├── .gitignore ├── .gitmodules ├── LICENSE.MD ├── README.md ├── evo2-backend ├── evo2 │ ├── .gitmodules │ ├── AUTHORS │ ├── LICENSE │ ├── MANIFEST.in │ ├── NOTICE │ ├── README.md │ ├── evo2.jpg │ ├── evo2 │ │ ├── __init__.py │ │ ├── configs │ │ │ ├── evo2-1b-8k.yml │ │ │ ├── evo2-40b-1m.yml │ │ │ ├── evo2-40b-8k.yml │ │ │ ├── evo2-7b-1m.yml │ │ │ └── evo2-7b-8k.yml │ │ ├── models.py │ │ ├── scoring.py │ │ ├── utils.py │ │ └── version.py │ ├── notebooks │ │ ├── brca1 │ │ │ ├── 41586_2018_461_MOESM3_ESM.xlsx │ │ │ ├── GRCh37.p13_chr17.fna.gz │ │ │ └── brca1_zero_shot_vep.ipynb │ │ └── generation │ │ │ └── generation_notebook.ipynb │ ├── requirements.txt │ ├── setup.py │ └── test │ │ ├── test_evo2.py │ │ └── test_evo2_generation.py ├── main.py └── requirements.txt ├── evo2-frontend ├── .env.example ├── .gitignore ├── README.md ├── components.json ├── eslint.config.js ├── next.config.js ├── package-lock.json ├── package.json ├── postcss.config.js ├── prettier.config.js ├── public │ └── favicon.ico ├── src │ ├── app │ │ ├── layout.tsx │ │ └── page.tsx │ ├── components │ │ ├── gene-information.tsx │ │ ├── gene-sequence.tsx │ │ ├── gene-viewer.tsx │ │ ├── known-variants.tsx │ │ ├── ui │ │ │ ├── button.tsx │ │ │ ├── card.tsx │ │ │ ├── input.tsx │ │ │ ├── select.tsx │ │ │ ├── table.tsx │ │ │ └── tabs.tsx │ │ ├── variant-analysis.tsx │ │ └── variant-comparison-modal.tsx │ ├── env.js │ ├── lib │ │ └── utils.ts │ ├── styles │ │ └── globals.css │ └── utils │ │ ├── coloring-utils.ts │ │ └── genome-api.ts └── tsconfig.json ├── evo2.excalidraw └── thumbnail.png /.gitignore: -------------------------------------------------------------------------------- 1 | # macOS 2 | .DS_Store 3 | .AppleDouble 4 | .LSOverride 5 | 6 | # Log files 7 | *.log 8 | npm-debug.log* 9 | yarn-debug.log* 10 | yarn-error.log* 11 | pnpm-debug.log* 12 | 13 | # Temporary files 14 | *.tmp 15 | *.swp 16 | *.swo 17 | *.swn 18 | 19 | # Editor directories and files 20 | .vscode/* 21 | !.vscode/settings.json 22 | !.vscode/tasks.json 23 | !.vscode/launch.json 24 | !.vscode/extensions.json 25 | *.sublime-workspace 26 | 27 | # Frontend (evo2-frontend - Next.js) 28 | evo2-frontend/node_modules/ 29 | evo2-frontend/.next/ 30 | evo2-frontend/out/ 31 | evo2-frontend/.env*.local 32 | evo2-frontend/*.tsbuildinfo 33 | evo2-frontend/next-env.d.ts 34 | 35 | # Backend (evo2-backend - Python/Modal) 36 | evo2-backend/__pycache__/ 37 | evo2-backend/*.pyc 38 | evo2-backend/*.pyo 39 | evo2-backend/*.pyd 40 | evo2-backend/.venv/ 41 | evo2-backend/venv/ 42 | evo2-backend/env/ 43 | evo2-backend/*.env 44 | evo2-backend/.env 45 | evo2-backend/.modal* 46 | evo2-backend/brca1_analysis_plot.png -------------------------------------------------------------------------------- /.gitmodules: -------------------------------------------------------------------------------- 1 | [submodule "evo2-backend/evo2"] 2 | path = evo2-backend/evo2 3 | url = https://github.com/ArcInstitute/evo2 4 | -------------------------------------------------------------------------------- /LICENSE.MD: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) [2025] [Andreas Trolle] 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ![alt text](thumbnail.png) 2 | 3 | [Link to video](https://youtu.be/3dCZxmd5bvs) 4 | 5 | [Discord and more](https://www.andreastrolle.com/) 6 | 7 | ## Overview 8 | 9 | Hi 🤙 In this project, you'll build a web app that can classify how likely specific mutations in DNA are to cause diseases (variant effect prediction). We will deploy and use the state-of-the-art Evo2 large language model, and use it to predict the pathogenicity of single nucleotide variants (SNVs). You'll deploy a Python backend on an H100 serverless GPU with Modal, exposing a FastAPI endpoint for analysis. After deploying the backend, you'll build a web app around it where users can select a genome assembly, browse its chromosomes or search for specific genes like BRCA1, and view the gene's reference genome sequence. The user can input a mutation in the gene and predict its pathogenicity with AI, but the user can also pick from a list of existing known variations, and compare the Evo2 prediction (pathogenic/benign) against existing ClinVar classifications. The web app is built with Next.js, React, TypeScript, Tailwind CSS, and Shadcn UI and is based off of the T3 Stack. You'll be able to build along with me from start to finish. 10 | 11 | Everything (including GPU's) is free, and no biological background is needed, since I'll walk you through all the theory needed. 12 | 13 | TL;DR / Simpler Version\ 14 | DNA is like a long code made of A, T, G, and C. Small changes (mutations) in specific parts of this code, like in genes responsible for preventing cancer, can increase a person's risk of developing the disease. For instance, if an 'A' appears where a 'T' should be at a particular spot, that's a mutation. These changes can vary in how harmful they are, and we'll build a tool to analyze these different variations' harmfulness. 15 | 16 | Features: 17 | 18 | - 🧬 Evo2 model for variant effect prediction 19 | - 🩺 Predict pathogenicity of single nucleotide variants (pathogenic/benign) 20 | - ⚖️ Comparison view for existing ClinVar classification vs. Evo2 prediction 21 | - 💯 Prediction confidence estimation 22 | - 🌍 Genome assembly selector (e.g., hg38) 23 | - 🗺️ Select genes from chromosome browsing or searching (e.g., BRCA1) 24 | - 🌐 See full reference genome sequence (UCSC API) 25 | - 🧬 Explore gene and variants data (NCBI ClinVar/E-utilities) 26 | - 💻 Python backend deployed with Modal 27 | - 🚀 FastAPI endpoint for variant analysis requests 28 | - ⚡ GPU-accelerated (H100) variant scoring via Modal 29 | - 📱 Responsive Next.js web interface 30 | - 🎨 Modern UI with Tailwind CSS & Shadcn UI 31 | 32 | ## Evo2 Model 33 | 34 | Check out the paper behind the model. 35 | 36 | - [Paper](https://www.biorxiv.org/content/10.1101/2025.02.18.638918v1) 37 | - [GitHub Repository](https://github.com/ArcInstitute/evo2) 38 | 39 | ## Setup 40 | 41 | Follow these steps to install and set up the project. 42 | 43 | ### Clone the Repository 44 | 45 | ```bash 46 | git clone --recurse-submodules https://github.com/Andreaswt/variant-analysis-evo2.git 47 | ``` 48 | 49 | ### Install Python 50 | 51 | Download and install Python if not already installed. Use the link below for guidance on installation: 52 | [Python Download](https://www.python.org/downloads/) 53 | 54 | Create a virtual environment for each folder, except elevenlabs-clone-frontend, with **Python 3.10**. 55 | 56 | ### Backend 57 | 58 | Navigate to backend folder: 59 | 60 | ```bash 61 | cd evo2-backend 62 | ``` 63 | 64 | Install dependencies: 65 | 66 | ```bash 67 | pip install -r requirements.txt 68 | ``` 69 | 70 | Modal setup: 71 | 72 | ```bash 73 | modal setup 74 | ``` 75 | 76 | Run on Modal: 77 | 78 | ```bash 79 | modal run main.py 80 | ``` 81 | 82 | Deploy backend: 83 | 84 | ```bash 85 | modal deploy main.py 86 | ``` 87 | 88 | ### Frontend 89 | 90 | Install dependencies: 91 | 92 | ```bash 93 | cd evo2-frontend 94 | npm i 95 | ``` 96 | 97 | Run: 98 | 99 | ```bash 100 | npm run dev 101 | ``` 102 | -------------------------------------------------------------------------------- /evo2-backend/evo2/.gitmodules: -------------------------------------------------------------------------------- 1 | [submodule "vortex"] 2 | path = vortex 3 | url = https://github.com/Zymrael/vortex.git 4 | -------------------------------------------------------------------------------- /evo2-backend/evo2/AUTHORS: -------------------------------------------------------------------------------- 1 | Garyk Brixi 2 | Matthew G. Durrant 3 | Jerome Ku 4 | Michael Poli 5 | Greg Brockman 6 | Daniel Chang 7 | Gabriel A. Gonzalez 8 | Samuel H. King 9 | David B. Li 10 | Aditi T. Merchant 11 | Mohsen Naghipourfar 12 | Eric Nguyen 13 | Chiara Ricci-Tam 14 | David W. Romero 15 | Gwanggyu Sun 16 | Ali Taghibakshi 17 | Anton Vorontsov 18 | Brandon Yang 19 | Myra Deng 20 | Liv Gorton 21 | Nam Nguyen 22 | Nicholas K. Wang 23 | Etowah Adams 24 | Stephen A. Baccus 25 | Steven Dillmann 26 | Stefano Ermon 27 | Daniel Guo 28 | Rajesh Ilango 29 | Ken Janik 30 | Amy X. Lu 31 | Reshma Mehta 32 | Mohammad R.K. Mofrad 33 | Madelena Y. Ng 34 | Jaspreet Pannu 35 | Christopher Ré 36 | Jonathan C. Schmok 37 | John St. John 38 | Jeremy Sullivan 39 | Kevin Zhu 40 | Greg Zynda 41 | Daniel Balsam 42 | Patrick Collison 43 | Anthony B. Costa 44 | Tina Hernandez-Boussard 45 | Eric Ho 46 | Ming-Yu Liu 47 | Thomas McGrath 48 | Kimberly Powell 49 | Dave P. Burke 50 | Hani Goodarzi 51 | Patrick D. Hsu 52 | Brian L. Hie -------------------------------------------------------------------------------- /evo2-backend/evo2/MANIFEST.in: -------------------------------------------------------------------------------- 1 | include LICENSE 2 | include NOTICE 3 | include README.md 4 | include requirements.txt 5 | include pyproject.toml 6 | recursive-include evo2/configs *.yml 7 | recursive-include vortex/vortex * 8 | recursive-exclude vortex/vortex *.pyc 9 | recursive-exclude vortex/vortex/__pycache__ * -------------------------------------------------------------------------------- /evo2-backend/evo2/NOTICE: -------------------------------------------------------------------------------- 1 | Copyright 2024 Arc Institute. All rights reserved 2 | Copyright 2024 Michael Poli. All rights reserved 3 | Copyright 2024 Stanford University. All rights reserved 4 | 5 | This project incorporates and modifies the components below: 6 | 7 | 8 | - Added training and inference support for Hyena2 9 | - Scaled model training (up to 40B) and context windows (up to 1M) 10 | - Biological/genomic inference and generation evals/tasks 11 | 12 | See AUTHORS file for list of contributing authors. 13 | 14 | See LICENSE file for software license. This software is licensed under the Apache License, Version 2.0. 15 | ====================================================================== 16 | 17 | StripedHyena 18 | Copyright 2023-2024 Together 19 | Project URL: https://github.com/togethercomputer/stripedhyena 20 | 21 | This project includes software developed at Together for deep signal processing, hybrid architecture composed of rotary (grouped) attention and gated convolutions arranged in Hyena blocks, with improved scaling over decoder-only Transformers. 22 | 23 | ====================================================================== 24 | 25 | GPT-NeoX 26 | Copyright 2021-2024 EleutherAI and contributors 27 | Project URL: https://github.com/EleutherAI/gpt-neox 28 | 29 | This project includes software developed at EleutherAI for large-scale language model training and inference. 30 | 31 | ====================================================================== 32 | 33 | Megatron-LM 34 | Copyright 2019-2024 NVIDIA Corporation 35 | Project URL: https://github.com/NVIDIA/Megatron-LM 36 | 37 | This project includes software developed at NVIDIA Corporation for large-scale transformer model training. 38 | 39 | ====================================================================== 40 | 41 | DeepSpeed 42 | Copyright 2020-2024 Microsoft Corporation 43 | Project URL: https://github.com/microsoft/DeepSpeed 44 | 45 | This project includes software developed at Microsoft Corporation as part of the DeepSpeed deep learning optimization library. 46 | 47 | ====================================================================== -------------------------------------------------------------------------------- /evo2-backend/evo2/README.md: -------------------------------------------------------------------------------- 1 | # Evo 2: Genome modeling and design across all domains of life 2 | 3 | ![Evo 2](evo2.jpg) 4 | 5 | Evo 2 is a state of the art DNA language model for long context modeling and design. Evo 2 models DNA sequences at single-nucleotide resolution at up to 1 million base pair context length using the [StripedHyena 2](https://github.com/Zymrael/savanna/blob/main/paper.pdf) architecture. Evo 2 was pretrained using [Savanna](https://github.com/Zymrael/savanna). Evo 2 was trained autoregressively on [OpenGenome2](https://huggingface.co/datasets/arcinstitute/opengenome2), a dataset containing 8.8 trillion tokens from all domains of life. 6 | 7 | We describe Evo 2 in the preprint: 8 | ["Genome modeling and design across all domains of life with Evo 2"](https://www.biorxiv.org/content/10.1101/2025.02.18.638918v1). 9 | 10 | ## Contents 11 | 12 | - [Setup](#setup) 13 | - [Requirements](#requirements) 14 | - [Installation](#installation) 15 | - [Checkpoints](#checkpoints) 16 | - [Usage](#usage) 17 | - [Forward](#forward) 18 | - [Embeddings](#embeddings) 19 | - [Generation](#generation) 20 | - [Notebooks](#notebooks) 21 | - [Nvidia NIM](#nvidia-nim) 22 | - [Dataset](#dataset) 23 | - [Training and Finetuning](#training-and-finetuning) 24 | - [Citation](#citation) 25 | 26 | ## Setup 27 | 28 | This repo is for running Evo 2 locally for inference or generation, using our [Vortex](https://github.com/Zymrael/vortex) inference code. For training and finetuning, see the section [here](#training-and-finetuning). 29 | You can run Evo 2 without any installation using the [Nvidia Hosted API](https://build.nvidia.com/arc/evo2-40b). 30 | You can also self-host an instance using Nvidia NIM. See the [Nvidia NIM](#nvidia-nim) section for more 31 | information. 32 | 33 | ### Requirements 34 | 35 | Evo 2 is based on [StripedHyena 2](https://github.com/Zymrael/vortex) which requires python>=3.11. Evo 2 uses [Transformer Engine](https://github.com/NVIDIA/TransformerEngine) FP8 for some layers which requires an H100 (or other GPU with compute capability ≥8.9). We are actively investigating ways to avoid this requirement. 36 | 37 | ### Installation 38 | 39 | To install Evo 2 for inference or generation, please clone and install from GitHub. We recommend using a new conda environment with python>=3.11. 40 | 41 | ```bash 42 | git clone --recurse-submodules git@github.com:ArcInstitute/evo2.git 43 | cd evo2 44 | pip install . 45 | ``` 46 | 47 | If this did not work for whatever reason, you can also install from [Vortex](https://github.com/Zymrael/vortex) and follow the instructions there. PyPi support coming soon! 48 | 49 | You can check that the installation was correct by running a test. 50 | 51 | ``` 52 | python ./test/test_evo2.py --model_name evo2_7b 53 | ``` 54 | 55 | ## Checkpoints 56 | 57 | We provide the following model checkpoints, hosted on [HuggingFace](https://huggingface.co/arcinstitute): 58 | | Checkpoint Name | Description | 59 | |----------------------------------------|-------------| 60 | | `evo2_40b` | A model pretrained with 1 million context obtained through context extension of `evo2_40b_base`.| 61 | | `evo2_7b` | A model pretrained with 1 million context obtained through context extension of `evo2_7b_base`.| 62 | | `evo2_40b_base` | A model pretrained with 8192 context length.| 63 | | `evo2_7b_base` | A model pretrained with 8192 context length.| 64 | | `evo2_1b_base` | A smaller model pretrained with 8192 context length.| 65 | 66 | To use Evo 2 40B, you will need multiple GPUs. Vortex automatically handles device placement, splitting the model across available cuda devices. 67 | 68 | ## Usage 69 | 70 | Below are simple examples of how to download Evo 2 and use it locally in Python. 71 | 72 | ### Forward 73 | 74 | Evo 2 can be used to score the likelihoods across a DNA sequence. 75 | 76 | ```python 77 | import torch 78 | from evo2 import Evo2 79 | 80 | evo2_model = Evo2('evo2_7b') 81 | 82 | sequence = 'ACGT' 83 | input_ids = torch.tensor( 84 | evo2_model.tokenizer.tokenize(sequence), 85 | dtype=torch.int, 86 | ).unsqueeze(0).to('cuda:0') 87 | 88 | outputs, _ = evo2_model(input_ids) 89 | logits = outputs[0] 90 | 91 | print('Logits: ', logits) 92 | print('Shape (batch, length, vocab): ', logits.shape) 93 | ``` 94 | 95 | ### Embeddings 96 | 97 | Evo 2 embeddings can be saved for use downstream. We find that intermediate embeddings work better than final embeddings, see our paper for details. 98 | 99 | ```python 100 | import torch 101 | from evo2 import Evo2 102 | 103 | evo2_model = Evo2('evo2_7b') 104 | 105 | sequence = 'ACGT' 106 | input_ids = torch.tensor( 107 | evo2_model.tokenizer.tokenize(sequence), 108 | dtype=torch.int, 109 | ).unsqueeze(0).to('cuda:0') 110 | 111 | layer_name = 'blocks.28.mlp.l3' 112 | 113 | outputs, embeddings = evo2_model(input_ids, return_embeddings=True, layer_names=[layer_name]) 114 | 115 | print('Embeddings shape: ', embeddings[layer_name].shape) 116 | ``` 117 | 118 | ### Generation 119 | 120 | Evo 2 can generate DNA sequences based on prompts. 121 | 122 | ```python 123 | from evo2 import Evo2 124 | 125 | evo2_model = Evo2('evo2_7b') 126 | 127 | output = evo2_model.generate(prompt_seqs=["ACGT"], n_tokens=400, temperature=1.0, top_k=4) 128 | 129 | print(output.sequences[0]) 130 | ``` 131 | 132 | ### Notebooks 133 | 134 | We provide example notebooks. 135 | 136 | The [BRCA1 notebook](https://github.com/ArcInstitute/evo2/blob/main/notebooks/brca1/brca1_zero_shot_vep.ipynb) shows zero-shot *BRCA1* variant effect prediction. This example includes a walkthrough of: 137 | - Performing zero-shot *BRCA1* variant effect predictions using Evo 2 138 | - Reference vs alternative allele normalization 139 | 140 | The [generation notebook](https://github.com/ArcInstitute/evo2/blob/main/notebooks/generation/generation_notebook.ipynb) shows DNA sequence completion with Evo 2. This example shows: 141 | - DNA prompt based generation and 'DNA autocompletion' 142 | - How to get and prompt using phylogenetic species tags for generation 143 | 144 | ### Nvidia NIM 145 | 146 | Evo 2 is available on [Nvidia NIM](https://catalog.ngc.nvidia.com/containers?filters=&orderBy=scoreDESC&query=evo2&page=&pageSize=) and [hosted API](https://build.nvidia.com/arc/evo2-40b). 147 | 148 | - [Documentation](https://docs.nvidia.com/nim/bionemo/evo2/latest/overview.html) 149 | - [Quickstart](https://docs.nvidia.com/nim/bionemo/evo2/latest/quickstart-guide.html) 150 | 151 | The quickstart guides users through running Evo 2 on the NVIDIA NIM using a python or shell client after starting NIM. An example python client script is shown below. This is the same way you would interact with the [Nvidia hosted API](https://build.nvidia.com/arc/evo2-40b?snippet_tab=Python). 152 | 153 | ```python 154 | #!/usr/bin/env python3 155 | import requests 156 | import os 157 | import json 158 | from pathlib import Path 159 | 160 | key = os.getenv("NVCF_RUN_KEY") or input("Paste the Run Key: ") 161 | 162 | r = requests.post( 163 | url=os.getenv("URL", "https://health.api.nvidia.com/v1/biology/arc/evo2-40b/generate"), 164 | headers={"Authorization": f"Bearer {key}"}, 165 | json={ 166 | "sequence": "ACTGACTGACTGACTG", 167 | "num_tokens": 8, 168 | "top_k": 1, 169 | "enable_sampled_probs": True, 170 | }, 171 | ) 172 | 173 | if "application/json" in r.headers.get("Content-Type", ""): 174 | print(r, "Saving to output.json:\n", r.text[:200], "...") 175 | Path("output.json").write_text(r.text) 176 | elif "application/zip" in r.headers.get("Content-Type", ""): 177 | print(r, "Saving large response to data.zip") 178 | Path("data.zip").write_bytes(r.content) 179 | else: 180 | print(r, r.headers, r.content) 181 | ``` 182 | 183 | 184 | ### Very long sequences 185 | 186 | We are actively working on optimizing performance for long sequence processing in Vortex. Vortex can currently compute over very long sequences via teacher prompting. However please note that forward pass on long sequences may currently be slow. You can instead use [Savanna](https://github.com/Zymrael/savanna) or [Nvidia BioNemo](https://github.com/NVIDIA/bionemo-framework) for embedding long sequences. 187 | 188 | ### Dataset 189 | 190 | The OpenGenome2 dataset used for pretraining Evo2 is available on [HuggingFace ](https://huggingface.co/datasets/arcinstitute/opengenome2). Data is available either as raw fastas or as JSONL files which include preprocessing and data augmentation. 191 | 192 | ### Training and Finetuning 193 | 194 | Evo 2 was trained using [Savanna](https://github.com/Zymrael/savanna), an open source framework for training alternative architectures. 195 | 196 | To train or finetune Evo 2, you can use [Savanna](https://github.com/Zymrael/savanna) or [Nvidia BioNemo](https://github.com/NVIDIA/bionemo-framework) which provides a [Evo 2 finetuning tutorial here](https://github.com/NVIDIA/bionemo-framework/blob/ca16c2acf9bf813d020b6d1e2d4e1240cfef6a69/docs/docs/user-guide/examples/bionemo-evo2/fine-tuning-tutorial.ipynb). 