├── 1. Data Exploration ├── DEA.csv ├── ReadMe.md ├── 专题1:分类问题的数据探索(以Titanic数据集为例).ipynb ├── 专题2:回归问题中的相关系数矩阵与热力图(以Boston数据集为例).ipynb └── 专题3:对iris数据集进行数据探索.ipynb ├── 2. Data Preprocessing ├── ReadMe.md ├── 专题1:数据的标准化、归一化与正则化.ipynb ├── 专题2:One-Hot编码.ipynb ├── 专题3:缺失值处理.ipynb ├── 专题4:共线性问题.ipynb └── 专题5:非正态分布数据的处理.ipynb ├── 3. Feature Engineering ├── 3.1 Feature Selection │ ├── Feature Selection.ipynb │ ├── ReadMe.md │ ├── embedded.py │ ├── filter.py │ └── wrapper.py ├── 3.2 Feature Extraction │ ├── ReadMe.md │ ├── cat_svd.jpg │ ├── pca_evd.py │ ├── pca_svd.py │ ├── 运用TruncatedSVD进行图像处理.ipynb │ └── 验证:sklearn采用SVD实现PCA.ipynb ├── 3.3 Feature Construction │ ├── ReadMe.md │ ├── create_time_feature.py │ ├── high_categorical.py │ ├── 根据时间戳生成时间型索引&透视分析.ipynb │ ├── 生成哑变量.ipynb │ ├── 连续型特征的分箱处理.ipynb │ ├── 长尾数据的处理.ipynb │ └── 高基数类别特征的处理.ipynb └── ReadMe.md ├── 4. Classical Supervised Learning └── ReadMe.md ├── 5. Ensemble Learning ├── Boosting │ ├── GBDT-LR │ │ ├── GBDT系列与LR的融合&性能对比.ipynb │ │ ├── ReadMe.md │ │ ├── gbdt_lr.py │ │ ├── lightgbm_lr.py │ │ └── xgboost_lr.py │ ├── ReadMe.md │ ├── XGB自定义损失&可视化.ipynb │ ├── early_stopping_rounds.ipynb │ ├── gbdt_lr_contrast.jpg │ ├── xgb_custom_lossfunc.py │ ├── xgb_early_stopping.jpg │ ├── xgb_early_stopping.py │ └── xgb_loss.jpg ├── ReadMe.md └── Stacking │ ├── ReadMe.md │ ├── StackingModels_vs_Mlxtend.py │ └── stacking_models.py ├── 6. Cluster Analysis └── ReadMe.md ├── 7. Model Evaluation ├── Pics │ ├── ks curve.jpg │ ├── prc.jpg │ └── roc.jpg ├── ReadMe.md ├── ks_curve.py ├── ks_value.py ├── prc.py ├── roc.py ├── 交叉验证.ipynb ├── 分类与回归模型评估.ipynb └── 绘制KS、ROC、PRC曲线.ipynb ├── 8. Model Persistence ├── ReadMe.md ├── joblib.py └── pickle.py ├── 9. The Foundations of ML └── ReadMe.md └── README.md /1. Data Exploration/DEA.csv: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/1. Data Exploration/DEA.csv -------------------------------------------------------------------------------- /1. Data Exploration/ReadMe.md: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/1. Data Exploration/ReadMe.md -------------------------------------------------------------------------------- /1. Data Exploration/专题1:分类问题的数据探索(以Titanic数据集为例).ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/1. Data Exploration/专题1:分类问题的数据探索(以Titanic数据集为例).ipynb -------------------------------------------------------------------------------- /1. Data Exploration/专题2:回归问题中的相关系数矩阵与热力图(以Boston数据集为例).ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/1. Data Exploration/专题2:回归问题中的相关系数矩阵与热力图(以Boston数据集为例).ipynb -------------------------------------------------------------------------------- /1. Data Exploration/专题3:对iris数据集进行数据探索.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/1. Data Exploration/专题3:对iris数据集进行数据探索.ipynb -------------------------------------------------------------------------------- /2. Data Preprocessing/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /2. Data Preprocessing/专题1:数据的标准化、归一化与正则化.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/2. Data Preprocessing/专题1:数据的标准化、归一化与正则化.ipynb -------------------------------------------------------------------------------- /2. Data Preprocessing/专题2:One-Hot编码.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/2. Data Preprocessing/专题2:One-Hot编码.ipynb -------------------------------------------------------------------------------- /2. Data Preprocessing/专题3:缺失值处理.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/2. Data Preprocessing/专题3:缺失值处理.ipynb -------------------------------------------------------------------------------- /2. Data Preprocessing/专题4:共线性问题.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/2. Data Preprocessing/专题4:共线性问题.ipynb -------------------------------------------------------------------------------- /2. Data Preprocessing/专题5:非正态分布数据的处理.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/2. Data Preprocessing/专题5:非正态分布数据的处理.ipynb -------------------------------------------------------------------------------- /3. Feature Engineering/3.1 Feature Selection/Feature Selection.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.1 Feature Selection/Feature Selection.ipynb -------------------------------------------------------------------------------- /3. Feature Engineering/3.1 Feature Selection/ReadMe.md: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.1 Feature Selection/ReadMe.md -------------------------------------------------------------------------------- /3. Feature Engineering/3.1 Feature Selection/embedded.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.1 Feature Selection/embedded.py -------------------------------------------------------------------------------- /3. Feature Engineering/3.1 Feature Selection/filter.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.1 Feature Selection/filter.py -------------------------------------------------------------------------------- /3. Feature Engineering/3.1 Feature Selection/wrapper.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.1 Feature Selection/wrapper.py -------------------------------------------------------------------------------- /3. Feature Engineering/3.2 Feature Extraction/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /3. Feature Engineering/3.2 Feature Extraction/cat_svd.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.2 Feature Extraction/cat_svd.jpg -------------------------------------------------------------------------------- /3. Feature Engineering/3.2 Feature Extraction/pca_evd.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.2 Feature Extraction/pca_evd.py -------------------------------------------------------------------------------- /3. Feature Engineering/3.2 Feature Extraction/pca_svd.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.2 Feature Extraction/pca_svd.py -------------------------------------------------------------------------------- /3. Feature Engineering/3.2 Feature Extraction/运用TruncatedSVD进行图像处理.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.2 Feature Extraction/运用TruncatedSVD进行图像处理.ipynb -------------------------------------------------------------------------------- /3. Feature Engineering/3.2 Feature Extraction/验证:sklearn采用SVD实现PCA.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.2 Feature Extraction/验证:sklearn采用SVD实现PCA.ipynb -------------------------------------------------------------------------------- /3. Feature Engineering/3.3 Feature Construction/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /3. Feature Engineering/3.3 Feature Construction/create_time_feature.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.3 Feature Construction/create_time_feature.py -------------------------------------------------------------------------------- /3. Feature Engineering/3.3 Feature Construction/high_categorical.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.3 Feature Construction/high_categorical.py -------------------------------------------------------------------------------- /3. Feature Engineering/3.3 Feature Construction/根据时间戳生成时间型索引&透视分析.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.3 Feature Construction/根据时间戳生成时间型索引&透视分析.ipynb -------------------------------------------------------------------------------- /3. Feature Engineering/3.3 Feature Construction/生成哑变量.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.3 Feature Construction/生成哑变量.ipynb -------------------------------------------------------------------------------- /3. Feature Engineering/3.3 Feature Construction/连续型特征的分箱处理.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.3 Feature Construction/连续型特征的分箱处理.ipynb -------------------------------------------------------------------------------- /3. Feature Engineering/3.3 Feature Construction/长尾数据的处理.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.3 Feature Construction/长尾数据的处理.ipynb -------------------------------------------------------------------------------- /3. Feature Engineering/3.3 Feature Construction/高基数类别特征的处理.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/3. Feature Engineering/3.3 Feature Construction/高基数类别特征的处理.ipynb -------------------------------------------------------------------------------- /3. Feature Engineering/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /4. Classical Supervised Learning/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/GBDT-LR/GBDT系列与LR的融合&性能对比.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Boosting/GBDT-LR/GBDT系列与LR的融合&性能对比.ipynb -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/GBDT-LR/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/GBDT-LR/gbdt_lr.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Boosting/GBDT-LR/gbdt_lr.py -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/GBDT-LR/lightgbm_lr.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Boosting/GBDT-LR/lightgbm_lr.py -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/GBDT-LR/xgboost_lr.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Boosting/GBDT-LR/xgboost_lr.py -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/XGB自定义损失&可视化.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Boosting/XGB自定义损失&可视化.ipynb -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/early_stopping_rounds.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Boosting/early_stopping_rounds.ipynb -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/gbdt_lr_contrast.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Boosting/gbdt_lr_contrast.jpg -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/xgb_custom_lossfunc.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Boosting/xgb_custom_lossfunc.py -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/xgb_early_stopping.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Boosting/xgb_early_stopping.jpg -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/xgb_early_stopping.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Boosting/xgb_early_stopping.py -------------------------------------------------------------------------------- /5. Ensemble Learning/Boosting/xgb_loss.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Boosting/xgb_loss.jpg -------------------------------------------------------------------------------- /5. Ensemble Learning/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /5. Ensemble Learning/Stacking/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /5. Ensemble Learning/Stacking/StackingModels_vs_Mlxtend.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Stacking/StackingModels_vs_Mlxtend.py -------------------------------------------------------------------------------- /5. Ensemble Learning/Stacking/stacking_models.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/5. Ensemble Learning/Stacking/stacking_models.py -------------------------------------------------------------------------------- /6. Cluster Analysis/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /7. Model Evaluation/Pics/ks curve.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/7. Model Evaluation/Pics/ks curve.jpg -------------------------------------------------------------------------------- /7. Model Evaluation/Pics/prc.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/7. Model Evaluation/Pics/prc.jpg -------------------------------------------------------------------------------- /7. Model Evaluation/Pics/roc.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/7. Model Evaluation/Pics/roc.jpg -------------------------------------------------------------------------------- /7. Model Evaluation/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /7. Model Evaluation/ks_curve.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/7. Model Evaluation/ks_curve.py -------------------------------------------------------------------------------- /7. Model Evaluation/ks_value.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/7. Model Evaluation/ks_value.py -------------------------------------------------------------------------------- /7. Model Evaluation/prc.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/7. Model Evaluation/prc.py -------------------------------------------------------------------------------- /7. Model Evaluation/roc.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/7. Model Evaluation/roc.py -------------------------------------------------------------------------------- /7. Model Evaluation/交叉验证.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/7. Model Evaluation/交叉验证.ipynb -------------------------------------------------------------------------------- /7. Model Evaluation/分类与回归模型评估.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/7. Model Evaluation/分类与回归模型评估.ipynb -------------------------------------------------------------------------------- /7. Model Evaluation/绘制KS、ROC、PRC曲线.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/7. Model Evaluation/绘制KS、ROC、PRC曲线.ipynb -------------------------------------------------------------------------------- /8. Model Persistence/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /8. Model Persistence/joblib.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/8. Model Persistence/joblib.py -------------------------------------------------------------------------------- /8. Model Persistence/pickle.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/8. Model Persistence/pickle.py -------------------------------------------------------------------------------- /9. The Foundations of ML/ReadMe.md: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Albertsr/Machine-Learning/HEAD/README.md --------------------------------------------------------------------------------