├── README.md
├── finetune_alexnet_with_tensorflow
├── .idea
│ ├── finetune_alexnet_with_tensorflow.iml
│ ├── misc.xml
│ ├── modules.xml
│ └── workspace.xml
├── README.md
├── __pycache__
│ ├── alexnet.cpython-37.pyc
│ ├── caffe_classes.cpython-37.pyc
│ ├── datagenerator.cpython-37.pyc
│ └── test.cpython-37.pyc
├── alexnet.py
├── caffe_classes.py
├── dataAugmentation.py
├── datagenerator.py
├── finetune.py
├── main.py
├── static
│ ├── css
│ │ ├── __init__.py
│ │ └── main.css
│ ├── js
│ │ ├── __init__.py
│ │ └── jquery-3.4.1.js
│ └── test_img
│ │ ├── __init__.py
│ │ ├── image_03102.jpg
│ │ ├── image_03119.jpg
│ │ └── test.jpg
├── templates
│ ├── recognition.html
│ └── recognition_ok.html
├── test.py
├── test.txt
├── train.txt
├── url.txt
├── valid.txt
└── venv
│ └── pyvenv.cfg
└── vgg16_oxford_flower_102
├── .idea
├── finetune_alexnet_with_tensorflow.iml
├── misc.xml
├── modules.xml
└── workspace.xml
├── __pycache__
├── caffe_classes.cpython-37.pyc
└── test.cpython-37.pyc
├── caffe_classes.py
├── main.py
├── network.py
├── readme.md
├── retrain.py
├── static
├── css
│ ├── __init__.py
│ └── main.css
├── js
│ ├── __init__.py
│ └── jquery-3.4.1.js
└── test_img
│ └── __init__.py
├── templates
├── recognition.html
└── recognition_ok.html
├── test.py
├── url.txt
└── venv
└── pyvenv.cfg
/README.md:
--------------------------------------------------------------------------------
1 | # flower_recognition
2 | 花卉识别程序
3 |
4 |
5 | ### finetune_alexnet_with_tensorflow(基于AlexNet的花卉识别)
6 |
7 | finetune.py 训练神经网络的文件
8 |
9 | alexnet.py AlexNet卷积神经网络模型
10 |
11 | bvlc_alexnet.npy 训练好的参数
12 |
13 | datagenerator.py 图片预处理
14 |
15 | main.py 路由文件
16 |
17 | 运行时需要先训练神经网络,因为虽然写了检查点但是看不到检查点文件,训练好以后再运行main.py文件。训练时将oxford文件夹放在train.txt文件中的指定位置,或者根据oxford文件夹的位置对train.txt进行相应修改。
18 |
19 | ### vgg16_oxford_flower_102(基于VGG16迁移模型的花卉识别)
20 |
21 | network.py 神经网络的初次训练
22 |
23 | retrain.py 神经网络的再次训练
24 |
25 | test.py 测试文件
26 |
27 | 102flowermodel.h5 训练好的模型保存
28 |
29 | main.py 路由文件
30 |
31 | url.txt 花卉百度百科链接
32 |
33 | ### 使用方法
34 | 运行main.py,访问http://127.0.0.1:5000/, 进入花卉识别主页面,点击“选择文件”按钮,上传要识别的花卉图片,然后点击“开始识别”按钮,进行识别。识别完成后,在页面下方显示识别图像、识别结果以及花卉相关介绍。
35 |
36 | ### 数据集下载地址
37 |
38 | http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
39 |
40 | ### 训练好的参数文件 bvlc_alexnet.npy下载地址
41 |
42 | http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/bvlc_alexnet.npy
43 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/.idea/finetune_alexnet_with_tensorflow.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/.idea/workspace.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
129 |
130 |
131 |
132 | checkpoint_path
133 | 040
134 | 07516
135 | 07628
136 | 0809
137 | 04081
138 | 078
139 | 0635
140 | 000
141 | 072
142 | 06785
143 | 98
144 | 89
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 |
263 |
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 |
280 |
281 |
282 |
283 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 |
294 |
295 |
296 |
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 |
319 |
320 |
321 |
322 |
323 |
324 |
325 |
326 | 1562145394752
327 |
328 |
329 | 1562145394752
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 |
391 |
392 |
393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |
401 |
402 |
403 |
404 |
405 |
406 |
407 |
408 |
409 |
410 |
411 |
412 |
413 |
414 |
415 |
416 |
417 |
418 |
419 |
420 |
421 |
422 |
423 |
424 |
425 |
426 |
427 |
428 |
429 |
430 |
431 |
432 |
433 |
434 |
435 |
436 |
437 |
438 |
439 |
440 |
441 |
442 |
443 |
444 |
445 |
446 |
447 |
448 |
449 |
450 |
451 |
452 |
453 |
454 |
455 |
456 |
457 |
458 |
459 |
460 |
461 |
462 |
463 |
464 |
465 |
466 |
467 |
468 |
469 |
470 |
471 |
472 |
473 |
474 |
475 |
476 |
477 |
478 |
479 |
480 |
481 |
482 |
483 |
484 |
485 |
486 |
487 |
488 |
489 |
490 |
491 |
492 |
493 |
494 |
495 |
496 |
497 |
498 |
499 |
500 |
501 |
502 |
503 |
504 |
505 |
506 |
507 |
508 |
509 |
510 |
511 |
512 |
513 |
514 |
515 |
516 |
517 |
518 |
519 |
520 |
521 |
522 |
523 |
524 |
525 |
526 |
527 |
528 |
529 |
530 |
531 |
532 |
533 |
534 |
535 |
536 |
537 |
538 |
539 |
540 |
541 |
542 |
543 |
544 |
545 |
546 |
547 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/README.md:
--------------------------------------------------------------------------------
1 | # README
2 |
3 | ### finetune_alexnet_with_tensorflow(基于AlexNet的花卉识别)
4 |
5 | finetune.py 训练神经网络的文件
6 |
7 | alexnet.py AlexNet卷积神经网络模型
8 |
9 | bvlc_alexnet.npy 训练好的参数
10 |
11 | datagenerator.py 图片预处理
12 |
13 | main.py 路由文件
14 |
15 | 运行时需要先训练神经网络,因为虽然写了检查点但是看不到检查点文件,训练好以后再运行main.py文件。训练时将oxford文件夹放在train.txt文件中的指定位置,或者根据oxford文件夹的位置对train.txt进行相应修改。
16 |
17 | ### vgg16_oxford_flower_102(基于VGG16迁移模型的花卉识别)
18 |
19 | network.py 神经网络的初次训练
20 |
21 | retrain.py 神经网络的再次训练
22 |
23 | test.py 测试文件
24 |
25 | 102flowermodel.h5 训练好的模型保存
26 |
27 | main.py 路由文件
28 |
29 | url.txt 花卉百度百科链接
30 |
31 | ### 使用方法
32 | 运行main.py,访问http://127.0.0.1:5000/, 进入花卉识别主页面,点击“选择文件”按钮,上传要识别的花卉图片,然后点击“开始识别”按钮,进行识别。识别完成后,在页面下方显示识别图像、识别结果以及花卉相关介绍。
33 |
34 | ### 数据集下载地址
35 |
36 | http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
37 |
38 | ### 训练好的参数文件 bvlc_alexnet.npy下载地址
39 |
40 | http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/bvlc_alexnet.npy
41 |
42 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/__pycache__/alexnet.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/finetune_alexnet_with_tensorflow/__pycache__/alexnet.cpython-37.pyc
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/__pycache__/caffe_classes.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/finetune_alexnet_with_tensorflow/__pycache__/caffe_classes.cpython-37.pyc
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/__pycache__/datagenerator.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/finetune_alexnet_with_tensorflow/__pycache__/datagenerator.cpython-37.pyc
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/__pycache__/test.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/finetune_alexnet_with_tensorflow/__pycache__/test.cpython-37.pyc
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/alexnet.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | import numpy as np
3 |
4 | class AlexNet(object):
5 |
6 | def __init__(self, x, keep_prob, num_classes, skip_layer,
7 | weights_path = 'DEFAULT'):
8 |
9 | # Parse input arguments into class variables
10 | self.X = x
11 | self.NUM_CLASSES = num_classes
12 | self.KEEP_PROB = keep_prob
13 | self.SKIP_LAYER = skip_layer
14 |
15 | if weights_path == 'DEFAULT':
16 | self.WEIGHTS_PATH = 'bvlc_alexnet.npy'
17 | else:
18 | self.WEIGHTS_PATH = weights_path
19 |
20 | # Call the create function to build the computational graph of AlexNet
21 | self.create()
22 |
23 | def create(self):
24 |
25 | # 1st Layer: Conv (w ReLu) -> Pool -> Lrn
26 | conv1 = conv(self.X, 11, 11, 96, 4, 4, padding = 'VALID', name = 'conv1')
27 | pool1 = max_pool(conv1, 3, 3, 2, 2, padding = 'VALID', name = 'pool1')
28 | norm1 = lrn(pool1, 2, 2e-05, 0.75, name = 'norm1')#局部响应归一化层
29 |
30 | # 2nd Layer: Conv (w ReLu) -> Pool -> Lrn with 2 groups
31 | conv2 = conv(norm1, 5, 5, 256, 1, 1, groups = 2, name = 'conv2')
32 | pool2 = max_pool(conv2, 3, 3, 2, 2, padding = 'VALID', name ='pool2')
33 | norm2 = lrn(pool2, 2, 2e-05, 0.75, name = 'norm2')
34 |
35 | # 3rd Layer: Conv (w ReLu)
36 | conv3 = conv(norm2, 3, 3, 384, 1, 1, name = 'conv3')
37 |
38 | # 4th Layer: Conv (w ReLu) splitted into two groups
39 | conv4 = conv(conv3, 3, 3, 384, 1, 1, groups = 2, name = 'conv4')
40 |
41 | # 5th Layer: Conv (w ReLu) -> Pool splitted into two groups
42 | conv5 = conv(conv4, 3, 3, 256, 1, 1, groups = 2, name = 'conv5')
43 | pool5 = max_pool(conv5, 3, 3, 2, 2, padding = 'VALID', name = 'pool5')
44 |
45 | # 6th Layer: Flatten -> FC (w ReLu) -> Dropout
46 | flattened = tf.reshape(pool5, [-1, 6*6*256])
47 | fc6 = fc(flattened, 6*6*256, 4096, name='fc6')
48 | dropout6 = dropout(fc6, self.KEEP_PROB)
49 |
50 | # 7th Layer: FC (w ReLu) -> Dropout
51 | fc7 = fc(dropout6, 4096, 4096, name = 'fc7')
52 | dropout7 = dropout(fc7, self.KEEP_PROB)
53 |
54 | # 8th Layer: FC and return unscaled activations (for tf.nn.softmax_cross_entropy_with_logits)
55 | self.fc8 = fc(dropout7, 4096, self.NUM_CLASSES, relu = False, name='fc8')
56 |
57 |
58 |
59 | def load_initial_weights(self, session):
60 |
61 | # Load the weights into memory
62 | weights_dict = np.load(self.WEIGHTS_PATH, encoding = 'bytes').item()
63 |
64 | # Loop over all layer names stored in the weights dict
65 | for op_name in weights_dict:
66 |
67 | # Check if the layer is one of the layers that should be reinitialized
68 | if op_name not in self.SKIP_LAYER:
69 |
70 | with tf.variable_scope(op_name, reuse = True):
71 |
72 | # Loop over list of weights/biases and assign them to their corresponding tf variable
73 | for data in weights_dict[op_name]:
74 |
75 | # Biases
76 | if len(data.shape) == 1:
77 |
78 | var = tf.get_variable('biases', trainable = False)
79 | session.run(var.assign(data))
80 |
81 | # Weights
82 | else:
83 |
84 | var = tf.get_variable('weights', trainable = False)
85 | session.run(var.assign(data))
86 |
87 |
88 |
89 | """
90 | Predefine all necessary layer for the AlexNet
91 | """
92 | def conv(x, filter_height, filter_width, num_filters, stride_y, stride_x, name,
93 | padding='SAME', groups=1):
94 |
95 | # Get number of input channels
96 | input_channels = int(x.get_shape()[-1])
97 |
98 | # Create lambda function for the convolution
99 | convolve = lambda i, k: tf.nn.conv2d(i, k,
100 | strides = [1, stride_y, stride_x, 1],
101 | padding = padding)
102 |
103 | with tf.variable_scope(name) as scope:
104 | # Create tf variables for the weights and biases of the conv layer
105 | weights = tf.get_variable('weights', shape = [filter_height, filter_width, input_channels/groups, num_filters])
106 | biases = tf.get_variable('biases', shape = [num_filters])
107 |
108 |
109 | if groups == 1:
110 | conv = convolve(x, weights)
111 |
112 | # In the cases of multiple groups, split inputs & weights and
113 | else:
114 | # Split input and weights and convolve them separately
115 | input_groups = tf.split(axis = 3, num_or_size_splits=groups, value=x)
116 | weight_groups = tf.split(axis = 3, num_or_size_splits=groups, value=weights)
117 | output_groups = [convolve(i, k) for i,k in zip(input_groups, weight_groups)]
118 |
119 | # Concat the convolved output together again
120 | conv = tf.concat(axis = 3, values = output_groups)
121 |
122 | # Add biases
123 | bias = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape().as_list())
124 |
125 | # Apply relu function
126 | relu = tf.nn.relu(bias, name = scope.name)
127 |
128 | return relu
129 |
130 | def fc(x, num_in, num_out, name, relu = True):
131 | with tf.variable_scope(name) as scope:
132 |
133 | # Create tf variables for the weights and biases
134 | weights = tf.get_variable('weights', shape=[num_in, num_out], trainable=True)
135 | biases = tf.get_variable('biases', [num_out], trainable=True)
136 |
137 | # Matrix multiply weights and inputs and add bias
138 | act = tf.nn.xw_plus_b(x, weights, biases, name=scope.name)
139 |
140 | if relu == True:
141 | # Apply ReLu non linearity
142 | relu = tf.nn.relu(act)
143 | return relu
144 | else:
145 | return act
146 |
147 |
148 | def max_pool(x, filter_height, filter_width, stride_y, stride_x, name, padding='SAME'):
149 | return tf.nn.max_pool(x, ksize=[1, filter_height, filter_width, 1],
150 | strides = [1, stride_y, stride_x, 1],
151 | padding = padding, name = name)
152 |
153 | def lrn(x, radius, alpha, beta, name, bias=1.0):
154 | return tf.nn.local_response_normalization(x, depth_radius = radius, alpha = alpha,
155 | beta = beta, bias = bias, name = name)
156 |
157 | def dropout(x, keep_prob):
158 | return tf.nn.dropout(x, keep_prob)
159 |
160 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/caffe_classes.py:
--------------------------------------------------------------------------------
1 | class_names = '''pink primrose
2 | hard-leaved pocket orchid
3 | canterbury bells
4 | sweet pea
5 | english marigold
6 | tiger lily
7 | moon orchid
8 | bird of paradise
9 | monkshood
10 | globe thistle
11 | snapdragon
12 | colt's foot
13 | king protea
14 | spear thistle
15 | yellow iris
16 | globe-flower
17 | purple coneflower
18 | peruvian lily
19 | balloon flower
20 | giant white arum lily
21 | fire lily
