├── 4_visualization
├── stock.txt
└── img
│ ├── cat.jpeg
│ ├── Anatomy.png
│ ├── John.webp
│ ├── animation.gif
│ ├── mat_markers.png
│ ├── mat_css_color.webp
│ ├── seaborn_ax_fig.png
│ ├── connectionstyle.png
│ ├── live_matplotlib.mp4
│ └── matplotlib_objects.png
├── imgs
└── hr.gif
├── 2_numpy
└── img
│ ├── numpy.png
│ ├── travis.jpeg
│ └── Tensor_01.webp
├── 3_pandas
└── img
│ ├── wes.png
│ └── pandas.svg
├── data
├── house_intro_pandas.xlsx
├── house_intro_pandas.csv
└── titanic_test.csv
├── 0_brief_review
├── fig
│ ├── AI_ML_DL.png
│ └── ML_classical.png
└── 0_contents.ipynb
├── 7_fully_connected_nn
├── img
│ ├── fcnns.png
│ ├── graph1.png
│ ├── 1in_1out.png
│ ├── 2in_1out.png
│ └── graph_session.gif
├── 0_intro_to_pytorch.ipynb
└── 1_simpe_NN_with_pytorch.ipynb
├── 5_data_analysis_processing
├── img
│ ├── std.png
│ ├── Daisy.png
│ ├── cab51.png
│ ├── William.png
│ └── outlier.png
├── 1_intro_to_data_preparation.ipynb
└── breast_cancer.csv
├── 1_intro_to_python
├── img
│ ├── guido_van_rossum.jpeg
│ └── programming_languages.png
└── 1_modular_programming.ipynb
├── 6_classical_machine_learning
├── img
│ ├── hyperplane.png
│ ├── bias_variance.png
│ ├── biasvariance.png
│ ├── random-forest-diagram.png
│ └── supervised_unsupervised.jpeg
└── 0_Intro_to_ML.md
├── _config.yml
├── .github
└── ISSUE_TEMPLATE
│ ├── new-method-request.md
│ └── bug_report.md
├── LICENSE
└── README.md
/4_visualization/stock.txt:
--------------------------------------------------------------------------------
1 | 1, 2
2 | 2, 30
3 | 3, 10
4 | 4, 5,
5 | 5, 12
--------------------------------------------------------------------------------
/imgs/hr.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/imgs/hr.gif
--------------------------------------------------------------------------------
/2_numpy/img/numpy.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/2_numpy/img/numpy.png
--------------------------------------------------------------------------------
/3_pandas/img/wes.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/3_pandas/img/wes.png
--------------------------------------------------------------------------------
/2_numpy/img/travis.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/2_numpy/img/travis.jpeg
--------------------------------------------------------------------------------
/2_numpy/img/Tensor_01.webp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/2_numpy/img/Tensor_01.webp
--------------------------------------------------------------------------------
/4_visualization/img/cat.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/4_visualization/img/cat.jpeg
--------------------------------------------------------------------------------
/data/house_intro_pandas.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/data/house_intro_pandas.xlsx
--------------------------------------------------------------------------------
/0_brief_review/fig/AI_ML_DL.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/0_brief_review/fig/AI_ML_DL.png
--------------------------------------------------------------------------------
/4_visualization/img/Anatomy.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/4_visualization/img/Anatomy.png
--------------------------------------------------------------------------------
/4_visualization/img/John.webp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/4_visualization/img/John.webp
--------------------------------------------------------------------------------
/4_visualization/img/animation.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/4_visualization/img/animation.gif
--------------------------------------------------------------------------------
/0_brief_review/fig/ML_classical.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/0_brief_review/fig/ML_classical.png
--------------------------------------------------------------------------------
/4_visualization/img/mat_markers.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/4_visualization/img/mat_markers.png
--------------------------------------------------------------------------------
/7_fully_connected_nn/img/fcnns.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/7_fully_connected_nn/img/fcnns.png
--------------------------------------------------------------------------------
/7_fully_connected_nn/img/graph1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/7_fully_connected_nn/img/graph1.png
--------------------------------------------------------------------------------
/4_visualization/img/mat_css_color.webp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/4_visualization/img/mat_css_color.webp
--------------------------------------------------------------------------------
/4_visualization/img/seaborn_ax_fig.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/4_visualization/img/seaborn_ax_fig.png
--------------------------------------------------------------------------------
/5_data_analysis_processing/img/std.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/5_data_analysis_processing/img/std.png
--------------------------------------------------------------------------------
/7_fully_connected_nn/img/1in_1out.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/7_fully_connected_nn/img/1in_1out.png
--------------------------------------------------------------------------------
/7_fully_connected_nn/img/2in_1out.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/7_fully_connected_nn/img/2in_1out.png
--------------------------------------------------------------------------------
/4_visualization/img/connectionstyle.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/4_visualization/img/connectionstyle.png
--------------------------------------------------------------------------------
/4_visualization/img/live_matplotlib.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/4_visualization/img/live_matplotlib.mp4
--------------------------------------------------------------------------------
/5_data_analysis_processing/img/Daisy.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/5_data_analysis_processing/img/Daisy.png
--------------------------------------------------------------------------------
/5_data_analysis_processing/img/cab51.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/5_data_analysis_processing/img/cab51.png
--------------------------------------------------------------------------------
/1_intro_to_python/img/guido_van_rossum.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/1_intro_to_python/img/guido_van_rossum.jpeg
--------------------------------------------------------------------------------
/4_visualization/img/matplotlib_objects.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/4_visualization/img/matplotlib_objects.png
--------------------------------------------------------------------------------
/5_data_analysis_processing/img/William.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/5_data_analysis_processing/img/William.png
--------------------------------------------------------------------------------
/5_data_analysis_processing/img/outlier.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/5_data_analysis_processing/img/outlier.png
--------------------------------------------------------------------------------
/7_fully_connected_nn/img/graph_session.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/7_fully_connected_nn/img/graph_session.gif
--------------------------------------------------------------------------------
/1_intro_to_python/img/programming_languages.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/1_intro_to_python/img/programming_languages.png
--------------------------------------------------------------------------------
/6_classical_machine_learning/img/hyperplane.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/6_classical_machine_learning/img/hyperplane.png
--------------------------------------------------------------------------------
/6_classical_machine_learning/img/bias_variance.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/6_classical_machine_learning/img/bias_variance.png
--------------------------------------------------------------------------------
/6_classical_machine_learning/img/biasvariance.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/6_classical_machine_learning/img/biasvariance.png
--------------------------------------------------------------------------------
/6_classical_machine_learning/img/random-forest-diagram.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/6_classical_machine_learning/img/random-forest-diagram.png
--------------------------------------------------------------------------------
/6_classical_machine_learning/img/supervised_unsupervised.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AmirMardan/ml_course/HEAD/6_classical_machine_learning/img/supervised_unsupervised.jpeg
--------------------------------------------------------------------------------
/_config.yml:
--------------------------------------------------------------------------------
1 | theme: jekyll-theme-leap-day
2 |
3 | title: Machine Learning Course
4 | description: This website belongs to the course of machine learning with Python which is getting ready for AUT
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/new-method-request.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: New method request
3 | about: Suggest another method to be discussed
4 | title: New
5 | labels: enhancement
6 | assignees: ''
7 |
8 | ---
9 |
10 | Are you interested to learn a method, package, or algorithm that I haven't explained?
11 |
12 | Please let me know precisely what you need.
13 | Can you provide some references?
14 |
15 | What's the use of the method?
16 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/bug_report.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Bug report
3 | about: Create a report to help us improve
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **Describe the bug**
11 | A clear and concise description of what the bug is.
12 |
13 | **To Reproduce**
14 | Steps to reproduce the behavior:
15 | 1. Go to '...'
16 | 2. Click on '....'
17 | 3. Scroll down to '....'
18 | 4. See error
19 |
20 | **Expected behavior**
21 | A clear and concise description of what you expected to happen.
22 |
23 | **Screenshots**
24 | If applicable, add screenshots to help explain your problem.
25 |
26 | **Desktop (please complete the following information):**
27 | - OS: [e.g. iOS]
28 | - Browser [e.g. chrome, safari]
29 | - Version [e.g. 22]
30 |
31 | **Smartphone (please complete the following information):**
32 | - Device: [e.g. iPhone6]
33 | - OS: [e.g. iOS8.1]
34 | - Browser [e.g. stock browser, safari]
35 | - Version [e.g. 22]
36 |
37 | **Additional context**
38 | Add any other context about the problem here.
39 |
--------------------------------------------------------------------------------
/data/house_intro_pandas.csv:
--------------------------------------------------------------------------------
1 | bedroom,price,area,furnish_type,bathroom,city
2 | 2.0,20000.0,1450.0,Furnished,2.0,Ahmedabad
3 | 1.0,7350.0,210.0,Semi-Furnished,1.0,Ahmedabad
4 | 3.0,22000.0,1900.0,Unfurnished,3.0,Ahmedabad
5 | 2.0,13000.0,1285.0,Semi-Furnished,2.0,Ahmedabad
6 | 2.0,18000.0,1600.0,Furnished,2.0,Ahmedabad
7 | 1.0,8500.0,570.0,Unfurnished,1.0,Ahmedabad
8 | 1.0,6000.0,180.0,Semi-Furnished,1.0,Ahmedabad
9 | 2.0,12000.0,1200.0,Semi-Furnished,2.0,Ahmedabad
10 | 2.0,13000.0,1126.0,Semi-Furnished,2.0,Ahmedabad
11 | 4.0,38500.0,3500.0,Furnished,4.0,Ahmedabad
12 | 1.0,6000.0,400.0,Semi-Furnished,1.0,Ahmedabad
13 | 2.0,15000.0,990.0,Unfurnished,2.0,Ahmedabad
14 | 3.0,20000.0,1440.0,Semi-Furnished,3.0,Ahmedabad
15 | 2.0,6500.0,900.0,Unfurnished,1.0,Ahmedabad
16 | 2.0,25000.0,1250.0,Furnished,1.0,Ahmedabad
17 | 1.0,13500.0,1000.0,Semi-Furnished,2.0,Ahmedabad
18 | 1.0,8000.0,160.0,Furnished,1.0,Ahmedabad
19 | 3.0,20000.0,1800.0,Semi-Furnished,3.0,Ahmedabad
20 | 2.0,12500.0,1044.0,Unfurnished,2.0,Ahmedabad
21 | 2.0,12000.0,810.0,Unfurnished,2.0,Ahmedabad
22 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2022 Amir Mardan
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/6_classical_machine_learning/0_Intro_to_ML.md:
--------------------------------------------------------------------------------
1 | # 6. What Is Machine Learning
2 | Machine learning is a subfield of artificial intelligence that build a mathematical model of data to help understand data.
3 | By giving *tunable parameters* to the model which can be adapted to observed data, *learning* occurs.
4 | Once the model has been fit to previously observed data, it can *predict* based on new observed data.
5 |
6 | ## Categories of Machine Learning
7 | Machine learning problems can be categorized into two main classes:
8 | - **Supervised learning** build a relationship between measured features and some labels associated with the data.
9 | This category is subdivided into *classification* with discrete labels ans and *regression* with continuous labels.
10 | - **Unsupervised learning** build the model of data without considering any labels involved in the the data.
11 | This is the concept of "letting the dataset speak for itself".
12 | Unsupervised learning is subdivided to *clustering* and *dimensionality reduction* tasks.
13 | Clustering algorithms put the observed data in different categories while the dimensionality reduction techniques are provided to find more efficient repersentations of the data.
14 |
15 | There is also **semi-supervised learning** which falls between supervised and unsupervised methods.
16 |
17 | 
18 |
19 |
20 |
21 |
22 |
23 |
24 |
--------------------------------------------------------------------------------
/5_data_analysis_processing/1_intro_to_data_preparation.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "This notebook is created by Amir Mardan. For any feedback or suggestions, please contact me via email, (mardan.amir.h@gmail.com).\n",
8 | "\n"
9 | ]
10 | },
11 | {
12 | "cell_type": "markdown",
13 | "metadata": {},
14 | "source": [
15 | "\n",
16 | "# Data preparation\n",
17 | "\n",
18 | "Data preparation focuses on transforming the raw data into a form that can improve the modeling.\n",
19 | "\n",
20 | "> Data pre-processing techniques generally refer to the addition, deletion, or transformation of training set data.\n",
21 | "\n",
22 | "Although it highly depends on your data, the project, the algorithm you want to use, there are common tasks that you might do during the data preparation steps,\n",
23 | "- **Data Cleaning**: find the errors in the data and correct them\n",
24 | "- **Feature Selection**: Find the most important features in the dataset for your task.\n",
25 | "- **Data Transforms**: Tasks such as normalization or scaling for changing the distribution of data.\n",
26 | "- **Dimensionality Reduction**: Creating more effective projections of the data\n",
27 | "\n",
28 | "\n",
29 | "These four steps are discussed in the next four notebooks.\n",
30 | "\n"
31 | ]
32 | }
33 | ],
34 | "metadata": {
35 | "interpreter": {
36 | "hash": "ece4c4f9c4961c7468795d846fc72c6e00987d764e9134aaba41ea0514f48bf6"
37 | },
38 | "kernelspec": {
39 | "display_name": "Python 3 (ipykernel)",
40 | "language": "python",
41 | "name": "python3"
42 | },
43 | "language_info": {
44 | "codemirror_mode": {
45 | "name": "ipython",
46 | "version": 3
47 | },
48 | "file_extension": ".py",
49 | "mimetype": "text/x-python",
50 | "name": "python",
51 | "nbconvert_exporter": "python",
52 | "pygments_lexer": "ipython3",
53 | "version": "3.9.9"
54 | }
55 | },
56 | "nbformat": 4,
57 | "nbformat_minor": 2
58 | }
59 |
--------------------------------------------------------------------------------
/3_pandas/img/pandas.svg:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/0_brief_review/0_contents.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "
\n",
8 | "
\n",
9 | "
\n",
10 | "
\n",
11 | " \n",
12 | "
\n",
13 | "
\n",
14 | " \n",
15 | "
\n",
16 | "
\n",
17 | "
\n",
18 | "
\n",
19 | "\n",
20 | "\n",
21 | "This notebook is created by Amir Mardan. For any feedback or suggestion, please contact me via my email, (mardan.amir.h@gmail.com).\n",
22 | "\n"
23 | ]
24 | },
25 | {
26 | "cell_type": "markdown",
27 | "metadata": {},
28 | "source": [
29 | "#
Machine Learning with Hands-on Coding
"
30 | ]
31 | },
32 | {
33 | "cell_type": "markdown",
34 | "metadata": {},
35 | "source": [
36 | "## Course description"
37 | ]
38 | },
39 | {
40 | "cell_type": "markdown",
41 | "metadata": {},
42 | "source": [
43 | "When in the 1950s computer scientists started asking whether computers could be made to \"think\", artificial intelligence (AI) was born.\n",
44 | "AI tries to automate intellectual tasks normally performed by humans. \n",
45 | "AI is a general and vast field that encompasses machine learning, and deep learning which are usually wrongly used interchangeably. \n",
46 | "Let's understand the difference between these three topics.\n",
47 | "\n",
48 | "
\n",
49 | "\n",
50 | "\n",
51 | "Machine learning arises for answering these questions: could a computer learn on its own how to perform a specific task? Could a computer learn the rules behind a problem by looking at data?\n",
52 | "If a computer can get these rules, those rules can then be applied to new data (answers) to produce the original data.\n",
53 | "
\n",
54 | "\n",
55 | "Deep learning however is a subfield of machine learning that focuses on learning successive layers of increasingly meaningful representation.\n",
56 | "\n",
57 | "By knowing that machine learning tries to automate the analytical model building, we can apply this technique to different parts of our research from rock physics and geophysical studies to reservoir characterization. \n",
58 | "This way, the analysis could be faster and more consistent than using traditional methods.\n",
59 | "\n",
60 | "To take the best out of machine learning, three tools are required:\n",
61 | "- programming skill,\n",
62 | "- mathematics and statics knowledge,\n",
63 | "- field of application.\n",
64 | "\n",
65 | "We start this course by learning Python as our programming language. We walk through machine learning, deep learning, and big data. We discuss the basic principles of machine learning and the most commonly used algorithms. We work on different problems and with the hands-on nature of the course, we code various types of problems together to grasp the different aspects of each algorithm.\n",
66 | "During the course, we discover the publicly available Python packages that can solve any machine learning problem only with a couple of lines of code. "
67 | ]
68 | },
69 | {
70 | "cell_type": "markdown",
71 | "metadata": {},
72 | "source": [
73 | "## Course objective"
74 | ]
75 | },
76 | {
77 | "cell_type": "markdown",
78 | "metadata": {},
79 | "source": [
80 | "1. Learning Python\n",
81 | "2. Learning git, GitHub, Google colab\n",
82 | "3. Understanding different machine learning algorithms\n",
83 | "4. Evaluation and analysis of learning applications"
84 | ]
85 | },
86 | {
87 | "cell_type": "markdown",
88 | "metadata": {},
89 | "source": [
90 | "## Course outline"
91 | ]
92 | },
93 | {
94 | "cell_type": "markdown",
95 | "metadata": {},
96 | "source": [
97 | "1. Introduction\n",
98 | "2. Data manipulation with Numpy\n",
99 | "3. Data manipulation with Pandas\n",
100 | "4. Data visualization with Matplotlib\n",
101 | "5. Data analysis and preparation\n",
102 | "6. Introduction to machine learning\n",
103 | "7. Classical machine learning with scikit-learn\n",
104 | "8. Introduction to artificial neural networks with TensorFlow\n",
105 | "9. Deep computer vision with TensorFlow\n"
106 | ]
107 | },
108 | {
109 | "cell_type": "markdown",
110 | "metadata": {},
111 | "source": [
112 | "Please note that no prerequisites are required."
