├── GPSDO_breadboarda.jpg
├── LICENSE
├── OLEDv002i_expl.jpg
├── README.md
├── docs
├── DAC_resolution_discussion.txt
├── STM32 GPSDO - BOM.pdf
├── STM32_16bit_PWM_DAC.txt
├── USB_serial_output.txt
├── pictures
│ ├── CTI_OCXO_bottom.jpg
│ ├── CTI_OCXO_top.jpg
│ ├── CTI_datasheet1.jpg
│ └── ocxo_datasheet2.png
├── tab_delim_fields.txt
└── utc_pps.txt
├── extra
├── BT_HC06_config.ino
├── GPS_Checker_With_Display_Mod.ino
├── eeprom_emulation_test_1a.ino
├── fptest_01.ino
└── lcd_test_1a.ino
├── schematics
└── GPSDO-KiCad.pdf
└── software
├── GPSDO.ino
├── GPSDO_V006c
├── GPSDO_V006c.ino
├── GPSDO_algorithms.cpp
└── GPSDO_algorithms.h
└── WARNING.txt
/GPSDO_breadboarda.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AndrewBCN/STM32-GPSDO/a3102458f531ff3edabe53704ac7ce54c3f06c72/GPSDO_breadboarda.jpg
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/OLEDv002i_expl.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AndrewBCN/STM32-GPSDO/a3102458f531ff3edabe53704ac7ce54c3f06c72/OLEDv002i_expl.jpg
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # An STM32 GPSDO
2 | Designing, assembling, programming and testing an ultra-low-cost GPS-disciplined oven controlled crystal oscillator / lab clock based on an STM32 32-bit ARM microcontroller
3 |
4 | Keywords: STM32, GPS, GPSDO, crystal oscillator, frequency standard, atomic clock
5 |
6 | André Balsa, April 2021
7 |
8 | The Project
9 | ===========
10 |
11 | I decided to build my own version of a 10MHz GPSDO with the following features:
12 | - Very low cost i.e. < 30 euros ($35), short and easily purchased BOM.
13 | - Acceptable performance (+/- 1ppb) "out of the box", can be fine tuned over time.
14 | - Uses an STM32F411CEU6 "Black Pill" microcontroller module, programmed in C/C++ using the Arduino IDE (STM32duino).
15 | - Requires only a 5V @ 1A power supply, supplied through a USB C cable.
16 | - Compact and portable.
17 | - Optionally battery powered (allows taking it outdoors for optimal satellite signal reception).
18 | - An optional suite of environmental sensors (temperature, humidity, air pressure, voltages, OCXO current/power consumption).
19 | - An optional Bluetooth serial interface for wireless communication with a PC.
20 | - Extensive logging of various operating parameters to allow further software tuning.
21 | - An optional small OLED displaying room temperature, UTC time, uptime, operating status, measured frequency.
22 |
23 | The first breadboard prototype:
24 |
25 |
26 | In normal operation this is displayed on the small OLED:
27 |
28 |
--------------------------------------------------------------------------------
/docs/DAC_resolution_discussion.txt:
--------------------------------------------------------------------------------
1 | A quick discussion of noise, DAC resolution and OCXO frequency control
2 | ======================================================================
3 |
4 | The STM32 GPSDO can use either an inexpensive 12-bit I2C DAC (MCP4725) module, or a couple of rc filters on one of the PWM pins of the STM32 MCU, to generate Vctl - the voltage used to control the frequency of the OCXO over a narrow range of 10MHz +/- a few Hz. The exact OCXO frequency provided by varying Vctl over a 0V - 4.4V range depends on the OCXO used as well as a number of different factors, but roughly speaking the precision of the OCXO frequency relative to a precise 10MHz is directly proportional to the precision with which we can set Vctl.
5 |
6 | That's for the theory. In practice, we have to contend with a ton of noise, specially on a circuit implemented on a breadboard and with voltage supplies coming from a laptop USB port or a cheap power brick.
7 | So from experience, I have determined that a 12-bit DAC used to control Vctl was good enough to control the OCXO frequency down to +/- 0.01Hz or 10E-9 or 1ppb which was my initial precision target for the STM32 GPSDO.
8 |
9 | Back to the theory, the GPS receiver when locked with a good fix provides a 1PPS with a maximum jitter of roughly 100ns - which also happens to be the period of our 10MHz OCXO. So a single OCXO frequency measurement sample timed by the 1PPS pulse from the GPS receiver has a maximum error of exactly 1Hz (again theoretically speaking). However the error from the 1PPS jitter "cancels out" over sequential measurements, so the maximum error over 10 sequential measurements (10 seconds) is 0.1Hz, over 100 sequential measurements (100 seconds) is 0.01Hz, etc.
10 |
11 | So in theory if we measure the OCXO frequency based on the 1PPS pulse over 1000 seconds (1000 sequential measurements), the maximum measurement error should be < 0.001Hz, or 10E-10 or 0.1ppb. That's exactly an order of magnitude better than what our 12-bit DAC is capable of.
12 |
13 | Using a 16-bit DAC provided by a PWM signal
14 | ===========================================
15 |
16 | The above reasoning led me to test a 16-bit DAC built by connecting a pair of rc filters to the PWM output of the STM32 MCU. Because the STM32 timers are 16-bit timers, we can with four lines of C obtain a 2kHz 16-bit PWM signal from the MCU, which is converted to a DC value (plus a ton of noise) and hence provides us with a 16-bit DAC, which we can use to control the OCXO Vctl. That's 16x more resolution than our 12-bit DAC can provide, at least in theory.
17 |
18 | So, in practice do we get an OCXO frequency control with a precision of 0.001Hz to match our 1000s maximum measurement error with such a setup?
19 |
20 | The anecdotal data I have collected so far seems to indicate that yes, we do. The STM32 GPSDO when calibrated and with an uptime of 10 hours or more often reports a stable frequency of 10000000.000Hz +/- 0.001Hz (see below).
21 |
22 | Of course I would need an even better clock to confirm to which degree these readings are correct, and I don't have access to such expensive equipment right now.
23 |
24 | Can we do even better?
25 | ======================
26 |
27 | The question here is whether we could use a measurement period of 10,000 seconds and target a precision of 10E-11 or 0.01ppb for our STM32 GPSDO breadboard prototype, by either "dithering" the 16-bit PWM signal or mixing two 16-bit PWM signals with different amplitudes to increase the resolution of our software-based DAC by another 4 bits or so.
28 |
29 | To me, that's a moot point, for various reasons.
30 |
31 | As already mentioned, my initial precision target for the STM32 GPSDO project was 10E-9 (1ppb) and that was achieved with the 12-bit DAC. An order of magnitude better precision (10E-10) was also achieved apparently, by using a software based 16-bit DAC and 1000s measurement periods.
32 |
33 | For a DIY home project following the time-proven K.I.S.S. principle, costing less than $40 and assembled on a breadboard, these are more than good enough results.
34 |
35 | An anecdotal data point
36 | =======================
37 |
38 | This is what the STM32 GPSDO reports either on USB serial or Bluetooth serial (but not both), once per second:
39 |
40 | Wait for GPS fix max. 1 second
41 |
42 | $GNGSA,A,3,31,25,12,18,02,29,20,,,,,,2.23,1.37,1.76*1E
43 | $GNGSA1,,86,49,215,*6B
44 | $GNGLL,4833.64512,N,00746.91322,E,092423.00,A,A*7F
45 | $GNRMC,092424.00,A,4833.64512,N,00746.91323,E,0.040,,070621,,,A*66
46 | $GNGGA,092424.00,4833.64512,N,00746.91323,E,1,06,1.88,147.8,M,47.3,M,,*41
47 |
48 |
49 | Fix time 884mS
50 | Uptime: 000d 12:41:36
51 | New GPS Fix:
52 | Lat: 48.560753 Lon: 7.781887 Alt: 147.8m
53 | Sats: 6 HDOP: 1.88
54 | UTC Time: 09:24:24 Date: 7/6/2021
55 |
56 | Voltages:
57 | Vctl: 1.97 DAC: 2402
58 | VctlPWM: 1.78 PWM: 35546
59 | Vcc: 5.06
60 | Vdd: 3.29
61 |
62 | Frequency measurements using 64-bit counter:
63 | 64-bit Counter: 435387151170
64 | Frequency: 9999999 Hz
65 | 10s Frequency Avg: 9999999.9 Hz
66 | 100s Frequency Avg: 9999999.99 Hz
67 | 1,000s Frequency Avg: 9999999.999 Hz
68 | 10,000s Frequency Avg: 0.0000 Hz
69 |
70 | BMP280 Temperature = 25.3 *C
71 | Pressure = 1021.0 hPa
72 | Approx altitude = 48.9 m
73 | AHT10 Temperature: 22.15 *C
74 | Humidity: 77.75% rH
75 |
76 |
77 |
78 |
--------------------------------------------------------------------------------
/docs/STM32 GPSDO - BOM.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AndrewBCN/STM32-GPSDO/a3102458f531ff3edabe53704ac7ce54c3f06c72/docs/STM32 GPSDO - BOM.pdf
--------------------------------------------------------------------------------
/docs/STM32_16bit_PWM_DAC.txt:
--------------------------------------------------------------------------------
1 | Notes on using a software 16-bit PWM DAC instead of an external 12-bit I2C DAC
2 | ==============================================================================
3 |
4 | To generate Vctl, the analog voltage that control the OCXO frequency, the STM32 GPSDO
5 | uses either a $0.50 MCP4725 I2C 12-bit DAC module or a pair of rc filters (2 x r=20k,
6 | 2 x c=10uF) connected to a 16-bit, 2kHz PWM output pin on the STM32F411CEU6.
7 |
8 | Only 4 lines of C are required to generate this 2kHz PWM signal:
9 | // generate a test 2kHz square wave on PB9 PWM pin, using Timer 4 channel 4
10 | // PB9 is Timer 4 Channel 4 from Arduino_Core_STM32/variants/STM32F4xx/F411C(C-E)(U-Y)/PeripheralPins_BLACKPILL_F411CE.c
11 | analogWrite(PB9, 127); // configures PB9 as PWM output pin at default frequency (1kHz) and resolution (8 bits), 50% duty cycle
12 | analogWriteFrequency(2000); // default PWM frequency is 1kHz, change it to 2kHz
13 | analogWriteResolution(16); // set PWM resolution to 16 bits, default is 8 bits
14 | analogWrite(PB9, 32767); // 32767 for 16 bits -> 50% duty cycle so a square wave
15 |
16 | Initially I was worried that the software 16-bit PWM DAC would not provide a clean Vctl to
17 | precisely control the OCXO frequency, but after extensive testing I now believe it is a better
18 | solution than the external MCP4725 12-bit I2C DAC module.
19 |
20 | With the MCP4725 12-bit DAC the STM32 GPSDO stabilizes the OCXO frequency within +/- 1ppb
21 | (that is +/- 0.01Hz).
22 | But with the 16-bit PWM software DAC, the STM32 GPSDO manages to stabilize the OCXO frequency
23 | within +/- 0.1ppb (a stable and accurate 10MHz +/- 0.001Hz), which is an order of magnitude
24 | better and rather good performance considering the cost and simplicity of the hardware.
25 |
--------------------------------------------------------------------------------
/docs/USB_serial_output.txt:
--------------------------------------------------------------------------------
1 | Wait GPS Fix 5 seconds
2 |
3 |
4 | Fix time 797mS
5 | Uptime 000d 00:01:45
6 | New GPS Fix Lat,48.~~~~~~,Lon,7.~~~~~~,Alt,181.1m,Sats,6,HDOP,3.82,Time,16:26:56,Date,17/5/2021
7 |
8 | Vctl: 1.88 DAC: 2382
9 | Vcc: 4.94
10 | Vdd: 3.29
11 | OCXO voltage: 4.97V
12 | OCXO current: 149mA
13 |
14 | Counter: 1032571013 Frequency: 10000000 Hz
15 | 10s Frequency Avg: 10000000.0 Hz
16 | 100s Frequency Avg: 10000000.02 Hz
17 | BMP280 Temperature = 19.4 *C
18 | Pressure = 1010.0 hPa
19 | Approx altitude = 140.9 m
20 | AHT10 Temperature: 19.59 *C
21 | Humidity: 68.37% rH
22 |
23 |
--------------------------------------------------------------------------------
/docs/pictures/CTI_OCXO_bottom.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AndrewBCN/STM32-GPSDO/a3102458f531ff3edabe53704ac7ce54c3f06c72/docs/pictures/CTI_OCXO_bottom.jpg
--------------------------------------------------------------------------------
/docs/pictures/CTI_OCXO_top.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AndrewBCN/STM32-GPSDO/a3102458f531ff3edabe53704ac7ce54c3f06c72/docs/pictures/CTI_OCXO_top.jpg
--------------------------------------------------------------------------------
/docs/pictures/CTI_datasheet1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AndrewBCN/STM32-GPSDO/a3102458f531ff3edabe53704ac7ce54c3f06c72/docs/pictures/CTI_datasheet1.jpg
--------------------------------------------------------------------------------
/docs/pictures/ocxo_datasheet2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AndrewBCN/STM32-GPSDO/a3102458f531ff3edabe53704ac7ce54c3f06c72/docs/pictures/ocxo_datasheet2.png
--------------------------------------------------------------------------------
/docs/tab_delim_fields.txt:
--------------------------------------------------------------------------------
1 | STM32 GPSDO reporting tab delimited fields
2 |
3 | Line no. (0 if no position fix, increments by one each second if position fix)
4 | timestamp (UTC)
5 | uptime (days hours mins secs)
6 | 64-bit count
7 | frequency (Hz)
8 | 10s freq. avg. (one decimal) (Hz)
9 | 100s freq. avg. (two decimals) (Hz)
10 | 1,000s freq. avg. (three decimals) (Hz)
11 | 10,000s freq. avg. (four decimals) (Hz)
12 | no. of sats
13 | HDOP (meters)
14 | PWM (16-bit, 1-65535)
15 | PWM adc mov. avg. (V)
16 | Vcc adc mov. avg. (5.0V nominal)
17 | Vdd adc mov. avg. (3.3V nominal)
18 | BMP280 Temp. (C)
19 | BMP280 Atm. Pressure (hPa)
20 | AHT20 Temp. (C)
21 | AHT20 Humidity (%)
22 | INA219 OCXO Voltage (5.05V nominal)
23 | INA219 OCXO Current (mA, 2A maximum)
24 | TIC (10-bit, 1024ns max)
25 |
26 | When a value is not available, field contains "0".
27 |
--------------------------------------------------------------------------------
/docs/utc_pps.txt:
--------------------------------------------------------------------------------
1 | Achieving a UTC-synchronized PPS using a picDIV, Lars' 1ns resolution TIC and the STM32 GPSDO
2 | =============================================================================================
3 |
4 | By André Derrick Balsa, March 2022 - v0.2
5 |
6 | The following documentation is part of the STM32 GPSDO documentation and covered by the same GPL V3 license.
7 |
8 | Introduction
9 | ------------
10 |
11 | The purpose of this short paper is to examine the hardware and method/algorithm to obtain a UTC synchronized PPS (pulse per second) (within x nanoseconds, where x would be preferably < 50), given some very simple hardware, namely:
12 |
13 | - A picDIV (see http://www.leapsecond.com/pic/picdiv.htm), which is a PIC MCU programmed to divide by 10,000,000. The picDIV is an invention by Tom Van Baak.
14 |
15 | - An extremely simple 1ns resolution TIC design by Lars Walenius, slightly modified. The original 1ns resolution TIC circuit and explanations by Lars Walenius can be found here: https://github.com/AndrewBCN/Lars-DIY-GPSDO
16 |
17 | - An STM32 GPSDO: a very simple FLL-based GPS disciplined oscillator that uses a readily available STM32F411 ARM development board, designed and programmed by the author. See https://github.com/AndrewBCN/STM32-GPSDO
18 |
19 | Why a UTC-synchronized PPS?
20 | ---------------------------
21 |
22 | The question immediately arises when one has a very precise clock in a lab, computing center or other facility on how to get it synchronized to a global network of very precise ("atomic") clocks. It is not very useful to have a clock accurate to within 1µs per year if that same clock is off by a few ms or even tens of seconds from UTC.
23 |
24 | A portable UTC-synchronized PPS generator is probably one of the simplest ways to synchronize a precision clock with UTC.
25 |
26 | Another possible use for a portable UTC-synchronized PPS generator would be to periodically measure the accuracy of a clock that is not permanently connected to a network of other precision clocks.
27 |
28 | How it works - the picDIV
29 | -------------------------
30 |
31 | The picDIV is used to generate the UTC-synchronized PPS signal.
32 |
33 | Here is the pinout of the picDIV (from Tom Van Baak's source code documentation):
34 |
35 | ---__---
36 | 5V (Vdd) +++++|1 8|===== Ground (Vss)
37 | 10 MHz clock in ---->|2 pD 7|----> 1PPS out (100 us)
38 | 1PPS (10 ms) out <----|3 11 6|----> 1 Hz out (50%)
39 | Arm o--->|4 5|<+--- Sync
40 | --------
41 | Notes:
42 |
43 | o External pull-up required on Arm input (pin4/GP3).
44 | + Sync input (pin5/GP2) has internal WPU.
45 | Output frequency accuracy is the same as clock input accuracy.
46 | Output drive current is 25 mA maximum per pin.
47 | Coded for Microchip 12F675 but any '609 '615 '629 '635 '675 '683 works.
48 |
49 | The 10MHz clock input is driven by the 10MHz OCXO in the STM32 GPSDO circuit. The rising edge of either of the PPS outputs (pins 3 and 7) is almost synchronous with the rising edge of the 10MHz clock input (there is the small and fixed propagation delay of the picDIV). So either of the PPS outputs (pins 3 and 7) can be used as our UTC-synchronized PPS.
50 |
51 | But how exactly do we synchronize the picDIV output with UTC? This is where Lars' 1ns resolution TIC and the STM32 MCU come into play. Notice the "Arm" and "Sync" inputs in the picDIV? The "Arm" input is connected to one of the GPIO pins of the STM32 MCU, and the "Sync" input is connected to the 1PPS from the GPS module.
52 |
53 | How it works - Lars' 1ns resolution TIC
54 | ---------------------------------------
55 |
56 | TIC stands for Time Interval Counter, in other words it's a circuit that measures very small time intervals, in this case we will be measuring a 1µs maximum time interval with a (theoretical) resolution of 1ns.
57 |
58 | Essentially Lars' TIC is a "black box" with two digital inputs and one analog output. The two digital inputs are wired to the GPS module 1PPS output and the picDIV 1PPS (100µs) output. The analog output is connected to one of the 12-bit ADC channels of our STM32 MCU.
59 |
60 | The analog output varies almost linearly between 0 and a maximum voltage (e.g. 3.3V) proportional to the phase difference between the rising edges of the two digital inputs. If the two digital inputs are perfectly in phase, the analog output is zero. If the phase difference is 500ns, the output voltage should be the maximum voltage divided by 2 (e.g. 1.65V), and if the phase difference is >= 1000ns (1µs) the output voltage should be the maximum (e.g. 3.3V).
61 |
62 | The theoretical resolution of Lars' TIC in his original circuit is approximately 1ns, and since we are using a 2-bit higher resolution ADC in the STM32, we could claim a 250ps resolution, but in practice, because of noise, jitter, non-linearities, temperature effects and other factors, the actual resolution is on the order of 25~30ns. Since we are aiming for 50ns synchronization, this is quite acceptable.
63 |
64 | How it works - the STM32 MCU "closes the loop"
65 | ----------------------------------------------
66 |
67 | In the STM32 GPSDO, the STM32F411 MCU generates a 16-bit PWM voltage Vctl that is connected to the frequency control pin of the OCXO. In normal GPSDO operation, Vctl is the final step in closing the Frequency Locked Loop (FLL) that keeps the OCXO frequency at an exact 10MHz +/-1ppb or better.
68 |
69 | However, we can also use Vctl to "close the loop" and adjust the phase of our picDIV 1PPS output. This is done in four steps:
70 | 1. First, we must arm and synchronize the picDIV. To do that, the picDIV "Arm" pin is pulled low by the MCU for one second, and the next PPS pulse rising edge from the GPS module will synchronize the picDIV PPS output within 1µs.
71 | 2. Second, we do the fine syncing: once per second, we measure the analog output of the TIC and if the measured voltage is larger than some preset floor (e.g 50mV), we slightly bump the frequency of the OCXO. This has the effect of progressively decreasing the phase difference / time interval measured by our TIC.
72 | 3. Third, once we reach a measured time interval under 50ns, we can dial down Vctl again.
73 | 4. Fourth and last, we periodically measure the TIC output and apply our feedback to Vctl if needed.
74 |
75 | The net effect of this algorithm is to synchronize the 1PPS from the picDIV with the 1PPS from the GPS module (which is itself within a few ns of GPS/UTC time) within a predetermined window, which we have set arbitrarily at 50ns.
76 |
77 | Conclusion
78 | __________
79 |
80 | We have described above how to combine a PLL loop to control phase and an FLL loop to control frequency, both implemented using inexpensive and readily available hardware. This hybrid FLL/PLL control method gives us a stable and accurate 10MHz signal and a UTC-synchronized 1PPS signal within reasonable margins.
81 |
--------------------------------------------------------------------------------
/extra/BT_HC06_config.ino:
--------------------------------------------------------------------------------
1 | // Very short program just used to configure HC-06 Bluetooth modules
2 | // for name and baud rate, using AT commands
3 | HardwareSerial Serial2(PA3, PA2); // Serial to Bluetooth module
4 |
5 |
6 | void setup() {
7 | // put your setup code here, to run once:
8 | Serial1.begin(9600); // serial to GPS module
9 | Serial2.begin(115200); // serial to Bluetooth module
10 |
11 | Serial.begin(115200); // USB serial
12 |
13 | Serial.print(F("Check HC-06 module version, set baud rate to 115200 and rename to GPSDO1"));
14 | Serial.println();
15 | // check module version
16 | Serial2.println("AT+VERSION"); // module should answer with HC06 version
17 | delay(1500);
18 | if (Serial2.available()) Serial.println("Response="+Serial2.readString());
19 | // change BT module name
20 | Serial2.println("AT+NAMEGPSDO1"); // change 1 to 2 or 3 or etc
21 | delay(1500);
22 | if (Serial2.available()) Serial.println("Response="+Serial2.readString());
23 | // Change BT module baud rate (default is 9600)
24 | // Serial2.println("AT+BAUD8"); // 8=115200
25 | // delay(1500);
26 | // if (Serial2.available()) Serial.println("Response="+Serial2.readString());
27 | }
28 |
29 | void loop() {
30 | // put your main code here, to run repeatedly:
31 | Serial.println("Done setting HC06, turn off development board now");
32 | delay(5000);
33 | }
34 |
--------------------------------------------------------------------------------
/extra/GPS_Checker_With_Display_Mod.ino:
--------------------------------------------------------------------------------
1 | /*******************************************************************************************************
2 | GPS Checker for u-Blox Neo-M8 receiver
3 | Original code by Stuart Robinson
4 | UBX command sending based on code by Brad Burleson
5 | Repurposed and refactored by André Balsa, June 2021
6 |
7 | This program is supplied as is, it is up to the user of the program to decide if the program is
8 | suitable for the intended purpose and free from errors.