22 | pincushion flower
23 | fritillary
24 | red ginger
25 | grape hyacinth
26 | corn poppy
27 | prince of wales feathers
28 | stemless gentian
29 | artichoke
30 | sweet william
31 | carnation
32 | garden phlox
33 | love in the mist
34 | mexican aster
35 | alpine sea holly
36 | ruby-lipped cattleya
37 | cape flower
38 | great masterwort
39 | siam tulip
40 | lenten rose
41 | barbeton daisy
42 | daffodil
43 | sword lily
44 | poinsettia
45 | bolero deep blue
46 | wallflower
47 | marigold
48 | buttercup
49 | oxeye daisy
50 | common dandelion
51 | petunia
52 | wild pansy
53 | primula
54 | sunflower
55 | pelargonium
56 | bishop of llandaff
57 | gaura
58 | geranium
59 | orange dahlia
60 | pink-yellow dahlia
61 | cautleya spicata
62 | japanese anemone
63 | black-eyed susan
64 | silverbush
65 | californian poppy
66 | osteospermum
67 | spring crocus
68 | bearded iris
69 | windflower
70 | tree poppy
71 | gazania
72 | azalea
73 | water lily
74 | rose
75 | thorn apple
76 | morning glory
77 | passion flower
78 | lotus
79 | toad lily
80 | anthurium
81 | frangipani
82 | clematis
83 | hibiscus
84 | columbine
85 | desert-rose
86 | tree mallow
87 | magnolia
88 | cyclamen
89 | watercress
90 | canna lily
91 | hippeastrum
92 | bee balm
93 | ball moss
94 | foxglove
95 | bougainvillea
96 | camellia
97 | mallow
98 | mexican petunia
99 | bromelia
100 | blanket flower
101 | trumpet creeper
102 | blackberry lily'''.split("\n")
103 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/dataAugmentation.py:
--------------------------------------------------------------------------------
1 | from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
2 | datagen = ImageDataGenerator(
3 | rotation_range=60)
4 |
5 | img = load_img('image_00095.jpg')
6 | x = img_to_array(img)
7 | x = x.reshape((1,) + x.shape)
8 | i = 0
9 | for batch in datagen.flow(x,
10 | batch_size=1,
11 | save_to_dir='D:output', #保存在这个文件夹下
12 | save_prefix='lena',
13 | save_format='jpg'):
14 | i += 1
15 | if i > 20: #生成20张图
16 | break
17 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/datagenerator.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import cv2
3 |
4 | class ImageDataGenerator:
5 | def __init__(self, class_list, horizontal_flip=False, shuffle=False,
6 | mean = np.array([104., 117., 124.]), scale_size=(227, 227),
7 | nb_classes = 102):
8 |
9 |
10 | # Init params
11 | self.horizontal_flip = horizontal_flip
12 | self.n_classes = nb_classes
13 | self.shuffle = shuffle
14 | self.mean = mean
15 | self.scale_size = scale_size
16 | self.pointer = 0
17 |
18 | self.read_class_list(class_list)
19 |
20 | if self.shuffle:
21 | self.shuffle_data()
22 |
23 | def read_class_list(self,class_list):
24 | """
25 | Scan the image file and get the image paths and labels
26 | """
27 | with open(class_list) as f:
28 | lines = f.readlines()
29 | self.images = []
30 | self.labels = []
31 | for l in lines:
32 | items = l.split()
33 | self.images.append(items[0])
34 | self.labels.append(int(items[1]))
35 |
36 | #store total number of data
37 | self.data_size = len(self.labels)
38 |
39 | def shuffle_data(self):
40 | """
41 | Random shuffle the images and labels
42 | """
43 | images = self.images.copy()
44 | labels = self.labels.copy()
45 | self.images = []
46 | self.labels = []
47 |
48 | #create list of permutated index and shuffle data accoding to list
49 | idx = np.random.permutation(len(labels))#不改变自身数组
50 | for i in idx:
51 | self.images.append(images[i])
52 | self.labels.append(labels[i])
53 |
54 | def reset_pointer(self):
55 | """
56 | reset pointer to begin of the list
57 | """
58 | self.pointer = 0
59 |
60 | if self.shuffle:
61 | self.shuffle_data()
62 |
63 |
64 | def next_batch(self, batch_size):
65 | """
66 | This function gets the next n ( = batch_size) images from the path list
67 | and labels and loads the images into them into memory
68 | """
69 | # Get next batch of image (path) and labels
70 | paths = self.images[self.pointer:self.pointer + batch_size]
71 | labels = self.labels[self.pointer:self.pointer + batch_size]
72 |
73 | #update pointer
74 | self.pointer += batch_size
75 |
76 | # Read images
77 | images = np.ndarray([batch_size, self.scale_size[0], self.scale_size[1], 3])
78 | for i in range(len(paths)):
79 | img = cv2.imread(paths[i])
80 |
81 | #flip image at random if flag is selected
82 | if self.horizontal_flip and np.random.random() < 0.5:
83 | img = cv2.flip(img, 1)
84 |
85 | #rescale image
86 | img = cv2.resize(img, (self.scale_size[0], self.scale_size[1]))
87 | img = img.astype(np.float32)
88 |
89 | #subtract mean
90 | img -= self.mean
91 |
92 | images[i] = img
93 |
94 | # Expand labels to one hot encoding
95 | one_hot_labels = np.zeros((batch_size, self.n_classes))#一位有效编码
96 | for i in range(len(labels)):
97 | one_hot_labels[i][labels[i]] = 1
98 |
99 | #return array of images and labels
100 | return images, one_hot_labels
101 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/finetune.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | import tensorflow as tf
4 | from datetime import datetime
5 | from alexnet import AlexNet
6 | from datagenerator import ImageDataGenerator
7 |
8 | """
9 | Configuration settings
10 | """
11 |
12 | # Path to the textfiles for the trainings and validation set
13 |
14 | train_file = 'train.txt'
15 | val_file = 'valid.txt'
16 |
17 | # Learning params
18 | learning_rate = 0.01
19 | num_epochs = 50
20 | batch_size = 128
21 |
22 | # Network params
23 | dropout_rate = 0.5
24 | num_classes = 102
25 | train_layers = ['fc8', 'fc7']
26 |
27 | # How often we want to write the tf.summary data to disk
28 | display_step = 1
29 |
30 | # Path for tf.summary.FileWriter and to store model checkpoints
31 | filewriter_path = "/finetune_alexnet/flowers_summary"
32 | checkpoint_path = "/finetune_alexnet/"
33 |
34 | # Create parent path if it doesn't exist
35 | if not os.path.isdir(checkpoint_path): os.mkdir(checkpoint_path)
36 |
37 |
38 | # TF placeholder for graph input and output
39 | x = tf.placeholder(tf.float32, [batch_size, 227, 227, 3])
40 | y = tf.placeholder(tf.float32, [None, num_classes])
41 | keep_prob = tf.placeholder(tf.float32)
42 |
43 | # Initialize model
44 | model = AlexNet(x, keep_prob, num_classes, train_layers)
45 |
46 | # Link variable to model output
47 | score = model.fc8
48 |
49 | # List of trainable variables of the layers we want to train
50 | var_list = [v for v in tf.trainable_variables() if v.name.split('/')[0] in train_layers]
51 |
52 | # Op for calculating the loss
53 | with tf.name_scope("cross_ent"):
54 | loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = score, labels = y))
55 |
56 | # Train op
57 | with tf.name_scope("train"):
58 | # Get gradients of all trainable variables
59 | gradients = tf.gradients(loss, var_list)
60 | gradients = list(zip(gradients, var_list))
61 |
62 | # Create optimizer and apply gradient descent to the trainable variables
63 | optimizer = tf.train.GradientDescentOptimizer(learning_rate)
64 | train_op = optimizer.apply_gradients(grads_and_vars=gradients)
65 |
66 | # Add gradients to summary
67 | for gradient, var in gradients:
68 | tf.summary.histogram(var.name + '/gradient', gradient)
69 |
70 | # Add the variables we train to the summary
71 | for var in var_list:
72 | tf.summary.histogram(var.name, var)
73 |
74 | # Add the loss to summary
75 | tf.summary.scalar('cross_entropy', loss)
76 |
77 |
78 | # Evaluation op: Accuracy of the model
79 | with tf.name_scope("accuracy"):
80 | correct_pred = tf.equal(tf.argmax(score, 1), tf.argmax(y, 1))
81 | accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
82 |
83 | # Add the accuracy to the summary
84 | tf.summary.scalar('accuracy', accuracy)
85 |
86 | # Merge all summaries together
87 | merged_summary = tf.summary.merge_all()
88 |
89 | # Initialize the FileWriter
90 | writer = tf.summary.FileWriter(filewriter_path)
91 |
92 | # Initialize an saver for store model checkpoints
93 | saver = tf.train.Saver()
94 |
95 | # Initalize the data generator seperately for the training and validation set
96 | train_generator = ImageDataGenerator(train_file,
97 | horizontal_flip = True, shuffle = True)
98 | val_generator = ImageDataGenerator(val_file, shuffle = False)
99 |
100 | # Get the number of training/validation steps per epoch
101 | train_batches_per_epoch = np.floor(train_generator.data_size / batch_size).astype(np.int16)
102 | val_batches_per_epoch = np.floor(val_generator.data_size / batch_size).astype(np.int16)
103 |
104 | # Start Tensorflow session
105 | with tf.Session() as sess:
106 |
107 | # Initialize all variables
108 | sess.run(tf.global_variables_initializer())
109 |
110 | # Add the model graph to TensorBoard
111 | writer.add_graph(sess.graph)
112 |
113 | # Load the pretrained weights into the non-trainable layer
114 | #model.load_initial_weights(sess)
115 | saver.restore(sess, checkpoint_path + 'model_epoch50.ckpt')
116 | print("恢复模型成功!")
117 |
118 | print("{} Start training...".format(datetime.now()))
119 | print("{} Open Tensorboard at --logdir {}".format(datetime.now(),
120 | filewriter_path))
121 |
122 | # Loop over number of epochs
123 | for epoch in range(num_epochs):
124 |
125 | print("{} Epoch number: {}".format(datetime.now(), epoch+1))
126 |
127 | step = 1
128 |
129 | while step < train_batches_per_epoch:
130 |
131 | # Get a batch of images and labels
132 | batch_xs, batch_ys = train_generator.next_batch(batch_size)
133 |
134 | # And run the training op
135 | sess.run(train_op, feed_dict={x: batch_xs,
136 | y: batch_ys,
137 | keep_prob: dropout_rate})
138 |
139 | # Generate summary with the current batch of data and write to file
140 | if step%display_step == 0:
141 | s = sess.run(merged_summary, feed_dict={x: batch_xs,
142 | y: batch_ys,
143 | keep_prob: 1.})
144 | writer.add_summary(s, epoch*train_batches_per_epoch + step)
145 |
146 | step += 1
147 |
148 | # Validate the model on the entire validation set
149 | print("{} Start validation".format(datetime.now()))
150 | test_acc = 0.
151 | test_count = 0
152 | for _ in range(val_batches_per_epoch):
153 | batch_tx, batch_ty = val_generator.next_batch(batch_size)
154 | acc = sess.run(accuracy, feed_dict={x: batch_tx,
155 | y: batch_ty,
156 | keep_prob: 1.})
157 | test_acc += acc
158 | test_count += 1
159 | test_acc /= test_count
160 | print("{} Validation Accuracy = {:.4f}".format(datetime.now(), test_acc))
161 |
162 | # Reset the file pointer of the image data generator
163 | val_generator.reset_pointer()
164 | train_generator.reset_pointer()
165 |
166 | print("{} Saving checkpoint of model...".format(datetime.now()))
167 |
168 | #save checkpoint of the model
169 | checkpoint_name = os.path.join(checkpoint_path, 'model_epoch'+str(epoch+1)+'.ckpt')
170 | save_path = saver.save(sess, checkpoint_name)
171 |
172 | print("{} Model checkpoint saved at {}".format(datetime.now(), checkpoint_name))
173 |
174 | #模型恢复
175 | # with tf.Session() as sess1:
176 | # saver.restore(sess1, checkpoint_path+'model_epoch'
177 | # '100.ckpt')
178 | # print("恢复模型成功!")
179 | #
180 | #
181 | # # Initialize all variables
182 | # # sess1.run(tf.global_variables_initializer())
183 | #
184 | # # Add the model graph to TensorBoard
185 | # writer.add_graph(sess1.graph)
186 | # print("{} Start training...".format(datetime.now()))
187 | # print("{} Open Tensorboard at --logdir {}".format(datetime.now(),
188 | # filewriter_path))
189 | # # Loop over number of epochs
190 | # for epoch in range(num_epochs):
191 | #
192 | # print("{} Epoch number: {}".format(datetime.now(), epoch + 1))
193 | #
194 | # step = 1
195 | #
196 | # while step < train_batches_per_epoch:
197 | #
198 | # # Get a batch of images and labels
199 | # batch_xs, batch_ys = train_generator.next_batch(batch_size)
200 | #
201 | # # And run the training op
202 | # sess1.run(train_op, feed_dict={x: batch_xs,
203 | # y: batch_ys,
204 | # keep_prob: dropout_rate})
205 | #
206 | # # Generate summary with the current batch of data and write to file
207 | # if step % display_step == 0:
208 | # s = sess1.run(merged_summary, feed_dict={x: batch_xs,
209 | # y: batch_ys,
210 | # keep_prob: 1.})
211 | # writer.add_summary(s, epoch * train_batches_per_epoch + step)
212 | #
213 | # step += 1
214 | #
215 | # # Validate the model on the entire validation set
216 | # print("{} Start validation".format(datetime.now()))
217 | # test_acc = 0.