113 | ]
114 | },
115 | {
116 | "cell_type": "markdown",
117 | "metadata": {},
118 | "source": [
119 | "## References\n"
120 | ]
121 | },
122 | {
123 | "cell_type": "markdown",
124 | "metadata": {},
125 | "source": [
126 | "VanderPlas, J. (2016). Python data science handbook: Essential tools for working with data. \" O'Reilly Media, Inc.\".\n",
127 | "\n",
128 | "Chollet, F. (2021). Deep learning with Python. Simon and Schuster.\n",
129 | "\n",
130 | "TensorFlow \n",
131 | "\n",
132 | " Python \n",
133 | "\n",
134 | " scikit-learn\n",
135 | "\n",
136 | " Numpy \n",
137 | "\n",
138 | " Pandas \n",
139 | "\n",
140 | " Matplotlib \n",
141 | "\n",
142 | " seaborn \n",
143 | "\n",
144 | " GitHub "
145 | ]
146 | }
147 | ],
148 | "metadata": {
149 | "kernelspec": {
150 | "display_name": "Python 3 (ipykernel)",
151 | "language": "python",
152 | "name": "python3"
153 | },
154 | "language_info": {
155 | "codemirror_mode": {
156 | "name": "ipython",
157 | "version": 3
158 | },
159 | "file_extension": ".py",
160 | "mimetype": "text/x-python",
161 | "name": "python",
162 | "nbconvert_exporter": "python",
163 | "pygments_lexer": "ipython3",
164 | "version": "3.9.9"
165 | }
166 | },
167 | "nbformat": 4,
168 | "nbformat_minor": 2
169 | }
170 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ## Welcom to Python and machine learning course
2 |
3 | This repository is created by [Amir Mardan](https://amirmardan.github.io/) to maintain and preview the contents for a Python and machine learning course prepared for Amirkabir University of Technology, Tehran, Iran. Please contact me via my email (mardan.amir.h@gmail.com) for your lovely feedback and suggestions.
4 |
5 | ---
6 | **NOTE**
7 |
8 | I will push new contents weekly
9 |
10 | ---
11 | ## [1. Introduction to Python](https://github.com/AmirMardan/ml_course/blob/main/1_intro_to_python/0_intro_to_python.ipynb)
12 | #### 1.1 General programming
13 | - An introduction
14 | - Required tools
15 | - Variables and data types
16 | - Numbers in Python
17 | - Strings in Python
18 | - Booleans in Python
19 | - List in Python
20 | - Dictionary in Python
21 | - Operators
22 | - Comparison operators
23 | - Logical operators
24 | - Membership operators
25 | - Bitwise operators
26 | - Control flow
27 | - `if` statements
28 | - `match` statements
29 | - `for` statements
30 | - `while` statements
31 |
32 | #### [1.2 Modular programming](https://github.com/AmirMardan/ml_course/blob/main/1_intro_to_python/1_modular_programming.ipynb)
33 | - Functions
34 | - `Lambda` functions
35 | - Built-in functions
36 | - `map` function
37 | - `filter` function
38 | - `enumerate` function
39 | - `zip` function
40 | - Classes / objects
41 |
42 | ## [2. Introduction to NumPy](https://github.com/AmirMardan/ml_course/blob/main/2_numpy/0_intro_to_numpy.ipynb)
43 | - Creating a NumPy array
44 | - Creating arrays from lists
45 | - Special arrays
46 | - Attributes of arrays
47 | - Data Selection
48 | - Array indexing
49 | - Array slicing
50 | - Array view vs copy
51 | - Conditional selection
52 | - Array manipulation
53 | - Shape of an array
54 | - Joining arrays
55 | - Splitting of arrays
56 | - Computation on NumPy arrays
57 | - Aggregations
58 | - Summation
59 | - Minimum and maximum
60 | - Variance and standard deviation
61 | - Mean and median
62 | - Find index
63 |
64 | ## 3. Data Manipulation with Pandas
65 | #### [3.1 Introduction to pandas](https://github.com/AmirMardan/ml_course/blob/main/3_pandas/0_intro_to_pandas.ipynb)
66 | - Introducing Pandas objects
67 | - The pandas `Series` object
68 | - The pandas `DataFrame` object
69 | - Data indexing and selection
70 | - Data selection in Series
71 | - Data selection in DataFrame
72 | - Handling missing data
73 | - Detecting the missing values
74 | - Dealing with missing values
75 | - IO in pandas
76 |
77 | #### [3.2 Data manipulation in using pandas](https://github.com/AmirMardan/ml_course/blob/main/3_pandas/1_data_manipulation_using_pandas.ipynb)
78 | - Basic operations in pandas
79 | - Combining datasets
80 | - Concat
81 | - Merge
82 | - Join
83 | - Aggregation
84 | - `Groupby`
85 | - Vectorized string
86 |
87 | ## 4 Visualization
88 |
89 | #### [4.1 Matplotlib](https://github.com/AmirMardan/ml_course/blob/main/4_visualization/0_matplotlib.ipynb)
90 | - Basic matplotlib
91 | - Simple matplotlib
92 | - Subplots
93 | - Object-oriented method
94 | - Different types of plot
95 | - Scatter plot
96 | - Bar plot
97 | - Histogram
98 | - Pie chart
99 | - Box Plot
100 | - Violin plot
101 | - Images with matplotlib
102 | - Animation using matplotlib
103 | - Live graph with matplotlib
104 |
105 | #### [4.2 Seaborn](https://github.com/AmirMardan/ml_course/blob/main/4_visualization/1_seaborn.ipynb)
106 | - Relational plots
107 | - Distribution plots
108 | - `displot`
109 | - `jointplot`
110 | - `pairplot`
111 | - Categorical plots
112 | - Categorical scatter plots
113 | - Categorical distribution plots
114 | - Categorical estimate plots
115 | - Regression plots
116 | - FacetGrid
117 | - Customization
118 | - Style and theme
119 | - Colors
120 |
121 | ## 5 Data Analysis and Processing
122 |
123 | #### [5.1 Exploratory data analysis (EDA)](https://github.com/AmirMardan/ml_course/blob/main/5_data_analysis_processing/0_introduction_to_EDA.ipynb)
124 | - Initial general assessment
125 | - Basic analysis
126 | - Missing data
127 | - Outliers
128 | - Correlation
129 |
130 | #### [5.2 Data preparation](https://github.com/AmirMardan/ml_course/blob/main/5_data_analysis_processing/1_intro_to_data_preparation.ipynb)
131 |
132 | #### [5.3 Data Cleaning](https://github.com/AmirMardan/ml_course/blob/main/5_data_analysis_processing/2_data_cleaning.ipynb)
133 | - Initial general assessment
134 | - Rows with duplicated data
135 | - Columns with a single value
136 | - Outliers
137 | - Standard deviation method
138 | - Interquartile range method
139 | - Missing data
140 | - Remove rows with missing values
141 | - Filling missing values
142 |
143 | #### [5.4 Data Transforms](https://github.com/AmirMardan/ml_course/blob/main/5_data_analysis_processing/3_data_transform.ipynb)
144 | - Scaling numerical data
145 | - Data normalization
146 | - Data standardization
147 | - Robust scaling
148 | - Encode categorical data
149 | - Ordinal Encoding
150 | - One Hot Encoding
151 | - Dummy Encoding
152 | - How to make distribution more Gaussian
153 | - Box-Cox transform
154 | - Yeo-Johnson transform
155 | - Quantile transform
156 |
157 | ## 6 Classical Machine Learning
158 |
159 | #### [6.1 Introduction to Machine Learning](https://github.com/AmirMardan/ml_course/blob/main/6_classical_machine_learning/0_Intro_to_ML.md)
160 |
161 | #### [6.2 Introduction to Scikit-Learn](https://github.com/AmirMardan/ml_course/blob/main/6_classical_machine_learning/1_intro_to_sklearn.ipynb)
162 | - Data presentation
163 | - Models in Scikit-learn
164 | - Simple linear regression example
165 | - Simple classification example
166 | - Simple dimensionality reduction example
167 | - Simple clustering example
168 | - Hyperparameters and model validation
169 | - Cross validation
170 | - Finding the best model
171 | - Grid Search
172 |
173 | #### [6.3 Regression 1](https://github.com/AmirMardan/ml_course/blob/main/6_classical_machine_learning/2_regression_1.ipynb)
174 | - Ordinary Linear Regression
175 | - Linear Regression With Regularization
176 | - Ridge Regularization
177 | - Lasso Regularization
178 | - Combined Regularization
179 | - A Linear Regression Project
180 | - Exploratory Data Analysis
181 | - Data Cleaning
182 | - Data Processing Pipeline
183 | - Training and Evaluation
184 | - Training Curve
185 |
186 | #### [6.4 Classification 1](https://github.com/AmirMardan/ml_course/blob/main/6_classical_machine_learning/3_classification_1.ipynb)
187 | - Logistic Regression
188 | - Support Vector Machine
189 | - Random Forest Classifier
190 |
191 | #### [6.5 Clustering 1](https://github.com/AmirMardan/ml_course/blob/main/6_classical_machine_learning/4_clustering_1.ipynb)
192 | - k-Means Clustering
193 | - Gaussian Mixture Models
194 | - Evaluation Clustering Models
195 |
196 | ## 7. Fully Connected Neural Networks (FCNNs)
197 |
198 | #### [7.1 Introduction to TensorFlow](https://github.com/AmirMardan/ml_course/blob/main/7_fully_connected_nn/0_intro_to_tensorflow.ipynb)
199 | - Graph and Session
200 | - Build and Perform a Graph
201 | - Gradient in TensorFlow
202 | - Tensor types in TensorFlow
203 | - Constant
204 | - Variable
205 | - Tensor Manipulation
206 | - Creating A Tensors
207 | - Creating Special Tensors
208 | - Shape Manipulation
209 | - Slicing
210 | - Operators
211 | - Basic Arithmetic Operators
212 | - Comparison Operators
213 | - Logical And Bitwise Operators
214 |
215 | #### [7.2 Introduction To Fully Connected Neural Networks](https://github.com/AmirMardan/ml_course/blob/main/7_fully_connected_nn/1_intro_to_NN.ipynb)
216 | - Neural Network From Scratch
217 | - Neural Network With TensorFlow
218 |
219 |
--------------------------------------------------------------------------------
/1_intro_to_python/1_modular_programming.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "
\n",
8 | "
\n",
9 | "
\n",
10 | "
\n",
11 | " \n",
12 | "
\n",
13 | "
\n",
14 | " \n",
15 | "
\n",
16 | "
\n",
17 | "
\n",
18 | "
\n",
19 | "\n",
20 | "\n",
21 | "This notebook is created by Amir Mardan. For any feedback or suggestion, please contact me via my email, (mardan.amir.h@gmail.com).\n",
22 | "\n"
23 | ]
24 | },
25 | {
26 | "cell_type": "markdown",
27 | "metadata": {},
28 | "source": [
29 | "#
🐍 Python 🐍
"
30 | ]
31 | },
32 | {
33 | "cell_type": "markdown",
34 | "metadata": {},
35 | "source": [
36 | "\n",
37 | "# Modular programming in Python\n",
38 | "\n",
39 | "This notebook will cover the following topics:\n",
40 | "\n",
41 | "- Introduction \n",
42 | "- 1. Functions \n",
43 | "- 2. Lambda functions \n",
44 | "- 3. Built-in functions \n",
45 | " - map function \n",
46 | " - filter function \n",
47 | " - enumerate function \n",
48 | " - zip function \n",
49 | "- 4. Classes \n",
50 | "\n"
51 | ]
52 | },
53 | {
54 | "cell_type": "markdown",
55 | "metadata": {},
56 | "source": [
57 | "\n",
58 | "## Introduction "
59 | ]
60 | },
61 | {
62 | "cell_type": "markdown",
63 | "metadata": {},
64 | "source": [
65 | "***Modular programming*** in Python is a very important tool for modern developers. To create robust systems that last, you need to know how to organize your programs so that they can grow over time. The techniques of modular programming and the specific use of Python modules and packages give us tools that we need to succeed as expertise in the fast-changing programming landscape."