197 | 198 | ## Citation 199 | 200 | If you find these models useful for your research, please cite the relevant papers 201 | 202 | ``` 203 | @article {Brixi2025.02.18.638918, 204 | author = {Brixi, Garyk and Durrant, Matthew G and Ku, Jerome and Poli, Michael and Brockman, Greg and Chang, Daniel and Gonzalez, Gabriel A and King, Samuel H and Li, David B and Merchant, Aditi T and Naghipourfar, Mohsen and Nguyen, Eric and Ricci-Tam, Chiara and Romero, David W and Sun, Gwanggyu and Taghibakshi, Ali and Vorontsov, Anton and Yang, Brandon and Deng, Myra and Gorton, Liv and Nguyen, Nam and Wang, Nicholas K and Adams, Etowah and Baccus, Stephen A and Dillmann, Steven and Ermon, Stefano and Guo, Daniel and Ilango, Rajesh and Janik, Ken and Lu, Amy X and Mehta, Reshma and Mofrad, Mohammad R.K. and Ng, Madelena Y and Pannu, Jaspreet and Re, Christopher and Schmok, Jonathan C and St. John, John and Sullivan, Jeremy and Zhu, Kevin and Zynda, Greg and Balsam, Daniel and Collison, Patrick and Costa, Anthony B. and Hernandez-Boussard, Tina and Ho, Eric and Liu, Ming-Yu and McGrath, Tom and Powell, Kimberly and Burke, Dave P. and Goodarzi, Hani and Hsu, Patrick D and Hie, Brian}, 205 | title = {Genome modeling and design across all domains of life with Evo 2}, 206 | elocation-id = {2025.02.18.638918}, 207 | year = {2025}, 208 | doi = {10.1101/2025.02.18.638918}, 209 | publisher = {Cold Spring Harbor Laboratory}, 210 | URL = {https://www.biorxiv.org/content/early/2025/02/21/2025.02.18.638918}, 211 | eprint = {https://www.biorxiv.org/content/early/2025/02/21/2025.02.18.638918.full.pdf}, 212 | journal = {bioRxiv} 213 | } 214 | ``` 215 | -------------------------------------------------------------------------------- /evo2-backend/evo2/evo2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Andreaswt/variant-analysis-evo2/55741e31ae0bf3327cc97202be842f37e3fd7e6e/evo2-backend/evo2/evo2.jpg -------------------------------------------------------------------------------- /evo2-backend/evo2/evo2/__init__.py: -------------------------------------------------------------------------------- 1 | from .models import Evo2 -------------------------------------------------------------------------------- /evo2-backend/evo2/evo2/configs/evo2-1b-8k.yml: -------------------------------------------------------------------------------- 1 | model_name: shc-evo2-1b-8k-2T-v2 2 | 3 | vocab_size: 512 4 | hidden_size: 1920 5 | # Number of independent filters in Hyena-LI 6 | num_filters: 1920 7 | attn_layer_idxs: [3,10,17,24] 8 | hcl_layer_idxs: [2,6,9,13,16,20,23] 9 | hcm_layer_idxs: [1,5,8,12,15,19,22] 10 | hcs_layer_idxs: [0,4,7,11,14,18,21] 11 | 12 | hcm_filter_length: 128 13 | hcl_filter_groups: 1920 14 | hcm_filter_groups: 128 15 | hcs_filter_groups: 128 16 | hcs_filter_length: 7 17 | num_layers: 25 18 | 19 | # Length of the short, depthwise FIR applied to input projections 20 | short_filter_length: 3 21 | num_attention_heads: 15 22 | short_filter_bias: false # add bias to FIR 23 | mlp_init_method: torch.nn.init.zeros_ 24 | mlp_output_init_method: torch.nn.init.zeros_ 25 | eps: 0.000001 26 | state_size: 16 27 | rotary_emb_base: 10000 28 | make_vocab_size_divisible_by: 8 29 | inner_size_multiple_of: 16 # force GLU inner_size to be a multiple of 30 | inner_mlp_size: 5120 31 | log_intermediate_values: False 32 | # Number of groups in GQA 33 | proj_groups: 1 34 | # Number of groups in grouped 35 | hyena_filter_groups: 1 36 | # Split strategy for channels 37 | column_split_hyena: False 38 | column_split: True 39 | interleave: True 40 | # Layer > 0 nn.identity activation 41 | evo2_style_activations: True 42 | 43 | # Legacy options for MP / PP inference 44 | model_parallel_size: 1 45 | pipe_parallel_size: 1 46 | tie_embeddings: True 47 | mha_out_proj_bias: True 48 | hyena_out_proj_bias: True 49 | hyena_flip_x1x2: False 50 | qkv_proj_bias: False 51 | use_fp8_input_projections: True 52 | max_seqlen: 8192 53 | max_batch_size: 1 54 | final_norm: True 55 | use_flash_attn: True 56 | use_flash_rmsnorm: False 57 | use_flash_depthwise: False 58 | use_flashfft: False 59 | use_laughing_hyena: False 60 | inference_mode: True 61 | tokenizer_type: CharLevelTokenizer 62 | prefill_style: fft 63 | mlp_activation: gelu 64 | print_activations: False 65 | -------------------------------------------------------------------------------- /evo2-backend/evo2/evo2/configs/evo2-40b-1m.yml: -------------------------------------------------------------------------------- 1 | model_name: shc-evo2-40b-8k-11T-v2 2 | 3 | vocab_size: 512 4 | hidden_size: 8192 5 | # Number of independent filters in Hyena-LI 6 | num_filters: 8192 7 | hcl_layer_idxs: [2,6,9,13,16,20,23,27,30,34,38,41,45,48] 8 | hcm_layer_idxs: [1,5,8,12,15,19,22,26,29,33,37,40,44,47] 9 | hcs_layer_idxs: [0,4,7,11,14,18,21,25,28,32,36,39,43,46] 10 | attn_layer_idxs: [3,10,17,24,31,35,42,49] 11 | hcm_filter_length: 128 12 | hcl_filter_groups: 8192 13 | hcm_filter_groups: 512 14 | hcs_filter_groups: 512 15 | hcs_filter_length: 7 16 | num_layers: 50 17 | 18 | # Length of the short, depthwise FIR applied to input projections 19 | short_filter_length: 3 20 | num_attention_heads: 64 21 | short_filter_bias: false # add bias to FIR 22 | mlp_init_method: torch.nn.init.zeros_ 23 | mlp_output_init_method: torch.nn.init.zeros_ 24 | eps: 0.000001 25 | state_size: 16 26 | rotary_emb_base: 100000000000 27 | rotary_emb_scaling_factor: 128 28 | use_interpolated_rotary_pos_emb: True 29 | make_vocab_size_divisible_by: 8 30 | inner_size_multiple_of: 128 # force GLU inner_size to be a multiple of 31 | inner_mlp_size: 22528 32 | log_intermediate_values: False 33 | # Number of groups in GQA 34 | proj_groups: 1 35 | # Number of groups in grouped 36 | hyena_filter_groups: 1 37 | # Split strategy for channels 38 | column_split_hyena: False 39 | column_split: True 40 | interleave: True 41 | # Layer > 0 nn.identity activation 42 | evo2_style_activations: True 43 | 44 | use_fp8_input_projections: True 45 | 46 | # Legacy options for MP / PP inference 47 | model_parallel_size: 1 48 | pipe_parallel_size: 1 49 | tie_embeddings: True 50 | mha_out_proj_bias: True 51 | hyena_out_proj_bias: True 52 | hyena_flip_x1x2: False 53 | qkv_proj_bias: False 54 | max_seqlen: 1048576 55 | max_batch_size: 1 56 | final_norm: True 57 | use_flash_attn: True 58 | use_flash_rmsnorm: False 59 | use_flash_depthwise: False 60 | use_flashfft: False 61 | use_laughing_hyena: False 62 | inference_mode: True 63 | tokenizer_type: CharLevelTokenizer 64 | prefill_style: fft 65 | mlp_activation: gelu 66 | print_activations: False 67 | -------------------------------------------------------------------------------- /evo2-backend/evo2/evo2/configs/evo2-40b-8k.yml: -------------------------------------------------------------------------------- 1 | model_name: shc-evo2-40b-8k-11T-v2 2 | 3 | vocab_size: 512 4 | hidden_size: 8192 5 | num_filters: 8192 6 | hcl_layer_idxs: [2,6,9,13,16,20,23,27,30,34,38,41,45,48] 7 | hcm_layer_idxs: [1,5,8,12,15,19,22,26,29,33,37,40,44,47] 8 | hcs_layer_idxs: [0,4,7,11,14,18,21,25,28,32,36,39,43,46] 9 | attn_layer_idxs: [3,10,17,24,31,35,42,49] 10 | hcm_filter_length: 128 11 | hcl_filter_groups: 8192 12 | hcm_filter_groups: 512 13 | hcs_filter_groups: 512 14 | hcs_filter_length: 7 15 | num_layers: 50 16 | 17 | # Length of the short, depthwise FIR applied to input projections 18 | short_filter_length: 3 19 | num_attention_heads: 64 20 | short_filter_bias: false # add bias to FIR 21 | mlp_init_method: torch.nn.init.zeros_ 22 | mlp_output_init_method: torch.nn.init.zeros_ 23 | eps: 0.000001 24 | state_size: 16 25 | rotary_emb_base: 1000000 26 | make_vocab_size_divisible_by: 8 27 | inner_size_multiple_of: 128 # force GLU inner_size to be a multiple of 28 | inner_mlp_size: 21888 29 | log_intermediate_values: False 30 | # Number of groups in GQA 31 | proj_groups: 1 32 | # Number of groups in grouped 33 | hyena_filter_groups: 1 34 | # Split strategy for channels 35 | column_split_hyena: False 36 | column_split: True 37 | interleave: True 38 | # Layer > 0 nn.identity activation 39 | evo2_style_activations: True 40 | 41 | use_fp8_input_projections: True 42 | 43 | # Legacy options for MP / PP inference 44 | model_parallel_size: 1 45 | pipe_parallel_size: 1 46 | tie_embeddings: True 47 | mha_out_proj_bias: True 48 | hyena_out_proj_bias: True 49 | hyena_flip_x1x2: False 50 | qkv_proj_bias: False 51 | max_seqlen: 8192 52 | max_batch_size: 1 53 | final_norm: True 54 | use_flash_attn: True 55 | use_flash_rmsnorm: False 56 | use_flash_depthwise: False 57 | use_flashfft: False 58 | use_laughing_hyena: False 59 | inference_mode: True 60 | tokenizer_type: CharLevelTokenizer 61 | prefill_style: fft 62 | mlp_activation: gelu 63 | print_activations: False 64 | -------------------------------------------------------------------------------- /evo2-backend/evo2/evo2/configs/evo2-7b-1m.yml: -------------------------------------------------------------------------------- 1 | model_name: shc-evo2-7b-8k-2T-v2 2 | 3 | vocab_size: 512 4 | hidden_size: 4096 5 | # Number of long convolution filters in each hyena block. Can be smaller than `hidden_size` 6 | num_filters: 4096 7 | hcl_layer_idxs: [2,6,9,13,16,20,23,27,30] 8 | hcm_layer_idxs: [1,5,8,12,15,19,22,26,29] 9 | hcs_layer_idxs: [0,4,7,11,14,18,21,25,28] 10 | attn_layer_idxs: [3,10,17,24,31] 11 | 12 | hcm_filter_length: 128 13 | hcl_filter_groups: 4096 14 | hcm_filter_groups: 256 15 | hcs_filter_groups: 256 16 | hcs_filter_length: 7 17 | num_layers: 32 18 | 19 | # Length of the short, depthwise FIR applied to input projections 20 | short_filter_length: 3 21 | num_attention_heads: 32 22 | short_filter_bias: false # add bias to FIR 23 | mlp_init_method: torch.nn.init.zeros_ 24 | mlp_output_init_method: torch.nn.init.zeros_ 25 | eps: 0.000001 26 | state_size: 16 27 | rotary_emb_base: 100000000000 28 | rotary_emb_scaling_factor: 128 29 | use_interpolated_rotary_pos_emb: True 30 | make_vocab_size_divisible_by: 8 31 | inner_size_multiple_of: 16 # force GLU inner_size to be a multiple of 32 | inner_mlp_size: 11264 33 | log_intermediate_values: False 34 | # Number of groups in GQA 35 | proj_groups: 1 36 | # Number of groups in grouped 37 | hyena_filter_groups: 1 38 | # Split strategy for channels 39 | column_split_hyena: False 40 | column_split: True 41 | interleave: True 42 | # Layer > 0 nn.identity activation 43 | evo2_style_activations: True 44 | # Legacy options for MP / PP inference 45 | model_parallel_size: 1 46 | pipe_parallel_size: 1 47 | tie_embeddings: True 48 | mha_out_proj_bias: True 49 | hyena_out_proj_bias: True 50 | hyena_flip_x1x2: False 51 | qkv_proj_bias: False 52 | use_fp8_input_projections: True 53 | max_seqlen: 1048576 54 | max_batch_size: 1 55 | final_norm: True 56 | use_flash_attn: True 57 | use_flash_rmsnorm: False 58 | use_flash_depthwise: False 59 | use_flashfft: False 60 | use_laughing_hyena: False 61 | inference_mode: True 62 | tokenizer_type: CharLevelTokenizer 63 | prefill_style: fft 64 | mlp_activation: gelu 65 | print_activations: False 66 | -------------------------------------------------------------------------------- /evo2-backend/evo2/evo2/configs/evo2-7b-8k.yml: -------------------------------------------------------------------------------- 1 | model_name: shc-evo2-7b-8k-2T-v2 2 | 3 | vocab_size: 512 4 | hidden_size: 4096 5 | num_filters: 4096 6 | hcl_layer_idxs: [2,6,9,13,16,20,23,27,30] 7 | hcm_layer_idxs: [1,5,8,12,15,19,22,26,29] 8 | hcs_layer_idxs: [0,4,7,11,14,18,21,25,28] 9 | attn_layer_idxs: [3,10,17,24,31] 10 | 11 | # Number of unique convolution filters in each hyena block. Can be smaller than `hidden_size` 12 | hcm_filter_length: 128 13 | hcl_filter_groups: 4096 14 | hcm_filter_groups: 256 15 | hcs_filter_groups: 256 16 | hcs_filter_length: 7 17 | num_layers: 32 18 | 19 | # Length of the short, depthwise FIR applied to input projections 20 | short_filter_length: 3 21 | num_attention_heads: 32 22 | short_filter_bias: false # add bias to FIR 23 | mlp_init_method: torch.nn.init.zeros_ 24 | mlp_output_init_method: torch.nn.init.zeros_ 25 | eps: 0.000001 26 | state_size: 16 27 | rotary_emb_base: 10000 28 | make_vocab_size_divisible_by: 8 29 | inner_size_multiple_of: 16 # force GLU inner_size to be a multiple of 30 | inner_mlp_size: 11008 31 | log_intermediate_values: False 32 | # Number of groups in GQA 33 | proj_groups: 1 34 | # Number of groups in grouped 35 | hyena_filter_groups: 1 36 | # Split strategy for channels 37 | column_split_hyena: False 38 | column_split: True 39 | interleave: True 40 | # Layer > 0 nn.identity activation 41 | evo2_style_activations: True 42 | # Legacy options for MP / PP inference 43 | model_parallel_size: 1 44 | pipe_parallel_size: 1 45 | tie_embeddings: True 46 | mha_out_proj_bias: True 47 | hyena_out_proj_bias: True 48 | hyena_flip_x1x2: False 49 | qkv_proj_bias: False 50 | use_fp8_input_projections: False 51 | max_seqlen: 32768 52 | max_batch_size: 1 53 | final_norm: True 54 | use_flash_attn: True 55 | use_flash_rmsnorm: False 56 | use_flash_depthwise: False 57 | use_flashfft: False 58 | use_laughing_hyena: False 59 | inference_mode: True 60 | tokenizer_type: CharLevelTokenizer 61 | prefill_style: fft 62 | mlp_activation: gelu 63 | print_activations: False 64 | -------------------------------------------------------------------------------- /evo2-backend/evo2/evo2/models.py: -------------------------------------------------------------------------------- 1 | from functools import partial 2 | import huggingface_hub 3 | from huggingface_hub import snapshot_download, constants, hf_hub_download 4 | import os 5 | import pkgutil 6 | import torch 7 | from typing import List, Tuple, Dict, Union 8 | import yaml 9 | 10 | 11 | from vortex.model.generation import generate as vortex_generate 12 | from vortex.model.model import StripedHyena 13 | from vortex.model.tokenizer import CharLevelTokenizer 14 | from vortex.model.utils import dotdict, print_rank_0, load_checkpoint 15 | 16 | from evo2.scoring import score_sequences, score_sequences_rc 17 | from evo2.utils import MODEL_NAMES, HF_MODEL_NAME_MAP, CONFIG_MAP 18 | 19 | class Evo2: 20 | def __init__(self, model_name: str = MODEL_NAMES[1], local_path: str = None): 21 | """ 22 | Load an Evo 2 checkpoint. 23 | 24 | Uses local_path if specified, otherwise checks if in local HuggingFace ~cache. 25 | Automatically downloads checkpoint from HuggingFace if it does not exist locally. 26 | 27 | Vortex automatically handles device placement on CUDA, and splits model across 28 | multiple GPUs if available. 29 | For models split across multiple GPUs, you can specify which GPUs to use with 30 | CUDA_VISIBLE_DEVICES. If using multi-gpu, do not use .to(device) manually. 31 | 32 | Notes: 33 | Evo 2 40b is too large to fit on a single H100 GPU, so needs multiple GPUs. 34 | You can change where HuggingFace downloads to by setting the HF_HOME environment 35 | variable. 36 | """ 37 | if model_name not in MODEL_NAMES: 38 | raise ValueError( 39 | f'Invalid model name {model_name}. Should be one of: ' 40 | f'{", ".join(MODEL_NAMES)}.' 41 | ) 42 | 43 | config_path = CONFIG_MAP[model_name] 44 | 45 | if local_path is not None: 46 | self.model = self.load_evo2_model(None, config_path, local_path) 47 | else: 48 | self.model = self.load_evo2_model(model_name, config_path) 49 | 50 | self.tokenizer = CharLevelTokenizer(512) 51 | 52 | def forward( 53 | self, 54 | input_ids: torch.Tensor, 55 | return_embeddings: bool = False, 56 | layer_names=None, 57 | ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: 58 | """ 59 | Forward pass with optional embedding extraction. 60 | 61 | Args: 62 | input_ids: Input token IDs 63 | return_embeddings: If True, returns embeddings from specified layers 64 | layer_names: List of layer names to extract embeddings from. Required if 65 | return_embeddings=True 66 | 67 | Returns: 68 | Tuple of (logits, embeddings_dict) if return_embeddings=True 69 | Tuple of (logits, None) otherwise 70 | """ 71 | embeddings = {} 72 | handles = [] 73 | 74 | if return_embeddings: 75 | if layer_names is None: 76 | raise ValueError( 77 | "layer_names must be specified when return_embeddings=True. Look at " 78 | "evo2_model.model.state_dict().keys() to see available layers." 79 | ) 80 | 81 | def hook_fn(layer_name): 82 | def hook(_, __, output): 83 | if isinstance(output, tuple): 84 | output = output[0] 85 | embeddings[layer_name] = output.detach() 86 | return hook 87 | 88 | # Register hooks for requested layers 89 | for name in layer_names: 90 | layer = self.model.get_submodule(name) 91 | handles.append(layer.register_forward_hook(hook_fn(name))) 92 | 93 | try: 94 | # Original forward pass 95 | with torch.no_grad(): 96 | logits = self.model.forward(input_ids) 97 | 98 | if return_embeddings: 99 | return logits, embeddings 100 | return logits, None 101 | 102 | finally: 103 | for handle in handles: 104 | handle.remove() 105 | 106 | def __call__(self, input_ids, return_embeddings=False, layer_names=None): 107 | return self.forward(input_ids, return_embeddings, layer_names) 108 | 109 | def score_sequences( 110 | self, 111 | seqs: List[str], 112 | batch_size: int = 1, 113 | prepend_bos: bool = False, 114 | reduce_method: str = 'mean', 115 | average_reverse_complement: bool = False, 116 | ) -> List[float]: 117 | scoring_func = partial( 118 | score_sequences_rc if average_reverse_complement else score_sequences, 119 | model=self.model, 120 | tokenizer=self.tokenizer, 121 | batch_size=batch_size, 122 | prepend_bos=prepend_bos, 123 | reduce_method=reduce_method, 124 | ) 125 | 126 | with torch.no_grad(): 127 | try: 128 | scores = scoring_func(seqs) 129 | except Exception as e: 130 | raise RuntimeError(f"Error during sequence scoring: {str(e)}") from e 131 | 132 | return scores 133 | 134 | def generate( 135 | self, 136 | prompt_seqs: List[str], 137 | n_tokens: int = 500, 138 | temperature: float = 1.0, 139 | top_k: int = 4, 140 | top_p: float = 1.0, 141 | batched: bool = True, 142 | cached_generation: bool = True, 143 | verbose: int = 1, 144 | force_prompt_threshold: int = None, 145 | ) -> Tuple[List[str], List[float]]: 146 | """ 147 | Generate sequences from a list of prompts. 148 | 149 | force_prompt_threshold: If specified, avoids OOM errors through teacher forcing if the prompt is longer than this threshold. 150 | 151 | If force_prompt_threshold is none, sets default assuming 1xH100 (evo2_7b) and 2xH100 (evo2_40b) to help avoid OOM errors. 152 | """ 153 | 154 | with torch.no_grad(): 155 | output = vortex_generate( 156 | prompt_seqs=prompt_seqs, 157 | model=self.model, 158 | tokenizer=self.tokenizer, 159 | n_tokens=n_tokens, 160 | temperature=temperature, 161 | top_k=top_k, 162 | top_p=top_p, 163 | batched=batched, 164 | cached_generation=cached_generation, 165 | verbose=verbose, 166 | force_prompt_threshold=force_prompt_threshold, 167 | ) 168 | return output 169 | 170 | 171 | def load_evo2_model( 172 | self, 173 | model_name: str = MODEL_NAMES[1], 174 | config_path: str = None, 175 | local_path: str = None, 176 | remove_shards: bool = True, 177 | ): 178 | """ 179 | Load HuggingFace checkpoint using StripedHyena 2. 180 | 181 | If local_path is specified, loads from local_path. 182 | Otherwise, downloads from HuggingFace. 183 | If remove_shards is True, removes HF checkpoint shards after merging to .pt file. 184 | """ 185 | if local_path is not None: 186 | print(f"Loading model from {local_path}...") 187 | print(f"Loading config from {config_path}...") 188 | config = dotdict(yaml.load(open(config_path), Loader=yaml.FullLoader)) 189 | model = StripedHyena(config) 190 | load_checkpoint(model, local_path) 191 | return model 192 | 193 | hf_model_name = HF_MODEL_NAME_MAP[model_name] 194 | filename = f"{model_name}.pt" 195 | 196 | final_weights_path = os.path.join(os.path.dirname(constants.HF_HUB_CACHE), filename) 197 | if os.path.exists(final_weights_path): 198 | print(f"Found existing merged file: {final_weights_path}") 199 | weights_path = final_weights_path 200 | 201 | hf_hub_download( 202 | repo_id=hf_model_name, 203 | filename="config.json" 204 | ) 205 | else: 206 | repo_dir = snapshot_download( 207 | repo_id=hf_model_name, 208 | ) 209 | 210 | # Check if the complete file already exists in the repo 211 | repo_weights_path = os.path.join(repo_dir, filename) 212 | if os.path.exists(repo_weights_path): 213 | print(f"Found complete file in repo: {filename}") 214 | weights_path = repo_weights_path 215 | else: 216 | print(f"Looking for checkpoint shards for {filename}") 217 | parts = [] 218 | part_num = 0 219 | 220 | while True: 221 | part_path = os.path.join(repo_dir, f"{filename}.part{part_num}") 222 | if os.path.exists(part_path): 223 | parts.append(part_path) 224 | part_num += 1 225 | else: 226 | break 227 | 228 | if parts: 229 | print(f"Found {len(parts)} shards, merging them...") 230 | with open(final_weights_path, 'wb') as outfile: 231 | for part in parts: 232 | print(f"Merging shard: {os.path.basename(part)}") 233 | with open(part, 'rb') as infile: 234 | while True: 235 | chunk = infile.read(8192*1024) 236 | if not chunk: 237 | break 238 | outfile.write(chunk) 239 | 240 | print(f"Successfully merged all shards into {final_weights_path}") 241 | weights_path = final_weights_path 242 | if remove_shards and os.path.exists(final_weights_path): 243 | for part in parts: 244 | real_path = os.path.realpath(part) 245 | if os.path.exists(real_path): 246 | os.remove(real_path) 247 | if os.path.exists(part): 248 | os.remove(part) 249 | else: 250 | raise FileNotFoundError(f"Could not find {filename} or any of its shards in {repo_dir}") 251 | 252 | config = yaml.safe_load(pkgutil.get_data(__name__, config_path)) 253 | global_config = dotdict(config, Loader=yaml.FullLoader) 254 | 255 | model = StripedHyena(global_config) 256 | load_checkpoint(model, weights_path) 257 | 258 | return model 259 | -------------------------------------------------------------------------------- /evo2-backend/evo2/evo2/scoring.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | from typing import List, Tuple, Union 3 | from Bio.Seq import Seq 4 | from tqdm import tqdm 5 | 6 | import torch 7 | from vortex.model.model import StripedHyena 8 | 9 | 10 | def prepare_batch( 11 | seqs: List[str], 12 | tokenizer: object, 13 | prepend_bos: bool = False, 14 | device: str = 'cuda:0' 15 | ) -> Tuple[torch.Tensor, List[int]]: 16 | """ 17 | Takes in a list of sequences, tokenizes them, and puts them in a tensor batch. 18 | If the sequences have differing lengths, then pad up to the maximum sequence length. 19 | """ 20 | seq_lengths = [ len(seq) for seq in seqs ] 21 | max_seq_length = max(seq_lengths) 22 | 23 | input_ids = [] 24 | for seq in seqs: 25 | padding = [tokenizer.pad_id] * (max_seq_length - len(seq)) 26 | input_ids.append( 27 | torch.tensor( 28 | ([tokenizer.eod_id] * int(prepend_bos)) + tokenizer.tokenize(seq) + padding, 29 | dtype=torch.long, 30 | ).to(device).unsqueeze(0) 31 | ) 32 | input_ids = torch.cat(input_ids, dim=0) 33 | 34 | return input_ids, seq_lengths 35 | 36 | 37 | def logits_to_logprobs( 38 | logits: torch.Tensor, 39 | input_ids: torch.Tensor, 40 | ) -> torch.Tensor: 41 | """ 42 | Takes in a tensor of logits of dimension (batch, length, vocab). 43 | Computes the log-likelihoods using a softmax along the vocab dimension. 44 | Uses the `input_ids` to index into the log-likelihoods and returns the likelihood 45 | of the provided sequence at each position with dimension (batch, length). 46 | """ 47 | softmax_logprobs = torch.log_softmax(logits, dim=-1) 48 | softmax_logprobs = softmax_logprobs[:, :-1] 49 | input_ids = input_ids[:, 1:] 50 | assert softmax_logprobs.shape[1] == input_ids.shape[1] 51 | 52 | logprobs = torch.gather( 53 | softmax_logprobs, # Gather likelihoods... 54 | 2, # along the vocab dimension... 55 | input_ids.unsqueeze(-1) # using the token ids to index. 56 | ).squeeze(-1) 57 | 58 | return logprobs 59 | 60 | 61 | def _score_sequences( 62 | seqs: List[str], 63 | model: StripedHyena, 64 | tokenizer: object, 65 | prepend_bos: bool = False, 66 | reduce_method: str = 'mean', 67 | device: str = 'cuda:0', 68 | ) -> List[float]: 69 | """Helper function to score a list of sequences based on their logprobs.""" 70 | input_ids, seq_lengths = prepare_batch(seqs, tokenizer, device=device, prepend_bos=prepend_bos) 71 | assert len(seq_lengths) == input_ids.shape[0] 72 | 73 | with torch.inference_mode(): 74 | logits, _ = model(input_ids) # (batch, length, vocab) 75 | 76 | logprobs = logits_to_logprobs(logits, input_ids) 77 | logprobs = logprobs.float().cpu().numpy() 78 | 79 | if reduce_method == 'sum': # PLL 80 | reduce_func = np.sum 81 | elif reduce_method == 'mean': # mean PLL 82 | reduce_func = np.mean 83 | else: 84 | raise ValueError(f'Invalid reduce_method {reduce_method}') 85 | 86 | return [ 87 | reduce_func(logprobs[idx][:seq_lengths[idx]]) 88 | for idx in range(len(seq_lengths)) 89 | ] 90 | 91 | 92 | def score_sequences( 93 | seqs: List[str], 94 | model: StripedHyena, 95 | tokenizer: object, 96 | batch_size: int = None, 97 | prepend_bos: bool = False, 98 | reduce_method: str = 'mean', 99 | device: str = 'cuda:0', 100 | ) -> List[float]: 101 | """ 102 | Computes the model log-likelihood scores for sequences in `seqs`. 