├── loan.csv
├── order-14.1.csv
├── order-14.3.csv
├── train-pivot.csv
├── .idea
├── encodings.xml
├── vcs.xml
├── modules.xml
├── misc.xml
├── 项目.iml
└── workspace.xml
├── order.csv
├── README.md
├── 自动化.ipynb
├── .ipynb_checkpoints
├── 自动化-checkpoint.ipynb
├── Supermarket-checkpoint.ipynb
└── Bank-checkpoint.ipynb
├── Supermarket.ipynb
└── Bank.ipynb
/loan.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Andchenn/Analysis_Item/HEAD/loan.csv
--------------------------------------------------------------------------------
/order-14.1.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Andchenn/Analysis_Item/HEAD/order-14.1.csv
--------------------------------------------------------------------------------
/order-14.3.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Andchenn/Analysis_Item/HEAD/order-14.3.csv
--------------------------------------------------------------------------------
/train-pivot.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Andchenn/Analysis_Item/HEAD/train-pivot.csv
--------------------------------------------------------------------------------
/.idea/encodings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
--------------------------------------------------------------------------------
/.idea/vcs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/order.csv:
--------------------------------------------------------------------------------
1 | ,本月累计,上月同期,去年同期,环比,同比
2 | 销售额,10412.78007,9940.97291,8596.313470000001,0.04746086366711566,0.21130762696581828
3 | 客流量,343.0,315.0,262.0,0.0888888888888888,0.30916030534351147
4 | 客单价,30.357959387755105,31.55864415873016,32.810356755725195,-0.038046145611832505,-0.0747446114721737
5 |
--------------------------------------------------------------------------------
/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # 数据分析小项目
2 |
3 | #### 前言
4 |
5 | Hi! 这里有三个小项目分别是利用 Python 实现报表自动化、某连锁超市、某银行数据分析,展示了问题分解、数据清洗、数据分析与可视化的过程。
6 |
7 | #### 如下:
8 |
9 | 1.利用 Python 实现报表自动化
10 |
11 | + 为什么要进行报表自动化
12 |
13 | + 什么样的报表适合自动化
14 |
15 | + 如何实现报表自动化
16 |
17 |
18 | 2.假如你是某连锁超市的数据分析师
19 |
20 | + 哪些类别的商品比较畅销
21 |
22 | + 哪些商品比较畅销
23 |
24 | + 不同门店的销售额占比
25 |
26 | + 哪些时间段是超市的客流高峰期
27 |
28 | 3. 假如你是某银行的数据分析师
29 |
30 | + 是不是人收入越高的坏账率越低
31 |
32 | + 年龄和坏账率有什么关系
33 |
34 | + 家庭人口数量和坏账率有什么关系
--------------------------------------------------------------------------------
/.idea/项目.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/.idea/workspace.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 | 1563609800195
85 |
86 |
87 | 1563609800195
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
--------------------------------------------------------------------------------
/自动化.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 25,
6 | "metadata": {},
7 | "outputs": [
8 | {
9 | "name": "stdout",
10 | "output_type": "stream",
11 | "text": [
12 | "\n",
13 | "RangeIndex: 3744 entries, 0 to 3743\n",
14 | "Data columns (total 7 columns):\n",
15 | "商品ID 3478 non-null float64\n",
16 | "类别ID 3478 non-null float64\n",
17 | "门店编号 3478 non-null object\n",
18 | "单价 3478 non-null float64\n",
19 | "销量 3478 non-null float64\n",
20 | "成交时间 3478 non-null datetime64[ns]\n",
21 | "订单ID 3478 non-null object\n",
22 | "dtypes: datetime64[ns](1), float64(4), object(2)\n",
23 | "memory usage: 204.8+ KB\n"
24 | ]
25 | }
26 | ],
27 | "source": [
28 | "import pandas as pd\n",
29 | "from datetime import datetime\n",
30 | "\n",
31 | "data=pd.read_csv(\"order-14.1.csv\",parse_dates=[\"成交时间\"],encoding='gbk')\n",
32 | "data.head()\n",
33 | "# print(data.head(5))\n",
34 | "# 查看源数据类型\n",
35 | "data.info()"
36 | ]
37 | },
38 | {
39 | "cell_type": "code",
40 | "execution_count": 17,
41 | "metadata": {},
42 | "outputs": [
43 | {
44 | "name": "stdout",
45 | "output_type": "stream",
46 | "text": [
47 | "本月销售额为:10412.78,客流量为:343,客单价为:30.36\n"
48 | ]
49 | }
50 | ],
51 | "source": [
52 | "# 计算本月的相关的指标\n",
53 | "This_month=data[(data[\"成交时间\"]>=datetime(2018,2,1))&(data[\"成交时间\"]<=datetime(2018,2,28))]\n",
54 | "# 销售额计算\n",
55 | "sales_1=(This_month[\"销量\"]*This_month['单价']).sum()\n",
56 | "# 客流量计算\n",
57 | "traffic_1=This_month[\"订单ID\"].drop_duplicates().count()\n",
58 | "# 客单价计算\n",
59 | "s_t_1=sales_1/traffic_1\n",
60 | "print(\"本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}\".format(sales_1,traffic_1,s_t_1))\n"
61 | ]
62 | },
63 | {
64 | "cell_type": "code",
65 | "execution_count": 19,
66 | "metadata": {},
67 | "outputs": [
68 | {
69 | "name": "stdout",
70 | "output_type": "stream",
71 | "text": [
72 | "本月销售额为:9940.97,客流量为:315,客单价为:31.56\n"
73 | ]
74 | }
75 | ],
76 | "source": [
77 | "# 计算上月相关指标\n",
78 | "last_month=data[(data[\"成交时间\"]>=datetime(2018,1,1))&(data[\"成交时间\"]<=datetime(2018,1,31))]\n",
79 | "\n",
80 | "# 销售额计算\n",
81 | "sales_2=(last_month[\"销量\"]*last_month['单价']).sum()\n",
82 | "# 客流量计算\n",
83 | "traffic_2=last_month[\"订单ID\"].drop_duplicates().count()\n",
84 | "# 客单价计算\n",
85 | "s_t_2=sales_2/traffic_2\n",
86 | "print(\"本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}\".format(sales_2,traffic_2,s_t_2))\n"
87 | ]
88 | },
89 | {
90 | "cell_type": "code",
91 | "execution_count": 20,
92 | "metadata": {},
93 | "outputs": [
94 | {
95 | "name": "stdout",
96 | "output_type": "stream",
97 | "text": [
98 | "本月销售额为:8596.31,客流量为:262,客单价为:32.81\n"
99 | ]
100 | }
101 | ],
102 | "source": [
103 | "# 计算去年同期相关指标\n",
104 | "same_month=data[(data[\"成交时间\"]>=datetime(2017,2,1))&(data[\"成交时间\"]<=datetime(2017,2,28))]\n",
105 | "\n",
106 | "sales_3=(same_month[\"销量\"]*same_month[\"单价\"]).sum()\n",
107 | "\n",
108 | "traffic_3=same_month[\"订单ID\"].drop_duplicates().count()\n",
109 | "s_t_3=sales_3/traffic_3\n",
110 | "print(\"本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}\".format(sales_3,traffic_3,s_t_3))\n"
111 | ]
112 | },
113 | {
114 | "cell_type": "code",
115 | "execution_count": 29,
116 | "metadata": {},
117 | "outputs": [
118 | {
119 | "name": "stdout",
120 | "output_type": "stream",
121 | "text": [
122 | "10412.78007 343 30.357959387755105\n",
123 | "9940.97291 315 31.55864415873016\n",
124 | "8596.313470000001 262 32.810356755725195\n"
125 | ]
126 | }
127 | ],
128 | "source": [
129 | "# 利用函数提高编码效率\n",
130 | "def get_month_data(data):\n",
131 | " sale=(data[\"销量\"]*data[\"单价\"]).sum()\n",
132 | " traffic=data[\"订单ID\"].drop_duplicates().count()\n",
133 | " s_t=sale/traffic\n",
134 | " return (sale,traffic,s_t)\n",
135 | "\n",
136 | "# 本月相关指数\n",
137 | "sales_1,traffic_1,s_t_1=get_month_data(This_month)\n",
138 | "print(sales_1,traffic_1,s_t_1)\n",
139 | "\n",
140 | "# 上月相关指数\n",
141 | "sales_2,traffic_2,s_t_2=get_month_data(last_month)\n",
142 | "print(sales_2,traffic_2,s_t_2)\n",
143 | "\n",
144 | "# 去年同期相关指数\n",
145 | "sales_3,traffic_3,s_t_3=get_month_data(same_month)\n",
146 | "print(sales_3,traffic_3,s_t_3)\n"
147 | ]
148 | },
149 | {
150 | "cell_type": "code",
151 | "execution_count": 36,
152 | "metadata": {},
153 | "outputs": [
154 | {
155 | "name": "stdout",
156 | "output_type": "stream",
157 | "text": [
158 | " 本月累计 上月同期 去年同期\n",
159 | "销售额 10412.780070 9940.972910 8596.313470\n",
160 | "客流量 343.000000 315.000000 262.000000\n",
161 | "客单价 30.357959 31.558644 32.810357\n",
162 | " 本月累计 上月同期 去年同期 环比 同比\n",
163 | "销售额 10412.780070 9940.972910 8596.313470 0.047461 0.211308\n",
164 | "客流量 343.000000 315.000000 262.000000 0.088889 0.309160\n",
165 | "客单价 30.357959 31.558644 32.810357 -0.038046 -0.074745\n"
166 | ]
167 | }
168 | ],
169 | "source": [
170 | "report=pd.DataFrame([[sales_1,sales_2,sales_3],[traffic_1,traffic_2,traffic_3],[s_t_1,s_t_2,s_t_3]],columns=[\"本月累计\",\"上月同期\",\"去年同期\"],index=[\"销售额\",\"客流量\",\"客单价\"])\n",
171 | "print(report)\n",
172 | "# 添加同比和环比字段\n",
173 | "report[\"环比\"]=report[\"本月累计\"]/report[\"上月同期\"]-1\n",
174 | "\n",
175 | "report[\"同比\"]=report[\"本月累计\"]/report[\"去年同期\"]-1\n",
176 | "\n",
177 | "print(report)"
178 | ]
179 | },
180 | {
181 | "cell_type": "code",
182 | "execution_count": 37,
183 | "metadata": {},
184 | "outputs": [],
185 | "source": [
186 | "# 将结果导出本地\n",
187 | "report.to_csv(\"order.csv\",encoding=\"utf-8-sig\")"
188 | ]
189 | }
190 | ],
191 | "metadata": {
192 | "kernelspec": {
193 | "display_name": "Python 3",
194 | "language": "python",
195 | "name": "python3"
196 | },
197 | "language_info": {
198 | "codemirror_mode": {
199 | "name": "ipython",
200 | "version": 3
201 | },
202 | "file_extension": ".py",
203 | "mimetype": "text/x-python",
204 | "name": "python",
205 | "nbconvert_exporter": "python",
206 | "pygments_lexer": "ipython3",
207 | "version": "3.7.3"
208 | },
209 | "toc": {
210 | "base_numbering": 1,
211 | "nav_menu": {},
212 | "number_sections": true,
213 | "sideBar": true,
214 | "skip_h1_title": false,
215 | "title_cell": "Table of Contents",
216 | "title_sidebar": "Contents",
217 | "toc_cell": false,
218 | "toc_position": {},
219 | "toc_section_display": true,
220 | "toc_window_display": false
221 | }
222 | },
223 | "nbformat": 4,
224 | "nbformat_minor": 2
225 | }
226 |
--------------------------------------------------------------------------------
/.ipynb_checkpoints/自动化-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 25,
6 | "metadata": {},
7 | "outputs": [
8 | {
9 | "name": "stdout",
10 | "output_type": "stream",
11 | "text": [
12 | "\n",
13 | "RangeIndex: 3744 entries, 0 to 3743\n",
14 | "Data columns (total 7 columns):\n",
15 | "商品ID 3478 non-null float64\n",
16 | "类别ID 3478 non-null float64\n",
17 | "门店编号 3478 non-null object\n",
18 | "单价 3478 non-null float64\n",
19 | "销量 3478 non-null float64\n",
20 | "成交时间 3478 non-null datetime64[ns]\n",
21 | "订单ID 3478 non-null object\n",
22 | "dtypes: datetime64[ns](1), float64(4), object(2)\n",
23 | "memory usage: 204.8+ KB\n"
24 | ]
25 | }
26 | ],
27 | "source": [
28 | "import pandas as pd\n",
29 | "from datetime import datetime\n",
30 | "\n",
31 | "data=pd.read_csv(\"order-14.1.csv\",parse_dates=[\"成交时间\"],encoding='gbk')\n",
32 | "data.head()\n",
33 | "# print(data.head(5))\n",
34 | "# 查看源数据类型\n",
35 | "data.info()"
36 | ]
37 | },
38 | {
39 | "cell_type": "code",
40 | "execution_count": 17,
41 | "metadata": {},
42 | "outputs": [
43 | {
44 | "name": "stdout",
45 | "output_type": "stream",
46 | "text": [
47 | "本月销售额为:10412.78,客流量为:343,客单价为:30.36\n"
48 | ]
49 | }
50 | ],
51 | "source": [
52 | "# 计算本月的相关的指标\n",
53 | "This_month=data[(data[\"成交时间\"]>=datetime(2018,2,1))&(data[\"成交时间\"]<=datetime(2018,2,28))]\n",
54 | "# 销售额计算\n",
55 | "sales_1=(This_month[\"销量\"]*This_month['单价']).sum()\n",
56 | "# 客流量计算\n",
57 | "traffic_1=This_month[\"订单ID\"].drop_duplicates().count()\n",
58 | "# 客单价计算\n",
59 | "s_t_1=sales_1/traffic_1\n",
60 | "print(\"本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}\".format(sales_1,traffic_1,s_t_1))\n"
61 | ]
62 | },
63 | {
64 | "cell_type": "code",
65 | "execution_count": 19,
66 | "metadata": {},
67 | "outputs": [
68 | {
69 | "name": "stdout",
70 | "output_type": "stream",
71 | "text": [
72 | "本月销售额为:9940.97,客流量为:315,客单价为:31.56\n"
73 | ]
74 | }
75 | ],
76 | "source": [
77 | "# 计算上月相关指标\n",
78 | "last_month=data[(data[\"成交时间\"]>=datetime(2018,1,1))&(data[\"成交时间\"]<=datetime(2018,1,31))]\n",
79 | "\n",
80 | "# 销售额计算\n",
81 | "sales_2=(last_month[\"销量\"]*last_month['单价']).sum()\n",
82 | "# 客流量计算\n",
83 | "traffic_2=last_month[\"订单ID\"].drop_duplicates().count()\n",
84 | "# 客单价计算\n",
85 | "s_t_2=sales_2/traffic_2\n",
86 | "print(\"本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}\".format(sales_2,traffic_2,s_t_2))\n"
87 | ]
88 | },
89 | {
90 | "cell_type": "code",
91 | "execution_count": 20,
92 | "metadata": {},
93 | "outputs": [
94 | {
95 | "name": "stdout",
96 | "output_type": "stream",
97 | "text": [
98 | "本月销售额为:8596.31,客流量为:262,客单价为:32.81\n"
99 | ]
100 | }
101 | ],
102 | "source": [
103 | "# 计算去年同期相关指标\n",
104 | "same_month=data[(data[\"成交时间\"]>=datetime(2017,2,1))&(data[\"成交时间\"]<=datetime(2017,2,28))]\n",
105 | "\n",
106 | "sales_3=(same_month[\"销量\"]*same_month[\"单价\"]).sum()\n",
107 | "\n",
108 | "traffic_3=same_month[\"订单ID\"].drop_duplicates().count()\n",
109 | "s_t_3=sales_3/traffic_3\n",
110 | "print(\"本月销售额为:{:.2f},客流量为:{},客单价为:{:.2f}\".format(sales_3,traffic_3,s_t_3))\n"
111 | ]
112 | },
113 | {
114 | "cell_type": "code",
115 | "execution_count": 29,
116 | "metadata": {},
117 | "outputs": [
118 | {
119 | "name": "stdout",
120 | "output_type": "stream",
121 | "text": [
122 | "10412.78007 343 30.357959387755105\n",
123 | "9940.97291 315 31.55864415873016\n",
124 | "8596.313470000001 262 32.810356755725195\n"
125 | ]
126 | }
127 | ],
128 | "source": [
129 | "# 利用函数提高编码效率\n",
130 | "def get_month_data(data):\n",
131 | " sale=(data[\"销量\"]*data[\"单价\"]).sum()\n",
132 | " traffic=data[\"订单ID\"].drop_duplicates().count()\n",
133 | " s_t=sale/traffic\n",
134 | " return (sale,traffic,s_t)\n",
135 | "\n",
136 | "# 本月相关指数\n",
137 | "sales_1,traffic_1,s_t_1=get_month_data(This_month)\n",
138 | "print(sales_1,traffic_1,s_t_1)\n",
139 | "\n",
140 | "# 上月相关指数\n",
141 | "sales_2,traffic_2,s_t_2=get_month_data(last_month)\n",
142 | "print(sales_2,traffic_2,s_t_2)\n",
143 | "\n",
144 | "# 去年同期相关指数\n",
145 | "sales_3,traffic_3,s_t_3=get_month_data(same_month)\n",
146 | "print(sales_3,traffic_3,s_t_3)\n"
147 | ]
148 | },
149 | {
150 | "cell_type": "code",
151 | "execution_count": 36,
152 | "metadata": {},
153 | "outputs": [
154 | {
155 | "name": "stdout",
156 | "output_type": "stream",
157 | "text": [
158 | " 本月累计 上月同期 去年同期\n",
159 | "销售额 10412.780070 9940.972910 8596.313470\n",
160 | "客流量 343.000000 315.000000 262.000000\n",
161 | "客单价 30.357959 31.558644 32.810357\n",
162 | " 本月累计 上月同期 去年同期 环比 同比\n",
163 | "销售额 10412.780070 9940.972910 8596.313470 0.047461 0.211308\n",
164 | "客流量 343.000000 315.000000 262.000000 0.088889 0.309160\n",
165 | "客单价 30.357959 31.558644 32.810357 -0.038046 -0.074745\n"
166 | ]
167 | }
168 | ],
169 | "source": [
170 | "report=pd.DataFrame([[sales_1,sales_2,sales_3],[traffic_1,traffic_2,traffic_3],[s_t_1,s_t_2,s_t_3]],columns=[\"本月累计\",\"上月同期\",\"去年同期\"],index=[\"销售额\",\"客流量\",\"客单价\"])\n",
171 | "print(report)\n",
172 | "# 添加同比和环比字段\n",
173 | "report[\"环比\"]=report[\"本月累计\"]/report[\"上月同期\"]-1\n",
174 | "\n",
175 | "report[\"同比\"]=report[\"本月累计\"]/report[\"去年同期\"]-1\n",
176 | "\n",
177 | "print(report)"
178 | ]
179 | },
180 | {
181 | "cell_type": "code",
182 | "execution_count": 37,
183 | "metadata": {},
184 | "outputs": [],
185 | "source": [
186 | "# 将结果导出本地\n",
187 | "report.to_csv(\"order.csv\",encoding=\"utf-8-sig\")"
188 | ]
189 | }
190 | ],
191 | "metadata": {
192 | "kernelspec": {
193 | "display_name": "Python 3",
194 | "language": "python",
195 | "name": "python3"
196 | },
197 | "language_info": {
198 | "codemirror_mode": {
199 | "name": "ipython",
200 | "version": 3
201 | },
202 | "file_extension": ".py",
203 | "mimetype": "text/x-python",
204 | "name": "python",
205 | "nbconvert_exporter": "python",
206 | "pygments_lexer": "ipython3",
207 | "version": "3.7.3"
208 | },
209 | "toc": {
210 | "base_numbering": 1,
211 | "nav_menu": {},
212 | "number_sections": true,
213 | "sideBar": true,
214 | "skip_h1_title": false,
215 | "title_cell": "Table of Contents",
216 | "title_sidebar": "Contents",
217 | "toc_cell": false,
218 | "toc_position": {},
219 | "toc_section_display": true,
220 | "toc_window_display": false
221 | }
222 | },
223 | "nbformat": 4,
224 | "nbformat_minor": 2
225 | }
226 |
--------------------------------------------------------------------------------
/Supermarket.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 14,
6 | "metadata": {},
7 | "outputs": [
8 | {
9 | "data": {
10 | "text/html": [
11 | "\n",
12 | "\n",
25 | "
\n",
26 | " \n",
27 | " \n",
28 | " | \n",
29 | " 商品ID | \n",
30 | " 类别ID | \n",
31 | " 门店编号 | \n",
32 | " 单价 | \n",
33 | " 销量 | \n",
34 | " 成交时间 | \n",
35 | " 订单ID | \n",
36 | "
\n",
37 | " \n",
38 | " \n",
39 | " \n",
40 | " | 0 | \n",
41 | " 30006206 | \n",
42 | " 915000003 | \n",
43 | " CDNL | \n",
44 | " 25.23 | \n",
45 | " 0.328 | \n",
46 | " 2017-01-03 09:56:00 | \n",
47 | " 20170103CDLG000210052759 | \n",
48 | "
\n",
49 | " \n",
50 | " | 1 | \n",
51 | " 30163281 | \n",
52 | " 914010000 | \n",
53 | " CDNL | \n",
54 | " 2.00 | \n",
55 | " 2.000 | \n",
56 | " 2017-01-03 09:56:00 | \n",
57 | " 20170103CDLG000210052759 | \n",
58 | "
\n",
59 | " \n",
60 | " | 2 | \n",
61 | " 30200518 | \n",
62 | " 922000000 | \n",
63 | " CDNL | \n",
64 | " 19.62 | \n",
65 | " 0.230 | \n",
66 | " 2017-01-03 09:56:00 | \n",
67 | " 20170103CDLG000210052759 | \n",
68 | "
\n",
69 | " \n",
70 | " | 3 | \n",
71 | " 29989105 | \n",
72 | " 922000000 | \n",
73 | " CDNL | \n",
74 | " 2.80 | \n",
75 | " 2.044 | \n",
76 | " 2017-01-03 09:56:00 | \n",
77 | " 20170103CDLG000210052759 | \n",
78 | "
\n",
79 | " \n",
80 | " | 4 | \n",
81 | " 30179558 | \n",
82 | " 915000100 | \n",
83 | " CDNL | \n",
84 | " 47.41 | \n",
85 | " 0.226 | \n",
86 | " 2017-01-03 09:56:00 | \n",
87 | " 20170103CDLG000210052759 | \n",
88 | "
\n",
89 | " \n",
90 | "
\n",
91 | "
"
92 | ],
93 | "text/plain": [
94 | " 商品ID 类别ID 门店编号 单价 销量 成交时间 \\\n",
95 | "0 30006206 915000003 CDNL 25.23 0.328 2017-01-03 09:56:00 \n",
96 | "1 30163281 914010000 CDNL 2.00 2.000 2017-01-03 09:56:00 \n",
97 | "2 30200518 922000000 CDNL 19.62 0.230 2017-01-03 09:56:00 \n",
98 | "3 29989105 922000000 CDNL 2.80 2.044 2017-01-03 09:56:00 \n",
99 | "4 30179558 915000100 CDNL 47.41 0.226 2017-01-03 09:56:00 \n",
100 | "\n",
101 | " 订单ID \n",
102 | "0 20170103CDLG000210052759 \n",
103 | "1 20170103CDLG000210052759 \n",
104 | "2 20170103CDLG000210052759 \n",
105 | "3 20170103CDLG000210052759 \n",
106 | "4 20170103CDLG000210052759 "
107 | ]
108 | },
109 | "execution_count": 14,
110 | "metadata": {},
111 | "output_type": "execute_result"
112 | }
113 | ],
114 | "source": [
115 | "import pandas as pd\n",
116 | "from datetime import datetime\n",
117 | "# 导入数据源\n",
118 | "data=pd.read_csv(\"order-14.3.csv\",parse_dates=[\"成交时间\"],encoding='gbk')\n",
119 | "data.head()\n",
120 | "# data.shape"
121 | ]
122 | },
123 | {
124 | "cell_type": "code",
125 | "execution_count": 20,
126 | "metadata": {},
127 | "outputs": [
128 | {
129 | "data": {
130 | "text/html": [
131 | "\n",
132 | "\n",
145 | "
\n",
146 | " \n",
147 | " \n",
148 | " | \n",
149 | " 类别ID | \n",
150 | " 销量 | \n",
151 | "
\n",
152 | " \n",
153 | " \n",
154 | " \n",
155 | " | 240 | \n",
156 | " 922000003 | \n",
157 | " 425.328 | \n",
158 | "
\n",
159 | " \n",
160 | " | 239 | \n",
161 | " 922000002 | \n",
162 | " 206.424 | \n",
163 | "
\n",
164 | " \n",
165 | " | 251 | \n",
166 | " 923000006 | \n",
167 | " 190.294 | \n",
168 | "
\n",
169 | " \n",
170 | " | 216 | \n",
171 | " 915030104 | \n",
172 | " 175.059 | \n",
173 | "
\n",
174 | " \n",
175 | " | 238 | \n",
176 | " 922000001 | \n",
177 | " 121.355 | \n",
178 | "
\n",
179 | " \n",
180 | " | 367 | \n",
181 | " 960000000 | \n",
182 | " 121.000 | \n",
183 | "
\n",
184 | " \n",
185 | " | 234 | \n",
186 | " 920090000 | \n",
187 | " 111.565 | \n",
188 | "
\n",
189 | " \n",
190 | " | 249 | \n",
191 | " 923000002 | \n",
192 | " 91.847 | \n",
193 | "
\n",
194 | " \n",
195 | " | 237 | \n",
196 | " 922000000 | \n",
197 | " 86.395 | \n",
198 | "
\n",
199 | " \n",
200 | " | 247 | \n",
201 | " 923000000 | \n",
202 | " 85.845 | \n",
203 | "
\n",
204 | " \n",
205 | "
\n",
206 | "
"
207 | ],
208 | "text/plain": [
209 | " 类别ID 销量\n",
210 | "240 922000003 425.328\n",
211 | "239 922000002 206.424\n",
212 | "251 923000006 190.294\n",
213 | "216 915030104 175.059\n",
214 | "238 922000001 121.355\n",
215 | "367 960000000 121.000\n",
216 | "234 920090000 111.565\n",
217 | "249 923000002 91.847\n",
218 | "237 922000000 86.395\n",
219 | "247 923000000 85.845"
220 | ]
221 | },
222 | "execution_count": 20,
223 | "metadata": {},
224 | "output_type": "execute_result"
225 | }
226 | ],
227 | "source": [
228 | "# 哪些类别的商品比较畅销\n",
229 | "# ascending=False 降序\n",
230 | "data.groupby(\"类别ID\")[\"销量\"].sum().reset_index().sort_values(by=\"销量\",ascending=False).head(10)"
231 | ]
232 | },
233 | {
234 | "cell_type": "code",
235 | "execution_count": 22,
236 | "metadata": {},
237 | "outputs": [
238 | {
239 | "data": {
240 | "text/html": [
241 | "\n",
242 | "\n",
255 | "
\n",
256 | " \n",
257 | " \n",
258 | " | \n",
259 | " 商品ID | \n",
260 | " 销量 | \n",
261 | "
\n",
262 | " \n",
263 | " \n",
264 | " \n",
265 | " | 8 | \n",
266 | " 29989059 | \n",
267 | " 391.549 | \n",
268 | "
\n",
269 | " \n",
270 | " | 18 | \n",
271 | " 29989072 | \n",
272 | " 102.876 | \n",
273 | "
\n",
274 | " \n",
275 | " | 469 | \n",
276 | " 30022232 | \n",
277 | " 101.000 | \n",
278 | "
\n",
279 | " \n",
280 | " | 523 | \n",
281 | " 30031960 | \n",
282 | " 99.998 | \n",
283 | "
\n",
284 | " \n",
285 | " | 57 | \n",
286 | " 29989157 | \n",
287 | " 72.453 | \n",
288 | "
\n",
289 | " \n",
290 | " | 476 | \n",
291 | " 30023041 | \n",
292 | " 64.416 | \n",
293 | "
\n",
294 | " \n",
295 | " | 505 | \n",
296 | " 30026255 | \n",
297 | " 62.375 | \n",
298 | "
\n",
299 | " \n",
300 | " | 7 | \n",
301 | " 29989058 | \n",
302 | " 56.052 | \n",
303 | "
\n",
304 | " \n",
305 | " | 510 | \n",
306 | " 30027007 | \n",
307 | " 48.757 | \n",
308 | "
\n",
309 | " \n",
310 | " | 903 | \n",
311 | " 30171264 | \n",
312 | " 45.000 | \n",
313 | "
\n",
314 | " \n",
315 | "
\n",
316 | "
"
317 | ],
318 | "text/plain": [
319 | " 商品ID 销量\n",
320 | "8 29989059 391.549\n",
321 | "18 29989072 102.876\n",
322 | "469 30022232 101.000\n",
323 | "523 30031960 99.998\n",
324 | "57 29989157 72.453\n",
325 | "476 30023041 64.416\n",
326 | "505 30026255 62.375\n",
327 | "7 29989058 56.052\n",
328 | "510 30027007 48.757\n",
329 | "903 30171264 45.000"
330 | ]
331 | },
332 | "execution_count": 22,
333 | "metadata": {},
334 | "output_type": "execute_result"
335 | }
336 | ],
337 | "source": [
338 | "# 哪些商品比较畅销\n",
339 | "pd.pivot_table(data,index=\"商品ID\",values=\"销量\",aggfunc=\"sum\").reset_index().sort_values(by=\"销量\",ascending=False).head(10)"
340 | ]
341 | },
342 | {
343 | "cell_type": "code",
344 | "execution_count": 25,
345 | "metadata": {},
346 | "outputs": [
347 | {
348 | "data": {
349 | "text/plain": [
350 | "门店编号\n",
351 | "CDLG 10908.82612\n",
352 | "CDNL 8059.47867\n",
353 | "CDXL 9981.76166\n",
354 | "Name: 销售额, dtype: float64"
355 | ]
356 | },
357 | "execution_count": 25,
358 | "metadata": {},
359 | "output_type": "execute_result"
360 | }
361 | ],
362 | "source": [
363 | "# 不同门店的销售额占比\n",
364 | "data[\"销售额\"]=data[\"销量\"]*data[\"单价\"]\n",
365 | "data.groupby(\"门店编号\")[\"销售额\"].sum()\n"
366 | ]
367 | },
368 | {
369 | "cell_type": "code",
370 | "execution_count": 29,
371 | "metadata": {},
372 | "outputs": [