66 | ]
67 | },
68 | {
69 | "cell_type": "markdown",
70 | "metadata": {},
71 | "source": [
72 | "\n",
73 | "## 1. Functions "
74 | ]
75 | },
76 | {
77 | "cell_type": "markdown",
78 | "metadata": {},
79 | "source": [
80 | "A function is a block of code that only runs when it is called. Functions are used to reduce the repetition in code.\n",
81 | "\n",
82 | "\n",
83 | "```Python\n",
84 | "def function_name(inputs):\n",
85 | " \"\"\"\n",
86 | " a summary\n",
87 | "\n",
88 | " Parameters\n",
89 | " ----------\n",
90 | " inputs : type\n",
91 | " description\n",
92 | "\n",
93 | " Returns\n",
94 | " -------\n",
95 | " type\n",
96 | " description\n",
97 | " \"\"\"\n",
98 | " block of code\n",
99 | " \n",
100 | " return result\n",
101 | "```"
102 | ]
103 | },
104 | {
105 | "cell_type": "code",
106 | "execution_count": 1,
107 | "metadata": {},
108 | "outputs": [],
109 | "source": [
110 | "# Example 1\n",
111 | "\n",
112 | "def add (a , b):\n",
113 | " \"\"\"\n",
114 | " add is used to calculate the summation of two variables\n",
115 | "\n",
116 | "\n",
117 | " Parameters\n",
118 | " ----------\n",
119 | " a : Numeric\n",
120 | " a numeric variable\n",
121 | " b : Numeric\n",
122 | " a numeric variable\n",
123 | "\n",
124 | " Returns\n",
125 | " -------\n",
126 | " c : Numeric\n",
127 | " a + b\n",
128 | " \"\"\"\n",
129 | " c = a + b\n",
130 | " \n",
131 | " return c"
132 | ]
133 | },
134 | {
135 | "cell_type": "markdown",
136 | "metadata": {},
137 | "source": [
138 | "add(2,3)"
139 | ]
140 | },
141 | {
142 | "cell_type": "code",
143 | "execution_count": 2,
144 | "metadata": {},
145 | "outputs": [
146 | {
147 | "data": {
148 | "text/plain": [
149 | "5"
150 | ]
151 | },
152 | "execution_count": 2,
153 | "metadata": {},
154 | "output_type": "execute_result"
155 | }
156 | ],
157 | "source": [
158 | "# Calling a function\n",
159 | " \n",
160 | "add(2, 3)"
161 | ]
162 | },
163 | {
164 | "cell_type": "code",
165 | "execution_count": 3,
166 | "metadata": {},
167 | "outputs": [],
168 | "source": [
169 | "# Example 2\n",
170 | "\n",
171 | "def subtract (a , b):\n",
172 | " \"\"\"\n",
173 | " subtract is used to calculate the subtraction of two variables\n",
174 | "\n",
175 | "\n",
176 | " Parameters\n",
177 | " ----------\n",
178 | " a : Numeric\n",
179 | " a numeric variable\n",
180 | " b : Numeric\n",
181 | " a numeric variable\n",
182 | "\n",
183 | " Returns\n",
184 | " -------\n",
185 | " c : Numeric\n",
186 | " a - b\n",
187 | " \"\"\"\n",
188 | " c = a - b\n",
189 | " \n",
190 | " return c"
191 | ]
192 | },
193 | {
194 | "cell_type": "code",
195 | "execution_count": 4,
196 | "metadata": {},
197 | "outputs": [
198 | {
199 | "data": {
200 | "text/plain": [
201 | "-1"
202 | ]
203 | },
204 | "execution_count": 4,
205 | "metadata": {},
206 | "output_type": "execute_result"
207 | }
208 | ],
209 | "source": [
210 | "subtract(2, 3)"
211 | ]
212 | },
213 | {
214 | "cell_type": "code",
215 | "execution_count": 5,
216 | "metadata": {},
217 | "outputs": [
218 | {
219 | "name": "stdout",
220 | "output_type": "stream",
221 | "text": [
222 | "\n",
223 | " add is used to calculate the summation of two variables\n",
224 | "\n",
225 | "\n",
226 | " Parameters\n",
227 | " ----------\n",
228 | " a : Numeric\n",
229 | " a numeric variable\n",
230 | " b : Numeric\n",
231 | " a numeric variable\n",
232 | "\n",
233 | " Returns\n",
234 | " -------\n",
235 | " c : Numeric\n",
236 | " a + b\n",
237 | " \n"
238 | ]
239 | }
240 | ],
241 | "source": [
242 | "# How to get the documentation of a function\n",
243 | "\n",
244 | "print(add.__doc__)"
245 | ]
246 | },
247 | {
248 | "cell_type": "markdown",
249 | "metadata": {},
250 | "source": [
251 | "\n",
252 | "## 2. Lambda functions "
253 | ]
254 | },
255 | {
256 | "cell_type": "markdown",
257 | "metadata": {},
258 | "source": [
259 | "We can make a function in one line using `lambda` as\n",
260 | "\n",
261 | "```Python\n",
262 | "function_name = lambda input1, input2: statement\n",
263 | "```"
264 | ]
265 | },
266 | {
267 | "cell_type": "code",
268 | "execution_count": 6,
269 | "metadata": {},
270 | "outputs": [],
271 | "source": [
272 | "add_lambda = lambda a, b: a + b"
273 | ]
274 | },
275 | {
276 | "cell_type": "code",
277 | "execution_count": 7,
278 | "metadata": {},
279 | "outputs": [
280 | {
281 | "data": {
282 | "text/plain": [
283 | "5"
284 | ]
285 | },
286 | "execution_count": 7,
287 | "metadata": {},
288 | "output_type": "execute_result"
289 | }
290 | ],
291 | "source": [
292 | "add_lambda(2, 3)"
293 | ]
294 | },
295 | {
296 | "cell_type": "markdown",
297 | "metadata": {},
298 | "source": [
299 | "\n",
300 | "## 3. Built in functions "
301 | ]
302 | },
303 | {
304 | "cell_type": "markdown",
305 | "metadata": {},
306 | "source": [
307 | "\n",
308 | "\n",
309 | "Python has a set of built-in functions.\n",
310 | "You can find a list of them here.\n",
311 | "\n"
312 | ]
313 | },
314 | {
315 | "cell_type": "code",
316 | "execution_count": 8,
317 | "metadata": {},
318 | "outputs": [
319 | {
320 | "data": {
321 | "text/plain": [
322 | "3"
323 | ]
324 | },
325 | "execution_count": 8,
326 | "metadata": {},
327 | "output_type": "execute_result"
328 | }
329 | ],
330 | "source": [
331 | "# Function for absolute value\n",
332 | "\n",
333 | "abs(-3)"
334 | ]
335 | },
336 | {
337 | "cell_type": "code",
338 | "execution_count": 9,
339 | "metadata": {},
340 | "outputs": [
341 | {
342 | "name": "stdout",
343 | "output_type": "stream",
344 | "text": [
345 | "\n"
346 | ]
347 | }
348 | ],
349 | "source": [
350 | "a = '2'\n",
351 | "\n",
352 | "print(type(a), type(float(a)))"
353 | ]
354 | },
355 | {
356 | "cell_type": "markdown",
357 | "metadata": {},
358 | "source": [
359 | "Let's learn some more useful and complicated built-in functions."
360 | ]
361 | },
362 | {
363 | "cell_type": "markdown",
364 | "metadata": {},
365 | "source": [
366 | "\n",
367 | "### 3.1 `map` function "
368 | ]
369 | },
370 | {
371 | "cell_type": "markdown",
372 | "metadata": {},
373 | "source": [
374 | "The `map()` function applies a specific function for each item in an iterable structure.\n",
375 | "\n",
376 | "```Python\n",
377 | "map(function_name, iterable)\n",
378 | "```"
379 | ]
380 | },
381 | {
382 | "cell_type": "code",
383 | "execution_count": 10,
384 | "metadata": {},
385 | "outputs": [
386 | {
387 | "data": {
388 | "text/plain": [
389 | "3"
390 | ]
391 | },
392 | "execution_count": 10,
393 | "metadata": {},
394 | "output_type": "execute_result"
395 | }
396 | ],
397 | "source": [
398 | "add_lambda = lambda a, b: a + b\n",
399 | "\n",
400 | "add_lambda(1, 2)"
401 | ]
402 | },
403 | {
404 | "cell_type": "code",
405 | "execution_count": 11,
406 | "metadata": {},
407 | "outputs": [
408 | {
409 | "data": {
410 | "text/plain": [
411 | "[1, 3, 3, 2]"
412 | ]
413 | },
414 | "execution_count": 11,
415 | "metadata": {},
416 | "output_type": "execute_result"
417 | }
418 | ],
419 | "source": [
420 | "# By entering 2 lists, addition becomes concatenation.\n",
421 | "\n",
422 | "add_lambda([1, 3], [3, 2])"
423 | ]
424 | },
425 | {
426 | "cell_type": "code",
427 | "execution_count": 12,
428 | "metadata": {},
429 | "outputs": [],
430 | "source": [
431 | "# To add up each two items, we need to use the map()\n",
432 | "\n",
433 | "x = map(add_lambda, [1, 3], [3, 2])"
434 | ]
435 | },
436 | {
437 | "cell_type": "markdown",
438 | "metadata": {},
439 | "source": [
440 | "The output of `map()` has a type of map! 🤯"
441 | ]
442 | },
443 | {
444 | "cell_type": "code",
445 | "execution_count": 13,
446 | "metadata": {},
447 | "outputs": [
448 | {
449 | "data": {
450 | "text/plain": [
451 | "map"
452 | ]
453 | },
454 | "execution_count": 13,
455 | "metadata": {},
456 | "output_type": "execute_result"
457 | }
458 | ],
459 | "source": [
460 | "# Type is another built-in function\n",
461 | "\n",
462 | "type(x)"
463 | ]
464 | },
465 | {
466 | "cell_type": "markdown",
467 | "metadata": {},
468 | "source": [
469 | "So, we use another built-in function like `list()` to get our data in list type."
470 | ]
471 | },
472 | {
473 | "cell_type": "code",
474 | "execution_count": 14,
475 | "metadata": {},
476 | "outputs": [
477 | {
478 | "data": {
479 | "text/plain": [
480 | "[4, 5]"
481 | ]
482 | },
483 | "execution_count": 14,
484 | "metadata": {},
485 | "output_type": "execute_result"
486 | }
487 | ],
488 | "source": [
489 | "list(x)"
490 | ]
491 | },
492 | {
493 | "cell_type": "markdown",
494 | "metadata": {},
495 | "source": [
496 | "\n",
497 | "### 3.2 `filter` function "
498 | ]
499 | },
500 | {
501 | "cell_type": "markdown",
502 | "metadata": {},
503 | "source": [
504 | "The `filter()` function returns an iterator where the items are filtered through a function to test if the item is accepted or not."
505 | ]
506 | },
507 | {
508 | "cell_type": "code",
509 | "execution_count": 15,
510 | "metadata": {},
511 | "outputs": [],
512 | "source": [
513 | "def day_check(day):\n",
514 | " workday_list = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri']\n",
515 | " \n",
516 | " return day in workday_list\n",
517 | "\n",
518 | "\n",
519 | " "
520 | ]
521 | },
522 | {
523 | "cell_type": "code",
524 | "execution_count": 16,
525 | "metadata": {},
526 | "outputs": [
527 | {
528 | "data": {
529 | "text/plain": [
530 | "filter"
531 | ]
532 | },
533 | "execution_count": 16,
534 | "metadata": {},
535 | "output_type": "execute_result"
536 | }
537 | ],
538 | "source": [
539 | "my_list = ['Python', 'May', 1, 'Mon', 'Fri', 'Sun', 'Sunday']\n",
540 | "\n",
541 | "x = filter(day_check, my_list)\n",
542 | "\n",
543 | "type(x)"
544 | ]
545 | },
546 | {
547 | "cell_type": "markdown",
548 | "metadata": {},
549 | "source": [
550 | "As is shown, the output of `filter()` has a type of filter. We use another build-in function like `tuple()` to get the data."
551 | ]
552 | },
553 | {
554 | "cell_type": "code",
555 | "execution_count": 17,
556 | "metadata": {},
557 | "outputs": [
558 | {
559 | "data": {
560 | "text/plain": [
561 | "('Mon', 'Fri')"
562 | ]
563 | },
564 | "execution_count": 17,
565 | "metadata": {},
566 | "output_type": "execute_result"
567 | }
568 | ],
569 | "source": [
570 | "tuple(x)"
571 | ]
572 | },
573 | {
574 | "cell_type": "markdown",
575 | "metadata": {},
576 | "source": [
577 | "\n",
578 | "### 3.3 `enumerate` function"
579 | ]
580 | },
581 | {
582 | "cell_type": "markdown",
583 | "metadata": {},
584 | "source": [
585 | "The `enumerate()` function takes a collection and returns it as an enumerate object."
586 | ]
587 | },
588 | {
589 | "cell_type": "code",
590 | "execution_count": 18,
591 | "metadata": {},
592 | "outputs": [
593 | {
594 | "data": {
595 | "text/plain": [
596 | ""
597 | ]
598 | },
599 | "execution_count": 18,
600 | "metadata": {},
601 | "output_type": "execute_result"
602 | }
603 | ],
604 | "source": [
605 | "x = ['France', 'Japan', 'USA']\n",
606 | "\n",
607 | "y = enumerate(x)\n",
608 | "y"
609 | ]
610 | },
611 | {
612 | "cell_type": "code",
613 | "execution_count": 19,
614 | "metadata": {},
615 | "outputs": [
616 | {
617 | "data": {
618 | "text/plain": [
619 | "[(0, 'France'), (1, 'Japan'), (2, 'USA')]"
620 | ]
621 | },
622 | "execution_count": 19,
623 | "metadata": {},
624 | "output_type": "execute_result"
625 | }
626 | ],
627 | "source": [
628 | "list(y)"
629 | ]
630 | },
631 | {
632 | "cell_type": "code",
633 | "execution_count": 20,
634 | "metadata": {},
635 | "outputs": [
636 | {
637 | "name": "stdout",
638 | "output_type": "stream",
639 | "text": [
640 | "France\n",
641 | "Japan\n",
642 | "USA\n"
643 | ]
644 | }
645 | ],
646 | "source": [
647 | "for i, country in enumerate(x):\n",
648 | " print(country)"
649 | ]
650 | },
651 | {
652 | "cell_type": "code",
653 | "execution_count": 21,
654 | "metadata": {},
655 | "outputs": [],
656 | "source": [
657 | "def even_items(iterable):\n",
658 | " return [v for i, v in enumerate(iterable, start=1) if not i % 2]"
659 | ]
660 | },
661 | {
662 | "cell_type": "code",
663 | "execution_count": 22,
664 | "metadata": {},
665 | "outputs": [
666 | {
667 | "name": "stdout",
668 | "output_type": "stream",
669 | "text": [
670 | "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n"
671 | ]
672 | }
673 | ],
674 | "source": [
675 | "seq = list(range(1, 11))\n",
676 | "\n",
677 | "print(seq)"
678 | ]
679 | },
680 | {
681 | "cell_type": "code",
682 | "execution_count": 23,
683 | "metadata": {},
684 | "outputs": [
685 | {
686 | "data": {
687 | "text/plain": [
688 | "[2, 4, 6, 8, 10]"
689 | ]
690 | },
691 | "execution_count": 23,
692 | "metadata": {},
693 | "output_type": "execute_result"
694 | }
695 | ],
696 | "source": [
697 | "even_items(seq)"
698 | ]
699 | },
700 | {
701 | "cell_type": "markdown",
702 | "metadata": {},
703 | "source": [
704 | " Reference "
705 | ]
706 | },
707 | {
708 | "cell_type": "markdown",
709 | "metadata": {},
710 | "source": [
711 | "\n",
712 | "### 3.4 `zip` function"
713 | ]
714 | },
715 | {
716 | "cell_type": "markdown",
717 | "metadata": {},
718 | "source": [
719 | "Python’s `zip()` function creates an iterator of tuples that will aggregate elements from two or more iterables."