103 | Uses `reduce_method` to take the mean or sum across the likelihoods at each 104 | position (default: `'mean'`). 105 | 106 | Returns a list of scalar scores corresponding to the reduced log-likelihoods for 107 | each sequence. 108 | """ 109 | if batch_size is None: 110 | batch_size = len(seqs) 111 | 112 | scores = [] 113 | for i in tqdm(range(0, len(seqs), batch_size)): 114 | batch_seqs = seqs[i:i + batch_size] 115 | batch_scores = _score_sequences( 116 | batch_seqs, 117 | model, 118 | tokenizer, 119 | prepend_bos=prepend_bos, 120 | reduce_method=reduce_method, 121 | device=device, 122 | ) 123 | scores.extend(batch_scores) 124 | return scores 125 | 126 | 127 | def score_sequences_rc( 128 | seqs: List[str], 129 | model: StripedHyena, 130 | tokenizer: object, 131 | batch_size: int, 132 | prepend_bos: bool = False, 133 | reduce_method: str = 'mean', 134 | device: str = 'cuda:0', 135 | ) -> List[float]: 136 | """ 137 | Computes the model log-likelihood scores for sequences in `seqs` and for their 138 | reverse complements. 139 | Takes the mean score for the forward and reverse-complemented sequence. 140 | Uses `reduce_method` to take the mean or sum across the likelihoods at each 141 | position (default: `'mean'`). 142 | 143 | Returns a list of scalar scores corresponding to the reduced log-likelihoods for 144 | each sequence. 145 | """ 146 | scores = [] 147 | for i in tqdm(range(0, len(seqs), batch_size)): 148 | batch_seqs = seqs[i:i + batch_size] 149 | batch_seqs_rc = [ str(Seq(seq).reverse_complement()) for seq in batch_seqs ] 150 | 151 | batch_scores = _score_sequences( 152 | batch_seqs, 153 | model, 154 | tokenizer, 155 | prepend_bos=prepend_bos, 156 | reduce_method=reduce_method, 157 | device=device, 158 | ) 159 | batch_scores_rc = _score_sequences( 160 | batch_seqs_rc, 161 | model, 162 | tokenizer, 163 | prepend_bos=prepend_bos, 164 | reduce_method=reduce_method, 165 | device=device, 166 | ) 167 | batch_scores = (np.array(batch_scores) + np.array(batch_scores_rc)) * 0.5 168 | 169 | scores.extend(list(batch_scores)) 170 | return scores 171 | 172 | 173 | def positional_entropies( 174 | seqs: List[str], 175 | model: StripedHyena, 176 | tokenizer: object, 177 | prepend_bos: bool = False, 178 | device: str = 'cuda:0', 179 | ) -> List[np.array]: 180 | """ 181 | Computes the positional entropies for sequences in `seqs`. 182 | 183 | Returns a list of arrays, where each array is the same length as the 184 | corresponding sequence length. Each array contains the per-position entropy 185 | across the vocab dimension. 186 | """ 187 | input_ids, seq_lengths = prepare_batch(seqs, tokenizer, device=device, prepend_bos=prepend_bos) 188 | assert len(seq_lengths) == input_ids.shape[0] 189 | 190 | with torch.inference_mode(): 191 | logits, _ = model(input_ids) # (batch, length, vocab) 192 | 193 | softmax_logprobs = torch.log_softmax(logits, dim=-1) 194 | if prepend_bos: 195 | softmax_logprobs = softmax_logprobs[:, 1:, :] # Remove BOS entropy. 196 | 197 | entropies = -torch.sum(torch.exp(softmax_logprobs) * softmax_logprobs, dim=-1) 198 | entropies = entropies.float().cpu().numpy() 199 | 200 | sequence_entropies = [ 201 | entropies[idx][:seq_lengths[idx]] for idx in range(len(seq_lengths)) 202 | ] 203 | assert all( 204 | len(seq) == len(entropy) for seq, entropy in zip(seqs, sequence_entropies) 205 | ) 206 | 207 | return sequence_entropies 208 | 209 | 210 | def score_perplexity_along_sequence( 211 | model: StripedHyena, 212 | seq: str, 213 | reverse_complement: bool = True, 214 | entropy: bool = False 215 | ) -> np.array: 216 | ''' 217 | Get forward and reverse RC of dna sequence, pass both through model, and return average entropy or perplexity. 218 | ''' 219 | seq_rc = str(Seq(seq).reverse_complement()) 220 | 221 | entropy_forward = positional_entropies([seq], model.model, model.tokenizer)[0] 222 | 223 | if reverse_complement: 224 | entropy_reverse = positional_entropies([seq_rc], model.model, model.tokenizer)[0] 225 | entropy_reverse = entropy_reverse[::-1] 226 | 227 | average_entropy = (entropy_forward + entropy_reverse) / 2 228 | else: 229 | average_entropy = entropy_forward 230 | 231 | if entropy: 232 | return average_entropy 233 | else: 234 | return np.exp(average_entropy) -------------------------------------------------------------------------------- /evo2-backend/evo2/evo2/utils.py: -------------------------------------------------------------------------------- 1 | MODEL_NAMES = [ 2 | 'evo2_40b', 3 | 'evo2_7b', 4 | 'evo2_40b_base', 5 | 'evo2_7b_base', 6 | 'evo2_1b_base', 7 | ] 8 | 9 | HF_MODEL_NAME_MAP = { 10 | 'evo2_40b': 'arcinstitute/evo2_40b', 11 | 'evo2_7b': 'arcinstitute/evo2_7b', 12 | 'evo2_40b_base': 'arcinstitute/evo2_40b_base', 13 | 'evo2_7b_base': 'arcinstitute/evo2_7b_base', 14 | 'evo2_1b_base': 'arcinstitute/evo2_1b_base', 15 | } 16 | 17 | CONFIG_MAP = { 18 | 'evo2_7b': 'configs/evo2-7b-1m.yml', 19 | 'evo2_40b': 'configs/evo2-40b-1m.yml', 20 | 'evo2_7b_base': 'configs/evo2-7b-8k.yml', 21 | 'evo2_40b_base': 'configs/evo2-40b-8k.yml', 22 | 'evo2_1b_base': 'configs/evo2-1b-8k.yml', 23 | } 24 | 25 | 26 | def make_phylotag_from_gbif( 27 | species_name: str, 28 | ) -> dict: 29 | """ 30 | Returns phylogenetic tags for a given species, to get new tags not in the metadata 31 | """ 32 | 33 | import requests 34 | def get_taxonomy_from_gbif(species_name): 35 | url = f"https://api.gbif.org/v1/species/match?name={species_name}" 36 | response = requests.get(url) 37 | if response.status_code == 200: 38 | data = response.json() 39 | return { 40 | "kingdom": data.get("kingdom"), 41 | "phylum": data.get("phylum"), 42 | "class": data.get("class"), 43 | "order": data.get("order"), 44 | "family": data.get("family"), 45 | "genus": data.get("genus"), 46 | "species": data.get("species") 47 | } 48 | else: 49 | print(f"Could not find taxonomy for {species_name}") 50 | 51 | taxonomy = get_taxonomy_from_gbif(species_name) 52 | if taxonomy: 53 | phylo_tag = ( 54 | f'd__{taxonomy["kingdom"]};' 55 | f'p__{taxonomy["phylum"]};' 56 | f'c__{taxonomy["class"]};' 57 | f'o__{taxonomy["order"]};' 58 | f'f__{taxonomy["family"]};' 59 | f'g__{taxonomy["genus"]};' 60 | f's__{taxonomy["species"]}' 61 | ).upper() 62 | phylo_tag = '|'+phylo_tag+'|' 63 | else: 64 | print(f"Could not find taxonomy for {species_name}") 65 | 66 | return phylo_tag.upper() 67 | 68 | -------------------------------------------------------------------------------- /evo2-backend/evo2/evo2/version.py: -------------------------------------------------------------------------------- 1 | version = '0.1.0' 2 | -------------------------------------------------------------------------------- /evo2-backend/evo2/notebooks/brca1/41586_2018_461_MOESM3_ESM.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Andreaswt/variant-analysis-evo2/55741e31ae0bf3327cc97202be842f37e3fd7e6e/evo2-backend/evo2/notebooks/brca1/41586_2018_461_MOESM3_ESM.xlsx -------------------------------------------------------------------------------- /evo2-backend/evo2/notebooks/brca1/GRCh37.p13_chr17.fna.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Andreaswt/variant-analysis-evo2/55741e31ae0bf3327cc97202be842f37e3fd7e6e/evo2-backend/evo2/notebooks/brca1/GRCh37.p13_chr17.fna.gz -------------------------------------------------------------------------------- /evo2-backend/evo2/requirements.txt: -------------------------------------------------------------------------------- 1 | biopython 2 | huggingface_hub -------------------------------------------------------------------------------- /evo2-backend/evo2/setup.py: -------------------------------------------------------------------------------- 1 | import os 2 | import subprocess 3 | import sys 4 | from setuptools import setup, find_packages 5 | from setuptools.command.build import build as _build # use the top-level build command 6 | from setuptools.command.develop import develop as _develop 7 | from wheel.bdist_wheel import bdist_wheel as _bdist_wheel 8 | 9 | 10 | def update_submodules(): 11 | base_dir = os.path.dirname(__file__) 12 | # Check if the .git folder exists 13 | if os.path.exists(os.path.join(base_dir, '.git')): 14 | print("Updating git submodules...") 15 | # Run submodule init and update for 'vortex' 16 | subprocess.check_call(['git', 'submodule', 'init', 'vortex'], cwd=base_dir) 17 | subprocess.check_call(['git', 'submodule', 'update', 'vortex'], cwd=base_dir) 18 | else: 19 | print("No .git directory found; skipping submodule update.") 20 | 21 | def run_make_setup_full(): 22 | base_dir = os.path.dirname(__file__) 23 | vortex_dir = os.path.join(base_dir, 'vortex') 24 | original_dir = os.getcwd() 25 | 26 | # Ensure submodules are updated before running the Makefile 27 | update_submodules() 28 | 29 | # Ensure the Makefile uses the current Python interpreter 30 | env = os.environ.copy() 31 | env["PYTHON"] = sys.executable 32 | print(f"Running 'make setup-full' in {vortex_dir} with PYTHON={sys.executable} ...") 33 | 34 | try: 35 | os.chdir(vortex_dir) 36 | subprocess.check_call(['make', 'setup-full'], env=env) 37 | finally: 38 | os.chdir(original_dir) 39 | 40 | class CustomBuild(_build): 41 | def run(self): 42 | # Run egg_info to ensure metadata is available 43 | self.run_command('egg_info') 44 | # Update submodules and run the Makefile before building anything else 45 | run_make_setup_full() 46 | # Continue with the normal build process 47 | _build.run(self) 48 | 49 | class CustomDevelop(_develop): 50 | def run(self): 51 | update_submodules() 52 | run_make_setup_full() 53 | _develop.run(self) 54 | 55 | class CustomBDistWheel(_bdist_wheel): 56 | def run(self): 57 | self.run_command('egg_info') 58 | _bdist_wheel.run(self) 59 | 60 | def parse_requirements(filename): 61 | requirements = [] 62 | with open(filename) as f: 63 | for line in f: 64 | line = line.strip() 65 | if line and not line.startswith('#'): 66 | requirements.append(line) 67 | return requirements 68 | 69 | 70 | with open('evo2/version.py') as infile: 71 | exec(infile.read()) 72 | 73 | with open('README.md') as f: 74 | readme = f.read() 75 | 76 | requirements = parse_requirements("requirements.txt") 77 | 78 | setup( 79 | name='evo2', 80 | version=version, 81 | # Only include the evo2 package; the vortex submodule is used for build purposes. 82 | packages=find_packages(include=["evo2", "vortex/vortex"]), 83 | install_requires=requirements, 84 | cmdclass={ 85 | 'build': CustomBuild, 86 | 'develop': CustomDevelop, 87 | 'bdist_wheel': CustomBDistWheel, 88 | }, 89 | package_data={'evo2': ['evo2/configs/*.yml']}, 90 | include_package_data=True, 91 | python_requires='>=3.11', 92 | license="Apache-2.0", 93 | description='Genome modeling across all domains of life', 94 | long_description=readme, 95 | long_description_content_type='text/markdown', 96 | author='Team Evo 2', 97 | url='https://github.com/arcinstitute/evo2', 98 | ) 99 | -------------------------------------------------------------------------------- /evo2-backend/evo2/test/test_evo2.py: -------------------------------------------------------------------------------- 1 | import argparse 2 | import csv 3 | from pathlib import Path 4 | from typing import List, Optional, Union 5 | import numpy as np 6 | import torch 7 | import torch.nn.functional as F 8 | 9 | from evo2 import Evo2 10 | 11 | def read_prompts(input_file: Path) -> Union[List[List[str]]]: 12 | """Read prompts from input file.""" 13 | promptseqs: List[str] = [] 14 | 15 | with open(input_file, encoding='utf-8-sig', newline='') as csvfile: 16 | reader = csv.reader(csvfile) 17 | next(reader) # Skip header 18 | for row in reader: 19 | promptseqs.append(row[0]) 20 | 21 | return promptseqs 22 | 23 | def test_forward_pass(*, model, sequences): 24 | """Test model forward pass accuracy on sequences.""" 25 | losses = [] 26 | accuracies = [] 27 | 28 | for seq in sequences: 29 | # Convert sequence to model input format 30 | input_ids = torch.tensor(model.tokenizer.tokenize(seq), dtype=int).to('cuda:0') 31 | 32 | with torch.inference_mode(): 33 | # Forward pass 34 | logits, _ = model.model.forward(input_ids.unsqueeze(0)) 35 | 36 | # Calculate loss and accuracy 37 | target_ids = input_ids[1:] # Shift right for next token prediction 38 | pred_logits = logits[0, :-1, :] 39 | 40 | # Cross entropy loss 41 | loss = F.cross_entropy( 42 | pred_logits, 43 | target_ids.long() 44 | ) 45 | 46 | # Get predictions 47 | pred_tokens = torch.argmax(pred_logits, dim=-1) 48 | 49 | # Calculate accuracy 50 | accuracy = (target_ids == pred_tokens).float().mean().item() 51 | 52 | losses.append(loss.item()) 53 | accuracies.append(accuracy) 54 | 55 | # Print sequence results 56 | print("\nSequence Results:") 57 | for i, (loss, acc) in enumerate(zip(losses, accuracies)): 58 | print(f"Sequence {i+1}: Loss = {loss:.3f}, Accuracy = {acc:.2%}") 59 | if acc < 0.5: 60 | print("WARNING: Forward pass accuracy is below 50% on test sequence. Model may be broken, trained models should have >80% accuracy.") 61 | 62 | return accuracies, losses 63 | 64 | def main(): 65 | """ 66 | Test sequence prediction accuracy using Evo2 models. 67 | Expected results for forward pass: 68 | - Evo 2 40B 1m: Loss ~0.216, Accuracy ~91.67% 69 | - Evo 2 7B 1m: Loss ~0.348, Accuracy ~86.35% 70 | - Evo 2 1B base: Loss ~0.502, Accuracy ~79.56% 71 | """ 72 | parser = argparse.ArgumentParser(description="Test Evo2 Model Forward Pass") 73 | parser.add_argument("--model_name", choices=['evo2_7b', 'evo2_40b', 'evo2_7b_base', 'evo2_40b_base', 'evo2_1b_base'], 74 | default='evo2_7b', 75 | help="Model to test") 76 | 77 | args = parser.parse_args() 78 | 79 | # Set random seeds 80 | torch.manual_seed(1) 81 | torch.cuda.manual_seed(1) 82 | 83 | # Initialize model 84 | model = Evo2(args.model_name) 85 | 86 | # Read sequences 87 | sequences = read_prompts('vortex/test/data/prompts.csv') 88 | 89 | # Test forward pass 90 | accuracies, losses = test_forward_pass( 91 | model=model, 92 | sequences=sequences 93 | ) 94 | 95 | # Calculate and validate results 96 | mean_loss = np.mean(losses) 97 | mean_accuracy = np.mean(accuracies) * 100 98 | print(f"\nMean Loss: {mean_loss:.3f}") 99 | print(f"Mean Accuracy: {mean_accuracy:.3f}%") 100 | 101 | # Validate against expected scores 102 | eps = 1e-3 # epsilon for float comparison 103 | expected_metrics = { 104 | 'evo2_40b': {'loss': 0.2159424, 'acc': 91.673}, 105 | 'evo2_7b': {'loss': 0.3476563, 'acc': 86.346}, 106 | 'evo2_40b_base': {'loss': 0.2149658, 'acc': 91.741}, 107 | 'evo2_7b_base': {'loss': 0.3520508, 'acc': 85.921}, 108 | 'evo2_1b_base': {'loss': 0.501953125, 'acc': 79.556} 109 | } 110 | 111 | expected = expected_metrics[args.model_name] 112 | if abs(mean_loss - expected['loss']) < eps: 113 | print(f"\nTest Passed! Loss matches expected {expected['loss']:.3f}") 114 | else: 115 | print(f"\nTest Failed: Expected loss {expected['loss']:.3f}, got {mean_loss:.3f}") 116 | 117 | if __name__ == "__main__": 118 | main() -------------------------------------------------------------------------------- /evo2-backend/evo2/test/test_evo2_generation.py: -------------------------------------------------------------------------------- 1 | import argparse 2 | import csv 3 | from pathlib import Path 4 | from typing import List, Optional, Union 5 | import numpy as np 6 | import torch 7 | 8 | from evo2 import Evo2 9 | 10 | def read_prompts(input_file: Path) -> Union[List[List[str]]]: 11 | """Read prompts from input file.""" 12 | promptseqs: List[str] = [] 13 | 14 | with open(input_file, encoding='utf-8-sig', newline='') as csvfile: 15 | reader = csv.reader(csvfile) 16 | next(reader) # Skip header 17 | for row in reader: 18 | promptseqs.append(row[0]) 19 | 20 | return promptseqs 21 | 22 | def mid_point_split(*, seq, num_tokens): 23 | """Split sequence at midpoint for prompt and target.""" 24 | mid_point = 2*(len(seq)//4) 25 | prompt = seq[:mid_point] 26 | target = seq[mid_point:mid_point+num_tokens] 27 | return prompt, target 28 | 29 | def calculate_sequence_identity(seq1: str, seq2: str) -> Optional[float]: 30 | """Calculate sequence identity between two sequences through direct comparison.""" 31 | if not seq1 or not seq2: 32 | return None 33 | 34 | min_length = min(len(seq1), len(seq2)) 35 | matches = sum(a == b for a, b in zip(seq1[:min_length], seq2[:min_length])) 36 | return (matches / min_length) * 100 37 | 38 | def generate_and_score(*, sequences, model, generations_per_prompt=5, n_tokens=500, 39 | temperature=1.0, top_k=1, top_p=1.0): 40 | """Prompt with first half, generate and score on 2nd half.""" 41 | scores = [] 42 | prompts = [] 43 | targets = [] 44 | 45 | # Prepare all prompts and targets 46 | for seq in sequences: 47 | prompt, target = mid_point_split(seq=seq, num_tokens=n_tokens) 48 | prompts.extend([prompt] * generations_per_prompt) 49 | targets.extend([target] * generations_per_prompt) 50 | 51 | for i in range(len(prompts)): 52 | prompt = prompts[i] 53 | target = targets[i] 54 | 55 | with torch.inference_mode(): 56 | generated = model.generate( 57 | prompt_seqs=[prompt], 58 | n_tokens=n_tokens, 59 | temperature=temperature, 60 | top_k=top_k, 61 | top_p=top_p, 62 | ) 63 | 64 | decoded_seq = generated.sequences[0] # Assuming generate returns list of sequences 65 | score = calculate_sequence_identity(decoded_seq, target) 66 | scores.append(score) 67 | 68 | # Reshape scores to group by original sequence 69 | reshaped_scores = [scores[i:i + generations_per_prompt] 70 | for i in range(0, len(scores), generations_per_prompt)] 71 | 72 | return reshaped_scores 73 | 74 | def main(): 75 | """ 76 | Test sequence generation and scoring using the evo2 models 77 | Expected results (direct comparison w/o alignment): 78 | - Evo 2 40B 1m: 91.15% 79 | - Evo 2 7B 1m: 89.25% 80 | - Evo 2 1B base: 68.0% 81 | """ 82 | parser = argparse.ArgumentParser(description="Test Evo2 Model Generation") 83 | parser.add_argument("--model_name", choices=['evo2_7b', 'evo2_40b', 'evo2_1b_base'], default='evo2_7b', 84 | help="Model to test (supports evo2_7b, evo2_40b, evo2_1b_base)") 85 | 86 | args = parser.parse_args() 87 | 88 | # Set random seeds 89 | torch.manual_seed(1) 90 | torch.cuda.manual_seed(1) 91 | 92 | model = Evo2(args.model_name) 93 | 94 | # Test parameters: greedy sampling of 500 tokens 95 | test_params = { 96 | 'n_tokens': 500, 97 | 'temperature': 1.0, 98 | 'top_k': 1, 99 | 'top_p': 1.0, 100 | 'generations_per_prompt': 1, 101 | } 102 | 103 | # Read and process sequences 104 | sequences = read_prompts('vortex/test/data/prompts.csv') 105 | scores = generate_and_score( 106 | sequences=sequences, 107 | model=model, 108 | **test_params 109 | ) 110 | 111 | # Calculate and validate results 112 | mean_score = np.mean(scores) 113 | print("\nTest Results:") 114 | print("% Matching Nucleotides:", mean_score) 115 | 116 | # Validate against expected scores 117 | eps = 3 # large epsilon for direct comparison, since there are numeric differences by versions 118 | expected_scores = { 119 | 'evo2_40b': 91.15, 120 | 'evo2_7b': 89.25, 121 | 'evo2_1b_base': 68.0 122 | } 123 | 124 | expected_score = expected_scores[args.model_name] 125 | if abs(mean_score - expected_score) < eps: 126 | print(f"\nTest Passed! Score matches expected {expected_score}%") 127 | else: 128 | print(f"\nTest Failed: Expected {expected_score}%, got {mean_score}%") 129 | 130 | if __name__ == "__main__": 131 | main() -------------------------------------------------------------------------------- /evo2-backend/main.py: -------------------------------------------------------------------------------- 1 | import sys 2 | 3 | import modal 4 | 5 | from pydantic import BaseModel 6 | 7 | class VariantRequest(BaseModel): 8 | variant_position: int 9 | alternative: str 10 | genome: str 11 | chromosome: str 12 | 13 | evo2_image = ( 14 | modal.Image.from_registry( 15 | "nvidia/cuda:12.4.0-devel-ubuntu22.04", add_python="3.12" 16 | ) 17 | .apt_install( 18 | ["build-essential", "cmake", "ninja-build", 19 | "libcudnn8", "libcudnn8-dev", "git", "gcc", "g++"] 20 | ) 21 | .env({ 22 | "CC": "/usr/bin/gcc", 23 | "CXX": "/usr/bin/g++", 24 | }) 25 | .run_commands("git clone --recurse-submodules https://github.com/ArcInstitute/evo2.git && cd evo2 && pip install .") 26 | .run_commands("pip uninstall -y transformer-engine transformer_engine") 27 | .run_commands("pip install 'transformer_engine[pytorch]==1.13' --no-build-isolation") 28 | .pip_install_from_requirements("requirements.txt") 29 | ) 30 | 31 | app = modal.App("variant-analysis-evo2", image=evo2_image) 32 | 33 | volume = modal.Volume.from_name("hf_cache", create_if_missing=True) 34 | mount_path = "/root/.cache/huggingface" 35 | 36 | 37 | @app.function(gpu="H100", volumes={mount_path: volume}, timeout=1000) 38 | def run_brca1_analysis(): 39 | import base64 40 | from io import BytesIO 41 | from Bio import SeqIO 42 | import gzip 43 | import matplotlib.pyplot as plt 44 | import numpy as np 45 | import pandas as pd 46 | import os 47 | import seaborn as sns 48 | from sklearn.metrics import roc_auc_score, roc_curve 49 | 50 | from evo2 import Evo2 51 | 52 | WINDOW_SIZE = 8192 53 | 54 | print("Loading evo2 model...") 55 | model = Evo2('evo2_7b') 56 | print("Evo2 model loaded") 57 | 58 | brca1_df = pd.read_excel( 59 | '/evo2/notebooks/brca1/41586_2018_461_MOESM3_ESM.xlsx', 60 | header=2, 61 | ) 62 | brca1_df = brca1_df[[ 63 | 'chromosome', 'position (hg19)', 'reference', 'alt', 'function.score.mean', 'func.class', 64 | ]] 65 | 66 | brca1_df.rename(columns={ 67 | 'chromosome': 'chrom', 68 | 'position (hg19)': 'pos', 69 | 'reference': 'ref', 70 | 'alt': 'alt', 71 | 'function.score.mean': 'score', 72 | 'func.class': 'class', 73 | }, inplace=True) 74 | 75 | # Convert to two-class system 76 | brca1_df['class'] = brca1_df['class'].replace(['FUNC', 'INT'], 'FUNC/INT') 77 | 78 | with gzip.open('/evo2/notebooks/brca1/GRCh37.p13_chr17.fna.gz', "rt") as handle: 79 | for record in SeqIO.parse(handle, "fasta"): 80 | seq_chr17 = str(record.seq) 81 | break 82 | 83 | # Build mappings of unique reference sequences 84 | ref_seqs = [] 85 | ref_seq_to_index = {} 86 | 87 | # Parse sequences and store indexes 88 | ref_seq_indexes = [] 89 | var_seqs = [] 90 | 91 | brca1_subset = brca1_df.iloc[:500].copy() 92 | 93 | for _, row in brca1_subset.iterrows(): 94 | p = row["pos"] - 1 # Convert to 0-indexed position 95 | full_seq = seq_chr17 96 | 97 | ref_seq_start = max(0, p - WINDOW_SIZE//2) 98 | ref_seq_end = min(len(full_seq), p + WINDOW_SIZE//2) 99 | ref_seq = seq_chr17[ref_seq_start:ref_seq_end] 100 | snv_pos_in_ref = min(WINDOW_SIZE//2, p) 101 | var_seq = ref_seq[:snv_pos_in_ref] + \ 102 | row["alt"] + ref_seq[snv_pos_in_ref+1:] 103 | 104 | # Get or create index for reference sequence 105 | if ref_seq not in ref_seq_to_index: 106 | ref_seq_to_index[ref_seq] = len(ref_seqs) 107 | ref_seqs.append(ref_seq) 108 | 109 | ref_seq_indexes.append(ref_seq_to_index[ref_seq]) 110 | var_seqs.append(var_seq) 111 | 112 | ref_seq_indexes = np.array(ref_seq_indexes) 113 | 114 | print( 115 | f'Scoring likelihoods of {len(ref_seqs)} reference sequences with Evo 2...') 