9 | *******************************************************************************************************/
10 |
11 | // GPS Checker with I2C SSD1306 display, Hardware Serial on STM32 MCU, u-Blox Neo-M8 GPS receiver
12 |
13 | /*******************************************************************************************************
14 | Program Operation - This program is a portable GPS checker with display option. It uses an SSD1306 or
15 | SH1106 128x64 I2C OLED display. It reads the GPS for 5 seconds and copies the characters from the GPS
16 | to the serial monitor, this is an example printout from a working GPS that has just been powered on:
17 |
18 | Wait GPS Fix 5 seconds
19 |
20 | $GNGSA,A,3,32,08,14,,,,,,,,,,1.98,1.06,1.67*17
21 | $GNGSA,A,3,88,81,87,,,,,,,,,,1.98,1.06,1.67*1D
22 | $GPGSV,4,1,14,01,85,030,,03,61,253,19,04,16,188,,08,18,173,19*70
23 | $GPGSV,4,2,14,14,13,269,12,17,35,309,,19,13,321,14,21,67,115,*71
24 | $GPGSV,4,3,14,22,86,009,,28,17,287,,31,07,104,,32,24,046,27*7D
25 | $GPGSV,4,4,14,36,30,150,,49,34,184,*79
26 | $GLGSV,3,1,09,65,69,045,22,66,43,213,,72,22,039,,73,07,012,*6B
27 | $GLGSV,3,2,09,80,05,326,,81,52,322,13,82,04,320,,87,27,139,24*60
28 | $GLGSV,3,3,09,88,70,136,30*5C
29 | $GNGLL,4833.64651,N,00746.91564,E,171944.00,A,A*7F
30 | $GNRMC,171945.00,A,4833.64644,N,00746.91603,E,1.298,,060621,,,A*60
31 | $GNVTG,,T,,M,1.298,N,2.403,K,A*3A
32 | $GNGGA,171945.00,4833.64644,N,00746.91603,E,1,05,1.17,139.2,M,47.3,M,,*46
33 |
34 |
35 | Fix time 918mS
36 | New GPS Fix Lat,48.560776,Lon,7.781934,Alt,139.2m,Sats,5,HDOP,1.17,Time,17:19:45,Date,6/6/2021
37 |
38 | The printout is from a u-Blox Neo M8 receiver. The data from the GPS is also fed into
39 | the TinyGPS++ library and if there is no fix a message is printed on the serial monitor.
40 |
41 | During setup the GPS receiver is reconfigured in stationary mode and with a higher baud rate.
42 | When the program detects that the GPS has a fix, it prints the Latitude, Longitude, Altitude, Number
43 | of satellites in use, the HDOP value, time and date to the serial monitor. If the I2C OLED display is
44 | attached that is updated as well. Display is assumed to be on I2C address 0x3C.
45 |
46 | Serial monitor baud rate is set at 115200.
47 | *******************************************************************************************************/
48 |
49 | #define Program_Version "V0.03"
50 |
51 | #include //get library here > http://arduiniana.org/libraries/tinygpsplus/
52 | TinyGPSPlus gps; //create the TinyGPS++ object
53 |
54 | #include // I2C
55 |
56 | #include //get library here > https://github.com/olikraus/u8g2
57 | U8X8_SSD1306_128X64_NONAME_HW_I2C disp(U8X8_PIN_NONE); //use this line for standard 0.96" SSD1306
58 |
59 | float GPSLat; //Latitude from GPS
60 | float GPSLon; //Longitude from GPS
61 | float GPSAlt; //Altitude from GPS
62 | uint8_t GPSSats; //number of GPS satellites in use
63 | uint32_t GPSHdop; //HDOP from GPS
64 | uint8_t hours, mins, secs, day, month;
65 | uint16_t year;
66 | uint32_t startGetFixmS;
67 | uint32_t endFixmS;
68 |
69 | void loop()
70 | {
71 | if (gpsWaitFix(5)) // wait 5 seconds for fix
72 | {
73 | Serial.println();
74 | Serial.println();
75 | Serial.print(F("Fix time "));
76 | Serial.print(endFixmS - startGetFixmS);
77 | Serial.println(F("mS"));
78 |
79 | GPSLat = gps.location.lat();
80 | GPSLon = gps.location.lng();
81 | GPSAlt = gps.altitude.meters();
82 | GPSSats = gps.satellites.value();
83 | GPSHdop = gps.hdop.value();
84 |
85 | hours = gps.time.hour();
86 | mins = gps.time.minute();
87 | secs = gps.time.second();
88 | day = gps.date.day();
89 | month = gps.date.month();
90 | year = gps.date.year();
91 |
92 | printGPSfix();
93 | displayscreen1();
94 | startGetFixmS = millis(); //have a fix, next thing that happens is checking for a fix, so restart timer
95 | }
96 | else
97 | {
98 | disp.clearLine(0);
99 | disp.setCursor(0, 0);
100 | disp.print(F("No GPS Fix "));
101 | disp.print( (millis() - startGetFixmS) / 1000 );
102 | Serial.println();
103 | Serial.println();
104 | Serial.print(F("Timeout - No GPS Fix "));
105 | Serial.print( (millis() - startGetFixmS) / 1000 );
106 | Serial.println(F("s"));
107 | }
108 | }
109 |
110 |
111 | bool gpsWaitFix(uint16_t waitSecs)
112 | {
113 | //waits a specified number of seconds for a fix, returns true for good fix
114 |
115 | uint32_t endwaitmS;
116 | uint8_t GPSchar;
117 |
118 | Serial.print(F("Wait GPS Fix "));
119 | Serial.print(waitSecs);
120 | Serial.println(F(" seconds"));
121 |
122 | endwaitmS = millis() + (waitSecs * 1000);
123 |
124 | while (millis() < endwaitmS)
125 | {
126 | if (Serial1.available() > 0)
127 | {
128 | GPSchar = Serial1.read();
129 | gps.encode(GPSchar);
130 | Serial.write(GPSchar);
131 | }
132 |
133 | if (gps.location.isUpdated() && gps.altitude.isUpdated() && gps.date.isUpdated())
134 | {
135 | endFixmS = millis(); //record the time when we got a GPS fix
136 | return true;
137 | }
138 | }
139 |
140 | return false;
141 | }
142 |
143 |
144 | void printGPSfix()
145 | {
146 | float tempfloat;
147 |
148 | Serial.print(F("New GPS Fix "));
149 |
150 | tempfloat = ( (float) GPSHdop / 100);
151 |
152 | Serial.print(F("Lat,"));
153 | Serial.print(GPSLat, 6);
154 | Serial.print(F(",Lon,"));
155 | Serial.print(GPSLon, 6);
156 | Serial.print(F(",Alt,"));
157 | Serial.print(GPSAlt, 1);
158 | Serial.print(F("m,Sats,"));
159 | Serial.print(GPSSats);
160 | Serial.print(F(",HDOP,"));
161 | Serial.print(tempfloat, 2);
162 | Serial.print(F(",Time,"));
163 |
164 | if (hours < 10)
165 | {
166 | Serial.print(F("0"));
167 | }
168 |
169 | Serial.print(hours);
170 | Serial.print(F(":"));
171 |
172 | if (mins < 10)
173 | {
174 | Serial.print(F("0"));
175 | }
176 |
177 | Serial.print(mins);
178 | Serial.print(F(":"));
179 |
180 | if (secs < 10)
181 | {
182 | Serial.print(F("0"));
183 | }
184 |
185 | Serial.print(secs);
186 | Serial.print(F(",Date,"));
187 |
188 | Serial.print(day);
189 | Serial.print(F("/"));
190 | Serial.print(month);
191 | Serial.print(F("/"));
192 | Serial.print(year);
193 |
194 | Serial.println();
195 | Serial.println();
196 | }
197 |
198 |
199 | void displayscreen1()
200 | {
201 | //show GPS data on display
202 | float tempfloat;
203 | tempfloat = ( (float) GPSHdop / 100);
204 |
205 | disp.clearLine(0);
206 | disp.clearLine(1);
207 | disp.setCursor(0, 1);
208 | disp.print(GPSLat, 6);
209 | disp.clearLine(2);
210 | disp.setCursor(0, 2);
211 | disp.print(GPSLon, 6);
212 | disp.clearLine(3);
213 | disp.setCursor(0, 3);
214 | disp.print(GPSAlt);
215 | disp.print(F("m"));
216 | disp.clearLine(4);
217 | disp.setCursor(0, 4);
218 | disp.print(F("Sats "));
219 | disp.print(GPSSats);
220 | disp.clearLine(5);
221 | disp.setCursor(0, 5);
222 | disp.print(F("HDOP "));
223 | disp.print(tempfloat);
224 |
225 | disp.clearLine(6);
226 | disp.setCursor(0, 6);
227 |
228 | if (hours < 10)
229 | {
230 | disp.print(F("0"));
231 | }
232 |
233 | disp.print(hours);
234 | disp.print(F(":"));
235 |
236 | if (mins < 10)
237 | {
238 | disp.print(F("0"));
239 | }
240 |
241 | disp.print(mins);
242 | disp.print(F(":"));
243 |
244 | if (secs < 10)
245 | {
246 | disp.print(F("0"));
247 | }
248 |
249 | disp.print(secs);
250 | disp.print(F(" "));
251 |
252 | disp.clearLine(7);
253 | disp.setCursor(0, 7);
254 |
255 | disp.print(day);
256 | disp.print(F("/"));
257 | disp.print(month);
258 | disp.print(F("/"));
259 | disp.print(year);
260 | }
261 |
262 | void setup()
263 | {
264 |
265 | Serial1.begin(9600); // serial to GPS module
266 | Serial.begin(115200); // USB serial
267 | // Reconfigure the GPS receiver
268 | // first send the $PUBX configuration commands
269 | delay(5000); // give everything a moment to stabilize
270 | Serial.println("GPS checker program started");
271 | Serial.println("Sending $PUBX commands to GPS");
272 | Serial1.print("$PUBX,40,VTG,0,0,0,0,0,0*5E\r\n"); // disable all VTG messages (useless since we are stationary)
273 | Serial1.print("$PUBX,41,1,0003,0003,38400,0*24\r\n"); // set GPS baud rate to 38400 in/out protocols NMEA+UBX
274 | Serial1.flush(); // empty the buffer
275 | delay(100); // give it a moment
276 | Serial1.end(); // close serial port
277 | Serial1.begin(38400); // re-open at new rate
278 | delay(5000);
279 | // second, send the proprietary UBX configuration commands
280 | Serial.println("Now sending UBX commands to GPS");
281 | ubxconfig();
282 |
283 | Serial.println();
284 | Serial.print(F(__TIME__));
285 | Serial.print(F(" "));
286 | Serial.println(F(__DATE__));
287 | Serial.println(F(Program_Version));
288 | Serial.println();
289 |
290 | disp.begin();
291 | disp.setFont(u8x8_font_chroma48medium8_r);
292 | disp.clear();
293 | disp.setCursor(0, 0);
294 | disp.print(F("Display Ready"));
295 |
296 | Serial.println(F("29_GPS_Checker_Display Starting"));
297 | Serial.println();
298 |
299 | startGetFixmS = millis();
300 | }
301 |
302 | void ubxconfig() // based on code by Brad Burleson
303 | {
304 | // send UBX commands to set optimal configuration for GPSDO use
305 | // we are going to change a single parameter from default by
306 | // setting the navigation mode to "stationary"
307 |
308 | bool gps_set_success = false; // flag setting GPS configuration success
309 |
310 | // This UBX command sets stationary mode and confirms it
311 | Serial.println("Setting u-Blox M8 receiver navigation mode to stationary: ");
312 | uint8_t setNav[] = {
313 | 0xB5, 0x62, 0x06, 0x24, 0x24, 0x00, 0xFF, 0xFF, 0x02, 0x03, 0x00, 0x00, 0x00, 0x00, 0x10, 0x27, 0x00, 0x00, 0x05, 0x00, 0xFA, 0x00, 0xFA, 0x00, 0x64, 0x00, 0x2C, 0x01, 0x00, 0x00, 0x00, 0x00, 0x10, 0x27, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x49, 0x53};
314 | while(!gps_set_success)
315 | {
316 | sendUBX(setNav, sizeof(setNav)/sizeof(uint8_t));
317 | Serial.println();
318 | Serial.println("UBX command sent, waiting for UBX ACK... ");
319 | gps_set_success=getUBX_ACK(setNav);
320 | if (gps_set_success)
321 | Serial.println("Success: UBX ACK received! ");
322 | else
323 | Serial.println("Oops, something went wrong here... ");
324 | }
325 | }
326 |
327 | // Send a byte array of UBX protocol to the GPS
328 | void sendUBX(uint8_t *MSG, uint8_t len) {
329 | for(int i=0; i 9) {
366 | // All packets in order!
367 | Serial.println(" (SUCCESS!)");
368 | return true;
369 | }
370 |
371 | // Timeout if no valid response in 3 seconds
372 | if (millis() - startTime > 3000) {
373 | Serial.println(" (FAILED!)");
374 | return false;
375 | }
376 |
377 | // Make sure data is available to read
378 | if (Serial1.available()) {
379 | b = Serial1.read();
380 |
381 | // Check that bytes arrive in sequence as per expected ACK packet
382 | if (b == ackPacket[ackByteID]) {
383 | ackByteID++;
384 | Serial.print(b, HEX);
385 | }
386 | else {
387 | ackByteID = 0; // Reset and look again, invalid order
388 | }
389 |
390 | }
391 | }
392 | }
393 |
--------------------------------------------------------------------------------
/extra/eeprom_emulation_test_1a.ino:
--------------------------------------------------------------------------------
1 | // eeprom_emulation_test_1a
2 | // by André Derrick Balsa (AndrewBCN)
3 | // April 2022
4 | // GPLV3
5 | // Testing STM32duino EEPROM emulation library (emulates EEPROM in Flash)
6 |
7 | #if !defined(STM32_CORE_VERSION) || (STM32_CORE_VERSION < 0x02020000)
8 | #error "Due to API changes, this sketch is compatible with STM32_CORE_VERSION >= 0x02020000 (2.2.0 or later)"
9 | #endif
10 |
11 | // Increase HardwareSerial (UART) TX and RX buffer sizes from default 64 characters to 256.
12 | // The main worry here is that we could miss some characters from the u-blox GPS module if
13 | // the processor is busy doing something else (e.g. updating the display, reading a sensor, etc)
14 | // specially since we increase the GPS baud rate from 9600 to 38400.
15 |
16 | #define SERIAL_TX_BUFFER_SIZE 256 // Warning: > 256 could cause problems, see comments in STM32 HardwareSerial library
17 | #define SERIAL_RX_BUFFER_SIZE 256
18 |
19 | #define GPSDO_GEN_2kHz_PB5 // generate 2kHz square wave test signal on pin PB5 using Timer 3
20 | #define GPSDO_EEPROM // enable STM32 buffered EEPROM emulation library
21 |
22 | #ifdef GPSDO_GEN_2kHz_PB5
23 | #define Test2kHzOutputPin PB5 // digital output pin used to output a test 2kHz square wave
24 | #endif // GEN_2kHz_PB5
25 |
26 | // EEPROM emulation in flash
27 | #ifdef GPSDO_EEPROM
28 | #include // Buffered EEPROM emulation library
29 | #define DATA_LENGTH E2END
30 | const uint32_t eepromsize = DATA_LENGTH;
31 | #endif // EEPROM
32 |
33 | char signature[6] = "STM32";
34 | bool sigalreadywritten = true;
35 |
36 | // LEDs
37 | // Blue onboard LED blinks to indicate ISR is working
38 | #define blueledpin PC13 // Blue onboard LED is on PC13 on STM32F411CEU6 Black Pill
39 |
40 | // Uptime data
41 | volatile uint8_t uphours = 0;
42 | volatile uint8_t upminutes = 0;
43 | volatile uint8_t upseconds = 0;
44 | volatile uint16_t updays = 0;
45 | volatile bool halfsecond = false;
46 | char uptimestr[9] = "00:00:00"; // uptime string
47 | char updaysstr[5] = "000d"; // updays string
48 |
49 | // Interrupt Service Routine for the 2Hz timer
50 | void Timer_ISR_2Hz(void) { // WARNING! Do not attempt I2C communication inside the ISR
51 |
52 | // Toggle pin. 2hz toogle --> 1Hz pulse, perfect 50% duty cycle
53 | digitalWrite(blueledpin, !digitalRead(blueledpin));
54 |
55 | halfsecond = !halfsecond; // true @ 1Hz
56 |
57 | // Uptime clock - in days, hours, minutes, seconds
58 | if (halfsecond)
59 | {
60 | if (++upseconds > 59)
61 | {
62 | upseconds = 0;
63 | if (++upminutes > 59)
64 | {
65 | upminutes = 0;
66 | if (++uphours > 23)
67 | {
68 | uphours = 0;
69 | ++updays;
70 | }
71 | }
72 | }
73 | }
74 | } // end of 2Hz ISR
75 |
76 | void uptimetostrings() {
77 | // translate uptime variables to strings
78 | uptimestr[0] = '0' + uphours / 10;
79 | uptimestr[1] = '0' + uphours % 10;
80 | uptimestr[3] = '0' + upminutes / 10;
81 | uptimestr[4] = '0' + upminutes % 10;
82 | uptimestr[6] = '0' + upseconds / 10;
83 | uptimestr[7] = '0' + upseconds % 10;
84 |
85 | if (updays > 99) { // 100 days or more
86 | updaysstr[0] = '0' + updays / 100;
87 | updaysstr[1] = '0' + (updays % 100) / 10;
88 | updaysstr[2] = '0' + (updays % 100) % 10;
89 | }
90 | else { // less than 100 days
91 | updaysstr[0] = '0';
92 | updaysstr[1] = '0' + updays / 10;
93 | updaysstr[2] = '0' + updays % 10;
94 | }
95 | }
96 |
97 | void setup() {
98 | // Wait 1 second for things to stabilize
99 | delay(1000);
100 |
101 | // setup USB serial
102 | Serial.begin(9600);
103 | Serial.println(F("EEPROM library test"));
104 |
105 | // configure blueledpin in output mode
106 | pinMode(blueledpin, OUTPUT);
107 |
108 | // setup 2kHz test signal on PB5 if configured, uses Timer 3
109 | #ifdef GPSDO_GEN_2kHz_PB5 // note this uses Timer 3 Channel 2
110 | analogWrite(Test2kHzOutputPin, 127); // configures PB5 as PWM output pin at default frequency and resolution
111 | analogWriteFrequency(2000); // default PWM frequency is 1kHz, change it to 2kHz
112 | analogWriteResolution(16); // default PWM resolution is 8 bits, change it to 16 bits
113 | analogWrite(Test2kHzOutputPin, 32767); // 32767 for 16 bits -> 50% duty cycle so a square wave
114 | #endif // GEN_2kHz_PB5
115 |
116 | // setup 2Hz timer and interrupt, uses Timer 9
117 | HardwareTimer *tim2Hz = new HardwareTimer(TIM9);
118 | tim2Hz->setOverflow(2, HERTZ_FORMAT); // 2 Hz
119 | tim2Hz->attachInterrupt(Timer_ISR_2Hz);
120 | tim2Hz->resume();
121 |
122 | delay(1000);
123 |
124 | } // setup done
125 |
126 | void loop() {
127 | // print something once per second to USB serial (Arduino monitor)
128 | uint32_t i = 0;
129 |
130 | uptimetostrings(); // get updaysstr and uptimestr
131 | Serial.print(F("Uptime: "));
132 | Serial.print(updaysstr);
133 | Serial.print(F(" "));
134 | Serial.println(uptimestr);
135 |
136 | delay(1000);
137 |
138 | for (i = 0; i < 6; i++) {
139 | Serial.print(signature[i]);
140 | }
141 | Serial.println();
142 |
143 | eeprom_buffer_fill(); // fill the buffer with contents of Flash emulating EEPROM
144 |
145 | Serial.print(F("EEPROM size: "));
146 | Serial.println(eepromsize);
147 |
148 | sigalreadywritten = true;
149 | for (i = 0; i < 6; i++) {
150 | if (eeprom_buffered_read_byte(i) != signature[i]) sigalreadywritten = false;
151 | Serial.println(eeprom_buffered_read_byte(i));
152 | delay(500);
153 | }
154 |
155 | uint32_t writetime = millis();
156 |
157 | if (sigalreadywritten) {
158 | Serial.println(F("Signature already written, skipping EEPROM buffer flush"));
159 | }
160 | else {
161 | for (i = 0; i < 6; i++) {
162 | eeprom_buffered_write_byte(i, signature[i]); // write signature to buffer
163 | }
164 | eeprom_buffer_flush(); // and flush buffer
165 | }
166 |
167 | Serial.print(F("Write time: ")); // printout how long it took to flush the buffer
168 | Serial.print(millis() - writetime);
169 | Serial.println(F("ms"));
170 | }
171 |
--------------------------------------------------------------------------------
/extra/fptest_01.ino:
--------------------------------------------------------------------------------
1 | /* Floating point math test on the STM32F411CEU6
2 | * The following code tests for rounding errors / weird floating point math
3 | * that could potentiallycause wrong results in the actual STM32 GPSDO code.
4 | * The code below is very similar to the actual code used to calculate
5 | * floating point frequency averages from the data in the ring buffers.
6 | * So, do I need to worry?
7 | * Here are the results printed to serial monitor:
8 | Floating point on STM32, precision test
9 | One decimal test
10 | 10000000.3
11 | Two decimals test
12 | 10000000.23
13 | Three decimals test
14 | 10000000.123
15 | Four decimals test
16 | 10000000.1234
17 | ... (repeated every 5 s)
18 | *
19 | * Conclusion: no, I don't need to worry! :)
20 | */
21 |
22 | // Some global variables
23 | double dbten=0, dbhun=0, dbtho=0, dbtth=0;
24 |
25 | void setup() {
26 | Serial.begin(115200); // results are printed on the serial monitor
27 | }
28 |
29 | void loop() {
30 | Serial.println(F("Floating point on STM32, precision test"));
31 |
32 | // One decimal
33 | uint64_t x1 = 200000123;
34 | uint64_t x2 = 100000120;
35 | dbten = double(x1 - x2) / 10.0;
36 | Serial.println(F("One decimal test"));
37 | Serial.println(dbten, 1);
38 |
39 | // Two decimals
40 | uint64_t y1 = 2000000123;
41 | uint64_t y2 = 1000000100;
42 | dbhun = double(y1 - y2) / 100.00;
43 | Serial.println(F("Two decimals test"));
44 | Serial.println(dbhun, 2);
45 |
46 | // Three decimals
47 | uint64_t z1 = 20000000123;
48 | uint64_t z2 = 10000000000;
49 | dbtho = double(z1 - z2) / 1000.000;
50 | Serial.println(F("Three decimals test"));
51 | Serial.println(dbtho, 3);
52 |
53 | // Four decimals
54 | uint64_t w1 = 200000001234;
55 | uint64_t w2 = 100000000000;
56 | dbtth = double(w1 - w2) / 10000.0000;
57 | Serial.println(F("Four decimals test"));
58 | Serial.println(dbtth, 4);
59 |
60 | delay(5000);
61 | }
62 |
--------------------------------------------------------------------------------
/extra/lcd_test_1a.ino:
--------------------------------------------------------------------------------
1 | // lcd_test_1a
2 | // by André Derrick Balsa (AndrewBCN)
3 | // March 2022
4 | // GPLV3
5 | // Testing the LCD display with the STM32F401CCU6
6 | // Also test SPI bus and I2C bus and various sensors
7 |
8 | #if !defined(STM32_CORE_VERSION) || (STM32_CORE_VERSION < 0x02020000)
9 | #error "Due to API changes, this sketch is compatible with STM32_CORE_VERSION >= 0x02020000 (2.2.0 or later)"
10 | #endif
11 |
12 | // Increase HardwareSerial (UART) TX and RX buffer sizes from default 64 characters to 256.
13 | // The main worry here is that we could miss some characters from the u-blox GPS module if
14 | // the processor is busy doing something else (e.g. updating the display, reading a sensor, etc)
15 | // specially since we increase the GPS baud rate from 9600 to 38400.