373 | {
374 | "data": {
375 | "text/plain": [
376 | "门店编号\n",
377 | "CDLG 0.376815\n",
378 | "CDNL 0.278392\n",
379 | "CDXL 0.344792\n",
380 | "Name: 销售额, dtype: float64"
381 | ]
382 | },
383 | "execution_count": 29,
384 | "metadata": {},
385 | "output_type": "execute_result"
386 | }
387 | ],
388 | "source": [
389 | "data.groupby(\"门店编号\")[\"销售额\"].sum()/data[\"销售额\"].sum()"
390 | ]
391 | },
392 | {
393 | "cell_type": "code",
394 | "execution_count": 30,
395 | "metadata": {},
396 | "outputs": [
397 | {
398 | "data": {
399 | "text/plain": [
400 | ""
401 | ]
402 | },
403 | "execution_count": 30,
404 | "metadata": {},
405 | "output_type": "execute_result"
406 | },
407 | {
408 | "data": {
409 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAADuCAYAAAAUXsqNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGxhJREFUeJzt3XmYVNWdxvHvr6q7WtZib8Ct4xLHpTFqNEZUMJporJlMFuPEoFbUMZhMFDUY2y3UhFHL0VFioglKFEwmYVyTaGlwcKMBUVCUGzdUKBGjslqgAr2d+eNUhx6g96o69976fZ6nn0borvuG8Pa599a554gxBqVUOEVcB1BKFY8WXKkQ04IrFWJacKVCTAuuVIhpwZUKMS24UiGmBVcqxLTgSoWYFlypENOCKxViWnClQkwLrlSIacGVCjEtuFIhpgVXKsS04EqFmBZcqRDTgisVYlpwpUJMC65UiGnBlQoxLbhSIaYFVyrEtOBKhZgWXKkQ04Ir3xKRqSKyUEQeEpH7ReQlEVkiIufn/3ymiBy7w/dUicjvRaReRGa4Se4fWnDlSyJyDHAcMBZ4HPgK8CPgZGCKiIxp51vPAtYZY44DYiIythR5/UoLrvzqZOBRY3fHnAM0Ahhj1gMZ4Ph2vm888HT+11cCrxc1pc9pwZVfVQMbAIwxK4CH2/zZemBQO983HNgkIpcBf8SeBZStCtcBVPHV1GX6YAsxEIi3+TwAiAJN+Y/GNr/+BFgDfAisy6YTLSWOvQnoDyAiRwHfBlqvqYcAq9v5vhwwwBhzo4hsbn2NcqUFD4mausxI4CBgH+Az+c+tvx7ey5dvrqnLrAU+AN4HlgOvAK8Cr2TTiY96+fq7sgD4PjANGAdsARCRQcBX879/VDvfdwrwEHBo/r/LlthLHBUkNXWZQcDR+Y8jgcOBkQ4jvY8t/GJgHrAgm05s7s0LiogAtwJHAOuAbcB++c/TjDGzRWQm9u/g4/y3XQc8BtyD/fuIAL8yxvyuN1mCTAseADV1mUrgWOzIdQpwCCBOQ3WsGXgJeAZb+Kez6UTObaTypAX3qZq6zGgggS31Sdjr5aBqBJ4EHgD+mE0n1jrOUza04D5SU5fpD3wLOBs4AX+P0j3VDMzHlv3+bDrxvuM8oaYFd6ymLhPBljkJfBPo5zZRSTVjr5lnAJlsOtHkOE/oaMEdyY/W5wOTgL0dx/GD94DpwB3ZdOJD12HCQgteYvlr60nYt4Dam6xRzhqAPwDXZtOJN12HCToteInU1GUOBC4HzgBijuMEQTO26FOz6cRy12GCSgteZPkReyr2GjvqOE4QNQOzsUV/w3WYoNGCF0lNXWYAdsS+BOjrOE4YtAB3A1fo22xdpwUvsJq6TAUwEZhC76eIqp19BPwUuD2bTjS7DuN3WvACqqnLHAb8BjjMdZYysAy4MJtOzHMdxM+04AVQU5fZDTtiT0Yf4Cm1/wYuyqYTG1wH8SMteC/V1GWOw07U+KzrLGXsb8A52XTicddB/EYL3kM1dZkYcCNwIeGcUho0BrgN+Ek2ndjiOoxfaMF7oKYuUwPcB3zecRS1s9eAM7PpxIuug/iBLtnUTTV1ma8BS9Fy+9WBwKKauswPXAfxAx3Buyj/9tcNwKWus6gum469097oOogrWvAuqKnLDMYu4NfeSp7Kv+YD38qmE2tcB3FBC96J/PX2Y8A/OI6iem4V8PVsOrHUdZBS02vwDtTUZQ4HnkXLHXR7AfNr6jJfdR2k1LTg7aipy5yCXVPM5WKGqnD6An+qqcuc5jpIKWnBd6GmLnM2dqH9sl5TO4Qqgdk1dZlzXAcpFS34DmrqMt/DPrWkU07DKQr8pqYuM8l1kFLQgrdxTN2sCdiHRfTvJdwEmFZTl7nCdZBi03/IrVLx0+urJt10sKxc4TqKKpnrwj4hRt8mA0jFE9itbipbjKz/ZsO/r3vJ7HeA61iqJFqA72TTiftcBykGLXgqPh77Pvdurb/VYth4esOUD5aYAw50lkuVUgNwajadeMJ1kEIr74Kn4gcBi9jFriHGkDuj8arVi1oOPrj0wZQDHwMnZNOJJa6DFFL5FjwVHwg8D7R7Km4Mm85urHunvmVMbemCKYfWAp/PphOrXAcplPK8yZaKCzCTDsoNIMLAeyrTnzkhsvTlkuRSrg0HHsyv0BMK5Vlwu9rpN7ryhSL0v6vyxv1PjjxfdvOYy9QR2IUjQqH8TtFT8ROBOXRzjXJj2HJh44WvPtLyxSOKE0z5zMRsOnGH6xC9VV4FT8X3BF4EhvXk241h2+TGC5Y90HL8kYUNpnyoATg+m0485zpIb5RPwVPxKqAe6FU5jaHhiqZ/XTq7+UtfKEww5WOrgTHZdGKj6yA9VU7X4D+nl+UGECF2fcWMw8+Oznm2AJmUv+0B3O46RG+Uxwhur7vnFvIljaH5uqYJz93ZnDimkK+rfOmMbDox23WIngh/we2p+TKKsG65MTTf1HT6s7c1f/3YQr+28pUNwEFB3Le8HE7Rr6BImxKIEJ1cce8xl1TcV1+M11e+MQT4pesQPRHuETwV/yx29K4q5mGMwUxv/sf6dNN3dVHGcPtWNp140HWI7gj7CP5rilxuABHkgopHjp9SMeuZYh9LOXVL0Ga5hbfgqfhZwAmlPOQ5FXPGXVcxQ0seXnthN5gMjHCeoqfig4HXgREuDn9/8/FPT268YLyLY6ui+wTYP5tOvO86SFeEdQRP46jcAKdF543/ReWtT7s6viqqfsB1rkN0VfhG8FR8X+ANujnXvBjmNH/+6YmNl453nUMVnME+Vur7DQ7DOIJfjg/KDXBydMn4uytveNp1DlVwAtzkOkRXhGsET8V3B1YAMddR2lrYfNAz3228epzrHKrgjsmmE76eshy2EXwyPis3wDHRV8fdH0vNgzD9NFXAla4DdCY8I3gqPgx4B7tFjS+93LJP/T83TD0WRFxnUQVhgM9l04llroO0J0wj+MX4uNwAh0ZWHPdo7IoFQkuL6yyqIASocx2iI+EYwe0CiquAuOsoXbG8ZfcFpzTccHQLEV/cDFS90gwckE0n3nYdZFfCMoL/GwEpN8BnI++NnRub/HyU5ibXWVSvRQHf7nMW/BE8Fa/ErrzhbGJLT61qGb7oSw3/dUQTFZWus6he2QCMzqYT21wH2VEYRvBTCWC5AfaKrD16XtXFS2M0+u4fhuqWIXRxld5SC0PBk64D9MZo2XBUfdUkr4qGra6zqF45z3WAXQn2KXoqPgR4Hx++991d68zAF4/d9vMDt1LVx3UW1SMG2CebTmRdB2kr6CP4GYSg3ADDZNPhC6sueqMvWz9xnUX1iADnug6xo6AX/DuuAxTSENn8uYVVF77djy2bXWdRPTLBdYAdBfcUPRUfjb17HrpZYZtMn7+O3XbrnpvpF5i3/tTf1WbTib+6DtEqyCP4NwlhuQEGypZDnq268L04H3/kOovqtq+5DtBWkAt+musAxdRfth70bNWFHw5m0wbXWVS3+KrgwTxFt3fP1xLsH1BdssXE3jxu27RB6xg03HUW1SUGO+nlA9dBILgFGUtws3dLH2nYf0HVpE3VbFjjOovqEgH+yXWIVkEtyVjXAUqpShr3ra+6+JPRrAvEQn+KU1wHaKUFD4iYNH3mmapLGvaUNe+5zqI65Zv96oJ3DZ6Kx4AcEKgF6Aul0URXf7nhP03WjNrTdRbVoX2z6cQK1yGCOIIfQZmWG6BSmveYG7ssuq+8947rLKpDvhjFg1jwsjs931GFtIx+PPaTqgNk1UrXWVS7tOA9pFv1AlExIx+NXdHvIMn6ciURpQXvKV/8xflBVMyIR2JXxQ+Vt5a7zqJ2ckhNXaaf6xDBKngqvh+gEz7aiIgZ9lBsyrDDZfnrrrOo/ydKkfal745gFRz2dx3AjyJihtwfS438grz6quss6v/RgnfTXq4D+FVEGDQ79h97HBvxPNdZ1N/5t+AiEhGRL3fw51UickBxYrVLC94BEQb+tvL6mhMiS192nUUBfi44dtL8jwFE5AwRWSgi9+Y/UsB9wFklyNjW3iU+XuCIMOCuyhv3+0pk8VLXWRSlHgB30m7BjZ3idriI3I5duXQ68CHwKnaDv98bY64uScrtdATvAhH6Ta+85R8SkUUvuM5S5nw9ggMsA24EVmLvXv8FeAs4FDhfREYVN95OtOBdJEKfX1beesg3IvWLXWcpY/GauozT7bQ6ugavBBYbY1YCj2LLdRJwJPAuMBH4HxGpKEVQUvEosHtJjhUSIlTdXPmrQ0+PPvW86yxlbKjLg3d0it5ojLlCRD4E+gHzsdfko7Cn6ocCnjGmVNvvjAZK88MkRESI3VBx52FnRR9f5DpLmRrm8uAdjeCjROS7wCvGmCeA/wTmAguAfwSmAs+VJKWlp+c9JELlzypmfv7c6GMLXWcpQ/4cwYH9gIMBRORu7HX4x8AewCvAeuCRYgdsY0gJjxU6IlRcU/HbL1wQ/fMC11nKjD8LboypN8ZchT0lfzb/2/cBVdgHPl4C0kVPuJ1utdtLIkQvr5j9xUnRB+a7zlJGnBa8K9e0U4D3sG+VHY29Fo8ZY94oZrBdCNqsO18SIXJxxQNjY9JYf2PTd45znacMDHJ58K6U5jFjzAJjzBZgKdDioNygBS8YEeSH0T8fe03Fb59xnaUMOL0x3OHBRSQK3C8i07E3uZYCY0RkI/aUOWaMubP4MQE9RS8oEeS8isfGxWh85pqmc8e5zhNiTv/ddlhwY0yziDQAY7DPYS8CtgCTgBnARUCpCq4jeBGcVTF33OIBDZk5lXsMcJ0ljExz3xwknB2/sxG8dSvbhvznFuwc9Y3GmOkiUsrdRbTgRfBORcW7T1WvHBeTbH/XWULK6WVQR++D7wfcgl0DbSJwFHbUdkVP0QvMgJkwuno9Ilru4ml2efCO3iZ7yxhzAXZiyx3AYuD8UgXbBR3BC+z6oYPn5aLRz7nOEXKlmum5S+2eootIBPs4qNnho61SLqoesAXc/e2tysqVfxjQ/yjXOcqA0x1iO7oG7w/UAl8EDsdef98BLAf2EZGnsHfUq4wx24qeFDaW4BhloRmazxpd/Qnb77Go4nH677bdghtjNgGTReRO7LX3r4wxvwcQkX7Yu+l9S1RusLuJqgKYMmzI/I8jEX1rrDScbv/c2V30wcAHwJexc9ABMMZ8kv/lxyIyFTgR+4RZM3YOexMw3Rhzp4g8jV0c4g4RmQk8DYwHZhhjujNlUgteAK/EYm/+qX+/L7rOUUacjuCd3bjaF3gY+AowV0ReE5F6EVkvIk+JyJvAcdg77Y/nv+5HwMnAFBEZk3+diwqQVQveS43QeM6oEU2IxFxnKSNOR/DOCt4f+Bl2Pu19wK+BM4FlxpgTgNeBv+SXd5oDNAIYY9YDGeD4/OusFZETe5U0lcsBW3v1GmXu8hHDFmyJRA50naPMrHN58M4KPhY7i20/dn03/T3y/wOMMSuwo32r9WyfaH8LhRnF3y3Aa5SlF6tir/1v3z667VNpfeQlPV+fot+MvfZehC37KcAlwGdE5KfAIdhRHhE5Cvh2m+8dwvbTkxeBgcA+vcyrO2r2QANs+/7IEZWUankt1cr5vnGd/R9+MPZZ8LnYEbkZO6Psd/k/34K9ATcNGJf/b0RkEPDV/O+fnv/aW4EHgbt6kXdVL763bE2qHr5om941d8F5wTscwY0xS9i+H/dXgDXYmfPvY6ev3gSsEJGF2JttTwG/wK6+erkxpu1+WX/CLrfcaoaILMl/fLOLeXUE76aFu+3mze+zmz737Ybzgnf2NtmvsdffLcB52BF9f2BP4ATsW13ndfQaxpjxbf5z3/znmT2Li+691Q1bRD790cjhA7CzElXprej8S4qrs//jf4M9Jb8E+yz49djT9cnYZZtuLmq6nenyv93ww+rhixtFalznKGPOd3zt7BR9MXYSy3rgNOA14OfGmPXGmNXGmFdKkHG7VG4VduKN6sSTffu8tGS3quM7/0pVJM3YQdGpTk/djDEtxpjbjTHNxpgGY8zfShGsAzqKd+Jjkc2Xjhg2DBFxnaWMveYlvU86/7LiCuK1WSnXYg+k80eNeKlZZI/Ov1IVkS+2jApiwXUE70CmX98lf62q0rvm7i1xHQCCWfDF6LPhu5SLSO7K4UN1/zZ/0BG8R+ycdBfLNvve90ZV/7Wl9Du+qp1txm4M4lzwCm7pdfgO7hvQ77m3YrGxrnMoAJ70kl6j6xAQ3ILXuw7gJxsikfVThw7p7Tx/VThzXAdoFdSC/wnHi9n5yZmjq5cbkeGuc6i/04L3Siq3DsfrTfvFPQMHLHy3slJXaPGPt7yk53yKaqtgFty6z3UA19ZEo2tuGjJIF3Dwl7+4DtBWkAv+II4XlXftu6Ors8aum6f8417XAdoKbsFTubXAPNcxXPnVoIHzP6yo0HXN/WUVdntt3whuwa2yPE1/ryL6t9sHxcd0/pWqxGZ7Sc9Xk7CCXvAHsc+qlw0DZsKoke8jMtB1FrWT37sOsKNgFzyV+5Aye0/85sGD6tdXRI9wnUPt5BUv6b3sOsSOgl1w63edf0k4ZCsqVs2MD9By+9NM1wF2JSwFX+M6RLG1QMuE0dUbsdtGKX/5FLv6ke8Ev+Cp3FbsQo+hdu3QwfWbotFDXedQu/Q71+uftyf4BbduB5yvnlEsb1RWrrh3QP8vuM6h2nWr6wDtCUfBU7kN9G69dd9qhubk6OotiOzmOovapSe9pFfatQm7IRwFt24hhDPbrh4+tP6TSORg1zlUu6a5DtCR8BQ8lVsJ3O86RiF5sdjyR/r1PcZ1DtWuF72k93DnX+ZOeApu3eg6QKE0QuO5o0YY3erX137qOkBnwlXwVO4F7PZJgXfZiGELt0YiB7jOodq1yEt6GdchOhOuglvXuA7QW0t2q3r1ib59dPklfwvEv7PwFTyVW4DPHtnrjm3C1onVI6p0q19fm+clvbmuQ3RF+Apu/QTY6jpET1w0YvhzDRHZt/OvVI60AD92HaKrwlnwVO4d4L9cx+iu+X12W7ZQt/r1u7u9pOeLTQ26IpwFt67HPoAfCFtEPr2wenhct/r1tY3Ala5DdEd4/zGlcp8AP3Ido6smjhy+pElkb9c5VIeu8JJeoB5sCm/BAVK5h4GHXMfozNy+fZYu1f3E/G4RcIfrEN0V7oJbFwEfuw7Rns0imyaPGDZct/r1tS3AOX5bjqkrwl/wVG41cInrGO05b1T1y7rVr+/9xEt6r7sO0RPhLzhAKjcD+G/XMXb05/59F79WFdNTc3+bA9zmOkRPlUfBrYnAa65DtMpFIh9dM2zoXq5zqA5tIKCn5q3Kp+D2rvq3scvrOHf2qOpXW0SqXedQHZroJb33XYfojfIpOEAq9wrwQ9cx/mdA/0UrYpX6GKi/3eIlvcA/flxeBQdI5WYBd7s6/PpIZN21Qwfv5+r4qkueAC5zHaIQyq/g1r8BnosDnzl65FtGZJiLY6suWQn8i5f0QrE6UHkWPJXbgr0e31zKw94VH7BwdWXF0aU8puqWT4Gve0lvvesghVKeBQdI5d4A/gk7iaHoPohGP5g2eNBBpTiW6pEW4Gwv6S1zHaSQyrfgAKncM8BpQGOxDzVhdPW7RmRQsY+jeuwHXtJ7wHWIQivvggOkco8CZ1LETQx/OShev6ai4shivb7qtau8pBe4eeZdIcYE9j38wkrFzwVmAAWdE/5uRcXqU/cYFUdkQCFfVxXMzV7SC8wCDt2lI3irVO4u4NJCvqQBM2F09Vott2/NBCa7DlFMWvC2UrlpQKpQL3fjkEH1G6PRwwr1eqqgfg2cG+RpqF2hp+i7korfgF3XrcdWVFa888+7jxqOSN8CpVKFc5OX9EIxkaUzOoLvSip3OfY58h5NdmiBljNHjcxpuX3pp+VSbtCCty+V+wXwNXowGeZnQ4fUb45GxhQ+lOoFA1ziJb2proOUkp6idyYVHwM8AuzZlS9/LVb59umjR+6BSFVxg6lu+BiY4CW9P7sOUmo6gncmlVsGHAV0ulRuEzR9b1T1Ni23r2SBY8qx3KAF75pU7gNgHPBgR1925fChCz6NRHQ6qn/MA470kp6TB4v8QAveVancp9hprTfs6o9froq98Zhu9esntwEneUlvnesgLuk1eE+k4qcCdwHVAA3QMHbvPbJbI5HPug2mgPXY97fL8pR8RzqC94Sdv14LPAzwY7vVr5bbvSeAMVru7XQE76Xl1w773rd2H3kL+qSYS43A1cCNYZ+Z1l1a8AKonVW7N/ZBlZNcZylD84ALvKTnmxVz/UQLXkC1s2qTQBoY6TpLGViPXTdtpo7a7dOCF1jtrNoBwDXAJCDmOE5YzQQuK/c75F2hBS+S2lm1+wPTgFNdZwmReuw2QotcBwkKLXiR1c6qPQn7COpYx1GCbBlwtZf0HnYdJGi04CVSO6v2RGAKoHuRdd3r2B+O9+p1ds9owUusdlbteOw1+pccR/GzJ4GbgUe12L2jBXekdlbtwdhtlM4CdEknaABmY9dIe9l1mLDQgjtWO6u2P7bkP8DOjis3rwD3AL8N+kZ/fqQF95HaWbVHAKfnP2rcpimqNcAfgHu8pPdib15IRKYCJwIfYlfg2Q9oAqYbY+4UkWuBlcaYGSKyEPvD9BpghjFmfm+OHQQVrgOo7byk9wLwAnB57azao7BFPw3Y22mwwngbeBTIAE94Sa+pty8oIsdgb1qOBS7APul3KnYf+JdF5DnstXxGRJYDbxpj3hYp6MrYvqYF9ykv6T0PPA9Mrp1VewB2GuyJwAlAEOa9bwUWYgud8ZLeG0U4xsnAo8YYIyJzgP8AMMasF5EMcLwx5pci8hT26b+ym5OgBQ+AfDneAG6rnVUbAY4AjgcOBw4DDsD9k4ErgUXAs/nPL3lJr9hbQlWTX2nHGLNCRNq+T76e7T8InwD+BXizyHl8RwseMF7SawEW5z8AqJ1V2xcYgy38gdhT+taPeAEP3wSsAJZjf+C0fn7VS3prC3icrtoE9AcQkaOwO8bOyP/ZEGB1/teXYi99vkEnq/KEjRY8BLyk9yl21NxpCmftrNo49obdCGBw/mMA0C//IdjiNrf53AhsBNbu8LEx/wPGLxYA38dOCR5HfqdYsY/ufhWYJiJHY1fGvRj4o4g85CirE3oXXQWW2Ltlt2IvWdYB27B30bcB04wxs0XkL8BVxpgXRORO7D2BrwNHY1dbBbjOGBPKkV0LrlSIub4xo5QqIi24UiGmBVcqxLTgSoWYFlypENOCKxViWnClQkwLrlSIacGVCjEtuFIhpgVXKsS04EqFmBZcqRDTgisVYlpwpUJMC65UiGnBlQoxLbhSIaYFVyrEtOBKhZgWXKkQ04IrFWJacKVCTAuuVIhpwZUKMS24UiGmBVcqxLTgSoWYFlypENOCKxVi/wege3b0k5DvOAAAAABJRU5ErkJggg==\n",
410 | "text/plain": [
411 | ""
412 | ]
413 | },
414 | "metadata": {},
415 | "output_type": "display_data"
416 | }
417 | ],
418 | "source": [
419 | "import matplotlib as mpl\n",
420 | "\n",
421 | "mpl.rcParams[\"font.family\"]=\"SimHei\"\n",
422 | "mpl.rcParams[\"axes.unicode_minus\"]=False\n",
423 | "(data.groupby(\"门店编号\")[\"销售额\"].sum()/data[\"销售额\"].sum()).plot.pie()"
424 | ]
425 | },
426 | {
427 | "cell_type": "code",
428 | "execution_count": 37,
429 | "metadata": {},
430 | "outputs": [
431 | {
432 | "data": {
433 | "text/plain": [
434 | ""
435 | ]
436 | },
437 | "execution_count": 37,
438 | "metadata": {},
439 | "output_type": "execute_result"
440 | },
441 | {
442 | "data": {
443 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEHCAYAAAC6IG0BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VPW9//HXJ/u+QRJCEpawCiQBCQiKgguuda2KbbVV2mJt3b23V3+1m21ta5W6VG/F4nJvW5HeqtWKLQoiQtUAsoR9SxCykEBWsi/f3x+Z0ZgGMpnMzJk583k+Hj4YZjnnozJvvvmc7/l+xRiDUkop+wixugCllFKepcGulFI2o8GulFI2o8GulFI2o8GulFI2o8GulFI2o8GulFI2o8GulFI2o8GulFI2E2bFSYcOHWpGjRplxamVUipgbdq06ZgxJrW/91kS7KNGjWLjxo1WnFoppQKWiBxy5X0utWJEJF1EPuj13JsiMtXxONzx+/UisnDg5SqllPKUfoNdRJKBl4DYHs99DThgjNnieOoOYJMx5izgWhGJ90axSiml+ufKiL0TWADUA4hICvAYUCMi5zreMw9Y7ni8FijwbJlKKaVc1W+P3RjjDHTnU/cAfwGeBX7pGJ3HAqWO16uB9N7HEZFFwCKAESNGDLZupZRSJ+HOdMdpwNPGmAq6R+nzgBNAtOP1uL6Oa4xZYowpMMYUpKb2e1FXKaWUm9wJ9v1AjuNxAXAI2ATMcTyXD5QMujKllFJucWe64yPAH0TkB0ATcA2QAqwQkbOBScDHnitRKaXUQLgc7MaYeY5fy4BLe73cICLz6R61/8gY0+mxCm1s1a6jlNW18LWZIwgJkf4/oJRSLvDYDUqOwF/e7xsVAF1dhgdf3055XQvv76li8YJ8EqLCrS5LKWUDulaMRbYcqaW8roULTktnzZ5KrvzdevYebbC6LKWUDWiwW+TtonLCQ4XFC/L587dn0dDSwVVPr+fv28qsLk0pFeA02C1gjGFFUQVnj0slISqcmaNTeOvOOUwcFs/tf97Mwyt20dHZZXWZSqkApcFugW1H6iitbebS3IzPnktPiGLZotncNGskS9Ye5KalhRw/0WphlUqpQKXBboEV28sJCxHmn/bFG3QjwkL42VVTePS6fD75tIbLn1rH1sO1FlWplApUGuw+1t2GKeessUNJjOl7Fsy107P4621nIiJc9/sPWVb4qY+rVEoFMg12H9tRVs/h6mYu69GG6cuUzET+fscczshJ4f5Xi3jg1W20dujtAUqp/mmw+9iKonJCQ4T5k/5tnbR/kxwbwYu3zOS788bwcuFhrn/2I8pqm31QpVIqkGmw+5CzDXPmmCEkx0a49JnQEOH7F0/k9zeezv6jDVz+1Dr+deCYlytVSgUyDXYf2lXeQMnxpi/MhnHVxVMy+Nvtc0iKCeempYU8t/YgxhgvVKmUCnQa7D7kbMNc6EIbpi9j0+J4/XtnccFpafxixS5uf3kzja0dHq5SKRXoNNh9xNmGmZWTwpC4SLePEx8Vzu9vnM5/XTyRt4vKufqZ9RQfa/RgpUqpQKfB7iN7j57g4LFGLpky8DZMbyLCbfPG8NLCmVQ2tHLFU+t4d+dRD1SplLIDDXYfeauonBCBiyYP89gxzx6Xypu3z2Hk0Bi+9T8bWfzOXrq6tO+uVLDTYPeRt4vKmTk6hdR499swfclOieH/vnMm107P4slV+/jmSxuoa2r36DmUUoFFg90H9h1tYF/lCbdmw7giKjyU31ybx8+umsK6/ce4/Hfr2FlW75VzKaX8nwa7D6woqkAELvZgG6Y3EeGmWSNZtmgWLe2dXPf7f1Hb1Oa18yml/JcGuw+sKCpnxsgU0hKivH6u6SNTeHzBVBrbOtmsC4gpFZRcCnYRSReRD3o9N0VE3nE8DheRN0VkvYgs9EahgWp/5Qn2HG3g0lzvjdZ7y81KRAS2Ha7z2TmVUv6j32AXkWTgJSC2x3MCLAacyxPeAWwyxpwFXCsi8V6oNSD9Y3s50H3nqK/ER4WTMzSWolIdsSsVjFwZsXcCC4CeV+NuAd7r8ft5fL6R9VqgwBPF2cFbRRVMH5nMsETvt2F6ys9KYuuROl12QKkg1G+wG2PqjTGf/UwvIkOAG4FHe7wtFih1PK4G/u2eeRFZJCIbRWRjVVXV4KoOEMXHGtlVXu+12TCnkpeVSFVDKxX1LT4/t1LKWu5cPP0V8IAxpudk6RNAtONxXF/HNcYsMcYUGGMKUlNT3Tht4FlR1N2GuWSK7/rrTnnZSQBs1T67UkHHnWCfC/xaRNYAU0Xk58AmYI7j9XygxCPVBbi3t5czbUQSw5Oi+3+zh03KSCAsRLTPrlQQChvoB4wx452PRWSNMeZBERkJrBCRs4FJwMcerDEgfXq8ie2l9fzg0tMsOX9UeCjj0+PZdkRH7EoFG5dH7MaYeSd7zhhzCJgPrAcuMMYE/R5uKz6bDeP7NoxTfnYi2/QCqlJBx2M3KBljyowxy3teaA1mbxeVk5+VSHZKjGU15GUlUdfczqHjTZbVoJTyPb3z1AsOVzex9Ugdl1gwG6an3MxEALaV6t+1SgUTDXYv+Mf2CgAu9eFNSX2ZMCyeyLAQtunSAkoFFQ12L3irqJwpmQmMGGJdGwYgPDSEScMT9AKqUkFGg93DSmub2XK41iM7JXlCflYS28vq6NQNOJQKGhrsHvZZG8bi/rpTXlYiTW2dHKg6YXUpSikf0WD3sBVF5ZyWkcDoobH9v9kH8rK6L6Bu1T67UkFDg92DKupa2HSohst8uERvf3KGxhEXGaZ9dqWCiAa7B73tuCnJ6mmOPYWECFMyE9h2REfsSgULDXYPeruoggnp8YxJjbO6lC/Iz0piV3kDbR1dVpeilPIBDXYPqaxvYcOhar+5aNpTblYibZ1d7KlosLoUpZQPaLB7yD92VGAMPt0Cz1X5WY4lfLUdo1RQ0GD3kBVF5YxLi2Ncuv/tCpiVHE1yTLj22ZUKEhrsHlDV0EphcbVfXTTtSUTIy0rSmTFKBQkNdg/4544Kuvy0DeOUl5XIvsoTNLcF/YrKStmeBrsHvL29nJzUWCb4YRvGKS8ric4uw44yHbUrZXca7IN0/EQrHx44zqVTMhARq8s5qXznHajajlHK9jTYB2nlzqOONox/9ted0hKiGJYQRZFeQFXK9jTYB2lFUTmjhsRwWob/tmGccrMS9QKqUkHApWAXkXQR+cDxeISIrBGR1SKyRLqFi8ibIrJeRBZ6t2T/UdPYxr8OHOeSXP9uwzjlZyVy8Fgjdc3tVpeilPKifoNdRJKBlwDncoW3ArcZY84DsoFc4A5gkzHmLOBaEfH/4asHrNxZQWeX4TI/b8M45TluVNquW+UpZWuujNg7gQVAPYAx5gfGmF2O14YAx4B5wHLHc2uBAs+W6Z9WFFWQnRLN5OEJVpfiEucSvtqOUcre+g12Y0y9MebfkkBEFgA7jDFldI/mSx0vVQPpfbx/kYhsFJGNVVVVgyzbenVN7azff4xLA6QNA5AUE8GIlBi9A1Upm3Pr4qmI5AD/AdzteOoEEO14HNfXcY0xS4wxBcaYgtTUVHdO61dW7qygo8tYvmH1QOXpBVSlbG/Awe7oub8MLOwxkt8EzHE8zgdKPFKdH3t7ewWZSdGftTcCRX5WEqW1zRw70Wp1KUopL3FnxH4/MAJ4yjE7Zi7dF1d/KiJPAJOAjz1Yo9+pa27ng31VXJo7LGDaME7Ov4iKdNSulG25HOzGmHmOX//LGJNhjJnn+Od9Y8whYD6wHrjAGGPrBUlW7TpKe6fx20W/TmVyZiIiuoSvUnYW5qkDOS6iLu/3jTawoqiC4YlRTMtOsrqUAYuLDGNsapz22ZWyMb3zdIAaWtpZu6+Ki/18bZhT6V7CtxZjjNWlKKW8QIN9gFbvrqSto8uvl+jtT352IsdOtFFe12J1KUopL9BgH6C3tpWTnhDJ6SOSrS7FbbmZzhuVtM+ulB1psA/AidYO1uyt4pIpGYSEBGYbBuC0jATCQkSX8FXKpjTYB+C9z9owgTcbpqeo8FAmZsTriF0pm9JgH4AVReWkxkcyfWTgtmGcnHug6gVUpexHg91FTW0dvLenkosnDyM0gNswTnmZiTS0dFByvMnqUpRSHqbB7qL3dlfR0h74bRgn5xK+2o5Ryn402F20Yns5Q+MimDk6xepSPGJ8ehxR4SFsPawXUJWyGw12FzS3dbJ6VyUX2aQNAxAWGsLk4YkUleqIXSm70WB3wft7K2lu77RNG8YpNzOR7aX1dHR2WV2KUsqDNNhdsKKogpTYCM6wSRvGKT87keb2TvZXnbC6FKWUB2mw96Oto4tVu45y0eR0wkLt9Z/rswuo2mdXylbslVReUFRaS2NbJ3PHB/6uT72NHhJLfGQY27TPrpStaLD34+PiagBmjLJXGwYgJETI1a3ylLIdDfZ+bCiuZkxqLEPiIq0uxStysxLZVV5Pa4et90ZRKqhosJ9CZ5dh46Ea28xd70t+VhLtnYbd5Q1Wl6KU8hAN9lPYU9FAQ0uHLdswTs49ULeVajtGKbtwKdhFJF1EPnA8DheRN0VkvYgsPNlzdrChxL79dafMpGiGxEaw7bBeQFXKLvoNdhFJBl4CYh1P3QFsMsacBVwrIvEneS7gFZZUk5EYRVZytNWleI2IXkBVym5cGbF3AguAesfv5/H5ptVrgYKTPBfQjDEUFlczc3RKwO5t6qq8rCT2VTbQ1NZhdSlKKQ/oN9iNMfXGmJ7DuVig1PG4Gkg/yXNfICKLRGSjiGysqqoaXNU+cOh4E1UNrbZuwzjlZyXSZWBHWX3/b1ZK+T13Lp6eAJy9iTjHMfp67guMMUuMMQXGmILUVP+/2afQ0V+384wYp1zHBdSt2mdXyhbcCfZNwBzH43yg5CTPBbQNxdUkxYQzNjXO6lK8Li0+iozEKO2zK2UTYW585iVghYicDUwCPqa7DdP7uYC2oaSagpEpAb1p9UDkZSXqphtK2YTLI3ZjzDzHr4eA+cB64AJjTGdfz3mhVp+prG+h5HgTM0cH/t6mrsrLSqLkeBN1Te1Wl6KUGiS3blAyxpQZY5b3vKja13OB6vP++hCLK/GdfMdKj0V6o5JSAU/vPO3DhuJqosNDmTw8wepSfCY303EBVdsxSgU8DfY+FJbUcPrIJMJttv76qSTGhDNqSIz22ZWygeBJLhfVNbezu6I+KOav95aXlUSRzoxRKuBpsPfyyaEajIGZQRnsiZTVtVDV0Gp1KUqpQdBg76WwpJqwEGHaiOCZEeP02VZ52o5RKqBpsPdSWFxNblYi0RGhVpfic1MyEwgR2KrtGKUCmgZ7Dy3tnWw7UhuUbRiAmIgwxqXFU6QjdqUCmgZ7D1sO19LeaYLywqlTnmMJX2OM1aUopdykwd7DBsfG1QWjgq+/7pSXlcjxxjZKa5utLkUp5SYN9h4KS6qZkB5PUkyE1aVY5vMLqNpnVypQabA7dHR28cmhGmYE0fowfZmYEU94qGiwKxXANNgddpbX09jWGdT9dYDIsFBOy0jQKY9KBTANdofC4uDZWKM/uZmJFB2po6tLL6AqFYg02B02lFSTnRJNRqJ9N652VX5WEg2tHRQfb7S6FKWUGzTY6d64emNJTdC3YZzysrtXetR1Y5QKTBrswIGqRo43tgXtjUm9jU2NIzo8VJfwVSpAabDT3YYBmKH9dQDCQkOYPDxBZ8YoFaA02Om+MWloXAQ5Q2OtLsVv5GUlsaOsjo7OLqtLUUoNkAY78HFxNTNGpSASHBtXuyI/O5GW9i72VZ6wuhSl1AANONhFJFlEVojIRhF51vHcUhH5UEQe9HyJ3lVW20xpbbNeOO1Fl/BVKnC5M2K/CfiTMaYAiBeR7wOhxpjZQI6IjPNohV62oUTnr/dlZEoM8VFhuoSvUgHInWA/DkwRkSQgGxgNLHe8thKY09eHRGSRY5S/saqqyq1ivaGwuJq4yDBOywiejatdERIijpUedcSuVKBxJ9jXASOBO4FdQARQ6nitGkjv60PGmCXGmAJjTEFqaqo7tXrFhpJqTh+ZTGiI9td7y8tKYk9FAy3tnVaXopQaAHeC/cfAd4wxDwG7ga8Czts149w8piVqGtvYe/QEM4N4md5Tyc9KpL3TsLuiwepSlFID4E4IJwO5IhIKnAH8is/bL/lAiWdK877P++tDLK7EP+kFVKUCU5gbn/kl8ALd7ZgPgd8CH4jIcOASYJbnyvOuDSXVRISGkJeVaHUpfikjMYqhcRFsPVwHs62uRinlqgEHuzGmEJjc8zkRmQfMBx4xxgTMNIrCkhrysxOJCg++jatdISLkZSVRVKojdqUCiUf64caYGmPMcmNMhSeO5wtNbR3sKK3T+ev9yMtKZH/lCRpbO6wuRSnlooC50Olpmz+tpaPL6Pow/cjPSqLLwPbSgPlBTKmgF7TBXlhcjQhMH6kzYk4l13H9QRcEU6eyv7KBPRUNnNCf7PyCOxdPbaGwuJpJGQkkRIVbXYpfGxoXSWZSNNt0xK5O4m9bSrlr2ZbPfp8UE05mUnT3P8ndv2YlR5OZFENmcjTJMeG6LpOXBWWwt3V0sflwDTfMGGF1KQFB70BVJ3O4uokHX9vO6SOSuPms0ZTWNFNa20RpTTMlxxtZv/8YjW1fvMEtOjz0s8DvGfzO8E+LjyREbxgclKAM9u1ldbS0d+n6MC7Ky0ri7e0V1Da1kRQTYXU5yk90dHZx9yvdI/UnbphGdkrMv73HGENdcztHapo5UtO94N5n4V/bzLYjtdQ0tX/hM+GhQkbi58EfH+WdmBo1JJZvnDnKK8e2WlAG+wbHxtU6I8Y1eT367OeM95/lIJS1fvfefjYdquGJG6b2GerQPWU2KSaCpJgIpmT2fb9IY2sHZbXNHPks9D//dd2+YzS2eb5v39llaGrrZOKweM7Isd8NisEZ7CXVjB4aS2p8pNWlBATnF7KoVINdddtYUs2Tq/ZxzbRMrpyaOahjxUaGMS49nnHp8R6qrn/NbZ3M/c17PLZyL6/cOst2Pf+gmxXT1WXYUFLDDF0fxmWJ0eHkDI1l62Htsyuob2nnrmVbyEqO4adXTu7/A34oOiKU288bS2FJNev2H7O6HI8LumDfW9lAXXO7rg8zQN0XUHVmTLAzxvDga9upqG/h8RumEh/As8oWzMhmeGIUj67cizHG6nI8KuiC3dlfn6n99QHJzUqior6FyvoWq0tRFnptcylvbC3j7vPHcfqIwP6pNzIslDvPH8fWw7Ws2lVpdTkeFXTBXlhSQ3pCJNkp0f2/WX0mX29UCnqHjjfyw9e3M3NUCt89d6zV5XjEl6dnMXJIDIvf2UtXl31G7UEV7MYYNujG1W6ZPDyR0BDR+exBqr2zi7uWbSE0RPjtDVNtszFNeGgId18wjp3l9fxjR8AsddWvoAr2IzXNVNS36Px1N0RHhDIuLU73QA1ST7y7jy2Ha3n4mlwyk+z10+4V+ZmMTYtj8Tt76bTJqD2ogr1Q568PivMOVLtdaFKn9vHB4zy9Zj/XTc/iS3nDrS7H40JDhHvnj2d/5Qne2Fra/wcCQNAFe0JUGBN8OF/WTvKykqhp6r6LUAWHuqZ27nllC6OGxPKTKwJzaqMrLp48jEkZCTz+7j7aO7usLmfQgirYN5R099d1HQr35Du2yvvwwHGLK1G+YIzh/71WRGVDK48vmEpspH3vZwwJEe67cDyHjjfx101HrC5n0IIm2KsaWjl4rFHXXx+EiRnxTBwWz4/e2M6/Dtjvpg71RX/ZdIS3isq578IJ5GcnWV2O1503MY2p2Uk8uWofrR2d/X/AjwVNsG8s0f76YIWHhvDHb53ByJRYFr64QcPdxoqPNfKTN3YwO2cIt56TY3U5PiHSPWovq2thWeFhq8sZFLeDXUSeEZHLHY+XisiHIvKg50rzrMKSaqLCQ8g9yUJEyjVD4yL507c13O2sraOLu5ZtJiIshMUL8oOqdTln7FBmjk7hd+/tp7ktcEftbgW7iJwNDDPGvCki1wChxpjZQI6IjPNohR6yoaSaqdlJRIQFzQ8pXqPhbm+L39nLtiN1/OqaPDIS7TW1sT8iwn3zx1PV0MofPzpkdTluG3DKiUg48BxQIiJXAvOA5Y6XVwJzTvK5RSKyUUQ2VlVVuVmuexpa2tlZVq/LCHiQhrs9/Wv/MZ5de4CvzBzBxVOGWV2OJc7IGcLZ44by3+8fCNit/twZvn4d2Ak8AswEvgc4J39WA+l9fcgYs8QYU2CMKUhN9e3Sr5sO1dBl0IW/PMwZ7iNSYlj44gadLRPgahrbuGf5FkYPjeWHXzrN6nIsdd+FE6hubOPF9cVWl+IWd4J9GrDEGFMB/BFYCzh/Xotz85hetaGkmtAQYdoI+1/Z97WhcZH8+duzGJESwy0vFmq4ByhjDPe/uo3qxjaevGEaMRH2ndroiqnZSVxwWjrPrj1IXa8dngKBOyG8H3BeJi8ARvF5+yUfKBl0VR62obiGKcMTbD0P10oa7oHv5cLD/HPHUb5/0cST7nQUbO6dP56Glg7+sO6g1aUMmDvBvhQ4V0TWAt+lu8d+k4gsBq4H3vJceYPX2tHJliO1Os3RyzTcA9f+yhM89PcdnD1uKN+cM9rqcvzGpOEJXJabwfPrijl+otXqcgZkwMFujGkwxlxnjDnHGDPbGHOI7nD/CDjXGONXq0RtO1JHW0eX3pjkAxrugae1o5M7X95MTEQYj10XXFMbXXHP/HE0t3fy7NrAGrV7pB9ujKkxxix39N39ii785VvOcM9O1guqgeDRf+5hZ3k9j3w5j7SEKKvL8Ttj0+K5amom//NhSUBtMuN3Fzo9rbC4mnFpcaTERlhdStAYGhfJy4tmkZUcreHux9bureK5D4q5adZILpjU52Q2Bdx1wTjaOw3PrDlgdSkus3Wwd3YZPjlUo20YC2i4+7fjJ1q57y9bGZcWxw8uC+6pjf0ZOSSW6wuy+PPHn1JaGxgrm9o62HeV19PQ2qE3JllEw90/GWP4/v9to665nSe/Mo2o8FCrS/J7t5/XfUP971bvs7gS19g62Dc4F/7SEbtlnD13Z7h/dFDD3Wp//OgQq3ZX8sAlEzktI8HqcgJCZlI0Xz1jBMs3HqHkWKPV5fTL9sGemRRtu628Ak1q/OfhfssLGu5W2nu0gZ+/tYt5E1K5+cxRVpcTUL47bwzhocKTq/x/1G7bYDfGUFhczYxRyVaXotBw9wct7d1TG+OjwvjNtfm6ofsApSVE8fXZo3htSyn7KxusLueUbBvsxccaOXaiTdeH8SMa7tb67zUH2F3RwG+uyyc1PtLqcgLSrefkEBMeym/f9e9Ru22D3dlfnzlaR+z+RMPdGnVN7Ty/rphLpgzj3AlpVpcTsIbERbJwzmje2lbOzrJ6q8s5KdsGe2FxDSmxEYxJjbO6FNWLM9wzNdx9Zun6YhpaO7jzfL/cLiGgfOvsHBKiwlj8zl6rSzkp2wb7hpJqCkYmax/RT6XGR/Jyj3D/WMPda+qa2nnBMVrXWTCDlxgdzqJzcnh311G2HK61upw+2TLYK+pa+LS6iZk6zdGv9Qz3mzXcvUZH655381mjSYmN4LGVe6wupU+2DPZC3bg6YGi4e5eO1r0jLjKM2+aO4YN9x/zyz6wtg31DcTUxEaFMHq5/kANBd8/9DA13L3heR+tec+OskaTFR/LYyr0YY6wu5wvsGewl1UwfmUxYqC3/9WwpLT5Kw93D6prbeX69jta9JToilNvPG0thSTXr9vvXnr+2S766pnb2HG3QNkwA6hnut7yo4T5Yz68rpqFFR+vetGBGNsMTo/xu1G67YN94qBpjtL8eqJzhPjxJw30wnKP1iyfraN2bIsNCufP8cWw5XMvq3ZVWl/MZ2wV7YUk14aG6cXUgc4Z7RmKUhrubdLTuO1+ensXIITE8tnIvXV3+MWq3X7AXV5ObmahLkQa4tPgoXl40S8PdDT1H65N0AoHXhYeGcPcF49hZXs8/dvjHJnJuB7uIpIvIZsfjpSLyoYg86LnSBq65rZOiI3W6PoxN9A535zaH6tR0tO57V+RnMjYtjsXv7KXTD0btgxmxPwpEi8g1QKgxZjaQIyKW/WnafLiGji6j68PYSM9wv/mFQg33fuho3RqhIcK988ezv/IEb2wttboc94JdRM4DGoEKYB6w3PHSSmDOST6zSEQ2isjGqqoqd07brw3FNYjA9JF64dRONNxdp6N161w8eRiTMhJ4/N19tHd2WVrLgINdRCKAHwL3O56KBZx/RVUDfe6Ka4xZYowpMMYUpKamulNrvzaUVDMhPZ7E6HCvHF9ZJy0+ipe/reF+Kjpat1ZIiHDfheM5dLyJ5z44aG0tbnzmfuAZY4xz9ZsTgHOLojg3jzlo7Z1dfPJpja4PY2NpCRrup6KjdeudNzGNy3IzWLxyL1stXCDMnRC+APieiKwBpgKX83n7JR8o8UhlA7SjrJ6mtk6dv25zGu5909G6fxARHr46l7T4SO5atpnG1g5L6hhwsBtjzjHGzDPGzAO20B3uN4nIYuB64C3Pluia5z44SERYCLNydEaM3fUOd+emKr5WUdfiN3cbvrBeR+v+IjEmnN8umMqn1U385I0dltQwqLaJI+Dr6b6A+hFwrjGmzhOFDcTavVW8ta2c288dq1t+BQlnuA9LjOIbz/su3I/Wt7Bk7QEufnwts365iof+vtMn5z2VuuZ2lq4r5qLJ6Tpa9xNn5Azhe+eO5S+bjvD3bWU+P79H+uHGmBpjzHJjjM9n57e0d/Kjv21n9NBYFp2T4+vTKwulJUSxzAfh3tjawaufHOGmpR8z+5ereHjFbqLCQ7locjovrC/h+XXFXjmvq3S07p/uPH8cU7OTeODVIkprm3167oC/8/TZ9w9ScryJn14xWe82DULeCvfOLsMH+6q495UtzPjFu9y7fCvFxxr53rljWX3fXF7/3lk887XpXDQ5nZ+9tZN/WnTHYc/R+uThiZbUoPoWHhrCkzdMwxi4Z9kWn964FNDBfuh4I0+v2c9leRmcM947UyiV/+sZ7jcPMtx3V9Tz8IpdnPmrVdy0tJBtQ9LNAAAOUUlEQVR3dh3lyqnDWX7rbNb+57ncd+EEchz76IaGCI8vmEZeVhJ3LdtsyTZpOlr3byOGxPDQlZMpLKnmmff2++y8YsXFn4KCArNx48ZBHcMYw80vbGDToRpW3TeX9IQoD1WnAlVlfQs3PPcRR+taeHHhTJdnSFXWt/C3LWW8urmUXeX1hIUI8yakcvW0LM4/La3fnwSrGlq55r/X09zWyWvfPYvslBhP/Ov0q665nTm/Xs2ZY4bw7E0FPjmnGjhjDHe/soW/byvnL9+Zzekj3L8zXkQ2GWP6/Z8dsCP2f+6o4P29Vdwzf7yGugI+H7mnJ/Q/cm9q6+D1zaXctPRjZv1yFb9YsYuIsBB+esVkPv5/5/OHb8zgsrwMl9p7qfGRvHDzTNo6urj5hULqmto9+a91UjpaDwwiws+umkJGYhR3LdtMQ4v3/3wE5Ii9sbWDCxa/T1JMBG/efpbulKS+oLK+hRuWfMTR+i+O3Du7DB8eOM6rm4/wj+0VNLV1kpkUzdXTMrn69EzGOFos7vro4HFuWvox00cm89LCmUSGee+aj47WA8+mQ9Vc9/sPuWpqJosXTHXrGK6O2MPcOrrFnli1j/K6Fn731dM11NW/SUuIYtmiWdyw5CNufr6Qh6/JZWd5PX/bXEZFfQvxkWFckT+cq6dlMmNUCiEh4pHzzsoZwm+uzefuV7Zw/1+LWHx9PiKeOXZvOloPPNNHpnDn+eN4/N19zJ2QypVTM712roAL9j0VDSxdV8wNM7KZPlJXcVR96xnudy3bQliIMHd8Kg9+6TQuOC3dazOorpqWyZGaJh5duZfslBjunT/e4+dwzoS5cJLOhAk0t587lnX7jvHga9s5fUSy167HBFSwd3UZHny9iISoMP7r4olWl6P8XFpCFK/cOps1eyo5b2IaQ+J8c/Pa984dy6fVTTy5ah/ZydFcV5Dt0eO/uL5ER+sBKiw0hN8umMqlT3zAXcs2s/zW2V7pOgRUH+OvnxxhQ0kN918ykeTYCKvLUQEgNT6S6wqyfRbq0H2x7BdX5zJn7FAeeLWI9R7cwb57tH6QCyelMyVTR+uBKDslhl9ck8snn9by1GrvTIEMmGCvbWrjl2/vZvrIZK6b7tkRkFKeFh4awjM3ns6Y1Di+87+b2FPR4JHjvri+hHodrQe8K/KHc83pmTy1ep9X7pgOmGB/5J97qGtu5+dXTfHYxS6lvCkhKpznb5lBdEQot7xQyNH6lkEdT0fr9vLQlVPISo7h7mVbqGv27BTIgAj2zZ/W8HLhp9x85ihOy9BFjlTgyEyK5vmbZ1Db3M43X9owqGVcdbRuL3GRYTxxw1Qq6lt48PXtHl0p1O+DvaOziwdf305afCT3eGGGgVLeNiUzkd99dRo7y+q54+XNdLixbZqO1u1p2ohk7p0/nje3lvHqJ57bK9Xvg/2PHx1iR1k9P/rSZOIiA2oSj1KfOW9iOj+9YjKrd1fy0zd3Dnh0pqN1+/rO3DGcMTqFH/1tOyXHGj1yTL8O9sr6Fh5buZezxw3l0txhVpej1KDcNHsUi87J4X8/OsTSASz1q6N1ewsNEX67YCqhIcJdr2zxyEbYfh3sP39rF62dXfzsyileu4NPKV+6/+KJXDJlGL9YsYu3i8pd+oyO1u1veFI0v/pyHlsP1/L4u3sHfTy/Dfb1+4/xxtYybps7hlFDY60uRymPCHGMzqZlJ3H3K1v45NOaU77fOVqfr6N127s0N4MFBdk8s+YAHx08Pqhj+WWwt3Z08sO/bWfkkBhumzfG6nKU8qio8FCe+3oBwxKj+PZLGzl0/OR9Vedo/S4drQeFH10+iVFDYrnnlS3UNrW5fZwBB7uIJIrI2yKyUkReE5EIEVkqIh+KyINuV9LDc2sPcrCqUXdFUrY1JC6SF26eQacx3PLCBmoa//1LXN+io/VgExsZxpM3TOPYiVYeeLXI7SmQ7ozYvwYsNsZcCFQANwChxpjZQI6IDGpocbi6iadW7+fS3GHMm5A2mEMp5ddyUuN47usFHKlpZtH/bqSlvfMLr+toPTjlZiVy34UTeHt7Bcs3HnbrGAMOdmPMM8aYdxy/TQVuBJY7fr8SmNPX50RkkYhsFJGNVVVVJzs2P35jB6Ehwg+/NGmgpSkVcGaMSuHR6/PZUFLDf/7fNroc+2LWt7Tzhw90tB6sFp2dw5ljhvCTN3ZyoOrEgD/vdo9dRGYDycBhwDmzvhpI7+v9xpglxpgCY0xBamrf+5Ou3HmU1bsrueeC8WQkRrtbmlIB5Yr84Xz/4gm8ubWMx97ZA+hoPdiFhAiLr59KZHgIdy3bTFvHwKZAuhXsIpICPAUsBE4AzhSOc/eYTW0d/PSNHUwcFs/NZ41y5xBKBazb5o7hKzOzefq9Azy39qCO1hXDEqP49Zfz2F5az2Mr9wzoswO+lVNEIoC/AA8YYw6JyCa62y8fAfnAwCpweHLVfsrqWnjiK9MI112RVJARER66cgqltS38YsUuAB2tKy6aPIyvnjGCZ9ce5OxxfXc6+uJOgn4TOB34gYisAQS4SUQWA9cDbw30gPuONvCHDw5y3fQsl3eWV8puwkNDePqr05g2IolrpmXqaF0B8MPLJjEmNZZ7l29x+TMe2cxaRJKB+cBaY0xFf+/vuZm1MYYblnzE7ooGVt8316cbIijlj5zfSb3bWjntKKvj6qf/xb6HL3VpM2uP9DyMMTXGmOWuhHpvr20u5ePiau6/ZKKGulJ0B7qGuupp8vBEHrk2z+X3W9rMrmtq5+EVu5iancQCD+8LqZRSdnLVtEyX32vpOri/Wbmb6sY2Xrxlpu6KpJRSHmLZiH3r4Vr+9PGnfOPMUXqRSCmlPMiyYH/w9e2kxkVyr+6KpJRSHmVJK+Z4YxvHSut48ivTiI8Kt6IEpZSyLUtG7BV1LcwZO5TL8zKsOL1SStmaJcFujOGhKyfrlC6llPICS4J9WGIUOalxVpxaKaVsz5JgH6o3IimllNfoaltKKWUzGuxKKWUzGuxKKWUzGuxKKWUzGuxKKWUzGuxKKWUzGuxKKWUzGuxKKWUzHtkab8AnFWnAzU2vLTQUOGZ1EQMQaPWC1uwLgVYvaM09jTTG9LurtVUbbexxZd8+fyIiGwOp5kCrF7RmXwi0ekFrdoe2YpRSymY02JVSymasCvYlFp13MAKt5kCrF7RmXwi0ekFrHjBLLp4qpZTyHm3FKKWUzVgS7CLyjIhcbsW5B0JEkkVkhYhsFJFnra7HjkQkXUQ+cDweISJrRGS1iCwRP91iq2fNPZ6bIiLvWFXTqZyk3jdFZKpVNfWn15+LHBFZJSJbROSHVtcWCHwe7CJyNjDMGPOmr8/thpuAPzmmLcWLiF9Puer1ZQh3fHnXi8hCq2vri4gkAy8BsY6nbgVuM8acB2QDuVbVdjJ91IzjL6DFgN/tzH6Ser8GHDDGbLGssFPoo+bbgR8ZY6YCF4lIv/O4fUlEEkXkbRFZKSKviUiEiCwVkQ9F5EEravJpsItIOPAcUCIiV/ry3G46DkwRkSS6g+awxfWcVB9fhjuATcaYs4BrRSTesuJOrhNYANQDGGN+YIzZ5XhtCP55U8oXana4BXjPmnL69YV6RSQFeAyoEZFzrSzsFHr/Nz4O5IlIOhAJ1FpV2El8DVhsjLkQqABuAEKNMbOBHBEZ5+uCfD1i/zqwE3gEmCkid/j4/AO1DhgJ3AnsAqqtLeeUen8Z5gHLHY/XAn7304Yxpt4YU9f7eRFZAOwwxpRZUNYp9a5ZRIYANwKPWlfVyfXx3/ge4C/As8DXReQKayo7uT5q/gcwi+7v4Wqgw5LCTsIY84wxxtmGS6X7z4Pzu7cSmOPrmnwd7NOAJcaYCuCPgL+OGJx+DHzHGPMQsJvukZlf6uPLEAuUOh5XA+m+r2rgRCQH+A/gbqtrcdGvgAeMMe1WF+KiacDTju/gcroHAP7ufuBmY8wPgGhgvsX19ElEZgPJdP9kb+l3z9fBvh/IcTwuAA75+PwDlQzkikgocAYQSHNDT9D9JQCIIwBmQDnaSS8DC/sayfupucCvRWQNMFVEfm5xPf0JtO8gwGggW0SigNPxw++ho8X1FLAQP/ju+fqES4FzRWQt8F389MfXHn5J940GdUAK3aETKDbx+Y+A+UCJdaW47H5gBPCUY3bMXKsL6o8xZrwxZp4xZh6wxRhjycWyAXgEuF1E1gPnAM9bXI8rfgysAaroHg2vtrSaXkQkgu721gPGmEP4wXdPb1CyGRFZY4yZJyIjgRXAu8CZwCxjTKe11SllPyJyG/AwsNXx1AvAvcAq4BK6v3s+/QlUg93GRGQ43SOHfwZQa0OpgOdoK84H1jquZ/j2/BrsSillL35/QU0ppdTAaLArpZTNaLCroCUiN4rIfw3g/XeJyHe8WZNSnqDBroJZC9137H5GROaKSKljumXvi14dQKDciKSCmFV7niplGRG5Cni/x+/TgQnGmLV0h/drxpjbRWSDYwG1KY7n84EuEWk1xvzRitqVcoUGuwoqIhJC941xPVeO7AKeEZHpdI/grxaRKUCaMeZ5Eck2xhx2tGFaNNSVv9NWjAo2FwDvG2OanU8YY6qAvwKL6A721xx3kpaLSDTwpogkWlGsUu7QYFfB5g76vo3+KcdrPb8T4vgL4Gn8cHVMpU5GWzEqaIhIHFBjjFnf+zVjzDER+QkQxeetmEzHa885Pu/zdbWVcoeO2FXQMMacMMZ8vcdTYXT3152v/5nulQOdrZjneh3CL7fqU6o3XVJABSUR+Tbda74vNMZ83OP5GCDeGHO01/uvAx4CvtXXiF8pf6LBrpQLHBdRu4wxrVbXolR/NNiVUspmtMeulFI2o8GulFI2o8GulFI2o8GulFI2o8GulFI28/8BmDSraPSD6HsAAAAASUVORK5CYII=\n",
444 | "text/plain": [
445 | ""
446 | ]
447 | },
448 | "metadata": {
449 | "needs_background": "light"
450 | },
451 | "output_type": "display_data"
452 | }
453 | ],
454 | "source": [
455 | "# 哪个时间段是超市的客流高封期\n",
456 | "# 利用自定义时间格式函数strftime提取小时数\n",
457 | "data[\"小时\"]=data[\"成交时间\"].map(lambda x:int(x.strftime(\"%H\")))\n",
458 | "# 对小时和订单去重\n",
459 | "traffic=data[[\"小时\",\"订单ID\"]].drop_duplicates()\n",
460 | "# 求每小时的客流量\n",
461 | "traffic.groupby(\"小时\")[\"订单ID\"].count().plot()"
462 | ]
463 | },
464 | {
465 | "cell_type": "code",
466 | "execution_count": null,
467 | "metadata": {},
468 | "outputs": [],
469 | "source": []
470 | }
471 | ],
472 | "metadata": {
473 | "kernelspec": {
474 | "display_name": "Python 3",
475 | "language": "python",
476 | "name": "python3"
477 | },
478 | "language_info": {
479 | "codemirror_mode": {
480 | "name": "ipython",
481 | "version": 3
482 | },
483 | "file_extension": ".py",
484 | "mimetype": "text/x-python",
485 | "name": "python",
486 | "nbconvert_exporter": "python",
487 | "pygments_lexer": "ipython3",
488 | "version": "3.7.3"
489 | },
490 | "toc": {
491 | "base_numbering": 1,
492 | "nav_menu": {},
493 | "number_sections": true,
494 | "sideBar": true,
495 | "skip_h1_title": false,
496 | "title_cell": "Table of Contents",
497 | "title_sidebar": "Contents",
498 | "toc_cell": false,
499 | "toc_position": {},
500 | "toc_section_display": true,
501 | "toc_window_display": false
502 | }
503 | },
504 | "nbformat": 4,
505 | "nbformat_minor": 2
506 | }
507 |
--------------------------------------------------------------------------------
/.ipynb_checkpoints/Supermarket-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 14,
6 | "metadata": {},
7 | "outputs": [
8 | {
9 | "data": {
10 | "text/html": [
11 | "\n",
12 | "\n",
25 | "
\n",
26 | " \n",
27 | " \n",
28 | " | \n",
29 | " 商品ID | \n",
30 | " 类别ID | \n",
31 | " 门店编号 | \n",
32 | " 单价 | \n",
33 | " 销量 | \n",
34 | " 成交时间 | \n",
35 | " 订单ID | \n",
36 | "
\n",
37 | " \n",
38 | " \n",
39 | " \n",
40 | " | 0 | \n",
41 | " 30006206 | \n",
42 | " 915000003 | \n",
43 | " CDNL | \n",
44 | " 25.23 | \n",
45 | " 0.328 | \n",
46 | " 2017-01-03 09:56:00 | \n",
47 | " 20170103CDLG000210052759 | \n",
48 | "
\n",
49 | " \n",
50 | " | 1 | \n",
51 | " 30163281 | \n",
52 | " 914010000 | \n",
53 | " CDNL | \n",
54 | " 2.00 | \n",
55 | " 2.000 | \n",
56 | " 2017-01-03 09:56:00 | \n",
57 | " 20170103CDLG000210052759 | \n",
58 | "
\n",
59 | " \n",
60 | " | 2 | \n",
61 | " 30200518 | \n",
62 | " 922000000 | \n",
63 | " CDNL | \n",
64 | " 19.62 | \n",
65 | " 0.230 | \n",
66 | " 2017-01-03 09:56:00 | \n",
67 | " 20170103CDLG000210052759 | \n",
68 | "
\n",
69 | " \n",
70 | " | 3 | \n",
71 | " 29989105 | \n",
72 | " 922000000 | \n",
73 | " CDNL | \n",
74 | " 2.80 | \n",
75 | " 2.044 | \n",
76 | " 2017-01-03 09:56:00 | \n",
77 | " 20170103CDLG000210052759 | \n",
78 | "
\n",
79 | " \n",
80 | " | 4 | \n",
81 | " 30179558 | \n",
82 | " 915000100 | \n",
83 | " CDNL | \n",
84 | " 47.41 | \n",
85 | " 0.226 | \n",
86 | " 2017-01-03 09:56:00 | \n",
87 | " 20170103CDLG000210052759 | \n",
88 | "
\n",
89 | " \n",
90 | "
\n",
91 | "
"
92 | ],
93 | "text/plain": [
94 | " 商品ID 类别ID 门店编号 单价 销量 成交时间 \\\n",
95 | "0 30006206 915000003 CDNL 25.23 0.328 2017-01-03 09:56:00 \n",
96 | "1 30163281 914010000 CDNL 2.00 2.000 2017-01-03 09:56:00 \n",
97 | "2 30200518 922000000 CDNL 19.62 0.230 2017-01-03 09:56:00 \n",
98 | "3 29989105 922000000 CDNL 2.80 2.044 2017-01-03 09:56:00 \n",
99 | "4 30179558 915000100 CDNL 47.41 0.226 2017-01-03 09:56:00 \n",
100 | "\n",
101 | " 订单ID \n",
102 | "0 20170103CDLG000210052759 \n",
103 | "1 20170103CDLG000210052759 \n",
104 | "2 20170103CDLG000210052759 \n",
105 | "3 20170103CDLG000210052759 \n",
106 | "4 20170103CDLG000210052759 "
107 | ]
108 | },
109 | "execution_count": 14,
110 | "metadata": {},
111 | "output_type": "execute_result"
112 | }
113 | ],
114 | "source": [
115 | "import pandas as pd\n",
116 | "from datetime import datetime\n",
117 | "# 导入数据源\n",
118 | "data=pd.read_csv(\"order-14.3.csv\",parse_dates=[\"成交时间\"],encoding='gbk')\n",
119 | "data.head()\n",
120 | "# data.shape"
121 | ]
122 | },
123 | {
124 | "cell_type": "code",
125 | "execution_count": 20,
126 | "metadata": {},
127 | "outputs": [
128 | {
129 | "data": {
130 | "text/html": [
131 | "\n",
132 | "\n",
145 | "
\n",
146 | " \n",
147 | " \n",
148 | " | \n",
149 | " 类别ID | \n",
150 | " 销量 | \n",
151 | "
\n",
152 | " \n",
153 | " \n",
154 | " \n",
155 | " | 240 | \n",
156 | " 922000003 | \n",
157 | " 425.328 | \n",
158 | "
\n",
159 | " \n",
160 | " | 239 | \n",
161 | " 922000002 | \n",
162 | " 206.424 | \n",
163 | "
\n",
164 | " \n",
165 | " | 251 | \n",
166 | " 923000006 | \n",
167 | " 190.294 | \n",
168 | "
\n",
169 | " \n",
170 | " | 216 | \n",
171 | " 915030104 | \n",
172 | " 175.059 | \n",
173 | "
\n",
174 | " \n",
175 | " | 238 | \n",
176 | " 922000001 | \n",
177 | " 121.355 | \n",
178 | "
\n",
179 | " \n",
180 | " | 367 | \n",
181 | " 960000000 | \n",
182 | " 121.000 | \n",
183 | "
\n",
184 | " \n",
185 | " | 234 | \n",
186 | " 920090000 | \n",
187 | " 111.565 | \n",
188 | "
\n",
189 | " \n",
190 | " | 249 | \n",
191 | " 923000002 | \n",
192 | " 91.847 | \n",
193 | "
\n",
194 | " \n",
195 | " | 237 | \n",
196 | " 922000000 | \n",
197 | " 86.395 | \n",
198 | "
\n",
199 | " \n",
200 | " | 247 | \n",
201 | " 923000000 | \n",
202 | " 85.845 | \n",
203 | "
\n",
204 | " \n",
205 | "
\n",
206 | "
"
207 | ],
208 | "text/plain": [
209 | " 类别ID 销量\n",
210 | "240 922000003 425.328\n",
211 | "239 922000002 206.424\n",
212 | "251 923000006 190.294\n",
213 | "216 915030104 175.059\n",
214 | "238 922000001 121.355\n",
215 | "367 960000000 121.000\n",
216 | "234 920090000 111.565\n",
217 | "249 923000002 91.847\n",
218 | "237 922000000 86.395\n",
219 | "247 923000000 85.845"
220 | ]
221 | },
222 | "execution_count": 20,
223 | "metadata": {},
224 | "output_type": "execute_result"
225 | }
226 | ],
227 | "source": [
228 | "# 哪些类别的商品比较畅销\n",
229 | "# ascending=False 降序\n",
230 | "data.groupby(\"类别ID\")[\"销量\"].sum().reset_index().sort_values(by=\"销量\",ascending=False).head(10)"
231 | ]
232 | },
233 | {
234 | "cell_type": "code",
235 | "execution_count": 22,
236 | "metadata": {},
237 | "outputs": [
238 | {
239 | "data": {
240 | "text/html": [
241 | "\n",
242 | "\n",
255 | "
\n",
256 | " \n",
257 | " \n",
258 | " | \n",
259 | " 商品ID | \n",
260 | " 销量 | \n",
261 | "
\n",
262 | " \n",
263 | " \n",
264 | " \n",
265 | " | 8 | \n",
266 | " 29989059 | \n",
267 | " 391.549 | \n",
268 | "
\n",
269 | " \n",
270 | " | 18 | \n",
271 | " 29989072 | \n",
272 | " 102.876 | \n",
273 | "
\n",
274 | " \n",
275 | " | 469 | \n",
276 | " 30022232 | \n",
277 | " 101.000 | \n",
278 | "
\n",
279 | " \n",
280 | " | 523 | \n",
281 | " 30031960 | \n",
282 | " 99.998 | \n",
283 | "
\n",
284 | " \n",
285 | " | 57 | \n",
286 | " 29989157 | \n",
287 | " 72.453 | \n",
288 | "
\n",
289 | " \n",
290 | " | 476 | \n",
291 | " 30023041 | \n",
292 | " 64.416 | \n",
293 | "
\n",
294 | " \n",
295 | " | 505 | \n",
296 | " 30026255 | \n",
297 | " 62.375 | \n",
298 | "
\n",
299 | " \n",
300 | " | 7 | \n",
301 | " 29989058 | \n",
302 | " 56.052 | \n",
303 | "
\n",
304 | " \n",
305 | " | 510 | \n",
306 | " 30027007 | \n",
307 | " 48.757 | \n",
308 | "
\n",
309 | " \n",
310 | " | 903 | \n",
311 | " 30171264 | \n",
312 | " 45.000 | \n",
313 | "
\n",
314 | " \n",
315 | "
\n",
316 | "
"
317 | ],
318 | "text/plain": [
319 | " 商品ID 销量\n",
320 | "8 29989059 391.549\n",
321 | "18 29989072 102.876\n",
322 | "469 30022232 101.000\n",
323 | "523 30031960 99.998\n",
324 | "57 29989157 72.453\n",
325 | "476 30023041 64.416\n",
326 | "505 30026255 62.375\n",
327 | "7 29989058 56.052\n",
328 | "510 30027007 48.757\n",
329 | "903 30171264 45.000"
330 | ]
331 | },
332 | "execution_count": 22,
333 | "metadata": {},
334 | "output_type": "execute_result"
335 | }
336 | ],
337 | "source": [
338 | "# 哪些商品比较畅销\n",
339 | "pd.pivot_table(data,index=\"商品ID\",values=\"销量\",aggfunc=\"sum\").reset_index().sort_values(by=\"销量\",ascending=False).head(10)"
340 | ]
341 | },
342 | {
343 | "cell_type": "code",
344 | "execution_count": 25,
345 | "metadata": {},
346 | "outputs": [
347 | {
348 | "data": {
349 | "text/plain": [
350 | "门店编号\n",
351 | "CDLG 10908.82612\n",
352 | "CDNL 8059.47867\n",
353 | "CDXL 9981.76166\n",
354 | "Name: 销售额, dtype: float64"
355 | ]
356 | },
357 | "execution_count": 25,
358 | "metadata": {},
359 | "output_type": "execute_result"
360 | }
361 | ],
362 | "source": [
363 | "# 不同门店的销售额占比\n",
364 | "data[\"销售额\"]=data[\"销量\"]*data[\"单价\"]\n",
365 | "data.groupby(\"门店编号\")[\"销售额\"].sum()\n"
366 | ]
367 | },
368 | {
369 | "cell_type": "code",
370 | "execution_count": 29,
371 | "metadata": {},
372 | "outputs": [
373 | {
374 | "data": {
375 | "text/plain": [
376 | "门店编号\n",
377 | "CDLG 0.376815\n",
378 | "CDNL 0.278392\n",
379 | "CDXL 0.344792\n",
380 | "Name: 销售额, dtype: float64"
381 | ]
382 | },
383 | "execution_count": 29,
384 | "metadata": {},
385 | "output_type": "execute_result"
386 | }
387 | ],
388 | "source": [
389 | "data.groupby(\"门店编号\")[\"销售额\"].sum()/data[\"销售额\"].sum()"
390 | ]
391 | },
392 | {
393 | "cell_type": "code",
394 | "execution_count": 30,
395 | "metadata": {},
396 | "outputs": [
397 | {
398 | "data": {
399 | "text/plain": [
400 | ""
401 | ]
402 | },
403 | "execution_count": 30,
404 | "metadata": {},
405 | "output_type": "execute_result"
406 | },
407 | {
408 | "data": {
409 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAADuCAYAAAAUXsqNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGxhJREFUeJzt3XmYVNWdxvHvr6q7WtZib8Ct4xLHpTFqNEZUMJporJlMFuPEoFbUMZhMFDUY2y3UhFHL0VFioglKFEwmYVyTaGlwcKMBUVCUGzdUKBGjslqgAr2d+eNUhx6g96o69976fZ6nn0borvuG8Pa599a554gxBqVUOEVcB1BKFY8WXKkQ04IrFWJacKVCTAuuVIhpwZUKMS24UiGmBVcqxLTgSoWYFlypENOCKxViWnClQkwLrlSIacGVCjEtuFIhpgVXKsS04EqFmBZcqRDTgisVYlpwpUJMC65UiGnBlQoxLbhSIaYFVyrEtOBKhZgWXKkQ04Ir3xKRqSKyUEQeEpH7ReQlEVkiIufn/3ymiBy7w/dUicjvRaReRGa4Se4fWnDlSyJyDHAcMBZ4HPgK8CPgZGCKiIxp51vPAtYZY44DYiIythR5/UoLrvzqZOBRY3fHnAM0Ahhj1gMZ4Ph2vm888HT+11cCrxc1pc9pwZVfVQMbAIwxK4CH2/zZemBQO983HNgkIpcBf8SeBZStCtcBVPHV1GX6YAsxEIi3+TwAiAJN+Y/GNr/+BFgDfAisy6YTLSWOvQnoDyAiRwHfBlqvqYcAq9v5vhwwwBhzo4hsbn2NcqUFD4mausxI4CBgH+Az+c+tvx7ey5dvrqnLrAU+AN4HlgOvAK8Cr2TTiY96+fq7sgD4PjANGAdsARCRQcBX879/VDvfdwrwEHBo/r/LlthLHBUkNXWZQcDR+Y8jgcOBkQ4jvY8t/GJgHrAgm05s7s0LiogAtwJHAOuAbcB++c/TjDGzRWQm9u/g4/y3XQc8BtyD/fuIAL8yxvyuN1mCTAseADV1mUrgWOzIdQpwCCBOQ3WsGXgJeAZb+Kez6UTObaTypAX3qZq6zGgggS31Sdjr5aBqBJ4EHgD+mE0n1jrOUza04D5SU5fpD3wLOBs4AX+P0j3VDMzHlv3+bDrxvuM8oaYFd6ymLhPBljkJfBPo5zZRSTVjr5lnAJlsOtHkOE/oaMEdyY/W5wOTgL0dx/GD94DpwB3ZdOJD12HCQgteYvlr60nYt4Dam6xRzhqAPwDXZtOJN12HCToteInU1GUOBC4HzgBijuMEQTO26FOz6cRy12GCSgteZPkReyr2GjvqOE4QNQOzsUV/w3WYoNGCF0lNXWYAdsS+BOjrOE4YtAB3A1fo22xdpwUvsJq6TAUwEZhC76eIqp19BPwUuD2bTjS7DuN3WvACqqnLHAb8BjjMdZYysAy4MJtOzHMdxM+04AVQU5fZDTtiT0Yf4Cm1/wYuyqYTG1wH8SMteC/V1GWOw07U+KzrLGXsb8A52XTicddB/EYL3kM1dZkYcCNwIeGcUho0BrgN+Ek2ndjiOoxfaMF7oKYuUwPcB3zecRS1s9eAM7PpxIuug/iBLtnUTTV1ma8BS9Fy+9WBwKKauswPXAfxAx3Buyj/9tcNwKWus6gum469097oOogrWvAuqKnLDMYu4NfeSp7Kv+YD38qmE2tcB3FBC96J/PX2Y8A/OI6iem4V8PVsOrHUdZBS02vwDtTUZQ4HnkXLHXR7AfNr6jJfdR2k1LTg7aipy5yCXVPM5WKGqnD6An+qqcuc5jpIKWnBd6GmLnM2dqH9sl5TO4Qqgdk1dZlzXAcpFS34DmrqMt/DPrWkU07DKQr8pqYuM8l1kFLQgrdxTN2sCdiHRfTvJdwEmFZTl7nCdZBi03/IrVLx0+urJt10sKxc4TqKKpnrwj4hRt8mA0jFE9itbipbjKz/ZsO/r3vJ7HeA61iqJFqA72TTiftcBykGLXgqPh77Pvdurb/VYth4esOUD5aYAw50lkuVUgNwajadeMJ1kEIr74Kn4gcBi9jFriHGkDuj8arVi1oOPrj0wZQDHwMnZNOJJa6DFFL5FjwVHwg8D7R7Km4Mm85urHunvmVMbemCKYfWAp/PphOrXAcplPK8yZaKCzCTDsoNIMLAeyrTnzkhsvTlkuRSrg0HHsyv0BMK5Vlwu9rpN7ryhSL0v6vyxv1PjjxfdvOYy9QR2IUjQqH8TtFT8ROBOXRzjXJj2HJh44WvPtLyxSOKE0z5zMRsOnGH6xC9VV4FT8X3BF4EhvXk241h2+TGC5Y90HL8kYUNpnyoATg+m0485zpIb5RPwVPxKqAe6FU5jaHhiqZ/XTq7+UtfKEww5WOrgTHZdGKj6yA9VU7X4D+nl+UGECF2fcWMw8+Oznm2AJmUv+0B3O46RG+Uxwhur7vnFvIljaH5uqYJz93ZnDimkK+rfOmMbDox23WIngh/we2p+TKKsG65MTTf1HT6s7c1f/3YQr+28pUNwEFB3Le8HE7Rr6BImxKIEJ1cce8xl1TcV1+M11e+MQT4pesQPRHuETwV/yx29K4q5mGMwUxv/sf6dNN3dVHGcPtWNp140HWI7gj7CP5rilxuABHkgopHjp9SMeuZYh9LOXVL0Ga5hbfgqfhZwAmlPOQ5FXPGXVcxQ0seXnthN5gMjHCeoqfig4HXgREuDn9/8/FPT268YLyLY6ui+wTYP5tOvO86SFeEdQRP46jcAKdF543/ReWtT7s6viqqfsB1rkN0VfhG8FR8X+ANujnXvBjmNH/+6YmNl453nUMVnME+Vur7DQ7DOIJfjg/KDXBydMn4uytveNp1DlVwAtzkOkRXhGsET8V3B1YAMddR2lrYfNAz3228epzrHKrgjsmmE76eshy2EXwyPis3wDHRV8fdH0vNgzD9NFXAla4DdCY8I3gqPgx4B7tFjS+93LJP/T83TD0WRFxnUQVhgM9l04llroO0J0wj+MX4uNwAh0ZWHPdo7IoFQkuL6yyqIASocx2iI+EYwe0CiquAuOsoXbG8ZfcFpzTccHQLEV/cDFS90gwckE0n3nYdZFfCMoL/GwEpN8BnI++NnRub/HyU5ibXWVSvRQHf7nMW/BE8Fa/ErrzhbGJLT61qGb7oSw3/dUQTFZWus6he2QCMzqYT21wH2VEYRvBTCWC5AfaKrD16XtXFS2M0+u4fhuqWIXRxld5SC0PBk64D9MZo2XBUfdUkr4qGra6zqF45z3WAXQn2KXoqPgR4Hx++991d68zAF4/d9vMDt1LVx3UW1SMG2CebTmRdB2kr6CP4GYSg3ADDZNPhC6sueqMvWz9xnUX1iADnug6xo6AX/DuuAxTSENn8uYVVF77djy2bXWdRPTLBdYAdBfcUPRUfjb17HrpZYZtMn7+O3XbrnpvpF5i3/tTf1WbTib+6DtEqyCP4NwlhuQEGypZDnq268L04H3/kOovqtq+5DtBWkAt+musAxdRfth70bNWFHw5m0wbXWVS3+KrgwTxFt3fP1xLsH1BdssXE3jxu27RB6xg03HUW1SUGO+nlA9dBILgFGUtws3dLH2nYf0HVpE3VbFjjOovqEgH+yXWIVkEtyVjXAUqpShr3ra+6+JPRrAvEQn+KU1wHaKUFD4iYNH3mmapLGvaUNe+5zqI65Zv96oJ3DZ6Kx4AcEKgF6Aul0URXf7nhP03WjNrTdRbVoX2z6cQK1yGCOIIfQZmWG6BSmveYG7ssuq+8947rLKpDvhjFg1jwsjs931GFtIx+PPaTqgNk1UrXWVS7tOA9pFv1AlExIx+NXdHvIMn6ciURpQXvKV/8xflBVMyIR2JXxQ+Vt5a7zqJ2ckhNXaaf6xDBKngqvh+gEz7aiIgZ9lBsyrDDZfnrrrOo/ydKkfal745gFRz2dx3AjyJihtwfS438grz6quss6v/RgnfTXq4D+FVEGDQ79h97HBvxPNdZ1N/5t+AiEhGRL3fw51UickBxYrVLC94BEQb+tvL6mhMiS192nUUBfi44dtL8jwFE5AwRWSgi9+Y/UsB9wFklyNjW3iU+XuCIMOCuyhv3+0pk8VLXWRSlHgB30m7BjZ3idriI3I5duXQ68CHwKnaDv98bY64uScrtdATvAhH6Ta+85R8SkUUvuM5S5nw9ggMsA24EVmLvXv8FeAs4FDhfREYVN95OtOBdJEKfX1beesg3IvWLXWcpY/GauozT7bQ6ugavBBYbY1YCj2LLdRJwJPAuMBH4HxGpKEVQUvEosHtJjhUSIlTdXPmrQ0+PPvW86yxlbKjLg3d0it5ojLlCRD4E+gHzsdfko7Cn6ocCnjGmVNvvjAZK88MkRESI3VBx52FnRR9f5DpLmRrm8uAdjeCjROS7wCvGmCeA/wTmAguAfwSmAs+VJKWlp+c9JELlzypmfv7c6GMLXWcpQ/4cwYH9gIMBRORu7HX4x8AewCvAeuCRYgdsY0gJjxU6IlRcU/HbL1wQ/fMC11nKjD8LboypN8ZchT0lfzb/2/cBVdgHPl4C0kVPuJ1utdtLIkQvr5j9xUnRB+a7zlJGnBa8K9e0U4D3sG+VHY29Fo8ZY94oZrBdCNqsO18SIXJxxQNjY9JYf2PTd45znacMDHJ58K6U5jFjzAJjzBZgKdDioNygBS8YEeSH0T8fe03Fb59xnaUMOL0x3OHBRSQK3C8i07E3uZYCY0RkI/aUOWaMubP4MQE9RS8oEeS8isfGxWh85pqmc8e5zhNiTv/ddlhwY0yziDQAY7DPYS8CtgCTgBnARUCpCq4jeBGcVTF33OIBDZk5lXsMcJ0ljExz3xwknB2/sxG8dSvbhvznFuwc9Y3GmOkiUsrdRbTgRfBORcW7T1WvHBeTbH/XWULK6WVQR++D7wfcgl0DbSJwFHbUdkVP0QvMgJkwuno9Ilru4ml2efCO3iZ7yxhzAXZiyx3AYuD8UgXbBR3BC+z6oYPn5aLRz7nOEXKlmum5S+2eootIBPs4qNnho61SLqoesAXc/e2tysqVfxjQ/yjXOcqA0x1iO7oG7w/UAl8EDsdef98BLAf2EZGnsHfUq4wx24qeFDaW4BhloRmazxpd/Qnb77Go4nH677bdghtjNgGTReRO7LX3r4wxvwcQkX7Yu+l9S1RusLuJqgKYMmzI/I8jEX1rrDScbv/c2V30wcAHwJexc9ABMMZ8kv/lxyIyFTgR+4RZM3YOexMw3Rhzp4g8jV0c4g4RmQk8DYwHZhhjujNlUgteAK/EYm/+qX+/L7rOUUacjuCd3bjaF3gY+AowV0ReE5F6EVkvIk+JyJvAcdg77Y/nv+5HwMnAFBEZk3+diwqQVQveS43QeM6oEU2IxFxnKSNOR/DOCt4f+Bl2Pu19wK+BM4FlxpgTgNeBv+SXd5oDNAIYY9YDGeD4/OusFZETe5U0lcsBW3v1GmXu8hHDFmyJRA50naPMrHN58M4KPhY7i20/dn03/T3y/wOMMSuwo32r9WyfaH8LhRnF3y3Aa5SlF6tir/1v3z667VNpfeQlPV+fot+MvfZehC37KcAlwGdE5KfAIdhRHhE5Cvh2m+8dwvbTkxeBgcA+vcyrO2r2QANs+/7IEZWUankt1cr5vnGd/R9+MPZZ8LnYEbkZO6Psd/k/34K9ATcNGJf/b0RkEPDV/O+fnv/aW4EHgbt6kXdVL763bE2qHr5om941d8F5wTscwY0xS9i+H/dXgDXYmfPvY6ev3gSsEJGF2JttTwG/wK6+erkxpu1+WX/CLrfcaoaILMl/fLOLeXUE76aFu+3mze+zmz737Ybzgnf2NtmvsdffLcB52BF9f2BP4ATsW13ndfQaxpjxbf5z3/znmT2Li+691Q1bRD790cjhA7CzElXprej8S4qrs//jf4M9Jb8E+yz49djT9cnYZZtuLmq6nenyv93ww+rhixtFalznKGPOd3zt7BR9MXYSy3rgNOA14OfGmPXGmNXGmFdKkHG7VG4VduKN6sSTffu8tGS3quM7/0pVJM3YQdGpTk/djDEtxpjbjTHNxpgGY8zfShGsAzqKd+Jjkc2Xjhg2DBFxnaWMveYlvU86/7LiCuK1WSnXYg+k80eNeKlZZI/Ov1IVkS+2jApiwXUE70CmX98lf62q0rvm7i1xHQCCWfDF6LPhu5SLSO7K4UN1/zZ/0BG8R+ycdBfLNvve90ZV/7Wl9Du+qp1txm4M4lzwCm7pdfgO7hvQ77m3YrGxrnMoAJ70kl6j6xAQ3ILXuw7gJxsikfVThw7p7Tx/VThzXAdoFdSC/wnHi9n5yZmjq5cbkeGuc6i/04L3Siq3DsfrTfvFPQMHLHy3slJXaPGPt7yk53yKaqtgFty6z3UA19ZEo2tuGjJIF3Dwl7+4DtBWkAv+II4XlXftu6Ors8aum6f8417XAdoKbsFTubXAPNcxXPnVoIHzP6yo0HXN/WUVdntt3whuwa2yPE1/ryL6t9sHxcd0/pWqxGZ7Sc9Xk7CCXvAHsc+qlw0DZsKoke8jMtB1FrWT37sOsKNgFzyV+5Aye0/85sGD6tdXRI9wnUPt5BUv6b3sOsSOgl1w63edf0k4ZCsqVs2MD9By+9NM1wF2JSwFX+M6RLG1QMuE0dUbsdtGKX/5FLv6ke8Ev+Cp3FbsQo+hdu3QwfWbotFDXedQu/Q71+uftyf4BbduB5yvnlEsb1RWrrh3QP8vuM6h2nWr6wDtCUfBU7kN9G69dd9qhubk6OotiOzmOovapSe9pFfatQm7IRwFt24hhDPbrh4+tP6TSORg1zlUu6a5DtCR8BQ8lVsJ3O86RiF5sdjyR/r1PcZ1DtWuF72k93DnX+ZOeApu3eg6QKE0QuO5o0YY3erX137qOkBnwlXwVO4F7PZJgXfZiGELt0YiB7jOodq1yEt6GdchOhOuglvXuA7QW0t2q3r1ib59dPklfwvEv7PwFTyVW4DPHtnrjm3C1onVI6p0q19fm+clvbmuQ3RF+Apu/QTY6jpET1w0YvhzDRHZt/OvVI60AD92HaKrwlnwVO4d4L9cx+iu+X12W7ZQt/r1u7u9pOeLTQ26IpwFt67HPoAfCFtEPr2wenhct/r1tY3Ala5DdEd4/zGlcp8AP3Ido6smjhy+pElkb9c5VIeu8JJeoB5sCm/BAVK5h4GHXMfozNy+fZYu1f3E/G4RcIfrEN0V7oJbFwEfuw7Rns0imyaPGDZct/r1tS3AOX5bjqkrwl/wVG41cInrGO05b1T1y7rVr+/9xEt6r7sO0RPhLzhAKjcD+G/XMXb05/59F79WFdNTc3+bA9zmOkRPlUfBrYnAa65DtMpFIh9dM2zoXq5zqA5tIKCn5q3Kp+D2rvq3scvrOHf2qOpXW0SqXedQHZroJb33XYfojfIpOEAq9wrwQ9cx/mdA/0UrYpX6GKi/3eIlvcA/flxeBQdI5WYBd7s6/PpIZN21Qwfv5+r4qkueAC5zHaIQyq/g1r8BnosDnzl65FtGZJiLY6suWQn8i5f0QrE6UHkWPJXbgr0e31zKw94VH7BwdWXF0aU8puqWT4Gve0lvvesghVKeBQdI5d4A/gk7iaHoPohGP5g2eNBBpTiW6pEW4Gwv6S1zHaSQyrfgAKncM8BpQGOxDzVhdPW7RmRQsY+jeuwHXtJ7wHWIQivvggOkco8CZ1LETQx/OShev6ai4shivb7qtau8pBe4eeZdIcYE9j38wkrFzwVmAAWdE/5uRcXqU/cYFUdkQCFfVxXMzV7SC8wCDt2lI3irVO4u4NJCvqQBM2F09Vott2/NBCa7DlFMWvC2UrlpQKpQL3fjkEH1G6PRwwr1eqqgfg2cG+RpqF2hp+i7korfgF3XrcdWVFa888+7jxqOSN8CpVKFc5OX9EIxkaUzOoLvSip3OfY58h5NdmiBljNHjcxpuX3pp+VSbtCCty+V+wXwNXowGeZnQ4fUb45GxhQ+lOoFA1ziJb2proOUkp6idyYVHwM8AuzZlS9/LVb59umjR+6BSFVxg6lu+BiY4CW9P7sOUmo6gncmlVsGHAV0ulRuEzR9b1T1Ni23r2SBY8qx3KAF75pU7gNgHPBgR1925fChCz6NRHQ6qn/MA470kp6TB4v8QAveVancp9hprTfs6o9froq98Zhu9esntwEneUlvnesgLuk1eE+k4qcCdwHVAA3QMHbvPbJbI5HPug2mgPXY97fL8pR8RzqC94Sdv14LPAzwY7vVr5bbvSeAMVru7XQE76Xl1w773rd2H3kL+qSYS43A1cCNYZ+Z1l1a8AKonVW7N/ZBlZNcZylD84ALvKTnmxVz/UQLXkC1s2qTQBoY6TpLGViPXTdtpo7a7dOCF1jtrNoBwDXAJCDmOE5YzQQuK/c75F2hBS+S2lm1+wPTgFNdZwmReuw2QotcBwkKLXiR1c6qPQn7COpYx1GCbBlwtZf0HnYdJGi04CVSO6v2RGAKoHuRdd3r2B+O9+p1ds9owUusdlbteOw1+pccR/GzJ4GbgUe12L2jBXekdlbtwdhtlM4CdEknaABmY9dIe9l1mLDQgjtWO6u2P7bkP8DOjis3rwD3AL8N+kZ/fqQF95HaWbVHAKfnP2rcpimqNcAfgHu8pPdib15IRKYCJwIfYlfg2Q9oAqYbY+4UkWuBlcaYGSKyEPvD9BpghjFmfm+OHQQVrgOo7byk9wLwAnB57azao7BFPw3Y22mwwngbeBTIAE94Sa+pty8oIsdgb1qOBS7APul3KnYf+JdF5DnstXxGRJYDbxpj3hYp6MrYvqYF9ykv6T0PPA9Mrp1VewB2GuyJwAlAEOa9bwUWYgud8ZLeG0U4xsnAo8YYIyJzgP8AMMasF5EMcLwx5pci8hT26b+ym5OgBQ+AfDneAG6rnVUbAY4AjgcOBw4DDsD9k4ErgUXAs/nPL3lJr9hbQlWTX2nHGLNCRNq+T76e7T8InwD+BXizyHl8RwseMF7SawEW5z8AqJ1V2xcYgy38gdhT+taPeAEP3wSsAJZjf+C0fn7VS3prC3icrtoE9AcQkaOwO8bOyP/ZEGB1/teXYi99vkEnq/KEjRY8BLyk9yl21NxpCmftrNo49obdCGBw/mMA0C//IdjiNrf53AhsBNbu8LEx/wPGLxYA38dOCR5HfqdYsY/ufhWYJiJHY1fGvRj4o4g85CirE3oXXQWW2Ltlt2IvWdYB27B30bcB04wxs0XkL8BVxpgXRORO7D2BrwNHY1dbBbjOGBPKkV0LrlSIub4xo5QqIi24UiGmBVcqxLTgSoWYFlypENOCKxViWnClQkwLrlSIacGVCjEtuFIhpgVXKsS04EqFmBZcqRDTgisVYlpwpUJMC65UiGnBlQoxLbhSIaYFVyrEtOBKhZgWXKkQ04IrFWJacKVCTAuuVIhpwZUKMS24UiGmBVcqxLTgSoWYFlypENOCKxVi/wege3b0k5DvOAAAAABJRU5ErkJggg==\n",