116 | ref_scores = model.score_sequences(ref_seqs) 117 | 118 | print( 119 | f'Scoring likelihoods of {len(var_seqs)} variant sequences with Evo 2...') 120 | var_scores = model.score_sequences(var_seqs) 121 | 122 | # Subtract score of corresponding reference sequences from scores of variant sequences 123 | delta_scores = np.array(var_scores) - np.array(ref_scores)[ref_seq_indexes] 124 | 125 | # Add delta scores to dataframe 126 | brca1_subset[f'evo2_delta_score'] = delta_scores 127 | 128 | y_true = (brca1_subset['class'] == 'LOF') 129 | auroc = roc_auc_score(y_true, -brca1_subset['evo2_delta_score']) 130 | 131 | # --- Calculate threshold START 132 | y_true = (brca1_subset["class"] == "LOF") 133 | 134 | fpr, tpr, thresholds = roc_curve(y_true, -brca1_subset["evo2_delta_score"]) 135 | 136 | optimal_idx = (tpr - fpr).argmax() 137 | 138 | optimal_threshold = -thresholds[optimal_idx] 139 | 140 | lof_scores = brca1_subset.loc[brca1_subset["class"] 141 | == "LOF", "evo2_delta_score"] 142 | func_scores = brca1_subset.loc[brca1_subset["class"] 143 | == "FUNC/INT", "evo2_delta_score"] 144 | 145 | lof_std = lof_scores.std() 146 | func_std = func_scores.std() 147 | 148 | confidence_params = { 149 | "threshold": optimal_threshold, 150 | "lof_std": lof_std, 151 | "func_std": func_std 152 | } 153 | 154 | print("Confidence params:", confidence_params) 155 | 156 | # --- Calculate threshold END 157 | 158 | plt.figure(figsize=(4, 2)) 159 | 160 | # Plot stripplot of distributions 161 | p = sns.stripplot( 162 | data=brca1_subset, 163 | x='evo2_delta_score', 164 | y='class', 165 | hue='class', 166 | order=['FUNC/INT', 'LOF'], 167 | palette=['#777777', 'C3'], 168 | size=2, 169 | jitter=0.3, 170 | ) 171 | 172 | # Mark medians from each distribution 173 | sns.boxplot(showmeans=True, 174 | meanline=True, 175 | meanprops={'visible': False}, 176 | medianprops={'color': 'k', 'ls': '-', 'lw': 2}, 177 | whiskerprops={'visible': False}, 178 | zorder=10, 179 | x="evo2_delta_score", 180 | y="class", 181 | data=brca1_subset, 182 | showfliers=False, 183 | showbox=False, 184 | showcaps=False, 185 | ax=p) 186 | plt.xlabel('Delta likelihood score, Evo 2') 187 | plt.ylabel('BRCA1 SNV class') 188 | plt.tight_layout() 189 | 190 | buffer = BytesIO() 191 | plt.savefig(buffer, format="png") 192 | buffer.seek(0) 193 | plot_data = base64.b64encode(buffer.getvalue()).decode("utf-8") 194 | 195 | return {'variants': brca1_subset.to_dict(orient="records"), "plot": plot_data, "auroc": auroc} 196 | 197 | 198 | @app.function() 199 | def brca1_example(): 200 | import base64 201 | from io import BytesIO 202 | import matplotlib.pyplot as plt 203 | import matplotlib.image as mpimg 204 | 205 | print("Running BRCA1 variant analysis with Evo2...") 206 | 207 | # Run inference 208 | result = run_brca1_analysis.remote() 209 | 210 | if "plot" in result: 211 | plot_data = base64.b64decode(result["plot"]) 212 | with open("brca1_analysis_plot.png", "wb") as f: 213 | f.write(plot_data) 214 | 215 | img = mpimg.imread(BytesIO(plot_data)) 216 | plt.figure(figsize=(10, 5)) 217 | plt.imshow(img) 218 | plt.axis("off") 219 | plt.show() 220 | 221 | 222 | def get_genome_sequence(position, genome: str, chromosome: str, window_size=8192): 223 | import requests 224 | 225 | half_window = window_size // 2 226 | start = max(0, position - 1 - half_window) 227 | end = position - 1 + half_window + 1 228 | 229 | print( 230 | f"Fetching {window_size}bp window around position {position} from UCSC API..") 231 | print(f"Coordinates: {chromosome}:{start}-{end} ({genome})") 232 | 233 | api_url = f"https://api.genome.ucsc.edu/getData/sequence?genome={genome};chrom={chromosome};start={start};end={end}" 234 | response = requests.get(api_url) 235 | 236 | if response.status_code != 200: 237 | raise Exception( 238 | f"Failed to fetch genome sequence from UCSC API: {response.status_code}") 239 | 240 | genome_data = response.json() 241 | 242 | if "dna" not in genome_data: 243 | error = genome_data.get("error", "Unknown error") 244 | raise Exception(f"UCSC API errpr: {error}") 245 | 246 | sequence = genome_data.get("dna", "").upper() 247 | expected_length = end - start 248 | if len(sequence) != expected_length: 249 | print( 250 | f"Warning: received sequence length ({len(sequence)}) differs from expected ({expected_length})") 251 | 252 | print( 253 | f"Loaded reference genome sequence window (length: {len(sequence)} bases)") 254 | 255 | return sequence, start 256 | 257 | 258 | def analyze_variant(relative_pos_in_window, reference, alternative, window_seq, model): 259 | var_seq = window_seq[:relative_pos_in_window] + \ 260 | alternative + window_seq[relative_pos_in_window+1:] 261 | 262 | ref_score = model.score_sequences([window_seq])[0] 263 | var_score = model.score_sequences([var_seq])[0] 264 | 265 | delta_score = var_score - ref_score 266 | 267 | threshold = -0.0009178519 268 | lof_std = 0.0015140239 269 | func_std = 0.0009016589 270 | 271 | if delta_score < threshold: 272 | prediction = "Likely pathogenic" 273 | confidence = min(1.0, abs(delta_score - threshold) / lof_std) 274 | else: 275 | prediction = "Likely benign" 276 | confidence = min(1.0, abs(delta_score - threshold) / func_std) 277 | 278 | return { 279 | "reference": reference, 280 | "alternative": alternative, 281 | "delta_score": float(delta_score), 282 | "prediction": prediction, 283 | "classification_confidence": float(confidence) 284 | } 285 | 286 | 287 | @app.cls(gpu="H100", volumes={mount_path: volume}, max_containers=3, retries=2, scaledown_window=120) 288 | class Evo2Model: 289 | @modal.enter() 290 | def load_evo2_model(self): 291 | from evo2 import Evo2 292 | print("Loading evo2 model...") 293 | self.model = Evo2('evo2_7b') 294 | print("Evo2 model loaded") 295 | 296 | # @modal.method() 297 | @modal.fastapi_endpoint(method="POST") 298 | def analyze_single_variant(self, request: VariantRequest): 299 | variant_position = request.variant_position 300 | alternative = request.alternative 301 | genome = request.genome 302 | chromosome = request.chromosome 303 | 304 | print("Genome:", genome) 305 | print("Chromosome:", chromosome) 306 | print("Variant position:", variant_position) 307 | print("Variant alternative:", alternative) 308 | 309 | WINDOW_SIZE = 8192 310 | 311 | window_seq, seq_start = get_genome_sequence( 312 | position=variant_position, 313 | genome=genome, 314 | chromosome=chromosome, 315 | window_size=WINDOW_SIZE 316 | ) 317 | 318 | print(f"Fetched genome seauence window, first 100: {window_seq[:100]}") 319 | 320 | relative_pos = variant_position - 1 - seq_start 321 | print(f"Relative position within window: {relative_pos}") 322 | 323 | if relative_pos < 0 or relative_pos >= len(window_seq): 324 | raise ValueError( 325 | f"Variant position {variant_position} is outside the fetched window (start={seq_start+1}, end={seq_start+len(window_seq)})") 326 | 327 | reference = window_seq[relative_pos] 328 | print("Reference is: " + reference) 329 | 330 | # Analyze the variant 331 | result = analyze_variant( 332 | relative_pos_in_window=relative_pos, 333 | reference=reference, 334 | alternative=alternative, 335 | window_seq=window_seq, 336 | model=self.model 337 | ) 338 | 339 | result["position"] = variant_position 340 | 341 | return result 342 | 343 | 344 | @app.local_entrypoint() 345 | def main(): 346 | # Example of how you'd call the deployed Modal Function from your client 347 | import requests 348 | import json # brca1_example.remote() 349 | 350 | evo2Model = Evo2Model() 351 | 352 | url = evo2Model.analyze_single_variant.web_url 353 | 354 | payload = { 355 | "variant_position": 43119628, 356 | "alternative": "G", 357 | "genome": "hg38", 358 | "chromosome": "chr17" 359 | } 360 | 361 | headers = { 362 | "Content-Type": "application/json" 363 | } 364 | 365 | response = requests.post(url, json=payload, headers=headers) 366 | response.raise_for_status() 367 | result = response.json() 368 | print(result) 369 | -------------------------------------------------------------------------------- /evo2-backend/requirements.txt: -------------------------------------------------------------------------------- 1 | fastapi[standard] 2 | modal 3 | matplotlib 4 | pandas 5 | seaborn 6 | scikit-learn 7 | openpyxl -------------------------------------------------------------------------------- /evo2-frontend/.env.example: -------------------------------------------------------------------------------- 1 | # Since the ".env" file is gitignored, you can use the ".env.example" file to 2 | # build a new ".env" file when you clone the repo. Keep this file up-to-date 3 | # when you add new variables to `.env`. 4 | 5 | # This file will be committed to version control, so make sure not to have any 6 | # secrets in it. If you are cloning this repo, create a copy of this file named 7 | # ".env" and populate it with your secrets. 8 | 9 | # When adding additional environment variables, the schema in "/src/env.js" 10 | # should be updated accordingly. 11 | 12 | # Example: 13 | # SERVERVAR="foo" 14 | # NEXT_PUBLIC_CLIENTVAR="bar" 15 | -------------------------------------------------------------------------------- /evo2-frontend/.gitignore: -------------------------------------------------------------------------------- 1 | # See https://help.github.com/articles/ignoring-files/ for more about ignoring files. 2 | 3 | # dependencies 4 | /node_modules 5 | /.pnp 6 | .pnp.js 7 | 8 | # testing 9 | /coverage 10 | 11 | # database 12 | /prisma/db.sqlite 13 | /prisma/db.sqlite-journal 14 | db.sqlite 15 | 16 | # next.js 17 | /.next/ 18 | /out/ 19 | next-env.d.ts 20 | 21 | # production 22 | /build 23 | 24 | # misc 25 | .DS_Store 26 | *.pem 27 | 28 | # debug 29 | npm-debug.log* 30 | yarn-debug.log* 31 | yarn-error.log* 32 | .pnpm-debug.log* 33 | 34 | # local env files 35 | # do not commit any .env files to git, except for the .env.example file. https://create.t3.gg/en/usage/env-variables#using-environment-variables 36 | .env 37 | .env*.local 38 | 39 | # vercel 40 | .vercel 41 | 42 | # typescript 43 | *.tsbuildinfo 44 | 45 | # idea files 46 | .idea -------------------------------------------------------------------------------- /evo2-frontend/README.md: -------------------------------------------------------------------------------- 1 | # Create T3 App 2 | 3 | This is a [T3 Stack](https://create.t3.gg/) project bootstrapped with `create-t3-app`. 4 | 5 | ## What's next? How do I make an app with this? 6 | 7 | We try to keep this project as simple as possible, so you can start with just the scaffolding we set up for you, and add additional things later when they become necessary. 8 | 9 | If you are not familiar with the different technologies used in this project, please refer to the respective docs. If you still are in the wind, please join our [Discord](https://t3.gg/discord) and ask for help. 10 | 11 | - [Next.js](https://nextjs.org) 12 | - [NextAuth.js](https://next-auth.js.org) 13 | - [Prisma](https://prisma.io) 14 | - [Drizzle](https://orm.drizzle.team) 15 | - [Tailwind CSS](https://tailwindcss.com) 16 | - [tRPC](https://trpc.io) 17 | 18 | ## Learn More 19 | 20 | To learn more about the [T3 Stack](https://create.t3.gg/), take a look at the following resources: 21 | 22 | - [Documentation](https://create.t3.gg/) 23 | - [Learn the T3 Stack](https://create.t3.gg/en/faq#what-learning-resources-are-currently-available) — Check out these awesome tutorials 24 | 25 | You can check out the [create-t3-app GitHub repository](https://github.com/t3-oss/create-t3-app) — your feedback and contributions are welcome! 26 | 27 | ## How do I deploy this? 28 | 29 | Follow our deployment guides for [Vercel](https://create.t3.gg/en/deployment/vercel), [Netlify](https://create.t3.gg/en/deployment/netlify) and [Docker](https://create.t3.gg/en/deployment/docker) for more information. 30 | -------------------------------------------------------------------------------- /evo2-frontend/components.json: -------------------------------------------------------------------------------- 1 | { 2 | "$schema": "https://ui.shadcn.com/schema.json", 3 | "style": "new-york", 4 | "rsc": true, 5 | "tsx": true, 6 | "tailwind": { 7 | "config": "", 8 | "css": "src/styles/globals.css", 9 | "baseColor": "neutral", 10 | "cssVariables": true, 11 | "prefix": "" 12 | }, 13 | "aliases": { 14 | "components": "~/components", 15 | "utils": "~/lib/utils", 16 | "ui": "~/components/ui", 17 | "lib": "~/lib", 18 | "hooks": "~/hooks" 19 | }, 20 | "iconLibrary": "lucide" 21 | } -------------------------------------------------------------------------------- /evo2-frontend/eslint.config.js: -------------------------------------------------------------------------------- 1 | import { FlatCompat } from "@eslint/eslintrc"; 2 | import tseslint from "typescript-eslint"; 3 | 4 | const compat = new FlatCompat({ 5 | baseDirectory: import.meta.dirname, 6 | }); 7 | 8 | export default tseslint.config( 9 | { 10 | ignores: [".next"], 11 | }, 12 | ...compat.extends("next/core-web-vitals"), 13 | { 14 | files: ["**/*.ts", "**/*.tsx"], 15 | extends: [ 16 | ...tseslint.configs.recommended, 17 | ...tseslint.configs.recommendedTypeChecked, 18 | ...tseslint.configs.stylisticTypeChecked, 19 | ], 20 | rules: { 21 | "@typescript-eslint/array-type": "off", 22 | "@typescript-eslint/consistent-type-definitions": "off", 23 | "@typescript-eslint/consistent-type-imports": [ 24 | "warn", 25 | { prefer: "type-imports", fixStyle: "inline-type-imports" }, 26 | ], 27 | "@typescript-eslint/no-unused-vars": [ 28 | "warn", 29 | { argsIgnorePattern: "^_" }, 30 | ], 31 | "@typescript-eslint/require-await": "off", 32 | "@typescript-eslint/no-misused-promises": [ 33 | "error", 34 | { checksVoidReturn: { attributes: false } }, 35 | ], 36 | }, 37 | }, 38 | { 39 | linterOptions: { 40 | reportUnusedDisableDirectives: true, 41 | }, 42 | languageOptions: { 43 | parserOptions: { 44 | projectService: true, 45 | }, 46 | }, 47 | }, 48 | ); 49 | -------------------------------------------------------------------------------- /evo2-frontend/next.config.js: -------------------------------------------------------------------------------- 1 | /** 2 | * Run `build` or `dev` with `SKIP_ENV_VALIDATION` to skip env validation. This is especially useful 3 | * for Docker builds. 4 | */ 5 | import "./src/env.js"; 6 | 7 | /** @type {import("next").NextConfig} */ 8 | const config = { 9 | reactStrictMode: false, 10 | }; 11 | 12 | export default config; 13 | -------------------------------------------------------------------------------- /evo2-frontend/package.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "variant-analysis-evo2-frontend", 3 | "version": "0.1.0", 4 | "private": true, 5 | "type": "module", 6 | "scripts": { 7 | "build": "next build", 8 | "check": "next lint && tsc --noEmit", 9 | "dev": "next dev --turbo", 10 | "format:check": "prettier --check \"**/*.{ts,tsx,js,jsx,mdx}\" --cache", 11 | "format:write": "prettier --write \"**/*.{ts,tsx,js,jsx,mdx}\" --cache", 12 | "lint": "next lint", 13 | "lint:fix": "next lint --fix", 14 | "preview": "next build && next start", 15 | "start": "next start", 16 | "typecheck": "tsc --noEmit" 17 | }, 18 | "dependencies": { 19 | "@radix-ui/react-select": "^2.2.2", 20 | "@radix-ui/react-slot": "^1.2.0", 21 | "@radix-ui/react-tabs": "^1.1.8", 22 | "@t3-oss/env-nextjs": "^0.12.0", 23 | "class-variance-authority": "^0.7.1", 24 | "clsx": "^2.1.1", 25 | "lucide-react": "^0.501.0", 26 | "next": "^15.2.3", 27 | "react": "^19.0.0", 28 | "react-dom": "^19.0.0", 29 | "tailwind-merge": "^3.2.0", 30 | "zod": "^3.24.2" 31 | }, 32 | "devDependencies": { 33 | "@eslint/eslintrc": "^3.3.1", 34 | "@tailwindcss/postcss": "^4.0.15", 35 | "@types/node": "^20.14.10", 36 | "@types/react": "^19.0.0", 37 | "@types/react-dom": "^19.0.0", 38 | "eslint": "^9.23.0", 39 | "eslint-config-next": "^15.2.3", 40 | "postcss": "^8.5.3", 41 | "prettier": "^3.5.3", 42 | "prettier-plugin-tailwindcss": "^0.6.11", 43 | "tailwindcss": "^4.0.15", 44 | "tw-animate-css": "^1.2.5", 45 | "typescript": "^5.8.2", 46 | "typescript-eslint": "^8.27.0" 47 | }, 48 | "ct3aMetadata": { 49 | "initVersion": "7.39.3" 50 | }, 51 | "packageManager": "npm@10.2.4" 52 | } 53 | -------------------------------------------------------------------------------- /evo2-frontend/postcss.config.js: -------------------------------------------------------------------------------- 1 | export default { 2 | plugins: { 3 | "@tailwindcss/postcss": {}, 4 | }, 5 | }; 6 | -------------------------------------------------------------------------------- /evo2-frontend/prettier.config.js: -------------------------------------------------------------------------------- 1 | /** @type {import('prettier').Config & import('prettier-plugin-tailwindcss').PluginOptions} */ 2 | export default { 3 | plugins: ["prettier-plugin-tailwindcss"], 4 | }; 5 | -------------------------------------------------------------------------------- /evo2-frontend/public/favicon.ico: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Andreaswt/variant-analysis-evo2/55741e31ae0bf3327cc97202be842f37e3fd7e6e/evo2-frontend/public/favicon.ico -------------------------------------------------------------------------------- /evo2-frontend/src/app/layout.tsx: -------------------------------------------------------------------------------- 1 | import "~/styles/globals.css"; 2 | 3 | import { type Metadata } from "next"; 4 | import { Geist } from "next/font/google"; 5 | 6 | export const metadata: Metadata = { 7 | title: "Evo2 Variant Analysis", 8 | description: "Evo2 Variant Analysis", 9 | icons: [{ rel: "icon", url: "/favicon.ico" }], 10 | }; 11 | 12 | const geist = Geist({ 13 | subsets: ["latin"], 14 | variable: "--font-geist-sans", 15 | }); 16 | 17 | export default function RootLayout({ 18 | children, 19 | }: Readonly<{ children: React.ReactNode }>) { 20 | return ( 21 | 22 | {children} 23 | 24 | ); 25 | } 26 | -------------------------------------------------------------------------------- /evo2-frontend/src/app/page.tsx: -------------------------------------------------------------------------------- 1 | "use client"; 2 | 3 | import { Clapperboard, Search, SearchCodeIcon } from "lucide-react"; 4 | import { useEffect, useState } from "react"; 5 | import GeneViewer from "~/components/gene-viewer"; 6 | import { Button } from "~/components/ui/button"; 7 | import { Card, CardContent, CardHeader, CardTitle } from "~/components/ui/card"; 8 | import { Input } from "~/components/ui/input"; 9 | import { 10 | Select, 11 | SelectContent, 12 | SelectItem, 13 | SelectTrigger, 14 | SelectValue, 15 | } from "~/components/ui/select"; 16 | import { 17 | Table, 18 | TableBody, 19 | TableCell, 20 | TableHead, 21 | TableHeader, 22 | TableRow, 23 | } from "~/components/ui/table"; 24 | import { Tabs, TabsContent, TabsList, TabsTrigger } from "~/components/ui/tabs"; 25 | import { 26 | type ChromosomeFromSeach, 27 | type GeneFromSearch, 28 | type GenomeAssemblyFromSearch, 29 | getAvailableGenomes, 30 | getGenomeChromosomes, 31 | searchGenes, 32 | } from "~/utils/genome-api"; 33 | 34 | type Mode = "browse" | "search"; 35 | 36 | export default function HomePage() { 37 | const [genomes, setGenomes] = useState([]); 38 | const [selectedGenome, setSelectedGenome] = useState("hg38"); 39 | const [chromosomes, setChromosomes] = useState([]); 40 | const [selectedChromosome, setSelectedChromosome] = useState("chr1"); 41 | const [selectedGene, setSelectedGene] = useState(null); 42 | const [searchQuery, setSearchQuery] = useState(""); 43 | const [searchResults, setSearchResults] = useState([]); 44 | const [isLoading, setIsLoading] = useState(false); 45 | const [error, setError] = useState(null); 46 | const [mode, setMode] = useState("search"); 47 | 48 | useEffect(() => { 49 | const fetchGenomes = async () => { 50 | try { 51 | setIsLoading(true); 52 | const data = await getAvailableGenomes(); 53 | if (data.genomes && data.genomes["Human"]) { 54 | setGenomes(data.genomes["Human"]); 55 | } 56 | } catch (err) { 57 | setError("Failed to load genome data"); 58 | } finally { 59 | setIsLoading(false); 60 | } 61 | }; 62 | fetchGenomes(); 63 | }, []); 64 | 65 | useEffect(() => { 66 | const fetchChromosomes = async () => { 67 | try { 68 | setIsLoading(true); 69 | const data = await getGenomeChromosomes(selectedGenome); 70 | setChromosomes(data.chromosomes); 71 | console.log(data.chromosomes); 72 | if (data.chromosomes.length > 0) { 73 | setSelectedChromosome(data.chromosomes[0]!.name); 74 | } 75 | } catch (err) { 76 | setError("Failed to load chromosome data"); 77 | } finally { 78 | setIsLoading(false); 79 | } 80 | }; 81 | fetchChromosomes(); 82 | }, [selectedGenome]); 83 | 84 | const performGeneSearch = async ( 85 | query: string, 86 | genome: string, 87 | filterFn?: (gene: GeneFromSearch) => boolean, 88 | ) => { 89 | try { 90 | setIsLoading(true); 91 | const data = await searchGenes(query, genome); 92 | const results = filterFn ? data.results.filter(filterFn) : data.results; 93 | 94 | setSearchResults(results); 95 | } catch (err) { 96 | setError("Faield to search genes"); 97 | } finally { 98 | setIsLoading(false); 99 | } 100 | }; 101 | 102 | useEffect(() => { 103 | if (!selectedChromosome || mode !== "browse") return; 104 | performGeneSearch( 105 | selectedChromosome, 106 | selectedGenome, 107 | (gene: GeneFromSearch) => gene.chrom === selectedChromosome, 108 | ); 109 | }, [selectedChromosome, selectedGenome, mode]); 110 | 111 | const handleGenomeChange = (value: string) => { 112 | setSelectedGenome(value); 113 | setSearchResults([]); 114 | setSelectedGene(null); 115 | }; 116 | 117 | const switchMode = (newMode: Mode) => { 118 | if (newMode === mode) return; 119 | 120 | setSearchResults([]); 121 | setSelectedGene(null); 122 | setError(null); 123 | 124 | if (newMode === "browse" && selectedChromosome) { 125 | performGeneSearch( 126 | selectedChromosome, 127 | selectedGenome, 128 | (gene: GeneFromSearch) => gene.chrom === selectedChromosome, 129 | ); 130 | } 131 | 132 | setMode(newMode); 133 | }; 134 | 135 | const handleSearch = async (e?: React.FormEvent) => { 136 | if (e) e.preventDefault(); 137 | if (!searchQuery.trim()) return; 138 | 139 | performGeneSearch(searchQuery, selectedGenome); 140 | }; 141 | 142 | const loadBRCA1Example = () => { 143 | setMode("search"); 144 | setSearchQuery("BRCA1"); 145 | performGeneSearch("BRCA1", selectedGenome); 146 | }; 147 | 148 | return ( 149 |
150 |
151 |
152 |
153 |
154 |