16 |
17 | #define SERIAL_TX_BUFFER_SIZE 256 // Warning: > 256 could cause problems, see comments in STM32 HardwareSerial library
18 | #define SERIAL_RX_BUFFER_SIZE 256
19 |
20 | #define GPSDO_GEN_2kHz_PB5 // generate 2kHz square wave test signal on pin PB5 using Timer 3
21 | #define GPSDO_INA219 // INA 219 current sensor
22 |
23 | #ifdef GPSDO_GEN_2kHz_PB5
24 | #define Test2kHzOutputPin PB5 // digital output pin used to output a test 2kHz square wave
25 | #endif // GEN_2kHz_PB5
26 |
27 | #ifdef GPSDO_INA219
28 | #include
29 | Adafruit_INA219 ina219;
30 | #endif // INA219
31 |
32 | #define VctlPWMOutputPin PB9 // digital output pin used to output a PWM value, TIM4 ch4
33 | // Two cascaded RC filters transform the PWM into an analog DC value
34 |
35 | #include // Hardware I2C library on STM32
36 | // Uses PB6 (SCL1) and PB7 (SDA1) on Black Pill for I2C1
37 | #include // Hardware SPI library on STM32
38 | // Uses PA5, PA6, PA7 on Black Pill for SPI1
39 | // AHT20 - I2C
40 | #include // Adafruit AHTX0 library for AHT20 I2C temperature and humidity sensor
41 | Adafruit_AHTX0 aht20; // create object aht20
42 |
43 | // BMP280 - I2C
44 | #include
45 | Adafruit_BMP280 bmp280; // hardware I2C
46 | Adafruit_Sensor *bmp_temp = bmp280.getTemperatureSensor();
47 | Adafruit_Sensor *bmp_pressure = bmp280.getPressureSensor();
48 |
49 | // TFT LCD ST7789 - SPI
50 | #include // need this adapted for STM32F4xx/F411C: https://github.com/fpistm/Adafruit-GFX-Library/tree/Fix_pin_type
51 | #include
52 | //#include
53 |
54 | #define TFT_DC PB12 // note this pin assigment conflicts with the original GPSDO schematic
55 | #define TFT_CS PB13 // in reality, not connected, CS not used on 1.3" TFT ST7789 display
56 | #define TFT_RST PB15 // also uses pins PA5, PA6, PA7 for MOSI MISO and SCLK
57 |
58 | Adafruit_ST7789 disp = Adafruit_ST7789(TFT_CS, TFT_DC, TFT_RST);
59 |
60 | // LEDs
61 | // Blue onboard LED blinks to indicate ISR is working
62 | #define blueledpin PC13 // Blue onboard LED is on PC13 on STM32F411CEU6 Black Pill
63 | // Yellow extra LED is off, on or blinking to indicate some GPSDO status
64 | #define yellowledpin PB8 // Yellow LED on PB8
65 | volatile int yellow_led_state = 2; // global variable 0=off 1=on 2=1Hz blink
66 |
67 | // Uptime data
68 | volatile uint8_t uphours = 0;
69 | volatile uint8_t upminutes = 0;
70 | volatile uint8_t upseconds = 0;
71 | volatile uint16_t updays = 0;
72 | volatile bool halfsecond = false;
73 | char uptimestr[9] = "00:00:00"; // uptime string
74 | char updaysstr[5] = "000d"; // updays string
75 |
76 |
77 | // Interrupt Service Routine for the 2Hz timer
78 | void Timer_ISR_2Hz(void) { // WARNING! Do not attempt I2C communication inside the ISR
79 |
80 | // Toggle pin. 2hz toogle --> 1Hz pulse, perfect 50% duty cycle
81 | digitalWrite(blueledpin, !digitalRead(blueledpin));
82 |
83 | halfsecond = !halfsecond; // true @ 1Hz
84 |
85 | switch (yellow_led_state)
86 | {
87 | case 0:
88 | // turn off led
89 | digitalWrite(yellowledpin, LOW);
90 | break;
91 | case 1:
92 | // turn on led
93 | digitalWrite(yellowledpin, HIGH);
94 | break;
95 | case 2:
96 | // blink led
97 | digitalWrite(yellowledpin, !digitalRead(yellowledpin));
98 | break;
99 | default:
100 | // default is to turn off led
101 | digitalWrite(yellowledpin, LOW);
102 | break;
103 | }
104 |
105 | // Uptime clock - in days, hours, minutes, seconds
106 | if (halfsecond)
107 | {
108 | if (++upseconds > 59)
109 | {
110 | upseconds = 0;
111 | if (++upminutes > 59)
112 | {
113 | upminutes = 0;
114 | if (++uphours > 23)
115 | {
116 | uphours = 0;
117 | ++updays;
118 | }
119 | }
120 | }
121 | }
122 | } // end of 2Hz ISR
123 |
124 | void uptimetostrings() {
125 | // translate uptime variables to strings
126 | uptimestr[0] = '0' + uphours / 10;
127 | uptimestr[1] = '0' + uphours % 10;
128 | uptimestr[3] = '0' + upminutes / 10;
129 | uptimestr[4] = '0' + upminutes % 10;
130 | uptimestr[6] = '0' + upseconds / 10;
131 | uptimestr[7] = '0' + upseconds % 10;
132 |
133 | if (updays > 99) { // 100 days or more
134 | updaysstr[0] = '0' + updays / 100;
135 | updaysstr[1] = '0' + (updays % 100) / 10;
136 | updaysstr[2] = '0' + (updays % 100) % 10;
137 | }
138 | else { // less than 100 days
139 | updaysstr[0] = '0';
140 | updaysstr[1] = '0' + updays / 10;
141 | updaysstr[2] = '0' + updays % 10;
142 | }
143 | }
144 |
145 | void setup() {
146 | // Wait 1 second for things to stabilize
147 | delay(1000);
148 |
149 | // setup USB serial
150 | Serial.begin(9600);
151 | Serial.println(F("LCD display test"));
152 |
153 | // configure blueledpin in output mode
154 | pinMode(blueledpin, OUTPUT);
155 |
156 | // configure yellow_led_pin in output mode
157 | pinMode(yellowledpin, OUTPUT);
158 |
159 | // setup 2kHz test signal on PB5 if configured, uses Timer 3
160 | #ifdef GPSDO_GEN_2kHz_PB5 // note this uses Timer 3 Channel 2
161 | analogWrite(Test2kHzOutputPin, 127); // configures PB5 as PWM output pin at default frequency and resolution
162 | analogWriteFrequency(2000); // default PWM frequency is 1kHz, change it to 2kHz
163 | analogWriteResolution(16); // default PWM resolution is 8 bits, change it to 16 bits
164 | analogWrite(Test2kHzOutputPin, 32767); // 32767 for 16 bits -> 50% duty cycle so a square wave
165 | #endif // GEN_2kHz_PB5
166 |
167 | // setup Vctl PWM DAC, output approximately 1.65V for testing purposes
168 | // we generate a 2kHz square wave on PB9 PWM pin, using Timer 4 channel 4
169 | // PB9 is Timer 4 Channel 4 from Arduino_Core_STM32/variants/STM32F4xx/F411C(C-E)(U-Y)/PeripheralPins_BLACKPILL_F411CE.c
170 | analogWrite(VctlPWMOutputPin, 127); // configures PB9 as PWM output pin at default frequency and resolution
171 | analogWriteFrequency(2000); // default PWM frequency is 1kHz, change it to 2kHz
172 | analogWriteResolution(16); // set PWM resolution to 16 bits (the maximum for the STM32F411CEU6)
173 | analogWrite(VctlPWMOutputPin, 32767); // 32767 for 16 bits -> 50% duty cycle so a square wave
174 |
175 | // setup 2Hz timer and interrupt, uses Timer 9
176 | HardwareTimer *tim2Hz = new HardwareTimer(TIM9);
177 | tim2Hz->setOverflow(2, HERTZ_FORMAT); // 2 Hz
178 | tim2Hz->attachInterrupt(Timer_ISR_2Hz);
179 | tim2Hz->resume();
180 |
181 | // setup sensors and LCD display
182 | // AHT20, BMP280, INA219, ST7789 240x240 TFT LCD
183 |
184 | Serial.println(F("Testing for presence of AHT20 Sensor on I2C bus"));
185 | if (!aht20.begin()) {
186 | Serial.println(F("Could not find AHT20 sensor, check wiring"));
187 | while (1) delay(10);
188 | }
189 | else Serial.println(F("AHT20 sensor found!"));
190 |
191 | Serial.println(F("Testing for presence of BMP280 Sensor on I2C bus"));
192 | if (!bmp280.begin(0x76,0x58)) {
193 | Serial.println(F("Could not find BMP280 sensor, check wiring"));
194 | while (1) delay(10);
195 | }
196 | else Serial.println(F("BMP280 sensor found!"));
197 |
198 | // Default settings from datasheet
199 | bmp280.setSampling(Adafruit_BMP280::MODE_NORMAL, // Operating Mode
200 | Adafruit_BMP280::SAMPLING_X2, // Temp. oversampling
201 | Adafruit_BMP280::SAMPLING_X16, // Pressure oversampling
202 | Adafruit_BMP280::FILTER_X16, // Filtering
203 | Adafruit_BMP280::STANDBY_MS_500); // Standby time
204 |
205 | // Initialize the INA219.
206 | // By default the initialization will use the largest range (32V, 2A). However
207 | // you can call a setCalibration function to change this range (see comments).
208 | if (! ina219.begin()) {
209 | Serial.println(F("Could not find INA219 sensor, check wiring"));
210 | while (1) { delay(10); }
211 | }
212 | else Serial.println(F("INA219 sensor found!"));
213 | // To use a slightly lower 32V, 1A range (higher precision on amps):
214 | //ina219.setCalibration_32V_1A();
215 | // Or to use a lower 16V, 400mA range (higher precision on volts and amps):
216 | //ina219.setCalibration_16V_400mA();
217 | ina219.setCalibration_32V_1A();
218 |
219 | // Setup 240x240 LCD SPI ST7789 display
220 | disp.init(240, 240, SPI_MODE3); // 1.3" 240x240 TFT LCD
221 | delay(500);
222 | disp.fillScreen(ST77XX_BLACK);
223 | disp.setTextColor(ST77XX_YELLOW, ST77XX_BLACK); //
224 | disp.setRotation(2); // 0..3 max, here we use 180° = landscape
225 | disp.setFont();
226 | disp.setTextSize(3);
227 | disp.setCursor(0, 30);
228 | disp.print(F("Testing..."));
229 | disp.setTextSize(2);
230 | disp.setCursor(0, 60);
231 | disp.setTextColor(ST77XX_GREEN, ST77XX_BLACK);
232 | disp.print(F(" Smaller text - "));
233 | disp.setTextColor(ST77XX_WHITE, ST77XX_BLACK);
234 | disp.print(F("123"));
235 | disp.setCursor(0, 80);
236 | disp.setTextColor(ST77XX_RED, ST77XX_BLACK);
237 | disp.print(F("Different colors."));
238 | disp.setTextSize(3);
239 | disp.setTextColor(ST77XX_CYAN, ST77XX_BLACK);
240 | disp.setCursor(0, 120);
241 | disp.print(F("STM32 GPSDO"));
242 | disp.setTextSize(2);
243 | disp.setTextColor(ST77XX_MAGENTA, ST77XX_BLACK);
244 | disp.setCursor(0, 150);
245 | disp.print(F(" Version v0.99z"));
246 | disp.setTextColor(ST77XX_BLUE, ST77XX_BLACK);
247 | disp.setCursor(0, 180);
248 | disp.print(F(" ... not really!"));
249 | } // setup done
250 |
251 | void loop() {
252 | // print something once per second to USB serial (Arduino monitor)
253 |
254 | uptimetostrings(); // get updaysstr and uptimestr
255 | Serial.print(F("Uptime: "));
256 | Serial.print(updaysstr);
257 | Serial.print(F(" "));
258 | Serial.println(uptimestr);
259 |
260 | Serial.println();
261 |
262 | sensors_event_t temp_event, pressure_event;
263 | bmp_temp->getEvent(&temp_event);
264 | bmp_pressure->getEvent(&pressure_event);
265 |
266 | Serial.println(F("BMP280 Sensor Readings"));
267 | Serial.print(F("Temperature = "));
268 | Serial.print(temp_event.temperature);
269 | Serial.println(F(" *C"));
270 |
271 | Serial.print(F("Pressure = "));
272 | Serial.print(pressure_event.pressure);
273 | Serial.println(F(" hPa"));
274 |
275 | Serial.println();
276 |
277 | Serial.println(F("AHT20 Sensor Readings"));
278 | sensors_event_t humidity, temp;
279 | aht20.getEvent(&humidity, &temp); // populate temp and humidity objects with fresh data
280 | Serial.print(F("Temperature = "));
281 | Serial.print(temp.temperature);
282 | Serial.println(F(" *C"));
283 |
284 | Serial.print(F("Humidity = "));
285 | Serial.print(humidity.relative_humidity);
286 | Serial.println(F("% rH"));
287 |
288 | Serial.println();
289 |
290 | // Read INA 219 current voltage sensor
291 | float shuntvoltage = 0;
292 | float busvoltage = 0;
293 | float current_mA = 0;
294 | float loadvoltage = 0;
295 | float power_mW = 0;
296 |
297 | shuntvoltage = ina219.getShuntVoltage_mV();
298 | busvoltage = ina219.getBusVoltage_V();
299 | current_mA = ina219.getCurrent_mA();
300 | power_mW = ina219.getPower_mW();
301 | loadvoltage = busvoltage + (shuntvoltage / 1000);
302 |
303 | Serial.print("Bus Voltage: "); Serial.print(busvoltage); Serial.println(" V");
304 | Serial.print("Shunt Voltage: "); Serial.print(shuntvoltage); Serial.println(" mV");
305 | Serial.print("Load Voltage: "); Serial.print(loadvoltage); Serial.println(" V");
306 | Serial.print("Current: "); Serial.print(current_mA); Serial.println(" mA");
307 | Serial.print("Power: "); Serial.print(power_mW); Serial.println(" mW");
308 |
309 | Serial.println("");
310 |
311 | delay(2000);
312 | }
313 |
--------------------------------------------------------------------------------
/schematics/GPSDO-KiCad.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/AndrewBCN/STM32-GPSDO/a3102458f531ff3edabe53704ac7ce54c3f06c72/schematics/GPSDO-KiCad.pdf
--------------------------------------------------------------------------------
/software/GPSDO.ino:
--------------------------------------------------------------------------------
1 | /**********************************************************************************************************
2 | STM32 GPSDO v0.05j by André Balsa, March 2022
3 | GPLV3 license
4 | GitHub collaborators: iannezsp (Angelo Iannello)
5 | Reuses small bits of the excellent GPS checker code Arduino sketch by Stuart Robinson - 05/04/20
6 | From version 0.03 includes a command parser, so the GPSDO can receive commands from the USB serial or
7 | Bluetooth serial interfaces and execute various callback functions.
8 | From version 0.04 includes an auto-calibration function, enabled by default at power on. The
9 | calibration process can also be launched at any time by sending the "C" command.
10 | The very first calibration after power on includes an OCXO warmup delay, usually 300 seconds.
11 | Version 0.04f implements a GPS receiver "tunnel mode" where the MCU simply relays the information
12 | when the "T" command is received.
13 | This should make it possible to connect the STM32 GPSDO to a laptop/PC running u-center.
14 | Note that tunnel mode is exited automatically after a configurable timeout. There is no other way to
15 | exit tunnel mode.
16 | - Initial ST7735 SPI LCD display support code contributed by Badwater-Frank.
17 |
18 | This program is supplied as is, it is up to the user of the program to decide if the program is
19 | suitable for the intended purpose and free from errors.
20 | **********************************************************************************************************/
21 |
22 | // GPSDO with STM32 MCU, optional OLED/LCD display, various sensors, DFLL in software, optional Bluetooth
23 |
24 | /**********************************************************************************************************
25 | This Arduino with STM32 Core package sketch implements a GPSDO with display options. It uses an SSD1306
26 | 128x64 I2C OLED display or SPI LCD. It reads the GPS for 1 or 5 seconds and copies the half-dozen or so
27 | default NMEA sentences from the GPS to either the USB serial or Bluetooth serial ports (but not both)
28 | if verbose mode is enabled. That is followed by various sensors data and the FLL and OCXO data.
29 | This is an example printout from a working GPSDO running firmware version v0.04e:
30 |
31 | Wait for GPS fix max. 1 second
32 |
33 | $GNGSA,A,3,27,10,23,26,18,15,,,,,,,2.30,1.91,1.28*13
34 | $GNGSA,A9,76,38,268,,77,23,327,,84,05,085,,85,57,052,23*61
35 | $GLGSV,3,3,09,86,53,308,*5F
36 | $GNGLL,4833.66284,N,00746.88237,E,134626.00,A,A*72
37 | $GNRMC,134627.00,A,4833.66358,N,00746.88039,E,2.527,,050621,,,A*64
38 | $GNGGA,134627.00,4833.66358,N,00746.88039,E,1,07,1.91,137.7,M,47.3,M,,*46
39 |
40 | Fix time 889mS
41 | Uptime: 000d 00:28:44
42 | New GPS Fix:
43 | Lat: 48.561058 Lon: 7.781340 Alt: 137.7m
44 | Sats: 7 HDOP: 1.91
45 | UTC Time: 13:46:27 Date: 5/6/2021
46 |
47 | Voltages:
48 | Vctl: 1.97 DAC: 2404
49 | VctlPWM: 1.81 PWM: 35751
50 | Vcc: 5.02
51 | Vdd: 3.29
52 |
53 | Frequency measurements using 64-bit counter:
54 | 64-bit Counter: 17215439735
55 | Frequency: 10000000 Hz
56 | 10s Frequency Avg: 10000000.0 Hz
57 | 100s Frequency Avg: 9999999.99 Hz
58 | 1,000s Frequency Avg: 9999999.997 Hz
59 | 10,000s Frequency Avg: 0.0000 Hz
60 |
61 | BMP280 Temperature = 26.6 *C
62 | Pressure = 1020.0 hPa
63 | Approx altitude = 57.3 m
64 | AHT10 Temperature: 23.57 *C
65 | Humidity: 76.48% rH
66 |
67 | When the program detects that the GPS has a fix, it prints the information above to the USB serial
68 | xor the Bluetooth serial (if the Bluetooth serial port is defined in the preprocessor directives).
69 | If the I2C OLED display is attached that is updated as well.
70 |
71 | The USB serial port is set at 115200 baud, the Bluetooth serial port at 57600 baud, and the GPS
72 | serial port is set initially at 9600 baud then reconfigured at 38400 baud.
73 | **********************************************************************************************************/
74 | /* Libraries required to compile, depending on configured options:
75 | - TinyGPS++
76 | - U8g2/u8x8 graphics library, see https://github.com/olikraus/u8g2
77 | - Adafruit AHTX0
78 | - Adafruit BMP280
79 | - movingAvg library, on STM32 architecture needs a simple patch to avoid warning during compilation
80 | - Color LCD support requires the installation of the Adafruit ST7735 and ST7789 LCD library
81 | and the Adafruit GFX library.
82 | - TM1637 LED clock module requires the TM1637 library, see https://github.com/avishorp/TM1637
83 |
84 | For commands parsing, uses SerialCommands library found here:
85 | https://github.com/ppedro74/Arduino-SerialCommands
86 |
87 | And also requires the installation of support for the STM32 MCUs by installing the STM32duino
88 | package (STM32 Core version 2.2.0 or later).
89 | **********************************************************************************************************/
90 | /* Commands implemented:
91 | - V : returns program name, version and author
92 | - F : flush ring buffers
93 | - C : calibrate OCXO
94 | - dp/up 1/10 : adjust Vctl down/up PWM fine/coarse, example dp1 means decrease PWM by 1.
95 | - SP : set PWM to value between 1 and 65535
96 | - RD/RH : toggle between tab Delimited and Human readable GPSDO status reporting
97 |
98 | /* Commands to be implemented:
99 | - L0 to L9 : select log levels
100 | - L0 : silence mode
101 | - L1 : fix only mode
102 | - L7 : fix and full status mode, no NMEA (default)
103 | - L8 : NMEA stream from GPS module only mode
104 | - L9 : NMEA + full status
105 |
106 | /**********************************************************************************************************
107 | Program Operation - This program is a GPSDO with optional OLED display. It uses a small SSD1306
108 | 128x64 I2C OLED display. At startup the program starts checking the data coming from the GPS for a
109 | valid fix. It reads the GPS NMEA stream for 1/5 seconds and if there is no fix, prints a message on the
110 | Arduino IDE serial monitor and updates the seconds without a fix on the display. During this time the
111 | NMEA stream coming from the GPS is copied to the serial monitor also. The DFLL is active as soon as
112 | the GPS starts providing a 1PPS pulse. The 10MHz OCXO is controlled by a voltage generated by either
113 | the 16-bit PWM ; this voltage (Vctl) is adjusted once every 429 seconds.
114 | **********************************************************************************************************/
115 |
116 | // Version v0.04i and later: Erik Kaashoek has suggested a 10s sampling rate for the 64-bit counter, to save RAM.
117 | // This is work in progress, see the changes in Timer2_Capture_ISR.
118 |
119 | // Version v0.05j and later: reporting on USB serial / Bluetooth serial can be toggled between human readable and tabulated data.
120 |
121 | // 1. picDIV synchronization control.
122 | // 2. Refactor the entire program to make it easier to understand and maintain.
123 | // 3. Implement support for the STM32F401CCU6 Black Pill.
124 | // 4. Frequency / period meter implementation.
125 | // 5. Improve layout of ST7789 display.
126 |
127 | #define Program_Name "GPSDO"
128 | #define Program_Version "v0.05j"
129 | #define Author_Name "André Balsa"
130 |
131 | // Debug options
132 | // -------------
133 | #define FastBootMode // reduce various delays during boot
134 | #define TunnelModeTesting // reduce tunnel mode timeout
135 |
136 | // Hardware options
137 | // ----------------
138 | // #define GPSDO_STM32F401 // use an STM32F401 Black Pill instead of STM32F411 (reduced RAM)
139 | // IMPORTANT! Don't forget to select the correct board in the Tools->Board menu in the arduino IDE
140 | #define GPSDO_OLED // SSD1306 128x64 I2C OLED display
141 | // #define GPSDO_LCD_ST7735 // ST7735 160x128 SPI LCD display
142 | #define GPSDO_LCD_ST7789 // ST7789 240x240 SPI LCD display (testing)
143 | #define GPSDO_PWM_DAC // STM32 16-bit PWM DAC, requires two rc filters (2xr=20k, 2xc=10uF) - note this will become the default
144 | #define GPSDO_AHT10 // AHT10 or AHT20 (recommended) I2C temperature and humidity sensor
145 | #define GPSDO_GEN_2kHz_PB5 // generate 2kHz square wave test signal on pin PB5 using Timer 3
146 | // #define GPSDO_BMP280_SPI // SPI atmospheric pressure, temperature and altitude sensor
147 | #define GPSDO_BMP280_I2C // I2C atmospheric pressure, temperature and altitude sensor
148 | #define GPSDO_INA219 // INA219 I2C current and voltage sensor
149 | // #define GPSDO_BLUETOOTH // Bluetooth serial (HC-06 module)
150 | #define GPSDO_VCC // Vcc (nominal 5V) ; reading Vcc requires 1:2 voltage divider to PA0
151 | #define GPSDO_VDD // Vdd (nominal 3.3V) reads VREF internal ADC channel
152 | #define GPSDO_CALIBRATION // auto-calibration is enabled
153 | #define GPSDO_UBX_CONFIG // optimize u-blox GPS receiver configuration
154 | #define GPSDO_VERBOSE_NMEA // GPS module NMEA stream echoed to USB serial xor Bluetooth serial
155 | // #define GPSDO_PICDIV // generate a 1.2s synchronization pulse for the picDIV
156 | #define GPSDO_TM1637 // TM1637 4-digit LED module
157 | // #define GPSDO_TIC // read TIC 12-bit value on PA1 (ADC channel 1), then discharge capacitor using PB2
158 | #define GPSDO_EEPROM // enable STM32 buffered EEPROM emulation library
159 |
160 | // Includes
161 | // --------
162 | #if !defined(STM32_CORE_VERSION) || (STM32_CORE_VERSION < 0x02020000)
163 | #error "Due to API changes, this sketch is compatible with STM32_CORE_VERSION >= 0x02020000 (2.2.0 or later)"
164 | #endif
165 |
166 | // Increase HardwareSerial (UART) TX and RX buffer sizes from default 64 characters to 256.
167 | // The main worry here is that we could miss some characters from the u-blox GPS module if
168 | // the processor is busy doing something else (e.g. updating the display, reading a sensor, etc)
169 | // specially since we increase the GPS baud rate from 9600 to 38400.