720 | ]
721 | },
722 | {
723 | "cell_type": "code",
724 | "execution_count": 24,
725 | "metadata": {},
726 | "outputs": [
727 | {
728 | "data": {
729 | "text/plain": [
730 | ""
731 | ]
732 | },
733 | "execution_count": 24,
734 | "metadata": {},
735 | "output_type": "execute_result"
736 | }
737 | ],
738 | "source": [
739 | "a = [1, 2, 5, 1.3]\n",
740 | "b = ['Nike', ' Adidas', 'Soccer', 'Volleyball']\n",
741 | "\n",
742 | "c = zip(a, b)\n",
743 | "c"
744 | ]
745 | },
746 | {
747 | "cell_type": "code",
748 | "execution_count": 25,
749 | "metadata": {},
750 | "outputs": [
751 | {
752 | "data": {
753 | "text/plain": [
754 | "[(1, 'Nike'), (2, ' Adidas'), (5, 'Soccer'), (1.3, 'Volleyball')]"
755 | ]
756 | },
757 | "execution_count": 25,
758 | "metadata": {},
759 | "output_type": "execute_result"
760 | }
761 | ],
762 | "source": [
763 | "list(c)"
764 | ]
765 | },
766 | {
767 | "cell_type": "markdown",
768 | "metadata": {},
769 | "source": [
770 | " Reference \n"
771 | ]
772 | },
773 | {
774 | "cell_type": "markdown",
775 | "metadata": {},
776 | "source": [
777 | "\n",
778 | "## 4. Classes\n"
779 | ]
780 | },
781 | {
782 | "cell_type": "markdown",
783 | "metadata": {},
784 | "source": [
785 | "Python is an ***object-oriented programming language*** and almost everything is an object in Python with its own attributes and methods"
786 | ]
787 | },
788 | {
789 | "cell_type": "markdown",
790 | "metadata": {},
791 | "source": [
792 | "TO create a class we use the keyword `class`"
793 | ]
794 | },
795 | {
796 | "cell_type": "code",
797 | "execution_count": 26,
798 | "metadata": {},
799 | "outputs": [],
800 | "source": [
801 | "class Calculator:\n",
802 | " \n",
803 | " intro = 'Hi, this is my calculator! '\n",
804 | " \n",
805 | " def add(self, a, b):\n",
806 | " return a + b\n",
807 | " \n",
808 | " def multiply(self, a, b):\n",
809 | " return a * b"
810 | ]
811 | },
812 | {
813 | "cell_type": "code",
814 | "execution_count": 27,
815 | "metadata": {},
816 | "outputs": [
817 | {
818 | "data": {
819 | "text/plain": [
820 | "3"
821 | ]
822 | },
823 | "execution_count": 27,
824 | "metadata": {},
825 | "output_type": "execute_result"
826 | }
827 | ],
828 | "source": [
829 | "MyClass = Calculator()\n",
830 | "\n",
831 | "# Methods\n",
832 | "MyClass.add(1, 2)"
833 | ]
834 | },
835 | {
836 | "cell_type": "code",
837 | "execution_count": 28,
838 | "metadata": {},
839 | "outputs": [
840 | {
841 | "name": "stdout",
842 | "output_type": "stream",
843 | "text": [
844 | "Hi, this is my calculator! \n"
845 | ]
846 | }
847 | ],
848 | "source": [
849 | "# Attribute \n",
850 | "\n",
851 | "print (MyClass.intro)"
852 | ]
853 | },
854 | {
855 | "cell_type": "markdown",
856 | "metadata": {},
857 | "source": [
858 | " Reference \n"
859 | ]
860 | },
861 | {
862 | "cell_type": "markdown",
863 | "metadata": {},
864 | "source": [
865 | "### [TOP ☝️](#top)"
866 | ]
867 | }
868 | ],
869 | "metadata": {
870 | "interpreter": {
871 | "hash": "ece4c4f9c4961c7468795d846fc72c6e00987d764e9134aaba41ea0514f48bf6"
872 | },
873 | "kernelspec": {
874 | "display_name": "Python 3 (ipykernel)",
875 | "language": "python",
876 | "name": "python3"
877 | },
878 | "language_info": {
879 | "codemirror_mode": {
880 | "name": "ipython",
881 | "version": 3
882 | },
883 | "file_extension": ".py",
884 | "mimetype": "text/x-python",
885 | "name": "python",
886 | "nbconvert_exporter": "python",
887 | "pygments_lexer": "ipython3",
888 | "version": "3.7.9"
889 | }
890 | },
891 | "nbformat": 4,
892 | "nbformat_minor": 2
893 | }
894 |
--------------------------------------------------------------------------------
/5_data_analysis_processing/breast_cancer.csv:
--------------------------------------------------------------------------------
1 | '40-49','premeno','15-19','0-2','yes','3','right','left_up','no','recurrence-events'
2 | '50-59','ge40','15-19','0-2','no','1','right','central','no','no-recurrence-events'
3 | '50-59','ge40','35-39','0-2','no','2','left','left_low','no','recurrence-events'
4 | '40-49','premeno','35-39','0-2','yes','3','right','left_low','yes','no-recurrence-events'
5 | '40-49','premeno','30-34','3-5','yes','2','left','right_up','no','recurrence-events'
6 | '50-59','premeno','25-29','3-5','no','2','right','left_up','yes','no-recurrence-events'
7 | '50-59','ge40','40-44','0-2','no','3','left','left_up','no','no-recurrence-events'
8 | '40-49','premeno','10-14','0-2','no','2','left','left_up','no','no-recurrence-events'
9 | '40-49','premeno','0-4','0-2','no','2','right','right_low','no','no-recurrence-events'
10 | '40-49','ge40','40-44','15-17','yes','2','right','left_up','yes','no-recurrence-events'
11 | '50-59','premeno','25-29','0-2','no','2','left','left_low','no','no-recurrence-events'
12 | '60-69','ge40','15-19','0-2','no','2','right','left_up','no','no-recurrence-events'
13 | '50-59','ge40','30-34','0-2','no','1','right','central','no','no-recurrence-events'
14 | '50-59','ge40','25-29','0-2','no','2','right','left_up','no','no-recurrence-events'
15 | '40-49','premeno','25-29','0-2','no','2','left','left_low','yes','recurrence-events'
16 | '30-39','premeno','20-24','0-2','no','3','left','central','no','no-recurrence-events'
17 | '50-59','premeno','10-14','3-5','no','1','right','left_up','no','no-recurrence-events'
18 | '60-69','ge40','15-19','0-2','no','2','right','left_up','no','no-recurrence-events'
19 | '50-59','premeno','40-44','0-2','no','2','left','left_up','no','no-recurrence-events'
20 | '50-59','ge40','20-24','0-2','no','3','left','left_up','no','no-recurrence-events'
21 | '50-59','lt40','20-24','0-2',nan,'1','left','left_low','no','recurrence-events'
22 | '60-69','ge40','40-44','3-5','no','2','right','left_up','yes','no-recurrence-events'
23 | '50-59','ge40','15-19','0-2','no','2','right','left_low','no','no-recurrence-events'
24 | '40-49','premeno','10-14','0-2','no','1','right','left_up','no','no-recurrence-events'
25 | '30-39','premeno','15-19','6-8','yes','3','left','left_low','yes','recurrence-events'
26 | '50-59','ge40','20-24','3-5','yes','2','right','left_up','no','no-recurrence-events'
27 | '50-59','ge40','10-14','0-2','no','2','right','left_low','no','no-recurrence-events'
28 | '40-49','premeno','10-14','0-2','no','1','right','left_up','no','no-recurrence-events'
29 | '60-69','ge40','30-34','3-5','yes','3','left','left_low','no','no-recurrence-events'
30 | '40-49','premeno','15-19','15-17','yes','3','left','left_low','no','recurrence-events'
31 | '60-69','ge40','30-34','0-2','no','3','right','central','no','recurrence-events'
32 | '60-69','ge40','25-29','3-5',nan,'1','right','left_low','yes','no-recurrence-events'
33 | '50-59','ge40','25-29','0-2','no','3','left','right_up','no','no-recurrence-events'
34 | '50-59','ge40','20-24','0-2','no','3','right','left_up','no','no-recurrence-events'
35 | '40-49','premeno','30-34','0-2','no','1','left','left_low','yes','recurrence-events'
36 | '30-39','premeno','15-19','0-2','no','1','left','left_low','no','no-recurrence-events'
37 | '40-49','premeno','10-14','0-2','no','2','right','left_up','no','no-recurrence-events'
38 | '60-69','ge40','45-49','6-8','yes','3','left','central','no','no-recurrence-events'
39 | '40-49','ge40','20-24','0-2','no','3','left','left_low','no','no-recurrence-events'
40 | '40-49','premeno','10-14','0-2','no','1','right','right_low','no','no-recurrence-events'
41 | '30-39','premeno','35-39','0-2','no','3','left','left_low','no','recurrence-events'
42 | '40-49','premeno','35-39','9-11','yes','2','right','right_up','yes','no-recurrence-events'
43 | '60-69','ge40','25-29','0-2','no','2','right','left_low','no','no-recurrence-events'
44 | '50-59','ge40','20-24','3-5','yes','3','right','right_up','no','recurrence-events'
45 | '30-39','premeno','15-19','0-2','no','1','left','left_low','no','no-recurrence-events'
46 | '50-59','premeno','30-34','0-2','no','3','left','right_up','no','recurrence-events'
47 | '60-69','ge40','10-14','0-2','no','2','right','left_up','yes','no-recurrence-events'
48 | '40-49','premeno','35-39','0-2','yes','3','right','left_up','yes','no-recurrence-events'
49 | '50-59','premeno','50-54','0-2','yes','2','right','left_up','yes','no-recurrence-events'
50 | '50-59','ge40','40-44','0-2','no','3','right','left_up','no','no-recurrence-events'
51 | '70-79','ge40','15-19','9-11',nan,'1','left','left_low','yes','recurrence-events'
52 | '50-59','lt40','30-34','0-2','no','3','right','left_up','no','no-recurrence-events'
53 | '40-49','premeno','0-4','0-2','no','3','left','central','no','no-recurrence-events'
54 | '70-79','ge40','40-44','0-2','no','1','right','right_up','no','no-recurrence-events'
55 | '40-49','premeno','25-29','0-2',nan,'2','left','right_low','yes','no-recurrence-events'
56 | '50-59','ge40','25-29','15-17','yes','3','right','left_up','no','no-recurrence-events'
57 | '50-59','premeno','20-24','0-2','no','1','left','left_low','no','no-recurrence-events'
58 | '50-59','ge40','35-39','15-17','no','3','left','left_low','no','no-recurrence-events'
59 | '50-59','ge40','50-54','0-2','no','1','right','right_up','no','no-recurrence-events'
60 | '30-39','premeno','0-4','0-2','no','2','right','central','no','recurrence-events'
61 | '50-59','ge40','40-44','6-8','yes','3','left','left_low','yes','recurrence-events'
62 | '40-49','premeno','30-34','0-2','no','2','right','right_up','yes','no-recurrence-events'
63 | '40-49','ge40','20-24','0-2','no','3','left','left_up','no','no-recurrence-events'
64 | '40-49','premeno','30-34','15-17','yes','3','left','left_low','no','recurrence-events'
65 | '40-49','ge40','20-24','0-2','no','2','right','left_up','no','recurrence-events'
66 | '50-59','ge40','15-19','0-2','no','1','right','central','no','no-recurrence-events'
67 | '30-39','premeno','25-29','0-2','no','2','right','left_low','no','no-recurrence-events'
68 | '60-69','ge40','15-19','0-2','no','2','left','left_low','no','no-recurrence-events'
69 | '50-59','premeno','50-54','9-11','yes','2','right','left_up','no','recurrence-events'
70 | '30-39','premeno','10-14','0-2','no','1','right','left_low','no','no-recurrence-events'
71 | '50-59','premeno','25-29','3-5','yes','3','left','left_low','yes','recurrence-events'
72 | '60-69','ge40','25-29','3-5',nan,'1','right','left_up','yes','no-recurrence-events'
73 | '60-69','ge40','10-14','0-2','no','1','right','left_low','no','no-recurrence-events'
74 | '50-59','ge40','30-34','6-8','yes','3','left','right_low','no','recurrence-events'
75 | '30-39','premeno','25-29','6-8','yes','3','left','right_low','yes','recurrence-events'
76 | '50-59','ge40','10-14','0-2','no','1','left','left_low','no','no-recurrence-events'
77 | '50-59','premeno','15-19','0-2','no','1','left','left_low','no','no-recurrence-events'
78 | '40-49','premeno','25-29','0-2','no','2','right','central','no','no-recurrence-events'
79 | '40-49','premeno','25-29','0-2','no','3','left','right_up','no','recurrence-events'
80 | '60-69','ge40','30-34','6-8','yes','2','right','right_up','no','no-recurrence-events'
81 | '50-59','lt40','15-19','0-2','no','2','left','left_low','no','no-recurrence-events'
82 | '40-49','premeno','25-29','0-2','no','2','right','left_low','no','no-recurrence-events'
83 | '40-49','premeno','30-34','0-2','no','1','right','left_up','no','no-recurrence-events'
84 | '60-69','ge40','15-19','0-2','no','2','left','left_up','yes','no-recurrence-events'
85 | '30-39','premeno','0-4','0-2','no','2','right','central','no','no-recurrence-events'
86 | '50-59','ge40','35-39','0-2','no','3','left','left_up','no','no-recurrence-events'
87 | '40-49','premeno','40-44','0-2','no','1','right','left_up','no','no-recurrence-events'
88 | '30-39','premeno','25-29','6-8','yes','2','right','left_up','yes','no-recurrence-events'
89 | '50-59','ge40','20-24','0-2','no','1','right','left_low','no','no-recurrence-events'
90 | '50-59','ge40','30-34','0-2','no','1','left','left_up','no','no-recurrence-events'
91 | '60-69','ge40','20-24','0-2','no','1','right','left_up','no','recurrence-events'
92 | '30-39','premeno','30-34','3-5','no','3','right','left_up','yes','recurrence-events'
93 | '50-59','lt40','20-24','0-2',nan,'1','left','left_up','no','recurrence-events'