155 | EVO 156 | 2 157 |

158 |
159 |
160 | 161 | Variant Analysis 162 | 163 |
164 |
165 |
166 | 167 |
168 | {selectedGene ? ( 169 | setSelectedGene(null)} 173 | /> 174 | ) : ( 175 | <> 176 | 177 | 178 |
179 | 180 | Genome Assembly 181 | 182 |
183 | Organism: Human 184 |
185 |
186 |
187 | 188 | 205 | {selectedGenome && ( 206 |

207 | { 208 | genomes.find((genome) => genome.id === selectedGenome) 209 | ?.sourceName 210 | } 211 |

212 | )} 213 |
214 |
215 | 216 | 217 | 218 | 219 | Browse 220 | 221 | 222 | 223 | switchMode(value as Mode)} 226 | > 227 | 228 | 232 | Search Genes 233 | 234 | 238 | Browse Chromosomes 239 | 240 | 241 | 242 | 243 |
244 |
248 |
249 | setSearchQuery(e.target.value)} 254 | className="h-9 border-[#3c4f3d]/10 pr-10" 255 | /> 256 | 265 |
266 |
267 | 274 |
275 |
276 | 277 | 278 |
279 |
280 | {chromosomes.map((chrom) => ( 281 | 290 | ))} 291 |
292 |
293 |
294 |
295 | 296 | {isLoading && ( 297 |
298 |
299 |
300 | )} 301 | 302 | {error && ( 303 |
304 | {error} 305 |
306 | )} 307 | 308 | {searchResults.length > 0 && !isLoading && ( 309 |
310 |
311 |

312 | {mode === "search" ? ( 313 | <> 314 | Search Results:{" "} 315 | 316 | {searchResults.length} genes 317 | 318 | 319 | ) : ( 320 | <> 321 | Genes on {selectedChromosome}:{" "} 322 | 323 | {searchResults.length} found 324 | 325 | 326 | )} 327 |

328 |
329 | 330 |
331 | 332 | 333 | 334 | 335 | Symbol 336 | 337 | 338 | Name 339 | 340 | 341 | Location 342 | 343 | 344 | 345 | 346 | {searchResults.map((gene, index) => ( 347 | setSelectedGene(gene)} 351 | > 352 | 353 | {gene.symbol} 354 | 355 | 356 | {gene.name} 357 | 358 | 359 | {gene.chrom} 360 | 361 | 362 | ))} 363 | 364 |
365 |
366 |
367 | )} 368 | 369 | {!isLoading && !error && searchResults.length === 0 && ( 370 |
371 | 372 |

373 | {mode === "search" 374 | ? "Enter a gene or symbol and click search" 375 | : selectedChromosome 376 | ? "No genes found on this chromosome" 377 | : "Select a chromosome to view genes"} 378 |

379 |
380 | )} 381 |
382 |
383 | 384 | )} 385 |
386 |
387 | ); 388 | } 389 | -------------------------------------------------------------------------------- /evo2-frontend/src/components/gene-information.tsx: -------------------------------------------------------------------------------- 1 | import type { 2 | GeneBounds, 3 | GeneDetailsFromSearch, 4 | GeneFromSearch, 5 | } from "~/utils/genome-api"; 6 | import { Card, CardContent, CardHeader, CardTitle } from "./ui/card"; 7 | import { ExternalLink } from "lucide-react"; 8 | 9 | export function GeneInformation({ 10 | gene, 11 | geneDetail, 12 | geneBounds, 13 | }: { 14 | gene: GeneFromSearch; 15 | geneDetail: GeneDetailsFromSearch | null; 16 | geneBounds: GeneBounds | null; 17 | }) { 18 | return ( 19 | 20 | 21 | 22 | Gene Information 23 | 24 | 25 | 26 |
27 |
28 |
29 | 30 | Symbol: 31 | 32 | {gene.symbol} 33 |
34 |
35 | 36 | Name: 37 | 38 | {gene.name} 39 |
40 | {gene.description && gene.description !== gene.name && ( 41 |
42 | 43 | Description: 44 | 45 | {gene.description} 46 |
47 | )} 48 |
49 | 50 | Chromosome: 51 | 52 | {gene.chrom} 53 |
54 | {geneBounds && ( 55 |
56 | 57 | Position: 58 | 59 | 60 | {Math.min(geneBounds.min, geneBounds.max).toLocaleString()} -{" "} 61 | {Math.max(geneBounds.min, geneBounds.max).toLocaleString()} ( 62 | {Math.abs( 63 | geneBounds.max - geneBounds.min + 1, 64 | ).toLocaleString()}{" "} 65 | bp) 66 | {geneDetail?.genomicinfo?.[0]?.strand === "-" && 67 | " (reverse strand)"} 68 | 69 |
70 | )} 71 |
72 |
73 | {gene.gene_id && ( 74 |
75 | 76 | Gene ID: 77 | 78 | 79 | 84 | {gene.gene_id} 85 | 86 | 87 | 88 |
89 | )} 90 | {geneDetail?.organism && ( 91 |
92 | 93 | Organism: 94 | 95 | 96 | {geneDetail.organism.scientificname}{" "} 97 | {geneDetail.organism.commonname && 98 | ` (${geneDetail.organism.commonname})`} 99 | 100 |
101 | )} 102 | 103 | {geneDetail?.summary && ( 104 |
105 |