170 |
171 | #define SERIAL_TX_BUFFER_SIZE 256 // Warning: > 256 could cause problems, see comments in STM32 HardwareSerial library
172 | #define SERIAL_RX_BUFFER_SIZE 256
173 |
174 | bool report_tab_delimited = false; // true for tab delimited reporting, false for human-readable reporting
175 | uint64_t report_line_no = 0; // line number for tab delimited reporting, 0 if no GPS fix
176 |
177 | const uint16_t waitFixTime = 1; // Maximum time in seconds waiting for a fix before reporting no fix / yes fix
178 | // Tested values 1 second and 5 seconds, 1s recommended
179 |
180 | #include // https://github.com/JChristensen/movingAvg , needs simple patch
181 | // to avoid warning message during compilation
182 |
183 | #ifdef GPSDO_PICDIV
184 | #define picDIVsyncPin PB3 // digital output pin used to generate a 1.2s synchronization pulse for the picDIV
185 | #endif // PICDIV
186 |
187 | #ifdef GPSDO_GEN_2kHz_PB5
188 | #define Test2kHzOutputPin PB5 // digital output pin used to output a test 2kHz square wave
189 | #endif // GEN_2kHz_PB5
190 |
191 | // HC-06 Bluetooth module
192 | #ifdef GPSDO_BLUETOOTH
193 | // UART RX TX
194 | HardwareSerial Serial2(PA3, PA2); // Serial connection to HC-06 Bluetooth module
195 | #define BT_BAUD 57600 // Bluetooth baud rate
196 | #endif // BLUETOOTH
197 |
198 | // EEPROM emulation in flash
199 | #ifdef GPSDO_EEPROM
200 | #include // Buffered EEPROM emulation library
201 | #endif // EEPROM
202 |
203 | #include // Commands parser library
204 | char serial_command_buffer_[32]; // buffer for commands library
205 | // The following line determines which serial port we'll listen to
206 | // "\n" means only newline needed to accept command
207 | #ifdef GPSDO_BLUETOOTH
208 | SerialCommands serial_commands_(&Serial2, serial_command_buffer_, sizeof(serial_command_buffer_), "\n", " ");
209 | #else
210 | SerialCommands serial_commands_(&Serial, serial_command_buffer_, sizeof(serial_command_buffer_), "\n", " ");
211 | #endif // BLUETOOTH
212 |
213 | #include // get library here > http://arduiniana.org/libraries/tinygpsplus/
214 | TinyGPSPlus gps; // create the TinyGPS++ object
215 |
216 | #include // Hardware I2C library on STM32
217 |
218 | // AHT10 / AHT20 temperature humidity sensor // Uses PB6 (SCL1) and PB7 (SDA1) on Black Pill for I2C1
219 | #ifdef GPSDO_AHT10
220 | #include // Adafruit AHTX0 library
221 | Adafruit_AHTX0 aht; // create object aht
222 | #endif // AHT10
223 |
224 | // INA219 current voltage sensor
225 | #ifdef GPSDO_INA219
226 | #include
227 | Adafruit_INA219 ina219;
228 | float ina219volt=0.0, ina219curr=0.0;
229 | #endif // INA219
230 |
231 | // TM1637 4-digit LED module
232 | #ifdef GPSDO_TM1637
233 | #include // get library here > https://github.com/avishorp/TM1637
234 | // Module connection pins (Digital Pins)
235 | #define CLK PA8 // interface to TM1637 requires two GPIO pins
236 | #define DIO PB4
237 | TM1637Display tm1637(CLK, DIO); // create tm1637 object
238 | const uint8_t mid_dashes[] = {
239 | SEG_G, // -
240 | SEG_G, // -
241 | SEG_G, // -
242 | SEG_G // -
243 | };
244 | const uint8_t low_oooo_s[] = {
245 | SEG_C | SEG_D | SEG_E | SEG_G, // o
246 | SEG_C | SEG_D | SEG_E | SEG_G, // o
247 | SEG_C | SEG_D | SEG_E | SEG_G, // o
248 | SEG_C | SEG_D | SEG_E | SEG_G // o
249 | };
250 | #endif // TM1637
251 |
252 | // OLED 0.96 SSD1306 128x64
253 | #ifdef GPSDO_OLED
254 | #include // get library here > https://github.com/olikraus/u8g2
255 | U8X8_SSD1306_128X64_NONAME_HW_I2C disp(U8X8_PIN_NONE); // use this line for standard 0.96" SSD1306
256 | #endif // OLED
257 |
258 | // LCD 1.8" ST7735 160x128 (tested by Badwater-Frank)
259 | #ifdef GPSDO_LCD_ST7735
260 | #include // need this adapted for STM32F4xx/F411C: https://github.com/fpistm/Adafruit-GFX-Library/tree/Fix_pin_type
261 | #include
262 | //#include
263 | #include
264 | #define TFT_DC PA1 // note this pin assigment conflicts with the original schematic
265 | #define TFT_CS PA2
266 | #define TFT_RST PA3
267 | // For 1.44" and 1.8" TFT with ST7735 use:
268 | Adafruit_ST7735 disp = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);
269 | #endif // LCD_ST7735
270 |
271 | // LCD 1.3" ST7789 240x240 (Testing)
272 | #ifdef GPSDO_LCD_ST7789
273 | #include // need this adapted for STM32F4xx/F411C: https://github.com/fpistm/Adafruit-GFX-Library/tree/Fix_pin_type
274 | #include
275 | #include
276 | #define TFT_DC PB12 // note pin assigment that does not conflict with other interfaces
277 | #define TFT_CS PB13 // in reality, CS not connected, CS not used on 1.3" TFT ST7789 display
278 | #define TFT_RST PB15 // also uses pins PA5, PA6, PA7 for MOSI MISO and SCLK
279 | // For 1.3" LCD with ST7789
280 | Adafruit_ST7789 disp_st7789 = Adafruit_ST7789(TFT_CS, TFT_DC, TFT_RST);
281 | bool must_clear_disp_st7789 = false; // flag is set when display has to be cleared
282 |
283 | // include the following GFX library fonts
284 | #include // tiny, but readable in white
285 | #include // medium size, readable
286 | #endif // LCD_ST7789
287 |
288 | // PWM 16-bit DAC
289 | const uint16_t default_PWM_output = 35585; // "ideal" 16-bit PWM value, varies with OCXO, RC network, and time and temperature
290 | // 35585 for a second NDK ENE3311B
291 | uint16_t adjusted_PWM_output; // we adjust this value to "close the loop" of the DFLL when using the PWM
292 | volatile bool must_adjust_DAC = false; // true when there is enough data to adjust Vctl
293 | char trendstr[5] = " ___"; // PWM trend string, set in the adjustVctlPWM() function
294 |
295 | #define VctlPWMOutputPin PB9 // digital output pin used to output a PWM value, TIM4 ch4
296 | // Two cascaded RC filters transform the PWM into an analog DC value
297 | #define VctlPWMInputPin PB1 // ADC pin to read Vctl from filtered PWM
298 | volatile int pwmVctl = 0; // variable used to store PWM Vctl read by ADC pin PB1
299 |
300 | // VCC - 5V
301 | #ifdef GPSDO_VCC
302 | #define VccDiv2InputPin PA0 // Vcc/2 using resistor divider connects to PA0
303 | int adcVcc = 0;
304 | #endif // VCC
305 |
306 | // VDD - 3.3V
307 | #ifdef GPSDO_VDD
308 | int adcVdd = 0; // Vdd is read internally as Vref
309 | #endif // VDD
310 |
311 | // movingAvg objects for the voltages measured by MCU ADC
312 | // all averages over 10 samples (10 seconds in principle)
313 | #ifdef GPSDO_VDD
314 | movingAvg avg_adcVdd(10);
315 | int16_t avgVdd = 0;
316 | #endif // VDD
317 |
318 | #ifdef GPSDO_VCC
319 | movingAvg avg_adcVcc(10);
320 | int16_t avgVcc = 0;
321 | #endif // VCC
322 |
323 | movingAvg avg_pwmVctl(10);
324 | int16_t avgpwmVctl = 0;
325 |
326 | // BMP280 atmospheric pressure and temperature sensor
327 | #ifdef GPSDO_BMP280_SPI
328 | // BMP280 - SPI
329 | #include
330 | #include
331 | #define BMP280_CS (PA4) // SPI1 uses PA4, PA5, PA6, PA7
332 | Adafruit_BMP280 bmp(BMP280_CS); // hardware SPI, use PA4 as Chip Select
333 | #endif // BMP280_SPI
334 |
335 | #ifdef GPSDO_BMP280_I2C
336 | // BMP280 - I2C
337 | #include
338 | Adafruit_BMP280 bmp; // hardware I2C
339 | #endif // BMP280_I2C
340 |
341 | #if (defined (GPSDO_BMP280_SPI) || defined (GPSDO_BMP280_I2C))
342 | const uint16_t PressureOffset = 1860; // that offset must be calculated for your sensor and location
343 | float bmp280temp=0.0, bmp280pres=0.0, bmp280alti=0.0; // read sensor, save here
344 | #endif // BMP280
345 |
346 | // LEDs
347 | // Blue onboard LED blinks to indicate ISR is working
348 | #define blueledpin PC13 // Blue onboard LED is on PC13 on STM32F411CEU6 Black Pill
349 | // Yellow extra LED is off, on or blinking to indicate some GPSDO status
350 | #define yellowledpin PB8 // Yellow LED on PB8
351 | volatile int yellow_led_state = 2; // global variable 0=off 1=on 2=1Hz blink
352 |
353 | // GPS data
354 | float GPSLat; // Latitude from GPS
355 | float GPSLon; // Longitude from GPS
356 | float GPSAlt; // Altitude from GPS
357 | uint8_t GPSSats; // number of GPS satellites in use
358 | uint32_t GPSHdop; // HDOP from GPS
359 | uint8_t hours, mins, secs, day, month;
360 | uint16_t year;
361 | uint32_t startGetFixmS;
362 | uint32_t endFixmS;
363 |
364 | // Uptime data
365 | volatile uint8_t uphours = 0;
366 | volatile uint8_t upminutes = 0;
367 | volatile uint8_t upseconds = 0;
368 | volatile uint16_t updays = 0;
369 | volatile bool halfsecond = false;
370 | char uptimestr[9] = "00:00:00"; // uptime string
371 | char updaysstr[5] = "000d"; // updays string
372 |
373 | // OCXO frequency measurement
374 |
375 | // special 10s sampling rate data structures (work in progress)
376 | volatile uint16_t esamplingfactor = 10; // sample 64-bit counter every 10 seconds
377 | volatile uint16_t esamplingcounter = 0; // counter from 0 to esamplingfactor
378 | volatile bool esamplingflag = false;
379 |
380 | volatile uint64_t circbuf_esten64[11]; // 10+1 x10 seconds circular buffer, so 100 seconds
381 | volatile uint32_t cbihes_newest = 0; // newest/oldest index
382 | volatile bool cbHes_full = false; // flag set when buffer has filled up
383 | volatile double avgesample = 0; // 100 seconds average with 10s sampling rate
384 |
385 | // other OCXO frequency measurement data structures
386 | const uint32_t basefreq=10000000; // OCXO nominal frequency in Hz
387 | volatile uint32_t lsfcount=0, previousfcount=0, calcfreqint=basefreq;
388 |
389 | // Frequency check boundaries
390 | const uint32_t lowerfcount = 9999500;
391 | const uint32_t upperfcount = 10000500;
392 |
393 | /* Moving average frequency variables
394 | Basically we store the counter captures for 10 and 100 seconds.
395 | When the buffers are full, the average frequency is quite simply
396 | the difference between the oldest and newest data divided by the size
397 | of the buffer.
398 | Each second, when the buffers are full, we overwrite the oldest data
399 | with the newest data and calculate each average frequency.
400 | */
401 | volatile uint64_t fcount64=0, prevfcount64=0, calcfreq64=basefreq;
402 | // ATTENTION! must declare 64-bit, not 32-bit variable, because of shift
403 | volatile uint64_t tim2overflowcounter = 0; // testing, counts the number of times TIM2 overflows
404 | volatile bool overflowflag = false; // flag set by the overflow ISR, reset by the 2Hz ISR
405 | volatile bool captureflag = false; // flag set by the capture ISR, reset by the 2Hz ISR
406 | volatile bool overflowErrorFlag = false; // flag set if there was an overflow processing error
407 |
408 | volatile uint64_t circbuf_ten64[11]; // 10+1 seconds circular buffer
409 | volatile uint64_t circbuf_hun64[101]; // 100+1 seconds circular buffer
410 | volatile uint64_t circbuf_tho64[1001]; // 1,000+1 seconds circular buffer
411 | #ifndef GPSDO_STM32F401
412 | volatile uint64_t circbuf_tth64[10001]; // 10,000 + 1 seconds circular buffer
413 | #else // STM32F401 has less RAM
414 | volatile uint64_t circbuf_fth64[5001]; // 5,000 + 1 seconds circular buffer
415 | #endif // GPSDO_STM32F401
416 |
417 | volatile uint32_t cbiten_newest=0; // index to oldest, newest data
418 | volatile uint32_t cbihun_newest=0;
419 | volatile uint32_t cbitho_newest=0;
420 | volatile uint32_t cbitth_newest=0;
421 |
422 | volatile bool cbTen_full=false, cbHun_full=false, cbTho_full=false, cbTth_full=false; // flag when buffer full
423 | volatile double avgften=0, avgfhun=0, avgftho=0, avgftth=0; // average frequency calculated once the buffer is full
424 | volatile bool flush_ring_buffers_flag = true; // indicates ring buffers should be flushed
425 |
426 | // Miscellaneous data structures
427 |
428 | // picDIV support
429 | #ifdef GPSDO_PICDIV
430 | #define VphaseInputPin PB1 // ADC pin to read Vphase from 1ns-resolution TIC
431 | volatile bool force_armpicDIV_flag = true; // indicates picDIV must be armed waiting to sync on next PPS from GPS module
432 | #endif // PICDIV
433 |
434 | volatile bool force_calibration_flag = true; // indicates GPSDO should start calibration sequence
435 |
436 | volatile bool ocxo_needs_warming = true; // indicates OCXO needs to warm up a few minutes after power on
437 |
438 | #ifdef FastBootMode
439 | const uint16_t ocxo_warmup_time = 15; // ocxo warmup time in seconds; 15s for testing
440 | const uint16_t ocxo_calib_time = 15; // 15s fast calibration countdown time (for each calibration step)
441 | #else
442 | const uint16_t ocxo_warmup_time = 300; // ocxo warmup time in seconds; 300s or 600s normal use
443 | const uint16_t ocxo_calib_time = 60; // 60s normal calibration countdown time (for each calibration step)
444 | #endif // FastBootMode
445 |
446 | volatile bool tunnel_mode_flag = false; // the GPSDO relays the information directly to and from the GPS module to the USB serial
447 | #ifdef TunnelModeTesting
448 | const uint16_t tunnelSecs = 15; // tunnel mode timeout in seconds; 15s for testing, 300s or 600s normal use
449 | #else
450 | const uint16_t tunnelSecs = 300; // tunnel mode timeout in seconds; 15s for testing, 300s or 600s normal use
451 | #endif // TunnelModeTesting
452 |
453 | // Miscellaneous functions
454 |
455 | // SerialCommands callback functions
456 | // This is the default handler, and gets called when no other command matches.
457 | void cmd_unrecognized(SerialCommands* sender, const char* cmd)
458 | {
459 | sender->GetSerial()->print("Unrecognized command [");
460 | sender->GetSerial()->print(cmd);
461 | sender->GetSerial()->println("]");
462 | }
463 |
464 | // called for V (version) command
465 | void cmd_version(SerialCommands* sender)
466 | {
467 | sender->GetSerial()->print(Program_Name);
468 | sender->GetSerial()->print(" - ");
469 | sender->GetSerial()->print(Program_Version);
470 | sender->GetSerial()->print(" by ");
471 | sender->GetSerial()->println(Author_Name);
472 | }
473 |
474 | // called for RD (Report tab Delimited format) command
475 | void cmd_repdel(SerialCommands* sender)
476 | {
477 | report_tab_delimited = true; // set switch
478 | sender->GetSerial()->println("Switching to reporting in Tab Delimited Format");
479 | }
480 |
481 | // called for RH (Report Human readable format) command
482 | void cmd_rephum(SerialCommands* sender)
483 | {
484 | report_tab_delimited = false; // reset switch
485 | report_line_no = 0; // reset line counter
486 | sender->GetSerial()->println("Switching to reporting in Human Readable Format");
487 | }
488 |
489 | // called for F (flush ring buffers) command
490 | void cmd_flush(SerialCommands* sender)
491 | {
492 | flush_ring_buffers_flag = true; // ring buffers will be flushed inside interrupt routine
493 | sender->GetSerial()->println("Ring buffers flushed");
494 | }
495 |
496 | // called for C (calibration) command
497 | void cmd_calibrate(SerialCommands* sender)
498 | {
499 | force_calibration_flag = true; // starts auto-calibration sequence
500 | sender->GetSerial()->println("Auto-calibration sequence started");
501 | }
502 |
503 | // called for T (tunnel) command
504 | void cmd_tunnel(SerialCommands* sender)
505 | {
506 | tunnel_mode_flag = true; // switches GPSDO operation to tunnel mode
507 | sender->GetSerial()->println("Switching to USB Serial <-> GPS tunnel mode");
508 | }
509 |
510 | // called for SP (set PWM) command
511 | void cmd_setPWM(SerialCommands* sender)
512 | {
513 | int32_t pwm;
514 | char* pwm_str = sender->Next();
515 | if (pwm_str == NULL) // check if a value was specified
516 | {
517 | sender->GetSerial()->println("No PWM value specified, using default");
518 | pwm = default_PWM_output;
519 | adjusted_PWM_output = pwm;
520 | analogWrite(VctlPWMOutputPin, adjusted_PWM_output);
521 | }
522 | else // check the value that was specified
523 | {
524 | pwm = atoi(pwm_str); // note atoi() returns zero if it cannot convert the string to a valid integer
525 | if ((pwm >= 1) && (pwm <= 65535)) // check if the value specified is positive 16-bit integer
526 | {
527 | sender->GetSerial()->print("Setting PWM value "); // if yes, set the value
528 | sender->GetSerial()->println(pwm);
529 | adjusted_PWM_output = pwm;
530 | analogWrite(VctlPWMOutputPin, adjusted_PWM_output);
531 | }
532 | else // incorrect value specified, print error message
533 | {
534 | sender->GetSerial()->println("PWM value must be positive integer between 1 and 65535, leaving unchanged");
535 | }
536 | }
537 | }
538 |
539 | // PWM direct control commands (up/down)
540 | // -------------------------------------
541 | // called for up1 (increase PWM 1 bit) command
542 | void cmd_up1(SerialCommands* sender)
543 | {
544 | adjusted_PWM_output = adjusted_PWM_output + 1;
545 | analogWrite(VctlPWMOutputPin, adjusted_PWM_output);
546 | sender->GetSerial()->println("increased PWM 1 bit");
547 | }
548 | // called for up10 (increase PWM 10 bits) command
549 | void cmd_up10(SerialCommands* sender)
550 | {
551 | adjusted_PWM_output = adjusted_PWM_output + 10;
552 | analogWrite(VctlPWMOutputPin, adjusted_PWM_output);
553 | sender->GetSerial()->println("increased PWM 10 bits");
554 | }
555 | // called for dp1 (decrease PWM 1 bit) command
556 | void cmd_dp1(SerialCommands* sender)
557 | {
558 | adjusted_PWM_output = adjusted_PWM_output - 1;
559 | analogWrite(VctlPWMOutputPin, adjusted_PWM_output);
560 | sender->GetSerial()->println("decreased PWM 1 bit");
561 | }
562 | // called for dp10 (decrease PWM 10 bits) command
563 | void cmd_dp10(SerialCommands* sender)
564 | {
565 | adjusted_PWM_output = adjusted_PWM_output - 10;
566 | analogWrite(VctlPWMOutputPin, adjusted_PWM_output);
567 | sender->GetSerial()->println("decreased PWM 10 bits");
568 | }
569 |
570 | #ifdef GPSDO_EEPROM
571 | // add callback functions for PS and PR commands to Store PWM and Recall PWM value in Flash (emulating EEPROM)
572 | // warning! limited number of writes allowed
573 | #endif // EEPROM
574 |
575 | // SerialCommand commands
576 | // Note: Commands are case sensitive
577 | SerialCommand cmd_version_("V", cmd_version); // print program name and version
578 | SerialCommand cmd_flush_("F", cmd_flush); // flush ring buffers
579 | SerialCommand cmd_calibrate_("C", cmd_calibrate); // force calibration
580 | SerialCommand cmd_tunnel_("T", cmd_tunnel); // activate tunnel mode
581 | SerialCommand cmd_rephum_("RH", cmd_rephum); // activate humand readable reporting
582 | SerialCommand cmd_repdel_("RD", cmd_repdel); // activate tab delimited reporting
583 | SerialCommand cmd_setPWM_("SP", cmd_setPWM); // note this command takes a 16-bit PWM value (1 to 65535) as an argument
584 | // 16-bit PWM commands
585 | SerialCommand cmd_up1_("up1", cmd_up1);
586 | SerialCommand cmd_up10_("up10", cmd_up10);
587 | SerialCommand cmd_dp1_("dp1", cmd_dp1);
588 | SerialCommand cmd_dp10_("dp10", cmd_dp10);
589 |
590 | #ifdef GPSDO_EEPROM
591 | // add PS and PR commands to Store PWM and Recall PWM value in Flash (emulating EEPROM)
592 | // warning! limited number of writes allowed
593 | #endif // EEPROM
594 |
595 | // loglevel
596 | uint8_t loglevel = 7; // see commands comments for log level definitions, default is 7
597 | // note log levels are not implemented yet
598 |
599 | // Interrupt service routines
600 |
601 | // Interrupt Service Routine for TIM2 counter overflow / wraparound
602 | void Timer2_Overflow_ISR(void)
603 | {
604 | overflowflag = true;
605 | }
606 |
607 | // Interrupt Service Routine for TIM2 counter capture
608 | void Timer2_Capture_ISR(void)
609 | {
610 | captureflag = true;
611 | }
612 |
613 | // Interrupt Service Routine for the 2Hz timer
614 | void Timer_ISR_2Hz(void) // WARNING! Do not attempt I2C communication inside the ISR
615 |
616 | { // Toggle pin. 2hz toogle --> 1Hz pulse, perfect 50% duty cycle
617 | digitalWrite(blueledpin, !digitalRead(blueledpin));
618 |
619 | halfsecond = !halfsecond; // true @ 1Hz
620 |
621 | // read TIM2->CCR3 once per second (when captureflag is set) and if it has changed, calculate OCXO frequency
622 |
623 | if (captureflag) {
624 | lsfcount = TIM2->CCR3; // read TIM2->CCR3
625 | captureflag = false; // clear capture flag
626 | if (flush_ring_buffers_flag)
627 | {
628 | flushringbuffers(); // flush ring buffers after a sat fix loss
629 | }
630 | else // check if the frequency counter has been updated and process accordingly
631 | {
632 | // there are two possible cases
633 | // 1. lsfcount is the same as last time -> there is nothing to do, or
634 | // 2. lsfcount is NOT the same as last time -> process
635 | if (lsfcount != previousfcount)
636 | {
637 | // again we must consider two cases
638 | // 1. lsfcount < previousfcount -> a wraparound has occurred, process
639 | // 2. lsfcount > previous fcount -> no wraparound processing required
640 | if (lsfcount < previousfcount)
641 | {
642 | must_adjust_DAC = true; // set flag, once every wraparound / every 429s
643 | // check wraparound flag, it should be set, if so clear it, otherwise raise error flag
644 | tim2overflowcounter++;
645 | if (overflowflag) overflowflag=false; else overflowErrorFlag = true;
646 | }
647 | fcount64 = (tim2overflowcounter << 32) + lsfcount; // hehe now we have a 64-bit counter
648 | if (fcount64 > prevfcount64) { // if we have a new count - that happens once per second
649 | if (((fcount64 - prevfcount64) > lowerfcount) && ((fcount64 - prevfcount64) < upperfcount)) { // if we have a valid fcount, otherwise it's discarded
650 | logfcount64(); // save fcount in the 64-bit ring buffers
651 | calcfreq64 = fcount64 - prevfcount64; // the difference is exactly the OCXO frequency in Hz
652 | }
653 | prevfcount64 = fcount64;
654 | }
655 | }
656 | previousfcount = lsfcount; // this happens whether it has changed or not
657 | }
658 | }
659 |
660 | switch (yellow_led_state)
661 | {
662 | case 0:
663 | // turn off led
664 | digitalWrite(yellowledpin, LOW);
665 | break;
666 | case 1:
667 | // turn on led
668 | digitalWrite(yellowledpin, HIGH);
669 | break;
670 | case 2:
671 | // blink led
672 | digitalWrite(yellowledpin, !digitalRead(yellowledpin));
673 | break;
674 | default:
675 | // default is to turn off led
676 | digitalWrite(yellowledpin, LOW);
677 | break;
678 | }
679 |
680 | // Uptime clock - in days, hours, minutes, seconds
681 | if (halfsecond)
682 | {
683 | if (++upseconds > 59)
684 | {
685 | upseconds = 0;
686 | if (++upminutes > 59)
687 | {
688 | upminutes = 0;
689 | if (++uphours > 23)
690 | {
691 | uphours = 0;
692 | ++updays;
693 | }
694 | }
695 | }
696 | }
697 | }
698 |
699 | void logfcount64() // called once per second from ISR to update all the ring buffers
700 | {
701 | // 10 seconds buffer
702 | circbuf_ten64[cbiten_newest]=fcount64;
703 | cbiten_newest++;
704 | if (cbiten_newest > 10) {
705 | cbTen_full=true; // this only needs to happen once, when the buffer fills up for the first time
706 | cbiten_newest = 0; // (wrap around)
707 | }
708 | // 100 seconds buffer
709 | circbuf_hun64[cbihun_newest]=fcount64;
710 | cbihun_newest++;
711 | if (cbihun_newest > 100) {
712 | cbHun_full=true; // this only needs to happen once, when the buffer fills up for the first time
713 | cbihun_newest = 0; // (wrap around)
714 | }
715 | // 1000 seconds buffer
716 | circbuf_tho64[cbitho_newest]=fcount64;
717 | cbitho_newest++;
718 | if (cbitho_newest > 1000) {
719 | cbTho_full=true; // this only needs to happen once, when the buffer fills up for the first time
720 | cbitho_newest = 0; // (wrap around)
721 | }
722 | // 10000 seconds buffer (2 hr 46 min 40 sec)
723 | circbuf_tth64[cbitth_newest]=fcount64;
724 | cbitth_newest++;
725 | if (cbitth_newest > 10000) {
726 | cbTth_full=true; // this only needs to happen once, when the buffer fills up for the first time
727 | cbitth_newest = 0; // (wrap around)
728 | }
729 |
730 | calcavg(); // always recalculate averages after logging fcount (if the respective buffers are full)
731 | }
732 |
733 | void calcavg() {
734 | // Calculate the OCXO frequency to 1, 2, 3 or 4 decimal places only when the respective buffers are full
735 | // Try to understand the algorithm for the 10s ring buffer first, the others work exactly the same
736 |
737 | uint64_t latfcount64, oldfcount64; // latest fcount, oldest fcount stored in ring buffer
738 |
739 | if (cbTen_full) { // we want (latest fcount - oldest fcount) / 10
740 | // latest fcount is always circbuf_ten64[cbiten_newest-1]
741 | // except when cbiten_newest is zero
742 | // oldest fcount is always circbuf_ten64[cbiten_newest] when buffer is full
743 | if (cbiten_newest == 0) latfcount64 = circbuf_ten64[10];
744 | else latfcount64 = circbuf_ten64[cbiten_newest-1];
745 | oldfcount64 = circbuf_ten64[cbiten_newest];
746 | // now that we have latfcount64 and oldfcount64 we can calculate the average frequency
747 | avgften = double(latfcount64 - oldfcount64)/10.0;
748 | }
749 | if (cbHun_full) { // we want (latest fcount - oldest fcount) / 100
750 |
751 | // latest fcount is always circbuf_hun[cbihun_newest-1]
752 | // except when cbihun_newest is zero
753 | // oldest fcount is always circbuf_hun[cbihun_newest] when buffer is full
754 |
755 | if (cbihun_newest == 0) latfcount64 = circbuf_hun64[100];
756 | else latfcount64 = circbuf_hun64[cbihun_newest-1];
757 | oldfcount64 = circbuf_hun64[cbihun_newest];
758 |
759 | avgfhun = double(latfcount64 - oldfcount64)/100.0;
760 | }
761 | if (cbTho_full) { // we want (latest fcount - oldest fcount) / 1000
762 |
763 | // latest fcount is always circbuf_tho[cbitho_newest-1]
764 | // except when cbitho_newest is zero
765 | // oldest fcount is always circbuf_tho[cbitho_newest] when buffer is full
766 |
767 | if (cbitho_newest == 0) latfcount64 = circbuf_tho64[1000];
768 | else latfcount64 = circbuf_tho64[cbitho_newest-1];
769 | oldfcount64 = circbuf_tho64[cbitho_newest];
770 |
771 | avgftho = double(latfcount64 - oldfcount64)/1000.0;
772 | // oldest fcount is always circbuf_ten[cbiten_newest-2]
773 | // except when cbiten_newest is <2 (zero or 1)
774 | }
775 | if (cbTth_full) { // we want (latest fcount - oldest fcount) / 10000
776 |
777 | // latest fcount is always circbuf_tth[cbitth_newest-1]
778 | // except when cbitth_newest is zero
779 | // oldest fcount is always circbuf_tth[cbitth_newest] when buffer is full
780 |
781 | if (cbitth_newest == 0) latfcount64 = circbuf_tth64[10000];
782 | else latfcount64 = circbuf_tth64[cbitth_newest-1];
783 | oldfcount64 = circbuf_tth64[cbitth_newest];
784 |
785 | avgftth = double(latfcount64 - oldfcount64)/10000.0;
786 | // oldest fcount is always circbuf_ten[cbiten_newest-2]
787 | // except when cbiten_newest is <2 (zero or 1)
788 | }
789 | }
790 |
791 | void flushringbuffers(void) {
792 | cbTen_full = false;
793 | cbHun_full = false;
794 | cbTho_full = false;
795 | cbTth_full = false;
796 | cbiten_newest = 0;
797 | cbihun_newest = 0;
798 | cbitho_newest = 0;
799 | cbitth_newest = 0;
800 | avgften = 0;
801 | avgfhun = 0;
802 | avgftho = 0;
803 | avgftth = 0;
804 | prevfcount64 = 0;
805 | previousfcount = 0;
806 | flush_ring_buffers_flag = false; // clear flag
807 | }
808 |
809 | void pinModeAF(int ulPin, uint32_t Alternate)
810 | {
811 | int pn = digitalPinToPinName(ulPin);
812 |
813 | if (STM_PIN(pn) < 8) {
814 | LL_GPIO_SetAFPin_0_7( get_GPIO_Port(STM_PORT(pn)), STM_LL_GPIO_PIN(pn), Alternate);
815 | } else {
816 | LL_GPIO_SetAFPin_8_15(get_GPIO_Port(STM_PORT(pn)), STM_LL_GPIO_PIN(pn), Alternate);
817 | }
818 |
819 | LL_GPIO_SetPinMode(get_GPIO_Port(STM_PORT(pn)), STM_LL_GPIO_PIN(pn), LL_GPIO_MODE_ALTERNATE);
820 | }
821 |
822 | #ifdef GPSDO_UBX_CONFIG
823 | void ubxconfig() // based on code by Brad Burleson
824 | {
825 | // send UBX commands to set optimal configuration for GPSDO use
826 | // we are going to change a single parameter from default by
827 | // setting the navigation mode to "stationary"
828 |
829 | bool gps_set_success = false; // flag setting GPS configuration success
830 |
831 | // This UBX command sets stationary mode and confirms it
832 | Serial.println("Setting u-Blox M8 receiver navigation mode to stationary: ");
833 | uint8_t setNav[] = {
834 | 0xB5, 0x62, 0x06, 0x24, 0x24, 0x00, 0xFF, 0xFF, 0x02, 0x03, 0x00, 0x00, 0x00, 0x00, 0x10, 0x27, 0x00, 0x00, 0x05, 0x00, 0xFA, 0x00, 0xFA, 0x00, 0x64, 0x00, 0x2C, 0x01, 0x00, 0x00, 0x00, 0x00, 0x10, 0x27, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x49, 0x53};
835 | while(!gps_set_success)
836 | {
837 | sendUBX(setNav, sizeof(setNav)/sizeof(uint8_t));
838 | Serial.println();
839 | Serial.println("UBX command sent, waiting for UBX ACK... ");
840 | gps_set_success=getUBX_ACK(setNav);
841 | if (gps_set_success)
842 | Serial.println("Success: UBX ACK received! ");
843 | else
844 | Serial.println("Oops, something went wrong here... ");
845 | }
846 | }
847 |
848 | // Send a byte array of UBX protocol to the GPS
849 | void sendUBX(uint8_t *MSG, uint8_t len) {
850 | for(int i=0; i 9) {
887 | // All packets in order!
888 | Serial.println(" (SUCCESS!)");
889 | return true;
890 | }
891 |
892 | // Timeout if no valid response in 3 seconds
893 | if (millis() - startTime > 3000) {
894 | Serial.println(" (FAILED!)");
895 | return false;
896 | }
897 |
898 | // Make sure data is available to read
899 | if (Serial1.available()) {
900 | b = Serial1.read();
901 |
902 | // Check that bytes arrive in sequence as per expected ACK packet
903 | if (b == ackPacket[ackByteID]) {
904 | ackByteID++;
905 | Serial.print(b, HEX);
906 | }
907 | else {
908 | ackByteID = 0; // Reset and look again, invalid order
909 | }
910 |
911 | }
912 | }
913 | }
914 | #endif // UBX_CONFIG
915 |
916 | // ---------------------------------------------------------------------------------------------
917 | // GPSDO tunnel mode (GPS serial is relayed to Bluetooth serial or USB serial)
918 | // ---------------------------------------------------------------------------------------------
919 | void tunnelgps()
920 | // GPSDO tunnel mode operation
921 | {
922 | #ifdef GPSDO_BLUETOOTH // print entering tunnel mode message to either
923 | Serial2.println(); // Bluetooth serial xor USB serial
924 | Serial2.print(F("Entering tunnel mode..."));
925 | Serial2.println();
926 | #else
927 | Serial.println();
928 | Serial.print(F("Entering tunnel mode..."));
929 | Serial.println();
930 | #endif // BLUETOOTH
931 |
932 | // tunnel mode operation starts here
933 | uint32_t endtunnelmS = millis() + (tunnelSecs * 1000);
934 | uint8_t GPSchar;
935 | uint8_t PCchar;
936 | while (millis() < endtunnelmS)
937 | {
938 | if (Serial1.available() > 0)
939 | {
940 | GPSchar = Serial1.read();
941 | #ifdef GPSDO_BLUETOOTH
942 | Serial2.write(GPSchar); // echo GPS NMEA serial stream to Bluetooth serial
943 | #else
944 | Serial.write(GPSchar); // echo GPS NMEA serial stream to USB serial
945 | #endif // BLUETOOTH
946 | }
947 | #ifdef GPSDO_BLUETOOTH
948 | if (Serial2.available() > 0)
949 | #else
950 | if (Serial.available() > 0)
951 | #endif // BLUETOOTH
952 | {
953 | #ifdef GPSDO_BLUETOOTH
954 | PCchar = Serial2.read();
955 | #else
956 | PCchar = Serial.read();
957 | #endif // BLUETOOTH
958 | Serial1.write(PCchar); // echo USB serial stream to GPS serial
959 | }
960 | }
961 | // tunnel mode operation ends here
962 |
963 | #ifdef GPSDO_BLUETOOTH // print exiting tunnel mode message to either
964 | Serial2.println(); // Bluetooth serial xor USB serial
965 | Serial2.print(F("Tunnel mode exited."));
966 | Serial2.println();
967 | #else
968 | Serial.println();
969 | Serial.print(F("Tunnel mode exited."));
970 | Serial.println();
971 | #endif // BLUETOOTH
972 |
973 | tunnel_mode_flag = false; // reset flag, exit tunnel mode
974 | } // end of tunnel mode routine
975 |
976 | // ---------------------------------------------------------------------------------------------
977 | // OCXO warmup delay routine (only needed during a GPSDO "cold start")
978 | // ---------------------------------------------------------------------------------------------
979 | void doocxowarmup()
980 | {
981 | // Spend a few seconds/minutes here just waiting for the OCXO to warmup
982 | // show countdown timer on OLED or LCD display
983 | // and report on either USB serial or Bluetooth serial
984 | // Note: during OCXO warmup the GPSDO does not accept any commands
985 | uint16_t countdown = ocxo_warmup_time;
986 | while (countdown) {
987 |
988 | #ifdef GPSDO_OLED
989 | disp.clear(); // display warmup message on OLED
990 | disp.setCursor(0, 0);
991 | disp.print(F(Program_Name));
992 | disp.print(F(" - "));
993 | disp.print(F(Program_Version));
994 | disp.setCursor(0, 2);
995 | disp.print(F("OCXO warming up"));
996 | disp.setCursor(0, 3);
997 | disp.print(F("Please wait"));
998 | disp.setCursor(5, 4);
999 | disp.print(countdown);
1000 | disp.print(F("s"));
1001 | #endif // OLED
1002 |
1003 | #ifdef GPSDO_LCD_ST7735
1004 | disp.fillScreen(ST7735_BLACK); // display warmup message on LCD ST7735
1005 | disp.setCursor(0, 0);
1006 | disp.print(F(Program_Name));
1007 | disp.print(F(" - "));
1008 | disp.print(F(Program_Version));
1009 | disp.setCursor(0, 16);
1010 | disp.print(F("OCXO warming up"));
1011 | disp.setCursor(0, 24);
1012 | disp.print(F("Please wait"));
1013 | disp.setCursor(0, 32);
1014 | disp.print(countdown);
1015 | disp.print(F("s"));
1016 | #endif // LCD_ST7735
1017 |
1018 | #ifdef GPSDO_LCD_ST7789
1019 | // display OCXO warmup message on ST7789 LCD
1020 | disp_st7789.fillScreen(ST77XX_BLACK); // clear display
1021 | // Display program name and version
1022 | disp_st7789.setTextSize(1);
1023 | disp_st7789.setFont(&FreeMonoBold12pt7b);
1024 | disp_st7789.setTextColor(ST77XX_YELLOW);
1025 | disp_st7789.setCursor(0, 16);
1026 | disp_st7789.print(F("STM32 "));
1027 | disp_st7789.print(F(Program_Name));
1028 | disp_st7789.setTextSize(1);
1029 | disp_st7789.setFont(&FreeMono9pt7b);
1030 | disp_st7789.setTextColor(ST77XX_CYAN);
1031 | disp_st7789.setCursor(168, 11);
1032 | disp_st7789.print(F(Program_Version));
1033 | // display OCXO warming up and countdown
1034 | disp_st7789.setCursor(0, 36);
1035 | disp_st7789.setTextColor(ST77XX_WHITE);
1036 | disp_st7789.print(F("OCXO warming up"));
1037 | disp_st7789.setCursor(0, 50);
1038 | disp_st7789.print(F("Please wait"));
1039 | disp_st7789.setCursor(0, 64);
1040 | disp_st7789.print(countdown);
1041 | disp_st7789.print(F("s"));
1042 |
1043 | must_clear_disp_st7789 = true;
1044 |
1045 | #endif // LCD_ST7789
1046 |
1047 | #ifdef GPSDO_BLUETOOTH // print warmup countdown message to either
1048 | Serial2.println(); // Bluetooth serial xor USB serial
1049 | Serial2.print(F("OCXO Warming up, "));
1050 | Serial2.print(countdown);
1051 | Serial2.println(F("s remaining"));
1052 | #else
1053 | Serial.println();
1054 | Serial.print(F("OCXO Warming up, "));
1055 | Serial.print(countdown);
1056 | Serial.println(F("s remaining"));
1057 | #endif // BLUETOOTH
1058 |
1059 | // do nothing for 1s
1060 | delay(1000);
1061 | countdown--;
1062 | }
1063 | ocxo_needs_warming = false; // reset flag, next "hot" calibration skips ocxo warmup
1064 | } // end of OCXO warmup routine
1065 |
1066 | // ---------------------------------------------------------------------------------------------
1067 | // GPSDO calibration routine
1068 | // ---------------------------------------------------------------------------------------------
1069 | void docalibration()
1070 | // OCXO Vctl calibration: find an approximate value for Vctl
1071 | {
1072 | yellow_led_state = 2; // blink yellow LED (handled by 2Hz ISR)
1073 |
1074 | if (ocxo_needs_warming) doocxowarmup();
1075 |
1076 | // Note: during calibration the GPSDO does not accept any commands
1077 | #ifdef GPSDO_BLUETOOTH // print calibration started message to either
1078 | Serial2.println(); // Bluetooth serial xor USB serial
1079 | Serial2.print(F("Calibrating..."));
1080 | Serial2.println();
1081 | #else
1082 | Serial.println();
1083 | Serial.print(F("Calibrating..."));
1084 | Serial.println();
1085 | #endif // BLUETOOTH
1086 |
1087 | #ifdef GPSDO_OLED
1088 | disp.clear(); // display calibrating message on OLED
1089 | disp.setCursor(0, 0);
1090 | disp.print(F(Program_Name));
1091 | disp.print(F(" - "));
1092 | disp.print(F(Program_Version));
1093 | disp.setCursor(0, 2);
1094 | disp.print(F("Calibrating..."));
1095 | disp.setCursor(0, 3);
1096 | disp.print(F("Please wait"));
1097 | #endif // OLED
1098 |
1099 | #ifdef GPSDO_LCD_ST7735
1100 | disp.fillScreen(ST7735_BLACK); // display calibrating message on LCD ST7735
1101 | disp.setCursor(0, 0);
1102 | disp.print(F(Program_Name));
1103 | disp.print(F(" - "));
1104 | disp.print(F(Program_Version));
1105 | disp.setCursor(0, 16);
1106 | disp.print(F("Calibrating..."));
1107 | disp.setCursor(0, 24);
1108 | disp.print(F("Please wait"));
1109 | #endif // LCD_ST7735
1110 |
1111 | #ifdef GPSDO_LCD_ST7789
1112 | // display calibrating message on LCD ST7789
1113 |
1114 | disp_st7789.fillScreen(ST77XX_BLACK); // clear display
1115 |
1116 | // display program name and version
1117 | disp_st7789.setTextSize(1);
1118 | disp_st7789.setFont(&FreeMonoBold12pt7b);
1119 | disp_st7789.setTextColor(ST77XX_YELLOW);
1120 | disp_st7789.setCursor(0, 16);
1121 | disp_st7789.print(F("STM32 "));
1122 | disp_st7789.print(F(Program_Name));
1123 | disp_st7789.setTextSize(1);
1124 | disp_st7789.setFont(&FreeMono9pt7b);
1125 | disp_st7789.setTextColor(ST77XX_CYAN);
1126 | disp_st7789.setCursor(168, 11);
1127 | disp_st7789.print(F(Program_Version));
1128 |
1129 | // display calibrating message
1130 | disp_st7789.setCursor(0, 36);
1131 | disp_st7789.setTextColor(ST77XX_WHITE);
1132 | disp_st7789.print(F("Calibrating..."));
1133 | disp_st7789.setCursor(0, 50);
1134 | disp_st7789.print(F("Please wait"));
1135 |
1136 | must_clear_disp_st7789 = true;
1137 |
1138 | #endif // LCD_ST7789
1139 |
1140 | /* The calibration algorithm
1141 | * The objective of the calibration is to find the approximate Vctl to obtain
1142 | * 10MHz +/- 0.1Hz.
1143 | *
1144 | * we can use either a PID algorithm or a simple linear interpolation algorithm
1145 | *
1146 | * The following describes a simple linear interpolation algorithm
1147 | *
1148 | * We first output 1.5V for the DAC or PWM, wait 30 seconds and note the 10s frequency average.
1149 | * Next we output 2.5V for the DAC or PWM, wait 30 seconds and note the 10s frequency average.
1150 | * Now we calculate the Vctl for 10MHz +/- 0.1Hz using linear interpolation between the two points.
1151 | */
1152 | // for 12-bit DAC
1153 | // 1.5V for DAC = 4096 x (1.5 / 3.3) = 1862 results in frequency f1 = 10MHz + e1
1154 | // 2.5V for DAC = 4096 x (2.5 / 3.3) = 3103 results in frequency f2 = 10MHz + e2
1155 | // for 16-bit PWM
1156 | // 1.5V for PWM = 65536 x (1.5 / 3.2) = 30720 results in frequency f1 = 10MHz + e1
1157 | // 2.5V for PWM = 65536 x (2.5 / 3.2) = 51200 results in frequency f2 = 10MHz + e2
1158 | // where f2 > f1 (most OCXOs have positive slope).