94 | '50-59','premeno','10-14','0-2','no','2','right','left_up','no','no-recurrence-events'
95 | '50-59','ge40','20-24','0-2','no','2','right','left_up','no','no-recurrence-events'
96 | '40-49','premeno','45-49','0-2','no','2','left','left_low','yes','no-recurrence-events'
97 | '30-39','premeno','40-44','0-2','no','1','left','left_up','no','recurrence-events'
98 | '50-59','premeno','10-14','0-2','no','1','left','left_low','no','no-recurrence-events'
99 | '60-69','ge40','30-34','0-2','no','3','right','left_up','yes','recurrence-events'
100 | '40-49','premeno','35-39','0-2','no','1','right','left_up','no','recurrence-events'
101 | '40-49','premeno','20-24','3-5','yes','2','left','left_low','yes','recurrence-events'
102 | '50-59','premeno','15-19','0-2','no','2','left','left_low','no','recurrence-events'
103 | '50-59','ge40','30-34','0-2','no','3','right','left_low','no','no-recurrence-events'
104 | '60-69','ge40','20-24','0-2','no','2','left','left_up','no','no-recurrence-events'
105 | '40-49','premeno','20-24','0-2','no','1','left','right_low','no','no-recurrence-events'
106 | '60-69','ge40','30-34','3-5','yes','2','left','central','yes','recurrence-events'
107 | '60-69','ge40','20-24','3-5','no','2','left','left_low','yes','recurrence-events'
108 | '50-59','premeno','25-29','0-2','no','2','left','right_up','no','recurrence-events'
109 | '50-59','ge40','30-34','0-2','no','1','right','right_up','no','no-recurrence-events'
110 | '40-49','premeno','20-24','0-2','no','2','left','right_low','no','no-recurrence-events'
111 | '60-69','ge40','15-19','0-2','no','1','right','left_up','no','no-recurrence-events'
112 | '60-69','ge40','30-34','0-2','no','2','left','left_low','yes','no-recurrence-events'
113 | '30-39','premeno','30-34','0-2','no','2','left','left_up','no','no-recurrence-events'
114 | '30-39','premeno','40-44','3-5','no','3','right','right_up','yes','no-recurrence-events'
115 | '60-69','ge40','5-9','0-2','no','1','left','central','no','no-recurrence-events'
116 | '60-69','ge40','10-14','0-2','no','1','left','left_up','no','no-recurrence-events'
117 | '40-49','premeno','30-34','6-8','yes','3','right','left_up','no','recurrence-events'
118 | '60-69','ge40','10-14','0-2','no','1','left','left_up','no','no-recurrence-events'
119 | '40-49','premeno','35-39','9-11','yes','2','right','left_up','yes','no-recurrence-events'
120 | '40-49','premeno','20-24','0-2','no','1','right','left_low','no','no-recurrence-events'
121 | '40-49','premeno','30-34','0-2','yes','3','right','right_up','no','recurrence-events'
122 | '50-59','premeno','25-29','0-2','yes','2','left','left_up','no','no-recurrence-events'
123 | '40-49','premeno','15-19','0-2','no','2','left','left_low','no','no-recurrence-events'
124 | '30-39','premeno','35-39','9-11','yes','3','left','left_low','no','recurrence-events'
125 | '30-39','premeno','10-14','0-2','no','2','left','right_low','no','no-recurrence-events'
126 | '50-59','ge40','30-34','0-2','no','1','right','left_low','no','no-recurrence-events'
127 | '60-69','ge40','30-34','0-2','no','2','left','left_up','no','no-recurrence-events'
128 | '60-69','ge40','25-29','0-2','no','2','left','left_low','no','no-recurrence-events'
129 | '40-49','premeno','15-19','0-2','no','2','left','left_up','no','recurrence-events'
130 | '60-69','ge40','15-19','0-2','no','2','right','left_low','no','no-recurrence-events'
131 | '40-49','premeno','30-34','0-2','no','2','left','right_low','no','no-recurrence-events'
132 | '20-29','premeno','35-39','0-2','no','2','right','right_up','no','no-recurrence-events'
133 | '40-49','premeno','30-34','0-2','no','3','right','right_up','no','recurrence-events'
134 | '40-49','premeno','25-29','0-2','no','2','right','left_low','no','recurrence-events'
135 | '30-39','premeno','30-34','0-2','no','3','left','left_low','no','no-recurrence-events'
136 | '30-39','premeno','15-19','0-2','no','1','right','left_low','no','recurrence-events'
137 | '50-59','ge40','0-4','0-2','no','1','right','central','no','no-recurrence-events'
138 | '50-59','ge40','0-4','0-2','no','1','left','left_low','no','no-recurrence-events'
139 | '60-69','ge40','50-54','0-2','no','3','right','left_up','no','recurrence-events'
140 | '50-59','premeno','30-34','0-2','no','1','left','central','no','no-recurrence-events'
141 | '60-69','ge40','20-24','24-26','yes','3','left','left_low','yes','recurrence-events'
142 | '40-49','premeno','25-29','0-2','no','2','left','left_up','no','no-recurrence-events'
143 | '40-49','premeno','30-34','3-5','no','2','right','left_up','no','recurrence-events'
144 | '50-59','premeno','20-24','3-5','yes','2','left','left_low','no','no-recurrence-events'
145 | '50-59','ge40','15-19','0-2','yes','2','left','central','yes','no-recurrence-events'
146 | '50-59','premeno','10-14','0-2','no','3','left','left_low','no','no-recurrence-events'
147 | '30-39','premeno','30-34','9-11','no','2','right','left_up','yes','recurrence-events'
148 | '60-69','ge40','10-14','0-2','no','1','left','left_low','no','no-recurrence-events'
149 | '40-49','premeno','40-44','0-2','no','2','right','left_low','no','no-recurrence-events'
150 | '50-59','ge40','30-34','9-11',nan,'3','left','left_up','yes','no-recurrence-events'
151 | '40-49','premeno','50-54','0-2','no','2','right','left_low','yes','recurrence-events'
152 | '50-59','ge40','15-19','0-2','no','2','right','right_up','no','no-recurrence-events'
153 | '50-59','ge40','40-44','3-5','yes','2','left','left_low','no','no-recurrence-events'
154 | '30-39','premeno','25-29','3-5','yes','3','left','left_low','yes','recurrence-events'
155 | '60-69','ge40','10-14','0-2','no','2','left','left_low','no','no-recurrence-events'
156 | '60-69','lt40','10-14','0-2','no','1','left','right_up','no','no-recurrence-events'
157 | '30-39','premeno','30-34','0-2','no','2','left','left_up','no','recurrence-events'
158 | '30-39','premeno','20-24','3-5','yes','2','left','left_low','no','recurrence-events'
159 | '50-59','ge40','10-14','0-2','no','1','right','left_up','no','no-recurrence-events'
160 | '60-69','ge40','25-29','0-2','no','3','right','left_up','no','no-recurrence-events'
161 | '50-59','ge40','25-29','3-5','yes','3','right','left_up','no','no-recurrence-events'
162 | '40-49','premeno','30-34','6-8','no','2','left','left_up','no','no-recurrence-events'
163 | '60-69','ge40','50-54','0-2','no','2','left','left_low','no','no-recurrence-events'
164 | '50-59','premeno','30-34','0-2','no','3','left','left_low','no','no-recurrence-events'
165 | '40-49','ge40','20-24','3-5','no','3','right','left_low','yes','recurrence-events'
166 | '50-59','ge40','30-34','6-8','yes','2','left','right_low','yes','recurrence-events'
167 | '60-69','ge40','25-29','3-5','no','2','right','right_up','no','recurrence-events'
168 | '40-49','premeno','20-24','0-2','no','2','left','central','no','no-recurrence-events'
169 | '40-49','premeno','20-24','0-2','no','2','left','left_up','no','no-recurrence-events'
170 | '40-49','premeno','50-54','0-2','no','2','left','left_low','no','no-recurrence-events'
171 | '50-59','ge40','20-24','0-2','no','2','right','central','no','recurrence-events'
172 | '50-59','ge40','30-34','3-5','no','3','right','left_up','no','recurrence-events'
173 | '40-49','ge40','25-29','0-2','no','2','left','left_low','no','no-recurrence-events'
174 | '50-59','premeno','25-29','0-2','no','1','right','left_up','no','recurrence-events'
175 | '40-49','premeno','40-44','3-5','yes','3','right','left_up','yes','no-recurrence-events'
176 | '40-49','premeno','20-24','0-2','no','2','right','left_up','no','no-recurrence-events'
177 | '40-49','premeno','20-24','3-5','no','2','right','left_up','no','no-recurrence-events'
178 | '40-49','premeno','25-29','9-11','yes','3','right','left_up','no','recurrence-events'
179 | '40-49','premeno','25-29','0-2','no','2','right','left_low','no','recurrence-events'
180 | '40-49','premeno','20-24','0-2','no','1','right','right_up','no','no-recurrence-events'
181 | '30-39','premeno','40-44','0-2','no','2','right','right_up','no','no-recurrence-events'
182 | '60-69','ge40','10-14','6-8','yes','3','left','left_up','yes','recurrence-events'
183 | '40-49','premeno','35-39','0-2','no','1','left','left_low','no','no-recurrence-events'
184 | '50-59','ge40','30-34','3-5','no','3','left','left_low','no','recurrence-events'
185 | '40-49','premeno','5-9','0-2','no','1','left','left_low','yes','no-recurrence-events'
186 | '60-69','ge40','15-19','0-2','no','1','left','right_low','no','no-recurrence-events'
187 | '40-49','premeno','30-34','0-2','no','3','right','right_up','no','no-recurrence-events'
188 | '40-49','premeno','25-29','0-2','no','3','left','left_up','no','recurrence-events'
189 | '50-59','ge40','5-9','0-2','no','2','right','right_up','no','no-recurrence-events'
190 | '50-59','premeno','25-29','0-2','no','2','right','right_low','no','no-recurrence-events'
191 | '50-59','premeno','25-29','0-2','no','2','left','right_up','no','recurrence-events'
192 | '40-49','premeno','10-14','0-2','no','2','left','left_low','yes','no-recurrence-events'
193 | '60-69','ge40','35-39','6-8','yes','3','left','left_low','no','recurrence-events'
194 | '60-69','ge40','50-54','0-2','no','2','right','left_up','yes','no-recurrence-events'
195 | '40-49','premeno','25-29','0-2','no','2','right','left_up','no','no-recurrence-events'
196 | '30-39','premeno','20-24','3-5','no','2','right','central','no','no-recurrence-events'
197 | '30-39','premeno','30-34','0-2','no','1','right','left_up','no','recurrence-events'
198 | '60-69','lt40','30-34','0-2','no','1','left','left_low','no','no-recurrence-events'
199 | '40-49','premeno','15-19','12-14','no','3','right','right_low','yes','no-recurrence-events'
200 | '60-69','ge40','20-24','0-2','no','3','right','left_low','no','recurrence-events'
201 | '30-39','premeno','5-9','0-2','no','2','left','right_low','no','no-recurrence-events'
202 | '40-49','premeno','30-34','0-2','no','3','left','left_up','no','no-recurrence-events'
203 | '60-69','ge40','30-34','0-2','no','3','left','left_low','no','no-recurrence-events'
204 | '40-49','premeno','25-29','0-2','no','1','right','right_low','no','no-recurrence-events'
205 | '40-49','premeno','25-29','0-2','no','1','left','right_low','no','no-recurrence-events'
206 | '60-69','ge40','40-44','3-5','yes','3','right','left_low','no','recurrence-events'
207 | '50-59','ge40','25-29','0-2','no','2','left','left_low','no','no-recurrence-events'
208 | '50-59','premeno','30-34','0-2','no','3','right','left_up','yes','recurrence-events'
209 | '40-49','ge40','30-34','3-5','no','3','left','left_low','no','recurrence-events'
210 | '40-49','premeno','25-29','0-2','no','1','right','left_low','yes','no-recurrence-events'
211 | '40-49','ge40','25-29','12-14','yes','3','left','right_low','yes','recurrence-events'
212 | '40-49','premeno','40-44','0-2','no','1','left','left_low','no','recurrence-events'
213 | '40-49','premeno','20-24','0-2','no','2','left','left_low','no','no-recurrence-events'
214 | '50-59','ge40','25-29','0-2','no','1','left','right_low','no','no-recurrence-events'
215 | '40-49','premeno','20-24','0-2','no','2','right','left_up','no','no-recurrence-events'
216 | '70-79','ge40','40-44','0-2','no','1','right','left_up','no','no-recurrence-events'
217 | '60-69','ge40','25-29','0-2','no','3','left','left_up','no','recurrence-events'
218 | '50-59','premeno','25-29','0-2','no','2','left','left_low','no','no-recurrence-events'
219 | '60-69','ge40','45-49','0-2','no','1','right','right_up','yes','recurrence-events'
220 | '50-59','ge40','20-24','0-2','yes','2','right','left_up','no','no-recurrence-events'
221 | '50-59','ge40','25-29','0-2','no','1','left','left_low','no','no-recurrence-events'
222 | '50-59','ge40','20-24','0-2','no','3','left','left_up','no','no-recurrence-events'
223 | '40-49','premeno','20-24','3-5','no','2','right','left_low','no','no-recurrence-events'
224 | '50-59','ge40','35-39','0-2','no','2','left','left_up','no','no-recurrence-events'
225 | '30-39','premeno','20-24','0-2','no','3','left','left_up','yes','recurrence-events'
226 | '60-69','ge40','30-34','0-2','no','1','right','left_up','no','no-recurrence-events'
227 | '60-69','ge40','25-29','0-2','no','3','right','left_low','no','no-recurrence-events'