106 | Summary: 107 |

108 |

109 | {geneDetail.summary} 110 |

111 |
112 | )} 113 |
114 |
115 |
116 |
117 | ); 118 | } 119 | -------------------------------------------------------------------------------- /evo2-frontend/src/components/gene-sequence.tsx: -------------------------------------------------------------------------------- 1 | "use client"; 2 | 3 | import type { GeneBounds, GeneDetailsFromSearch } from "~/utils/genome-api"; 4 | import { Card, CardContent, CardHeader, CardTitle } from "./ui/card"; 5 | import { 6 | startTransition, 7 | useCallback, 8 | useEffect, 9 | useMemo, 10 | useRef, 11 | useState, 12 | type JSX, 13 | } from "react"; 14 | import { Input } from "./ui/input"; 15 | import { Button } from "./ui/button"; 16 | import { getNucleotideColorClass } from "~/utils/coloring-utils"; 17 | 18 | export function GeneSequence({ 19 | geneBounds, 20 | geneDetail, 21 | startPosition, 22 | endPosition, 23 | onStartPositionChange, 24 | onEndPositionChange, 25 | sequenceData, 26 | sequenceRange, 27 | isLoading, 28 | error, 29 | onSequenceLoadRequest, 30 | onSequenceClick, 31 | maxViewRange, 32 | }: { 33 | geneBounds: GeneBounds | null; 34 | geneDetail: GeneDetailsFromSearch | null; 35 | startPosition: string; 36 | endPosition: string; 37 | onStartPositionChange: (value: string) => void; 38 | onEndPositionChange: (value: string) => void; 39 | sequenceData: string; 40 | sequenceRange: { start: number; end: number } | null; 41 | isLoading: boolean; 42 | error: string | null; 43 | onSequenceLoadRequest: () => void; 44 | onSequenceClick: (position: number, nucleotide: string) => void; 45 | maxViewRange: number; 46 | }) { 47 | const [sliderValues, setSliderValues] = useState({ start: 60, end: 70 }); 48 | const [isDraggingStart, setIsDraggingStart] = useState(false); 49 | const [isDraggingEnd, setIsDraggingEnd] = useState(false); 50 | const [isDraggingRange, setIsDraggingRange] = useState(false); 51 | const sliderRef = useRef(null); 52 | const dragStartX = useRef<{ 53 | x: number; 54 | startPos: number; 55 | endPos: number; 56 | } | null>(null); 57 | const [hoverPosition, setHoverPosition] = useState(null); 58 | const [mousePosition, setMousePosition] = useState<{ 59 | x: number; 60 | y: number; 61 | } | null>(null); 62 | 63 | const currentRangeSize = useMemo(() => { 64 | const start = parseInt(startPosition); 65 | const end = parseInt(endPosition); 66 | return isNaN(start) || isNaN(end) || end < start ? 0 : end - start + 1; 67 | }, [startPosition, endPosition]); 68 | 69 | useEffect(() => { 70 | if (!geneBounds) return; 71 | 72 | const minBound = Math.min(geneBounds.min, geneBounds.max); 73 | const maxBound = Math.max(geneBounds.min, geneBounds.max); 74 | const totalSize = maxBound - minBound; 75 | 76 | const startNum = parseInt(startPosition); 77 | const endNum = parseInt(endPosition); 78 | 79 | if (isNaN(startNum) || isNaN(endNum) || totalSize <= 0) { 80 | setSliderValues({ start: 0, end: 100 }); 81 | return; 82 | } 83 | 84 | const startPercent = ((startNum - minBound) / totalSize) * 100; 85 | const endPercent = ((endNum - minBound) / totalSize) * 100; 86 | 87 | setSliderValues({ 88 | start: Math.max(0, Math.min(startPercent, 100)), 89 | end: Math.max(0, Math.min(endPercent, 100)), 90 | }); 91 | }, [startPosition, endPosition, geneBounds]); 92 | 93 | useEffect(() => { 94 | const handleMouseMove = (e: MouseEvent) => { 95 | if (!isDraggingStart && !isDraggingEnd && !isDraggingRange) return; 96 | if (!sliderRef.current || !geneBounds) return; 97 | 98 | const sliderRect = sliderRef.current.getBoundingClientRect(); 99 | const relativeX = e.clientX - sliderRect.left; 100 | const sliderWidth = sliderRect.width; 101 | let newPercent = (relativeX / sliderWidth) * 100; 102 | newPercent = Math.max(0, Math.min(newPercent, 100)); 103 | 104 | const minBound = Math.min(geneBounds.min, geneBounds.max); 105 | const maxBound = Math.max(geneBounds.min, geneBounds.max); 106 | const geneSize = maxBound - minBound; 107 | 108 | const newPosition = Math.round(minBound + (geneSize * newPercent) / 100); 109 | const currentStartNum = parseInt(startPosition); 110 | const currentEndNum = parseInt(endPosition); 111 | 112 | if (isDraggingStart) { 113 | if (!isNaN(currentEndNum)) { 114 | if (currentEndNum - newPosition + 1 > maxViewRange) { 115 | onStartPositionChange(String(currentEndNum - maxViewRange + 1)); 116 | } else if (newPosition < currentEndNum) { 117 | onStartPositionChange(String(newPosition)); 118 | } 119 | } 120 | } else if (isDraggingEnd) { 121 | if (!isNaN(currentStartNum)) { 122 | if (newPosition - currentStartNum + 1 > maxViewRange) { 123 | onEndPositionChange(String(currentStartNum + maxViewRange - 1)); 124 | } else if (newPosition > currentStartNum) { 125 | onEndPositionChange(String(newPosition)); 126 | } 127 | } 128 | } else if (isDraggingRange) { 129 | if (!dragStartX.current) return; 130 | const pixelsPerBase = sliderWidth / geneSize; 131 | const dragDeltaPixels = relativeX - dragStartX.current.x; 132 | const dragDeltaBases = Math.round(dragDeltaPixels / pixelsPerBase); 133 | 134 | let newStart = dragStartX.current.startPos + dragDeltaBases; 135 | let newEnd = dragStartX.current.endPos + dragDeltaBases; 136 | const rangeSize = 137 | dragStartX.current.endPos - dragStartX.current.startPos; 138 | 139 | if (newStart < minBound) { 140 | newStart = minBound; 141 | newEnd = minBound + rangeSize; 142 | } 143 | if (newEnd > maxBound) { 144 | newEnd = maxBound; 145 | newStart = maxBound - rangeSize; 146 | } 147 | 148 | onStartPositionChange(String(newStart)); 149 | onEndPositionChange(String(newEnd)); 150 | } 151 | }; 152 | 153 | const handleMouseUp = () => { 154 | if ( 155 | (isDraggingStart || isDraggingEnd || isDraggingRange) && 156 | startPosition && 157 | endPosition 158 | ) { 159 | onSequenceLoadRequest(); 160 | } 161 | setIsDraggingStart(false); 162 | setIsDraggingEnd(false); 163 | setIsDraggingRange(false); 164 | dragStartX.current = null; 165 | }; 166 | 167 | window.addEventListener("mousemove", handleMouseMove); 168 | window.addEventListener("mouseup", handleMouseUp); 169 | return () => { 170 | window.removeEventListener("mousemove", handleMouseMove); 171 | window.removeEventListener("mouseup", handleMouseUp); 172 | }; 173 | }, [ 174 | isDraggingStart, 175 | isDraggingEnd, 176 | isDraggingRange, 177 | geneBounds, 178 | startPosition, 179 | endPosition, 180 | onStartPositionChange, 181 | onEndPositionChange, 182 | maxViewRange, 183 | onSequenceLoadRequest, 184 | ]); 185 | 186 | const handleMouseDown = useCallback( 187 | (e: React.MouseEvent, handle: "start" | "end") => { 188 | e.preventDefault(); 189 | if (handle === "start") setIsDraggingStart(true); 190 | else setIsDraggingEnd(true); 191 | }, 192 | [], 193 | ); 194 | 195 | const handleRangeMouseDown = useCallback( 196 | (e: React.MouseEvent) => { 197 | e.preventDefault(); 198 | 199 | if (!sliderRef.current) return; 200 | 201 | const startNum = parseInt(startPosition); 202 | const endNum = parseInt(endPosition); 203 | if (isNaN(startNum) || isNaN(endNum)) return; 204 | 205 | setIsDraggingRange(true); 206 | const sliderRect = sliderRef.current.getBoundingClientRect(); 207 | const relativeX = e.clientX - sliderRect.left; 208 | dragStartX.current = { 209 | x: relativeX, 210 | startPos: startNum, 211 | endPos: endNum, 212 | }; 213 | }, 214 | [startPosition, endPosition], 215 | ); 216 | 217 | const formattedSequence = useMemo(() => { 218 | if (!sequenceData || !sequenceRange) return null; 219 | 220 | const start = sequenceRange.start; 221 | const BASES_PER_LINE = 200; 222 | const lines: JSX.Element[] = []; 223 | 224 | for (let i = 0; i < sequenceData.length; i += BASES_PER_LINE) { 225 | const lineStartPos = start + i; 226 | const chunk = sequenceData.substring(i, i + BASES_PER_LINE); 227 | const colorizedChars: JSX.Element[] = []; 228 | 229 | for (let j = 0; j < chunk.length; j++) { 230 | const nucleotide = chunk[j] || ""; 231 | const nucleotidePosition = lineStartPos + j; 232 | const color = getNucleotideColorClass(nucleotide); 233 | colorizedChars.push( 234 | onSequenceClick(nucleotidePosition, nucleotide)} 237 | onMouseEnter={(e) => { 238 | setHoverPosition(nucleotidePosition); 239 | setMousePosition({ x: e.clientX, y: e.clientY }); 240 | }} 241 | onMouseLeave={(e) => { 242 | setHoverPosition(null); 243 | setMousePosition(null); 244 | }} 245 | className={`${color} group relative cursor-pointer`} 246 | > 247 | {nucleotide} 248 | , 249 | ); 250 | } 251 | 252 | lines.push( 253 |
254 |
255 | {lineStartPos.toLocaleString()} 256 |
257 |
{colorizedChars}
258 |
, 259 | ); 260 | } 261 | 262 | return lines; 263 | }, [sequenceData, sequenceRange, onSequenceClick]); 264 | 265 | return ( 266 | 267 | 268 | 269 | Gene Sequence 270 | 271 | 272 | 273 | 274 | {geneBounds && ( 275 |
276 |
277 | 278 |

From:

279 |

280 | {Math.min(geneBounds.min, geneBounds.max).toLocaleString()} 281 |

282 |
283 | 284 | Selected: {parseInt(startPosition || "0").toLocaleString()} -{" "} 285 | {parseInt(endPosition || "0").toLocaleString()} ( 286 | {currentRangeSize.toLocaleString()} bp) 287 | 288 | 289 |

To:

290 |

291 | {Math.max(geneBounds.min, geneBounds.max).toLocaleString()} 292 |

293 |
294 |
295 | 296 | {/* Slider component */} 297 |
298 |
299 |
303 | {/* Track background */} 304 |
305 | 306 | {/* Selected range */} 307 |
315 | 316 | {/* Start handle */} 317 |
handleMouseDown(e, "start")} 321 | > 322 |
323 |
324 | 325 | {/* End handle */} 326 |
handleMouseDown(e, "end")} 330 | > 331 |
332 |
333 |
334 |
335 | 336 | {/* Position controls */} 337 |
338 |
339 | Start: 340 | onStartPositionChange(e.target.value)} 343 | type="text" 344 | inputMode="numeric" 345 | pattern="[0-9]*" 346 | className="h-7 w-full border-[#3c4f3d]/10 text-xs sm:w-28" 347 | /> 348 |
349 | 357 |
358 | End: 359 | onEndPositionChange(e.target.value)} 362 | type="text" 363 | inputMode="numeric" 364 | pattern="[0-9]*" 365 | className="h-7 w-full border-[#3c4f3d]/10 text-xs sm:w-28" 366 | /> 367 |
368 |
369 |
370 |
371 | )} 372 | 373 |
374 | 375 | {geneDetail?.genomicinfo?.[0]?.strand === "+" 376 | ? "Forward strand (5' -> 3')" 377 | : geneDetail?.genomicinfo?.[0]?.strand === "-" 378 | ? "Reverse strand (3' <- 5')" 379 | : "Strand information not available"} 380 | 381 | 382 | Maximum window size: {maxViewRange.toLocaleString()} bp 383 | 384 |
385 | 386 | {error && ( 387 |
388 | {error} 389 |
390 | )} 391 | 392 |
393 | {isLoading ? ( 394 |
395 |
396 |
397 | ) : sequenceData ? ( 398 |
399 |
400 |                 {formattedSequence}
401 |               
402 |
403 | ) : ( 404 |

405 | {error ? "Error loading sequence" : "No sequence data loaded."} 406 |

407 | )} 408 |
409 | 410 | {hoverPosition !== null && mousePosition !== null && ( 411 |
419 | Position: {hoverPosition.toLocaleString()} 420 |
421 | )} 422 | 423 |
424 |
425 |
426 | A 427 |
428 |
429 |
430 | T 431 |
432 |
433 |
434 | G 435 |
436 |
437 |
438 | C 439 |
440 |
441 |
442 |
443 | ); 444 | } 445 | -------------------------------------------------------------------------------- /evo2-frontend/src/components/gene-viewer.tsx: -------------------------------------------------------------------------------- 1 | "use client"; 2 | 3 | import { 4 | fetchGeneDetails, 5 | fetchGeneSequence as apiFetchGeneSequence, 6 | fetchClinvarVariants as apiFetchClinvarVariants, 7 | type GeneBounds, 8 | type GeneDetailsFromSearch, 9 | type GeneFromSearch, 10 | type ClinvarVariant, 11 | } from "~/utils/genome-api"; 12 | import { Button } from "./ui/button"; 13 | import { ArrowLeft } from "lucide-react"; 14 | import { useCallback, useEffect, useRef, useState } from "react"; 15 | import { GeneInformation } from "./gene-information"; 16 | import { GeneSequence } from "./gene-sequence"; 17 | import KnownVariants from "./known-variants"; 18 | import { VariantComparisonModal } from "./variant-comparison-modal"; 19 | import VariantAnalysis, { 20 | type VariantAnalysisHandle, 21 | } from "./variant-analysis"; 22 | 23 | export default function GeneViewer({ 24 | gene, 25 | genomeId, 26 | onClose, 27 | }: { 28 | gene: GeneFromSearch; 29 | genomeId: string; 30 | onClose: () => void; 31 | }) { 32 | const [geneSequence, setGeneSequence] = useState(""); 33 | const [geneDetail, setGeneDetail] = useState( 34 | null, 35 | ); 36 | const [geneBounds, setGeneBounds] = useState(null); 37 | const [isLoading, setIsLoading] = useState(false); 38 | const [error, setError] = useState(null); 39 | 40 | const [startPosition, setStartPosition] = useState(""); 41 | const [endPosition, setEndPosition] = useState(""); 42 | const [isLoadingSequence, setIsLoadingSequence] = useState(false); 43 | 44 | const [clinvarVariants, setClinvarVariants] = useState([]); 45 | const [isLoadingClinvar, setIsLoadingClinvar] = useState(false); 46 | const [clinvarError, setClinvarError] = useState(null); 47 | 48 | const [actualRange, setActualRange] = useState<{ 49 | start: number; 50 | end: number; 51 | } | null>(null); 52 | 53 | const [comparisonVariant, setComparisonVariant] = 54 | useState(null); 55 | 56 | const [activeSequencePosition, setActiveSequencePosition] = useState< 57 | number | null 58 | >(null); 59 | const [activeReferenceNucleotide, setActiveReferenceNucleotide] = useState< 60 | string | null 61 | >(null); 62 | 63 | const variantAnalysisRef = useRef(null); 64 | 65 | const updateClinvarVariant = ( 66 | clinvar_id: string, 67 | updateVariant: ClinvarVariant, 68 | ) => { 69 | setClinvarVariants((currentVariants) => 70 | currentVariants.map((v) => 71 | v.clinvar_id == clinvar_id ? updateVariant : v, 72 | ), 73 | ); 74 | }; 75 | 76 | const fetchGeneSequence = useCallback( 77 | async (start: number, end: number) => { 78 | try { 79 | setIsLoadingSequence(true); 80 | setError(null); 81 | 82 | const { 83 | sequence, 84 | actualRange: fetchedRange, 85 | error: apiError, 86 | } = await apiFetchGeneSequence(gene.chrom, start, end, genomeId); 87 | 88 | setGeneSequence(sequence); 89 | setActualRange(fetchedRange); 90 | 91 | if (apiError) { 92 | setError(apiError); 93 | } 94 | } catch (err) { 95 | setError("Failed to load sequence data"); 96 | } finally { 97 | setIsLoadingSequence(false); 98 | } 99 | }, 100 | [gene.chrom, genomeId], 101 | ); 102 | 103 | useEffect(() => { 104 | const initializeGeneData = async () => { 105 | setIsLoading(true); 106 | 107 | if (!gene.gene_id) { 108 | setError("Gene ID is missing, cannot fetch details"); 109 | setIsLoading(false); 110 | return; 111 | } 112 | 113 | try { 114 | const { 115 | geneDetails: fetchedDetail, 116 | geneBounds: fetchedGeneBounds, 117 | initialRange: fetchedRange, 118 | } = await fetchGeneDetails(gene.gene_id); 119 | 120 | setGeneDetail(fetchedDetail); 121 | setGeneBounds(fetchedGeneBounds); 122 | 123 | if (fetchedRange) { 124 | setStartPosition(String(fetchedRange.start)); 125 | setEndPosition(String(fetchedRange.end)); 126 | await fetchGeneSequence(fetchedRange.start, fetchedRange.end); 127 | } 128 | } catch { 129 | setError("Faield to load gene information. Please try again."); 130 | } finally { 131 | setIsLoading(false); 132 | } 133 | }; 134 | 135 | initializeGeneData(); 136 | }, [gene, genomeId]); 137 | 138 | const handleSequenceClick = useCallback( 139 | (position: number, nucleotide: string) => { 140 | setActiveSequencePosition(position); 141 | setActiveReferenceNucleotide(nucleotide); 142 | window.scrollTo({ top: 0, behavior: "smooth" }); 143 | if (variantAnalysisRef.current) { 144 | variantAnalysisRef.current.focusAlternativeInput(); 145 | } 146 | }, 147 | [], 148 | ); 149 | 150 | const handleLoadSequence = useCallback(() => { 151 | const start = parseInt(startPosition); 152 | const end = parseInt(endPosition); 153 | let validationError: string | null = null; 154 | 155 | if (isNaN(start) || isNaN(end)) { 156 | validationError = "Please enter valid start and end positions"; 157 | } else if (start >= end) { 158 | validationError = "Start position must be less than end position"; 159 | } else if (geneBounds) { 160 | const minBound = Math.min(geneBounds.min, geneBounds.max); 161 | const maxBound = Math.max(geneBounds.min, geneBounds.max); 162 | if (start < minBound) { 163 | validationError = `Start position (${start.toLocaleString()}) is below the minimum value (${minBound.toLocaleString()})`; 164 | } else if (end > maxBound) { 165 | validationError = `End position (${end.toLocaleString()}) exceeds the maximum value (${maxBound.toLocaleString()})`; 166 | } 167 | 168 | if (end - start > 10000) { 169 | validationError = `Selected range exceeds maximum view range of 10.000 bp.`; 170 | } 171 | } 172 | 173 | if (validationError) { 174 | setError(validationError); 175 | return; 176 | } 177 | 178 | setError(null); 179 | fetchGeneSequence(start, end); 180 | }, [startPosition, endPosition, fetchGeneSequence, geneBounds]); 181 | 182 | const fetchClinvarVariants = async () => { 183 | if (!gene.chrom || !geneBounds) return; 184 | 185 | setIsLoadingClinvar(true); 186 | setClinvarError(null); 187 | 188 | try { 189 | const variants = await apiFetchClinvarVariants( 190 | gene.chrom, 191 | geneBounds, 192 | genomeId, 193 | ); 194 | setClinvarVariants(variants); 195 | console.log(variants); 196 | } catch (error) { 197 | setClinvarError("Failed to fetch ClinVar variants"); 198 | setClinvarVariants([]); 199 | } finally { 200 | setIsLoadingClinvar(false); 201 | } 202 | }; 203 | 204 | useEffect(() => { 205 | if (geneBounds) { 206 | fetchClinvarVariants(); 207 | } 208 | }, [geneBounds]); 209 | 210 | const showComparison = (variant: ClinvarVariant) => { 211 | if (variant.evo2Result) { 212 | setComparisonVariant(variant); 213 | } 214 | }; 215 | 216 | if (isLoading) { 217 | return ( 218 |
219 |
220 |
221 | ); 222 | } 223 | 224 | return ( 225 |
226 | 235 | 236 | 246 | 247 | 257 | 258 | 273 | 274 | 279 | 280 | setComparisonVariant(null)} 283 | /> 284 |
285 | ); 286 | } 287 | -------------------------------------------------------------------------------- /evo2-frontend/src/components/known-variants.tsx: -------------------------------------------------------------------------------- 1 | "use client"; 2 | 3 | import { 4 | analyzeVariantWithAPI, 5 | type ClinvarVariant, 6 | type GeneFromSearch, 7 | } from "~/utils/genome-api"; 8 | import { Card, CardContent, CardHeader, CardTitle } from "./ui/card"; 9 | import { Button } from "./ui/button"; 10 | import { 11 | Table, 12 | TableBody, 13 | TableCell, 14 | TableHead, 15 | TableHeader, 16 | TableRow, 17 | } from "./ui/table"; 18 | import { Viaoda_Libre } from "next/font/google"; 19 | import { 20 | BarChart2, 21 | ExternalLink, 22 | RefreshCw, 23 | Search, 24 | Shield, 25 | Zap, 26 | } from "lucide-react"; 27 | import { getClassificationColorClasses } from "~/utils/coloring-utils"; 28 | 29 | export default function KnownVariants({ 30 | refreshVariants, 31 | showComparison, 32 | updateClinvarVariant, 33 | clinvarVariants, 34 | isLoadingClinvar, 35 | clinvarError, 36 | genomeId, 37 | gene, 38 | }: { 39 | refreshVariants: () => void; 40 | showComparison: (variant: ClinvarVariant) => void; 41 | updateClinvarVariant: (id: string, newVariant: ClinvarVariant) => void; 42 | clinvarVariants: ClinvarVariant[]; 43 | isLoadingClinvar: boolean; 44 | clinvarError: string | null; 45 | genomeId: string; 46 | gene: GeneFromSearch; 47 | }) { 48 | const analyzeVariant = async (variant: ClinvarVariant) => { 49 | let variantDetails = null; 50 | const position = variant.location 51 | ? parseInt(variant.location.replaceAll(",", "")) 52 | : null; 53 | 54 | const refAltMatch = variant.title.match(/(\w)>(\w)/); 55 | 56 | if (refAltMatch && refAltMatch.length === 3) { 57 | variantDetails = { 58 | position, 59 | reference: refAltMatch[1], 60 | alternative: refAltMatch[2], 61 | }; 62 | } 63 | 64 | if ( 65 | !variantDetails || 66 | !variantDetails.position || 67 | !variantDetails.reference || 68 | !variantDetails.alternative 69 | ) { 70 | return; 71 | } 72 | 73 | updateClinvarVariant(variant.clinvar_id, { 74 | ...variant, 75 | isAnalyzing: true, 76 | }); 77 | 78 | try { 79 | const data = await analyzeVariantWithAPI({ 80 | position: variantDetails.position, 81 | alternative: variantDetails.alternative, 82 | genomeId: genomeId, 83 | chromosome: gene.chrom, 84 | }); 85 | 86 | const updatedVariant: ClinvarVariant = { 87 | ...variant, 88 | isAnalyzing: false, 89 | evo2Result: data, 90 | }; 91 | 92 | updateClinvarVariant(variant.clinvar_id, updatedVariant); 93 | 94 | showComparison(updatedVariant); 95 | } catch (error) { 96 | updateClinvarVariant(variant.clinvar_id, { 97 | ...variant, 98 | isAnalyzing: false, 99 | evo2Error: error instanceof Error ? error.message : "Analysis failed", 100 | }); 101 | } 102 | }; 103 | return ( 104 | 105 | 106 | 107 | Known Variants in Gene from ClinVar 108 | 109 | 119 | 120 | 121 | {clinvarError && ( 122 |
123 | {clinvarError} 124 |
125 | )} 126 | 127 | {isLoadingClinvar ? ( 128 |
129 |
130 |
131 | ) : clinvarVariants.length > 0 ? ( 132 |
133 | 134 | 135 | 136 | 137 | Variant 138 | 139 | 140 | Type 141 | 142 | 143 | Clinical Significance 144 | 145 | 146 | Actions 147 | 148 | 149 | 150 | 151 | {clinvarVariants.map((variant) => ( 152 | 156 | 157 |
158 | {variant.title} 159 |
160 |
161 |

Location: {variant.location}

162 | 176 |
177 |
178 | 179 | {variant.variation_type} 180 | 181 | 182 |
185 | {variant.classification || "Unknown"} 186 |
187 | {variant.evo2Result && ( 188 |
189 |
192 | 193 | Evo2: {variant.evo2Result.prediction} 194 |
195 |
196 | )} 197 |
198 | 199 |
200 | {variant.variation_type 201 | .toLowerCase() 202 | .includes("single nucleotide") ? ( 203 | !variant.evo2Result ? ( 204 | 223 | ) : ( 224 | 233 | ) 234 | ) : null} 235 |
236 |
237 |
238 | ))} 239 |
240 |
241 |
242 | ) : ( 243 |
244 | 245 |

246 | No ClinVar variants found for this gene. 247 |

248 |
249 | )} 250 |
251 |
252 | ); 253 | } 254 | -------------------------------------------------------------------------------- /evo2-frontend/src/components/ui/button.tsx: -------------------------------------------------------------------------------- 1 | import * as React from "react" 2 | import { Slot } from "@radix-ui/react-slot" 3 | import { cva, type VariantProps } from "class-variance-authority" 4 | 5 | import { cn } from "~/lib/utils" 6 | 7 | const buttonVariants = cva( 8 | "inline-flex items-center justify-center gap-2 whitespace-nowrap rounded-md text-sm font-medium transition-all disabled:pointer-events-none disabled:opacity-50 [&_svg]:pointer-events-none [&_svg:not([class*='size-'])]:size-4 shrink-0 [&_svg]:shrink-0 outline-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive", 9 | { 10 | variants: { 11 | variant: { 12 | default: 13 | "bg-primary text-primary-foreground shadow-xs hover:bg-primary/90", 14 | destructive: 15 | "bg-destructive text-white shadow-xs hover:bg-destructive/90 focus-visible:ring-destructive/20 dark:focus-visible:ring-destructive/40 dark:bg-destructive/60", 16 | outline: 17 | "border bg-background shadow-xs hover:bg-accent hover:text-accent-foreground dark:bg-input/30 dark:border-input dark:hover:bg-input/50", 18 | secondary: 19 | "bg-secondary text-secondary-foreground shadow-xs hover:bg-secondary/80", 20 | ghost: 21 | "hover:bg-accent hover:text-accent-foreground dark:hover:bg-accent/50", 22 | link: "text-primary underline-offset-4 hover:underline", 23 | }, 24 | size: { 25 | default: "h-9 px-4 py-2 has-[>svg]:px-3", 26 | sm: "h-8 rounded-md gap-1.5 px-3 has-[>svg]:px-2.5", 27 | lg: "h-10 rounded-md px-6 has-[>svg]:px-4", 28 | icon: "size-9", 29 | }, 30 | }, 31 | defaultVariants: { 32 | variant: "default", 33 | size: "default", 34 | }, 35 | } 36 | ) 37 | 38 | function Button({ 39 | className, 40 | variant, 41 | size, 42 | asChild = false, 43 | ...props 44 | }: React.ComponentProps<"button"> & 45 | VariantProps & { 46 | asChild?: boolean 47 | }) { 48 | const Comp = asChild ? Slot : "button" 49 | 50 | return ( 51 | 56 | ) 57 | } 58 | 59 | export { Button, buttonVariants } 60 | -------------------------------------------------------------------------------- /evo2-frontend/src/components/ui/card.tsx: -------------------------------------------------------------------------------- 1 | import * as React from "react" 2 | 3 | import { cn } from "~/lib/utils" 4 | 5 | function Card({ className, ...props }: React.ComponentProps<"div">) { 6 | return ( 7 |
15 | ) 16 | } 17 | 18 | function CardHeader({ className, ...props }: React.ComponentProps<"div">) { 19 | return ( 20 |
28 | ) 29 | } 30 | 31 | function CardTitle({ className, ...props }: React.ComponentProps<"div">) { 32 | return ( 33 |
38 | ) 39 | } 40 | 41 | function CardDescription({ className, ...props }: React.ComponentProps<"div">) { 42 | return ( 43 |
48 | ) 49 | } 50 | 51 | function CardAction({ className, ...props }: React.ComponentProps<"div">) { 52 | return ( 53 |
61 | ) 62 | } 63 | 64 | function CardContent({ className, ...props }: React.ComponentProps<"div">) { 65 | return ( 66 |
71 | ) 72 | } 73 | 74 | function CardFooter({ className, ...props }: React.ComponentProps<"div">) { 75 | return ( 76 |
81 | ) 82 | } 83 | 84 | export { 85 | Card, 86 | CardHeader, 87 | CardFooter, 88 | CardTitle, 89 | CardAction, 90 | CardDescription, 91 | CardContent, 92 | } 93 | -------------------------------------------------------------------------------- /evo2-frontend/src/components/ui/input.tsx: -------------------------------------------------------------------------------- 1 | import * as React from "react" 2 | 3 | import { cn } from "~/lib/utils" 4 | 5 | function Input({ className, type, ...props }: React.ComponentProps<"input">) { 6 | return ( 7 | 18 | ) 19 | } 20 | 21 | export { Input } 22 | -------------------------------------------------------------------------------- /evo2-frontend/src/components/ui/select.tsx: -------------------------------------------------------------------------------- 1 | "use client" 2 | 3 | import * as React from "react" 4 | import * as SelectPrimitive from "@radix-ui/react-select" 5 | import { CheckIcon, ChevronDownIcon, ChevronUpIcon } from "lucide-react" 6 | 7 | import { cn } from "~/lib/utils" 8 | 9 | function Select({ 10 | ...props 11 | }: React.ComponentProps) { 12 | return 13 | } 14 | 15 | function SelectGroup({ 16 | ...props 17 | }: React.ComponentProps) { 18 | return 19 | } 20 | 21 | function SelectValue({ 22 | ...props 23 | }: React.ComponentProps) { 24 | return 25 | } 26 | 27 | function SelectTrigger({ 28 | className, 29 | size = "default", 30 | children, 31 | ...props 32 | }: React.ComponentProps & { 33 | size?: "sm" | "default" 34 | }) { 35 | return ( 36 | 45 | {children} 46 | 47 | 48 | 49 | 50 | ) 51 | } 52 | 53 | function SelectContent({ 54 | className, 55 | children, 56 | position = "popper", 57 | ...props 58 | }: React.ComponentProps) { 59 | return ( 60 | 61 | 72 | 73 | 80 | {children} 81 | 82 | 83 | 84 | 85 | ) 86 | } 87 | 88 | function SelectLabel({ 89 | className, 90 | ...props 91 | }: React.ComponentProps) { 92 | return ( 93 | 98 | ) 99 | } 100 | 101 | function SelectItem({ 102 | className, 103 | children, 104 | ...props 105 | }: React.ComponentProps) { 106 | return ( 107 | 115 | 116 | 117 | 118 | 119 | 120 | {children} 121 | 122 | ) 123 | } 124 | 125 | function SelectSeparator({ 126 | className, 127 | ...props 128 | }: React.ComponentProps) { 129 | return ( 130 | 135 | ) 136 | } 137 | 138 | function SelectScrollUpButton({ 139 | className, 140 | ...props 141 | }: React.ComponentProps) { 142 | return ( 143 | 151 | 152 | 153 | ) 154 | } 155 | 156 | function SelectScrollDownButton({ 157 | className, 158 | ...props 159 | }: React.ComponentProps) { 160 | return ( 161 | 169 | 170 | 171 | ) 172 | } 173 | 174 | export { 175 | Select, 176 | SelectContent, 177 | SelectGroup, 178 | SelectItem, 179 | SelectLabel, 180 | SelectScrollDownButton, 181 | SelectScrollUpButton, 182 | SelectSeparator, 183 | SelectTrigger, 184 | SelectValue, 185 | } 186 | -------------------------------------------------------------------------------- /evo2-frontend/src/components/ui/table.tsx: -------------------------------------------------------------------------------- 1 | "use client" 2 | 3 | import * as React from "react" 4 | 5 | import { cn } from "~/lib/utils" 6 | 7 | function Table({ className, ...props }: React.ComponentProps<"table">) { 8 | return ( 9 |
13 | 18 | 19 | ) 20 | } 21 | 22 | function TableHeader({ className, ...props }: React.ComponentProps<"thead">) { 23 | return ( 24 | 29 | ) 30 | } 31 | 32 | function TableBody({ className, ...props }: React.ComponentProps<"tbody">) { 33 | return ( 34 | 39 | ) 40 | } 41 | 42 | function TableFooter({ className, ...props }: React.ComponentProps<"tfoot">) { 43 | return ( 44 | tr]:last:border-b-0", 48 | className 49 | )} 50 | {...props} 51 | /> 52 | ) 53 | } 54 | 55 | function TableRow({ className, ...props }: React.ComponentProps<"tr">) { 56 | return ( 57 | 65 | ) 66 | } 67 | 68 | function TableHead({ className, ...props }: React.ComponentProps<"th">) { 69 | return ( 70 |
[role=checkbox]]:translate-y-[2px]", 74 | className 75 | )} 76 | {...props} 77 | /> 78 | ) 79 | } 80 | 81 | function TableCell({ className, ...props }: React.ComponentProps<"td">) { 82 | return ( 83 | [role=checkbox]]:translate-y-[2px]", 87 | className 88 | )} 89 | {...props} 90 | /> 91 | ) 92 | } 93 | 94 | function TableCaption({ 95 | className, 96 | ...props 97 | }: React.ComponentProps<"caption">) { 98 | return ( 99 |
104 | ) 105 | } 106 | 107 | export { 108 | Table, 109 | TableHeader, 110 | TableBody, 111 | TableFooter, 112 | TableHead, 113 | TableRow, 114 | TableCell, 115 | TableCaption, 116 | } 117 | -------------------------------------------------------------------------------- /evo2-frontend/src/components/ui/tabs.tsx: -------------------------------------------------------------------------------- 1 | "use client" 2 | 3 | import * as React from "react" 4 | import * as TabsPrimitive from "@radix-ui/react-tabs" 5 | 6 | import { cn } from "~/lib/utils" 7 | 8 | function Tabs({ 9 | className, 10 | ...props 11 | }: React.ComponentProps) { 12 | return ( 13 | 18 | ) 19 | } 20 | 21 | function TabsList({ 22 | className, 23 | ...props 24 | }: React.ComponentProps) { 25 | return ( 26 | 34 | ) 35 | } 36 | 37 | function TabsTrigger({ 38 | className, 39 | ...props 40 | }: React.ComponentProps) { 41 | return ( 42 | 50 | ) 51 | } 52 | 53 | function TabsContent({ 54 | className, 55 | ...props 56 | }: React.ComponentProps) { 57 | return ( 58 | 63 | ) 64 | } 65 | 66 | export { Tabs, TabsList, TabsTrigger, TabsContent } 67 | -------------------------------------------------------------------------------- /evo2-frontend/src/components/variant-analysis.tsx: -------------------------------------------------------------------------------- 1 | "use client"; 2 | 3 | import { 4 | type AnalysisResult, 5 | analyzeVariantWithAPI, 6 | type ClinvarVariant, 7 | type GeneBounds, 8 | type GeneFromSearch, 9 | } from "~/utils/genome-api"; 10 | import { Card, CardContent, CardHeader, CardTitle } from "./ui/card"; 11 | import { Input } from "./ui/input"; 12 | import React, { 13 | forwardRef, 14 | useEffect, 15 | useImperativeHandle, 16 | useRef, 17 | useState, 18 | } from "react"; 19 | import { 20 | getClassificationColorClasses, 21 | getNucleotideColorClass, 22 | } from "~/utils/coloring-utils"; 23 | import { Button } from "./ui/button"; 24 | import { match } from "node:assert"; 25 | import { Zap } from "lucide-react"; 26 | 27 | export interface VariantAnalysisHandle { 28 | focusAlternativeInput: () => void; 29 | } 30 | 31 | interface VariantAnalysisProps { 32 | gene: GeneFromSearch; 33 | genomeId: string; 34 | chromosome: string; 35 | clinvarVariants: Array; 36 | referenceSequence: string | null; 37 | sequencePosition: number | null; 38 | geneBounds: GeneBounds | null; 39 | } 40 | 41 | const VariantAnalysis = forwardRef( 42 | ( 43 | { 44 | gene, 45 | genomeId, 46 | chromosome, 47 | clinvarVariants = [], 48 | referenceSequence, 49 | sequencePosition, 50 | geneBounds, 51 | }: VariantAnalysisProps, 52 | ref, 53 | ) => { 54 | const [variantPosition, setVariantPosition] = useState( 55 | geneBounds?.min?.toString() || "", 56 | ); 57 | const [variantReference, setVariantReference] = useState(""); 58 | const [variantAlternative, setVariantAlternative] = useState(""); 59 | const [variantResult, setVariantResult] = useState( 60 | null, 61 | ); 62 | const [isAnalyzing, setIsAnalyzing] = useState(false); 63 | const [variantError, setVariantError] = useState(null); 64 | const alternativeInputRef = useRef(null); 65 | 66 | useImperativeHandle(ref, () => ({ 67 | focusAlternativeInput: () => { 68 | if (alternativeInputRef.current) { 69 | alternativeInputRef.current.focus(); 70 | } 71 | }, 72 | })); 73 | 74 | useEffect(() => { 75 | if (sequencePosition && referenceSequence) { 76 | setVariantPosition(String(sequencePosition)); 77 | setVariantReference(referenceSequence); 78 | } 79 | }, [sequencePosition, referenceSequence]); 80 | 81 | const handlePositionChange = (e: React.ChangeEvent) => { 82 | setVariantPosition(e.target.value); 83 | setVariantReference(""); 84 | }; 85 | 86 | const handleVariantSubmit = async (pos: string, alt: string) => { 87 | const position = parseInt(pos); 88 | if (isNaN(position)) { 89 | setVariantError("Please enter a valid position number"); 90 | return; 91 | } 92 | 93 | const validNucleotides = /^[ATGC]$/; 94 | if (!validNucleotides.test(alt)) { 95 | setVariantError("Nucleotides must be A, C, G or T"); 96 | return; 97 | } 98 | 99 | setIsAnalyzing(true); 100 | setVariantError(null); 101 | 102 | try { 103 | const data = await analyzeVariantWithAPI({ 104 | position, 105 | alternative: alt, 106 | genomeId, 107 | chromosome, 108 | }); 109 | setVariantResult(data); 110 | } catch (err) { 111 | console.error(err); 112 | setVariantError("Failed to analyze variant"); 113 | } finally { 114 | setIsAnalyzing(false); 115 | } 116 | }; 117 | 118 | return ( 119 | 120 | 121 | 122 | Variant Analysis 123 | 124 | 125 | 126 |

127 | Predict the impact of genetic variants using the Evo2 deep learning 128 | model. 129 |

130 |
131 |
132 | 135 | 140 |
141 |
142 | 145 | 149 | setVariantAlternative(e.target.value.toUpperCase()) 150 | } 151 | className="h-8 w-32 border-[#3c4f3d]/10 text-xs" 152 | placeholder="e.g., T" 153 | maxLength={1} 154 | /> 155 |
156 | {variantReference && ( 157 |
158 | Substitution 159 | 162 | {variantReference} 163 | 164 | 165 | 168 | {variantAlternative ? variantAlternative : "?"} 169 | 170 |
171 | )} 172 | 191 |
192 | 193 | {variantPosition && 194 | clinvarVariants 195 | .filter( 196 | (variant) => 197 | variant?.variation_type 198 | ?.toLowerCase() 199 | .includes("single nucleotide") && 200 | parseInt(variant?.location?.replaceAll(",", "")) === 201 | parseInt(variantPosition.replaceAll(",", "")), 202 | ) 203 | .map((matchedVariant) => { 204 | const refAltMatch = matchedVariant.title.match(/(\w)>(\w)/); 205 | 206 | let ref = null; 207 | let alt = null; 208 | if (refAltMatch && refAltMatch.length === 3) { 209 | ref = refAltMatch[1]; 210 | alt = refAltMatch[2]; 211 | } 212 | 213 | if (!ref || !alt) return null; 214 | 215 | return ( 216 |
220 |
221 |

222 | Known Variant Detected 223 |

224 | 225 | Position: {matchedVariant.location} 226 | 227 |
228 | 229 |
230 |
231 |
232 | Variant Details 233 |
234 |
{matchedVariant.title}
235 |
236 | {gene?.symbol} {variantPosition}{" "} 237 | 238 | 239 | {ref} 240 | 241 | {">"} 242 | 243 | {alt} 244 | 245 | 246 |
247 |
248 | ClinVar classification 249 | 252 | {matchedVariant.classification || "Unknown"} 253 | 254 |
255 |
256 |
257 | 282 |
283 |
284 |
285 | ); 286 | })[0]} 287 | {variantError && ( 288 |
289 | {variantError} 290 |
291 | )} 292 | {variantResult && ( 293 |
294 |

295 | Analysis Result 296 |

297 |
298 |
299 |
300 |
301 | Variant 302 |
303 |
304 | {gene?.symbol} {variantResult.position}{" "} 305 | 306 | {variantResult.reference} 307 | {">"} 308 | {variantResult.alternative} 309 | 310 |
311 |
312 |
313 |
314 | Delta likelihood score 315 |
316 |
317 | {variantResult.delta_score.toFixed(6)} 318 |
319 |
320 | Negative score indicates loss of function 321 |
322 |
323 |
324 |
325 |
326 | Prediction 327 |
328 |
331 | {variantResult.prediction} 332 |
333 |
334 |
335 | Confidence 336 |
337 |
338 |
344 |
345 |
346 | {Math.round( 347 | variantResult.classification_confidence * 100, 348 | )} 349 | % 350 |
351 |
352 |
353 |
354 |
355 | )} 356 |
357 |
358 | ); 359 | }, 360 | ); 361 | 362 | export default VariantAnalysis; 363 | -------------------------------------------------------------------------------- /evo2-frontend/src/components/variant-comparison-modal.tsx: -------------------------------------------------------------------------------- 1 | import type { ClinvarVariant } from "~/utils/genome-api"; 2 | import { Button } from "./ui/button"; 3 | import { Check, ExternalLink, Shield, X } from "lucide-react"; 4 | import { 5 | getClassificationColorClasses, 6 | getNucleotideColorClass, 7 | } from "~/utils/coloring-utils"; 8 | 9 | export function VariantComparisonModal({ 10 | comparisonVariant, 11 | onClose, 12 | }: { 13 | comparisonVariant: ClinvarVariant | null; 14 | onClose: () => void; 15 | }) { 16 | if (!comparisonVariant || !comparisonVariant.evo2Result) return null; 17 | 18 | return ( 19 |
20 |
21 | {/* Modal header */} 22 |
23 |
24 |

25 | Variant Analysis Comparison 26 |

27 | 35 |
36 |
37 | 38 | {/* Modal content */} 39 |
40 | {comparisonVariant && comparisonVariant.evo2Result && ( 41 |
42 |
43 |

44 | Variant Information 45 |

46 |
47 |
48 |
49 |
50 | 51 | Position: 52 | 53 | 54 | {comparisonVariant.location} 55 | 56 |
57 |
58 | 59 | Type: 60 | 61 | 62 | {comparisonVariant.variation_type} 63 | 64 |
65 |
66 |
67 | 68 |
69 |
70 |
71 | 72 | Variant: 73 | 74 | 75 | {(() => { 76 | const match = 77 | comparisonVariant.title.match(/(\w)>(\w)/); 78 | if (match && match.length === 3) { 79 | const [_, ref, alt] = match; 80 | return ( 81 | <> 82 | 85 | {ref} 86 | 87 | {">"} 88 | 91 | {alt} 92 | 93 | 94 | ); 95 | } 96 | return comparisonVariant.title; 97 | })()} 98 | 99 |
100 |
101 | 102 | ClinVar ID: 103 | 104 | 109 | {comparisonVariant.clinvar_id} 110 | 111 | 112 |
113 |
114 |
115 |
116 |
117 | 118 | {/* Variant results */} 119 |
120 |

121 | Analysis Comparison 122 |

123 |
124 |
125 | {/* ClinVar Assesment */} 126 |
127 |
128 | 129 | 130 | 131 | ClinVar Assessment 132 |
133 |
134 |
137 | {comparisonVariant.classification || 138 | "Unknown significance"} 139 |
140 |
141 |
142 | 143 | {/* Evo2 Prediction */} 144 |
145 |
146 | 147 | 148 | 149 | Evo2 Prediction 150 |
151 |
152 |
155 | 156 | {comparisonVariant.evo2Result.prediction} 157 |
158 |
159 | {/* Delta score */} 160 |
161 |
162 | Delta Likelihood Score: 163 |
164 |
165 | {comparisonVariant.evo2Result.delta_score.toFixed(6)} 166 |
167 |
168 | {comparisonVariant.evo2Result.delta_score < 0 169 | ? "Negative score indicates loss of function" 170 | : "Positive score indicated gain/neutral function"} 171 |
172 |
173 | {/* Confidence bar */} 174 |
175 |
176 | Confidence: 177 |
178 |
179 |
185 |
186 |
187 | {Math.round( 188 | comparisonVariant.evo2Result 189 | .classification_confidence * 100, 190 | )} 191 | % 192 |
193 |
194 |
195 |
196 | 197 | {/* Assesment Agreement */} 198 |
199 |
200 | 203 | {comparisonVariant.classification.toLowerCase() === 204 | comparisonVariant.evo2Result.prediction.toLowerCase() ? ( 205 | 206 | ) : ( 207 | 208 |

!

209 |
210 | )} 211 |
212 | 213 | {comparisonVariant.classification.toLowerCase() === 214 | comparisonVariant.evo2Result.prediction.toLowerCase() 215 | ? "Evo2 prediction agrees with ClinVar classification" 216 | : "Evo2 prediction differs from ClinVar classification"} 217 | 218 |
219 |
220 |
221 |
222 |
223 | )} 224 |
225 | 226 | {/* Modal footer */} 227 |
228 | 235 |
236 |
237 |
238 | ); 239 | } 240 | -------------------------------------------------------------------------------- /evo2-frontend/src/env.js: -------------------------------------------------------------------------------- 1 | import { createEnv } from "@t3-oss/env-nextjs"; 2 | import { z } from "zod"; 3 | 4 | export const env = createEnv({ 5 | /** 6 | * Specify your server-side environment variables schema here. This way you can ensure the app 7 | * isn't built with invalid env vars. 8 | */ 9 | server: { 10 | NODE_ENV: z.enum(["development", "test", "production"]), 11 | }, 12 | 13 | /** 14 | * Specify your client-side environment variables schema here. This way you can ensure the app 15 | * isn't built with invalid env vars. To expose them to the client, prefix them with 16 | * `NEXT_PUBLIC_`. 17 | */ 18 | client: { 19 | NEXT_PUBLIC_ANALYZE_SINGLE_VARIANT_BASE_URL: z.string(), 20 | }, 21 | 22 | /** 23 | * You can't destruct `process.env` as a regular object in the Next.js edge runtimes (e.g. 24 | * middlewares) or client-side so we need to destruct manually. 25 | */ 26 | runtimeEnv: { 27 | NODE_ENV: process.env.NODE_ENV, 28 | NEXT_PUBLIC_ANALYZE_SINGLE_VARIANT_BASE_URL: 29 | process.env.NEXT_PUBLIC_ANALYZE_SINGLE_VARIANT_BASE_URL, 30 | }, 31 | /** 32 | * Run `build` or `dev` with `SKIP_ENV_VALIDATION` to skip env validation. This is especially 33 | * useful for Docker builds. 34 | */ 35 | skipValidation: !!process.env.SKIP_ENV_VALIDATION, 36 | /** 37 | * Makes it so that empty strings are treated as undefined. `SOME_VAR: z.string()` and 38 | * `SOME_VAR=''` will throw an error. 39 | */ 40 | emptyStringAsUndefined: true, 41 | }); 42 | -------------------------------------------------------------------------------- /evo2-frontend/src/lib/utils.ts: -------------------------------------------------------------------------------- 1 | import { clsx, type ClassValue } from "clsx" 2 | import { twMerge } from "tailwind-merge" 3 | 4 | export function cn(...inputs: ClassValue[]) { 5 | return twMerge(clsx(inputs)) 6 | } 7 | -------------------------------------------------------------------------------- /evo2-frontend/src/styles/globals.css: -------------------------------------------------------------------------------- 1 | @import "tailwindcss"; 2 | @import "tw-animate-css"; 3 | 4 | @custom-variant dark (&:is(.dark *)); 5 | 6 | @theme { 7 | --font-sans: var(--font-geist-sans), ui-sans-serif, system-ui, sans-serif, 8 | "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji"; 9 | } 10 | 11 | @theme inline { 12 | --radius-sm: calc(var(--radius) - 4px); 13 | --radius-md: calc(var(--radius) - 2px); 14 | --radius-lg: var(--radius); 15 | --radius-xl: calc(var(--radius) + 4px); 16 | --color-background: var(--background); 17 | --color-foreground: var(--foreground); 18 | --color-card: var(--card); 19 | --color-card-foreground: var(--card-foreground); 20 | --color-popover: var(--popover); 21 | --color-popover-foreground: var(--popover-foreground); 22 | --color-primary: var(--primary); 23 | --color-primary-foreground: var(--primary-foreground); 24 | --color-secondary: var(--secondary); 25 | --color-secondary-foreground: var(--secondary-foreground); 26 | --color-muted: var(--muted); 27 | --color-muted-foreground: var(--muted-foreground); 28 | --color-accent: var(--accent); 29 | --color-accent-foreground: var(--accent-foreground); 30 | --color-destructive: var(--destructive); 31 | --color-border: var(--border); 32 | --color-input: var(--input); 33 | --color-ring: var(--ring); 34 | --color-chart-1: var(--chart-1); 35 | --color-chart-2: var(--chart-2); 36 | --color-chart-3: var(--chart-3); 37 | --color-chart-4: var(--chart-4); 38 | --color-chart-5: var(--chart-5); 39 | --color-sidebar: var(--sidebar); 40 | --color-sidebar-foreground: var(--sidebar-foreground); 41 | --color-sidebar-primary: var(--sidebar-primary); 42 | --color-sidebar-primary-foreground: var(--sidebar-primary-foreground); 43 | --color-sidebar-accent: var(--sidebar-accent); 44 | --color-sidebar-accent-foreground: var(--sidebar-accent-foreground); 45 | --color-sidebar-border: var(--sidebar-border); 46 | --color-sidebar-ring: var(--sidebar-ring); 47 | } 48 | 49 | :root { 50 | --radius: 0.625rem; 51 | --card: oklch(1 0 0); 52 | --card-foreground: oklch(0.145 0 0); 53 | --popover: oklch(1 0 0); 54 | --popover-foreground: oklch(0.145 0 0); 55 | --primary: oklch(0.205 0 0); 56 | --primary-foreground: oklch(0.985 0 0); 57 | --secondary: oklch(0.97 0 0); 58 | --secondary-foreground: oklch(0.205 0 0); 59 | --muted: oklch(0.97 0 0); 60 | --muted-foreground: oklch(0.556 0 0); 61 | --accent: oklch(0.97 0 0); 62 | --accent-foreground: oklch(0.205 0 0); 63 | --destructive: oklch(0.577 0.245 27.325); 64 | --border: oklch(0.922 0 0); 65 | --input: oklch(0.922 0 0); 66 | --ring: oklch(0.708 0 0); 67 | --chart-1: oklch(0.646 0.222 41.116); 68 | --chart-2: oklch(0.6 0.118 184.704); 69 | --chart-3: oklch(0.398 0.07 227.392); 70 | --chart-4: oklch(0.828 0.189 84.429); 71 | --chart-5: oklch(0.769 0.188 70.08); 72 | --sidebar: oklch(0.985 0 0); 73 | --sidebar-foreground: oklch(0.145 0 0); 74 | --sidebar-primary: oklch(0.205 0 0); 75 | --sidebar-primary-foreground: oklch(0.985 0 0); 76 | --sidebar-accent: oklch(0.97 0 0); 77 | --sidebar-accent-foreground: oklch(0.205 0 0); 78 | --sidebar-border: oklch(0.922 0 0); 79 | --sidebar-ring: oklch(0.708 0 0); 80 | --background: oklch(1 0 0); 81 | --foreground: oklch(0.145 0 0); 82 | } 83 | 84 | .dark { 85 | --background: oklch(0.145 0 0); 86 | --foreground: oklch(0.985 0 0); 87 | --card: oklch(0.205 0 0); 88 | --card-foreground: oklch(0.985 0 0); 89 | --popover: oklch(0.205 0 0); 90 | --popover-foreground: oklch(0.985 0 0); 91 | --primary: oklch(0.922 0 0); 92 | --primary-foreground: oklch(0.205 0 0); 93 | --secondary: oklch(0.269 0 0); 94 | --secondary-foreground: oklch(0.985 0 0); 95 | --muted: oklch(0.269 0 0); 96 | --muted-foreground: oklch(0.708 0 0); 97 | --accent: oklch(0.269 0 0); 98 | --accent-foreground: oklch(0.985 0 0); 99 | --destructive: oklch(0.704 0.191 22.216); 100 | --border: oklch(1 0 0 / 10%); 101 | --input: oklch(1 0 0 / 15%); 102 | --ring: oklch(0.556 0 0); 103 | --chart-1: oklch(0.488 0.243 264.376); 104 | --chart-2: oklch(0.696 0.17 162.48); 105 | --chart-3: oklch(0.769 0.188 70.08); 106 | --chart-4: oklch(0.627 0.265 303.9); 107 | --chart-5: oklch(0.645 0.246 16.439); 108 | --sidebar: oklch(0.205 0 0); 109 | --sidebar-foreground: oklch(0.985 0 0); 110 | --sidebar-primary: oklch(0.488 0.243 264.376); 111 | --sidebar-primary-foreground: oklch(0.985 0 0); 112 | --sidebar-accent: oklch(0.269 0 0); 113 | --sidebar-accent-foreground: oklch(0.985 0 0); 114 | --sidebar-border: oklch(1 0 0 / 10%); 115 | --sidebar-ring: oklch(0.556 0 0); 116 | } 117 | 118 | @layer base { 119 | * { 120 | @apply border-border outline-ring/50; 121 | } 122 | body { 123 | @apply bg-background text-foreground; 124 | } 125 | } 126 | -------------------------------------------------------------------------------- /evo2-frontend/src/utils/coloring-utils.ts: -------------------------------------------------------------------------------- 1 | export function getNucleotideColorClass(nucleotide: string): string { 2 | switch (nucleotide.toUpperCase()) { 3 | case "A": 4 | return "text-red-600"; 5 | case "T": 6 | return "text-blue-600"; 7 | case "G": 8 | return "text-green-600"; 9 | case "C": 10 | return "text-amber-600"; 11 | default: 12 | return "text-gray-500"; 13 | } 14 | } 15 | 16 | export function getClassificationColorClasses(classification: string): string { 17 | if (!classification) return "bg-yellow-100 text-yellow-800"; 18 | const lowercaseClass = classification.toLowerCase(); 19 | 20 | if (lowercaseClass.includes("pathogenic")) { 21 | return "bg-red-100 text-red-800"; 22 | } else if (lowercaseClass.includes("benign")) { 23 | return "bg-green-100 text-green-800"; 24 | } else { 25 | return "bg-yellow-100 text-yellow-800"; 26 | } 27 | } 28 | -------------------------------------------------------------------------------- /evo2-frontend/src/utils/genome-api.ts: -------------------------------------------------------------------------------- 1 | import { Viaoda_Libre } from "next/font/google"; 2 | import { env } from "~/env"; 3 | 4 | export interface GenomeAssemblyFromSearch { 5 | id: string; 6 | name: string; 7 | sourceName: string; 8 | active: boolean; 9 | } 10 | 11 | export interface ChromosomeFromSeach { 12 | name: string; 13 | size: number; 14 | } 15 | 16 | export interface GeneFromSearch { 17 | symbol: string; 18 | name: string; 19 | chrom: string; 20 | description: string; 21 | gene_id?: string; 22 | } 23 | 24 | export interface GeneDetailsFromSearch { 25 | genomicinfo?: { 26 | chrstart: number; 27 | chrstop: number; 28 | strand?: string; 29 | }[]; 30 | summary?: string; 31 | organism?: { 32 | scientificname: string; 33 | commonname: string; 34 | }; 35 | } 36 | 37 | export interface GeneBounds { 38 | min: number; 39 | max: number; 40 | } 41 | 42 | export interface ClinvarVariant { 43 | clinvar_id: string; 44 | title: string; 45 | variation_type: string; 46 | classification: string; 47 | gene_sort: string; 48 | chromosome: string; 49 | location: string; 50 | evo2Result?: { 51 | prediction: string; 52 | delta_score: number; 53 | classification_confidence: number; 54 | }; 55 | isAnalyzing?: boolean; 56 | evo2Error?: string; 57 | } 58 | 59 | export interface AnalysisResult { 60 | position: number; 61 | reference: string; 62 | alternative: string; 63 | delta_score: number; 64 | prediction: string; 65 | classification_confidence: number; 66 | } 67 | 68 | export async function getAvailableGenomes() { 69 | const apiUrl = "https://api.genome.ucsc.edu/list/ucscGenomes"; 70 | const response = await fetch(apiUrl); 71 | if (!response.ok) { 72 | throw new Error("Failed to fetch genome list from UCSC API"); 73 | } 74 | 75 | const genomeData = await response.json(); 76 | if (!genomeData.ucscGenomes) { 77 | throw new Error("UCSC API error: missing ucscGenomes"); 78 | } 79 | 80 | const genomes = genomeData.ucscGenomes; 81 | const structuredGenomes: Record = {}; 82 | 83 | for (const genomeId in genomes) { 84 | const genomeInfo = genomes[genomeId]; 85 | const organism = genomeInfo.organism || "Other"; 86 | 87 | if (!structuredGenomes[organism]) structuredGenomes[organism] = []; 88 | structuredGenomes[organism].push({ 89 | id: genomeId, 90 | name: genomeInfo.description || genomeId, 91 | sourceName: genomeInfo.sourceName || genomeId, 92 | active: !!genomeInfo.active, 93 | }); 94 | } 95 | 96 | return { genomes: structuredGenomes }; 97 | } 98 | 99 | export async function getGenomeChromosomes(genomeId: string) { 100 | const apiUrl = `https://api.genome.ucsc.edu/list/chromosomes?genome=${genomeId}`; 101 | const response = await fetch(apiUrl); 102 | if (!response.ok) { 103 | throw new Error("Failed to fetch chromosome list from UCSC API"); 104 | } 105 | 106 | const chromosomeData = await response.json(); 107 | if (!chromosomeData.chromosomes) { 108 | throw new Error("UCSC API error: missing chromosomes"); 109 | } 110 | 111 | const chromosomes: ChromosomeFromSeach[] = []; 112 | for (const chromId in chromosomeData.chromosomes) { 113 | if ( 114 | chromId.includes("_") || 115 | chromId.includes("Un") || 116 | chromId.includes("random") 117 | ) 118 | continue; 119 | chromosomes.push({ 120 | name: chromId, 121 | size: chromosomeData.chromosomes[chromId], 122 | }); 123 | } 124 | 125 | // chr1, chr2, ... chrX, chrY 126 | chromosomes.sort((a, b) => { 127 | const anum = a.name.replace("chr", ""); 128 | const bnum = b.name.replace("chr", ""); 129 | const isNumA = /^\d+$/.test(anum); 130 | const isNumB = /^\d+$/.test(bnum); 131 | if (isNumA && isNumB) return Number(anum) - Number(bnum); 132 | if (isNumA) return -1; 133 | if (isNumB) return 1; 134 | return anum.localeCompare(bnum); 135 | }); 136 | 137 | return { chromosomes }; 138 | } 139 | 140 | export async function searchGenes(query: string, genome: string) { 141 | const url = "https://clinicaltables.nlm.nih.gov/api/ncbi_genes/v3/search"; 142 | const params = new URLSearchParams({ 143 | terms: query, 144 | df: "chromosome,Symbol,description,map_location,type_of_gene", 145 | ef: "chromosome,Symbol,description,map_location,type_of_gene,GenomicInfo,GeneID", 146 | }); 147 | const response = await fetch(`${url}?${params}`); 148 | if (!response.ok) { 149 | throw new Error("NCBI API Error"); 150 | } 151 | 152 | const data = await response.json(); 153 | const results: GeneFromSearch[] = []; 154 | 155 | if (data[0] > 0) { 156 | const fieldMap = data[2]; 157 | const geneIds = fieldMap.GeneID || []; 158 | for (let i = 0; i < Math.min(10, data[0]); ++i) { 159 | if (i < data[3].length) { 160 | try { 161 | const display = data[3][i]; 162 | let chrom = display[0]; 163 | if (chrom && !chrom.startsWith("chr")) { 164 | chrom = `chr${chrom}`; 165 | } 166 | results.push({ 167 | symbol: display[2], 168 | name: display[3], 169 | chrom, 170 | description: display[3], 171 | gene_id: geneIds[i] || "", 172 | }); 173 | } catch { 174 | continue; 175 | } 176 | } 177 | } 178 | } 179 | 180 | return { query, genome, results }; 181 | } 182 | 183 | export async function fetchGeneDetails(geneId: string): Promise<{ 184 | geneDetails: GeneDetailsFromSearch | null; 185 | geneBounds: GeneBounds | null; 186 | initialRange: { start: number; end: number } | null; 187 | }> { 188 | try { 189 | const detailUrl = `https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=gene&id=${geneId}&retmode=json`; 190 | const detailsResponse = await fetch(detailUrl); 191 | 192 | if (!detailsResponse.ok) { 193 | console.error( 194 | `Failed to fetch gene details: ${detailsResponse.statusText}`, 195 | ); 196 | return { geneDetails: null, geneBounds: null, initialRange: null }; 197 | } 198 | 199 | const detailData = await detailsResponse.json(); 200 | 201 | if (detailData.result && detailData.result[geneId]) { 202 | const detail = detailData.result[geneId]; 203 | 204 | if (detail.genomicinfo && detail.genomicinfo.length > 0) { 205 | const info = detail.genomicinfo[0]; 206 | 207 | const minPos = Math.min(info.chrstart, info.chrstop); 208 | const maxPos = Math.max(info.chrstart, info.chrstop); 209 | const bounds = { min: minPos, max: maxPos }; 210 | 211 | const geneSize = maxPos - minPos; 212 | const seqStart = minPos; 213 | const seqEnd = geneSize > 10000 ? minPos + 10000 : maxPos; 214 | const range = { start: seqStart, end: seqEnd }; 215 | 216 | return { geneDetails: detail, geneBounds: bounds, initialRange: range }; 217 | } 218 | } 219 | 220 | return { geneDetails: null, geneBounds: null, initialRange: null }; 221 | } catch (err) { 222 | return { geneDetails: null, geneBounds: null, initialRange: null }; 223 | } 224 | } 225 | 226 | export async function fetchGeneSequence( 227 | chrom: string, 228 | start: number, 229 | end: number, 230 | genomeId: string, 231 | ): Promise<{ 232 | sequence: string; 233 | actualRange: { start: number; end: number }; 234 | error?: string; 235 | }> { 236 | try { 237 | const chromosome = chrom.startsWith("chr") ? chrom : `chr${chrom}`; 238 | 239 | const apiStart = start - 1; 240 | const apiEnd = end; 241 | 242 | const apiUrl = `https://api.genome.ucsc.edu/getData/sequence?genome=${genomeId};chrom=${chromosome};start=${apiStart};end=${apiEnd}`; 243 | const response = await fetch(apiUrl); 244 | const data = await response.json(); 245 | 246 | const actualRange = { start, end }; 247 | 248 | if (data.error || !data.dna) { 249 | return { sequence: "", actualRange, error: data.error }; 250 | } 251 | 252 | const sequence = data.dna.toUpperCase(); 253 | 254 | return { sequence, actualRange }; 255 | } catch (err) { 256 | return { 257 | sequence: "", 258 | actualRange: { start, end }, 259 | error: "Internal error in fetch gene sequence", 260 | }; 261 | } 262 | } 263 | 264 | export async function fetchClinvarVariants( 265 | chrom: string, 266 | geneBound: GeneBounds, 267 | genomeId: string, 268 | ): Promise { 269 | const chromFormatted = chrom.replace(/^chr/i, ""); 270 | 271 | const minBound = Math.min(geneBound.min, geneBound.max); 272 | const maxBound = Math.max(geneBound.min, geneBound.max); 273 | 274 | const positionField = genomeId === "hg19" ? "chrpos37" : "chrpos38"; 275 | const searchTerm = `${chromFormatted}[chromosome] AND ${minBound}:${maxBound}[${positionField}]`; 276 | 277 | const searchUrl = 278 | "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"; 279 | const searchParams = new URLSearchParams({ 280 | db: "clinvar", 281 | term: searchTerm, 282 | retmode: "json", 283 | retmax: "20", 284 | }); 285 | 286 | const searchResponse = await fetch(`${searchUrl}?${searchParams.toString()}`); 287 | 288 | if (!searchResponse.ok) { 289 | throw new Error("ClinVar search failed: " + searchResponse.statusText); 290 | } 291 | 292 | const searchData = await searchResponse.json(); 293 | 294 | if ( 295 | !searchData.esearchresult || 296 | !searchData.esearchresult.idlist || 297 | searchData.esearchresult.idlist.length === 0 298 | ) { 299 | console.log("No ClinVar variants found"); 300 | return []; 301 | } 302 | 303 | const variantIds = searchData.esearchresult.idlist; 304 | 305 | const summaryUrl = 306 | "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi"; 307 | const summaryParams = new URLSearchParams({ 308 | db: "clinvar", 309 | id: variantIds.join(","), 310 | retmode: "json", 311 | }); 312 | 313 | const summaryResponse = await fetch( 314 | `${summaryUrl}?${summaryParams.toString()}`, 315 | ); 316 | 317 | if (!summaryResponse.ok) { 318 | throw new Error( 319 | "Failed to fetch variant details: " + summaryResponse.statusText, 320 | ); 321 | } 322 | 323 | const summaryData = await summaryResponse.json(); 324 | const variants: ClinvarVariant[] = []; 325 | 326 | if (summaryData.result && summaryData.result.uids) { 327 | for (const id of summaryData.result.uids) { 328 | const variant = summaryData.result[id]; 329 | variants.push({ 330 | clinvar_id: id, 331 | title: variant.title, 332 | variation_type: (variant.obj_type || "Unknown") 333 | .split(" ") 334 | .map( 335 | (word: string) => 336 | word.charAt(0).toUpperCase() + word.slice(1).toLowerCase(), 337 | ) 338 | .join(" "), 339 | classification: 340 | variant.germline_classification.description || "Unknown", 341 | gene_sort: variant.gene_sort || "", 342 | chromosome: chromFormatted, 343 | location: variant.location_sort 344 | ? parseInt(variant.location_sort).toLocaleString() 345 | : "Unknown", 346 | }); 347 | } 348 | } 349 | 350 | return variants; 351 | } 352 | 353 | export async function analyzeVariantWithAPI({ 354 | position, 355 | alternative, 356 | genomeId, 357 | chromosome, 358 | }: { 359 | position: number; 360 | alternative: string; 361 | genomeId: string; 362 | chromosome: string; 363 | }): Promise { 364 | const queryParams = new URLSearchParams({ 365 | variant_position: position.toString(), 366 | alternative: alternative, 367 | genome: genomeId, 368 | chromosome: chromosome, 369 | }); 370 | 371 | const url = `${env.NEXT_PUBLIC_ANALYZE_SINGLE_VARIANT_BASE_URL}?${queryParams.toString()}`; 372 | 373 | const response = await fetch(url, { method: "POST" }); 374 | 375 | if (!response.ok) { 376 | const errorText = await response.text(); 377 | throw new Error("Failed to analyze variant " + errorText); 378 | } 379 | 380 | return await response.json(); 381 | } 382 | -------------------------------------------------------------------------------- /evo2-frontend/tsconfig.json: -------------------------------------------------------------------------------- 1 | { 2 | "compilerOptions": { 3 | /* Base Options: */ 4 | "esModuleInterop": true, 5 | "skipLibCheck": true, 6 | "target": "es2022", 7 | "allowJs": true, 8 | "resolveJsonModule": true, 9 | "moduleDetection": "force", 10 | "isolatedModules": true, 11 | "verbatimModuleSyntax": true, 12 | 13 | /* Strictness */ 14 | "strict": true, 15 | "noUncheckedIndexedAccess": true, 16 | "checkJs": true, 17 | 18 | /* Bundled projects */ 19 | "lib": ["dom", "dom.iterable", "ES2022"], 20 | "noEmit": true, 21 | "module": "ESNext", 22 | "moduleResolution": "Bundler", 23 | "jsx": "preserve", 24 | "plugins": [{ "name": "next" }], 25 | "incremental": true, 26 | 27 | /* Path Aliases */ 28 | "baseUrl": ".", 29 | "paths": { 30 | "~/*": ["./src/*"] 31 | } 32 | }, 33 | "include": [ 34 | "next-env.d.ts", 35 | "**/*.ts", 36 | "**/*.tsx", 37 | "**/*.cjs", 38 | "**/*.js", 39 | ".next/types/**/*.ts" 40 | ], 41 | "exclude": ["node_modules"] 42 | } 43 | -------------------------------------------------------------------------------- /thumbnail.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Andreaswt/variant-analysis-evo2/55741e31ae0bf3327cc97202be842f37e3fd7e6e/thumbnail.png --------------------------------------------------------------------------------