218 | # test_count = 0
219 | # for _ in range(val_batches_per_epoch):
220 | # batch_tx, batch_ty = val_generator.next_batch(batch_size)
221 | # acc = sess1.run(accuracy, feed_dict={x: batch_tx,
222 | # y: batch_ty,
223 | # keep_prob: 1.})
224 | # test_acc += acc
225 | # test_count += 1
226 | # test_acc /= test_count
227 | # print("{} Validation Accuracy = {:.4f}".format(datetime.now(), test_acc))
228 | #
229 | # # Reset the file pointer of the image data generator
230 | # val_generator.reset_pointer()
231 | # train_generator.reset_pointer()
232 | #
233 | # print("{} Saving checkpoint of model...".format(datetime.now()))
234 | #
235 | # # save checkpoint of the model
236 | # checkpoint_name = os.path.join(checkpoint_path, 'model_epoch' + str(epoch + 1) + '.ckpt')
237 | # save_path = saver.save(sess1, checkpoint_name)
238 | #
239 | # print("{} Model checkpoint saved at {}".format(datetime.now(), checkpoint_name))
240 |
241 |
242 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/main.py:
--------------------------------------------------------------------------------
1 | from flask import Flask, render_template, request, redirect, url_for, make_response, jsonify
2 | from werkzeug.utils import secure_filename
3 | import os
4 | import cv2
5 | import time
6 | from test import test_image
7 | import urllib.request
8 | from bs4 import BeautifulSoup
9 |
10 | from datetime import timedelta
11 |
12 | # 设置允许的文件格式
13 | ALLOWED_EXTENSIONS = set(['png', 'jpg', 'JPG', 'PNG', 'bmp'])
14 |
15 |
16 | def allowed_file(filename):
17 | return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
18 |
19 |
20 | app = Flask(__name__)
21 | # 设置静态文件缓存过期时间
22 | app.send_file_max_age_default = timedelta(seconds=1)
23 |
24 |
25 | # @app.route('/upload', methods=['POST', 'GET'])
26 | @app.route('/', methods=['POST', 'GET']) # 添加路由
27 | def upload():
28 | if request.method == 'POST':
29 | f = request.files['file']
30 |
31 | if not (f and allowed_file(f.filename)):
32 | return jsonify({"error": 1001, "msg": "请检查上传的图片类型,仅限于png、PNG、jpg、JPG、bmp"})
33 |
34 | user_input = request.form.get("name")
35 |
36 | basepath = os.path.dirname(__file__) # 当前文件所在路径
37 |
38 | upload_path = os.path.join(basepath, 'static/test_img', secure_filename(f.filename))
39 | # 注意:没有的文件夹一定要先创建,不然会提示没有该路径
40 |
41 | f.save(upload_path)
42 |
43 | # 使用Opencv转换一下图片格式和名称
44 | img = cv2.imread(upload_path)
45 | cv2.imwrite(os.path.join(basepath, 'static/test_img', 'test.jpg'), img)
46 | class_name=test_image(upload_path, num_class=102)
47 | # class_name = 'water lily'
48 | fo = open("url.txt", "r")
49 | for line in fo.readlines():
50 | temp = line.split(',')
51 | if temp[0] == class_name:
52 | url = temp[1]
53 | a = urllib.request.urlopen(url)
54 | html = a.read() # 读取网页源码
55 | soup = BeautifulSoup(html, 'lxml') # 生成标签树
56 |
57 | name = soup.find('h1')
58 | name = name.get_text()
59 |
60 | text = soup.find('div', class_="para")
61 | text = text.get_text()
62 |
63 | return render_template('recognition_ok.html', userinput=user_input, val1=time.time(),
64 | classname=class_name, name=name, text=text, url=url)
65 |
66 | return render_template('recognition.html')
67 |
68 |
69 | if __name__ == '__main__':
70 | app.run(debug=True)
71 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/static/css/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/finetune_alexnet_with_tensorflow/static/css/__init__.py
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/static/css/main.css:
--------------------------------------------------------------------------------
1 | body{
2 | background-color: ghostwhite;
3 | margin: 0 auto;
4 | text-align: center;
5 | }
6 |
7 | .t1{
8 | align-content: center;
9 | border-spacing: 250px 25px;
10 | margin-left: -55px;
11 |
12 | }
13 |
14 | hr{
15 | width:80%;
16 | margin:0 auto;
17 | border: 0;
18 | height: 1px;
19 | background-image: linear-gradient(to right, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0.75), rgba(0, 0, 0, 0));
20 |
21 | }
22 |
23 | .bg1{
24 | width: 800px;
25 | height: 100px;
26 | background-color: dimgrey;
27 | color: floralwhite;
28 | text-align: center;
29 | line-height: 100px;
30 | margin-left: 150px;
31 | }
32 |
33 | .bg2{
34 | width: 500px;
35 | height: 595px;
36 | border: 2px solid dimgrey;
37 | float: left;
38 | margin-left: 50px;
39 | }
40 |
41 | .bg3{
42 | width: 500px;
43 | height: 600px;
44 | /*border: 1px solid dimgrey;*/
45 | float: left;
46 | margin-left: 10px;
47 | }
48 | .bg3 table{
49 | border: 2px solid dimgrey;
50 | border-collapse:collapse;
51 | padding: 10px;
52 | }
53 | .bg3 table td{
54 | border: 2px solid dimgrey;
55 | width: 500px;
56 | height: 295px;
57 | text-align: left;
58 | vertical-align: top;
59 | }
60 |
61 | .file1 {
62 | /*margin-top: 5px;*/
63 | background: #D0EEFF;
64 | border: 1px solid #99D3F5;
65 | border-radius: 4px;
66 | padding: 4px 12px;
67 | overflow: hidden;
68 | color: black;
69 | text-decoration: none;
70 | text-indent: 0;
71 | width: 200px;
72 | height: 60px;
73 | font-size: 30px;
74 | text-align: center;
75 | font-weight: 600;
76 | opacity: 0.5;
77 |
78 | }
79 | .file {
80 | position: relative;
81 | display: inline-block;
82 | background: #D0EEFF;
83 | border: 1px solid #99D3F5;
84 | border-radius: 4px;
85 | padding: 4px 12px;
86 | overflow: hidden;
87 | color: black;
88 | text-decoration: none;
89 | text-indent: 0;
90 | width: 180px;
91 | height: 50px;
92 | font-size: 30px;
93 | font-weight: 600;
94 | text-align: center;
95 | opacity: 0.5;
96 |
97 |
98 | }
99 | .file input {
100 | position: absolute;
101 | font-size: 30px;
102 | right: 0;
103 | top: 10px;
104 | opacity: 0.5;
105 |
106 | }
107 | .file:hover {
108 | background: #AADFFD;
109 | border-color: #78C3F3;
110 | color: #004974;
111 | text-decoration: none;
112 | }
113 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/static/js/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/finetune_alexnet_with_tensorflow/static/js/__init__.py
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/static/test_img/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/finetune_alexnet_with_tensorflow/static/test_img/__init__.py
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/static/test_img/image_03102.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/finetune_alexnet_with_tensorflow/static/test_img/image_03102.jpg
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/static/test_img/image_03119.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/finetune_alexnet_with_tensorflow/static/test_img/image_03119.jpg
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/static/test_img/test.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/finetune_alexnet_with_tensorflow/static/test_img/test.jpg
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/templates/recognition.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 | 花卉识别
7 |
8 |
9 |
10 |
11 |
花卉识别
12 |
13 |
14 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 | 识别结果
33 |
34 | |
35 |
36 |
37 |
38 | 百度百科
39 |
40 |
41 | |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
69 |
70 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/templates/recognition_ok.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 | 花卉识别
7 |
8 |
9 |
10 |
11 |
花卉识别
12 |
13 |
14 |
24 |
25 |
 }})
26 |
27 |
28 |
29 |
30 |
31 | 识别结果
32 |
33 | 花卉名称:{{classname}}
34 | 译名: {{name}}
35 | |
36 |
37 |
38 |
39 | 百度百科
40 |
41 | {{text}} 更多>>
42 | |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/test.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | import tensorflow as tf
4 | from alexnet import AlexNet # import训练好的网络
5 | import matplotlib.pyplot as plt
6 | from caffe_classes import class_names
7 |
8 | class_name = class_names # oxford102种花的标签
9 |
10 |
11 | def test_image(path_image, num_class, weights_path='Default'):
12 | # 把新图片进行转换
13 | img_string = tf.read_file(path_image)
14 | # img_decoded = tf.image.decode_png(img_string, channels=3)
15 | img_decoded = tf.image.decode_jpeg(img_string, channels=3)
16 | img_resized = tf.image.resize_images(img_decoded, [227, 227])
17 | img_resized = tf.reshape(img_resized, shape=[1, 227, 227, 3])
18 |
19 | # 图片通过AlexNet
20 | model = AlexNet(img_resized, 0.5, 102, skip_layer='', weights_path=weights_path)
21 | score = tf.nn.softmax(model.fc8)
22 | max = tf.arg_max(score, 1)
23 | saver = tf.train.Saver()
24 |
25 | with tf.Session() as sess:
26 | sess.run(tf.global_variables_initializer())
27 | saver.restore(sess,
28 | "/finetune_alexnet/model_epoch50.ckpt") # 导入训练好的参数
29 | # score = model.fc8
30 | print(sess.run(model.fc8))
31 | prob = sess.run(max)[0]
32 |
33 | # 在matplotlib中观测分类结果
34 | plt.imshow(img_decoded.eval())
35 | plt.title("Class:" + class_name[prob])#到标签文件caffe_classes.py文件中根据prob查找对应的标签
36 | print(prob)
37 | plt.show()
38 | return class_name[prob]
39 |
40 |
41 | #test_image('image_06785.jpg', num_class=102) # 输入一张新图片
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/train.txt:
--------------------------------------------------------------------------------
1 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03860.jpg 16
2 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06092.jpg 13
3 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02400.jpg 42
4 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02852.jpg 55
5 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07710.jpg 96
6 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07191.jpg 5
7 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03050.jpg 91
8 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07742.jpg 96
9 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06523.jpg 25
10 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05517.jpg 86
11 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06248.jpg 60
12 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07225.jpg 6
13 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07279.jpg 61
14 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08148.jpg 56
15 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05699.jpg 41
16 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06715.jpg 78
17 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08165.jpg 61
18 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07153.jpg 44
19 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04806.jpg 84
20 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05972.jpg 68
21 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05523.jpg 65
22 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06946.jpg 33
23 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04855.jpg 90
24 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01176.jpg 73
25 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08088.jpg 34
26 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07600.jpg 95
27 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05637.jpg 3
28 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04500.jpg 70
29 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06624.jpg 2
30 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05787.jpg 12
31 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03006.jpg 59
32 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03725.jpg 52
33 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00487.jpg 87
34 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07192.jpg 5
35 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05794.jpg 37
36 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07424.jpg 93
37 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04726.jpg 54
38 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02075.jpg 74
39 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06181.jpg 18
40 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05292.jpg 69
41 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03722.jpg 52
42 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05762.jpg 12
43 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05191.jpg 4
44 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05174.jpg 4
45 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02454.jpg 75
46 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02014.jpg 79
47 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06368.jpg 14
48 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05389.jpg 21
49 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06766.jpg 0
50 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04333.jpg 35
51 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05922.jpg 67
52 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06660.jpg 15
53 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05746.jpg 12
54 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05576.jpg 65
55 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05182.jpg 4
56 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02404.jpg 42
57 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03691.jpg 52
58 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02353.jpg 42
59 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07560.jpg 94
60 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07876.jpg 98
61 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05443.jpg 53
62 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02832.jpg 55
63 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04107.jpg 28
64 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06886.jpg 26
65 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07708.jpg 96
66 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04238.jpg 51
67 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06517.jpg 25
68 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01052.jpg 45
69 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06179.jpg 18
70 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05783.jpg 12
71 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06232.jpg 48
72 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01640.jpg 81
73 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03315.jpg 7
74 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02125.jpg 74
75 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07924.jpg 99
76 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06549.jpg 49
77 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04464.jpg 89
78 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07762.jpg 97
79 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08135.jpg 56
80 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02081.jpg 74
81 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01715.jpg 82
82 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04986.jpg 46
83 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04945.jpg 19
84 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06192.jpg 18
85 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06567.jpg 49
86 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06357.jpg 14
87 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06213.jpg 48
88 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05947.jpg 67
89 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06623.jpg 2
90 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06460.jpg 32
91 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05590.jpg 31
92 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01122.jpg 45
93 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03038.jpg 91
94 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06233.jpg 48
95 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06494.jpg 25
96 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05437.jpg 53
97 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08154.jpg 61
98 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07942.jpg 100
99 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05425.jpg 53
100 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05369.jpg 21
101 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05876.jpg 62
102 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07825.jpg 97
103 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03183.jpg 64
104 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06845.jpg 23
105 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01455.jpg 50
106 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05581.jpg 65
107 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05142.jpg 1
108 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07914.jpg 99
109 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06386.jpg 14
110 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05931.jpg 67
111 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05015.jpg 46
112 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05186.jpg 4
113 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06275.jpg 60
114 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04523.jpg 70
115 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05475.jpg 86
116 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00401.jpg 72
117 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04605.jpg 39
118 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04935.jpg 19
119 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02205.jpg 40
120 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01816.jpg 82
121 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07294.jpg 36
122 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05074.jpg 58
123 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03424.jpg 22
124 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07619.jpg 95
125 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04852.jpg 90
126 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00664.jpg 88
127 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02614.jpg 83
128 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06443.jpg 32
129 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00668.jpg 88
130 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03102.jpg 10
131 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06273.jpg 60
132 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05310.jpg 69
133 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04236.jpg 51
134 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07868.jpg 98
135 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02006.jpg 79
136 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06741.jpg 0
137 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01819.jpg 82
138 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02523.jpg 75
139 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08026.jpg 101
140 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08064.jpg 98
141 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00200.jpg 76
142 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06438.jpg 8
143 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07087.jpg 9
144 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04284.jpg 17
145 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06832.jpg 23
146 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01759.jpg 82
147 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06218.jpg 48
148 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03730.jpg 52
149 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05670.jpg 3
150 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03362.jpg 7
151 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06375.jpg 14
152 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05106.jpg 1
153 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05430.jpg 53
154 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01691.jpg 81
155 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02475.jpg 75
156 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04507.jpg 70
157 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04027.jpg 11
158 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03908.jpg 16
159 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05916.jpg 67
160 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06531.jpg 49
161 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04139.jpg 28
162 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08036.jpg 101
163 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07026.jpg 38
164 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06010.jpg 68
165 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02981.jpg 59
166 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05412.jpg 53
167 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07781.jpg 97
168 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00667.jpg 88
169 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08007.jpg 101
170 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07165.jpg 5
171 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06755.jpg 0
172 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05351.jpg 21
173 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06593.jpg 24
174 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07169.jpg 5
175 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06169.jpg 18
176 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07059.jpg 66
177 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01990.jpg 79
178 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06762.jpg 0
179 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06674.jpg 15
180 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07221.jpg 6
181 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06027.jpg 92
182 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03058.jpg 91
183 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06698.jpg 78
184 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02183.jpg 74
185 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00444.jpg 72
186 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07617.jpg 95
187 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03012.jpg 59
188 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06118.jpg 63
189 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04036.jpg 11
190 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05964.jpg 68
191 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08092.jpg 9
192 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05567.jpg 65
193 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06692.jpg 15
194 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02500.jpg 75
195 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05040.jpg 58
196 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07518.jpg 94
197 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01966.jpg 79
198 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06087.jpg 13
199 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06578.jpg 24
200 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04978.jpg 46
201 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06870.jpg 26
202 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01613.jpg 81
203 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05428.jpg 53
204 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04663.jpg 47
205 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00587.jpg 87
206 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04030.jpg 11
207 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04009.jpg 11
208 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07215.jpg 6
209 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00695.jpg 88
210 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03935.jpg 50
211 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03117.jpg 10
212 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07023.jpg 38
213 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01285.jpg 73
214 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06229.jpg 48
215 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05588.jpg 31
216 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03835.jpg 16
217 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04829.jpg 90
218 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00177.jpg 76
219 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06812.jpg 20
220 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05004.jpg 46
221 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05289.jpg 69
222 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03356.jpg 7
223 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06000.jpg 68
224 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04689.jpg 47
225 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04518.jpg 70
226 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06237.jpg 48
227 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05010.jpg 46
228 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02671.jpg 57
