├── __init__.py
├── deep_layer
├── __init__.py
├── exceptions.py
├── utils.py
├── costs.py
├── activations.py
├── optimizers.py
├── sample.py
├── layers.py
└── models.py
├── examples
├── __init__.py
└── insurance_prediction
│ ├── __init__.py
│ ├── result.png
│ ├── insurance_prediction.py
│ ├── insurance.csv
│ └── test.ipynb
├── .gitignore
└── README.md
/__init__.py:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/deep_layer/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/examples/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/examples/insurance_prediction/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/deep_layer/exceptions.py:
--------------------------------------------------------------------------------
1 | class LayerNotFound(Exception):
2 | pass
3 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # project
2 | .idea
3 | .ipynb_checkpoints
4 |
5 |
6 | # Python
7 | *.pyc
8 | *.py~
9 |
--------------------------------------------------------------------------------
/examples/insurance_prediction/result.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AndersonJo/deep-layer/master/examples/insurance_prediction/result.png
--------------------------------------------------------------------------------
/deep_layer/utils.py:
--------------------------------------------------------------------------------
1 | def _get_function(functions, name, func=None):
2 | if func is None:
3 | func = name
4 |
5 | f = None
6 | if callable(func):
7 | f = func
8 |
9 | if type(name) == str:
10 | f = functions.get(name, f)
11 |
12 | return f
13 |
--------------------------------------------------------------------------------
/deep_layer/costs.py:
--------------------------------------------------------------------------------
1 | def mean_squared_error(y_true, y_pred):
2 | """
3 | Mean Squared Error function
4 | """
5 | N = len(y_true)
6 | return ((y_pred - y_true) ** 2) / N
7 |
8 |
9 | def dmean_squared_error(y_true, y_pred):
10 | """
11 | Derivative of the mean squared error function
12 | """
13 | N = len(y_true)
14 | return 2 * (y_pred - y_true) / N
15 |
16 |
17 | losses = dict(mean_squared_error=mean_squared_error,
18 | dmean_squared_error=dmean_squared_error,
19 | mse=mean_squared_error,
20 | dmse=dmean_squared_error)
21 |
--------------------------------------------------------------------------------
/deep_layer/activations.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 |
4 | def linear(z):
5 | return z
6 |
7 |
8 | def dlinear(z):
9 | batch_size = z.shape[0]
10 | shapes = [1 for _ in range(len(z.shape) - 1)]
11 | return np.ones((batch_size, *shapes))
12 |
13 |
14 | def sigmoid(z: np.array) -> np.array:
15 | """
16 | :param z: sum of (w^T x + b)
17 | """
18 | return 1 / (1 + np.e ** (-z))
19 |
20 |
21 | def dsigmoid(phi: np.array):
22 | return phi * (1 - phi)
23 |
24 |
25 | activations = dict(
26 | linear=linear,
27 | dlinear=dlinear,
28 | sigmoid=sigmoid,
29 | dsigmoid=dsigmoid
30 | )
31 |
--------------------------------------------------------------------------------
/deep_layer/optimizers.py:
--------------------------------------------------------------------------------
1 | class BaseOptimizer(object):
2 | def __init__(self, lr: float = 0.001):
3 | """
4 | :param lr: Learning Rate
5 | """
6 | self.lr = lr
7 |
8 |
9 | class StochasticGradientDescent(BaseOptimizer):
10 | pass
11 |
12 |
13 | class Momentum(BaseOptimizer):
14 | def __init__(self, lr: float = 0.001, gamma: float = 0.5):
15 | super(Momentum, self).__init__(lr=lr)
16 | self.gamma = gamma
17 |
18 | def __call__(self, layer, delta_w, delta_b, n: int):
19 | layer.update_w = self.gamma * layer.update_w + - 2 / n * self.lr * delta_w
20 | layer.update_b = self.gamma * layer.update_b + - 2 / n * self.lr * delta_b
21 | return layer
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Deep Layer
2 | Deep Learning Library with Numpy
3 | The library support the following features
4 |
5 | 1. Deep Neural Network
6 | 2. Mini-batch
7 | 3. provide optimizations and loss functions
8 |
9 |
10 | # Example
11 | The example below predicts insurance cost.
12 | The full code is [here](https://github.com/AndersonJo/deep-layer/blob/master/examples/insurance_prediction/insurance_prediction.py)
13 |
14 | ```
15 | >> import numpy as np
16 | >> from deep_layer.layers import Layer, InputLayer
17 | >> from deep_layer.models import Model
18 | >> from deep_layer.optimizers import Momentum
19 | >>
20 | >> np.random.seed(0)
21 | >>
22 | >> model = Model()
23 | >> model.add(InputLayer(9, 32, activation='sigmoid', batch_input_shape=(2, 9), name='input_layer'))
24 | >> model.add(Layer(32, 16, activation='sigmoid', name='hidden_layer1'))
25 | >> model.add(Layer(16, 1, name='output_layer'))
26 | >> model.compile(optimizer=Momentum(lr=0.0005), batch=128, loss='mean_squared_error')
27 | >> model.fit(data_x, data_y, epochs=15, shuffle=False)
28 |
29 | [Epoch 0] loss: 0.8041550229987101
30 | [Epoch 1] loss: 0.6849386180886644
31 | [Epoch 2] loss: 0.5852776321377485
32 | [Epoch 3] loss: 0.49581906221271954
33 | [Epoch 4] loss: 0.4161674836035164
34 | [Epoch 5] loss: 0.3604390973829448
35 | [Epoch 6] loss: 0.3008422335309807
36 | [Epoch 7] loss: 0.2576607232879699
37 | [Epoch 8] loss: 0.22932737798070446
38 | [Epoch 9] loss: 0.1782664127999551
39 | [Epoch 10] loss: 0.15898536579946815
40 | [Epoch 11] loss: 0.1288886044363849
41 | [Epoch 12] loss: 0.11173969296987162
42 | [Epoch 13] loss: 0.10028934050214187
43 | [Epoch 14] loss: 0.07579451850678974
44 | ```
45 |
46 |
--------------------------------------------------------------------------------
/deep_layer/sample.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import math
3 |
4 |
5 | class Sample(object):
6 | def __init__(self, x: np.array, y: np.array = None, batch: int = 32):
7 | self.x: np.array = x.copy()
8 | self.y: np.array = y.copy() if y is not None else None
9 |
10 | self.batch: int = batch
11 |
12 | self._n = len(x)
13 | self._n_feature = x.shape[-1]
14 |
15 | def samples(self, n=10000, train=True, shuffle=True):
16 | split_n = len(self.x) - self.batch
17 | if split_n - self.batch <= 0:
18 | raise Exception('batch size is bigger than data size')
19 |
20 | if train:
21 | iter_range = range(n)
22 | else:
23 | split_n = int(math.ceil(len(self.x) / self.batch))
24 | iter_range = range(0, len(self.x), self.batch)
25 |
26 | for step in iter_range:
27 | i = step % split_n
28 |
29 | if i == 0 and shuffle:
30 | self.shuffle()
31 |
32 | sample_x = self.get_sample(self.x, idx=i)
33 | sample_y = self.get_sample(self.y, idx=i) if self.y is not None else None
34 |
35 | # Return
36 | if self.y is not None:
37 | yield sample_x, sample_y
38 | else:
39 | yield sample_x
40 |
41 | def get_sample(self, data: np.array, idx: int):
42 |
43 | sample = data[idx:idx + self.batch]
44 | n = len(sample)
45 | if n != self.batch and n != 0:
46 | sample = self.make_same(data, sample)
47 | return sample
48 |
49 | def make_same(self, data, sample):
50 | need_n = self.batch - len(sample)
51 | n = len(data)
52 | indices = np.random.randint(0, n, size=need_n)
53 | con_sample = np.concatenate((sample, data[indices]), axis=0)
54 |
55 | return con_sample
56 |
57 | def zeropad(self, data):
58 | if data is None:
59 | return None
60 | padded_data = np.zeros((self.batch, self._n_feature))
61 | padded_data[:len(data)] = data
62 | return padded_data
63 |
64 | def shuffle(self):
65 | rands = np.random.permutation(self._n)
66 | self.x = self.x[rands]
67 | if self.y is not None:
68 | self.y = self.y[rands]
69 |
--------------------------------------------------------------------------------
/examples/insurance_prediction/insurance_prediction.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import pandas as pd
3 | from sklearn.metrics import r2_score
4 | from sklearn.model_selection import train_test_split
5 | from sklearn.preprocessing import StandardScaler, MinMaxScaler
6 |
7 | from deep_layer.layers import Layer, InputLayer
8 | from deep_layer.models import Model
9 | from deep_layer.optimizers import Momentum
10 | import pylab as plt
11 |
12 | np.random.seed(0)
13 |
14 | raw_data = pd.read_csv('insurance.csv')
15 |
16 | # Preprocessing
17 | bmi_scaler = StandardScaler()
18 | raw_data[['bmi']] = bmi_scaler.fit_transform(raw_data[['bmi']].values)
19 | raw_data['sex'] = raw_data['sex'].apply({'male': 1, 'female': 0}.get)
20 | raw_data['smoker'] = raw_data['smoker'].apply({'yes': 1, 'no': 0}.get)
21 |
22 | # Region
23 | onehot_smokers = pd.get_dummies(raw_data['region'], prefix='region')
24 | raw_data = pd.concat([raw_data, onehot_smokers], axis=1)
25 | # raw_data = raw_data.drop('region', axis=1)
26 |
27 | # Y Labels
28 | expense_scaler = MinMaxScaler()
29 | raw_data['expenses'] = expense_scaler.fit_transform(raw_data[['expenses']].values)
30 | data_y = raw_data.as_matrix(['expenses'])
31 |
32 | # X Labels
33 | data_x = raw_data.drop(['expenses', 'region'], axis=1)
34 | data_x = data_x.as_matrix()
35 | data_scaler = MinMaxScaler()
36 | data_x = data_scaler.fit_transform(data_x)
37 |
38 | # Split data into train and examples subset
39 | train_x, test_x, train_y, test_y = train_test_split(data_x, data_y, test_size=0.3)
40 |
41 | # Create Model
42 | model = Model()
43 | model.add(InputLayer(9, 32, activation='sigmoid', batch_input_shape=(2, 9), name='input_layer'))
44 | model.add(Layer(32, 16, activation='sigmoid', name='hidden_layer1'))
45 | # model.add(Layer(16, 8, activation='sigmoid', name='hidden_layer2'))
46 | model.add(Layer(16, 1, activation='sigmoid', name='output_layer'))
47 | model.compile(optimizer=Momentum(lr=0.001), batch=64, loss='mean_squared_error')
48 | model.fit(data_x, data_y, epochs=98, shuffle=False)
49 |
50 | y_pred = model.predict(test_x)
51 |
52 | print('r^2 score:', r2_score(test_y, y_pred))
53 | # y_pred = expense_scaler.inverse_transform(y_pred)
54 | # y_true = expense_scaler.inverse_transform(test_y)
55 | N = len(y_pred)
56 | x = list(range(N))
57 |
58 | plt.scatter(x, test_y, color='#333333', label='y_true')
59 | plt.scatter(x, y_pred, color='red', label='y_pred')
60 | plt.grid()
61 | plt.legend()
62 | plt.savefig('result.png')
63 |
--------------------------------------------------------------------------------
/deep_layer/layers.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | from deep_layer.activations import activations
4 | from deep_layer.utils import _get_function
5 |
6 |
7 | class BaseLayer(object):
8 | def __init__(self,
9 | n_in: int,
10 | n_out: int,
11 | name: str = None,
12 | batch_input_shape: tuple = None):
13 | self.n_in: int = n_in
14 | self.n_out: int = n_out
15 | self.name = name
16 | self.batch_input_shape: tuple = batch_input_shape
17 |
18 | def compile(self):
19 | raise NotImplementedError('compile method should be implemented')
20 |
21 | def is_input_layer(self):
22 | raise NotImplementedError('is_input_layer method should be implemented')
23 |
24 | def feedforward(self, tensor: np.array):
25 | raise NotImplementedError('feedforward method should be implemented')
26 |
27 | def __str__(self):
28 | return f''
29 |
30 |
31 | class Layer(BaseLayer):
32 | def __init__(self,
33 | n_in: int,
34 | n_out: int,
35 | activation: str = 'linear',
36 | batch_input_shape: tuple = None,
37 | name: str = None):
38 | super(Layer, self).__init__(n_in, n_out,
39 | name=name,
40 | batch_input_shape=batch_input_shape)
41 |
42 | self.activation = _get_function(activations, activation, activation)
43 | self.dactivation = _get_function(activations, f'd{activation}', activation)
44 |
45 | self.w: np.array = None
46 | self.b: np.array = None
47 |
48 | self.update_w = 0
49 | self.update_b = 0
50 |
51 | # Shape
52 | self._shape = None
53 |
54 | def compile(self, batch=32):
55 | self.w = np.random.randn(self.n_in, self.n_out)
56 | self.b = np.zeros((batch, self.n_out))
57 |
58 | def zero_grad(self):
59 | self.update_w = 0
60 | self.update_b = 0
61 |
62 | def update(self):
63 | self.w += self.update_w
64 | self.b += self.update_b
65 |
66 | def get_shape(self):
67 | return self._shape
68 |
69 | def get_weights(self):
70 | return self.w, self.b
71 |
72 | def is_input_layer(self):
73 | return False
74 |
75 | def predict(self, tensor):
76 | h = tensor.dot(self.w) + self.b
77 | if self.activation:
78 | h = self.activation(h)
79 | return h
80 |
81 | def feedforward(self, tensor: np.array):
82 | y_pred = self.predict(tensor)
83 | return y_pred
84 |
85 |
86 | class InputLayer(Layer):
87 | def is_input_layer(self):
88 | return True
89 |
--------------------------------------------------------------------------------
/deep_layer/models.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | from deep_layer.exceptions import LayerNotFound
4 | from deep_layer.layers import Layer, BaseLayer
5 | from deep_layer.costs import losses
6 | from deep_layer.sample import Sample
7 | from deep_layer.utils import _get_function
8 |
9 |
10 | class BaseModel(object):
11 | def __init__(self):
12 | self.layers = list()
13 | self.x_train: np.array = None
14 | self.y_train: np.array = None
15 |
16 | self.batch_size = None
17 | self.optimizer = None
18 | self.loss = None
19 | self.dloss = None
20 |
21 | self.last_n_in = 0
22 | self.last_n_out = 0
23 |
24 | def compile(self, optimizer, loss: str, batch=32):
25 | if not self.layers:
26 | raise LayerNotFound('Layer is not found. you must add at least one layer to the model')
27 |
28 | self.batch_size = batch
29 | self.optimizer = optimizer
30 | self.loss = _get_function(losses, loss, loss)
31 | self.dloss = _get_function(losses, f'd{loss}', loss)
32 |
33 | for layer in self.layers:
34 | layer.compile(batch=batch)
35 |
36 | last_layer = self.layers[-1]
37 | self.last_n_in: int = last_layer.n_in
38 | self.last_n_out: int = last_layer.n_out
39 |
40 | def predict(self, x):
41 | n = len(x)
42 | sample = Sample(x, batch=self.batch_size)
43 |
44 | response = list()
45 | for tensor in sample.samples(train=False, shuffle=False):
46 | for layer in self.layers:
47 | tensor = layer.feedforward(tensor)
48 | response.append(tensor)
49 |
50 | response = np.array(response)
51 | response = response.reshape(-1, self.last_n_out)[:n]
52 | print('response:', response.shape)
53 | return response
54 |
55 | def feedforward(self, x: np.array):
56 | outputs = []
57 | tensor = x
58 | for layer in self.layers:
59 | tensor = layer.feedforward(tensor)
60 | outputs.append(tensor)
61 |
62 | return outputs
63 |
64 | def backpropagation(self,
65 | outputs: np.array,
66 | x: np.array,
67 | y: np.array,
68 | n_data: int = 2):
69 | outputs.insert(0, x)
70 | N = len(self.layers)
71 | deltas = []
72 | delta = None
73 | loss = np.nan
74 |
75 | for i in range(N, 0, -1):
76 | output: np.array = outputs[i]
77 | prev_output: np.array = outputs[i - 1]
78 | layer: Layer = self.layers[i - 1]
79 |
80 | if i == N:
81 | d1 = self.dloss(y, output)
82 | loss = np.sum(d1)
83 | else:
84 | layer2: Layer = self.layers[i]
85 | w2, b2 = layer2.get_weights()
86 | d1 = delta.dot(w2.T)
87 |
88 | delta = d1 * layer.dactivation(output)
89 | delta_w = prev_output.T.dot(delta)
90 | delta_b = delta
91 | deltas.append((delta_w, delta_b))
92 |
93 | layers = self.layers[::-1]
94 | for i in range(len(deltas) - 1, -1, -1):
95 | delta_w, delta_b = deltas[i]
96 | layer = layers[i]
97 |
98 | layer.zero_grad()
99 | layer = self.optimizer(layer, delta_w, delta_b, n_data)
100 | layer.update()
101 |
102 | return dict(loss=loss)
103 |
104 |
105 | class Model(BaseModel):
106 | def __init__(self):
107 | super(Model, self).__init__()
108 |
109 | def add(self, layer: BaseLayer):
110 | self.layers.append(layer)
111 |
112 | def fit(self,
113 | x_train: np.array,
114 | y_train: np.array,
115 | shuffle: bool = True,
116 | epochs=10):
117 |
118 | sample = Sample(x_train, y_train, batch=self.batch_size)
119 | N = len(x_train)
120 |
121 | for epoch in range(epochs):
122 | sample.shuffle()
123 |
124 | losses = list()
125 | for i, (sample_x, sample_y) in enumerate(sample.samples(n=30000, shuffle=True)):
126 | # Feedforward
127 | tensors = self.feedforward(sample_x)
128 |
129 | # Backpropagation
130 | result = self.backpropagation(tensors, sample_x, sample_y, n_data=N)
131 | losses.append(result['loss'])
132 |
133 | print(f'[Epoch {epoch}] loss: {np.mean(losses)}')
134 |
--------------------------------------------------------------------------------
/examples/insurance_prediction/insurance.csv:
--------------------------------------------------------------------------------
1 | age,sex,bmi,children,smoker,region,expenses
19,female,27.9,0,yes,southwest,16884.92
18,male,33.8,1,no,southeast,1725.55
28,male,33.0,3,no,southeast,4449.46
33,male,22.7,0,no,northwest,21984.47
32,male,28.9,0,no,northwest,3866.86
31,female,25.7,0,no,southeast,3756.62
46,female,33.4,1,no,southeast,8240.59
37,female,27.7,3,no,northwest,7281.51
37,male,29.8,2,no,northeast,6406.41
60,female,25.8,0,no,northwest,28923.14
25,male,26.2,0,no,northeast,2721.32
62,female,26.3,0,yes,southeast,27808.73
23,male,34.4,0,no,southwest,1826.84
56,female,39.8,0,no,southeast,11090.72
27,male,42.1,0,yes,southeast,39611.76
19,male,24.6,1,no,southwest,1837.24
52,female,30.8,1,no,northeast,10797.34
23,male,23.8,0,no,northeast,2395.17
56,male,40.3,0,no,southwest,10602.39
30,male,35.3,0,yes,southwest,36837.47
60,female,36.0,0,no,northeast,13228.85
30,female,32.4,1,no,southwest,4149.74
18,male,34.1,0,no,southeast,1137.01
34,female,31.9,1,yes,northeast,37701.88
37,male,28.0,2,no,northwest,6203.9
59,female,27.7,3,no,southeast,14001.13
63,female,23.1,0,no,northeast,14451.84
55,female,32.8,2,no,northwest,12268.63
23,male,17.4,1,no,northwest,2775.19
31,male,36.3,2,yes,southwest,38711
22,male,35.6,0,yes,southwest,35585.58
18,female,26.3,0,no,northeast,2198.19
19,female,28.6,5,no,southwest,4687.8
63,male,28.3,0,no,northwest,13770.1
28,male,36.4,1,yes,southwest,51194.56
19,male,20.4,0,no,northwest,1625.43
62,female,33.0,3,no,northwest,15612.19
26,male,20.8,0,no,southwest,2302.3
35,male,36.7,1,yes,northeast,39774.28
60,male,39.9,0,yes,southwest,48173.36
24,female,26.6,0,no,northeast,3046.06
31,female,36.6,2,no,southeast,4949.76
41,male,21.8,1,no,southeast,6272.48
37,female,30.8,2,no,southeast,6313.76
38,male,37.1,1,no,northeast,6079.67
55,male,37.3,0,no,southwest,20630.28
18,female,38.7,2,no,northeast,3393.36
28,female,34.8,0,no,northwest,3556.92
60,female,24.5,0,no,southeast,12629.9
36,male,35.2,1,yes,southeast,38709.18
18,female,35.6,0,no,northeast,2211.13
21,female,33.6,2,no,northwest,3579.83
48,male,28.0,1,yes,southwest,23568.27
36,male,34.4,0,yes,southeast,37742.58
40,female,28.7,3,no,northwest,8059.68
58,male,37.0,2,yes,northwest,47496.49
58,female,31.8,2,no,northeast,13607.37
18,male,31.7,2,yes,southeast,34303.17
53,female,22.9,1,yes,southeast,23244.79
34,female,37.3,2,no,northwest,5989.52
43,male,27.4,3,no,northeast,8606.22
25,male,33.7,4,no,southeast,4504.66
64,male,24.7,1,no,northwest,30166.62
28,female,25.9,1,no,northwest,4133.64
20,female,22.4,0,yes,northwest,14711.74
19,female,28.9,0,no,southwest,1743.21
61,female,39.1,2,no,southwest,14235.07
40,male,26.3,1,no,northwest,6389.38
40,female,36.2,0,no,southeast,5920.1
28,male,24.0,3,yes,southeast,17663.14
27,female,24.8,0,yes,southeast,16577.78
31,male,28.5,5,no,northeast,6799.46
53,female,28.1,3,no,southwest,11741.73
58,male,32.0,1,no,southeast,11946.63
44,male,27.4,2,no,southwest,7726.85
57,male,34.0,0,no,northwest,11356.66
29,female,29.6,1,no,southeast,3947.41
21,male,35.5,0,no,southeast,1532.47
22,female,39.8,0,no,northeast,2755.02
41,female,33.0,0,no,northwest,6571.02
31,male,26.9,1,no,northeast,4441.21
45,female,38.3,0,no,northeast,7935.29
22,male,37.6,1,yes,southeast,37165.16
48,female,41.2,4,no,northwest,11033.66
37,female,34.8,2,yes,southwest,39836.52
45,male,22.9,2,yes,northwest,21098.55
57,female,31.2,0,yes,northwest,43578.94
56,female,27.2,0,no,southwest,11073.18
46,female,27.7,0,no,northwest,8026.67
55,female,27.0,0,no,northwest,11082.58
21,female,39.5,0,no,southeast,2026.97
53,female,24.8,1,no,northwest,10942.13
59,male,29.8,3,yes,northeast,30184.94
35,male,34.8,2,no,northwest,5729.01
64,female,31.3,2,yes,southwest,47291.06
28,female,37.6,1,no,southeast,3766.88
54,female,30.8,3,no,southwest,12105.32
55,male,38.3,0,no,southeast,10226.28
56,male,20.0,0,yes,northeast,22412.65
38,male,19.3,0,yes,southwest,15820.7
41,female,31.6,0,no,southwest,6186.13
30,male,25.5,0,no,northeast,3645.09
18,female,30.1,0,no,northeast,21344.85
61,female,29.9,3,yes,southeast,30942.19
34,female,27.5,1,no,southwest,5003.85
20,male,28.0,1,yes,northwest,17560.38
19,female,28.4,1,no,southwest,2331.52
26,male,30.9,2,no,northwest,3877.3
29,male,27.9,0,no,southeast,2867.12
63,male,35.1,0,yes,southeast,47055.53
54,male,33.6,1,no,northwest,10825.25
55,female,29.7,2,no,southwest,11881.36
37,male,30.8,0,no,southwest,4646.76
21,female,35.7,0,no,northwest,2404.73
52,male,32.2,3,no,northeast,11488.32
60,male,28.6,0,no,northeast,30260
58,male,49.1,0,no,southeast,11381.33
29,female,27.9,1,yes,southeast,19107.78
49,female,27.2,0,no,southeast,8601.33
37,female,23.4,2,no,northwest,6686.43
44,male,37.1,2,no,southwest,7740.34
18,male,23.8,0,no,northeast,1705.62
20,female,29.0,0,no,northwest,2257.48
44,male,31.4,1,yes,northeast,39556.49
47,female,33.9,3,no,northwest,10115.01
26,female,28.8,0,no,northeast,3385.4
19,female,28.3,0,yes,southwest,17081.08
52,female,37.4,0,no,southwest,9634.54
32,female,17.8,2,yes,northwest,32734.19
38,male,34.7,2,no,southwest,6082.41
59,female,26.5,0,no,northeast,12815.44
61,female,22.0,0,no,northeast,13616.36
53,female,35.9,2,no,southwest,11163.57
19,male,25.6,0,no,northwest,1632.56
20,female,28.8,0,no,northeast,2457.21
22,female,28.1,0,no,southeast,2155.68
19,male,34.1,0,no,southwest,1261.44
22,male,25.2,0,no,northwest,2045.69
54,female,31.9,3,no,southeast,27322.73
22,female,36.0,0,no,southwest,2166.73
34,male,22.4,2,no,northeast,27375.9
26,male,32.5,1,no,northeast,3490.55
34,male,25.3,2,yes,southeast,18972.5
29,male,29.7,2,no,northwest,18157.88
30,male,28.7,3,yes,northwest,20745.99
29,female,38.8,3,no,southeast,5138.26
46,male,30.5,3,yes,northwest,40720.55
51,female,37.7,1,no,southeast,9877.61
53,female,37.4,1,no,northwest,10959.69
19,male,28.4,1,no,southwest,1842.52
35,male,24.1,1,no,northwest,5125.22
48,male,29.7,0,no,southeast,7789.64
32,female,37.1,3,no,northeast,6334.34
42,female,23.4,0,yes,northeast,19964.75
40,female,25.5,1,no,northeast,7077.19
44,male,39.5,0,no,northwest,6948.7
48,male,24.4,0,yes,southeast,21223.68
18,male,25.2,0,yes,northeast,15518.18
30,male,35.5,0,yes,southeast,36950.26
50,female,27.8,3,no,southeast,19749.38
42,female,26.6,0,yes,northwest,21348.71
18,female,36.9,0,yes,southeast,36149.48
54,male,39.6,1,no,southwest,10450.55
32,female,29.8,2,no,southwest,5152.13
37,male,29.6,0,no,northwest,5028.15
47,male,28.2,4,no,northeast,10407.09
20,female,37.0,5,no,southwest,4830.63
32,female,33.2,3,no,northwest,6128.8
19,female,31.8,1,no,northwest,2719.28
27,male,18.9,3,no,northeast,4827.9
63,male,41.5,0,no,southeast,13405.39
49,male,30.3,0,no,southwest,8116.68
18,male,16.0,0,no,northeast,1694.8
35,female,34.8,1,no,southwest,5246.05
24,female,33.3,0,no,northwest,2855.44
63,female,37.7,0,yes,southwest,48824.45
38,male,27.8,2,no,northwest,6455.86
54,male,29.2,1,no,southwest,10436.1
46,female,28.9,2,no,southwest,8823.28
41,female,33.2,3,no,northeast,8538.29
58,male,28.6,0,no,northwest,11735.88
18,female,38.3,0,no,southeast,1631.82
22,male,20.0,3,no,northeast,4005.42
44,female,26.4,0,no,northwest,7419.48
44,male,30.7,2,no,southeast,7731.43
36,male,41.9,3,yes,northeast,43753.34
26,female,29.9,2,no,southeast,3981.98
30,female,30.9,3,no,southwest,5325.65
41,female,32.2,1,no,southwest,6775.96
29,female,32.1,2,no,northwest,4922.92
61,male,31.6,0,no,southeast,12557.61
36,female,26.2,0,no,southwest,4883.87
25,male,25.7,0,no,southeast,2137.65
56,female,26.6,1,no,northwest,12044.34
18,male,34.4,0,no,southeast,1137.47
19,male,30.6,0,no,northwest,1639.56
39,female,32.8,0,no,southwest,5649.72
45,female,28.6,2,no,southeast,8516.83
51,female,18.1,0,no,northwest,9644.25
64,female,39.3,0,no,northeast,14901.52
19,female,32.1,0,no,northwest,2130.68
48,female,32.2,1,no,southeast,8871.15
60,female,24.0,0,no,northwest,13012.21
27,female,36.1,0,yes,southeast,37133.9
46,male,22.3,0,no,southwest,7147.11
28,female,28.9,1,no,northeast,4337.74
59,male,26.4,0,no,southeast,11743.3
35,male,27.7,2,yes,northeast,20984.09
63,female,31.8,0,no,southwest,13880.95
40,male,41.2,1,no,northeast,6610.11
20,male,33.0,1,no,southwest,1980.07
40,male,30.9,4,no,northwest,8162.72
24,male,28.5,2,no,northwest,3537.7
34,female,26.7,1,no,southeast,5002.78
45,female,30.9,2,no,southwest,8520.03
41,female,37.1,2,no,southwest,7371.77
53,female,26.6,0,no,northwest,10355.64
27,male,23.1,0,no,southeast,2483.74
26,female,29.9,1,no,southeast,3392.98
24,female,23.2,0,no,southeast,25081.77
34,female,33.7,1,no,southwest,5012.47
53,female,33.3,0,no,northeast,10564.88
32,male,30.8,3,no,southwest,5253.52
19,male,34.8,0,yes,southwest,34779.62
42,male,24.6,0,yes,southeast,19515.54
55,male,33.9,3,no,southeast,11987.17
28,male,38.1,0,no,southeast,2689.5
58,female,41.9,0,no,southeast,24227.34
41,female,31.6,1,no,northeast,7358.18
47,male,25.5,2,no,northeast,9225.26
42,female,36.2,1,no,northwest,7443.64
59,female,27.8,3,no,southeast,14001.29
19,female,17.8,0,no,southwest,1727.79
59,male,27.5,1,no,southwest,12333.83
39,male,24.5,2,no,northwest,6710.19
40,female,22.2,2,yes,southeast,19444.27
18,female,26.7,0,no,southeast,1615.77
31,male,38.4,2,no,southeast,4463.21
19,male,29.1,0,yes,northwest,17352.68
44,male,38.1,1,no,southeast,7152.67
23,female,36.7,2,yes,northeast,38511.63
33,female,22.1,1,no,northeast,5354.07
55,female,26.8,1,no,southwest,35160.13
40,male,35.3,3,no,southwest,7196.87
63,female,27.7,0,yes,northeast,29523.17
54,male,30.0,0,no,northwest,24476.48
60,female,38.1,0,no,southeast,12648.7
24,male,35.9,0,no,southeast,1986.93
19,male,20.9,1,no,southwest,1832.09
29,male,29.0,1,no,northeast,4040.56
18,male,17.3,2,yes,northeast,12829.46
63,female,32.2,2,yes,southwest,47305.31
54,male,34.2,2,yes,southeast,44260.75
27,male,30.3,3,no,southwest,4260.74
50,male,31.8,0,yes,northeast,41097.16
55,female,25.4,3,no,northeast,13047.33
56,male,33.6,0,yes,northwest,43921.18
38,female,40.2,0,no,southeast,5400.98
51,male,24.4,4,no,northwest,11520.1
19,male,31.9,0,yes,northwest,33750.29
58,female,25.2,0,no,southwest,11837.16
20,female,26.8,1,yes,southeast,17085.27
52,male,24.3,3,yes,northeast,24869.84
19,male,37.0,0,yes,northwest,36219.41
53,female,38.1,3,no,southeast,20463
46,male,42.4,3,yes,southeast,46151.12
40,male,19.8,1,yes,southeast,17179.52
59,female,32.4,3,no,northeast,14590.63
45,male,30.2,1,no,southwest,7441.05
49,male,25.8,1,no,northeast,9282.48
18,male,29.4,1,no,southeast,1719.44
50,male,34.2,2,yes,southwest,42856.84
41,male,37.1,2,no,northwest,7265.7
50,male,27.5,1,no,northeast,9617.66
25,male,27.6,0,no,northwest,2523.17
47,female,26.6,2,no,northeast,9715.84
19,male,20.6,2,no,northwest,2803.7
22,female,24.3,0,no,southwest,2150.47
59,male,31.8,2,no,southeast,12928.79
51,female,21.6,1,no,southeast,9855.13
40,female,28.1,1,yes,northeast,22331.57
54,male,40.6,3,yes,northeast,48549.18
30,male,27.6,1,no,northeast,4237.13
55,female,32.4,1,no,northeast,11879.1
52,female,31.2,0,no,southwest,9625.92
46,male,26.6,1,no,southeast,7742.11
46,female,48.1,2,no,northeast,9432.93
63,female,26.2,0,no,northwest,14256.19
59,female,36.8,1,yes,northeast,47896.79
52,male,26.4,3,no,southeast,25992.82
28,female,33.4,0,no,southwest,3172.02
29,male,29.6,1,no,northeast,20277.81
25,male,45.5,2,yes,southeast,42112.24
22,female,28.8,0,no,southeast,2156.75
25,male,26.8,3,no,southwest,3906.13
18,male,23.0,0,no,northeast,1704.57
19,male,27.7,0,yes,southwest,16297.85
47,male,25.4,1,yes,southeast,21978.68
31,male,34.4,3,yes,northwest,38746.36
48,female,28.9,1,no,northwest,9249.5
36,male,27.6,3,no,northeast,6746.74
53,female,22.6,3,yes,northeast,24873.38
56,female,37.5,2,no,southeast,12265.51
28,female,33.0,2,no,southeast,4349.46
57,female,38.0,2,no,southwest,12646.21
29,male,33.3,2,no,northwest,19442.35
28,female,27.5,2,no,southwest,20177.67
30,female,33.3,1,no,southeast,4151.03
58,male,34.9,0,no,northeast,11944.59
41,female,33.1,2,no,northwest,7749.16
50,male,26.6,0,no,southwest,8444.47
19,female,24.7,0,no,southwest,1737.38
43,male,36.0,3,yes,southeast,42124.52
49,male,35.9,0,no,southeast,8124.41
27,female,31.4,0,yes,southwest,34838.87
52,male,33.3,0,no,northeast,9722.77
50,male,32.2,0,no,northwest,8835.26
54,male,32.8,0,no,northeast,10435.07
44,female,27.6,0,no,northwest,7421.19
32,male,37.3,1,no,northeast,4667.61
34,male,25.3,1,no,northwest,4894.75
26,female,29.6,4,no,northeast,24671.66
34,male,30.8,0,yes,southwest,35491.64
57,male,40.9,0,no,northeast,11566.3
29,male,27.2,0,no,southwest,2866.09
40,male,34.1,1,no,northeast,6600.21
27,female,23.2,1,no,southeast,3561.89
45,male,36.5,2,yes,northwest,42760.5
64,female,33.8,1,yes,southwest,47928.03
52,male,36.7,0,no,southwest,9144.57
61,female,36.4,1,yes,northeast,48517.56
52,male,27.4,0,yes,northwest,24393.62
61,female,31.2,0,no,northwest,13429.04
56,female,28.8,0,no,northeast,11658.38
43,female,35.7,2,no,northeast,19144.58
64,male,34.5,0,no,southwest,13822.8
60,male,25.7,0,no,southeast,12142.58
62,male,27.6,1,no,northwest,13937.67
50,male,32.3,1,yes,northeast,41919.1
46,female,27.7,1,no,southeast,8232.64
24,female,27.6,0,no,southwest,18955.22
62,male,30.0,0,no,northwest,13352.1
60,female,27.6,0,no,northeast,13217.09
63,male,36.8,0,no,northeast,13981.85
49,female,41.5,4,no,southeast,10977.21
34,female,29.3,3,no,southeast,6184.3
33,male,35.8,2,no,southeast,4890
46,male,33.3,1,no,northeast,8334.46
36,female,29.9,1,no,southeast,5478.04
19,male,27.8,0,no,northwest,1635.73
57,female,23.2,0,no,northwest,11830.61
50,female,25.6,0,no,southwest,8932.08
30,female,27.7,0,no,southwest,3554.2
33,male,35.2,0,no,northeast,12404.88
18,female,38.3,0,no,southeast,14133.04
46,male,27.6,0,no,southwest,24603.05
46,male,43.9,3,no,southeast,8944.12
47,male,29.8,3,no,northwest,9620.33
23,male,41.9,0,no,southeast,1837.28
18,female,20.8,0,no,southeast,1607.51
48,female,32.3,2,no,northeast,10043.25
35,male,30.5,1,no,southwest,4751.07
19,female,21.7,0,yes,southwest,13844.51
21,female,26.4,1,no,southwest,2597.78
21,female,21.9,2,no,southeast,3180.51
49,female,30.8,1,no,northeast,9778.35
56,female,32.3,3,no,northeast,13430.27
42,female,25.0,2,no,northwest,8017.06
44,male,32.0,2,no,northwest,8116.27
18,male,30.4,3,no,northeast,3481.87
61,female,21.1,0,no,northwest,13415.04
57,female,22.2,0,no,northeast,12029.29
42,female,33.2,1,no,northeast,7639.42
26,male,32.9,2,yes,southwest,36085.22
20,male,33.3,0,no,southeast,1391.53
23,female,28.3,0,yes,northwest,18033.97
39,female,24.9,3,yes,northeast,21659.93
24,male,40.2,0,yes,southeast,38126.25
64,female,30.1,3,no,northwest,16455.71
62,male,31.5,1,no,southeast,27000.98
27,female,18.0,2,yes,northeast,15006.58
55,male,30.7,0,yes,northeast,42303.69
55,male,33.0,0,no,southeast,20781.49
35,female,43.3,2,no,southeast,5846.92
44,male,22.1,2,no,northeast,8302.54
19,male,34.4,0,no,southwest,1261.86
58,female,39.1,0,no,southeast,11856.41
50,male,25.4,2,no,northwest,30284.64
26,female,22.6,0,no,northwest,3176.82
24,female,30.2,3,no,northwest,4618.08
48,male,35.6,4,no,northeast,10736.87
19,female,37.4,0,no,northwest,2138.07
48,male,31.4,1,no,northeast,8964.06
49,male,31.4,1,no,northeast,9290.14
46,female,32.3,2,no,northeast,9411.01
46,male,19.9,0,no,northwest,7526.71
43,female,34.4,3,no,southwest,8522
21,male,31.0,0,no,southeast,16586.5
64,male,25.6,2,no,southwest,14988.43
18,female,38.2,0,no,southeast,1631.67
51,female,20.6,0,no,southwest,9264.8
47,male,47.5,1,no,southeast,8083.92
64,female,33.0,0,no,northwest,14692.67
49,male,32.3,3,no,northwest,10269.46
31,male,20.4,0,no,southwest,3260.2
52,female,38.4,2,no,northeast,11396.9
33,female,24.3,0,no,southeast,4185.1
47,female,23.6,1,no,southwest,8539.67
38,male,21.1,3,no,southeast,6652.53
32,male,30.0,1,no,southeast,4074.45
19,male,17.5,0,no,northwest,1621.34
44,female,20.2,1,yes,northeast,19594.81
26,female,17.2,2,yes,northeast,14455.64
25,male,23.9,5,no,southwest,5080.1
19,female,35.2,0,no,northwest,2134.9
43,female,35.6,1,no,southeast,7345.73
52,male,34.1,0,no,southeast,9140.95
36,female,22.6,2,yes,southwest,18608.26
64,male,39.2,1,no,southeast,14418.28
63,female,27.0,0,yes,northwest,28950.47
64,male,33.9,0,yes,southeast,46889.26
61,male,35.9,0,yes,southeast,46599.11
40,male,32.8,1,yes,northeast,39125.33
25,male,30.6,0,no,northeast,2727.4
48,male,30.2,2,no,southwest,8968.33
45,male,24.3,5,no,southeast,9788.87
38,female,27.3,1,no,northeast,6555.07
18,female,29.2,0,no,northeast,7323.73
21,female,16.8,1,no,northeast,3167.46
27,female,30.4,3,no,northwest,18804.75
19,male,33.1,0,no,southwest,23082.96
29,female,20.2,2,no,northwest,4906.41
42,male,26.9,0,no,southwest,5969.72
60,female,30.5,0,no,southwest,12638.2
31,male,28.6,1,no,northwest,4243.59
60,male,33.1,3,no,southeast,13919.82
22,male,31.7,0,no,northeast,2254.8
35,male,28.9,3,no,southwest,5926.85
52,female,46.8,5,no,southeast,12592.53
26,male,29.5,0,no,northeast,2897.32
31,female,32.7,1,no,northwest,4738.27
33,female,33.5,0,yes,southwest,37079.37
18,male,43.0,0,no,southeast,1149.4
59,female,36.5,1,no,southeast,28287.9
56,male,26.7,1,yes,northwest,26109.33
45,female,33.1,0,no,southwest,7345.08
60,male,29.6,0,no,northeast,12731
56,female,25.7,0,no,northwest,11454.02
40,female,29.6,0,no,southwest,5910.94
35,male,38.6,1,no,southwest,4762.33
39,male,29.6,4,no,southwest,7512.27
30,male,24.1,1,no,northwest,4032.24
24,male,23.4,0,no,southwest,1969.61
20,male,29.7,0,no,northwest,1769.53
32,male,46.5,2,no,southeast,4686.39
59,male,37.4,0,no,southwest,21797
55,female,30.1,2,no,southeast,11881.97
57,female,30.5,0,no,northwest,11840.78
56,male,39.6,0,no,southwest,10601.41
40,female,33.0,3,no,southeast,7682.67
49,female,36.6,3,no,southeast,10381.48
42,male,30.0,0,yes,southwest,22144.03
62,female,38.1,2,no,northeast,15230.32
56,male,25.9,0,no,northeast,11165.42
19,male,25.2,0,no,northwest,1632.04
30,female,28.4,1,yes,southeast,19521.97
60,female,28.7,1,no,southwest,13224.69
56,female,33.8,2,no,northwest,12643.38
28,female,24.3,1,no,northeast,23288.93
18,female,24.1,1,no,southeast,2201.1
27,male,32.7,0,no,southeast,2497.04
18,female,30.1,0,no,northeast,2203.47
19,female,29.8,0,no,southwest,1744.47
47,female,33.3,0,no,northeast,20878.78
54,male,25.1,3,yes,southwest,25382.3
61,male,28.3,1,yes,northwest,28868.66
24,male,28.5,0,yes,northeast,35147.53
25,male,35.6,0,no,northwest,2534.39
21,male,36.9,0,no,southeast,1534.3
23,male,32.6,0,no,southeast,1824.29
63,male,41.3,3,no,northwest,15555.19
49,male,37.5,2,no,southeast,9304.7
18,female,31.4,0,no,southeast,1622.19
51,female,39.5,1,no,southwest,9880.07
48,male,34.3,3,no,southwest,9563.03
31,female,31.1,0,no,northeast,4347.02
54,female,21.5,3,no,northwest,12475.35
19,male,28.7,0,no,southwest,1253.94
44,female,38.1,0,yes,southeast,48885.14
53,male,31.2,1,no,northwest,10461.98
19,female,32.9,0,no,southwest,1748.77
61,female,25.1,0,no,southeast,24513.09
18,female,25.1,0,no,northeast,2196.47
61,male,43.4,0,no,southwest,12574.05
21,male,25.7,4,yes,southwest,17942.11
20,male,27.9,0,no,northeast,1967.02
31,female,23.6,2,no,southwest,4931.65
45,male,28.7,2,no,southwest,8027.97
44,female,24.0,2,no,southeast,8211.1
62,female,39.2,0,no,southwest,13470.86
29,male,34.4,0,yes,southwest,36197.7
43,male,26.0,0,no,northeast,6837.37
51,male,23.2,1,yes,southeast,22218.11
19,male,30.3,0,yes,southeast,32548.34
38,female,28.9,1,no,southeast,5974.38
37,male,30.9,3,no,northwest,6796.86
22,male,31.4,1,no,northwest,2643.27
21,male,23.8,2,no,northwest,3077.1
24,female,25.3,0,no,northeast,3044.21
57,female,28.7,0,no,southwest,11455.28
56,male,32.1,1,no,northeast,11763
27,male,33.7,0,no,southeast,2498.41
51,male,22.4,0,no,northeast,9361.33
19,male,30.4,0,no,southwest,1256.3
39,male,28.3,1,yes,southwest,21082.16
58,male,35.7,0,no,southwest,11362.76
20,male,35.3,1,no,southeast,27724.29
45,male,30.5,2,no,northwest,8413.46
35,female,31.0,1,no,southwest,5240.77
31,male,30.9,0,no,northeast,3857.76
50,female,27.4,0,no,northeast,25656.58
32,female,44.2,0,no,southeast,3994.18
51,female,33.9,0,no,northeast,9866.3
38,female,37.7,0,no,southeast,5397.62
42,male,26.1,1,yes,southeast,38245.59
18,female,33.9,0,no,southeast,11482.63
19,female,30.6,2,no,northwest,24059.68
51,female,25.8,1,no,southwest,9861.03
46,male,39.4,1,no,northeast,8342.91
18,male,25.5,0,no,northeast,1708
57,male,42.1,1,yes,southeast,48675.52
62,female,31.7,0,no,northeast,14043.48
59,male,29.7,2,no,southeast,12925.89
37,male,36.2,0,no,southeast,19214.71
64,male,40.5,0,no,southeast,13831.12
38,male,28.0,1,no,northeast,6067.13
33,female,38.9,3,no,southwest,5972.38
46,female,30.2,2,no,southwest,8825.09
46,female,28.1,1,no,southeast,8233.1
53,male,31.4,0,no,southeast,27346.04
34,female,38.0,3,no,southwest,6196.45
20,female,31.8,2,no,southeast,3056.39
63,female,36.3,0,no,southeast,13887.2
54,female,47.4,0,yes,southeast,63770.43
54,male,30.2,0,no,northwest,10231.5
49,male,25.8,2,yes,northwest,23807.24
28,male,35.4,0,no,northeast,3268.85
54,female,46.7,2,no,southwest,11538.42
25,female,28.6,0,no,northeast,3213.62
43,female,46.2,0,yes,southeast,45863.21
63,male,30.8,0,no,southwest,13390.56
32,female,28.9,0,no,southeast,3972.92
62,male,21.4,0,no,southwest,12957.12
52,female,31.7,2,no,northwest,11187.66
25,female,41.3,0,no,northeast,17878.9
28,male,23.8,2,no,southwest,3847.67
46,male,33.4,1,no,northeast,8334.59
34,male,34.2,0,no,southeast,3935.18
35,female,34.1,3,yes,northwest,39983.43
19,male,35.5,0,no,northwest,1646.43
46,female,20.0,2,no,northwest,9193.84
54,female,32.7,0,no,northeast,10923.93
27,male,30.5,0,no,southwest,2494.02
50,male,44.8,1,no,southeast,9058.73
18,female,32.1,2,no,southeast,2801.26
19,female,30.5,0,no,northwest,2128.43
38,female,40.6,1,no,northwest,6373.56
41,male,30.6,2,no,northwest,7256.72
49,female,31.9,5,no,southwest,11552.9
48,male,40.6,2,yes,northwest,45702.02
31,female,29.1,0,no,southwest,3761.29
18,female,37.3,1,no,southeast,2219.45
30,female,43.1,2,no,southeast,4753.64
62,female,36.9,1,no,northeast,31620
57,female,34.3,2,no,northeast,13224.06
58,female,27.2,0,no,northwest,12222.9
22,male,26.8,0,no,southeast,1665
31,female,38.1,1,yes,northeast,58571.07
52,male,30.2,1,no,southwest,9724.53
25,female,23.5,0,no,northeast,3206.49
59,male,25.5,1,no,northeast,12913.99
19,male,30.6,0,no,northwest,1639.56
39,male,45.4,2,no,southeast,6356.27
32,female,23.7,1,no,southeast,17626.24
19,male,20.7,0,no,southwest,1242.82
33,female,28.3,1,no,southeast,4779.6
21,male,20.2,3,no,northeast,3861.21
34,female,30.2,1,yes,northwest,43943.88
61,female,35.9,0,no,northeast,13635.64
38,female,30.7,1,no,southeast,5976.83
58,female,29.0,0,no,southwest,11842.44
47,male,19.6,1,no,northwest,8428.07
20,male,31.1,2,no,southeast,2566.47
21,female,21.9,1,yes,northeast,15359.1
41,male,40.3,0,no,southeast,5709.16
46,female,33.7,1,no,northeast,8823.99
42,female,29.5,2,no,southeast,7640.31
34,female,33.3,1,no,northeast,5594.85
43,male,32.6,2,no,southwest,7441.5
52,female,37.5,2,no,northwest,33471.97
18,female,39.2,0,no,southeast,1633.04
51,male,31.6,0,no,northwest,9174.14
56,female,25.3,0,no,southwest,11070.54
64,female,39.1,3,no,southeast,16085.13
19,female,28.3,0,yes,northwest,17468.98
51,female,34.1,0,no,southeast,9283.56
27,female,25.2,0,no,northeast,3558.62
59,female,23.7,0,yes,northwest,25678.78
28,male,27.0,2,no,northeast,4435.09
30,male,37.8,2,yes,southwest,39241.44
47,female,29.4,1,no,southeast,8547.69
38,female,34.8,2,no,southwest,6571.54
18,female,33.2,0,no,northeast,2207.7
34,female,19.0,3,no,northeast,6753.04
20,female,33.0,0,no,southeast,1880.07
47,female,36.6,1,yes,southeast,42969.85
56,female,28.6,0,no,northeast,11658.12
49,male,25.6,2,yes,southwest,23306.55
19,female,33.1,0,yes,southeast,34439.86
55,female,37.1,0,no,southwest,10713.64
30,male,31.4,1,no,southwest,3659.35
37,male,34.1,4,yes,southwest,40182.25
49,female,21.3,1,no,southwest,9182.17
18,male,33.5,0,yes,northeast,34617.84
59,male,28.8,0,no,northwest,12129.61
29,female,26.0,0,no,northwest,3736.46
36,male,28.9,3,no,northeast,6748.59
33,male,42.5,1,no,southeast,11326.71
58,male,38.0,0,no,southwest,11365.95
44,female,39.0,0,yes,northwest,42983.46
53,male,36.1,1,no,southwest,10085.85
24,male,29.3,0,no,southwest,1977.82
29,female,35.5,0,no,southeast,3366.67
40,male,22.7,2,no,northeast,7173.36
51,male,39.7,1,no,southwest,9391.35
64,male,38.2,0,no,northeast,14410.93
19,female,24.5,1,no,northwest,2709.11
35,female,38.1,2,no,northeast,24915.05
39,male,26.4,0,yes,northeast,20149.32
56,male,33.7,4,no,southeast,12949.16
33,male,42.4,5,no,southwest,6666.24
42,male,28.3,3,yes,northwest,32787.46
61,male,33.9,0,no,northeast,13143.86
23,female,35.0,3,no,northwest,4466.62
43,male,35.3,2,no,southeast,18806.15
48,male,30.8,3,no,northeast,10141.14
39,male,26.2,1,no,northwest,6123.57
40,female,23.4,3,no,northeast,8252.28
18,male,28.5,0,no,northeast,1712.23
58,female,33.0,0,no,northeast,12430.95
49,female,42.7,2,no,southeast,9800.89
53,female,39.6,1,no,southeast,10579.71
48,female,31.1,0,no,southeast,8280.62
45,female,36.3,2,no,southeast,8527.53
59,female,35.2,0,no,southeast,12244.53
52,female,25.3,2,yes,southeast,24667.42
26,female,42.4,1,no,southwest,3410.32
27,male,33.2,2,no,northwest,4058.71
48,female,35.9,1,no,northeast,26392.26
57,female,28.8,4,no,northeast,14394.4
37,male,46.5,3,no,southeast,6435.62
57,female,24.0,1,no,southeast,22192.44
32,female,31.5,1,no,northeast,5148.55
18,male,33.7,0,no,southeast,1136.4
64,female,23.0,0,yes,southeast,27037.91
43,male,38.1,2,yes,southeast,42560.43
49,male,28.7,1,no,southwest,8703.46
40,female,32.8,2,yes,northwest,40003.33
62,male,32.0,0,yes,northeast,45710.21
40,female,29.8,1,no,southeast,6500.24
30,male,31.6,3,no,southeast,4837.58
29,female,31.2,0,no,northeast,3943.6
36,male,29.7,0,no,southeast,4399.73
41,female,31.0,0,no,southeast,6185.32
44,female,43.9,2,yes,southeast,46200.99
45,male,21.4,0,no,northwest,7222.79
55,female,40.8,3,no,southeast,12485.8
60,male,31.4,3,yes,northwest,46130.53
56,male,36.1,3,no,southwest,12363.55
49,female,23.2,2,no,northwest,10156.78
21,female,17.4,1,no,southwest,2585.27
19,male,20.3,0,no,southwest,1242.26
39,male,35.3,2,yes,southwest,40103.89
53,male,24.3,0,no,northwest,9863.47
33,female,18.5,1,no,southwest,4766.02
53,male,26.4,2,no,northeast,11244.38
42,male,26.1,2,no,northeast,7729.65
40,male,41.7,0,no,southeast,5438.75
47,female,24.1,1,no,southwest,26236.58
27,male,31.1,1,yes,southeast,34806.47
21,male,27.4,0,no,northeast,2104.11
47,male,36.2,1,no,southwest,8068.19
20,male,32.4,1,no,northwest,2362.23
24,male,23.7,0,no,northwest,2352.97
27,female,34.8,1,no,southwest,3578
26,female,40.2,0,no,northwest,3201.25
53,female,32.3,2,no,northeast,29186.48
41,male,35.8,1,yes,southeast,40273.65
56,male,33.7,0,no,northwest,10976.25
23,female,39.3,2,no,southeast,3500.61
21,female,34.9,0,no,southeast,2020.55
50,female,44.7,0,no,northeast,9541.7
53,male,41.5,0,no,southeast,9504.31
34,female,26.4,1,no,northwest,5385.34
47,female,29.5,1,no,northwest,8930.93
33,female,32.9,2,no,southwest,5375.04
51,female,38.1,0,yes,southeast,44400.41
49,male,28.7,3,no,northwest,10264.44
31,female,30.5,3,no,northeast,6113.23
36,female,27.7,0,no,northeast,5469.01
18,male,35.2,1,no,southeast,1727.54
50,female,23.5,2,no,southeast,10107.22
43,female,30.7,2,no,northwest,8310.84
20,male,40.5,0,no,northeast,1984.45
24,female,22.6,0,no,southwest,2457.5
60,male,28.9,0,no,southwest,12146.97
49,female,22.6,1,no,northwest,9566.99
60,male,24.3,1,no,northwest,13112.6
51,female,36.7,2,no,northwest,10848.13
58,female,33.4,0,no,northwest,12231.61
51,female,40.7,0,no,northeast,9875.68
53,male,36.6,3,no,southwest,11264.54
62,male,37.4,0,no,southwest,12979.36
19,male,35.4,0,no,southwest,1263.25
50,female,27.1,1,no,northeast,10106.13
30,female,39.1,3,yes,southeast,40932.43
41,male,28.4,1,no,northwest,6664.69
29,female,21.8,1,yes,northeast,16657.72
18,female,40.3,0,no,northeast,2217.6
41,female,36.1,1,no,southeast,6781.35
35,male,24.4,3,yes,southeast,19362
53,male,21.4,1,no,southwest,10065.41
24,female,30.1,3,no,southwest,4234.93
48,female,27.3,1,no,northeast,9447.25
59,female,32.1,3,no,southwest,14007.22
49,female,34.8,1,no,northwest,9583.89
37,female,38.4,0,yes,southeast,40419.02
26,male,23.7,2,no,southwest,3484.33
23,male,31.7,3,yes,northeast,36189.1
29,male,35.5,2,yes,southwest,44585.46
45,male,24.0,2,no,northeast,8604.48
27,male,29.2,0,yes,southeast,18246.5
53,male,34.1,0,yes,northeast,43254.42
31,female,26.6,0,no,southeast,3757.84
50,male,26.4,0,no,northwest,8827.21
50,female,30.1,1,no,northwest,9910.36
34,male,27.0,2,no,southwest,11737.85
19,male,21.8,0,no,northwest,1627.28
47,female,36.0,1,no,southwest,8556.91
28,male,30.9,0,no,northwest,3062.51
37,female,26.4,0,yes,southeast,19539.24
21,male,29.0,0,no,northwest,1906.36
64,male,37.9,0,no,northwest,14210.54
58,female,22.8,0,no,southeast,11833.78
24,male,33.6,4,no,northeast,17128.43
31,male,27.6,2,no,northeast,5031.27
39,female,22.8,3,no,northeast,7985.82
47,female,27.8,0,yes,southeast,23065.42
30,male,37.4,3,no,northeast,5428.73
18,male,38.2,0,yes,southeast,36307.8
22,female,34.6,2,no,northeast,3925.76
23,male,35.2,1,no,southwest,2416.96
33,male,27.1,1,yes,southwest,19040.88
27,male,26.0,0,no,northeast,3070.81
45,female,25.2,2,no,northeast,9095.07
57,female,31.8,0,no,northwest,11842.62
47,male,32.3,1,no,southwest,8062.76
42,female,29.0,1,no,southwest,7050.64
64,female,39.7,0,no,southwest,14319.03
38,female,19.5,2,no,northwest,6933.24
61,male,36.1,3,no,southwest,27941.29
53,female,26.7,2,no,southwest,11150.78
44,female,36.5,0,no,northeast,12797.21
19,female,28.9,0,yes,northwest,17748.51
41,male,34.2,2,no,northwest,7261.74
51,male,33.3,3,no,southeast,10560.49
40,male,32.3,2,no,northwest,6986.7
45,male,39.8,0,no,northeast,7448.4
35,male,34.3,3,no,southeast,5934.38
53,male,28.9,0,no,northwest,9869.81
30,male,24.4,3,yes,southwest,18259.22
18,male,41.1,0,no,southeast,1146.8
51,male,36.0,1,no,southeast,9386.16
50,female,27.6,1,yes,southwest,24520.26
31,female,29.3,1,no,southeast,4350.51
35,female,27.7,3,no,southwest,6414.18
60,male,37.0,0,no,northeast,12741.17
21,male,36.9,0,no,northwest,1917.32
29,male,22.5,3,no,northeast,5209.58
62,female,29.9,0,no,southeast,13457.96
39,female,41.8,0,no,southeast,5662.23
19,male,27.6,0,no,southwest,1252.41
22,female,23.2,0,no,northeast,2731.91
53,male,20.9,0,yes,southeast,21195.82
39,female,31.9,2,no,northwest,7209.49
27,male,28.5,0,yes,northwest,18310.74
30,male,44.2,2,no,southeast,4266.17
30,female,22.9,1,no,northeast,4719.52
58,female,33.1,0,no,southwest,11848.14
33,male,24.8,0,yes,northeast,17904.53
42,female,26.2,1,no,southeast,7046.72
64,female,36.0,0,no,southeast,14313.85
21,male,22.3,1,no,southwest,2103.08
18,female,42.2,0,yes,southeast,38792.69
23,male,26.5,0,no,southeast,1815.88
45,female,35.8,0,no,northwest,7731.86
40,female,41.4,1,no,northwest,28476.73
19,female,36.6,0,no,northwest,2136.88
18,male,30.1,0,no,southeast,1131.51
25,male,25.8,1,no,northeast,3309.79
46,female,30.8,3,no,southwest,9414.92
33,female,42.9,3,no,northwest,6360.99
54,male,21.0,2,no,southeast,11013.71
28,male,22.5,2,no,northeast,4428.89
36,male,34.4,2,no,southeast,5584.31
20,female,31.5,0,no,southeast,1877.93
24,female,24.2,0,no,northwest,2842.76
23,male,37.1,3,no,southwest,3597.6
47,female,26.1,1,yes,northeast,23401.31
33,female,35.5,0,yes,northwest,55135.4
45,male,33.7,1,no,southwest,7445.92
26,male,17.7,0,no,northwest,2680.95
18,female,31.1,0,no,southeast,1621.88
44,female,29.8,2,no,southeast,8219.2
60,male,24.3,0,no,northwest,12523.6
64,female,31.8,2,no,northeast,16069.08
56,male,31.8,2,yes,southeast,43813.87
36,male,28.0,1,yes,northeast,20773.63
41,male,30.8,3,yes,northeast,39597.41
39,male,21.9,1,no,northwest,6117.49
63,male,33.1,0,no,southwest,13393.76
36,female,25.8,0,no,northwest,5266.37
28,female,23.8,2,no,northwest,4719.74
58,male,34.4,0,no,northwest,11743.93
36,male,33.8,1,no,northwest,5377.46
42,male,36.0,2,no,southeast,7160.33
36,male,31.5,0,no,southwest,4402.23
56,female,28.3,0,no,northeast,11657.72
35,female,23.5,2,no,northeast,6402.29
59,female,31.4,0,no,northwest,12622.18
21,male,31.1,0,no,southwest,1526.31
59,male,24.7,0,no,northeast,12323.94
23,female,32.8,2,yes,southeast,36021.01
57,female,29.8,0,yes,southeast,27533.91
53,male,30.5,0,no,northeast,10072.06
60,female,32.5,0,yes,southeast,45008.96
51,female,34.2,1,no,southwest,9872.7
23,male,50.4,1,no,southeast,2438.06
27,female,24.1,0,no,southwest,2974.13
55,male,32.8,0,no,northwest,10601.63
37,female,30.8,0,yes,northeast,37270.15
61,male,32.3,2,no,northwest,14119.62
46,female,35.5,0,yes,northeast,42111.66
53,female,23.8,2,no,northeast,11729.68
49,female,23.8,3,yes,northeast,24106.91
20,female,29.6,0,no,southwest,1875.34
48,female,33.1,0,yes,southeast,40974.16
25,male,24.1,0,yes,northwest,15817.99
25,female,32.2,1,no,southeast,18218.16
57,male,28.1,0,no,southwest,10965.45
37,female,47.6,2,yes,southwest,46113.51
38,female,28.0,3,no,southwest,7151.09
55,female,33.5,2,no,northwest,12269.69
36,female,19.9,0,no,northeast,5458.05
51,male,25.4,0,no,southwest,8782.47
40,male,29.9,2,no,southwest,6600.36
18,male,37.3,0,no,southeast,1141.45
57,male,43.7,1,no,southwest,11576.13
61,male,23.7,0,no,northeast,13129.6
25,female,24.3,3,no,southwest,4391.65
50,male,36.2,0,no,southwest,8457.82
26,female,29.5,1,no,southeast,3392.37
42,male,24.9,0,no,southeast,5966.89
43,male,30.1,1,no,southwest,6849.03
44,male,21.9,3,no,northeast,8891.14
23,female,28.1,0,no,northwest,2690.11
49,female,27.1,1,no,southwest,26140.36
33,male,33.4,5,no,southeast,6653.79
41,male,28.8,1,no,southwest,6282.24
37,female,29.5,2,no,southwest,6311.95
22,male,34.8,3,no,southwest,3443.06
23,male,27.4,1,no,northwest,2789.06
21,female,22.1,0,no,northeast,2585.85
51,female,37.1,3,yes,northeast,46255.11
25,male,26.7,4,no,northwest,4877.98
32,male,28.9,1,yes,southeast,19719.69
57,male,29.0,0,yes,northeast,27218.44
36,female,30.0,0,no,northwest,5272.18
22,male,39.5,0,no,southwest,1682.6
57,male,33.6,1,no,northwest,11945.13
64,female,26.9,0,yes,northwest,29330.98
36,female,29.0,4,no,southeast,7243.81
54,male,24.0,0,no,northeast,10422.92
47,male,38.9,2,yes,southeast,44202.65
62,male,32.1,0,no,northeast,13555
61,female,44.0,0,no,southwest,13063.88
43,female,20.0,2,yes,northeast,19798.05
19,male,25.6,1,no,northwest,2221.56
18,female,40.3,0,no,southeast,1634.57
19,female,22.5,0,no,northwest,2117.34
49,male,22.5,0,no,northeast,8688.86
60,male,40.9,0,yes,southeast,48673.56
26,male,27.3,3,no,northeast,4661.29
49,male,36.9,0,no,southeast,8125.78
60,female,35.1,0,no,southwest,12644.59
26,female,29.4,2,no,northeast,4564.19
27,male,32.6,3,no,northeast,4846.92
44,female,32.3,1,no,southeast,7633.72
63,male,39.8,3,no,southwest,15170.07
32,female,24.6,0,yes,southwest,17496.31
22,male,28.3,1,no,northwest,2639.04
18,male,31.7,0,yes,northeast,33732.69
59,female,26.7,3,no,northwest,14382.71
44,female,27.5,1,no,southwest,7626.99
33,male,24.6,2,no,northwest,5257.51
24,female,34.0,0,no,southeast,2473.33
43,female,26.9,0,yes,northwest,21774.32
45,male,22.9,0,yes,northeast,35069.37
61,female,28.2,0,no,southwest,13041.92
35,female,34.2,1,no,southeast,5245.23
62,female,25.0,0,no,southwest,13451.12
62,female,33.2,0,no,southwest,13462.52
38,male,31.0,1,no,southwest,5488.26
34,male,35.8,0,no,northwest,4320.41
43,male,23.2,0,no,southwest,6250.44
50,male,32.1,2,no,northeast,25333.33
19,female,23.4,2,no,southwest,2913.57
57,female,20.1,1,no,southwest,12032.33
62,female,39.2,0,no,southeast,13470.8
41,male,34.2,1,no,southeast,6289.75
26,male,46.5,1,no,southeast,2927.06
39,female,32.5,1,no,southwest,6238.3
46,male,25.8,5,no,southwest,10096.97
45,female,35.3,0,no,southwest,7348.14
32,male,37.2,2,no,southeast,4673.39
59,female,27.5,0,no,southwest,12233.83
44,male,29.7,2,no,northeast,32108.66
39,female,24.2,5,no,northwest,8965.8
18,male,26.2,2,no,southeast,2304
53,male,29.5,0,no,southeast,9487.64
18,male,23.2,0,no,southeast,1121.87
50,female,46.1,1,no,southeast,9549.57
18,female,40.2,0,no,northeast,2217.47
19,male,22.6,0,no,northwest,1628.47
62,male,39.9,0,no,southeast,12982.87
56,female,35.8,1,no,southwest,11674.13
42,male,35.8,2,no,southwest,7160.09
37,male,34.2,1,yes,northeast,39047.29
42,male,31.3,0,no,northwest,6358.78
25,male,29.7,3,yes,southwest,19933.46
57,male,18.3,0,no,northeast,11534.87
51,male,42.9,2,yes,southeast,47462.89
30,female,28.4,1,no,northwest,4527.18
44,male,30.2,2,yes,southwest,38998.55
34,male,27.8,1,yes,northwest,20009.63
31,male,39.5,1,no,southeast,3875.73
54,male,30.8,1,yes,southeast,41999.52
24,male,26.8,1,no,northwest,12609.89
43,male,35.0,1,yes,northeast,41034.22
48,male,36.7,1,no,northwest,28468.92
19,female,39.6,1,no,northwest,2730.11
29,female,25.9,0,no,southwest,3353.28
63,female,35.2,1,no,southeast,14474.68
46,male,24.8,3,no,northeast,9500.57
52,male,36.8,2,no,northwest,26467.1
35,male,27.1,1,no,southwest,4746.34
51,male,24.8,2,yes,northwest,23967.38
44,male,25.4,1,no,northwest,7518.03
21,male,25.7,2,no,northeast,3279.87
39,female,34.3,5,no,southeast,8596.83
50,female,28.2,3,no,southeast,10702.64
34,female,23.6,0,no,northeast,4992.38
22,female,20.2,0,no,northwest,2527.82
19,female,40.5,0,no,southwest,1759.34
26,male,35.4,0,no,southeast,2322.62
29,male,22.9,0,yes,northeast,16138.76
48,male,40.2,0,no,southeast,7804.16
26,male,29.2,1,no,southeast,2902.91
45,female,40.0,3,no,northeast,9704.67
36,female,29.9,0,no,southeast,4889.04
54,male,25.5,1,no,northeast,25517.11
34,male,21.4,0,no,northeast,4500.34
31,male,25.9,3,yes,southwest,19199.94
27,female,30.6,1,no,northeast,16796.41
20,male,30.1,5,no,northeast,4915.06
44,female,25.8,1,no,southwest,7624.63
43,male,30.1,3,no,northwest,8410.05
45,female,27.6,1,no,northwest,28340.19
34,male,34.7,0,no,northeast,4518.83
24,female,20.5,0,yes,northeast,14571.89
26,female,19.8,1,no,southwest,3378.91
38,female,27.8,2,no,northeast,7144.86
50,female,31.6,2,no,southwest,10118.42
38,male,28.3,1,no,southeast,5484.47
27,female,20.0,3,yes,northwest,16420.49
39,female,23.3,3,no,northeast,7986.48
39,female,34.1,3,no,southwest,7418.52
63,female,36.9,0,no,southeast,13887.97
33,female,36.3,3,no,northeast,6551.75
36,female,26.9,0,no,northwest,5267.82
30,male,23.0,2,yes,northwest,17361.77
24,male,32.7,0,yes,southwest,34472.84
24,male,25.8,0,no,southwest,1972.95
48,male,29.6,0,no,southwest,21232.18
47,male,19.2,1,no,northeast,8627.54
29,male,31.7,2,no,northwest,4433.39
28,male,29.3,2,no,northeast,4438.26
47,male,28.2,3,yes,northwest,24915.22
25,male,25.0,2,no,northeast,23241.47
51,male,27.7,1,no,northeast,9957.72
48,female,22.8,0,no,southwest,8269.04
43,male,20.1,2,yes,southeast,18767.74
61,female,33.3,4,no,southeast,36580.28
48,male,32.3,1,no,northwest,8765.25
38,female,27.6,0,no,southwest,5383.54
59,male,25.5,0,no,northwest,12124.99
19,female,24.6,1,no,northwest,2709.24
26,female,34.2,2,no,southwest,3987.93
54,female,35.8,3,no,northwest,12495.29
21,female,32.7,2,no,northwest,26018.95
51,male,37.0,0,no,southwest,8798.59
22,female,31.0,3,yes,southeast,35595.59
47,male,36.1,1,yes,southeast,42211.14
18,male,23.3,1,no,southeast,1711.03
47,female,45.3,1,no,southeast,8569.86
21,female,34.6,0,no,southwest,2020.18
19,male,26.0,1,yes,northwest,16450.89
23,male,18.7,0,no,northwest,21595.38
54,male,31.6,0,no,southwest,9850.43
37,female,17.3,2,no,northeast,6877.98
46,female,23.7,1,yes,northwest,21677.28
55,female,35.2,0,yes,southeast,44423.8
30,female,27.9,0,no,northeast,4137.52
18,male,21.6,0,yes,northeast,13747.87
61,male,38.4,0,no,northwest,12950.07
54,female,23.0,3,no,southwest,12094.48
22,male,37.1,2,yes,southeast,37484.45
45,female,30.5,1,yes,northwest,39725.52
22,male,28.9,0,no,northeast,2250.84
19,male,27.3,2,no,northwest,22493.66
35,female,28.0,0,yes,northwest,20234.85
18,male,23.1,0,no,northeast,1704.7
20,male,30.7,0,yes,northeast,33475.82
28,female,25.8,0,no,southwest,3161.45
55,male,35.2,1,no,northeast,11394.07
43,female,24.7,2,yes,northwest,21880.82
43,female,25.1,0,no,northeast,7325.05
22,male,52.6,1,yes,southeast,44501.4
25,female,22.5,1,no,northwest,3594.17
49,male,30.9,0,yes,southwest,39727.61
44,female,37.0,1,no,northwest,8023.14
64,male,26.4,0,no,northeast,14394.56
49,male,29.8,1,no,northeast,9288.03
47,male,29.8,3,yes,southwest,25309.49
27,female,21.5,0,no,northwest,3353.47
55,male,27.6,0,no,northwest,10594.5
48,female,28.9,0,no,southwest,8277.52
45,female,31.8,0,no,southeast,17929.3
24,female,39.5,0,no,southeast,2480.98
32,male,33.8,1,no,northwest,4462.72
24,male,32.0,0,no,southeast,1981.58
57,male,27.9,1,no,southeast,11554.22
59,male,41.1,1,yes,southeast,48970.25
36,male,28.6,3,no,northwest,6548.2
29,female,25.6,4,no,southwest,5708.87
42,female,25.3,1,no,southwest,7045.5
48,male,37.3,2,no,southeast,8978.19
39,male,42.7,0,no,northeast,5757.41
63,male,21.7,1,no,northwest,14349.85
54,female,31.9,1,no,southeast,10928.85
37,male,37.1,1,yes,southeast,39871.7
63,male,31.4,0,no,northeast,13974.46
21,male,31.3,0,no,northwest,1909.53
54,female,28.9,2,no,northeast,12096.65
60,female,18.3,0,no,northeast,13204.29
32,female,29.6,1,no,southeast,4562.84
47,female,32.0,1,no,southwest,8551.35
21,male,26.0,0,no,northeast,2102.26
28,male,31.7,0,yes,southeast,34672.15
63,male,33.7,3,no,southeast,15161.53
18,male,21.8,2,no,southeast,11884.05
32,male,27.8,1,no,northwest,4454.4
38,male,20.0,1,no,northwest,5855.9
32,male,31.5,1,no,southwest,4076.5
62,female,30.5,2,no,northwest,15019.76
39,female,18.3,5,yes,southwest,19023.26
55,male,29.0,0,no,northeast,10796.35
57,male,31.5,0,no,northwest,11353.23
52,male,47.7,1,no,southeast,9748.91
56,male,22.1,0,no,southwest,10577.09
47,male,36.2,0,yes,southeast,41676.08
55,female,29.8,0,no,northeast,11286.54
23,male,32.7,3,no,southwest,3591.48
22,female,30.4,0,yes,northwest,33907.55
50,female,33.7,4,no,southwest,11299.34
18,female,31.4,4,no,northeast,4561.19
51,female,35.0,2,yes,northeast,44641.2
22,male,33.8,0,no,southeast,1674.63
52,female,30.9,0,no,northeast,23045.57
25,female,34.0,1,no,southeast,3227.12
33,female,19.1,2,yes,northeast,16776.3
53,male,28.6,3,no,southwest,11253.42
29,male,38.9,1,no,southeast,3471.41
58,male,36.1,0,no,southeast,11363.28
37,male,29.8,0,no,southwest,20420.6
54,female,31.2,0,no,southeast,10338.93
49,female,29.9,0,no,northwest,8988.16
50,female,26.2,2,no,northwest,10493.95
26,male,30.0,1,no,southwest,2904.09
45,male,20.4,3,no,southeast,8605.36
54,female,32.3,1,no,northeast,11512.41
38,male,38.4,3,yes,southeast,41949.24
48,female,25.9,3,yes,southeast,24180.93
28,female,26.3,3,no,northwest,5312.17
23,male,24.5,0,no,northeast,2396.1
55,male,32.7,1,no,southeast,10807.49
41,male,29.6,5,no,northeast,9222.4
25,male,33.3,2,yes,southeast,36124.57
33,male,35.8,1,yes,southeast,38282.75
30,female,20.0,3,no,northwest,5693.43
23,female,31.4,0,yes,southwest,34166.27
46,male,38.2,2,no,southeast,8347.16
53,female,36.9,3,yes,northwest,46661.44
27,female,32.4,1,no,northeast,18903.49
23,female,42.8,1,yes,northeast,40904.2
63,female,25.1,0,no,northwest,14254.61
55,male,29.9,0,no,southwest,10214.64
35,female,35.9,2,no,southeast,5836.52
34,male,32.8,1,no,southwest,14358.36
19,female,18.6,0,no,southwest,1728.9
39,female,23.9,5,no,southeast,8582.3
27,male,45.9,2,no,southwest,3693.43
57,male,40.3,0,no,northeast,20709.02
52,female,18.3,0,no,northwest,9991.04
28,male,33.8,0,no,northwest,19673.34
50,female,28.1,3,no,northwest,11085.59
44,female,25.0,1,no,southwest,7623.52
26,female,22.2,0,no,northwest,3176.29
33,male,30.3,0,no,southeast,3704.35
19,female,32.5,0,yes,northwest,36898.73
50,male,37.1,1,no,southeast,9048.03
41,female,32.6,3,no,southwest,7954.52
52,female,24.9,0,no,southeast,27117.99
39,male,32.3,2,no,southeast,6338.08
50,male,32.3,2,no,southwest,9630.4
52,male,32.8,3,no,northwest,11289.11
60,male,32.8,0,yes,southwest,52590.83
20,female,31.9,0,no,northwest,2261.57
55,male,21.5,1,no,southwest,10791.96
42,male,34.1,0,no,southwest,5979.73
18,female,30.3,0,no,northeast,2203.74
58,female,36.5,0,no,northwest,12235.84
43,female,32.6,3,yes,southeast,40941.29
35,female,35.8,1,no,northwest,5630.46
48,female,27.9,4,no,northwest,11015.17
36,female,22.1,3,no,northeast,7228.22
19,male,44.9,0,yes,southeast,39722.75
23,female,23.2,2,no,northwest,14426.07
20,female,30.6,0,no,northeast,2459.72
32,female,41.1,0,no,southwest,3989.84
43,female,34.6,1,no,northwest,7727.25
34,male,42.1,2,no,southeast,5124.19
30,male,38.8,1,no,southeast,18963.17
18,female,28.2,0,no,northeast,2200.83
41,female,28.3,1,no,northwest,7153.55
35,female,26.1,0,no,northeast,5227.99
57,male,40.4,0,no,southeast,10982.5
29,female,24.6,2,no,southwest,4529.48
32,male,35.2,2,no,southwest,4670.64
37,female,34.1,1,no,northwest,6112.35
18,male,27.4,1,yes,northeast,17178.68
43,female,26.7,2,yes,southwest,22478.6
56,female,41.9,0,no,southeast,11093.62
38,male,29.3,2,no,northwest,6457.84
29,male,32.1,2,no,northwest,4433.92
22,female,27.1,0,no,southwest,2154.36
52,female,24.1,1,yes,northwest,23887.66
40,female,27.4,1,no,southwest,6496.89
23,female,34.9,0,no,northeast,2899.49
31,male,29.8,0,yes,southeast,19350.37
42,female,41.3,1,no,northeast,7650.77
24,female,29.9,0,no,northwest,2850.68
25,female,30.3,0,no,southwest,2632.99
48,female,27.4,1,no,northeast,9447.38
23,female,28.5,1,yes,southeast,18328.24
45,male,23.6,2,no,northeast,8603.82
20,male,35.6,3,yes,northwest,37465.34
62,female,32.7,0,no,northwest,13844.8
43,female,25.3,1,yes,northeast,21771.34
23,female,28.0,0,no,southwest,13126.68
31,female,32.8,2,no,northwest,5327.4
41,female,21.8,1,no,northeast,13725.47
58,female,32.4,1,no,northeast,13019.16
48,female,36.6,0,no,northwest,8671.19
31,female,21.8,0,no,northwest,4134.08
19,female,27.9,3,no,northwest,18838.7
19,female,30.0,0,yes,northwest,33307.55
41,male,33.6,0,no,southeast,5699.84
40,male,29.4,1,no,northwest,6393.6
31,female,25.8,2,no,southwest,4934.71
37,male,24.3,2,no,northwest,6198.75
46,male,40.4,2,no,northwest,8733.23
22,male,32.1,0,no,northwest,2055.32
51,male,32.3,1,no,northeast,9964.06
18,female,27.3,3,yes,southeast,18223.45
35,male,17.9,1,no,northwest,5116.5
59,female,34.8,2,no,southwest,36910.61
36,male,33.4,2,yes,southwest,38415.47
37,female,25.6,1,yes,northeast,20296.86
59,male,37.1,1,no,southwest,12347.17
36,male,30.9,1,no,northwest,5373.36
39,male,34.1,2,no,southeast,23563.02
18,male,21.5,0,no,northeast,1702.46
52,female,33.3,2,no,southwest,10806.84
27,female,31.3,1,no,northwest,3956.07
18,male,39.1,0,no,northeast,12890.06
40,male,25.1,0,no,southeast,5415.66
29,male,37.3,2,no,southeast,4058.12
46,female,34.6,1,yes,southwest,41661.6
38,female,30.2,3,no,northwest,7537.16
30,female,21.9,1,no,northeast,4718.2
40,male,25.0,2,no,southeast,6593.51
50,male,25.3,0,no,southeast,8442.67
20,female,24.4,0,yes,southeast,26125.67
41,male,23.9,1,no,northeast,6858.48
33,female,39.8,1,no,southeast,4795.66
38,male,16.8,2,no,northeast,6640.54
42,male,37.2,2,no,southeast,7162.01
56,male,34.4,0,no,southeast,10594.23
58,male,30.3,0,no,northeast,11938.26
52,male,34.5,3,yes,northwest,60021.4
20,female,21.8,0,yes,southwest,20167.34
54,female,24.6,3,no,northwest,12479.71
58,male,23.3,0,no,southwest,11345.52
45,female,27.8,2,no,southeast,8515.76
26,male,31.1,0,no,northwest,2699.57
63,female,21.7,0,no,northeast,14449.85
58,female,28.2,0,no,northwest,12224.35
37,male,22.7,3,no,northeast,6985.51
25,female,42.1,1,no,southeast,3238.44
52,male,41.8,2,yes,southeast,47269.85
64,male,37.0,2,yes,southeast,49577.66
22,female,21.3,3,no,northwest,4296.27
28,female,33.1,0,no,southeast,3171.61
18,male,33.3,0,no,southeast,1135.94
28,male,24.3,5,no,southwest,5615.37
45,female,25.7,3,no,southwest,9101.8
33,male,29.4,4,no,southwest,6059.17
18,female,39.8,0,no,southeast,1633.96
32,male,33.6,1,yes,northeast,37607.53
24,male,29.8,0,yes,northeast,18648.42
19,male,19.8,0,no,southwest,1241.57
20,male,27.3,0,yes,southwest,16232.85
40,female,29.3,4,no,southwest,15828.82
34,female,27.7,0,no,southeast,4415.16
42,female,37.9,0,no,southwest,6474.01
51,female,36.4,3,no,northwest,11436.74
54,female,27.6,1,no,northwest,11305.93
55,male,37.7,3,no,northwest,30063.58
52,female,23.2,0,no,northeast,10197.77
32,female,20.5,0,no,northeast,4544.23
28,male,37.1,1,no,southwest,3277.16
41,female,28.1,1,no,southeast,6770.19
43,female,29.9,1,no,southwest,7337.75
49,female,33.3,2,no,northeast,10370.91
64,male,23.8,0,yes,southeast,26926.51
55,female,30.5,0,no,southwest,10704.47
24,male,31.1,0,yes,northeast,34254.05
20,female,33.3,0,no,southwest,1880.49
45,male,27.5,3,no,southwest,8615.3
26,male,33.9,1,no,northwest,3292.53
25,female,34.5,0,no,northwest,3021.81
43,male,25.5,5,no,southeast,14478.33
35,male,27.6,1,no,southeast,4747.05
26,male,27.1,0,yes,southeast,17043.34
57,male,23.7,0,no,southwest,10959.33
22,female,30.4,0,no,northeast,2741.95
32,female,29.7,0,no,northwest,4357.04
39,male,29.9,1,yes,northeast,22462.04
25,female,26.8,2,no,northwest,4189.11
48,female,33.3,0,no,southeast,8283.68
47,female,27.6,2,yes,northwest,24535.7
18,female,21.7,0,yes,northeast,14283.46
18,male,30.0,1,no,southeast,1720.35
61,male,36.3,1,yes,southwest,47403.88
47,female,24.3,0,no,northeast,8534.67
28,female,17.3,0,no,northeast,3732.63
36,female,25.9,1,no,southwest,5472.45
20,male,39.4,2,yes,southwest,38344.57
44,male,34.3,1,no,southeast,7147.47
38,female,20.0,2,no,northeast,7133.9
19,male,34.9,0,yes,southwest,34828.65
21,male,23.2,0,no,southeast,1515.34
46,male,25.7,3,no,northwest,9301.89
58,male,25.2,0,no,northeast,11931.13
20,male,22.0,1,no,southwest,1964.78
18,male,26.1,0,no,northeast,1708.93
28,female,26.5,2,no,southeast,4340.44
33,male,27.5,2,no,northwest,5261.47
19,female,25.7,1,no,northwest,2710.83
45,male,30.4,0,yes,southeast,62592.87
62,male,30.9,3,yes,northwest,46718.16
25,female,20.8,1,no,southwest,3208.79
43,male,27.8,0,yes,southwest,37829.72
42,male,24.6,2,yes,northeast,21259.38
24,female,27.7,0,no,southeast,2464.62
29,female,21.9,0,yes,northeast,16115.3
32,male,28.1,4,yes,northwest,21472.48
25,female,30.2,0,yes,southwest,33900.65
41,male,32.2,2,no,southwest,6875.96
42,male,26.3,1,no,northwest,6940.91
33,female,26.7,0,no,northwest,4571.41
34,male,42.9,1,no,southwest,4536.26
19,female,34.7,2,yes,southwest,36397.58
30,female,23.7,3,yes,northwest,18765.88
18,male,28.3,1,no,northeast,11272.33
19,female,20.6,0,no,southwest,1731.68
18,male,53.1,0,no,southeast,1163.46
35,male,39.7,4,no,northeast,19496.72
39,female,26.3,2,no,northwest,7201.7
31,male,31.1,3,no,northwest,5425.02
62,male,26.7,0,yes,northeast,28101.33
62,male,38.8,0,no,southeast,12981.35
42,female,40.4,2,yes,southeast,43896.38
31,male,25.9,1,no,northwest,4239.89
61,male,33.5,0,no,northeast,13143.34
42,female,32.9,0,no,northeast,7050.02
51,male,30.0,1,no,southeast,9377.9
23,female,24.2,2,no,northeast,22395.74
52,male,38.6,2,no,southwest,10325.21
57,female,25.7,2,no,southeast,12629.17
23,female,33.4,0,no,southwest,10795.94
52,female,44.7,3,no,southwest,11411.69
50,male,31.0,3,no,northwest,10600.55
18,female,31.9,0,no,northeast,2205.98
18,female,36.9,0,no,southeast,1629.83
21,female,25.8,0,no,southwest,2007.95
61,female,29.1,0,yes,northwest,29141.36
--------------------------------------------------------------------------------
/examples/insurance_prediction/test.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 12,
6 | "metadata": {
7 | "collapsed": false,
8 | "deletable": true,
9 | "editable": true
10 | },
11 | "outputs": [
12 | {
13 | "name": "stdout",
14 | "output_type": "stream",
15 | "text": [
16 | "Populating the interactive namespace from numpy and matplotlib\n"
17 | ]
18 | }
19 | ],
20 | "source": [
21 | "%pylab inline\n",
22 | "import pandas as pd\n",
23 | "from sklearn.model_selection import train_test_split\n",
24 | "from sklearn.preprocessing import StandardScaler, MinMaxScaler\n",
25 | "from sklearn.metrics import r2_score\n",
26 | "\n",
27 | "from deep_learning.layers import Layer, InputLayer\n",
28 | "from deep_learning.models import Model\n",
29 | "\n",
30 | "\n",
31 | "import matplotlib.pyplot as plt\n",
32 | "\n",
33 | "\n",
34 | "raw_data = pd.read_csv('examples/insurance_prediction/insurance.csv')\n",
35 | "\n",
36 | "# Preprocessing\n",
37 | "bmi_scaler = MinMaxScaler()\n",
38 | "raw_data[['bmi']] = bmi_scaler.fit_transform(raw_data[['bmi']].values)\n",
39 | "raw_data['sex'] = raw_data['sex'].apply({'male': 1, 'female': 0}.get)\n",
40 | "raw_data['smoker'] = raw_data['smoker'].apply({'yes': 1, 'no': 0}.get)\n",
41 | "\n",
42 | "# Region\n",
43 | "onehot_smokers = pd.get_dummies(raw_data['region'], prefix='region')\n",
44 | "raw_data = pd.concat([raw_data, onehot_smokers], axis=1)\n",
45 | "# raw_data = raw_data.drop('region', axis=1)\n",
46 | "\n",
47 | "# Y Labels\n",
48 | "expense_scaler = StandardScaler()\n",
49 | "raw_data['expenses'] = expense_scaler.fit_transform(raw_data[['expenses']].values)\n",
50 | "data_y = raw_data.as_matrix(['expenses'])\n",
51 | "\n",
52 | "# X Labels\n",
53 | "data_x = raw_data.drop(['expenses', 'region'], axis=1)\n",
54 | "data_x = data_x.as_matrix()\n",
55 | "data_scaler = StandardScaler()\n",
56 | "data_x = data_scaler.fit_transform(data_x)\n",
57 | "\n",
58 | "# Split data into train and examples subset\n",
59 | "train_x, test_x, train_y, test_y = train_test_split(data_x, data_y, test_size=0.3)\n",
60 | "\n",
61 | "# print('[TRAIN]')\n",
62 | "# print('train_x:', train_x.shape)\n",
63 | "# print('train_y:', train_y.shape)\n",
64 | "# print('\\n[TEST]')\n",
65 | "# print('test_x:', test_x.shape)\n",
66 | "# print('test_y:', test_y.shape)"
67 | ]
68 | },
69 | {
70 | "cell_type": "code",
71 | "execution_count": 2,
72 | "metadata": {
73 | "collapsed": false
74 | },
75 | "outputs": [
76 | {
77 | "data": {
78 | "text/html": [
79 | "\n",
80 | "
\n",
81 | " \n",
82 | " \n",
83 | " | \n",
84 | " 0 | \n",
85 | "
\n",
86 | " \n",
87 | " \n",
88 | " \n",
89 | " | count | \n",
90 | " 1.338000e+03 | \n",
91 | "
\n",
92 | " \n",
93 | " | mean | \n",
94 | " -8.762298e-17 | \n",
95 | "
\n",
96 | " \n",
97 | " | std | \n",
98 | " 1.000374e+00 | \n",
99 | "
\n",
100 | " \n",
101 | " | min | \n",
102 | " -1.003558e+00 | \n",
103 | "
\n",
104 | " \n",
105 | " | 25% | \n",
106 | " -7.046504e-01 | \n",
107 | "
\n",
108 | " \n",
109 | " | 50% | \n",
110 | " -3.212091e-01 | \n",
111 | "
\n",
112 | " \n",
113 | " | 75% | \n",
114 | " 2.783443e-01 | \n",
115 | "
\n",
116 | " \n",
117 | " | max | \n",
118 | " 4.171663e+00 | \n",
119 | "
\n",
120 | " \n",
121 | "
\n",
122 | "
"
123 | ],
124 | "text/plain": [
125 | " 0\n",
126 | "count 1.338000e+03\n",
127 | "mean -8.762298e-17\n",
128 | "std 1.000374e+00\n",
129 | "min -1.003558e+00\n",
130 | "25% -7.046504e-01\n",
131 | "50% -3.212091e-01\n",
132 | "75% 2.783443e-01\n",
133 | "max 4.171663e+00"
134 | ]
135 | },
136 | "execution_count": 2,
137 | "metadata": {},
138 | "output_type": "execute_result"
139 | }
140 | ],
141 | "source": [
142 | "pd.DataFrame(data_y).describe()"
143 | ]
144 | },
145 | {
146 | "cell_type": "code",
147 | "execution_count": 3,
148 | "metadata": {
149 | "collapsed": false,
150 | "deletable": true,
151 | "editable": true
152 | },
153 | "outputs": [],
154 | "source": [
155 | "model = Model()\n",
156 | "model.add(InputLayer(9, 32, activation='sigmoid', batch_input_shape=(None, 9), name='input_layer'))\n",
157 | "model.add(Layer(32, 16, activation='sigmoid', name='hidden_layer'))\n",
158 | "model.add(Layer(16, 1, name='output_layer'))\n",
159 | "model.compile(optimizer='rmsprop', loss='mean_squared_error')"
160 | ]
161 | },
162 | {
163 | "cell_type": "code",
164 | "execution_count": 18,
165 | "metadata": {
166 | "collapsed": false,
167 | "deletable": true,
168 | "editable": true,
169 | "scrolled": true
170 | },
171 | "outputs": [
172 | {
173 | "name": "stdout",
174 | "output_type": "stream",
175 | "text": [
176 | "epoch: 0 loss: 1.58247523432\n",
177 | "epoch: 1 loss: 0.391374623436\n",
178 | "epoch: 2 loss: 1.09249132279\n",
179 | "epoch: 3 loss: -3.00381585397\n",
180 | "epoch: 4 loss: 2.1172104328\n",
181 | "epoch: 5 loss: -1.20219587161\n",
182 | "epoch: 6 loss: 3.75365164351\n",
183 | "epoch: 7 loss: 2.04932465249\n",
184 | "epoch: 8 loss: 2.28186002996\n",
185 | "epoch: 9 loss: 3.90739642975\n",
186 | "epoch: 10 loss: 1.18266399614\n",
187 | "epoch: 11 loss: 4.91747840269\n",
188 | "epoch: 12 loss: -1.15586267317\n",
189 | "epoch: 13 loss: 0.584103373776\n",
190 | "epoch: 14 loss: 1.42452898949\n",
191 | "epoch: 15 loss: 3.1334216992\n",
192 | "epoch: 16 loss: 3.09975596706\n",
193 | "epoch: 17 loss: 2.24633444467\n",
194 | "epoch: 18 loss: 3.22614948913\n",
195 | "epoch: 19 loss: 1.35362456684\n",
196 | "epoch: 20 loss: 4.58572573106\n",
197 | "epoch: 21 loss: 0.914021597851\n",
198 | "epoch: 22 loss: 2.25829955843\n",
199 | "epoch: 23 loss: 3.26990220711\n",
200 | "epoch: 24 loss: 1.70497457808\n",
201 | "epoch: 25 loss: 3.12837777477\n",
202 | "epoch: 26 loss: 3.86260592397\n",
203 | "epoch: 27 loss: 2.59903243864\n",
204 | "epoch: 28 loss: 5.23496951233\n",
205 | "epoch: 29 loss: 1.55731879771\n",
206 | "epoch: 30 loss: 2.3782050494\n",
207 | "epoch: 31 loss: 2.0007267059\n",
208 | "epoch: 32 loss: 0.112681733149\n",
209 | "epoch: 33 loss: 3.15074366005\n",
210 | "epoch: 34 loss: 1.38206919697\n",
211 | "epoch: 35 loss: 3.95909190426\n",
212 | "epoch: 36 loss: 3.37323765565\n",
213 | "epoch: 37 loss: 0.663801266967\n",
214 | "epoch: 38 loss: 1.77698827153\n",
215 | "epoch: 39 loss: 7.42383969657\n",
216 | "epoch: 40 loss: 2.21058804677\n",
217 | "epoch: 41 loss: 1.3960865092\n",
218 | "epoch: 42 loss: 3.80544338624\n",
219 | "epoch: 43 loss: 4.44420907361\n",
220 | "epoch: 44 loss: 2.1892983456\n",
221 | "epoch: 45 loss: 5.94986682385\n",
222 | "epoch: 46 loss: 2.23395002065\n",
223 | "epoch: 47 loss: 2.21180547423\n",
224 | "epoch: 48 loss: 7.34611581369\n",
225 | "epoch: 49 loss: 0.965108351054\n",
226 | "epoch: 50 loss: 1.95000494332\n",
227 | "epoch: 51 loss: 4.17359491883\n",
228 | "epoch: 52 loss: 2.9121774788\n",
229 | "epoch: 53 loss: 2.97343388565\n",
230 | "epoch: 54 loss: -0.0949793383188\n",
231 | "epoch: 55 loss: 2.98890760964\n",
232 | "epoch: 56 loss: 0.47615659259\n",
233 | "epoch: 57 loss: 2.99523098902\n",
234 | "epoch: 58 loss: 0.876689024318\n",
235 | "epoch: 59 loss: 3.40057420607\n",
236 | "epoch: 60 loss: 3.70676747571\n",
237 | "epoch: 61 loss: 3.39593976172\n",
238 | "epoch: 62 loss: 2.79178755778\n",
239 | "epoch: 63 loss: 2.76552547944\n",
240 | "epoch: 64 loss: 3.62840877598\n",
241 | "epoch: 65 loss: 2.34184617235\n",
242 | "epoch: 66 loss: 3.70920030163\n",
243 | "epoch: 67 loss: 1.48015477623\n",
244 | "epoch: 68 loss: 1.82794602066\n",
245 | "epoch: 69 loss: 2.61436420328\n",
246 | "epoch: 70 loss: 2.5874433326\n",
247 | "epoch: 71 loss: 3.19487913056\n",
248 | "epoch: 72 loss: 3.17263756302\n",
249 | "epoch: 73 loss: 3.51987161955\n",
250 | "epoch: 74 loss: 3.19423537236\n",
251 | "epoch: 75 loss: 4.03204886803\n",
252 | "epoch: 76 loss: 3.17271564795\n",
253 | "epoch: 77 loss: 3.32094056384\n",
254 | "epoch: 78 loss: 6.35786616076\n",
255 | "epoch: 79 loss: 3.50350454003\n",
256 | "epoch: 80 loss: 2.74494608291\n",
257 | "epoch: 81 loss: 4.07106310784\n",
258 | "epoch: 82 loss: 2.0500626006\n",
259 | "epoch: 83 loss: 0.931025962091\n",
260 | "epoch: 84 loss: 3.05009045463\n",
261 | "epoch: 85 loss: 5.4561595257\n",
262 | "epoch: 86 loss: 0.932140930379\n",
263 | "epoch: 87 loss: 3.12115634403\n",
264 | "epoch: 88 loss: 3.58649065419\n",
265 | "epoch: 89 loss: 1.82765920906\n",
266 | "epoch: 90 loss: 2.67301831492\n",
267 | "epoch: 91 loss: 3.38689545431\n",
268 | "epoch: 92 loss: 2.58023326394\n",
269 | "epoch: 93 loss: 2.68945192986\n",
270 | "epoch: 94 loss: 0.873427091164\n",
271 | "epoch: 95 loss: 3.0491937973\n",
272 | "epoch: 96 loss: 3.39932766495\n",
273 | "epoch: 97 loss: 1.61714245381\n",
274 | "epoch: 98 loss: 3.41802618445\n",
275 | "epoch: 99 loss: 2.18309763251\n",
276 | "epoch: 100 loss: 3.49105974424\n",
277 | "epoch: 101 loss: 4.55634185383\n",
278 | "epoch: 102 loss: 3.73100699595\n",
279 | "epoch: 103 loss: 6.04225792465\n",
280 | "epoch: 104 loss: 3.31203046926\n",
281 | "epoch: 105 loss: 2.22697104694\n",
282 | "epoch: 106 loss: 2.31970775885\n",
283 | "epoch: 107 loss: 2.65028201987\n",
284 | "epoch: 108 loss: 2.9699269191\n",
285 | "epoch: 109 loss: 2.19068053267\n",
286 | "epoch: 110 loss: 1.93276234404\n",
287 | "epoch: 111 loss: 2.19915599433\n",
288 | "epoch: 112 loss: 2.7842095752\n",
289 | "epoch: 113 loss: 2.15957739212\n",
290 | "epoch: 114 loss: 2.11356732908\n",
291 | "epoch: 115 loss: 4.52148305224\n",
292 | "epoch: 116 loss: 2.64908283953\n",
293 | "epoch: 117 loss: 2.92949236651\n",
294 | "epoch: 118 loss: 2.56222182911\n",
295 | "epoch: 119 loss: 1.34169303657\n",
296 | "epoch: 120 loss: 0.389388295035\n",
297 | "epoch: 121 loss: 3.41363352184\n",
298 | "epoch: 122 loss: 2.17018875178\n",
299 | "epoch: 123 loss: 3.95519096725\n",
300 | "epoch: 124 loss: 2.87647964832\n",
301 | "epoch: 125 loss: 4.28223838251\n",
302 | "epoch: 126 loss: 3.19901112335\n",
303 | "epoch: 127 loss: 3.36281896891\n",
304 | "epoch: 128 loss: 3.26597150417\n",
305 | "epoch: 129 loss: 3.3317496534\n",
306 | "epoch: 130 loss: 1.98137896924\n",
307 | "epoch: 131 loss: 3.97782906045\n",
308 | "epoch: 132 loss: 2.85051328046\n",
309 | "epoch: 133 loss: 0.664868452964\n",
310 | "epoch: 134 loss: 2.49375691604\n",
311 | "epoch: 135 loss: 4.63272226194\n",
312 | "epoch: 136 loss: 3.48509122349\n",
313 | "epoch: 137 loss: 2.75341741696\n",
314 | "epoch: 138 loss: 2.92290240184\n",
315 | "epoch: 139 loss: 3.26155423874\n",
316 | "epoch: 140 loss: 3.05801562936\n",
317 | "epoch: 141 loss: 2.24315805282\n",
318 | "epoch: 142 loss: 2.71280507538\n",
319 | "epoch: 143 loss: 2.66858583855\n",
320 | "epoch: 144 loss: 5.99859624879\n",
321 | "epoch: 145 loss: 3.91552801019\n",
322 | "epoch: 146 loss: 3.16705533732\n",
323 | "epoch: 147 loss: 4.7979201948\n",
324 | "epoch: 148 loss: 3.23873126078\n",
325 | "epoch: 149 loss: -0.98377916416\n",
326 | "epoch: 150 loss: 5.25177051622\n",
327 | "epoch: 151 loss: 2.06122105925\n",
328 | "epoch: 152 loss: 5.77639053652\n",
329 | "epoch: 153 loss: 3.41105685881\n",
330 | "epoch: 154 loss: 3.49809097069\n",
331 | "epoch: 155 loss: 3.50859116854\n",
332 | "epoch: 156 loss: 2.65072375668\n",
333 | "epoch: 157 loss: 1.0892761941\n",
334 | "epoch: 158 loss: 3.73852094174\n",
335 | "epoch: 159 loss: 2.09334364788\n",
336 | "epoch: 160 loss: 3.42473988063\n",
337 | "epoch: 161 loss: 4.15821784777\n",
338 | "epoch: 162 loss: 3.07270456263\n",
339 | "epoch: 163 loss: 3.03414930016\n",
340 | "epoch: 164 loss: 2.21713830004\n",
341 | "epoch: 165 loss: 3.09237984684\n",
342 | "epoch: 166 loss: 2.50874791008\n",
343 | "epoch: 167 loss: 3.05429294516\n",
344 | "epoch: 168 loss: 3.59077804656\n",
345 | "epoch: 169 loss: -0.848678995719\n",
346 | "epoch: 170 loss: 3.02817209546\n",
347 | "epoch: 171 loss: 2.16086117381\n",
348 | "epoch: 172 loss: 2.88510801215\n",
349 | "epoch: 173 loss: 5.07348587863\n",
350 | "epoch: 174 loss: 2.88254372934\n",
351 | "epoch: 175 loss: 3.18771861059\n",
352 | "epoch: 176 loss: 3.79223869007\n",
353 | "epoch: 177 loss: 3.25125189578\n",
354 | "epoch: 178 loss: 1.84634868382\n",
355 | "epoch: 179 loss: 2.91637584274\n",
356 | "epoch: 180 loss: 3.27820558387\n",
357 | "epoch: 181 loss: 4.34159550898\n",
358 | "epoch: 182 loss: 3.82771802835\n",
359 | "epoch: 183 loss: 1.59955721572\n",
360 | "epoch: 184 loss: 1.75296756515\n",
361 | "epoch: 185 loss: 1.23443112123\n",
362 | "epoch: 186 loss: 3.10859095541\n",
363 | "epoch: 187 loss: 3.48970209254\n",
364 | "epoch: 188 loss: 3.63041983312\n",
365 | "epoch: 189 loss: 3.13059695013\n",
366 | "epoch: 190 loss: 2.69353708341\n",
367 | "epoch: 191 loss: 2.11341980657\n",
368 | "epoch: 192 loss: 3.92873510975\n",
369 | "epoch: 193 loss: 2.9512563675\n",
370 | "epoch: 194 loss: 3.01831409986\n",
371 | "epoch: 195 loss: 2.98569903004\n",
372 | "epoch: 196 loss: 3.10884910108\n",
373 | "epoch: 197 loss: 4.27174903568\n",
374 | "epoch: 198 loss: 3.55130808431\n",
375 | "epoch: 199 loss: 3.56518972824\n",
376 | "epoch: 200 loss: 3.29828396437\n",
377 | "epoch: 201 loss: 5.16170917605\n",
378 | "epoch: 202 loss: 0.118585307219\n",
379 | "epoch: 203 loss: 3.11657674401\n",
380 | "epoch: 204 loss: 3.63106080578\n",
381 | "epoch: 205 loss: 3.18436268625\n",
382 | "epoch: 206 loss: 2.89210711495\n",
383 | "epoch: 207 loss: 4.23243254842\n",
384 | "epoch: 208 loss: 2.63102372522\n",
385 | "epoch: 209 loss: 3.34819935546\n",
386 | "epoch: 210 loss: 1.4596554642\n",
387 | "epoch: 211 loss: 2.33378054362\n",
388 | "epoch: 212 loss: 3.34375129018\n",
389 | "epoch: 213 loss: 1.64000920949\n",
390 | "epoch: 214 loss: 4.00121701414\n",
391 | "epoch: 215 loss: 3.65790885688\n",
392 | "epoch: 216 loss: 3.77849563817\n",
393 | "epoch: 217 loss: 2.17285735458\n",
394 | "epoch: 218 loss: 3.36417400559\n",
395 | "epoch: 219 loss: 3.42519727236\n",
396 | "epoch: 220 loss: 4.83963475983\n",
397 | "epoch: 221 loss: 1.19402285047\n",
398 | "epoch: 222 loss: 2.74591668666\n",
399 | "epoch: 223 loss: 2.94579593102\n",
400 | "epoch: 224 loss: 0.789548538865\n",
401 | "epoch: 225 loss: 2.97076595264\n",
402 | "epoch: 226 loss: 1.89157433646\n",
403 | "epoch: 227 loss: 2.31867257451\n",
404 | "epoch: 228 loss: 5.22010332222\n",
405 | "epoch: 229 loss: 3.65318415908\n",
406 | "epoch: 230 loss: 2.28434105689\n",
407 | "epoch: 231 loss: 2.70073859327\n",
408 | "epoch: 232 loss: 4.66505023718\n",
409 | "epoch: 233 loss: 2.03999384899\n",
410 | "epoch: 234 loss: 3.36292831813\n",
411 | "epoch: 235 loss: 1.25817184503\n",
412 | "epoch: 236 loss: 3.72803030956\n",
413 | "epoch: 237 loss: 1.37396608538\n",
414 | "epoch: 238 loss: 2.72239575201\n",
415 | "epoch: 239 loss: 2.47525942957\n",
416 | "epoch: 240 loss: 2.36812837536\n",
417 | "epoch: 241 loss: 2.71524793467\n",
418 | "epoch: 242 loss: 5.711092723\n",
419 | "epoch: 243 loss: 5.8978357984\n",
420 | "epoch: 244 loss: 6.07501574434\n",
421 | "epoch: 245 loss: 2.12465910636\n",
422 | "epoch: 246 loss: 0.600082264259\n",
423 | "epoch: 247 loss: 5.87320352083\n",
424 | "epoch: 248 loss: 4.06440292249\n",
425 | "epoch: 249 loss: 2.86890617076\n",
426 | "epoch: 250 loss: 2.60379541345\n",
427 | "epoch: 251 loss: 4.06766886629\n",
428 | "epoch: 252 loss: 4.81755186958\n",
429 | "epoch: 253 loss: 4.51005160309\n",
430 | "epoch: 254 loss: -0.537685309005\n",
431 | "epoch: 255 loss: 1.40026898106\n",
432 | "epoch: 256 loss: 3.41512245681\n",
433 | "epoch: 257 loss: 3.51758813261\n",
434 | "epoch: 258 loss: 3.31876817531\n",
435 | "epoch: 259 loss: 3.23894517381\n",
436 | "epoch: 260 loss: 2.56682951065\n",
437 | "epoch: 261 loss: 5.43865915082\n",
438 | "epoch: 262 loss: 2.58534373836\n",
439 | "epoch: 263 loss: 7.90304602673\n",
440 | "epoch: 264 loss: 2.42130322179\n",
441 | "epoch: 265 loss: 2.72820556484\n",
442 | "epoch: 266 loss: 2.58883078814\n",
443 | "epoch: 267 loss: 2.89652888709\n",
444 | "epoch: 268 loss: 2.68670524446\n",
445 | "epoch: 269 loss: 2.26921282098\n",
446 | "epoch: 270 loss: 1.70422592643\n",
447 | "epoch: 271 loss: -1.1928373478\n",
448 | "epoch: 272 loss: 2.14397088559\n",
449 | "epoch: 273 loss: 3.09142719411\n",
450 | "epoch: 274 loss: 2.10730525936\n",
451 | "epoch: 275 loss: 1.98040957028\n",
452 | "epoch: 276 loss: 4.62798377466\n",
453 | "epoch: 277 loss: 2.36621606693\n",
454 | "epoch: 278 loss: 2.54395079106\n",
455 | "epoch: 279 loss: 4.23434652936\n",
456 | "epoch: 280 loss: 1.41083474453\n",
457 | "epoch: 281 loss: 3.37749827503\n",
458 | "epoch: 282 loss: 2.17208726425\n",
459 | "epoch: 283 loss: 5.1576048296\n",
460 | "epoch: 284 loss: 6.34501705398\n",
461 | "epoch: 285 loss: 3.15625347649\n",
462 | "epoch: 286 loss: 5.38947303526\n",
463 | "epoch: 287 loss: 1.08173332282\n",
464 | "epoch: 288 loss: 3.17147726546\n",
465 | "epoch: 289 loss: 4.60109535475\n",
466 | "epoch: 290 loss: 2.75917343044\n",
467 | "epoch: 291 loss: 4.12246244343\n",
468 | "epoch: 292 loss: 5.61391517356\n",
469 | "epoch: 293 loss: 3.425287469\n",
470 | "epoch: 294 loss: 4.1831023195\n",
471 | "epoch: 295 loss: 2.66297220763\n",
472 | "epoch: 296 loss: 3.25912051269\n",
473 | "epoch: 297 loss: 4.10932035611\n",
474 | "epoch: 298 loss: 2.91372908374\n",
475 | "epoch: 299 loss: 2.74742196021\n",
476 | "epoch: 300 loss: 5.88166266223\n",
477 | "epoch: 301 loss: 0.75249030882\n",
478 | "epoch: 302 loss: 6.54512425975\n",
479 | "epoch: 303 loss: 2.30702140069\n",
480 | "epoch: 304 loss: 3.36896403343\n",
481 | "epoch: 305 loss: 4.51403036235\n",
482 | "epoch: 306 loss: 1.48074104578\n",
483 | "epoch: 307 loss: 4.57714964467\n",
484 | "epoch: 308 loss: 2.20804082612\n",
485 | "epoch: 309 loss: 2.8035374171\n",
486 | "epoch: 310 loss: 2.80788716177\n",
487 | "epoch: 311 loss: 2.77167804015\n",
488 | "epoch: 312 loss: 4.57485620287\n",
489 | "epoch: 313 loss: 1.16586973676\n",
490 | "epoch: 314 loss: 2.68745825587\n",
491 | "epoch: 315 loss: 3.44041000151\n",
492 | "epoch: 316 loss: 6.52415251374\n",
493 | "epoch: 317 loss: 2.52399474805\n",
494 | "epoch: 318 loss: 0.631915776667\n",
495 | "epoch: 319 loss: 1.66761810769\n",
496 | "epoch: 320 loss: 2.08112019465\n",
497 | "epoch: 321 loss: 2.35160317918\n",
498 | "epoch: 322 loss: -1.34215669503\n",
499 | "epoch: 323 loss: 2.98231424049\n",
500 | "epoch: 324 loss: 4.56995394273\n",
501 | "epoch: 325 loss: 3.07012891725\n",
502 | "epoch: 326 loss: 7.68411239994\n",
503 | "epoch: 327 loss: 5.99312248435\n",
504 | "epoch: 328 loss: 3.32532863388\n",
505 | "epoch: 329 loss: 2.35229181451\n",
506 | "epoch: 330 loss: 2.79273417401\n",
507 | "epoch: 331 loss: 1.6267331823\n",
508 | "epoch: 332 loss: 4.05703835781\n",
509 | "epoch: 333 loss: 3.50184378592\n",
510 | "epoch: 334 loss: 1.85546750973\n",
511 | "epoch: 335 loss: 1.72709404755\n",
512 | "epoch: 336 loss: 4.70042001053\n",
513 | "epoch: 337 loss: 4.6844887788\n",
514 | "epoch: 338 loss: 2.42101917271\n",
515 | "epoch: 339 loss: 2.81914072472\n",
516 | "epoch: 340 loss: 5.03859286599\n",
517 | "epoch: 341 loss: 0.663704004662\n",
518 | "epoch: 342 loss: 3.33557087605\n",
519 | "epoch: 343 loss: 2.68442951144\n",
520 | "epoch: 344 loss: -0.346801048097\n",
521 | "epoch: 345 loss: 1.98547637073\n",
522 | "epoch: 346 loss: 2.80697397524\n",
523 | "epoch: 347 loss: 3.25907380263\n",
524 | "epoch: 348 loss: 2.99764650391\n",
525 | "epoch: 349 loss: 4.39521745331\n",
526 | "epoch: 350 loss: 3.084907368\n",
527 | "epoch: 351 loss: 2.93964988738\n",
528 | "epoch: 352 loss: 2.66186074988\n",
529 | "epoch: 353 loss: 1.66670117208\n",
530 | "epoch: 354 loss: 4.66525414376\n",
531 | "epoch: 355 loss: 4.70731150933\n",
532 | "epoch: 356 loss: 3.75134080387\n",
533 | "epoch: 357 loss: 0.690840578475\n",
534 | "epoch: 358 loss: 3.78937981006\n",
535 | "epoch: 359 loss: 4.83843290524\n",
536 | "epoch: 360 loss: 4.94228117384\n",
537 | "epoch: 361 loss: 4.18048098112\n",
538 | "epoch: 362 loss: 4.67001680857\n",
539 | "epoch: 363 loss: 3.0217612337\n",
540 | "epoch: 364 loss: 2.94388006251\n",
541 | "epoch: 365 loss: 0.903853856196\n",
542 | "epoch: 366 loss: 2.20916393402\n",
543 | "epoch: 367 loss: 0.121047254541\n",
544 | "epoch: 368 loss: 2.65769103435\n",
545 | "epoch: 369 loss: 4.52720882821\n",
546 | "epoch: 370 loss: 2.59415429943\n",
547 | "epoch: 371 loss: 3.01699731141\n",
548 | "epoch: 372 loss: 1.59994477828\n",
549 | "epoch: 373 loss: 0.0506300930613\n",
550 | "epoch: 374 loss: 3.20347717041\n",
551 | "epoch: 375 loss: 3.74824961975\n",
552 | "epoch: 376 loss: 1.62196195623\n",
553 | "epoch: 377 loss: 3.86154621235\n",
554 | "epoch: 378 loss: 2.75383491952\n",
555 | "epoch: 379 loss: 6.5127427882\n",
556 | "epoch: 380 loss: 4.20962976192\n",
557 | "epoch: 381 loss: 1.71294759448\n",
558 | "epoch: 382 loss: 3.51957228173\n",
559 | "epoch: 383 loss: 3.29630961699\n",
560 | "epoch: 384 loss: 4.26320507224\n",
561 | "epoch: 385 loss: 2.38476008011\n",
562 | "epoch: 386 loss: 3.01464067704\n",
563 | "epoch: 387 loss: 2.84849694543\n",
564 | "epoch: 388 loss: 3.62856024175\n",
565 | "epoch: 389 loss: 4.58423499579\n",
566 | "epoch: 390 loss: 3.95894545784\n",
567 | "epoch: 391 loss: 3.23669485304\n",
568 | "epoch: 392 loss: 2.21182500982\n",
569 | "epoch: 393 loss: 2.87200369571\n",
570 | "epoch: 394 loss: 2.78819546871\n",
571 | "epoch: 395 loss: 4.22132642015\n",
572 | "epoch: 396 loss: 4.98199427921\n",
573 | "epoch: 397 loss: 3.58771910756\n",
574 | "epoch: 398 loss: 3.41765288907\n",
575 | "epoch: 399 loss: 2.57685803922\n",
576 | "epoch: 400 loss: 3.18747468446\n",
577 | "epoch: 401 loss: 5.53744410284\n",
578 | "epoch: 402 loss: 3.54129755567\n",
579 | "epoch: 403 loss: 5.0504117403\n",
580 | "epoch: 404 loss: 2.26524665494\n",
581 | "epoch: 405 loss: 1.95113711658\n",
582 | "epoch: 406 loss: 2.64753875283\n",
583 | "epoch: 407 loss: 2.17929474049\n",
584 | "epoch: 408 loss: 5.45907660042\n",
585 | "epoch: 409 loss: 2.64846137474\n",
586 | "epoch: 410 loss: 1.68674330969\n",
587 | "epoch: 411 loss: 2.70099255232\n",
588 | "epoch: 412 loss: 1.41355513226\n",
589 | "epoch: 413 loss: 4.93735100682\n",
590 | "epoch: 414 loss: 3.65164260535\n",
591 | "epoch: 415 loss: 2.35777094513\n",
592 | "epoch: 416 loss: 3.0108730957\n",
593 | "epoch: 417 loss: 2.71420614943\n",
594 | "epoch: 418 loss: 2.8719364792\n",
595 | "epoch: 419 loss: 2.60894139486\n",
596 | "epoch: 420 loss: 4.42482684204\n",
597 | "epoch: 421 loss: 1.73501610399\n",
598 | "epoch: 422 loss: 3.28668021726\n",
599 | "epoch: 423 loss: 4.73882877601\n",
600 | "epoch: 424 loss: -1.19523111192\n",
601 | "epoch: 425 loss: 0.996477647402\n",
602 | "epoch: 426 loss: 5.55864681307\n",
603 | "epoch: 427 loss: 3.35836445017\n",
604 | "epoch: 428 loss: 3.70270636875\n",
605 | "epoch: 429 loss: 3.05850829735\n",
606 | "epoch: 430 loss: 1.66881001804\n",
607 | "epoch: 431 loss: 4.06711807845\n",
608 | "epoch: 432 loss: 4.1783745714\n",
609 | "epoch: 433 loss: 1.90153547349\n",
610 | "epoch: 434 loss: 3.63411154478\n",
611 | "epoch: 435 loss: 4.9954669767\n",
612 | "epoch: 436 loss: 3.46170534487\n",
613 | "epoch: 437 loss: 3.89907717428\n",
614 | "epoch: 438 loss: 2.99790241101\n",
615 | "epoch: 439 loss: 2.51277638268\n",
616 | "epoch: 440 loss: 2.5555069159\n",
617 | "epoch: 441 loss: -0.263893283577\n",
618 | "epoch: 442 loss: 5.50386622438\n",
619 | "epoch: 443 loss: 2.7328822278\n",
620 | "epoch: 444 loss: 1.94142807813\n",
621 | "epoch: 445 loss: 2.77714985464\n",
622 | "epoch: 446 loss: 2.54011011294\n",
623 | "epoch: 447 loss: 3.2763842929\n",
624 | "epoch: 448 loss: 3.68501862482\n",
625 | "epoch: 449 loss: 3.57015221167\n",
626 | "epoch: 450 loss: 1.66114933082\n",
627 | "epoch: 451 loss: 1.39964633316\n",
628 | "epoch: 452 loss: 3.03132746829\n",
629 | "epoch: 453 loss: -0.87132260239\n",
630 | "epoch: 454 loss: 4.07636487656\n",
631 | "epoch: 455 loss: 3.58300206155\n",
632 | "epoch: 456 loss: 4.46842927687\n",
633 | "epoch: 457 loss: 4.25993552348\n",
634 | "epoch: 458 loss: 2.88336732318\n",
635 | "epoch: 459 loss: 2.18334580479\n",
636 | "epoch: 460 loss: 4.34318314518\n",
637 | "epoch: 461 loss: 2.51473650283\n",
638 | "epoch: 462 loss: 2.42492178127\n",
639 | "epoch: 463 loss: 2.94073959852\n",
640 | "epoch: 464 loss: 2.97309486297\n",
641 | "epoch: 465 loss: 2.07845299893\n",
642 | "epoch: 466 loss: 1.50011397759\n",
643 | "epoch: 467 loss: 0.411165654984\n",
644 | "epoch: 468 loss: 3.42839601374\n",
645 | "epoch: 469 loss: 3.28177118534\n",
646 | "epoch: 470 loss: 1.73392359\n",
647 | "epoch: 471 loss: 3.53880373466\n",
648 | "epoch: 472 loss: 3.65355298959\n",
649 | "epoch: 473 loss: 2.56425354753\n",
650 | "epoch: 474 loss: 3.61943305172\n",
651 | "epoch: 475 loss: 3.71983256272\n",
652 | "epoch: 476 loss: 5.08994465017\n",
653 | "epoch: 477 loss: 1.69198405768\n",
654 | "epoch: 478 loss: 3.45191743968\n",
655 | "epoch: 479 loss: 3.42433335592\n",
656 | "epoch: 480 loss: 3.93555926372\n",
657 | "epoch: 481 loss: 3.48664917826\n",
658 | "epoch: 482 loss: 1.4216237996\n",
659 | "epoch: 483 loss: 2.51749198316\n",
660 | "epoch: 484 loss: 4.26704003117\n",
661 | "epoch: 485 loss: 4.00011786235\n",
662 | "epoch: 486 loss: 0.641379909022\n",
663 | "epoch: 487 loss: 2.10999103822\n",
664 | "epoch: 488 loss: 1.32966766115\n",
665 | "epoch: 489 loss: 2.33603082377\n",
666 | "epoch: 490 loss: 2.80000453637\n",
667 | "epoch: 491 loss: 2.92635409908\n",
668 | "epoch: 492 loss: 2.12645249618\n",
669 | "epoch: 493 loss: 2.80658443714\n",
670 | "epoch: 494 loss: 0.811689273119\n",
671 | "epoch: 495 loss: 2.02466325415\n",
672 | "epoch: 496 loss: 3.68049895816\n",
673 | "epoch: 497 loss: 3.08670196874\n",
674 | "epoch: 498 loss: 4.32681166675\n",
675 | "epoch: 499 loss: 2.20622594261\n"
676 | ]
677 | }
678 | ],
679 | "source": [
680 | "model.fit(data_x, data_y, epochs=500, learning_rate=0.0005)"
681 | ]
682 | },
683 | {
684 | "cell_type": "code",
685 | "execution_count": 7,
686 | "metadata": {
687 | "collapsed": false,
688 | "deletable": true,
689 | "editable": true
690 | },
691 | "outputs": [
692 | {
693 | "name": "stdout",
694 | "output_type": "stream",
695 | "text": [
696 | "[[-0.72867485]\n",
697 | " [ 0.71984291]]\n"
698 | ]
699 | },
700 | {
701 | "data": {
702 | "text/plain": [
703 | "array([[-0.60885655],\n",
704 | " [-0.26783404]])"
705 | ]
706 | },
707 | "execution_count": 7,
708 | "metadata": {},
709 | "output_type": "execute_result"
710 | }
711 | ],
712 | "source": [
713 | "print(data_y[2:4])\n",
714 | "model.predict(data_x[2:4])"
715 | ]
716 | },
717 | {
718 | "cell_type": "code",
719 | "execution_count": 19,
720 | "metadata": {
721 | "collapsed": false,
722 | "deletable": true,
723 | "editable": true
724 | },
725 | "outputs": [
726 | {
727 | "name": "stdout",
728 | "output_type": "stream",
729 | "text": [
730 | "[[-0.75459406]\n",
731 | " [-0.49975296]\n",
732 | " [-0.3467673 ]\n",
733 | " [-0.1378455 ]\n",
734 | " [-0.32566127]\n",
735 | " [-0.22283935]\n",
736 | " [-0.92145684]\n",
737 | " [ 1.60836016]\n",
738 | " [-0.0122725 ]\n",
739 | " [-0.02564799]]\n",
740 | "[[-0.81594768]\n",
741 | " [-0.50475734]\n",
742 | " [-0.23413539]\n",
743 | " [-0.40121998]\n",
744 | " [-0.26037804]\n",
745 | " [-0.05297205]\n",
746 | " [-0.89263689]\n",
747 | " [ 0.87706008]\n",
748 | " [-0.1573231 ]\n",
749 | " [-0.22047959]]\n",
750 | "[[ 4135.69539801]\n",
751 | " [ 7220.67051321]\n",
752 | " [ 9072.63611192]\n",
753 | " [ 11601.7357884 ]\n",
754 | " [ 9328.13477727]\n",
755 | " [ 10572.84406238]\n",
756 | " [ 2115.74047963]\n",
757 | " [ 32740.40220016]\n",
758 | " [ 13121.85789553]\n",
759 | " [ 12959.94108767]]\n",
760 | "[[ 3392.98]\n",
761 | " [ 7160.09]\n",
762 | " [ 10436.1 ]\n",
763 | " [ 8413.46]\n",
764 | " [ 10118.42]\n",
765 | " [ 12629.17]\n",
766 | " [ 2464.62]\n",
767 | " [ 23887.66]\n",
768 | " [ 11365.95]\n",
769 | " [ 10601.41]]\n"
770 | ]
771 | },
772 | {
773 | "data": {
774 | "text/plain": [
775 | ""
776 | ]
777 | },
778 | "execution_count": 19,
779 | "metadata": {},
780 | "output_type": "execute_result"
781 | },
782 | {
783 | "data": {
784 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXt8lNWdP/4+M8kkEyFcBnLjkqhYf4BobIL49dIqVjGE\nXvytZbffaGmltcVQsVTUNVi2SnYtxQuV6EpXWyzZqtXdqpiRsja09utqkRUWCF+XVAlCbpJAIjLJ\nJDPn+8dzyTPPc85zmXnmknDer9e8kjnzXM5znnM+n8/5XAmlFAICAgICAlp40t0BAQEBAYHMg2AO\nAgICAgIGCOYgICAgIGCAYA4CAgICAgYI5iAgICAgYIBgDgICAgICBgjmICAgICBggGAOAgICAgIG\nCOYgICAgIGBAVro7EC+mTJlCy8rKEr7OZ599hnPOOSfxDrkI0Sd7yMQ+AZnZL9EnexjrfdqzZ88J\nSulUWwdTSkflp6KigrqB5uZmV67jJkSf7CET+0RpZvZL9MkexnqfALxHbdJYoVYSEBAQEDBAMAcB\nAQEBAQMEcxAQEBAQMGDUGqQFBAQEFAwNDeHYsWMYGBhI6DoTJkzAoUOHXOqVO4inT7m5uZg+fTqy\ns7Pjvq9gDgICAqMex44dw/jx41FWVgZCSNzX+fTTTzF+/HgXe5Y4nPaJUoqenh4cO3YM5557btz3\nFWolAQEOgsEglixZgvnz52PJkiUIBoPp7pIABwMDAwgEAgkxhrECQggCgUDCuyixcxAQYCAYDKK+\nvl5dYJ2dnaivrwcAVFVVpbNrAhwIxjACN8ZC7BwEBBhoaGgwSF4DAwNoaGhIU48EBFILwRwEBBjo\n6upy1C4gYAdHjhzBv/7rv6a7G7YgmIOAAAOFhYWO2gUE7MCMOQwPD6e4N+YQzEFAgIHa2lrk5ubG\ntOXm5qK2tjZNPRJwE247G/z4xz/G448/rn6vq6vDpk2bDMfdd999eOutt1BeXo7HHnsMv/rVr/CV\nr3wFCxcuxHXXXYddu3ZhyZIl6vErV65EY2MjAGDPnj344he/iIqKCixatAgdHR0J9dkKgjkICDBQ\nVVWFuro6FBUVgRCCoqIi1NXVCWP0GIDibNDZ2QlKqepskAiDuO222/Dcc88BAKLRKJ5//nnccsst\nhuMefvhhXH311di7dy9++MMfAgD+67/+Cy+99BL++Mc/cq8/NDSEH/zgB3jppZewZ88e3Hbbbair\nq4u7v3YgvJUEBDioqqoSzGAMwszZ4KqrrorrmmVlZQgEAnj//ffR1dWFSy+9FIFAwNa5119/PSZP\nnmx6zAcffIADBw7g+uuvBwBEIhEUFxfH1Ve7EMxBQEDgrEKynA2+853v4Fe/+hU6Oztx22232T5P\nm447KysL0WhU/a4wMUop5s6di//8z/9MqI9OINRKAgICZxWS5Wxw00034Y033sDu3buxaNEi5jHj\nx4/Hp59+yr1GaWkpWlpaMDg4iFOnTuHNN98EAFx44YX45JNPVOYwNDSEgwcPJtRfKwjmICAgcFYh\nWc4GPp8P1157LZYuXQqv18s85uKLL4bX68Ull1yCxx57zPD7jBkzsHTpUlx00UVYunQpLr30UvXa\nL730Eu69915ccsklKC8vx9tvv51Qf60g1EoCAgJnFRQ7UkNDA7q6ulBYWIja2lpUVVWZSvVWiEaj\neOedd/Db3/6We0x2djb+8Ic/xLR961vfivm+YcMGbNiwQf2u9Km8vBx/+tOf4u6fUwjmICAgcNbB\nbWeDlpYWLFmyBDfddBMuuOAC166bTgjmICAgIJAg5syZgw8//FD9vn//ftx6660xx+Tk5ODdd99N\nddfihmAOAgICAi5j3rx52Lt3b7q7kRCEQVpAQEBAwADBHAQEBAQEDBDMQUBAQEDAAFvMgRByhBCy\nnxCylxDyntw2mRCykxByWP47SW4nhJCfE0JaCSH/TQj5vOY6y+TjDxNClmnaK+Trt8rniqodAgIC\nAmmEk53DtZTSckpppfz9PgBvUkovAPCm/B0AqgBcIH9uB/AUIDETAOsALABwGYB1CkORj/mu5rwb\n434iAQEBAYGEkYha6asAtsr/bwXwNU37c1TCOwAmEkKKASwCsJNS2kspPQlgJ4Ab5d/yKaXvUEop\ngOc01xIQEBAQ4ODIkSO46KKLknJtu66sFMDvCSEUwNOU0i0ACimlSkLxTgBKYpJpAD7WnHtMbjNr\nP8ZoN4AQcjuk3QgKCwuxa9cum93n4/Tp065cx02IPtlDJvYJyMx+jfU+TZgwwVF0c9aLLyLnJz8B\nOXYMdPp0DK5bh+GlSxGJRBKKknYLkUhETcFh1qfTp08jGo0yfx8YGEhsfCmllh8A0+S/BQD2AfgC\ngFO6Y07Kf7cDuErT/iaASgB3A1iraX9AbqsE8B+a9qsBbLfqU0VFBXUDzc3NrlzHTYg+sdHU1ESr\nq6tpZWUlra6upq+88kq6u8REJoyVHmO9Ty0tLfYP3raN0rw8SoGRT14epdu20f7+/rju/8ADD9DH\nHntM/X7//ffTxx9/3HBcc3Mzvfrqq+nixYvp5z73Ofq9732PRiIRSiml55xzDl29ejW9+OKL6Vtv\nvUXfe+89+oUvfIGWl5fTG264gba3t1NKKX3vvffoxRdfTC+++GJ6991307lz5zL7xBoTAO9RGzSf\nUmpPrUQpPS7/7Qbw75BsBl2ySgjy32758OMAZmhOny63mbVPZ7RnDNyuGiXgHKwCLR0dHeJdCDhH\nXR1w5kxs25kzUnucsFvsBwD+8pe/4IknnkBLSwv++te/4t/+7d8AAJ999hkWLFiAffv2YcGCBWpx\nnz/96U8xxX2+/e1v44knnsC+ffvi7q8dWDIHQsg5hJDxyv8AbgBwAMCrABSPo2UAXpH/fxXAN2Wv\npcsB9FFJ/bQDwA2EkEmyIfoGADvk3/oJIZfLXkrf1Fwr7UhG1SgB52AVaIlGo2hoaEhTjwRGLY4e\nddZuA9piP7///e9Ni/1cdtllOO+88+D1evGNb3wDf/7znwEAXq8Xf/M3fwMgtrjPlVdeifXr1+PY\nsWM4deoUTp06hS984QsAYEjR4Sbs2BwKAfy77F2aBeBfKaVvEEJ2A3iRELIcQBuApfLxTQAWA2gF\ncAbAtwGAUtpLCHkIwG75uAcppb3y/3cA+BUAP4Cg/MkImFWNElXCUodkFWgROAsxcybQ1sZuTwB2\ni/3oPfWV77m5uaqdgWqK+3z66acYP348AODUqVMJ9dEJLHcOlNIPKaWXyJ+5lNJ6ub2HUnodpfQC\nSumXFEIvq7ZqKaXnU0rnUUrf01zrWUrpLPnzS037e5TSi+RzVsq6sYyAIEqZgWQVaBlLEOpPm6iv\nB/LyYtvy8qT2BGCn2A8gqZU++ugjRKNRvPDCC8zSpLziPhMnTsTEiRPV3UZjY2NCfTaDiJC2gCBK\nmQFWgRaPx5NwgZaxgtGk/lSY2KFDh9LDxGpqgC1bgNJSgBDp75YtUnsCsFPsBwDmz5+PlStXYvbs\n2Tj33HNx0003Ma+lFPe54oorYor7/PKXv0RtbS3Ky8uRTDlaZGW1QG1tLerr62NUS25UjRJwBlaB\nluLiYqHakzFa1J8KE1P6qjAxAKntZ01NwsxADzvFfgAgPz8f27dvN7SfPn065rtS3EerVgKAioqK\nGGO0tjCQmxA7BwtUVVWhrq4O+fn5altOTk4ae3T2oqqqCtu3b8fu3buxffv2mHdytmO0qD/NmNho\nRktLC2bNmoXrrrtOFPs52xAOh9X/+/r60iPtCAhwUFhYiM7OTmZ7JmG0MDGncFLs55prrklx7+KD\n2DnYwFiVdgTGDlg2mUxUfybThpdBfixqsR/tJ5VV4NwYC8EcbGCsSjsCYweK+rOoqAiEEBQVFaGu\nrg5VVVUIBoNobW3NCC+mZDGx3Nxc9PT0pJxB9PX14fDhw2hpacHhw4fR19eX0vuzQClFT0+PYZyd\nQqiVbGC0bNkFzm5UVVUZ1JyKAbimpibGi0k5Ph19BKDuuouKilBbW5twX6ZPn45jx47hk08+Seg6\nAwMDtolqKBRCX19fDEM6duwYJkyYAL/fn1A/4u2TgtzcXEyfPt36QBMI5mADwmNJYLQiE72YFCa2\na9curFixwpVrZmdn49xzz034Ort27cKll15q69glS5YwhcaioiKmN1Iq+uQmBHOwAZYbpRvSjoBA\nsiFUosnDWB9bwRxsgrVlFxDIdAiVaPIw1sdWGKQFMhYiHUTiGC1eTKMRY31sxc5BIC0IBoOmajq3\nI2mt7jdWoTzj8ePHQQg5q5492Rjr6mbBHARSDjuE301DasakbEgTFOPv7t27rQ8eRcgEhj+W1c1C\nrSSQctgJKnTT2CeCGMceRlOiwdEKwRwEUg47hN/NSNqx7lVyNkIw/ORDMAeBlMMO4XfT2JeKtOta\n43lra6uQYJMMwfCTD8EcBFIOO4TfLB1EMu6XCPQqjqGhIaHiSDJEnZXkQzAHDoQbZfJgl/DrU3TH\na/hzk9GwIFQcqcdYcCPNdBojvJUYONu9W1KBVHt5JPN+QsWReox2N9LRQGMEc2AgE/PRCGQuxnqk\nbKZiNLuRjgYaI9RKDAhJUMAJxoKKQyC1GA00RjAHBoSxS8AJ9DaN7OxsV20aAmMPo4HGCObAgJAE\nBZxCazyfNWuWYAwCphgNNEYwBwaS7d2SCUi3p0S67y8gkE6MBhojDNIcjGZjlxXS7SmR7vsLCGQC\nMp3GiJ1DmpCo5JzI+en2y0/3/QUEBKxhmzkQQryEkPcJIdvl7+cSQt4lhLQSQl4ghPjk9hz5e6v8\ne5nmGn8vt39ACFmkab9RbmslhNzn3uNlJhJNGpbo+XY8JfTMp7+/39a13bq/gIAdaOfpwoULcd11\n1wlVpUtwsnNYBeCQ5vtPATxGKZ0F4CSA5XL7cgAn5fbH5ONACJkD4O8AzAVwI4AnZYbjBdAAoArA\nHADfkI8ds0hUck70fCtPCRbz6ejocG2xpcVTo7ERKCsDPB7pb2Nj8u4lkBLo52l/fz/6+voyJkvr\naLer2WIOhJDpAKoB/Iv8nQBYCOAl+ZCtAL4m//9V+Tvk36+Tj/8qgOcppYOU0o8AtAK4TP60Uko/\npJSGATwvH5tZcJG4JCo5847r7Oy0NRmtPCVYzCcajbqm9km5p0ZjI3D77UBbG0Cp9Pf22wWDGOVg\nzVMt0qmqHAspxQml1PogQl4C8E8AxgO4G8C3ALwj7w5ACJkBIEgpvYgQcgDAjZTSY/JvfwWwAMA/\nyOdsk9ufAaCM1I2U0u/I7bcCWEApXcnox+0AbgeAwsLCiueffz7Oxx7B6dOnMW7cOOMPvb3A8eNA\nOCwxhGg09nePBygtBSZPdnzP1tZWDA0NGdqzs7Mxa9Ysfp8sztfD4/GguLgY+fn5ht/6+/vR3d2N\noaEhZGdno6CgQD3u0KFDhuOnTJmCEydOYPbs2Zb3tQOz+9uF1Tip2L9feo96+HzAvHmO7ulqv1KF\n3l6cHh7GuI8/lp552rS45q0T2Hm/iY5T+4EDmBoOI5tSDBGCT7Kz0Zdl9LFxMmfdendWa9wJ3JxP\n11577R5KaaWdYy29lQghSwB0U0r3EEKuSbRziYBSugXAFgCorKyk11yTeHd27doFw3UUSfPMGfOT\nS0uBI0cc3zMUCsV46wCS5FxXV4drrrmG3SeL83koKirC9u3bHfVv48aNhnQQy5cvx+uvv44VK1Y4\nulZCaGwE6uqAo0eBmTOB+nqgpkb92WqcVCxcKO0Y9CDEyPRdgO1+yXCtohlrvADg9tux68EHcc3d\nd0vf8/KALVtixtJNBINBbNiwgTm/tc/ldJxi0NiIgbvuQm4kojaFCMH60lLsCATUtqKiIkdzNqE+\nabBmzRqwBG9CiOOKfG71ySnsqJWuBPAVQsgRSCqfhQA2AZhICFGYy3QAx+X/jwOYAQDy7xMA9Gjb\ndefw2tOHujprxgBIizAOJOrjzDqfh3iMvCy1j8fjSW2AjpuqoJkznbWnEK6pH3jjtWqVcS6fOSPN\n8SQhJd5odXUxjAEA/JRiZXu7+j1Zqko7toTREAFtBUvmQCn9e0rpdEppGSSD8h8opTUAmgHcLB+2\nDMAr8v+vyt8h//4HKrHQVwH8nezNdC6ACwD8BcBuABfI3k8++R6vuvJ08cIu0U+AuCSajlp/Po9B\nEEJsG8SUSf/jH/8YPp8PEyZMUJlPcXFxan2yWQw6XqJWXy9Jy1rk5Y1I1kmGGTFxjZDyxqunh318\nnIKNHaTEG43T/8JwOKlBZXaZ+WiIgLZCInEO9wJYTQhpBRAA8Izc/gyAgNy+GsB9AEApPQjgRQAt\nAN4AUEspjVBKhwGsBLADkjfUi/Kx6YMdok9IyoiLHbAmIyAZku1IpCzPj8HBQTz44IPYvn27Y3tA\nwuARr3iIWk2NpEYpLZXeW2lpUtUqWlgRE9cIqdNxSeKuKSVSM6f/Hq8Xu/fswfYDB1DV22t9Hb2j\nicU5dpn5aIiAtoIj5kAp3UUpXSL//yGl9DJK6SxK6dcppYNy+4D8fZb8+4ea8+sppedTSi+klAY1\n7U2U0s/Jv6Wf4rIkTS0IAb7//ZQQF7vQT0aPx/hqzSTSjAtMc1sVVFMj2YeiUelvit6d1bgWFhZi\nUU8PXtu/H3/Zswfv7NmD3Xv24PWDB52p0HjjEgikfNdkKTUrBHnPnvg9/3hrNBKxr4ZkqeLa2kzP\nccLM3SpWlS6ICGkWFElTY9hSoTCGJ59M7B5J8LvXTkaeF5pTSTVtgWlpVgW5BatxXT9nDtYePYri\ncBgeSB4iBEBBKOTMxsIbr02bpLns86Vs12QqNWsJMhC/LUm/G/R6jcdYqSFZqrho1PScsWBLsAvB\nHHioqQFY7mOUAk1NiV07WX73Gobz+sGDWMTQNzud3Kz2lAT3sFRBy5ZJC9emCiATYDWu5S++CD/P\nY8qJjcVMdVZTI7nspnDXxJWaE7AlGebd5Mkju0HeGJqp2+JQXY4FW4JdCOZgBkW60SNRY56bxlYF\nOoZTEAph7dGjMQzCbBLX1tZiSX+/qt54bf9+LOnvNxyfrOAeJsPRqoLq64GtWx2pADIBlsTEai45\nmWtpUp05Qpy2JMt5F48aMo5zxoItwS4Ec+ChsVGSwFhI1JjnprFVAYPh+KNRrOrqsjWJq3p7Y9Qb\nxeEw1h49ajDqJcM2YYvhxKECyARYEhOruZQB7rauIk5bkuW8i0cNyTrH47FUXY52W4JdCObAQ10d\nP3AqUb13MvzuOYylYGDA3iSuq0PW4GBMU9bgoIH4JsM2YYvhJIOhpgimxMTM+WEU2lgsEactyXLe\nxeORxjqntDTtO65kJr10AsEceOARHUoTnzzJMLYmynBsEt9kGORsMZwMDmRLCFoCBYwYVlPobptS\n6J/X5nPamnfxqNX059hJK5LEJI7JTnrpBII58MAjOsqkTgRu+N3rJ+jixYkxHJvENxkGOVsLP04V\nwKiAQqAoBYaHpb+ZajNwA8rzVlTYfs6MMQQnOYljspNeOoFgDjwk25UyEeMha4Ju3Sp588TLcGw+\nr2sGOQ1z++3u3Vii2zobFn6GqgAEOHBZus4YQ3AynEk00Oc0U5AOl3JRJpQHheiYJH5LG3gTtKkp\nrkSAAEyfNxgM4vjx41izZo2aGM5pMr8Y6BIb+ru7sbavD+fMno0Xs7L4yecUt0wFu3bF34exDn0S\nvkcfTe29tYkrFekaSGj9ZERZzSTavsxUR+mIoxA7BzMk6BqYtHiAZE1QxvMqOtChoSHXXFdDq1cb\nmFvW4CDWnDw55j1AUoI4In9dRZKl67QiibYvM9VROuIoBHNwACfEPqnFPuxOUBe29m67rgaDQeR0\nd7N/dMLcGhulOg3JrOxmc/yCwSB+duml6MjJQZQQ0H370ht/kW6331HsWcaFMhfa2owu7vGqm3Xz\nq7ylhXtoOoQlwRxswimxT2quIjv2ASvDmU3C57brakNDA7p8PvaPdqUv5dnC4eRVdrNpeAwGg3h3\n1Sqs3LdPjREhw8MYXr48fQwi3cR5lHiW2Rb29Ck/KB1hEIEA4PcDt97qTEhhzC990KqC7Oxs5w/n\nAgRzsAmnxD6puYrseDuZbe0deFy47bra1dWFzSUlCOmkr5ATz6NUqC1s3qOhoQHfa2uDXxcTw4oR\nSRnSTZwZwsuA14u1Hk/G1FLmCXvMmALWXKBUYgyhkJQW3amQwrhmbiSCH3R0xLbl5qKgoMDp47kC\nwRxswimxT3qCLit7iJn06IC4uu1CWFhYiB2BANaXlqLD50MUQIfPh80XX2zfppMKydjmPbq6ulDI\nKkEKINrWlh5iaMftN4m++lrhhRKCzpwcPDRjBt6YPDljainzhL1ulsqTNxd6euIXUkzqUeg9slKe\nLl+GYA424ZTYp90v20x6tEP4ZOJRVV2NnYcPYzLgyIWQt2VXxmVHIIAvz5uHyyoq8PX583HRP/6j\nO8/mFmzeo7CwkKsm6/L50kMMrdx+k+yrr/bhyBF8efFiLLnoopjSnWlNBS+DJ9Qxa7M7nVf69cVi\nxJxrkpkzMyY1h2AONuGU2KfdL9vMLmFF+HTEw9/djcKBAey+6y7rCdvYiFBhIRYtXoxf7NyJG06c\niCGQroxLKtJ527xHbW0tni4tNarJCMHmkhIAaSKGZpG/KfQmyrhU8DJ4Qh1Tv8+bC6yU/kDs+uIx\n4kSDVlMAEedgEwrxclIIPq1+2VZxGlo/dCB2Ypp5u5ipfuSF4JfPLQ6HsVY24u0IBNDQ0KCOSULj\novSht1eSjJMRg2IzzkV5js33349bWlpQGA5jiFHoPt3EMAYpNFgXFhYyA7vSXf+gtrYW9fX1Maol\nrn6fNxcA83WknMOLSdqyJTPjqBRQSkflp6KigrqB5ubmkS/btlFaWkopIdLfbdtcuUdCfUoWzJ6V\nEEolOUf9NG/cKLWbobTUcB4FaLvPRysqKmhlZaWrj+B0nJqammh1dTWtrKyk1dXVtKmpydX+UEpp\ndXU1ffLJJ2lFRUXMp7q62vV7OUHMWHHeEy0tdf2+TU1N9Morr4wZiyuvvJI2NTUx318q3pHZvRyv\nPSuawVhLFLBeSxq4SQ8AvEdt0lihVlKQCj1sJsHMoG1H7cQyZpoY2YD0SotJjTvRoLa21lCiNeOK\nwaSwyp4TNWKq3pG2bwnr960cQ5zax5LpKOAQgjkoGMtRnU7BIh6E4GeTJmHteedhYNkyNhPlTPgu\nny/tBDJVNbKrqqpQXFyc/hxAZnAj8aMD2CXCGVfH3A04YcQ8ATVNFQ8Fc1CQ7sChTIKOeIQKCtDh\n8+EFrxe1x48jNxKJPV5hooyFEPJ4sG3OHGy+4gpUrViRNokolYbR/Pz8jPE44SIDq8ZZvqMMkqpt\nwwkj5gmox4+npq86COagIN2BQ27AzcWjIR5fnz8fp+Q6Azyffhw9ylwI/ueew5q770Z5Q0NaVXZn\nU2F4PYLBIFpbW5Nb89sFmL6j0az2tcuIeYIob80lGYI5KEihHjYpSOLi0Up0lqkvWAshA1R2CcWd\njEaJVUYyEicmC6bvKAPmUNLBKzSUlR6nUsEcFHC2f8HJk+PPrJpKohLP4rHZP61Ex0p9YclEM0Bl\nF3d8xWiWWDG69Pim7ygD5tDZBhHnoIWuXoAidSmLS5G6ABtZEpOU054Lp4vHQf9qa2txVL6O4rv/\ng44OFIbDIHb8s2fOHElapm9PIeKKrzBjutqI43TVTrBApgah8cB9Rxkyh5IKnuF5eDi1/ZAhdg4m\nSEjqspDkXa/14NRm4mCnoffA2Td3Lt7/938HsWvMHM0qOyuma6d2QhrVUm7ZWpJWm8QuRvMcsgve\nWuWpcpMMS+ZACMklhPyFELKPEHKQEPITuf1cQsi7hJBWQsgLhBCf3J4jf2+Vfy/TXOvv5fYPCCGL\nNO03ym2thJD73H/M+JCQ1GVCVJLiz+108TjcaVh54JgSD73KLt40x+mAFdO1qp2QZrWUGzm+Uh1/\nwESS3G/185aZlTVV4K3hadPS0h07O4dBAAsppZcAKAdwIyHkcgA/BfAYpXQWgJMAlsvHLwdwUm5/\nTD4OhJA5AP4OwFwANwJ4khDiJYR4ATQAqAIwB8A35GPTjoSkLhOikhQ9sNPF46J3li3ioRiqf/3r\n+NMcpwNWTNeKyabZkKro8bOzs+OOu8gYu4Wb7recHGAdHR3pM9bz1jDPUJ1kWDIHOer6tPw1W/5Q\nAAsBvCS3bwXwNfn/r8rfIf9+HSGEyO3PU0oHKaUfAWgFcJn8aaWUfkgpDQN4Xj427UhI6jIhKknT\nAztZPC5u0x0Rj9HmdWLFdK2YbAYYUquqqjBr1qy44y4y2m4Rj8pOyQHW3Q0PRnKALerpQTQaTa+x\nPoPiTwjVFSlhHiRJ93sAzIIk5f8MwDvy7gCEkBkAgpTSiwghBwDcSCk9Jv/2VwALAPyDfM42uf0Z\nAAqLvpFS+h25/VYACyilKxn9uB3A7QBQWFhY8fzzz8f73CpOnz6NcePGcX/v7+9Hd3c3hoaGMBlA\nQTgMMjws6QGnTWNydeWcvIEBFAwNISsajTm+tbWVmRo4Ozsbs2bNsuyTa+jtlQJswmHT5wHMx+nQ\noUPcW8yePTu2Yc8efn8qKiy7bLdPKUNvr7T7iUbVptMzZmBcVpY0lvv3s/3UfT5g3ryUdVM/Vtp5\nnZ2djYKCAm7dAKv5agnOPEv4/THGHh6PxMDNpG3OOxkiBKdmzMCJEycM89bJeLkNN+f5tddeu4dS\nWmnrYLtJmGQmMhFAM4CrIEn7SvsMAAfk/w8AmK757a8ApgDYDOAWTfszAG6WP/+iab8VwGarviQl\n8Z4Ztm2jNC8vNnlWXp4h0ZZZojG7x6Qk8Z5DmPWpurrakGiOm2zOxaRvGTNOuuRrzS+/HPubjXmT\nbGjHys4c1cLp8TEwef6E31+8c4mTDC8C0CeffNIwbxN6fhcwKhLvUUpPyczhfwGYSAhRXGGnA1Bi\nvI/LzALy7xMA9Gjbdefw2jMLDspGWqlY0l7rwQoOt+qO1G9j0evErHZCivMY2YFTG0JC8zWZasR4\nVXYmOcDNCJD2AAAgAElEQVQ8Ho9h3maMzSXFsIxzIIRMBTBEKT1FCPEDuB6SkbkZktT/PIBlAF6R\nT3lV/v6f8u9/oJRSQsirAP6VEPIogBIAFwD4CwAC4AJCyLmQmMLfAfjf7j2iS3BQNpIFfXtaaz2Y\ngRf/8Otfc09xVOtCIYqrVklGaUDyXBrL0MXPpBvx2BDinq/JtLnEG/tQX2+ow6DkALuwuNjwnBlt\nc0ki7OwcigE0E0L+G8BuADsppdsB3AtgNSGkFUAAkpoI8t+A3L4awH0AQCk9COBFAC0A3gBQSymN\nUEqHAawEsAPAIQAvysemHVo3t26dZKyCUTaShVGTwyfO5F+O0x+HQiP/9/RktsfSGENK52gyc5bF\nuwvl5QB7/32mHWHUr+k4Ycdb6b8ppZdSSi+mlF5EKX1Qbv+QUnoZpXQWpfTrlNJBuX1A/j5L/v1D\nzbXqKaXnU0ovpJQGNe1NlNLPyb9lhH5B7565qbAQIV2efl7ZyLg8nLSqnP373SeUdlVFqUj+Ndo8\nlsYYUlrfPJlqxERUdg68gtJeDz5NEOkzONDrGZW0Eau6ulAwMGBZNtJJOVGDKiccdjfVhpNUHryt\nuptRmhng3nk2I645Gi/Myq3u2uXO9ZOsskvpeGUS7FquM+2TbG+lyspKpgeO26UuKaUGr4vmjRud\ne/CYlSt04tXB8S6J8cBJFIl6LMnP2rxxY1rLufLQ/PLLaS83qy+B+corr6S8D1bIGG8zDcZ6nyDK\nhCaOlOoZE5WkrVI0OLl+KqI0E1E1aJ8VyLwI68bGkfxKrHdhArfyF7Ei1k0jf0dxSvIxCf37EJXg\nMgsp1TMmarSz0uE7vX6yozRZDGjZMqm/VgQq0+0VdXWxQVmArf65mb+I5XrJjfwd5SnJE0ImMkU7\niRxTBMEcOEgo/7/TCZeo0c5qZ5CJsQVaBlRfD2zdao9AZbq9Is7+uelL78j1MtOZbbKQinrN8dAC\nq0SOKYRgDiZw7J4ZrxSml6R9PmeBUlY7g2QUMnITTghUppdzjbN/bvrSO1KJponZpr10aRLqNWvV\ngj+79FIML1/unBZkkPAjmIObsCJyZpKEVpKeN8+ZKsfOzkCnKgpOnpz+NMwKnCyITNwFaVFfL71f\nLWz0z00bF0slyor8BZAWZpsRpUtddtnWqwVvaWlB1uBg7EF2dmQZJPwI5uAmzIhcMnW7cfh7Z1RK\nACcLQvusQEako4hBTY3UJ4e+927auFgq0WJG5C+AtDDbjJh7LhfW0T7Top4eFPGYjMUOYO/SpRjw\nemPaKIC1Hk/Kd1iCObgJMyKXbN2uQyNyRqUEsCJQ+h0XID1jRUXa0xozMXmyY4O+2/m29CpRbgbR\nNOR+yoi553JhHaXvi3p6sLatDYR3oMkOIBgMYuXbb+OhGTPQ4fMhCqDD50OHz4c3Jk9O+Q5LMAc3\nYUbkMkiXCGRYSgAzAnUWedM4tnG5hRTXEDCdeynyIApOnoyffe5zKhEOFRQk5LKtPNPK9nb4KacM\nAmdHptgqHnjgAQwMDGBHIIAvz5uHyyoq8OV589CXNRKrnModlmAObsKMyGWQLhHIwJQAPAI1Vrxp\nXCB6aa/j7BJ4c2/9nDkpEQQU+8ALXq9KhK+/4AIEE4jlUZ6pkKNOogBzR6a1VdhFqnZYgjm4DR6R\nyzBDasanDVfA2VlF29pw6NChlBDJhImyC7ufjKjj7BJ4pUvLX3wxJYJAMmweyjN1cWwWnT4f5j/+\nuGH+sPpihVTt7kVupVTBLMdMmpCxacO14OR6UhahQiQBJOVZFKKsLOC47me2+7H5/s0IWsa/Qwaq\nqqqwa9cu7N69e6QxRarXZNk8qqqqsHbaNNQdORKjWgoRgs0lJTFMXTne6T1TubsXOwcN3Ni2m14j\ng+rDJhVu6o0ZOy5lsSlIph7WFSnTBaKXTCNuxqirUqR6XTo8jNf278df9uzBa/v3Y5FcV8QNiXzv\nnDlYX1oaY1BeX1qqJu4EYueP2T2Liopw8803G3ZYqRIGxM5BhhsSoitS5miHkwywdqDbcXVkZ2Nz\nSQl2BAJYrjksWXrYhIhyY6PUb56B0gHRKywsZOqlEyVoGTVnGUV4XFe9Njbih4cOIUu2DRSHw1jb\n1obs7GwseOihhC9fW1uL+vr6GGagx6KeHqzcvx/wePDbqVPx0wkTsF3jTZabmxvDBAw7rBRB7Bxk\nuCEhZoT/drqRDAOyZsf13euvZy68ZOlh4/bq0icI1MMh0UuWA0FGzdlUuNXW1RmC0/yU4t6+PleY\nod6W59EFRCqursXhMEAp/N3dWHv0KP42Esk425/YOchwY9ueEf7b6UaS9caKZKYlaMnQwwaDQTQ0\nNDCldVv3YzFJBaWlju1NyaopkHFzNtn1GTjz0P/JJ67dQmvL0+/MWK6uWYODWHPyJNYcOeJaH9yA\nYA4y3Ni2Lx0exi0tLSgMh9Hl86nqj7FeTjAG8db1tQktkQQkvazbhVf0C1oL2/fjMUNCpF1QHEiG\nA0Gy1FUZiyTPTz0MTD3OyOl0QKiVZCS8bZd1mcXhMDwY0WUu6e8f8+UEY5ACl92qqirU1tYiOzsb\nXV1daGhokIyoLhnCee6FRUVFUnBab6/1fTIsroWHjIt3STbS4FKuDW70KGlf9MiweQEI5qAiYb//\nJOsyRw1SoDdmJW57d9Wq+LJgMmCqarEbs5BhcS08jJp4F7eQhnQhMRgl8wIQaqUYJLRtT4Euc9Qg\nyXpjlmT/vbY21QNFhcNYAgWmqha7MQsZGNfCw6iId3ETKag7bXpvYFTMC7FzcAsZoEaw46/u1jHp\nBEuyd1OXa6pqcVpy9WyIa3EA7dxqbW3NuLmVEoySeSGYg1tI83bRTnqFRI7p7+9PuH9uMRyWsZSX\ntsCKObP6ZapqyQAhYLRCP7eGhoZGbQqQswGCObiFNOsy7firNzQ04IvHj8dEh37x+HHDMazrdHd3\nx903t/MCsST7p0tLMZyTE3ugBXM26xc3Q+oo0hlbQm/Av+OOpGZEzZSYikzfGWcKBHNwE2ncLtrx\nVy9vaVEDcLQeVeUtLZbXGRoastUP1sJzmyiwErct2LQJWc88k/yCR0kWAlJGuFiG9aeeSmpG1EyI\nqRhLCQyTDcEcxgjsRPLe2dlpCMDxU4o7NcZX3nWys7Mt+8BbeLx0xE6Igp5oAsCsWbNiJftUFTxK\nkhCQUsJlFqSnwOWMqCmvIcJwbc6U3ctogCVzIITMIIQ0E0JaCCEHCSGr5PbJhJCdhJDD8t9Jcjsh\nhPycENJKCPlvQsjnNddaJh9/mBCyTNNeQQjZL5/zc0IIt5DSaEYypUI7/upTOamBte286xQUFFj2\ngbfw9CkEFNglCo7sIA5iHTKq4BFSrHaxa6h3MTgrpTEVHJdj7S5Zi7Mqi4FN2Nk5DAP4EaV0DoDL\nAdQSQuYAuA/Am5TSCwC8KX8HgCoAF8if2wE8BUjMBMA6AAsAXAZgncJQ5GO+qznvxsQfLbOQbKnQ\njr864RhNte2863DLTGrAW2DRaNScKFgQdNt2EId1EzItACylahe7BnQXDe36uZWdnZ28mAqOy/Gd\nnF3smI0ITwCWzIFS2kEp/S/5/08BHAIwDcBXAWyVD9sK4Gvy/18F8ByV8A6AiYSQYgCLAOyklPZS\nSk8C2AngRvm3fErpO5RSCuA5zbXGDFIhFVqWmbRpTI23XCVvgSkMhsm4bBB023YQh0n/rBhqqg2X\nSdvJNDYCchZQlfmy5oIeSTC0a+fWrFmzkhdfwdnxTB0YyCiBIJNBKC+dMOtgQsoA/AnARQCOUkon\nyu0EwElK6URCyHYAD1NK/yz/9iaAewFcAyCXUrpebn8AQAjALvn4L8ntVwO4l1K6hHH/2yHtRlBY\nWFjx/PPPO39iHU6fPo1x48YlfB0rHDp0iPvb7Nmz0d/fj+7ubgwNDWHq1Knw+Xy2pHXH6O0Fjh8H\nwmHA55MKqtsoj2hnnPr7+9HR0YFoNKq2eTweFBcX859l/36pL3r4fMC8eQCA1tZWpkF86tSpmDJl\nykjDnj38zlVUmPZdj7ieRYbZWGnfc3Z2NgoKCtTrJXJPLnp7gbY2nC4pwbhjx5SLSoZ0IHYuTJgA\n9PU5nhvxIqlrz2Re9ZeWct9BquiBE7jZp2uvvXYPpbTSzrG2I6QJIeMAvAzgLkppv9YsQCmlhBD7\nXCZOUEq3ANgCAJWVlfSaa65J+Jq7du2CG9exwsaNG5mG2aKiIpSVlWHDhg3qzmL58uVobGx0dcut\neA3Fm9HT7jg5vs/Chex6B4RIBl8AoVCImYn1nnvuie3Tt77FTqpWWuo42d2SJUu472v79u2m5/LG\nKhgMxrxnwJi7P9H3ZEBZGdDWhl0bN+Kau+8eaeeMiev3N0FS197x4+zaEFu2AF/5Snr6FCfS1Sdb\nzIEQkg2JMTRSSv9Nbu4ihBRTSjtk1ZCiAD4OYIbm9Oly23FIuwdt+y65fTrj+FEHs4Vllmo62SUg\nU1nQxXEqBhtZMnnpqv1+f+w5LhaLSYb+3857dj2VhYOI7owq/JMotGkq2toArzdWxZihUcmZBDve\nSgTAMwAOUUof1fz0KgDF42gZgFc07d+UvZYuB9BHKe0AsAPADYSQSbIh+gYAO+Tf+gkhl8v3+qbm\nWqMGVgZnM/12sg2RGe2+56YdxMUYhGTo/9Pi5+8gojuj50k8qKkZmV+RiNSWhPiNsQo73kpXArgV\nwEJCyF75sxjAwwCuJ4QcBvAl+TsANAH4EEArgF8AuAMAKKW9AB4CsFv+PCi3QT7mX+Rz/gpg1EWk\n2FlYPAKXbJfKTAg+4iIOgq4Yig8dOpS0Ot3J8GRKi+usg4jujJ4ncSAYDKL7u991vzLhWQJLtZJs\nWObFHVzHOJ4CYK4gSumzAJ5ltL8Hycg9apHIwkp2dbOML+hikSVTq64bP348QqGQaqBOluojGZXX\nUlXFLgbKuPb2SszXJAtoxs8TB1B28n8KhdgH8NRtSq2ODM+YmgqICGmXkIhUmGz/70zz53cCvbqu\nv7/f4LmULNVHvC69LGjTiChBgSmrnVBTI3l+WeymRvM80UMZa0cJGRsbJbVTElOIjCYI5uASEl1Y\nyfT/Hs0FXXhV2fTIZNWHlsEBI0GByfQEigejeZ7oocyHzSUlCOkTLvCcFOrqVA85FWexCkoU+3EJ\nySoA7xbi9oJpbJQWxw9+gO7Fi/HzoiLsnTMnZc9ml+hnsuoj2d5obmKsFP5RVGQ7AgEAwMr2dhSG\nwzjh96OAZ9NyUqsjAaTSXTgRiJ2Di3BTDZER0EYvAygIhVB35AguOXjQNPVHsms36JFq1YfT50uJ\nodel+tljBdqd/I5AAF+eNw9fuPJK7Hn5Zb4NIQW1OkZTVljBHJKBsbJQGeko/JRiZXs7V8+fitoN\nWVlZmDBhAoAU6u1lxPN8SfdScphTKpOQrBQlWhXZjb29aGppwVtvv42qFSv441JfL61ZLVxOITKa\n3IUFc3AbrIX67W8DU6aMPmbB2U4rJTlZkm+yajdo9eDr1q3Dm2++idmzZzvboemY9t577nFMmOJ5\nvqQbeh3mlMoU9Pf3xy9I2BDAqqqqsP0b38D6ri4UhEIgVoyzpkZypU5iwa7R5C4sbA5ug7VQh4aA\nnh7pf2VyApnvIseJXlY8QJjlOpMw+V3RgytMW3k3bW248JFHcMnMmdgRCNh2iVWeY1FPj6rH7vL5\n0NDbyz0n6faoFOnKLaHYp2y6gXZ3d8dni2G8y5g1pe2HxzMSAKdAYZysvk2e7DjVihOMJndhsXNw\nG3YWZBKkOmV7vva889Cdlwfqxi6FEUAVIgSbS0q4kq8yyRf19MSUI106PBx/P9wAS0UWjWJle7v6\n3c4Op7CwEIt6eowV9Y4eNR3rpNqjMqGudRyqLV51QUtBwmynpO+HnjEoSDXjlDGa3IUFc0gATH2p\n3QXp4uRU9OCXHDyIuiNH7G2h7UAbvQyg2+9HfVkZ9s2dy9Xz19bWYkl/v4F4/vDQofSq0yxUZAoz\ne/X1102Zam1tLX7Q0WGoqJcbiaRPjZMJda3jUG3xqgtaStG8tdPWBixbZl3hDkgt49SA6y6sBN9p\nhTpFdbZnT3rU0ZTSUfmpqKigbqC5uTmu85qamuiVV15JKyoq1M+VV15J31+zhtK8PEoluYX/KS11\nrU/V1dW0oqKCtvt8ju9lF5Z92rZNug8hNOLxJK0fjvqkRWkps0/tPh+9v6yMniEk9re8POmZGIjq\nj1U+hDjvl1vQjD8tLTX03U6fmpqaaHV1Na2srKTV1dW0qanJ/v0txoSFV155hbmGLO/LeZe2Pybv\nNm3vTk8zsrMplddz88aNlv22CwDvUZs0Vuwc4gTPMLm2pSU2V1AgIOXG18JlqU7Zhhey8tcD5rsU\nNzyrdFt5jz6QyE4/kg2WiszjweaSEtz98ceGnYCZ1MurqJcuaRRAXDmltDvfhQsX4sEHH4zfy4z3\n7JMnc+dXfn5+fEF3dgoV6RAhBFFIu9+9tbWZZe/j2Sn16znFTgaCOdiEXoXU2dlp0Ksv6umRCLV2\noZ44ATz7bMIeEGYuf8o23FGqAMA9F0g7xerN+uEi9OO09557JKJ0662A3y8xa/k9fPCjH2HixImY\n6FQvXV+P4ZycmKbhnJzUqnEShOtpSVgEOzsb+PRT0/kVly1Gp+60QsjjwY9LS3FZRQUWz5mDlW+/\nnVlxBU6EphQKWII52ADLt51plGxrMxheg8EglvzmN5g/dSqWLF6M4FNPxcUYuC5/jY347e7d+Mue\nPciNRBC2myoAcM8F0s6ETYEO/OGHH8YDDzygjtMlBw/iwkceGSFOPT1AKAT8+tfAkSMov+QSrNm/\nn5tVMoaZaXZYodWr8crEiejw+RAF0OHzYf3MmQiyqqalMObFScyA62lJWNl18/Otpd94x0cWwEIF\nBezfvV6AEHT7/Vgve6QpSDSuwPXYDCdCUwp3p4I52ABrIa1sbzeoIpQAMQVWRN3Ooth7zz0o/9rX\n8Kf/83/U3QkgTfAD998P3H47/N3d8ACYFIkAlKIvOxvUzi7FLRdI3oSVF2gy/MX1CAaDeOmll2La\nVra3w8/LlaPsmni7BmCEmTU2Ynj5cpXJ+Lu7cVNXF4pkN9bNJSXYnp9vJDgpDE7TM0YrtVBXVxdz\n56uHIxdLvWqL596rzK/e3oTGJxgM4qcTJhhyJw3n5ABbtwLRKKrnzo1hDHYdD8zu6XqEM2/XlWR1\ntBUEc7ABlvTE0+/7P/lE/Z9nl1CIutWi2HvPPbjwkUcMuxNlEd/S0mKQ/H0AJpSUgNjRPbuhO29s\nBE6fNrbn5akL1KofbkhiesK8qKcHRWY2GCtVWCCg9jm0ejWyBgdjfvZAymOvfSf6eRJavZq5Mwut\nXm183gR2GCzGCHAkZPk+7773Hh46coQ7twDnLpb69xiaOpV9oDK/jh9PaOfa0NCA7fn5WF9aGrOL\ne2z2bPXdaZnbPW1tMc8cD7NOSoQza9f1y1+OqKOBlAhYeoggOBtgBa50+XwoZhEfDWHlbclvaWnh\nb7c1L79k82aD5KvsTnYEAvEZoLVItKymPhhJQSAAbNpk2yjqRmlK7VgrKj9TdZHZGOXlSf2XkdPd\nzT8WI+9k39y5alswGMQiznk53d34xc6dagDd2++9h+FTp0YYkEWgpD5xW4hXswC6Oah5XyypUHmO\n30+Z4jhQj/UefzphAtb29cUyVu38SnD+Ks+2IxCI2R0QQrBG/l+pofHF48dx84kTxuc2C4gzuafd\ndtvg1TSpqQF27UpqYB4PYuegxx13AFlZEgfPygLuuIMZuPJ0aanBKKknrNycOjYXxVTOoi8Mh5Gb\nm4tBnr7VruRfU4O9tbXo9vvj8+TgSd/jxtlmDOvWrXNFEtOONUvlpyI7W9rp8H73eg0SGtfQr71/\nOBwjZTc0NJiep5XYb+rqMuxMcOYMOm67zbCTCgaDeHfVKvxi5068+957+MXOnbj8ww/5/dLOQRuO\nA4XhcFyBeiyJent+viTFs5wxzKR1m/PXTs4qJa5gVVcXn9gpAYxyTEF3Xh7Wnncecxeblmp+aYJg\nDhjZDr84dSroU0+N6KEjEeCpp1D12msGl7sFmzYh65lnYif+smXSApRVA+vnzGFGQ9oi6iaLp8vn\nQ11dHfyPPppQ8FMwGMTKt9/G4jlz4vPkSMBmoUiaUc3OSKsD/8XOnY62+1oGzmW+gPSuGLp1ACOq\nMB1j2zZnjrEmgA6fTpwoEdPGRkDWabMcBKIwLjreIiwMhw067QP33497W1tN1UFaKAyrv78fUUYq\nFD1O+P2Wx7DAk5xfzMoyutgqOxgWHMxfu9HGVVVVKDAzvk+ebDv7cCojnE3L4aYAZz1z0Cb/+v9P\nnGCrIrZsYbvcaQ1w9fUSYdHYEcobGrD5iisMftx2iHr4jjuYfaEAulatGrk/p/7y3nvuQXdeHqKE\noDsvT3Lp1CFh/WkCNgv9vVneX1x9sDZyVN7lVa1YoY41T2IfBviqDK9XYu6MHc9F//iP+OmsWape\nWx/FESIEWxQ7we23A/IzKA4CJ71eVR9uzmJioTyH9p3c0tJi6Qih4Oabb0ZVby9ChYXIP3zY0G89\nQh4P2leuZP9oYRPhSc7jx4/Hzy69FB05OYgSglBhIbBqFXsHw9i1mUEfbfy3kQh2Hj6MqupqYx85\nc1IdSZvZh5NSEIkxtvoCUWlJ7W03Wi7TPm5FSP/iF79QozOjZlGVVggE2OfxooJNIlqbm5u5fYna\n6Mv7a9bQM7oo5TMejxS9rUFlZWVMdKryqaysNPSx+ec/N0ZnsiI7bUZx6u9tO7pbc081clT+DOXk\nSL8z+nWGEPP3a9F3JXq4oqKC3l9WRtt9PhrRRFhXVlaqkbv6frX7fOpznhg3jv9edf29v6zM8E4i\nnL5HAGN0M2Os9PeJyG1dfj99f80a+v6aNbTL76cRTRtrPENeL60791z1XqyMAQsWLKA/Pv98Q/S5\n0gf9OJlFU1uC9c49HrqhvFwdi6GcHMOzn/Z4YsZE26cIELsekgHOGtpQXq6O45NPPqn+X11dndDt\nICKk7UMb+MN1avR6jW1abj9lCl9VcfQo2xsnjohWOwgGgyjctMloyI5GUbJ5c0ybqf5U74bJkuRN\ndi5W0N/btnHdRG+eNTgoeQhp+qXGIZSW8t+vgjNnJKlWK8XdcQdQVoaq6mpsP3AAfxuJqMVjLquo\nwJfnzZOcAwoLmRls9c/2RHExhnQ5hYZzckBWrDD0V29knT9/Prr1di7ldwDbDxzA7rvuGtnZMsaK\nQNpBKfd58IIL8EZTEwrk4y585BEUhELwQFKvXPjIIwjfcYfhOrmRCGqPH49xIKirq0N+fr56TCQS\nwfcZ0ee24kqcgpNY8ZaWFtTX1+Phjz/GP5SUqLu/k14vhgnBOdEotz9m2YddAyfW6JaWFgDSjnpW\nKKS6G5fL7anAWc8cJgOqnnuAEFDWQXr9qJ5w8hgDgL4JE+Lyi+7nJCXjtQMjenweoZ0SCsXoLk31\np3YD5OJkcvp7247utrBn5HZ3S+9H7teCykqVgNua7D09sS7GTz0V8/2Hhw5hSX+/eviinh5sP3AA\nr73+OveS2mfbnp+Px+fOjWGoWc88Azz5JHDkCHY0NeHr8+fHMAZAqjtNKcUTxcUI6QvSQCa4etdM\nzlh5AJWxaeMzmN5x0SiyNc+rhTLPFNXLvn370K85llJqbv/RYMDrxd6lS20dy4RJYsWBgQG89NJL\neGPyZJWpD3i98FHmagcwkn04KysruRlTTfqtqFqzZSneTvZfN3F2M4fGRhSGQqqeexyliEDaQVBI\n+ViOVFdLC1e7U7CZ+ZEC2DhpUlx6/Y/uugv6ZRWW23lQ9Pg8Qtvl88UwJ1P9KWfSUqcBchxdtf7e\n2+bMsfT+AmApXRJACliT76OVZO14HVkha3AQ9/b1qRXGHvj4YxQNDnKlzyikIvdaMI20Mqp6e7Hz\n8GFVUqzSBZLtCASwfuZMdPMMx1oGzhkr/TgoxuQpJi6xLBBADZ7r7Oxkxlrwxjw8fjyG5XxHHT4f\nHpoxw+AMYSv+RZlfHELPu78Z0xoGkEslm8OiEye4x7kCzjsaLChIe/bfs5s51NUZJlUWgG6fD/Mr\nKrDg85/HLadOScZcOznidTjl9bJTKsDaL7p8wwa0rFkT42basmYNyjds4J6jXHNzSYnBu0aRhIBY\n5sTNbWNCWGwbxSwihNV733UX1pw8Ce/gICLy7o3rVmsj6VrW4CB6vv99LFy4EH19fWo7a1zigb+7\nG9ubmrD+6FFpsVpAvwvgqink8VIi3ovDYdwveyJpPblWtrfj50VF0s6DBYWBM3JAaeeBvj88T6VT\nXi9z3LRBgFW9vcyIa9aYD+fkYNP55+Ow3x+jmtPOS1uRyLoa53qwnlWBmaCQpXm2+z78UApaNUNj\no6RaJkT6TJliX7rnpFv3P/po4nFMCeLsZg4WOf4BiZCWbN5sL7GcBiFCsHHGDHgYKgDAnh6zfMMG\nFJw5Aw+lKDhzhskYtNIVkRfhjkDAEDWq12GzqlHFoL4eAzpbS4gQPFFcbN+byY5qSrPACQAvpRgg\nBJsKC9lutbI9Qcmpw1MMTDp9OkbFARjH5aTXG+NJdJJlW+LBppCgtxGYuj1y9OZ3f/wxu7gQR/AA\npVIZ1H37sH7mTHTIhJA1D7T9aV+50qCyUuaxMm6s8fZTitVHjzJzjQHAP5aVqWMeKihA1jPPSLsn\nBjo7O7FkyRI88MADzB33unXrRuYEx/5EOc+qBYtpsby5/JSq+n8mGhulMsBa1XJPD3DbbeaedspO\nGuDa7dKd/fesjpDmhff36YiE0+32MID1paX447RpqJs2DQteeQUFg4NqHp4/Tpvmih7z4YcfjtnK\nU80uSBs1qpS0fOjIEbUPO3mpDRTU1OChtWvVUphDhKiLjdiNBrUTB8EiiHQkCpxZMrKmBv6aGvS/\n+gK7TkUAACAASURBVCo6OZHqfV4vXtu/X41C3lxSoo4Jj2AoOl5uAJ1T5OWhs7YWRS0t9sqDcsZr\nYiRiUFupO5a8PLbg0taG/+/RRzE0Ywa+PG8elufl4e558wAAHo9Hsgfo+lO+YQP2QrI9TAmFcMLv\nxyZZiFHmAQ+sPirvce/vfodi+R7K3qTwN7/hXksvuOhLsj69ahUAoIo3vwjBd6+/Hl1dXSgqLMRV\nV12F3/3udxjWJMXcEQggy+vFfZ9+itxPPkGXz4dCfSCi0lczu0ldnZReW49w2Bh5zStvumULOwJa\nyWCgRQrzK1nuHAghzxJCugkhBzRtkwkhOwkhh+W/k+R2Qgj5OSGklRDy34SQz2vOWSYff5gQskzT\nXkEI2S+f83NCXNj324CStItFBs6JRmOCipzqqj0A9s2di81XXIGvbt+OosFBVZp64OOPsfmKK5z7\nRSsShxy5TQnBsnXrmMFPHo9HtSHwssder8kBxUIwGIzxymn1+1Wiatt7w4bkw7NhKAtSVb8xbBf5\n+fnMALUwpHdoN1BMgX5ngdJSQPYiAs9ZQQ+lL7IEWL5hg/2U1E4lwt5e09TVuZEIM/6BUsrtj363\nOnHixJj543RxFoXDsfeQ3+NrTU24IBSyfCf6fEjF4TDubW2VVD2c8SIzZ8aM+X333Yd169bF2J8m\nTJiAy594Av6uLpBoFJ133sn1ZhseP54f42Gm4mlriz3WaRZkxevO50tZAssYWPm6AvgCgM8DOKBp\n2wDgPvn/+wD8VP5/MYAgpDl0OYB35fbJAD6U/06S/58k//YX+Vgin1tlxwc30TgHxWf9P/S+1gzf\n9PvLytj+/JzYhlPZ2ZJvNa9ilUVFNEM1KpYvNMcfXvXLlmMUeL79XX6/rfFh+VqrPvSBAI3Kfuu9\nXu+IT7lZv3WxBF1+v+n4V1dXc6/T/PLLtKmpyRB30Ov1Wr5Tqw/Lt53X1yHZJ16JC4i7mti2bfyK\naryPEiPDOU/x1bfyledVgTtTUGDdB5O1EDPXde+xeeNGNV5iQ3m5IXbk/rIyblxHu89HN5SXG+J5\n4qqWZhI7M+z1qhXZ1I8y1qWl/Odm9SeOanmUuludDm7GOVBK/wRAn3v3qwC2yv9vBfA1Tftzcj/e\nATCREFIMYBGAnZTSXkrpSQA7Adwo/5ZPKX1H7vhzmmslFYpEytMya7eS++bOZesFN22ScvXo4B8e\nxrurVvE9e2walBR7Qsdtt3FtHqzo2KXDwzF6fBamWuTy1yey0/paV732mqpnJZC4+qRIBKv27cO7\nq1aN6IRtxEH8vKiIazy3dKs9fhxVVVUY/73vxcQdTODYArTvlGU81ba9fvCgQWfM6+u6srKY9CN6\nW4dt1NRI5MIJ2towsGwZTnJsW3ZsHmbGX7/ZDlO/FqxSuTDeY24kgvX9/VjzP/8TsztYf+QIHjpy\nxDS1yAter2pTUewZcUnWvNgZrxfeiRONUfXKO2prA/r72XFQCmx4j6W1gqAJ4jVIF1JKO+T/OwEo\neoZpAD7WHHdMbjNrP8ZoTzoU1cgQR4ulVSVdddVVbH/+mhqpoIkOPkrxvbY2fKKLIVBhYzJoF6yV\nr3hROByTj39le7ulAZ1r7JKhjA/L1xr//M9MPavy3DEGa4s4iL1z5jCN5zunTlXdarlMVh6X++67\nDw899JDqFsvzuhksKEBubi5T1bbuyBGs07QVhEKI3nILjixZYtlXfSGZ48ePo7KyEtddd53RoG6V\nmttmdTMtFPuDwaMoLw+dd96JoqIiAOCmejBNo8KbJ6WlxrWwZYuUkVeB/j3w3mNPDzNYz4w4KetT\nq/r8+vz5fMZgNu68fkWj/JoUCoaGgIkTY59bD433WCK50FINQm1IKoSQMgDbKaUXyd9PUUonan4/\nSSmdRAjZDuBhSumf5fY3AdwL4BoAuZTS9XL7AwBCAHbJx39Jbr8awL2U0pEVGduP2wHcDgCFhYUV\nzz//fByPLKG/vx+fHT2KcVOnYvyxY4bfT2ZloVOegB6PB8XFxTE6SxV79nDv0Z6Tg5KhIWmSKfB4\npIXF8jTp7QWOH8fpggLktrejOysLfVlZmBUKIdvGe6IA+idNwoSTJ80PJERaIDxvF0jj09HRgfM+\n+wzZlOL09OkYxxgnFg7l5WH27Nm2jlXuo03Apx/v4fffRxajLvWnM2ZgPCuJYW+vJNUxxr0/Kwt5\nf/0r83o8dObm4qTHA6/XqwajmWHKlCk4IfvHE0JQUlIiPYtJv9R3wTrGJtp9PkwdGpLmis8HTJum\nXvf06dMYN24c87xDhw5xrzlbifxm9RmQajKEw9L9JkyQCD3v+fbvj5HCncwp1rP2MTyemPPOatw1\n/Yq7TxUVhudT4fMBsjOAssbVMdO8Ix7M3p1TXHvttXsopZW2DrajewJQhlibwwcAiuX/iwF8IP//\nNIBv6I8D8A0AT2van5bbigH8X017zHFmn4RzK8m5Vgz5XTj6aV5OE55Ott3nG9GXc3Io6fuj13sq\n9oT7y8oM+WnMdNCnsrPNj8nO5vZDm1unIyeHnwfHRBfsNP8LU9+tGbder5cO6p7/DCG08YknTN8v\nd9wd6vW1c2HBggV04cKFtLKyks6fP59pr9Dq92PmDscG1eX3c5+dcuwnZn20nRtLRnV1NTNf1Iby\n8pE+K/1QxtLEDsaak0p/tPmNmjdulL5b6e01nyhAX5gyhTnu3HlnZfszsTk4fT6Wbez9NWuY9hy7\nyFibAwevAlgm/78MwCua9m/KXkuXA+ijkvppB4AbCCGTZM+mGwDskH/rJ4RcLnspfVNzreSirs6Y\nQ18DvSpHH7Sm2APW5+Ux9dBv5efjt7t3S4XtAbVuMWpq2JGfFi6dWnXGMMD1nKFtbfCzXOu0GBpi\nekgoleeU3DpFg4P8+zDawoTg6dJSSaftoLKZIRBPVz6Sld10fWkpzvDUdoAxY64mlbqVpKaHdi4M\nDw/D7/dj9+7d+MlPfmJIP8KCOnc46oupoZBam+HPd9yB6559Vqo1Ho0CW7caAtn0Y68P9uLmxrr1\n1pFdo+Z9rJ8zB2uPHjWo2X504MBIgFkkMqICqamxVRtChfzcwcmTY2wEQ4Rg/cyZeOW665gpQViI\nAtjAUL2Zxo9Y2f60tjGAa0OgYMx7rVqIYWPbW1uLlW+/jc7OTtxw4gR+/cYbuHHxYlBC0OfzcetG\nZAIs4xwIIb+BpBaaQgg5BmAdgIcBvEgIWQ6gDYCSFKUJksdSK4AzAL4NAJTSXkLIQwB2y8c9SClV\nlHl3APgVJBfooPxJPiyMwnr3Va37prbq1SUABjweVe97yuvFzkmT8OWenhF/eU1lr+DkyVKxlra2\nEb/t//kf3Hj0KNN4rBAmvX/+a/v3M/37I5BKhVqirU0iljNnqguelVvHAzYjiAAYIATnyM94yuvF\nn6dNw719ffAvXiwtDsbz2zIWMgiPD8BnkHICARIxWKBXKTU2SucePTryXIDRt1ypz6sZvzCAbLBd\nNXnpJhTdfUNDg2lQoTp3Zs5kRvMqRn3F5XY9MFINr6YGWZBKjuZ0d6PL58Nb+fm4ur9fnT9v5eer\ncSzdOTnoXLiQTbw576P8xRcNaiwfAGjiAgDEVk1zEqUr2y0aGhrQmZ+P7bKKZbnfj+35+Wj66CMM\nTp7MrtTGGCsAyMrKwjnnnIP+/n7r+BHOuMfYUxS7ya5dXJUeBfBAWRl+0NGBwnBYstspzFJ/HRk7\nL70Uv21pUdex9vkmDA3hoY8+Aj76CF3/8R/Ye+edphkQUg67W4xM+ySsVuKkV6YAHYTkmqlssddd\ncEHMVlCbulmv7jkjq0F4288N5eXMc7SqIG2fooDBVdXs3pZpqVkf2d2O5zYY5YzTkNw31XWWl3Zb\nv/22QJSj9okCMWmiY7bbK1YY1UVmLpaBgKpy6fL76f1lZfSFKVMMY6BV7Slqly6/f0S1Il/jTEEB\nfeD88w1qpcsvv3xk7thUxcS48WqxbZuq8tO6e+rngT41NVddorwPJ2o2xe2Sp6rhzC1KjWnatePE\nTdnOmAPtPp8h/bypGtFBavnm5mbus2lVd7ZUp9u2GV1tTT4hr5ffJ5cAB2olWwdl4scNm8MZj8dA\niD8lxKDfVusEyFAmOW9Ccwm0CePQtusX8kB2Nl13wQVMP3ClbUi+75DdRa7/eL2mNSR4utgzhEi6\naTt6Yxv5+puammgHg7ipn0BAPVZdNPHEB2j6oq1FwBpTls2DZmcbmOFQTg59aPZs+uSTT9L7y8ok\nm42eWMnxIWZ9Y9YR4NSo4M2niK6/zPfnlNBjxD6yobzcWhDREWm9beP3jzxC7y8ro/Pnz+cKJtyP\nlrjbIf42bX/Nzc3M6ynzQLvuLO2IDsY1ZsxYfXIJgjnYwPtr1tBer5c2b9wY8+LtFJ1Rdg5mkjaP\nsPF+015Lv5CjAB3SEYGhnBy6obycKTka7pGdLREkpwQUUsGUwfx8U0Pd4Pjxtq4VBSTD5ooV3Pei\nEBDTYkfyYlQXjQuLUGsU31BezpS+7V63+eWXzYmVRX+ZOwfOOWbzSTsvuO+vtFR6H/r+MpjfGY8n\nZhdryhwYBHP3ggWGeX7G46G/W7rUXCCweodxBpuyECNwMNbrIGAUFAihH1VXG43Ocaw35Xo0EFDX\nrJkzgVM4YQ5nZeI9xfA6SbYTEAC5sp7RTiZEpRYBL61Gf3Y2258Z/PQD3LrS8jlZusCurMFBrGxv\nx8r2dmYxlajHMxKk9MtfAidOANGomrDOChRSZtQPfvQj+J58kp8BFIDv009tpZYggFqXG3fcwTym\nq6sLOwIBnOIYBQkgpUy3m8IgELDlW641iq85edLUWcEUR49KropmaRJM+msIANRe1wEIpLTTSvp5\nLtraMPz00zgzMKAaXMP5+dKcefZZ1bja7fdjvayjVwIFeekmwuPHG+NZ7rkHn3/3XQPB8Uej+Oq7\n76LzzjsNiR4toYxJgsGmKuT63/B4EFq9Gn39/Yb16gOMdSAoxczXX8clBw+C0pEgQl7uNktQKrkE\n9/RI/5uVzE0izkrmwCxqQiXPIC6R1hivlFoEz5x/vtFTyeORai6wIoM5ATUUgD8SsZe7R9vnTz7h\nM7No1BB4FgwG8U/jx9tLW00INxMsC077ji1bmM2K8XbjjBn8a0Yi0mJRxpMXqEWIFLnrtFpdIimR\nZ87k16lWrsvpb4QQvBYIYFVXF956+21UrVgxQhA455il0yaQMgAMEYKTWVncrKpZ0Sjy5IpoBEDk\n9Gns3bcvxuOreu5cXHL6dEyeoywY3zsFsGPSJMM9SjZv5hObo0dRvmEDcrduHfEY0j4Tz5NJGRM3\nIo819b9BKfzd3ci38vrTwAPEZCoYGBiQPMjcShWnVClMIc5K5sDLsloYDsP/6KO2Jc21LS344O67\nY2oufPCjH0kElRUZzEsUBqipKBxh5kxDBlkFrF1NQ0MDIpEIBjweVUrkSX99Hk9samS9tMSAvZpf\nEignxUVtbS2W9PczE8bF4MwZ4KOPpEXNijwlBPj+90e8R5xUq7NDVBSPJy2UecJL1Eip5Ea6eDFz\njnm//30sPXMGBaEQCKWx9S840bVtq1fjp7NmcQk/IEm64yIRPG0z+ppVUnbp8DDTm0g/ZwmASsVz\nS3Znph4PpppkNg6PG4fuvDxEb7kFfe3tiGZlxc43r5c/1gD2Ll1q2HVQAH3t7fZdRTklVZ1AL6i9\nmJUlzUG30NOT2t2DXf1Tpn0SsTloE6hpdbFqMjq7gWtOYdNbRa8fHgRoJCsr9ri8PEpXrDDqP2Wd\n6IbycsPt684912CfGATbiB2FlEBQMfZaBQcpRnKtMdfs+GGecXrFCtseV80bN47o8rXvTKOv5b0/\nXqI57nvS2m20gWCMecK0OTDeneFcO8FajPspz2Jm1FUDzmyObQSIGS9bCfi059qY64q9z9b7Puec\nkUA8jd1KcSa4v6yM9jKcKhR7ot7j0AB5XbDsfXafu9frZQflcY6PYiRho5mTQkyf4rCjaAFhkDbH\n+2vWqC5majSyx2N0j0sGtESAY7BSFo3imfT+mjVswsAhJie9XuZC4GUVHTab9LI7qBlzYGWGNYvq\nVglCIGD0KHFgxFP7ZJL5U30GzX3eX7OGduTkxHh+XXnllUYGEaeA0NzcLBEvs+hm1iJ3mrVT10ez\nyHinkb9RgJ4pKKD/VlJC230+R0Syw2bUs5M+Me8fCNAN5eW23GHPcAQmFRzX9l6vl8l0WJ9BzTqI\nmU8WrrGVlZVsV2zWONnw+DODYA42oKSJaN64UU21nBKYSYiaycD1ddeCR3w5E8gsfsB04gcCtPnR\nR2PaIhjxOWfFYejdQrkSos9n24uHu2i0z2tD+g7piLbC3JQdhDZ9dETxU3fAICx3Dto+aa/pxOuG\nwQSHvV7ujo1HiK3evdO4mTOE0BemTDH1NlN2lnGlqtDfT+NBZeUO2+7z8V+aPJ7aPinzwm4MBoXE\nTBYuXGi5E9UKVBvKy5mus6x3d6agwNYc5MEJczgrbQ7ASFETVFQ4MrwmBIuatwoowPZY0cOk2ImT\ndkv09kqGQo1R95/mzMH8igpsLinByvZ2NfX130YiMeVKlYyZnT4fW4erVMwCzMclEOCnRtY+l5Xn\nSl2doe6z4ozQ2dmJd1etwsp9+1Sjq0dxXNDVvzYFy1uJhba22JQWLFtEdjZw+rQxDcmqVYZ7eCMR\nfOr1cu1ILFjp1e3q3SmksqvrS0tx/cmT3PM6fT5cVlHhiPBQk9/80ahqn7IqylUYDrPTuiiR9fJ4\nUkgpanLleVFkkRVZi4mRCK7++OPYRjmtRt/EiYZsvot6evDDvXuZ9g59nLZZTexk4KxlDmmBjXw0\nw5AmzzvnnTeSXpmXp8hpCmAlrYUOlgRg5kwpH5Fs1A0+9RReGz+emfr6h4cOSfUkdDBNO64QbjNX\nxk2bgK1bLZ+X5z6otptUniOE4HtmZULNqnZp4YCYQLlXWxuwdSuOXHut6uDQl52NKKUjLo0Kg7rj\nDlBOBbUJjHKd6q3s98pe1wGV2K0tK8P15eUAJALJO14Resxct8NATB4tnluzAmVusepCazE8fnxs\nvqm2NqkuyW23GQSTLIykNHEybgQwpq2HlDaneu5cteaIwhjWtrWZ5jDS1//m1d5OBgRzSBDMJHo8\nWLhIKoVj+rKy4Pf7RxiDfkIrEqyNYjox5UX/+Z9HiJFdaImvfK1Fixfj399/H3d//LGBkCrxF/qE\ndKZSnSL5c4gKgNiaAcrz+nxSzIMmqd5/5OZyiwfF3EuHLp8PlFLL2hmGd8hi3A7Lyqo4cwbTX38d\nmwoLcVlFBc4QAg8rv9GWLVwG0J2TYyjwo8Bt5qDsAhRiB0junLy+nfJ6VaHH/+ijBhdVCokh/mzO\nHFxfXq5ee+OMGaZEf7CgAPn5+WqCypNer+FZh3Ny4PP5jMLZ0JCBmevv5IFRig+DP56F4TA6Oztj\n6AGrZgYrRkmLLp8PX543D4fy8tQxtl2i1wUI5pAAzCposcCTaimMhWOUyRVavdo8oMrMTVOvxnLA\nGCgk19y9tbXSNTWZUpVdAk9C9H/yCerq6tQiM4Ak1bHIbpgQ7F0q523kuFp2+/0q833444+x5KKL\nML+iAl1ZWRh+9tkYxvmlY8fwWiAQU5DntUAAt7S0SMTo9GkD8R7wevHsrFkAbNQL1zKXxkYML18e\nc//h5cuBCRMsM6nykAWo9a65jMpCMu+8804M6GMDCMFLU6YYiKy+X1bfFfBUHLw+U0ixK6rQU1OD\nUEFBjBv4vjVrMCEcxuc3bowRLnYEAvin887DKQbRR14e/I8+ijx5R7kjEMD15eVYW1amzoFuvx9Z\nzzxjXbjHAp05Oeqc+klZGXdHo8whLT3QZ3UGzHfTvPE1VTO7jLOXOSgS3549limleTCtoMUAa9sb\nIgRry8pipC8FnZ2dyOnuZt/cTqCWk7TKOnT6fGrZy2AwyNSjc2W5mTPViGOt/eEnZWWqVKfoqH9S\nWoq1LS3SefX1BqIa8niwqbBQZb4vvfSSyownh0KGSGZ/NIqr+/tVW8fmkhJ8uadHymCrVdEEAupu\nK3frVvxOJi6mqgm9Cmv1asP9swYHEentjUlN3cEpTMODn1Lc/fHHfIbCIUqnvF7snTMHHddei4fP\nPz/m/h0+H56++GJDJbvfTpnC/X7S68VnhMTExLAEGS14zPWU14sdgYBKJIPBII6ePo3Fc+bElFgN\nBoNqkKlS2S8/Px87p07Fl3REX1sWVE98tfau6rlzJWYUb8QypN3Jd770pZidEmtHoyfqCj1gSfy8\nsRoGmON788038zPPJgGpU2BlEhSJWpvG2UlKaRksaUBpDwaDaGhoQFdXl5pS+MWsLJwqLcXK9nY1\n3fLmkhLmIlOv5fMxU3PbCtSKM9JXO8GVyX33tdcyj6XQMQkdAS0sLFTTWevTjisgCsGYPBnvzpyJ\n72nSmZuND686nlYiY27dh4aAceOklCLKOb/5DTo7O2PUI4XhMKKQoow/8ftRoFPZ8Ri3NxLBdk1q\namCk3KqZGkGLiTzbgdcL5OaCfvZZzO8hQrDpvPNQW1trSI0NAMu9XlBK8cdp0wzjqXXFyMrKwsET\nJ3DXkSOGPoQJwXp5d6ekCNe+o6KiInQtXIiJjzwSk4EgRAg2zpgBYCQCvqGhAf970SK8tn9/zLte\nt24dfvzjH8ek4V6yZIlal1s7h4qKirBdfh/aeabFop4erOrqAjwehLOy4CUkJv1FGAB0bfo5PZyT\nA/+jj6Lr8cdjrq2fK7z52tXVhQcffBAPPPBATPvmkhLDnAjJY6y9RnZ2Nh566KGUMgbgbN058ArW\n2zE2asDT/40fP96gbnp31Sq8tn8/Hjpy5P+1d+7RUVX3Hv/+Jq9JxIkkkklEIVC8XgPaaKDAInUV\naAoj4dqum67qpdW1SrWLBsu9EBQbjOW5FNArSorVVlsL9yqVi4+ULMo1sRe6WkgQIhGlDQooJQkk\ni4xIICGz7x/nkfPY+8yZkHlo9metrMzjzJzf2bP3/j3P3gCUdeHnqoPXutG9Ea4lK6pgsRJGgYTQ\nH+ft8fmE+yK3tbUJ4+jnkpJ0S46X89DWoXLCOGHU+Hy6xcfzpoyI9v++lJOjh7RErnvoxAlTnsgo\np9HqnFJUhK9Pm4YD27fjUFOTcicvEdozMoR3p/Pksm7YFE5FCJPKfX2AQTEYq4S8P/whAoGA0Gj5\n7LPPTBZ5bm4uysrKTM+fu+MOPPrppxjOUU6aR2MtQlh+4gTmnDuH8vJyFK5bhz+WlXH32U5JSdHD\nIoVHjiCvp8f2PSVnzthCtE5GmEZ5eTmSLd7ZrI4OLD95Ejnd3QBjyOxVCn2Nye4V+flYYfhdeol0\n74kBQFKS4h1WVuLbHC98V3Y27i8pgYcxfL+4mNtf/X4/AoEAMjMzbZ8Ntyc5EWHcuHExVwzAUPUc\nrnChrkMPPYTrNm3Cm93dNmvB6/WCiEzhplkdHXjYYCFoA+Gr589jbmenbmVpr+8wJCF3ZWfDQ4RV\noZAiX1YWQl1d8GhKRI1zJwN2r2fNGrOHBEUhEJSw0abrrkPT+PH91qZgwxq/36/sdZuRYfouzSLc\nlZ0NIkJDQ4Pts1qntlpNRrQJQzQJiDiTkoJuIpPlpVl55VlZWLNmjdDz0hLQ2iRUWVmJyspKvR08\nHg9CoRByc3NRXl6OvPp63GSwiHO6u9EDxZpOtVh+ZwSK1Gj1ijZrAjjemAHechUX1ZBN7t69AMRW\ntDZJOU40+fmAw6KDPI8mnTH8x/HjuGbBAuDkSUz1erGRY0Hr+QYAP21txRHO92g7HwLmkIzoejS0\n712/fr3uZTx4+rRtDbVUAB1JSXpllYZ2zvnp6fj16NFoUhVLupbfOXECiz0eXBg1ihv+nTFjBs6f\nP2+T0agQKyoq9E3CNP40ciSu/vGP8dprr9k+a73GWDMkPYew5Y4OvPG97+GmDRv0rTS1CX1WRwdy\nc3NRWVmpd04NXmgjnTH8a0cHdwHAEb29mNXRoXsUPzl1SpnoQyF0JyXZKliSL11SEtdWDNU9jAit\naWl4ND8fk1Sr/E8jR6K4uFj3cnjo91pkZQHPP68nEK1WjlMnDgQCpuS09furq6sxadIkPT/hlq7k\nZLvlNWoUarOysGHDBn3xM6e48KyODvy+oQGz7rwTgQULUHPPPWhsbMT+/fvR2NiobFsaCHAXa0wF\n8LnHYzr/42PH4rLPF1Z2nlyaFxCudNNKbk8P9h84gBd27wa2buV6ax6Px10yc4ChyMy+Pj0xn9Pd\nrY8JI8FgUPfWRGst8bbn5V0P7x6gQCCAuro6NDY2orGxUXh/QtiKNKhj1jo2DfdUWAkGgyg5c8YW\nBTAqRGsuRZsvli1bhrKyMtt3hr3PKcoMSeUQbsIQUVtbi6+9/jp3ol/U1qZPJNaJUtQZkwTx5xTG\nbK775fnzga1bhXFuYeJarWaiUAgHd+xA0/jxpo65d+9eW1JdQztGtzTnzcOB7dtxx7RptpCPtXTP\nCm+AJycnY2ZrK17YvRv7GhvxRlOTbUIhImRmZnLDIERkCgHNveUW1Ph8WL9+Pbq6ugA4u+7W+zRw\n4gQu3ncfDj30kE1+0WKNmX19pvPvGTUKPS4mH55c2r0CG264IaJFDAnQ+wkeeACBzk7bJJSXl+cu\nNOEQiuwmcl5K3YDmBVjRvLU2QbmtNUmrGQy8SdV4PdyScsG1nE1PF12ijmjMil6f1dGBxyxjdvXx\n43i7vt4U+rXulw4ApaWl2L59O3w+n6mvW68x1gzJsJIxMQwoA3PTdddhV1IStk2aJNyTtrq6Gm8K\nOodx8igvLze5j8KkclKSsCyRd/9A9+LFOOcQJskTXzIAcEMKVVVV3GOJSO+81u8A+PsmayEa43HW\nzx1YsgTzjx2Dv6cHXUlJuCoU0sMymhcG9Lv5ycnJqKio4A6SzZs3c2W3em6iRDjPo/P29SH3IVJT\ndwAAEW9JREFUmWdQO3266Zxn09OV2LUF42Q2q6MDCw8fxtE5c/DW4cNhiw1Ecu3KzsZXz5/Hd8+e\njXylXjV3Fjh+3CT/O++84+7za9ag+957TVYzg5Jb0pLKy0+etL3Pk9PJQn82Lw/ftLzW7fHYDLRQ\nKKSH/Xj9ETDv6Q4o/XDFihV496qrsNjjMXsAGRnIef55rFLDjiLDyCkcyaPik09s+zzobSIoeLHK\nHQwG4fV6sXLlyrgqBY0h6Tn4/X7d4tRuMAGUOPC+xkbFkl20yGYFt7W1CTuH0Rqxuo9bCgpsJZrI\nyFA6TAShlLT2duzx+bi16HtdhDJ4iMJBfr/fZI21tLTg8ccfR2lpqa5QrAk2QIkTr1+/nvudefX1\nWHL0qG5dDe/rsw0oq8XZ29srLA1OSUlxc4nm709P1z8nmrxyLl2ynfMfCxei23LvgDU8pXkhgDnc\nOBC+YalGsqKVl3K5kv0o5s3Dpltv5Xo0u7Kz0TR+PI4uWWK6P6FX0PfOpqcLQ4W7srNxOi1Nv6Gx\nOycHT950E1dZGsvDa2trsbqgAKfT0hAiQqvXi3crKmyT/OXLl7FD3aCIV/rKK5c19qdIowuie350\nOAUvkZbCx5ohqRysIQ7eMhAPt7TgwJIlJlfV5/MJO80/Fi4Unq92+HCsMYQQWtPSlJvLfvELsAhu\nTGtLTcXXObtTEYBii7XsFlE8t7i4GPsWLdJDPqODQXz2y1+aKrC00I2VYDDIDS/x4vY8eHFnHjk5\nOVzZeUoLAHw+H/bs2YOqqiql7FKg6NtSU23nLFy3zjQptqal4fGxY03ljLxwY9h9KTh4vV5hTF67\nOfHRMWOEoZkrqecHgAlr1+I7t91mqxjTkqvaumQexpBz4YKyUyBnWZOcF15AQ0ODMN90wesFjh9H\n7R/+gJIbb9TvNeGhlYf/5cEHseTDD/WxmnvpEhZ/8IFNCWs5O2N14HcnTTJZ7sYQT11dHaqqqpCS\nkgIiwl/GjHGsJPINwBhjFqXtpgorngxJ5WC0GgDxwJ5/7JhpMvz888+xe8QIW6dZO2YMThvuA6it\nrTVNrFv//Gf09PTosenSCRPwo7o6TJ06Fa2CCUq06JabWKjR4p8xYwZmzpwpXN5DqyP3qFaxx+NB\naWkpkl59FQ+3tOiDUMuDuLWEedaPKG5vxTppi7wbn8/HjUVXVFTA6/Wakvo1zc14auJE/ZpramqQ\n9+KLtk1iQgD2+HzccxonxdyLFzHl2Wf1czv9Lrm5uUKFZUW7BmFMPi0NORcuYPVHH+F3N988oNxZ\nOAKBAB577DHTBJiZmYmqqip+nP/pp7F69Gj9DmLTnfXo38DJmKwtDQaRo66vxLOgrfj9flRXV2MB\nZ8kWqxLmGXvLT5xA4RFrfZT9useNG4eGhgZkZGTY8lnG+yvq6upMn3VTRNCakmIaf05eeyIwJJUD\n0D9B3Hzzza6TT5cvX+Za+qFQyDQZNv/sZ6aJVRRi6O3tFVat7PD7uVaLyNrVFjKzLukRDAbR1dUl\nXN6jtrYWNTU1CKkWfSgUQk1NDb5/5MgVWcKtra02ReQmEagtAaERScXGhQsXsGHDBlRVVWF2Zyce\nPXnSZGEWVleb7wmZNw+ts2ebFLEHwNzOTqwuKDB9Ny/habQ8nbyQmpoaXWE5oV1rIBDAs3l53In/\n2bz+zNI2XrWWw+JskawDZq38efvtt22KwdjPXs/IQOmECba7nQEg0NmJ5YbfIq+nB8tPnoRPrboL\nZylr7dLW1uZqrIqMvZ8KKvJ4iKr3gP7Sa6NHFK6IoAdKvzaOP7dVWPFiyCoHI6IVInkD/ltnz4a1\nSiKZWHlVK6fT0pDx0ku4v6TEtoqjl7PXtFbbD4S3wqwxTVHc063CJCKThW68kc+qiHhxeyu9V1+N\npvHjAShejCYvbyILBoNCRTj/2DF4rSEsTtw3v7mZu+l94bZt+nM3a2htKSjgTuZbVCVjjXF7OO1g\n/G2cqqy0id2YOzP2E57laW2rcOuAhSOiflZZyV1mBKdOAXC2lI1VO36/31EJh/Piru3uxsyZM11d\nM+/30dCUpPXGyRX5+br3ZDMh1b5hbBdRaWsiJKMBqRwAAOlPPWVLGF/0eLDH57NNem6skkjL4KwD\n/ILXa1ubSHOVjXeuMgA9Pp+yqJjqwruJVxqPEcY9HQahhtfrxfKxY+1WoeolWRWRNW7PW0QtdfNm\nfdBp3oxoImtvbxdOUMJKGWuy1sUNkW4ShxPWrtX3cgaUyfyJceMwYe1a/RijpyHKNWm/h7bKKC+s\nobVHcXGxa8uT11aOyU/RMvEWOZ3QjxG1sfobiSzoVatW6eXh2nFOiWKtbT2CBRzbUlPR1dWFlStX\nhlUQIRe5Mevk3jR+PA7u2IE2zt4lqQbj0Nh21tLWRFEMgFQOCvPmKROsYenr1kAAczs7ba6w6Maa\nEYaBF4knwiPH8HnNquIpJQKQOny4KcnmJl5pPEZ0PK/CqjclBVsKCkxWzl379nFv5OMNBMAct6ct\nW7jLjbut4ujt7RVeo7CtrbXvorp+w+tuEoeBQACTN27E/SUl+CAjA/eXlGDyxo3CwR4u3rx06VLb\nchBGLl68iL1797q2PEVtxb02p2Xiw8jPuxZhG6u/kVsLOhAI4K9jx+Kt7GxcRv+mPG+pVVQ6nH1O\njLkYpwo4jdzcXK5HbE2u8yb3cMZhouQUwpEwyoGIZhPRUSJqIaJlMRfAsvR1fnMz9w5JEribxl3W\neJ4Ir4abR1lZmSkRqFlVbi3hcGsZWS1LkdU2Ye1as8JMTUXKSy9h6cGDZivHYfMcIMxAECw37raK\nw6mUlbsmFW8jJBcbJrlNHBrzWOGswHDxZi0pLKr0AZT2cGt5itqKe20u1h6LqJ+J2njkSP2p2+t4\nsqgIczs79c14ksHJEakrAzitWRTO81ldUMDNk1hzUTycjMNEyimEIyGUAxElAagGEABQAOAeIgr/\nK0QTkSvMczdTU82TDscTSX/5Zaz5+GOsWrXKVFttvCNy1apVWLbMrBc1q0qYzLVYZbz6bae7Lh2t\nNuPkfcst/BVrHTbPGehAcDsZ80pZNXZlZ+OJceOU2nbRRkiAqw2TopE4dGMtaxOmSEFEYoGKyn65\n1+Ai1BZRPxO1cVaWa/k1Crdt4xptxhyRdk5rzs5IuLZzfR4OXONQzT8lUk4hLG43m47mH4CpAHYZ\nnj8C4BGnzxQVFQ14k20j9fX1/Dci2ew+O9v5JFu2KN9H5Gqjeq5MnE3KWUaG603vrxRhO/E2T/d4\n2LrCQvMm6xGwc+dONm3aNFZUVKT/TZs2zfZ99fX17ODSpawtPZ31Aex0WhpbXVDAJk6cyObMmTPg\n84tkmjNnjqvvFrbVFZzbTXs4UV9f7/4aRH1/9OhBuR6jTDpuxwgRXzYi26E7d+5kkydPNrVbUVER\nmzJlivDadZkiOA+XCMe8E4PZnwA0MrfzstsDo/kHoAzArwzPfwBgk9Nnoq4ceJOx6M+pwwxgUneU\naZA6XKQ4dtAoyOVmIqvfvj2uClPEYCsHxiJTTlcsU4wMEV2mSM4XoeLauXMnmz59uq4YZsyY4U6x\nx0hBuiFeyoGU4+MLEZUBmM0Y+5H6/AcAJjPGFlqOewDAAwDg9/uLXnnllSs+9/nz5zFs2DD+m52d\nSrldT48SOgqFAOuevoDynmFjFROHD/M3nHf4jKNMcSIhZWpvx7BPPrG/4fR7xICEbKtIZbL2/ZEj\nBxQGciVTJGOks1NJkBtDPh6PEqoaBPl0maJ8ngHJNAhMnz79AGNsoquD3WqRaP4hEcNKPAZiUQ3A\nPY2G5XmlJKRMGzZE7snFQq5EbKtElinSMRJFD3pAoa4oEy/PIVFWZW0AcCMRjQFwCsDdAP4tviJx\n0JKUlZVKcm7UKCUR7bS16KhRigXCe11yZbgtV5UkNpGOkXnzItrOd8DE6jwJSkJUKzHGLgNYCGAX\ngA8AbGOMvR9fqQQIyi+FuCiVlAwQbXc6I7Jtv3jIMZKQJIRyAADG2E7G2D8xxr7CGPvy9AoXpZKS\nAaLuTifb9guOHCMJSaKElb7cDHH3NKrItv1yIH/HhCNhPAeJRCKRJA5SOUgkEonEhlQOEolEIrEh\nlYNEIpFIbEjlIJFIJBIbUjlIJBKJxIZUDhKJRCKxIZWDRCKRSGwkxKqsA4GIzgDgLMgSMdcCODsI\n3zOYSJnckYgyAYkpl5TJHV92mUYzxka4OfALqxwGCyJqZG6XsI0RUiZ3JKJMQGLKJWVyh5SpHxlW\nkkgkEokNqRwkEolEYkMqB+D5eAvAQcrkjkSUCUhMuaRM7pAyqQz5nINEIpFI7EjPQSKRSCQ2hqxy\nIKLZRHSUiFqIaFkc5ThORIeJ6BARNaqvZRHRbiL6u/p/eAzkeJGI2omo2fAaVw5SeEZtu/eI6PYY\nyvRzIjqlttchIrrT8N4jqkxHiWhWlGS6gYjqiegIEb1PRIvU1+PWVg4yxa2tiMhLRPuJqEmVaYX6\n+hgi2qee+1UiSlVfT1Oft6jv5w+2TGHk+g0RfWxoq0L19Zj0dfVcSUR0kIhq1OdxbStXG01/2f4A\nJAE4BmAsgFQATQAK4iTLcQDXWl5bB2CZ+ngZgCdiIMcdAG4H0BxODgB3AqgFQACmANgXQ5l+DqCC\nc2yB+jumARij/r5JUZApD8Dt6uOrAfxNPXfc2spBpri1lXq9w9THKQD2qde/DcDd6uvPAVigPv4J\ngOfUx3cDeDVKfUok128AlHGOj0lfV8+1GMB/AahRn8e1rYaq5/A1AC2MsY8YYz0AXgFwV5xlMnIX\ngN+qj38L4NvRPiFj7P8AdLqU4y4ALzOFvwK4hojyYiSTiLsAvMIYu8QY+xhAC5TfebBlOs0Ye1d9\n/BmUPc9HIo5t5SCTiKi3lXq959WnKeofAzADwGvq69Z20trvNQAziYgGU6YwcomISV8nousBzAHw\nK/U5Ic5tNVSVw0gAnxiefwrnwRRNGIA/EtEBInpAfc3PGDutPm4F4I+PaEI54t1+C1UX/0VDyC3m\nMqnu/G1QrM+EaCuLTEAc20oNkxwC0A5gNxQP5Rxj7DLnvLpM6vtdALIHWyaeXIwxra3WqG31n0SU\nZpWLI/Ng8jSAhwCE1OfZiHNbDVXlkEgUM8ZuBxAAUE5EdxjfZIrvGPeSskSRA8BmAF8BUAjgNIAn\n4yEEEQ0DsB3AvzPGgsb34tVWHJni2laMsT7GWCGA66F4Jv8cy/OLsMpFRBMAPAJFvkkAsgA8HCt5\niKgUQDtj7ECszumGoaocTgG4wfD8evW1mMMYO6X+bwewA8ogatNcV/V/ezxkc5Ajbu3HGGtTB3cI\nwAvoD4fETCYiSoEyCW9ljP2P+nJc24onUyK0lSrHOQD1AKZCCcskc86ry6S+nwmgI1oyWeSarYbm\nGGPsEoCXENu2mgbgX4joOJQQ9wwAGxHnthqqyqEBwI1qNUAqlKTOm7EWgoiuIqKrtccAvgWgWZXl\nPvWw+wC8EWvZVERyvAngXrWSYwqALkNIJapY4r3fgdJemkx3q5UcYwDcCGB/FM5PAH4N4APG2FOG\nt+LWViKZ4tlWRDSCiK5RH6cDKIGSC6kHUKYeZm0nrf3KANSpHtigIpDrQ4NiJyixfWNbRfX3Y4w9\nwhi7njGWD2UuqmOMzUOc2yoqWfcvwh+UKoS/QYmDVsZJhrFQqkaaALyvyQElfvg2gL8D+F8AWTGQ\n5b+hhB56ocQ354vkgFK5Ua223WEAE2Mo0+/Uc74HZZDkGY6vVGU6CiAQJZmKoYSM3gNwSP27M55t\n5SBT3NoKwK0ADqrnbgZQZejz+6EkwX8PIE193as+b1HfHxul308kV53aVs0AtqC/oikmfd0g3zfQ\nX60U17aSd0hLJBKJxMZQDStJJBKJxAGpHCQSiURiQyoHiUQikdiQykEikUgkNqRykEgkEokNqRwk\nEolEYkMqB4lEIpHYkMpBIpFIJDb+H6mPTie6z6AZAAAAAElFTkSuQmCC\n",
785 | "text/plain": [
786 | ""
787 | ]
788 | },
789 | "metadata": {},
790 | "output_type": "display_data"
791 | }
792 | ],
793 | "source": [
794 | "y_pred = model.predict(test_x)\n",
795 | "print(y_pred[:10])\n",
796 | "print(test_y[:10])\n",
797 | "y_pred = expense_scaler.inverse_transform(y_pred)\n",
798 | "y_true = expense_scaler.inverse_transform(test_y)\n",
799 | "N = len(y_pred)\n",
800 | "x = list(range(N))\n",
801 | "\n",
802 | "print(y_pred[:10])\n",
803 | "print(y_true[:10])\n",
804 | "\n",
805 | "\n",
806 | "plt.scatter(x, y_true, color='#333333', label='y_true')\n",
807 | "plt.scatter(x, y_pred, color='red', label='y_pred')\n",
808 | "plt.grid()\n",
809 | "plt.legend()"
810 | ]
811 | },
812 | {
813 | "cell_type": "code",
814 | "execution_count": 21,
815 | "metadata": {
816 | "collapsed": false
817 | },
818 | "outputs": [
819 | {
820 | "name": "stdout",
821 | "output_type": "stream",
822 | "text": [
823 | "Accuracy (R Score): 0.760933932496\n"
824 | ]
825 | },
826 | {
827 | "data": {
828 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4XMW9sN/ZqrKrXWklS7KqbbnjjgsugG0MhF5MDAnB\nubSEFAjkJobk3i89IQUSuJSEQAiQgEOH0MGmGveOu2TLVi+rtkXaOt8fc1bFkuxVsVWy7/Po0e4p\ns3N2zp7f/OoIKSUxYsSIESNGe3QD3YEYMWLEiDH4iAmHGDFixIjRiZhwiBEjRowYnYgJhxgxYsSI\n0YmYcIgRI0aMGJ2ICYcYMWLEiNGJmHCIESNGjBidiAmHGDFixIjRiZhwiBEjRowYnTBEe6AQQg9s\nAcqklJcIIUYBqwEHsBX4mpTSL4QwA08DswAnsEJKWay1cQ9wExACbpdSvqttvxB4ANADj0sp7z1Z\nf1JTU2V+fn603Y9xiti6dWutlDKtv9qLjevgIDauw5OejGvUwgG4A9gHJGnvfwv8UUq5WgjxZ9RD\n/1Htf72UskAIca123AohxCTgWmAyMBL4QAgxTmvrYWAZUApsFkK8LqXce6LO5Ofns2XLlh50P8ap\nQAhxtD/bi43r4CA2rsOTnoxrVGYlIUQ2cDHwuPZeAEuAF7VDngKu0F5frr1H279UO/5yYLWU0iel\nPAIUAnO0v0Ip5WEppR+ljVwe7QUMZVwtAd7cVTHQ3Ri2vLmrAldLYKC7EeM/gPVFTo46PQPdjX4l\nWp/Dn4AfAmHtvQNokFIGtfelQJb2OgsoAdD2N2rHt24/7pzutg97/r2zgm8/u42KxuY+t1XV1BJ7\nELajorGZbz+7jdd3lg90V2L8B/Dd57bx0NrCge5Gv3JS4SCEuASollJuPQ39OVlfbhVCbBFCbKmp\nqRno7vSZhmY/AHUef5/buv7xjdz79v4+tzNccLrVd9rg7V+B2ewPUVTj7tc2YwxtAqEwtW4/NW7f\nQHelX4lGc1gAXCaEKEaZfJagnMd2IUTEZ5ENlGmvy4AcAG2/DeWYbt1+3Dndbe+ElPIxKeWZUsoz\n09L6zVc2YLhblOLV2McHmJSSo3VeCqv7/tAKhyWHh8HDr96rhENTP2tTT60v5uIHP6XZH+rXdmMM\nXSKTu/p+mOQNJk4qHKSU90gps6WU+SiH8lop5VeBD4Hl2mErgde0169r79H2r5Vq0YjXgWuFEGYt\n0mkssAnYDIwVQowSQpi0z3i9X65ukOPShENDc98eYG5fEH8wTEVjS5/79P6+Ks67/+N+MXUNJBGN\nIfId9xeVjS20BMIx7SFGK7WaxuD8TxMOJ2AVcJcQohDlU3hC2/4E4NC23wXcDSCl3AM8D+wF3gG+\nLaUMaX6J7wDvoqKhnteOHfa4fZpw6KPm4HT7uUL3GZlNOwiH+7Z4U0mdl7CEGtfQVpEbIppDHwXv\n8UQ0kgOVrn5tN8bQpdY9PDWHnoSyIqX8CPhIe30YFWl0/DEtwDXdnP8r4FddbH8LeKsnfRkORBzI\njX18gDldHn5tfIIjMoNa922MSIrrdVsRFbm/Z9ynm/pTpDlEBPnBqphwiKGo1SZSHn+IlkCIOKN+\ngHvUP8QypAeQJFcRfzQ+TJPH26d2fOV7SBA+JuuOUlfUs7iBUCjEjBkzuOSSSwA4fPgwFU/fxTVL\nZrNixQr8fiUsfD4fK1asoKCggLlz51JcXNzahhDiHiFEoRDigBDignbbL9S2FQoh7u7TRfaQyEO8\nv30OERNgTDjEiFDbzhHdH8Elg4WYcBhAxnu2cKV+HfrGvuUb6cuVQAhLgWnPv3p07gMPPMDEiRNb\n37/39z+SdOblPPDyJyQnJ/PEE8pa+MQTT5CcnExhYSF33nknq1atipwSR1ty44XAI0IIvZZR/zDw\nJWAScJ2WCHlaiJiV+ltzaNTaPVgV8znEUMSEQ4x+xxRoAiDscfapHUvtDpzSynvhM8k4+m8IRTdb\nLi0t5c033+Tmm28GVNRTxd4NvDDlU5o9LlauXMmrr74KwGuvvcbKlSrOYPny5axZswYVZ4CdQZjc\nWH+KfA4NzQGEgLKG5lheSQygzecAMeEQo58wh5RpQjT3TTikNe5mjyjgDXEuCYE6KFwT1Xnf+973\n+N3vfodOp24Dp9OJxWzgXONejA1FZGdnU1amoorLysrIyVERxwaDAZvNhtPpBDAxCJMbT4XPIRyW\nNDYHmJChKsgc6ofQ4RhDn1q3D2ucct/GhEOMPiOlJE4TDoaW+t431NJEastRikwTKLSdRZPODjv+\nedLT3njjDUaMGMGsWbOO65hKgg95+9CnHnIqkhsbmwOMFuX4A34CofDJT4gCV0uQkbKGW5I2AXAw\nFrHUa4L9NCaDgVq3n3HpViAmHGL0A75gGKtUtVjMvrreN1S+DR2S8sTJpCdb+dB0Dhx8B7wnbnPd\nunW8/vrr5Ofnc+2117J27Vq+e/vttLS0EAxLaK6ntLSUrCw12c/KyqKkRCkCwWCQxsZGHA4HgJ/B\nmNzoqeFd0you1a3vN+2hodnPdYa1XHX056QafTG/Qy95dXsZU3/23rB5kNa6fYxOTUSvE8PmmiAm\nHAYMV0uQJKGilOKCjb1vqFRVuqyzn8FIezyr/Qsh5IcvXjrhab/5zW8oLS2luLiY1atXs2TJEh78\ny5NMy7fz4t4gupYGnnrqKS6/XLkJLrvsMp56StVTfPHFF1myZAmqniINDLLkxlBYkuirwihCZIna\nfvM7NHgDjKABgLMc3ljEUi/JTo7H6w+xubgPk6JBQjgsqfP4GZFkJjnBOKwS4WLCYYBw+4LYUJqD\nNdSIP9hLNbtsK0fJJMGWRpY9jvXeLMKp4+FAz9NG6jx+7lyayf3rfdz1//6I0+nkpptuAuCmm27C\n6XRSUFDA/fffz733ti650cIgS250tQRIRQncFOHqR80hQJpQwmGGtZEDg1g4HB+ifOTIEebOnUtB\nQcGAhyhPybZhNujYdGToC4d6r59QWJJqMZOcYBpWiXAx4TBAuFuCJAklHJKFq3eJcFIiS7ewNTQG\nh8VEpi0eAK99PNQdibqZc889lzfeeAOnx8fUZD+bbrHw6A+v4oUXXsBsNgMQFxfHCy+8QGFhIZs2\nbWL06NHtuiF/JaUcI6UcL6V8u932t6SU47R9nZIfTxX13gAOVCRYsnD1W1RRg9dPmlBCZ3xcPTUu\n36B9GBwforxq1SruvPNOCgsLBzxE2WzQMz3HPiw0h0ikUqrFTEqiKWZWitF3XC2BVs0hRbhobO7F\nTdVYgvBUsyM8BofFzEi7Eg715ixoLIFwz4rD1Xn8pAj1UI3TwmyHIvVePw7tIZ6CK/pEuA2Pqr9u\naGwOkKq1m6tTjvPBaFrqKkR57dq1LF+uSqENhhDlhblm9pTVt5aQGapEchxSLWYcFhNOz9AuO9Oe\nmHAYINzNzSQKdSOl4OpdfaUylfy2I1xAaqKJLE04VOnSIRyEpi79v93S4PKSjHKyxgeHrnBo8PpJ\nFW2aQ1O0ZqUdz8LO57pv1+NrNVelBauAwSkcugpRttvtGAwq3HLAQ5S3Pc13Ny4mTdaz9ejpi4o7\nFUSEQ5rVpMxK/VwifiCJCYcBosWlfhRhYSBF9FI4lG4hrDOxT+bhsJhJt5kRAo5Gloit71nmtbex\nBp1QhfsSwkM3EqfBG+ioOURrsvPUgru6293+ploMQvmGzO4SrGZD/0Usvfpt2PJkn5vpNkR5AOg2\nRNmaCUCOvo7NQ9zvEDErORLNOBJNrT6I4UBMOAwQQbf6UfiTckkS3t7VVyrbSoNtIgEMpFpMmA16\n0ixmDvkdan99cY+a8zepH7BEYJWuIXuT13sDpGkz/ORoHdJSgqdG/YW7Dg4Iu5W2QGIaoqGEcRnW\n/nNK73kFdr/Q52a6ClG+4447aGhoIBhU38OAhyjb1OlzUzxD3ild6/Zh0Als8UZSEk1I2Va6ZagT\nEw4DRFBLMtOlKMduS1NtzxqQEip2UpGonI4Oi3IcZ9rj2edJAqGHhp5pDiFt1uyKG4lNuPH4h6Y9\nuMHrx6GZlSyiBY83itm9rwnCAWWOa+7a1KHzaFpF9mzwNTLVITlU5YrY6HuPzw0BD1Ts6lYwRUtX\nIcr//Oc/Wbx4MS++qJZ8H/AQZVs2ALNsbnaUNNASGLoLJ9W6fDgsJnQ6QXKiCWgr3TLUiQmHASLs\nVSGRxhEFAASbujdndElzPQS8VOozMOoFSVr6fpY9jpLGANiyeqw56DxKQLmto7DjGbJluxu8AdJ0\nTSDU7R32RDE79bQTzhEN4TiMzdox2bMBmGZpot4b6FBbp1dEPs/vgvroo8x6wm9/+1vuv/9+CgoK\nBj5E2WyB+GQKzA34Q2F2lfYhz2eAqXX7SNUmZo5E9d/Z1/thkNCj9Rxi9B+yRf0ghEMJh5Cnh5pD\nUzkA5aFkHInmyGyPkbZ41u6vRhbkI3roc9C3qBpPLbYxJNR8RonbBZqTeyjR4GkhhSZIGQ3OQoim\nsOHxwiG9c3Sm2ddROIwx1gAOjtV5SbOae9/h9n6Oip3gGNP7ttpx7rnncu655wIwevRoNm3a1OmY\nSIhyV5zS9VdsOWRIdd2bjjiZMyqlT80NFLVuvxIOVXtIFeoeGC7hrDHNYYAQPqU5oJmVTlbuohOu\nCgCOBe04LKbWzSPt8bQEwvgsOT3WHMy+OsLoCNlHAdDSNDTtwX5PPQZCkDYBAF1LNJpDO4dpN07p\nBL+TgDBB+mQAMqU6p6Sub+txdNBUKnb2ra2hgj0Xo6uMCRlWNg5hv0Or5vCP5eTu/BMAdTGzUoy+\noPdpoaLaLFHX3MMfiKY5HPEltaq1QGuuQ6M5CzzV4PdE1ZyUkoRAPc1GGwaLcmi3uPpWLXagEJEH\nvSYcDD0VDp7OwkFKSVKwDo/JAfHJYE7C7tcEdJ+Fg/q8BkPaf45wsGVDYwmz85LZdrR+SBbik1Li\ndPtJTwBc5cR5lF++bpiYlWLCYYAw+hsJYIQkFTVi6GnxPU1zOORN7KA5RHIdKvXpakPDsaiaa2oJ\nkkIjPpMDk1UJh4B7aM7o9BHfgCYczP6Gk5/k1c7RGbv0OXj8IfX9mB0gBNjzMDSVMMJq7rPmEHJV\nEZKCzbppULlLBRsMd2w54HczP9uAxx9i/xCscNvUEsQfCpNrVBM9nbsKi9kwbOorxYTDAGEKuvDq\nLaA34tUlEufvYTJQUzkyMY1KT7iD5pBpV+tHH5Mj1IYoTUuR7OhgvIO4pFQAgn1chGigMGm+E9LG\nARAXjEI4eGoJGCx44kZ0aVZSpTMaCMZr36s9F+qPkpuS0GfNobm+HCc2Pm/OAa8zuuRFv6fHeSyD\nCrsKZ50Qr8bmSG10Gu5gIpIAN1KvTaLclaRouQ5dsvtFWPvL09S7vhMTDgOEOeiiRa9qwDcb7CRE\n8wBrj6uCsCUTXzCMI7FNc3AkmjAZdBT6NQdflA+QOo9P1SNKSCVeEw7yNK7p0F/4g2GsIa3f1pG0\n6K0kBBtPHm7qqaU6bKXEZ+lSc2jwBkgTjYQTtXj95DxoOEZucnyfNYdAYyU10sbOYJ7aEI1p6bM/\nwV/O7nPo64ChhbOORJnz+myaGwBqXVp2tNTuN6+TEQknKNu9/R/w+UNDZsxOKhyEEDlCiA+FEHuF\nEHuEEHdo21OEEO8LIQ5p/5O17UII8aBWsXGXEGJmu7ZWascfEkKsbLd9lhBit3bOgyISejOMSQi7\n8BuVcPCZkrGEmwj3JOmsqRxfgjIdtdcchBBk2eMpdMeDMTFqzcHpViUndJY04pO0JLpu4v0HMw3N\nKschjA4SUvCZ7Nhx0XyyWHpPDbVhK+UhK7g7LzjU6GkmBRfC0k5zCHgYm+Snoqml91V1AdzV1Eg7\n+2QuEqHyHU5G7UFoaejoKxlK2HIBMHsqSLWYOeYcgsJB8y2khNsi3fLiPN2HstYVQbAZGopPQ+/6\nTjSaQxD4vpRyEjAP+LZWhfFuYI2UciywRnsPqlrjWO3vVuBRUMIE+AkwF1W86ycRgaIdc0u78y7s\n+6UNXqSUJIY9BI1quclgXArJuHD1pAhZUzkek3pQtfc5AIxJS2RflUub3UanOTS6PSQJL0bbCESc\njSA6dC091GYGAQ3eAKk0ETAng05PwJxMMi6amk/83YY9tVSFrFQEbW2Z0O1orq9CJyRGmyr9gF3N\n8seZ65BSrSndW4zNNdRIG83EUZ+QH53m0Fiq/kfpUxp0JKaCIQ4ajpHnSOBo3dA1K1n9bQI6z9jU\ntVkp0AINWkmq6v2no3t95qTCQUpZIaXcpr12oRJfslCVGJ/SDnsKuEJ7fTnwtFRsAOxCiEzgAuB9\nKWWdlLIeeB+4UNuXJKXcIJXu/3S7toYlXn+IJDwETTYAwvEpqmx3tPWVAi3QXEeDQZl/2msOANNz\n7Byu8RBIyo1ac/A2qAdivD0DhMCFBUM0jtxBRr3HT6poJBintJ9gXIq2psOJv9uwu4ZamUQNNoTX\nCaGOx/sbVQCA2R4RDmrmm6fro1kkHCbe76RRn0KWPZ4i/ZiohEMo8qDpYRb8oEGI1oil3JQESup6\nL1wHilq3DyEgrqXNRzXS0IjT4+9sxqw/AmjbaoaJcGiPECIfmAFsBNKllBXarkpAC4/ptmrjibaX\ndrG9q8/v97WGBwK3T63lIOOUcCDBgYMmGrxRlvvVIpWcOvUAPF5zmJZjB6Ban6F8DlFEv/gblXAw\nJSltxKOzYPQPvczVhuYADtGE1HwDUhO8JyzbHQ6jb3ZSRxK10oZAdkyKA0JNmvBM6Sgc0kPqwdBr\nv0NLA3oZxB+fyrh0C9sDueAq79K01UrQh96j+hMayk5pWw40lpKbkkB5YzO+4NAqo1Hr9pOSYELn\nqgAtmXWEaMAfDOPxH3ctziLthRh+wkEIYQFeAr4npexQz1mb8Z/y+LtTstbwAOBqDpCEFzThYLCk\nEicCuNxRlsnWhEOlVE7nlMSOwmFqthIORcFUVbOni+zrkpISFi9ezKRJk5g8eTLvv/IvAOoCJpYt\nW8bCB49w+2OfUl+v/A5SSm6//XYKCgqYOnUq27Zta21rMPmSGrx+UmlEp/kGdImp2poOJzArtTQg\nZAinTKJGqu+uk1Nay30w2zLU+7gkiE/G0lyGyaDrvXBoLeY3gnHpVj51a/OiyhNoD1qOC4Cn6nDv\nPncwYM+BBqU5SAll9UNLe2hNgGsqh4wpIHSkShW51GkRKGeh+p89G6r3neae9o6ohIMQwogSDP+U\nUr6sba7STEJo/yO6VXdVG0+0PbuL7cMWj7sBgwijS1AuF6NVmYeaG6Ksr6Q9HMpCdpLiDJgN+g67\nbfFGRqclstOtaSZdmB4MBgP33Xcfe/fuZcOGDXy85gP21oS4968vsXTpUl7/wSIW5ie01tp5++23\nOXToEIcOHeKxxx7jtttuizSlZxD5kuq9SnMwahqQ3pJCvPDjcZ1A8GrC0ymTqNdpXT/O0av3amMT\ncUgD2HMRjcfITo7vvVlJEw6GpAzGplvZGdR+IicyLWn+hrAUBJxDXHPwVJNvU/fv0SEWsaSEgxFc\nlcpEljgCW1CFUXfKdXAWEk5Iw5U2QwUT9HAhroEgmmglATwB7JNS3t9u1+tAZJa4Enit3fYbtKil\neUCjZn56FzhfCJGsPTzOB97V9jUJIeZpn3VDu7aGJT6Xml3oE9Qs1WxTDxxftJVZNc3hiN/Wyd8Q\nYXq2nU9rLepNF36HzMxMZs5UgWRWq5WRaXbKmiSvvfshK1euxG9M4ivTTB1WDLvhhhsQQjBv3jwa\nGhqoqKgAsDGIfEkudxNW0YwhSVk5TValYfpdJ/hutQQ4rzGZhJSRattxmoOpuRYP8WBKbNtoz+tz\nrkOgsRKAuOSRjEu30IQFb2I2lG3r9pyw5oTeJ3PRN5V0exzOIvjzojbn9WBDK92db1LaaZ/LkJxm\nat0+8uJbIOQD60iwpmMJKOHQSXOoO0yxzODB3QYItvS4tM1AEI3msAD4GrBECLFD+7sIuBdYJoQ4\nBJynvQdVkOswalnBvwLfApBS1gG/QJX83Qz8XNuGdszj2jlFQOs6xMMRn1v9GEwWZRZKsCvhEHL1\nQHMwJlLmNXbyN0SYlmNnt0fTHE5yIxYXF3OsrJJZ2WaqqmvIzMzEb7IzJrGZqir1kGy/Yhh0WE3M\nSB99Sf1JSFuTQliUUDBrGkTwRDZ8TUvQWdKwRHwKxwmHeL+TJn1yx/PsudBYQo6997kObqfSAq2p\nIykYoYR5YdI8KFyjSnl31d3qYgA2h8eT2FzevU/p0Psq43rfv3vVt1OOlgiXEqgi3qjn6BAKZ5VS\nUuvyk2/SNNKkTLBkEOdT91JXmsP+QDpbPJrmWXOgbx1w15zyTPpoopU+k1IKKeVUKeV07e8tKaVT\nSrlUSjlWSnle5EGvRSl9W1tUfoqUcku7tv4mpSzQ/p5st32LlPIM7ZzvyD4XyB/cRBb6MSWqh43J\nqm4YGW1GclM5JGVS6/G3lgk+nuk5dpqJw2dOPaFwcLvdXH311dy4bBIGS1tlzLDZjk14OQ1ugn4N\nNAhHsps1h7QpktB3ou9WMyuZbCMY4UjBLeORro7CwRKow208rnJocj4EW5iYqHwaUUebtaO5vgKf\nNJKamkaCyUBOSjwfGM5W8fD73+z6nJqj1EgbR+RIjNLfIaO7gy/pmh/xwAYfFK6hrq6OZcuWMXbs\nWJYtW8Ynu4vxBUMD60vSEuGEFrE0lIRDjctHcyDEKJMWtGEdCdYMjJr5sa79WtItTeCuYndLKoek\nNj+q6YPfob4Y7p8IW/u+cuCJiGVIDwCRhX7itBpGJGgPneYohYOrAqyZOD3+bjWHCZlWTHodtYaM\nboVDIBDg6quv5ssrruOCCQn4zCmkp6dTUVGBjLNR4QqTlqr62H7FMOiwmliAPvqS+jPQQBepkZSo\nBK5IUMIB78mFQ4I9nZyUeKqlrTV6K0JSqI5mU2rH80Yqs9zE8EGgd+GswcZKarCRqdXEGjfCynuN\neSpJrJuV4cKNJZRJB+a0fLWhXa5DB1/SHaN4eHOAvZs+4t5f/ZKlS5dy6NAhzpi9gEtv+W+e31I6\nsL6kpCy15kZDCTkpCf1qVrrn5V3c/NTmfmvveAqrlVaXb9aEQ1ImWDMQnhri9GHqPO0mCnUqaOBw\nOAOPSMCpT+tbrsOeV9TCVOsfPqXZ1jHhMADIZpU/kGDThEOcnRA6DC1RZiQ3VdAcn06dx0++I7HL\nQ8wGPZNGJvGFzIeyrSo3on0fpOSmm25i4sSJXH/rt3EIF8E4R+vKYCIhmad2Brhw6TmAWjHs6aef\nRkrJhg0bsNlsZGZmAjQyiHxJxkhdpUTtQZ6gvmP9Cb7bsLuaBplIut1CdnICNdhbfQERkmUDgbjj\nhEPGFDDEkePZDUBJfc8fbsKjsqMzbUo4FKRbKHJ6CU2+CorWdhlpZnSXUyFTycofD4Cvtm2BoFZf\nks+F1V3ExJwUyuqbee2VF1i5Uk3+TRMW4z20gS9KGwfWl6Q3qvWkG0vJcyi/TX8YDXaWNPDcphLW\n7K/ulTYXDYU1SjhkiHpAgCUDLOkIJGMSmjtqDlqk0hGZybKJ6ewJjCTcl4ilPa+CIV61W7S2D1dx\nYmLCoTukpK70AOFg5xDIG/62icc/7UMIoSYcIg5pdDrcOismn/YACwVg29MQ7CLvIRwGVwUlAXXu\nWWMc3X7M9Bw7L7qmQMALRz7psG/dunU888wzrF27lqUL5nD9Y1/wQaGPu+++m/fff5/rbv8VHxwO\ncusNVwNw0UUXMXr0aAoKCrjlllt45JFHIk2FGEhfkrsaXvlm63oYZl9EOGgaSLydMALjCare+pqq\nccokMmxx5KTEUyNtHXwOLc1e7MJDMOE4rcZggszp2J07gN5pDsbmGup1dhLNat2tcSOsBEKSspyL\nQYbULLE9UmJpqaTRlM6InLEANFQUHd8sVO6muCHE9iqYmxvX6ksKhsKsOeYn5GlgX2XTKfUlRWUu\nbJcI1xwIUeOOMtenG6SU3Pv2fox6gZSw/nAPF9GKkqJqNxazAYuvRt1rBhNYVZhzQbyb8oZ2kzEt\nx6HBnMWK2TnsD2cjexuxVHcEKnbA2f+tBNLGP/fH5XRJTDgcT1MFNW//lvJfTyXl8TnseOOhDrtd\nLQE+OVjDnz8u6nU9HZ2viTACzLbWbR69nfiAJhy2PQ2vf1dVcTwerxPCAfZ6LCTFGZiYmdTt50zL\nsfFxYAIhYyIc7PhcXrhwIVJKdu3axZ9fXsOmb9hYtmA6DoeDNWvW8NJzf+eDGxJJFGrmJYTg4Ycf\npqioiN27d3PmmWe2tjWgvqTdL8DO52Drk6osSaAOny4BTAlqv06PR2c9YdnuYFM1TpLItMWRnZxA\nrbRhbGl7mDXVankFlvTOJ+fMwVC1i/R42SvhkOB3djBXjUtX9ba+CObAiEmdTUvN9ZhlC37LSHIz\nR1AnLfhqOi8t6i7cwNXPe/nTH35H0rj5am1s4LPCWmrdfvQ6wYHKflj/+gREZS605agChg41Xn2t\nsfTRwRrWH3ay6sIJJJr0fFZ4aoRDYY2bMWmJCFeFMilBq3CYk+pny9G6tqS+uiKqdWmMGZnGvNEO\njpCFPuTrXcTSPm257inLYfZNUPg+1Bb2/YK6ICYcgj5V4fJf1xP+01S4fwJpG39NlT+eemnFWNxx\nxl1Uo2rA1Lr9fLCv67WGT4bB34iXBNC1ff0tRjsJoUY1m1j/sPZhazqfrJVz3uQ0M2+0A72ue1/g\n9Jxk/Bgpd8yHA293jG4ItLTOaJqaGkkUPozWthj+tjUdBnnZ7sIP1P+tT9HsD5BMIy2mjo5jj95G\n/Imq3nqdOGUS6UlxWMwG3MYUzEF3qynOW6+Eg77d99NKzhwI+TknqbznNvNQAEu4kUB8m3AoGGFB\nCDhY5YIp10DJxo4PkUY1mRe2HPIdiZTKNORx9ZUCgQBXf/9+vnJmKvrJ5xPIX0x6gqTi4A5e2V5G\nQrCJtLQR+IJhrI70U+ZLigp7DjSVk2dXgRV9cUqHwpJ739pPniOBG87KZ95oB58dOkXCodrNmBEW\nzf+nhT/zuZi2AAAgAElEQVRblHCYkeyjJRBm61EtgbS2kEPBDCaNTCLRbEBElqDtTab0nldh5AxV\nGmfW10Fvgk2P9cMVdSYmHA68DR/8BCp3c0BXwG8D1/KXqc8zatVn7ImbSVbTjg4P1UNValESi9nA\nsxt7V/TMEHDh0Vk6bPObk7GGm1R/6orUDVf0YWfVU8tx2ONKPKFJCSDfkYAt3sh64xx1XsWOtp2v\nfQsengPF6zhwuBiAhOSM1t1xWmXWoGcQL/jj90LxOsLJo6DhKIc3vU0qjQTiOn4vzUY7CcHuk+AM\nzbXUyaRWu384QRMCWlZ0S73yP5giRffakz0HgHnGwz0XDp5adMgOiXXxJj25KQk8u/EYf6qaCkBg\nZ5sG2VKrkt7MqXkkmg3U6tOJ97Q9m1t9SXY/Vy6bxx2rd/CHomwuG2fg8Qd/zbt7Kkmv2siFF18C\nwLjZ5w6sL8mWDeEAWcYmhOhb6e6Xt5VyoMrFf58/HpNBx4KCVIqd3n7Pn2hqCVDV5FOhx1rkIKCN\no2BMnAuDTvDpoVqQkrCzkMPhdCZpWn7uuBkAeEu/6NkH1x+F8m2UjTyf6T97jx+9X0V48lWw45/Q\n0v+lbmLCoXQz6M3sufIDLqm8mfqZ3+YbV12APcGE0zGTlLAT2S7D+FC1G5NBx82LRvFZYS1HnT2v\nJmkONtGs7ygcQnEp2GkivO5BFT9/3k+gua7jAx1as6MrZcpJhYMQgmk5dl5snKiiQg5opqWyrfDF\nS4DAv/prFO5cB2hF9zQSNM1BasuXhsOSwzXuU2qG6DHFn0HIxzerr6ZOWih+72EcoqnN36DhNyWT\nFO7mxxMOERdooF5nIznBCIAhUiJDCxENas5pc0oXwsGaDvY8Jof3U9bQTOhEZdelhHUPtGoCvgYl\n6A1JHdv90UUTGZ9h5dEdATaHx1Gx7p+t+xorlQnJlqHW+fYmZGHzV7ZOYFp9SfucnP2rdVQ/dTt/\nensP312czjsffEzRwzfhObKdX/30fzDoBAkFswfWl+RQfhPznhcYaet9prkvGOKP7x9karaNi6eo\n73PhWKWRfV7UjfbgrVOm2x7e00VapNK4FKP6jUY0B70RElMxt9QwI9eutBZvHXpfI0dkJpNGKuEw\nb1I+pTIVZ3EPl4Tdq2Twd3fmodcJnt14jB+XLwC/G3au7llbURATDmVbkZlT+eGr+0lJNHHPlya2\n7cs9C4CmA5+1bjpU5WJMmoVrZ+ei1wme23SCDNVuiAu58RmsHbbJhBTSRBO60o28a72ab21MVrX9\nC4+LRnBVEEaHTEhj3IiObXTF1CwbW2v1hLLmwIG31A/h/Z9AggPP9W8SbPFwn0lTSxPbzBvWxHhc\nMr51TYdD1W6W3Pcxr+4YRJVNCj/AL8xsM06natRVXGTYyjhTHY70jv7RgDkZG66u1ylurkcgCZod\nrTkdcVrl1bBLCQXpVv8tXQkHgJw55Hi+IBAKU9F4gvpAZdvg/f8HH/4agIYa5deNP67dCyZn8MxN\nc9n5k/Opzzmf3MBh6suUXbm5phifNJKZqSw7YVsuZvytiXwLFy5EHv6YXbdZWHLjXXyyfjMrV1zF\nZt0U3rzWyIJVT7Px04/IHJFGwQgLBypdA+tLGnU2TLoC1vycyxJ29Vo4PLvxGBWNXn5w/lh0mql1\n7AgLaVYztTvfgY9/3/mkLX+Dl25SyYI9IBLGOi5BS1JsL9wtGeCqYtHYNL4ob6SpTEUllYpMxqSp\nCeGULBvFIht9bc8S4eSeVzlsKGBvSwqrbz2L+788jZcq0jgoRuPf+o8etRUN/9nCIRSA8u3sYhx7\nypv4+WWTsWmzR4C0MdNpkgl4C9sJh2o3Y0dYyLDFsWTCCIKb/0bgYBfhZJ/8Hl68scuPbb/QTwS9\nltHbIBNZdWQan5bBfjEa34H3Ohwnm8pxYmf2mBGtP4ITMTXbRigsqcg4Fyp3q8SZ4k/hnFX8Yns8\ndwVuw4Km/bQTDpY4A40kotfWdNh2TAmJaVpRv9PC/rfg7bu73R069D6fhyZy6azRTLz4u+hkEH3Q\n07Ygj0ZYWy/D3VVlVu2hKttduy1NCRe3U2Uf22q3UyuTsFstnc8HyJlLgq+GLGrZX9H9Wsgtu1Xk\nUeiLV8Bb15odnZSa3eXxcUY9eWddBcDRDaqkWbihlDLpIFcLYTan5gPgqmyLWAqWblX7cmZyZn4K\nv7xiChWOBdhxcetYV6sQnJiZxL4T9Pe0IARc8ShkTOGOht+ia//AjFLmeD0u6tb8ie0J32XhzlXt\nmhYsLEhlVukzyI9+3TnjPFKi5KNf90h7KKrxYNQLRuojKw62Ew7WdHBXsmhsKlJC0X6lHUjHGEwG\n9bjV6wRu+0RGtBxBuiqPb75rSjYhyrfyQvOZ/OaqKUwamcRVM7N57tZ5vBhcgKl6V9+zro9jeAgH\nT23XYZ8no2oPBFt48qiDCyan86UpHWdw4zPtbA2PJa5iEwBef5DS+mbGamUO7krbxP+E/4L7nZ91\najqw/V/IL17ucjU1S9hN0GjrsG1Mnlo8xjN1JRt+chkv3HYWn8qpGMq3UF/Xpha3OEspCycz7yQm\npQiR8t0bTfPUhjf/G5JH8UnSJazeXEL+wmvh3B+pfABLm1nJqNfRiAW9VrZ7+7F6lsUfYJQjPqrP\n7Req98LGR7tc05m6w+jrD/NhaBpfnZun1ovOW6D2HWdWkgkpmEUQV1MXpiUtj8DQztnsGNFOOOx+\ngdy6z3k8fCkJJn3n80FV2gRmGw6xo6Qbx7eUBHa/RnE4HX3YT2D7c7TUK7OSI71r4QAwdtJMjpKJ\n+bCaJBjdZVTr0rDFq0lMUuYYAGpLD7WeU7p3AyXhNFaep7QAk0HH1752E0Fh5CpD20RnYqaVyqaW\nznWATjemBLjuOcL6eP4Y/CXBf66AB6bDL1JPXvpjx3PIB6bz/fDfsRjCiAPvQLDtehaNtjFVHkDI\nMJQfV6+qbCvEp0D5djj4TtTdLax2k+9IxKBplCSNbNtpzQBXJVOzVVHMupJ9BNGTkjW2QxvNZ1yH\nToZxffLwyT+w6EMCf7+Mo+ER6GZez5Uz2u6XWXnJlOdcTAhdv5uWhodweP12eGQeHHinZ/bDUpVB\nuSU4hv+5eFKn3Q6Lmb3GSSR7isBbR1G1mmGPTbfA0c+ZsPn/4ceAte4LCLQzJ3jrMNYfQiAJHfm0\nQ5uhsMSKl7C5YwiqadR8GHsBWRfcRZxRz4SMJBZcsAI9YR77+99aF6vx1ZdRKVOYH6VwSE+KY4TV\nzGf1yarmvAzB0v9l9bZKRljN3LlsLJy7Cr5/EIxxHc716Kytazr4D3/OX+XPEKfAttktBUvV/y4S\nfcKHVCRXQ9Y5rTWJmPV19f84zUFnUVpBZEGj9khNc4izt52TnWajTlqgcjfht37Abt14Pkpe3n0p\nkfQzwJjA4sSj3QuH6n1Yvcd4WlzK9nABnvVPEGqqoEnGk5Ga3PU5gE4nOJKyiDGe7YSam7D4Kmky\npbf2JT1XPXQipbuDoTCGyh2UxI1jQUHbPWJzpGOYfDlxe19ovVcjYdD7KqIsFX8qsWWzdf5DSCkI\n1ByGzGkqy339I92fs/Xv8Oo3OeRP4d70P2C48hFVdqSstWIP51hKSRDaxLG0XcZ0Uzm4K2HR91UZ\nlI9+0/bscBbBO/eonIIuKKpxq3tOCw7poDlYMsBdjZ4wCwpSoWY/x8JpTMjqGEE3duJ03gufSdyO\nv3dbQwtA7n2N4D+uoTCQyp8LHuF7VyzodMzkceP4NDSF0M7n+zVjengIh9k3gtDDcyvgn8th1wvw\n7o/hifPhkbPgw9+0W2yjHWVbqdclY88cTU5KQpdNO1NmqRclmzhUrVTwCeY6WP1VRHIeb+b/CANB\nmo+23ZDew+tbX9fs7GgW8jR7SRA+ZNxx5pnkPPjq82Bpm/VOnnMeQUMiOfXrWfyHj1m96RgmbwVN\nxlRGp3adGd0VU7Pt7CxtgLnfhEmXE5p4BesKnZwzLq2t3Lfe0Ok8rz6JuGATjd4Al7r+RbPBDpOv\njPpz+8rTxTYadTZkYeeQ3rpdb1EcTue8BWe1bZx8JVx8H4w9v8OxBk04+Jo6J2J56jv7E7LsKtdh\nZMUHBH1evu+7lXuvmdnp3Fb0BsiaxSzdIXaWNHS5FnjTjlcIS0Hm3OWss12M3V1EdvUn1Ak7CabO\n332H/k+8CBNBjm18FVuoDn9i20w1O13lOgTrVNDE39fsIFtWkjZ+XmdhNvMGFdWyV8XKR4TD3sEg\nHIDUCQtZ5H+AiZU/ZX7RDbxkvASOfd61ueSLl+Df3+OIfT7XtPwPl1z2ZchfAIgOCZ+OWiUQGnQp\nUNr2G6VMmd7ImQtn/1CVSD/wlnJQ/+Uc2PAI/HUxHP6ow8f6giGOOj1apFIFGBNa12UBlOYgQ+B1\ncl4uLJTbWRc+ozVSKcKEDCtPicswBZpUtFEXyJLNyOe/zs5QPs9O+jO/vP48jPrOj+wFBQ5eDi1E\n7yqFo+u6/4J7yPAQDgXnIW9bB+f/Cko2wcs3w6a/qn0JDvj4t/B/M9n0s0U0NLX9EILHNrMlMJrz\nJ3fjaAR02bMISD3y6HoOVrmx61vIe/dGkGH4yvNkzb4MgJIdbbPb8t0fE5Q6NoYnoD/aMU/C26jl\nDRwvHLpCb8RQsJjltoOckRzC9foqEsIeTI78HhXEm5Zt43CNB9fUr8OXn+aLcheNzYHWaI7uaDEk\nER9s4tDuDSzVb6d68n+1JZedBvR6PR8GJhM6tKbjjCjow1L+ORv1M7hgcka7E4ww++aOZbVpK9sd\ncHUWDt76SsJSkJzaluAWb9LToFczvd/5r+ErFy1les5Jxit7NiNbDhH0uTlc23km6N/9GlvlWJbN\nmcqU87+OS8aTEqjApU/porGOTJ57Po0yAf22v6NDIuxt6Qcmg45qfTpGVymv7yxn90cqaa5g+qLO\nDeUvguRRsE2t7ptqMZNmNQ+830FjQoaVF795Fj+6aAKzR6Xw++pZBIUBtj7V8cBD78PLt9Iycg5X\nOr/B+VNyOCPLBvHJSuNoXw3g6Dpq4vJZGzyDcMmmNu2gbBvoDKoEytQVkDJaZdq/dBOkTyJw/b+V\nFvDMVbDhz63nFdd6CUs0zaFcaQ3tf4uRRElXBcuaXsFIiMdDFzHhOOFg0OsQOXPYa5io8ppCnSsx\nlH3wEB5p5u1pD/OzLy/oNqdp8kgbG0zz8OniYVf/afbDQjj89p39rHp1P8z/Dty+A275EO4pgZve\ng6+/QcXN23hEXs0cuYtdb/5FndRcj6G+kO3hApZN6iLzVWPMyFR2ydH4j6yjsKqJh+L/inAehC8/\nBY4xzJgwhiKyCBa3aQuUbOSAGMWRlLNJazmKbGyL8PE2RdZy6N6U0LEDSzC5S3my6WZuNrzD++bz\nGbH4Gz36fqZkq5nN7jJlIvr0kHpILig4sXDwG5NIDLtI3PIQbhmHY/F3evS5feWCyRl8Gp6KocWp\nSk9rOPeuJU62oBu3rNXJdyLitfUyQl0k9Pkbq6nHQoa9o7P5QMJM3g/NonLif7Fyfv7JO1uwFJ0M\n8aTp9+wpLO64r+4Iqe4D7LaeTX5qImefMYpPzOcC0Gw+uXkwOSmRnXGzyW1Ss9241LwO+11xI0ny\nHqPqxR/yR9OjhFMKEDlzOjek0ynt4eg6qFU+CuWUHhyagxCCM/NTuPXsMTxw7QwWTZvI++HZyB3P\nttUGq9oLz9+AHDGJbwR/QEgfz/9e0s4kPPocNUH0e9UD99hGyF/A1lCBKsoYSSgs34bfMYH/+6QE\nv9TBkv9RIaEL7+Kjs55k6lNe3pn3DIy7EN5ZBRseBdoilcakaZpDe38DtJmYnIUk7X6aTwxnEbKP\navURtefMvGQebL5QLca1/zjfSksTqcfeZq1xEfdcOeeEwSd6nWD66JGsEfOUVhg4QcRcDxgWwsGg\nEzy/pZQ3dpVDogOyZoJBZVxKKfmfD5z8X/gaDurHMurgE4SCwVa1sjRxEhMyug8JHZduZXN4PMaq\nHSwq+ysLg+th2S9g9LmActxW2maQ7d5FKBQiFPCT5d2HM3k6yWecB0DZ9ndb2/NpDyhDYpTCYdwF\nYExA5MxB3PYZy+55gfmTRvXo+4ksG7q7NCIcapmUmdTtQkERAkYbBkKMr3mPd+IuxGI/sTDpb1It\nZppzVeG/9qalxrUP4JRWzloSXb23xGQlHPIPPYlcfT2s/qqyZfs9hNw1OKUqndGewnG38rvkn/Cb\n5dOj09LyFxK+8jFmiEIWfrQCag627qrZ/BIA1hnKJCeEwL7oFgBC8dFVofXmL2t9HclxiBCwZpND\nJbfo/01g2tfQfePjTtpTK9O/qmbM254GlFO6sNpNoKsw3wHm2jm5PBNYjGipV2UjWhrhX9eD2cq/\nxt3Hx8f8/OTSyWS0H7tRZ6uKpSUb1ITC7yJ18hKqkqao/aVblBZatp2NvlHc9/5B/vTBQTjjari7\nBPeiH3PPa/tpDoT4weuHKTn/MRh/kQpBrthJUY0bITThENEc2mPVJpqf3Ae+RuIX38WqCyd0eX0z\n85J5LzSLZmserHuwg7+04vNniZM+QtOuP2EVhAgLClL5R/NZ4GvqttR7TxkWwuH2pWOZnmPnnpd3\nU9bQUWq+/UUla/ZXc9ey8bhnf4ccWcEXHzyDv3iTsgFPmn/CH/+4dAtbwuPRhQOsDDzP/rQL4Kxv\ndzgmfsx8kvCwf/cWDuxcTzw+EsfO58y5Z1MnLTTu+aD1WL8rstBPlMLBlg13H4PrX4L0yVF+Ix1J\nSTSRkxLPrtJGPL4g247Vs2jcyR/0Ic30FUJwaPTKkxx9algwfTJ7w3l49ynfTfPRLYxuWM8njhVk\np0cnrCw2B2vlmTS4PBTu30lV0Q549x740xRS67ZRR2dB+dPLJvPWHYuwxnWe8XWHbtoKfj3id+gC\nHnh8Kfz7e7D/LQK7X+aLcD7nzp3deuxZC5bwRvptmOZE973mzLmMoFQ/1xHZozvsS5ywjKO6XGov\nfRrzlf8H5m5CbkE9vMZdCDuehaCfiRlJ+ENhDtf0PJnzVDMz144zdQ4VukyVk/DKN6HhKBXn/5mf\nfuhk8fg0rp55XM2/3LOU8DvySav9XeQtYNqss/BIM66i9aqEtq+RN5wZOBJNPPpxERsPO8Fs4Q/v\nHqCyqYUHr5uBEPCd1TsJXPKgCvN+8UaOVVaTZYsjfvczaoW95I5aXKtZqXoP5C9i7sJlXDrtOO1C\nY0ZuMmF0fJ7xNRVJtb0tVyGw5WkOymwWL46uGvqCAgcbwpNoSsiDd+7u1pneE4aFcDDqdTxw7XTC\nYcmdq3e0Zqk2egP85PU9nJGVxH8tyGfq0q9yVIwkaetDNB76nIMym3OmjD5h29Y4I2XWqYQR7A3n\nceSsezvaGIGxs9SsrmTnGsp2fwzAuDPPw2GN50D8dEbUbmydFUTWcjBbT25rbkUf/QOqO6ZmKaf0\npiN1BEKSRQUnn7HKOCXAXg4uomDM2JMcfWqImJbiKjeDz0XNm7+iUSaQd+HtUbeh1+s44/tvsuvy\n93h00jNcLB9guf+nHI2bSGKgDqcho9PsTAjRpfPvZFgK5nOZ7+eERp2jiuatvo6R7j3sTz6XNGub\nANLpBJfcdi+z5p4TVbsTR+WyXTeJWplEZmrHe2fa4qvJ+3+7SZ11eXSdnLlSLY364S+ZmK58SIPF\ntNQeIQQr5uTzlO8cOLYeDryFf+kv+O66OIx6Hb+5amrniZ0pUYUWH/kEitcpX0JSJlfMzGNXeIwK\nFtGsBnsYy8vfmk9eSgJ3Pb+TTw7W8NT6Yr42L4/Lpo3kt1dPZWdJA3/4rBauegycRVx09Hfcp3sA\n/n2H0lLm3tbx8w1mFR4LMP/E96gt3si4dAvPtCyCvIUqQqqhBHfpF+R697A/43KST6LdRxiTZiHV\nGs+DI36uiiz+4+ouy733hGEhHADyHIn8/PIz2FRcxy1Pb+HqRz9n9q8+wOn2ce9VUzHodRiMRorG\n3sioQCEpVevYqxvLnPyTP6QzMkZyo/8HrPSvoiCr80PVOnIsDbpk9KWbMJRvwqlPxToiH4Bw/jmk\nyVpKC1XN/5BHW8vBGl0oan8xNdtGaX0zr+0ow2zQcWb+yTWXpuTJ7AiP5pHQZczMi1LT6WdSLWZq\nMxailyHCG/5MbvVa3kq8ghljc3vUzoikOJbPyub+L0/nox+cS/oZ53BO+bdY6r+ff6X0zIdzIqbn\nJFMSTmX7vAfhh0dYv/BJfhdYQdz8W/rUrk4n2DjuhzxovbNXQqsDBUth2ldg3QOMfXsFowy1fapp\ndCq5amYWr4rF+HTxBCYv5/rd09l6rJ5fXzmlozmpPaPOVrkLxZ+15r7kpCRQmXQGDtcBWoo+xSvN\nTJs5mzxHIn9cMZ3Kpha+/uQm0q1x/OACtU7Gl6Zk8tW5ufzl48Nc/G/Bm/avsMT/EbO9n8HSn8D1\nrygz9vHYtYq6Y5d13nccs/JS2FrSSPiyh1SQy+vfofj9vxCQesac13USbVcIIZg/xsGrpYnIa59T\nBTqfXaF8L71k2AgHUDfSVTOyWisxfn1BPqtvPUtFMmhMv/ibVMlk9IQJZMzCEMUPbVyGlY/C06nX\nJZPX1eI6QlCfOovxvi8Y699HY2pb2OPoORcBcGTzW1Qe3Y/jyGuEpCDBfrqFgzIR/XtXBXNGpRBn\n7Cahqz22HK7w/5KGuBxGdbOo0Olg9MyleKUZPvw1LhlP8uLv9mn5UovZwEPXzeCnl07imMgkNa37\naLWeEolq2lHSQFNQcMfGJD7NuIEvze6dSbA93/jypdxz+x19bgedHq58FK76K7qqvaxN/DG3Z+7t\ne7unAHuCiblnjGdp+CGWV36dbccaePDaGd2aagAlHGQY/C7IX9i6OWX8AgyEYPeL7JH53Hj2OECZ\nd+5YOpawhF9ccUYHU+L/XjKJb5wzmhFWMw+Hl/Nn3Qq2L3sOFt3VoapyB676K1y3upOFoStm5SXj\naglyKJAK5/8CDn/ExKP/YLN5LpPHFkT3JWnML0il1u1nt34i22b/nnDZVg785Ws9aqM9Jw6wHmII\nIbjvy9P43fKp3T70U2xW/p1xHZdWPULmlHOjane8VmM/PzWx2+gY27iFpFQr34JzXNsNmTlqMtW6\nNEYdeJzkA3/Agp4nbN/hloTT+7A9IysJIVQS3sKTRClFsMap22NGrj2qUh2nivOn5rLh7Uks0W/n\nVcOXuG5m1w6+niCE4OsLRnHepHQST5Jn0BPSrGay7PFsL2mgtL6ZGrePx1eeGZVT8WQY9TqikelR\nM/XLkD0b8fKt/dho/3Pt7Fxe21FOdZWbv3xtFksndh9dCCizkiEOgi2QN79184yzlsE2iJPNNCRP\nYXZam2/mu0sKuObM7NbKvBHijPqO9dZYcvIOp42P5rIAJRwAth6tZ/ycG6nc+AIZteuR06+Puo0I\nkcTYKx/5nFDYwU0J32RS7hyi701HBo1wEEJcCDyAWrv2cSnlvb1sB4P+xD/E6V/+MQ+8M5tvzDnr\nhMdFiCzAEimb0RUpE88GrTKBY0KbcEAIvDnnkH/0RQ6lnY/54t9wa37PZgT9gTXOyOjURIpqPCwa\nG12ETGQGNTO39yal/hhXh8XM/tRlTKkrQsz/dlTaXrRkJ/d/3sb0XDufHKzB4wtyw7y8Vq1tUJIy\nCm58t/tZcDf01+81GuaNTuF7541l/phU5oyKwldnMCtzUl2RqnCskZSWRa0hk9RgBWOmn93hFCFE\nJ8FwOsh3JOBINLG5uI5jdV5eLL2Bb6dN4bql1/S4rezkBK6ZlU0wLLlyRhbzx3ypT7+VQSEchBB6\n4GFgGWrZwc1CiNellKdE181xWLjjq1dFfXzBCAsJJn0H81QnMqYSNsQDEl3G1A678q+9DxrvZGzG\nGb3scf8wZ1QKXn/ohKG77Yk4UGdH4Zfpiv4c11FLbuQr7y3gpQXTetWX08mMHDtv7qogzWrm+xf0\ndt52Gum5YDitv1chBN87b1zPTrr8oS7t7eZRc+HQq4yednYXJ51+hBDMzEvmle0qF+orc6fw1Uuv\njSp/pyt+f03//T4GhXAA5gCFUsrDAEKI1cDlwKAwhMYZ9bz7vbM7RJt0Qm9EN2axWpzn+OiieLv6\nG2B+fPEkvndeMGoT0ez8ZF7+1vy+aA79Nq5fmpLZqTDiYGXeaAdCwE8vnUxSD0JhhxCD+vcKdE5O\n07Ce9V8QH6fqKQ0Szh2fxkcHqvnZZWfwlbk9C7Q4lQwW4ZBF58XM5w5QX7qku9pLHVj+5MmPGUAs\nZgMWc/RDLoTok0mJITCup4Izsmzs+N/zO5R/H2YM3XEdfW5rAutg4StzcrlyRtZJa2ydboZUtJIQ\n4lYhxBYhxJaams51cgYcY1ynyqYxTs6gH9deMIwFQ9QMx3E9FQghBp1ggMGjOZTR9WLmHZBSPgY8\nBiCEqBFCHG23OxU4NauJD24G+rrzTrAvNq69Z6CvOzaup4aBvu4TjWsHxGBYE1gIYQAOAktRN9lm\n4CtSyj09aGOLlPLMkx85vBjM1x0b194zmK87Nq69Zyhd96DQHKSUQSHEd4B3UaFxf+vJjRZjcBIb\n1+FJbFz/MxgUwgFASvkW8NZA9yNG/xIb1+FJbFyHP0PKIX0SHhvoDgwQw/26h/v1dcdwv+7hfn3d\nMWSue1D4HGLEiBEjxuBiOGkOMWLEiBGjn4gJhxgxYsSI0YlhIRyEEBcKIQ4IIQqFEHcPdH9OBUKI\nHCHEh0KIvUKIPUKIO7TtKUKI94UQh7T/A7PwwikgNq6xcR3KDPWxHfI+B60I2EHaFQEDrjtVRcAG\nCiFEJpAppdwmhLACW4ErgK8DdVLKe7UfWrKUctUAdrVfiI1rbFyHOkN9bIeD5tBaBExK6QciRcCG\nFVLKCinlNu21C9iHqnFzOfCUdthTqJtvOBAb19i4DmmG+tgOB+HQVRGwrG6OHRYIIfKBGcBGIF1K\nWWsijrMAACAASURBVKHtqgROshLKkCE2rrFxHTYMxbEdDsLhPwohhAV4CfielLLDqvBS2QiHtp3w\nP5TYuA5fhurYDlmfQ2pqqszPzx/obvzHs3Xr1lopZXRLy0VBbFwHB7FxHZ70ZFwHTfmMnpKfn8+W\nLVsGuhv/8RxXabPPxMZ1cBAb1+FJT8Y1ZlZqR0sgxKoXd1Hd1DLQXYkxTPAFQ9z90i7KGpoHuisx\nhgAldV7ueXk3gVB4oLsSEw7t2VfRxL+2lLCu6D+xzHyMU8HBSjerN5ewZl/VQHclxhBg7f5qntt0\njCO1noHuSkw4tKexOQBAnScwwD2JMVyodiktNKY5xIgGp9un/fcPcE96IByEEHohxHYhxBva+1FC\niI1aluO/hBAmbbtZe1+o7c9v18Y92vYDQogL2m0fFBmTEeFQ7xn4gYkxPKh2qR97WX1MOMQ4OTWa\nUKgbBM+gnmgOd6CSOCL8FvijlLIAqAdu0rbfBNRr2/+oHYcQYhJwLTAZuBB4RBM4euBh4EvAJOA6\n7djTTqvm4B34gYkxPKhuUsKhPKY5xIiCWk1zGAzPoKiEgxAiG7gYeFx7L4AlwIvaIe2z/Npn/70I\nLNWOvxxYLaX0SSmPAIWobMlBkzHZ6FXCoaGLgdlSXNe6PxrqPf7YAyEGVZpZqbwhFuQQ4+S0Coch\nZFb6E/BDIOJCdwANUsqg9r59lmNrBqS2v1E7vrvMyEGTMdnQHGCCOEadNkARfMEQ1/11A0+vL466\nrV+9tY9bnh78oXuhUIgZM2ZwySWXAHDkyBHmzp1LQUEBK1aswO9XN6nP52PFihUUFBQwd+5ciouL\nW9sY7ObCgSSiOVS5WgZFBEqMwU1EONQPBc1BCHEJUC2l3Hoa+nOyvtwqhNgihNhSU1PT7+2bGgp5\nx3w3BY0bOmx3uv0EQrJ14KKhorGZysbBP1t84IEHmDhxYuv7VatWceedd1JYWEhycjJPPPEEAE88\n8QTJyckUFhZy5513smpVa52wOAa5uXAgqdE0BykZEvdDjIGl1qWEgnOI+BwWAJcJIYpRJp8lwAOA\nXQgRSaLLBsq012VADoC23wY4228/7pzutndCSvmYlPJMKeWZaWn9lrzZSrz7GADWlvIO2yNCoaE5\nerPSmMYNXOh7h8GcgV5aWsqbb77JzTffDICUkrVr17J8+XIAVq5cyauvvgrAay+/wMpxbqjczfLl\ny1mz5v+zd97hcRXn/v/MVm1f9S7Lstw7GAyYYmwcTDUlCS0JIYSUm0JCCnBvfiHlJgGSUAKkEEgC\nCTckQAKEUI2pDsY2xdgYbMm2bPW+Xdvn98eclbRWtyXLEvo+jx7tzjlnds7O2Xnnbd/3xdS9uTnK\nzYXjiRZ/hAJnBjAVsTSFwRGMxOmKJQDoCA5/IzpWGFI4SClvlFKWSCnLUTvEDVLKK4CXgI9rp10J\nPKG9flJ7j3Z8g8Yf8iRwqRbNNB2YCWxGUfbO1KKfTNpnPHmoN7SryX/IMeWmUAsAGbGOtEU9JRy8\nIxAOa4NP8mX944SiiUMay5HAN77xDW699VZ0OvUYtLe343a7MRiUzC8pKaG+Xsnp+toDlNY9Ab4G\nDAYDLpeL9vZ2ABNHublwvJBMSlr9EZaWuYEpp/QUBkfv8NWjIZz+cPIcrgeuE0JUo3wK92vt9wPZ\nWvt1wA0AUsr3gb8DO4Fnga9IKROaX+KrwHOoaKi/a+ceEn77yh6uf2z7IV1rjShTlVv6CETi3e1t\n2qR5RuCQdiY9uAmMSKAcSTz11FPk5eVx7LHHDu+CpCbkbKOvsY21uRDg71tqqe0IjUnfA6EzFCWe\nlCwuVcJhKpx1CoOhVduE5jvNR4XmMCJuJSnly8DL2uu9KNPBweeEgU8McP1PgJ/00/408PRIxjIQ\n2gIRvF1RpJSoIKnhwx5TmdHZwk9nMIYjw9jdJwxfc0gmJZnSg12EqQ0EKXJbRjSOI4GNGzfy5JNP\n8vTTTxMOh/H5fFx77bV4PB7i8TgGg4G6ujqKi9VmvzjHTq23lRJ7HvF4HK/XS3Z2NkCUgc2CwzYX\nAvcCLFu2bNTtcKFonO8+9h5fX1XJdR+bPdrdD4hUjkNZlpUcu4kG75RwGG0EI3H0OkGGUT/eQzls\npNaZWfkONu1tP6Q1bDQx6TKkU87jlO1uJHAn2gHIxpcWZ5xyEg1XOPi7YuTgBSDkGZud8OHiZz/7\nGXV1ddTU1PDwww+zatUqHnroIU4//XQefVRFKD/wwAOsW6fcBOcvn8kD22Jgy+XRRx9l1apVqQfX\nwxEwFx4OUglFnSPQ/EYDzb4wToKsemEtp9kOUD8Vzjrq+NT9b3LTE4dsaDiq0Fs4xBIyzXoxHph8\nwiE4cv8AqHDVHNkBQJbwpYWS9dYchuNg9nnaMAs1sWHf0SkcBsIN3/8R1//gp1RWVtLe3s7VV6vc\nxqtXltMeMVA5Zz633XYbN998c+qSMEfAXHg4SJkDj3R4YIs/wnTRSIavhuXGPVM+hzHA/vYQL+9u\nOaoDP4aL1CZ0Zp4dGP8s6UklHKSU3V/oSIWDtytGnvAAmnAI9hUOieTwpHlXZ2P366j/6CfxW7ly\nJU899RQAb7YbERf8jKdef5tHHnkEs9kMQEa0g0e+MI/q6mo2b95MRUVF9/VSyp9IKWdIKWdLKZ/p\n1f60lHKWdqyPOfFIoTMUZamoIhr0HNHPbfVHyBJ+AEoMXuo7u47YIvZRyF9JJiWeUJRmX4QDR9if\nNBZoC0RwW43ka9Ft4x3OOqmEgy8cJ5ZQP76RZDMDeANhcvGQREcWfjoCPSaA3vkNw3FKRzw9wiER\naB/ROMYbm/Yq7anPriXYCva8cRjR4cPrD/A3049Y0fHPI/q5Lb4wJaYAAHl00BVLjCio4XDwUchf\n8UfiJDVZu3lfx3gMYVTRFoiQYzeTaTMB48/xNqmEQ0cwSi4eZosDI9YcQp1N6IUk7ChX/309O/72\nQJRch9pBD6ffmK8nlFaGJs5DG08keatGjbfPIhZoGZNIpSOBcGcTJpHAGW0Z9jXbaj28tGv45/eH\nFn+EUpPa0WZq/qwjkeswovyVJ57gyitV5PlEy1/xhmLk0YmT4KQQDu2BKDl2E9macJjSHEYR7YEI\n3zL8nT+Yfj5yn0OnCqSJ5qhNUMyvfAXxRJKOUJQZuTZgeMIh6e+1qEwg4bCjwUcwmkrCOejBDLRM\nWM0hqs2HLd457GvuWL/7sB2dLf4IRUalOdiiarNxJPwOI8pfqa+ntFQFlY12/spYhyh7uqL8yXQr\nPzD9hc01E+d3NhDaAhGy7WayNOEw5XMYRbQHoxSLNgrowBsaWZxw3KtMQTJ/AQDJgHqYO0JRpIRK\nzUk0HLOALthMTOoJY0IfGf6CNN54c2+PCSxNpY2FIeKlVboIRcc3guJQkNQEvUt6h81vVO/potUf\nOSwfQYs/TL5e+RzMoabufscSv3nw77zbmmTOgsVj+jnDwVgzGnhCMUpEK0ssLexvD9E8wSs4tgYi\n5NrNWE16TAbdlFlpNNERjJInPOiFJDZCR7D0KeFgKFqoGoJqoUxFECyzNGEhjKdr6AnTd7XRgZOA\nzoEh4h3ROMYFze/Dv7/F29X1zMi1YTPp08M+g2px/eV/Onl518SKvgKQQS1/Bd+whLuUkvrOLrpi\niW5NasSfKSUtvghZwgeAiAXJNkbGXHN46oWXqHn7VWZWVnDppZeyYcOGtPwVID1/pbiY2lqlCAwz\nf2XYdDdjDW8wiFOEKETN70Q2LYVjCfzhODl2E0IIsm2mKbPSaKI9EOmOOEoz7QwDumAzSSmwli4C\nwBhWD1xbIIKZKOdtvoLP658ellnJHG6nU7gJ6p2YY0c2QuaQ8NJPYct9rD5wJ8srssm0mdLDPoPq\nu2yVrm576ESCoSuV3OjDOwzh7gvHu4VCm//QMlV9XXEi8SSuZM/mYIEzNObU3as+/Q1KvvIAv//3\nm8PLXzn/fB54QDHsT7T8lYhHPZeWSCtuU3JCC4eUIMixK99mls00ZVYaTXj8ATKFsvGmFrThwhRq\nplM40TsKADBHlTmoLRChWLShT0RYoD8wrCgoS7QNnz6TsMGFNeEb2U0caQRaYfezxKx5fFKs5wLT\n1r4PpmZia5MucjTH/ESCMaIWjUwRwBMYOuSx9+5+JEy8vZEqD2qNd4KrDIA51gB1Y6w5pMbbeFA2\n9i233MJtt93WN3/l6qtpb2+nsrJywuWv9A4TX10cn9DCIbUJOZqEw4joM452xLxN3a9Tu8XhIiPS\nSrvIIttgIqx3YIl2IqWkPRClVKjFcZaunpeGoTnY4x3sMZZhMcWxdVWP7CaONLb/HZJx/rXgV1Rs\n+h+WvXcTM7LvYW8os+ccTdC2SVf3wzuRYIn1+H2CnS1A/qDnN3i6WC4+IFt4afUfc0ifqagzJBmR\nDihbA94DTDf7+Ufz2AqHVs0MWu/p4vPnrWTlypUAVFRUsHnz5j7nZ2Rk8Mgjj/Tb15GguzkcJAI9\nJs6Tc7p4bIsfTyiK2zrxtNuUUC8w+ODlP5JtXcP+9vHN3ZhUmgP+nhDSlFlouLBF2/AasgGImDLJ\nwoc/EqctEGGaXvVVShO+4BA/bilxJjx0mbKJmTNxSv/Rm70pJbzzEBQdw9Otudxi+w46JF/rvBlP\n7/sMKOHg1WfizJh4+wlbvMe0F+61gRgIDZ4uvmF4jJuMDx6W5mAjjC4ZhQIV5FBi8NLqjxCJjx1T\nb4ohoPGjQNUR7AmgWOxQjv8tNRMnAKQ3UoysxfXPw8s/Y5a+ftw1h0klHAyhHuGQER2ZiumKtxEw\n5QAQy8gmC5Ul3RqIMMuk+jKQIMNfM3hHYQ9G4kQzcpAZblwECB+ttN2N70LL+ySXXMHmfe2UzZgP\nZ/yAiq4d5Id6aTzBVrp0Nhx2+7gSgR0KovEkbukhqlPkh/Fh0JnUd3YxW3eAfOHB4z00n1GLL0K2\n5owmsxxMDvKFWrjGsuhPSph9FEj+dOEe4VCqb8ek17F538RKOk0hxcjqiKmNWJHOSyASH9ONxFCY\nVMLB1KXlJggj9tgIdhCJOK6khy6zCreT1myyhJ/OUIy2QJRyfSsIxfqYFdo3eF/aLjtuyQVrFkaR\nwOc9Sm2h7zwEejO7ctfgC8dZXpEF01YAUBQ7QDSuhX0GWvDq3BPSpOQJRcnGj88xA+gJUR4MgfZ6\nslK+q7ZDMwv2znHAlguOgp5EuDGk7k7tQD8KNauN4Q6SCLDlYvTXs7DExbbaCRAd2A/aAhHsZgOG\ngNJs83RqU9I5jnUdJo1wkFJii7WRREe7pRxnonP45pxgCzokEYtK8hK2XLI1fqU2f4QiWqFkGQB5\n4ZpBu0qmTFv2XPQ2ZaYKeg4v03ZMEAvD9kdg7rn8e7daSJZXZENWBUmhp1JXjycVsRRspR0XOfaJ\nZ8vtCEXJFj66XDMBEKGhzY3m9g96Xvv2HtLntvgjVFg0IWDNBmch9pgSTGOV6xCKxglFE9hMetoC\nY2u+OhpgjnYS0jmUZuY9wPQcG/s7guM9rENCm5YdjV9VocxOqs1te391Hbo64dYKqF4/pmOaNMLB\n1xUnR3YSNmURzsglCw/h2PASnqRfSeuETUUqGZ25ZGr8Sm2BCHmJJsibi8dUQFH8wKB9hT2qL2HP\nx2hXwqHLexTmBux6GsIemiou5t7X9nLOokKK3RYwmAjZyqgUDT205YEWmpPOCak5eD1erCJCMmsG\ncfTDClRw+3d3v7YH9h/S57b4wpSaNYeiLRcchZhDzQgxdsKhPRBFR5Iz88befHU0wBr3EDK6wVUK\nnlqmZVlp9kUIHwJd/3ijza94ldDyrZyaltmv5tDyAYTaYd+rYzqmSSMc2oMqxyFqySVuySFHeIdN\noRHVqDOwFwJgcuVjEEmC3jbCQR/2hBfc0/DYKpgu63rMLf0gRbpndBVgdiofRsR3FDKz7t+INDv5\n7tuZmPU6bjq3hzstkjmTStHjEJPBFhpjTrInoHDo0oS10ZWPT+fCHBncxBdPJCmK7iNgzKHDWEBO\nZPDNwEBo8UcoMqXMSjngKED4m8i1mcbMWdwaiHCu7g1+2fZlSkXzpDYtSSmxJ7xETW5wl4KvnrIs\nxWZ6pCv+jQZSpHv41fph1+hW+tUc2jVTZ8uHYzqmIYWDEKJUCPGSEGKnEOJ9IcS1WnuWEOIFIUSV\n9j9TaxdCiF9pdL7vCSGO6dXXldr5VUKIK3u1HyuE2K5d8ytxCF7Pdi07OmHLR9pyycaHd5j8/eEO\nJRz0LqU5ZLiUeam9pYECqZmEMqcRcs5ghmjAGxz4Rxf3KeoMizMbi0v5MGJHIzOr5wC+jGJere7k\nO2tnk6fRBAPInFmUiya8gSDEo4iuTk1zmHhmpS6vlijlyiegzyRjCF9Usz/CbFGL3zWLTss0CuN1\nhxRt1uILk6fzg8kORgs4iiAZY7YrNmbO4jZ/hHm6/Qgk88SBSV0/IhhNkImfmDlbaQ6JKBUWJRTG\nOwT0UNAWiFBsjUFUbSgywsra0C+FRko4tI6zcADiwLeklPOAE4CvaBS9NwAvSilnAi9q70FR+c7U\n/r4A/AaUMAFuApajmB1vSgkU7Zxrel23dqQ30h5QwkHnKEBnz8Ms4gS8w1uUY94GklKQ4VbCQdjU\njr+jtYFSoQkH9zSiWbPIEDGCLQM7pRP+Ftpx4rKasbuVkEkGjz6HdKJjP2/7HCwqcXHF8mlpx4z5\nczGIJPHWPd3UGW24uplpJxISWqa8NauALlMmjiHI9xo6/MwU9cRz5tLlLKecRgLhkTkFgxGVYZ2N\nT/kbALTkyrm2wJg5pNuDUWYItfOcKer6JMJNJng0X1LSogkHoEyndtsTrbZDPJGkMxSjzKA503VG\nDKEWhBiAfK99j/rv2Q/RsfOxDCkcpJSNUsq3tdd+VFZkMYqm9wHttAeAC7TX64AHpcImwC2EKATO\nBF6QUnZIKTuBF4C12jGnlHKTVFu0B3v1NWx0BrrIxovRXYjBqZKcUvb/oZD0NtGGC6dNq/VsVcIh\n2NHUnQCHexoyR9UfjjV/0F83AOgCLbRKFy6rEbs7l6QU0HUIwuEQo2SGBSnZX7OXL//xPd7/1edZ\ntHABd955JwAdHR1c9J27mHlXgO9f9xU669U4WpMO/nLbD6isrGTRokW8/fbb3d2NpUZ4uEgG1IJh\nduYRNWfjTA4ezeKr34VZxDAVLSDunoFDdNHZMjLqoFTtaJf09tCcO5TJssLsp94zNkV/2vwRKoRy\naC4wNU7qsqSeYJRM/AhbtjIrAc5oM3azYcIJh5QAKNJrYdP58xGBZjItxv75ldr3gEHT9Ft3jdm4\nRuRzEEKUA0uBN4F8KWWqqk0TPWmnA1H6DtZe10/7iJCqx2DOLMKsmYd611UYDCLQRLN047IYVYP2\ng7bEOikRrSQNFrDlYMyfo44PMiH6rlbapAuXxYjeYMAvrOjCI0zMadwGdx8LNa+P7LrhItiGhQjn\nnbOGPbs/ZNOmTdxzzz3s3LmTm2++mTVrz6Hqa3aWVeZy8+33APD+ngaa62qoqqri3nvv5ctf/nKq\nNz1jqBEeLkRI0x5tuSQsWWThHTSKJ964AwBn+WL0eSrCKdgwMvU9pRnY4h7lbwBwKuFQYvQSiSfH\nJMGpMxCiTKc0pdm6ya05BLztGEQSvT0HXCUACG8tpVnWCSccUjkO+WjPavExEAtRaov3LW2bTEDH\nXqg4Xbt47ExLwxYOQgg78BjwDSllGmGQtuMf8zTgwfjhU5TbRlchlkwlHBL+4QkHQ6iZZpnZIxw0\nU0AWPkpFK0lXGQiB3Z1Di3Rj7KgasC9zpL1bOAD4hQPDSGm7U8KneYwoazwHKHToKJ6rwnMdDgdz\n586lvr5eFX/53DU0iVw+vsjO4y+8BsC+qio+9elPI4TghBNOwOPx0NjYCOBiDDXCw4Uh3EYEE5hs\nSGsudhHG6x1YezC1f0gCgaVwHpYCpSnGW3cPeH5/2NGg+rfGOnuEg13tnQqE0iLHxFncuQ8jCXAU\nUpKsp6kzMPqfcZQg5UsyOXMhwwVmV3fE0v72iRXO2qblpmQlNeFQuASA6eZAd95KN7x1kIjwH90x\nSJ1x/IWDEMKIEgwPSSn/oTU3awsA2v9UMP9AlL6DtZf0094Hg/HDp8JRsRdgyypS4w4OL4Q0o6uF\nFunGZdWEg8FEl85OlvBTKlrRZ5UD4LYaqUoWY/UOYPKREku0nQ7hxmJUSXNBnRNzdIRZtp0qfFKm\nbIspJBPw5Nfh/cdH1t/Bw/So/o050wGoqanhnXfeYfny5TQ3N1NYWEi9oYxZhiaa29XYA34/s2dM\n7+6jV8EYI4epEY5lURhztBO/3g1CoHOoZ8bfMfCmweWvokFXDEYLroIKItKIrmPPgOf3h+31Xopd\nGehCbd0mSgxmsGaTlVDCYSzCWS1ebZxzzsEoYxi8hxaGOxEQ9anlJsOlGSzcpeCtY1q2ldrOLpLJ\no5Syph+kSPecsVbIcKu8DaDM5OurYWrP4p3bdLRnlI1pxNJwopUEcD/wgZTytl6HngRS9uUrgSd6\ntX9Gi1o6AfBq5qfngI8JITI1s8PHgOe0Yz4hxAnaZ32mV1/Dhj5FneHIR2/PIYFAHxrGQpOIkRHr\npJVM7KYe3qCwyU2O8FKma0VkKoetI8PIHopwBfcqXqKD0dWJXsYJGLO6aSa6DC4y4iNjZm2rV5pJ\nZ91BE9+xD95+AB65Et749Yj6TBtmi0rschRUEAgEuPjii7njjjtwOp3d57RmlFMUr0Mgiegs6PVG\n9LqxcRmMZVEYa6yTkMENgNGhFpKuzoF9UQXhvTRbKgDIsmdQIwswe4fIij8IO+q9HFdogGQsvbSq\nowh7bOwqwrlD+6n1Jjn9xxuYd0+Ajb++nlt+oX6yHR0drFmzhpkzZ7JmzRo6O5U2K6Xk61//+oTz\nJSW0Ak7WTE04uEpAMytF40ma/RPH35LyUVnDLeAs6vZPFRu8fc1K2oZxryzgw0QxtA7s/zxcDEdz\nWAF8GlglhHhX+zsbuBlYI4SoAs7Q3oNia9yLqjn7e+C/AKSUHcCPUXzwW4AfaW1o59ynXbMHeGak\nN2LWqDOw54NOjxcnpuGQ7wVaEEh8xhx0vRa/qDmb6aIJOyFwK8plvU5Qqy/DnAh2xyOnQdNUukzZ\n3U0RkwtbYmQp/fH2GvV5noMWpTbN3FS4BJ67EZ7/HiSHl+iXNsyWvXRKO/lZmVx88cVcccUVXHTR\nRQDk5+fT2NiIxzadDn8XeTY9Xl0mjuy87qIwkFYwJsZhaoRjCXvCQ9icBYDZrQUqeAfIWI8GKUg0\n4XfOAtR81+uLcIZqhv153q4Y+9tDLMvV/BopsxKAowBjqAmLUT8mmkNeZD9hUya/vOMudn7FznVX\nnsVvfvPrbl/S6tWrqaqqYvXq1d3U3M888wxVVVUTzpeUDKYCDTThm0qEy7YCoxvOurvZP6aayL62\nADl2M4ZgkxIM2iYmX3joDMXSP7u9mojOSitutgTzwXMAImNjPhxOtNLrUkohpVwkpVyi/T0tpWyX\nUq6WUs6UUp6RWui1KKWvSClnSCkXSim39urrD1LKSu3vj73at0opF2jXfFUeQiiHNdpGSO9U6juK\nQXSohCcANHNUyJS+Y01kZDNbaIuhuyfUs8Vcrl7055TWeJWiGT3CIWbKxCH9PedEg0P6EswBZY2x\nh+oh0assZ5tm+/7M43DcNfCfu+CNuwbtqz8kO/ZzIJnDb//3u8ydO5frrruu+1iq+EvIOYMHtsVY\nV5mkXbioXLaSBx98ECklmzZtwuVyUVhYCOBlDDXCw0EiKcmUXhULD1iH8EUF6nagE5JoztzuthZz\nGVmRg+ZhELxfrzYC891a+OtBwkH4myhyZwyqOSSTcsTRTLFEkpJkPRkFlRxzwslE7MUssrRQXF7Z\n40u6Um3+r7zySh5/XJkmn3jiCT7zmc9MOF+SLhVokDLbuUsh4mWaTc3TaDmlX6tq5WO3v8oT28Zu\nX1PdEqAyz6ayo52FYHaCwUKO7CSRlOnJvO17aNAXYjUZ+DCpWWnbxiZiaVJkSCeTEme8naCp54cY\nMGRiiw9DOHSq3XnQUpjebsvBKLTdX2aPcOi0aXb3tn6clAG16MQ1jiaAZEYmdrogoU3w63fA705T\n/Cj93kwCR6SJFulGTwK8vcz5rbvBXgCWTDj751B2Erz716Hv8SAY/XW8cMDE44/8lQ0bNrBkyRKW\nLFnC008/zQ033MALL7zAjd+5gfV749ywwkhL0smiE1dSUVFBZWUl11xzDb/+dbdZK8EYaoRDIhFT\nPphk3wgkbyhKFj6SWoCBM1sJBzkA+Z5//zYAjIULutt81mkYSKiY8mFguyYcKm0pXqVewsFZBIEW\nSlymAYWDlJJL793Edx99b1ifl0JHIMIM0UCXU5nEZO4crN597Hp/e5ovCaCgoIDmZvWs1tfXU1ra\no/iNpi9pLKGPdBLGBCalKaQilgppQ68THBgFzSGZlPz0aWXafWWMyuNKKaluCTArN0PVTXEUgRDg\nKMCdVD+jjl6mJdlezYexfM5dVEitQVuXxiicdeKR8/cDXzhGLoo6I4WQMZuc4PahL279kAQ6/Pby\ntGa9o5cmoZmVAKQ1F1+nE2fDO3370sxK0t5zrbQoTTzsayMjsxD2vqxs0bWbYdaZ/dxMAwYSvJ5c\nwEX615UDKksJJNm2iwZDKYn2EGXZVph/ATzzXSU0cmcNfa8AUmIPN1BUeRZSbun3lBdffJE/b9rP\nWc+cTJbw0RhzkuvI4Hv33DNAl/IPwB/6ad8KLOh7xShi06/hhe/DRffBok+kHfJ4PWSJKDptPqw2\nJ13SNCD5XrxxB0Fpxl08s7utyzEdOlBZqdkzhhzO9novxW4LjoS2mKT5HAoAyWx7iH8M4PZ4fmcz\nm2s62NXs55akTDN1DobOtgbmiCCNWZUARF0zuf7RJznnml+k+ZIAhBBHhHpdCPEFVCIsZWVlj8iB\nCwAAIABJREFUQ5w9MmREVKBBd16/Vm3P6K+nyJ0xKprD4+/W80Gjj3ynmder25FSjvr31hqI4AvH\nWeCMgEx2hzzjKMAZUc/p3tYgM3LtEI+CZz+740tYXOqm3TeX6AEDppax8TtMCs2hPRglV3hI2noq\nfEXNWbjlMKKEWj+kXhRgs9rSmk1OtfuPGOxqp67BZTXxpn4p7H62r6kh0EIMPSZbVneTTmNmDXha\nlEmpQXP47f9Pv8NJaJFKryfUmpps11hBpUS27GJ9m5u/btH4fuaep/5/cJC1JtQBVevhw3/D+/+E\ntl6ht4EWTDJKxF7CYMiymqiWakPYlHQcnbxKEb/SxADeebDP4UCHWoH1Do1tV6ejU7gwhPvXKE2t\nO6iSJRRn9jwLUltsZdvA4cu9saPey4JiZ/dGId2spH74MzL8tAX6EsQlk5LbX9hNqa4NU1cLOxuH\nH8gQblS7R33ubGKxGJ+45Rk+tdDA7Flq/ClfEkBjYyN5eeo7KS4uHjNf0lgGGljiPYEGQHciHN5a\npmXZ2H+YwiEcS/DL53ezsNjFt9bMpi0QYVezf+gLR4jqFuUvmGXV+naoSEvs+dhj7ViMejZWa5uZ\nzhqETFKTLGBeoZMVswrYkyykq2FsQt4nh3DwR8jF001RABC35GAhMrSzpnUXVbIEdyqMVYMrR5Pg\n7nRqCbfVyHPJ45VZaP/GtGMy0EybdOG09iykhhQzq6cVat+EZFxlNx7Y1O9wPA0qTDaUfwwhaSbU\npC1K/kZ0sQDVspjdTdqD5CyCkuNhZ6/67rEw3LsSHroYHr4cHvks/PWyXh+gBIvITL+vg5FpNVKd\nVA+qKg969PAqtQci3PbCbrpe/43KPp99jmKo7Ein1+7yKNNJt9MS8Onc/fuiujzkeN5lk5xPbi9B\naMvMo1PaibUMnevgC8eoaQ+xsNilqpSZe3xgQLdwKDOoRf9g1tSndzTyYZOfxzN/xd2mu9i0d/ic\nXIkWJRwshXO4+uqrmTt/AdedaMbYodpTviSABx54gHXr1nW3TzRfEoAt4SVs7CUcbHmgN4G3lrJs\n62GT7/35jf3Ue7q44aw5nDxTCfjXq0afQHOPJhymGbWgFacmHByF6ALNLK/I4tUqbaOhhbHWUMic\nAienzMyhSpaQGISx4XAwKYSD39OCWcQxunr8BklNnY8MVhYyHkG27+HDRFFPApwGnbbjM+dMT2t3\nWYw8E56PNFrhgyfTjsW9jbRJZ1pfJofqJ+xrg5rXkUJPW+XHlQYR6xtu52/aQ1IK5syex36ZT6w1\nRbKlfuTVsjh9BzPvfGh6T4W5Amy9Hzz76Vh9GxtO/Tsv5V0J7VXQWQNAqFUtoJa89Ps6GJm2Hs2h\nVbrIOYp4lR55q44/vLiN2Gt3EihbrfwvQqeKF/VCVMuQt2b2PBdBYybWWD/CoXo9eplgm/XENFNO\nrsPMXllIonVozWGH5m9YUOxSmoM1O/0ETTgUaClBvf0OiaTkjvVVHJ8TIztYzXLdh+zcNXxbsrGz\nmrA08kFNI3/+85/Z8OZ7LPltgF/d/LM0X9LMmTNZv349N9ygqNDOPvvso9OXNAiklDiTXmLmHg0d\nnQ6cxeA5QFmWlY5gFP8IObFS8IZi3P1SNafOymVFZQ5FbgsVubaeHfwoYk9rELvZgDuu9d0tHPIh\n6mdluZW9rUEV3aYR7smsCiwmPZV5dhpM5di7GsYkYmlSCIeuDsUnk6ElvwEIu1Kbgx39hJym0L4H\nIRPsSpT0EQ7dtuKDNQeLiWDSRLxiNXzwVE8oaWcNhv2vsjU5O60vi0bbHQu0Qc1G6q1zuHF7PiSi\nUP9WnyHF22toJpOT5xRTI/PRaw7zlGmoOllEXWcXgYhm0tJMS88+ei9n3fIUnud+yuvJhRzz7wI+\n93yc/61V5qlE1YsA+BrVA5ZVNLj9PMtm4p1kJUl07JVFabvp8ca2Wg9fsb6AkwBX1ZzBE/vAU3wa\nXVse5M8bq+nSyrKmSPfsWT0aZZcxC0eiH3Pj7ufwCie+7MVpzTl2M/tkIfqOqv5zW3ohJRwWFrsg\n1JbubwCw50H2TAobVJGWul7C4V/bGqhuCXDD/B7BlVP7HPHE8EKVLb591FDImlWnI6Xkve07eOXr\nM7nnmuNZu/YssrOzefHFF6mqqmL9+vVkZamFVQjB3XffzZ49e9i+fTvLli3r7nMsowsPB+FYkkz8\nJCxZ6QeKj4UP/81iqbS8Qw1nvfe1PXi7Yly/dnZ328mVOby5r2Nguv5XblVm3BGiuiXAjFwbwt+o\nNJ/UhsKuntnTitSz/HpVK7RX48FBabFGFyIEGUXzgR7NcTQxKYRDTKuhYMvqCZpIke91DUa+pyWQ\nVMli3JaDzCaOQrUbzZmZ1pzKovaVr4VAE9Rrkbqv/gIp9Pw2fl6acLBpzKzCW4+sf4uXwrPYktCc\nxwf6+h0MvloayWVxqZsDFGIL1apInLZdBIQNr0H9IKpS2kNmOYmCxRTUPcdVPIGbALsXfpsfX7CA\nZ649hW9fdi51MgfvjmcBiLTW0CadlOQPbgN2W41sk5Wcbf4TVbKE7KPIrLTnQD1X8hThGWuJ5i3i\n2off5fq9S7CEW9jw74f586YaAKRWgN7q7okei2Vk4pKe9IU+ESex+3nWxxdz+tz0qLUch4ltyQpV\ngtYzeG2H7fU+ilwZyj8TbEv3N4CKQll8CRkNmygRrd2ag5SSuzZUMbfQydLE+2C04XfMYLV8gx0N\nw/M7ZIZqqNeXpDlM/c4ZzKCOtv5qAmiIJ5Kce9fr/G3LodWtGBX0J1uiQbj/TKjZ2OeQx+/DLsLp\nkWCgNEhnEcve/BoFtB+SaaktEOH/Nu7mm5VNzC/sceSvqMxBRoPE7zoedj+XflGsC16+Gf71DYiO\n7DOrWwLMyLOrvClHgXpGoDvXodzsJ99p5tWqNuKt1ezR/A0plM5aCkD97rf79H24mBTCIUWdYXT3\naA6mFPmedxB+pdZdSKFjryzEebDmYM+Fz78ISy5Pa04t/M0Fp4HOqExLHfvg3f+jqfISmslKEw5O\np4uINJDT9DIiGePFrpnETG72UEpy/xt9hmTrasBjLsKo1+G1lKKXcfDWkWzdRXWikFWz1UOzu5dp\nqaFwDUt0e7g4+gQs/ASf+8QFfPqEacwtdHLK7Dw2yoVY6zdCIo7wHqBO5nQnCw0Es0GPzaTnQ68K\naMu2HR2aQ4svzMnB57Emg2Sc8d/87YsncvflS7n809cQt+TwJfvrPLylFiklhq42ujAjzPbu6xOW\nHEzEIdJr0a19E33Ew/rEMZy9MF045NrNbElqhIsH+s5XN5JJAge2s6BI++H2JxwAFl0CwKcsm7qF\nw7u1Hva0BrnqpHLE/o1Qthzdwos4Tuzi3Z297MlS9r+QxiNkxRppM6dHBCWyZzNDNFDTMrAj9clt\nDbzf4CNrvOZ3+6Nwy7QeGuoUat+E2k2w/gd97jmg0Z/o7Ad9v9YsuOxhDIkufm/6JfWt7WqxbtzW\nt//+EAuz9W8/41nxNa6tuy5NCJxQkc1xut1YvVXwwb/Sr2vaDjKhQlG39gnaGxD+cIwmX1hFIvka\nepzR0G2CFIFmTq7MZWN1G4m2avbJQuYV9QiHxYuX0iadJHeOvttnUggHXTBVt7knWsmqZcMmBmNm\nbfmALnsZEUx9HNKAYkc0pP9o3NrC70lYYMbpyhn86i9Ab+SDGVcDPdoFgNNqwoOdXN9Okuh5W87i\npvPn80Z8Fsn9m9Lj8xNxMhOt3ZFEMVe5au/YS7JlF1XJIlbPzSPDqGNXU4+N8XXTCvU9yCSs+l7a\neO1mA005K8hIBKF+K5ZgHa36AqymoaOYM21KW3BZjJgM4/SoHLQwvFvr4Rz9JkJZ86BwMRlGPecu\nKuK0ucUYll7OcbEt+Fvr2byvA0O4A69wpfenmXrCvet6736GGAYCxadQ5LaknZ5pNVEtSgnrHX0C\nEHqPMfr4V/lj19f4QuwvytTYm1epN9xlMO1kzhOv0qCxtz7+Tj1mg46zZhiVNjttBbYlH0cnJOKD\np3q+h8e/DH/oJ/y5Yy86knhs6X6k3IrFZIgY29/tP/ghmZT8+qVqzsztYHXROBSy3/8fdU9hL1S/\nmH6sTtPI6zaz/53nuXN9FTVtilAvpAUamBz9aL95cxEX38983X4u33gW/LQIfncq3Hv64LUPareQ\nuHMJa2tvJ2ArB4MF9r7UfdhlMXK+e1/62FJImYfzF8LGO4ZdY2FPqzqvMqU5OHttTFJrmb+ZU2bm\nEA35MYea2HeQ5pDjtPGU+RzK218b9XyHSSEc8oSHsLBArx2i027DI23I4ABUCQCtuzigL8Ok1ykn\n4jCQWvg9XTFl7/fsh3f/AsdeRQvK5NNbc9DrBD4cAOzWVTB/eikXLS2mKmMhhngQmnd0nxvtqMVA\nEn2m2gEacjS/QMM7GEItVMti5hY6mZXvSNMcXmlz8Zr+eMSp3+4m7eoN9/w1JKTAt+NZ3NFmgtai\nPuf0h0yrEg7jFqm09Y/w4Lo0AbF3z4ccq6vCuOjivucf+1kEkhvMj/K3LbVYoh0Eeoc7AnrNFxXo\n7PFFRXc+zRuJuaxeUtmnS51OkGXLYJ91IfSj6SEliee/h+m9h3g/OY1ldX+Cp65VUWkH+xxSWHwJ\nxYl6nB3biCWSPPVeI2fMy8fRtFkdLz8Z8ubQmlHOnM4NRONJ5Obfw7a/qh21/yBTqZaQGXZVpDVb\nZ68iJKys3nEDMtTLCS8lVK2n7i9f4k++q/md/6vo3vlz/2MdI7TWvK+i6dzTlH39YK2sdjN+2zQ6\nhZt9//wJt6/fza9eVH63qEZ/YnblHdytwuy13OH4Nm/qllK3+FrCp98EES/s+Ef/5zftgIcuxhPV\n8an49zB9/hkoO6FPjeYT9SohTrZ+qARaCvVvq53+Ob9QgQhb7lftoQ545Cp4+Ip+k15TkUqVuVp2\ndG/NwZIJelU2dEVlDvNEDQDtGaV9im7VVFxGGCPyP3f3f3+HiEkhHE7Ki5ORmb7guSxG2qQL/QAJ\nT8SjyI49bA7kclJlNnbz8PIBU74JTygGs89WfglDBpz8je4094Od236dkvSvRGexdkEBBr2OkiWr\nAej84JXu81rr1I/ckqd+5JkFZYSlkfiHKhhkD0VU5tmZle/ojliSUvL2gU4em3krrLyB/rBi4Qy2\nyRnotv8NIzESzuElJKU0h3HLcdAbYd8rabtKxx61kzYuuqjv+dkzECd9lYvFBlp3rCcj1knImO60\nNGoLSjf5XvseTJ49bEj2NSmlkGM3s90wX0V9BXo2G1JKdj32I/Rv3M0D8TX8pPi3xJddA29rORf9\nmZUA5q0jJsycFFzPa1WttAejXLikWGkmBgsUqcq63unnsIwP2Pefx0g+eyO7kkqjbN2RvsuWDe8R\nlzoSWQcJN3cpG4+7m8JkM10PfFyZWDwH4KGPw0MXk7P3CfYZZpA890449kqOFP7x2rsE/3ghCXRw\nxSNKGB54o2cTICXxA5t5ylvB4+bzWanfxhdnBXh+ZzPhWIKYX/2mu0n3+kFk7sVc5f8iJ795PHOe\nmUWDsQz51p/6nti+B/58IXGDlQsD11Nx3FmUZllh+qnQsrNnvmNdFAZ3siNZjkCmB5M0vK3mrOwE\nVWdh451QvR5+e7IyQe1+Dn6/qg+DanVrAKNeKMqPWDBdcxBC+R0CzeQ6zHzN/hI+aaGz8JQ+tzB3\nxnQeiZ8G2x6GYZYpGA4mhXDAVQLTTkxrclqMtOHCOBD5XsceRDLOW6F81swb+CE7GCnzk7crpn78\ny7+kTDmOArxdMYx60U3XnUKXQWklm5Lz+Nh89Vlnn3wcdTKHlh09qqtHq7qWpWXolmU7qJEF6OtV\nJnOXayYZRj2z8x20+iN0BKM0esO0+CMsLctkIMzItfOu6RgV8gYYs8uHda9Z2r2OW6TSwk+q8MTX\nFbNoMilZ5NlAvWU2ZFX0f81pNxB1lPFD8Xuyk+1EzenfS4Zmboxqvii5Swne9uLT0+po90aOo3+/\nw4v//AOzd9zGeuNpFF92Fw994UQM5/wcTvyqOsE9gBDOcFGXt5JzxH/402u7cVuNnDorVzlfS48H\ngxLKeSd8Er2QzNjwBRqTbv4279f4pYX6d9endZeoep635Uxcrr7PwJJTzuXa+FfIaH4H/nQ2/PpE\n2P8G1cf+P5aEf0vD2vvQLftsTwjlEcCpcgv5dPLE3F+q7P+yE5RZJeXwb6/GEPXyvm4Wn/jyD8Hs\n5PM8TiAS5+Vdrd2ke47MggE/48az57L5v1fzx88exyeXlXJf6DRE/VblH0jB1wAPXoCUCb5r+RGd\nxgK+eromYCtOU/9rVD0T6ragS8b4i+58koge01KXR4WYFiuBzun/rUyKf7kY9CZaLvkXjRc+okJN\n71sNu57t/vjqlgDl2TYMKbO446DNib1AaYkdezkltpGHEmdQUdJ3A3PstCzuT5ylmBc23zv0BAwT\nk0M4fOzHsC6d2kGvE3iEm4yByPe0IhlVsoQz5g5fOGQY9ZgMOjwpvpO1P4OTvgYogeGyGPuk2IeN\nLhJSEC48nkKXsmkXuy3U2heT0/E2US1TNtK2j4QUFE9TD+i0bCv7ZT4CSRQjjgK1IM4u0MxUzX7e\nOaDCMpeWpZtPekMIQXz6qu739oKhaSAA3ONsVuqIwIcVV6od9YE3ObD3AxaKPbSVnzPwRSYrpgvv\nokLXRK7wkshI373bNOFgrXsNXriJ+MZ72JUsYfkxxwzYZa7dzOvBYpXbomW2dwQiFL13Fw2GUlZ+\n5xHOmF+o5l0I+Nj/wtfehtLlA/bZOfNiMkUA274XOHdRIaaYV5kYy0/uPsdZtphaXQlJKdiy7Jd8\n/9LT2GtdiLvlTRIppk5/M4bm93g5saTfecp1mOkoXctdli9DwztqTF/ZxH/XryDb5eDCpYNnyo8F\nck69hq/n3Mu9e7WwzTJtY6clhkb3vwmAvfIk7K4sOO5qcmqfZYm1nafea0CE2khIQYYzq7/uu5Hn\nzOD0OXncdN58ntWfRkyY4C2tsnE8An/7FHR18PSiu/lHrY3vnTu3Z4NQsFgVENqrafY1GwGBZf5Z\nVMsS4gc0E6BGo/ObKhf3v75PCffjPg9LP4X/sxtY948QZz4WpfGSZyC7Ev7+mW7izT0tAc3foDZt\nfQS0pjnwxj2gM/DH+FoWFPU1f1fk2PBYynjfeQpsuW/U6kpPDuEwAPyGLMWf3x+tdYviVLIXzyV/\ngB3jQJhT4OCp9xoJpnINNHi7Yn2jnoA3s9bx/fhVnLowfVHOWnAG2Xh44d9/Vw2eA7SIbNwORd9Q\nlmWlRqrFbG+ygFkFSgCkC4dOzAYdcwrS+XMOxsylp+KTKkIpt6Svbb0/ZNlSwmF8NIdfPr+LT26Z\nSSIjE16/Hf9b6ntyHvOJwS+sWMmeYpUBLA8y7biddlqlk8L65+CNe2jHyS2JKzhrwcC70JWzc2kM\nJKm1zusWDv964mHmsQ/9iq9iMB30/QiheJgG4eExzT6DmmQ+Pzf+js/k7dH8GRKmrUjrJ3bOnVSd\nfi8XnqeIT80zTqVc1vPmds1EUa20iJeTiwecp7ULCri9cwUHrnoHPvUY/7cLNtd08MVTK8Yt0ODk\nY5fyYZOfD5t8kDdXLcSaVta441V80sqKEzShccJ/IfRmbrE9xIsfNCOD7XiFA6HTD/IJPbCZDZy2\nZDbPJI5HvvewMq89cz3Uv0XbGXfwnf/oOGVmDp9c1ostRG+A8hU9fof9G6FgIWcfN4e3EpUkDmxW\nZjCNDuc3VU7+99872byvA875Jay7h1+83ECTL0w8Kfnav1uIX/Z3sLjh0c8R7QqwvyOkRSpp/q+D\nNQdHodKm3vkLYtEnufWqj7G2n+dUpxMcU5bJ7+JnQ9gD/ZnPDgGTWjjsyZhHRjIEezb0ORZu3MmB\nZC6nzR85IdhN582j3tPFbS/0UCpE4gn2tAS6o5l6w+uez0OJMzhzfrqGMvuMz9Gmz6finZtp9Yaw\nhuroMPZMvs1soN2kdnbVsohZmlDIc5hxWYzsavLzTq2HhcWuIX/kJ1QW8LpcRL3Mpiwve9BzUxhv\nn8O1Z8wkabDxhPk82P0MZdV/YZucybQZc4e8Nu/jv2CbeRmZ81altbstJq6I/g93VfyW62c9zSme\nm0jMOGPQezxvcREXHVPMP9rLkE3b2VfXwLRdfyBgyCT/5M8e0r0VZzm4JPr/aNIVMHP91fDKLcoB\nWXxs2nkVx57B/JUf73l/nIpW+mDT06qh+gXCGbnslNMGFA5nagvK0zWStw50ctOTOzhtVi6fPrH8\nkMY+Gjh3USF6neDxdxpAp1c7bk1zEHVb2KmbxUmVmsPZngdrfsRs/yYuTj5HyNOMTze8AJIULj2u\njL/ETkdE/IpS5q0/Ik+6lq+9W4pOCG6+eFFfUr3ppyrW5vY9ULcFyk9m2bRM9lvnYY55VXv92zQa\nijE7sinLsvLNv72LLxzjrf2dPLhpP1eeWM7PLlrI1v2d3LnJAxf+Dlp3EfrX9SSSkhPZButvUg7o\ngzUHez7EQhAPI1Z8nZWz8wYsuHXstEz+1VFGrHwlvPTT7mqSh4NJLRx2OE+jU5cJb/62z7Fww/tU\nyxI+NgJ/QwrHTsviUyeU8ceN+9hW6yGeSHLtX9/lwyY/nzqhL2fRmnn5fPqEaVTk2tMPGDNIrL6J\nuaKGl/5+J5nRJkLWdDU/4lT97ZHFzM5XwkEIwex8BzsafGyv9w5qUkrBYtLzTOl1XKv/Xlqo7WDI\n1M4bL7NSniODb5wxkx82n0zcYMUVa2W76/RhMZU6MvNYfOOLzD7m1LR2i0nPfv00frnTyZPvd3D5\n8WX8/BOLhuzvx+sWUOtYikDyn0d+yUrdu4jlXwTjyLTOFNxWIxnZJbx2yoOI8pOh8V0oOW7I/kwl\nxxDRWcmo20SnP4Tcs4HtluMBMWCiYrHbwqISF4+9VceX/vI2RW4Lv7p06ZhV9hsOsu1mTp2Zw5Pv\n1qtiNmUnQOsHtNVXUxzdR6Lo2PTxHX8NcsYZfM/4EHPkPoL6oZ/53lhU4sKffzy1uhKoeg45/VRu\nS17CG3vb+Z9z5lJ8UAgzoIQDwOu3QzwM01YghKBwnjL9eav/Q6x2K29GpnHVinJuv2QJTb4w3/vn\nDm78x3sUODP49pmzWbekmE8cW8LdL1WzITaP5Elfx73zL/zGeDsr3rhGhTxf9UyfsPlurrjZZ0Pu\nbAbDsdOUv2nzwh8AAp74yiEVAuuNSS0c7FYrTxrXQvUL6UkwiRj2wH6aM8qVze8Q8N21c8ixm7nh\nH9v5zqPv8ez7TXz/3HlcdExfG+4Z8/L58QX9M1fnn3g5dbYFrKz7LbmyA+kqTTueyJ1Pp7SzlfmU\n5/Swhc4qsLOt1kM0nmRJ6cDO6N647sKT+dYV64Z9j3MKHDgyDEOarMYSV55UTm5eAY+whrjU4Ztx\n7mH3+c01s/jOmbN548ZV/HDdAvIcQy/wNrOBay67hJjU83HPn4jpMrCt+OIhj0EIwcvfXslnT18E\nlz8Cp90Ap3576Av1BmLFx3OceJ9/Pf0EIuzl/uaZfHJZCdm2gYX42gUFVLUECEbi/P4zy4a9QRhL\nXLC0mAZvmM01Hd1+h8bnbkcvJNOXrkw/WQjEBfeQ1Fso07USNo1MOAghuGx5GbeGLyCYu5TbnNdz\n18s1fHJZCZceV9r/Rblz1cL97v+p99NOAuDUFaeoyKGtj2EMNvGBmMkVy6dxTFkmX1tVyZPbGtjd\nHODH6xZ0R0H+cN18pufY+NyftjLnpWPZLmdwln4LsaWfhS+8pExrByNvLugMcPJ1fY8dhMUlbgw6\nwX/aLLD2p8qRvuX3I/qODsakFg4ui5G/JlarTOZeXvxg024MxHGULDhkfnZnhpEfrZvPB40+/vlO\nPd85czafO3lwMrt+IQSZF95KnvCgExJzbnof2XlFLI3cS2vO8Rj1PdOV0iJgcGd0b0zPsXHijOGZ\nlAAq8xxs/8GZqnbEIUIIsVYIsUurN9x/rO0gMOp1/PD8+Xw/cDFnR3/GjMrBd1DDwZdOm8FXTq/s\ndrgPF3PK8vFnLcAs4ohjPq0ycg8D3XUVDCY4/UaVVDkM2GedxixdPcbtfyOGnvMuvIxbP7540Gf5\n/MVFVOTauP2SJczq9eyMJ9bMy8dq0vP4O/Uq2kdnZMaBxwAomt83ZBNHAY2n3gIoSv6RYt2SYl7Q\nn8xpnd/jrje9XLWinJsv6seclIJOp7QHmYC8ed3zPT3XwV7THErblD+icN5J3eHrXz29klVz8rh8\neRln9LJKWE0G/vaFE7n5ooV8adVcHplzB39deB/GdXeCsR+tBZSJ8YZaKD1uyHuzmPTML3KytaYT\nln4aZn4M+cJN+A+uQz8CHDXFfoQQa4E7UbVr75NS3jzEJUMiy27iw4CVFx0nsWLLg/xRdxnbmiOs\nqrmNTwIzFhx/WP2vXVDIF0+rIMtq4ounDS8CqD/YKldQW7SW0oZnyStLX/xSNBcpJ3QKqR94vtNM\noevQTBtjDSGEHrgHWIOqGLZFCPGklHLnSPpZUZnDmoUlPL3dwJLSke0YRxtZ81fDxh0YTvqv8RuE\nFtH0ScMrxIuXc85xc4a8pCTTyoZvrRzjgY0MVpOBM+cX8O/tjXTFElxDBQvYhcc2Hbelf2244tRL\n+c271ZQv6Ed4DAGXxcg5C4t47O06vraqkuvWzBp6czj9VHj/H+mBAoAoPQ793neISx1nnrGmu92g\n1/GHz/a/mOc6zFx6fMrHOcziXKbhb8yOmZbJXzcfIJaU7D72fymtOp39//d1Fn73+WH30RtHhXAY\nrUXkYFy1opwMg56N1RezuukVwq/+is+bq1mW3Mbe8kuYv/Skwx77jWcN7RwdDkovvZ3IK2Xd9swU\nUsLh4N1e6v3S0swjUtXrEHE8UC2l3AsghHgYWAeMeF5/dtEiLj2ubMSRZaOOU66D+RfUBsA0AAAg\nAElEQVQOnGdxJFC0FIxW9LEQ+rn90GkcAYzWZu6S40r55zv1vLGnnXOcS1jg2YWz8sQBzxdC8OVr\n/9+hDRr4/nnzuOiYYlZUDpCgeDAqV6vExNlnpTVXLF0Je++l2TKD4pzha+NjiWOnZfLHjTXc8syH\nPLhpP2st3+UrF5419IUD4KgQDoziItIbeY4Mrj1jJpwxE/n7B/hm/WMgzLDuHiqWfmoUhj2KcBZh\nPu/nfZrnFjo5bVZun0S9TJuJy5eXjSiBbxxQTN86xAMH/w8Cl0VLFBtvmB1QOLQDe0yhN6p8hb0v\nQeWaoc8fZYzmZu6Eimx2/uhMLEY9YlcUHv4butLD0+gHg8tiHL5gAJXIeGOt+s57wTFDCbC8OQML\nsiONlFP6vtf3cWJFNj+44r+6w9EPBUeLcBi1RWQgiNP/R9Hqnn2r2nlNEFhNBh74XP8/lp9euPAI\nj2ZsMJa1hictln5K0bbkzx+PTx/VzVw3CWTlauWYX9APNcp4Qt+P896aBRf8FuMYCrKRotBl4bzF\nRRS5M/jOx2Zj0B+eS/loEQ7DwmEtIpWr1d8UjiTq6b8OcRqklPcC9wIsW7bsiBaOmbBY+HH1Nz4Y\nm82cwawc8xMFSy4b+pwjjLsuG72N79ESrTTsRWSsCpZPYUywBZgphJguhDABlwJPDnHNFCYJhBBf\nEEJsFUJsbW1tHe/hTGGEOFo0h+5FBCUULgUuH+yCt956q00I0TsNMAcY/SKvRz/G+777Zv1pkFLG\nhRBfBZ5DOS7/IKV8f7DOpua1G+N93wPOK4egEQohWqfmFRj/+x5sXtMgjnD51wEhhDgbuIOeReQn\nI7x+q5Ry2dBnTi5M9vue7Pc3EI7m+xZCGIDdwGqUUNgCXD6U4D+oj6P2/sYSE+m+jxbNASnl08DT\n4z2OKUxhCoPjUDTCKUw8HDXCYQpTmMLEwdRmbvLjaHFIjwZGr8rFxMJkv+/Jfn8DYbLf92S/v4Ew\nYe77qPE5TGEKU5jCFI4eTCbNYQpTmMIUpjBKmBTC4XCZPycChBClQoiXhBA7hRDvCyGu1dqzhBAv\nCCGqtP/D4++eAJia16l5nciY6HM74c1KGs/LbnrxvACXHS5p39EGIUQhUCilfFsI4QDeAi4APgt0\nSClv1n5omVLK68dxqKOCqXmdmteJjok+t5NBc+jmeZFSRoEUz8ukgpSyUUr5tvbaD3yAojFYB2hV\n03kA9fBNBkzN69S8TmhM9LmdDMKhP56X4nEayxGBEKIcWAq8CeRLKbUK5TQBRzVN6wgwNa9T8zpp\nMBHndjIIh48UhBB24DHgG1JKX+9jUtkIJ7ad8COKqXmdvJioczsZhMOweF4mA4QQRtRD9pCU8h9a\nc7Nm20zZOFvGa3yjjKl5nZrXCY+JPLfDdkhrjqStQL2U8lyNJO9hIBvlaPm0lDIqhDADDwLHAu3A\nJVLKGq2PG4GrgQTwdSnlc1r7iKtK5eTkyPLy8hHc6hTGAm+99VablHLUKHKn5vXowNS8Tk6MZF5H\nQp9xLcqh4tTe3wLcLqV8WAjxW9Si/xvtf6eUslIIcal23iVCiHkottX5QBGwXgiRKqQ64qpS5eXl\nbN26dQTDn8JY4CCmzcPG1LweHZia18mJkczrsMxKQogS4BzgPu29AFYBj2qn9Pa49/bEPwqs1s5f\nBzwspYxIKfcB1ajIhY9M9MLhIpZIsvaOV1m/s3m8hzKFQ0A0nuRjt7/Cix9Mzd9ERCSe4MzbX+WV\n3R+N2hTD9TncAXwXSGrvswGPlDKuve8dcdAdjaAd92rnDxSl8JGMXjgUdAajfNjkZ+OeI08H3+wL\n88U/b+Wt/Z1H/LMnCzqCUXY3B3hhSrhPSLQHouxq9rOj3jveQzkiGFI4CCHOBVqklG8dgfEMNZZD\nriz17I4mTvjpi4RjiTEa3djDF1ayeH976Ih/9oGOEM+930wgEh/65Cn0C384BsD2j8jiMtng135/\nqf+THcPRHFYA5wshalAmn1Uo57FbK/oB6REH3dEI2nEXyjE9UJTCsKMXDqdM6I56L02+MHWdXSO6\n7mhCanGpaQ8edl/BSJx9bUESiQRLly7l3HPPBWDfvn0sX76cyspKLrnkEqLRKAD7Wzy0PnELnzlz\nOcuXL6empqa7LyHEjRoVwi4hxJm92j8SNAnDRUq47272E4lP3E3KRxWBSCzt/2THkMJBSnmjlLJE\nSlmOcihvkFJeAbwEpCqcXwk8ob1+UnuPdnyDFsv7JHCpEMKsRTrNBDZzhOoMtwcjADR4Dl84XPjr\njfz+1b2H3c9Ikdqx1HaESCQPLzT6vtf2cf7dr3PHHXcwd+7c7vbrr7+eb37zm1RXV5OZmcn9998P\nwGN//f/tvXecnFXZ//8+03vZ2b6bTbLZVNITIBSB0NsTlKICQlQUHxUVUR/RB3/2R/SrCCgWFBVp\nKkVq6J1AgCQEQ3pPtvdpO33O749zz+5sdnZ3NrvZFObzeu1rZ+5+z7nv8znXdX2u69yDzmJnw+at\nfP3rX+fb3+7N9rfQJzQ4F/idEEKvqdvuAM4DZgGXa6KEDy0y5J5ISbY0Bw/x1RQwUmTIPVSwHIbF\nt4EbhBDbUTGFu7TldwE+bfkNwI0A2kxR/wI2As8AX5ZSprS4RGZWqU3Avw7GrFLBQDdLdBtHTQ7p\ntOQ/9X42NQeG33iMkSGHREqO+j6aAxG6Wpt58smn+NznPgeAlJKXXnqJSy9VnL98+XIeffRRAN55\n5TlKF56Nw2zg0ksv5cUXX0STQXsoCA3yQjCaREcaUM/QwUS+FmEsFuMTn/gEdXV1BYtwGIQKbqXB\nIaV8RUp5ofZ5p5TyOCllnZTyMillTFse1b7Xaet3Zu3/UynlFCnldCnl01nLV0gpp2nrRjR3dL44\noe0h/mH6CbHGD0Z1nEA0QSotD8kDkhl5wuhdS9NbnmLay1/nOz/4CTqdegw6OjrweDwYDMpbWF1d\nTUOD8vB1tjUzYYLy/hkMBtxuNx0dHQAmRik0GE0s6UhCOBxmtfm/WWZ4+6AHNW+77ba8LMK77roL\nr9fL9u3bCxbhMOiNOXxI4m5HQ4Z0XpgcUcZIzb7Reaw6w2rEdShMy2xC2j3KoPS+d55lhiNE7bTp\neW2fTElKneZRnXMwjCaWdCQhFWyhSIQ4zdV8UIPS9fX1PPVUfhbhY489xvLlygtcsAiHRm/M4UNi\nOXw45pCWkhmpLSBgftezkEqC/sBuPUMOwUMQlApGEwgBJr2OPe2jsxw276zn1S1JHl08j3QqSSAQ\n4Gtf+xrd3d0kk0kMBgP19fVUVanBvrAXYUmoDi2ZTOL3+/H5fABxBhcUfGjKJOSDZFjJgKfaQmxt\nChJNpLAY9WN+nuuvv55f/OIXBIMqrjGURdjQ0DBSi5Acy48f85s4DJEZnB0KxZ4/kuC6+9dy8yVz\nqfJYx+WcHwrLIdq6kyIR5LXUHLzpTtj5ygEfqyMc53L9i1SFx7/8fCCapNwcZ2KRddSWw9fOqKL+\nBif/fvRB/vGPf3D66adz3333sXTpUh56SOU23n333Vx00UVEEymMtceyc+VTADz00EOcfvrpqNxG\nujmEQoMjCemeTgAqdN0HLSj95JNPUlpayqJFi8b82CPF4e4u7AjFeOCdvXlvfyjJYUtzkNe3tbN2\nHPOMPhTkEN61CoA/GS6nW9qR6+4/4GN1hePcZLiX82LPjNXl5Y1IT5gX+W++onuQPaOMOdjSqmOK\nBzv7Lf/5z3/OLbfcQl1dHR0dHVxzzTU0+aM45p4N4Xbq6uq45ZZbuPnm3vJXUQ6h0OCIQkRZXu5k\nB3Bw8h1WrlzJ448/zqRJk/jkJz/JSy+91M8iBPpZhFVVVezbpwyBPC3CcZGejwceXdfIdx5ZT0Oe\n4o6+PIdExvU2bghElKciEB0/j8WHghzS+1YTkSb01Qt5PHUibHkKIt0HdCx/wI9dxLClxl+KKHra\nsBHlfP8DmDq3kD5AOWs6LXHIEADJUCennXYaTz75JAC1tbW88847bN++nQcffBCz2UxTd4Q6Yxuv\nn7qG7Y/+nHfeeYfa2tre4x1KocGRBBFTz5wh0orHZjwoQemf/exn1NfXs3v37mEtQoBly5Zx992q\n2s2HzSLs7lEu4pZANK/tMzGHREoSS6aH2Xps4dfIIfN/PPChIAdT83usl5M5ptrLw6mPIJJR2PDv\nAzpWzK+q67oIjXsik4gok1IvU/xQ9yea/QfmWgrGknhQ5JDqGd5MbfRH+ZT+BRB6mHTKAZ1z1IiH\nYc9bh+bcYwR9TJGBiHSxsNI6rpnSuSxCgGuuuYaOjo4PpUXY3aM62tZALK/tswUh4+1aylgMgcj4\nnffoJ4dkHEfXBtal65hT5eF9OYWQcwq8/8ABHS4VVOTgJjTuclZdTHXkLVMuY7FuK5FVdw2zR24E\nemK40IglMjw5tLe3c6n+NdLHfAwch8g98Nov4W/nH7DFdzjAmOjLjTmuOMGW5uBBLecynEUIYLFY\nePDBB9m+ffuHziKsaH2NVeYv09XVOfzG9CeE8VYsZUih4FYaS7R8gD4dZ116CnOr3YBgU9kFsO9t\n8I9cPCPDquidR4TH/QExam4JueSLvJmaxYQ1v4DgyIu4Bf0d6IRySYno8J1txZ7HcIoI+uO/MOJz\njQmkhI2PgkxD4MgVPJmzyGGeJ0IyXciUHlN07IDO/CsXlIU2US66iHbsG35jlOVQYowgSI+75ZBx\nJwUKbqUxRIOqF7jFMJ0KtwWbSc8mnTaNRMe2ER9O16ORwyGwHIxx5YYoKa3gB+nPoU/1wDt3jvg4\nEX9H7+eMq2NQSMni1ofYqp8K1YdIAdOyoe+lDzQNve1hDGsqQBoBwFSbEhQUivCNIR67Dp78et6b\nW2PqXY7685uILRkJ8or+Opbp3hzXETz0WQyFmMNYon41fn0RcXsFQggq3Ba2xIrUuq7dIz6cKaY6\nVquIEwqHxvBCh4aUEktSjTz1tiJSRVNoM1QeEMFFg30lv42JYTqnXa9SldzLG0UXj/g8Y4ZNWfHO\nYOOhu45RQEqJLR0iYK4AwJfuxGk2sL11/J6hox7de0c0eLBrqrGMq3g42GKt2IkwRdd4CNxKGbXS\nMOd94Qew46UxOefRTw4Nq9lumo7PYQGg0mNlY8gBOgN0jXyyK0u8z0cfDXYMseXYIpZM45JBEjoL\nGC1M8tnZJ0sO6B4SWfJVU2KYGlHv/IlO6aSx6twRn2fMsPFxqD5OfQ4cmeTQE0/hIkTQVgM6AyLU\nTIXHQpP/yK0SfFhBSgi1QDj/fAp3SnuXe4afHyWeTONMKRdsMYFD5lYKDmU5pFOw8nb44OExOefR\nTQ6RLujYzno5lWKHCYAqj5V9/gS4J4zYcojEU7hln48+EcovkDUWCEQTeAgRN7kBmOizsz3uQ3aP\nnBySYXXdXboirKkhyMFfj9yyggdSSynxug/oukeN9m3QtglmXwL2kiOWHILRJG7CpCxecJRDsIUK\nt5Umf34yygKGQU8npBPqnU8N33EnU2mK0oocjNHhB3mhWBKfUO9KkQgeArWSOt+QbqWeTpApCI1N\nwuHRTQ4NawF4NzEZn12pMyo9VtpDMdKeGhhhx9oRjlFMX2eaDOVpOXTvhZ2vjuhc+yMYTeIRIZIm\nDwCTim3sShUreWt0ZBVipaZQ6rZUYU8N4dZoWIOQaZ5OHUfFOKXsD8BGrRL8zP8CZwUEj8yYQzCa\nwC3CYHGDswyCTVS4LTR2F8hhTBBq1j5IiAw/aPP3xCkRyqVqS3SSTA2dtxCKJinWyMEn/OMeb8xO\nghs0AS/zG4TGZqbBo5scGtciEayM1FDsVJZDhVu5l8K2kVsOneE4RSJA1KLknJlyCMPi9V/BPz81\nonPtjww5pC1eAM2tVKpWjtR60BRKQWt1bzJc7pOqh61J+qjUfrdxx6bHoWoxuKvAVXXEBqQDkQQu\nehBWryK5kLIc2kMx4uOcUHVUInvQkIdryR/oxipUEpyXAB1azbTBEIgm8JEhh+AhI4dEShJNDPK8\nZEhhBK61oXB0k0PXHqS9lO60tddyyBSt6jRVQE8HxPKXEnaG4/hEgIRnilqQr+a+aw/EAhA78OBj\nMJrAQxhpzSaHkr7jjwC6aDdRTMStpbgIkRgsmS/QSEoY6MR5aCyHrt3Q9D7MWqa+uyqO2IB0T6gL\ng0ijsxeBQ7McPIpw883QLWAIZEu68+gcezr6nqNiERi2DZRbyd+7/XjOBpdKS4KxJCVaVeRBlVKh\n1r7/Y1De4+gmh2ATcVs5AD4t5lCpdXJNOrV8JB1rZyiGjwDSNxXIL0cAAL+mow7np4rIBWU5BBE2\npbSq9FhoEmVq5QgtB0M8QEjnBIsHs0gSDA1CkMEmQqYShNBRdpDKdQ+JTU+o/zM1cnBWKkJPHHmd\naSygrEyTXbMcIl1UOpSsdSxmJ/zQo9etBISHDzDHuhU5xA1OfASGzZIORvtiDi7CRCLj12YZZdQE\nr+q7Bo07aJZ+b+xllDi6ySHQRI9FuV6KHapzK9fcI7tTxWqbEXSswUAXZpHEWFJLCh36WB7kICX4\n69XnUQSKgpE4HsIY7IocDHodnqISIsI+YsvBnPAT0TsRNmWFhLsHeZkCjXTqfJQ6LRj0h+BRcVXC\nvCugaLL2XclAj8S4Q0a8YHL6VMwBqDYoUi4EpccAwWaSme4sD3JI+JWlES2agU/4aQ0OTQ6hWKI3\n5gCoQco4IUMGE4pswBCJcKHW3J8PEEc3OQQbCRiV6yVjOViMeoodJrbGfGqbEcQdYtoDZfGUExKO\n3qS0IRFug6T28o8iUBQN+zGKFEanr3dZXZmTBlE6YsvBmgwQNbh6iSYSGORlCjbRgrfX/THumH0J\nfOz3fd9dlb3XdaQhqcWnLM4iZTkA5To1uCiQw+iRCjSxJ11GUuqQebiVpOaGMlbOoUiEaAsM7fIN\nRpMUEUDqjADo8wh6jxUybqRqzXIY3K2U7VorkMPgSEQg0kWnXnWmmZgDKNfS9pAJTM4RjbqTAfWD\nC3spYb0L83AJZADdWan5o2iw3pGno48cppQ42Jn0IUcYWLelgySMbkwOZTnEgjkedCkh0MS+pIdK\n9yFSKu0Pp0YOR6CcNd2jiMDi1GIOgCXaittqLOQ6jAES/iZapJdOXL1WwVDQhVtISh3m8hkAhLuG\nJpSMW0n66oD85K/7ozUQZVvLyMulBCIJzMS5qPFWvAQGL74XagGb5hEpWA5DQOtAWilCCCiym3pX\nVbqtNPqj4J00IsshnTFX7T6ieieWfMp2+7PIYRQNltJGnjp7luVQ6mBvugTZtSfvAJSUEqcMkTS7\nMTvVgxTPla8RC0AizM6oq1fhdciRcSsdgeSQ8QH3qpVAy3UoyFnHBIFmWvDSIZ3EAsO/Z4ZIO53C\njU5z8cX8zUNuH4pE8RJClKp5uc3xkVsONz+zmWvuXj1wxbYX4K5zBs3P8EcSLNBtZ9qeB1iqWzd4\nzCHUAuWztc8FchgcmuuhMeWhyGZCrxO9qyo9Vhq7I0jvyHId9JlMSnsJMaML+1AJZBlkyMFgHV2D\nZWSzmloJFDnsk6XokpG8/KyQydQNk7Z4sboV0aTCOUZBmmS0IeU9dDkO+8PsAqP9iHQr6TI1rKwe\nsPlUhr6W69AcKFgOo4KUGCOttEoPHdJFOo/YnjnWTpfOC3Y1QEoFh94nHVbFKkXpLABsiZEHfPd1\n9lDf1TMgp6L+nUdg3yoSgxQCDUQTlKIszxpd65AxhwZjjXJ9jUGuw7DkIISYIIR4WQixUQixQQjx\nNW15kRDieSHENu2/V1suhBC3CyG2CyH+I4RYmHWs5dr224QQy7OWLxJCrNf2uV1os42MClrntifh\n7o03ZFDpsdATTxFz1Ci3Up6j7kxdJWzFJIzuoXMEMujep9xXRZMHkEM6LfN2Keii2sOYRQ61JY4+\nOWueJBcIBbGJGMLqwe7R8jVySXI1yWiz9FJ1qGIOWWgPxXhqfbOKO4yl5dC5c0xGWcNBF/OTQgcm\nB+h0YC9VuQ4eK00Fy2F0iHajT8cVOeDuLY45FOyJDoIGn8q6B8Qwg6ve9b4ppNFjT468dHyTP0pa\nMiD4HW/eCkBXc+53OBBJUiLU+1+ra8sdc4j3QCzAPzbG8eu9Y5LrkI/lkAS+IaWcBSwBviyEmAXc\nCLwopZwKvKh9BzgPNWvUVOBa4PegyAT4Pmoy8uOA72cIRdvm81n7jb6Qj9a57Yy6+sUbAGq0qH+r\nvgySkbw7B3O8i6jOBkYLKbMHlwwOPxubfx94JoCjdEDM4YW33uWpX36Otjwm7dFnZLPWot5lDrOB\nqL1afcnTPRbSlEltPYKLLrqEWXeEuOJbt3PbbbcB0NnZyVlnncXUpVdw1j1h6qMmqjw2pJR89atf\npa6ujrlz57J27dreY44H6d/48Hq+fP9aotaysbUc7v8E/PEUVabjIMKU8Cv5cOYncJYry8FloSMc\nP6jzOhz10ILLQWMxHdLVN4gbAs5kJ2FjHzmYYh1DvsuGiEYOjjIiJg8e6R/RZF/ptOyVy+4/IPT0\n7FbX35Z7Pmt/JEGZUO//RH1r7piDZik0pd204x4fy0FK2SSlXKt9DqJmf6oCLgLu1ja7G/io9vki\n4O9SYRXgEUJUAOcAz0spO6WUXcDzwLnaOpeUcpVUeeF/zzrWgSPQBCYn9RHjAMth3gRVgmLTCBRL\niZQqvBU1qc45bfHiFj2Eo8PMItW9T9Vx0kaK2TBtfpTP6Z+kYdt7w56/VxmVZTkAWEsm530P0Feu\n2+Tw8atbfsXKL1dw1w3ncccdd7Bx40ZuvvlmzjjjDLbd+03OmGxg81svM6XUztNPP822bdvYtm0b\nd955J1/84hczh9RzkEn/ze3tvLBJ/XatFI2d5RDvUaQQbIK/ng+tm8fmuDlgTgSJ6J19C5xafSXN\nZdc8Roqlf7y8FmftfKbPmMkxxxwzkPSnTuWss86iq0uNRA816Y8JtMGCwV1Bj9GDORWG5BDvZTqN\nJ91N3OIDi4e00OMZJku6NwBtLyFmKsInAiPKku7siRPX3EkN2ZZiLEhRSo3yox2Du5UqDcqFXU1r\n7piDNsBtkx6akq7xjzkIISYBC4C3gTIpZWYI1wxoGVlUAdmzZ9Rry4ZaXp9j+egQbARXBe2hWG+O\nQwZlLgsVbguru11qQR4ume6eBEUE1AMFkMkRyKX0yUa25RBq6+fCMgbVSCHQuHXY85sTfqLCCob+\nRDehvIR26VZB6TyQKdc9YdIUFi5cSFA4cOt6mDlzJg0NDTz22GMsX74cgk1ctsBLZMdqbCYDjz32\nGFdffTVCCJYsWUJ3dzdNTU0Abg4i6afSkh8/tYkqjxWn2cCuuEt1BukxKDnRvgWQsPQmEDr42wXQ\n/MHoj5sDllSAqN7Vt0CzHDJlScZCziql5K9v7sVxymf49YMvsWrVqoGkv20bZ5xxRu90oIeS9McM\n2qDL6K4gadHUOkO5iSJdGEiRtJaATkfcXIQPP63BwdugNwBtLyZp8eETgRGV7c4m/6bspMeO7b0f\nU4PFHCIJynVqcOiTXUR7cghhtCTANummIeEkPR6WQwZCCAfwMHC9lLJfJFZ7+Uefrz38NVwrhFgt\nhFjd1jaMTy3QRNpRQTCa7K3Imo151R5eadV86XmMujvDcYpFgLRVkYNOI4eIf4iHMBaEaDfNooT3\nu83KhZVVrsPeox6GRNuOYc9vS/mJGFwDlk8pVXGHePuuYY8BkAipEaPVpe6jR+ekraWF9957j+OP\nP56WlhYqKiog0ITOUUwqrMzZhoYGJkyY0Huc6upqGhoaAIyMkvSHateH1uxjU1OAG8+bwYKJXj4I\n2iGdzKvM8rBo26L+z1oGn1kBOj08/e3RHzcHbOkQCWNW+znKIdJJhVO9gmMhZ31nVydbgkbM5XW8\nt7cLp9M5kPSB5cuX8+ijjwIcMtIfS0gtM9jmq0JkprEdwuee0rZP21WCbNrqo1gEhkyEsyU6SaEH\ni4eU1UfRCMt29yOHrM/xFjUwTEg9ukHcpf5IghLRrUQMgL0nx8x1mqXQKr2041YxklEOoPIiByGE\nEUUM90kpH9EWt2gPCtr/jB3TAEzI2r1aWzbU8uocywdASnmnlHKxlHJxSckwcxkHm4haVeP7HANL\nP8yb4GFbZ4q0vSyvXIeOcAyfCCA0dYNeI4doYAj/ppbj8NhOHfes117+rIe2KK6Zw93Dd+y2VJC4\ncWDZ7CklqsZSOk+3UqZct92t7qMzZeUb967j1ltvxeXq67xksJH6lBe97uAL2gZr11Asyf97diuL\nJnq5cG4Fx0708n5AxYvGxLXUugl0RiiqBd8UmHEhNK8fk7o02cjIhxOm/SwHoEKnxlljYTn86fVd\nFNlNHFPpYu3ebnbv3j2Q9IHy8nJaWtTI8mCS/ngh1tVASFoo9hVjdGrFKIewHHo61XsnNBmrzlGC\nTwRoG6KEhiPZTY/BAzod0l48YrdSk1a7yWMz9iuXEmrYSEoKNshJmCO5R/uBaBJfuhPK5wLgjOTo\nHkMtpNGRsnhpkx6ETOVVnXYo5KNWEsBdwCYp5S1Zqx4HMn7I5cBjWcuv1lRLSwC/5n56FjhbCOHV\nzNOzgWe1dQEhxBLtXFdnHevAkE5DsImwWSMH+0DLYb4WdwhYq/OzHEJRvAQxaA+USctUTgw14Y8m\nY32l1UJzWuvYNXMvnkhSJhVROHONBLIQTaRwEySulevORp1mOZjDTWqyj2GQ1vT2Nk8JiUSCGx7Y\nwsVzHFx8sZrpraysjKamJlL+Rjb4rXh9ikSqqqrYt6/vOuvr66mqqgJIMErSHwx/eGUH7aEYN10w\nEyEEiyZ5aU5rAfmxCEq3bYbiqaBXWa+UzoSYf8zzKPrkw1nkrpGDJdqG1zb6RLgdbSFe2NTCVUsm\nckKtj/d3NXPxxZcMIH0AIQTjESYYkaU/CsS6GmmVHqo8Viwe9X4mh5jdLdKp2tU7ZOIAACAASURB\nVNfoVm1gdJWq+kqDuJWklDjT3URMakCos5fgEhHCPcMLSTJo9kfQ6wRzqtz9BgLJ1i3slaXUU4Yj\nnvs3ivSElTKyZgnQN6jsh2Aznbg4aVoZHWT6mtHFHfIZFp4EXAWcLoRYp/2dD9wMnCWE2AacqX0H\nWAHsBLYDfwK+BCCl7AR+DLyr/f1IW4a2zZ+1fXYAT4/qrnraIZ2kS686tlyWw5xqN0JAU57lJ8Ld\nHRhFCrNbEU4mgSw5VNnubhVT2BEvol32b7C2xt2YRZIkOkqTDUMqJYLRJB5CpMwDyaHEYabdUI5O\nJiEwfN+ri3STRqCzuLjmmmuoKfdxwxJj7/ply5Zx91//ir6njafWt3PmuRf0Lv/73/+OlJJVq1bh\ndrszI1E/B4n0z51dzv+cO50FNeqlnD/BQ7vQyCGPex0WrZugZEbfd03DTuum0R87C8FIHBdhsGS1\nn0YOKtdh9HLWP7++C5NBx1UnTGRupYOGB3/C0gsvHkD6AE1NTZSWquf4YJL+iCz9USAdaKYNRQ5O\nn7KOwl2DDx7iWsKb2au21TtK8ekCtAxiOUQTaYoIEDOrAaFBs04Sgfz9+s3+GGVOM9Vea7+BgKlr\nOztlJdJRQVGqPafVaoxopFE6i5jeTmmyaUB/kQy00Jz2MLPChdTcZaNVLOWjVnpDSimklHOllPO1\nvxVSyg4p5RlSyqlSyjMzHb2mUvqylHKKlHKOlHJ11rH+IqWs0/7+mrV8tZRytrbPdXLQ2SzyhNZx\ntAvVmLliDg6zgamlDrbGfaowXnLoeu5RLSXfqo1MbFoCWTo8RDKMv56kMNKGm7b9yKGzQUkn91pm\nUkkHjR2D66YzE8XI/ZRKoEaBac9E9SUP95gu1k0IOyvfeot77rmHNTtaOfUPTcyfP58VK1Zw4403\n8vyzK5h2e4APdrXxw+99F4Dzzz+f2tpa6urq+PznP8/vfve7zCFTHCTSn13l5kun1fV+t5kMlFXW\nqHyB0c7rEA+rQYGW8Qr0fW7dOLpj74dwoBO9kCo7OgOHRg4hLUt6FG6l9lCMR9bWc8nCanx2E/f8\n4jsYfRM45uwrerdZtmwZd9+txIV33303F110Ue/y8Sb9sYY+3EKL9FLpsVBc5CMmjUS6Bu8Y08Fm\notKI06m1h70YJxE6/bmTWoPaXA5JTYxiciuiS42gkGZzIEK526LN4aFJl9Mp7KG97KISc1EVZuK9\nE3FlwxrTzuMsJ2Stoka0EI73d2nF/U20STdTSuzYirQM/FHmOhydGdJax9EsVePnshxAjUTXBFyA\n7F/mIgcyZqpeGzVkEshyNWYv/PtoFcUcO6mYqNFDGl0vm0daVBC6Z8JH0AlJy57BFUvBiJoidH8Z\nawbWklr1IQ8LyBhXevuTTz4ZKSV3/eRLvP/fDta+9Srnn38+Pp+PF++7lW1fcXDRZ77E5GrViQkh\nuOOOO9ixYwfr169n8eLFvcccN9IHFk4qplV6BlV25I1MMDrbcrAVqU57jC2HnkCm9ElW+9mLQW+C\n+tWjnkv63lV7iCXTXHPyZFauXMlD/7yfVMN6vv2pc/uT/vPPM3XqVF544QVu/NoXQcpDQvpjCimx\nxNroEF6K7CZK3RbacQ3pViLUSpv04MnkP2m5DoOV3QhqU4SmtbpFZrcaIOaTiZ1Bkz9KudvSO2VA\nsz8K/n0YZYx280SMXhW2CbT2z3WIJVO4U9rP7iilx1FDjRgoZxXaPdWWOPCWKsMuE6g/UBhGtffh\nCi0BbnOPE6c5jt2kz7nZvAkeHlpTBmagaZ0KSg4CmXkQtIC0zWwmKK19mcs5kOjYw65EEadOLyEQ\nTRAIevBoiXCpzt2kpaBkztmw7Q8EGjejVIMD0RPsxiDS6O1FOdcXVdaS2ipItO5kuFxmcyLQT28v\ntJnlwv52nFbNutF87lZf9YD9DzWOneSl+Z0i7O31DNRujQBtWk6DZi1IKemJp7CVzkQcqOUQC4HZ\nMXCxFpcyZrefTg/HXQtv/Zbj55zEvT0+IvEU1kGe1cEQT6a5d9Velk4voa7UQV2pIv0v37eWdfu6\nWfn5ib3P9Ysvvqh2CrfDr4+B836BWLScO+64I+expZR/Af6SY/lqYPaILvRgIRbElI4St5QghKDc\nZaFROvEMMWrW97TSgpvJVs2dqr3T6UFKaIRCIaaICC0aOZhcaoAo8izbLaWk2R/ltGmlvdLlRn+E\nSWnlPQi7arH4VFHJ7pY9uCfN7903GE1SqiXA4Sgn6aphQtOr7OiJg1cTZ6TTmGLttOGmpshGZWkp\nMWkk1dWMLa8rzI2j13IQel7am+bYyUWDBt/mVXt4X04hZvLAlmeGPKQuq64SgE4nCAgH+kzNnBxI\ndu2lUfo4ZWoJk3x2FXfQ3ErGwF7ahZeSWvUgJFq3D3qcaEA9tIasiqzZqC3z0iiL6WneMuQ9gKa3\nz5LEZkazPVmSXKmRg7u0ZtjjjTcWTSyiWXpJddcPv/FQaNsMehM/eCPMsT99gek3PcMx33+WFzt8\nyqoYLLgvZe7Jhna9Bj+flDNPIlNR1+zcj9xP/x6UzODMbT/GTeiArIen1jfiDu/kmxP6t/2CGg8T\nA+/Cbxb2zqXei+b/qDLyb90x5sqscYdmiac0N12R3UQXbgyRwTtuU7SDNunB1UsO2jvd05Zzfua4\nX/MaaDJZoW0/1DmyEYwl6YmnqHBbepMem7qj0K68BdI3Faf2rvW09/dg+CMJSkU3Eh3Yi0l7JmEW\nCSJdWZZzpBO9TJGwlmIx6plc6qQNNz2doxNWHJ3kEGwiZS9le0eUE2pzd6gA08udmIwGNjtPhG3P\nQmrwqf8MMc20s/UdLyQcmAab0yEZxxxto9NYxjGVLiYW22hMupAaOdgjDbQZK9DZiwgKOwb/7kHP\nnQhpWc3O3PdSV+rgP3IypuZ1gx4jA3sqSMLUp5rJjGazJbnhjnriUk9l1eFnOZQ4zfSYSzFHRpkB\n2roZ6avjn2uaKXdZ+OzJkzmh1sdLnT6VjzKYgu25m+DXswbGqPa8qWbgWj1goE1Si0tZ9m8/owU+\n9gfMsU5+ZPybUrGk06reUx7T18pYiNRzP+AZ83c45o3regUQAAtqvByn06yjhjX9d2zRLKP2LYrU\njmRoqjW9q8/9GTZ6MccGF4pY4+349d6+Ypya5eBK++nuGdgHxAPKPZNxKWNxk8CQd9nuTI5DmdvS\nW+G4yR8h3baVLunA4yunqEyRQ6Krv7s0EFFF9+KWYtDp0WsTX6Wy85o0gjRo6qvaYjUQHUnAPBeO\nTnIINOI3qAY/Ycrg5GDU65hd6ea55AKI+mHvqv4bZI0iLPFOevTOPtkj0KNzYUrmDmKl/Q3okDjK\natHpBJN9dtqki5T2oPkSTYSs1SAEHaZqnD2566oApLTcBIsrt+Kj2mtlPdNwROqHnW3OKUOkzH3k\nkJkfIh7qe9B72vfRipe60lE5bg4aLEXV2GQYOYL5vwegbRNh91QiiRRXnTCRG8+bwTUnT2ZDUpPs\n54o7bH0W3vqtmgUs45bKoHm9+r/+QcKhAK9va+tVlPTKh7Xckn6oXEDguOu5SP8mM578GPx8Ity+\nAB78zNDXv+8d4rcfx6WRB2nzHauW1feVgz6m0sU83a7+15ZB6yY1yLH54J07hz7PYY6EX5GDpagv\n1SJu9mFPdee2ilIJbEk/YWOWFadZAj4RYE/nQHlqpmJrJtaAEPiFK++y3RlyqHBbsBj1+OwmGv1R\nEi1b2CErqSqyUeJx0i5dAyTagWiSUtFFUlMgmUo013dXHzlkYgv2IuWaqvRYaceDrufgS1mPPASb\naEh7cVuNzKoYuoObN8HDAx11SL0Jtma5lvwNcNs8ePfPBKIJHIkuIsb+boGIwYVlEHLYs1N1HtWT\npwEw0WenTXrQ9bSTjkcpTneScCqlYI+jhrJk44BSvhmkNbms1ZWjc0FNGdruUQkyNOSoF68hlkjg\nIoS09AVGLZrqKpM5DZD0N9IivdSVDfSfHw7wVqoAfP2uIWohSYnc8CjkqjgbC0H3XhqMkwB6n5Hj\na4vYKTT1Ztt+5BBshke/BC7Nmmp6v//6lg9IuSZALMD//fJmrrrrHZ7bqAUEtWuwuXLHjCxLv8Xz\nqYUkUimYcxlMPx92vAS5SqmDejYfuJxAXLKcH+K+5hHQm/tZCBaDjvn63b3X1g+tG6B8Diy4Cras\n6JvG9ghEqE2NtF0lfVZu2ubDLGNKkbY/wu3okERNWe+SyYE0WCgWAV7enKND1eIXVm9Z76KQ3oM1\nz7LdGXIodymrocJjobE7gujYxo50JZUeK0a9jnbhw9jTP4iccStlJoiyl04iJQXGQN9g0t+m2s+r\nWR96nSBu9mHJowDhUDg6ySHQxJYeJ8dPLkKnGzrZZ94ED51JM6GKE9WLkhltvPJ/Sv2z4n+47x/3\n4xVBzJ6yfvvmmtMhnZbsbAux+v3/ADB7porbTSq20SZd6NJxunatRSckuiIlQZXeyVTRRmNHbqIR\n2shzsIA0gH3SIhJST3rfu4NuE/B3oRdSzSmQ2U8ro5HOytcwhpvp0PkoGUTldahRMU0ppZq2rBl0\nm8D2VYgHl/PML67go3es5KsPvMfWzCxc7co/vylZiV4nqCtVJOi0GJlaXUazrr9iaXtLgPZ7r1Gd\nzaceUiXYs8khGoCu3dzedQI70xV8xvIaTouBl7SORhftJoEeYcpNthaLhe9a/pczA9/ns+2X80/H\np0CmYPMTAzdOxuHB5aQTEa4I38DUxWdjt9mgYl5/91GgEa/sIiStyNZNfTGUdFoVGCydBYs/q573\n1X8deJ6DjDEQrgEQ6awnIk2UFpf2LtM51Oec04VqLpiYNcsKFwJhL2G6I8rzGwe6YjLxRpu3vHdZ\n2ODFkWfZ7kzSW1mGHNxWAl3tmKLt7JQVVGlxiICxBFu0PzkFIglKhB+dlhfjsNtowocl1EcO3a2K\nHMor+2KEaUcpjpQ/r8TYwXD0kUM8DDE/2yNOThzCpZTB/GqtQqvrZOXrbd+mOoZ198PC5YQdE7ls\n103MNrfh8PYnh4RJm9NBe9B/8+I25v3wOU7/1avU71IdkK9S+QjLnBZVZx3o2fEWAJZSNQK2lE1F\nLyTNe3OXjdbnmMthf8yZVM4mWUN016pBtwlr5bozpT8AHA4nMWlAZo2wHfE24tayccmiPRDUTJtH\nTBqJ1w8eY2l9614AzpUrOV6u45kPmvnbm7u1lcrieLenjNpiOxZjn0LopLpiPkhUkmrpUyy9du9P\nKW55g8gZP1bqpoq5/clBUzdtYSKek6+hLrqeyyZGeHWrCnAa4n5C2PvKdefArz8+nwvnVrCnI8y3\nV0qa9RWwMUf6wHP/C/Xv8ujE/2W7rGT5iZPU8urF0LiuL27WqCr9Pp46AZHogU7NDdG9W8VUSmeB\ndyJMPw/W/G3oKqZjjHdffox3f7KUYGgUbkENyUCTyo729ulyMmqicGcOKacW80vb93PR2nzU2iNs\nbApQ39XftaSPtBORJgyWPpVfxOTFmc4ih2RcTciV+csiv+ZAlGKHCZNBdbeVbguWwE4A5VbSyCFi\nKcWd7F/2IxiJ4sOP0aMl7OkEDZTh6Omz9iKdjYSlmUmVff2TyVWOnjSp0IHXIDv6yKE3x6GIE6bk\ndsNkY0KRFY/NyAvpBWrBlhXwwg/B5KT7xO+yPPI1rCKBM9HW65vMIGnyYCQJ8TBSSu59ew81Phu/\nXjaRa2vqkY5yMKjRt04n0GvsLzTXj7dyqvo/QckpAw251UaGeDdhrP3iHftjQY2Hdek6jC3rBh0t\nZBRJ2aonp9WEHwdk5ouIBrDKCMJVOei5DjX0BiMNpknYuwfJR0inKN3zFK+LRciiWr6TvotTpzh5\ne6dmZrdtAr2Z19oczNzP7XhSXTFbZDWifRsk42zcvotLA3/n1dRcXrarbHEq5ilXjfY7S82n75q0\ngKITl4POwCd0L9ESiLG5OYghESCkG9q9efLUYm6+ZC4vfuM0vnHWdB6JHYvc+WrfDIAA6x+Cd+4k\nuOAL3Li5lo/Nr2KCNjcJVYtUp5+R4TauReoMPJI+RX1v0eIOGdLLZIMf+zlVUSAXER0keG16jku9\nx/vP/X3Ux9KFWmjFQ3nWVLaZEb6/I0eiZDgzD3z/gR72Ekr1avKuF/azHkyxLrqEux+5x0xFeKQm\nRkkl4PcnwC8m9/099uXebZv9kX7XV+mxUhFXqqQOy8Re+XLSUa6OmUXUiUAreiHRZ6bIBVoMFXii\nfYHrZKCZdryUufosfbtPxWBaGwePZQ6Ho5Ac1I8WsZQyLQ+fuRCq3skbLWb10q/6PWx9Gk6+nu89\n38T7kVI6zv6N2tjZv8OUGfdMtJsmf5SWQJRvV77Px1Z+FHvzu4gTr+u3vUVL13e1v0dMGiirmgSA\nt3o6APG23HJWU9w/bOcy2Wdni2E6xmS4L8FrP8SDAyWVJoOOAHYMMUUO3VoSjtU3YeABDiOEPDOZ\nGN9BND6w+Flqx6u4Ul3srL4IccGvoHMH1+oeZ0dbmPZQDNq2kPJNZZ8/PoAcFtR42KWrUeVIOnfQ\n+dSPsBHl1/pP8+JmzU1RMQ8SPb3llrt2rsUvbSyeM0eVZp9+HlObn8RIkle2tGm5JfnHb86fW8FT\nqeNV8bTNT6qFwRZ46gaoPo4fRD6OAL55zvS+naoWqf+ZoHTje4jSmZgmLFAZ5RmJreYuu+ThDl7e\n0gq1S6HuzN6Kn+OBKceeT72uCu+Ge0bnXurYgS+0hQ59aT/rz5UpodE5kBzSmtWodw0kB0uskykl\ndl7Y1N+1Y4l3EtD1L12TtPiwE4VEBDb8Wz0LJ34Fzv05TD5Fka2maGvyR3vjDQAVHivTdftIYFDW\nmwah9S/Rzr6OX2gTGQlnn0urw1iJM9WlYmeAvqeNoLG/ZL+oTCOH5g85ObQGo70zaWU0+pU1tXm7\nReZWu9nSEiRZd46qi+6sZOeUq3ji/Ua+eFodNSdeBp97EY6/tv+OWmA3Eepg7d4ufmr4C6d88L/g\nqYFrX1EPSxa8JarBXLEmmkUJNotiemEvoQcrBn/u6qyWZO5y3dnQ6QSJikwHkTvukFEk7R/YDusc\nGOIq3tG8T5m73orDL8chG8bqeRSJIFu2Dcws73z7AYLSStmiZTDldDjmYhbt+yvfM9xD6r5PwK7X\n6bIrl96MCme/fc0GPebKOQCE1z3Mks5HWVPyUSbOWMgrW1pJpaUiB+h1LcXq/8MmOZHTZ2kdzqJP\no4t08JWit3l1ayvWVJDYMO2XjSklDpIlc5RraYMqrc2Kb0AiypYlP+fhdS189uTJvdm2AHgnKfVR\nwxrl0mh8DyoXcMqsCexIVxCt19xgrRsIWqtZ05Tgpn9/QDQl4VMPw+yL876+0ULodLRMu4JjUpvY\n/P5bfStiIXjjVhiq6kAGXXvg7mUkpJ4n3Ff2W+UrVeQQ8+8XP9jzJmLV71iROg6Ho3+7Yy+GcBtn\nzSxj1c6OfhnItkQXIUN/ckhpkvaYvwVW3qYy7c/8ESz5b1jyJYiHYM9KAFoC0f6Wg8vMObp3eSs1\nkzJP33WYtCzpzubdvcv0Pdo9ZJGD36Ips7SKCPZ4OwlLf69GmRZ/8LcdeCWBo4Icbnx4PWf86lUe\nW9dApzYP67S6aXnvP7faQyot2eo7HRBw+k28tkux8qULNRVE9WLIrqoJ6G3qgYkEOtizdT2X618i\ntegzcM3zfR1IFkrLKkhINcLpMPaZiQhBu7m6rzprMgabnug1L22pYL/EtcFQVTubLukgvvednOsz\nkthM6Y8MevQuzMkASEnivQfU7dbOGvZ8hxLl05R8s3nrfkSYjOHctYLn04s5cYbWduf+DGFycKX+\nBdWp1J3B28WXAuRUs02aPo+k1GF58xZ6MFO67AecPqOUjnCc9+u7wTcVDFZFDukU3tA2OuzT+iaV\nmnIG1JzI5+L3sXX3PqypIHHjyGTB582t4N+xxchdr6qA8aYnkKd9hx+8GafIbuKLp+2XzS8EVC1W\nlkP3HtXBVi7gzJmlbJITSTb1WQ4bklUUO8w0dEf4w6vDzyVyMDD93C8QlUa6Xv1D38JnvwsvfF8R\nxFAINMLflyHjQb5q+D7p4un9Vpf6ighJC6nsEhrBZnjw0yTdE/l24lq89v1ctPYSSEY5Z5qdZFry\nypa+fZ2pLnoM+8X7tGzp1Lp/KhfjiV9Vc4MDTD4VDBbY+izRRIqungQV7j4ir4ltYaKulSfSJ1Dl\n7VvuKFHWevZ0oaZM0T1Hn6UTtmnP9eu3EFn5R3zpjn7kAX0D0cgQBQiHw1FBDteeUovHZuSH/3iN\nHW8/SUDaOG56/m6RudWq038nXA7f2AILruSN7e3UFNmo8Q2egK7XfPexQDt12/9KUhjQL/2uKo2Q\nA5OKHXRoRR9C1v4l8DNy1kSwDf5+EfzzU+plARzpQM5y3ftjwUQv69JTSOzJIodNT8DK2yEaIK0F\nnZ2e/pZDzODEkgwQWfl75rSvYEXR1ZRUDV5K5HCAd7KKEcXq95OUbnseSyrElpJzcVm0DsBZjvjG\nZj5f/QTLLbfBJ+/jtchkVYvHOVCRdcK0SnbLcvSkeNp7JZNrJnLqtBL0OqGkjnoDlM+Gpvdp2bMJ\nCzFsE7MGA0LAeT/Hmgpwne5hHDJE0jQycjh/juZaSifhya9DxTxeLvo4b+3s4GtnTO27t2xUL1ZZ\ntztfVd8rFzClxEGzpQ5HtAlCrcj27ayOlHPd0ilcMLeC37+yY0AAdjzg8JSwsehM5nU+i7+rU1Uo\nWHs3aZMT1vy112UyAFLCfR+HcAfrTv0LrwTKOWtWfxeRxahXMYJMeYtUAv61HGJBti/9A0FseKz7\nFePU4onz3/o6P7PeS/zNPyhXnpS40t1ETP2Vgpksacvbtyt385zLtMuT/HtDJ11lS2Dr0zRrczeU\nZbmVinc/SVzqeTZ1bG8wGsBdplxM8c6+YHNv0T1Hnxor5J7KFjEZNj6G9fn/wSGilE7MqhEGCLOT\nmLBQTH6Kqlw4KshhyQQ7TyxYzSrHN1koN/Av08eoLbbnvX+5y0KJ08x/GvzgLCORSrNqZycnTx06\noG3UyCHRvJGlkef5oPTCfo24PyYV23urs2ZyHDKQ3slMoJWmX51EbM9qXk+rHAs2PYFLhkia3LkO\n2Q/zJqigtK17m8qw3fa8eime/x7cOoe6lmeISiNGS//fJmZ0U5Rqx/zCTTyfWkTNxT8a9lyHHBYX\nbcZK7F39g9I9a/9Ju3RRMvfs/tsbzBxbW8yWliDdPXE2NQeYUe7M6XqcVeHiA910dqXLKD/7egA8\nNhOLJnp5MeOPrpgHTe+z6T3lOqibc0L/g1TMJb3gaq7WP4dHhPslHuaDqaUOIr7ZtOrLQKen8dRf\n8s1HNjKlxM4Vxw/i8qtaBEhYfZcq6ld6DEIInFqtntj7DyNkkh1M5KL5VXz3/JkIAf+3YmwLDeYL\nz6n/jV1E2f7EL0k/dh0N5ilcHrxeJaSuuy/3Tg1rVHD9nJ/yu20efHYT58+pGLBZSO+hKLwDXvwx\n/PFU2LcKlv2GZotSD7pt+5Fr7akw40JEsJGLxctc1no78tbZ8MjnMZEkbu5PDgYtIVWXCMEJXwKD\niZZAlOV/fZev//N9fttQB1276a5XAoBMZjTpNLoN/2aVfiEB7P0sh9KSMiLSRMrfN9p3xDsI61y9\nwhYAq83JJemfw02tXFfxAJ+z3ELlmX0BcACEwOwuY5Ev/wmJ9sdRQQ7cdym6F3+AqfZkUl9YyWU3\n3DYiGaYQgrlVbv5Tr9QH6/Z1E4ol+Ujd0ORg0XIEfOv/jJ4UwYVfHHL7cpeFTpQFkMlxyKCmbjZG\nkcJniPGv2b/nrpr/4z/pyUQe+iIuQqQsg8tYM3BbjbS45yDQtOv/Wg5lx8Cnn4KaEyiLbKdLN9AC\nSZncGEixh3L+VXMTs6uHP9fhgJBnJpOTO/smaYkFMe14jqdSx3ParIFqq+MmFyElvL2rky3NwQHB\n6Ax0OsFbM/+XG7y385EZfclVZ8woZWNTQNVAqpgHsQDm7StIoWPCtIUDjqM/4/8jptcszzzaLxtC\nCM6fW8m3Ip+m+czfcOWTPUgp+dPVizHqB3ltM0HppvehbHbvfONT5yri6ll9PwC+2vl47SaqPFa+\ndFodK9Y38+b2MZh2dYSonXcqOw21LNp5B6meLr4Q+jw77PPZoJuOXPW73Kq7Dx4BvYmGqrN5cVML\nnzh2Qr9gdAZhUzE18R3IN36t3MHLfgtzLsWvlcfwWPcjB1clfPI++NJbvH7JOpbGfsWmyoth81MA\nxG39rZOMXDZpdMKiT/PshmbOufU13tnVwQ1nTeOllCJk/fZnAfpiDvtWQbCR1Y6lAP0sB7vFSIvw\noQ/1kYMz2UHI1F+S77IaCMWSNAfjrNgtmbnwZIQhR07SOf+n1GgHiKODHD5yA1z9OFzxT8wVs3Dv\n3/B5YG61hx1tIUKxJK9va0cn4MRhpLB2m5OYNGJOBlmRPp4ZswbGGbKh0wki2oQhltL+bhv7nGWw\n+BrsX36Vqy67jLs+exIvz76ZVDKhJa7l17mYarRSCs9/T5WgvuJfMOlkmi/4GxcmfsbTs/7fgH06\nndNplEV8NnYDnz196Hs4nGCqnsck0cL6HZoZ/t59GNJR3rSfxZSSgZbj/AkeTHod/3p3H7FkelBy\nAPjJpYt44Lqz+iVRnj5DdQgvbW7tnbJxYXglndaJqk7S/rD72DRdU6zZRk64582u4NX0PM5+zkdj\nd4Q/L19MbckQqierR8VDACoX9C6eP3M6nTjxdv2HhNTzkSV91X+vPaWWKSV2drbnyCY+2BCCrllX\nA3C/7VP88itX8uOLjuE30fMQXbuVrDwb6bRSBk05g3vXqYHclUsmkguJ03/AFxM3cGXRA/gvfxwW\nXgVAd49SEHlsA+d4yWDpzDJqp8/jv3ZcxMqLXue6+FeoLz+z3zY2h5d6soBXnwAAC3FJREFUWczu\n6dfwblOCL923lpoiGyu++hG+esZUrjz7JDala2CLRg4Zt9IHD4PBSn3paUB/cgDo1hdjiaogtJSS\nonQnEXP/GGHGpfiPd/eSlrBs3iCy85kXQk3uSs/54OgghymnK7NwFJhb7UZK+KDBzxvb2phT7Rlo\neu4Hp9VIN6oTeth6WT+/4mDITGrurZraf4XdBxfeolQnqGSXr152Du/O/h4A5qL8iuDNmFzDtnQV\naZMLrnwQNH30/e/sZUN6Imeefs6AferLTufE2G9wV89kSe3gWdiHG0qmHotOSJq2rYVUkvRbd7BW\nTqN81kk5LUeLUc/8CR5e0oKNM/dTKmXDqNcNGJHWlTqYUGTl0fca+ONmMwkMmEUCXfmcQY9Tc85X\nuFn/BWxzlo34/mZWOJnksxGMJbn1E/NZNDGPtqnW5tnIIgejQU+bTT1ve3RVnDyjL95lMep55vpT\n+NQgnezBxsKPfpXN5z/IlTf8ihnlLs45ppy9JafRKMqQb/62/8b73oZgI/GZH+Wf7+7jzJllAzrX\nDE449jg+dsUXeLc5xZV/XsWGRj+/em4Ld7yyA6NeDDmA1OsEt35yPnUlDq7913aeTJ+gstCz4LAa\nOS12C6+UXs11969lgtfKvZ87vpe8P3PSZD5wnMDMxAaqLFHsZgOkkkp9Nu0cJleUUu6y4Nmvjwmb\nS3DGlRUXSaQoFt3E9lMiZa79gXf2MqPcydSywZ/j0eDoIIcxwBwtKL1yezvv1/uHdSkBOC0G9slS\nXkwtwDFpoFshF/ZWL+MniSupKBs+yUwIwdLLrsO//GXmnHHlsNuD0ul/NXEdr5x8T+9cBfFkmvvf\n3svS6aU5A+wuqwEQfOm0KYdtVnQumKrU6D1e/z7+NQ+i8+/lD4kLuGDu4L/t8bXKtWTIKpuRL4QQ\nnDGjjHd3d/Gz53ayW6d8/97awdu+1OPgxu/9gvnTJo3oXJnz/fKyedy1fDHn5fCr58SE49T/DElo\n0FcoAksUzeirRqphUDfVOEDo9Mw47mwMBpVnodMJvnLmDO6Mn4PYtwr2ZEldNzwCBgtPxxfQGY5z\n9QmThjz22ceUc+dVi9naEuKC29/gty9vZ3ali798+tgBv8H+cFqM/Hn54t4BgsPcPw/EYTaQxMAv\nn99Kd0+CO65c2E8koNcJjj/nCgwizflWLfFw92sq4XD2JXzh1Ck8e/0pA963uLUMb7oDpMTfE6eE\nblK2/nHMTKnxlkCMZfMPXrLq0TnZzwGg2GGmymPlnlV7SKXlsMFoAIfFwGfi/0MCPd+qyc9tcM5p\np/JKxUzc9sHN2v3hnpwf8QBMK3Oyx1jLix0+TteWPbOhmfZQjKtOyD06/K+5lQgEZ84sy7l+NBBC\nnAvcBuiBP0spbx5ml/zhqqJH78LZtZGmp1fQKSu4+PJrOW7y4CPszLopJQ7MhpFNrANw/ZlTWVLr\nY+FED6UvPQ3v7RzSchgtFk8aoSU3/1NQVNt/+lOgZtbxsONuamYuHmTHwwfnHFPOncUX0BJYQekj\nn0Nc+6pyq258jK6qpdz+RhO1JXZOqhu+PM7SGaXc89njeHd3Jx9dUEW1d3D14f6YUGTjj1ct4tp7\n1gwYSDgtquuMJtL84pK5HFM5UHBQM+cjxJ4q4hvybrj1QZWga3LC1LMwGXS95TSyIV2VmDsSpLa/\nTMhYR4VIIp3930uXpa/b/q8hBkKjRcFyyMLcajfdPQlsJj0L8+jszQY9MYODKGYW1gwvNQWYXGzn\nMydNHu2lDgq9TnD6jFLuf2cvf359J1JK7nlrNxN9Nk6dmrvk94QiG188bcqwRQpHCiGEHrgDOA+Y\nBVwuhBi7BAohCHlnco54ixlyJ+ZTrufcOUO/LAtrvBh0YkiX0lDw2EycO7ucUqcFJp6oqqFWzD2g\nYx0UGExQe9qAxaZJS0BnwF530picRghxrhBiixBiuxDixjE5qAadTvCFs+ZxTfR64v5Wtt1xCY8/\n+gCEWvjfbVNpDcb4znkz87Zyj6/1cd3pU0dEDBksnlTEmpvOHEDSZoOOUqeZTx47gY8fO4hsXqfH\nfNoNWEpqlUV30tdU0NuY2xUGEKw5kwbpQ3/fx0g9oLwFOmd/qzFjOSyo8fSVTzkIKFgOWZhT7ebp\nD5pZUuvLyeq54DQbCMoksyoPn7kPfnnZPNJS8pOnNrFmTxfv7u7ipgtmjnnnnweOA7ZLKXcCCCH+\nAVwEHOA8nANRNGURhva3SdtKqDzl08NubzcbuO2TC/IqrTIs5n5SlZ8YQr582MA3Bf5nF1hG/5xm\nkf5ZQD3wrhDicSnlmLXr2bPKabtoGfetCfHZtpspfv/bRISFE8+7gv933FTlwx8n5CIhIQSvfmsp\nFuMw/cSJXxlQKWEonHr8Yv4UfphJW/7CBcF/AuAt7y9dLnWaMegElyw8uJNxHTbkcFDdD3linlah\n9eQ84g0ZOC0GJvpsB+SiOFiwGPX89vKF/Ny7mT++thOLUcdliw5JraQqIHvew3pyTJQthLgWuBag\npmZkZTsMlUpdpVvyhdyKoRy4YG6e/vvhoNP1BvyPCIwBMWg46KSv0wmuWjIRlnwHngniXXUH6WMu\n4VMfmTn8zuOEkc73nQ88NhPfunABXPgbpP/bxLa8SPkxp/Xbxucw8/I3T6PaO7gFMhY4LMhhPEYi\n+eD4yUV89/wZXLY4f0a+4ezp+EYQPxgv6HSC75w/s9eiGU55dSghpbwTuBNg8eLFI6vENv08Za4f\n94WDcWkF5EZepD9mOOtHYCtCd8zHDtopDkcIdzXm45bnXHcw3UkZHBbkwDiMRPKBQa/j2lNGVjZi\nUI3xYYKL5lcNv9HBQwOQbbJUa8vGDha36jwKOOwwGouwH/QGOOWbY3RVBeSLwyUgnWskMqBXE0Jc\nK4RYLYRY3dY29FzJBRwWeBeYKoSYLIQwAZ8EHj/E11TA6JEX6Usp75RSLpZSLi4pyS2GKODwxeFi\nOeSFbPeDEKJNCLEna3UxMP41AA49DvV9D5o9JaVMCiGuA55FxZL+IqXcMNTB1qxZ015oV+DQ3/dQ\nWXG9pI8ihU8CVwx1sEK79uJQ33fe2Y6HCzmM2P0gpew3FBFCrJZSHv4i7jHG4X7fUsoVwIphN+zb\nvtCuHN73fSCkX2hXhSPpvg8XchjxSKSAAgo4dBgp6Rdw5OGwIIcDGYkUUEABBRRw8HBYkAOMyUjk\nzrG6liMMR/t9H+33NxiO9vs+2u9vMBwx9y1GNcF3AQUUUEABRyUOFylrAQUUUEABhxGOCnI4mEXA\nDhcIISYIIV4WQmwUQmwQQnxNW14khHheCLFN+39kTOOWBwrtWmjXIxlHetse8W4lrfTGVrJKbwCX\nj3fpjYMNIUQFUCGlXCuEcAJrgI8CnwY6pZQ3ay+aV0r57UN4qWOCQrsW2vVIx5HetkeD5dBbekNK\nGQcypTeOKkgpm6SUa7XPQWATKov8IuBubbO7UQ/f0YBCuxba9YjGkd62RwM55FV642iCEGISsAB4\nGyiTUmZmJG8Gxn7GnkODQrsW2vWowZHYtkcDOXyoIIRwAA8D10spA9nrpPIRHtl+wg8pCu169OJI\nbdujgRwOfuXPwwRCCCPqIbtPSvmItrhF821mfJyth+r6xhiFdi206xGPI7ltjwZy+FBU/hRqOqq7\ngE1SyluyVj0OZIq+LwceG+9rO0gotGuhXY9oHOlte8SrlQCEEOcDt9JXeuOnh/iSxhxCiJOB14H1\nQFpb/F2UD/NfQA2wB/i4lLLzkFzkGKPQroV2PZJxpLftUUEOBRRQQAEFjC2OBrdSAQUUUEABY4wC\nORRQQAEFFDAABXIooIACCihgAArkUEABBRRQwAAUyKGAAgoooIABKJBDAQUUUEABA1AghwIKKKCA\nAgagQA4FFFBAAQUMwP8PMI153Kxss9AAAAAASUVORK5CYII=\n",
829 | "text/plain": [
830 | ""
831 | ]
832 | },
833 | "metadata": {},
834 | "output_type": "display_data"
835 | }
836 | ],
837 | "source": [
838 | "y_pred = model.predict(test_x)\n",
839 | "y_pred = expense_scaler.inverse_transform(y_pred)\n",
840 | "y_true = expense_scaler.inverse_transform(test_y)\n",
841 | "\n",
842 | "print('Accuracy (R Score):', r2_score(y_true, y_pred))\n",
843 | "\n",
844 | "fg, _plots = subplots(3, 3)\n",
845 | "N = len(y_pred)\n",
846 | "rng = 30\n",
847 | "\n",
848 | "for p in _plots.flatten():\n",
849 | " idx = np.random.randint(0, N-rng)\n",
850 | " \n",
851 | " p.plot(y_true[idx:idx+rng])\n",
852 | " p.plot(y_pred[idx:idx+rng])"
853 | ]
854 | }
855 | ],
856 | "metadata": {
857 | "kernelspec": {
858 | "display_name": "Python 3",
859 | "language": "python",
860 | "name": "python3"
861 | },
862 | "language_info": {
863 | "codemirror_mode": {
864 | "name": "ipython",
865 | "version": 3.0
866 | },
867 | "file_extension": ".py",
868 | "mimetype": "text/x-python",
869 | "name": "python",
870 | "nbconvert_exporter": "python",
871 | "pygments_lexer": "ipython3",
872 | "version": "3.6.0"
873 | }
874 | },
875 | "nbformat": 4,
876 | "nbformat_minor": 0
877 | }
--------------------------------------------------------------------------------