228 | '40-49','ge40','30-34','0-2','no','2','left','left_up','yes','no-recurrence-events'
229 | '30-39','premeno','25-29','0-2','no','2','left','left_low','no','no-recurrence-events'
230 | '40-49','premeno','20-24','0-2','no','2','left','left_low','no','recurrence-events'
231 | '30-39','premeno','20-24','0-2','no','2','left','right_low','no','no-recurrence-events'
232 | '40-49','premeno','10-14','0-2','no','2','right','left_low','no','no-recurrence-events'
233 | '50-59','premeno','15-19','0-2','no','2','right','right_low','no','no-recurrence-events'
234 | '50-59','premeno','25-29','0-2','no','1','right','left_up','no','no-recurrence-events'
235 | '60-69','ge40','20-24','0-2','no','2','right','left_up','no','no-recurrence-events'
236 | '60-69','ge40','40-44','0-2','no','2','right','left_low','no','recurrence-events'
237 | '30-39','lt40','15-19','0-2','no','3','right','left_up','no','no-recurrence-events'
238 | '40-49','premeno','30-34','12-14','yes','3','left','left_up','yes','recurrence-events'
239 | '60-69','ge40','30-34','0-2','yes','2','right','right_up','yes','recurrence-events'
240 | '50-59','ge40','40-44','6-8','yes','3','left','left_low','yes','recurrence-events'
241 | '50-59','ge40','30-34','0-2','no','3','left',nan,'no','recurrence-events'
242 | '70-79','ge40','10-14','0-2','no','2','left','central','no','no-recurrence-events'
243 | '30-39','premeno','40-44','0-2','no','2','left','left_low','yes','no-recurrence-events'
244 | '40-49','premeno','30-34','0-2','no','2','right','right_low','no','no-recurrence-events'
245 | '40-49','premeno','30-34','0-2','no','1','left','left_low','no','no-recurrence-events'
246 | '60-69','ge40','15-19','0-2','no','2','left','left_low','no','no-recurrence-events'
247 | '40-49','premeno','10-14','0-2','no','2','left','left_low','no','no-recurrence-events'
248 | '60-69','ge40','20-24','0-2','no','1','left','left_low','no','no-recurrence-events'
249 | '50-59','ge40','10-14','0-2','no','1','left','left_up','no','no-recurrence-events'
250 | '50-59','premeno','25-29','0-2','no','1','left','left_low','no','no-recurrence-events'
251 | '50-59','ge40','30-34','9-11','yes','3','left','right_low','yes','recurrence-events'
252 | '50-59','ge40','10-14','0-2','no','2','left','left_low','no','no-recurrence-events'
253 | '40-49','premeno','30-34','0-2','no','1','left','right_up','no','no-recurrence-events'
254 | '70-79','ge40','0-4','0-2','no','1','left','right_low','no','no-recurrence-events'
255 | '40-49','premeno','25-29','0-2','no','3','right','left_up','yes','no-recurrence-events'
256 | '50-59','premeno','25-29','0-2','no','3','right','left_low','yes','recurrence-events'
257 | '50-59','ge40','40-44','0-2','no','2','left','left_low','no','no-recurrence-events'
258 | '60-69','ge40','25-29','0-2','no','3','left','right_low','yes','recurrence-events'
259 | '40-49','premeno','30-34','3-5','yes','2','right','left_low','no','no-recurrence-events'
260 | '50-59','ge40','20-24','0-2','no','2','left','left_up','no','recurrence-events'
261 | '70-79','ge40','20-24','0-2','no','3','left','left_up','no','no-recurrence-events'
262 | '30-39','premeno','25-29','0-2','no','1','left','central','no','no-recurrence-events'
263 | '60-69','ge40','30-34','0-2','no','2','left','left_low','no','no-recurrence-events'
264 | '40-49','premeno','20-24','3-5','yes','2','right','right_up','yes','recurrence-events'
265 | '50-59','ge40','30-34','9-11',nan,'3','left','left_low','yes','no-recurrence-events'
266 | '50-59','ge40','0-4','0-2','no','2','left','central','no','no-recurrence-events'
267 | '40-49','premeno','20-24','0-2','no','3','right','left_low','yes','no-recurrence-events'
268 | '30-39','premeno','35-39','0-2','no','3','left','left_low','no','recurrence-events'
269 | '60-69','ge40','30-34','0-2','no','1','left','left_up','no','no-recurrence-events'
270 | '60-69','ge40','20-24','0-2','no','1','left','left_low','no','no-recurrence-events'
271 | '50-59','ge40','25-29','6-8','no','3','left','left_low','yes','recurrence-events'
272 | '50-59','premeno','35-39','15-17','yes','3','right','right_up','no','recurrence-events'
273 | '30-39','premeno','20-24','3-5','yes','2','right','left_up','yes','no-recurrence-events'
274 | '40-49','premeno','20-24','6-8','no','2','right','left_low','yes','no-recurrence-events'
275 | '50-59','ge40','35-39','0-2','no','3','left','left_low','no','no-recurrence-events'
276 | '50-59','premeno','35-39','0-2','no','2','right','left_up','no','no-recurrence-events'
277 | '40-49','premeno','25-29','0-2','no','2','left','left_up','yes','no-recurrence-events'
278 | '40-49','premeno','35-39','0-2','no','2','right','right_up','no','no-recurrence-events'
279 | '50-59','premeno','30-34','3-5','yes','2','left','left_low','yes','no-recurrence-events'
280 | '40-49','premeno','20-24','0-2','no','2','right','right_up','no','no-recurrence-events'
281 | '60-69','ge40','15-19','0-2','no','3','right','left_up','yes','no-recurrence-events'
282 | '50-59','ge40','30-34','6-8','yes','2','left','left_low','no','no-recurrence-events'
283 | '50-59','premeno','25-29','3-5','yes','2','left','left_low','yes','no-recurrence-events'
284 | '30-39','premeno','30-34','6-8','yes','2','right','right_up','no','no-recurrence-events'
285 | '50-59','premeno','15-19','0-2','no','2','right','left_low','no','no-recurrence-events'
286 | '50-59','ge40','40-44','0-2','no','3','left','right_up','no','no-recurrence-events'
--------------------------------------------------------------------------------
/data/titanic_test.csv:
--------------------------------------------------------------------------------
1 | PassengerId,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
2 | 892,3,"Kelly, Mr. James",male,34.5,0,0,330911,7.8292,,Q
3 | 893,3,"Wilkes, Mrs. James (Ellen Needs)",female,47,1,0,363272,7,,S
4 | 894,2,"Myles, Mr. Thomas Francis",male,62,0,0,240276,9.6875,,Q
5 | 895,3,"Wirz, Mr. Albert",male,27,0,0,315154,8.6625,,S
6 | 896,3,"Hirvonen, Mrs. Alexander (Helga E Lindqvist)",female,22,1,1,3101298,12.2875,,S
7 | 897,3,"Svensson, Mr. Johan Cervin",male,14,0,0,7538,9.225,,S
8 | 898,3,"Connolly, Miss. Kate",female,30,0,0,330972,7.6292,,Q
9 | 899,2,"Caldwell, Mr. Albert Francis",male,26,1,1,248738,29,,S
10 | 900,3,"Abrahim, Mrs. Joseph (Sophie Halaut Easu)",female,18,0,0,2657,7.2292,,C
11 | 901,3,"Davies, Mr. John Samuel",male,21,2,0,A/4 48871,24.15,,S
12 | 902,3,"Ilieff, Mr. Ylio",male,,0,0,349220,7.8958,,S
13 | 903,1,"Jones, Mr. Charles Cresson",male,46,0,0,694,26,,S
14 | 904,1,"Snyder, Mrs. John Pillsbury (Nelle Stevenson)",female,23,1,0,21228,82.2667,B45,S
15 | 905,2,"Howard, Mr. Benjamin",male,63,1,0,24065,26,,S
16 | 906,1,"Chaffee, Mrs. Herbert Fuller (Carrie Constance Toogood)",female,47,1,0,W.E.P. 5734,61.175,E31,S
17 | 907,2,"del Carlo, Mrs. Sebastiano (Argenia Genovesi)",female,24,1,0,SC/PARIS 2167,27.7208,,C
18 | 908,2,"Keane, Mr. Daniel",male,35,0,0,233734,12.35,,Q
19 | 909,3,"Assaf, Mr. Gerios",male,21,0,0,2692,7.225,,C
20 | 910,3,"Ilmakangas, Miss. Ida Livija",female,27,1,0,STON/O2. 3101270,7.925,,S
21 | 911,3,"Assaf Khalil, Mrs. Mariana (Miriam"")""",female,45,0,0,2696,7.225,,C
22 | 912,1,"Rothschild, Mr. Martin",male,55,1,0,PC 17603,59.4,,C
23 | 913,3,"Olsen, Master. Artur Karl",male,9,0,1,C 17368,3.1708,,S
24 | 914,1,"Flegenheim, Mrs. Alfred (Antoinette)",female,,0,0,PC 17598,31.6833,,S
25 | 915,1,"Williams, Mr. Richard Norris II",male,21,0,1,PC 17597,61.3792,,C
26 | 916,1,"Ryerson, Mrs. Arthur Larned (Emily Maria Borie)",female,48,1,3,PC 17608,262.375,B57 B59 B63 B66,C
27 | 917,3,"Robins, Mr. Alexander A",male,50,1,0,A/5. 3337,14.5,,S
28 | 918,1,"Ostby, Miss. Helene Ragnhild",female,22,0,1,113509,61.9792,B36,C
29 | 919,3,"Daher, Mr. Shedid",male,22.5,0,0,2698,7.225,,C
30 | 920,1,"Brady, Mr. John Bertram",male,41,0,0,113054,30.5,A21,S
31 | 921,3,"Samaan, Mr. Elias",male,,2,0,2662,21.6792,,C
32 | 922,2,"Louch, Mr. Charles Alexander",male,50,1,0,SC/AH 3085,26,,S
33 | 923,2,"Jefferys, Mr. Clifford Thomas",male,24,2,0,C.A. 31029,31.5,,S
34 | 924,3,"Dean, Mrs. Bertram (Eva Georgetta Light)",female,33,1,2,C.A. 2315,20.575,,S
35 | 925,3,"Johnston, Mrs. Andrew G (Elizabeth Lily"" Watson)""",female,,1,2,W./C. 6607,23.45,,S
36 | 926,1,"Mock, Mr. Philipp Edmund",male,30,1,0,13236,57.75,C78,C
37 | 927,3,"Katavelas, Mr. Vassilios (Catavelas Vassilios"")""",male,18.5,0,0,2682,7.2292,,C
38 | 928,3,"Roth, Miss. Sarah A",female,,0,0,342712,8.05,,S
39 | 929,3,"Cacic, Miss. Manda",female,21,0,0,315087,8.6625,,S
40 | 930,3,"Sap, Mr. Julius",male,25,0,0,345768,9.5,,S
41 | 931,3,"Hee, Mr. Ling",male,,0,0,1601,56.4958,,S
42 | 932,3,"Karun, Mr. Franz",male,39,0,1,349256,13.4167,,C
43 | 933,1,"Franklin, Mr. Thomas Parham",male,,0,0,113778,26.55,D34,S
44 | 934,3,"Goldsmith, Mr. Nathan",male,41,0,0,SOTON/O.Q. 3101263,7.85,,S
45 | 935,2,"Corbett, Mrs. Walter H (Irene Colvin)",female,30,0,0,237249,13,,S
46 | 936,1,"Kimball, Mrs. Edwin Nelson Jr (Gertrude Parsons)",female,45,1,0,11753,52.5542,D19,S
47 | 937,3,"Peltomaki, Mr. Nikolai Johannes",male,25,0,0,STON/O 2. 3101291,7.925,,S
48 | 938,1,"Chevre, Mr. Paul Romaine",male,45,0,0,PC 17594,29.7,A9,C
49 | 939,3,"Shaughnessy, Mr. Patrick",male,,0,0,370374,7.75,,Q
50 | 940,1,"Bucknell, Mrs. William Robert (Emma Eliza Ward)",female,60,0,0,11813,76.2917,D15,C
51 | 941,3,"Coutts, Mrs. William (Winnie Minnie"" Treanor)""",female,36,0,2,C.A. 37671,15.9,,S
52 | 942,1,"Smith, Mr. Lucien Philip",male,24,1,0,13695,60,C31,S
53 | 943,2,"Pulbaum, Mr. Franz",male,27,0,0,SC/PARIS 2168,15.0333,,C
54 | 944,2,"Hocking, Miss. Ellen Nellie""""",female,20,2,1,29105,23,,S
55 | 945,1,"Fortune, Miss. Ethel Flora",female,28,3,2,19950,263,C23 C25 C27,S
56 | 946,2,"Mangiavacchi, Mr. Serafino Emilio",male,,0,0,SC/A.3 2861,15.5792,,C
57 | 947,3,"Rice, Master. Albert",male,10,4,1,382652,29.125,,Q
58 | 948,3,"Cor, Mr. Bartol",male,35,0,0,349230,7.8958,,S
59 | 949,3,"Abelseth, Mr. Olaus Jorgensen",male,25,0,0,348122,7.65,F G63,S
60 | 950,3,"Davison, Mr. Thomas Henry",male,,1,0,386525,16.1,,S
61 | 951,1,"Chaudanson, Miss. Victorine",female,36,0,0,PC 17608,262.375,B61,C
62 | 952,3,"Dika, Mr. Mirko",male,17,0,0,349232,7.8958,,S
63 | 953,2,"McCrae, Mr. Arthur Gordon",male,32,0,0,237216,13.5,,S
64 | 954,3,"Bjorklund, Mr. Ernst Herbert",male,18,0,0,347090,7.75,,S
65 | 955,3,"Bradley, Miss. Bridget Delia",female,22,0,0,334914,7.725,,Q
66 | 956,1,"Ryerson, Master. John Borie",male,13,2,2,PC 17608,262.375,B57 B59 B63 B66,C
67 | 957,2,"Corey, Mrs. Percy C (Mary Phyllis Elizabeth Miller)",female,,0,0,F.C.C. 13534,21,,S
68 | 958,3,"Burns, Miss. Mary Delia",female,18,0,0,330963,7.8792,,Q
69 | 959,1,"Moore, Mr. Clarence Bloomfield",male,47,0,0,113796,42.4,,S
70 | 960,1,"Tucker, Mr. Gilbert Milligan Jr",male,31,0,0,2543,28.5375,C53,C
71 | 961,1,"Fortune, Mrs. Mark (Mary McDougald)",female,60,1,4,19950,263,C23 C25 C27,S
72 | 962,3,"Mulvihill, Miss. Bertha E",female,24,0,0,382653,7.75,,Q
73 | 963,3,"Minkoff, Mr. Lazar",male,21,0,0,349211,7.8958,,S
74 | 964,3,"Nieminen, Miss. Manta Josefina",female,29,0,0,3101297,7.925,,S
75 | 965,1,"Ovies y Rodriguez, Mr. Servando",male,28.5,0,0,PC 17562,27.7208,D43,C
76 | 966,1,"Geiger, Miss. Amalie",female,35,0,0,113503,211.5,C130,C
77 | 967,1,"Keeping, Mr. Edwin",male,32.5,0,0,113503,211.5,C132,C
78 | 968,3,"Miles, Mr. Frank",male,,0,0,359306,8.05,,S
79 | 969,1,"Cornell, Mrs. Robert Clifford (Malvina Helen Lamson)",female,55,2,0,11770,25.7,C101,S
80 | 970,2,"Aldworth, Mr. Charles Augustus",male,30,0,0,248744,13,,S
81 | 971,3,"Doyle, Miss. Elizabeth",female,24,0,0,368702,7.75,,Q
82 | 972,3,"Boulos, Master. Akar",male,6,1,1,2678,15.2458,,C
83 | 973,1,"Straus, Mr. Isidor",male,67,1,0,PC 17483,221.7792,C55 C57,S
84 | 974,1,"Case, Mr. Howard Brown",male,49,0,0,19924,26,,S
85 | 975,3,"Demetri, Mr. Marinko",male,,0,0,349238,7.8958,,S
86 | 976,2,"Lamb, Mr. John Joseph",male,,0,0,240261,10.7083,,Q
87 | 977,3,"Khalil, Mr. Betros",male,,1,0,2660,14.4542,,C
88 | 978,3,"Barry, Miss. Julia",female,27,0,0,330844,7.8792,,Q
89 | 979,3,"Badman, Miss. Emily Louisa",female,18,0,0,A/4 31416,8.05,,S
90 | 980,3,"O'Donoghue, Ms. Bridget",female,,0,0,364856,7.75,,Q
