you under this License. If your
374 | rights have been terminated and not permanently reinstated, you do not qualify to
375 | receive new licenses for the same material under section 10.
376 |
377 | ### 9. Acceptance Not Required for Having Copies
378 |
379 | You are not required to accept this License in order to receive or run a copy of the
380 | Program. Ancillary propagation of a covered work occurring solely as a consequence of
381 | using peer-to-peer transmission to receive a copy likewise does not require
382 | acceptance. However, nothing other than this License grants you permission to
383 | propagate or modify any covered work. These actions infringe copyright if you do not
384 | accept this License. Therefore, by modifying or propagating a covered work, you
385 | indicate your acceptance of this License to do so.
386 |
387 | ### 10. Automatic Licensing of Downstream Recipients
388 |
389 | Each time you convey a covered work, the recipient automatically receives a license
390 | from the original licensors, to run, modify and propagate that work, subject to this
391 | License. You are not responsible for enforcing compliance by third parties with this
392 | License.
393 |
394 | An “entity transaction” is a transaction transferring control of an
395 | organization, or substantially all assets of one, or subdividing an organization, or
396 | merging organizations. If propagation of a covered work results from an entity
397 | transaction, each party to that transaction who receives a copy of the work also
398 | receives whatever licenses to the work the party's predecessor in interest had or
399 | could give under the previous paragraph, plus a right to possession of the
400 | Corresponding Source of the work from the predecessor in interest, if the predecessor
401 | has it or can get it with reasonable efforts.
402 |
403 | You may not impose any further restrictions on the exercise of the rights granted or
404 | affirmed under this License. For example, you may not impose a license fee, royalty,
405 | or other charge for exercise of rights granted under this License, and you may not
406 | initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging
407 | that any patent claim is infringed by making, using, selling, offering for sale, or
408 | importing the Program or any portion of it.
409 |
410 | ### 11. Patents
411 |
412 | A “contributor” is a copyright holder who authorizes use under this
413 | License of the Program or a work on which the Program is based. The work thus
414 | licensed is called the contributor's “contributor version”.
415 |
416 | A contributor's “essential patent claims” are all patent claims owned or
417 | controlled by the contributor, whether already acquired or hereafter acquired, that
418 | would be infringed by some manner, permitted by this License, of making, using, or
419 | selling its contributor version, but do not include claims that would be infringed
420 | only as a consequence of further modification of the contributor version. For
421 | purposes of this definition, “control” includes the right to grant patent
422 | sublicenses in a manner consistent with the requirements of this License.
423 |
424 | Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
425 | under the contributor's essential patent claims, to make, use, sell, offer for sale,
426 | import and otherwise run, modify and propagate the contents of its contributor
427 | version.
428 |
429 | In the following three paragraphs, a “patent license” is any express
430 | agreement or commitment, however denominated, not to enforce a patent (such as an
431 | express permission to practice a patent or covenant not to sue for patent
432 | infringement). To “grant” such a patent license to a party means to make
433 | such an agreement or commitment not to enforce a patent against the party.
434 |
435 | If you convey a covered work, knowingly relying on a patent license, and the
436 | Corresponding Source of the work is not available for anyone to copy, free of charge
437 | and under the terms of this License, through a publicly available network server or
438 | other readily accessible means, then you must either **(1)** cause the Corresponding
439 | Source to be so available, or **(2)** arrange to deprive yourself of the benefit of the
440 | patent license for this particular work, or **(3)** arrange, in a manner consistent with
441 | the requirements of this License, to extend the patent license to downstream
442 | recipients. “Knowingly relying” means you have actual knowledge that, but
443 | for the patent license, your conveying the covered work in a country, or your
444 | recipient's use of the covered work in a country, would infringe one or more
445 | identifiable patents in that country that you have reason to believe are valid.
446 |
447 | If, pursuant to or in connection with a single transaction or arrangement, you
448 | convey, or propagate by procuring conveyance of, a covered work, and grant a patent
449 | license to some of the parties receiving the covered work authorizing them to use,
450 | propagate, modify or convey a specific copy of the covered work, then the patent
451 | license you grant is automatically extended to all recipients of the covered work and
452 | works based on it.
453 |
454 | A patent license is “discriminatory” if it does not include within the
455 | scope of its coverage, prohibits the exercise of, or is conditioned on the
456 | non-exercise of one or more of the rights that are specifically granted under this
457 | License. You may not convey a covered work if you are a party to an arrangement with
458 | a third party that is in the business of distributing software, under which you make
459 | payment to the third party based on the extent of your activity of conveying the
460 | work, and under which the third party grants, to any of the parties who would receive
461 | the covered work from you, a discriminatory patent license **(a)** in connection with
462 | copies of the covered work conveyed by you (or copies made from those copies), or **(b)**
463 | primarily for and in connection with specific products or compilations that contain
464 | the covered work, unless you entered into that arrangement, or that patent license
465 | was granted, prior to 28 March 2007.
466 |
467 | Nothing in this License shall be construed as excluding or limiting any implied
468 | license or other defenses to infringement that may otherwise be available to you
469 | under applicable patent law.
470 |
471 | ### 12. No Surrender of Others' Freedom
472 |
473 | If conditions are imposed on you (whether by court order, agreement or otherwise)
474 | that contradict the conditions of this License, they do not excuse you from the
475 | conditions of this License. If you cannot convey a covered work so as to satisfy
476 | simultaneously your obligations under this License and any other pertinent
477 | obligations, then as a consequence you may not convey it at all. For example, if you
478 | agree to terms that obligate you to collect a royalty for further conveying from
479 | those to whom you convey the Program, the only way you could satisfy both those terms
480 | and this License would be to refrain entirely from conveying the Program.
481 |
482 | ### 13. Use with the GNU Affero General Public License
483 |
484 | Notwithstanding any other provision of this License, you have permission to link or
485 | combine any covered work with a work licensed under version 3 of the GNU Affero
486 | General Public License into a single combined work, and to convey the resulting work.
487 | The terms of this License will continue to apply to the part which is the covered
488 | work, but the special requirements of the GNU Affero General Public License, section
489 | 13, concerning interaction through a network will apply to the combination as such.
490 |
491 | ### 14. Revised Versions of this License
492 |
493 | The Free Software Foundation may publish revised and/or new versions of the GNU
494 | General Public License from time to time. Such new versions will be similar in spirit
495 | to the present version, but may differ in detail to address new problems or concerns.
496 |
497 | Each version is given a distinguishing version number. If the Program specifies that
498 | a certain numbered version of the GNU General Public License “or any later
499 | version” applies to it, you have the option of following the terms and
500 | conditions either of that numbered version or of any later version published by the
501 | Free Software Foundation. If the Program does not specify a version number of the GNU
502 | General Public License, you may choose any version ever published by the Free
503 | Software Foundation.
504 |
505 | If the Program specifies that a proxy can decide which future versions of the GNU
506 | General Public License can be used, that proxy's public statement of acceptance of a
507 | version permanently authorizes you to choose that version for the Program.
508 |
509 | Later license versions may give you additional or different permissions. However, no
510 | additional obligations are imposed on any author or copyright holder as a result of
511 | your choosing to follow a later version.
512 |
513 | ### 15. Disclaimer of Warranty
514 |
515 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
516 | EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
517 | PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
518 | EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
519 | MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
520 | QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
521 | DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
522 |
523 | ### 16. Limitation of Liability
524 |
525 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
526 | COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS
527 | PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
528 | INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
529 | PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
530 | OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
531 | WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
532 | POSSIBILITY OF SUCH DAMAGES.
533 |
534 | ### 17. Interpretation of Sections 15 and 16
535 |
536 | If the disclaimer of warranty and limitation of liability provided above cannot be
537 | given local legal effect according to their terms, reviewing courts shall apply local
538 | law that most closely approximates an absolute waiver of all civil liability in
539 | connection with the Program, unless a warranty or assumption of liability accompanies
540 | a copy of the Program in return for a fee.
541 |
542 | _END OF TERMS AND CONDITIONS_
543 |
544 | ## How to Apply These Terms to Your New Programs
545 |
546 | If you develop a new program, and you want it to be of the greatest possible use to
547 | the public, the best way to achieve this is to make it free software which everyone
548 | can redistribute and change under these terms.
549 |
550 | To do so, attach the following notices to the program. It is safest to attach them
551 | to the start of each source file to most effectively state the exclusion of warranty;
552 | and each file should have at least the “copyright” line and a pointer to
553 | where the full notice is found.
554 |
555 |
556 | Copyright (C)
557 |
558 | This program is free software: you can redistribute it and/or modify
559 | it under the terms of the GNU General Public License as published by
560 | the Free Software Foundation, either version 3 of the License, or
561 | (at your option) any later version.
562 |
563 | This program is distributed in the hope that it will be useful,
564 | but WITHOUT ANY WARRANTY; without even the implied warranty of
565 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
566 | GNU General Public License for more details.
567 |
568 | You should have received a copy of the GNU General Public License
569 | along with this program. If not, see .
570 |
571 | Also add information on how to contact you by electronic and paper mail.
572 |
573 | If the program does terminal interaction, make it output a short notice like this
574 | when it starts in an interactive mode:
575 |
576 | Copyright (C)
577 | This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
578 | This is free software, and you are welcome to redistribute it
579 | under certain conditions; type 'show c' for details.
580 |
581 | The hypothetical commands `show w` and `show c` should show the appropriate parts of
582 | the General Public License. Of course, your program's commands might be different;
583 | for a GUI interface, you would use an “about box”.
584 |
585 | You should also get your employer (if you work as a programmer) or school, if any, to
586 | sign a “copyright disclaimer” for the program, if necessary. For more
587 | information on this, and how to apply and follow the GNU GPL, see
588 | <>.
589 |
590 | The GNU General Public License does not permit incorporating your program into
591 | proprietary programs. If your program is a subroutine library, you may consider it
592 | more useful to permit linking proprietary applications with the library. If this is
593 | what you want to do, use the GNU Lesser General Public License instead of this
594 | License. But first, please read
595 | <>.
596 |
--------------------------------------------------------------------------------
/NAMESPACE:
--------------------------------------------------------------------------------
1 | # Generated by roxygen2: do not edit by hand
2 |
3 | S3method(forecast,ARml)
4 | S3method(predict,conformalRegressor)
5 | S3method(residuals,ARml)
6 | export("%<>%")
7 | export("%>%")
8 | export(ARml)
9 | export(accuracy)
10 | export(autolayer)
11 | export(autoplot)
12 | export(conformalRegressor)
13 | export(forecast)
14 | export(get_var_imp)
15 | export(split_ts)
16 | export(suggested_methods)
17 | importFrom(caret,train)
18 | importFrom(caret,trainControl)
19 | importFrom(caret,varImp)
20 | importFrom(dplyr,bind_cols)
21 | importFrom(forecast,BoxCox)
22 | importFrom(forecast,BoxCox.lambda)
23 | importFrom(forecast,InvBoxCox)
24 | importFrom(forecast,autolayer)
25 | importFrom(forecast,autoplot)
26 | importFrom(forecast,fourier)
27 | importFrom(forecast,is.constant)
28 | importFrom(forecast,na.interp)
29 | importFrom(generics,accuracy)
30 | importFrom(generics,forecast)
31 | importFrom(magrittr,"%<>%")
32 | importFrom(magrittr,"%>%")
33 | importFrom(methods,is)
34 | importFrom(stats,"tsp<-")
35 | importFrom(stats,frequency)
36 | importFrom(stats,is.ts)
37 | importFrom(stats,predict)
38 | importFrom(stats,residuals)
39 | importFrom(stats,sd)
40 | importFrom(stats,start)
41 | importFrom(stats,time)
42 | importFrom(stats,ts)
43 | importFrom(stats,tsp)
44 |
--------------------------------------------------------------------------------
/NEWS.md:
--------------------------------------------------------------------------------
1 | # caretForecast 0.1.1
2 |
3 | # caretForecast 0.0.3
4 |
5 | # caretForecast 0.0.2
6 |
7 | * Added a `NEWS.md` file to track changes to the package.
8 |
--------------------------------------------------------------------------------
/R/arml.R:
--------------------------------------------------------------------------------
1 | #' Autoregressive forecasting using various Machine Learning models.
2 | #'
3 | #' @importFrom methods is
4 | #' @importFrom stats frequency is.ts predict sd start time ts
5 | #' @importFrom forecast is.constant na.interp BoxCox.lambda BoxCox InvBoxCox
6 | #' @importFrom caret train trainControl
7 | #' @param y A univariate time series object.
8 | #' @param xreg Optional. A numerical vector or matrix of external regressors,
9 | #' which must have the same number of rows as y.
10 | #' (It should not be a data frame.).
11 | #' @param max_lag Maximum value of lag.
12 | #' @param caret_method A string specifying which classification or
13 | #' regression model to use.
14 | #' Possible values are found using names(getModelInfo()).
15 | #' A list of functions can also be passed for a custom model function.
16 | #' See \url{http://topepo.github.io/caret/} for details.
17 | #' @param metric A string that specifies what summary metric will be used to
18 | #' select the optimal model. See \code{?caret::train}.
19 | #' @param pre_process A string vector that defines a pre-processing of the
20 | #' predictor data.
21 | #' Current possibilities are "BoxCox", "YeoJohnson", "expoTrans", "center",
22 | #' "scale", "range",
23 | #' "knnImpute", "bagImpute", "medianImpute", "pca", "ica" and "spatialSign".
24 | #' The default is no pre-processing.
25 | #' See preProcess and trainControl on the procedures and how to adjust them.
26 | #' Pre-processing code is only designed to work when x is a simple matrix or
27 | #' data frame.
28 | #' @param cv Logical, if \code{cv = TRUE} model selection will be done via
29 | #' cross-validation. If \code{cv = FALSE} user need to provide a specific model
30 | #' via \code{tune_grid} argument.
31 | #' @param cv_horizon The number of consecutive values in test set sample.
32 | #' @param initial_window The initial number of consecutive values in each
33 | #' training set sample.
34 | #' @param fixed_window Logical, if FALSE, all training samples start at 1.
35 | #' @param verbose A logical for printing a training log.
36 | #' @param seasonal Boolean. If \code{seasonal = TRUE} the fourier terms will be
37 | #' used for modeling seasonality.
38 | #' @param K Maximum order(s) of Fourier terms
39 | #' @param tune_grid A data frame with possible tuning values.
40 | #' The columns are named the same as the tuning parameters.
41 | #' Use getModelInfo to get a list of tuning parameters for each model or
42 | #' see \url{http://topepo.github.io/caret/available-models.html}.
43 | #' (NOTE: If given, this argument must be named.)
44 | #' @param lambda BoxCox transformation parameter. If \code{lambda = NULL}
45 | #' If \code{lambda = "auto"}, then the transformation parameter lambda is chosen
46 | #' using \code{\link[forecast]{BoxCox.lambda}}.
47 | #' @param BoxCox_method \code{\link[forecast]{BoxCox.lambda}} argument.
48 | #' Choose method to be used in calculating lambda.
49 | #' @param BoxCox_lower \code{\link[forecast]{BoxCox.lambda}} argument.
50 | #' Lower limit for possible lambda values.
51 | #' @param BoxCox_upper \code{\link[forecast]{BoxCox.lambda}} argument.
52 | #' Upper limit for possible lambda values.
53 | #' @param BoxCox_biasadj \code{\link[forecast]{InvBoxCox}} argument.
54 | #' Use adjusted back-transformed mean for Box-Cox transformations.
55 | #' If transformed data is used to produce forecasts and fitted values,
56 | #' a regular back transformation will result in median forecasts.
57 | #' If biasadj is TRUE, an adjustment will be made to produce mean
58 | #' forecasts and fitted values.
59 | #' @param BoxCox_fvar \code{\link[forecast]{InvBoxCox}} argument.
60 | #' Optional parameter required if biasadj=TRUE.
61 | #' Can either be the forecast variance, or a list containing the interval level,
62 | #' and the corresponding upper and lower intervals.
63 | #' @param allow_parallel If a parallel backend is loaded and available,
64 | #' should the function use it?
65 | #' @param ... Ignored.
66 | #' @return A list class of forecast containing the following elemets
67 | #' * x : The input time series
68 | #' * method : The name of the forecasting method as a character string
69 | #' * mean : Point forecasts as a time series
70 | #' * lower : Lower limits for prediction intervals
71 | #' * upper : Upper limits for prediction intervals
72 | #' * level : The confidence values associated with the prediction intervals
73 | #' * model : A list containing information about the fitted model
74 | #' * newx : A matrix containing regressors
75 | #' @author Resul Akay
76 | #'
77 | #' @examples
78 | #'
79 | #'library(caretForecast)
80 | #'
81 | #'train_data <- window(AirPassengers, end = c(1959, 12))
82 | #'
83 | #'test <- window(AirPassengers, start = c(1960, 1))
84 | #'
85 | #'ARml(train_data, caret_method = "lm", max_lag = 12) -> fit
86 | #'
87 | #'forecast(fit, h = length(test)) -> fc
88 | #'
89 | #'autoplot(fc) + autolayer(test)
90 | #'
91 | #'accuracy(fc, test)
92 | #'
93 | #' @export
94 |
95 | ARml <- function(y,
96 | max_lag = 5,
97 | xreg = NULL,
98 | caret_method = "cubist",
99 | metric = "RMSE",
100 | pre_process = NULL,
101 | cv = TRUE,
102 | cv_horizon = 4,
103 | initial_window = NULL,
104 | fixed_window = FALSE,
105 | verbose = TRUE,
106 | seasonal = TRUE,
107 | K = frequency(y) / 2,
108 | tune_grid = NULL,
109 | lambda = NULL,
110 | BoxCox_method = c("guerrero", "loglik"),
111 | BoxCox_lower = -1,
112 | BoxCox_upper = 2,
113 | BoxCox_biasadj = FALSE,
114 | BoxCox_fvar = NULL,
115 | allow_parallel = FALSE,
116 | ...) {
117 |
118 | if ("ts" %notin% class(y)) {
119 | stop("y must be a univariate time series")
120 | }
121 | freq <- stats::frequency(y)
122 | length_y <- length(y)
123 |
124 | if (c(length_y - freq - round(freq / 4)) < max_lag) {
125 | if(length_y > 3){
126 | max_lag <- length_y + 3 - length_y
127 | } else {
128 | max_lag <- 1
129 | }
130 | if(max_lag >= length_y - max_lag - 2){
131 | max_lag <- 1
132 | }
133 |
134 | warning(paste("Input data is too short. setting max_lag = ", max_lag))
135 | }
136 |
137 | if (length_y < 3) {
138 | stop("Not enough data to fit a model")
139 | }
140 | constant_data <- is.constant(na.interp(y))
141 | if (constant_data) {
142 | warning("Constant data, setting max_lag = 1, seasonal = FALSE, lambda = NULL,
143 | pre_process = NULL")
144 | pre_process <- NULL
145 | lambda <- NULL
146 | max_lag <- 1
147 | }
148 |
149 | if (!is.null(xreg)) {
150 | constant_xreg <- any(apply(as.matrix(xreg), 2,
151 | function(x) {
152 | is.constant(na.interp(x))
153 | }
154 | )
155 | )
156 | if (constant_xreg) {
157 | warning("Constant xreg column, setting pre_process=NULL")
158 | pre_process <- NULL
159 | }
160 | }
161 |
162 | if (max_lag <= 0) {
163 | warning("max_lag increased to 1. max_lag must be max_lag >= 1")
164 | max_lag <- 1
165 | }
166 |
167 |
168 | if (max_lag != round(max_lag)) {
169 | max_lag <- round(max_lag)
170 | message(paste("max_lag must be an integer, max_lag rounded to", max_lag))
171 | }
172 |
173 | if (!is.null(xreg)) {
174 | if ("matrix" %notin% class(xreg)) {
175 | xreg <- as.matrix(xreg)