229 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02231.jpg 40
230 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03440.jpg 22
231 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04586.jpg 39
232 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03072.jpg 91
233 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07653.jpg 95
234 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04923.jpg 19
235 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00893.jpg 80
236 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06052.jpg 13
237 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02307.jpg 40
238 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02209.jpg 40
239 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05664.jpg 3
240 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02554.jpg 83
241 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03875.jpg 16
242 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07351.jpg 93
243 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01234.jpg 73
244 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06384.jpg 14
245 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06910.jpg 30
246 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04300.jpg 17
247 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02275.jpg 40
248 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08065.jpg 30
249 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03510.jpg 29
250 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05330.jpg 69
251 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02519.jpg 75
252 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06186.jpg 18
253 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05638.jpg 3
254 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06940.jpg 33
255 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00737.jpg 88
256 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04779.jpg 84
257 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04938.jpg 19
258 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02675.jpg 57
259 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01525.jpg 43
260 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00717.jpg 88
261 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03651.jpg 52
262 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01566.jpg 43
263 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06214.jpg 48
264 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07599.jpg 95
265 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04885.jpg 90
266 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05721.jpg 41
267 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01627.jpg 81
268 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04449.jpg 89
269 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06592.jpg 24
270 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05081.jpg 58
271 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06717.jpg 78
272 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06693.jpg 78
273 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03256.jpg 64
274 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05731.jpg 41
275 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06794.jpg 20
276 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04625.jpg 47
277 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07194.jpg 5
278 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06911.jpg 30
279 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04676.jpg 47
280 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06261.jpg 60
281 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04690.jpg 47
282 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04458.jpg 89
283 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04095.jpg 28
284 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06800.jpg 20
285 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04558.jpg 39
286 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02191.jpg 40
287 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03667.jpg 52
288 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03873.jpg 16
289 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04418.jpg 89
290 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07823.jpg 97
291 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07354.jpg 93
292 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07802.jpg 97
293 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00411.jpg 72
294 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07891.jpg 98
295 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04583.jpg 39
296 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01760.jpg 82
297 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04772.jpg 84
298 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03617.jpg 71
299 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05400.jpg 53
300 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04735.jpg 54
301 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04814.jpg 84
302 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04720.jpg 54
303 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05419.jpg 53
304 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05866.jpg 62
305 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06878.jpg 26
306 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02565.jpg 83
307 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06404.jpg 8
308 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03855.jpg 16
309 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05240.jpg 27
310 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05261.jpg 27
311 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06243.jpg 48
312 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03579.jpg 71
313 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06350.jpg 14
314 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03783.jpg 36
315 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05900.jpg 62
316 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07113.jpg 9
317 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05374.jpg 21
318 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01304.jpg 73
319 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07448.jpg 93
320 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07235.jpg 56
321 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04807.jpg 84
322 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02386.jpg 42
323 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05563.jpg 65
324 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03283.jpg 64
325 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05571.jpg 65
326 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05752.jpg 12
327 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08175.jpg 61
328 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08096.jpg 9
329 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07098.jpg 9
330 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04538.jpg 70
331 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06994.jpg 34
332 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04020.jpg 11
333 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06066.jpg 13
334 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03101.jpg 10
335 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02876.jpg 85
336 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06356.jpg 14
337 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05232.jpg 27
338 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06083.jpg 13
339 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01142.jpg 45
340 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06038.jpg 92
341 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05974.jpg 68
342 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00118.jpg 76
343 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00274.jpg 72
344 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07061.jpg 66
345 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01973.jpg 79
346 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06033.jpg 92
347 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05498.jpg 86
348 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06909.jpg 30
349 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05925.jpg 67
350 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06437.jpg 8
351 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05306.jpg 69
352 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08095.jpg 9
353 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06576.jpg 24
354 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01528.jpg 43
355 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05362.jpg 21
356 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07178.jpg 5
357 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05609.jpg 31
358 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04215.jpg 51
359 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01831.jpg 77
360 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06804.jpg 20
361 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03442.jpg 22
362 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06892.jpg 30
363 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07218.jpg 6
364 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07039.jpg 38
365 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04916.jpg 19
366 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06663.jpg 15
367 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06885.jpg 26
368 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03488.jpg 29
369 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01942.jpg 77
370 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02087.jpg 74
371 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06632.jpg 2
372 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03215.jpg 64
373 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04234.jpg 51
374 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00144.jpg 76
375 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05259.jpg 27
376 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03270.jpg 64
377 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01500.jpg 43
378 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06175.jpg 18
379 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06547.jpg 49
380 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02901.jpg 85
381 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06744.jpg 0
382 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03269.jpg 64
383 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03489.jpg 29
384 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08063.jpg 98
385 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08086.jpg 34
386 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06902.jpg 30
387 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05062.jpg 58
388 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05379.jpg 21
389 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08048.jpg 23
390 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05755.jpg 12
391 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05724.jpg 41
392 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07130.jpg 44
393 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03619.jpg 71
394 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06129.jpg 63
395 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04400.jpg 35
396 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04369.jpg 35
397 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01855.jpg 77
398 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08105.jpg 5
399 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01904.jpg 77
400 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06420.jpg 8
401 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05234.jpg 27
402 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03555.jpg 71
403 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05538.jpg 65
404 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05164.jpg 4
405 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05260.jpg 27
406 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03046.jpg 91
407 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03729.jpg 52
408 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02485.jpg 75
409 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04723.jpg 54
410 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06075.jpg 13
411 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07634.jpg 95
412 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07247.jpg 56
413 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07065.jpg 66
414 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00116.jpg 76
415 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02445.jpg 42
416 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07908.jpg 99
417 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03955.jpg 50
418 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06292.jpg 60
419 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06616.jpg 2
420 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06550.jpg 49
421 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01545.jpg 43
422 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06105.jpg 63
423 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02949.jpg 59
424 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06364.jpg 14
425 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07058.jpg 66
426 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05042.jpg 58
427 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08126.jpg 56
428 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03395.jpg 22
429 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04741.jpg 54
430 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02761.jpg 55
431 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04152.jpg 28
432 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08103.jpg 6
433 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04683.jpg 47
434 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07851.jpg 98
435 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07203.jpg 6
436 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06989.jpg 34
437 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03150.jpg 10
438 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05689.jpg 41
439 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04241.jpg 51
440 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04167.jpg 51
441 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02521.jpg 75
442 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04968.jpg 46
443 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06408.jpg 8
444 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04142.jpg 28
445 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08056.jpg 90
446 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07604.jpg 95
447 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01705.jpg 82
448 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03612.jpg 71
449 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05071.jpg 58
450 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06045.jpg 92
451 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06206.jpg 48
452 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05000.jpg 46
453 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06626.jpg 2
454 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05199.jpg 4
455 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05625.jpg 31
456 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05091.jpg 1
457 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04123.jpg 28
458 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05728.jpg 41
459 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05685.jpg 41
460 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06966.jpg 33
461 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01923.jpg 77
462 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01295.jpg 73
463 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06710.jpg 78
464 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07229.jpg 6
465 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03253.jpg 64
466 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06525.jpg 25
467 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06642.jpg 2
468 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06869.jpg 26
469 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00921.jpg 80
470 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04223.jpg 51
471 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04127.jpg 28
472 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05272.jpg 27
473 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02762.jpg 55
474 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07195.jpg 5
475 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07662.jpg 95
476 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02880.jpg 85
477 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05874.jpg 62
478 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06947.jpg 33
479 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05510.jpg 86
480 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04289.jpg 17
481 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04327.jpg 35
482 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04134.jpg 28
483 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06831.jpg 23
484 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02507.jpg 75
485 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08075.jpg 30
486 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04358.jpg 35
487 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07630.jpg 95
488 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08076.jpg 30
489 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05564.jpg 65
490 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04524.jpg 70
491 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01270.jpg 73
492 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06252.jpg 60
493 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05407.jpg 53
494 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07546.jpg 94
495 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03637.jpg 71
496 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00442.jpg 72
497 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03360.jpg 7
498 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07570.jpg 94
499 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04573.jpg 39
500 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05823.jpg 37
501 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07871.jpg 98
502 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01324.jpg 50
503 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02080.jpg 74
504 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05097.jpg 1
505 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08109.jpg 5
506 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08051.jpg 23
507 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00501.jpg 87
508 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03465.jpg 29
509 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07233.jpg 6
510 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07125.jpg 44
511 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03791.jpg 36
512 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06335.jpg 49
513 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07913.jpg 99
514 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07136.jpg 44
515 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07930.jpg 99
516 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04019.jpg 11
517 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03294.jpg 7
518 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06242.jpg 48
519 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01582.jpg 43
520 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05461.jpg 86
521 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02609.jpg 83
522 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04105.jpg 28
523 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07817.jpg 97
524 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07019.jpg 38
525 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05187.jpg 4
526 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05167.jpg 4
527 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06333.jpg 49
528 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00380.jpg 72
529 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07264.jpg 56
530 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06781.jpg 20
531 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00576.jpg 87
532 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03822.jpg 36
533 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06962.jpg 33
534 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03051.jpg 91
535 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08078.jpg 66
536 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05828.jpg 37
537 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06582.jpg 24
538 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02471.jpg 75
539 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05789.jpg 12
540 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02863.jpg 85
541 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03229.jpg 64
542 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06689.jpg 15
543 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07797.jpg 97
544 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07803.jpg 97
545 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06842.jpg 23
546 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00216.jpg 76
547 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05937.jpg 67
548 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06491.jpg 25
549 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08003.jpg 101
550 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08074.jpg 30
551 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04919.jpg 19
552 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05573.jpg 65
553 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00126.jpg 76
554 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05345.jpg 21
555 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07326.jpg 93
556 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06256.jpg 60
557 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06788.jpg 20
558 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02573.jpg 83
559 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02340.jpg 42
560 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06144.jpg 63
561 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03080.jpg 91
562 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03399.jpg 22
563 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04672.jpg 47
564 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05896.jpg 62
565 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00036.jpg 76
566 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05779.jpg 12
567 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06803.jpg 20
568 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04746.jpg 54
569 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02578.jpg 83
570 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05485.jpg 86
571 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07983.jpg 100
572 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05796.jpg 37
573 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02776.jpg 55
574 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06771.jpg 0
575 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06310.jpg 49
576 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05601.jpg 31
577 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02649.jpg 57
578 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02911.jpg 85
579 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06093.jpg 13
580 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03597.jpg 71
581 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01716.jpg 82
582 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06468.jpg 32
583 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07862.jpg 98