410 | "text/plain": [
411 | ""
412 | ]
413 | },
414 | "metadata": {},
415 | "output_type": "display_data"
416 | }
417 | ],
418 | "source": [
419 | "import matplotlib as mpl\n",
420 | "\n",
421 | "mpl.rcParams[\"font.family\"]=\"SimHei\"\n",
422 | "mpl.rcParams[\"axes.unicode_minus\"]=False\n",
423 | "(data.groupby(\"门店编号\")[\"销售额\"].sum()/data[\"销售额\"].sum()).plot.pie()"
424 | ]
425 | },
426 | {
427 | "cell_type": "code",
428 | "execution_count": 37,
429 | "metadata": {},
430 | "outputs": [
431 | {
432 | "data": {
433 | "text/plain": [
434 | ""
435 | ]
436 | },
437 | "execution_count": 37,
438 | "metadata": {},
439 | "output_type": "execute_result"
440 | },
441 | {
442 | "data": {
443 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEHCAYAAAC6IG0BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VPW9//HXJ/u+QRJCEpawCiQBCQiKgguuda2KbbVV2mJt3b23V3+1m21ta5W6VG/F4nJvW5HeqtWKLQoiQtUAsoR9SxCykEBWsi/f3x+Z0ZgGMpnMzJk583k+Hj4YZjnnozJvvvmc7/l+xRiDUkop+wixugCllFKepcGulFI2o8GulFI2o8GulFI2o8GulFI2o8GulFI2o8GulFI2o8GulFI2o8GulFI2E2bFSYcOHWpGjRplxamVUipgbdq06ZgxJrW/91kS7KNGjWLjxo1WnFoppQKWiBxy5X0utWJEJF1EPuj13JsiMtXxONzx+/UisnDg5SqllPKUfoNdRJKBl4DYHs99DThgjNnieOoOYJMx5izgWhGJ90axSiml+ufKiL0TWADUA4hICvAYUCMi5zreMw9Y7ni8FijwbJlKKaVc1W+P3RjjDHTnU/cAfwGeBX7pGJ3HAqWO16uB9N7HEZFFwCKAESNGDLZupZRSJ+HOdMdpwNPGmAq6R+nzgBNAtOP1uL6Oa4xZYowpMMYUpKb2e1FXKaWUm9wJ9v1AjuNxAXAI2ATMcTyXD5QMujKllFJucWe64yPAH0TkB0ATcA2QAqwQkbOBScDHnitRKaXUQLgc7MaYeY5fy4BLe73cICLz6R61/8gY0+mxCm1s1a6jlNW18LWZIwgJkf4/oJRSLvDYDUqOwF/e7xsVAF1dhgdf3055XQvv76li8YJ8EqLCrS5LKWUDulaMRbYcqaW8roULTktnzZ5KrvzdevYebbC6LKWUDWiwW+TtonLCQ4XFC/L587dn0dDSwVVPr+fv28qsLk0pFeA02C1gjGFFUQVnj0slISqcmaNTeOvOOUwcFs/tf97Mwyt20dHZZXWZSqkApcFugW1H6iitbebS3IzPnktPiGLZotncNGskS9Ye5KalhRw/0WphlUqpQKXBboEV28sJCxHmn/bFG3QjwkL42VVTePS6fD75tIbLn1rH1sO1FlWplApUGuw+1t2GKeessUNJjOl7Fsy107P4621nIiJc9/sPWVb4qY+rVEoFMg12H9tRVs/h6mYu69GG6cuUzET+fscczshJ4f5Xi3jg1W20dujtAUqp/mmw+9iKonJCQ4T5k/5tnbR/kxwbwYu3zOS788bwcuFhrn/2I8pqm31QpVIqkGmw+5CzDXPmmCEkx0a49JnQEOH7F0/k9zeezv6jDVz+1Dr+deCYlytVSgUyDXYf2lXeQMnxpi/MhnHVxVMy+Nvtc0iKCeempYU8t/YgxhgvVKmUCnQa7D7kbMNc6EIbpi9j0+J4/XtnccFpafxixS5uf3kzja0dHq5SKRXoNNh9xNmGmZWTwpC4SLePEx8Vzu9vnM5/XTyRt4vKufqZ9RQfa/RgpUqpQKfB7iN7j57g4LFGLpky8DZMbyLCbfPG8NLCmVQ2tHLFU+t4d+dRD1SplLIDDXYfeauonBCBiyYP89gxzx6Xypu3z2Hk0Bi+9T8bWfzOXrq6tO+uVLDTYPeRt4vKmTk6hdR499swfclOieH/vnMm107P4slV+/jmSxuoa2r36DmUUoFFg90H9h1tYF/lCbdmw7giKjyU31ybx8+umsK6/ce4/Hfr2FlW75VzKaX8nwa7D6woqkAELvZgG6Y3EeGmWSNZtmgWLe2dXPf7f1Hb1Oa18yml/JcGuw+sKCpnxsgU0hKivH6u6SNTeHzBVBrbOtmsC4gpFZRcCnYRSReRD3o9N0VE3nE8DheRN0VkvYgs9EahgWp/5Qn2HG3g0lzvjdZ7y81KRAS2Ha7z2TmVUv6j32AXkWTgJSC2x3MCLAacyxPeAWwyxpwFXCsi8V6oNSD9Y3s50H3nqK/ER4WTMzSWolIdsSsVjFwZsXcCC4CeV+NuAd7r8ft5fL6R9VqgwBPF2cFbRRVMH5nMsETvt2F6ys9KYuuROl12QKkg1G+wG2PqjTGf/UwvIkOAG4FHe7wtFih1PK4G/u2eeRFZJCIbRWRjVVXV4KoOEMXHGtlVXu+12TCnkpeVSFVDKxX1LT4/t1LKWu5cPP0V8IAxpudk6RNAtONxXF/HNcYsMcYUGGMKUlNT3Tht4FlR1N2GuWSK7/rrTnnZSQBs1T67UkHHnWCfC/xaRNYAU0Xk58AmYI7j9XygxCPVBbi3t5czbUQSw5Oi+3+zh03KSCAsRLTPrlQQChvoB4wx452PRWSNMeZBERkJrBCRs4FJwMcerDEgfXq8ie2l9fzg0tMsOX9UeCjj0+PZdkRH7EoFG5dH7MaYeSd7zhhzCJgPrAcuMMYE/R5uKz6bDeP7NoxTfnYi2/QCqlJBx2M3KBljyowxy3teaA1mbxeVk5+VSHZKjGU15GUlUdfczqHjTZbVoJTyPb3z1AsOVzex9Ugdl1gwG6an3MxEALaV6t+1SgUTDXYv+Mf2CgAu9eFNSX2ZMCyeyLAQtunSAkoFFQ12L3irqJwpmQmMGGJdGwYgPDSEScMT9AKqUkFGg93DSmub2XK41iM7JXlCflYS28vq6NQNOJQKGhrsHvZZG8bi/rpTXlYiTW2dHKg6YXUpSikf0WD3sBVF5ZyWkcDoobH9v9kH8rK6L6Bu1T67UkFDg92DKupa2HSohst8uERvf3KGxhEXGaZ9dqWCiAa7B73tuCnJ6mmOPYWECFMyE9h2REfsSgULDXYPeruoggnp8YxJjbO6lC/Iz0piV3kDbR1dVpeilPIBDXYPqaxvYcOhar+5aNpTblYibZ1d7KlosLoUpZQPaLB7yD92VGAMPt0Cz1X5WY4lfLUdo1RQ0GD3kBVF5YxLi2Ncuv/tCpiVHE1yTLj22ZUKEhrsHlDV0EphcbVfXTTtSUTIy0rSmTFKBQkNdg/4544Kuvy0DeOUl5XIvsoTNLcF/YrKStmeBrsHvL29nJzUWCb4YRvGKS8ric4uw44yHbUrZXca7IN0/EQrHx44zqVTMhARq8s5qXznHajajlHK9jTYB2nlzqOONox/9ted0hKiGJYQRZFeQFXK9jTYB2lFUTmjhsRwWob/tmGccrMS9QKqUkHApWAXkXQR+cDxeISIrBGR1SKyRLqFi8ibIrJeRBZ6t2T/UdPYxr8OHOeSXP9uwzjlZyVy8Fgjdc3tVpeilPKifoNdRJKBlwDncoW3ArcZY84DsoFc4A5gkzHmLOBaEfH/4asHrNxZQWeX4TI/b8M45TluVNquW+UpZWuujNg7gQVAPYAx5gfGmF2O14YAx4B5wHLHc2uBAs+W6Z9WFFWQnRLN5OEJVpfiEucSvtqOUcre+g12Y0y9MebfkkBEFgA7jDFldI/mSx0vVQPpfbx/kYhsFJGNVVVVgyzbenVN7azff4xLA6QNA5AUE8GIlBi9A1Upm3Pr4qmI5AD/AdzteOoEEO14HNfXcY0xS4wxBcaYgtTUVHdO61dW7qygo8tYvmH1QOXpBVSlbG/Awe7oub8MLOwxkt8EzHE8zgdKPFKdH3t7ewWZSdGftTcCRX5WEqW1zRw70Wp1KUopL3FnxH4/MAJ4yjE7Zi7dF1d/KiJPAJOAjz1Yo9+pa27ng31VXJo7LGDaME7Ov4iKdNSulG25HOzGmHmOX//LGJNhjJnn+Od9Y8whYD6wHrjAGGPrBUlW7TpKe6fx20W/TmVyZiIiuoSvUnYW5qkDOS6iLu/3jTawoqiC4YlRTMtOsrqUAYuLDGNsapz22ZWyMb3zdIAaWtpZu6+Ki/18bZhT6V7CtxZjjNWlKKW8QIN9gFbvrqSto8uvl+jtT352IsdOtFFe12J1KUopL9BgH6C3tpWTnhDJ6SOSrS7FbbmZzhuVtM+ulB1psA/AidYO1uyt4pIpGYSEBGYbBuC0jATCQkSX8FXKpjTYB+C9z9owgTcbpqeo8FAmZsTriF0pm9JgH4AVReWkxkcyfWTgtmGcnHug6gVUpexHg91FTW0dvLenkosnDyM0gNswTnmZiTS0dFByvMnqUpRSHqbB7qL3dlfR0h74bRgn5xK+2o5Ryn402F20Yns5Q+MimDk6xepSPGJ8ehxR4SFsPawXUJWyGw12FzS3dbJ6VyUX2aQNAxAWGsLk4YkUleqIXSm70WB3wft7K2lu77RNG8YpNzOR7aX1dHR2WV2KUsqDNNhdsKKogpTYCM6wSRvGKT87keb2TvZXnbC6FKWUB2mw96Oto4tVu45y0eR0wkLt9Z/rswuo2mdXylbslVReUFRaS2NbJ3PHB/6uT72NHhJLfGQY27TPrpStaLD34+PiagBmjLJXGwYgJETI1a3ylLIdDfZ+bCiuZkxqLEPiIq0uxStysxLZVV5Pa4et90ZRKqhosJ9CZ5dh46Ea28xd70t+VhLtnYbd5Q1Wl6KU8hAN9lPYU9FAQ0uHLdswTs49ULeVajtGKbtwKdhFJF1EPnA8DheRN0VkvYgsPNlzdrChxL79dafMpGiGxEaw7bBeQFXKLvoNdhFJBl4CYh1P3QFsMsacBVwrIvEneS7gFZZUk5EYRVZytNWleI2IXkBVym5cGbF3AguAesfv5/H5ptVrgYKTPBfQjDEUFlczc3RKwO5t6qq8rCT2VTbQ1NZhdSlKKQ/oN9iNMfXGmJ7DuVig1PG4Gkg/yXNfICKLRGSjiGysqqoaXNU+cOh4E1UNrbZuwzjlZyXSZWBHWX3/b1ZK+T13Lp6eAJy9iTjHMfp67guMMUuMMQXGmILUVP+/2afQ0V+384wYp1zHBdSt2mdXyhbcCfZNwBzH43yg5CTPBbQNxdUkxYQzNjXO6lK8Li0+iozEKO2zK2UTYW585iVghYicDUwCPqa7DdP7uYC2oaSagpEpAb1p9UDkZSXqphtK2YTLI3ZjzDzHr4eA+cB64AJjTGdfz3mhVp+prG+h5HgTM0cH/t6mrsrLSqLkeBN1Te1Wl6KUGiS3blAyxpQZY5b3vKja13OB6vP++hCLK/GdfMdKj0V6o5JSAU/vPO3DhuJqosNDmTw8wepSfCY303EBVdsxSgU8DfY+FJbUcPrIJMJttv76qSTGhDNqSIz22ZWygeBJLhfVNbezu6I+KOav95aXlUSRzoxRKuBpsPfyyaEajIGZQRnsiZTVtVDV0Gp1KUqpQdBg76WwpJqwEGHaiOCZEeP02VZ52o5RKqBpsPdSWFxNblYi0RGhVpfic1MyEwgR2KrtGKUCmgZ7Dy3tnWw7UhuUbRiAmIgwxqXFU6QjdqUCmgZ7D1sO19LeaYLywqlTnmMJX2OM1aUopdykwd7DBsfG1QWjgq+/7pSXlcjxxjZKa5utLkUp5SYN9h4KS6qZkB5PUkyE1aVY5vMLqNpnVypQabA7dHR28cmhGmYE0fowfZmYEU94qGiwKxXANNgddpbX09jWGdT9dYDIsFBOy0jQKY9KBTANdofC4uDZWKM/uZmJFB2po6tLL6AqFYg02B02lFSTnRJNRqJ9N652VX5WEg2tHRQfb7S6FKWUGzTY6d64emNJTdC3YZzysrtXetR1Y5QKTBrswIGqRo43tgXtjUm9jU2NIzo8VJfwVSpAabDT3YYBmKH9dQDCQkOYPDxBZ8YoFaA02Om+MWloXAQ5Q2OtLsVv5GUlsaOsjo7OLqtLUUoNkAY78HFxNTNGpSASHBtXuyI/O5GW9i72VZ6wuhSl1AANONhFJFlEVojIRhF51vHcUhH5UEQe9HyJ3lVW20xpbbNeOO1Fl/BVKnC5M2K/CfiTMaYAiBeR7wOhxpjZQI6IjPNohV62oUTnr/dlZEoM8VFhuoSvUgHInWA/DkwRkSQgGxgNLHe8thKY09eHRGSRY5S/saqqyq1ivaGwuJq4yDBOywiejatdERIijpUedcSuVKBxJ9jXASOBO4FdQARQ6nitGkjv60PGmCXGmAJjTEFqaqo7tXrFhpJqTh+ZTGiI9td7y8tKYk9FAy3tnVaXopQaAHeC/cfAd4wxDwG7ga8Czts149w8piVqGtvYe/QEM4N4md5Tyc9KpL3TsLuiwepSlFID4E4IJwO5IhIKnAH8is/bL/lAiWdK877P++tDLK7EP+kFVKUCU5gbn/kl8ALd7ZgPgd8CH4jIcOASYJbnyvOuDSXVRISGkJeVaHUpfikjMYqhcRFsPVwHs62uRinlqgEHuzGmEJjc8zkRmQfMBx4xxgTMNIrCkhrysxOJCg++jatdISLkZSVRVKojdqUCiUf64caYGmPMcmNMhSeO5wtNbR3sKK3T+ev9yMtKZH/lCRpbO6wuRSnlooC50Olpmz+tpaPL6Pow/cjPSqLLwPbSgPlBTKmgF7TBXlhcjQhMH6kzYk4l13H9QRcEU6eyv7KBPRUNnNCf7PyCOxdPbaGwuJpJGQkkRIVbXYpfGxoXSWZSNNt0xK5O4m9bSrlr2ZbPfp8UE05mUnT3P8ndv2YlR5OZFENmcjTJMeG6LpOXBWWwt3V0sflwDTfMGGF1KQFB70BVJ3O4uokHX9vO6SOSuPms0ZTWNFNa20RpTTMlxxtZv/8YjW1fvMEtOjz0s8DvGfzO8E+LjyREbxgclKAM9u1ldbS0d+n6MC7Ky0ri7e0V1Da1kRQTYXU5yk90dHZx9yvdI/UnbphGdkrMv73HGENdcztHapo5UtO94N5n4V/bzLYjtdQ0tX/hM+GhQkbi58EfH+WdmBo1JJZvnDnKK8e2WlAG+wbHxtU6I8Y1eT367OeM95/lIJS1fvfefjYdquGJG6b2GerQPWU2KSaCpJgIpmT2fb9IY2sHZbXNHPks9D//dd2+YzS2eb5v39llaGrrZOKweM7Isd8NisEZ7CXVjB4aS2p8pNWlBATnF7KoVINdddtYUs2Tq/ZxzbRMrpyaOahjxUaGMS49nnHp8R6qrn/NbZ3M/c17PLZyL6/cOst2Pf+gmxXT1WXYUFLDDF0fxmWJ0eHkDI1l62Htsyuob2nnrmVbyEqO4adXTu7/A34oOiKU288bS2FJNev2H7O6HI8LumDfW9lAXXO7rg8zQN0XUHVmTLAzxvDga9upqG/h8RumEh/As8oWzMhmeGIUj67cizHG6nI8KuiC3dlfn6n99QHJzUqior6FyvoWq0tRFnptcylvbC3j7vPHcfqIwP6pNzIslDvPH8fWw7Ws2lVpdTkeFXTBXlhSQ3pCJNkp0f2/WX0mX29UCnqHjjfyw9e3M3NUCt89d6zV5XjEl6dnMXJIDIvf2UtXl31G7UEV7MYYNujG1W6ZPDyR0BDR+exBqr2zi7uWbSE0RPjtDVNtszFNeGgId18wjp3l9fxjR8AsddWvoAr2IzXNVNS36Px1N0RHhDIuLU73QA1ST7y7jy2Ha3n4mlwyk+z10+4V+ZmMTYtj8Tt76bTJqD2ogr1Q568PivMOVLtdaFKn9vHB4zy9Zj/XTc/iS3nDrS7H40JDhHvnj2d/5Qne2Fra/wcCQNAFe0JUGBN8OF/WTvKykqhp6r6LUAWHuqZ27nllC6OGxPKTKwJzaqMrLp48jEkZCTz+7j7aO7usLmfQgirYN5R099d1HQr35Du2yvvwwHGLK1G+YIzh/71WRGVDK48vmEpspH3vZwwJEe67cDyHjjfx101HrC5n0IIm2KsaWjl4rFHXXx+EiRnxTBwWz4/e2M6/Dtjvpg71RX/ZdIS3isq578IJ5GcnWV2O1503MY2p2Uk8uWofrR2d/X/AjwVNsG8s0f76YIWHhvDHb53ByJRYFr64QcPdxoqPNfKTN3YwO2cIt56TY3U5PiHSPWovq2thWeFhq8sZFLeDXUSeEZHLHY+XisiHIvKg50rzrMKSaqLCQ8g9yUJEyjVD4yL507c13O2sraOLu5ZtJiIshMUL8oOqdTln7FBmjk7hd+/tp7ktcEftbgW7iJwNDDPGvCki1wChxpjZQI6IjPNohR6yoaSaqdlJRIQFzQ8pXqPhbm+L39nLtiN1/OqaPDIS7TW1sT8iwn3zx1PV0MofPzpkdTluG3DKiUg48BxQIiJXAvOA5Y6XVwJzTvK5RSKyUUQ2VlVVuVmuexpa2tlZVq/LCHiQhrs9/Wv/MZ5de4CvzBzBxVOGWV2OJc7IGcLZ44by3+8fCNit/twZvn4d2Ak8AswEvgc4J39WA+l9fcgYs8QYU2CMKUhN9e3Sr5sO1dBl0IW/PMwZ7iNSYlj44gadLRPgahrbuGf5FkYPjeWHXzrN6nIsdd+FE6hubOPF9cVWl+IWd4J9GrDEGFMB/BFYCzh/Xotz85hetaGkmtAQYdoI+1/Z97WhcZH8+duzGJESwy0vFmq4ByhjDPe/uo3qxjaevGEaMRH2ndroiqnZSVxwWjrPrj1IXa8dngKBOyG8H3BeJi8ARvF5+yUfKBl0VR62obiGKcMTbD0P10oa7oHv5cLD/HPHUb5/0cST7nQUbO6dP56Glg7+sO6g1aUMmDvBvhQ4V0TWAt+lu8d+k4gsBq4H3vJceYPX2tHJliO1Os3RyzTcA9f+yhM89PcdnD1uKN+cM9rqcvzGpOEJXJabwfPrijl+otXqcgZkwMFujGkwxlxnjDnHGDPbGHOI7nD/CDjXGONXq0RtO1JHW0eX3pjkAxrugae1o5M7X95MTEQYj10XXFMbXXHP/HE0t3fy7NrAGrV7pB9ujKkxxix39N39ii785VvOcM9O1guqgeDRf+5hZ3k9j3w5j7SEKKvL8Ttj0+K5amom//NhSUBtMuN3Fzo9rbC4mnFpcaTERlhdStAYGhfJy4tmkZUcreHux9bureK5D4q5adZILpjU52Q2Bdx1wTjaOw3PrDlgdSkus3Wwd3YZPjlUo20YC2i4+7fjJ1q57y9bGZcWxw8uC+6pjf0ZOSSW6wuy+PPHn1JaGxgrm9o62HeV19PQ2qE3JllEw90/GWP4/v9to665nSe/Mo2o8FCrS/J7t5/XfUP971bvs7gS19g62Dc4F/7SEbtlnD13Z7h/dFDD3Wp//OgQq3ZX8sAlEzktI8HqcgJCZlI0Xz1jBMs3HqHkWKPV5fTL9sGemRRtu628Ak1q/OfhfssLGu5W2nu0gZ+/tYt5E1K5+cxRVpcTUL47bwzhocKTq/x/1G7bYDfGUFhczYxRyVaXotBw9wct7d1TG+OjwvjNtfm6ofsApSVE8fXZo3htSyn7KxusLueUbBvsxccaOXaiTdeH8SMa7tb67zUH2F3RwG+uyyc1PtLqcgLSrefkEBMeym/f9e9Ru22D3dlfnzlaR+z+RMPdGnVN7Ty/rphLpgzj3AlpVpcTsIbERbJwzmje2lbOzrJ6q8s5KdsGe2FxDSmxEYxJjbO6FNWLM9wzNdx9Zun6YhpaO7jzfL/cLiGgfOvsHBKiwlj8zl6rSzkp2wb7hpJqCkYmax/RT6XGR/Jyj3D/WMPda+qa2nnBMVrXWTCDlxgdzqJzcnh311G2HK61upw+2TLYK+pa+LS6iZk6zdGv9Qz3mzXcvUZH655381mjSYmN4LGVe6wupU+2DPZC3bg6YGi4e5eO1r0jLjKM2+aO4YN9x/zyz6wtg31DcTUxEaFMHq5/kANBd8/9DA13L3heR+tec+OskaTFR/LYyr0YY6wu5wvsGewl1UwfmUxYqC3/9WwpLT5Kw93D6prbeX69jta9JToilNvPG0thSTXr9vvXnr+2S766pnb2HG3QNkwA6hnut7yo4T5Yz68rpqFFR+vetGBGNsMTo/xu1G67YN94qBpjtL8eqJzhPjxJw30wnKP1iyfraN2bIsNCufP8cWw5XMvq3ZVWl/MZ2wV7YUk14aG6cXUgc4Z7RmKUhrubdLTuO1+ensXIITE8tnIvXV3+MWq3X7AXV5ObmahLkQa4tPgoXl40S8PdDT1H65N0AoHXhYeGcPcF49hZXs8/dvjHJnJuB7uIpIvIZsfjpSLyoYg86LnSBq65rZOiI3W6PoxN9A535zaH6tR0tO57V+RnMjYtjsXv7KXTD0btgxmxPwpEi8g1QKgxZjaQIyKW/WnafLiGji6j68PYSM9wv/mFQg33fuho3RqhIcK988ezv/IEb2wttboc94JdRM4DGoEKYB6w3PHSSmDOST6zSEQ2isjGqqoqd07brw3FNYjA9JF64dRONNxdp6N161w8eRiTMhJ4/N19tHd2WVrLgINdRCKAHwL3O56KBZx/RVUDfe6Ka4xZYowpMMYUpKamulNrvzaUVDMhPZ7E6HCvHF9ZJy0+ipe/reF+Kjpat1ZIiHDfheM5dLyJ5z44aG0tbnzmfuAZY4xz9ZsTgHOLojg3jzlo7Z1dfPJpja4PY2NpCRrup6KjdeudNzGNy3IzWLxyL1stXCDMnRC+APieiKwBpgKX83n7JR8o8UhlA7SjrJ6mtk6dv25zGu5909G6fxARHr46l7T4SO5atpnG1g5L6hhwsBtjzjHGzDPGzAO20B3uN4nIYuB64C3Pluia5z44SERYCLNydEaM3fUOd+emKr5WUdfiN3cbvrBeR+v+IjEmnN8umMqn1U385I0dltQwqLaJI+Dr6b6A+hFwrjGmzhOFDcTavVW8ta2c288dq1t+BQlnuA9LjOIbz/su3I/Wt7Bk7QEufnwts365iof+vtMn5z2VuuZ2lq4r5qLJ6Tpa9xNn5Azhe+eO5S+bjvD3bWU+P79H+uHGmBpjzHJjjM9n57e0d/Kjv21n9NBYFp2T4+vTKwulJUSxzAfh3tjawaufHOGmpR8z+5ereHjFbqLCQ7locjovrC/h+XXFXjmvq3S07p/uPH8cU7OTeODVIkprm3167oC/8/TZ9w9ScryJn14xWe82DULeCvfOLsMH+6q495UtzPjFu9y7fCvFxxr53rljWX3fXF7/3lk887XpXDQ5nZ+9tZN/WnTHYc/R+uThiZbUoPoWHhrCkzdMwxi4Z9kWn964FNDBfuh4I0+v2c9leRmcM947UyiV/+sZ7jcPMtx3V9Tz8IpdnPmrVdy0tJBtQ9LNAAAOUUlEQVR3dh3lyqnDWX7rbNb+57ncd+EEchz76IaGCI8vmEZeVhJ3LdtsyTZpOlr3byOGxPDQlZMpLKnmmff2++y8YsXFn4KCArNx48ZBHcMYw80vbGDToRpW3TeX9IQoD1WnAlVlfQs3PPcRR+taeHHhTJdnSFXWt/C3LWW8urmUXeX1hIUI8yakcvW0LM4/La3fnwSrGlq55r/X09zWyWvfPYvslBhP/Ov0q665nTm/Xs2ZY4bw7E0FPjmnGjhjDHe/soW/byvnL9+Zzekj3L8zXkQ2GWP6/Z8dsCP2f+6o4P29Vdwzf7yGugI+H7mnJ/Q/cm9q6+D1zaXctPRjZv1yFb9YsYuIsBB+esVkPv5/5/OHb8zgsrwMl9p7qfGRvHDzTNo6urj5hULqmto9+a91UjpaDwwiws+umkJGYhR3LdtMQ4v3/3wE5Ii9sbWDCxa/T1JMBG/efpbulKS+oLK+hRuWfMTR+i+O3Du7DB8eOM6rm4/wj+0VNLV1kpkUzdXTMrn69EzGOFos7vro4HFuWvox00cm89LCmUSGee+aj47WA8+mQ9Vc9/sPuWpqJosXTHXrGK6O2MPcOrrFnli1j/K6Fn731dM11NW/SUuIYtmiWdyw5CNufr6Qh6/JZWd5PX/bXEZFfQvxkWFckT+cq6dlMmNUCiEh4pHzzsoZwm+uzefuV7Zw/1+LWHx9PiKeOXZvOloPPNNHpnDn+eN4/N19zJ2QypVTM712roAL9j0VDSxdV8wNM7KZPlJXcVR96xnudy3bQliIMHd8Kg9+6TQuOC3dazOorpqWyZGaJh5duZfslBjunT/e4+dwzoS5cJLOhAk0t587lnX7jvHga9s5fUSy167HBFSwd3UZHny9iISoMP7r4olWl6P8XFpCFK/cOps1eyo5b2IaQ+J8c/Pa984dy6fVTTy5ah/ZydFcV5Dt0eO/uL5ER+sBKiw0hN8umMqlT3zAXcs2s/zW2V7pOgRUH+OvnxxhQ0kN918ykeTYCKvLUQEgNT6S6wqyfRbq0H2x7BdX5zJn7FAeeLWI9R7cwb57tH6QCyelMyVTR+uBKDslhl9ck8snn9by1GrvTIEMmGCvbWrjl2/vZvrIZK6b7tkRkFKeFh4awjM3ns6Y1Di+87+b2FPR4JHjvri+hHodrQe8K/KHc83pmTy1ep9X7pgOmGB/5J97qGtu5+dXTfHYxS6lvCkhKpznb5lBdEQot7xQyNH6lkEdT0fr9vLQlVPISo7h7mVbqGv27BTIgAj2zZ/W8HLhp9x85ihOy9BFjlTgyEyK5vmbZ1Db3M43X9owqGVcdbRuL3GRYTxxw1Qq6lt48PXtHl0p1O+DvaOziwdf305afCT3eGGGgVLeNiUzkd99dRo7y+q54+XNdLixbZqO1u1p2ohk7p0/nje3lvHqJ57bK9Xvg/2PHx1iR1k9P/rSZOIiA2oSj1KfOW9iOj+9YjKrd1fy0zd3Dnh0pqN1+/rO3DGcMTqFH/1tOyXHGj1yTL8O9sr6Fh5buZezxw3l0txhVpej1KDcNHsUi87J4X8/OsTSASz1q6N1ewsNEX67YCqhIcJdr2zxyEbYfh3sP39rF62dXfzsyileu4NPKV+6/+KJXDJlGL9YsYu3i8pd+oyO1u1veFI0v/pyHlsP1/L4u3sHfTy/Dfb1+4/xxtYybps7hlFDY60uRymPCHGMzqZlJ3H3K1v45NOaU77fOVqfr6N127s0N4MFBdk8s+YAHx08Pqhj+WWwt3Z08sO/bWfkkBhumzfG6nKU8qio8FCe+3oBwxKj+PZLGzl0/OR9Vedo/S4drQeFH10+iVFDYrnnlS3UNrW5fZwBB7uIJIrI2yKyUkReE5EIEVkqIh+KyINuV9LDc2sPcrCqUXdFUrY1JC6SF26eQacx3PLCBmoa//1LXN+io/VgExsZxpM3TOPYiVYeeLXI7SmQ7ozYvwYsNsZcCFQANwChxpjZQI6IDGpocbi6iadW7+fS3GHMm5A2mEMp5ddyUuN47usFHKlpZtH/bqSlvfMLr+toPTjlZiVy34UTeHt7Bcs3HnbrGAMOdmPMM8aYdxy/TQVuBJY7fr8SmNPX50RkkYhsFJGNVVVVJzs2P35jB6Ehwg+/NGmgpSkVcGaMSuHR6/PZUFLDf/7fNroc+2LWt7Tzhw90tB6sFp2dw5ljhvCTN3ZyoOrEgD/vdo9dRGYDycBhwDmzvhpI7+v9xpglxpgCY0xBamrf+5Ou3HmU1bsrueeC8WQkRrtbmlIB5Yr84Xz/4gm8ubWMx97ZA+hoPdiFhAiLr59KZHgIdy3bTFvHwKZAuhXsIpICPAUsBE4AzhSOc/eYTW0d/PSNHUwcFs/NZ41y5xBKBazb5o7hKzOzefq9Azy39qCO1hXDEqP49Zfz2F5az2Mr9wzoswO+lVNEIoC/AA8YYw6JyCa62y8fAfnAwCpweHLVfsrqWnjiK9MI112RVJARER66cgqltS38YsUuAB2tKy6aPIyvnjGCZ9ce5OxxfXc6+uJOgn4TOB34gYisAQS4SUQWA9cDbw30gPuONvCHDw5y3fQsl3eWV8puwkNDePqr05g2IolrpmXqaF0B8MPLJjEmNZZ7l29x+TMe2cxaRJKB+cBaY0xFf+/vuZm1MYYblnzE7ooGVt8316cbIijlj5zfSb3bWjntKKvj6qf/xb6HL3VpM2uP9DyMMTXGmOWuhHpvr20u5ePiau6/ZKKGulJ0B7qGuupp8vBEHrk2z+X3W9rMrmtq5+EVu5iancQCD+8LqZRSdnLVtEyX32vpOri/Wbmb6sY2Xrxlpu6KpJRSHmLZiH3r4Vr+9PGnfOPMUXqRSCmlPMiyYH/w9e2kxkVyr+6KpJRSHmVJK+Z4YxvHSut48ivTiI8Kt6IEpZSyLUtG7BV1LcwZO5TL8zKsOL1SStmaJcFujOGhKyfrlC6llPICS4J9WGIUOalxVpxaKaVsz5JgH6o3IimllNfoaltKKWUzGuxKKWUzGuxKKWUzGuxKKWUzGuxKKWUzGuxKKWUzGuxKKWUzGuxKKWUzHtkab8AnFWnAzU2vLTQUOGZ1EQMQaPWC1uwLgVYvaM09jTTG9LurtVUbbexxZd8+fyIiGwOp5kCrF7RmXwi0ekFrdoe2YpRSymY02JVSymasCvYlFp13MAKt5kCrF7RmXwi0ekFrHjBLLp4qpZTyHm3FKKWUzVgS7CLyjIhcbsW5B0JEkkVkhYhsFJFnra7HjkQkXUQ+cDweISJrRGS1iCwRP91iq2fNPZ6bIiLvWFXTqZyk3jdFZKpVNfWn15+LHBFZJSJbROSHVtcWCHwe7CJyNjDMGPOmr8/thpuAPzmmLcWLiF9Puer1ZQh3fHnXi8hCq2vri4gkAy8BsY6nbgVuM8acB2QDuVbVdjJ91IzjL6DFgN/tzH6Ser8GHDDGbLGssFPoo+bbgR8ZY6YCF4lIv/O4fUlEEkXkbRFZKSKviUiEiCwVkQ9F5EEravJpsItIOPAcUCIiV/ry3G46DkwRkSS6g+awxfWcVB9fhjuATcaYs4BrRSTesuJOrhNYANQDGGN+YIzZ5XhtCP55U8oXana4BXjPmnL69YV6RSQFeAyoEZFzrSzsFHr/Nz4O5IlIOhAJ1FpV2El8DVhsjLkQqABuAEKNMbOBHBEZ5+uCfD1i/zqwE3gEmCkid/j4/AO1DhgJ3AnsAqqtLeeUen8Z5gHLHY/XAn7304Yxpt4YU9f7eRFZAOwwxpRZUNYp9a5ZRIYANwKPWlfVyfXx3/ge4C/As8DXReQKayo7uT5q/gcwi+7v4Wqgw5LCTsIY84wxxtmGS6X7z4Pzu7cSmOPrmnwd7NOAJcaYCuCPgL+OGJx+DHzHGPMQsJvukZlf6uPLEAuUOh5XA+m+r2rgRCQH+A/gbqtrcdGvgAeMMe1WF+KiacDTju/gcroHAP7ufuBmY8wPgGhgvsX19ElEZgPJdP9kb+l3z9fBvh/IcTwuAA75+PwDlQzkikgocAYQSHNDT9D9JQCIIwBmQDnaSS8DC/sayfupucCvRWQNMFVEfm5xPf0JtO8gwGggW0SigNPxw++ho8X1FLAQP/ju+fqES4FzRWQt8F389MfXHn5J940GdUAK3aETKDbx+Y+A+UCJdaW47H5gBPCUY3bMXKsL6o8xZrwxZp4xZh6wxRhjycWyAXgEuF1E1gPnAM9bXI8rfgysAaroHg2vtrSaXkQkgu721gPGmEP4wXdPb1CyGRFZY4yZJyIjgRXAu8CZwCxjTKe11SllPyJyG/AwsNXx1AvAvcAq4BK6v3s+/QlUg93GRGQ43SOHfwZQa0OpgOdoK84H1jquZ/j2/BrsSillL35/QU0ppdTAaLArpZTNaLCroCUiN4rIfw3g/XeJyHe8WZNSnqDBroJZC9137H5GROaKSKljumXvi14dQKDciKSCmFV7niplGRG5Cni/x+/TgQnGmLV0h/drxpjbRWSDYwG1KY7n84EuEWk1xvzRitqVcoUGuwoqIhJC941xPVeO7AKeEZHpdI/grxaRKUCaMeZ5Eck2xhx2tGFaNNSVv9NWjAo2FwDvG2OanU8YY6qAvwKL6A721xx3kpaLSDTwpogkWlGsUu7QYFfB5g76vo3+KcdrPb8T4vgL4Gn8cHVMpU5GWzEqaIhIHFBjjFnf+zVjzDER+QkQxeetmEzHa885Pu/zdbWVcoeO2FXQMMacMMZ8vcdTYXT3152v/5nulQOdrZjneh3CL7fqU6o3XVJABSUR+Tbda74vNMZ83OP5GCDeGHO01/uvAx4CvtXXiF8pf6LBrpQLHBdRu4wxrVbXolR/NNiVUspmtMeulFI2o8GulFI2o8GulFI2o8GulFI2o8GulFI28/8BmDSraPSD6HsAAAAASUVORK5CYII=\n",
444 | "text/plain": [
445 | ""
446 | ]
447 | },
448 | "metadata": {
449 | "needs_background": "light"
450 | },
451 | "output_type": "display_data"
452 | }
453 | ],
454 | "source": [
455 | "# 哪个时间段是超市的客流高封期\n",
456 | "# 利用自定义时间格式函数strftime提取小时数\n",
457 | "data[\"小时\"]=data[\"成交时间\"].map(lambda x:int(x.strftime(\"%H\")))\n",
458 | "# 对小时和订单去重\n",
459 | "traffic=data[[\"小时\",\"订单ID\"]].drop_duplicates()\n",
460 | "# 求每小时的客流量\n",
461 | "traffic.groupby(\"小时\")[\"订单ID\"].count().plot()"
462 | ]
463 | },
464 | {
465 | "cell_type": "code",
466 | "execution_count": null,
467 | "metadata": {},
468 | "outputs": [],
469 | "source": []
470 | }
471 | ],
472 | "metadata": {
473 | "kernelspec": {
474 | "display_name": "Python 3",
475 | "language": "python",
476 | "name": "python3"
477 | },
478 | "language_info": {
479 | "codemirror_mode": {
480 | "name": "ipython",
481 | "version": 3
482 | },
483 | "file_extension": ".py",
484 | "mimetype": "text/x-python",
485 | "name": "python",
486 | "nbconvert_exporter": "python",
487 | "pygments_lexer": "ipython3",
488 | "version": "3.7.3"
489 | },
490 | "toc": {
491 | "base_numbering": 1,
492 | "nav_menu": {},
493 | "number_sections": true,
494 | "sideBar": true,
495 | "skip_h1_title": false,
496 | "title_cell": "Table of Contents",
497 | "title_sidebar": "Contents",
498 | "toc_cell": false,
499 | "toc_position": {},
500 | "toc_section_display": true,
501 | "toc_window_display": false
502 | }
503 | },
504 | "nbformat": 4,
505 | "nbformat_minor": 2
506 | }
507 |
--------------------------------------------------------------------------------
/Bank.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 8,
6 | "metadata": {},
7 | "outputs": [
8 | {
9 | "name": "stdout",
10 | "output_type": "stream",
11 | "text": [
12 | "\n",
13 | "RangeIndex: 150000 entries, 0 to 149999\n",
14 | "Data columns (total 6 columns):\n",
15 | "用户ID 150000 non-null int64\n",
16 | "好坏客户 150000 non-null int64\n",
17 | "年龄 150000 non-null int64\n",
18 | "负债率 150000 non-null float64\n",
19 | "月收入 120269 non-null float64\n",
20 | "家属数量 146076 non-null float64\n",
21 | "dtypes: float64(3), int64(3)\n",
22 | "memory usage: 6.9 MB\n"
23 | ]
24 | }
25 | ],
26 | "source": [
27 | "import pandas as pd\n",
28 | "from datetime import datetime\n",
29 | "\n",
30 | "data=pd.read_csv(\"loan.csv\",encoding=\"gbk\")\n",
31 | "data.info()\n",
32 | "# print(data)"
33 | ]
34 | },
35 | {
36 | "cell_type": "code",
37 | "execution_count": 12,
38 | "metadata": {},
39 | "outputs": [
40 | {
41 | "name": "stdout",
42 | "output_type": "stream",
43 | "text": [
44 | "\n",
45 | "RangeIndex: 150000 entries, 0 to 149999\n",
46 | "Data columns (total 6 columns):\n",
47 | "用户ID 150000 non-null int64\n",
48 | "好坏客户 150000 non-null int64\n",
49 | "年龄 150000 non-null int64\n",
50 | "负债率 150000 non-null float64\n",
51 | "月收入 150000 non-null float64\n",
52 | "家属数量 146076 non-null float64\n",
53 | "dtypes: float64(3), int64(3)\n",
54 | "memory usage: 6.9 MB\n",
55 | "None\n",
56 | " 用户ID 好坏客户 年龄 负债率 月收入 家属数量\n",
57 | "0 1 1 45 0.802982 9120.000000 2.0\n",
58 | "1 2 0 40 0.121876 2600.000000 1.0\n",
59 | "2 3 0 38 0.085113 3042.000000 0.0\n",
60 | "3 4 0 30 0.036050 3300.000000 0.0\n",
61 | "4 5 0 49 0.024926 63588.000000 0.0\n",
62 | "5 6 0 74 0.375607 3500.000000 1.0\n",
63 | "6 7 0 57 5710.000000 6670.221237 0.0\n",
64 | "7 8 0 39 0.209940 3500.000000 0.0\n",
65 | "8 9 0 27 46.000000 6670.221237 NaN\n",
66 | "9 10 0 57 0.606291 23684.000000 2.0\n",
67 | "10 11 0 30 0.309476 2500.000000 0.0\n",
68 | "11 12 0 51 0.531529 6501.000000 2.0\n",
69 | "12 13 0 46 0.298354 12454.000000 2.0\n",
70 | "13 14 1 40 0.382965 13700.000000 2.0\n",
71 | "14 15 0 76 477.000000 0.000000 0.0\n",
72 | "15 16 0 64 0.209892 11362.000000 2.0\n",
73 | "16 17 0 78 2058.000000 6670.221237 0.0\n",
74 | "17 18 0 53 0.188274 8800.000000 0.0\n",
75 | "18 19 0 43 0.527888 3280.000000 2.0\n",
76 | "19 20 0 25 0.065868 333.000000 0.0\n",
77 | "20 21 0 43 0.430046 12300.000000 0.0\n",
78 | "21 22 1 38 0.475841 3000.000000 2.0\n",
79 | "22 23 0 39 0.241104 2500.000000 0.0\n",
80 | "23 24 0 32 0.085512 7916.000000 0.0\n",
81 | "24 25 0 58 0.241622 2416.000000 0.0\n",
82 | "25 26 1 50 1.595253 4676.000000 1.0\n",
83 | "26 27 0 58 0.097672 8333.000000 0.0\n",
84 | "27 28 0 69 0.042383 2500.000000 1.0\n",
85 | "28 29 0 24 0.011761 3400.000000 0.0\n",
86 | "29 30 0 58 0.436103 5500.000000 0.0\n",
87 | "... ... ... .. ... ... ...\n",
88 | "149970 149971 0 58 0.253855 15500.000000 2.0\n",
89 | "149971 149972 0 83 0.013997 5000.000000 0.0\n",
90 | "149972 149973 0 42 0.008638 6945.000000 1.0\n",
91 | "149973 149974 0 44 0.494819 5500.000000 1.0\n",
92 | "149974 149975 0 61 0.603479 5000.000000 0.0\n",
93 | "149975 149976 0 58 2716.000000 6670.221237 0.0\n",
94 | "149976 149977 0 76 60.000000 6670.221237 0.0\n",
95 | "149977 149978 0 29 349.000000 6670.221237 0.0\n",
96 | "149978 149979 0 52 0.259496 2500.000000 0.0\n",
97 | "149979 149980 1 55 0.057235 8700.000000 0.0\n",
98 | "149980 149981 0 64 0.254976 5525.000000 0.0\n",
99 | "149981 149982 0 43 0.121752 6849.000000 4.0\n",
100 | "149982 149983 0 37 0.250272 2760.000000 3.0\n",
101 | "149983 149984 0 82 0.000800 5000.000000 0.0\n",
102 | "149984 149985 0 84 25.000000 6670.221237 0.0\n",
103 | "149985 149986 0 26 0.324962 1950.000000 0.0\n",
104 | "149986 149987 0 49 0.080384 5000.000000 1.0\n",
105 | "149987 149988 0 28 0.055692 3249.000000 0.0\n",
106 | "149988 149989 0 31 0.347924 7515.000000 0.0\n",
107 | "149989 149990 0 62 0.001408 9233.000000 3.0\n",
108 | "149990 149991 0 46 0.609779 4335.000000 2.0\n",
109 | "149991 149992 0 59 0.477658 10316.000000 0.0\n",
110 | "149992 149993 0 50 4132.000000 6670.221237 3.0\n",
111 | "149993 149994 0 22 0.000000 820.000000 0.0\n",
112 | "149994 149995 0 50 0.404293 3400.000000 0.0\n",
113 | "149995 149996 0 74 0.225131 2100.000000 0.0\n",
114 | "149996 149997 0 44 0.716562 5584.000000 2.0\n",
115 | "149997 149998 0 58 3870.000000 6670.221237 0.0\n",
116 | "149998 149999 0 30 0.000000 5716.000000 0.0\n",
117 | "149999 150000 0 64 0.249908 8158.000000 0.0\n",
118 | "\n",
119 | "[150000 rows x 6 columns]\n"
120 | ]
121 | }
122 | ],
123 | "source": [
124 | "# 是不是收入越高的人坏账率越低\n",
125 | "data=data.fillna({\"月收入\":data[\"月收入\"].mean()})\n",
126 | "print(data.info())\n",
127 | "print(data)"
128 | ]
129 | },
130 | {
131 | "cell_type": "code",
132 | "execution_count": null,
133 | "metadata": {},
134 | "outputs": [],
135 | "source": []
136 | },
137 | {
138 | "cell_type": "code",
139 | "execution_count": 11,
140 | "metadata": {},
141 | "outputs": [
142 | {
143 | "name": "stdout",
144 | "output_type": "stream",
145 | "text": [
146 | "0 (5000.0, 10000.0]\n",
147 | "1 (0.0, 5000.0]\n",
148 | "2 (0.0, 5000.0]\n",
149 | "3 (0.0, 5000.0]\n",
150 | "4 (20000.0, 100000.0]\n",
151 | "5 (0.0, 5000.0]\n",
152 | "6 (5000.0, 10000.0]\n",
153 | "7 (0.0, 5000.0]\n",
154 | "8 (5000.0, 10000.0]\n",
155 | "9 (20000.0, 100000.0]\n",
156 | "10 (0.0, 5000.0]\n",
157 | "11 (5000.0, 10000.0]\n",
158 | "12 (10000.0, 15000.0]\n",
159 | "13 (10000.0, 15000.0]\n",
160 | "14 NaN\n",
161 | "15 (10000.0, 15000.0]\n",
162 | "16 (5000.0, 10000.0]\n",
163 | "17 (5000.0, 10000.0]\n",
164 | "18 (0.0, 5000.0]\n",
165 | "19 (0.0, 5000.0]\n",
166 | "20 (10000.0, 15000.0]\n",
167 | "21 (0.0, 5000.0]\n",
168 | "22 (0.0, 5000.0]\n",
169 | "23 (5000.0, 10000.0]\n",
170 | "24 (0.0, 5000.0]\n",
171 | "25 (0.0, 5000.0]\n",
172 | "26 (5000.0, 10000.0]\n",
173 | "27 (0.0, 5000.0]\n",
174 | "28 (0.0, 5000.0]\n",
175 | "29 (5000.0, 10000.0]\n",
176 | " ... \n",
177 | "149970 (15000.0, 20000.0]\n",
178 | "149971 (0.0, 5000.0]\n",
179 | "149972 (5000.0, 10000.0]\n",
180 | "149973 (5000.0, 10000.0]\n",
181 | "149974 (0.0, 5000.0]\n",
182 | "149975 (5000.0, 10000.0]\n",
183 | "149976 (5000.0, 10000.0]\n",
184 | "149977 (5000.0, 10000.0]\n",
185 | "149978 (0.0, 5000.0]\n",
186 | "149979 (5000.0, 10000.0]\n",
187 | "149980 (5000.0, 10000.0]\n",
188 | "149981 (5000.0, 10000.0]\n",
189 | "149982 (0.0, 5000.0]\n",
190 | "149983 (0.0, 5000.0]\n",
191 | "149984 (5000.0, 10000.0]\n",
192 | "149985 (0.0, 5000.0]\n",
193 | "149986 (0.0, 5000.0]\n",
194 | "149987 (0.0, 5000.0]\n",
195 | "149988 (5000.0, 10000.0]\n",
196 | "149989 (5000.0, 10000.0]\n",
197 | "149990 (0.0, 5000.0]\n",
198 | "149991 (10000.0, 15000.0]\n",
199 | "149992 (5000.0, 10000.0]\n",
200 | "149993 (0.0, 5000.0]\n",
201 | "149994 (0.0, 5000.0]\n",
202 | "149995 (0.0, 5000.0]\n",
203 | "149996 (5000.0, 10000.0]\n",
204 | "149997 (5000.0, 10000.0]\n",
205 | "149998 (5000.0, 10000.0]\n",
206 | "149999 (5000.0, 10000.0]\n",
207 | "Name: 月收入, Length: 150000, dtype: category\n",
208 | "Categories (5, interval[int64]): [(0, 5000] < (5000, 10000] < (10000, 15000] < (15000, 20000] < (20000, 100000]]\n"
209 | ]
210 | }
211 | ],
212 | "source": [
213 | "cut_bins=[0,5000,10000,15000,20000,100000]\n",
214 | "income_cut=pd.cut(data[\"月收入\"],cut_bins)\n",
215 | "print(income_cut)"
216 | ]
217 | },
218 | {
219 | "cell_type": "code",
220 | "execution_count": 15,
221 | "metadata": {},
222 | "outputs": [
223 | {
224 | "name": "stdout",
225 | "output_type": "stream",
226 | "text": [
227 | "月收入\n",
228 | "(0, 5000] 0.087543\n",
229 | "(5000, 10000] 0.058308\n",
230 | "(10000, 15000] 0.041964\n",
231 | "(15000, 20000] 0.041811\n",
232 | "(20000, 100000] 0.053615\n",
233 | "Name: 好坏客户, dtype: float64\n"
234 | ]
235 | },
236 | {
237 | "data": {
238 | "text/plain": [
239 | ""
240 | ]
241 | },
242 | "execution_count": 15,
243 | "metadata": {},
244 | "output_type": "execute_result"
245 | },
246 | {
247 | "data": {
248 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAFTCAYAAADV39wXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAG3lJREFUeJzt3X+QZWV95/H3JzMC0ZghwvgjAjtswKxj+TMj+ocpE4kRYsVRAzrEDVCSwqxLNlY2ZcZd16ibTYFJFncrEMMGV6K7DhYmOhVHcUvUqk0EGdRIgCAT/DX+iCgE4xoE5Lt/nNPc29fumdszzT19+3m/qqa495xzp7/90PPpc5/7nO9JVSFJasMPDV2AJGl2DH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQzYOXcCkY489trZs2TJ0GZI0V2644YZvVtXmgx235kJ/y5Yt7N27d+gyJGmuJPniNMc5vSNJDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ1Zc1fkroYtOz8wdAkAfOHCFw5dgiQt4pm+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQ6YK/SSnJbk1yb4kO5fYf2SSK/v91yXZ0m9/WJIrktyY5JYkr1vd8iVJK3HQ0E+yAbgEOB3YCpyVZOvEYecBd1XVScDFwEX99jOBI6vqycBPAa9a+IUgSZq9ac70TwH2VdXtVXUvsAvYPnHMduCK/vFVwKlJAhTwiCQbgR8G7gW+vSqVS5JWbJrQfzzw5bHn+/ttSx5TVfcDdwPH0P0C+H/A14AvAX9QVXceZs2SpEM0TehniW015TGnAN8Hfhw4Efj3Sf7lD3yB5Pwke5PsveOOO6YoSZJ0KKYJ/f3A8WPPjwO+utwx/VTOJuBO4JeBD1XVfVX1DeCvgG2TX6CqLquqbVW1bfPmzSv/LiRJU5km9K8HTk5yYpIjgB3A7oljdgPn9I/PAK6pqqKb0nleOo8Ang383eqULklaqYOGfj9HfwFwNXAL8J6quinJm5O8qD/scuCYJPuA3wQWlnVeAvwI8Ld0vzz+Z1V9dpW/B0nSlDZOc1BV7QH2TGx7w9jje+iWZ06+7jtLbZckDcMrciWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQ6YK/SSnJbk1yb4kO5fYf2SSK/v91yXZMrbvKUk+keSmJDcmOWr1ypckrcRBQz/JBuAS4HRgK3BWkq0Th50H3FVVJwEXAxf1r90IvAv4tap6EvAzwH2rVr0kaUWmOdM/BdhXVbdX1b3ALmD7xDHbgSv6x1cBpyYJ8PPAZ6vqbwCq6ltV9f3VKV2StFLThP7jgS+PPd/fb1vymKq6H7gbOAZ4AlBJrk7yqSSvPfySJUmHauMUx2SJbTXlMRuB5wDPBL4LfCTJDVX1kUUvTs4Hzgc44YQTpihJknQopjnT3w8cP/b8OOCryx3Tz+NvAu7st3+8qr5ZVd8F9gDPmPwCVXVZVW2rqm2bN29e+XchSZrKNKF/PXBykhOTHAHsAHZPHLMbOKd/fAZwTVUVcDXwlCQP738ZPBe4eXVKlySt1EGnd6rq/iQX0AX4BuDtVXVTkjcDe6tqN3A58M4k++jO8Hf0r70ryX+l+8VRwJ6q+sBD9L1Ikg5imjl9qmoP3dTM+LY3jD2+Bzhzmde+i27ZpgawZefa+B37hQtfOHQJkvCKXElqiqEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNmaoNgyStV2uhVcks25R4pi9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNWTj0AVIs7Jl5weGLoEvXPjCoUsAHIuWTXWmn+S0JLcm2Zdk5xL7j0xyZb//uiRbJvafkOQ7SX5rdcqWJB2Kg4Z+kg3AJcDpwFbgrCRbJw47D7irqk4CLgYumth/MfDBwy9XknQ4pjnTPwXYV1W3V9W9wC5g+8Qx24Er+sdXAacmCUCSFwO3AzetTsmSpEM1Teg/Hvjy2PP9/bYlj6mq+4G7gWOSPAL4beBNB/oCSc5PsjfJ3jvuuGPa2iVJKzRN6GeJbTXlMW8CLq6q7xzoC1TVZVW1raq2bd68eYqSJEmHYprVO/uB48eeHwd8dZlj9ifZCGwC7gSeBZyR5C3A0cADSe6pqj867MolSSs2TehfD5yc5ETgK8AO4JcnjtkNnAN8AjgDuKaqCvjphQOSvBH4joEvScM5aOhX1f1JLgCuBjYAb6+qm5K8GdhbVbuBy4F3JtlHd4a/46EsWpJ0aKa6OKuq9gB7Jra9YezxPcCZB/k73ngI9UmSVpFtGCSpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQ6YK/SSnJbk1yb4kO5fYf2SSK/v91yXZ0m9/fpIbktzY//d5q1u+JGklDhr6STYAlwCnA1uBs5JsnTjsPOCuqjoJuBi4qN/+TeAXq+rJwDnAO1ercEnSyk1zpn8KsK+qbq+qe4FdwPaJY7YDV/SPrwJOTZKq+nRVfbXffhNwVJIjV6NwSdLKTRP6jwe+PPZ8f79tyWOq6n7gbuCYiWN+Cfh0VX1v8gskOT/J3iR777jjjmlrlySt0DShnyW21UqOSfIkuimfVy31BarqsqraVlXbNm/ePEVJkqRDMU3o7weOH3t+HPDV5Y5JshHYBNzZPz8O+Avg7Kr6+8MtWJJ06KYJ/euBk5OcmOQIYAewe+KY3XQf1AKcAVxTVZXkaOADwOuq6q9Wq2hJ0qE5aOj3c/QXAFcDtwDvqaqbkrw5yYv6wy4HjkmyD/hNYGFZ5wXAScB/SvKZ/s+jV/27kCRNZeM0B1XVHmDPxLY3jD2+Bzhzidf9LvC7h1mjJGmVeEWuJDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWrIVKGf5LQktybZl2TnEvuPTHJlv/+6JFvG9r2u335rkhesXumSpJU6aOgn2QBcApwObAXOSrJ14rDzgLuq6iTgYuCi/rVbgR3Ak4DTgEv7v0+SNIBpzvRPAfZV1e1VdS+wC9g+ccx24Ir+8VXAqUnSb99VVd+rqs8D+/q/T5I0gGlC//HAl8ee7++3LXlMVd0P3A0cM+VrJUkzsnGKY7LEtprymGleS5LzgfP7p99JcusUdT3UjgW+eTh/QS5apUqG51iMHNZYrKNxAMdi3FoYi38xzUHThP5+4Pix58cBX13mmP1JNgKbgDunfC1VdRlw2TQFz0qSvVW1beg61gLHYsSxGHEsRuZpLKaZ3rkeODnJiUmOoPtgdvfEMbuBc/rHZwDXVFX123f0q3tOBE4GPrk6pUuSVuqgZ/pVdX+SC4CrgQ3A26vqpiRvBvZW1W7gcuCdSfbRneHv6F97U5L3ADcD9wP/tqq+/xB9L5Kkg0h3Qq5JSc7vp52a51iMOBYjjsXIPI2FoS9JDbENgyQ1xNCXpIZMs2RTalKSR01x2ANV9Y8PeTEDcyxGkjxjisPuq6obH/JiDoFz+kCS/z7FYd+uqtc/5MUMLMnkctyl3FlV5z7UtQwtyT1015UsdZHhgg1VdcKMShqMYzGS5J/olrIfaCxOrKots6loZTzT72wH3nCQY3YC6z70gScCv3qA/aFrwNeCW6rq6Qc6IMmnZ1XMwByLkeur6nkHOiDJNbMqZqU80weSvKaq3nq4x6wHSV5WVe853GPWgyRHVdU9h3vMeuBYrB+GvnQAfbfYU+gaBRbdFMcnq8F/OI7FSJJNdO3ix8fi6nn4TMPQB/p+QecBLwF+nNH/xPcDl1fVfQOWN1P9D/PrgBcDm/vN36Abiwvn4Yd6tST5eeBS4DbgK/3m44CTgFdX1YeHqm3WHIuRJGcDvwN8mMVj8XzgTVX1Z0PVNg1DH0jybuAf6e4JsL/ffBxdP6FHVdXLh6pt1pJcDVwDXFFVX++3PZZuLH6uqp4/ZH2zlOQW4PSq+sLE9hOBPVX1xEEKG4BjMdJ3AX7W5AlQkh8DrquqJwxT2XT8ILfzjKr6yYlt+4Frk3xuiIIGtKWqFjV67cP/oiSvHKimoWxkdBIw7ivAw2Zcy9Aci5GwRIt44AEOvKJnTTD0O3clORN4b1U9AJDkh4AzgbsGrWz2vpjktXRn+v8AkOQxwLksviFOC94OXJ9kF6Pv/Xi6hoKXD1bVMByLkf8CfCrJhxmNxQl00zv/ebCqpuT0DtDfyP0i4Hl0IR/gaLppjp39rR6b0L9F3Um3jPUx/eav07XJvqiq7hyqtiH093l+Ed0HdqE7291dVTcPWtgAHIuR/t/JC1g8FldX1Zo/STT0JyQ5hm5cDutOUVpf+itSax7+UT/UHItO/w74wdU7C++M1zpDv5fkX9Gd3Y4vwXp/Vf3doIUNIMkL6FbvTI7FhwYtbMaSnAC8he4d4N395k2M3gF+YaDSZs6xGEnyNOBtdN//froz/ePoFoO8uqo+NWB5B2XoA0l+GzgL2MXi1Ts7gF1VdeFQtc1akrcCTwD+jMVjcTZwW1X9xlC1zVqSTwBvBa5auPlPkg10n/W8pqqePWR9s+RYjCT5DPCqqrpuYvuzgT+pqqcOU9l0DH2gX6HzpMn1+P3tIW+qqpOHqWz2knxuqSVn/YU5n2tsLG5b7vs90L71yLEYOchY7Kuqk2Zd00q4eqfzAN1FWV+c2P64fl9L7klySlVN3sv4mUBrl9jfkORSuus3xlesnAO00mdmgWMx8sEkH6B7Nzw+FmcDa34K1DN9IMlpwB/RXW04vgTrJOCCluay+7axfww8ktH0zvHAt+nmK28YqrZZ69/pncfos54HV6zQXan9vQHLmynHYrEkp7PEWFTVnkELm4Kh3+vX5S/0FVn4n3h9qzdy76/CfXAsFq7OlTTfnN4ZqbE/D4z9tzl9/53nMrZ6J8lcNJNaTWM9mX5gJRPt9WRyLHpj/am2A4/uN89NfyrP9LGZ1Lh5bya1muzJNOJYjBygP9W5wKlrvT+VoY/NpMbNezOp1ZTk1iV6Mi3sW3KV03rlWIwcZCyW3bdWeGP0js2kRua6mdQquyvJmf3nPUD32U+Sl9NeTybHYuSLSV7bX5ELdFfn9tf7rPn+VM7pd2wmNTLXzaRW2Q66nkyXJlnoybQJ+Gi/ryVLjcVCf6rWxuLldP2pPj4W/Av9qV42WFVTcnqnl+SJLL0Ey2ZSc9RM6qFiT6YRx2K+Gfpa0rw2k3oo9Z/xPB24udGeTPan6s1zfyrn9Hnw4qyFx5uS/GmSzyb53+Pzdi1I8rQk1wIfo3s7//t0b2Ov7S/cakaS94093k43lfGLwO4k5w5V1xD6+epddO/8Pglc3z/elWTnkLXNWt+f6jeAj9M1ofv9/vG/S/LfhqxtGp7pA0k+VVXP6B//Kd383P8AXgo8t6pePGR9szTvzaRWU5JPV9XT+8d/Dbyiqj6f5FjgI42Nhf2pevPen8oz/R+0rapeX1VfrKqLgS1DFzRjj5gMfICquhZ4xAD1DGn8jGjjws10+rns1i7cW+hPNanZ/lRLbJ+L/lSu3uk8Oslv0r1d/dEkqdFboNZ+Mc51M6lV9tQk36b7uTgyyWOr6uv92e2GgWubtdcAH0myZH+qwaoaxrnAHydZqj/VuQPVNDWnd4AkvzOx6dKquqO/yu4tVXX2EHUNZZ6bSc1CkqOBJ1bVJ4auZZbsT7XYvPanMvQlaYX6/junsXj1zlz0p2pt6kKHIcllQ9ewViS5cegaZinJU/oVXF9Ocll/LcfCvsl7L6xrfX+qTwE/Azyc7rOun6W758CanxVwTl+LpLvp9ZK7gF+YZS1DS/LS5XYBj51lLWvApcAbgWuBXwX+b5IXVdXf016rkv8I/NRy/anoPg9bswx9TbqD7g5i4312qn/+6CVfsX5dCfwvlu5FdNSMaxnaj4xdePQHSW4APpTkV1h6fNazue5PZegfQJJtwNeq6isHPXj9uJ2uPeyXJnckWfPNpFbZZ4E/qKq/ndyR5OcGqGdISbKpqu4GqKqPJvkl4L3Acu8O16u57k/lnP6B/Trwl0muHLqQGXor8GPL7HvLLAtZA15DtwxvKS+ZZSFrwEXAohbjVfVZ4FTgzwepaCBVdQWwje4q3O8B99Jdwb6tqt4xXGXTcfXOFJI8sqr+aeg6JOlwGfq9eV6CJWltSHJjVT156DoOxDl9lr1F4M8Cv5ekqVsESjqweV/V5Zk+3iJQ0vSS3Mfyq7rOqKpHzrikFfFMvzPXS7BmIcnjgDur6ntD1zK0vs3y15dqTNeaJK8GvgW8t6ruH7qeGZnrVV2Gfmeul2DNyDuBn0jy3qr6raGLGdizgCcn2VhVpw9dzMACPAd4BfCigWuZlble1eX0Ts9bBB5c3y98a1XdNHQtkg6NoU8XZnWQgZjmmPWiD/eFbooLK5k+2cr3P26ZWwTurqpbBi1sAPN8i0CNGPpAko/RXVn4/vErUfu+6c8BzgE+Og8XXhyuJD9P12flNkYrmY6j65v+6qr68FC1zVp/i8Cz6G4TuNA3/ThgB7Crqi4cqrZZ628R+AS6vjLjY3E2cFtV/cZQtWllDH0gyVHAK+nmJU8E/hH4Yborlj8MXFJVnxmuwtlJcgtwelV9YWL7icCeqnriki9ch7xF4Mi83yJQI36QC1TVPXRnt5cmeRhwLPDPjV6YtZHRmdy4r9BeN8WFWwR+cWJ7s7cIrKrJNspzcYvAWZiXVV2G/oT+rO5rQ9cxoLcD1yfZxeLbJe4ALh+sqmF4i8CRc5njWwTOyFys6nJ6Rz8gyVa65XeTt0u8edDCBuAtAheb11sEasQzff2APtxv7m+oUo0vW62xPw+M/bc5fX+q5zK2eidJk/2p5nlVl62VtUiSE5LsSvINursAfTLJN/ptW4atbrb6lUy30d0x6heAFwJvAm7r9zVj3m8RuJr6VV276N7tfBK4vn/87iQ7h6xtGk7vaJEkn6DrqX/VwhRGkg3AmcBrqurZQ9Y3S65kGrE/1ci8r+ryTF+Tjq2qK8fnrKvq+1W1CzhmwLqG4EqmEftTjSys6po0F6u6nNPXpBuSXApcweLVO+cAnx6sqmG4kmnE/lQjc72qy+kdLdK/RT2P0YdUD67eAS5vrcumK5lG7E81Ms+rugx9aQquZOokeQxjK1aq6h8GLmkQ89yfytDXIkk20p3p/0BjLboz/fsO8PJ1JckJdDeDfx5wd795E3ANsHPyA971LMnTgLfRff/76c5uj6NrWfLqqvrUgOXN1Lz3pzL0tUiSd9P9Q76CxY21zgEeVVUvH6q2WXMl00iSzwCvmmwxkOTZwJ9U1VOHqWz25n1Vl6GvRZLcWlU/ucy+JZturVdJbltu+d2B9q1HBxmLfVV10qxrGkr/Ae4TJ+8U1n8edvNaHwtX72jSXUnOpLv93QPw4IdWZwKtzWe7kmnkg0k+QNdaeXwszgZa66c/16u6PNPXIv1VtxfRzWPfRTd3uwn4KN089ucHK27GXMm0WJLTWWIsqmrPoIUNYJ5XdRn6WlaSY+h+Rr45dC3SWjSPq7q8IlfLqqpvAY9M8tK+wVRTkmxM8qokH0zy2SR/0z/+tf6+C81I8pSxxw9L8voku5P8XpKHD1nbrM17fypDX4sked/Y4+10yxN/Edid5Nyh6hrIO4Gn0TVZG2+49lTgXQPWNYR3jD2+kG554h/S3WHubUMUNKArgb8AHldVJ/cfcD8OeB9dI7Y1zekdLZLk01X19P7xXwOvqKrPJzkW+EhjS/NcydSb+Ln4DPDMqrqvv0jpb6rqKQf+G9aPeV/V5eodTRo/C9i48MFtVX0zyZpvJrXKXMk0sinJS+hmB45cuEivqipJa2eOc72qy9DXpKcm+TbdioQjkzy2qr7er2TZMHBts7aDbiXTpUkWQv5oupVMOwarahgfp1utAnBtksdU1T/0d9Jq7YP+s+lWdb2JJVZ1DVjXVJze0VSSHE13Qconhq5lCK5k0nph6GuRJDlY06hpjlnvkjy/qv7P0HWsBa2Nxbz3pzL0tUiSjwHvBd5fVV8a234E8By6ecuPVtU7BilwjUjypao6Yeg61oLWxmLe+1M5p69JpwGvpLvf54l0P9xH0c3nfxi4uKo+M2B9M5Nk93K7aOwuYo7FIs9YYlXXfrrPOj43REErYehrkaq6h65t7KX9BUjHAv88eW/URvw08K+B70xsX+il3hLHYmSuV3UZ+lpWPzf5taHrGNC1wHer6uOTO/obhbfEsRiZ61VdzulL0iGax1VdtmGQltFfbXrYx6wHjsViSX40yU9U1bfGA3+8R9FaZehLy/tokl/vb5v4oCRHJHlekivoVmy0wLHoJXkZ8HfAe5PclOSZY7vfMUxV03N6R1pGkqPoVjK9AlhqJdMlDa1kcix6fe+h06vqa0lOobuxzH+oqj8f71G0Vhn60hRcyTTS+lgkubGqnjz2/HHAX9Kt2z+3qp4xWHFTMPQlaQX67rO/UlV/P7btkXStlZ9TVUcOVtwUXLIpSSvzb5j4PLSq/inJacDLhilpep7pS9IKzHt/KlfvSNLKzPVKJs/0JWkF5n0lk6EvSYdoHlcyGfqS1BDn9CWpIYa+JDXE0Jekhhj6ktQQr8iVekneCDwbuL/ftJHu5iFLbWOp7VX1xlnUKh0qQ19abMfC0rskRwOvWWbbcsdKa5rTO5LUEENfkhpi6EtSQwx9SWqIoS9JDTH0JakhLtmURr4B/FmSB/rnPwR8aJltHGC7tGbZZVOSGuL0jiQ1xNCXpIYY+pLUEENfkhpi6EtSQ/4/NYKO4NUqLU8AAAAASUVORK5CYII=\n",
249 | "text/plain": [
250 | ""
251 | ]
252 | },
253 | "metadata": {
254 | "needs_background": "light"
255 | },
256 | "output_type": "display_data"
257 | }
258 | ],
259 | "source": [
260 | "import matplotlib.pyplot as plt\n",
261 | "\n",
262 | "all_income_user=data[\"好坏客户\"].groupby(income_cut).count()\n",
263 | "bad_income_user=data[\"好坏客户\"].groupby(income_cut).sum()\n",
264 | "bad_rate=bad_income_user/all_income_user\n",
265 | "print(bad_rate)\n",
266 | "\n",
267 | "# 绘制月收入与坏账率关系图\n",
268 | "bad_rate.plot.bar()"
269 | ]
270 | },
271 | {
272 | "cell_type": "code",
273 | "execution_count": 21,
274 | "metadata": {},
275 | "outputs": [
276 | {
277 | "name": "stdout",
278 | "output_type": "stream",
279 | "text": [
280 | "年龄\n",
281 | "(-0.109, 18.167] 0.000000\n",
282 | "(18.167, 36.333] 0.110124\n",
283 | "(36.333, 54.5] 0.081645\n",
284 | "(54.5, 72.667] 0.041719\n",
285 | "(72.667, 90.833] 0.021585\n",
286 | "(90.833, 109.0] 0.022495\n",
287 | "Name: 好坏客户, dtype: float64\n"
288 | ]
289 | },
290 | {
291 | "data": {
292 | "text/plain": [
293 | ""
294 | ]
295 | },
296 | "execution_count": 21,
297 | "metadata": {},
298 | "output_type": "execute_result"
299 | },
300 | {
301 | "data": {
302 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAFUCAYAAADI2uyvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8XFV9/vHPY8L9qhgVCRiuxah4C1Er9YYX0GqsBQ31V1FRrL/S/qxWja1FRK1AragVbFEQBOUi9RIhgChgWxVMuBMgEJBLBDRAAFEpBJ7fH2sfGIYTMsmZc/aZWc/79Tqv7Nl7T853v2bOM3vWXmtt2SYiIurwhLYLiIiIiZPQj4ioSEI/IqIiCf2IiIok9CMiKpLQj4ioSEI/IqIiCf2IiIok9CMiKpLQj4ioyNS2C+j25Cc/2TNmzGi7jIiIgXLhhRfebnva6vabdKE/Y8YMFi1a1HYZEREDRdKNveyX5p2IiIok9CMiKpLQj4ioSEI/IqIiCf2IiIok9CMiKpLQj4ioSEI/IqIik25wVoxuxrzTJ/T33XDIGyb090XExMiZfkRERRL6EREVSehHRFQkoR8RUZGEfkRERRL6EREVSehHRFQkoR8RUZGEfkRERRL6EREVSehHRFQkoR8RUZGEfkRERRL6EREV6Sn0Je0haYmkpZLmjbL9ZZIukrRS0l5d2/aVdG3zs2+/Co+IiDW32tCXNAU4AtgTmAnsI2lm1243Ae8EvtX13CcBnwBeBMwGPiHpiWMvOyIi1kYvZ/qzgaW2r7d9P3ASMKdzB9s32L4MeKjrua8DzrZ9p+0VwNnAHn2oOyIi1kIvob8VcHPH42XNul6M5bkREdFnvYS+RlnnHv//np4raX9JiyQtWr58eY//dURErKleQn8ZsHXH4+nALT3+/z091/ZRtmfZnjVt2rQe/+uIiFhTvYT+QmBHSdtKWheYC8zv8f8/C3itpCc2F3Bf26yLiIgWrDb0ba8EDqCE9VXAKbYXSzpY0psAJO0qaRmwN/AfkhY3z70T+BTlg2MhcHCzLiIiWjC1l51sLwAWdK07sGN5IaXpZrTnHgMcM4YaIyKiTzIiNyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIj2FvqQ9JC2RtFTSvFG2ryfp5Gb7BZJmNOvXkXScpMslXSXpY/0tPyIi1sTU1e0gaQpwBPAaYBmwUNJ821d27LYfsML2DpLmAocCbwP2Btaz/RxJGwJXSjrR9g39PpAYbDPmnT6hv++GQ94wob8vYrLo5Ux/NrDU9vW27wdOAuZ07TMHOK5ZPhXYXZIAAxtJmgpsANwP3NOXyiMiYo31EvpbATd3PF7WrBt1H9srgbuBLSgfAL8DbgVuAj5n+84x1hwREWupl9DXKOvc4z6zgQeBpwPbAh+StN1jfoG0v6RFkhYtX768h5IiImJt9BL6y4CtOx5PB25Z1T5NU85mwJ3AXwBn2n7A9m+AnwKzun+B7aNsz7I9a9q0aWt+FBER0ZNeQn8hsKOkbSWtC8wF5nftMx/Yt1neCzjHtilNOq9SsRHwYuDq/pQeERFrarWh37TRHwCcBVwFnGJ7saSDJb2p2e1oYAtJS4EPAiPdOo8ANgauoHx4fN32ZX0+hoiI6NFqu2wC2F4ALOhad2DH8n2U7pndz7t3tPUREdGOjMiNiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIq0lPoS9pD0hJJSyXNG2X7epJObrZfIGlGx7ZdJP1c0mJJl0tav3/lR0TEmlht6EuaAhwB7AnMBPaRNLNrt/2AFbZ3AA4HDm2eOxU4Afgr288CXgE80LfqIyJijfRypj8bWGr7etv3AycBc7r2mQMc1yyfCuwuScBrgctsXwpg+w7bD/an9IiIWFO9hP5WwM0dj5c160bdx/ZK4G5gC2AnwJLOknSRpI+MveSIiFhbU3vYR6Osc4/7TAV2A3YFfg/8WNKFtn/8qCdL+wP7A2yzzTY9lBQREWujlzP9ZcDWHY+nA7esap+mHX8z4M5m/U9s327798AC4AXdv8D2UbZn2Z41bdq0NT+KiIjoSS+hvxDYUdK2ktYF5gLzu/aZD+zbLO8FnGPbwFnALpI2bD4MXg5c2Z/SIyJiTa22ecf2SkkHUAJ8CnCM7cWSDgYW2Z4PHA0cL2kp5Qx/bvPcFZI+T/ngMLDA9unjdCwREbEavbTpY3sBpWmmc92BHcv3AXuv4rknULptRkREyzIiNyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIj2FvqQ9JC2RtFTSvFG2ryfp5Gb7BZJmdG3fRtK9kv6+P2VHRMTamLq6HSRNAY4AXgMsAxZKmm/7yo7d9gNW2N5B0lzgUOBtHdsPB87oX9kRg2XGvNMn9PfdcMgbJvT3xeDo5Ux/NrDU9vW27wdOAuZ07TMHOK5ZPhXYXZIAJL0ZuB5Y3J+SIyJibfUS+lsBN3c8XtasG3Uf2yuBu4EtJG0EfBT45NhLjYiIseol9DXKOve4zyeBw23f+7i/QNpf0iJJi5YvX95DSRERsTZW26ZPObPfuuPxdOCWVeyzTNJUYDPgTuBFwF6SDgM2Bx6SdJ/tL3c+2fZRwFEAs2bN6v5AiYiIPukl9BcCO0raFvgVMBf4i6595gP7Aj8H9gLOsW3gT0Z2kHQQcG934EdExMRZbejbXinpAOAsYApwjO3Fkg4GFtmeDxwNHC9pKeUMf+54Fh0REWunlzN9bC8AFnStO7Bj+T5g79X8HwetRX0REdFHGZEbEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUZGrbBURETGYz5p0+ob/vhkPeMK7/f0+hL2kP4IvAFOBrtg/p2r4e8A3ghcAdwNts3yDpNcAhwLrA/cCHbZ/Tx/ojomXDForDbrXNO5KmAEcAewIzgX0kzezabT9ghe0dgMOBQ5v1twNvtP0cYF/g+H4VHhERa66XNv3ZwFLb19u+HzgJmNO1zxzguGb5VGB3SbJ9se1bmvWLgfWbbwUREdGCXkJ/K+DmjsfLmnWj7mN7JXA3sEXXPn8OXGz7f7t/gaT9JS2StGj58uW91h4REWuol9DXKOu8JvtIehalyed9o/0C20fZnmV71rRp03ooKSIi1kYvob8M2Lrj8XTgllXtI2kqsBlwZ/N4OvBd4B22rxtrwRERsfZ6Cf2FwI6StpW0LjAXmN+1z3zKhVqAvYBzbFvS5sDpwMds/7RfRUdExNpZbeg3bfQHAGcBVwGn2F4s6WBJb2p2OxrYQtJS4IPAvGb9AcAOwD9JuqT5eUrfjyIiInrSUz992wuABV3rDuxYvg/Ye5TnfRr49BhrjIiIPsk0DBERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREV6Cn1Je0haImmppHmjbF9P0snN9gskzejY9rFm/RJJr+tf6RERsaZWG/qSpgBHAHsCM4F9JM3s2m0/YIXtHYDDgUOb584E5gLPAvYAjmz+v4iIaEEvZ/qzgaW2r7d9P3ASMKdrnznAcc3yqcDuktSsP8n2/9r+JbC0+f8iIqIFvYT+VsDNHY+XNetG3cf2SuBuYIsenxsRERNkag/7aJR17nGfXp6LpP2B/ZuH90pa0kNd/fJk4PYJ/H0Tba2OT4eOQyXjI8c3igE5vmE+Npj443tGLzv1EvrLgK07Hk8HblnFPsskTQU2A+7s8bnYPgo4qpeC+03SItuz2vjdEyHHN9iG+fiG+dhg8h5fL807C4EdJW0raV3Khdn5XfvMB/ZtlvcCzrHtZv3cpnfPtsCOwC/6U3pERKyp1Z7p214p6QDgLGAKcIztxZIOBhbZng8cDRwvaSnlDH9u89zFkk4BrgRWAn9t+8FxOpaIiFiNXpp3sL0AWNC17sCO5fuAvVfx3M8AnxlDjeOtlWalCZTjG2zDfHzDfGwwSY9PpRUmIiJqkGkYIiIqktCPiKhIT236w0LSW3rY7b7mGkZMMpKe1MNuD9m+a9yLiegwSNlSVZu+pDuA7zP6oLERL7O9/QSV1FeSLutht+W2dx/3YsaBpPso4zwe7/WbYnubCSqpryR9qYfd7rH98XEvps8k3bO6XYBbbe80EfX02yBlS1Vn+sAZtt/9eDtIOmGiihkHU4DXP8528dgxFoPkKtvPf7wdJF08UcWMgznAgavZZx4wcKEPXDfkr93AZEtVZ/rDTtJutv9nrPtMVpLWb7oHj2mfyUrSB2x/Yaz7TEaStrN9/Vj3ibGrKvQlvQn44aCGQjyWpCfZvrPtOmLNDdtrJ2lnyre1rShzjN0CzLd9VauFdamt987JlPmBjpf0+mGb21/SzpLOkHS6pO0lHSvpLkm/kPTMtusbK0kf71ieKeka4EJJN0h6UYul9YWkz0t6adt1jAdJL5V0laTFkl4k6WxgkaSbJb2k7frGStJHKdPOizLVzMJm+cTRbjzVKtvV/AAXA08E3gv8GPg18O/Ay9uurU/H91/AG4F9gBsp02GoWffjtuvrw/Fd1LF8OrBnszwb+Fnb9fXh+JYDi5rX7jDg+W3X1Mdj+wXwHOAllJknd2vWvwD4adv19eH4rgHWGWX9usC1bdfX+VPbmb5tr7D9VZceLM+lzAt0iKSbV/PcQbCJ7R/YPhF4wPZJLn5A+bAbJk+3fQaA7V8AG7RcTz8sc5mV8dXAb4ETJF0t6ROSBrJXS4d1bF9u++eUHmT/A2D7IobjtXsIePoo67dstk0atfXeeVR3Ktu3AV8CviSpp7moJ7nO5qrPd21bdyILGSfbSZpPeR2nS9rQ9u+bbeu0WFe/GMD2tcCngE9J2oXyzW0BsEOLtY1V5wnmx7q2DcN78wPAjyVdyyM3jtqG8pod0FpVo6gt9P9uVRts3ziRhYyTIyRtbPte20eOrJS0A/CjFuvql+7bdD4BQNJTga9MfDl995g+3rYvAy7jsUE5aP5p5EPa9vdGVkraHvhGi3X1he0zm29jsykXckW5n8hCT7KZhavqvdNN0qaUOf6vt72i7XqibiMf2G3XEcOtqjZ9SSdIenKz/DpgMXAocImkUaeGHiSSNpT0EUkflrS+pHdKmi/pMEkbt13feGpuuTno7pf08Nm+pFdK+pCkPdssqh8kPU3SVyQdIWkLSQdJulzSKZK2bLu+8STptLZr6FRV6APPtT1yz8pPAH9i+9XACxnMUY7djgWeCmxL6d0yC/gc5avmMDR/PJ7HG/4+KBYCmwNI+jDlPhQbAB+U9Nk2C+uDYymdJm4GzgX+ALwB+G9KD7ph9t62C+hUVfOOpMXAS2zfI+l/KHNhPDSyzfaz2q1wbCRdYvt5zdnircCWtt08vtT2Li2XGI9D0hW2n90sL6KclPyhue/0RYP8+km62M00DJJucsf8SCPv2/aqq0ttZ/qfBM6V9G7gp8C3Jb1D0rHAma1W1kcun+QLmn9HHg/lp7ukc9quoY/ukfTsZvl2YP1meSqD/7faWX/3hdtBPzYkbSzp4Gbw2d2Slks6X9I7266tW1W9d2yfIukiytetnSjH/xLgRNtntVpcfyzq6L3z8ORPTQ+J37ZYV1+MMouogJ1G1g/ymXDjr4BvSroU+A3l9fwJsAvwz61WNnbf73hvdo6s3oEysGnQfRP4LvA64K3ARpQRuh+XtJPtf2izuE5VNe/UTJI84C9200f/HuDTlDZhUdqEd4Ph6HbbTA3yWh45KVkGnOXcI2BSk3Sp7ed2PF5oe1dJTwCutL1zi+U9ysB/reoXSaub0nYgSJotaddmeaakD0p6/aAHPoDtNwH/Sbnh9HNt30AZeXzjMAQ+gO0HbZ9h+4u2/xX40TAEvqQnSTpQ0ntU/KOk0yT9i6RhGC3+O0m7AUh6I3AnQHPNcFJ1MsiZfqP74tIgkvQJYE/KGeLZwIuA8yjD+s+y/Zn2qusfSRtRRqzuALzA9vSWS+oLSYcAn7N9u6RZwCmUIfzrAO+w/ZNWCxwDSQuAy4FNgWc2y6cAr6F8gHcPvBsozcjprwF/RDm2/WwvkTQN2Md2LzfImRBVhb5WffceARvYHuhrHJIuB54HrAfcBkxveiptAFwwBG3ejyLpuZTeWEPR5U/S5baf0yyfC3zE9sJmpOe3mnl5BlJXz7Jltrfq3tZieVUZ6JBbC3cBu9r+dfeGIZlwbWUz5Pv3kq6zfQ9A0+1vUk361CfXAVMkbT4MTSDAOpKm2l5JOQlZCGD7GknrtVzbWD2hacbZBNhY0gzbN0jaguGYe2dkwOebefR8+t+3Pal6BtYW+t8AnkGZUrnbtya4lvFwvx6ZhOyFIyslbcYkm+lvbUg60vb/bZZ3o7xm1wE7SHqfJ8FNp8foCGBB08xzpqQvAN8BdgcuabWysfsscHWz/G7ga5IMzKR0pR5ozWu1EyVjljWrpwN/K2lP2/+vteK6VNW8M+wkrWf7f0dZ/2TKQK3LWyirbyRdZPsFzfK5wIdsXyRpO+CUQW7+GCHpFcD7eaT3zs3A94Cv236gxdLGrOmZJNsrmwFnzwN+ZfvWlksbM0nXeJSbujfNWdfY3rGFskZV25n+UBst8Jv1t1MG+wyTTZu52LF9vYbkLmi2z6NcfB86nbNNNk1Yi1osp9/ukzS7ubdDp12BSXV71oR+o/MschhJOs32n7Zdxxjt3AzEEjBD0hNtr2j6Qg/DfPqrJOkFIx9yw2ZI/vbeCXxF0iY80ryzNWVcyTtbqmlUad6phKQtB/1rtB57o5tbbD/QNF+9zPZ32qhrIkj6qu1JNXFXPJakp9Exn35zo6ZJpbrQ7+gdgcp0wztT5tO/s93KxoekLWzf0XYdEfDwDW8e7t0yWk+6YSNpZ9tXr37PiVHViNxm8qNfS7pGZY7yyyjz6V8qaZ9Wi+sDSYfokfsFzJJ0PXCBpBslvbzl8qJHkh7TVDXyug4qSc+TdD7lesVhwL8AP2kmJRv0pp3V+WHbBXSq6ky/Gbz0Skpf4UuB59u+rjn7OHvQBy8N8+CeGkh6JXA8ZXDdxcD+zVQTA9/uLekS4H22L+ha/2LgPzrnrRlEklY14lbAvrY3nch6Hk9VZ/rAg7Zvt/1L4F7b1wEM0VfMdZqucNA1uIcSJDG5HQa8zvY0yvxCZzehCJNs/pa1sFF34APYPp8yI+WgexdwBXBh188i4P4W63qM2nrv3KRyB6JNgKsl/Stl8MurKTcdGXTDPLhnlST9M3A38LUBv36xru3FALZPlXQV8B1J8xj8+yGcIel0yuClkdHvWwPvYDjuZbEQuML2z7o3SDpo4stZtdqadzYF/pryB/RlytzX7wJuBD496L1b4OEmgr/i0VPzfg84ZtAH96yKpDcD21Mm7npH2/WsLZW7Zf1pZ48PSdOB04DtbW/SWnF90FxHm0NH7xZg/hCMpEbSk4D7mtHwk1pVoR8xmUl6NbDc9qVd6zcDDhiWWVKjXQn9hqSjbO/fdh1j0Qz53pvyTeZU4FWUM6urgX9v5vYeWJI2BA6gHN+/AXOBt1CO72Db97ZYXjyOZgDdvsCfU5p1VgLXUt6X57VYWnWqCv3mK9iomyg3Dh/oedklHQk8hTJr4T2Ui7c/AF4P/HoyTfq0NiSdQmkP3oAyb/lVlDnZ3wg8zfZftljemKncyvM7lNt3Xtd2Pf0k6euUZtQfAXtR3p//DXyUMhPlv7VYXlVqC/0HKW+8zp4Qbh5vZXugp3gd6bLZ9PO+jTLJ2v1Nj56LR7pzDqquOdlvpRyfm8eXDkGX219S7gz2VsrrdyJwsu1bWi2sDyRd1vn6SDrf9oubKaMvsf3MFsurSm1dNq8HXmF7246f7Wxvy+jTLQ+alQDNBduFtu9vHq8EHny8Jw4SlzOVBc2/I4+H4exlhe2/d7mD24eAHYGLJJ0raaCbHoEHJG0PZR4hmm6MzSSBw/DajUrSP0v6aHPfgEmhttD/ArCq+3EeNpGFjJPbmqklsL3HyMpmPpBJ1Vd4LS3qOL53j6xswuS3rVU1Dmz/d3PvgK0oo8Zf0nJJY/Vh4FxJ11C+zXwYQOV2gqe1Wdg4+wXlZOzwtgsZUVXzTq1U7im7ke3ftF3LeJEkD/ibWdJJtue2Xcd4aZrhtmim+o6WJPRjoEiaTWnRWShpJrAHcPUw9PWOwTVIPcsS+jEwJH0C2JMy6Oxs4EWUCbxeDZyVfuzRlkHqWZbQj4HRTJj3PEpX1NuA6bbvkbQBcMGg996JwTVIPctqu5A7KklbNl3HYnJbafvBZqj7dbbvAbD9B4bgxu81Gra/vUHoWZbQL46nTMD2ubYLGQ+Srmp+Dmi7ljG6v2k7BXjhyMpmmoKhDf3m3ghbtV3HOBmWv72B6VmW5p1G8zVs5sgsh8Om6Sf8Ytunt13L2pK0nke5+Xtzg5EtbV/eQlnjTtJxwC7ANbbf1nY9/VbB396k6llWZeg3fYOnU/rP/nIyXVmPx9fM4YLthyStCzwbuMFDervLTpI2sT2pzhp7JWlz23e1Xcd4GpSeZVU170iaKelHwM+BC4CvAZdLOrZpIhhoku6U9DVJuzdnT0OlmUL5VuBXkuZQ5m75HHCZpDe2Wtw4kLSxpBdI2hxgUAO/cbukH0nab+R4hknTs+xLwFeae3Z8GdgYmCfpH1strpvtan6A84E/apZnA8c1y+8FTm27vj4c3xJKX+GfAr8Cvkhp0mm9tj4d38XA04BtKRN2jbyWzwAWtV1fH47vyI7l3YCbgHMpXQFf33Z9Yzy2y4E/Bb4J3AF8n9KXfYO2a+vj8U0BNmzem5s26zcALmu7vs6fqs70KW+wJQC2fwE8p1n+KjCzzcL65He2v2z7pZRh+78CjpR0fXN3qYFn+zaX213e1PFa3shwfGt9ccfyp4A3234l8HLg4HZK6psHbJ9m++2UptVvUiaWWybpW+2W1hcD07NsGP5Q1sR1kv5J0h83vQUuAWhmpRyGW0c+3KRj+ybbh7ncTHtP4DEXQAfRSJs+0NlDYgplOulhsqntiwBsX085ixxkne/NP9g+xfZbgO2As9orq28GpmdZbaH/bsr9cf+BEoIj88tvSLlX56A7d7SVtpfY/uREFzMO9qcJ9+ab2oitgUNaqai/dpZ0WTMIbSdJT4SHP+jWabe0MfvmaCtt3237uIkuZhy8rDnLx4++WdE6lJvHTBpV9t6JmIwkPaNr1S22H2i6pL7M9nfaqCt6I2kb4B7bd0maAcyi9N65otXCulR1pi9pM0mHNAOV7mh+rmrWDXyPAkl/pubuYJKmSfqGpMslnaxyg+2hJemgtmsYK9s3dv080Ky/fdADX9IBzYcXknaQ9F+S7pJ0gaSBvrkPgKR5wE+A8yW9BziT0qx6sqQPtlpcl6pCnzIB0grglba3sL0F8Mpm3bdbraw/PuNH+qt/mdLbZU/gDODrrVU1MS5su4DxNAQfau/3I1MqfxE43PbmlNsl/nt7ZfXNX1I6g7yUMnf+n9jej9JL8N2P98SJVlvoz7B9qO3bRlY0vUEOBbZpsa5+6bzYt4Ptw20vs30sMK2lmiaE7R+0XcM4G/QPtc6OEk+x/V0Al5uib9JKRf31YNNT5y7gD5Ruqdj+XatVjaK20L9R0kckPXVkhaSnSvoopS/0oDtP0sHNrJPnNYOZkPRK4O52Sxu7mpuvhuBD7dRmEOR2wHclfUDSNpLeRRmPMOguarqefgf4MXCcpLdLOhq4st3SHq2qC7lNb4h5wBzgKc3qXwPzgUM94EP5m66n/8gjXyenA78DfgDMsz3Qf1ySrrQ9s1k+mTLY7tuU+fTfbvs1bdY3HiRdY3untuvoB0nvBN4PbE+ZHvtm4HuUv72BPimRNBXYmzKj5qmUZp2/oHygHTGZzvirCv2aNP2Dp9q+o+1a+kXSEtt/1CxfaLuzP/Qltp/XXnVjJ+m3PDIN70i/9g2B31PmdNm0lcJiqNTWvLNKzdfModH0f3448CXt3GY9fTLUzVfAsZQz3x1tb2J7E8rI400GPfCbppz1m2VJepekf5P0/uYseWhNtovwCf1HDMPgpcfzw7YL6IMDKKMbl1C+Sn+nOTt+L6X3xECz/TeUni0nSvrbZlDWsHwVX8AjeXMI8AbKpIe7Ake1VdQEmVQX4atq3pF02ao2ATvZHug7+Ej60qo2AfsO+tlip2FsvhrRhP0BlA+27W0/veWSxqzresyFwK4jI1clXWr7ua0WWJGh/lo1iqcCr6P0y+8k4GcTX07fvQv4EKPPs7PPBNcyLiQ9DUpX26YHz1uAJR6iG3A0YfglSd8Gnt92PX1ys6RX2T4HuIEydcaNKjf3GXhNE9V+wJ++zAMKAAAFv0lEQVQBT6d8Q7uFMpvo0SMD7SaD2kL/NGBj25d0b5B03sSX03cLgStsP+YDbLK1K64NSe+j9L6SpEOBdwKLgc9KOsz20W3WNw7WB9aXtLPtq9suZozeA3yjeR/eDVwi6WLgicCkGrG6lo6n9NE/CFjWrJtOmXfnBGDS3PGsquadYdf0Yb9vZOKnYdNMRPYiyhzlN1IGoN3WdMU9dwh673zP9sjF6TnAF4DzgD8GPtsMshtokp4J7EQ54VwGLOyaoGwgdfYsG2XbpOp2W9uZ/lAb9HEGPXig+UD7vaTrRkZW214haRjOXjonXPso8Crbv2zmrPkxpXfPQLN9FXBV23WMgxWS9gb+s+NaxRMo12W6m5Nbld47DUmntV3DeBqG5h3goWYAGpTeHwA0XQGH4b3c+cE1tblZDM2cNQN/Nrwqkoah985cYC/g15KukXQtcBvwlmbbpJHmnYakLW3f2nYd40XSGwd9KL/K1LW32F7ZtX4r4Jm2f9ROZf0h6UHKCGpRRqxu0zRfrUu5HeQurRY4TiS90Pak6tY4Fs3FaXVMMDepVBv6Tfu3bU+qr16xapLk1bxhe9ln0KhM+/1M2z9vu5ZYNUkbA3tQeiatBK4FfjjZrlkMw1finjWjAk+StJwyMGShpN8062a0W93YSdpO0jGSPi1pY0lflXSFpG8Pw/EB50r6m+aM/2GS1pX0KknHMcnuUrQmJGm09bbvGgn8Ve0z2UmaIul9kj4l6aVd2z7eVl39IumtlDvX7UEZYzGbMmDwEk2y+wVUFfrAycB3gafZ3tH2DsCWlKHvJ7VaWX8cS+m2eS9lMrKrKfPpnwkc015ZfbMH8CBlxOotkq6UdD3ljGofyhztx7ZZ4BgN84faf1Bu8H4HZQzC5zu2vaWdkvrq48DLbb+H0sPsKS43gf8/lGOfNKpq3pF0re0d13TboJB0se3nN8s32d5mtG3DoLmg+2TgD7bvaruefmguSL8beDuwLaXf9/qU+yT8kDJb42PGmAwCSZeNXJNoBjIdSXn99gHOH/T3ZtOdeBfbbuaG+lnH3+IVtp/dboWPqK3L5oWSjgSO45H587emnD1d3FpV/fOQpJ2AzYANJc2yvUjSDjz6BisDrxnhOFQX3m3fRwnDI4fwQ23dkYXmQvz+kg4EzgE2bq2q/lkAnCnpJ5Rv19+Gh68dTqomudrO9NelDJWeA2xFeTGWUebTP9r2aNMXDAxJu1NC4yHKJGR/BzwX2BR4r+3vt1heVEzSCcAJts/sWv8e4Cu21xn9mYND0uspt0y81PbZzbonAOtMpmypKvRr1AzsWWH7wbZriRhWg9SzrLYLuY8h6aK2axhPtm+3/aCkoburVAwOSW9qrlkMq4G5CF/9mf6wXeBcle4LuxETSdIfKAPPzgBOBM4apm+fg3QRPqEvfdr2wPcTBpA0f1WbKPO4bDSR9USMaGbUfBVlqoK5wLMp3adPtP2TNmvrt8l+Eb6q0B+kdre1IWkFpV/wvd2bgJNtP3Xiq4oozai2X9Dx+GnAWyldNqfb3rq14ipTW5fNcyX9J/B92zeNrGx69exGaXM7l8GdzfB84PejnTlJWtJCPREjHtVtsZkh9UuUgVrPGP0pMR5qO9Mfrd1tA8oF7UnV7hYxTCS9wvZ5bdcRlYV+p8ne7rY2hr35KgZX3puTR7VdNm0/YPvWYQn8xsB0G4vq5L05SVR7pj+MBqnbWNQl783JI6E/pIax+SqGQ96b7UroR0RUpNo2/YiIGiX0IyIqktCPiKhIQj8ioiK1TcMQ0RNJBwEvBlY2q6ZSprl4zDrbB010fRFrK6EfsWpzR7oUStoc+MAq1kUMjDTvRERUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRdNmMGN1vgG9Ieqh5/ATgzFWsixgYmWUzIqIiad6JiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKjI/wcpFa7BDkCJmwAAAABJRU5ErkJggg==\n",
303 | "text/plain": [
304 | ""
305 | ]
306 | },
307 | "metadata": {
308 | "needs_background": "light"
309 | },
310 | "output_type": "display_data"
311 | }
312 | ],
313 | "source": [
314 | "# 年龄和坏账率有什么关系\n",
315 | "age_cut=pd.cut(data[\"年龄\"],6)\n",
316 | "all_age_user=data[\"好坏客户\"].groupby(age_cut).count()\n",
317 | "bad_age_user=data[\"好坏客户\"].groupby(age_cut).sum()\n",
318 | "bad_rate=bad_age_user/all_age_user\n",
319 | "print(bad_rate)\n",
320 | "\n",
321 | "bad_rate.plot.bar()"
322 | ]
323 | },
324 | {
325 | "cell_type": "code",
326 | "execution_count": 23,
327 | "metadata": {},
328 | "outputs": [
329 | {
330 | "name": "stdout",
331 | "output_type": "stream",
332 | "text": [
333 | "家属数量\n",
334 | "0.0 0.058629\n",
335 | "1.0 0.073529\n",
336 | "2.0 0.081139\n",
337 | "3.0 0.088263\n",
338 | "4.0 0.103774\n",
339 | "5.0 0.091153\n",
340 | "6.0 0.151899\n",
341 | "7.0 0.098039\n",
342 | "8.0 0.083333\n",
343 | "9.0 0.000000\n",
344 | "10.0 0.000000\n",
345 | "13.0 0.000000\n",
346 | "20.0 0.000000\n",
347 | "Name: 好坏客户, dtype: float64\n"
348 | ]
349 | }
350 | ],
351 | "source": [
352 | "# 家庭人口数量和坏账率有什么关系\n",
353 | "all_age_user=data.groupby(\"家属数量\")[\"好坏客户\"].count()\n",
354 | "bad_age_user=data.groupby(\"家属数量\")[\"好坏客户\"].sum()\n",
355 | "bad_rate=bad_age_user/all_age_user\n",
356 | "print(bad_rate)"
357 | ]
358 | },
359 | {
360 | "cell_type": "code",
361 | "execution_count": 25,
362 | "metadata": {},
363 | "outputs": [
364 | {
365 | "data": {
366 | "text/plain": [
367 | ""
368 | ]
369 | },
370 | "execution_count": 25,
371 | "metadata": {},
372 | "output_type": "execute_result"
373 | },
374 | {
375 | "data": {
376 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8VdWZ//HPkzskEBJyULnmglrxAmKI2F9rdZxadGak7WiL2orWll50ZjqdTmvn4ji2M/Oynda5yHS09d5acGw7ZVpmtK3WdjoVEiCgCGhAIAGRAEm4BMjt+f1xTtJ4OEl2yLnknHzfrxcv9tl77X2ebDb7ydprr7XM3REREQHISnUAIiIyeigpiIhIHyUFERHpo6QgIiJ9lBRERKSPkoKIiPRRUhARkT5KCiIi0kdJQURE+uSkOoBoZWVlXl5enuowRETSyrp16w64e2ikxxl1SaG8vJy6urpUhyEiklbMbFc8jqPHRyIi0kdJQURE+igpiIhIHyUFERHpo6QgIiJ9lBRERKSPkoKIiPRRUpBB/e/rB9i270iqwxCRJFFSkAG5O3c8tZ6v/OTVVIciIkmipCAD2nmwnbbjnazf1UJXd0+qwxGRJFBSkAFtbGwF4FhHN1ve1CMkkbFASUEGVN/YSm62AbDmjYMpjkZEkkFJQQZU39jKxTNLmFE6jtqdh1IdjogkgZKCxNTR1cOrew8zb8YkFpSXUrezBXdPdVgikmBKChLT1n2H6ejuYd6MSdSUl3LwWAfbm4+lOiwRSbBRN5+CjA69jcxzZ0ziRGc3ALU7DzF7SlEqwxKRBFNNQWLa0NhKWVE+U4sLqCwrpKwoj9o31K4gkulUU5CYNja2Mm9GMWbht4+qZ5WyVo3NIhlPNQU5xeETnWxvPsbc6ZP61tVUlNLUcpy9rcdTGJmIJJqSgpzi5aY2AObNfHtSAPRqqkiGC5QUzGyRmW0zswYzuyvG9svNbL2ZdZnZ9TG2TzSzPWb2QDyClsSqjzQyXzTtt0nhvLMmUpSfw1q1K4hktCGTgpllA8uBa4A5wI1mNieq2G7gVuCpAQ7zZeDF0w9Tkqm+sZXKskKKx+f2rcvOMubPKlFNQSTDBakp1AAN7r7D3TuAFcDi/gXcfae7bwJOGTXNzC4BzgCei0O8kmDuTn1jK3NnTDplW015Ca+9dZSWYx0piExEkiFIUpgGNPb73BRZNyQzywK+Dvz58EOTVNh3+ATNR04yd3rxKdsWlIfbFep2tSQ7LBFJkiBJwWKsCzrewWeA1e7eOFghM1tmZnVmVtfc3Bzw0JIIvZ3W5s0sOWXb3BmTyMvO0iMkkQwWpJ9CEzCj3+fpwN6Ax78MeLeZfQYoAvLM7Ki7v62x2t0fAh4CqK6u1gA7KVTf2EZutnHeWRNO2VaQm83cGcWsUWOzSMYKUlOoBc42swozywOWAKuCHNzdb3b3me5eDnweeCI6IcjoUt/YwpyzJpKfkx1z+4LyUjbvaaO9oyvJkYlIMgyZFNy9C7gTeBbYAjzt7pvN7F4zuw7AzBaYWRNwA/CgmW1OZNCSGN09zstNbTEbmXstqCilq8fZsLs1iZGJSLIEGubC3VcDq6PW3d1vuZbwY6XBjvEY8NiwI5Sk2d58lGMd3cwbJClcMqsEM1j7xiH+3+yyJEYnIsmgHs3Sp77fyKgDmViQy3lnTlRjs0iGUlKQPvWNrUwoyKFicuGg5WoqStmwu5XO7lO6pYhImlNSkD4bG1uZO30SWVmx3kL+rZqKUo53dvPKnrYkRSYiyaKkIACc6Oxm674jzJ1xaqe1aL2d2PQISSTzKCkIAJv3ttHd48ybcWqntWihCflUlBVqcDyRDKSkIEC40xoQc3iLWBaUl1C7s4WeHvU1FMkkSgoChBuZpxYXMGViQaDyC8pLaTveyev7jyY4MhFJJiUFASKNzIO8ihqtd9IdTdEpklmUFIRDxzrYfah9WElhZul4pkzIp1btCiIZRUlB2NgUGRl1GEnBzKipKKV25yHc1a4gkimUFISNja1kGVw4LVgjc6+ailLebDtBU8vxBEUmIsmmpCDUN7Zy9pQJFOYHGgqrT29/Bb2aKpI5lBTGOHePNDIPr5YAcO4ZE5hYkKNObCIZRElhjGs8dJyW9s5AndaiZWUZ1eWlegNJJIMoKYxx9U29I6MOv6YA4UdIO5qPceDoyXiGJSIpoqQwxtXvbqUgN4tzzjh1+s0gairCNYw61RZEMoKSwhi3samVC6YWk5t9epfChdMmkZ+Txdo3WuIcmYikQqA7gZktMrNtZtZgZqfMsWxml5vZejPrMrPr+62fZ2a/MbPNZrbJzD4cz+BlZDq7e3hlz+DTbw4lLyeLi2dOUmOzSIYYMimYWTawHLgGmAPcaGZzoortBm4Fnopa3w7c4u7nA4uAfzKz078DSVxt23eEk109w+q0FktNeSmb97Zx9GRXnCITkVQJUlOoARrcfYe7dwArgMX9C7j7TnffBPRErX/N3V+PLO8F9gOhuEQuI3Y6PZljWVBRSo/Dul16hCSS7oIkhWlAY7/PTZF1w2JmNUAesH24+0pi1O9upbQwj+kl40Z0nPkzS8jOMo2DJJIBgiSFWHMzDmuwGzM7C3gSuM3dT5nY18yWmVmdmdU1NzcP59AyAhubWpk7vRizwaffHEphfg7nT52o/goiGSBIUmgCZvT7PB3YG/QLzGwi8BPgr9z9pVhl3P0hd6929+pQSE+XkuHoyS5e3390RI3M/dWUl1Lf2MrJru64HE9EUiNIUqgFzjazCjPLA5YAq4IcPFL+h8AT7v4fpx+mxNvLTW24j7w9odeCilI6unp4uaktLscTkdQYMim4exdwJ/AssAV42t03m9m9ZnYdgJktMLMm4AbgQTPbHNn9Q8DlwK1mVh/5My8hP4kMS28j89zpcUoK5Zp0RyQTBBoW091XA6uj1t3db7mW8GOl6P2+A3xnhDFKAtTvbmXW5PGUFObF5XilhXnMnlIUbmy+Ii6HFJEUUI/mMSrcyBzfLiMLykup29lCd48m3RFJV0oKY9Bbh0/wZtuJuLUn9KqpKOHIyS627jsc1+OKSPIoKYxBGxt7R0aNf00BUH8FkTSmpDAG1Te2kpNlnD91YlyPO71kPNMmjaN2p3o2i6QrJYUxaGNTK+84awIFudlxP/aC8hLW7jyEu9oVRNKRksIY09PjbGpsi3sjc68FFaU0HznJroPtCTm+iCSWksIYs+PAMY6c7Ip7I3OvGvVXEElrSgpjTG8jc6KSwuwpRZSMz2WtGptF0pKSwhhT39hKUX4OlaGihBzfzKguL9WkOyJpSklhjNnY1MqF04rJzhrZyKiDqSkvZdfBdvYfPpGw7xCRxFBSGENOdHaz5c3Dce+fEK2mQu0KIulKSWEM2fLmYTq7PWHtCb3OnzqR8XnZ6sQmkoaUFMaQRDcy98rJzmL+zBLWqhObSNpRUhhD6htbOWNiPmcWFyT8uxaUl7J132Hajncm/LtEJH6UFMaQjU2J67QWbUFFCe6wfpdqCyLpRElhlPrf1w/wh9/8P17dG58RR1vbO3jjwDHmzUxOUrh4Rgm52cYatSuIpBUlhVGoYf9RPv3ddazb1cJN336JV/aMfIrLTZFpMuclqaYwLi+bC6cVq7+CSJoJlBTMbJGZbTOzBjO7K8b2y81svZl1mdn1UduWmtnrkT9L4xV4pmpt7+Djj9eSn5PF9z6xkMK8HG761kt9jcSnq76xFTO4YHpxnCId2oKKUjY1tXKisztp3ykiIzNkUjCzbGA5cA0wB7jRzOZEFdsN3Ao8FbVvKfA3wKVADfA3ZlYy8rAzU2d3D3c8tZ69rSd48KOXcFnVZFZ+ciHF43P5yLfXsG4Ez+c3NrZSFSpiYkFuHCMeXE15KZ3dTv0IE5qIJE+QmkIN0ODuO9y9A1gBLO5fwN13uvsmoCdq3/cBP3X3Q+7eAvwUWBSHuDPSl3/8Kr9uOMjffeACLpkV7gA2vWQ8K5ddxuSiPG55eM1pPY5x94RMvzmU6lmlmGnSHZF0EiQpTAMa+31uiqwLYiT7jilPvrSLJ36zi2WXV3JD9Yy3bZs6aRwrll3GGRMLWPrIWl7acXBYx97TepwDRzuS1sjcq3h8LueeMUE9m0XSSJCkEGuQnKAzqATa18yWmVmdmdU1NzcHPHTm+L+GA9yzajO/844pfHHRO2KWObO4gBWfXMjUSeO49dG1/LrhQODjb2xMbiNzfwvKS1m/q4Wu7uhKpIiMRkGSQhPQ/1fX6cDegMcPtK+7P+Tu1e5eHQqFAh46M+w8cIxPf3c9lWWF/POSeYMOVDdlQgErli1kVmkhH3uslhdfC5ZA6xtbyMvJ4twzJ8Qr7MAWVJRyrKObV9+Mz6u1IpJYQZJCLXC2mVWYWR6wBFgV8PjPAlebWUmkgfnqyDoBDp/o5PbHa8kyeHjpAiYEaAQuK8rne8sWUhkq4hOP1/HC1v1D7rOxsY3zp04kLyf5byAvrCwlLzuLv1+9hZNdegtJZLQb8i7h7l3AnYRv5luAp919s5nda2bXAZjZAjNrAm4AHjSzzZF9DwFfJpxYaoF7I+vGvO4e54+e2sCug+38282XMHPy+MD7lhbm8b1PXMo5Zxax7Mk6fvrqWwOW7eru4eU9yevJHG3KhAK+dsNFvLTjEF94ZpPmbhYZ5XKCFHL31cDqqHV391uuJfxoKNa+jwCPjCDGjPT3q7fw4mvN/MMHL+SyqsnD3n/S+Dy+e/tCbnlkDZ/+zjoeuOliFl1w1inlXt9/lOOd3Vyc5Ebm/hbPm0ZTy3G+9uw2ppeM48/fF7vdRERSTz2aU2Bl7W4e/t83uPWd5dxYM/O0j1M8PpcnP34pF00v5o6nNvDjTac29fR2ektVTaHXZ66o4saamSx/YTtPrdmd0lhEZGBKCkm29o1D/NV/vsK7zy7jr37vvBEfb2JBLk/cfinzZ07ij7+3gR/V73nb9vrGVorH5TJrGI+nEsHM+PLi87ny3BB//aNXArWFiEjyKSkkUeOhdj71nXXMKBnPAzfNJyc7Pqe/KD+Hx26roaailD9dWc/31zX1batvbGXujEmYJW76zaBysrN44Kb5vOPMCdzx1Pq4jOkkIvGlpJAkR0928fHH6+jq7uHbS6spHhff4SYK83N49NYaLquazOef2cjTtY20d3Tx2ltHEj6pznAU5ufwyK0LKBmfx22P1dLU0p7qkESkHyWFJOjucT67YgMNzUdZfvN8KkNFCfmecXnZPLx0Ae+aXcYXvr+Je1Ztpsdh3ozkDYIXxBkTC3j0tgWc6OzmtkdrNRGPyCiipJAE//jcNn62ZT93//4c3n12YjvnFeRm861bqrny3BBP14UfI12U4kbmWM45YwIPfvQSdh48xiefrFMfBpFRQkkhwX64oYlv/mI7N186k1sum5WU7yzIzebfP3oJv3fRWdRUlFJWlJ+U7x2ud1aV8bXr5/LSjkN8UX0YREaFQP0U5PSs393CF7//MgsrS7nnuvOT2tibn5PN8pvmj/ob7fsvnsae1t4+DOP5/PvOTXVIImOakkKC7G09zrIn1nFWcQHfvPkScuP0ptFwjYa3jobymSuqaGpp54EXGphWMm5EfTdEZGSUFBJg274j/MmKDZzs7GbFskspKcxLdUijWrgPwwXsbT3BX/3nK5xZXMCV505JdVgiY5LaFOJo/+ETfOkHm7jmn3/J3tbjPHDzfGZPSf7IpOkoJzuL5TdH+jB8V30YRFJFSSEO2ju6+KefvcYV//gLnlnXxK3vrODFP7+S95wztoYBH6ki9WEQSTklhRHo7nFW1u7miq/9gn/62etcee4Ufva593D3H8zRI6PTpD4MIqmlpHCaXnytmWv/+Vd88fsvM71kHN//9GUsv3k+syYXpjq0tKc+DCKpo6QwTK/uPcxHH17D0kfWcqKrm3+7eT7f//Q7uWRWaapDyyjvrCrjq9dfpD4MIkmmt48C2td2gq8/t41n1jdRPC6Xu39/Dh9ZOCsls5mNFR+4eDp7Wo7zj8+9xjTNwyCSFEoKQzh6sosHX9zOt361g54e+MS7K7njitkUj4/vgHYS2x1XzmbXwXaWv7Cdmy6dxbRJ41IdkkhGC/RrrpktMrNtZtZgZnfF2J5vZisj29eYWXlkfa6ZPW5mL5vZFjP7UnzDT5yu7h6+u2YXV3ztBf71+QaunnMmP/+z9/AX156nhJBEZsaHFswA4LW3jqQ4GpHMN2RNwcyygeXAe4EmoNbMVrn7q/2K3Q60uPtsM1sC3Ad8mPCczfnufqGZjQdeNbPvufvOeP8g8fTC1v383eotNOw/Sk15Kd9eet6oGn56rKksCzfe72g+xpUaBUMkoYI8PqoBGtx9B4CZrQAWA/2TwmLgnsjyM8ADFh5fwYFCM8sBxgEdwOH4hB5/Ow8c494fv8rzW/dTWVbIQx+9hPfOOSMthorIZKWFeUwan8v25qOpDkUk4wVJCtOAxn6fm4BLByrj7l1m1gZMJpwgFgNvAuOBP3X3QyMNOt7aO7pY/kID3/rlG+TlZPGX157H0neWqxF5lDAzKssK2b5fSUEk0YIkhVi/Jke/HzhQmRqgG5gKlAC/MrOf9dY6+nY2WwYsA5g5M3mDobk7P3n5Tf7uJ1t4s+0EH7x4Gndd8w6mTCxIWgwSTFWoiF+81pzqMEQyXpBfhZuAGf0+Twf2DlQm8qioGDgE3AT8j7t3uvt+4NdAdfQXuPtD7l7t7tWhUHKGhti27wg3fWsNdz61gZLxeTzzqcv4xofnKSGMUpWhIpqPnOTwCfVwFkmkIEmhFjjbzCrMLA9YAqyKKrMKWBpZvh543sO9jXYDv2NhhcBCYGt8Qj89bcc7+dv/2sy1//Irtuw7zFfefwH/9Ufvorpcnc9Gs6rQbxubRSRxhnx8FGkjuBN4FsgGHnH3zWZ2L1Dn7quAh4EnzayBcA1hSWT35cCjwCuEHzE96u6bEvBzDKmnx3lmfRNf/Z+tHDzWwU01M/n81edqjKI0UTUlPK/19v1H9SaYSAIF6rzm7quB1VHr7u63fILw66fR+x2NtT7ZNja28jerNlPf2Mols0p47LYaLpg2uiazl8HNLB1PTpax44Aam0USKaN7NB88epKvPbuNlXWNTC7M5xsfmssHLp6mV0zTUG52FjMnj2f7fj0+EkmkjEwK4d7Iu/n6c9to7+jm4++q4I+vOpsJBeqJnM4qy4pUUxBJsIxLCpv3tvFnT29k674jvGt2GfdcN0ezn2WIqimF/PK1Zrp7nOws1fZEEiGjkkLjoXZueXgtOdnGN2+ez6ILztSjogxSVVZER3cPTS3tmrdCJEEyJim0tXdy66Nr6epxnv7UZVSFilIdksRZ1ZRwItjefFRJQSRBMmIch46uHj71nXXsPtTOgx+9RAkhQ1WWhf9d1VdBJHHSvqbg7tz1g038ZsdB7v/wXBZWTk51SJIgJYV5lBbmaWA8kQRK+5rCv/y8gR+s38Of/u45fODi6akORxKssqyQ7aopiCRMWieFH25o4v6fvcYfzp/OH181O9XhSBJUhYrYoZqCSMKkbVJ4acdBvvDMJi6rnMw/fPBCvWU0RlSGCjlwtIO2dg2MJ5IIaZkUtjcf5ZNPrmNm6Xj+/SOXaN6DMaT3JYLt6sQmkhBpdzc9ePQktz1aS2628dhtNZoveYyp1GipIgmVVm8fnejs5uNP1PHW4ROsWLaQGaXjUx2SJNmM0vHkZpveQBJJkLRJCj09zueerqe+sZVv3jyfi2eWpDokSYHc7Cxmlo5XY7NIgqTN46P7nt3K6pf38RfXnMeiC85KdTiSQlWhIr2WKpIgaZEUnlqzmwdf3MFHFs7k4++uSHU4kmKVoSJ2HTxGV3dPqkMRyTijPin8Ytt+/vpHr3DluSHu+YPz9eqpUBUqpLPbaWw5nupQRDJOoKRgZovMbJuZNZjZXTG255vZysj2NWZW3m/bRWb2GzPbbGYvm1lB0OC2vHmYO5/awLlnTOBfb5pPTvaoz2GSBJWh307NKSLxNeRd1syyCc+1fA0wB7jRzOZEFbsdaHH32cD9wH2RfXOA7wCfcvfzgSuAQL2O3jp8go89VktRfg6P3LqAovy0aROXBKvqfS1VfRVE4i7Ir941QIO773D3DmAFsDiqzGLg8cjyM8BVFn7OczWwyd03Arj7QXfvHuoLj53s4mOP1XL4eCeP3LqAM4sDVy5kDJg0Po/JhXmamlMkAYIkhWlAY7/PTZF1Mcu4exfQBkwGzgHczJ41s/Vm9oWhvsyBP/reBrbuO8IDN89nztSJAUKUsaYqpKk5RRIhyDOZWC27HrBMDvAuYAHQDvzczNa5+8/ftrPZMmAZwKSplRzcup+vvP8Crjx3SoDwZCyqDBXy3KtvpToMkYwTpKbQBMzo93k6sHegMpF2hGLgUGT9i+5+wN3bgdXA/OgvcPeH3L3a3avbe7JYdnklH1k4a/g/jYwZVaEiDh3roOVYR6pDEckoQZJCLXC2mVWYWR6wBFgVVWYVsDSyfD3wvLs78CxwkZmNjySL9wCvDvZlZxUXcNeidwznZ5AxqFKNzSIJMWRSiLQR3En4Br8FeNrdN5vZvWZ2XaTYw8BkM2sAPgfcFdm3BfgG4cRSD6x3958M9n1lRflkZakvggyub7RU9WwWiatA73m6+2rCj376r7u73/IJ4IYB9v0O4ddSReJmesk4DYwnkgDqDSZpKSc7i/LJhRpCWyTOlBQkbYUHxlNNQSSelBQkbVWGCtl9sJ1ODYwnEjdKCpK2qkJFdPU4uw+1pzoUkYyhpCBpS1NzisSfkoKkrb7RUtWuIBI3SgqStorH5VJWlK+pOUXiSElB0lpVqFAd2ETiSElB0lplqEg1BZE4UlKQtFYVKqSlvZNDGhhPJC6UFCSt9Y6BpNqCSHwoKUhaq9IbSCJxpaQgaW1ayTjycrLU2CwSJ0oKktays4yKyYV6fCQSJ0oKkvYq9VqqSNwoKUjaqwoVsftQOx1dGhhPZKSUFCTtVYYK6e5xdh9SbUFkpAIlBTNbZGbbzKzBzO6KsT3fzFZGtq8xs/Ko7TPN7KiZfT4+YYv8lqbmFImfIZOCmWUDy4FrgDnAjWY2J6rY7UCLu88G7gfui9p+P/DfIw9X5FS9o6XqtVSRkQtSU6gBGtx9h7t3ACuAxVFlFgOPR5afAa4yMwMws/cDO4DN8QlZ5O0mFOQyZUK+htAWiYMgSWEa0Njvc1NkXcwy7t4FtAGTzawQ+CLwtyMPVWRg4TeQVFMQGakgScFirPOAZf4WuN/dB/3fambLzKzOzOqam5sDhCTydlWhInY0H8M9+tIUkeEIkhSagBn9Pk8H9g5UxsxygGLgEHAp8FUz2wl8FvgLM7sz+gvc/SF3r3b36lAoNOwfQqQyVETb8U4OamA8kRHJCVCmFjjbzCqAPcAS4KaoMquApcBvgOuB5z38K9u7ewuY2T3AUXd/IA5xi7xNVb+pOcuK8lMcjUj6GrKmEGkjuBN4FtgCPO3um83sXjO7LlLsYcJtCA3A54BTXlsVSSQNjCcSH0FqCrj7amB11Lq7+y2fAG4Y4hj3nEZ8IoFMnTSO/JwsjYEkMkLq0SwZITvLqCjTGEgiI6WkIBmjSlNzioyYkoJkjMpQIbsPtXOyqzvVoYikLSUFyRhVoSJ6HHYfbE91KCJpS0lBMobeQBIZOSUFyRgVfQPjqbFZ5HQpKUjGKMrP4cyJBaopiIyAkoJklMpQoUZLFRkBJQXJKFWhIrY3H9XAeCKnSUlBMkplqJAjJ7poPnoy1aGIpCUlBckovW8g6RGSyOlRUpCMoqk5RUZGSUEyytTicRTkZqmmIHKalBQko2RlGRVlRaopiJwmJQXJOFV6LVXktCkpSMapDBXR2NLOiU4NjCcyXEoKknGqQoW4wy4NjCcybIGSgpktMrNtZtZgZqdMtWlm+Wa2MrJ9jZmVR9a/18zWmdnLkb9/J77hi5xKA+OJnL4hk4KZZQPLgWuAOcCNZjYnqtjtQIu7zwbuB+6LrD8A/IG7XwgsBZ6MV+AiA6koC7+Wqgl3RIYvSE2hBmhw9x3u3gGsABZHlVkMPB5Zfga4yszM3Te4+97I+s1AgZnlxyNwkYEU5udwVnGBRksVOQ1BksI0oLHf56bIuphl3L0LaAMmR5X5Q2CDu2v8AUk4Tc0pcnqCJAWLsS56tLFBy5jZ+YQfKX0y5heYLTOzOjOra25uDhCSyOAqQ4Vsbz6mgfFEhilIUmgCZvT7PB3YO1AZM8sBioFDkc/TgR8Ct7j79lhf4O4PuXu1u1eHQqHh/QQiMVSFijh6sovmI6qYigxHkKRQC5xtZhVmlgcsAVZFlVlFuCEZ4HrgeXd3M5sE/AT4krv/Ol5BiwyldwykBj1CEhmWIZNCpI3gTuBZYAvwtLtvNrN7zey6SLGHgclm1gB8Duh9bfVOYDbw12ZWH/kzJe4/hUgUjZYqcnpyghRy99XA6qh1d/dbPgHcEGO/rwBfGWGMIsN25sQCxuVmq6+CyDCpR7NkpKws09ScIqdBSUEyVmVIo6WKDJeSgmSsqlAhe1qPa2A8kWFQUpCMVRkqwh3eOKBHSCJBKSlIxqrS1Jwiw6akIBmrskyvpYoMl5KCZKxxedlMmzRONQWRYVBSkIym11JFhkdJQTJa72ipGhhPJBglBcloVaFCjnV089ZhDYwnEoSSgmS0Sk3NKTIsSgqS0X47MJ6SgkgQSgqS0c6YmE9hXram5hQJSElBMpqZaQwkkWFQUpCMp9dSRYJTUpCMVxUqYk/rcY53aGA8kaEoKUjG652ac8cBPUISGUqgpGBmi8xsm5k1mNldMbbnm9nKyPY1Zlbeb9uXIuu3mdn74he6SDCamlMkuCGTgpllA8uBa4A5wI1mNieq2O1Ai7vPBu4H7ovsOwdYApwPLAL+LXI8kaSpKCvETH0VRIIIUlOoARrcfYe7dwArgMVRZRYDj0eWnwGuMjOLrF/h7ifd/Q2gIXI8kaQpyA0PjKeagsjQcgKUmQY09vvcBFw6UBl37zKzNmByZP1LUftOO+1oRU5TZaiIn776Fu/9xoupDkWTmhKDAAAG5ElEQVRkVAuSFCzGuujRxQYqE2RfzGwZsAxg5syZAUISGZ7b31VBUb6eXErm+lmcjhMkKTQBM/p9ng7sHaBMk5nlAMXAoYD74u4PAQ8BVFdXazhLibv3nBPiPeeEUh2GSMJ88yPxOU6QNoVa4GwzqzCzPMINx6uiyqwClkaWrwee9/BYxauAJZG3kyqAs4G18QldRETibciaQqSN4E7gWSAbeMTdN5vZvUCdu68CHgaeNLMGwjWEJZF9N5vZ08CrQBdwh7urB5GIyChlo23ykerqaq+rq0t1GCIiacXM1rl79UiPox7NIiLSR0lBRET6KCmIiEgfJQUREemjpCAiIn1G3dtHZnYE2JbqOAIoAw6kOogAFGd8Kc74Soc40yFGgHPdfcJIDxKkR3OybYvHa1WJZmZ1ijN+FGd8Kc74SYcYIRxnPI6jx0ciItJHSUFERPqMxqTwUKoDCEhxxpfijC/FGT/pECPEKc5R19AsIiKpMxprCiIikiIpSwpmtsjMtplZg5ndFWN7vpmtjGxfY2blKYhxhpm9YGZbzGyzmf1JjDJXmFmbmdVH/tyd7Dgjcew0s5cjMZzyFoKF/UvkfG4ys/kpiPHcfuep3swOm9lno8qk5Hya2SNmtt/MXum3rtTMfmpmr0f+Lhlg36WRMq+b2dJYZRIc59fMbGvk3/WHZjZpgH0HvUaSEOc9Zran37/ttQPsO+i9IcExruwX304zqx9g32Sey5j3oYRdn+6e9D+Eh+DeDlQCecBGYE5Umc8A/x5ZXgKsTEGcZwHzI8sTgNdixHkF8ONUnMeoOHYCZYNsvxb4b8Kz4S0E1qQ43mxgHzBrNJxP4HJgPvBKv3VfBe6KLN8F3Bdjv1JgR+TvkshySZLjvBrIiSzfFyvOINdIEuK8B/h8gOti0HtDImOM2v514O5RcC5j3ocSdX2mqqZQAzS4+w537wBWAIujyiwGHo8sPwNcZWaxpvdMGHd/093XR5aPAFtI3zmmFwNPeNhLwCQzOyuF8VwFbHf3XSmMoY+7/5LwXCD99b8GHwfeH2PX9wE/dfdD7t4C/BRYlMw43f05d++KfHyJ8AyHKTXA+QwiyL0hLgaLMXKv+RDwvUR893AMch9KyPWZqqQwDWjs97mJU2+2fWUiF3wbMDkp0cUQeXx1MbAmxubLzGyjmf23mZ2f1MB+y4HnzGydhee8jhbknCfTEgb+DzcazifAGe7+JoT/YwJTYpQZbef1Y4RrhLEMdY0kw52Rx1yPDPC4Y7Scz3cDb7n76wNsT8m5jLoPJeT6TFVSiPUbf/RrUEHKJIWZFQHfBz7r7oejNq8n/AhkLvCvwH8mO76I/+fu84FrgDvM7PKo7aPpfOYB1wH/EWPzaDmfQY2m8/qXhGc4/O4ARYa6RhLtm0AVMA94k/DjmWij5XzeyOC1hKSfyyHuQwPuFmPdoOczVUmhCZjR7/N0YO9AZcwsByjm9KqjI2JmuYT/Ib7r7j+I3u7uh939aGR5NZBrZmVJDhN33xv5ez/wQ8LV8P6CnPNkuQZY7+5vRW8YLecz4q3eR2yRv/fHKDMqzmukAfH3gZs98jA5WoBrJKHc/S1373b3HuBbA3x/ys9n5H7zQWDlQGWSfS4HuA8l5PpMVVKoBc42s4rIb41LgFVRZVYBvS3l1wPPD3SxJ0rkueLDwBZ3/8YAZc7sbeswsxrC5/Rg8qIEMys0swm9y4QbHl+JKrYKuMXCFgJtvVXPFBjwt7DRcD776X8NLgV+FKPMs8DVZlYSeRxydWRd0pjZIuCLwHXu3j5AmSDXSEJFtWF9YIDvD3JvSLTfBba6e1Osjck+l4PchxJzfSaj9XyAFvVrCbeibwf+MrLuXsIXNkAB4ccLDcBaoDIFMb6LcFVrE1Af+XMt8CngU5EydwKbCb8l8RLwzhTEWRn5/o2RWHrPZ/84DVgeOd8vA9Up+ncfT/gmX9xvXcrPJ+Ek9SbQSfi3q9sJt2H9HHg98ndppGw18O1++34scp02ALelIM4Gws+Ne6/R3rf2pgKrB7tGkhznk5FrbxPhG9pZ0XFGPp9yb0hWjJH1j/Vej/3KpvJcDnQfSsj1qR7NIiLSRz2aRUSkj5KCiIj0UVIQEZE+SgoiItJHSUFERPooKYiISB8lBRER6ZOT6gBEUsnM7iE8lHjvKKM5hDvNxVrHcNa7+z2JilskUZQURGCJu7cCRCao+ewA6wYqO9h6kbSix0ciItJHSUFERPooKYiISB8lBRER6aOkICIifZQURESkj15JlbFuP/CEmfVEPmcB/zPAOk5jvUha0SQ7IiLSR4+PRESkj5KCiIj0UVIQEZE+SgoiItJHSUFERPr8f2qp2iG5fN1cAAAAAElFTkSuQmCC\n",
377 | "text/plain": [
378 | ""
379 | ]
380 | },
381 | "metadata": {
382 | "needs_background": "light"
383 | },
384 | "output_type": "display_data"
385 | }
386 | ],
387 | "source": [
388 | "bad_rate.plot()"
389 | ]
390 | },
391 | {
392 | "cell_type": "code",
393 | "execution_count": null,
394 | "metadata": {},
395 | "outputs": [],
396 | "source": []
397 | }
398 | ],
399 | "metadata": {
400 | "kernelspec": {
401 | "display_name": "Python 3",
402 | "language": "python",
403 | "name": "python3"
404 | },
405 | "language_info": {
406 | "codemirror_mode": {
407 | "name": "ipython",
408 | "version": 3
409 | },
410 | "file_extension": ".py",
411 | "mimetype": "text/x-python",
412 | "name": "python",
413 | "nbconvert_exporter": "python",
414 | "pygments_lexer": "ipython3",
415 | "version": "3.7.3"
416 | },
417 | "toc": {
418 | "base_numbering": 1,
419 | "nav_menu": {},
420 | "number_sections": true,
421 | "sideBar": true,
422 | "skip_h1_title": false,
423 | "title_cell": "Table of Contents",
424 | "title_sidebar": "Contents",
425 | "toc_cell": false,
426 | "toc_position": {},
427 | "toc_section_display": true,
428 | "toc_window_display": false
429 | }
430 | },
431 | "nbformat": 4,
432 | "nbformat_minor": 2
433 | }
434 |
--------------------------------------------------------------------------------
/.ipynb_checkpoints/Bank-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 8,
6 | "metadata": {},
7 | "outputs": [
8 | {
9 | "name": "stdout",
10 | "output_type": "stream",
11 | "text": [
12 | "\n",
13 | "RangeIndex: 150000 entries, 0 to 149999\n",
14 | "Data columns (total 6 columns):\n",
15 | "用户ID 150000 non-null int64\n",
16 | "好坏客户 150000 non-null int64\n",
17 | "年龄 150000 non-null int64\n",
18 | "负债率 150000 non-null float64\n",
19 | "月收入 120269 non-null float64\n",
20 | "家属数量 146076 non-null float64\n",
21 | "dtypes: float64(3), int64(3)\n",
22 | "memory usage: 6.9 MB\n"
23 | ]
24 | }
25 | ],
26 | "source": [
27 | "import pandas as pd\n",
28 | "from datetime import datetime\n",
29 | "\n",
30 | "data=pd.read_csv(\"loan.csv\",encoding=\"gbk\")\n",
31 | "data.info()\n",
32 | "# print(data)"
33 | ]
34 | },
35 | {
36 | "cell_type": "code",
37 | "execution_count": 12,
38 | "metadata": {},
39 | "outputs": [
40 | {
41 | "name": "stdout",
42 | "output_type": "stream",
43 | "text": [
44 | "\n",
45 | "RangeIndex: 150000 entries, 0 to 149999\n",
46 | "Data columns (total 6 columns):\n",
47 | "用户ID 150000 non-null int64\n",
48 | "好坏客户 150000 non-null int64\n",
49 | "年龄 150000 non-null int64\n",
50 | "负债率 150000 non-null float64\n",
51 | "月收入 150000 non-null float64\n",
52 | "家属数量 146076 non-null float64\n",
53 | "dtypes: float64(3), int64(3)\n",
54 | "memory usage: 6.9 MB\n",
55 | "None\n",
56 | " 用户ID 好坏客户 年龄 负债率 月收入 家属数量\n",
57 | "0 1 1 45 0.802982 9120.000000 2.0\n",
58 | "1 2 0 40 0.121876 2600.000000 1.0\n",
59 | "2 3 0 38 0.085113 3042.000000 0.0\n",
60 | "3 4 0 30 0.036050 3300.000000 0.0\n",
61 | "4 5 0 49 0.024926 63588.000000 0.0\n",
62 | "5 6 0 74 0.375607 3500.000000 1.0\n",
63 | "6 7 0 57 5710.000000 6670.221237 0.0\n",
64 | "7 8 0 39 0.209940 3500.000000 0.0\n",
65 | "8 9 0 27 46.000000 6670.221237 NaN\n",
66 | "9 10 0 57 0.606291 23684.000000 2.0\n",
67 | "10 11 0 30 0.309476 2500.000000 0.0\n",
68 | "11 12 0 51 0.531529 6501.000000 2.0\n",
69 | "12 13 0 46 0.298354 12454.000000 2.0\n",
70 | "13 14 1 40 0.382965 13700.000000 2.0\n",
71 | "14 15 0 76 477.000000 0.000000 0.0\n",
72 | "15 16 0 64 0.209892 11362.000000 2.0\n",
73 | "16 17 0 78 2058.000000 6670.221237 0.0\n",
74 | "17 18 0 53 0.188274 8800.000000 0.0\n",
75 | "18 19 0 43 0.527888 3280.000000 2.0\n",
76 | "19 20 0 25 0.065868 333.000000 0.0\n",
77 | "20 21 0 43 0.430046 12300.000000 0.0\n",
78 | "21 22 1 38 0.475841 3000.000000 2.0\n",
79 | "22 23 0 39 0.241104 2500.000000 0.0\n",
80 | "23 24 0 32 0.085512 7916.000000 0.0\n",
81 | "24 25 0 58 0.241622 2416.000000 0.0\n",
82 | "25 26 1 50 1.595253 4676.000000 1.0\n",
83 | "26 27 0 58 0.097672 8333.000000 0.0\n",
84 | "27 28 0 69 0.042383 2500.000000 1.0\n",
85 | "28 29 0 24 0.011761 3400.000000 0.0\n",
86 | "29 30 0 58 0.436103 5500.000000 0.0\n",
87 | "... ... ... .. ... ... ...\n",
88 | "149970 149971 0 58 0.253855 15500.000000 2.0\n",
89 | "149971 149972 0 83 0.013997 5000.000000 0.0\n",
90 | "149972 149973 0 42 0.008638 6945.000000 1.0\n",
91 | "149973 149974 0 44 0.494819 5500.000000 1.0\n",
92 | "149974 149975 0 61 0.603479 5000.000000 0.0\n",
93 | "149975 149976 0 58 2716.000000 6670.221237 0.0\n",
94 | "149976 149977 0 76 60.000000 6670.221237 0.0\n",
95 | "149977 149978 0 29 349.000000 6670.221237 0.0\n",
96 | "149978 149979 0 52 0.259496 2500.000000 0.0\n",
97 | "149979 149980 1 55 0.057235 8700.000000 0.0\n",
98 | "149980 149981 0 64 0.254976 5525.000000 0.0\n",
99 | "149981 149982 0 43 0.121752 6849.000000 4.0\n",
100 | "149982 149983 0 37 0.250272 2760.000000 3.0\n",
101 | "149983 149984 0 82 0.000800 5000.000000 0.0\n",
102 | "149984 149985 0 84 25.000000 6670.221237 0.0\n",
103 | "149985 149986 0 26 0.324962 1950.000000 0.0\n",
104 | "149986 149987 0 49 0.080384 5000.000000 1.0\n",
105 | "149987 149988 0 28 0.055692 3249.000000 0.0\n",
106 | "149988 149989 0 31 0.347924 7515.000000 0.0\n",
107 | "149989 149990 0 62 0.001408 9233.000000 3.0\n",
108 | "149990 149991 0 46 0.609779 4335.000000 2.0\n",
109 | "149991 149992 0 59 0.477658 10316.000000 0.0\n",
110 | "149992 149993 0 50 4132.000000 6670.221237 3.0\n",
111 | "149993 149994 0 22 0.000000 820.000000 0.0\n",
112 | "149994 149995 0 50 0.404293 3400.000000 0.0\n",
113 | "149995 149996 0 74 0.225131 2100.000000 0.0\n",
114 | "149996 149997 0 44 0.716562 5584.000000 2.0\n",
115 | "149997 149998 0 58 3870.000000 6670.221237 0.0\n",
116 | "149998 149999 0 30 0.000000 5716.000000 0.0\n",
117 | "149999 150000 0 64 0.249908 8158.000000 0.0\n",
118 | "\n",
119 | "[150000 rows x 6 columns]\n"
120 | ]
121 | }
122 | ],
123 | "source": [
124 | "# 是不是收入越高的人坏账率越低\n",
125 | "data=data.fillna({\"月收入\":data[\"月收入\"].mean()})\n",
126 | "print(data.info())\n",
127 | "print(data)"
128 | ]
129 | },
130 | {
131 | "cell_type": "code",
132 | "execution_count": null,
133 | "metadata": {},
134 | "outputs": [],
135 | "source": []
136 | },
137 | {
138 | "cell_type": "code",
139 | "execution_count": 11,
140 | "metadata": {},
141 | "outputs": [
142 | {
143 | "name": "stdout",
144 | "output_type": "stream",
145 | "text": [
146 | "0 (5000.0, 10000.0]\n",
147 | "1 (0.0, 5000.0]\n",
148 | "2 (0.0, 5000.0]\n",
149 | "3 (0.0, 5000.0]\n",
150 | "4 (20000.0, 100000.0]\n",
151 | "5 (0.0, 5000.0]\n",
152 | "6 (5000.0, 10000.0]\n",
153 | "7 (0.0, 5000.0]\n",
154 | "8 (5000.0, 10000.0]\n",
155 | "9 (20000.0, 100000.0]\n",
156 | "10 (0.0, 5000.0]\n",
157 | "11 (5000.0, 10000.0]\n",
158 | "12 (10000.0, 15000.0]\n",
159 | "13 (10000.0, 15000.0]\n",
160 | "14 NaN\n",
161 | "15 (10000.0, 15000.0]\n",
162 | "16 (5000.0, 10000.0]\n",
163 | "17 (5000.0, 10000.0]\n",
164 | "18 (0.0, 5000.0]\n",
165 | "19 (0.0, 5000.0]\n",
166 | "20 (10000.0, 15000.0]\n",
167 | "21 (0.0, 5000.0]\n",
168 | "22 (0.0, 5000.0]\n",
169 | "23 (5000.0, 10000.0]\n",
170 | "24 (0.0, 5000.0]\n",
171 | "25 (0.0, 5000.0]\n",
172 | "26 (5000.0, 10000.0]\n",
173 | "27 (0.0, 5000.0]\n",
174 | "28 (0.0, 5000.0]\n",
175 | "29 (5000.0, 10000.0]\n",
176 | " ... \n",
177 | "149970 (15000.0, 20000.0]\n",
178 | "149971 (0.0, 5000.0]\n",
179 | "149972 (5000.0, 10000.0]\n",
180 | "149973 (5000.0, 10000.0]\n",
181 | "149974 (0.0, 5000.0]\n",
182 | "149975 (5000.0, 10000.0]\n",
183 | "149976 (5000.0, 10000.0]\n",
184 | "149977 (5000.0, 10000.0]\n",
185 | "149978 (0.0, 5000.0]\n",
186 | "149979 (5000.0, 10000.0]\n",
187 | "149980 (5000.0, 10000.0]\n",
188 | "149981 (5000.0, 10000.0]\n",
189 | "149982 (0.0, 5000.0]\n",
190 | "149983 (0.0, 5000.0]\n",
191 | "149984 (5000.0, 10000.0]\n",
192 | "149985 (0.0, 5000.0]\n",
193 | "149986 (0.0, 5000.0]\n",
194 | "149987 (0.0, 5000.0]\n",
195 | "149988 (5000.0, 10000.0]\n",
196 | "149989 (5000.0, 10000.0]\n",
197 | "149990 (0.0, 5000.0]\n",
198 | "149991 (10000.0, 15000.0]\n",
199 | "149992 (5000.0, 10000.0]\n",
200 | "149993 (0.0, 5000.0]\n",
201 | "149994 (0.0, 5000.0]\n",
202 | "149995 (0.0, 5000.0]\n",
203 | "149996 (5000.0, 10000.0]\n",
204 | "149997 (5000.0, 10000.0]\n",
205 | "149998 (5000.0, 10000.0]\n",
206 | "149999 (5000.0, 10000.0]\n",
207 | "Name: 月收入, Length: 150000, dtype: category\n",
208 | "Categories (5, interval[int64]): [(0, 5000] < (5000, 10000] < (10000, 15000] < (15000, 20000] < (20000, 100000]]\n"
209 | ]
210 | }
211 | ],
212 | "source": [
213 | "cut_bins=[0,5000,10000,15000,20000,100000]\n",
214 | "income_cut=pd.cut(data[\"月收入\"],cut_bins)\n",
215 | "print(income_cut)"
216 | ]
217 | },
218 | {
219 | "cell_type": "code",
220 | "execution_count": 15,
221 | "metadata": {},
222 | "outputs": [
223 | {
224 | "name": "stdout",
225 | "output_type": "stream",
226 | "text": [
227 | "月收入\n",
228 | "(0, 5000] 0.087543\n",
229 | "(5000, 10000] 0.058308\n",
230 | "(10000, 15000] 0.041964\n",
231 | "(15000, 20000] 0.041811\n",
232 | "(20000, 100000] 0.053615\n",
233 | "Name: 好坏客户, dtype: float64\n"
234 | ]
235 | },
236 | {
237 | "data": {
238 | "text/plain": [
239 | ""
240 | ]
241 | },
242 | "execution_count": 15,
243 | "metadata": {},
244 | "output_type": "execute_result"
245 | },
246 | {
247 | "data": {
248 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAFTCAYAAADV39wXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAG3lJREFUeJzt3X+QZWV95/H3JzMC0ZghwvgjAjtswKxj+TMj+ocpE4kRYsVRAzrEDVCSwqxLNlY2ZcZd16ibTYFJFncrEMMGV6K7DhYmOhVHcUvUqk0EGdRIgCAT/DX+iCgE4xoE5Lt/nNPc29fumdszzT19+3m/qqa495xzp7/90PPpc5/7nO9JVSFJasMPDV2AJGl2DH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQzYOXcCkY489trZs2TJ0GZI0V2644YZvVtXmgx235kJ/y5Yt7N27d+gyJGmuJPniNMc5vSNJDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ1Zc1fkroYtOz8wdAkAfOHCFw5dgiQt4pm+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQ6YK/SSnJbk1yb4kO5fYf2SSK/v91yXZ0m9/WJIrktyY5JYkr1vd8iVJK3HQ0E+yAbgEOB3YCpyVZOvEYecBd1XVScDFwEX99jOBI6vqycBPAa9a+IUgSZq9ac70TwH2VdXtVXUvsAvYPnHMduCK/vFVwKlJAhTwiCQbgR8G7gW+vSqVS5JWbJrQfzzw5bHn+/ttSx5TVfcDdwPH0P0C+H/A14AvAX9QVXceZs2SpEM0TehniW015TGnAN8Hfhw4Efj3Sf7lD3yB5Pwke5PsveOOO6YoSZJ0KKYJ/f3A8WPPjwO+utwx/VTOJuBO4JeBD1XVfVX1DeCvgG2TX6CqLquqbVW1bfPmzSv/LiRJU5km9K8HTk5yYpIjgB3A7oljdgPn9I/PAK6pqqKb0nleOo8Ang383eqULklaqYOGfj9HfwFwNXAL8J6quinJm5O8qD/scuCYJPuA3wQWlnVeAvwI8Ld0vzz+Z1V9dpW/B0nSlDZOc1BV7QH2TGx7w9jje+iWZ06+7jtLbZckDcMrciWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQ6YK/SSnJbk1yb4kO5fYf2SSK/v91yXZMrbvKUk+keSmJDcmOWr1ypckrcRBQz/JBuAS4HRgK3BWkq0Th50H3FVVJwEXAxf1r90IvAv4tap6EvAzwH2rVr0kaUWmOdM/BdhXVbdX1b3ALmD7xDHbgSv6x1cBpyYJ8PPAZ6vqbwCq6ltV9f3VKV2StFLThP7jgS+PPd/fb1vymKq6H7gbOAZ4AlBJrk7yqSSvPfySJUmHauMUx2SJbTXlMRuB5wDPBL4LfCTJDVX1kUUvTs4Hzgc44YQTpihJknQopjnT3w8cP/b8OOCryx3Tz+NvAu7st3+8qr5ZVd8F9gDPmPwCVXVZVW2rqm2bN29e+XchSZrKNKF/PXBykhOTHAHsAHZPHLMbOKd/fAZwTVUVcDXwlCQP738ZPBe4eXVKlySt1EGnd6rq/iQX0AX4BuDtVXVTkjcDe6tqN3A58M4k++jO8Hf0r70ryX+l+8VRwJ6q+sBD9L1Ikg5imjl9qmoP3dTM+LY3jD2+Bzhzmde+i27ZpgawZefa+B37hQtfOHQJkvCKXElqiqEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNmaoNgyStV2uhVcks25R4pi9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNWTj0AVIs7Jl5weGLoEvXPjCoUsAHIuWTXWmn+S0JLcm2Zdk5xL7j0xyZb//uiRbJvafkOQ7SX5rdcqWJB2Kg4Z+kg3AJcDpwFbgrCRbJw47D7irqk4CLgYumth/MfDBwy9XknQ4pjnTPwXYV1W3V9W9wC5g+8Qx24Er+sdXAacmCUCSFwO3AzetTsmSpEM1Teg/Hvjy2PP9/bYlj6mq+4G7gWOSPAL4beBNB/oCSc5PsjfJ3jvuuGPa2iVJKzRN6GeJbTXlMW8CLq6q7xzoC1TVZVW1raq2bd68eYqSJEmHYprVO/uB48eeHwd8dZlj9ifZCGwC7gSeBZyR5C3A0cADSe6pqj867MolSSs2TehfD5yc5ETgK8AO4JcnjtkNnAN8AjgDuKaqCvjphQOSvBH4joEvScM5aOhX1f1JLgCuBjYAb6+qm5K8GdhbVbuBy4F3JtlHd4a/46EsWpJ0aKa6OKuq9gB7Jra9YezxPcCZB/k73ngI9UmSVpFtGCSpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQ6YK/SSnJbk1yb4kO5fYf2SSK/v91yXZ0m9/fpIbktzY//d5q1u+JGklDhr6STYAlwCnA1uBs5JsnTjsPOCuqjoJuBi4qN/+TeAXq+rJwDnAO1ercEnSyk1zpn8KsK+qbq+qe4FdwPaJY7YDV/SPrwJOTZKq+nRVfbXffhNwVJIjV6NwSdLKTRP6jwe+PPZ8f79tyWOq6n7gbuCYiWN+Cfh0VX1v8gskOT/J3iR777jjjmlrlySt0DShnyW21UqOSfIkuimfVy31BarqsqraVlXbNm/ePEVJkqRDMU3o7weOH3t+HPDV5Y5JshHYBNzZPz8O+Avg7Kr6+8MtWJJ06KYJ/euBk5OcmOQIYAewe+KY3XQf1AKcAVxTVZXkaOADwOuq6q9Wq2hJ0qE5aOj3c/QXAFcDtwDvqaqbkrw5yYv6wy4HjkmyD/hNYGFZ5wXAScB/SvKZ/s+jV/27kCRNZeM0B1XVHmDPxLY3jD2+Bzhzidf9LvC7h1mjJGmVeEWuJDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWqIoS9JDTH0Jakhhr4kNcTQl6SGGPqS1BBDX5IaYuhLUkMMfUlqiKEvSQ0x9CWpIYa+JDXE0Jekhhj6ktQQQ1+SGmLoS1JDDH1JaoihL0kNMfQlqSGGviQ1xNCXpIYY+pLUEENfkhpi6EtSQwx9SWrIVKGf5LQktybZl2TnEvuPTHJlv/+6JFvG9r2u335rkhesXumSpJU6aOgn2QBcApwObAXOSrJ14rDzgLuq6iTgYuCi/rVbgR3Ak4DTgEv7v0+SNIBpzvRPAfZV1e1VdS+wC9g+ccx24Ir+8VXAqUnSb99VVd+rqs8D+/q/T5I0gGlC//HAl8ee7++3LXlMVd0P3A0cM+VrJUkzsnGKY7LEtprymGleS5LzgfP7p99JcusUdT3UjgW+eTh/QS5apUqG51iMHNZYrKNxAMdi3FoYi38xzUHThP5+4Pix58cBX13mmP1JNgKbgDunfC1VdRlw2TQFz0qSvVW1beg61gLHYsSxGHEsRuZpLKaZ3rkeODnJiUmOoPtgdvfEMbuBc/rHZwDXVFX123f0q3tOBE4GPrk6pUuSVuqgZ/pVdX+SC4CrgQ3A26vqpiRvBvZW1W7gcuCdSfbRneHv6F97U5L3ADcD9wP/tqq+/xB9L5Kkg0h3Qq5JSc7vp52a51iMOBYjjsXIPI2FoS9JDbENgyQ1xNCXpIZMs2RTalKSR01x2ANV9Y8PeTEDcyxGkjxjisPuq6obH/JiDoFz+kCS/z7FYd+uqtc/5MUMLMnkctyl3FlV5z7UtQwtyT1015UsdZHhgg1VdcKMShqMYzGS5J/olrIfaCxOrKots6loZTzT72wH3nCQY3YC6z70gScCv3qA/aFrwNeCW6rq6Qc6IMmnZ1XMwByLkeur6nkHOiDJNbMqZqU80weSvKaq3nq4x6wHSV5WVe853GPWgyRHVdU9h3vMeuBYrB+GvnQAfbfYU+gaBRbdFMcnq8F/OI7FSJJNdO3ix8fi6nn4TMPQB/p+QecBLwF+nNH/xPcDl1fVfQOWN1P9D/PrgBcDm/vN36Abiwvn4Yd6tST5eeBS4DbgK/3m44CTgFdX1YeHqm3WHIuRJGcDvwN8mMVj8XzgTVX1Z0PVNg1DH0jybuAf6e4JsL/ffBxdP6FHVdXLh6pt1pJcDVwDXFFVX++3PZZuLH6uqp4/ZH2zlOQW4PSq+sLE9hOBPVX1xEEKG4BjMdJ3AX7W5AlQkh8DrquqJwxT2XT8ILfzjKr6yYlt+4Frk3xuiIIGtKWqFjV67cP/oiSvHKimoWxkdBIw7ivAw2Zcy9Aci5GwRIt44AEOvKJnTTD0O3clORN4b1U9AJDkh4AzgbsGrWz2vpjktXRn+v8AkOQxwLksviFOC94OXJ9kF6Pv/Xi6hoKXD1bVMByLkf8CfCrJhxmNxQl00zv/ebCqpuT0DtDfyP0i4Hl0IR/gaLppjp39rR6b0L9F3Um3jPUx/eav07XJvqiq7hyqtiH093l+Ed0HdqE7291dVTcPWtgAHIuR/t/JC1g8FldX1Zo/STT0JyQ5hm5cDutOUVpf+itSax7+UT/UHItO/w74wdU7C++M1zpDv5fkX9Gd3Y4vwXp/Vf3doIUNIMkL6FbvTI7FhwYtbMaSnAC8he4d4N395k2M3gF+YaDSZs6xGEnyNOBtdN//froz/ePoFoO8uqo+NWB5B2XoA0l+GzgL2MXi1Ts7gF1VdeFQtc1akrcCTwD+jMVjcTZwW1X9xlC1zVqSTwBvBa5auPlPkg10n/W8pqqePWR9s+RYjCT5DPCqqrpuYvuzgT+pqqcOU9l0DH2gX6HzpMn1+P3tIW+qqpOHqWz2knxuqSVn/YU5n2tsLG5b7vs90L71yLEYOchY7Kuqk2Zd00q4eqfzAN1FWV+c2P64fl9L7klySlVN3sv4mUBrl9jfkORSuus3xlesnAO00mdmgWMx8sEkH6B7Nzw+FmcDa34K1DN9IMlpwB/RXW04vgTrJOCCluay+7axfww8ktH0zvHAt+nmK28YqrZZ69/pncfos54HV6zQXan9vQHLmynHYrEkp7PEWFTVnkELm4Kh3+vX5S/0FVn4n3h9qzdy76/CfXAsFq7OlTTfnN4ZqbE/D4z9tzl9/53nMrZ6J8lcNJNaTWM9mX5gJRPt9WRyLHpj/am2A4/uN89NfyrP9LGZ1Lh5bya1muzJNOJYjBygP9W5wKlrvT+VoY/NpMbNezOp1ZTk1iV6Mi3sW3KV03rlWIwcZCyW3bdWeGP0js2kRua6mdQquyvJmf3nPUD32U+Sl9NeTybHYuSLSV7bX5ELdFfn9tf7rPn+VM7pd2wmNTLXzaRW2Q66nkyXJlnoybQJ+Gi/ryVLjcVCf6rWxuLldP2pPj4W/Av9qV42WFVTcnqnl+SJLL0Ey2ZSc9RM6qFiT6YRx2K+Gfpa0rw2k3oo9Z/xPB24udGeTPan6s1zfyrn9Hnw4qyFx5uS/GmSzyb53+Pzdi1I8rQk1wIfo3s7//t0b2Ov7S/cakaS94093k43lfGLwO4k5w5V1xD6+epddO/8Pglc3z/elWTnkLXNWt+f6jeAj9M1ofv9/vG/S/LfhqxtGp7pA0k+VVXP6B//Kd383P8AXgo8t6pePGR9szTvzaRWU5JPV9XT+8d/Dbyiqj6f5FjgI42Nhf2pevPen8oz/R+0rapeX1VfrKqLgS1DFzRjj5gMfICquhZ4xAD1DGn8jGjjws10+rns1i7cW+hPNanZ/lRLbJ+L/lSu3uk8Oslv0r1d/dEkqdFboNZ+Mc51M6lV9tQk36b7uTgyyWOr6uv92e2GgWubtdcAH0myZH+qwaoaxrnAHydZqj/VuQPVNDWnd4AkvzOx6dKquqO/yu4tVXX2EHUNZZ6bSc1CkqOBJ1bVJ4auZZbsT7XYvPanMvQlaYX6/junsXj1zlz0p2pt6kKHIcllQ9ewViS5cegaZinJU/oVXF9Ocll/LcfCvsl7L6xrfX+qTwE/Azyc7rOun6W758CanxVwTl+LpLvp9ZK7gF+YZS1DS/LS5XYBj51lLWvApcAbgWuBXwX+b5IXVdXf016rkv8I/NRy/anoPg9bswx9TbqD7g5i4312qn/+6CVfsX5dCfwvlu5FdNSMaxnaj4xdePQHSW4APpTkV1h6fNazue5PZegfQJJtwNeq6isHPXj9uJ2uPeyXJnckWfPNpFbZZ4E/qKq/ndyR5OcGqGdISbKpqu4GqKqPJvkl4L3Acu8O16u57k/lnP6B/Trwl0muHLqQGXor8GPL7HvLLAtZA15DtwxvKS+ZZSFrwEXAohbjVfVZ4FTgzwepaCBVdQWwje4q3O8B99Jdwb6tqt4xXGXTcfXOFJI8sqr+aeg6JOlwGfq9eV6CJWltSHJjVT156DoOxDl9lr1F4M8Cv5ekqVsESjqweV/V5Zk+3iJQ0vSS3Mfyq7rOqKpHzrikFfFMvzPXS7BmIcnjgDur6ntD1zK0vs3y15dqTNeaJK8GvgW8t6ruH7qeGZnrVV2Gfmeul2DNyDuBn0jy3qr6raGLGdizgCcn2VhVpw9dzMACPAd4BfCigWuZlble1eX0Ts9bBB5c3y98a1XdNHQtkg6NoU8XZnWQgZjmmPWiD/eFbooLK5k+2cr3P26ZWwTurqpbBi1sAPN8i0CNGPpAko/RXVn4/vErUfu+6c8BzgE+Og8XXhyuJD9P12flNkYrmY6j65v+6qr68FC1zVp/i8Cz6G4TuNA3/ThgB7Crqi4cqrZZ628R+AS6vjLjY3E2cFtV/cZQtWllDH0gyVHAK+nmJU8E/hH4Yborlj8MXFJVnxmuwtlJcgtwelV9YWL7icCeqnriki9ch7xF4Mi83yJQI36QC1TVPXRnt5cmeRhwLPDPjV6YtZHRmdy4r9BeN8WFWwR+cWJ7s7cIrKrJNspzcYvAWZiXVV2G/oT+rO5rQ9cxoLcD1yfZxeLbJe4ALh+sqmF4i8CRc5njWwTOyFys6nJ6Rz8gyVa65XeTt0u8edDCBuAtAheb11sEasQzff2APtxv7m+oUo0vW62xPw+M/bc5fX+q5zK2eidJk/2p5nlVl62VtUiSE5LsSvINursAfTLJN/ptW4atbrb6lUy30d0x6heAFwJvAm7r9zVj3m8RuJr6VV276N7tfBK4vn/87iQ7h6xtGk7vaJEkn6DrqX/VwhRGkg3AmcBrqurZQ9Y3S65kGrE/1ci8r+ryTF+Tjq2qK8fnrKvq+1W1CzhmwLqG4EqmEftTjSys6po0F6u6nNPXpBuSXApcweLVO+cAnx6sqmG4kmnE/lQjc72qy+kdLdK/RT2P0YdUD67eAS5vrcumK5lG7E81Ms+rugx9aQquZOokeQxjK1aq6h8GLmkQ89yfytDXIkk20p3p/0BjLboz/fsO8PJ1JckJdDeDfx5wd795E3ANsHPyA971LMnTgLfRff/76c5uj6NrWfLqqvrUgOXN1Lz3pzL0tUiSd9P9Q76CxY21zgEeVVUvH6q2WXMl00iSzwCvmmwxkOTZwJ9U1VOHqWz25n1Vl6GvRZLcWlU/ucy+JZturVdJbltu+d2B9q1HBxmLfVV10qxrGkr/Ae4TJ+8U1n8edvNaHwtX72jSXUnOpLv93QPw4IdWZwKtzWe7kmnkg0k+QNdaeXwszgZa66c/16u6PNPXIv1VtxfRzWPfRTd3uwn4KN089ucHK27GXMm0WJLTWWIsqmrPoIUNYJ5XdRn6WlaSY+h+Rr45dC3SWjSPq7q8IlfLqqpvAY9M8tK+wVRTkmxM8qokH0zy2SR/0z/+tf6+C81I8pSxxw9L8voku5P8XpKHD1nbrM17fypDX4sked/Y4+10yxN/Edid5Nyh6hrIO4Gn0TVZG2+49lTgXQPWNYR3jD2+kG554h/S3WHubUMUNKArgb8AHldVJ/cfcD8OeB9dI7Y1zekdLZLk01X19P7xXwOvqKrPJzkW+EhjS/NcydSb+Ln4DPDMqrqvv0jpb6rqKQf+G9aPeV/V5eodTRo/C9i48MFtVX0zyZpvJrXKXMk0sinJS+hmB45cuEivqipJa2eOc72qy9DXpKcm+TbdioQjkzy2qr7er2TZMHBts7aDbiXTpUkWQv5oupVMOwarahgfp1utAnBtksdU1T/0d9Jq7YP+s+lWdb2JJVZ1DVjXVJze0VSSHE13Qconhq5lCK5k0nph6GuRJDlY06hpjlnvkjy/qv7P0HWsBa2Nxbz3pzL0tUiSjwHvBd5fVV8a234E8By6ecuPVtU7BilwjUjypao6Yeg61oLWxmLe+1M5p69JpwGvpLvf54l0P9xH0c3nfxi4uKo+M2B9M5Nk93K7aOwuYo7FIs9YYlXXfrrPOj43REErYehrkaq6h65t7KX9BUjHAv88eW/URvw08K+B70xsX+il3hLHYmSuV3UZ+lpWPzf5taHrGNC1wHer6uOTO/obhbfEsRiZ61VdzulL0iGax1VdtmGQltFfbXrYx6wHjsViSX40yU9U1bfGA3+8R9FaZehLy/tokl/vb5v4oCRHJHlekivoVmy0wLHoJXkZ8HfAe5PclOSZY7vfMUxV03N6R1pGkqPoVjK9AlhqJdMlDa1kcix6fe+h06vqa0lOobuxzH+oqj8f71G0Vhn60hRcyTTS+lgkubGqnjz2/HHAX9Kt2z+3qp4xWHFTMPQlaQX67rO/UlV/P7btkXStlZ9TVUcOVtwUXLIpSSvzb5j4PLSq/inJacDLhilpep7pS9IKzHt/KlfvSNLKzPVKJs/0JWkF5n0lk6EvSYdoHlcyGfqS1BDn9CWpIYa+JDXE0Jekhhj6ktQQr8iVekneCDwbuL/ftJHu5iFLbWOp7VX1xlnUKh0qQ19abMfC0rskRwOvWWbbcsdKa5rTO5LUEENfkhpi6EtSQwx9SWqIoS9JDTH0JakhLtmURr4B/FmSB/rnPwR8aJltHGC7tGbZZVOSGuL0jiQ1xNCXpIYY+pLUEENfkhpi6EtSQ/4/NYKO4NUqLU8AAAAASUVORK5CYII=\n",
249 | "text/plain": [
250 | ""
251 | ]
252 | },
253 | "metadata": {
254 | "needs_background": "light"
255 | },
256 | "output_type": "display_data"
257 | }
258 | ],
259 | "source": [
260 | "import matplotlib.pyplot as plt\n",
261 | "\n",
262 | "all_income_user=data[\"好坏客户\"].groupby(income_cut).count()\n",
263 | "bad_income_user=data[\"好坏客户\"].groupby(income_cut).sum()\n",
264 | "bad_rate=bad_income_user/all_income_user\n",
265 | "print(bad_rate)\n",
266 | "\n",
267 | "# 绘制月收入与坏账率关系图\n",
268 | "bad_rate.plot.bar()"
269 | ]
270 | },
271 | {
272 | "cell_type": "code",
273 | "execution_count": 21,
274 | "metadata": {},
275 | "outputs": [
276 | {
277 | "name": "stdout",
278 | "output_type": "stream",
279 | "text": [
280 | "年龄\n",
281 | "(-0.109, 18.167] 0.000000\n",
282 | "(18.167, 36.333] 0.110124\n",
283 | "(36.333, 54.5] 0.081645\n",
284 | "(54.5, 72.667] 0.041719\n",
285 | "(72.667, 90.833] 0.021585\n",
286 | "(90.833, 109.0] 0.022495\n",
287 | "Name: 好坏客户, dtype: float64\n"
288 | ]
289 | },
290 | {
291 | "data": {
292 | "text/plain": [
293 | ""
294 | ]
295 | },
296 | "execution_count": 21,
297 | "metadata": {},
298 | "output_type": "execute_result"
299 | },
300 | {
301 | "data": {
302 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAFUCAYAAADI2uyvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8XFV9/vHPY8L9qhgVCRiuxah4C1Er9YYX0GqsBQ31V1FRrL/S/qxWja1FRK1AragVbFEQBOUi9RIhgChgWxVMuBMgEJBLBDRAAFEpBJ7fH2sfGIYTMsmZc/aZWc/79Tqv7Nl7T853v2bOM3vWXmtt2SYiIurwhLYLiIiIiZPQj4ioSEI/IqIiCf2IiIok9CMiKpLQj4ioSEI/IqIiCf2IiIok9CMiKpLQj4ioyNS2C+j25Cc/2TNmzGi7jIiIgXLhhRfebnva6vabdKE/Y8YMFi1a1HYZEREDRdKNveyX5p2IiIok9CMiKpLQj4ioSEI/IqIiCf2IiIok9CMiKpLQj4ioSEI/IqIik25wVoxuxrzTJ/T33XDIGyb090XExMiZfkRERRL6EREVSehHRFQkoR8RUZGEfkRERRL6EREVSehHRFQkoR8RUZGEfkRERRL6EREVSehHRFQkoR8RUZGEfkRERRL6EREV6Sn0Je0haYmkpZLmjbL9ZZIukrRS0l5d2/aVdG3zs2+/Co+IiDW32tCXNAU4AtgTmAnsI2lm1243Ae8EvtX13CcBnwBeBMwGPiHpiWMvOyIi1kYvZ/qzgaW2r7d9P3ASMKdzB9s32L4MeKjrua8DzrZ9p+0VwNnAHn2oOyIi1kIvob8VcHPH42XNul6M5bkREdFnvYS+RlnnHv//np4raX9JiyQtWr58eY//dURErKleQn8ZsHXH4+nALT3+/z091/ZRtmfZnjVt2rQe/+uIiFhTvYT+QmBHSdtKWheYC8zv8f8/C3itpCc2F3Bf26yLiIgWrDb0ba8EDqCE9VXAKbYXSzpY0psAJO0qaRmwN/AfkhY3z70T+BTlg2MhcHCzLiIiWjC1l51sLwAWdK07sGN5IaXpZrTnHgMcM4YaIyKiTzIiNyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIj2FvqQ9JC2RtFTSvFG2ryfp5Gb7BZJmNOvXkXScpMslXSXpY/0tPyIi1sTU1e0gaQpwBPAaYBmwUNJ821d27LYfsML2DpLmAocCbwP2Btaz/RxJGwJXSjrR9g39PpAYbDPmnT6hv++GQ94wob8vYrLo5Ux/NrDU9vW27wdOAuZ07TMHOK5ZPhXYXZIAAxtJmgpsANwP3NOXyiMiYo31EvpbATd3PF7WrBt1H9srgbuBLSgfAL8DbgVuAj5n+84x1hwREWupl9DXKOvc4z6zgQeBpwPbAh+StN1jfoG0v6RFkhYtX768h5IiImJt9BL6y4CtOx5PB25Z1T5NU85mwJ3AXwBn2n7A9m+AnwKzun+B7aNsz7I9a9q0aWt+FBER0ZNeQn8hsKOkbSWtC8wF5nftMx/Yt1neCzjHtilNOq9SsRHwYuDq/pQeERFrarWh37TRHwCcBVwFnGJ7saSDJb2p2e1oYAtJS4EPAiPdOo8ANgauoHx4fN32ZX0+hoiI6NFqu2wC2F4ALOhad2DH8n2U7pndz7t3tPUREdGOjMiNiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKhIQj8ioiIJ/YiIiiT0IyIq0lPoS9pD0hJJSyXNG2X7epJObrZfIGlGx7ZdJP1c0mJJl0tav3/lR0TEmlht6EuaAhwB7AnMBPaRNLNrt/2AFbZ3AA4HDm2eOxU4Afgr288CXgE80LfqIyJijfRypj8bWGr7etv3AycBc7r2mQMc1yyfCuwuScBrgctsXwpg+w7bD/an9IiIWFO9hP5WwM0dj5c160bdx/ZK4G5gC2AnwJLOknSRpI+MveSIiFhbU3vYR6Osc4/7TAV2A3YFfg/8WNKFtn/8qCdL+wP7A2yzzTY9lBQREWujlzP9ZcDWHY+nA7esap+mHX8z4M5m/U9s327798AC4AXdv8D2UbZn2Z41bdq0NT+KiIjoSS+hvxDYUdK2ktYF5gLzu/aZD+zbLO8FnGPbwFnALpI2bD4MXg5c2Z/SIyJiTa22ecf2SkkHUAJ8CnCM7cWSDgYW2Z4PHA0cL2kp5Qx/bvPcFZI+T/ngMLDA9unjdCwREbEavbTpY3sBpWmmc92BHcv3AXuv4rknULptRkREyzIiNyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIgn9iIiKJPQjIiqS0I+IqEhCPyKiIj2FvqQ9JC2RtFTSvFG2ryfp5Gb7BZJmdG3fRtK9kv6+P2VHRMTamLq6HSRNAY4AXgMsAxZKmm/7yo7d9gNW2N5B0lzgUOBtHdsPB87oX9kRg2XGvNMn9PfdcMgbJvT3xeDo5Ux/NrDU9vW27wdOAuZ07TMHOK5ZPhXYXZIAJL0ZuB5Y3J+SIyJibfUS+lsBN3c8XtasG3Uf2yuBu4EtJG0EfBT45NhLjYiIseol9DXKOve4zyeBw23f+7i/QNpf0iJJi5YvX95DSRERsTZW26ZPObPfuuPxdOCWVeyzTNJUYDPgTuBFwF6SDgM2Bx6SdJ/tL3c+2fZRwFEAs2bN6v5AiYiIPukl9BcCO0raFvgVMBf4i6595gP7Aj8H9gLOsW3gT0Z2kHQQcG934EdExMRZbejbXinpAOAsYApwjO3Fkg4GFtmeDxwNHC9pKeUMf+54Fh0REWunlzN9bC8AFnStO7Bj+T5g79X8HwetRX0REdFHGZEbEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUZGrbBURETGYz5p0+ob/vhkPeMK7/f0+hL2kP4IvAFOBrtg/p2r4e8A3ghcAdwNts3yDpNcAhwLrA/cCHbZ/Tx/ojomXDForDbrXNO5KmAEcAewIzgX0kzezabT9ghe0dgMOBQ5v1twNvtP0cYF/g+H4VHhERa66XNv3ZwFLb19u+HzgJmNO1zxzguGb5VGB3SbJ9se1bmvWLgfWbbwUREdGCXkJ/K+DmjsfLmnWj7mN7JXA3sEXXPn8OXGz7f7t/gaT9JS2StGj58uW91h4REWuol9DXKOu8JvtIehalyed9o/0C20fZnmV71rRp03ooKSIi1kYvob8M2Lrj8XTgllXtI2kqsBlwZ/N4OvBd4B22rxtrwRERsfZ6Cf2FwI6StpW0LjAXmN+1z3zKhVqAvYBzbFvS5sDpwMds/7RfRUdExNpZbeg3bfQHAGcBVwGn2F4s6WBJb2p2OxrYQtJS4IPAvGb9AcAOwD9JuqT5eUrfjyIiInrSUz992wuABV3rDuxYvg/Ye5TnfRr49BhrjIiIPsk0DBERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRhH5EREV6Cn1Je0haImmppHmjbF9P0snN9gskzejY9rFm/RJJr+tf6RERsaZWG/qSpgBHAHsCM4F9JM3s2m0/YIXtHYDDgUOb584E5gLPAvYAjmz+v4iIaEEvZ/qzgaW2r7d9P3ASMKdrnznAcc3yqcDuktSsP8n2/9r+JbC0+f8iIqIFvYT+VsDNHY+XNetG3cf2SuBuYIsenxsRERNkag/7aJR17nGfXp6LpP2B/ZuH90pa0kNd/fJk4PYJ/H0Tba2OT4eOQyXjI8c3igE5vmE+Npj443tGLzv1EvrLgK07Hk8HblnFPsskTQU2A+7s8bnYPgo4qpeC+03SItuz2vjdEyHHN9iG+fiG+dhg8h5fL807C4EdJW0raV3Khdn5XfvMB/ZtlvcCzrHtZv3cpnfPtsCOwC/6U3pERKyp1Z7p214p6QDgLGAKcIztxZIOBhbZng8cDRwvaSnlDH9u89zFkk4BrgRWAn9t+8FxOpaIiFiNXpp3sL0AWNC17sCO5fuAvVfx3M8AnxlDjeOtlWalCZTjG2zDfHzDfGwwSY9PpRUmIiJqkGkYIiIqktCPiKhIT236w0LSW3rY7b7mGkZMMpKe1MNuD9m+a9yLiegwSNlSVZu+pDuA7zP6oLERL7O9/QSV1FeSLutht+W2dx/3YsaBpPso4zwe7/WbYnubCSqpryR9qYfd7rH98XEvps8k3bO6XYBbbe80EfX02yBlS1Vn+sAZtt/9eDtIOmGiihkHU4DXP8528dgxFoPkKtvPf7wdJF08UcWMgznAgavZZx4wcKEPXDfkr93AZEtVZ/rDTtJutv9nrPtMVpLWb7oHj2mfyUrSB2x/Yaz7TEaStrN9/Vj3ibGrKvQlvQn44aCGQjyWpCfZvrPtOmLNDdtrJ2lnyre1rShzjN0CzLd9VauFdamt987JlPmBjpf0+mGb21/SzpLOkHS6pO0lHSvpLkm/kPTMtusbK0kf71ieKeka4EJJN0h6UYul9YWkz0t6adt1jAdJL5V0laTFkl4k6WxgkaSbJb2k7frGStJHKdPOizLVzMJm+cTRbjzVKtvV/AAXA08E3gv8GPg18O/Ay9uurU/H91/AG4F9gBsp02GoWffjtuvrw/Fd1LF8OrBnszwb+Fnb9fXh+JYDi5rX7jDg+W3X1Mdj+wXwHOAllJknd2vWvwD4adv19eH4rgHWGWX9usC1bdfX+VPbmb5tr7D9VZceLM+lzAt0iKSbV/PcQbCJ7R/YPhF4wPZJLn5A+bAbJk+3fQaA7V8AG7RcTz8sc5mV8dXAb4ETJF0t6ROSBrJXS4d1bF9u++eUHmT/A2D7IobjtXsIePoo67dstk0atfXeeVR3Ktu3AV8CviSpp7moJ7nO5qrPd21bdyILGSfbSZpPeR2nS9rQ9u+bbeu0WFe/GMD2tcCngE9J2oXyzW0BsEOLtY1V5wnmx7q2DcN78wPAjyVdyyM3jtqG8pod0FpVo6gt9P9uVRts3ziRhYyTIyRtbPte20eOrJS0A/CjFuvql+7bdD4BQNJTga9MfDl995g+3rYvAy7jsUE5aP5p5EPa9vdGVkraHvhGi3X1he0zm29jsykXckW5n8hCT7KZhavqvdNN0qaUOf6vt72i7XqibiMf2G3XEcOtqjZ9SSdIenKz/DpgMXAocImkUaeGHiSSNpT0EUkflrS+pHdKmi/pMEkbt13feGpuuTno7pf08Nm+pFdK+pCkPdssqh8kPU3SVyQdIWkLSQdJulzSKZK2bLu+8STptLZr6FRV6APPtT1yz8pPAH9i+9XACxnMUY7djgWeCmxL6d0yC/gc5avmMDR/PJ7HG/4+KBYCmwNI+jDlPhQbAB+U9Nk2C+uDYymdJm4GzgX+ALwB+G9KD7ph9t62C+hUVfOOpMXAS2zfI+l/KHNhPDSyzfaz2q1wbCRdYvt5zdnircCWtt08vtT2Li2XGI9D0hW2n90sL6KclPyhue/0RYP8+km62M00DJJucsf8SCPv2/aqq0ttZ/qfBM6V9G7gp8C3Jb1D0rHAma1W1kcun+QLmn9HHg/lp7ukc9quoY/ukfTsZvl2YP1meSqD/7faWX/3hdtBPzYkbSzp4Gbw2d2Slks6X9I7266tW1W9d2yfIukiytetnSjH/xLgRNtntVpcfyzq6L3z8ORPTQ+J37ZYV1+MMouogJ1G1g/ymXDjr4BvSroU+A3l9fwJsAvwz61WNnbf73hvdo6s3oEysGnQfRP4LvA64K3ARpQRuh+XtJPtf2izuE5VNe/UTJI84C9200f/HuDTlDZhUdqEd4Ph6HbbTA3yWh45KVkGnOXcI2BSk3Sp7ed2PF5oe1dJTwCutL1zi+U9ysB/reoXSaub0nYgSJotaddmeaakD0p6/aAHPoDtNwH/Sbnh9HNt30AZeXzjMAQ+gO0HbZ9h+4u2/xX40TAEvqQnSTpQ0ntU/KOk0yT9i6RhGC3+O0m7AUh6I3AnQHPNcFJ1MsiZfqP74tIgkvQJYE/KGeLZwIuA8yjD+s+y/Zn2qusfSRtRRqzuALzA9vSWS+oLSYcAn7N9u6RZwCmUIfzrAO+w/ZNWCxwDSQuAy4FNgWc2y6cAr6F8gHcPvBsozcjprwF/RDm2/WwvkTQN2Md2LzfImRBVhb5WffceARvYHuhrHJIuB54HrAfcBkxveiptAFwwBG3ejyLpuZTeWEPR5U/S5baf0yyfC3zE9sJmpOe3mnl5BlJXz7Jltrfq3tZieVUZ6JBbC3cBu9r+dfeGIZlwbWUz5Pv3kq6zfQ9A0+1vUk361CfXAVMkbT4MTSDAOpKm2l5JOQlZCGD7GknrtVzbWD2hacbZBNhY0gzbN0jaguGYe2dkwOebefR8+t+3Pal6BtYW+t8AnkGZUrnbtya4lvFwvx6ZhOyFIyslbcYkm+lvbUg60vb/bZZ3o7xm1wE7SHqfJ8FNp8foCGBB08xzpqQvAN8BdgcuabWysfsscHWz/G7ga5IMzKR0pR5ozWu1EyVjljWrpwN/K2lP2/+vteK6VNW8M+wkrWf7f0dZ/2TKQK3LWyirbyRdZPsFzfK5wIdsXyRpO+CUQW7+GCHpFcD7eaT3zs3A94Cv236gxdLGrOmZJNsrmwFnzwN+ZfvWlksbM0nXeJSbujfNWdfY3rGFskZV25n+UBst8Jv1t1MG+wyTTZu52LF9vYbkLmi2z6NcfB86nbNNNk1Yi1osp9/ukzS7ubdDp12BSXV71oR+o/MschhJOs32n7Zdxxjt3AzEEjBD0hNtr2j6Qg/DfPqrJOkFIx9yw2ZI/vbeCXxF0iY80ryzNWVcyTtbqmlUad6phKQtB/1rtB57o5tbbD/QNF+9zPZ32qhrIkj6qu1JNXFXPJakp9Exn35zo6ZJpbrQ7+gdgcp0wztT5tO/s93KxoekLWzf0XYdEfDwDW8e7t0yWk+6YSNpZ9tXr37PiVHViNxm8qNfS7pGZY7yyyjz6V8qaZ9Wi+sDSYfokfsFzJJ0PXCBpBslvbzl8qJHkh7TVDXyug4qSc+TdD7lesVhwL8AP2kmJRv0pp3V+WHbBXSq6ky/Gbz0Skpf4UuB59u+rjn7OHvQBy8N8+CeGkh6JXA8ZXDdxcD+zVQTA9/uLekS4H22L+ha/2LgPzrnrRlEklY14lbAvrY3nch6Hk9VZ/rAg7Zvt/1L4F7b1wEM0VfMdZqucNA1uIcSJDG5HQa8zvY0yvxCZzehCJNs/pa1sFF34APYPp8yI+WgexdwBXBh188i4P4W63qM2nrv3KRyB6JNgKsl/Stl8MurKTcdGXTDPLhnlST9M3A38LUBv36xru3FALZPlXQV8B1J8xj8+yGcIel0yuClkdHvWwPvYDjuZbEQuML2z7o3SDpo4stZtdqadzYF/pryB/RlytzX7wJuBD496L1b4OEmgr/i0VPzfg84ZtAH96yKpDcD21Mm7npH2/WsLZW7Zf1pZ48PSdOB04DtbW/SWnF90FxHm0NH7xZg/hCMpEbSk4D7mtHwk1pVoR8xmUl6NbDc9qVd6zcDDhiWWVKjXQn9hqSjbO/fdh1j0Qz53pvyTeZU4FWUM6urgX9v5vYeWJI2BA6gHN+/AXOBt1CO72Db97ZYXjyOZgDdvsCfU5p1VgLXUt6X57VYWnWqCv3mK9iomyg3Dh/oedklHQk8hTJr4T2Ui7c/AF4P/HoyTfq0NiSdQmkP3oAyb/lVlDnZ3wg8zfZftljemKncyvM7lNt3Xtd2Pf0k6euUZtQfAXtR3p//DXyUMhPlv7VYXlVqC/0HKW+8zp4Qbh5vZXugp3gd6bLZ9PO+jTLJ2v1Nj56LR7pzDqquOdlvpRyfm8eXDkGX219S7gz2VsrrdyJwsu1bWi2sDyRd1vn6SDrf9oubKaMvsf3MFsurSm1dNq8HXmF7246f7Wxvy+jTLQ+alQDNBduFtu9vHq8EHny8Jw4SlzOVBc2/I4+H4exlhe2/d7mD24eAHYGLJJ0raaCbHoEHJG0PZR4hmm6MzSSBw/DajUrSP0v6aHPfgEmhttD/ArCq+3EeNpGFjJPbmqklsL3HyMpmPpBJ1Vd4LS3qOL53j6xswuS3rVU1Dmz/d3PvgK0oo8Zf0nJJY/Vh4FxJ11C+zXwYQOV2gqe1Wdg4+wXlZOzwtgsZUVXzTq1U7im7ke3ftF3LeJEkD/ibWdJJtue2Xcd4aZrhtmim+o6WJPRjoEiaTWnRWShpJrAHcPUw9PWOwTVIPcsS+jEwJH0C2JMy6Oxs4EWUCbxeDZyVfuzRlkHqWZbQj4HRTJj3PEpX1NuA6bbvkbQBcMGg996JwTVIPctqu5A7KklbNl3HYnJbafvBZqj7dbbvAbD9B4bgxu81Gra/vUHoWZbQL46nTMD2ubYLGQ+Srmp+Dmi7ljG6v2k7BXjhyMpmmoKhDf3m3ghbtV3HOBmWv72B6VmW5p1G8zVs5sgsh8Om6Sf8Ytunt13L2pK0nke5+Xtzg5EtbV/eQlnjTtJxwC7ANbbf1nY9/VbB396k6llWZeg3fYOnU/rP/nIyXVmPx9fM4YLthyStCzwbuMFDervLTpI2sT2pzhp7JWlz23e1Xcd4GpSeZVU170iaKelHwM+BC4CvAZdLOrZpIhhoku6U9DVJuzdnT0OlmUL5VuBXkuZQ5m75HHCZpDe2Wtw4kLSxpBdI2hxgUAO/cbukH0nab+R4hknTs+xLwFeae3Z8GdgYmCfpH1strpvtan6A84E/apZnA8c1y+8FTm27vj4c3xJKX+GfAr8Cvkhp0mm9tj4d38XA04BtKRN2jbyWzwAWtV1fH47vyI7l3YCbgHMpXQFf33Z9Yzy2y4E/Bb4J3AF8n9KXfYO2a+vj8U0BNmzem5s26zcALmu7vs6fqs70KW+wJQC2fwE8p1n+KjCzzcL65He2v2z7pZRh+78CjpR0fXN3qYFn+zaX213e1PFa3shwfGt9ccfyp4A3234l8HLg4HZK6psHbJ9m++2UptVvUiaWWybpW+2W1hcD07NsGP5Q1sR1kv5J0h83vQUuAWhmpRyGW0c+3KRj+ybbh7ncTHtP4DEXQAfRSJs+0NlDYgplOulhsqntiwBsX085ixxkne/NP9g+xfZbgO2As9orq28GpmdZbaH/bsr9cf+BEoIj88tvSLlX56A7d7SVtpfY/uREFzMO9qcJ9+ab2oitgUNaqai/dpZ0WTMIbSdJT4SHP+jWabe0MfvmaCtt3237uIkuZhy8rDnLx4++WdE6lJvHTBpV9t6JmIwkPaNr1S22H2i6pL7M9nfaqCt6I2kb4B7bd0maAcyi9N65otXCulR1pi9pM0mHNAOV7mh+rmrWDXyPAkl/pubuYJKmSfqGpMslnaxyg+2hJemgtmsYK9s3dv080Ky/fdADX9IBzYcXknaQ9F+S7pJ0gaSBvrkPgKR5wE+A8yW9BziT0qx6sqQPtlpcl6pCnzIB0grglba3sL0F8Mpm3bdbraw/PuNH+qt/mdLbZU/gDODrrVU1MS5su4DxNAQfau/3I1MqfxE43PbmlNsl/nt7ZfXNX1I6g7yUMnf+n9jej9JL8N2P98SJVlvoz7B9qO3bRlY0vUEOBbZpsa5+6bzYt4Ptw20vs30sMK2lmiaE7R+0XcM4G/QPtc6OEk+x/V0Al5uib9JKRf31YNNT5y7gD5Ruqdj+XatVjaK20L9R0kckPXVkhaSnSvoopS/0oDtP0sHNrJPnNYOZkPRK4O52Sxu7mpuvhuBD7dRmEOR2wHclfUDSNpLeRRmPMOguarqefgf4MXCcpLdLOhq4st3SHq2qC7lNb4h5wBzgKc3qXwPzgUM94EP5m66n/8gjXyenA78DfgDMsz3Qf1ySrrQ9s1k+mTLY7tuU+fTfbvs1bdY3HiRdY3untuvoB0nvBN4PbE+ZHvtm4HuUv72BPimRNBXYmzKj5qmUZp2/oHygHTGZzvirCv2aNP2Dp9q+o+1a+kXSEtt/1CxfaLuzP/Qltp/XXnVjJ+m3PDIN70i/9g2B31PmdNm0lcJiqNTWvLNKzdfModH0f3448CXt3GY9fTLUzVfAsZQz3x1tb2J7E8rI400GPfCbppz1m2VJepekf5P0/uYseWhNtovwCf1HDMPgpcfzw7YL6IMDKKMbl1C+Sn+nOTt+L6X3xECz/TeUni0nSvrbZlDWsHwVX8AjeXMI8AbKpIe7Ake1VdQEmVQX4atq3pF02ao2ATvZHug7+Ej60qo2AfsO+tlip2FsvhrRhP0BlA+27W0/veWSxqzresyFwK4jI1clXWr7ua0WWJGh/lo1iqcCr6P0y+8k4GcTX07fvQv4EKPPs7PPBNcyLiQ9DUpX26YHz1uAJR6iG3A0YfglSd8Gnt92PX1ys6RX2T4HuIEydcaNKjf3GXhNE9V+wJ++zAMKAAAFv0lEQVQBT6d8Q7uFMpvo0SMD7SaD2kL/NGBj25d0b5B03sSX03cLgStsP+YDbLK1K64NSe+j9L6SpEOBdwKLgc9KOsz20W3WNw7WB9aXtLPtq9suZozeA3yjeR/eDVwi6WLgicCkGrG6lo6n9NE/CFjWrJtOmXfnBGDS3PGsquadYdf0Yb9vZOKnYdNMRPYiyhzlN1IGoN3WdMU9dwh673zP9sjF6TnAF4DzgD8GPtsMshtokp4J7EQ54VwGLOyaoGwgdfYsG2XbpOp2W9uZ/lAb9HEGPXig+UD7vaTrRkZW214haRjOXjonXPso8Crbv2zmrPkxpXfPQLN9FXBV23WMgxWS9gb+s+NaxRMo12W6m5Nbld47DUmntV3DeBqG5h3goWYAGpTeHwA0XQGH4b3c+cE1tblZDM2cNQN/Nrwqkoah985cYC/g15KukXQtcBvwlmbbpJHmnYakLW3f2nYd40XSGwd9KL/K1LW32F7ZtX4r4Jm2f9ROZf0h6UHKCGpRRqxu0zRfrUu5HeQurRY4TiS90Pak6tY4Fs3FaXVMMDepVBv6Tfu3bU+qr16xapLk1bxhe9ln0KhM+/1M2z9vu5ZYNUkbA3tQeiatBK4FfjjZrlkMw1finjWjAk+StJwyMGShpN8062a0W93YSdpO0jGSPi1pY0lflXSFpG8Pw/EB50r6m+aM/2GS1pX0KknHMcnuUrQmJGm09bbvGgn8Ve0z2UmaIul9kj4l6aVd2z7eVl39IumtlDvX7UEZYzGbMmDwEk2y+wVUFfrAycB3gafZ3tH2DsCWlKHvJ7VaWX8cS+m2eS9lMrKrKfPpnwkc015ZfbMH8CBlxOotkq6UdD3ljGofyhztx7ZZ4BgN84faf1Bu8H4HZQzC5zu2vaWdkvrq48DLbb+H0sPsKS43gf8/lGOfNKpq3pF0re0d13TboJB0se3nN8s32d5mtG3DoLmg+2TgD7bvaruefmguSL8beDuwLaXf9/qU+yT8kDJb42PGmAwCSZeNXJNoBjIdSXn99gHOH/T3ZtOdeBfbbuaG+lnH3+IVtp/dboWPqK3L5oWSjgSO45H587emnD1d3FpV/fOQpJ2AzYANJc2yvUjSDjz6BisDrxnhOFQX3m3fRwnDI4fwQ23dkYXmQvz+kg4EzgE2bq2q/lkAnCnpJ5Rv19+Gh68dTqomudrO9NelDJWeA2xFeTGWUebTP9r2aNMXDAxJu1NC4yHKJGR/BzwX2BR4r+3vt1heVEzSCcAJts/sWv8e4Cu21xn9mYND0uspt0y81PbZzbonAOtMpmypKvRr1AzsWWH7wbZriRhWg9SzrLYLuY8h6aK2axhPtm+3/aCkoburVAwOSW9qrlkMq4G5CF/9mf6wXeBcle4LuxETSdIfKAPPzgBOBM4apm+fg3QRPqEvfdr2wPcTBpA0f1WbKPO4bDSR9USMaGbUfBVlqoK5wLMp3adPtP2TNmvrt8l+Eb6q0B+kdre1IWkFpV/wvd2bgJNtP3Xiq4oozai2X9Dx+GnAWyldNqfb3rq14ipTW5fNcyX9J/B92zeNrGx69exGaXM7l8GdzfB84PejnTlJWtJCPREjHtVtsZkh9UuUgVrPGP0pMR5qO9Mfrd1tA8oF7UnV7hYxTCS9wvZ5bdcRlYV+p8ne7rY2hr35KgZX3puTR7VdNm0/YPvWYQn8xsB0G4vq5L05SVR7pj+MBqnbWNQl783JI6E/pIax+SqGQ96b7UroR0RUpNo2/YiIGiX0IyIqktCPiKhIQj8ioiK1TcMQ0RNJBwEvBlY2q6ZSprl4zDrbB010fRFrK6EfsWpzR7oUStoc+MAq1kUMjDTvRERUJKEfEVGRhH5EREUS+hERFUnoR0RUJKEfEVGRdNmMGN1vgG9Ieqh5/ATgzFWsixgYmWUzIqIiad6JiKhIQj8ioiIJ/YiIiiT0IyIqktCPiKjI/wcpFa7BDkCJmwAAAABJRU5ErkJggg==\n",
303 | "text/plain": [
304 | ""
305 | ]
306 | },
307 | "metadata": {
308 | "needs_background": "light"
309 | },
310 | "output_type": "display_data"
311 | }
312 | ],
313 | "source": [
314 | "# 年龄和坏账率有什么关系\n",
315 | "age_cut=pd.cut(data[\"年龄\"],6)\n",
316 | "all_age_user=data[\"好坏客户\"].groupby(age_cut).count()\n",
317 | "bad_age_user=data[\"好坏客户\"].groupby(age_cut).sum()\n",
318 | "bad_rate=bad_age_user/all_age_user\n",
319 | "print(bad_rate)\n",
320 | "\n",
321 | "bad_rate.plot.bar()"
322 | ]
323 | },
324 | {
325 | "cell_type": "code",
326 | "execution_count": 23,
327 | "metadata": {},
328 | "outputs": [
329 | {
330 | "name": "stdout",
331 | "output_type": "stream",
332 | "text": [
333 | "家属数量\n",
334 | "0.0 0.058629\n",
335 | "1.0 0.073529\n",
336 | "2.0 0.081139\n",
337 | "3.0 0.088263\n",
338 | "4.0 0.103774\n",
339 | "5.0 0.091153\n",
340 | "6.0 0.151899\n",
341 | "7.0 0.098039\n",
342 | "8.0 0.083333\n",
343 | "9.0 0.000000\n",
344 | "10.0 0.000000\n",
345 | "13.0 0.000000\n",
346 | "20.0 0.000000\n",
347 | "Name: 好坏客户, dtype: float64\n"
348 | ]
349 | }
350 | ],
351 | "source": [
352 | "# 家庭人口数量和坏账率有什么关系\n",
353 | "all_age_user=data.groupby(\"家属数量\")[\"好坏客户\"].count()\n",
354 | "bad_age_user=data.groupby(\"家属数量\")[\"好坏客户\"].sum()\n",
355 | "bad_rate=bad_age_user/all_age_user\n",
356 | "print(bad_rate)"
357 | ]
358 | },
359 | {
360 | "cell_type": "code",
361 | "execution_count": 25,
362 | "metadata": {},
363 | "outputs": [
364 | {
365 | "data": {
366 | "text/plain": [
367 | ""
368 | ]
369 | },
370 | "execution_count": 25,
371 | "metadata": {},
372 | "output_type": "execute_result"
373 | },
374 | {
375 | "data": {
376 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8VdWZ//HPkzskEBJyULnmglrxAmKI2F9rdZxadGak7WiL2orWll50ZjqdTmvn4ji2M/Oynda5yHS09d5acGw7ZVpmtK3WdjoVEiCgCGhAIAGRAEm4BMjt+f1xTtJ4OEl2yLnknHzfrxcv9tl77X2ebDb7ydprr7XM3REREQHISnUAIiIyeigpiIhIHyUFERHpo6QgIiJ9lBRERKSPkoKIiPRRUhARkT5KCiIi0kdJQURE+uSkOoBoZWVlXl5enuowRETSyrp16w64e2ikxxl1SaG8vJy6urpUhyEiklbMbFc8jqPHRyIi0kdJQURE+igpiIhIHyUFERHpo6QgIiJ9lBRERKSPkoKIiPRRUpBB/e/rB9i270iqwxCRJFFSkAG5O3c8tZ6v/OTVVIciIkmipCAD2nmwnbbjnazf1UJXd0+qwxGRJFBSkAFtbGwF4FhHN1ve1CMkkbFASUEGVN/YSm62AbDmjYMpjkZEkkFJQQZU39jKxTNLmFE6jtqdh1IdjogkgZKCxNTR1cOrew8zb8YkFpSXUrezBXdPdVgikmBKChLT1n2H6ejuYd6MSdSUl3LwWAfbm4+lOiwRSbBRN5+CjA69jcxzZ0ziRGc3ALU7DzF7SlEqwxKRBFNNQWLa0NhKWVE+U4sLqCwrpKwoj9o31K4gkulUU5CYNja2Mm9GMWbht4+qZ5WyVo3NIhlPNQU5xeETnWxvPsbc6ZP61tVUlNLUcpy9rcdTGJmIJJqSgpzi5aY2AObNfHtSAPRqqkiGC5QUzGyRmW0zswYzuyvG9svNbL2ZdZnZ9TG2TzSzPWb2QDyClsSqjzQyXzTtt0nhvLMmUpSfw1q1K4hktCGTgpllA8uBa4A5wI1mNieq2G7gVuCpAQ7zZeDF0w9Tkqm+sZXKskKKx+f2rcvOMubPKlFNQSTDBakp1AAN7r7D3TuAFcDi/gXcfae7bwJOGTXNzC4BzgCei0O8kmDuTn1jK3NnTDplW015Ca+9dZSWYx0piExEkiFIUpgGNPb73BRZNyQzywK+Dvz58EOTVNh3+ATNR04yd3rxKdsWlIfbFep2tSQ7LBFJkiBJwWKsCzrewWeA1e7eOFghM1tmZnVmVtfc3Bzw0JIIvZ3W5s0sOWXb3BmTyMvO0iMkkQwWpJ9CEzCj3+fpwN6Ax78MeLeZfQYoAvLM7Ki7v62x2t0fAh4CqK6u1gA7KVTf2EZutnHeWRNO2VaQm83cGcWsUWOzSMYKUlOoBc42swozywOWAKuCHNzdb3b3me5eDnweeCI6IcjoUt/YwpyzJpKfkx1z+4LyUjbvaaO9oyvJkYlIMgyZFNy9C7gTeBbYAjzt7pvN7F4zuw7AzBaYWRNwA/CgmW1OZNCSGN09zstNbTEbmXstqCilq8fZsLs1iZGJSLIEGubC3VcDq6PW3d1vuZbwY6XBjvEY8NiwI5Sk2d58lGMd3cwbJClcMqsEM1j7xiH+3+yyJEYnIsmgHs3Sp77fyKgDmViQy3lnTlRjs0iGUlKQPvWNrUwoyKFicuGg5WoqStmwu5XO7lO6pYhImlNSkD4bG1uZO30SWVmx3kL+rZqKUo53dvPKnrYkRSYiyaKkIACc6Oxm674jzJ1xaqe1aL2d2PQISSTzKCkIAJv3ttHd48ybcWqntWihCflUlBVqcDyRDKSkIEC40xoQc3iLWBaUl1C7s4WeHvU1FMkkSgoChBuZpxYXMGViQaDyC8pLaTveyev7jyY4MhFJJiUFASKNzIO8ihqtd9IdTdEpklmUFIRDxzrYfah9WElhZul4pkzIp1btCiIZRUlB2NgUGRl1GEnBzKipKKV25yHc1a4gkimUFISNja1kGVw4LVgjc6+ailLebDtBU8vxBEUmIsmmpCDUN7Zy9pQJFOYHGgqrT29/Bb2aKpI5lBTGOHePNDIPr5YAcO4ZE5hYkKNObCIZRElhjGs8dJyW9s5AndaiZWUZ1eWlegNJJIMoKYxx9U29I6MOv6YA4UdIO5qPceDoyXiGJSIpoqQwxtXvbqUgN4tzzjh1+s0gairCNYw61RZEMoKSwhi3samVC6YWk5t9epfChdMmkZ+Txdo3WuIcmYikQqA7gZktMrNtZtZgZqfMsWxml5vZejPrMrPr+62fZ2a/MbPNZrbJzD4cz+BlZDq7e3hlz+DTbw4lLyeLi2dOUmOzSIYYMimYWTawHLgGmAPcaGZzoortBm4Fnopa3w7c4u7nA4uAfzKz078DSVxt23eEk109w+q0FktNeSmb97Zx9GRXnCITkVQJUlOoARrcfYe7dwArgMX9C7j7TnffBPRErX/N3V+PLO8F9gOhuEQuI3Y6PZljWVBRSo/Dul16hCSS7oIkhWlAY7/PTZF1w2JmNUAesH24+0pi1O9upbQwj+kl40Z0nPkzS8jOMo2DJJIBgiSFWHMzDmuwGzM7C3gSuM3dT5nY18yWmVmdmdU1NzcP59AyAhubWpk7vRizwaffHEphfg7nT52o/goiGSBIUmgCZvT7PB3YG/QLzGwi8BPgr9z9pVhl3P0hd6929+pQSE+XkuHoyS5e3390RI3M/dWUl1Lf2MrJru64HE9EUiNIUqgFzjazCjPLA5YAq4IcPFL+h8AT7v4fpx+mxNvLTW24j7w9odeCilI6unp4uaktLscTkdQYMim4exdwJ/AssAV42t03m9m9ZnYdgJktMLMm4AbgQTPbHNn9Q8DlwK1mVh/5My8hP4kMS28j89zpcUoK5Zp0RyQTBBoW091XA6uj1t3db7mW8GOl6P2+A3xnhDFKAtTvbmXW5PGUFObF5XilhXnMnlIUbmy+Ii6HFJEUUI/mMSrcyBzfLiMLykup29lCd48m3RFJV0oKY9Bbh0/wZtuJuLUn9KqpKOHIyS627jsc1+OKSPIoKYxBGxt7R0aNf00BUH8FkTSmpDAG1Te2kpNlnD91YlyPO71kPNMmjaN2p3o2i6QrJYUxaGNTK+84awIFudlxP/aC8hLW7jyEu9oVRNKRksIY09PjbGpsi3sjc68FFaU0HznJroPtCTm+iCSWksIYs+PAMY6c7Ip7I3OvGvVXEElrSgpjTG8jc6KSwuwpRZSMz2WtGptF0pKSwhhT39hKUX4OlaGihBzfzKguL9WkOyJpSklhjNnY1MqF04rJzhrZyKiDqSkvZdfBdvYfPpGw7xCRxFBSGENOdHaz5c3Dce+fEK2mQu0KIulKSWEM2fLmYTq7PWHtCb3OnzqR8XnZ6sQmkoaUFMaQRDcy98rJzmL+zBLWqhObSNpRUhhD6htbOWNiPmcWFyT8uxaUl7J132Hajncm/LtEJH6UFMaQjU2J67QWbUFFCe6wfpdqCyLpRElhlPrf1w/wh9/8P17dG58RR1vbO3jjwDHmzUxOUrh4Rgm52cYatSuIpBUlhVGoYf9RPv3ddazb1cJN336JV/aMfIrLTZFpMuclqaYwLi+bC6cVq7+CSJoJlBTMbJGZbTOzBjO7K8b2y81svZl1mdn1UduWmtnrkT9L4xV4pmpt7+Djj9eSn5PF9z6xkMK8HG761kt9jcSnq76xFTO4YHpxnCId2oKKUjY1tXKisztp3ykiIzNkUjCzbGA5cA0wB7jRzOZEFdsN3Ao8FbVvKfA3wKVADfA3ZlYy8rAzU2d3D3c8tZ69rSd48KOXcFnVZFZ+ciHF43P5yLfXsG4Ez+c3NrZSFSpiYkFuHCMeXE15KZ3dTv0IE5qIJE+QmkIN0ODuO9y9A1gBLO5fwN13uvsmoCdq3/cBP3X3Q+7eAvwUWBSHuDPSl3/8Kr9uOMjffeACLpkV7gA2vWQ8K5ddxuSiPG55eM1pPY5x94RMvzmU6lmlmGnSHZF0EiQpTAMa+31uiqwLYiT7jilPvrSLJ36zi2WXV3JD9Yy3bZs6aRwrll3GGRMLWPrIWl7acXBYx97TepwDRzuS1sjcq3h8LueeMUE9m0XSSJCkEGuQnKAzqATa18yWmVmdmdU1NzcHPHTm+L+GA9yzajO/844pfHHRO2KWObO4gBWfXMjUSeO49dG1/LrhQODjb2xMbiNzfwvKS1m/q4Wu7uhKpIiMRkGSQhPQ/1fX6cDegMcPtK+7P+Tu1e5eHQqFAh46M+w8cIxPf3c9lWWF/POSeYMOVDdlQgErli1kVmkhH3uslhdfC5ZA6xtbyMvJ4twzJ8Qr7MAWVJRyrKObV9+Mz6u1IpJYQZJCLXC2mVWYWR6wBFgV8PjPAlebWUmkgfnqyDoBDp/o5PbHa8kyeHjpAiYEaAQuK8rne8sWUhkq4hOP1/HC1v1D7rOxsY3zp04kLyf5byAvrCwlLzuLv1+9hZNdegtJZLQb8i7h7l3AnYRv5luAp919s5nda2bXAZjZAjNrAm4AHjSzzZF9DwFfJpxYaoF7I+vGvO4e54+e2sCug+38282XMHPy+MD7lhbm8b1PXMo5Zxax7Mk6fvrqWwOW7eru4eU9yevJHG3KhAK+dsNFvLTjEF94ZpPmbhYZ5XKCFHL31cDqqHV391uuJfxoKNa+jwCPjCDGjPT3q7fw4mvN/MMHL+SyqsnD3n/S+Dy+e/tCbnlkDZ/+zjoeuOliFl1w1inlXt9/lOOd3Vyc5Ebm/hbPm0ZTy3G+9uw2ppeM48/fF7vdRERSTz2aU2Bl7W4e/t83uPWd5dxYM/O0j1M8PpcnP34pF00v5o6nNvDjTac29fR2ektVTaHXZ66o4saamSx/YTtPrdmd0lhEZGBKCkm29o1D/NV/vsK7zy7jr37vvBEfb2JBLk/cfinzZ07ij7+3gR/V73nb9vrGVorH5TJrGI+nEsHM+PLi87ny3BB//aNXArWFiEjyKSkkUeOhdj71nXXMKBnPAzfNJyc7Pqe/KD+Hx26roaailD9dWc/31zX1batvbGXujEmYJW76zaBysrN44Kb5vOPMCdzx1Pq4jOkkIvGlpJAkR0928fHH6+jq7uHbS6spHhff4SYK83N49NYaLquazOef2cjTtY20d3Tx2ltHEj6pznAU5ufwyK0LKBmfx22P1dLU0p7qkESkHyWFJOjucT67YgMNzUdZfvN8KkNFCfmecXnZPLx0Ae+aXcYXvr+Je1Ztpsdh3ozkDYIXxBkTC3j0tgWc6OzmtkdrNRGPyCiipJAE//jcNn62ZT93//4c3n12YjvnFeRm861bqrny3BBP14UfI12U4kbmWM45YwIPfvQSdh48xiefrFMfBpFRQkkhwX64oYlv/mI7N186k1sum5WU7yzIzebfP3oJv3fRWdRUlFJWlJ+U7x2ud1aV8bXr5/LSjkN8UX0YREaFQP0U5PSs393CF7//MgsrS7nnuvOT2tibn5PN8pvmj/ob7fsvnsae1t4+DOP5/PvOTXVIImOakkKC7G09zrIn1nFWcQHfvPkScuP0ptFwjYa3jobymSuqaGpp54EXGphWMm5EfTdEZGSUFBJg274j/MmKDZzs7GbFskspKcxLdUijWrgPwwXsbT3BX/3nK5xZXMCV505JdVgiY5LaFOJo/+ETfOkHm7jmn3/J3tbjPHDzfGZPSf7IpOkoJzuL5TdH+jB8V30YRFJFSSEO2ju6+KefvcYV//gLnlnXxK3vrODFP7+S95wztoYBH6ki9WEQSTklhRHo7nFW1u7miq/9gn/62etcee4Ufva593D3H8zRI6PTpD4MIqmlpHCaXnytmWv/+Vd88fsvM71kHN//9GUsv3k+syYXpjq0tKc+DCKpo6QwTK/uPcxHH17D0kfWcqKrm3+7eT7f//Q7uWRWaapDyyjvrCrjq9dfpD4MIkmmt48C2td2gq8/t41n1jdRPC6Xu39/Dh9ZOCsls5mNFR+4eDp7Wo7zj8+9xjTNwyCSFEoKQzh6sosHX9zOt361g54e+MS7K7njitkUj4/vgHYS2x1XzmbXwXaWv7Cdmy6dxbRJ41IdkkhGC/RrrpktMrNtZtZgZnfF2J5vZisj29eYWXlkfa6ZPW5mL5vZFjP7UnzDT5yu7h6+u2YXV3ztBf71+QaunnMmP/+z9/AX156nhJBEZsaHFswA4LW3jqQ4GpHMN2RNwcyygeXAe4EmoNbMVrn7q/2K3Q60uPtsM1sC3Ad8mPCczfnufqGZjQdeNbPvufvOeP8g8fTC1v383eotNOw/Sk15Kd9eet6oGn56rKksCzfe72g+xpUaBUMkoYI8PqoBGtx9B4CZrQAWA/2TwmLgnsjyM8ADFh5fwYFCM8sBxgEdwOH4hB5/Ow8c494fv8rzW/dTWVbIQx+9hPfOOSMthorIZKWFeUwan8v25qOpDkUk4wVJCtOAxn6fm4BLByrj7l1m1gZMJpwgFgNvAuOBP3X3QyMNOt7aO7pY/kID3/rlG+TlZPGX157H0neWqxF5lDAzKssK2b5fSUEk0YIkhVi/Jke/HzhQmRqgG5gKlAC/MrOf9dY6+nY2WwYsA5g5M3mDobk7P3n5Tf7uJ1t4s+0EH7x4Gndd8w6mTCxIWgwSTFWoiF+81pzqMEQyXpBfhZuAGf0+Twf2DlQm8qioGDgE3AT8j7t3uvt+4NdAdfQXuPtD7l7t7tWhUHKGhti27wg3fWsNdz61gZLxeTzzqcv4xofnKSGMUpWhIpqPnOTwCfVwFkmkIEmhFjjbzCrMLA9YAqyKKrMKWBpZvh543sO9jXYDv2NhhcBCYGt8Qj89bcc7+dv/2sy1//Irtuw7zFfefwH/9Ufvorpcnc9Gs6rQbxubRSRxhnx8FGkjuBN4FsgGHnH3zWZ2L1Dn7quAh4EnzayBcA1hSWT35cCjwCuEHzE96u6bEvBzDKmnx3lmfRNf/Z+tHDzWwU01M/n81edqjKI0UTUlPK/19v1H9SaYSAIF6rzm7quB1VHr7u63fILw66fR+x2NtT7ZNja28jerNlPf2Mols0p47LYaLpg2uiazl8HNLB1PTpax44Aam0USKaN7NB88epKvPbuNlXWNTC7M5xsfmssHLp6mV0zTUG52FjMnj2f7fj0+EkmkjEwK4d7Iu/n6c9to7+jm4++q4I+vOpsJBeqJnM4qy4pUUxBJsIxLCpv3tvFnT29k674jvGt2GfdcN0ezn2WIqimF/PK1Zrp7nOws1fZEEiGjkkLjoXZueXgtOdnGN2+ez6ILztSjogxSVVZER3cPTS3tmrdCJEEyJim0tXdy66Nr6epxnv7UZVSFilIdksRZ1ZRwItjefFRJQSRBMmIch46uHj71nXXsPtTOgx+9RAkhQ1WWhf9d1VdBJHHSvqbg7tz1g038ZsdB7v/wXBZWTk51SJIgJYV5lBbmaWA8kQRK+5rCv/y8gR+s38Of/u45fODi6akORxKssqyQ7aopiCRMWieFH25o4v6fvcYfzp/OH181O9XhSBJUhYrYoZqCSMKkbVJ4acdBvvDMJi6rnMw/fPBCvWU0RlSGCjlwtIO2dg2MJ5IIaZkUtjcf5ZNPrmNm6Xj+/SOXaN6DMaT3JYLt6sQmkhBpdzc9ePQktz1aS2628dhtNZoveYyp1GipIgmVVm8fnejs5uNP1PHW4ROsWLaQGaXjUx2SJNmM0vHkZpveQBJJkLRJCj09zueerqe+sZVv3jyfi2eWpDokSYHc7Cxmlo5XY7NIgqTN46P7nt3K6pf38RfXnMeiC85KdTiSQlWhIr2WKpIgaZEUnlqzmwdf3MFHFs7k4++uSHU4kmKVoSJ2HTxGV3dPqkMRyTijPin8Ytt+/vpHr3DluSHu+YPz9eqpUBUqpLPbaWw5nupQRDJOoKRgZovMbJuZNZjZXTG255vZysj2NWZW3m/bRWb2GzPbbGYvm1lB0OC2vHmYO5/awLlnTOBfb5pPTvaoz2GSBJWh307NKSLxNeRd1syyCc+1fA0wB7jRzOZEFbsdaHH32cD9wH2RfXOA7wCfcvfzgSuAQL2O3jp8go89VktRfg6P3LqAovy0aROXBKvqfS1VfRVE4i7Ir941QIO773D3DmAFsDiqzGLg8cjyM8BVFn7OczWwyd03Arj7QXfvHuoLj53s4mOP1XL4eCeP3LqAM4sDVy5kDJg0Po/JhXmamlMkAYIkhWlAY7/PTZF1Mcu4exfQBkwGzgHczJ41s/Vm9oWhvsyBP/reBrbuO8IDN89nztSJAUKUsaYqpKk5RRIhyDOZWC27HrBMDvAuYAHQDvzczNa5+8/ftrPZMmAZwKSplRzcup+vvP8Crjx3SoDwZCyqDBXy3KtvpToMkYwTpKbQBMzo93k6sHegMpF2hGLgUGT9i+5+wN3bgdXA/OgvcPeH3L3a3avbe7JYdnklH1k4a/g/jYwZVaEiDh3roOVYR6pDEckoQZJCLXC2mVWYWR6wBFgVVWYVsDSyfD3wvLs78CxwkZmNjySL9wCvDvZlZxUXcNeidwznZ5AxqFKNzSIJMWRSiLQR3En4Br8FeNrdN5vZvWZ2XaTYw8BkM2sAPgfcFdm3BfgG4cRSD6x3958M9n1lRflkZakvggyub7RU9WwWiatA73m6+2rCj376r7u73/IJ4IYB9v0O4ddSReJmesk4DYwnkgDqDSZpKSc7i/LJhRpCWyTOlBQkbYUHxlNNQSSelBQkbVWGCtl9sJ1ODYwnEjdKCpK2qkJFdPU4uw+1pzoUkYyhpCBpS1NzisSfkoKkrb7RUtWuIBI3SgqStorH5VJWlK+pOUXiSElB0lpVqFAd2ETiSElB0lplqEg1BZE4UlKQtFYVKqSlvZNDGhhPJC6UFCSt9Y6BpNqCSHwoKUhaq9IbSCJxpaQgaW1ayTjycrLU2CwSJ0oKktays4yKyYV6fCQSJ0oKkvYq9VqqSNwoKUjaqwoVsftQOx1dGhhPZKSUFCTtVYYK6e5xdh9SbUFkpAIlBTNbZGbbzKzBzO6KsT3fzFZGtq8xs/Ko7TPN7KiZfT4+YYv8lqbmFImfIZOCmWUDy4FrgDnAjWY2J6rY7UCLu88G7gfui9p+P/DfIw9X5FS9o6XqtVSRkQtSU6gBGtx9h7t3ACuAxVFlFgOPR5afAa4yMwMws/cDO4DN8QlZ5O0mFOQyZUK+htAWiYMgSWEa0Njvc1NkXcwy7t4FtAGTzawQ+CLwtyMPVWRg4TeQVFMQGakgScFirPOAZf4WuN/dB/3fambLzKzOzOqam5sDhCTydlWhInY0H8M9+tIUkeEIkhSagBn9Pk8H9g5UxsxygGLgEHAp8FUz2wl8FvgLM7sz+gvc/SF3r3b36lAoNOwfQqQyVETb8U4OamA8kRHJCVCmFjjbzCqAPcAS4KaoMquApcBvgOuB5z38K9u7ewuY2T3AUXd/IA5xi7xNVb+pOcuK8lMcjUj6GrKmEGkjuBN4FtgCPO3um83sXjO7LlLsYcJtCA3A54BTXlsVSSQNjCcSH0FqCrj7amB11Lq7+y2fAG4Y4hj3nEZ8IoFMnTSO/JwsjYEkMkLq0SwZITvLqCjTGEgiI6WkIBmjSlNzioyYkoJkjMpQIbsPtXOyqzvVoYikLSUFyRhVoSJ6HHYfbE91KCJpS0lBMobeQBIZOSUFyRgVfQPjqbFZ5HQpKUjGKMrP4cyJBaopiIyAkoJklMpQoUZLFRkBJQXJKFWhIrY3H9XAeCKnSUlBMkplqJAjJ7poPnoy1aGIpCUlBckovW8g6RGSyOlRUpCMoqk5RUZGSUEyytTicRTkZqmmIHKalBQko2RlGRVlRaopiJwmJQXJOFV6LVXktCkpSMapDBXR2NLOiU4NjCcyXEoKknGqQoW4wy4NjCcybIGSgpktMrNtZtZgZqdMtWlm+Wa2MrJ9jZmVR9a/18zWmdnLkb9/J77hi5xKA+OJnL4hk4KZZQPLgWuAOcCNZjYnqtjtQIu7zwbuB+6LrD8A/IG7XwgsBZ6MV+AiA6koC7+Wqgl3RIYvSE2hBmhw9x3u3gGsABZHlVkMPB5Zfga4yszM3Te4+97I+s1AgZnlxyNwkYEU5udwVnGBRksVOQ1BksI0oLHf56bIuphl3L0LaAMmR5X5Q2CDu2v8AUk4Tc0pcnqCJAWLsS56tLFBy5jZ+YQfKX0y5heYLTOzOjOra25uDhCSyOAqQ4Vsbz6mgfFEhilIUmgCZvT7PB3YO1AZM8sBioFDkc/TgR8Ct7j79lhf4O4PuXu1u1eHQqHh/QQiMVSFijh6sovmI6qYigxHkKRQC5xtZhVmlgcsAVZFlVlFuCEZ4HrgeXd3M5sE/AT4krv/Ol5BiwyldwykBj1CEhmWIZNCpI3gTuBZYAvwtLtvNrN7zey6SLGHgclm1gB8Duh9bfVOYDbw12ZWH/kzJe4/hUgUjZYqcnpyghRy99XA6qh1d/dbPgHcEGO/rwBfGWGMIsN25sQCxuVmq6+CyDCpR7NkpKws09ScIqdBSUEyVmVIo6WKDJeSgmSsqlAhe1qPa2A8kWFQUpCMVRkqwh3eOKBHSCJBKSlIxqrS1Jwiw6akIBmrskyvpYoMl5KCZKxxedlMmzRONQWRYVBSkIym11JFhkdJQTJa72ipGhhPJBglBcloVaFCjnV089ZhDYwnEoSSgmS0Sk3NKTIsSgqS0X47MJ6SgkgQSgqS0c6YmE9hXram5hQJSElBMpqZaQwkkWFQUpCMp9dSRYJTUpCMVxUqYk/rcY53aGA8kaEoKUjG652ac8cBPUISGUqgpGBmi8xsm5k1mNldMbbnm9nKyPY1Zlbeb9uXIuu3mdn74he6SDCamlMkuCGTgpllA8uBa4A5wI1mNieq2O1Ai7vPBu4H7ovsOwdYApwPLAL+LXI8kaSpKCvETH0VRIIIUlOoARrcfYe7dwArgMVRZRYDj0eWnwGuMjOLrF/h7ifd/Q2gIXI8kaQpyA0PjKeagsjQcgKUmQY09vvcBFw6UBl37zKzNmByZP1LUftOO+1oRU5TZaiIn776Fu/9xoupDkWTmhKDAAAG5ElEQVRkVAuSFCzGuujRxQYqE2RfzGwZsAxg5syZAUISGZ7b31VBUb6eXErm+lmcjhMkKTQBM/p9ng7sHaBMk5nlAMXAoYD74u4PAQ8BVFdXazhLibv3nBPiPeeEUh2GSMJ88yPxOU6QNoVa4GwzqzCzPMINx6uiyqwClkaWrwee9/BYxauAJZG3kyqAs4G18QldRETibciaQqSN4E7gWSAbeMTdN5vZvUCdu68CHgaeNLMGwjWEJZF9N5vZ08CrQBdwh7urB5GIyChlo23ykerqaq+rq0t1GCIiacXM1rl79UiPox7NIiLSR0lBRET6KCmIiEgfJQUREemjpCAiIn1G3dtHZnYE2JbqOAIoAw6kOogAFGd8Kc74Soc40yFGgHPdfcJIDxKkR3OybYvHa1WJZmZ1ijN+FGd8Kc74SYcYIRxnPI6jx0ciItJHSUFERPqMxqTwUKoDCEhxxpfijC/FGT/pECPEKc5R19AsIiKpMxprCiIikiIpSwpmtsjMtplZg5ndFWN7vpmtjGxfY2blKYhxhpm9YGZbzGyzmf1JjDJXmFmbmdVH/tyd7Dgjcew0s5cjMZzyFoKF/UvkfG4ys/kpiPHcfuep3swOm9lno8qk5Hya2SNmtt/MXum3rtTMfmpmr0f+Lhlg36WRMq+b2dJYZRIc59fMbGvk3/WHZjZpgH0HvUaSEOc9Zran37/ttQPsO+i9IcExruwX304zqx9g32Sey5j3oYRdn+6e9D+Eh+DeDlQCecBGYE5Umc8A/x5ZXgKsTEGcZwHzI8sTgNdixHkF8ONUnMeoOHYCZYNsvxb4b8Kz4S0E1qQ43mxgHzBrNJxP4HJgPvBKv3VfBe6KLN8F3Bdjv1JgR+TvkshySZLjvBrIiSzfFyvOINdIEuK8B/h8gOti0HtDImOM2v514O5RcC5j3ocSdX2mqqZQAzS4+w537wBWAIujyiwGHo8sPwNcZWaxpvdMGHd/093XR5aPAFtI3zmmFwNPeNhLwCQzOyuF8VwFbHf3XSmMoY+7/5LwXCD99b8GHwfeH2PX9wE/dfdD7t4C/BRYlMw43f05d++KfHyJ8AyHKTXA+QwiyL0hLgaLMXKv+RDwvUR893AMch9KyPWZqqQwDWjs97mJU2+2fWUiF3wbMDkp0cUQeXx1MbAmxubLzGyjmf23mZ2f1MB+y4HnzGydhee8jhbknCfTEgb+DzcazifAGe7+JoT/YwJTYpQZbef1Y4RrhLEMdY0kw52Rx1yPDPC4Y7Scz3cDb7n76wNsT8m5jLoPJeT6TFVSiPUbf/RrUEHKJIWZFQHfBz7r7oejNq8n/AhkLvCvwH8mO76I/+fu84FrgDvM7PKo7aPpfOYB1wH/EWPzaDmfQY2m8/qXhGc4/O4ARYa6RhLtm0AVMA94k/DjmWij5XzeyOC1hKSfyyHuQwPuFmPdoOczVUmhCZjR7/N0YO9AZcwsByjm9KqjI2JmuYT/Ib7r7j+I3u7uh939aGR5NZBrZmVJDhN33xv5ez/wQ8LV8P6CnPNkuQZY7+5vRW8YLecz4q3eR2yRv/fHKDMqzmukAfH3gZs98jA5WoBrJKHc/S1373b3HuBbA3x/ys9n5H7zQWDlQGWSfS4HuA8l5PpMVVKoBc42s4rIb41LgFVRZVYBvS3l1wPPD3SxJ0rkueLDwBZ3/8YAZc7sbeswsxrC5/Rg8qIEMys0swm9y4QbHl+JKrYKuMXCFgJtvVXPFBjwt7DRcD776X8NLgV+FKPMs8DVZlYSeRxydWRd0pjZIuCLwHXu3j5AmSDXSEJFtWF9YIDvD3JvSLTfBba6e1Osjck+l4PchxJzfSaj9XyAFvVrCbeibwf+MrLuXsIXNkAB4ccLDcBaoDIFMb6LcFVrE1Af+XMt8CngU5EydwKbCb8l8RLwzhTEWRn5/o2RWHrPZ/84DVgeOd8vA9Up+ncfT/gmX9xvXcrPJ+Ek9SbQSfi3q9sJt2H9HHg98ndppGw18O1++34scp02ALelIM4Gws+Ne6/R3rf2pgKrB7tGkhznk5FrbxPhG9pZ0XFGPp9yb0hWjJH1j/Vej/3KpvJcDnQfSsj1qR7NIiLSRz2aRUSkj5KCiIj0UVIQEZE+SgoiItJHSUFERPooKYiISB8lBRER6ZOT6gBEUsnM7iE8lHjvKKM5hDvNxVrHcNa7+z2JilskUZQURGCJu7cCRCao+ewA6wYqO9h6kbSix0ciItJHSUFERPooKYiISB8lBRER6aOkICIifZQURESkj15JlbFuP/CEmfVEPmcB/zPAOk5jvUha0SQ7IiLSR4+PRESkj5KCiIj0UVIQEZE+SgoiItJHSUFERPr8f2qp2iG5fN1cAAAAAElFTkSuQmCC\n",
377 | "text/plain": [
378 | ""
379 | ]
380 | },
381 | "metadata": {
382 | "needs_background": "light"
383 | },
384 | "output_type": "display_data"
385 | }
386 | ],
387 | "source": [
388 | "bad_rate.plot()"
389 | ]
390 | },
391 | {
392 | "cell_type": "code",
393 | "execution_count": null,
394 | "metadata": {},
395 | "outputs": [],
396 | "source": []
397 | }
398 | ],
399 | "metadata": {
400 | "kernelspec": {
401 | "display_name": "Python 3",
402 | "language": "python",
403 | "name": "python3"
404 | },
405 | "language_info": {
406 | "codemirror_mode": {
407 | "name": "ipython",
408 | "version": 3
409 | },
410 | "file_extension": ".py",
411 | "mimetype": "text/x-python",
412 | "name": "python",
413 | "nbconvert_exporter": "python",
414 | "pygments_lexer": "ipython3",
415 | "version": "3.7.3"
416 | },
417 | "toc": {
418 | "base_numbering": 1,
419 | "nav_menu": {},
420 | "number_sections": true,
421 | "sideBar": true,
422 | "skip_h1_title": false,
423 | "title_cell": "Table of Contents",
424 | "title_sidebar": "Contents",
425 | "toc_cell": false,
426 | "toc_position": {},
427 | "toc_section_display": true,
428 | "toc_window_display": false
429 | }
430 | },
431 | "nbformat": 4,
432 | "nbformat_minor": 2
433 | }
434 |
--------------------------------------------------------------------------------