176 | }
177 | }
178 |
179 | if (!is.null(xreg))
180 | {
181 | ncolxreg <- ncol(xreg)
182 | }
183 |
184 | if (is.null(lambda)) {
185 | modified_y <- y
186 | }
187 | if (!is.null(lambda)) {
188 | if (lambda == "auto") {
189 | lambda <- forecast::BoxCox.lambda(y,
190 | method = BoxCox_method,
191 | lower = BoxCox_lower,
192 | upper = BoxCox_upper)
193 | modified_y <- forecast::BoxCox(y, lambda)
194 | }
195 |
196 | if (is.numeric(lambda)) {
197 | modified_y <- forecast::BoxCox(y, lambda)
198 | }
199 | }
200 |
201 | modified_y_2 <- ts(modified_y[-seq_len(max_lag)],
202 | start = time(modified_y)[max_lag + 1],
203 | frequency = freq)
204 |
205 | if(length_y - max_lag < freq + 1) {
206 | seasonal <- FALSE
207 | }
208 |
209 | if (seasonal == TRUE & freq > 1)
210 | {
211 | if (K == freq / 2) {
212 | ncolx <- max_lag + K * 2 - 1
213 | } else {
214 | ncolx <- max_lag + K * 2
215 | }
216 | }
217 | if (seasonal == FALSE | freq == 1)
218 | {
219 | ncolx <- max_lag
220 | }
221 |
222 | x <- matrix(0, nrow = c(length_y - max_lag), ncol = ncolx)
223 |
224 | x[, seq_len(max_lag)] <- lag_maker(modified_y, max_lag)
225 |
226 | if (seasonal == TRUE & freq > 1)
227 | {
228 | fourier_s <- fourier(modified_y_2, K = K)
229 | x[, (max_lag + 1):ncolx] <- fourier_s
230 | colnames(x) <- c(paste0("lag", 1:max_lag), colnames(fourier_s))
231 | }
232 |
233 | if (seasonal == FALSE | freq == 1)
234 | {
235 | colnames(x) <- c(paste0("lag", 1:max_lag))
236 | }
237 |
238 | if (!is.null(xreg)) {
239 | col_xreg <- ncol(xreg)
240 | name_xreg <- colnames(xreg)
241 | xreg <- xreg[-seq_len(max_lag),]
242 | if (col_xreg == 1) {
243 | xreg <- as.matrix(matrix(xreg, ncol = 1))
244 | colnames(xreg)[1] <- name_xreg[1]
245 | rm(name_xreg, col_xreg)
246 | }
247 | x <- cbind(x, xreg)
248 | }
249 |
250 | training_method <- "timeslice"
251 |
252 | if (!cv) {
253 | training_method <- "none"
254 | if (is.null(tune_grid)) {
255 | stop("Only one model should be specified in tune_grid with no resampling")
256 | }
257 | }
258 |
259 | initial_window_setted <- FALSE
260 | if(is.null(initial_window)){
261 | initial_window <- length_y - max_lag - cv_horizon * 2
262 | message("initial_window = NULL. Setting initial_window = ", initial_window)
263 | initial_window_setted <- TRUE
264 | }
265 | if(initial_window<1 | initial_window >= nrow(x)){
266 | initial_window <- length_y - max_lag - 1
267 | cv_horizon <- 1
268 | if(initial_window_setted){
269 | warning("Resetting initial_window = ", initial_window, " cv_horizon = 1")
270 | } else {
271 | warning("Setting initial_window = ", initial_window, " cv_horizon = 1")
272 | }
273 | }
274 |
275 | model <- caret::train(
276 | x = x,
277 | y = as.numeric(modified_y_2),
278 | method = caret_method,
279 | preProcess = pre_process,
280 | weights = NULL,
281 | metric = metric,
282 | trControl = caret::trainControl(
283 | method = training_method,
284 | initialWindow = initial_window,
285 | horizon = cv_horizon,
286 | fixedWindow = fixed_window,
287 | verboseIter = verbose,
288 | allowParallel = allow_parallel,
289 | returnData = TRUE,
290 | returnResamp = "final",
291 | savePredictions = "final"
292 | ),
293 | tuneGrid = tune_grid
294 | )
295 |
296 | fitted <- ts(c(rep(NA, max_lag),
297 | predict(model, newdata = x)),
298 | frequency = freq,
299 | start = min(time(modified_y)))
300 |
301 | if (!is.null(lambda)) {
302 | fitted <- forecast::InvBoxCox(fitted,
303 | lambda = lambda,
304 | biasadj = BoxCox_biasadj,
305 | fvar = BoxCox_fvar)
306 | }
307 |
308 | K_m <- 0
309 |
310 | if (seasonal == TRUE & freq > 1)
311 | {
312 | K_m <- K
313 | }
314 |
315 | method <- paste0("ARml(", max_lag, paste(", ", K_m), ")")
316 |
317 | output <- list(
318 | y = y,
319 | y_modified = modified_y_2,
320 | x = x,
321 | model = model,
322 | fitted = fitted,
323 | max_lag = max_lag,
324 | lambda = lambda,
325 | seasonal = seasonal,
326 | BoxCox_biasadj = BoxCox_biasadj,
327 | BoxCox_fvar = BoxCox_fvar,
328 | method = paste0("caret method ", caret_method, " with ", method)
329 | )
330 |
331 | if (seasonal == TRUE & freq > 1)
332 | {
333 | output$fourier_s <- fourier_s
334 | output$K <- K
335 | }
336 | output$xreg_fit <- NULL
337 | if (!is.null(xreg)) {
338 | output$xreg_fit <- xreg
339 | }
340 | class(output) <- "ARml"
341 | return(output)
342 | }
343 |
--------------------------------------------------------------------------------
/R/fit_conformal_reg.R:
--------------------------------------------------------------------------------
1 | #' Fit a conformal regressor.
2 | #'
3 | #' @param residuals Model residuals.
4 | #' @param sigmas A vector of difficulty estimates
5 | #' @author Resul Akay
6 | #' @return A conformalRegressor object
7 | #'
8 | #' @references
9 | #' Boström, H., 2022. crepes: a Python Package for Generating Conformal
10 | #' Regressors and Predictive Systems. In Conformal and Probabilistic Prediction
11 | #' and Applications. PMLR, 179.
12 | #' \url{https://copa-conference.com/papers/COPA2022_paper_11.pdf}
13 | #'
14 | #' @export
15 | conformalRegressor <- function(residuals, sigmas=NULL) {
16 | abs_residuals <- abs(residuals)
17 | if(is.null(sigmas)){
18 | normalized <- FALSE
19 | alphas <- rev(sort(abs_residuals))
20 | } else {
21 | normalized <- TRUE
22 | alphas = rev(sort(abs_residuals/sigmas))
23 | }
24 | out <- list(
25 | alphas = alphas,
26 | normalized = normalized
27 | )
28 | out <- structure(out, class = "conformalRegressor")
29 | return(out)
30 | }
31 |
--------------------------------------------------------------------------------
/R/forecast.R:
--------------------------------------------------------------------------------
1 | #' @importFrom generics forecast
2 | #' @export
3 | generics::forecast
4 |
5 | #' @title Forecasting using ARml model
6 | #'
7 | #' @param object An object of class "ARml", the result of a call to ARml.
8 | #' @param h forecast horizon
9 | #' @param xreg Optionally, a numerical vector or matrix of future external
10 | #' regressors
11 | #' @param level Confidence level for prediction intervals.
12 | #'
13 | #' @param ... Ignored
14 | #' @return A list class of forecast containing the following elemets
15 | #' * x : The input time series
16 | #' * method : The name of the forecasting method as a character string
17 | #' * mean : Point forecasts as a time series
18 | #' * lower : Lower limits for prediction intervals
19 | #' * upper : Upper limits for prediction intervals
20 | #' * level : The confidence values associated with the prediction intervals
21 | #' * model : A list containing information about the fitted model
22 | #' * newxreg : A matrix containing regressors
23 | #' @author Resul Akay
24 | #'
25 | #' @examples
26 | #'
27 | #'library(caretForecast)
28 | #'
29 | #'train_data <- window(AirPassengers, end = c(1959, 12))
30 | #'
31 | #'test <- window(AirPassengers, start = c(1960, 1))
32 | #'
33 | #'ARml(train_data, caret_method = "lm", max_lag = 12) -> fit
34 | #'
35 | #'forecast(fit, h = length(test), level = c(80,95)) -> fc
36 | #'
37 | #'autoplot(fc)+ autolayer(test)
38 | #'
39 | #'accuracy(fc, test)
40 | #' @importFrom stats residuals tsp tsp<-
41 | #' @export
42 | forecast.ARml <- function(object,
43 | h = frequency(object$y),
44 | xreg = NULL,
45 | level = c(80, 95),
46 | ...) {
47 |
48 | if (!is.null(object$xreg_fit)) {
49 | ncolxreg <- ncol(object$xreg_fit)
50 | }
51 |
52 | if (is.null(xreg)) {
53 | if (!is.null(object$xreg_fit)) {
54 | stop("No regressors provided")
55 | }
56 | }
57 |
58 | if (!is.null(xreg)) {
59 | if (is.null(object$xreg_fit)) {
60 | stop("No regressors provided to fitted model")
61 | }
62 |
63 | if (ncol(xreg) != ncolxreg) {
64 | stop("Number of regressors does not match to fitted model")
65 | }
66 |
67 | h <- nrow(xreg)
68 | newxreg1 <- xreg
69 | }
70 |
71 | if (is.null(h)) {
72 | h <- ifelse(frequency(object$y) > 1, 2 * frequency(object$y), 10)
73 | }
74 |
75 | if (is.null(xreg)) {
76 | newxreg1 <- NULL
77 | }
78 |
79 | lambda <- object$lambda
80 | BoxCox_biasadj <- object$BoxCox_biasadj
81 | BoxCox_fvar <- object$BoxCox_fvar
82 |
83 | fc_x <- forecast_loop(object = object, xreg = newxreg1, h = h)
84 | x <- fc_x$x
85 | y <- fc_x$y
86 |
87 | if (!is.null(lambda)) {
88 | y <- forecast::InvBoxCox(y, lambda = lambda, biasadj = BoxCox_biasadj,
89 | fvar = BoxCox_fvar)
90 | }
91 |
92 | res <- tryCatch({
93 | residuals(object)
94 | }, error = function(err){
95 | out <- NULL
96 | return(out)
97 | })
98 |
99 | if(is.null(res)){
100 | lower <- NULL
101 | upper <- NULL
102 | } else {
103 | intervals <- tryCatch({
104 | conformal_intervals(residuals = res, y_hat = y, level = level)
105 | }, error = function(err) {
106 | NULL
107 | })
108 | if(is.null(intervals)){
109 | lower <- NULL
110 | upper <- NULL
111 | warning("I could not derive conformal prediction intervals")
112 | } else {
113 | lower <- intervals[["lower"]]
114 | upper<- intervals[["upper"]]
115 | }
116 | }
117 |
118 | output <- list(
119 | x = object$y,
120 | mean = y,
121 | lower = lower,
122 | upper = upper,
123 | fitted = object$fitted,
124 | level = level,
125 | newxreg = x,
126 | method = object$method,
127 | model = object$model
128 | )
129 | class(output) <- c("forecast", "forecastARml")
130 | return(output)
131 | }
132 |
--------------------------------------------------------------------------------
/R/predict_conformal.R:
--------------------------------------------------------------------------------
1 | predict_default <- function(object, y_hat, sigmas, confidence, y_min, y_max){
2 |
3 | if(length(confidence) >1){
4 | confidence <- confidence[1]
5 | warning("Only fist element of confidence considered")
6 | }
7 |
8 | if(!all(c(confidence <=1 & confidence>=0))){
9 | stop("confidence must be in the interval '0<=confidence<=1' ")
10 | }
11 |
12 | intervals <- matrix(nrow = length(y_hat), ncol = 2)
13 | alpha_index <- ceiling((1-confidence) * (length(object[["alphas"]]) + 1))
14 | if(alpha_index >= 0) {
15 | alpha <- object[["alphas"]][alpha_index]
16 | if(object[["normalized"]]){
17 | intervals[,1] <- y_hat-alpha*sigmas
18 | intervals[,2] <- y_hat+alpha*sigmas
19 | } else {
20 | intervals[,1] <- y_hat-alpha
21 | intervals[,2] <- y_hat+alpha
22 | }
23 | } else {
24 | intervals[,1] <- -Inf
25 | intervals[,2] <- Inf
26 | }
27 | if(y_min > - Inf) {
28 | intervals[intervalsy_max] = y_max
32 | }
33 | return(intervals)
34 | }
35 |
36 | #' Predict a conformalRegressor
37 | #' @param object A conformalRegressor object
38 | #' @param y_hat Predicted values
39 | #' @param sigmas Difficulty estimates
40 | #' @param confidence Confidence level
41 | #' @param y_min The minimum value to include in prediction intervals
42 | #' @param y_max The maximum value to include in prediction intervals
43 | #' @param ... Ignored
44 | #' @author Resul Akay
45 | #' @return Prediction intervals
46 | #' @importFrom stats predict
47 | #' @importFrom dplyr bind_cols
48 | #' @export
49 | predict.conformalRegressor <- function(object, y_hat = NULL, sigmas = NULL,
50 | confidence = 0.95, y_min = - Inf,
51 | y_max = Inf, ...){
52 | if(!is.null(y_hat)){
53 | if(!is.numeric(y_hat)){
54 | stop("y_hat must be a numeric vector")
55 | }
56 | }
57 |
58 | if(!is.null(sigmas)){
59 | if(!is.numeric(sigmas)){
60 | stop("sigmas must be a numeric vector")
61 | }
62 | }
63 |
64 | if(length(y_min)>1){
65 | warning("Only the first element of y_min considered")
66 | y_min <- y_min[1]
67 | }
68 |
69 | if(!is.numeric(y_min)){
70 | stop("y_min must be a numeric vector")
71 | }
72 |
73 | if(length(y_max)>1){
74 | warning("Only the first element of y_max considered")
75 | y_max <- y_max[1]
76 | }
77 |
78 | if(!is.numeric(y_max)){
79 | stop("y_max must be a numeric vector")
80 | }
81 |
82 | intervals <- sapply(X = confidence,
83 | FUN = function(x, .object, .y_hat, .sigmas, .y_min,
84 | .y_max) {
85 |
86 | pred <- predict_default(object = .object,
87 | y_hat = .y_hat,
88 | sigmas = .sigmas,
89 | confidence = x,
90 | y_min = .y_min,
91 | y_max = .y_max)
92 | pred <- as.data.frame(pred)
93 | colnames(pred) <- paste0(c("lower_", "upper_"), x*100)
94 | return(pred)
95 | },
96 | .object = object,
97 | .y_hat = y_hat,
98 | .sigmas = sigmas,
99 | .y_min = y_min,
100 | .y_max = y_max,
101 | simplify = FALSE
102 | )
103 | intervals <- dplyr::bind_cols(intervals)
104 | return(intervals)
105 | }
106 |
--------------------------------------------------------------------------------
/R/utils.R:
--------------------------------------------------------------------------------
1 | #' @importFrom forecast fourier
2 | #' @importFrom caret varImp
3 | pred_func <- function(i, x, y, newxreg, object, freq, fourier_h) {
4 | newxreg_in <- newxreg[i,]
5 | new_data <- c(y[length(y)], x[nrow(x), 1:(object$max_lag - 1)])
6 | if (object$max_lag == 1) {
7 | new_data = new_data[-2]
8 | }
9 | if (object$seasonal == TRUE & freq > 1)
10 | {
11 | new_data <- c(new_data, fourier_h[i, ])
12 | }
13 | if (!is.null(newxreg_in)) {
14 | new_data <- c(new_data, newxreg_in)
15 | }
16 | new_data <- matrix(new_data, nrow = 1)
17 | colnames(new_data) <- colnames(x)
18 | pred <- predict(object$model, newdata = new_data)
19 | return(list("x" = rbind(x, new_data),
20 | "y" = c(y, pred)))
21 | }
22 |
23 | forecast_loop <- function(object, xreg, h) {
24 | x <- object$x
25 | y <- object$y_modified
26 | freq <- stats::frequency(object$y_modified)
27 | if (object$seasonal == TRUE & freq > 1)
28 | {
29 | fourier_h <-
30 | forecast::fourier(object$y_modified, K = object$K, h = h)
31 | }
32 | for (i in 1:h) {
33 | fc_x <- pred_func(
34 | i,
35 | x = x,
36 | y = y,
37 | newxreg = xreg,
38 | object = object,
39 | freq = freq,
40 | fourier_h = fourier_h
41 | )
42 | x <- fc_x$x
43 | y <- fc_x$y
44 | }
45 | y <- ts(y[-(1:length(object$y_modified))],
46 | frequency = freq,
47 | start = max(time(object$y)) + 1 / freq)
48 | x <- x[-(1:nrow(object$x)),]
49 |
50 | return(list("x" = x,
51 | "y" = y))
52 | }
53 |
54 | #' @title Variable importance for forecasting model.
55 | #'
56 | #' @param object A list class of ARml or forecast object derived from ARml
57 | #' @param plot Boolean, if TRUE, variable importance will be ploted.
58 | #' @return A list class of "varImp.train". See \code{\link[caret]{varImp}} or a
59 | #' "trellis" plot.
60 | #' @author Resul Akay
61 | #' @examples
62 | #'
63 | #' train <- window(AirPassengers, end = c(1959, 12))
64 | #'
65 | #' test <- window(AirPassengers, start = c(1960, 1))
66 | #'
67 | #' ARml(train, caret_method = "lm", max_lag = 12, trend_method = "none",
68 | #' pre_process = "center") -> fit
69 | #'
70 | #' forecast(fit, h = length(test), level = c(80,95)) -> fc
71 | #'
72 | #' autoplot(fc)+ autolayer(test)
73 | #'
74 | #' accuracy(fc, test)
75 | #'
76 | #' get_var_imp(fc, plot = TRUE)
77 | #'
78 | #'
79 | #' @export
80 |
81 | get_var_imp <- function(object, plot = TRUE) {
82 | if ("forecastARml" %notin% class(object)) {
83 | stop("object must be an forecastARml or ARml object")
84 | }
85 | if (plot) {
86 | return(plot(varImp(object$model)))
87 | }
88 | if (!plot) {
89 | return(varImp(object$model))
90 | }
91 | }
92 |
93 | lag_maker <- function(y, max_lag) {
94 | if ("ts" %notin% class(y)) {
95 | stop("y must be a 'ts' object")
96 | }
97 |
98 | max_lag1 <- round(max_lag)
99 | if (max_lag1 != max_lag) {
100 | message(
101 | paste(
102 | "'max_lag' should not be a fractional number.",
103 | "'max_lag' rounde to",
104 | max_lag1,
105 | sep = " "
106 | )
107 | )
108 | }
109 | length_y <- length(y)
110 | n_col <- max_lag1 + 1
111 | dta <- apply(
112 | array(seq(
113 | from = 1, to = n_col, by = 1
114 | )),
115 | 1,
116 | FUN = function(i) {
117 | y[(max_lag1 + 2 - i):(length_y + 1 - i)]
118 | }
119 | )
120 |
121 | colnames(dta) <-
122 | c("y", paste0("y_lag", seq(
123 | from = 1, to = max_lag1, by = 1
124 | )))
125 |
126 | dta <- dta[,-1]
127 |
128 | return(dta)
129 | }
130 |
131 | `%notin%` <- Negate(`%in%`)
132 |
133 | #' Sales data from an Australian Retailer in time series format
134 | #'
135 | #' A dataset containing 42 products' sales
136 | #'
137 | #' @format
138 | #' An object of class mts (inherits from ts, matrix)
139 | #' with 333 rows and 43 columns.
140 | #' \describe{
141 | #' This data set is the wide format of \code{\link{retail}} data.
142 | #' }
143 | #' @source \url{https://robjhyndman.com/data/ausretail.csv}
144 | "retail_wide"
145 |
146 | #' Grouped sales data from an Australian Retailer
147 | #'
148 | #' A dataset containing 42 products' sales
149 | #'
150 | #' @format A data class of "tbl_df", "tbl", "data.frame" with 13986 rows and 3 columns:
151 | #' \describe{
152 | #' \item{date}{date}
153 | #' \item{item}{products}
154 | #' \item{value}{sales}
155 | #' }
156 | #' @source \url{https://robjhyndman.com/data/ausretail.csv}
157 | "retail"
158 |
159 | #' @title Split a time series into training and testing sets
160 | #' @importFrom stats ts start frequency
161 | #' @param y A univariate time series
162 | #' @param test_size The number of observations to keep in the test set
163 | #' @return
164 | #' A list with train and test elements
165 | #' @author Resul Akay
166 | #' @examples
167 | #'
168 | #' dlist <- split_ts(retail_wide[,1], test_size = 12)
169 | #'
170 | #'@export
171 | split_ts <- function (y, test_size = 10) {
172 | if ("ts" %notin% class(y) | "mts" %in% class(y)) {
173 | stop("y must be a univariate time series class of 'ts'")
174 | }
175 | num_train <- length(y) - test_size
176 | train_start <- stats::start(y)
177 | freq <- stats::frequency(y)
178 | test_start <- min(time(y)) + num_train / freq
179 | train = stats::ts(y[1:num_train], start = train_start, frequency = freq)
180 | test = stats::ts(y[(num_train + 1):length(y)], start = test_start,
181 | frequency = freq)
182 | output <- list("train" = train, "test" = test)
183 | return(output)
184 | }
185 |
186 | #' @title Suggested methods for ARml
187 | #' @return A character vector of Suggested methods
188 | #' @author Resul Akay
189 | #' @examples
190 | #'
191 | #' suggested_methods()
192 | #'
193 | #' @export
194 | suggested_methods <- function() {
195 | message("In general user can train any method which supported by caret.
196 | \nThe following methods are suggested"
197 | )
198 | caret_methods <- c("spikeslab", "bagEarth", "bagEarthGCV", "blasso",
199 | "cforest", "earth","extraTrees", "gbm_h2o", "glmStepAIC",
200 | "parRF", "qrf", "Rborist", "rf", "rqlasso", "rqnc",
201 | "spikeslab", "xgbDART", "xgbLinear", "ranger", "cubist",
202 | "svmLinear", "enet", "bridge", "glmboost", "ridge",
203 | "lasso", "relaxo", "M5Rules", "M5", "lm", "gaussprLinear",
204 | "glm", "glmnet", "pcr", "ppr", "foba", "gbm", "svmLinear2",
205 | "glm.nb", "gcvEarth", "lars2", "lars", "icr", "ctree2",
206 | "ctree", "bayesglm")
207 |
208 | return(caret_methods)
209 | }
210 |
211 | #' @export
212 | residuals.ARml <- function(object, ...){
213 | res <- object$y - object$fitted
214 | return(res)
215 | }
216 |
217 | conformal_intervals <- function(residuals, y_hat, level){
218 | level <- c(level/100)
219 | conf_reg <- conformalRegressor(residuals)
220 | conf_pred <- predict(conf_reg, y_hat = y_hat, confidence = level)
221 | upper <- ts(dplyr::select(conf_pred, dplyr::starts_with("upper_")))
222 | tsp(upper) <- tsp(y_hat)
223 | lower <- ts(dplyr::select(conf_pred, dplyr::starts_with("lower_")))
224 | tsp(lower) <- tsp(y_hat)
225 | out <- list(upper = upper, lower = lower)
226 | return(out)
227 | }
228 |
229 | #' @importFrom forecast autoplot
230 | #' @export
231 | forecast::autoplot
232 |
233 | #' @importFrom forecast autolayer
234 | #' @export
235 | forecast::autolayer
236 |
237 | #' @importFrom generics accuracy
238 | #' @export
239 | generics::accuracy
240 |
241 | #' @importFrom magrittr %>%
242 | #' @export
243 | magrittr::`%>%`
244 |
245 | #' @importFrom magrittr %<>%
246 | #' @export
247 | magrittr::`%<>%`
248 |
--------------------------------------------------------------------------------
/README.Rmd:
--------------------------------------------------------------------------------
1 | ---
2 | output: github_document
3 | ---
4 |
5 |
6 |
7 | ```{r, include = FALSE}
8 | knitr::opts_chunk$set(
9 | collapse = TRUE,
10 | comment = "#>",
11 | fig.path = "man/figures/README-",
12 | out.width = "100%"
13 | )
14 | ```
15 |
16 | # caretForecast
17 |
18 |
19 |
20 |
21 |
22 |
23 | caretForecast aspires to equip users with the means of using machine learning algorithms for time series data forecasting.
24 |
25 | ## Installation
26 |
27 | The CRAN version with:
28 |
29 | ``` r
30 | install.packages("caretForecast")
31 |
32 | ```
33 |
34 |
35 | The development version from [GitHub](https://github.com/) with:
36 |
37 | ``` r
38 | # install.packages("devtools")
39 | devtools::install_github("Akai01/caretForecast")
40 | ```
41 | ## Example
42 |
43 | By using caretForecast, users can train any regression model that is compatible with the caret package. This allows them to use any machine learning model they need in order to solve specific problems, as shown by the examples below.
44 |
45 |
46 | ### Load the library
47 |
48 | ```{r example1}
49 | library(caretForecast)
50 |
51 | data(retail_wide, package = "caretForecast")
52 |
53 | ```
54 |
55 | ### Forecasting with glmboost
56 | ```{r, example2}
57 | i <- 8
58 |
59 | dtlist <- caretForecast::split_ts(retail_wide[,i], test_size = 12)
60 |
61 | training_data <- dtlist$train
62 |
63 | testing_data <- dtlist$test
64 |
65 | fit <- ARml(training_data, max_lag = 12, caret_method = "glmboost",
66 | verbose = FALSE)
67 |
68 | forecast(fit, h = length(testing_data), level = c(80,95))-> fc
69 |
70 | accuracy(fc, testing_data)
71 |
72 |
73 | autoplot(fc) +
74 | autolayer(testing_data, series = "testing_data")
75 |
76 | ```
77 |
78 | ### Forecasting with cubist regression
79 |
80 | ```{r, example3}
81 | i <- 9
82 |
83 | dtlist <- caretForecast::split_ts(retail_wide[,i], test_size = 12)
84 |
85 | training_data <- dtlist$train
86 |
87 | testing_data <- dtlist$test
88 |
89 | fit <- ARml(training_data, max_lag = 12, caret_method = "cubist",
90 | verbose = FALSE)
91 |
92 | forecast(fit, h = length(testing_data), level = c(80,95), PI = TRUE)-> fc
93 |
94 | accuracy(fc, testing_data)
95 |
96 | autoplot(fc) +
97 | autolayer(testing_data, series = "testing_data")
98 |
99 | ```
100 |
101 | ### Forecasting using Support Vector Machines with Linear Kernel
102 |
103 | ```{r, example4}
104 |
105 | i <- 9
106 |
107 | dtlist <- caretForecast::split_ts(retail_wide[,i], test_size = 12)
108 |
109 | training_data <- dtlist$train
110 |
111 | testing_data <- dtlist$test
112 |
113 | fit <- ARml(training_data, max_lag = 12, caret_method = "svmLinear2",
114 | verbose = FALSE, pre_process = c("scale", "center"))
115 |
116 | forecast(fit, h = length(testing_data), level = c(80,95), PI = TRUE)-> fc
117 |
118 | accuracy(fc, testing_data)
119 |
120 | autoplot(fc) +
121 | autolayer(testing_data, series = "testing_data")
122 |
123 | get_var_imp(fc)
124 |
125 | get_var_imp(fc, plot = F)
126 |
127 | ```
128 |
129 | ### Forecasting using Ridge Regression
130 |
131 | ```{r, example5}
132 |
133 | i <- 8
134 |
135 | dtlist <- caretForecast::split_ts(retail_wide[,i], test_size = 12)
136 |
137 | training_data <- dtlist$train
138 |
139 | testing_data <- dtlist$test
140 |
141 | fit <- ARml(training_data, max_lag = 12, caret_method = "ridge",
142 | verbose = FALSE)
143 |
144 | forecast(fit, h = length(testing_data), level = c(80,95), PI = TRUE)-> fc
145 |
146 | accuracy(fc, testing_data)
147 |
148 | autoplot(fc) +
149 | autolayer(testing_data, series = "testing_data")
150 |
151 | get_var_imp(fc)
152 |
153 | get_var_imp(fc, plot = F)
154 | ```
155 |
156 | ## Adding external variables
157 |
158 | The xreg argument can be used for adding promotions, holidays, and other external variables to the model. In the example below, we will add seasonal dummies to the model. We set the 'seasonal = FALSE' to avoid adding the Fourier series to the model together with seasonal dummies.
159 |
160 | ```{r, example6}
161 |
162 | xreg_train <- forecast::seasonaldummy(AirPassengers)
163 |
164 | newxreg <- forecast::seasonaldummy(AirPassengers, h = 21)
165 |
166 | fit <- ARml(AirPassengers, max_lag = 4, caret_method = "cubist",
167 | seasonal = FALSE, xreg = xreg_train, verbose = FALSE)
168 |
169 | fc <- forecast(fit, h = 12, level = c(80, 95, 99), xreg = newxreg)
170 |
171 | autoplot(fc)
172 |
173 | get_var_imp(fc)
174 |
175 | ```
176 |
177 | # Forecasting Hierarchical or grouped time series
178 |
179 |
180 | ```{r, example7, warning=FALSE, message=FALSE}
181 | library(hts)
182 |
183 | data("htseg1", package = "hts")
184 |
185 | fc <- forecast(htseg1, h = 4, FUN = caretForecast::ARml,
186 | caret_method = "ridge", verbose = FALSE)
187 |
188 | plot(fc)
189 |
190 | ```
191 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | # caretForecast
5 |
6 |
7 |
8 |
9 | caretForecast aspires to equip users with the means of using machine
10 | learning algorithms for time series data forecasting.
11 |
12 | ## Installation
13 |
14 | The CRAN version with:
15 |
16 | ``` r
17 | install.packages("caretForecast")
18 | ```
19 |
20 | The development version from [GitHub](https://github.com/) with:
21 |
22 | ``` r
23 | # install.packages("devtools")
24 | devtools::install_github("Akai01/caretForecast")
25 | ```
26 |
27 | ## Example
28 |
29 | By using caretForecast, users can train any regression model that is
30 | compatible with the caret package. This allows them to use any machine
31 | learning model they need in order to solve specific problems, as shown
32 | by the examples below.
33 |
34 | ### Load the library
35 |
36 | ``` r
37 | library(caretForecast)
38 | #> Registered S3 method overwritten by 'quantmod':
39 | #> method from
40 | #> as.zoo.data.frame zoo
41 |
42 | data(retail_wide, package = "caretForecast")
43 | ```
44 |
45 | ### Forecasting with glmboost
46 |
47 | ``` r
48 | i <- 8
49 |
50 | dtlist <- caretForecast::split_ts(retail_wide[,i], test_size = 12)
51 |
52 | training_data <- dtlist$train
53 |
54 | testing_data <- dtlist$test
55 |
56 | fit <- ARml(training_data, max_lag = 12, caret_method = "glmboost",
57 | verbose = FALSE)
58 | #> initial_window = NULL. Setting initial_window = 301
59 | #> Loading required package: ggplot2
60 | #> Loading required package: lattice
61 |
62 | forecast(fit, h = length(testing_data), level = c(80,95))-> fc
63 |
64 | accuracy(fc, testing_data)
65 | #> ME RMSE MAE MPE MAPE MASE
66 | #> Training set 1.899361e-14 16.55233 11.98019 -1.132477 6.137096 0.777379
67 | #> Test set 7.472114e+00 21.68302 18.33423 2.780723 5.876433 1.189685
68 | #> ACF1 Theil's U
69 | #> Training set 0.6181425 NA
70 | #> Test set 0.3849258 0.8078558
71 |
72 |
73 | autoplot(fc) +
74 | autolayer(testing_data, series = "testing_data")
75 | ```
76 |
77 |
78 |
79 | ### Forecasting with cubist regression
80 |
81 | ``` r
82 | i <- 9
83 |
84 | dtlist <- caretForecast::split_ts(retail_wide[,i], test_size = 12)
85 |
86 | training_data <- dtlist$train
87 |
88 | testing_data <- dtlist$test
89 |
90 | fit <- ARml(training_data, max_lag = 12, caret_method = "cubist",
91 | verbose = FALSE)
92 | #> initial_window = NULL. Setting initial_window = 301
93 |
94 | forecast(fit, h = length(testing_data), level = c(80,95), PI = TRUE)-> fc
95 |
96 | accuracy(fc, testing_data)
97 | #> ME RMSE MAE MPE MAPE MASE
98 | #> Training set 0.5498926 13.33516 10.36501 0.0394589 2.223005 0.3454108
99 | #> Test set -17.9231242 47.13871 32.03537 -2.6737257 4.271373 1.0675691
100 | #> ACF1 Theil's U
101 | #> Training set 0.3979153 NA
102 | #> Test set 0.4934659 0.4736043
103 |
104 | autoplot(fc) +
105 | autolayer(testing_data, series = "testing_data")
106 | ```
107 |
108 |
109 |
110 | ### Forecasting using Support Vector Machines with Linear Kernel
111 |
112 | ``` r
113 |
114 | i <- 9
115 |
116 | dtlist <- caretForecast::split_ts(retail_wide[,i], test_size = 12)
117 |
118 | training_data <- dtlist$train
119 |
120 | testing_data <- dtlist$test
121 |
122 | fit <- ARml(training_data, max_lag = 12, caret_method = "svmLinear2",
123 | verbose = FALSE, pre_process = c("scale", "center"))
124 | #> initial_window = NULL. Setting initial_window = 301
125 |
126 | forecast(fit, h = length(testing_data), level = c(80,95), PI = TRUE)-> fc
127 |
128 | accuracy(fc, testing_data)
129 | #> ME RMSE MAE MPE MAPE MASE
130 | #> Training set -0.2227708 22.66741 17.16009 -0.2476916 3.712496 0.5718548
131 | #> Test set -1.4732653 28.47932 22.92438 -0.4787467 2.883937 0.7639481
132 | #> ACF1 Theil's U
133 | #> Training set 0.3290937 NA
134 | #> Test set 0.3863955 0.3137822
135 |
136 | autoplot(fc) +
137 | autolayer(testing_data, series = "testing_data")
138 | ```
139 |
140 |
141 |
142 | ``` r
143 |
144 | get_var_imp(fc)
145 | ```
146 |
147 |
148 |
149 | ``` r
150 |
151 | get_var_imp(fc, plot = F)
152 | #> loess r-squared variable importance
153 | #>
154 | #> only 20 most important variables shown (out of 23)
155 | #>
156 | #> Overall
157 | #> lag12 100.0000
158 | #> lag1 83.9153
159 | #> lag11 80.4644
160 | #> lag2 79.9170
161 | #> lag3 79.5019
162 | #> lag4 78.3472
163 | #> lag9 78.1634
164 | #> lag5 78.0262
165 | #> lag7 77.9153
166 | #> lag8 76.7721
167 | #> lag10 76.4275
168 | #> lag6 75.7056
169 | #> S1-12 3.8169
170 | #> S3-12 2.4230
171 | #> C2-12 2.1863
172 | #> S5-12 2.1154
173 | #> C4-12 1.9426
174 | #> C1-12 0.5974
175 | #> C6-12 0.3883
176 | #> S2-12 0.2220
177 | ```
178 |
179 | ### Forecasting using Ridge Regression
180 |
181 | ``` r
182 |
183 | i <- 8
184 |
185 | dtlist <- caretForecast::split_ts(retail_wide[,i], test_size = 12)
186 |
187 | training_data <- dtlist$train
188 |
189 | testing_data <- dtlist$test
190 |
191 | fit <- ARml(training_data, max_lag = 12, caret_method = "ridge",
192 | verbose = FALSE)
193 | #> initial_window = NULL. Setting initial_window = 301
194 |
195 | forecast(fit, h = length(testing_data), level = c(80,95), PI = TRUE)-> fc
196 |
197 | accuracy(fc, testing_data)
198 | #> ME RMSE MAE MPE MAPE MASE
199 | #> Training set 7.11464e-14 12.69082 9.53269 -0.1991292 5.212444 0.6185639
200 | #> Test set 1.52445e+00 14.45469 12.04357 0.6431543 3.880894 0.7814914
201 | #> ACF1 Theil's U
202 | #> Training set 0.2598784 NA
203 | #> Test set 0.3463574 0.5056792
204 |
205 | autoplot(fc) +
206 | autolayer(testing_data, series = "testing_data")
207 | ```
208 |
209 |
210 |
211 | ``` r
212 |
213 | get_var_imp(fc)
214 | ```
215 |
216 |
217 |
218 | ``` r
219 |
220 | get_var_imp(fc, plot = F)
221 | #> loess r-squared variable importance
222 | #>
223 | #> only 20 most important variables shown (out of 23)
224 | #>
225 | #> Overall
226 | #> lag12 100.0000
227 | #> lag1 84.2313
228 | #> lag2 78.9566
229 | #> lag11 78.5354
230 | #> lag3 76.3480
231 | #> lag10 74.4727
232 | #> lag4 74.1330
233 | #> lag7 74.0737
234 | #> lag9 73.9113
235 | #> lag5 73.2040
236 | #> lag8 72.7224
237 | #> lag6 71.5713
238 | #> S1-12 6.3658
239 | #> S3-12 2.7341
240 | #> C2-12 2.7125
241 | #> S5-12 2.4858
242 | #> C4-12 2.2137
243 | #> C6-12 0.6381
244 | #> C1-12 0.5176
245 | #> S2-12 0.4464
246 | ```
247 |
248 | ## Adding external variables
249 |
250 | The xreg argument can be used for adding promotions, holidays, and other
251 | external variables to the model. In the example below, we will add
252 | seasonal dummies to the model. We set the ‘seasonal = FALSE’ to avoid
253 | adding the Fourier series to the model together with seasonal dummies.
254 |
255 | ``` r
256 |
257 | xreg_train <- forecast::seasonaldummy(AirPassengers)
258 |
259 | newxreg <- forecast::seasonaldummy(AirPassengers, h = 21)
260 |
261 | fit <- ARml(AirPassengers, max_lag = 4, caret_method = "cubist",
262 | seasonal = FALSE, xreg = xreg_train, verbose = FALSE)
263 | #> initial_window = NULL. Setting initial_window = 132
264 |
265 | fc <- forecast(fit, h = 12, level = c(80, 95, 99), xreg = newxreg)
266 |
267 | autoplot(fc)
268 | ```
269 |
270 |
271 |
272 | ``` r
273 |
274 | get_var_imp(fc)
275 | ```
276 |
277 |
278 |
279 | # Forecasting Hierarchical or grouped time series
280 |
281 | ``` r
282 | library(hts)
283 |
284 | data("htseg1", package = "hts")
285 |
286 | fc <- forecast(htseg1, h = 4, FUN = caretForecast::ARml,
287 | caret_method = "ridge", verbose = FALSE)
288 |
289 | plot(fc)
290 | ```
291 |
292 |
293 |
--------------------------------------------------------------------------------
/caretForecast.Rproj:
--------------------------------------------------------------------------------
1 | Version: 1.0
2 |
3 | RestoreWorkspace: No
4 | SaveWorkspace: No
5 | AlwaysSaveHistory: Default
6 |
7 | EnableCodeIndexing: Yes
8 | UseSpacesForTab: Yes
9 | NumSpacesForTab: 2
10 | Encoding: UTF-8
11 |
12 | RnwWeave: Sweave
13 | LaTeX: pdfLaTeX
14 |
15 | AutoAppendNewline: Yes
16 | StripTrailingWhitespace: Yes
17 | LineEndingConversion: Posix
18 |
19 | BuildType: Package
20 | PackageUseDevtools: Yes
21 | PackageInstallArgs: --no-multiarch --with-keep.source
22 | PackageRoxygenize: rd,collate,namespace
23 |
--------------------------------------------------------------------------------
/cran-comments.md:
--------------------------------------------------------------------------------
1 | ## R CMD check results
2 |
3 | 0 errors | 0 warnings | 1 note
4 |
5 | * This is a new release.
6 |
--------------------------------------------------------------------------------
/data/retail.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/data/retail.rda
--------------------------------------------------------------------------------
/data/retail_wide.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/data/retail_wide.rda
--------------------------------------------------------------------------------
/man/ARml.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/arml.R
3 | \name{ARml}
4 | \alias{ARml}
5 | \title{Autoregressive forecasting using various Machine Learning models.}
6 | \usage{
7 | ARml(
8 | y,
9 | max_lag = 5,
10 | xreg = NULL,
11 | caret_method = "cubist",
12 | metric = "RMSE",
13 | pre_process = NULL,
14 | cv = TRUE,
15 | cv_horizon = 4,
16 | initial_window = NULL,
17 | fixed_window = FALSE,
18 | verbose = TRUE,
19 | seasonal = TRUE,
20 | K = frequency(y)/2,
21 | tune_grid = NULL,
22 | lambda = NULL,
23 | BoxCox_method = c("guerrero", "loglik"),
24 | BoxCox_lower = -1,
25 | BoxCox_upper = 2,
26 | BoxCox_biasadj = FALSE,
27 | BoxCox_fvar = NULL,
28 | allow_parallel = FALSE,
29 | ...
30 | )
31 | }
32 | \arguments{
33 | \item{y}{A univariate time series object.}
34 |
35 | \item{max_lag}{Maximum value of lag.}
36 |
37 | \item{xreg}{Optional. A numerical vector or matrix of external regressors,
38 | which must have the same number of rows as y.
39 | (It should not be a data frame.).}
40 |
41 | \item{caret_method}{A string specifying which classification or
42 | regression model to use.
43 | Possible values are found using names(getModelInfo()).
44 | A list of functions can also be passed for a custom model function.
45 | See \url{http://topepo.github.io/caret/} for details.}
46 |
47 | \item{metric}{A string that specifies what summary metric will be used to
48 | select the optimal model. See \code{?caret::train}.}
49 |
50 | \item{pre_process}{A string vector that defines a pre-processing of the
51 | predictor data.
52 | Current possibilities are "BoxCox", "YeoJohnson", "expoTrans", "center",
53 | "scale", "range",
54 | "knnImpute", "bagImpute", "medianImpute", "pca", "ica" and "spatialSign".
55 | The default is no pre-processing.
56 | See preProcess and trainControl on the procedures and how to adjust them.
57 | Pre-processing code is only designed to work when x is a simple matrix or
58 | data frame.}
59 |
60 | \item{cv}{Logical, if \code{cv = TRUE} model selection will be done via
61 | cross-validation. If \code{cv = FALSE} user need to provide a specific model
62 | via \code{tune_grid} argument.}
63 |
64 | \item{cv_horizon}{The number of consecutive values in test set sample.}
65 |
66 | \item{initial_window}{The initial number of consecutive values in each
67 | training set sample.}
68 |
69 | \item{fixed_window}{Logical, if FALSE, all training samples start at 1.}
70 |
71 | \item{verbose}{A logical for printing a training log.}
72 |
73 | \item{seasonal}{Boolean. If \code{seasonal = TRUE} the fourier terms will be
74 | used for modeling seasonality.}
75 |
76 | \item{K}{Maximum order(s) of Fourier terms}
77 |
78 | \item{tune_grid}{A data frame with possible tuning values.
79 | The columns are named the same as the tuning parameters.
80 | Use getModelInfo to get a list of tuning parameters for each model or
81 | see \url{http://topepo.github.io/caret/available-models.html}.
82 | (NOTE: If given, this argument must be named.)}
83 |
84 | \item{lambda}{BoxCox transformation parameter. If \code{lambda = NULL}
85 | If \code{lambda = "auto"}, then the transformation parameter lambda is chosen
86 | using \code{\link[forecast]{BoxCox.lambda}}.}
87 |
88 | \item{BoxCox_method}{\code{\link[forecast]{BoxCox.lambda}} argument.
89 | Choose method to be used in calculating lambda.}
90 |
91 | \item{BoxCox_lower}{\code{\link[forecast]{BoxCox.lambda}} argument.
92 | Lower limit for possible lambda values.}
93 |
94 | \item{BoxCox_upper}{\code{\link[forecast]{BoxCox.lambda}} argument.
95 | Upper limit for possible lambda values.}
96 |
97 | \item{BoxCox_biasadj}{\code{\link[forecast]{InvBoxCox}} argument.
98 | Use adjusted back-transformed mean for Box-Cox transformations.
99 | If transformed data is used to produce forecasts and fitted values,
100 | a regular back transformation will result in median forecasts.
101 | If biasadj is TRUE, an adjustment will be made to produce mean
102 | forecasts and fitted values.}
103 |
104 | \item{BoxCox_fvar}{\code{\link[forecast]{InvBoxCox}} argument.
105 | Optional parameter required if biasadj=TRUE.
106 | Can either be the forecast variance, or a list containing the interval level,
107 | and the corresponding upper and lower intervals.}
108 |
109 | \item{allow_parallel}{If a parallel backend is loaded and available,
110 | should the function use it?}
111 |
112 | \item{...}{Ignored.}
113 | }
114 | \value{
115 | A list class of forecast containing the following elemets
116 | \itemize{
117 | \item x : The input time series
118 | \item method : The name of the forecasting method as a character string
119 | \item mean : Point forecasts as a time series
120 | \item lower : Lower limits for prediction intervals
121 | \item upper : Upper limits for prediction intervals
122 | \item level : The confidence values associated with the prediction intervals
123 | \item model : A list containing information about the fitted model
124 | \item newx : A matrix containing regressors
125 | }
126 | }
127 | \description{
128 | Autoregressive forecasting using various Machine Learning models.
129 | }
130 | \examples{
131 |
132 | library(caretForecast)
133 |
134 | train_data <- window(AirPassengers, end = c(1959, 12))
135 |
136 | test <- window(AirPassengers, start = c(1960, 1))
137 |
138 | ARml(train_data, caret_method = "lm", max_lag = 12) -> fit
139 |
140 | forecast(fit, h = length(test)) -> fc
141 |
142 | autoplot(fc) + autolayer(test)
143 |
144 | accuracy(fc, test)
145 |
146 | }
147 | \author{
148 | Resul Akay
149 | }
150 |
--------------------------------------------------------------------------------
/man/conformalRegressor.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/fit_conformal_reg.R
3 | \name{conformalRegressor}
4 | \alias{conformalRegressor}
5 | \title{Fit a conformal regressor.}
6 | \usage{
7 | conformalRegressor(residuals, sigmas = NULL)
8 | }
9 | \arguments{
10 | \item{residuals}{Model residuals.}
11 |
12 | \item{sigmas}{A vector of difficulty estimates}
13 | }
14 | \value{
15 | A conformalRegressor object
16 | }
17 | \description{
18 | Fit a conformal regressor.
19 | }
20 | \references{
21 | Boström, H., 2022. crepes: a Python Package for Generating Conformal
22 | Regressors and Predictive Systems. In Conformal and Probabilistic Prediction
23 | and Applications. PMLR, 179.
24 | \url{https://copa-conference.com/papers/COPA2022_paper_11.pdf}
25 | }
26 | \author{
27 | Resul Akay
28 | }
29 |
--------------------------------------------------------------------------------
/man/figures/README-example-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example-1.png
--------------------------------------------------------------------------------
/man/figures/README-example-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example-2.png
--------------------------------------------------------------------------------
/man/figures/README-example-3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example-3.png
--------------------------------------------------------------------------------
/man/figures/README-example-4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example-4.png
--------------------------------------------------------------------------------
/man/figures/README-example-5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example-5.png
--------------------------------------------------------------------------------
/man/figures/README-example-6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example-6.png
--------------------------------------------------------------------------------
/man/figures/README-example2-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example2-1.png
--------------------------------------------------------------------------------
/man/figures/README-example3-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example3-1.png
--------------------------------------------------------------------------------
/man/figures/README-example4-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example4-1.png
--------------------------------------------------------------------------------
/man/figures/README-example4-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example4-2.png
--------------------------------------------------------------------------------
/man/figures/README-example5-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example5-1.png
--------------------------------------------------------------------------------
/man/figures/README-example5-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example5-2.png
--------------------------------------------------------------------------------
/man/figures/README-example6-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example6-1.png
--------------------------------------------------------------------------------
/man/figures/README-example6-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example6-2.png
--------------------------------------------------------------------------------
/man/figures/README-example7-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Akai01/caretForecast/d3b11594639bbc5174ba40b44421218f8756618c/man/figures/README-example7-1.png
--------------------------------------------------------------------------------
/man/forecast.ARml.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/forecast.R
3 | \name{forecast.ARml}
4 | \alias{forecast.ARml}
5 | \title{Forecasting using ARml model}
6 | \usage{
7 | \method{forecast}{ARml}(object, h = frequency(object$y), xreg = NULL, level = c(80, 95), ...)
8 | }
9 | \arguments{
10 | \item{object}{An object of class "ARml", the result of a call to ARml.}
11 |
12 | \item{h}{forecast horizon}
13 |
14 | \item{xreg}{Optionally, a numerical vector or matrix of future external
15 | regressors}
16 |
17 | \item{level}{Confidence level for prediction intervals.}
18 |
19 | \item{...}{Ignored}
20 | }
21 | \value{
22 | A list class of forecast containing the following elemets
23 | \itemize{
24 | \item x : The input time series
25 | \item method : The name of the forecasting method as a character string
26 | \item mean : Point forecasts as a time series
27 | \item lower : Lower limits for prediction intervals
28 | \item upper : Upper limits for prediction intervals
29 | \item level : The confidence values associated with the prediction intervals
30 | \item model : A list containing information about the fitted model
31 | \item newxreg : A matrix containing regressors
32 | }
33 | }
34 | \description{
35 | Forecasting using ARml model
36 | }
37 | \examples{
38 |
39 | library(caretForecast)
40 |
41 | train_data <- window(AirPassengers, end = c(1959, 12))
42 |
43 | test <- window(AirPassengers, start = c(1960, 1))
44 |
45 | ARml(train_data, caret_method = "lm", max_lag = 12) -> fit
46 |
47 | forecast(fit, h = length(test), level = c(80,95)) -> fc
48 |
49 | autoplot(fc)+ autolayer(test)
50 |
51 | accuracy(fc, test)
52 | }
53 | \author{
54 | Resul Akay
55 | }
56 |
--------------------------------------------------------------------------------
/man/get_var_imp.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/utils.R
3 | \name{get_var_imp}
4 | \alias{get_var_imp}
5 | \title{Variable importance for forecasting model.}
6 | \usage{
7 | get_var_imp(object, plot = TRUE)
8 | }
9 | \arguments{
10 | \item{object}{A list class of ARml or forecast object derived from ARml}
11 |
12 | \item{plot}{Boolean, if TRUE, variable importance will be ploted.}
13 | }
14 | \value{
15 | A list class of "varImp.train". See \code{\link[caret]{varImp}} or a
16 | "trellis" plot.
17 | }
18 | \description{
19 | Variable importance for forecasting model.
20 | }
21 | \examples{
22 |
23 | train <- window(AirPassengers, end = c(1959, 12))
24 |
25 | test <- window(AirPassengers, start = c(1960, 1))
26 |
27 | ARml(train, caret_method = "lm", max_lag = 12, trend_method = "none",
28 | pre_process = "center") -> fit
29 |
30 | forecast(fit, h = length(test), level = c(80,95)) -> fc
31 |
32 | autoplot(fc)+ autolayer(test)
33 |
34 | accuracy(fc, test)
35 |
36 | get_var_imp(fc, plot = TRUE)
37 |
38 |
39 | }
40 | \author{
41 | Resul Akay
42 | }
43 |
--------------------------------------------------------------------------------
/man/predict.conformalRegressor.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/predict_conformal.R
3 | \name{predict.conformalRegressor}
4 | \alias{predict.conformalRegressor}
5 | \title{Predict a conformalRegressor}
6 | \usage{
7 | \method{predict}{conformalRegressor}(
8 | object,
9 | y_hat = NULL,
10 | sigmas = NULL,
11 | confidence = 0.95,
12 | y_min = -Inf,
13 | y_max = Inf,
14 | ...
15 | )
16 | }
17 | \arguments{
18 | \item{object}{A conformalRegressor object}
19 |
20 | \item{y_hat}{Predicted values}
21 |
22 | \item{sigmas}{Difficulty estimates}
23 |
24 | \item{confidence}{Confidence level}
25 |
26 | \item{y_min}{The minimum value to include in prediction intervals}
27 |
28 | \item{y_max}{The maximum value to include in prediction intervals}
29 |
30 | \item{...}{Ignored}
31 | }
32 | \value{
33 | Prediction intervals
34 | }
35 | \description{
36 | Predict a conformalRegressor
37 | }
38 | \author{
39 | Resul Akay
40 | }
41 |
--------------------------------------------------------------------------------
/man/reexports.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/forecast.R, R/utils.R
3 | \docType{import}
4 | \name{reexports}
5 | \alias{reexports}
6 | \alias{forecast}
7 | \alias{autoplot}
8 | \alias{autolayer}
9 | \alias{accuracy}
10 | \alias{\%>\%}
11 | \alias{\%<>\%}
12 | \title{Objects exported from other packages}
13 | \keyword{internal}
14 | \description{
15 | These objects are imported from other packages. Follow the links
16 | below to see their documentation.
17 |
18 | \describe{
19 | \item{forecast}{\code{\link[forecast]{autolayer}}, \code{\link[forecast:reexports]{autoplot}}}
20 |
21 | \item{generics}{\code{\link[generics]{accuracy}}, \code{\link[generics]{forecast}}}
22 |
23 | \item{magrittr}{\code{\link[magrittr:compound]{\%<>\%}}, \code{\link[magrittr:pipe]{\%>\%}}}
24 | }}
25 |
26 |
--------------------------------------------------------------------------------
/man/retail.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/utils.R
3 | \docType{data}
4 | \name{retail}
5 | \alias{retail}
6 | \title{Grouped sales data from an Australian Retailer}
7 | \format{
8 | A data class of "tbl_df", "tbl", "data.frame" with 13986 rows and 3 columns:
9 | \describe{
10 | \item{date}{date}
11 | \item{item}{products}
12 | \item{value}{sales}
13 | }
14 | }
15 | \source{
16 | \url{https://robjhyndman.com/data/ausretail.csv}
17 | }
18 | \usage{
19 | retail
20 | }
21 | \description{
22 | A dataset containing 42 products' sales
23 | }
24 | \keyword{datasets}
25 |
--------------------------------------------------------------------------------
/man/retail_wide.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/utils.R
3 | \docType{data}
4 | \name{retail_wide}
5 | \alias{retail_wide}
6 | \title{Sales data from an Australian Retailer in time series format}
7 | \format{
8 | An object of class mts (inherits from ts, matrix)
9 | with 333 rows and 43 columns.
10 | \describe{
11 | This data set is the wide format of \code{\link{retail}} data.
12 | }
13 | }
14 | \source{
15 | \url{https://robjhyndman.com/data/ausretail.csv}
16 | }
17 | \usage{
18 | retail_wide
19 | }
20 | \description{
21 | A dataset containing 42 products' sales
22 | }
23 | \keyword{datasets}
24 |
--------------------------------------------------------------------------------
/man/split_ts.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/utils.R
3 | \name{split_ts}
4 | \alias{split_ts}
5 | \title{Split a time series into training and testing sets}
6 | \usage{
7 | split_ts(y, test_size = 10)
8 | }
9 | \arguments{
10 | \item{y}{A univariate time series}
11 |
12 | \item{test_size}{The number of observations to keep in the test set}
13 | }
14 | \value{
15 | A list with train and test elements
16 | }
17 | \description{
18 | Split a time series into training and testing sets
19 | }
20 | \examples{
21 |
22 | dlist <- split_ts(retail_wide[,1], test_size = 12)
23 |
24 | }
25 | \author{
26 | Resul Akay
27 | }
28 |
--------------------------------------------------------------------------------
/man/suggested_methods.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/utils.R
3 | \name{suggested_methods}
4 | \alias{suggested_methods}
5 | \title{Suggested methods for ARml}
6 | \usage{
7 | suggested_methods()
8 | }
9 | \value{
10 | A character vector of Suggested methods
11 | }
12 | \description{
13 | Suggested methods for ARml
14 | }
15 | \examples{
16 |
17 | suggested_methods()
18 |
19 | }
20 | \author{
21 | Resul Akay
22 | }
23 |
--------------------------------------------------------------------------------
/tests/testthat.R:
--------------------------------------------------------------------------------
1 | library(testthat)
2 | library(caretForecast)
3 |
4 | test_check("caretForecast")
5 |
--------------------------------------------------------------------------------
/tests/testthat/test-ARml.R:
--------------------------------------------------------------------------------
1 | # A unit test for ARml function
2 | if(require(testthat)){
3 | test_that("tests for some arguments in ARml", {
4 | ARml(AirPassengers, caret_method = "lm", max_lag = 12, K = 5) -> fit
5 |
6 | class_fit <- class(fit)
7 |
8 | expect_that(class_fit, equals("ARml"))
9 |
10 | })
11 | }
12 |
13 | if(require(testthat)){
14 | test_that("tests for some arguments in ARml", {
15 | ARml(AirPassengers, caret_method = "lm", max_lag = 12, lambda = NULL,
16 | K= 5) -> fit
17 |
18 | class_fit <- class(fit)
19 |
20 | expect_that(class_fit, equals("ARml"))
21 |
22 | })
23 | }
24 |
25 | if(require(testthat)){
26 | test_that("tests for some arguments in ARml", {
27 | ARml(AirPassengers, caret_method = "lm", max_lag = 12, lambda = "auto",
28 | BoxCox_method = "loglik", K = 5) -> fit
29 |
30 | class_fit <- class(fit)
31 |
32 | expect_that(class_fit, equals("ARml"))
33 |
34 | })
35 | }
36 |
37 |
38 | if(require(testthat)){
39 | test_that("tests for some arguments in ARml", {
40 | ARml(AirPassengers, caret_method = "lm", max_lag = 10,
41 | xreg = forecast::seasonaldummy(AirPassengers), seasonal = F) -> fit
42 |
43 | class_fit <- class(fit)
44 |
45 | expect_that(class_fit, equals("ARml"))
46 |
47 | })
48 | }
49 |
--------------------------------------------------------------------------------
/tests/testthat/test-conformal_pred.R:
--------------------------------------------------------------------------------
1 | if(require(testthat)){
2 | test_that("tests for some arguments in ARml", {
3 |
4 | fit <- ARml(AirPassengers, caret_method = "lm", max_lag = 10)
5 |
6 | fc <- forecast(fit, h = 1)
7 |
8 | res <- residuals(fit)
9 | conf_reg <- conformalRegressor(res)
10 | conf_pred <- predict(conf_reg, y_hat = fc$mean, confidence = 0.9)
11 | conf_pred <- mean(unlist(conf_pred))
12 |
13 | expect_equal(conf_pred, 446.7539, tolerance = 5)
14 |
15 | })
16 | }
17 |
--------------------------------------------------------------------------------
/tests/testthat/test-forecast.ARml.R:
--------------------------------------------------------------------------------
1 | # A unit test for forecast function
2 | if(require(testthat)){
3 |
4 | test_that("tests for some arguments in forecast 1", {
5 |
6 | forecast(ARml(AirPassengers, caret_method = "lm", max_lag = 12, K=5),
7 | h = 2) -> fc
8 | values <- as.numeric(ceiling(c(fc$mean)))
9 | expect_equal(values, c(459, 429), tolerance = 1)
10 |
11 | })
12 | }
13 |
14 |
15 |
16 | if(require(testthat)){
17 |
18 | test_that("tests for some arguments in forecast 2", {
19 |
20 | ARml(AirPassengers, caret_method = "lm", max_lag = 10,
21 | xreg = forecast::seasonaldummy(AirPassengers), seasonal = F) -> fit
22 | forecast(fit, h = 2, xreg = forecast::seasonaldummy(AirPassengers, h = 2)) -> fc
23 | values <- as.numeric(ceiling(c(fc$mean)))
24 | expect_equal(values, c(446, 445), tolerance = 1)
25 |
26 | })
27 | }
28 |
29 |
30 | if(require(testthat)){
31 |
32 | test_that("tests for some arguments in forecast 3", {
33 |
34 | forecast(ARml(AirPassengers, caret_method = "lm", max_lag = 12,
35 | seasonal = F), h = 2) -> fc
36 | values <- as.numeric(ceiling(c(fc$mean)))
37 | expect_equal(values, c(465, 429), tolerance = 1)
38 |
39 | })
40 | }
41 |
--------------------------------------------------------------------------------
/tests/testthat/test-get_var_imp.R:
--------------------------------------------------------------------------------
1 | # A unit test for get_var_imp function
2 | if(require(testthat)){
3 | test_that("tests for some arguments in get_var_imp", {
4 | library(caretForecast)
5 | fit <- ARml(AirPassengers, caret_method = "lm", max_lag = 12,
6 | trend_method = "none",pre_process = "center")
7 | forecast(fit, h = 12) -> fc
8 | a <- get_var_imp(fc, plot = FALSE)
9 | class_a <- class(a)
10 | expect_that(class_a, equals("varImp.train"))
11 |
12 | })
13 | }
14 |
15 |
16 | get_var_imp# A unit test for get_var_imp function
17 | if(require(testthat)){
18 |
19 | test_that("tests for some arguments in get_var_imp2", {
20 | library(caretForecast)
21 | fit <- ARml(AirPassengers, caret_method = "lm", max_lag = 12,
22 | trend_method = "none",pre_process = "center")
23 | forecast(fit, h = 12) -> fc
24 | a <- get_var_imp(fc, plot = TRUE)
25 | class_a <- class(a)
26 | expect_that(class_a, equals("trellis"))
27 |
28 | })
29 | }
30 |
--------------------------------------------------------------------------------
/tests/testthat/test-split_ts.R:
--------------------------------------------------------------------------------
1 |
2 | # A unit test for split_ts function
3 | if(require(testthat)){
4 |
5 | test_that("tests for some arguments in split_ts", {
6 | result <- split_ts(retail_wide[,1], test_size = 2)
7 |
8 | result <- as.numeric(result$test)
9 |
10 | expect_that(result, equals(c(409.4, 583.6)))
11 |
12 | })
13 | }
14 |
--------------------------------------------------------------------------------
/tests/testthat/test-suggested_method.R:
--------------------------------------------------------------------------------
1 | # A unit test for suggested_methods function
2 | if(require(testthat)){
3 |
4 | test_that("tests for some arguments in suggested_methods", {
5 | result <- suggested_methods()
6 |
7 | expect_that(result, equals(c("spikeslab", "bagEarth", "bagEarthGCV", "blasso",
8 | "cforest", "earth","extraTrees", "gbm_h2o", "glmStepAIC",
9 | "parRF", "qrf", "Rborist", "rf", "rqlasso", "rqnc",
10 | "spikeslab", "xgbDART", "xgbLinear", "ranger", "cubist",
11 | "svmLinear", "enet", "bridge", "glmboost", "ridge",
12 | "lasso", "relaxo", "M5Rules", "M5", "lm", "gaussprLinear",
13 | "glm", "glmnet", "pcr", "ppr", "foba", "gbm", "svmLinear2",
14 | "glm.nb", "gcvEarth", "lars2", "lars", "icr", "ctree2",
15 | "ctree", "bayesglm")))
16 |
17 | })
18 | }
19 |
--------------------------------------------------------------------------------