584 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05951.jpg 67
585 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01972.jpg 79
586 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07562.jpg 94
587 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07628.jpg 95
588 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04846.jpg 90
589 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06133.jpg 63
590 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05066.jpg 58
591 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05484.jpg 86
592 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06017.jpg 92
593 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06424.jpg 8
594 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02310.jpg 40
595 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01997.jpg 79
596 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07131.jpg 44
597 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06667.jpg 15
598 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08057.jpg 90
599 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05727.jpg 41
600 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03967.jpg 50
601 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06690.jpg 15
602 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02003.jpg 79
603 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06798.jpg 20
604 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06681.jpg 15
605 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07214.jpg 6
606 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06750.jpg 0
607 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05431.jpg 53
608 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01655.jpg 81
609 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08164.jpg 61
610 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07063.jpg 66
611 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04645.jpg 47
612 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01213.jpg 73
613 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04347.jpg 35
614 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08115.jpg 92
615 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03181.jpg 10
616 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07030.jpg 38
617 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08108.jpg 5
618 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07080.jpg 66
619 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08118.jpg 56
620 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02939.jpg 59
621 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03887.jpg 16
622 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04836.jpg 90
623 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01900.jpg 77
624 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07974.jpg 100
625 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03787.jpg 36
626 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00964.jpg 45
627 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08161.jpg 61
628 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06308.jpg 49
629 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03848.jpg 16
630 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08024.jpg 101
631 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02279.jpg 40
632 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00028.jpg 76
633 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03336.jpg 7
634 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08166.jpg 61
635 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02828.jpg 55
636 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00319.jpg 72
637 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06828.jpg 23
638 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03843.jpg 16
639 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06979.jpg 34
640 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07069.jpg 66
641 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02166.jpg 74
642 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03473.jpg 29
643 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00535.jpg 87
644 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01975.jpg 79
645 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03681.jpg 52
646 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07954.jpg 100
647 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06768.jpg 0
648 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06856.jpg 26
649 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00656.jpg 88
650 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04660.jpg 47
651 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08018.jpg 101
652 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02420.jpg 42
653 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05599.jpg 31
654 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05243.jpg 27
655 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07144.jpg 44
656 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00564.jpg 87
657 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05367.jpg 21
658 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05146.jpg 1
659 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06002.jpg 68
660 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04970.jpg 46
661 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06016.jpg 92
662 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05994.jpg 68
663 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04059.jpg 11
664 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06799.jpg 20
665 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07142.jpg 44
666 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02706.jpg 57
667 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04776.jpg 84
668 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06605.jpg 24
669 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06516.jpg 25
670 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00079.jpg 76
671 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05786.jpg 12
672 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01821.jpg 82
673 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05832.jpg 37
674 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01019.jpg 45
675 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01832.jpg 77
676 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06423.jpg 8
677 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05718.jpg 41
678 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06950.jpg 33
679 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02373.jpg 42
680 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04208.jpg 51
681 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06652.jpg 15
682 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01448.jpg 50
683 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06736.jpg 0
684 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02945.jpg 59
685 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05819.jpg 37
686 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01587.jpg 81
687 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05479.jpg 86
688 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05986.jpg 68
689 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07963.jpg 100
690 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01533.jpg 43
691 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04297.jpg 17
692 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01385.jpg 50
693 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08167.jpg 61
694 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01534.jpg 43
695 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05740.jpg 41
696 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04103.jpg 28
697 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06797.jpg 20
698 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06013.jpg 92
699 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06714.jpg 78
700 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01221.jpg 73
701 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06688.jpg 15
702 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06839.jpg 23
703 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00590.jpg 87
704 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06061.jpg 13
705 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05491.jpg 86
706 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07315.jpg 93
707 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04740.jpg 54
708 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05145.jpg 1
709 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06590.jpg 24
710 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07528.jpg 94
711 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06481.jpg 32
712 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04554.jpg 70
713 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01028.jpg 45
714 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06449.jpg 32
715 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03802.jpg 36
716 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05083.jpg 58
717 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02748.jpg 57
718 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04897.jpg 19
719 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05653.jpg 3
720 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04925.jpg 19
721 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07706.jpg 96
722 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05997.jpg 68
723 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00534.jpg 87
724 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04770.jpg 84
725 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07918.jpg 99
726 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05046.jpg 58
727 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06348.jpg 14
728 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02996.jpg 59
729 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05839.jpg 37
730 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02357.jpg 42
731 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04244.jpg 17
732 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06972.jpg 34
733 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03093.jpg 91
734 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06387.jpg 14
735 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03333.jpg 7
736 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05115.jpg 1
737 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01654.jpg 81
738 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02458.jpg 75
739 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06515.jpg 25
740 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06127.jpg 63
741 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06936.jpg 33
742 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07371.jpg 93
743 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04438.jpg 89
744 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06574.jpg 24
745 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07910.jpg 99
746 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02146.jpg 74
747 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05815.jpg 37
748 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07564.jpg 94
749 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01317.jpg 50
750 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08004.jpg 101
751 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08177.jpg 61
752 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04771.jpg 84
753 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07389.jpg 93
754 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07790.jpg 97
755 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07043.jpg 38
756 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03666.jpg 52
757 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04566.jpg 39
758 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04395.jpg 35
759 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05983.jpg 68
760 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01785.jpg 82
761 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03609.jpg 71
762 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06285.jpg 60
763 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02583.jpg 83
764 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07052.jpg 66
765 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05897.jpg 62
766 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03761.jpg 36
767 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06931.jpg 33
768 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02866.jpg 85
769 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06480.jpg 32
770 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04428.jpg 89
771 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07771.jpg 97
772 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07571.jpg 94
773 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05396.jpg 21
774 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01456.jpg 50
775 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04939.jpg 19
776 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08112.jpg 92
777 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08013.jpg 101
778 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04975.jpg 46
779 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01254.jpg 73
780 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06982.jpg 34
781 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02894.jpg 85
782 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06816.jpg 23
783 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06119.jpg 63
784 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00848.jpg 80
785 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04537.jpg 70
786 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07290.jpg 36
787 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04694.jpg 47
788 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06430.jpg 8
789 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00876.jpg 80
790 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03505.jpg 29
791 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07972.jpg 100
792 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01236.jpg 73
793 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05585.jpg 31
794 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05344.jpg 21
795 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00297.jpg 72
796 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00803.jpg 80
797 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06053.jpg 13
798 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07748.jpg 96
799 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02812.jpg 55
800 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01852.jpg 77
801 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05950.jpg 67
802 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07045.jpg 38
803 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04993.jpg 46
804 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04443.jpg 89
805 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07711.jpg 96
806 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03114.jpg 10
807 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06699.jpg 78
808 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05659.jpg 3
809 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05137.jpg 1
810 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05619.jpg 31
811 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01552.jpg 43
812 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07549.jpg 94
813 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02770.jpg 55
814 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01539.jpg 43
815 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02963.jpg 59
816 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06697.jpg 78
817 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07025.jpg 38
818 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04299.jpg 17
819 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04279.jpg 17
820 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03164.jpg 10
821 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03446.jpg 22
822 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00672.jpg 88
823 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06704.jpg 78
824 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06618.jpg 2
825 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06524.jpg 25
826 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02716.jpg 57
827 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05888.jpg 62
828 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00383.jpg 72
829 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04066.jpg 11
830 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04703.jpg 54
831 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04614.jpg 39
832 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05640.jpg 3
833 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06855.jpg 26
834 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05321.jpg 69
835 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06522.jpg 25
836 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02197.jpg 40
837 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04827.jpg 84
838 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05194.jpg 4
839 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02598.jpg 83
840 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04189.jpg 51
841 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06601.jpg 24
842 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02643.jpg 57
843 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05472.jpg 86
844 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03719.jpg 52
845 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07107.jpg 9
846 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07872.jpg 98
847 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00922.jpg 80
848 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02927.jpg 59
849 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07307.jpg 93
850 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00864.jpg 80
851 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01918.jpg 77
852 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05906.jpg 67
853 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03548.jpg 71
854 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01126.jpg 45
855 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05891.jpg 62
856 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03582.jpg 71
857 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08033.jpg 101
858 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07709.jpg 96
859 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02779.jpg 55
860 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07140.jpg 44
861 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06254.jpg 60
862 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07690.jpg 96
863 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07274.jpg 61
864 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00514.jpg 87
865 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03538.jpg 29
866 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04563.jpg 39
867 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05798.jpg 37
868 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03484.jpg 29
869 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04488.jpg 70
870 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05336.jpg 69
871 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07941.jpg 99
872 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03427.jpg 22
873 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06170.jpg 18
874 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00986.jpg 45
875 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07988.jpg 100
876 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06122.jpg 63
877 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04851.jpg 90
878 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05809.jpg 37
879 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04287.jpg 17
880 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01101.jpg 45
881 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05918.jpg 67
882 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06487.jpg 25
883 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02884.jpg 85
884 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06556.jpg 49
885 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05333.jpg 69
886 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06040.jpg 92
887 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07258.jpg 56
888 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07010.jpg 38
889 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05036.jpg 58
890 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06101.jpg 63
891 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01131.jpg 45
892 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03518.jpg 29
893 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07135.jpg 44
894 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06956.jpg 33
895 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00888.jpg 80
896 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02600.jpg 83
897 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06634.jpg 2
898 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07000.jpg 34
899 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06941.jpg 33
900 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07117.jpg 9
901 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07900.jpg 99
902 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04480.jpg 89
903 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06861.jpg 26
904 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06189.jpg 18
905 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07300.jpg 89
906 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05662.jpg 3
907 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00945.jpg 80
908 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07967.jpg 100
909 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02689.jpg 57
910 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04860.jpg 90
911 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03034.jpg 91
912 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03119.jpg 10
913 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08094.jpg 9
914 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05161.jpg 4
915 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06651.jpg 2
916 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04758.jpg 54
917 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05616.jpg 31
918 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05753.jpg 12
919 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02184.jpg 74
920 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06180.jpg 18
921 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04329.jpg 35
922 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05636.jpg 3
923 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05279.jpg 69
924 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06280.jpg 60
925 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06161.jpg 18
926 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06398.jpg 8
927 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05230.jpg 27
928 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03157.jpg 10
929 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06857.jpg 26
930 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06872.jpg 26
931 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05108.jpg 1
932 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00666.jpg 88
933 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05893.jpg 62
934 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04491.jpg 70
935 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07952.jpg 100
936 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00375.jpg 72
937 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05309.jpg 69
938 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06922.jpg 30