91 | 981,2,"Wells, Master. Ralph Lester",male,2,1,1,29103,23,,S
92 | 982,3,"Dyker, Mrs. Adolf Fredrik (Anna Elisabeth Judith Andersson)",female,22,1,0,347072,13.9,,S
93 | 983,3,"Pedersen, Mr. Olaf",male,,0,0,345498,7.775,,S
94 | 984,1,"Davidson, Mrs. Thornton (Orian Hays)",female,27,1,2,F.C. 12750,52,B71,S
95 | 985,3,"Guest, Mr. Robert",male,,0,0,376563,8.05,,S
96 | 986,1,"Birnbaum, Mr. Jakob",male,25,0,0,13905,26,,C
97 | 987,3,"Tenglin, Mr. Gunnar Isidor",male,25,0,0,350033,7.7958,,S
98 | 988,1,"Cavendish, Mrs. Tyrell William (Julia Florence Siegel)",female,76,1,0,19877,78.85,C46,S
99 | 989,3,"Makinen, Mr. Kalle Edvard",male,29,0,0,STON/O 2. 3101268,7.925,,S
100 | 990,3,"Braf, Miss. Elin Ester Maria",female,20,0,0,347471,7.8542,,S
101 | 991,3,"Nancarrow, Mr. William Henry",male,33,0,0,A./5. 3338,8.05,,S
102 | 992,1,"Stengel, Mrs. Charles Emil Henry (Annie May Morris)",female,43,1,0,11778,55.4417,C116,C
103 | 993,2,"Weisz, Mr. Leopold",male,27,1,0,228414,26,,S
104 | 994,3,"Foley, Mr. William",male,,0,0,365235,7.75,,Q
105 | 995,3,"Johansson Palmquist, Mr. Oskar Leander",male,26,0,0,347070,7.775,,S
106 | 996,3,"Thomas, Mrs. Alexander (Thamine Thelma"")""",female,16,1,1,2625,8.5167,,C
107 | 997,3,"Holthen, Mr. Johan Martin",male,28,0,0,C 4001,22.525,,S
108 | 998,3,"Buckley, Mr. Daniel",male,21,0,0,330920,7.8208,,Q
109 | 999,3,"Ryan, Mr. Edward",male,,0,0,383162,7.75,,Q
110 | 1000,3,"Willer, Mr. Aaron (Abi Weller"")""",male,,0,0,3410,8.7125,,S
111 | 1001,2,"Swane, Mr. George",male,18.5,0,0,248734,13,F,S
112 | 1002,2,"Stanton, Mr. Samuel Ward",male,41,0,0,237734,15.0458,,C
113 | 1003,3,"Shine, Miss. Ellen Natalia",female,,0,0,330968,7.7792,,Q
114 | 1004,1,"Evans, Miss. Edith Corse",female,36,0,0,PC 17531,31.6792,A29,C
115 | 1005,3,"Buckley, Miss. Katherine",female,18.5,0,0,329944,7.2833,,Q
116 | 1006,1,"Straus, Mrs. Isidor (Rosalie Ida Blun)",female,63,1,0,PC 17483,221.7792,C55 C57,S
117 | 1007,3,"Chronopoulos, Mr. Demetrios",male,18,1,0,2680,14.4542,,C
118 | 1008,3,"Thomas, Mr. John",male,,0,0,2681,6.4375,,C
119 | 1009,3,"Sandstrom, Miss. Beatrice Irene",female,1,1,1,PP 9549,16.7,G6,S
120 | 1010,1,"Beattie, Mr. Thomson",male,36,0,0,13050,75.2417,C6,C
121 | 1011,2,"Chapman, Mrs. John Henry (Sara Elizabeth Lawry)",female,29,1,0,SC/AH 29037,26,,S
122 | 1012,2,"Watt, Miss. Bertha J",female,12,0,0,C.A. 33595,15.75,,S
123 | 1013,3,"Kiernan, Mr. John",male,,1,0,367227,7.75,,Q
124 | 1014,1,"Schabert, Mrs. Paul (Emma Mock)",female,35,1,0,13236,57.75,C28,C
125 | 1015,3,"Carver, Mr. Alfred John",male,28,0,0,392095,7.25,,S
126 | 1016,3,"Kennedy, Mr. John",male,,0,0,368783,7.75,,Q
127 | 1017,3,"Cribb, Miss. Laura Alice",female,17,0,1,371362,16.1,,S
128 | 1018,3,"Brobeck, Mr. Karl Rudolf",male,22,0,0,350045,7.7958,,S
129 | 1019,3,"McCoy, Miss. Alicia",female,,2,0,367226,23.25,,Q
130 | 1020,2,"Bowenur, Mr. Solomon",male,42,0,0,211535,13,,S
131 | 1021,3,"Petersen, Mr. Marius",male,24,0,0,342441,8.05,,S
132 | 1022,3,"Spinner, Mr. Henry John",male,32,0,0,STON/OQ. 369943,8.05,,S
133 | 1023,1,"Gracie, Col. Archibald IV",male,53,0,0,113780,28.5,C51,C
134 | 1024,3,"Lefebre, Mrs. Frank (Frances)",female,,0,4,4133,25.4667,,S
135 | 1025,3,"Thomas, Mr. Charles P",male,,1,0,2621,6.4375,,C
136 | 1026,3,"Dintcheff, Mr. Valtcho",male,43,0,0,349226,7.8958,,S
137 | 1027,3,"Carlsson, Mr. Carl Robert",male,24,0,0,350409,7.8542,,S
138 | 1028,3,"Zakarian, Mr. Mapriededer",male,26.5,0,0,2656,7.225,,C
139 | 1029,2,"Schmidt, Mr. August",male,26,0,0,248659,13,,S
140 | 1030,3,"Drapkin, Miss. Jennie",female,23,0,0,SOTON/OQ 392083,8.05,,S
141 | 1031,3,"Goodwin, Mr. Charles Frederick",male,40,1,6,CA 2144,46.9,,S
142 | 1032,3,"Goodwin, Miss. Jessie Allis",female,10,5,2,CA 2144,46.9,,S
143 | 1033,1,"Daniels, Miss. Sarah",female,33,0,0,113781,151.55,,S
144 | 1034,1,"Ryerson, Mr. Arthur Larned",male,61,1,3,PC 17608,262.375,B57 B59 B63 B66,C
145 | 1035,2,"Beauchamp, Mr. Henry James",male,28,0,0,244358,26,,S
146 | 1036,1,"Lindeberg-Lind, Mr. Erik Gustaf (Mr Edward Lingrey"")""",male,42,0,0,17475,26.55,,S
147 | 1037,3,"Vander Planke, Mr. Julius",male,31,3,0,345763,18,,S
148 | 1038,1,"Hilliard, Mr. Herbert Henry",male,,0,0,17463,51.8625,E46,S
149 | 1039,3,"Davies, Mr. Evan",male,22,0,0,SC/A4 23568,8.05,,S
150 | 1040,1,"Crafton, Mr. John Bertram",male,,0,0,113791,26.55,,S
151 | 1041,2,"Lahtinen, Rev. William",male,30,1,1,250651,26,,S
152 | 1042,1,"Earnshaw, Mrs. Boulton (Olive Potter)",female,23,0,1,11767,83.1583,C54,C
153 | 1043,3,"Matinoff, Mr. Nicola",male,,0,0,349255,7.8958,,C
154 | 1044,3,"Storey, Mr. Thomas",male,60.5,0,0,3701,,,S
155 | 1045,3,"Klasen, Mrs. (Hulda Kristina Eugenia Lofqvist)",female,36,0,2,350405,12.1833,,S
156 | 1046,3,"Asplund, Master. Filip Oscar",male,13,4,2,347077,31.3875,,S
157 | 1047,3,"Duquemin, Mr. Joseph",male,24,0,0,S.O./P.P. 752,7.55,,S
158 | 1048,1,"Bird, Miss. Ellen",female,29,0,0,PC 17483,221.7792,C97,S
159 | 1049,3,"Lundin, Miss. Olga Elida",female,23,0,0,347469,7.8542,,S
160 | 1050,1,"Borebank, Mr. John James",male,42,0,0,110489,26.55,D22,S
161 | 1051,3,"Peacock, Mrs. Benjamin (Edith Nile)",female,26,0,2,SOTON/O.Q. 3101315,13.775,,S
162 | 1052,3,"Smyth, Miss. Julia",female,,0,0,335432,7.7333,,Q
163 | 1053,3,"Touma, Master. Georges Youssef",male,7,1,1,2650,15.2458,,C
164 | 1054,2,"Wright, Miss. Marion",female,26,0,0,220844,13.5,,S
165 | 1055,3,"Pearce, Mr. Ernest",male,,0,0,343271,7,,S
166 | 1056,2,"Peruschitz, Rev. Joseph Maria",male,41,0,0,237393,13,,S
167 | 1057,3,"Kink-Heilmann, Mrs. Anton (Luise Heilmann)",female,26,1,1,315153,22.025,,S
168 | 1058,1,"Brandeis, Mr. Emil",male,48,0,0,PC 17591,50.4958,B10,C
169 | 1059,3,"Ford, Mr. Edward Watson",male,18,2,2,W./C. 6608,34.375,,S
170 | 1060,1,"Cassebeer, Mrs. Henry Arthur Jr (Eleanor Genevieve Fosdick)",female,,0,0,17770,27.7208,,C
171 | 1061,3,"Hellstrom, Miss. Hilda Maria",female,22,0,0,7548,8.9625,,S
172 | 1062,3,"Lithman, Mr. Simon",male,,0,0,S.O./P.P. 251,7.55,,S
173 | 1063,3,"Zakarian, Mr. Ortin",male,27,0,0,2670,7.225,,C
174 | 1064,3,"Dyker, Mr. Adolf Fredrik",male,23,1,0,347072,13.9,,S
175 | 1065,3,"Torfa, Mr. Assad",male,,0,0,2673,7.2292,,C
176 | 1066,3,"Asplund, Mr. Carl Oscar Vilhelm Gustafsson",male,40,1,5,347077,31.3875,,S
177 | 1067,2,"Brown, Miss. Edith Eileen",female,15,0,2,29750,39,,S
178 | 1068,2,"Sincock, Miss. Maude",female,20,0,0,C.A. 33112,36.75,,S
179 | 1069,1,"Stengel, Mr. Charles Emil Henry",male,54,1,0,11778,55.4417,C116,C
180 | 1070,2,"Becker, Mrs. Allen Oliver (Nellie E Baumgardner)",female,36,0,3,230136,39,F4,S
181 | 1071,1,"Compton, Mrs. Alexander Taylor (Mary Eliza Ingersoll)",female,64,0,2,PC 17756,83.1583,E45,C
182 | 1072,2,"McCrie, Mr. James Matthew",male,30,0,0,233478,13,,S
183 | 1073,1,"Compton, Mr. Alexander Taylor Jr",male,37,1,1,PC 17756,83.1583,E52,C
184 | 1074,1,"Marvin, Mrs. Daniel Warner (Mary Graham Carmichael Farquarson)",female,18,1,0,113773,53.1,D30,S
185 | 1075,3,"Lane, Mr. Patrick",male,,0,0,7935,7.75,,Q
186 | 1076,1,"Douglas, Mrs. Frederick Charles (Mary Helene Baxter)",female,27,1,1,PC 17558,247.5208,B58 B60,C
187 | 1077,2,"Maybery, Mr. Frank Hubert",male,40,0,0,239059,16,,S
188 | 1078,2,"Phillips, Miss. Alice Frances Louisa",female,21,0,1,S.O./P.P. 2,21,,S
189 | 1079,3,"Davies, Mr. Joseph",male,17,2,0,A/4 48873,8.05,,S
190 | 1080,3,"Sage, Miss. Ada",female,,8,2,CA. 2343,69.55,,S
191 | 1081,2,"Veal, Mr. James",male,40,0,0,28221,13,,S
192 | 1082,2,"Angle, Mr. William A",male,34,1,0,226875,26,,S
193 | 1083,1,"Salomon, Mr. Abraham L",male,,0,0,111163,26,,S
194 | 1084,3,"van Billiard, Master. Walter John",male,11.5,1,1,A/5. 851,14.5,,S
195 | 1085,2,"Lingane, Mr. John",male,61,0,0,235509,12.35,,Q
196 | 1086,2,"Drew, Master. Marshall Brines",male,8,0,2,28220,32.5,,S
197 | 1087,3,"Karlsson, Mr. Julius Konrad Eugen",male,33,0,0,347465,7.8542,,S
198 | 1088,1,"Spedden, Master. Robert Douglas",male,6,0,2,16966,134.5,E34,C
199 | 1089,3,"Nilsson, Miss. Berta Olivia",female,18,0,0,347066,7.775,,S
200 | 1090,2,"Baimbrigge, Mr. Charles Robert",male,23,0,0,C.A. 31030,10.5,,S
201 | 1091,3,"Rasmussen, Mrs. (Lena Jacobsen Solvang)",female,,0,0,65305,8.1125,,S
202 | 1092,3,"Murphy, Miss. Nora",female,,0,0,36568,15.5,,Q
203 | 1093,3,"Danbom, Master. Gilbert Sigvard Emanuel",male,0.33,0,2,347080,14.4,,S
204 | 1094,1,"Astor, Col. John Jacob",male,47,1,0,PC 17757,227.525,C62 C64,C
205 | 1095,2,"Quick, Miss. Winifred Vera",female,8,1,1,26360,26,,S
206 | 1096,2,"Andrew, Mr. Frank Thomas",male,25,0,0,C.A. 34050,10.5,,S
207 | 1097,1,"Omont, Mr. Alfred Fernand",male,,0,0,F.C. 12998,25.7417,,C
208 | 1098,3,"McGowan, Miss. Katherine",female,35,0,0,9232,7.75,,Q
209 | 1099,2,"Collett, Mr. Sidney C Stuart",male,24,0,0,28034,10.5,,S
210 | 1100,1,"Rosenbaum, Miss. Edith Louise",female,33,0,0,PC 17613,27.7208,A11,C
211 | 1101,3,"Delalic, Mr. Redjo",male,25,0,0,349250,7.8958,,S
212 | 1102,3,"Andersen, Mr. Albert Karvin",male,32,0,0,C 4001,22.525,,S
213 | 1103,3,"Finoli, Mr. Luigi",male,,0,0,SOTON/O.Q. 3101308,7.05,,S
214 | 1104,2,"Deacon, Mr. Percy William",male,17,0,0,S.O.C. 14879,73.5,,S
215 | 1105,2,"Howard, Mrs. Benjamin (Ellen Truelove Arman)",female,60,1,0,24065,26,,S
216 | 1106,3,"Andersson, Miss. Ida Augusta Margareta",female,38,4,2,347091,7.775,,S
217 | 1107,1,"Head, Mr. Christopher",male,42,0,0,113038,42.5,B11,S
218 | 1108,3,"Mahon, Miss. Bridget Delia",female,,0,0,330924,7.8792,,Q
219 | 1109,1,"Wick, Mr. George Dennick",male,57,1,1,36928,164.8667,,S
220 | 1110,1,"Widener, Mrs. George Dunton (Eleanor Elkins)",female,50,1,1,113503,211.5,C80,C
221 | 1111,3,"Thomson, Mr. Alexander Morrison",male,,0,0,32302,8.05,,S
222 | 1112,2,"Duran y More, Miss. Florentina",female,30,1,0,SC/PARIS 2148,13.8583,,C
223 | 1113,3,"Reynolds, Mr. Harold J",male,21,0,0,342684,8.05,,S
224 | 1114,2,"Cook, Mrs. (Selena Rogers)",female,22,0,0,W./C. 14266,10.5,F33,S
225 | 1115,3,"Karlsson, Mr. Einar Gervasius",male,21,0,0,350053,7.7958,,S
226 | 1116,1,"Candee, Mrs. Edward (Helen Churchill Hungerford)",female,53,0,0,PC 17606,27.4458,,C
227 | 1117,3,"Moubarek, Mrs. George (Omine Amenia"" Alexander)""",female,,0,2,2661,15.2458,,C
228 | 1118,3,"Asplund, Mr. Johan Charles",male,23,0,0,350054,7.7958,,S
229 | 1119,3,"McNeill, Miss. Bridget",female,,0,0,370368,7.75,,Q
230 | 1120,3,"Everett, Mr. Thomas James",male,40.5,0,0,C.A. 6212,15.1,,S
231 | 1121,2,"Hocking, Mr. Samuel James Metcalfe",male,36,0,0,242963,13,,S
232 | 1122,2,"Sweet, Mr. George Frederick",male,14,0,0,220845,65,,S
233 | 1123,1,"Willard, Miss. Constance",female,21,0,0,113795,26.55,,S
234 | 1124,3,"Wiklund, Mr. Karl Johan",male,21,1,0,3101266,6.4958,,S
235 | 1125,3,"Linehan, Mr. Michael",male,,0,0,330971,7.8792,,Q
236 | 1126,1,"Cumings, Mr. John Bradley",male,39,1,0,PC 17599,71.2833,C85,C
237 | 1127,3,"Vendel, Mr. Olof Edvin",male,20,0,0,350416,7.8542,,S
238 | 1128,1,"Warren, Mr. Frank Manley",male,64,1,0,110813,75.25,D37,C
239 | 1129,3,"Baccos, Mr. Raffull",male,20,0,0,2679,7.225,,C
240 | 1130,2,"Hiltunen, Miss. Marta",female,18,1,1,250650,13,,S
241 | 1131,1,"Douglas, Mrs. Walter Donald (Mahala Dutton)",female,48,1,0,PC 17761,106.425,C86,C
242 | 1132,1,"Lindstrom, Mrs. Carl Johan (Sigrid Posse)",female,55,0,0,112377,27.7208,,C
243 | 1133,2,"Christy, Mrs. (Alice Frances)",female,45,0,2,237789,30,,S
244 | 1134,1,"Spedden, Mr. Frederic Oakley",male,45,1,1,16966,134.5,E34,C
245 | 1135,3,"Hyman, Mr. Abraham",male,,0,0,3470,7.8875,,S
246 | 1136,3,"Johnston, Master. William Arthur Willie""""",male,,1,2,W./C. 6607,23.45,,S
247 | 1137,1,"Kenyon, Mr. Frederick R",male,41,1,0,17464,51.8625,D21,S
248 | 1138,2,"Karnes, Mrs. J Frank (Claire Bennett)",female,22,0,0,F.C.C. 13534,21,,S
249 | 1139,2,"Drew, Mr. James Vivian",male,42,1,1,28220,32.5,,S
250 | 1140,2,"Hold, Mrs. Stephen (Annie Margaret Hill)",female,29,1,0,26707,26,,S
251 | 1141,3,"Khalil, Mrs. Betros (Zahie Maria"" Elias)""",female,,1,0,2660,14.4542,,C
252 | 1142,2,"West, Miss. Barbara J",female,0.92,1,2,C.A. 34651,27.75,,S
253 | 1143,3,"Abrahamsson, Mr. Abraham August Johannes",male,20,0,0,SOTON/O2 3101284,7.925,,S
254 | 1144,1,"Clark, Mr. Walter Miller",male,27,1,0,13508,136.7792,C89,C
255 | 1145,3,"Salander, Mr. Karl Johan",male,24,0,0,7266,9.325,,S
256 | 1146,3,"Wenzel, Mr. Linhart",male,32.5,0,0,345775,9.5,,S