1159 |
1160 | double f1, f2, e1, e2;
1161 |
1162 | // make sure we have a fix and data
1163 | while (!cbTen_full) delay(1000); // note there is a small chance that we lose PPS during calibration
1164 | // resulting in completely wrong calibration value
1165 |
1166 | // measure frequency for Vctl=1.5V
1167 | Serial.println(F("Measure frequency for Vctl=1.5V"));
1168 | Serial.print(F("Set PWM Vctl to 1.5V, wait ")); Serial.print(ocxo_calib_time); Serial.println(F("s"));
1169 | analogWrite(VctlPWMOutputPin, 30720);
1170 |
1171 | uint16_t calib_countdown = ocxo_calib_time; // note there are two possible values depending on FastBootMode setting
1172 | while (calib_countdown > 0)
1173 | {
1174 | calib_countdown--;
1175 | Serial.print(calib_countdown); Serial.print(F("s "));
1176 | delay(1000);
1177 | }
1178 |
1179 | Serial.println();
1180 | Serial.print(F("f1 (average frequency for Vctl=1.5V): "));
1181 | f1 = avgften;
1182 | Serial.print(f1,1);
1183 | Serial.println(F(" Hz"));
1184 | Serial.println();
1185 |
1186 | // make sure we have a fix and data again
1187 | while (!cbTen_full) delay(1000);
1188 |
1189 | // measure frequency for Vctl=2.5V
1190 | Serial.println(F("Measure frequency for Vctl=2.5V"));
1191 | Serial.println(F("Set PWM Vctl to 2.5V, wait ")); Serial.print(ocxo_calib_time); Serial.println(F("s"));
1192 | analogWrite(VctlPWMOutputPin, 51200);
1193 |
1194 | calib_countdown = ocxo_calib_time; // no need to declare variable again
1195 | while (calib_countdown > 0)
1196 | {
1197 | calib_countdown--;
1198 | Serial.print(calib_countdown); Serial.print(F("s "));
1199 | delay(1000);
1200 | }
1201 |
1202 | Serial.println();
1203 | Serial.print(F("f2 (average frequency for 2.5V Vctl): "));
1204 | f2 = avgften;
1205 | Serial.print(f2,1);
1206 | Serial.println(F(" Hz"));
1207 | Serial.println();
1208 |
1209 | // slope s is (f2-f1) / (51200-30720) for PWM
1210 | // So F=10MHz +/- 0.1Hz for PWM = 30720 - (e1 / s)
1211 | // set Vctl
1212 | // adjusted_PWM_output = formula
1213 | adjusted_PWM_output = 30720 - ((f1 - 10000000.0) / ((f2 - f1) / 20480));
1214 | Serial.print(F("Calculated PWM: "));
1215 | Serial.println(adjusted_PWM_output);
1216 | analogWrite(VctlPWMOutputPin, adjusted_PWM_output);
1217 | // calibration done
1218 |
1219 | #ifdef GPSDO_BLUETOOTH // print calibration finished message to either
1220 | Serial2.println(); // Bluetooth serial xor USB serial
1221 | Serial2.print(F("Calibration done."));
1222 | Serial2.println();
1223 | #else
1224 | Serial.println();
1225 | Serial.print(F("Calibration done."));
1226 | Serial.println();
1227 | #endif // BLUETOOTH
1228 |
1229 | #ifdef GPSDO_OLED
1230 | disp.clear(); // clear display and show program name and version again
1231 | disp.setCursor(0, 0);
1232 | disp.print(F(Program_Name));
1233 | disp.print(F(" - "));
1234 | disp.print(F(Program_Version));
1235 | #endif // OLED
1236 |
1237 | #ifdef GPSDO_LCD_ST7735
1238 | disp.fillScreen(ST7735_BLACK);
1239 | #endif // LCD_ST7735
1240 |
1241 | #ifdef GPSDO_LCD_ST7789
1242 | disp_st7789.fillScreen(ST77XX_BLACK);
1243 | #endif // LCD_ST7789
1244 |
1245 | yellow_led_state = 0; // turn off yellow LED (handled by 2Hz ISR)
1246 | force_calibration_flag = false; // reset flag, calibration done
1247 | } // end of GPSDO calibration routine
1248 |
1249 | // ---------------------------------------------------------------------------------------------
1250 | // Adjust Vctl PWM routine
1251 | // ---------------------------------------------------------------------------------------------
1252 | #ifdef GPSDO_PWM_DAC
1253 | void adjustVctlPWM()
1254 | // This should reach a stable PWM output value / a stable 10000000.00 frequency
1255 | // after an hour or so, and 10000000.000 after eight hours or so
1256 | {
1257 | // check first if we have the data, then do ultrafine and veryfine frequency
1258 | // adjustment, when we are very close
1259 | // ultimately the objective is 10000000.000 over the last 1000s (16min40s)
1260 | if ((cbTho_full) && (avgftho >= 9999999.990) && (avgftho <= 10000000.010)) {
1261 |
1262 | // decrease frequency; 1000s based
1263 | if (avgftho >= 10000000.001) {
1264 | if (avgftho >= 10000000.005) {
1265 | // decrease PWM by 5 bits = very fine
1266 | adjusted_PWM_output = adjusted_PWM_output - 5;
1267 | strcpy(trendstr, " vf-");
1268 | }
1269 | else {
1270 | // decrease PWM by one bit = ultrafine
1271 | adjusted_PWM_output = adjusted_PWM_output - 1;
1272 | strcpy(trendstr, " uf-");
1273 | }
1274 | }
1275 | // or increase frequency; 1000s based
1276 | else if (avgftho <= 9999999.999) {
1277 | if (avgftho <= 9999999.995) {
1278 | // increase PWM by 5 bits = very fine
1279 | adjusted_PWM_output = adjusted_PWM_output + 5;
1280 | strcpy(trendstr, " vf+");
1281 | }
1282 | else {
1283 | // increase PWM by one bit = ultrafine
1284 | adjusted_PWM_output = adjusted_PWM_output + 1;
1285 | strcpy(trendstr, " uf+");
1286 | }
1287 | }
1288 | }
1289 | ///// next check the 100s values in second place because we are too far off
1290 | // decrease frequency; 100s based
1291 | else if (avgfhun >= 10000000.01) {
1292 | if (avgfhun >= 10000000.10) {
1293 | // decrease PWM by 100 bits = coarse
1294 | adjusted_PWM_output = adjusted_PWM_output - 100;
1295 | strcpy(trendstr, " c- ");
1296 | }
1297 | else {
1298 | // decrease PWM by ten bits = fine
1299 | adjusted_PWM_output = adjusted_PWM_output - 10;
1300 | strcpy(trendstr, " f- ");
1301 | }
1302 | }
1303 | // or increase frequency; 100s based
1304 | else if (avgfhun <= 9999999.99) {
1305 | if (avgfhun <= 9999999.90) {
1306 | // increase PWM by 100 bits = coarse
1307 | adjusted_PWM_output = adjusted_PWM_output + 100;
1308 | strcpy(trendstr, " c+ ");
1309 | }
1310 | else {
1311 | // increase PWM by ten bits = fine
1312 | adjusted_PWM_output = adjusted_PWM_output + 10;
1313 | strcpy(trendstr, " f+ ");
1314 | }
1315 | }
1316 | else { // here we keep setting, because it is exact 10000000.000MHz
1317 | strcpy(trendstr, " hit");
1318 | }
1319 | // write the computed value to PWM
1320 | analogWrite(VctlPWMOutputPin, adjusted_PWM_output);
1321 | must_adjust_DAC = false; // clear flag and we are done
1322 | } // end adjustVctlPWM
1323 | #endif // GPSDO_PWM_DAC
1324 |
1325 | bool gpsWaitFix(uint16_t waitSecs)
1326 | {
1327 | // waits a specified number of seconds for a fix,
1328 | // returns true as soon as fix available or false on timeout
1329 |
1330 | uint32_t endwaitmS;
1331 | uint8_t GPSchar;
1332 |
1333 | if (!report_tab_delimited) {
1334 | #ifdef GPSDO_BLUETOOTH
1335 | Serial2.println();
1336 | //Serial2.print(F("Wait for GPS fix max. "));
1337 | //Serial2.print(waitSecs);
1338 | //if (waitSecs > 1) Serial2.println(F(" seconds")); else Serial2.println(F(" second"));
1339 | #else
1340 | Serial.println();
1341 | //Serial.print(F("Wait for GPS fix max. "));
1342 | //Serial.print(waitSecs);
1343 | //if (waitSecs > 1) Serial.println(F(" seconds")); else Serial.println(F(" second"));
1344 | #endif // Bluetooth
1345 | }
1346 |
1347 | endwaitmS = millis() + (waitSecs * 1000);
1348 |
1349 | while (millis() < endwaitmS)
1350 | {
1351 | if (Serial1.available() > 0)
1352 | {
1353 | GPSchar = Serial1.read();
1354 | gps.encode(GPSchar);
1355 | if (!report_tab_delimited) {
1356 | #ifdef GPSDO_VERBOSE_NMEA
1357 | #ifdef GPSDO_BLUETOOTH
1358 | Serial2.write(GPSchar); // echo NMEA stream to Bluetooth serial
1359 | #else
1360 | Serial.write(GPSchar); // echo NMEA stream to USB serial
1361 | #endif // Bluetooth
1362 | #endif // VERBOSE_NMEA
1363 | }
1364 | }
1365 |
1366 | if (gps.location.isUpdated() && gps.altitude.isUpdated() && gps.date.isUpdated())
1367 | {
1368 | endFixmS = millis(); //record the time when we got a GPS fix
1369 | return true;
1370 | }
1371 | }
1372 | return false;
1373 | }
1374 |
1375 | void printGPSDOtab(Stream &Serialx) { // tab delimited fields suitable for spreadsheet import
1376 |
1377 | /*
1378 | * STM32 GPSDO reporting tab delimited fields
1379 | * if any field is not available (e.g. sensor not configured), print "0"
1380 |
1381 | * Line no. (0 if no position fix, increments by one each second if position fix)
1382 | * timestamp (UTC)
1383 | * uptime (days hours mins secs)
1384 | * 64-bit counter
1385 | * frequency (Hz)
1386 | * 10s freq. avg. (one decimal) (Hz)
1387 | * 100s freq. avg. (two decimals) (Hz)
1388 | * 1,000s freq. avg. (three decimals) (Hz)
1389 | * 10,000s freq. avg. (four decimals) (Hz)
1390 | * no. of sats
1391 | * HDOP (meters)
1392 | * PWM (16-bit, 1-65535)
1393 | * PWM adc mov. avg. (V)
1394 | * Vcc adc mov. avg. (5.0V nominal)
1395 | * Vdd adc mov. avg. (3.3V nominal)
1396 | * BMP280 Temp. (C)
1397 | * BMP280 Atm. Pressure (hPa)
1398 | * AHT20 Temp. (C)
1399 | * AHT20 Humidity (%)
1400 | * INA219 OCXO Voltage (5.05V nominal)
1401 | * INA219 OCXO Current (mA, 2A maximum)
1402 | * TIC (10-bit, 1024ns max)
1403 |
1404 | * When a value is not available, field contains "0".
1405 | */
1406 |
1407 | report_line_no++; // increment line number, first line is 1
1408 |
1409 | Serialx.print(report_line_no); // line number
1410 | Serialx.print("\t"); // tab
1411 |
1412 | Serialx.print(day); // date dd/mm/yyyy
1413 | Serialx.print(F("/"));
1414 | Serialx.print(month);
1415 | Serialx.print(F("/"));
1416 | Serialx.print(year);
1417 | Serialx.print(F(" ")); //
1418 |
1419 | if (hours < 10) { // time hh:mm:ss
1420 | Serialx.print(F("0"));
1421 | }
1422 | Serialx.print(hours);
1423 | Serialx.print(F(":"));
1424 | if (mins < 10) {
1425 | Serialx.print(F("0"));
1426 | }
1427 | Serialx.print(mins);
1428 | Serialx.print(F(":"));
1429 | if (secs < 10) {
1430 | Serialx.print(F("0"));
1431 | }
1432 | Serialx.print(secs);
1433 | Serialx.print("\t"); // tab
1434 |
1435 | Serialx.print(updaysstr); // uptime 000d hh:mm:ss
1436 | Serialx.print(F(" ")); //
1437 | Serialx.print(uptimestr);
1438 | Serialx.print("\t"); // tab
1439 |
1440 | Serialx.print(fcount64); // 64-bit counter
1441 | Serialx.print("\t"); // tab
1442 |
1443 | Serialx.print(calcfreq64); // frequency
1444 | Serialx.print("\t"); // tab
1445 | Serialx.print(avgften,1); // avg. 10s
1446 | Serialx.print("\t"); // tab
1447 | Serialx.print(avgfhun,2); // avg. 100s
1448 | Serialx.print("\t"); // tab
1449 | Serialx.print(avgftho,3); // avg. 1,000s
1450 | Serialx.print("\t"); // tab
1451 | Serialx.print(avgftth,4); // avg. 10,000s
1452 | Serialx.print("\t"); // tab
1453 |
1454 | Serialx.print(GPSSats); // sats
1455 | Serialx.print("\t"); // tab
1456 |
1457 | float tempfloat; // HDOP
1458 | tempfloat = ( (float) GPSHdop / 100);
1459 | Serialx.print(tempfloat, 2);
1460 | Serialx.print("\t"); // tab
1461 |
1462 | Serialx.print(adjusted_PWM_output); // PWM
1463 | Serialx.print("\t"); // tab
1464 |
1465 | float Vctlp = (float(avgpwmVctl)/4096) * 3.3; // PWM Vctl
1466 | Serialx.print(Vctlp);
1467 | Serialx.print("\t"); // tab
1468 |
1469 | #ifdef GPSDO_VCC
1470 | // Vcc/2 is provided on pin PA0
1471 | float Vcc = (float(avgVcc)/4096) * 3.3 * 2.0;
1472 | Serialx.print(Vcc);
1473 | #else
1474 | Serialx.print("0");
1475 | #endif // VCC
1476 | Serialx.print("\t"); // tab
1477 |
1478 | #ifdef GPSDO_VDD
1479 | // internal sensor Vref
1480 | float Vdd = (1.21 * 4096) / float(avgVdd); // from STM32F411CEU6 datasheet
1481 | // Vdd = Vref on Black Pill
1482 | Serialx.print(Vdd);
1483 | #else
1484 | Serialx.print("0");
1485 | #endif // VDD
1486 | Serialx.print("\t"); // tab
1487 |
1488 | #if (defined (GPSDO_BMP280_SPI) || defined (GPSDO_BMP280_I2C))
1489 | // BMP280 measurements
1490 | Serialx.print(bmp280temp, 1);
1491 | Serialx.print("\t");
1492 | Serialx.print((bmp280pres+PressureOffset)/100, 1);
1493 | #else
1494 | Serialx.print("0");
1495 | Serialx.print("\t");
1496 | Serialx.print("0");
1497 | #endif // BMP280_SPI
1498 | Serialx.print("\t"); // tab
1499 |
1500 | #ifdef GPSDO_AHT10
1501 | // AHT10/AHT20 measurements
1502 | sensors_event_t humidity, temp;
1503 | aht.getEvent(&humidity, &temp);// populate temp and humidity objects with fresh data
1504 | Serialx.print(temp.temperature);
1505 | Serialx.print("\t");
1506 | Serialx.print(humidity.relative_humidity);
1507 | #else
1508 | Serialx.print("0");
1509 | Serialx.print("\t");
1510 | Serialx.print("0");
1511 | #endif // AHT10
1512 | Serialx.print("\t"); // tab
1513 |
1514 | #ifdef GPSDO_INA219
1515 | // current sensor for the OCXO
1516 | Serialx.print(ina219volt, 2);
1517 | Serialx.print("\t");
1518 | Serialx.print(ina219curr, 0);
1519 | #else
1520 | Serialx.print("0");
1521 | Serialx.print("\t");
1522 | Serialx.print("0");
1523 | #endif // INA219
1524 | Serialx.print("\t"); // tab
1525 |
1526 | #ifdef GPSDO_TIC
1527 | // Phase difference in ns, WIP
1528 | #else
1529 | Serialx.print("0");
1530 | #endif // INA219
1531 |
1532 | Serialx.println(); // end of line
1533 |
1534 | } // end of printGPSDOtab - tab delimited data output
1535 |
1536 | void printGPSDOstats(Stream &Serialx) { // human readable output
1537 |
1538 | float tempfloat;
1539 |
1540 | Serialx.print(F("Uptime: "));
1541 | Serialx.print(updaysstr);
1542 | Serialx.print(F(" "));
1543 | Serialx.println(uptimestr);
1544 |
1545 | Serialx.println(F("New GPS Fix: "));
1546 |
1547 | tempfloat = ( (float) GPSHdop / 100);
1548 |
1549 | Serialx.print(F("Lat: "));
1550 | Serialx.print(GPSLat, 6);
1551 | Serialx.print(F(" Lon: "));
1552 | Serialx.print(GPSLon, 6);
1553 | Serialx.print(F(" Alt: "));
1554 | Serialx.print(GPSAlt, 1);
1555 | Serialx.println(F("m"));
1556 | Serialx.print(F("Sats: "));
1557 | Serialx.print(GPSSats);
1558 | Serialx.print(F(" HDOP: "));
1559 | Serialx.println(tempfloat, 2);
1560 | Serialx.print(F("UTC Time: "));
1561 |
1562 | if (hours < 10) {
1563 | Serialx.print(F("0"));
1564 | }
1565 | Serialx.print(hours);
1566 | Serialx.print(F(":"));
1567 | if (mins < 10) {
1568 | Serialx.print(F("0"));
1569 | }
1570 | Serialx.print(mins);
1571 | Serialx.print(F(":"));
1572 | if (secs < 10) {
1573 | Serialx.print(F("0"));
1574 | }
1575 | Serialx.print(secs);
1576 |
1577 | Serialx.print(F(" Date: "));
1578 |
1579 | Serialx.print(day);
1580 | Serialx.print(F("/"));
1581 | Serialx.print(month);
1582 | Serialx.print(F("/"));
1583 | Serialx.println(year);
1584 |
1585 | Serialx.println();
1586 | Serialx.println(F("Voltages: "));
1587 |
1588 | float Vctlp = (float(avgpwmVctl)/4096) * 3.3;
1589 | Serialx.print("VctlPWM: ");
1590 | Serialx.print(Vctlp);
1591 | Serialx.print(" PWM: ");
1592 | Serialx.println(adjusted_PWM_output);
1593 |
1594 | #ifdef GPSDO_VCC
1595 | // Vcc/2 is provided on pin PA0
1596 | float Vcc = (float(avgVcc)/4096) * 3.3 * 2.0;
1597 | Serialx.print("Vcc: ");
1598 | Serialx.println(Vcc);
1599 | #endif // VCC
1600 |
1601 | #ifdef GPSDO_VDD
1602 | // internal sensor Vref
1603 | float Vdd = (1.21 * 4096) / float(avgVdd); // from STM32F411CEU6 datasheet
1604 | Serialx.print("Vdd: "); // Vdd = Vref on Black Pill
1605 | Serialx.println(Vdd);
1606 | #endif // VDD
1607 |
1608 | #ifdef GPSDO_INA219
1609 | // current sensor for the OCXO
1610 | Serialx.print(F("OCXO voltage: "));
1611 | Serialx.print(ina219volt, 2);
1612 | Serialx.println(F("V"));
1613 | Serialx.print(F("OCXO current: "));
1614 | Serialx.print(ina219curr, 0);
1615 | Serialx.println(F("mA"));
1616 | #endif // INA219
1617 |
1618 | // OCXO frequency measurements
1619 | Serialx.println();
1620 | Serialx.println(F("Frequency measurements using 64-bit counter:"));
1621 | // temporarily added to check proper 16-bit PWM operation
1622 | // Serialx.print(F("TIM4 ARR: ")); // should in principle be 48000-1, because 96MHz / 2kHz = 48000
1623 | // Serialx.println(TIM4->ARR); // and yes, verified
1624 | // Serialx.print(F("TIM4 ch4 CCR: ")); // in principle, the PWM value x 48000/65536
1625 | // Serialx.println(TIM4->CCR4); // and also yes, verified
1626 | // end of temp code
1627 | // if (overflowErrorFlag) Serialx.println(F("ERROR: overflow "));
1628 | // Serialx.print(F("Most Significant 32 bits (OverflowCounter): "));
1629 | // Serialx.println(tim2overflowcounter);
1630 | // Serialx.print(F("Least Significant 32 bits (TIM2->CCR3): "));
1631 | // Serialx.println(lsfcount);
1632 | Serialx.print(F("64-bit Counter: "));
1633 | Serialx.println(fcount64);
1634 | Serialx.print(F("Frequency: "));
1635 | Serialx.print(calcfreq64);
1636 | Serialx.println(F(" Hz"));
1637 | Serialx.print("10s Frequency Avg: ");
1638 | Serialx.print(avgften,1);
1639 | Serialx.println(F(" Hz"));
1640 | Serialx.print("100s Frequency Avg: ");
1641 | Serialx.print(avgfhun,2);
1642 | Serialx.println(F(" Hz"));
1643 | Serialx.print("1,000s Frequency Avg: ");
1644 | Serialx.print(avgftho,3);
1645 | Serialx.println(F(" Hz"));
1646 | Serialx.print("10,000s Frequency Avg: ");
1647 | Serialx.print(avgftth,4);
1648 | Serialx.println(F(" Hz"));
1649 |
1650 | #if (defined (GPSDO_BMP280_SPI) || defined (GPSDO_BMP280_I2C))
1651 | // BMP280 measurements
1652 | Serialx.println();
1653 | Serialx.print(F("BMP280 Temperature = "));
1654 | Serialx.print(bmp280temp, 1);
1655 | Serialx.println(" *C");
1656 | Serialx.print(F("Pressure = "));
1657 | Serialx.print((bmp280pres+PressureOffset)/100, 1);
1658 | Serialx.println(" hPa");
1659 | Serialx.print(F("Approx altitude = "));
1660 | Serialx.print(bmp280alti, 1); /* Adjusted to local forecast! */
1661 | Serialx.println(" m");
1662 | #endif // BMP280_SPI
1663 |
1664 | #ifdef GPSDO_AHT10
1665 | // AHT10 measurements
1666 | sensors_event_t humidity, temp;
1667 | aht.getEvent(&humidity, &temp);// populate temp and humidity objects with fresh data
1668 | Serialx.print("AHT10 Temperature: ");
1669 | Serialx.print(temp.temperature);
1670 | Serialx.println(" *C");
1671 | Serialx.print("Humidity: ");
1672 | Serialx.print(humidity.relative_humidity);
1673 | Serialx.println("% rH");
1674 | #endif // AHT10
1675 |
1676 | Serialx.println();
1677 | }
1678 |
1679 | #ifdef GPSDO_OLED
1680 | void displayscreen_OLED() // show GPSDO data on OLED display
1681 | {
1682 | float tempfloat;
1683 |
1684 | // OCXO frequency
1685 | disp.setCursor(0, 1);
1686 | disp.print(F("F "));
1687 | // display 1s, 10s or 100s value depending on whether data is available
1688 | if (cbTen_full) {
1689 | if (cbHun_full) { // if we have data over 100 seconds
1690 | if (avgfhun < 10000000) {
1691 | disp.setCursor(2, 1); disp.print(" ");
1692 | }
1693 | else disp.setCursor(2, 1);
1694 | disp.print(avgfhun, 2); // to 2 decimal places
1695 | disp.print("Hz ");
1696 | }
1697 | else { // nope, only 10 seconds
1698 | if (avgften < 10000000) {
1699 | disp.setCursor(2, 1); disp.print(" ");
1700 | }
1701 | else disp.setCursor(2, 1);
1702 | disp.print(avgften, 1); // to 1 decimal place
1703 | disp.print("Hz ");
1704 | }
1705 | }
1706 | else { // we don't have any averages
1707 | calcfreqint = calcfreq64; // convert to 32-bit integer
1708 | if (calcfreqint < 10000000) {
1709 | disp.setCursor(2, 1); disp.print(" ");
1710 | }
1711 | else disp.setCursor(2, 1);
1712 | disp.print(calcfreqint); // integer
1713 | disp.print("Hz ");
1714 | }
1715 |
1716 | // Latitude
1717 | //disp.clearLine(2);
1718 | disp.setCursor(0, 2);
1719 | disp.print(GPSLat, 6);
1720 | // Longitude
1721 | //disp.clearLine(3);
1722 | disp.setCursor(0, 3);
1723 | disp.print(GPSLon, 6);
1724 | // Altitude and Satellites
1725 | //disp.clearLine(4);
1726 | disp.setCursor(0, 4);
1727 | disp.print(GPSAlt);
1728 | disp.print(F("m "));
1729 | disp.setCursor(9, 4);
1730 | disp.print(F("Sats "));
1731 | disp.print(GPSSats);
1732 | if (GPSSats < 10) disp.print(F(" ")); // clear possible digit when sats >= 10
1733 | // HDOP
1734 | //disp.clearLine(5);
1735 | disp.setCursor(0, 5);
1736 | // choose HDOP or uptime
1737 | //disp.print(F("HDOP "));
1738 | //tempfloat = ((float) GPSHdop / 100);
1739 | //disp.print(tempfloat);
1740 | disp.print(F("Up "));
1741 | disp.print(updaysstr);
1742 | disp.print(F(" "));
1743 | disp.print(uptimestr);
1744 |
1745 | // Time
1746 | //disp.clearLine(6);
1747 | disp.setCursor(0, 6);
1748 |
1749 | if (hours < 10)
1750 | {
1751 | disp.print(F("0"));
1752 | }
1753 |
1754 | disp.print(hours);
1755 | disp.print(F(":"));
1756 |
1757 | if (mins < 10)
1758 | {
1759 | disp.print(F("0"));
1760 | }
1761 |
1762 | disp.print(mins);
1763 | disp.print(F(":"));
1764 |
1765 | if (secs < 10)
1766 | {
1767 | disp.print(F("0"));
1768 | }
1769 |
1770 | disp.print(secs);
1771 | disp.print(F(" "));
1772 |
1773 | // Date
1774 | //disp.clearLine(7);
1775 | disp.setCursor(0, 7);
1776 |
1777 | disp.print(day);
1778 | disp.print(F("/"));
1779 | disp.print(month);
1780 | disp.print(F("/"));
1781 | disp.print(year);
1782 |
1783 | #if (defined (GPSDO_BMP280_SPI) || defined (GPSDO_BMP280_I2C))
1784 | // BMP280 temperature
1785 | disp.setCursor(10, 6);
1786 | disp.print(bmp280temp, 1);
1787 | disp.print(F("C"));
1788 | #endif // BMP280_SPI
1789 |
1790 | #ifdef GPSDO_VCC
1791 | disp.setCursor(11, 2);
1792 | // Vcc/2 is provided on pin PA0
1793 | float Vcc = (float(avgVcc)/4096) * 3.3 * 2.0;
1794 | disp.print(Vcc);
1795 | disp.print(F("V"));
1796 | #endif // VCC
1797 |
1798 | #ifdef GPSDO_VDD
1799 | // internal sensor Vref
1800 | disp.setCursor(11, 3);
1801 | float Vdd = (1.21 * 4096) / float(avgVdd); // from STM32F411CEU6 datasheet
1802 | disp.print(Vdd); // Vdd = Vref on Black Pill
1803 | disp.print(F("V"));
1804 | #endif // VDD
1805 |
1806 | disp.setCursor(11, 7); // display PWM/DAC value
1807 | #ifdef GPSDO_PWM_DAC
1808 | disp.print(adjusted_PWM_output);
1809 | #else
1810 | disp.print(adjusted_DAC_output);
1811 | #endif // PWM_DAC
1812 | }
1813 | #endif // OLED
1814 |
1815 | #ifdef GPSDO_LCD_ST7735
1816 | void displayscreen_LCD_ST7735() // show GPSDO data on LCD ST7735 display
1817 | // we use font1 8x6 pix and font2 16x12 pix
1818 | {
1819 | float tempfloat;
1820 |
1821 | // Latitude
1822 | disp.setCursor(0, 40);
1823 | disp.print(F("Lat: "));
1824 | disp.print(GPSLat, 6);
1825 | // Longitude
1826 | disp.setCursor(0, 48);
1827 | disp.print(F("Lon: "));
1828 | disp.print(GPSLon, 6);
1829 | // Altitude
1830 | disp.setCursor(0, 56);
1831 | disp.print(F("Alt: "));
1832 | disp.print(GPSAlt);
1833 | disp.print(F("m "));
1834 | //Satellites
1835 | disp.setCursor(90, 40);
1836 | disp.print(F("Sats: "));
1837 | disp.print(GPSSats);
1838 | if (GPSSats < 10) disp.print(F(" ")); // clear possible digit when sats >= 10
1839 | // HDOP
1840 | disp.setCursor(0, 64);
1841 | // choose HDOP or uptime
1842 | //disp.print(F("HDOP "));
1843 | //tempfloat = ((float) GPSHdop / 100);
1844 | //disp.print(tempfloat);
1845 | disp.print(F("UpT: "));
1846 | disp.print(updaysstr);
1847 | //disp.print(F(" "));
1848 | disp.setCursor(30, 72);
1849 | disp.print(uptimestr);
1850 |
1851 | #if (defined (GPSDO_BMP280_SPI) || defined (GPSDO_BMP280_I2C))
1852 | // BMP280 temperature
1853 | disp.setCursor(90, 64);
1854 | disp.print(F(" "));
1855 | disp.print((char)247);
1856 | //disp.print((char)9);
1857 | disp.print(F("C: "));
1858 | disp.print(bmp280temp, 1);
1859 | // BMP280 pressure
1860 | disp.setCursor(90, 72);
1861 | disp.print(F("hPa: "));
1862 | disp.print(((bmp280pres+PressureOffset)/100), 1);
1863 | #endif // BMP280_SPI
1864 |
1865 | #ifdef GPSDO_VCC
1866 | disp.setCursor(90, 48);
1867 | // Vcc/2 is provided on pin PA0
1868 | float Vcc = (float(avgVcc)/4096) * 3.3 * 2.0;
1869 | disp.print(F("5V0: "));
1870 | disp.print(Vcc);
1871 | disp.print(F("V"));
1872 | #endif // VCC
1873 |
1874 | #ifdef GPSDO_VDD
1875 | // internal sensor Vref
1876 | disp.setCursor(90, 56);
1877 | float Vdd = (1.21 * 4096) / float(avgVdd); // from STM32F411CEU6 datasheet
1878 | disp.print(F("3V3: "));
1879 | disp.print(Vdd); // Vdd = Vref on Black Pill
1880 | disp.print(F("V"));
1881 | #endif // VDD
1882 |
1883 | disp.setCursor(0, 80); // display PWM/DAC value
1884 | #ifdef GPSDO_PWM_DAC
1885 | disp.print(F("PWM: "));
1886 | disp.print(adjusted_PWM_output);
1887 | disp.print(F(trendstr));
1888 | #endif // PWM_DAC
1889 |
1890 | // display vref value
1891 | disp.setCursor(90, 80); // display vref value
1892 | float Vctlp = (float(avgpwmVctl)/4096) * 3.3;
1893 | disp.print(F("Vctl: "));
1894 | disp.print(Vctlp);
1895 | disp.print(F("V"));
1896 |
1897 | // Display Headline and Version
1898 | disp.setTextColor(ST7735_YELLOW, ST7735_BLACK);
1899 | disp.setTextSize(2);
1900 | disp.setCursor(0, 0);
1901 | disp.print(F(" "));
1902 | disp.print(F(Program_Name));
1903 | //
1904 | disp.setTextSize(1);
1905 | disp.setCursor(115, 5);
1906 | disp.setTextColor(ST7735_BLUE, ST7735_BLACK);
1907 | disp.print(F(Program_Version));
1908 | disp.setTextSize(2);
1909 |
1910 | // OCXO frequency
1911 | disp.setCursor(0, 19);
1912 | disp.setTextColor(ST7735_YELLOW, ST7735_BLACK);
1913 |
1914 | // display 1s, 10s or 100s value depending on whether data is available
1915 | if (cbTen_full) {
1916 | if (cbTho_full) { // if we have data over 1000 seconds
1917 | if (avgftho < 10000000) {
1918 | disp.print(" ");
1919 | }
1920 | disp.print(avgftho, 3); // to 3 decimal places
1921 | }
1922 | else if (cbHun_full) {
1923 | if (avgfhun < 10000000) {
1924 | disp.print(" ");
1925 | }
1926 | disp.print(avgfhun, 2); // to 2 decimal places
1927 | disp.print(" ");
1928 | }
1929 |
1930 | else { // nope, only 10 seconds
1931 | if (avgften < 10000000) {
1932 | disp.print(" ");
1933 | }
1934 | disp.print(avgften, 1); // to 1 decimal place
1935 | disp.print(" ");
1936 | }
1937 | }
1938 | else { // we don't have any averages and print integer value
1939 | calcfreqint = calcfreq64; // convert to 32-bit integer
1940 | if (calcfreqint < 10000000) {
1941 | disp.print(" ");
1942 | }
1943 | disp.print(calcfreqint); // integer
1944 | disp.print(" "); // these are used for more exact dispaly
1945 | }
1946 | // due to limited space small character unit
1947 | disp.setTextSize(1);
1948 | disp.setCursor(144, 19);
1949 | // due to some unknown issue in printing the freq digits/unit we clear the section of the display first
1950 | disp.fillRect(144, 19, 15, 20, ST7735_BLACK);
1951 | disp.print("Hz");
1952 |
1953 | // clock and date
1954 | disp.setTextSize(2);
1955 | disp.setTextColor(ST7735_RED, ST7735_BLACK);
1956 | // Date
1957 | disp.setCursor(2, 94);
1958 | //disp.print(F("Date: "));
1959 | disp.print(day);
1960 | disp.print(F("."));
1961 | disp.print(month);
1962 | disp.print(F("."));
1963 | disp.print(year);
1964 |
1965 | // Time
1966 | disp.setTextColor(ST7735_GREEN, ST7735_BLACK);
1967 | disp.setCursor(2, 113);
1968 |
1969 | if (hours < 10)
1970 | {
1971 | disp.print(F("0"));
1972 | }
1973 |
1974 | disp.print(hours);
1975 | disp.print(F(":"));
1976 |
1977 | if (mins < 10)
1978 | {
1979 | disp.print(F("0"));
1980 | }
1981 |
1982 | disp.print(mins);
1983 | disp.print(F(":"));
1984 |
1985 | if (secs < 10)
1986 | {
1987 | disp.print(F("0"));
1988 | }
1989 |
1990 | disp.print(secs);
1991 | disp.setTextColor(ST7735_WHITE, ST7735_BLACK);
1992 | disp.print(F(" UTC"));
1993 |
1994 | // reset all font stuff for normal display
1995 | disp.setTextSize(1);
1996 | disp.setTextColor(ST7735_WHITE, ST7735_BLACK);
1997 |
1998 | }
1999 | #endif // LCD_ST7735
2000 |
2001 | #ifdef GPSDO_LCD_ST7789
2002 | void displayscreen_LCD_ST7789() { // show GPSDO data on LCD ST7789 display
2003 | // we use Mono fonts and built-in fonts
2004 | float tempfloat;
2005 |
2006 | // check if we have to clear the display
2007 | if (must_clear_disp_st7789) {
2008 | disp_st7789.fillScreen(ST77XX_BLACK); // clear display
2009 | must_clear_disp_st7789 = false; // reset flag
2010 | }
2011 | disp_st7789.fillScreen(ST77XX_BLACK); // clear display
2012 | // Display program name and version
2013 | disp_st7789.setTextSize(1);
2014 | disp_st7789.setFont(&FreeMonoBold12pt7b);
2015 | disp_st7789.setTextColor(ST77XX_YELLOW);
2016 | disp_st7789.setCursor(0, 16);
2017 | disp_st7789.print(F("STM32 "));
2018 | disp_st7789.print(F(Program_Name));
2019 | disp_st7789.setFont(&FreeMono9pt7b);
2020 | disp_st7789.setTextColor(ST77XX_CYAN);
2021 | disp_st7789.setCursor(168, 11);
2022 | disp_st7789.print(F(Program_Version));
2023 |
2024 | // Latitude
2025 | disp_st7789.setTextColor(ST77XX_WHITE);
2026 | disp_st7789.setCursor(2, 60);
2027 | disp_st7789.print(F("Lat: "));
2028 | // disp_st7789.print(GPSLat, 6);
2029 | disp_st7789.print("12.345678 "); // test to see if there is a problem with printing strings vs floats
2030 | // Longitude
2031 | disp_st7789.setCursor(2, 74);
2032 | disp_st7789.print(F("Lon: "));
2033 | disp_st7789.print(GPSLon, 6);
2034 | // Altitude
2035 | disp_st7789.setCursor(2, 88);
2036 | disp_st7789.print(F("Alt: "));
2037 | disp_st7789.print(GPSAlt, 1);
2038 | disp_st7789.print(F("m "));
2039 | //Satellites
2040 | disp_st7789.setCursor(140, 88);
2041 | disp_st7789.print(F("Sats: "));
2042 | disp_st7789.print(GPSSats);
2043 | if (GPSSats < 10) disp_st7789.print(F(" ")); // clear possible digit when sats >= 10
2044 | // HDOP
2045 | disp_st7789.setCursor(2, 102);
2046 | disp_st7789.print(F("HDOP: "));
2047 | tempfloat = ((float) GPSHdop / 100);
2048 | disp_st7789.print(tempfloat, 1);
2049 | disp_st7789.setCursor(2, 116);
2050 | disp_st7789.print(F("UpT: "));
2051 | disp_st7789.print(updaysstr);
2052 | disp_st7789.setCursor(140, 116);
2053 | disp_st7789.print(uptimestr);
2054 |
2055 | #if (defined (GPSDO_BMP280_SPI) || defined (GPSDO_BMP280_I2C))
2056 | // BMP280 temperature
2057 | disp_st7789.setCursor(2, 130);
2058 | disp_st7789.print(F(" "));
2059 | //disp_st7789.print((char)247);
2060 | //disp_st7789.print((char)9);
2061 | disp_st7789.print(F("*C: "));
2062 | disp_st7789.print(bmp280temp, 1);
2063 | // BMP280 pressure
2064 | disp_st7789.setCursor(2, 144);
2065 | disp_st7789.print(F("hPa: "));
2066 | disp_st7789.print(((bmp280pres+PressureOffset)/100), 1);
2067 | #endif // BMP280_SPI
2068 |
2069 | #ifdef GPSDO_VCC
2070 | disp_st7789.setCursor(2, 160);
2071 | // Vcc/2 is provided on pin PA0
2072 | float Vcc = (float(avgVcc)/4096) * 3.3 * 2.0;
2073 | disp_st7789.print(F("5V0: "));
2074 | disp_st7789.print(Vcc, 2);
2075 | disp_st7789.print(F("V"));
2076 | #endif // VCC
2077 |
2078 | #ifdef GPSDO_VDD
2079 | // internal sensor Vref
2080 | disp_st7789.setCursor(2, 174);
2081 | float Vdd = (1.21 * 4096) / float(avgVdd); // from STM32F411CEU6 datasheet
2082 | disp_st7789.print(F("3V3: "));
2083 | disp_st7789.print(Vdd, 2); // Vdd = Vref on Black Pill
2084 | disp_st7789.print(F("V"));
2085 | #endif // VDD
2086 | /*
2087 | disp_st7789.setCursor(0, 80); // display PWM/DAC value
2088 | #ifdef GPSDO_PWM_DAC
2089 | disp_st7789.print(F("PWM: "));
2090 | disp_st7789.print(adjusted_PWM_output);
2091 | disp_st7789.print(F(trendstr));
2092 | #endif // PWM_DAC
2093 |
2094 | // display Vctl value
2095 | disp_st7789.setCursor(90, 80); // display Vctl value
2096 | float Vctlp = (float(avgpwmVctl)/4096) * 3.3;
2097 | disp_st7789.print(F("Vctl: "));
2098 | disp_st7789.print(Vctlp);
2099 | disp_st7789.print(F("V"));
2100 | */
2101 | // OCXO frequency
2102 | disp_st7789.setFont(); // reset font to built-in
2103 | disp_st7789.setTextSize(2);
2104 | disp_st7789.setCursor(10, 24);
2105 | disp_st7789.setTextColor(ST77XX_RED, ST77XX_BLACK);
2106 |
2107 | // display 1s, 10s or 100s value depending on whether data is available
2108 | if (cbTen_full) {
2109 | if (cbTho_full) { // if we have data over 1000 seconds
2110 | if (avgftho < 10000000) {
2111 | disp_st7789.print(" ");
2112 | }
2113 | disp_st7789.print(avgftho, 3); // to 3 decimal places
2114 | }
2115 | else if (cbHun_full) {
2116 | if (avgfhun < 10000000) {
2117 | disp_st7789.print(" ");
2118 | }
2119 | disp_st7789.print(avgfhun, 2); // to 2 decimal places
2120 | disp_st7789.print(" ");
2121 | }
2122 |
2123 | else { // nope, only 10 seconds
2124 | if (avgften < 10000000) {
2125 | disp_st7789.print(" ");
2126 | }
2127 | disp_st7789.print(avgften, 1); // to 1 decimal place
2128 | disp_st7789.print(" ");
2129 | }
2130 | }
2131 | else { // we don't have any averages and print integer value
2132 | calcfreqint = calcfreq64; // convert to 32-bit integer
2133 | if (calcfreqint < 10000000) {
2134 | disp_st7789.print(" ");
2135 | }
2136 | disp_st7789.print(calcfreqint); // integer
2137 | disp_st7789.print(" "); // these are used for more exact display
2138 | }
2139 | // due to limited space small character unit
2140 | // disp_st7789.setTextSize(1);
2141 | // disp_st7789.setCursor(168, 20);
2142 | // due to some unknown issue in printing the freq digits/unit we clear the section of the display first
2143 | // disp_st7789.fillRect(144, 19, 15, 20, ST77XX_BLACK);
2144 | disp_st7789.print(" Hz");
2145 |
2146 | // clock and date
2147 | disp_st7789.setTextSize(2);
2148 | disp_st7789.setTextColor(ST77XX_MAGENTA, ST77XX_BLACK);
2149 | // Date
2150 | disp_st7789.setCursor(2, 188);
2151 | //disp_st7789.print(F("Date: "));
2152 | disp_st7789.print(day);
2153 | disp_st7789.print(F("."));
2154 | disp_st7789.print(month);
2155 | disp_st7789.print(F("."));
2156 | disp_st7789.print(year);
2157 |
2158 | // Time
2159 | disp_st7789.setTextColor(ST77XX_GREEN, ST77XX_BLACK);
2160 | disp_st7789.setCursor(2, 208);
2161 |
2162 | if (hours < 10) {
2163 | disp_st7789.print(F("0"));
2164 | }
2165 | disp_st7789.print(hours);
2166 | disp_st7789.print(F(":"));
2167 |
2168 | if (mins < 10) {
2169 | disp_st7789.print(F("0"));
2170 | }
2171 | disp_st7789.print(mins);
2172 | disp_st7789.print(F(":"));
2173 |
2174 | if (secs < 10) {
2175 | disp_st7789.print(F("0"));
2176 | }
2177 | disp_st7789.print(secs);
2178 |
2179 | disp_st7789.setTextColor(ST77XX_WHITE, ST77XX_BLACK);
2180 | disp_st7789.print(F(" UTC"));
2181 |
2182 | // reset all font stuff for normal display
2183 | // disp_st7789.setFont();
2184 | // disp_st7789.setTextSize(1);
2185 | // disp_st7789.setTextColor(ST77XX_WHITE, ST77XX_BLACK);
2186 | }
2187 | #endif // LCD_ST7789
2188 |
2189 | #ifdef GPSDO_TM1637
2190 | void displaytime_TM1637() {
2191 | int LEDtime = (hours * 100) + mins;
2192 | // Show UTC or local time on TM1637 4-digit LED display and blink colon at 1Hz
2193 | if ((secs%2) == 0) tm1637.showNumberDecEx(LEDtime, 0b11100000, true);
2194 | else tm1637.showNumberDec(LEDtime, true);
2195 | }
2196 | #endif // TM1637
2197 |
2198 | void uptimetostrings() {
2199 | // translate uptime variables to strings
2200 | uptimestr[0] = '0' + uphours / 10;
2201 | uptimestr[1] = '0' + uphours % 10;
2202 | uptimestr[3] = '0' + upminutes / 10;
2203 | uptimestr[4] = '0' + upminutes % 10;
2204 | uptimestr[6] = '0' + upseconds / 10;
2205 | uptimestr[7] = '0' + upseconds % 10;
2206 |
2207 | if (updays > 99) { // 100 days or more
2208 | updaysstr[0] = '0' + updays / 100;
2209 | updaysstr[1] = '0' + (updays % 100) / 10;
2210 | updaysstr[2] = '0' + (updays % 100) % 10;
2211 | }
2212 | else { // less than 100 days
2213 | updaysstr[0] = '0';
2214 | updaysstr[1] = '0' + updays / 10;
2215 | updaysstr[2] = '0' + updays % 10;
2216 | }
2217 | } // end of uptimetostrings()
2218 |
2219 |
2220 | // ---------------------------------------------------------------------------------------------
2221 | // setup routine, prepares the hardware for normal operation
2222 | // ---------------------------------------------------------------------------------------------
2223 | void setup()
2224 | {
2225 | // Wait 1 second for things to stabilize
2226 | delay(1000);
2227 |
2228 | // setup 2kHz test signal on PB5, can be tested with an oscilloscope
2229 | #ifdef GPSDO_GEN_2kHz_PB5 // note this uses Timer 3 Channel 2
2230 | analogWrite(Test2kHzOutputPin, 127); // configures PB5 as PWM output pin at default frequency and resolution
2231 | analogWriteFrequency(2000); // default PWM frequency is 1kHz, change it to 2kHz
2232 | analogWriteResolution(16); // default PWM resolution is 8 bits, change it to 16 bits
2233 | analogWrite(Test2kHzOutputPin, 32767); // 32767 for 16 bits -> 50% duty cycle so a square wave
2234 | #endif // GEN_2kHz_PB5
2235 |
2236 | // configure blueledpin in output mode
2237 | pinMode(blueledpin, OUTPUT); // blinking blue LED indicates interrupts are working
2238 |
2239 | // configure yellow_led_pin in output mode
2240 | pinMode(yellowledpin, OUTPUT); // yellow LED is used to indicate status of the GPSDO
2241 |
2242 | // Setup 2Hz Timer and its interrupt service routine
2243 | HardwareTimer *tim2Hz = new HardwareTimer(TIM9);
2244 | tim2Hz->setOverflow(2, HERTZ_FORMAT); // 2 Hz
2245 | tim2Hz->attachInterrupt(Timer_ISR_2Hz);
2246 | tim2Hz->resume();
2247 |
2248 | // Setup UART (serial) interfaces
2249 | Serial.begin(115200); // USB serial
2250 | Serial1.begin(9600); // Hardware serial 1 to GPS module
2251 | #ifdef GPSDO_BLUETOOTH
2252 | // HC-06 module baud rate factory setting is 9600,
2253 | // IMPORTANT! Use separate program to set baud rate to 57600
2254 | Serial2.begin(BT_BAUD); // Hardware serial 2 to Bluetooth module
2255 | #endif // BLUETOOTH
2256 |
2257 | Serial.println();
2258 | Serial.println(F(Program_Name));
2259 | Serial.println(F(Program_Version));
2260 | Serial.println();
2261 | Serial.println(F("2Hz interrupt configured"));
2262 | Serial.println(F("Serial interfaces configured"));
2263 |
2264 | // setup commands parser
2265 | serial_commands_.SetDefaultHandler(cmd_unrecognized);
2266 | serial_commands_.AddCommand(&cmd_version_);
2267 | serial_commands_.AddCommand(&cmd_flush_);
2268 | serial_commands_.AddCommand(&cmd_calibrate_);
2269 | serial_commands_.AddCommand(&cmd_tunnel_);
2270 | serial_commands_.AddCommand(&cmd_setPWM_);
2271 | serial_commands_.AddCommand(&cmd_rephum_);
2272 | serial_commands_.AddCommand(&cmd_repdel_);
2273 |
2274 | serial_commands_.AddCommand(&cmd_up1_);
2275 | serial_commands_.AddCommand(&cmd_up10_);
2276 | serial_commands_.AddCommand(&cmd_dp1_);
2277 | serial_commands_.AddCommand(&cmd_dp10_);
2278 |
2279 | #ifdef GPSDO_EEPROM
2280 | // register the commands to Store PWM and Recall PWM
2281 | #endif // EEPROM
2282 |
2283 | Serial.println(F("Commands parser configured"));
2284 |
2285 | #ifdef GPSDO_LCD_ST7735
2286 | // Setup LCD SPI ST7735 display
2287 | disp.initR(INITR_BLACKTAB); // 1.8" LCD
2288 | delay(500);
2289 | disp.fillScreen(ST7735_BLACK);
2290 | disp.setTextColor(ST7735_YELLOW, ST7735_BLACK); //
2291 | disp.setRotation(1); // 0..3 max, here we use 90° = landscape
2292 | disp.setFont();
2293 | disp.setTextSize(3);
2294 | // splash screen
2295 | disp.setCursor(40, 30);
2296 | disp.print(F(Program_Name));
2297 | disp.setTextSize(1);
2298 | disp.setCursor(60, 65);
2299 | //disp.print(F(" - "));
2300 | disp.setTextColor(ST7735_WHITE, ST7735_BLACK);
2301 | disp.print(F(Program_Version));
2302 | disp.setTextColor(ST7735_WHITE, ST7735_BLACK);
2303 | disp.setTextSize(1);
2304 |
2305 | Serial.println(F("ST7735 LCD display configured"));
2306 | #endif // LCD_ST7735
2307 |
2308 | // Setup LCD SPI ST7789 display
2309 | #ifdef GPSDO_LCD_ST7789
2310 | disp_st7789.init(240, 240, SPI_MODE3); // 1.3" 240x240 TFT LCD
2311 | delay(100);
2312 | disp_st7789.fillScreen(ST77XX_BLACK);
2313 | disp_st7789.setRotation(2); // 0..3 max, 1 = 90° = landscape
2314 | // Display program name and version
2315 | disp_st7789.setTextSize(1);
2316 | disp_st7789.setFont(&FreeMonoBold12pt7b);
2317 | disp_st7789.setTextColor(ST77XX_YELLOW);
2318 | disp_st7789.setCursor(0, 16);
2319 | disp_st7789.print(F("STM32 "));
2320 | disp_st7789.print(F(Program_Name)); // program name
2321 | disp_st7789.setFont(&FreeMono9pt7b);
2322 | disp_st7789.setTextColor(ST77XX_CYAN);
2323 | disp_st7789.setCursor(168, 11);
2324 | disp_st7789.print(F(Program_Version)); // program version
2325 |
2326 | Serial.println(F("ST7789 LCD display configured"));
2327 | #endif // LCD_ST7789
2328 |
2329 | // Setup TM1637 4-digit LED module
2330 | #ifdef GPSDO_TM1637
2331 | // Set the display brightness (0-7):
2332 | tm1637.setBrightness(5);
2333 | // Clear the display:
2334 | tm1637.clear();
2335 | tm1637.setSegments(mid_dashes);
2336 |
2337 | Serial.println(F("TM1637 4-digit LED clock display configured"));
2338 | #endif // TM1637
2339 |
2340 | #ifdef GPSDO_UBX_CONFIG
2341 | // Reconfigure the GPS receiver
2342 | // first send the $PUBX configuration commands
2343 | delay(3000); // give everything a moment to stabilize
2344 | Serial.println("GPS checker program started");
2345 | Serial.println("Sending $PUBX commands to GPS");
2346 | // first send the $PUBG configuration commands
2347 | Serial1.print("$PUBX,40,VTG,0,0,0,0,0,0*5E\r\n"); // disable all VTG messages (useless since we are stationary)
2348 | Serial1.print("$PUBX,41,1,0003,0003,38400,0*24\r\n"); // set GPS baud rate to 38400 in/out protocols NMEA+UBX
2349 | Serial1.flush(); // empty the buffer
2350 | delay(100); // give it a moment
2351 | Serial1.end(); // close serial port
2352 | Serial1.begin(38400); // re-open at new rate
2353 | delay(3000);
2354 | // second, send the proprietary UBX configuration commands
2355 | Serial.println("Now sending UBX commands to GPS");
2356 | ubxconfig();
2357 |
2358 | Serial.println(F("u-blox GPS module configured"));
2359 | #endif // UBX_CONFIG
2360 |
2361 | // Setup AHT10 / AHT20 temperature and humidity sensor module
2362 | #ifdef GPSDO_AHT10 // same code for AHT20
2363 | Serial.println(F("Testing for presence of AHT10 or AHT20 Sensor on I2C bus"));
2364 | if (!aht.begin()) {
2365 | Serial.println(F("Could not find AHT10 or AHT20 sensor, check wiring"));
2366 | while (1) delay(10);
2367 | }
2368 | else Serial.println(F("AHTX0 sensor configured"));
2369 | #endif // AHT10 - Note this seems to initialize the I2C bus interface
2370 |
2371 | // Setup OLED I2C display
2372 | #ifdef GPSDO_OLED
2373 | // Note that u8x8 library initializes I2C hardware interface
2374 | // disp.setBusClock(400000L); // try to avoid display locking up
2375 | disp.begin();
2376 | disp.setFont(u8x8_font_chroma48medium8_r);
2377 | disp.clear();
2378 | disp.setCursor(0, 0);
2379 | disp.print(F(Program_Name));
2380 | disp.print(F(" - "));
2381 | disp.print(F(Program_Version));
2382 |
2383 | Serial.println(F("OLED display configured"));
2384 | #endif // OLED
2385 |
2386 | // Setup INA219 current sensor module
2387 | #ifdef GPSDO_INA219
2388 | // By default the initialization will use the largest range (32V, 2A). However
2389 | // you can call a setCalibration function to change this range (see comments).
2390 | if (! ina219.begin()) {
2391 | Serial.println(F("Could not find INA219 sensor, check wiring"));
2392 | while (1) { delay(10); }
2393 | }
2394 | else Serial.println(F("INA219 sensor configured"));
2395 | // To use a slightly lower 32V, 1A range (higher precision on amps):
2396 | //ina219.setCalibration_32V_1A();
2397 | // Or to use a lower 16V, 400mA range (higher precision on volts and amps):
2398 | //ina219.setCalibration_16V_400mA();
2399 | ina219.setCalibration_32V_1A();
2400 | #endif // INA219
2401 |
2402 | analogReadResolution(12); // make sure we read 12 bit values when we read from any ADC analog channel
2403 |
2404 | // generate a 2kHz square wave on PB9 PWM pin, using Timer 4 channel 4
2405 | // PB9 is Timer 4 Channel 4 from Arduino_Core_STM32/variants/STM32F4xx/F411C(C-E)(U-Y)/PeripheralPins_BLACKPILL_F411CE.c
2406 | analogWrite(VctlPWMOutputPin, 127); // configures PB9 as PWM output pin at default frequency and resolution
2407 | analogWriteFrequency(2000); // default PWM frequency is 1kHz, change it to 2kHz
2408 | analogWriteResolution(16); // set PWM resolution to 16 bits (the maximum for the STM32F411CEU6)
2409 | adjusted_PWM_output = default_PWM_output; // initial PWM value
2410 | analogWrite(VctlPWMOutputPin, adjusted_PWM_output); // 32767 for 16 bits -> 50% duty cycle so a square wave
2411 | Serial.println(F("16-bit PWM DAC configured"));
2412 |
2413 | #if (defined (GPSDO_BMP280_SPI) || defined (GPSDO_BMP280_I2C))
2414 | // Initialize BMP280
2415 | Serial.println(F("Testing for presence of BMP280 Sensor on I2C bus"));
2416 | #ifdef GPSDO_BMP280_I2C // BMP280 on I2C bus requires specifying address
2417 | if (!bmp.begin(0x76,0x58)) {
2418 | #else
2419 | if (!bmp.begin()) {
2420 | #endif
2421 | Serial.println(F("Could not find BMP280 sensor, check wiring"));
2422 | while (1) delay(10);
2423 | }
2424 | else Serial.println(F("BMP280 sensor configured"));
2425 |
2426 | // Default settings from datasheet
2427 | bmp.setSampling(Adafruit_BMP280::MODE_NORMAL, // Operating Mode
2428 | Adafruit_BMP280::SAMPLING_X2, // Temp. oversampling
2429 | Adafruit_BMP280::SAMPLING_X16, // Pressure oversampling
2430 | Adafruit_BMP280::FILTER_X16, // Filtering
2431 | Adafruit_BMP280::STANDBY_MS_500); // Standby time
2432 |
2433 | #endif // BMP280_SPI or BMP280_I2C
2434 |
2435 | // Setup and start Timer 2 which measures OCXO frequency
2436 | // setup pin used as ETR (10MHz external clock from OCXO)
2437 | pinMode(PA15, INPUT_PULLUP); // setup PA15 as input pin
2438 | pinModeAF(PA15, GPIO_AF1_TIM2); // setup PA15 as TIM2 channel 1 / ETR
2439 |
2440 | // setup Timer 2 in input capture mode, active input channel 3
2441 | // to latch counter value on rising edge
2442 |
2443 | // Instantiate HardwareTimer object. Thanks to 'new' instantiation, HardwareTimer is not destructed when setup() function is finished.
2444 | HardwareTimer *FreqMeasTim = new HardwareTimer(TIM2);
2445 |
2446 | // Configure rising edge detection to measure frequency
2447 | FreqMeasTim->setMode(3, TIMER_INPUT_CAPTURE_RISING, PB10);
2448 |
2449 | // Configure 32-bit auto-reload register (ARR) with maximum possible value
2450 | TIM2->ARR = 0xffffffff; // count to 2^32, then wraparound (approximately every 429 seconds)
2451 |
2452 | // Configure the ISR for the timer overflow interrupt
2453 | FreqMeasTim->attachInterrupt(Timer2_Overflow_ISR);
2454 |
2455 | // Configure the ISR for the 1PPS capture
2456 | FreqMeasTim->attachInterrupt(3, Timer2_Capture_ISR);
2457 |
2458 | // select external clock source mode 2 by writing ECE=1 in the TIM2_SMCR register
2459 | TIM2->SMCR |= TIM_SMCR_ECE; // 0x4000
2460 |
2461 | // start the timer
2462 | FreqMeasTim->resume();
2463 |
2464 | // Initialize movingAvg objects (note this allocates space on heap) and immediately read 1st value
2465 | #ifdef GPSDO_VDD
2466 | avg_adcVdd.begin();
2467 | adcVdd = analogRead(AVREF);
2468 | avgVdd = avg_adcVdd.reading(adcVdd);
2469 | # endif // VDD
2470 |
2471 | #ifdef GPSDO_VCC
2472 | avg_adcVcc.begin();
2473 | adcVcc = analogRead(VccDiv2InputPin);
2474 | avgVcc = avg_adcVcc.reading(adcVcc);
2475 | # endif // VCC
2476 |
2477 | avg_pwmVctl.begin();
2478 | pwmVctl = analogRead(VctlPWMInputPin);
2479 | avgpwmVctl = avg_pwmVctl.reading(pwmVctl);
2480 |
2481 | startGetFixmS = millis();
2482 |
2483 | Serial.println();
2484 | Serial.println(F("GPSDO Starting"));
2485 | Serial.println();
2486 |
2487 | #ifdef GPSDO_EEPROM
2488 | // detect signature and if available, retrieve 16-bit PWM value
2489 | #endif // EEPROM
2490 |
2491 | } // end of setup()
2492 |
2493 |
2494 | // ---------------------------------------------------------------------------------------------
2495 | // loop routine: this is the main loop
2496 | // ---------------------------------------------------------------------------------------------
2497 | void loop()
2498 | {
2499 | serial_commands_.ReadSerial(); // process any command from either USB serial (usually
2500 | // the Arduino monitor) xor Bluetooth serial (e.g. a smartphone)
2501 | if (force_calibration_flag) docalibration(); else
2502 |
2503 | if (tunnel_mode_flag) tunnelgps(); else
2504 |
2505 | if (gpsWaitFix(waitFixTime)) // wait up to waitFixTime seconds for fix, returns true if we have a fix
2506 | {
2507 | // if we have a GPS fix (implies we have a stable 1PPS pulse from the GPS)
2508 |
2509 | if (!report_tab_delimited) { // only report fix time when in human readable output format mode
2510 | #ifdef GPSDO_BLUETOOTH
2511 | Serial2.println();
2512 | Serial2.println();
2513 | Serial2.print(F("Fix time "));
2514 | Serial2.print(endFixmS - startGetFixmS);
2515 | Serial2.println(F("mS"));
2516 | #else
2517 | Serial.println();
2518 | Serial.println();
2519 | Serial.print(F("Fix time "));
2520 | Serial.print(endFixmS - startGetFixmS);
2521 | Serial.println(F("mS"));
2522 | #endif // BLUETOOTH
2523 | } // !report_tab_delimited
2524 |
2525 | GPSLat = gps.location.lat();
2526 | GPSLon = gps.location.lng();
2527 | GPSAlt = gps.altitude.meters();
2528 | GPSSats = gps.satellites.value();
2529 | GPSHdop = gps.hdop.value();
2530 |
2531 | hours = gps.time.hour();
2532 | mins = gps.time.minute();
2533 | secs = gps.time.second();
2534 | day = gps.date.day();
2535 | month = gps.date.month();
2536 | year = gps.date.year();
2537 |
2538 |
2539 | if (must_adjust_DAC && cbHun_full) // in principle just once every 429 seconds, and only if we have valid data
2540 | {
2541 | // use different algorithms for 12-bit I2C DAC and STM32 16-bit PWM DAC
2542 | #ifdef GPSDO_PWM_DAC
2543 | adjustVctlPWM();
2544 | #endif // PWM_DAC
2545 | }
2546 |
2547 | pwmVctl = analogRead(VctlPWMInputPin); // read the filtered Vctl voltage output by the PWM
2548 | avgpwmVctl = avg_pwmVctl.reading(pwmVctl); // average it
2549 |
2550 | #ifdef GPSDO_VCC
2551 | adcVcc = analogRead(VccDiv2InputPin); // read Vcc
2552 | avgVcc = avg_adcVcc.reading(adcVcc); // average it
2553 | # endif // VCC
2554 |
2555 | #ifdef GPSDO_VDD
2556 | adcVdd = analogRead(AVREF); // Vdd is read internally as Vref
2557 | avgVdd = avg_adcVdd.reading(adcVdd); // average it
2558 | #endif // VDD
2559 |
2560 | #if (defined (GPSDO_BMP280_SPI) || defined (GPSDO_BMP280_I2C))
2561 | bmp280temp = bmp.readTemperature(); // read bmp280 sensor, save values
2562 | bmp280pres = bmp.readPressure();
2563 | bmp280alti = bmp.readAltitude();
2564 | #endif // BMP280_SPI or BMP280_SPI
2565 |
2566 | #ifdef GPSDO_INA219
2567 | ina219volt = ina219.getBusVoltage_V(); // read ina219 sensor, save values
2568 | ina219curr = ina219.getCurrent_mA();
2569 | #endif // INA219
2570 |
2571 | uptimetostrings(); // get updaysstr and uptimestr
2572 |
2573 | yellow_led_state = 0; // turn off yellow LED
2574 |
2575 | if (report_tab_delimited) { // check what to print and where
2576 | #ifdef GPSDO_BLUETOOTH
2577 | printGPSDOtab(Serial2); // print tabulated data to Bluetooth Serial
2578 | #else // xor
2579 | printGPSDOtab(Serial); // print tabulated data to USB Serial
2580 | #endif // BLUETOOTH
2581 | }
2582 | else {
2583 | #ifdef GPSDO_BLUETOOTH
2584 | printGPSDOstats(Serial2); // print stats to Bluetooth Serial
2585 | #else // xor
2586 | printGPSDOstats(Serial); // print stats to USB Serial
2587 | #endif // BLUETOOTH
2588 | } // end if (report_tab_delimited)
2589 |
2590 | #ifdef GPSDO_OLED // show stats on various displays
2591 | displayscreen_OLED();
2592 | #endif // OLED
2593 |
2594 | #ifdef GPSDO_LCD_ST7735
2595 | displayscreen_LCD_ST7735();
2596 | #endif // LCD_ST7735
2597 |
2598 | #ifdef GPSDO_LCD_ST7789
2599 | displayscreen_LCD_ST7789();
2600 | #endif // LCD_ST7789
2601 |
2602 | #ifdef GPSDO_TM1637
2603 | displaytime_TM1637();
2604 | #endif // TM1637
2605 |
2606 | startGetFixmS = millis(); // have a fix, next thing that happens is checking for a fix, so restart timer
2607 | }
2608 | else // no GPS fix could be acquired for the last 1/2/5 seconds (see settings)
2609 | {
2610 | // we don't have a GPS fix, so we consider that we don't have a stable 1PPS
2611 | yellow_led_state = 1; // turn on yellow LED to show something is not right
2612 |
2613 | #ifdef GPSDO_OLED
2614 | disp.clear(); // display no fix message on OLED
2615 | disp.setCursor(0, 0);
2616 | disp.print(F(Program_Name));
2617 | disp.print(F(" - "));
2618 | disp.print(F(Program_Version));
2619 | disp.setCursor(0, 1);
2620 | disp.print(F("Wait fix "));
2621 | disp.print( (millis() - startGetFixmS) / 1000 );
2622 | disp.print(F("s"));
2623 | #endif // OLED
2624 |
2625 | #ifdef GPSDO_LCD_ST7735
2626 | disp.fillScreen(ST7735_BLACK); // display no fix message on ST7735 LCD
2627 | disp.setCursor(0, 0);
2628 | disp.print(F(Program_Name));
2629 | disp.print(F(" - "));
2630 | disp.print(F(Program_Version));
2631 | disp.setCursor(0, 8);
2632 | disp.print(F("Wait fix "));
2633 | disp.print( (millis() - startGetFixmS) / 1000 );
2634 | disp.print(F("s"));
2635 | #endif // LCD_ST7735
2636 |
2637 | #ifdef GPSDO_LCD_ST7789
2638 | // display no fix message on ST7789 LCD
2639 | disp_st7789.fillScreen(ST77XX_BLACK); // clear display
2640 | // Display program name and version
2641 | disp_st7789.setTextSize(1);
2642 | disp_st7789.setFont(&FreeMonoBold12pt7b);
2643 | disp_st7789.setTextColor(ST77XX_YELLOW);
2644 | disp_st7789.setCursor(0, 16);
2645 | disp_st7789.print(F("STM32 "));
2646 | disp_st7789.print(F(Program_Name));
2647 | disp_st7789.setFont(&FreeMono9pt7b);
2648 | disp_st7789.setTextColor(ST77XX_CYAN);
2649 | disp_st7789.setCursor(168, 11);
2650 | disp_st7789.print(F(Program_Version));
2651 | // display wait fix message and seconds count
2652 | disp_st7789.setCursor(0, 36);
2653 | disp_st7789.setTextColor(ST77XX_WHITE);
2654 | disp_st7789.print(F(" Wait fix "));
2655 | disp_st7789.print( (millis() - startGetFixmS) / 1000 );
2656 | disp_st7789.print(F("s"));
2657 |
2658 | must_clear_disp_st7789 = true;
2659 | #endif // LCD_ST7789
2660 |
2661 | #ifdef GPSDO_TM1637
2662 | tm1637.setSegments(low_oooo_s);
2663 | #endif // TM1637
2664 |
2665 | if (report_tab_delimited) { // check what to print and where
2666 | #ifdef GPSDO_BLUETOOTH // print 0 message to either
2667 | Serial2.println(F("0"));
2668 | #else
2669 | Serial.println(F("0"));
2670 | #endif // BLUETOOTH
2671 | report_line_no = 0; // we restart linecount every time we lose GPS position fix (PPS)
2672 | }
2673 | else {
2674 | #ifdef GPSDO_BLUETOOTH // print no fix message to either
2675 | Serial2.println(); // Bluetooth serial or USB serial
2676 | Serial2.print(F("Waiting for GPS Fix "));
2677 | Serial2.print( (millis() - startGetFixmS) / 1000 );
2678 | Serial2.println(F("s"));
2679 | #else
2680 | Serial.println();
2681 | Serial.print(F("Waiting for GPS Fix "));
2682 | Serial.print( (millis() - startGetFixmS) / 1000 );
2683 | Serial.println(F("s"));
2684 | #endif // BLUETOOTH
2685 | }
2686 |
2687 | // no fix or fix lost, we must flush the ring buffers,
2688 | // so raise flush_ring_buffers_flag
2689 | flush_ring_buffers_flag = true;
2690 | }
2691 |
2692 | } // end of loop()
2693 |
--------------------------------------------------------------------------------
/software/GPSDO_V006c/GPSDO_algorithms.cpp:
--------------------------------------------------------------------------------
1 | /* STM32 GPSDO Control Loop Algorithms
2 | *
3 | */
4 |
5 | #include "GPSDO_algorithms.h"
6 | // ---------------------------------------------------------------------------------------------
7 | // Control loop algorithm selector
8 | // ---------------------------------------------------------------------------------------------
9 | uint16_t adjustVctlPWM(uint16_t previous_PWM_output, uint32_t timer, uint8_t algorithm_no) {
10 | uint16_t return_PWM_output = previous_PWM_output;
11 |
12 | switch(algorithm_no) {
13 | case 0:
14 | return_PWM_output = primitive_ctl_loop(previous_PWM_output, timer);
15 | break;
16 |
17 | case 1:
18 | return_PWM_output = forced_drift_Vctl(previous_PWM_output, timer);
19 | break;
20 |
21 | case 2:
22 | return_PWM_output = random_walk_Vctl(previous_PWM_output, timer);
23 | break;
24 |
25 | // add new control algorithms here and below, and in header file
26 |
27 | default:
28 | return_PWM_output = primitive_ctl_loop(previous_PWM_output, timer);
29 | }
30 | return (return_PWM_output);
31 | }
32 | // ---------------------------------------------------------------------------------------------
33 | // Very primitive Adjust Vctl PWM routine
34 | // ---------------------------------------------------------------------------------------------
35 | uint16_t primitive_ctl_loop(uint16_t adjusted_PWM_output, uint32_t lclppscount) {
36 | // This should reach a stable PWM output value / a stable 10000000.00 frequency
37 | // after an hour or so, and 10000000.000 after eight hours or so
38 |
39 | uint16_t new_PWM_output = adjusted_PWM_output;
40 | const uint32_t update_periodicity = 429; // only calculate new value every 429s
41 |
42 | if ((lclppscount % update_periodicity) == 0) {
43 | // check first if we have the data, then do ultrafine and very fine frequency
44 | // adjustment, when we are very close
45 | // ultimately the objective is 10000000.000 over the last 1000s (16min40s)
46 | if ((cotho_full) && (oavgftho >= 9999999.990) && (oavgftho <= 10000000.010)) {
47 |
48 | // decrease frequency; 1000s based
49 | if (oavgftho >= 10000000.001) {
50 | if (oavgftho >= 10000000.005) {
51 | // decrease PWM by 5 bits = very fine
52 | new_PWM_output = adjusted_PWM_output - 5;
53 | strcpy(trendstr, " vf-");
54 | }
55 | else {
56 | // decrease PWM by one bit = ultrafine
57 | new_PWM_output = adjusted_PWM_output - 1;
58 | strcpy(trendstr, " uf-");
59 | }
60 | }
61 | // or increase frequency; 1000s based
62 | else if (oavgftho <= 9999999.999) {
63 | if (oavgftho <= 9999999.995) {
64 | // increase PWM by 5 bits = very fine
65 | new_PWM_output = adjusted_PWM_output + 5;
66 | strcpy(trendstr, " vf+");
67 | }
68 | else {
69 | // increase PWM by one bit = ultrafine
70 | new_PWM_output = adjusted_PWM_output + 1;
71 | strcpy(trendstr, " uf+");
72 | }
73 | }
74 | }
75 | ///// next check the 100s values in second place because we are too far off
76 | // decrease frequency; 100s based
77 | else if (oavgfhun >= 10000000.01) {
78 | if (oavgfhun >= 10000000.10) {
79 | // decrease PWM by 100 bits = coarse
80 | new_PWM_output = adjusted_PWM_output - 100;
81 | strcpy(trendstr, " c- ");
82 | }
83 | else {
84 | // decrease PWM by ten bits = fine
85 | new_PWM_output = adjusted_PWM_output - 10;
86 | strcpy(trendstr, " f- ");
87 | }
88 | }
89 | // or increase frequency; 100s based
90 | else if (oavgfhun <= 9999999.99) {
91 | if (oavgfhun <= 9999999.90) {
92 | // increase PWM by 100 bits = coarse
93 | new_PWM_output = adjusted_PWM_output + 100;
94 | strcpy(trendstr, " c+ ");
95 | }
96 | else {
97 | // increase PWM by ten bits = fine
98 | new_PWM_output = adjusted_PWM_output + 10;
99 | strcpy(trendstr, " f+ ");
100 | }
101 | }
102 | else {
103 | // here we keep PWM DAC setting, because measured frequency is exactly 10000000.000MHz
104 | strcpy(trendstr, " hit");
105 | }
106 | }
107 | return(new_PWM_output); // return newly computed value for PWM DAC
108 | } // end adjustVctlPWM
109 |
110 | // ---------------------------------------------------------------------------------------------
111 | // Forced drift : increases PWM DAC by 1 bit every 1000 seconds
112 | // ---------------------------------------------------------------------------------------------
113 | uint16_t forced_drift_Vctl(uint16_t adjusted_PWM_output, uint32_t lclppscount) {
114 |
115 | uint16_t new_PWM_output = adjusted_PWM_output;
116 | const uint32_t update_periodicity = 1000; // only calculate new value every 1000s
117 |
118 | if ((lclppscount % update_periodicity) == 0) {
119 | new_PWM_output = adjusted_PWM_output + 1;
120 | }
121 | return(new_PWM_output); // return newly computed value for PWM DAC
122 | } // end forced_drift
123 |
124 | // ---------------------------------------------------------------------------------------------
125 | // Random walk : adds -1, 0, +1 with equal probabilities to PWM DAC every 5 seconds
126 | // ---------------------------------------------------------------------------------------------
127 | uint16_t random_walk_Vctl(uint16_t adjusted_PWM_output, uint32_t lclppscount) {
128 |
129 | uint16_t new_PWM_output = adjusted_PWM_output;
130 | const uint32_t update_periodicity = 5; // only calculate new value every 5s
131 |
132 | if ((lclppscount % update_periodicity) == 0) {
133 | new_PWM_output = adjusted_PWM_output + random(-1,2);
134 | }
135 | return(new_PWM_output); // return newly computed value for PWM DAC
136 | } // end random_walk
137 |
--------------------------------------------------------------------------------
/software/GPSDO_V006c/GPSDO_algorithms.h:
--------------------------------------------------------------------------------
1 | #ifndef GPSDO_ALGORITHMS_H
2 | #define GPSDO_ALGORITHMS_H
3 | #include
4 | // algorithm selector function
5 | uint16_t adjustVctlPWM(uint16_t previous_PWM_output, uint32_t timer, uint8_t algorithm_no);
6 | // up to 10 different control loop algorithms, in order from 0 to 9
7 | // 0 - primitive, very simple control loop
8 | uint16_t primitive_ctl_loop(uint16_t adjusted_PWM_output, uint32_t lclppscount);
9 | // 1 - not a control loop, we force the OCXO to drift slowly and regularly
10 | uint16_t forced_drift_Vctl(uint16_t adjusted_PWM_output, uint32_t lclppscount);
11 | // 2 - not a control loop, we force the OCXO to "jitter" randomly
12 | uint16_t random_walk_Vctl(uint16_t adjusted_PWM_output, uint32_t lclppscount);
13 | // 3 - FLL PID control loop, coefficients set manually
14 | // 4 - PLL PI (not PID) control loop, coefficients set manually (similar to Lars')
15 | // 5 - PLL PID control loop, coefficients set manually
16 | // 6 - FLL PID control loop, genetic algorithm used to find near-optimal coefficients
17 | // 7 - PLL PID control loop, genetic algorithm used to find near-optimal coefficients
18 | // 8 - FLL + PLL "hybrid" PID control loop, weights and coefficients set manually
19 | // 9 - Neural network MLP driven control loop
20 |
21 | // global variables from main program
22 | extern char trendstr[5];
23 | extern volatile bool cotho_full;
24 | extern volatile double oavgftho;
25 | extern volatile double oavgfhun;
26 | #endif
27 |
--------------------------------------------------------------------------------
/software/WARNING.txt:
--------------------------------------------------------------------------------
1 | WARNING!!! ALPHA QUALITY firmware could cause your GPSDO
2 | and even your computer to suddenly burst into flames!!!
3 |
4 | ================= TRY AT YOUR OWN RISK =================
--------------------------------------------------------------------------------