939 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06765.jpg 0
940 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04572.jpg 39
941 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06973.jpg 34
942 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07707.jpg 96
943 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04058.jpg 11
944 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04341.jpg 35
945 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03811.jpg 36
946 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06415.jpg 8
947 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04224.jpg 51
948 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04797.jpg 84
949 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04475.jpg 89
950 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03404.jpg 22
951 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06058.jpg 13
952 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02257.jpg 40
953 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05226.jpg 27
954 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03392.jpg 22
955 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03441.jpg 22
956 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02182.jpg 74
957 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07096.jpg 9
958 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06587.jpg 24
959 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06614.jpg 2
960 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03302.jpg 7
961 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07237.jpg 56
962 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02848.jpg 55
963 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07156.jpg 44
964 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07013.jpg 38
965 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03864.jpg 16
966 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00912.jpg 80
967 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05881.jpg 62
968 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06833.jpg 23
969 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04338.jpg 35
970 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05124.jpg 1
971 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03237.jpg 64
972 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04252.jpg 17
973 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01690.jpg 81
974 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00485.jpg 87
975 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03262.jpg 64
976 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_00773.jpg 88
977 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06700.jpg 78
978 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07986.jpg 100
979 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07226.jpg 6
980 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04904.jpg 19
981 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06453.jpg 32
982 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06459.jpg 32
983 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01779.jpg 82
984 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02601.jpg 83
985 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03769.jpg 36
986 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07741.jpg 96
987 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05595.jpg 31
988 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08122.jpg 56
989 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07934.jpg 99
990 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03313.jpg 7
991 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_08041.jpg 101
992 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04298.jpg 17
993 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04757.jpg 54
994 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02688.jpg 57
995 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01932.jpg 77
996 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06450.jpg 32
997 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06980.jpg 34
998 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02916.jpg 85
999 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06474.jpg 32
1000 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02879.jpg 85
1001 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05634.jpg 3
1002 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_05560.jpg 65
1003 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04582.jpg 39
1004 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03069.jpg 91
1005 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03528.jpg 29
1006 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01987.jpg 79
1007 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01417.jpg 50
1008 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01602.jpg 81
1009 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07863.jpg 98
1010 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02408.jpg 42
1011 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_04045.jpg 11
1012 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_06142.jpg 63
1013 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07082.jpg 66
1014 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03345.jpg 7
1015 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07587.jpg 94
1016 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02944.jpg 59
1017 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_07434.jpg 93
1018 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_02684.jpg 57
1019 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_01639.jpg 81
1020 | C:\Users\Administrator\Desktop\oxford/data/jpg\image_03165.jpg 10
1021 |
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/url.txt:
--------------------------------------------------------------------------------
1 | pink primrose,https://baike.baidu.com/item/%E6%A8%B1%E8%8D%89%E8%8A%B1/10266812?fr=aladdin
2 | hard-leaved pocket orchid,https://baike.baidu.com/item/%E7%A1%AC%E5%8F%B6%E5%85%9C%E5%85%B0
3 | canterbury bells,https://baike.baidu.com/item/%E9%A3%8E%E9%93%83%E8%8D%89/680375
4 | sweet pea,https://baike.baidu.com/item/%E8%B1%8C%E8%B1%86%E8%8A%B1
5 | english marigold,https://baike.baidu.com/item/%E4%B8%87%E5%AF%BF%E8%8F%8A/946163
6 | tiger lily,https://baike.baidu.com/item/%E8%99%8E%E7%9A%AE%E7%99%BE%E5%90%88
7 | moon orchid,https://baike.baidu.com/item/%E6%9C%88%E5%85%B0%E8%8A%B1
8 | bird of paradise,https://baike.baidu.com/item/%E9%B9%A4%E6%9C%9B%E5%85%B0/1012106?fromtitle=%E5%A4%A9%E5%A0%82%E9%B8%9F&fromid=21219
9 | monkshood,https://baike.baidu.com/item/%E5%B7%9D%E4%B9%8C/766550
10 | globe thistle,https://baike.baidu.com/item/%E8%93%9D%E5%88%BA%E5%A4%B4%E5%B1%9E
11 | snapdragon,https://baike.baidu.com/item/%E9%87%91%E9%B1%BC%E8%8D%89/1665506
12 | colt's foot,https://baike.baidu.com/item/%E6%AC%BE%E5%86%AC/2639838
13 | king protea,https://baike.baidu.com/item/%E5%B8%9D%E7%8E%8B%E8%8A%B1/4390702
14 | spear thistle,https://baike.baidu.com/item/%E7%BF%BC%E8%93%9F
15 | yellow iris,https://baike.baidu.com/item/%E9%BB%84%E8%8F%96%E8%92%B2/1239542?fr=aladdin
16 | globe-flower,https://baike.baidu.com/item/%E9%87%91%E8%8E%B2%E8%8A%B1%E5%B1%9E
17 | purple coneflower,https://baike.baidu.com/item/%E7%B4%AB%E6%9D%BE%E6%9E%9C%E8%8F%8A
18 | peruvian lily,https://baike.baidu.com/item/%E6%B0%B4%E4%BB%99%E7%99%BE%E5%90%88
19 | balloon flower,https://baike.baidu.com/item/%E6%A1%94%E6%A2%97%E8%8A%B1/327581
20 | giant white arum lily,https://baike.baidu.com/item/%E9%A9%AC%E8%B9%84%E8%8E%B2%E5%B1%9E
21 | fire lily,https://baike.baidu.com/item/%E7%8F%A0%E8%8A%BD%E7%99%BE%E5%90%88
22 | pincushion flower,https://baike.baidu.com/item/%E8%93%9D%E7%9B%86%E8%8A%B1%E5%B1%9E
23 | fritillary,https://baike.baidu.com/item/%E8%B4%9D%E6%AF%8D
24 | red ginger,https://baike.baidu.com/item/%E7%B4%AB%E8%8A%B1%E5%B1%B1%E5%A7%9C/23260746?fromtitle=Red%20Ginger&fromid=23271588&fr=aladdin
25 | grape hyacinth,https://baike.baidu.com/item/%E8%91%A1%E8%90%84%E9%A3%8E%E4%BF%A1%E5%AD%90
26 | corn poppy,https://baike.baidu.com/item/%E8%A7%92%E7%BD%82%E7%B2%9F%E8%8A%B1/4076456?fr=aladdin
27 | prince of wales feathers,https://baike.baidu.com/item/%E9%B8%A1%E5%86%A0%E8%8A%B1/404974#viewPageContent
28 | stemless gentian,https://baike.baidu.com/item/%E6%97%A0%E8%8C%8E%E9%BE%99%E8%83%86
29 | artichoke,https://baike.baidu.com/item/%E6%B4%8B%E8%93%9F
30 | sweet william,https://baike.baidu.com/item/%E9%A1%BB%E8%8B%9E%E7%9F%B3%E7%AB%B9?fromtitle=%E7%BE%8E%E5%9B%BD%E7%9F%B3%E7%AB%B9&fromid=2953625
31 | carnation,https://baike.baidu.com/item/%E9%A6%99%E7%9F%B3%E7%AB%B9
32 | garden phlox,https://baike.baidu.com/item/%E8%8D%89%E5%A4%B9%E7%AB%B9%E6%A1%83/4396113?fr=aladdin
33 | love in the mist,https://baike.baidu.com/item/%E9%BB%91%E7%A7%8D%E8%8D%89/4488927
34 | mexican aster,https://baike.baidu.com/item/%E7%B4%AB%E8%8F%80/770771?fromtitle=%E7%B4%AB%E8%8B%91&fromid=3040571
35 | alpine sea holly,https://baike.baidu.com/item/%E5%88%BA%E8%8A%B9%E5%B1%9E/8424980
36 | ruby-lipped cattleya,https://baike.baidu.com/item/%E5%98%89%E5%BE%B7%E4%B8%BD%E9%9B%85%E5%85%B0%E5%B1%9E
37 | cape flower,https://baike.baidu.com/item/%E7%9F%B3%E8%92%9C/300830
38 | great masterwort,https://baike.baidu.com/item/%E5%A4%A7%E6%98%9F%E8%8A%B9
39 | siam tulip,https://baike.baidu.com/item/%E5%A7%9C%E8%8D%B7%E8%8A%B1
40 | lenten rose,https://baike.baidu.com/item/%E9%93%81%E7%AD%B7%E5%AD%90%E5%B1%9E
41 | barbeton daisy,https://baike.baidu.com/item/%E9%9D%9E%E6%B4%B2%E8%8F%8A
42 | daffodil,https://baike.baidu.com/item/%E6%B0%B4%E4%BB%99%E5%B1%9E
43 | sword lily,https://baike.baidu.com/item/%E5%94%90%E8%8F%96%E8%92%B2%E5%B1%9E
44 | poinsettia,https://baike.baidu.com/item/%E4%B8%80%E5%93%81%E7%BA%A2/803797
45 | bolero deep blue,https://baike.baidu.com/item/%E6%B4%8B%E6%A1%94%E6%A2%97
46 | wallflower,https://baike.baidu.com/item/%E7%B3%96%E8%8A%A5%E5%B1%9E
47 | marigold,https://baike.baidu.com/item/%E4%B8%87%E5%AF%BF%E8%8F%8A%E5%B1%9E
48 | buttercup,https://baike.baidu.com/item/%E6%AF%9B%E8%8C%9B%E5%B1%9E
49 | oxeye daisy,https://baike.baidu.com/item/%E7%8E%9B%E6%A0%BC%E4%B8%BD%E7%89%B9%E8%8A%B1?fromtitle=%E6%B3%95%E5%85%B0%E8%A5%BF%E8%8F%8A&fromid=10807600
50 | common dandelion,https://baike.baidu.com/item/%E8%A5%BF%E6%B4%8B%E8%92%B2%E5%85%AC%E8%8B%B1
51 | petunia,https://baike.baidu.com/item/%E7%A2%A7%E5%86%AC%E8%8C%84%E5%B1%9E/1534055
52 | wild pansy,https://baike.baidu.com/item/%E4%B8%89%E8%89%B2%E5%A0%87/200112#viewPageContent
53 | primula,https://baike.baidu.com/item/%E6%8A%A5%E6%98%A5%E8%8A%B1%E5%B1%9E
54 | sunflower,https://baike.baidu.com/item/%E5%90%91%E6%97%A5%E8%91%B5/6106
55 | pelargonium,https://baike.baidu.com/item/%E5%A4%A9%E7%AB%BA%E8%91%B5%E5%B1%9E
56 | bishop of llandaff,https://baike.baidu.com/item/%E5%A4%A9%E7%AB%BA%E7%89%A1%E4%B8%B9
57 | gaura,https://baike.baidu.com/item/%E5%B1%B1%E6%A1%83%E8%8D%89%E5%B1%9E/3456547?fr=aladdin
58 | geranium,https://baike.baidu.com/item/%E8%80%81%E9%B9%B3%E8%8D%89/393507
59 | orange dahlia,https://baike.baidu.com/item/%E8%82%BF%E6%9F%84%E8%8F%8A
60 | pink-yellow dahlia,https://baike.baidu.com/item/%E5%A4%A7%E4%B8%BD%E8%8A%B1/200399
61 | cautleya spicata,https://baike.baidu.com/item/%E7%BA%A2%E8%8B%9E%E8%B7%9D%E8%8D%AF%E5%A7%9C
62 | japanese anemone,https://baike.baidu.com/item/%E7%8C%AB%E7%88%AA%E8%8D%89/396369
63 | black-eyed susan,https://baike.baidu.com/item/%E9%BB%91%E5%BF%83%E9%87%91%E5%85%89%E8%8F%8A
64 | silverbush,https://baike.baidu.com/item/%E6%97%8B%E8%8A%B1/4507997
65 | californian poppy,https://baike.baidu.com/item/%E8%8A%B1%E8%8F%B1%E8%8D%89
66 | osteospermum,https://baike.baidu.com/item/%E8%93%9D%E7%9C%BC%E8%8F%8A
67 | spring crocus,https://baike.baidu.com/item/%E8%8D%B7%E5%85%B0%E7%95%AA%E7%BA%A2%E8%8A%B1
68 | bearded iris,https://baike.baidu.com/item/%E5%BE%B7%E5%9B%BD%E9%B8%A2%E5%B0%BE
69 | windflower,https://baike.baidu.com/item/%E9%93%B6%E8%8E%B2%E8%8A%B1%E5%B1%9E
70 | tree poppy,https://baike.baidu.com/item/%E7%BD%82%E7%B2%9F%E7%A7%91
71 | gazania,https://baike.baidu.com/item/%E5%8B%8B%E7%AB%A0%E8%8F%8A/508160
72 | azalea,https://baike.baidu.com/item/%E6%9D%9C%E9%B9%83/18876?fromtitle=%E6%9D%9C%E9%B9%83%E8%8A%B1&fromid=159279
73 | water lily,https://baike.baidu.com/item/%E7%9D%A1%E8%8E%B2%E7%A7%91
74 | rose,https://baike.baidu.com/item/%E7%8E%AB%E7%91%B0/63206
75 | thorn apple,https://baike.baidu.com/item/%E6%9B%BC%E9%99%80%E7%BD%97%E8%8A%B1
76 | morning glory,https://baike.baidu.com/item/%E7%89%B5%E7%89%9B/79184
77 | passion flower,https://baike.baidu.com/item/%E8%A5%BF%E7%95%AA%E8%8E%B2%E5%B1%9E
78 | lotus,https://baike.baidu.com/item/%E7%9D%A1%E8%8E%B2/11999986?fromtitle=%E8%8E%B2%E8%8A%B1&fromid=12428479
79 | toad lily,https://baike.baidu.com/item/%E6%B2%B9%E7%82%B9%E8%8D%89
80 | anthurium,https://baike.baidu.com/item/%E7%81%AB%E9%B9%A4%E8%8A%B1
81 | frangipani,https://baike.baidu.com/item/%E7%BC%85%E6%A0%80%E8%8A%B1/873997
82 | clematis,https://baike.baidu.com/item/%E9%93%81%E7%BA%BF%E8%8E%B2%E5%B1%9E
83 | hibiscus,https://baike.baidu.com/item/%E6%9C%A8%E6%A7%BF%E5%B1%9E
84 | columbine,https://baike.baidu.com/item/%E8%80%A7%E6%96%97%E8%8F%9C/767936?fr=aladdin
85 | desert-rose,https://baike.baidu.com/item/%E6%B2%99%E6%BC%A0%E7%8E%AB%E7%91%B0
86 | tree mallow,https://baike.baidu.com/item/%E8%8A%B1%E8%91%B5
87 | magnolia,https://baike.baidu.com/item/%E6%9C%A8%E5%85%B0%E5%B1%9E
88 | cyclamen,https://baike.baidu.com/item/%E4%BB%99%E5%AE%A2%E6%9D%A5%E5%B1%9E
89 | watercress,https://baike.baidu.com/item/%E6%97%B1%E9%87%91%E8%8E%B2/892401
90 | canna lily,https://baike.baidu.com/item/%E7%BE%8E%E4%BA%BA%E8%95%89/539429
91 | hippeastrum,https://baike.baidu.com/item/%E6%9C%B1%E9%A1%B6%E7%BA%A2%E5%B1%9E
92 | bee balm,https://baike.baidu.com/item/%E7%BE%8E%E5%9B%BD%E8%96%84%E8%8D%B7%E5%B1%9E
93 | ball moss,https://baike.baidu.com/item/%E7%A9%BA%E6%B0%94%E5%87%A4%E6%A2%A8
94 | foxglove,https://baike.baidu.com/item/%E6%AF%9B%E5%9C%B0%E9%BB%84%E5%B1%9E
95 | bougainvillea,https://baike.baidu.com/item/%E5%85%89%E5%8F%B6%E5%AD%90%E8%8A%B1?fromtitle=%E7%B0%95%E6%9D%9C%E9%B9%83&fromid=1486412
96 | camellia,https://baike.baidu.com/item/%E8%8C%B6%E8%8A%B1/315158?fr=aladdin
97 | mallow,https://baike.baidu.com/item/%E9%94%A6%E8%91%B5/18212?fr=aladdin
98 | mexican petunia,https://baike.baidu.com/item/%E7%8B%AD%E5%8F%B6%E7%BF%A0%E8%8A%A6%E8%8E%89/23445029?fr=aladdin&fromtitle=%E7%BF%A0%E8%8A%A6%E8%8E%89&fromid=7959962
99 | bromelia,https://baike.baidu.com/item/%E8%A7%82%E8%B5%8F%E5%87%A4%E6%A2%A8/5100458
100 | blanket flower,https://baike.baidu.com/item/%E5%AE%BF%E6%A0%B9%E5%A4%A9%E4%BA%BA%E8%8F%8A
101 | trumpet creeper,https://baike.baidu.com/item/%E5%87%8C%E9%9C%84%E8%8A%B1
102 | blackberry lily,https://baike.baidu.com/item/%E5%B0%84%E5%B9%B2/769720?fr=aladdin
--------------------------------------------------------------------------------
/finetune_alexnet_with_tensorflow/venv/pyvenv.cfg:
--------------------------------------------------------------------------------
1 | home = C:\Users\Administrator\Anaconda3
2 | include-system-site-packages = false
3 | version = 3.7.3
4 |
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/.idea/finetune_alexnet_with_tensorflow.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/.idea/workspace.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 | checkpoint_path
107 | 040
108 | 07516
109 | 07628
110 | 0809
111 | 04081
112 | 078
113 | 0635
114 | 000
115 | 072
116 | 06785
117 | 98
118 | 89
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 |
263 |
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 |
280 |
281 |
282 |
283 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 |
294 |
295 |
296 |
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 |
319 |
320 |
321 |
322 |
323 |
324 |
325 |
326 |
327 |
328 |
329 | 1562145394752
330 |
331 |
332 | 1562145394752
333 |
334 |
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 |
391 |
392 |
393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |
401 |
402 |
403 |
404 |
405 |
406 |
407 |
408 |
409 |
410 |
411 |
412 |
413 |
414 |
415 |
416 |
417 |
418 |
419 |
420 |
421 |
422 |
423 |
424 |
425 |
426 |
427 |
428 |
429 |
430 |
431 |
432 |
433 |
434 |
435 |
436 |
437 |
438 |
439 |
440 |
441 |
442 |
443 |
444 |
445 |
446 |
447 |
448 |
449 |
450 |
451 |
452 |
453 |
454 |
455 |
456 |
457 |
458 |
459 |
460 |
461 |
462 |
463 |
464 |
465 |
466 |
467 |
468 |
469 |
470 |
471 |
472 |
473 |
474 |
475 |
476 |
477 |
478 |
479 |
480 |
481 |
482 |
483 |
484 |
485 |
486 |
487 |
488 |
489 |
490 |
491 |
492 |
493 |
494 |
495 |
496 |
497 |
498 |
499 |
500 |
501 |
502 |
503 |
504 |
505 |
506 |
507 |
508 |
509 |
510 |
511 |
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/__pycache__/caffe_classes.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/vgg16_oxford_flower_102/__pycache__/caffe_classes.cpython-37.pyc
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/__pycache__/test.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/vgg16_oxford_flower_102/__pycache__/test.cpython-37.pyc
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/caffe_classes.py:
--------------------------------------------------------------------------------
1 | class_names = '''pink primrose
2 | hard-leaved pocket orchid
3 | canterbury bells
4 | sweet pea
5 | english marigold
6 | tiger lily
7 | moon orchid
8 | bird of paradise
9 | monkshood
10 | globe thistle
11 | snapdragon
12 | colt's foot
13 | king protea
14 | spear thistle
15 | yellow iris
16 | globe-flower
17 | purple coneflower
18 | peruvian lily
19 | balloon flower
20 | giant white arum lily
21 | fire lily
22 | pincushion flower
23 | fritillary
24 | red ginger
25 | grape hyacinth
26 | corn poppy
27 | prince of wales feathers
28 | stemless gentian
29 | artichoke
30 | sweet william
31 | carnation
32 | garden phlox
33 | love in the mist
34 | mexican aster
35 | alpine sea holly
36 | ruby-lipped cattleya
37 | cape flower
38 | great masterwort
39 | siam tulip
40 | lenten rose
41 | barbeton daisy
42 | daffodil
43 | sword lily
44 | poinsettia
45 | bolero deep blue
46 | wallflower
47 | marigold
48 | buttercup
49 | oxeye daisy
50 | common dandelion
51 | petunia
52 | wild pansy
53 | primula
54 | sunflower
55 | pelargonium
56 | bishop of llandaff
57 | gaura
58 | geranium
59 | orange dahlia
60 | pink-yellow dahlia
61 | cautleya spicata
62 | japanese anemone
63 | black-eyed susan
64 | silverbush
65 | californian poppy
66 | osteospermum
67 | spring crocus
68 | bearded iris
69 | windflower
70 | tree poppy
71 | gazania
72 | azalea
73 | water lily
74 | rose
75 | thorn apple
76 | morning glory
77 | passion flower
78 | lotus
79 | toad lily
80 | anthurium
81 | frangipani
82 | clematis
83 | hibiscus
84 | columbine
85 | desert-rose
86 | tree mallow
87 | magnolia
88 | cyclamen
89 | watercress
90 | canna lily
91 | hippeastrum
92 | bee balm
93 | ball moss
94 | foxglove
95 | bougainvillea
96 | camellia
97 | mallow
98 | mexican petunia
99 | bromelia
100 | blanket flower
101 | trumpet creeper
102 | blackberry lily'''.split("\n")
103 |
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/main.py:
--------------------------------------------------------------------------------
1 | from flask import Flask, render_template, request, redirect, url_for, make_response, jsonify
2 | from werkzeug.utils import secure_filename
3 | import os
4 | import cv2
5 | import time
6 | from test import test_image
7 | import urllib.request
8 | from bs4 import BeautifulSoup
9 |
10 | from datetime import timedelta
11 |
12 | # 设置允许的文件格式
13 | ALLOWED_EXTENSIONS = set(['png', 'jpg', 'JPG', 'PNG', 'bmp'])
14 |
15 |
16 | def allowed_file(filename):
17 | return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
18 |
19 |
20 | app = Flask(__name__)
21 | # 设置静态文件缓存过期时间
22 | app.send_file_max_age_default = timedelta(seconds=1)
23 |
24 |
25 | # @app.route('/upload', methods=['POST', 'GET'])
26 | @app.route('/', methods=['POST', 'GET']) # 添加路由
27 | def upload():
28 | if request.method == 'POST':
29 | f = request.files['file']
30 |
31 | if not (f and allowed_file(f.filename)):
32 | return jsonify({"error": 1001, "msg": "Please check the image format, only png jpg bmp format"})
33 |
34 | user_input = request.form.get("name")
35 |
36 | basepath = os.path.dirname(__file__) # 当前文件所在路径
37 |
38 | upload_path = os.path.join(basepath, 'static/test_img', secure_filename(f.filename))
39 | # 注意:没有的文件夹一定要先创建,不然会提示没有该路径
40 |
41 | f.save(upload_path)
42 |
43 | # 使用Opencv转换一下图片格式和名称
44 | img = cv2.imread(upload_path)
45 | cv2.imwrite(os.path.join(basepath, 'static/test_img', 'test.jpg'), img)
46 | class_name=test_image()
47 | # class_name = 'water lily'
48 | fo = open("url.txt", "r")
49 | for line in fo.readlines():
50 | temp = line.split(',')
51 | if temp[0] == class_name:
52 | url = temp[1]
53 |
54 | a = urllib.request.urlopen(url)
55 | html = a.read() # 读取网页源码
56 | soup = BeautifulSoup(html, 'lxml') # 生成标签树
57 |
58 | name = soup.find('h1')
59 | name = name.get_text()
60 |
61 | text = soup.find('div', class_="para")
62 | text = text.get_text()
63 |
64 | return render_template('recognition_ok.html', userinput=user_input, val1=time.time(),
65 | classname=class_name, name=name, text=text, url=url)
66 |
67 | return render_template('recognition.html')
68 |
69 |
70 | if __name__ == '__main__':
71 | app.run(debug=True)
72 |
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/network.py:
--------------------------------------------------------------------------------
1 | import os
2 | import glob
3 | import math
4 | import numpy as np
5 | from keras import optimizers
6 | from keras import applications
7 | from keras.models import Model
8 | from keras.layers import Flatten, Dense, Dropout, Input
9 | from keras.preprocessing.image import ImageDataGenerator
10 | from keras.callbacks import EarlyStopping, ModelCheckpoint
11 | from keras.models import load_model
12 | # 数据集
13 | train_dir = 'data/train' # 训练集
14 | validation_dir = 'data/valid' # 验证集
15 | nb_epoch = 50 # 迭代次数,原项目默认1000次
16 | batch_size = 32 # 批量大小
17 | img_size = (224, 224) # 图片大小
18 | freeze_layers_number = 0 # 冻结层数
19 |
20 | classes = sorted([o for o in os.listdir(train_dir)]) # 根据文件名分类
21 | nb_train_samples = len(glob.glob(train_dir + '/*/*.*')) # 训练样本数
22 | nb_validation_samples = len(glob.glob(validation_dir + '/*/*.*')) # 验证样本数
23 |
24 | # 定义模型
25 | base_model = applications.VGG16(weights='imagenet', include_top=False, input_tensor=Input(shape=img_size + (3,)),
26 | classes=len(classes)) # 预训练的VGG16网络,替换掉顶部网络
27 |
28 | for layer in base_model.layers: # 保留原有网络全部参数
29 | print(layer.trainable)
30 | layer.trainable = False
31 |
32 | x = base_model.output # 自定义网络
33 | x = Flatten()(x) # 展平
34 | x = Dense(4096, activation='elu', name='fc1')(x) # 全连接层,激活函数elu
35 | x = Dropout(0.6)(x) # Droupout 0.6
36 | x = Dense(4096, activation='elu', name='fc2')(x)
37 | x = Dropout(0.6)(x)
38 | predictions = Dense(len(classes), activation='softmax', name='predictions')(x) # 输出层,指定类数
39 |
40 | model = Model(input=base_model.input, output=predictions) # 新网络=预训练网络+自定义网络
41 |
42 | model.compile(loss='categorical_crossentropy', optimizer=optimizers.Adam(lr=1e-5), metrics=['accuracy'])
43 | print(model.summary())
44 |
45 | train_datagen = ImageDataGenerator(rotation_range=30., shear_range=0.2, zoom_range=0.2,
46 | horizontal_flip=True) # 30°内随机旋转,0.2几率应用错切,0.2几率缩放内部,水平随机旋转一半图像
47 | train_datagen.mean = np.array([103.939, 116.779, 123.68], dtype=np.float32).reshape((3, 1, 1)) # 去掉imagenet BGR均值
48 | train_data = train_datagen.flow_from_directory(train_dir, target_size=img_size, classes=classes)
49 | validation_datagen = ImageDataGenerator() # 用于验证,无需数据增强
50 | validation_datagen.mean = np.array([103.939, 116.779, 123.68], dtype=np.float32).reshape((3, 1, 1))
51 | validation_data = validation_datagen.flow_from_directory(validation_dir, target_size=img_size,
52 | classes=classes)
53 |
54 |
55 | # 训练&保存
56 | def get_class_weight(d):
57 | '''
58 | calculate the weight of each class
59 | :param d: dir path
60 | :return: a dict
61 | '''
62 | white_list_formats = {'png', 'jpg', 'jpeg', 'bmp'}
63 | class_number = dict()
64 | dirs = sorted([o for o in os.listdir(d) if os.path.isdir(os.path.join(d, o))])
65 | k = 0
66 | for class_name in dirs:
67 | class_number[k] = 0
68 | iglob_iter = glob.iglob(os.path.join(d, class_name, '*.*'))
69 | for i in iglob_iter:
70 | _, ext = os.path.splitext(i)
71 | if ext[1:] in white_list_formats:
72 | class_number[k] += 1
73 | k += 1
74 | total = np.sum(list(class_number.values()))
75 | max_samples = np.max(list(class_number.values()))
76 | mu = 1. / (total / float(max_samples))
77 | keys = class_number.keys()
78 | class_weight = dict()
79 | for key in keys:
80 | score = math.log(mu * total / float(class_number[key]))
81 | class_weight[key] = score if score > 1. else 1.
82 |
83 | return class_weight
84 |
85 |
86 | class_weight = get_class_weight(train_dir) # 计算每个类别所占数据集的比重
87 |
88 | early_stopping = EarlyStopping(verbose=1, patience=30, monitor='val_loss') # 30次微调后loss仍没下降便迭代下一轮
89 | model_checkpoint = ModelCheckpoint(filepath='102flowersmodel.h5', verbose=1, save_best_only=True, monitor='val_loss')
90 | callbacks = [early_stopping, model_checkpoint]
91 |
92 | model.fit_generator(train_data, steps_per_epoch=nb_train_samples / float(batch_size), epochs=nb_epoch,
93 | validation_data=validation_data, validation_steps=nb_validation_samples / float(batch_size),
94 | callbacks=callbacks, class_weight=class_weight)
95 |
96 | print('Training is finished!')
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/readme.md:
--------------------------------------------------------------------------------
1 | # README
2 |
3 | ### finetune_alexnet_with_tensorflow(基于AlexNet的花卉识别)
4 |
5 | finetune.py 训练神经网络的文件
6 |
7 | alexnet.py AlexNet卷积神经网络模型
8 |
9 | bvlc_alexnet.npy 训练好的参数
10 |
11 | datagenerator.py 图片预处理
12 |
13 | main.py 路由文件
14 |
15 | 运行时需要先训练神经网络,因为虽然写了检查点但是看不到检查点文件,训练好以后再运行main.py文件。训练时将oxford文件夹放在train.txt文件中的指定位置,或者根据oxford文件夹的位置对train.txt进行相应修改。
16 |
17 | ### vgg16_oxford_flower_102(基于VGG16迁移模型的花卉识别)
18 |
19 | network.py 神经网络的初次训练
20 |
21 | retrain.py 神经网络的再次训练
22 |
23 | test.py 测试文件
24 |
25 | 102flowermodel.h5 训练好的模型保存
26 |
27 | main.py 路由文件
28 |
29 | url.txt 花卉百度百科链接
30 |
31 | ### 使用方法
32 | 运行main.py,访问http://127.0.0.1:5000/, 进入花卉识别主页面,点击“选择文件”按钮,上传要识别的花卉图片,然后点击“开始识别”按钮,进行识别。识别完成后,在页面下方显示识别图像、识别结果以及花卉相关介绍。
33 |
34 | ### 数据集下载地址
35 |
36 | http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
37 |
38 | ### 训练好的参数文件 bvlc_alexnet.npy下载地址
39 |
40 | http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/bvlc_alexnet.npy
41 |
42 |
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/retrain.py:
--------------------------------------------------------------------------------
1 | import os
2 | import glob
3 | import math
4 | import numpy as np
5 | from keras import optimizers
6 | from keras import applications
7 | from keras.models import Model
8 | from keras.layers import Flatten, Dense, Dropout, Input
9 | from keras.preprocessing.image import ImageDataGenerator
10 | from keras.callbacks import EarlyStopping, ModelCheckpoint
11 | from keras.models import load_model
12 | # 数据集
13 | train_dir = 'data/train' # 训练集
14 | validation_dir = 'data/valid' # 验证集
15 | nb_epoch = 10 # 迭代次数,原项目默认1000次
16 | batch_size = 128 # 批量大小
17 | img_size = (224, 224) # 图片大小
18 | freeze_layers_number = 0 # 冻结层数
19 |
20 | classes = sorted([o for o in os.listdir(train_dir)]) # 根据文件名分类
21 | nb_train_samples = len(glob.glob(train_dir + '/*/*.*')) # 训练样本数
22 | nb_validation_samples = len(glob.glob(validation_dir + '/*/*.*')) # 验证样本数
23 |
24 | # 定义模型
25 | base_model = applications.VGG16(weights='imagenet', include_top=False, input_tensor=Input(shape=img_size + (3,)),
26 | classes=len(classes)) # 预训练的VGG16网络,替换掉顶部网络
27 |
28 | for layer in base_model.layers: # 保留原有网络全部参数
29 | print(layer.trainable)
30 | layer.trainable = False
31 |
32 | x = base_model.output # 自定义网络
33 | x = Flatten()(x) # 展平
34 | x = Dense(4096, activation='elu', name='fc1')(x) # 全连接层,激活函数elu
35 | x = Dropout(0.6)(x) # Droupout 0.6
36 | x = Dense(4096, activation='elu', name='fc2')(x)
37 | x = Dropout(0.6)(x)
38 | predictions = Dense(len(classes), activation='softmax', name='predictions')(x) # 输出层,指定类数
39 |
40 | model = Model(input=base_model.input, output=predictions) # 新网络=预训练网络+自定义网络
41 |
42 | model.compile(loss='categorical_crossentropy', optimizer=optimizers.Adam(lr=1e-5), metrics=['accuracy'])
43 | print(model.summary())
44 |
45 | train_datagen = ImageDataGenerator(rotation_range=30., shear_range=0.2, zoom_range=0.2,
46 | horizontal_flip=True) # 30°内随机旋转,0.2几率应用错切,0.2几率缩放内部,水平随机旋转一半图像
47 | train_datagen.mean = np.array([103.939, 116.779, 123.68], dtype=np.float32).reshape((3, 1, 1)) # 去掉imagenet BGR均值
48 | train_data = train_datagen.flow_from_directory(train_dir, target_size=img_size, classes=classes)
49 | validation_datagen = ImageDataGenerator() # 用于验证,无需数据增强
50 | validation_datagen.mean = np.array([103.939, 116.779, 123.68], dtype=np.float32).reshape((3, 1, 1))
51 | validation_data = validation_datagen.flow_from_directory(validation_dir, target_size=img_size,
52 | classes=classes)
53 |
54 |
55 | # 训练&保存
56 | def get_class_weight(d):
57 | '''
58 | calculate the weight of each class
59 | :param d: dir path
60 | :return: a dict
61 | '''
62 | white_list_formats = {'png', 'jpg', 'jpeg', 'bmp'}
63 | class_number = dict()
64 | dirs = sorted([o for o in os.listdir(d) if os.path.isdir(os.path.join(d, o))])
65 | k = 0
66 | for class_name in dirs:
67 | class_number[k] = 0
68 | iglob_iter = glob.iglob(os.path.join(d, class_name, '*.*'))
69 | for i in iglob_iter:
70 | _, ext = os.path.splitext(i)
71 | if ext[1:] in white_list_formats:
72 | class_number[k] += 1
73 | k += 1
74 | total = np.sum(list(class_number.values()))
75 | max_samples = np.max(list(class_number.values()))
76 | mu = 1. / (total / float(max_samples))
77 | keys = class_number.keys()
78 | class_weight = dict()
79 | for key in keys:
80 | score = math.log(mu * total / float(class_number[key]))
81 | class_weight[key] = score if score > 1. else 1.
82 |
83 | return class_weight
84 |
85 |
86 | class_weight = get_class_weight(train_dir) # 计算每个类别所占数据集的比重
87 |
88 | early_stopping = EarlyStopping(verbose=1, patience=30, monitor='val_loss') # 30次微调后loss仍没下降便迭代下一轮
89 | model_checkpoint = ModelCheckpoint(filepath='102flowersmodel.h5', verbose=1, save_best_only=True, monitor='val_loss')
90 | callbacks = [early_stopping, model_checkpoint]
91 |
92 | rmodel = load_model('102flowersmodel.h5')
93 |
94 | rmodel.fit_generator(train_data, steps_per_epoch=nb_train_samples / float(batch_size), epochs=nb_epoch,
95 | validation_data=validation_data, validation_steps=nb_validation_samples / float(batch_size),
96 | callbacks=callbacks, class_weight=class_weight)
97 |
98 | print('Training is finished!')
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/static/css/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/vgg16_oxford_flower_102/static/css/__init__.py
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/static/css/main.css:
--------------------------------------------------------------------------------
1 | body{
2 | background-color: ghostwhite;
3 | margin: 0 auto;
4 | text-align: center;
5 | }
6 |
7 | .t1{
8 | align-content: center;
9 | border-spacing: 250px 25px;
10 | margin-left: -55px;
11 |
12 | }
13 |
14 | hr{
15 | width:80%;
16 | margin:0 auto;
17 | border: 0;
18 | height: 1px;
19 | background-image: linear-gradient(to right, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0.75), rgba(0, 0, 0, 0));
20 |
21 | }
22 |
23 | .bg1{
24 | width: 800px;
25 | height: 100px;
26 | background-color: dimgrey;
27 | color: floralwhite;
28 | text-align: center;
29 | line-height: 100px;
30 | margin-left: 150px;
31 | }
32 |
33 | .bg2{
34 | width: 500px;
35 | height: 595px;
36 | border: 2px solid dimgrey;
37 | float: left;
38 | margin-left: 50px;
39 | }
40 |
41 | .bg3{
42 | width: 500px;
43 | height: 600px;
44 | /*border: 1px solid dimgrey;*/
45 | float: left;
46 | margin-left: 10px;
47 | }
48 | .bg3 table{
49 | border: 2px solid dimgrey;
50 | border-collapse:collapse;
51 | padding: 10px;
52 | }
53 | .bg3 table td{
54 | border: 2px solid dimgrey;
55 | width: 500px;
56 | height: 295px;
57 | text-align: left;
58 | vertical-align: top;
59 | }
60 |
61 | .file1 {
62 | /*margin-top: 5px;*/
63 | background: #D0EEFF;
64 | border: 1px solid #99D3F5;
65 | border-radius: 4px;
66 | padding: 4px 12px;
67 | overflow: hidden;
68 | color: black;
69 | text-decoration: none;
70 | text-indent: 0;
71 | width: 200px;
72 | height: 60px;
73 | font-size: 30px;
74 | text-align: center;
75 | font-weight: 600;
76 | opacity: 0.5;
77 |
78 | }
79 | .file {
80 | position: relative;
81 | display: inline-block;
82 | background: #D0EEFF;
83 | border: 1px solid #99D3F5;
84 | border-radius: 4px;
85 | padding: 4px 12px;
86 | overflow: hidden;
87 | color: black;
88 | text-decoration: none;
89 | text-indent: 0;
90 | width: 180px;
91 | height: 50px;
92 | font-size: 30px;
93 | font-weight: 600;
94 | text-align: center;
95 | opacity: 0.5;
96 |
97 |
98 | }
99 | .file input {
100 | position: absolute;
101 | font-size: 30px;
102 | right: 0;
103 | top: 10px;
104 | opacity: 0.5;
105 |
106 | }
107 | .file:hover {
108 | background: #AADFFD;
109 | border-color: #78C3F3;
110 | color: #004974;
111 | text-decoration: none;
112 | }
113 |
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/static/js/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/vgg16_oxford_flower_102/static/js/__init__.py
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/static/test_img/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Amore-vv/flower_recognition/c4b210044a342f7e717ce09e7e929f993bea436b/vgg16_oxford_flower_102/static/test_img/__init__.py
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/templates/recognition.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 | 花卉识别
7 |
8 |
9 |
10 |
11 |
花卉识别
12 |
13 |
14 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 | 识别结果
33 |
34 | |
35 |
36 |
37 |
38 | 百度百科
39 |
40 |
41 | |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
69 |
70 |
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/templates/recognition_ok.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 | 花卉识别
7 |
8 |
9 |
10 |
11 |
花卉识别
12 |
13 |
14 |
24 |
25 |
 }})
26 |
27 |
28 |
29 |
30 |
31 | 识别结果
32 |
33 | 花卉名称:{{classname}}
34 | 译名: {{name}}
35 | |
36 |
37 |
38 |
39 | 百度百科
40 |
41 | {{text}} 更多>>
42 | |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/test.py:
--------------------------------------------------------------------------------
1 | import time
2 | import numpy as np
3 | from keras.models import load_model
4 | from keras.preprocessing import image
5 | from caffe_classes import class_names
6 |
7 | # # 加载模型
8 | # start = time.clock()
9 | # model = load_model('102flowersmodel.h5')
10 | # print('Warming up took {}s'.format(time.clock() - start))
11 | #
12 | # # 图片预处理
13 | # path = 'static/test_img/test.jpg'
14 | # img_height, img_width = 224, 224
15 | # x = image.load_img(path=path, target_size=(img_height, img_width))
16 | # x = image.img_to_array(x)
17 | # x = x[None]
18 | #
19 | # # 预测
20 | # start = time.clock()
21 | # y = model.predict(x)
22 | # print('Prediction took {}s'.format(time.clock() - start))
23 | #
24 | # # 置信度
25 | # for i in np.argsort(y[0])[::-1][:5]:
26 | # print('{}:{:.2f}%'.format(i, y[0][i] * 100))
27 |
28 | def test_image():
29 | # 加载模型
30 | path = 'static/test_img/test.jpg'
31 | start = time.clock()
32 | model = load_model('102flowersmodel.h5')
33 | print('Warming up took {}s'.format(time.clock() - start))
34 |
35 | img_height, img_width = 224, 224
36 | x = image.load_img(path=path, target_size=(img_height, img_width))
37 | x = image.img_to_array(x)
38 | x = x[None]
39 |
40 | # 预测
41 | start = time.clock()
42 | y = model.predict(x)
43 | print('Prediction took {}s'.format(time.clock() - start))
44 |
45 | for i in np.argsort(y[0])[::-1][:5]:
46 | flag = i
47 | break
48 | dir=['0', '1', '10', '100', '101', '11', '12', '13', '14', '15', '16', '17', '18', '19', '2', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '3', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '4', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '5', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '6', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '7', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '8', '80', '81',
49 | '82', '83', '84', '85', '86', '87', '88', '89', '9', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']
50 | k=int(dir[flag])
51 |
52 | flower_class = class_names[k]
53 | return flower_class
54 | # ppath='C:/Users/Administrator/Desktop/image_00009.jpg'
55 | # print(test_image(ppath))
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/url.txt:
--------------------------------------------------------------------------------
1 | pink primrose,https://baike.baidu.com/item/%E6%A8%B1%E8%8D%89%E8%8A%B1/10266812?fr=aladdin
2 | hard-leaved pocket orchid,https://baike.baidu.com/item/%E7%A1%AC%E5%8F%B6%E5%85%9C%E5%85%B0
3 | canterbury bells,https://baike.baidu.com/item/%E9%A3%8E%E9%93%83%E8%8D%89/680375
4 | sweet pea,https://baike.baidu.com/item/%E8%B1%8C%E8%B1%86%E8%8A%B1
5 | english marigold,https://baike.baidu.com/item/%E4%B8%87%E5%AF%BF%E8%8F%8A/946163
6 | tiger lily,https://baike.baidu.com/item/%E8%99%8E%E7%9A%AE%E7%99%BE%E5%90%88
7 | moon orchid,https://baike.baidu.com/item/%E6%9C%88%E5%85%B0%E8%8A%B1
8 | bird of paradise,https://baike.baidu.com/item/%E9%B9%A4%E6%9C%9B%E5%85%B0/1012106?fromtitle=%E5%A4%A9%E5%A0%82%E9%B8%9F&fromid=21219
9 | monkshood,https://baike.baidu.com/item/%E5%B7%9D%E4%B9%8C/766550
10 | globe thistle,https://baike.baidu.com/item/%E8%93%9D%E5%88%BA%E5%A4%B4%E5%B1%9E
11 | snapdragon,https://baike.baidu.com/item/%E9%87%91%E9%B1%BC%E8%8D%89/1665506
12 | colt's foot,https://baike.baidu.com/item/%E6%AC%BE%E5%86%AC/2639838
13 | king protea,https://baike.baidu.com/item/%E5%B8%9D%E7%8E%8B%E8%8A%B1/4390702
14 | spear thistle,https://baike.baidu.com/item/%E7%BF%BC%E8%93%9F
15 | yellow iris,https://baike.baidu.com/item/%E9%BB%84%E8%8F%96%E8%92%B2/1239542?fr=aladdin
16 | globe-flower,https://baike.baidu.com/item/%E9%87%91%E8%8E%B2%E8%8A%B1%E5%B1%9E
17 | purple coneflower,https://baike.baidu.com/item/%E7%B4%AB%E6%9D%BE%E6%9E%9C%E8%8F%8A
18 | peruvian lily,https://baike.baidu.com/item/%E6%B0%B4%E4%BB%99%E7%99%BE%E5%90%88
19 | balloon flower,https://baike.baidu.com/item/%E6%A1%94%E6%A2%97%E8%8A%B1/327581
20 | giant white arum lily,https://baike.baidu.com/item/%E9%A9%AC%E8%B9%84%E8%8E%B2%E5%B1%9E
21 | fire lily,https://baike.baidu.com/item/%E7%8F%A0%E8%8A%BD%E7%99%BE%E5%90%88
22 | pincushion flower,https://baike.baidu.com/item/%E8%93%9D%E7%9B%86%E8%8A%B1%E5%B1%9E
23 | fritillary,https://baike.baidu.com/item/%E8%B4%9D%E6%AF%8D
24 | red ginger,https://baike.baidu.com/item/%E7%B4%AB%E8%8A%B1%E5%B1%B1%E5%A7%9C/23260746?fromtitle=Red%20Ginger&fromid=23271588&fr=aladdin
25 | grape hyacinth,https://baike.baidu.com/item/%E8%91%A1%E8%90%84%E9%A3%8E%E4%BF%A1%E5%AD%90
26 | corn poppy,https://baike.baidu.com/item/%E8%A7%92%E7%BD%82%E7%B2%9F%E8%8A%B1/4076456?fr=aladdin
27 | prince of wales feathers,https://baike.baidu.com/item/%E9%B8%A1%E5%86%A0%E8%8A%B1/404974#viewPageContent
28 | stemless gentian,https://baike.baidu.com/item/%E6%97%A0%E8%8C%8E%E9%BE%99%E8%83%86
29 | artichoke,https://baike.baidu.com/item/%E6%B4%8B%E8%93%9F
30 | sweet william,https://baike.baidu.com/item/%E9%A1%BB%E8%8B%9E%E7%9F%B3%E7%AB%B9?fromtitle=%E7%BE%8E%E5%9B%BD%E7%9F%B3%E7%AB%B9&fromid=2953625
31 | carnation,https://baike.baidu.com/item/%E9%A6%99%E7%9F%B3%E7%AB%B9
32 | garden phlox,https://baike.baidu.com/item/%E8%8D%89%E5%A4%B9%E7%AB%B9%E6%A1%83/4396113?fr=aladdin
33 | love in the mist,https://baike.baidu.com/item/%E9%BB%91%E7%A7%8D%E8%8D%89/4488927
34 | mexican aster,https://baike.baidu.com/item/%E7%B4%AB%E8%8F%80/770771?fromtitle=%E7%B4%AB%E8%8B%91&fromid=3040571
35 | alpine sea holly,https://baike.baidu.com/item/%E5%88%BA%E8%8A%B9%E5%B1%9E/8424980
36 | ruby-lipped cattleya,https://baike.baidu.com/item/%E5%98%89%E5%BE%B7%E4%B8%BD%E9%9B%85%E5%85%B0%E5%B1%9E
37 | cape flower,https://baike.baidu.com/item/%E7%9F%B3%E8%92%9C/300830
38 | great masterwort,https://baike.baidu.com/item/%E5%A4%A7%E6%98%9F%E8%8A%B9
39 | siam tulip,https://baike.baidu.com/item/%E5%A7%9C%E8%8D%B7%E8%8A%B1
40 | lenten rose,https://baike.baidu.com/item/%E9%93%81%E7%AD%B7%E5%AD%90%E5%B1%9E
41 | barbeton daisy,https://baike.baidu.com/item/%E9%9D%9E%E6%B4%B2%E8%8F%8A
42 | daffodil,https://baike.baidu.com/item/%E6%B0%B4%E4%BB%99%E5%B1%9E
43 | sword lily,https://baike.baidu.com/item/%E5%94%90%E8%8F%96%E8%92%B2%E5%B1%9E
44 | poinsettia,https://baike.baidu.com/item/%E4%B8%80%E5%93%81%E7%BA%A2/803797
45 | bolero deep blue,https://baike.baidu.com/item/%E6%B4%8B%E6%A1%94%E6%A2%97
46 | wallflower,https://baike.baidu.com/item/%E7%B3%96%E8%8A%A5%E5%B1%9E
47 | marigold,https://baike.baidu.com/item/%E4%B8%87%E5%AF%BF%E8%8F%8A%E5%B1%9E
48 | buttercup,https://baike.baidu.com/item/%E6%AF%9B%E8%8C%9B%E5%B1%9E
49 | oxeye daisy,https://baike.baidu.com/item/%E7%8E%9B%E6%A0%BC%E4%B8%BD%E7%89%B9%E8%8A%B1?fromtitle=%E6%B3%95%E5%85%B0%E8%A5%BF%E8%8F%8A&fromid=10807600
50 | common dandelion,https://baike.baidu.com/item/%E8%A5%BF%E6%B4%8B%E8%92%B2%E5%85%AC%E8%8B%B1
51 | petunia,https://baike.baidu.com/item/%E7%A2%A7%E5%86%AC%E8%8C%84%E5%B1%9E/1534055
52 | wild pansy,https://baike.baidu.com/item/%E4%B8%89%E8%89%B2%E5%A0%87/200112#viewPageContent
53 | primula,https://baike.baidu.com/item/%E6%8A%A5%E6%98%A5%E8%8A%B1%E5%B1%9E
54 | sunflower,https://baike.baidu.com/item/%E5%90%91%E6%97%A5%E8%91%B5/6106
55 | pelargonium,https://baike.baidu.com/item/%E5%A4%A9%E7%AB%BA%E8%91%B5%E5%B1%9E
56 | bishop of llandaff,https://baike.baidu.com/item/%E5%A4%A9%E7%AB%BA%E7%89%A1%E4%B8%B9
57 | gaura,https://baike.baidu.com/item/%E5%B1%B1%E6%A1%83%E8%8D%89%E5%B1%9E/3456547?fr=aladdin
58 | geranium,https://baike.baidu.com/item/%E8%80%81%E9%B9%B3%E8%8D%89/393507
59 | orange dahlia,https://baike.baidu.com/item/%E8%82%BF%E6%9F%84%E8%8F%8A
60 | pink-yellow dahlia,https://baike.baidu.com/item/%E5%A4%A7%E4%B8%BD%E8%8A%B1/200399
61 | cautleya spicata,https://baike.baidu.com/item/%E7%BA%A2%E8%8B%9E%E8%B7%9D%E8%8D%AF%E5%A7%9C
62 | japanese anemone,https://baike.baidu.com/item/%E7%8C%AB%E7%88%AA%E8%8D%89/396369
63 | black-eyed susan,https://baike.baidu.com/item/%E9%BB%91%E5%BF%83%E9%87%91%E5%85%89%E8%8F%8A
64 | silverbush,https://baike.baidu.com/item/%E6%97%8B%E8%8A%B1/4507997
65 | californian poppy,https://baike.baidu.com/item/%E8%8A%B1%E8%8F%B1%E8%8D%89
66 | osteospermum,https://baike.baidu.com/item/%E8%93%9D%E7%9C%BC%E8%8F%8A
67 | spring crocus,https://baike.baidu.com/item/%E8%8D%B7%E5%85%B0%E7%95%AA%E7%BA%A2%E8%8A%B1
68 | bearded iris,https://baike.baidu.com/item/%E5%BE%B7%E5%9B%BD%E9%B8%A2%E5%B0%BE
69 | windflower,https://baike.baidu.com/item/%E9%93%B6%E8%8E%B2%E8%8A%B1%E5%B1%9E
70 | tree poppy,https://baike.baidu.com/item/%E7%BD%82%E7%B2%9F%E7%A7%91
71 | gazania,https://baike.baidu.com/item/%E5%8B%8B%E7%AB%A0%E8%8F%8A/508160
72 | azalea,https://baike.baidu.com/item/%E6%9D%9C%E9%B9%83/18876?fromtitle=%E6%9D%9C%E9%B9%83%E8%8A%B1&fromid=159279
73 | water lily,https://baike.baidu.com/item/%E7%9D%A1%E8%8E%B2%E7%A7%91
74 | rose,https://baike.baidu.com/item/%E7%8E%AB%E7%91%B0/63206
75 | thorn apple,https://baike.baidu.com/item/%E6%9B%BC%E9%99%80%E7%BD%97%E8%8A%B1
76 | morning glory,https://baike.baidu.com/item/%E7%89%B5%E7%89%9B/79184
77 | passion flower,https://baike.baidu.com/item/%E8%A5%BF%E7%95%AA%E8%8E%B2%E5%B1%9E
78 | lotus,https://baike.baidu.com/item/%E7%9D%A1%E8%8E%B2/11999986?fromtitle=%E8%8E%B2%E8%8A%B1&fromid=12428479
79 | toad lily,https://baike.baidu.com/item/%E6%B2%B9%E7%82%B9%E8%8D%89
80 | anthurium,https://baike.baidu.com/item/%E7%81%AB%E9%B9%A4%E8%8A%B1
81 | frangipani,https://baike.baidu.com/item/%E7%BC%85%E6%A0%80%E8%8A%B1/873997
82 | clematis,https://baike.baidu.com/item/%E9%93%81%E7%BA%BF%E8%8E%B2%E5%B1%9E
83 | hibiscus,https://baike.baidu.com/item/%E6%9C%A8%E6%A7%BF%E5%B1%9E
84 | columbine,https://baike.baidu.com/item/%E8%80%A7%E6%96%97%E8%8F%9C/767936?fr=aladdin
85 | desert-rose,https://baike.baidu.com/item/%E6%B2%99%E6%BC%A0%E7%8E%AB%E7%91%B0
86 | tree mallow,https://baike.baidu.com/item/%E8%8A%B1%E8%91%B5
87 | magnolia,https://baike.baidu.com/item/%E6%9C%A8%E5%85%B0%E5%B1%9E
88 | cyclamen,https://baike.baidu.com/item/%E4%BB%99%E5%AE%A2%E6%9D%A5%E5%B1%9E
89 | watercress,https://baike.baidu.com/item/%E6%97%B1%E9%87%91%E8%8E%B2/892401
90 | canna lily,https://baike.baidu.com/item/%E7%BE%8E%E4%BA%BA%E8%95%89/539429
91 | hippeastrum,https://baike.baidu.com/item/%E6%9C%B1%E9%A1%B6%E7%BA%A2%E5%B1%9E
92 | bee balm,https://baike.baidu.com/item/%E7%BE%8E%E5%9B%BD%E8%96%84%E8%8D%B7%E5%B1%9E
93 | ball moss,https://baike.baidu.com/item/%E7%A9%BA%E6%B0%94%E5%87%A4%E6%A2%A8
94 | foxglove,https://baike.baidu.com/item/%E6%AF%9B%E5%9C%B0%E9%BB%84%E5%B1%9E
95 | bougainvillea,https://baike.baidu.com/item/%E5%85%89%E5%8F%B6%E5%AD%90%E8%8A%B1?fromtitle=%E7%B0%95%E6%9D%9C%E9%B9%83&fromid=1486412
96 | camellia,https://baike.baidu.com/item/%E8%8C%B6%E8%8A%B1/315158?fr=aladdin
97 | mallow,https://baike.baidu.com/item/%E9%94%A6%E8%91%B5/18212?fr=aladdin
98 | mexican petunia,https://baike.baidu.com/item/%E7%8B%AD%E5%8F%B6%E7%BF%A0%E8%8A%A6%E8%8E%89/23445029?fr=aladdin&fromtitle=%E7%BF%A0%E8%8A%A6%E8%8E%89&fromid=7959962
99 | bromelia,https://baike.baidu.com/item/%E8%A7%82%E8%B5%8F%E5%87%A4%E6%A2%A8/5100458
100 | blanket flower,https://baike.baidu.com/item/%E5%AE%BF%E6%A0%B9%E5%A4%A9%E4%BA%BA%E8%8F%8A
101 | trumpet creeper,https://baike.baidu.com/item/%E5%87%8C%E9%9C%84%E8%8A%B1
102 | blackberry lily,https://baike.baidu.com/item/%E5%B0%84%E5%B9%B2/769720?fr=aladdin
--------------------------------------------------------------------------------
/vgg16_oxford_flower_102/venv/pyvenv.cfg:
--------------------------------------------------------------------------------
1 | home = C:\Users\Administrator\Anaconda3
2 | include-system-site-packages = false
3 | version = 3.7.3
4 |
--------------------------------------------------------------------------------