257 | 1147,3,"MacKay, Mr. George William",male,,0,0,C.A. 42795,7.55,,S
258 | 1148,3,"Mahon, Mr. John",male,,0,0,AQ/4 3130,7.75,,Q
259 | 1149,3,"Niklasson, Mr. Samuel",male,28,0,0,363611,8.05,,S
260 | 1150,2,"Bentham, Miss. Lilian W",female,19,0,0,28404,13,,S
261 | 1151,3,"Midtsjo, Mr. Karl Albert",male,21,0,0,345501,7.775,,S
262 | 1152,3,"de Messemaeker, Mr. Guillaume Joseph",male,36.5,1,0,345572,17.4,,S
263 | 1153,3,"Nilsson, Mr. August Ferdinand",male,21,0,0,350410,7.8542,,S
264 | 1154,2,"Wells, Mrs. Arthur Henry (Addie"" Dart Trevaskis)""",female,29,0,2,29103,23,,S
265 | 1155,3,"Klasen, Miss. Gertrud Emilia",female,1,1,1,350405,12.1833,,S
266 | 1156,2,"Portaluppi, Mr. Emilio Ilario Giuseppe",male,30,0,0,C.A. 34644,12.7375,,C
267 | 1157,3,"Lyntakoff, Mr. Stanko",male,,0,0,349235,7.8958,,S
268 | 1158,1,"Chisholm, Mr. Roderick Robert Crispin",male,,0,0,112051,0,,S
269 | 1159,3,"Warren, Mr. Charles William",male,,0,0,C.A. 49867,7.55,,S
270 | 1160,3,"Howard, Miss. May Elizabeth",female,,0,0,A. 2. 39186,8.05,,S
271 | 1161,3,"Pokrnic, Mr. Mate",male,17,0,0,315095,8.6625,,S
272 | 1162,1,"McCaffry, Mr. Thomas Francis",male,46,0,0,13050,75.2417,C6,C
273 | 1163,3,"Fox, Mr. Patrick",male,,0,0,368573,7.75,,Q
274 | 1164,1,"Clark, Mrs. Walter Miller (Virginia McDowell)",female,26,1,0,13508,136.7792,C89,C
275 | 1165,3,"Lennon, Miss. Mary",female,,1,0,370371,15.5,,Q
276 | 1166,3,"Saade, Mr. Jean Nassr",male,,0,0,2676,7.225,,C
277 | 1167,2,"Bryhl, Miss. Dagmar Jenny Ingeborg ",female,20,1,0,236853,26,,S
278 | 1168,2,"Parker, Mr. Clifford Richard",male,28,0,0,SC 14888,10.5,,S
279 | 1169,2,"Faunthorpe, Mr. Harry",male,40,1,0,2926,26,,S
280 | 1170,2,"Ware, Mr. John James",male,30,1,0,CA 31352,21,,S
281 | 1171,2,"Oxenham, Mr. Percy Thomas",male,22,0,0,W./C. 14260,10.5,,S
282 | 1172,3,"Oreskovic, Miss. Jelka",female,23,0,0,315085,8.6625,,S
283 | 1173,3,"Peacock, Master. Alfred Edward",male,0.75,1,1,SOTON/O.Q. 3101315,13.775,,S
284 | 1174,3,"Fleming, Miss. Honora",female,,0,0,364859,7.75,,Q
285 | 1175,3,"Touma, Miss. Maria Youssef",female,9,1,1,2650,15.2458,,C
286 | 1176,3,"Rosblom, Miss. Salli Helena",female,2,1,1,370129,20.2125,,S
287 | 1177,3,"Dennis, Mr. William",male,36,0,0,A/5 21175,7.25,,S
288 | 1178,3,"Franklin, Mr. Charles (Charles Fardon)",male,,0,0,SOTON/O.Q. 3101314,7.25,,S
289 | 1179,1,"Snyder, Mr. John Pillsbury",male,24,1,0,21228,82.2667,B45,S
290 | 1180,3,"Mardirosian, Mr. Sarkis",male,,0,0,2655,7.2292,F E46,C
291 | 1181,3,"Ford, Mr. Arthur",male,,0,0,A/5 1478,8.05,,S
292 | 1182,1,"Rheims, Mr. George Alexander Lucien",male,,0,0,PC 17607,39.6,,S
293 | 1183,3,"Daly, Miss. Margaret Marcella Maggie""""",female,30,0,0,382650,6.95,,Q
294 | 1184,3,"Nasr, Mr. Mustafa",male,,0,0,2652,7.2292,,C
295 | 1185,1,"Dodge, Dr. Washington",male,53,1,1,33638,81.8583,A34,S
296 | 1186,3,"Wittevrongel, Mr. Camille",male,36,0,0,345771,9.5,,S
297 | 1187,3,"Angheloff, Mr. Minko",male,26,0,0,349202,7.8958,,S
298 | 1188,2,"Laroche, Miss. Louise",female,1,1,2,SC/Paris 2123,41.5792,,C
299 | 1189,3,"Samaan, Mr. Hanna",male,,2,0,2662,21.6792,,C
300 | 1190,1,"Loring, Mr. Joseph Holland",male,30,0,0,113801,45.5,,S
301 | 1191,3,"Johansson, Mr. Nils",male,29,0,0,347467,7.8542,,S
302 | 1192,3,"Olsson, Mr. Oscar Wilhelm",male,32,0,0,347079,7.775,,S
303 | 1193,2,"Malachard, Mr. Noel",male,,0,0,237735,15.0458,D,C
304 | 1194,2,"Phillips, Mr. Escott Robert",male,43,0,1,S.O./P.P. 2,21,,S
305 | 1195,3,"Pokrnic, Mr. Tome",male,24,0,0,315092,8.6625,,S
306 | 1196,3,"McCarthy, Miss. Catherine Katie""""",female,,0,0,383123,7.75,,Q
307 | 1197,1,"Crosby, Mrs. Edward Gifford (Catherine Elizabeth Halstead)",female,64,1,1,112901,26.55,B26,S
308 | 1198,1,"Allison, Mr. Hudson Joshua Creighton",male,30,1,2,113781,151.55,C22 C26,S
309 | 1199,3,"Aks, Master. Philip Frank",male,0.83,0,1,392091,9.35,,S
310 | 1200,1,"Hays, Mr. Charles Melville",male,55,1,1,12749,93.5,B69,S
311 | 1201,3,"Hansen, Mrs. Claus Peter (Jennie L Howard)",female,45,1,0,350026,14.1083,,S
312 | 1202,3,"Cacic, Mr. Jego Grga",male,18,0,0,315091,8.6625,,S
313 | 1203,3,"Vartanian, Mr. David",male,22,0,0,2658,7.225,,C
314 | 1204,3,"Sadowitz, Mr. Harry",male,,0,0,LP 1588,7.575,,S
315 | 1205,3,"Carr, Miss. Jeannie",female,37,0,0,368364,7.75,,Q
316 | 1206,1,"White, Mrs. John Stuart (Ella Holmes)",female,55,0,0,PC 17760,135.6333,C32,C
317 | 1207,3,"Hagardon, Miss. Kate",female,17,0,0,AQ/3. 30631,7.7333,,Q
318 | 1208,1,"Spencer, Mr. William Augustus",male,57,1,0,PC 17569,146.5208,B78,C
319 | 1209,2,"Rogers, Mr. Reginald Harry",male,19,0,0,28004,10.5,,S
320 | 1210,3,"Jonsson, Mr. Nils Hilding",male,27,0,0,350408,7.8542,,S
321 | 1211,2,"Jefferys, Mr. Ernest Wilfred",male,22,2,0,C.A. 31029,31.5,,S
322 | 1212,3,"Andersson, Mr. Johan Samuel",male,26,0,0,347075,7.775,,S
323 | 1213,3,"Krekorian, Mr. Neshan",male,25,0,0,2654,7.2292,F E57,C
324 | 1214,2,"Nesson, Mr. Israel",male,26,0,0,244368,13,F2,S
325 | 1215,1,"Rowe, Mr. Alfred G",male,33,0,0,113790,26.55,,S
326 | 1216,1,"Kreuchen, Miss. Emilie",female,39,0,0,24160,211.3375,,S
327 | 1217,3,"Assam, Mr. Ali",male,23,0,0,SOTON/O.Q. 3101309,7.05,,S
328 | 1218,2,"Becker, Miss. Ruth Elizabeth",female,12,2,1,230136,39,F4,S
329 | 1219,1,"Rosenshine, Mr. George (Mr George Thorne"")""",male,46,0,0,PC 17585,79.2,,C
330 | 1220,2,"Clarke, Mr. Charles Valentine",male,29,1,0,2003,26,,S
331 | 1221,2,"Enander, Mr. Ingvar",male,21,0,0,236854,13,,S
332 | 1222,2,"Davies, Mrs. John Morgan (Elizabeth Agnes Mary White) ",female,48,0,2,C.A. 33112,36.75,,S
333 | 1223,1,"Dulles, Mr. William Crothers",male,39,0,0,PC 17580,29.7,A18,C
334 | 1224,3,"Thomas, Mr. Tannous",male,,0,0,2684,7.225,,C
335 | 1225,3,"Nakid, Mrs. Said (Waika Mary"" Mowad)""",female,19,1,1,2653,15.7417,,C
336 | 1226,3,"Cor, Mr. Ivan",male,27,0,0,349229,7.8958,,S
337 | 1227,1,"Maguire, Mr. John Edward",male,30,0,0,110469,26,C106,S
338 | 1228,2,"de Brito, Mr. Jose Joaquim",male,32,0,0,244360,13,,S
339 | 1229,3,"Elias, Mr. Joseph",male,39,0,2,2675,7.2292,,C
340 | 1230,2,"Denbury, Mr. Herbert",male,25,0,0,C.A. 31029,31.5,,S
341 | 1231,3,"Betros, Master. Seman",male,,0,0,2622,7.2292,,C
342 | 1232,2,"Fillbrook, Mr. Joseph Charles",male,18,0,0,C.A. 15185,10.5,,S
343 | 1233,3,"Lundstrom, Mr. Thure Edvin",male,32,0,0,350403,7.5792,,S
344 | 1234,3,"Sage, Mr. John George",male,,1,9,CA. 2343,69.55,,S
345 | 1235,1,"Cardeza, Mrs. James Warburton Martinez (Charlotte Wardle Drake)",female,58,0,1,PC 17755,512.3292,B51 B53 B55,C
346 | 1236,3,"van Billiard, Master. James William",male,,1,1,A/5. 851,14.5,,S
347 | 1237,3,"Abelseth, Miss. Karen Marie",female,16,0,0,348125,7.65,,S
348 | 1238,2,"Botsford, Mr. William Hull",male,26,0,0,237670,13,,S
349 | 1239,3,"Whabee, Mrs. George Joseph (Shawneene Abi-Saab)",female,38,0,0,2688,7.2292,,C
350 | 1240,2,"Giles, Mr. Ralph",male,24,0,0,248726,13.5,,S
351 | 1241,2,"Walcroft, Miss. Nellie",female,31,0,0,F.C.C. 13528,21,,S
352 | 1242,1,"Greenfield, Mrs. Leo David (Blanche Strouse)",female,45,0,1,PC 17759,63.3583,D10 D12,C
353 | 1243,2,"Stokes, Mr. Philip Joseph",male,25,0,0,F.C.C. 13540,10.5,,S
354 | 1244,2,"Dibden, Mr. William",male,18,0,0,S.O.C. 14879,73.5,,S
355 | 1245,2,"Herman, Mr. Samuel",male,49,1,2,220845,65,,S
356 | 1246,3,"Dean, Miss. Elizabeth Gladys Millvina""""",female,0.17,1,2,C.A. 2315,20.575,,S
357 | 1247,1,"Julian, Mr. Henry Forbes",male,50,0,0,113044,26,E60,S
358 | 1248,1,"Brown, Mrs. John Murray (Caroline Lane Lamson)",female,59,2,0,11769,51.4792,C101,S
359 | 1249,3,"Lockyer, Mr. Edward",male,,0,0,1222,7.8792,,S
360 | 1250,3,"O'Keefe, Mr. Patrick",male,,0,0,368402,7.75,,Q
361 | 1251,3,"Lindell, Mrs. Edvard Bengtsson (Elin Gerda Persson)",female,30,1,0,349910,15.55,,S
362 | 1252,3,"Sage, Master. William Henry",male,14.5,8,2,CA. 2343,69.55,,S
363 | 1253,2,"Mallet, Mrs. Albert (Antoinette Magnin)",female,24,1,1,S.C./PARIS 2079,37.0042,,C
364 | 1254,2,"Ware, Mrs. John James (Florence Louise Long)",female,31,0,0,CA 31352,21,,S
365 | 1255,3,"Strilic, Mr. Ivan",male,27,0,0,315083,8.6625,,S
366 | 1256,1,"Harder, Mrs. George Achilles (Dorothy Annan)",female,25,1,0,11765,55.4417,E50,C
367 | 1257,3,"Sage, Mrs. John (Annie Bullen)",female,,1,9,CA. 2343,69.55,,S
368 | 1258,3,"Caram, Mr. Joseph",male,,1,0,2689,14.4583,,C
369 | 1259,3,"Riihivouri, Miss. Susanna Juhantytar Sanni""""",female,22,0,0,3101295,39.6875,,S
370 | 1260,1,"Gibson, Mrs. Leonard (Pauline C Boeson)",female,45,0,1,112378,59.4,,C
371 | 1261,2,"Pallas y Castello, Mr. Emilio",male,29,0,0,SC/PARIS 2147,13.8583,,C
372 | 1262,2,"Giles, Mr. Edgar",male,21,1,0,28133,11.5,,S
373 | 1263,1,"Wilson, Miss. Helen Alice",female,31,0,0,16966,134.5,E39 E41,C
374 | 1264,1,"Ismay, Mr. Joseph Bruce",male,49,0,0,112058,0,B52 B54 B56,S
375 | 1265,2,"Harbeck, Mr. William H",male,44,0,0,248746,13,,S
376 | 1266,1,"Dodge, Mrs. Washington (Ruth Vidaver)",female,54,1,1,33638,81.8583,A34,S
377 | 1267,1,"Bowen, Miss. Grace Scott",female,45,0,0,PC 17608,262.375,,C
378 | 1268,3,"Kink, Miss. Maria",female,22,2,0,315152,8.6625,,S
379 | 1269,2,"Cotterill, Mr. Henry Harry""""",male,21,0,0,29107,11.5,,S
380 | 1270,1,"Hipkins, Mr. William Edward",male,55,0,0,680,50,C39,S
381 | 1271,3,"Asplund, Master. Carl Edgar",male,5,4,2,347077,31.3875,,S
382 | 1272,3,"O'Connor, Mr. Patrick",male,,0,0,366713,7.75,,Q
383 | 1273,3,"Foley, Mr. Joseph",male,26,0,0,330910,7.8792,,Q
384 | 1274,3,"Risien, Mrs. Samuel (Emma)",female,,0,0,364498,14.5,,S
385 | 1275,3,"McNamee, Mrs. Neal (Eileen O'Leary)",female,19,1,0,376566,16.1,,S
386 | 1276,2,"Wheeler, Mr. Edwin Frederick""""",male,,0,0,SC/PARIS 2159,12.875,,S
387 | 1277,2,"Herman, Miss. Kate",female,24,1,2,220845,65,,S
388 | 1278,3,"Aronsson, Mr. Ernst Axel Algot",male,24,0,0,349911,7.775,,S
389 | 1279,2,"Ashby, Mr. John",male,57,0,0,244346,13,,S
390 | 1280,3,"Canavan, Mr. Patrick",male,21,0,0,364858,7.75,,Q
391 | 1281,3,"Palsson, Master. Paul Folke",male,6,3,1,349909,21.075,,S
392 | 1282,1,"Payne, Mr. Vivian Ponsonby",male,23,0,0,12749,93.5,B24,S
393 | 1283,1,"Lines, Mrs. Ernest H (Elizabeth Lindsey James)",female,51,0,1,PC 17592,39.4,D28,S
394 | 1284,3,"Abbott, Master. Eugene Joseph",male,13,0,2,C.A. 2673,20.25,,S
395 | 1285,2,"Gilbert, Mr. William",male,47,0,0,C.A. 30769,10.5,,S
396 | 1286,3,"Kink-Heilmann, Mr. Anton",male,29,3,1,315153,22.025,,S
397 | 1287,1,"Smith, Mrs. Lucien Philip (Mary Eloise Hughes)",female,18,1,0,13695,60,C31,S
398 | 1288,3,"Colbert, Mr. Patrick",male,24,0,0,371109,7.25,,Q
399 | 1289,1,"Frolicher-Stehli, Mrs. Maxmillian (Margaretha Emerentia Stehli)",female,48,1,1,13567,79.2,B41,C
400 | 1290,3,"Larsson-Rondberg, Mr. Edvard A",male,22,0,0,347065,7.775,,S
401 | 1291,3,"Conlon, Mr. Thomas Henry",male,31,0,0,21332,7.7333,,Q
402 | 1292,1,"Bonnell, Miss. Caroline",female,30,0,0,36928,164.8667,C7,S
403 | 1293,2,"Gale, Mr. Harry",male,38,1,0,28664,21,,S
404 | 1294,1,"Gibson, Miss. Dorothy Winifred",female,22,0,1,112378,59.4,,C
405 | 1295,1,"Carrau, Mr. Jose Pedro",male,17,0,0,113059,47.1,,S
406 | 1296,1,"Frauenthal, Mr. Isaac Gerald",male,43,1,0,17765,27.7208,D40,C
407 | 1297,2,"Nourney, Mr. Alfred (Baron von Drachstedt"")""",male,20,0,0,SC/PARIS 2166,13.8625,D38,C
408 | 1298,2,"Ware, Mr. William Jeffery",male,23,1,0,28666,10.5,,S
409 | 1299,1,"Widener, Mr. George Dunton",male,50,1,1,113503,211.5,C80,C
410 | 1300,3,"Riordan, Miss. Johanna Hannah""""",female,,0,0,334915,7.7208,,Q
411 | 1301,3,"Peacock, Miss. Treasteall",female,3,1,1,SOTON/O.Q. 3101315,13.775,,S
412 | 1302,3,"Naughton, Miss. Hannah",female,,0,0,365237,7.75,,Q
413 | 1303,1,"Minahan, Mrs. William Edward (Lillian E Thorpe)",female,37,1,0,19928,90,C78,Q
414 | 1304,3,"Henriksson, Miss. Jenny Lovisa",female,28,0,0,347086,7.775,,S
415 | 1305,3,"Spector, Mr. Woolf",male,,0,0,A.5. 3236,8.05,,S
416 | 1306,1,"Oliva y Ocana, Dona. Fermina",female,39,0,0,PC 17758,108.9,C105,C
417 | 1307,3,"Saether, Mr. Simon Sivertsen",male,38.5,0,0,SOTON/O.Q. 3101262,7.25,,S
418 | 1308,3,"Ware, Mr. Frederick",male,,0,0,359309,8.05,,S
419 | 1309,3,"Peter, Master. Michael J",male,,1,1,2668,22.3583,,C
420 |
--------------------------------------------------------------------------------
/7_fully_connected_nn/0_intro_to_pytorch.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "