├── README.md └── Credit_card_dataset.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # Credit-Card-Fraud-Detection-Dataset- 2 | Classification Problem to detect credit card fraud 3 | -------------------------------------------------------------------------------- /Credit_card_dataset.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Credit_card_dataset.ipynb", 7 | "provenance": [], 8 | "collapsed_sections": [], 9 | "authorship_tag": "ABX9TyMUlfzY4apPBDRCwmR09ep4", 10 | "include_colab_link": true 11 | }, 12 | "kernelspec": { 13 | "name": "python3", 14 | "display_name": "Python 3" 15 | } 16 | }, 17 | "cells": [ 18 | { 19 | "cell_type": "markdown", 20 | "metadata": { 21 | "id": "view-in-github", 22 | "colab_type": "text" 23 | }, 24 | "source": [ 25 | "\"Open" 26 | ] 27 | }, 28 | { 29 | "cell_type": "code", 30 | "metadata": { 31 | "id": "XWffzKmi8ee4", 32 | "colab_type": "code", 33 | "outputId": "09bf68f6-4e5d-4a15-944a-81aa6748ce12", 34 | "colab": { 35 | "base_uri": "https://localhost:8080/", 36 | "height": 34 37 | } 38 | }, 39 | "source": [ 40 | "from google.colab import drive\n", 41 | "drive.mount('/content/drive')" 42 | ], 43 | "execution_count": 1, 44 | "outputs": [ 45 | { 46 | "output_type": "stream", 47 | "text": [ 48 | "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" 49 | ], 50 | "name": "stdout" 51 | } 52 | ] 53 | }, 54 | { 55 | "cell_type": "code", 56 | "metadata": { 57 | "id": "pdBTzVNC84ar", 58 | "colab_type": "code", 59 | "colab": {} 60 | }, 61 | "source": [ 62 | "import pandas as pd\n", 63 | "df = pd.read_csv('/content/drive/My Drive/CreditCard/creditcard.csv')" 64 | ], 65 | "execution_count": 0, 66 | "outputs": [] 67 | }, 68 | { 69 | "cell_type": "code", 70 | "metadata": { 71 | "id": "-u3D13mROVDI", 72 | "colab_type": "code", 73 | "outputId": "3b7b1fd8-9651-40c5-b347-138a378ffa19", 74 | "colab": { 75 | "base_uri": "https://localhost:8080/", 76 | "height": 34 77 | } 78 | }, 79 | "source": [ 80 | "df.shape" 81 | ], 82 | "execution_count": 3, 83 | "outputs": [ 84 | { 85 | "output_type": "execute_result", 86 | "data": { 87 | "text/plain": [ 88 | "(284807, 31)" 89 | ] 90 | }, 91 | "metadata": { 92 | "tags": [] 93 | }, 94 | "execution_count": 3 95 | } 96 | ] 97 | }, 98 | { 99 | "cell_type": "code", 100 | "metadata": { 101 | "id": "bUBNSbjxAQYd", 102 | "colab_type": "code", 103 | "outputId": "83b9786b-d96c-44f9-a0ea-41021efd2775", 104 | "colab": { 105 | "base_uri": "https://localhost:8080/", 106 | "height": 224 107 | } 108 | }, 109 | "source": [ 110 | "df.head()" 111 | ], 112 | "execution_count": 4, 113 | "outputs": [ 114 | { 115 | "output_type": "execute_result", 116 | "data": { 117 | "text/html": [ 118 | "
\n", 119 | "\n", 132 | "\n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | "
TimeV1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20V21V22V23V24V25V26V27V28AmountClass
00.0-1.359807-0.0727812.5363471.378155-0.3383210.4623880.2395990.0986980.3637870.090794-0.551600-0.617801-0.991390-0.3111691.468177-0.4704010.2079710.0257910.4039930.251412-0.0183070.277838-0.1104740.0669280.128539-0.1891150.133558-0.021053149.620
10.01.1918570.2661510.1664800.4481540.060018-0.082361-0.0788030.085102-0.255425-0.1669741.6127271.0652350.489095-0.1437720.6355580.463917-0.114805-0.183361-0.145783-0.069083-0.225775-0.6386720.101288-0.3398460.1671700.125895-0.0089830.0147242.690
21.0-1.358354-1.3401631.7732090.379780-0.5031981.8004990.7914610.247676-1.5146540.2076430.6245010.0660840.717293-0.1659462.345865-2.8900831.109969-0.121359-2.2618570.5249800.2479980.7716790.909412-0.689281-0.327642-0.139097-0.055353-0.059752378.660
31.0-0.966272-0.1852261.792993-0.863291-0.0103091.2472030.2376090.377436-1.387024-0.054952-0.2264870.1782280.507757-0.287924-0.631418-1.059647-0.6840931.965775-1.232622-0.208038-0.1083000.005274-0.190321-1.1755750.647376-0.2219290.0627230.061458123.500
42.0-1.1582330.8777371.5487180.403034-0.4071930.0959210.592941-0.2705330.8177390.753074-0.8228430.5381961.345852-1.1196700.175121-0.451449-0.237033-0.0381950.8034870.408542-0.0094310.798278-0.1374580.141267-0.2060100.5022920.2194220.21515369.990
\n", 342 | "
" 343 | ], 344 | "text/plain": [ 345 | " Time V1 V2 V3 ... V27 V28 Amount Class\n", 346 | "0 0.0 -1.359807 -0.072781 2.536347 ... 0.133558 -0.021053 149.62 0\n", 347 | "1 0.0 1.191857 0.266151 0.166480 ... -0.008983 0.014724 2.69 0\n", 348 | "2 1.0 -1.358354 -1.340163 1.773209 ... -0.055353 -0.059752 378.66 0\n", 349 | "3 1.0 -0.966272 -0.185226 1.792993 ... 0.062723 0.061458 123.50 0\n", 350 | "4 2.0 -1.158233 0.877737 1.548718 ... 0.219422 0.215153 69.99 0\n", 351 | "\n", 352 | "[5 rows x 31 columns]" 353 | ] 354 | }, 355 | "metadata": { 356 | "tags": [] 357 | }, 358 | "execution_count": 4 359 | } 360 | ] 361 | }, 362 | { 363 | "cell_type": "markdown", 364 | "metadata": { 365 | "id": "nmJWytttASTi", 366 | "colab_type": "text" 367 | }, 368 | "source": [ 369 | "df.info()" 370 | ] 371 | }, 372 | { 373 | "cell_type": "code", 374 | "metadata": { 375 | "id": "tbmUSMgdAXct", 376 | "colab_type": "code", 377 | "outputId": "cdfe2903-a07c-4f42-8fcc-3447330c518a", 378 | "colab": { 379 | "base_uri": "https://localhost:8080/", 380 | "height": 561 381 | } 382 | }, 383 | "source": [ 384 | "df.isnull().sum()" 385 | ], 386 | "execution_count": 5, 387 | "outputs": [ 388 | { 389 | "output_type": "execute_result", 390 | "data": { 391 | "text/plain": [ 392 | "Time 0\n", 393 | "V1 0\n", 394 | "V2 0\n", 395 | "V3 0\n", 396 | "V4 0\n", 397 | "V5 0\n", 398 | "V6 0\n", 399 | "V7 0\n", 400 | "V8 0\n", 401 | "V9 0\n", 402 | "V10 0\n", 403 | "V11 0\n", 404 | "V12 0\n", 405 | "V13 0\n", 406 | "V14 0\n", 407 | "V15 0\n", 408 | "V16 0\n", 409 | "V17 0\n", 410 | "V18 0\n", 411 | "V19 0\n", 412 | "V20 0\n", 413 | "V21 0\n", 414 | "V22 0\n", 415 | "V23 0\n", 416 | "V24 0\n", 417 | "V25 0\n", 418 | "V26 0\n", 419 | "V27 0\n", 420 | "V28 0\n", 421 | "Amount 0\n", 422 | "Class 0\n", 423 | "dtype: int64" 424 | ] 425 | }, 426 | "metadata": { 427 | "tags": [] 428 | }, 429 | "execution_count": 5 430 | } 431 | ] 432 | }, 433 | { 434 | "cell_type": "code", 435 | "metadata": { 436 | "id": "wSI27YVtAhxk", 437 | "colab_type": "code", 438 | "outputId": "f93acd80-e8de-452c-d9e6-0c16c1e1d131", 439 | "colab": { 440 | "base_uri": "https://localhost:8080/", 441 | "height": 317 442 | } 443 | }, 444 | "source": [ 445 | "df.describe()" 446 | ], 447 | "execution_count": 6, 448 | "outputs": [ 449 | { 450 | "output_type": "execute_result", 451 | "data": { 452 | "text/html": [ 453 | "
\n", 454 | "\n", 467 | "\n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | "
TimeV1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20V21V22V23V24V25V26V27V28AmountClass
count284807.0000002.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+052.848070e+05284807.000000284807.000000
mean94813.8595753.919560e-155.688174e-16-8.769071e-152.782312e-15-1.552563e-152.010663e-15-1.694249e-15-1.927028e-16-3.137024e-151.768627e-159.170318e-16-1.810658e-151.693438e-151.479045e-153.482336e-151.392007e-15-7.528491e-164.328772e-169.049732e-165.085503e-161.537294e-167.959909e-165.367590e-164.458112e-151.453003e-151.699104e-15-3.660161e-16-1.206049e-1688.3496190.001727
std47488.1459551.958696e+001.651309e+001.516255e+001.415869e+001.380247e+001.332271e+001.237094e+001.194353e+001.098632e+001.088850e+001.020713e+009.992014e-019.952742e-019.585956e-019.153160e-018.762529e-018.493371e-018.381762e-018.140405e-017.709250e-017.345240e-017.257016e-016.244603e-016.056471e-015.212781e-014.822270e-014.036325e-013.300833e-01250.1201090.041527
min0.000000-5.640751e+01-7.271573e+01-4.832559e+01-5.683171e+00-1.137433e+02-2.616051e+01-4.355724e+01-7.321672e+01-1.343407e+01-2.458826e+01-4.797473e+00-1.868371e+01-5.791881e+00-1.921433e+01-4.498945e+00-1.412985e+01-2.516280e+01-9.498746e+00-7.213527e+00-5.449772e+01-3.483038e+01-1.093314e+01-4.480774e+01-2.836627e+00-1.029540e+01-2.604551e+00-2.256568e+01-1.543008e+010.0000000.000000
25%54201.500000-9.203734e-01-5.985499e-01-8.903648e-01-8.486401e-01-6.915971e-01-7.682956e-01-5.540759e-01-2.086297e-01-6.430976e-01-5.354257e-01-7.624942e-01-4.055715e-01-6.485393e-01-4.255740e-01-5.828843e-01-4.680368e-01-4.837483e-01-4.988498e-01-4.562989e-01-2.117214e-01-2.283949e-01-5.423504e-01-1.618463e-01-3.545861e-01-3.171451e-01-3.269839e-01-7.083953e-02-5.295979e-025.6000000.000000
50%84692.0000001.810880e-026.548556e-021.798463e-01-1.984653e-02-5.433583e-02-2.741871e-014.010308e-022.235804e-02-5.142873e-02-9.291738e-02-3.275735e-021.400326e-01-1.356806e-025.060132e-024.807155e-026.641332e-02-6.567575e-02-3.636312e-033.734823e-03-6.248109e-02-2.945017e-026.781943e-03-1.119293e-024.097606e-021.659350e-02-5.213911e-021.342146e-031.124383e-0222.0000000.000000
75%139320.5000001.315642e+008.037239e-011.027196e+007.433413e-016.119264e-013.985649e-015.704361e-013.273459e-015.971390e-014.539234e-017.395934e-016.182380e-016.625050e-014.931498e-016.488208e-015.232963e-013.996750e-015.008067e-014.589494e-011.330408e-011.863772e-015.285536e-011.476421e-014.395266e-013.507156e-012.409522e-019.104512e-027.827995e-0277.1650000.000000
max172792.0000002.454930e+002.205773e+019.382558e+001.687534e+013.480167e+017.330163e+011.205895e+022.000721e+011.559499e+012.374514e+011.201891e+017.848392e+007.126883e+001.052677e+018.877742e+001.731511e+019.253526e+005.041069e+005.591971e+003.942090e+012.720284e+011.050309e+012.252841e+014.584549e+007.519589e+003.517346e+003.161220e+013.384781e+0125691.1600001.000000
\n", 779 | "
" 780 | ], 781 | "text/plain": [ 782 | " Time V1 ... Amount Class\n", 783 | "count 284807.000000 2.848070e+05 ... 284807.000000 284807.000000\n", 784 | "mean 94813.859575 3.919560e-15 ... 88.349619 0.001727\n", 785 | "std 47488.145955 1.958696e+00 ... 250.120109 0.041527\n", 786 | "min 0.000000 -5.640751e+01 ... 0.000000 0.000000\n", 787 | "25% 54201.500000 -9.203734e-01 ... 5.600000 0.000000\n", 788 | "50% 84692.000000 1.810880e-02 ... 22.000000 0.000000\n", 789 | "75% 139320.500000 1.315642e+00 ... 77.165000 0.000000\n", 790 | "max 172792.000000 2.454930e+00 ... 25691.160000 1.000000\n", 791 | "\n", 792 | "[8 rows x 31 columns]" 793 | ] 794 | }, 795 | "metadata": { 796 | "tags": [] 797 | }, 798 | "execution_count": 6 799 | } 800 | ] 801 | }, 802 | { 803 | "cell_type": "code", 804 | "metadata": { 805 | "id": "uAVPswFQTlC8", 806 | "colab_type": "code", 807 | "outputId": "63d84050-fc59-46b9-8cea-7a82448e4a8a", 808 | "colab": { 809 | "base_uri": "https://localhost:8080/", 810 | "height": 561 811 | } 812 | }, 813 | "source": [ 814 | "df.var()" 815 | ], 816 | "execution_count": 7, 817 | "outputs": [ 818 | { 819 | "output_type": "execute_result", 820 | "data": { 821 | "text/plain": [ 822 | "Time 2.255124e+09\n", 823 | "V1 3.836489e+00\n", 824 | "V2 2.726820e+00\n", 825 | "V3 2.299029e+00\n", 826 | "V4 2.004684e+00\n", 827 | "V5 1.905081e+00\n", 828 | "V6 1.774946e+00\n", 829 | "V7 1.530401e+00\n", 830 | "V8 1.426479e+00\n", 831 | "V9 1.206992e+00\n", 832 | "V10 1.185594e+00\n", 833 | "V11 1.041855e+00\n", 834 | "V12 9.984034e-01\n", 835 | "V13 9.905708e-01\n", 836 | "V14 9.189055e-01\n", 837 | "V15 8.378034e-01\n", 838 | "V16 7.678191e-01\n", 839 | "V17 7.213734e-01\n", 840 | "V18 7.025394e-01\n", 841 | "V19 6.626619e-01\n", 842 | "V20 5.943254e-01\n", 843 | "V21 5.395255e-01\n", 844 | "V22 5.266428e-01\n", 845 | "V23 3.899507e-01\n", 846 | "V24 3.668084e-01\n", 847 | "V25 2.717308e-01\n", 848 | "V26 2.325429e-01\n", 849 | "V27 1.629192e-01\n", 850 | "V28 1.089550e-01\n", 851 | "Amount 6.256007e+04\n", 852 | "Class 1.724507e-03\n", 853 | "dtype: float64" 854 | ] 855 | }, 856 | "metadata": { 857 | "tags": [] 858 | }, 859 | "execution_count": 7 860 | } 861 | ] 862 | }, 863 | { 864 | "cell_type": "code", 865 | "metadata": { 866 | "id": "SS3licyeTsjo", 867 | "colab_type": "code", 868 | "colab": {} 869 | }, 870 | "source": [ 871 | "from sklearn.preprocessing import StandardScaler" 872 | ], 873 | "execution_count": 0, 874 | "outputs": [] 875 | }, 876 | { 877 | "cell_type": "code", 878 | "metadata": { 879 | "id": "qLAyLS62UE8q", 880 | "colab_type": "code", 881 | "outputId": "155d8241-36cf-4a8d-bf68-b70c92562e27", 882 | "colab": { 883 | "base_uri": "https://localhost:8080/", 884 | "height": 34 885 | } 886 | }, 887 | "source": [ 888 | "df['Class'].unique()" 889 | ], 890 | "execution_count": 9, 891 | "outputs": [ 892 | { 893 | "output_type": "execute_result", 894 | "data": { 895 | "text/plain": [ 896 | "array([0, 1])" 897 | ] 898 | }, 899 | "metadata": { 900 | "tags": [] 901 | }, 902 | "execution_count": 9 903 | } 904 | ] 905 | }, 906 | { 907 | "cell_type": "code", 908 | "metadata": { 909 | "id": "lwi8m9vyUW7b", 910 | "colab_type": "code", 911 | "colab": {} 912 | }, 913 | "source": [ 914 | "df.dropna(inplace =True)" 915 | ], 916 | "execution_count": 0, 917 | "outputs": [] 918 | }, 919 | { 920 | "cell_type": "code", 921 | "metadata": { 922 | "id": "n9RYiRJnWCWe", 923 | "colab_type": "code", 924 | "outputId": "f50a8055-ab08-4521-d487-969817f9dff4", 925 | "colab": { 926 | "base_uri": "https://localhost:8080/", 927 | "height": 34 928 | } 929 | }, 930 | "source": [ 931 | "df['Class'].unique()" 932 | ], 933 | "execution_count": 11, 934 | "outputs": [ 935 | { 936 | "output_type": "execute_result", 937 | "data": { 938 | "text/plain": [ 939 | "array([0, 1])" 940 | ] 941 | }, 942 | "metadata": { 943 | "tags": [] 944 | }, 945 | "execution_count": 11 946 | } 947 | ] 948 | }, 949 | { 950 | "cell_type": "markdown", 951 | "metadata": { 952 | "id": "mhbUxkwB2fMd", 953 | "colab_type": "text" 954 | }, 955 | "source": [ 956 | "## **Exploratory Data Analysis :**" 957 | ] 958 | }, 959 | { 960 | "cell_type": "code", 961 | "metadata": { 962 | "id": "RjlN6TNQvU2s", 963 | "colab_type": "code", 964 | "outputId": "6c4a6d7a-0e27-4e32-a8c6-b51fc041160f", 965 | "colab": { 966 | "base_uri": "https://localhost:8080/", 967 | "height": 357 968 | } 969 | }, 970 | "source": [ 971 | "import seaborn as sns\n", 972 | "import matplotlib.pyplot as plt\n", 973 | "\n", 974 | "correlation = df.corr()\n", 975 | "sns.heatmap(correlation,cmap='magma',linecolor='white')" 976 | ], 977 | "execution_count": 12, 978 | "outputs": [ 979 | { 980 | "output_type": "stream", 981 | "text": [ 982 | "/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.\n", 983 | " import pandas.util.testing as tm\n" 984 | ], 985 | "name": "stderr" 986 | }, 987 | { 988 | "output_type": "execute_result", 989 | "data": { 990 | "text/plain": [ 991 | "" 992 | ] 993 | }, 994 | "metadata": { 995 | "tags": [] 996 | }, 997 | "execution_count": 12 998 | }, 999 | { 1000 | "output_type": "display_data", 1001 | "data": { 1002 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAENCAYAAAAbu05nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de5wcVZ338c+XkAAxJIHIhggoCEFF5Dri7VGQwIryLKirAiqCglFZVtfbio+ssogXxPWCi7pBXVAR1CgS10BkUYF1EQhyDS4kG26BQCDhkgiBZOb3/FE1WHRmuqqnqntqKt83r3rRXVV96nRP5lTN6VPfo4jAzMyaY5PRroCZmVXLDbuZWcO4YTczaxg37GZmDeOG3cysYdywm5k1jBt2M7MukfQ9SSsk3TLMdkk6U9ISSTdJ2qeK47phNzPrnnOAQ9psfz0wM11mA9+q4qBu2M3MuiQirgBWtdnlcOD7kfgDMFXSjLLHdcNuZjZ6tgPuyTxflq4rZdMiO0maBlyWPt0W6AceBHYhOducULYi7fQP/K5t7sGcPS9v+/o7/qzcY3zr/vNy93njlke13f767fLjGa5YkX8unTm5fX3vWpNbBJvn/GS3GJf/mcx/aHnuPsfvML3t9utW5hbB2v78z23Fk0+23b7P1hNzy3hw7UDuPrtNbf+5PPJU/uf20Nr89zMjp7ozNs+v6/1r2/9bevip3CL4/SMP5u6z75bbtN0+sVArUt5AgfSTL9/x6fwfUI689iZr03GvfR9JF8qgORExp2wdyir0I4mIlcBeAJJOAdZExJe7WC8zs9ExkH9SHZQ24mUa8nuBHTLPt0/XlVKqK0bSAZL+I318iqRzJV0p6S5Jb5b0JUk3S7pE0vh0v30lXS7pOkkLquhPMjOrzMBA8aW8ecC70tExLwcejYj8P5VzVN3HvjNwIHAY8EPgtxHxEuAJ4NC0cf8G8JaI2Bf4HvC5oQqSNFvSQkkLz57zy4qraWY2jAobdknnA1cBL5C0TNJxkt4v6f3pLvOBpcAS4Gygkm7tqnvHLo6IdZJuBsYBl6TrbwZ2BF4A7A5cKol0nyHPTtk/cTrp8zIzK6XCKPOIaPvFXCS56X9X2QFTVTfsTwJExICkdfGXsPeB9FgCFkXEKyo+rplZNarpYhlVvR7ueBuwjaRXAEgaL+nFPa6Dmdnw1q8vvtRUjwYqJSLiKUlvAc6UNCU9/teARe1elzeccfaN+7fd/v92uSK3bids+47cffLc+Ej+PlMm5O+zYm377VtU8FMrMsTwwK22zd1nac7Qy602K1Kb/BFqMyZu0XZ7f4E/n7feLP849z+Rt0f+cSaNz92F1evytpe/5iowopXXbNV+KGMvXbmq/djYnTfbqjcVacAVe8dNREScknn8O+B3revT55OGec0NwGs6Pa6ZWU9sjA27mVmTKdywm5k1i6/Yzcwapkh2Qc25YTczy6rxaJei3LCbmWW5j31Dkn4LfDEiFmTW/QPwOmAqMJkkHfJzEfHjImXmpTPmDWf8/JL8QThFhkSaWfdc9eg3224/Yrd/6k1F3Mc+pPOBI4EFmXVHAv8ILI+IxZKeA1wnaUFEFBj9bWbWIw3oY+/GnadzSQK/JgBI2hF4DnBlRCwGiIj7gBVAfe6OMDODXqc7dkXlV+wRsUrSNSRz+V1EcrX+k0xuDJL2AyYA/1v18c3MylADvjztVlbMYHcM6f/PH9yQ5q//AHh3xPDfUmRje298bGGXqmlm1iKi+FJT3WrYLwJmSdoHmBgR1wFImgz8CvhUOnHrsCJiTkT0RUTfnpP7ulRNM7MW7ooZWkSsSUfHfI/0aj3tc7+QZI7Uud04rplZaTVusItSdOnPCUlvJGnIXxQR/yPpncC/88wkx2PTULC2tpz4graVrCKZ0UMizUbX1asebbt9fIHr0EsfOb30ZNZx01mFG0Xt8Xelj9cNXbtBKSJ+QSaPNSJ+SDJdnplZfTXgit13npqZZfX3j3YNSnPDbmaW1YAr9l5PjWdmVm8DUXwpQNIhkm6TtETSSUNsf66k30q6XtJNkt5Q9i24YTczy6pwuKOkccBZJDds7gYcJWm3lt1OJrmJc2+S+37ah+YU4K4YM7Osarti9gOWRMRSAEkXAIcDt2b2CZJwRIApwH1lD9qVhr1NwuMLIuID6Y1KtwK/iIgT88p745ZHdaOaz1BkKGPekEgPhzQbuTdvP6Xt9onjetT33UEImKTZwOzMqjkRMSfzfDvgnszzZcDLWoo5Bfi1pL8HngUc1El1h9KtK/Z2CY8AnwXcCppZ/XQwKiZtxOfk7tjeUcA5EfEvkl4B/EDS7u0iV/J0q4992IRHSfsC04Ffd+nYZmYjV22kwL3ADpnn26frso4DfgIQEVcBmwPPLvMWutKwR8QqYDDhEdKER5Iblv4F+Fg3jmtmVlq1o2KuBWZK2im90D0SmNeyz93ALABJLyJp2B8s8xa6OSpmqITHE4D5EbEs78XZdMfFT1zXxWqamWVUeMUeEeuBE0m6pf9EMvplkaRTJR2W7vZR4L2SbiRpJ4+Nklkv3RwVcxHw1WzCo6SPAK+WdAIwCZggaU1EbDC2M9t3dfT0U+qbj2lmzVLxDEoRMR+Y37Lu05nHtwKvqvKY3cyK2SDhMSKeTuuSdCzQN1SjbmY2ahwpkOt8koTHI/N2bOf127U/g97Yo1lTPWm2Wfecevcv225/w8RDc8s4voqKNGDO06427K0Jjy3bzgHO6ebxzcw61oCsGN95amaW5St2M7OGccNuZtYw7ooxM2uYfjfsZmbN4q6YDbVLdgS+AHyHJDshgDdExJ15ZV6xov0NslMmlKhwhapIiCxajlnTfPeFr2u7/dL7ezR9RAO6YrrxSWWjBAYNRgp8HzgjIl5EklO8ogvHNzMbuYpnUBoN3WjYh0t2XAlsGhGXQnJnakQ83oXjm5mNnBv2DbVJdpwJPCLp5+ncfmek00aZmdVGrB8ovNRVtzqthkp23BR4NUlk70uB5wPHDldANt3x1j8v7FI1zcxaRBRfaqpbDftFwKxssiPJlFA3RMTSNMryF8A+wxUQEXMioi8i+nZ7Vl+Xqmlm1sJdMUOLiDXAM5IdSQLnp0raJn1+IM+c0NXMbPQ1oGHv5jj2ZyQ7RkS/pI8Bl0kScB1wdpGCZk4eMkfsaSvWlqtoL3nSbLOh7TX9obbbz1o8tTcVqXGDXVQ389g3SHZMR8Ts0a1jmpmV5obdzKxZ6jzapSg37GZmWQ24Yu/RPbpmZmNExV+eSjpE0m2SlkgacipQSW+TdKukRZJ+VPYt+IrdzCyrwvHp6U2YZwEHkwz5vlbSvHQC68F9ZgKfBF4VEQ9L+quyx/UVu5lZRgwUXwrYD1iS3r/zFHABcHjLPu8FzoqIhwEionSGVleu2HMSHlcDh5KcVC4FPhTR/hR515r2x9uiYX93eNJs2xidfM22bbe/bFqPEkiq7WPfDrgn83wZ8LKWfXYFkPR7YBxwSkRcUuagvYgUGDQYLfAqkiGPu5NEC+zfpTqYmXUs1kfhJRt9ki6zR3DITUmytA4AjgLOllRq0H63rnXnAqdJmhART2USHtcBmwMTSMa4jwce6FIdzMw618EVe0TMAea02eVekvknBm2frstaBlwdEeuAOyTdTtLQX1u4Ii26FSkwZMJjRFxFEjWwPF0WRMSfulEHM7MRGehgyXctMFPSTmmU+ZHAvJZ9fkFytY6kZ5N0zSwt8xa6+eXpBgmPknYBXkRy1toOOFDSq4d6cfZPnFvWON3RzHojBqLwkltWEnh4IrAA+BPJBe4iSadKOizdbQGwUtKtJBe+H4+IlWXeQze/drwI+Go24VHSx4E/pCFhSLoYeAVwZeuLs3/ifPC5p479OwbMbGyo+MbTiJgPzG9Z9+nM4wA+ki6V6NoV+zAJj3cD+0vaVNJ4ki9O3RVjZrUR/VF4qatuDxR8RsIjyZeqBwI3k0xmfUlE/DKvkM0bNpyxLCdEWhNN2az9deZda/p7U5GxHxXT3Ya9NeExIvqB93XzmGZmZRS88ajWfC1sZpblht3MrFl8xW5m1jRu2M3MmmWgR9/RdpMbdjOzrI35ij0nwXEn4OXAf0XE/81s34kktnIayWTWR6dRlm1tMa79ZNZrazyedLQ4IdLGmkefbN+i3vXkYz2pRxP62MvcoNQuwfEM4OghXnM68NWI2AV4GDiuxPHNzCoXUXypqzIN+1zg0DTYhkyC45URcRlJ7vrTJInk5qS56apzgTeWOL6ZWfUGVHypqRE37G0SHIc7j00DHklDcSCJqtxupMc3M+uGimdQGhVls2I2SHAsWd7TsumO1z3qdEcz642BfhVe6qpsw34RMCub4Nhm35XAVEmDX9gOFTj/tIiYExF9EdG375S+ktU0Mytmo79iHybBcbh9I933LemqY0hODGZmtRGhwktdVTGOvTXBEUlXAi8EJklaBhyXDov8BHCBpNOA64HvFjnA/IeWt91+4FbtJ8G1DVWREFm0HLMinvOs9teZB82Y3JN6RI2/FC2qdMPemuCYrhtyVqSIWArsV/aYZmbdUudhjEX5zlMzs4yB/m7OGNobbtjNzDKacMU+9k9NZmYVqvrLU0mHSLpN0hJJJ7XZ728lhaTSwwB9xW5mljFQ4ZenksYBZwEHk9yUea2keRFxa8t+WwIfAq6u4ri+Yjczy6g4K2Y/YElELE0DDy8ADh9iv8+SZGmtreI99Drd8TygD1hHEkfwvohYl3es43eY3nb70jUjeQeWx5NmWy/ltZNfv/u+3DKOqaIe1Y5P3w64J/N8GfCy7A7pDZ47RMSvJH28ioP2Ot3xPJLx7S8BtgCOL3F8M7PK9Q9sUnjJRp+ky+xOjiVpE+ArwEerfA9l+tjnAqdJmhART7WkO4akA1pfEBHzBx9LuoYkVsDMrDY6uUEpIuYAc9rsci+wQ+Z5a5TKlsDuwO+SAFy2BeZJOiwiRhyS1ct0x6dJGk9yRX/JSI9vZtYNFfexXwvMlLRTGnF+JDDvL8eKRyPi2RGxY0TsCPwBKNWow+ilO34TuCIirhxuh+yfOFeucrqjmfXGQKjwkieNKT8RWAD8ieTid5GkUyUd1q33UHa440XAVwumOwIg6TPANsD72u2X/RPn3/b45wbcMmBmY0HV4V5pF/T8lnWfHmbfA6o4ZqmGPSLWpKNjctMdASQdD7wOmBVR59BLM9tYFbkSr7tepzt+G7gLuCr9ouDnEXFq3gGuW9l++1abjbTqVpYnzbaq5MxZz8FTezPWot8Ne8fpjr7T1cxqrc4560W5oTUzy3BXjJlZw/iK3cysYQYaMAbPDbuZWUZ/jP1sRDfsZmYZTZhoo6fpjpn9zgTeExGTihxrbX/eJz32+8SaypNmW1Gb54x3PG/lzbllnF5BPTb2L08H4wQWZNYdCfwjMB6YyBB3l6azg2xV4rhmZl0z0IALxTKdSXOBQ9NgG1rSHS8DVre+IJ1N5AySxt/MrHYqDgEbFb1OdzwRmBcRy0d6XDOzbqoyBGy09CzdUdJzgLcC3yhScDbd8fbHc7PFzMwq0R8qvNRV2Yb9ImBWwXTHvYFdgCWS7gQmSloy3M4RMSci+iKib9eJ+5aspplZMU24Yu9ZumNE/IpkdhAAJK2JiF3KHN/MrGrRgC9Pe53uOCIrnnyy7fYZE7cYadFWA5402wAeX9/+28g3Tdm9J/Xwnad0lu7Ysk+hMexmZr3kK3Yzs4bxFbuZWcPUebRLUW7Yzcwy6jzapaixH2NmZlahgQ6WIiQdIuk2SUsknTTE9o9IulXSTZIuk/S8su/BDbuZWUaECi950hiVs0ju0N8NOErSbi27XQ/0RcQeJFEtXyr7Hnqa7qhkBuvTSO5A7Qe+FRFn5h1rn60ntt3eX+fQBquEJ822havW9OQ4Ra/EC9oPWBIRSwEkXQAcDtw6uENE/Daz/x+Ad5Y9aK/THY8FdgBeGBEDkv6qxPHNzCpX8Zen2wH3ZJ4vA17WZv/jgIvLHrRMwz4XOE3ShIh4qiXdMSQdMMRrPgC8PSIGACJiRYnjm5lVrpPhjpJmA7Mzq+ZExJyRHFfSO4E+YP+RvD5rxA17RKySNJjueBHF0h13Bo6Q9CbgQeCDEbF4pHUwM6taJzcopY14u4b8XpJeikHbp+ueQdJBwKeA/SOi/a32BfQs3TG1GbA2IvqAs0kyZoaUTXe8/rGFJatpZlbMQBRfCrgWmClpp3TuiiOBedkdJO0N/BtwWFW9GL1Md4Skf+nn6eMLgT2G2zGb7rj35L6S1TQzK6bKhj0i1pPMQ7EA+BNJr8YiSadKOizd7QxgEvBTSTdImjdMcYX1LN0x9QvgtcAdJP1It5c5vplZ1arOiomI+cD8lnWfzjw+qNID0vt0xy8C50n6MLAGOL7IAR5c234A0tabjf07xawcT5o99o1T+9/jpZvc2nZ7VXJCJseEnqY7RsQjwKFlj2lm1i1FbjyqO2fFmJllVHyD0qhww25mluHYXjOzhmlAu+6G3cwsy3nsZmYNs1F3xYww3XEWyWD8TUiGOx4bEUvyjrXb1PZn0PufGMk7sI2NJ82ut83Gtd/+yvH79qQeTfjytMydp9k4gUGDsQJnAEcP8ZpvAe+IiL2AHwEnlzi+mVnlIoovdVWmYZ8LHJrmH9CS7ngZsHqI1wQwOX08BbivxPHNzCo3gAovddXrdMfjgfmSngAeI+muMTOrjTpfiRfV63THDwNviIjtgX8HvjLcjtl0x6sedrqjmfXG+ii+1FXP0h0lbQPsGRFXp6t+DLxyuP2z6Y6v2MrpjmbWG9HBUlelGvaIWAMUTXd8GJgiadf0+cEkMZZmZrVRcR77qOhpuqOk9wI/kzRA0tC/p8gBHnkq70uKGn/CNqZ40uzRc/8T7X+Pd53Sm9tumtDH3ut0xwtJTgJmZrXUhHHsvvPUzCyjzl0sRblhNzPL6HfDbmbWLFVPjTcayg53NDNrlKpHxUg6RNJtkpZIOmmI7ZtJ+nG6/er0Lv5S3LCbmWVU2bBLGgecRXKH/m7AUZJ2a9ntOODhiNgF+Cpwetn30I10x9cBU0kyYfqBz0XEj9PtOwEXANOA64CjI+KpvGM9tLb9Jzhp/AjfhFmHPGl295yw66q2239y17Se1KPiLvb9gCURsRRA0gXA4UB2Zu7DgVPSx3OBf5WknHiWtrqR7vgF4F0R8WLgEOBrkqam208HvpqemR4mOVOZmdVGf0ThpYDtgHsyz5el64bcJyLWA4+SXPyOWLfSHRenlbwPWAFsI0nAgenrAM4F3lji+GZmleukKyabaZUus0e7/tDldEdJ+wETgP8lOQM9kp6RYOgzl5nZqOqk/yMi5gBz2uxyL7BD5vn26bqh9lkmaVOSSPOVHVRjA11Ld5Q0A/gB8O6I6PhmruyZcNEapzuaWW9UPCrmWmCmpJ3S3o0jgXkt+8wDjkkfvwX4TZn+dehSuqOkycCvgE9FxB/SfVcCU9MzEgx95npaNt3xxZOc7mhmvVHlDEppD8WJwAKS0MOfRMQiSadKOizd7bvANElLgI8AGwyJ7FSpG5QiYk06OubpdMf0rHQh8P2ImJvZN9J930IyMuYYkhODmVltVJ0VExHzgfkt6z6debwWeGuVx+xGuuPbgNeQnIGOTdcdGxE3AJ8ALpB0GnA9yZkq14yJ7bevXtdxnc26xpNmj8zlD2zVdvv4TXpzr39/A1LAKk93jIgfAj8cZt+lJOM6zcxqqQHturNizMyynMduZtYwvmI3M2uYkiMNa8ENu5lZhifaMDNrmI16oo0RpjueB/QB64BrgPdFRO5gxRmbt+/1Wr3O6cM2tnjS7A3d8kj77VMm9KYeTbhi73W643nAC4GXAFsAx5c4vplZ5aKD/+qqZ+mO6fP5kSK5Yt++xPHNzCpX9QxKo2HEDXtErCJpnF+frspLdySzfjxwNHDJSI9vZtYNVWbFjJbRSnf8JnBFRFw5XMHZdMfLV15XsppmZsVUPNHGqOhluiPpts+QdM18pF3B2XTH/aftW7KaZmbFDHSw1FXP0h3TbceTjJqZNZKMdjOzbvMNSolO0h2/DdwFXJXMlMfPI+LUvAPcv9bDGW3jsjEmRK5e1/5ab8qEcT2pR52/FC2q1+mOviHKzGptoMbDGItyQ2tmltGAnhg37GZmWXUe7VKUG3Yzswx3xZiZNcxAA67YPdzEzCyjV1kxkraWdKmkxen/N5j0VdJekq6StEjSTZKOKFJ2T9MdM/udCbwnIiYVOdbDT7XfPk7tt5s1UdMSIp87qf1wxl7F6fbwBpuTgMsi4ouSTkqff6Jln8dJQhUXS3oOcJ2kBRHRNguzTFfMYJzAgsy6I4F/BJYPVxFJfUD76cjNzEZJD/vYDwcOSB+fC/yOloY9Im7PPL5P0mCoYtuGvafpjpLGAWeQNP5mZrXTHwOFl2ymVbrM7uBQ0yNiefr4fmB6u52HC1Ucyoiv2CNilaTBdMeLKJbueCIwLyKWp3eempnVSidX7BExB5gz3HZJ/wlsO8SmT7WUE5KGPXAmVPGYInEsZUfFDHbHDDbsxw1XkbRb5q385U+PttIz32yAg6f9DXts2VeyqmZm+aLCXvaIOGi4bZIekDQjvdCdQdK7MdR+w4YqDqeX6Y57A7sASyTdCUyUtGS4grPpjm7UzaxXBojCS0nzgGPSx8eQtKfP0C5UsZ1SDXtErAEKpTtGxK8iYtuI2DEidgQej4hdyhzfzKxqPWzYvwgcLGkxcFD6HEl9kr6T7jMYqnispBvSZa+8gnud7jgiv3/kwbbbX7PVNiMt2qyxqkiILFpOFR7LGdY8uUeTWfdrfU+OExErgVlDrF9IOh90u1DFdnqa7tjyukJj2M3MesmRAmZmDTNQ67mRinHDbmaWUeWomNHiht3MLGNAbtjNzBrFXTFmZg3TT29GxXRTT9MdleQInEZyB2o/8K2IODPvWPtu6eGMZt1Qp0mzJ42vpJjSBugf7SqU1ut0x2OBHYAXpjEDf1Xi+GZmldvYvzydC5wmaUJEPNWS7hgwZMzkB4C3D4bYRMSQ2QhmZqOlCV+ejjhSICJWAYPpjlAs3XFn4Ig03vJiSTNHenwzs24YoL/wUldlQ8AGu2NI/3/+4IZMuuO7MzGTmwFrI6IPOJskY2ZI2ZzjRWsWlqymmVkx/bGu8FJXvUx3BFgG/Dx9fCGwx3AFZ9MdXzzJ6Y5m1hvFI8Dq22VTarhjRKxJR8fkpjumfgG8FrgD2B+4HTOzGokad7EU1et0xy8C50n6MLCGNMEsz0SPtjcbNb2aNHvznFnpezeZdX2vxIvqabpjOuTx0LLHNDPrljp3sRTla2Ezs4wId8WYmTVKP/Ud7VKUG3Yzs4y/jM4eu9ywm5llNOHL07Lj2M3MGiWiv/BShqStJV0qaXH6/63a7DtZ0jJJ/1qk7F6nO84CziA5oawhGQa5ZKR1MLPRV9Wk2f8088oqqlNaD0fFnARcFhFflHRS+vwTw+z7WaBwjGaZK/ZsnMCgI4EvAO+KiBcDhwBfkzQ13f4t4B0RsRfwI+DkEsc3M6tcxEDhpaTDgXPTx+cCbxxqJ0n7AtOBXxctuEzDPhc4NL3TlJZ0x8WQpDsCg+mOAEFyJQ8wBbivxPHNzCo3EOsKLyVNj4jl6eP7SRrvZ5C0CfAvwMc6KXjEXTERsUrSYLrjRRRLdzwemC/pCeAx4OUjPb6ZWTd0ciUuaTYwO7NqTkTMyWz/T2DbIV76qWceM0LSUPfWngDMj4hlyTxFxZQdFTPYHTPYsB83uCGT7nhMJt3xw8AbIuJqSR8HvsIwsQLZD+yvp/0Ne052EJiZdV8no2LSRnxOm+0HDbdN0gOSZkTE8rS9HGp+ilcAr5Z0AjAJmCBpTUSc1K5ePUt3lLQNsGdEXJ2+9sfAK4crOJvu6EbdzHqlh33s84Bj0sfHkLSnLXWJd0TEcyNiR5LumO/nNepQsmGPiDVA0XTHh4EpknZNnx8M/KnM8c3Mqtar4Y4koYgHS1oMHJQ+R1KfpO+UKbin6Y6S3gv8TNIASUP/ngqOz5WrVrbdftWj38wtY/8pH8zd583bT2m7/dS7f5lbxndf+Lrcffaa/lDb7SdfM1SX3TNN2az9OfvRJ/OvNp7zrPzzfl7gXk5gH5Cf6gfw+Pry0X7jCvRRbjau/fb7n8ivxwm7rsrd5/IHhh2yDMAtj+QWwep17X+Gz52U82aAx57KP07eJNNFfn5FhjJ+dvGr224/eWY1k2bnGYj1PTlORKwEZg2xfiFDdFFHxDnAOUXK7nW644UkJwEzs1pypICZWcM4ttfMrGF8xW5m1jBu2M3MGscNu5lZo/RqVEw3KZMAMPxO0rbA14CXAo8ADwD/APw8Inbvag2Bj+10attKPvB4+zNs37Pzh+39x71/zt3niOdt0Xb7FQ/kFsHkCfl1uX314223v2zas3LLuGtN+zG2d659LLeM43acnLvP1+9uH/dz8NTtc8u48NFbcvd505T2/8wWrlqTW8bSTW7N3eeV4/dtu33XKfnXQusLXPCN36T9792fK2hbigwQLTIcNb+M/EIGClQmcmp82uL8hMhxmxxQ+h1tuum0wmNr169fWcEnWL3cf6VKAgouBM6NiCPTdXsyRGCNmdnYN/bnPC1y5+lrgXUR8e3BFRFxI3DP4HNJO0q6UtIf0+WV6foZkq6QdIOkWyS9WtI4Seekz2+W9OHK35WZ2Qj1MFKga4r0se8OXJezzwrg4IhYK2kmyd2ofcDbgQUR8TlJ44CJwF7AdoNdOJmsdjOzGqhvg11UVVPjjQfOlnQz8FNgt3T9tcC7JZ0CvCQiVgNLgedL+oakQ0jiezcgabakhZIW3rR6YUXVNDPLEQPFl5oq0rAvAtp/o5TE8T4A7ElypT4BICKuIMmNuRc4R9K7IuLhdL/fAe8Hhgy7yaY77rGl0x3NrDeC/sJLXRVp2H8DbJbmowMgaQ9gh8w+U4Dlae760cC4dL/nAQ9ExNkkDfg+kp4NbBIRPyOZGm+fSt6JmVkVIoovdRURuQvJlHc/IZkJaRFJ1vpM4JZ0+0zgJuBG4HRgTbr+GCe9+3gAAAklSURBVOAW4HrgSmAnkqv1PwI3pMvri9ShpT6zO31NXcuoU138fvyZjLW6VPV+mrYUGsdeN5IWRkSp/pm6lFGnuvj9dKeMOtXF72fjUNWXp2ZmVhNu2M3MGmasNuzDTh47Bsuoqpy6lFFVOU0qo6py6lJGVeXUpYzGGZN97GZmNryxesVuZmbDcMNuZtYwbtjNzBpmTDTskqZL+q6ki9Pnu0k6brTrZWZWR2OiYQfOARaQ3AELcDvJRB+FSJosaech1u9RplKSPt/h/s+VtHn6WJLenYahfUBS4dmsJL1G0gvSx6+S9DFJh3bw+k0lvU/SJZJuSpeLJb1f0vgOyhmXlvNZSa9q2XZy0XKGKPf2Dvc/MY2qQNIuaVT0I5KulvSSgmU8X9L3JJ0maZKks9No6Z9K2rGDupT+bOvyuaavqc1nmynvQ+nvtNILvj9K+utOy2myMTEqRtK1EfFSSddHxN7puhsiYq8Cr30byexPK0hSKI+NiGvTbX+MiEJZNZLObF1FkovzfYCI+GCBMm4B9ouIxyWdDuwM/AI4MC3jPQXK+BqwH0nk8gJgFnAxsD9wfUR8vEAZ55PMhHUusCxdvT1JBMTWEXFEXhlpOd8hiWK+huSzuDwiPpJuK/TZSlrNXyb7GZyNZiLwOBARkTuNk6RFEfHi9PGvgO9ExIWSDgA+FxGvaltA8rorSOKmpwDvBP6dJEbjr4F3RMSBeWWk5ZT+bOvyuabl1OazzZR3Y0TsKel1wPuAfwJ+UPR3eaMw2pkGRRaSJMhpwB/T5y8n+cde5LU3ADPSx/sB/wO8KX1+fQd1uAf4IfAukl/SY4AHBx8XLOPWzOPrSMLQBp/fWLCMRSS/qBOBh4GJ6frxpNk9Bcq4fSTbhtj3pszjTUnGFP8c2KzoZwucSXJynJ5Zd0eH/z5uyzy+drg65pRxfebx3cNt68VnW5fPtW6fbetxga+P5Hd5Y1jGSlfMR4B5wM6Sfk/yD/bvC75204hYDhAR15DMCHWypA9SbFrIQS8GHgIOAS6NiHOB1RFxbvq4iHskDV6d3EmakClpWgf1iEj+JQ+GQQ++hwGKd62tkvRWSU/vL2kTSUeQnCyKmpCp1PqImE1yIv0NMKlIAZH8pfN14HxJH0zr1OmfkXOVzMr1fOBCSf8g6XmS3g3cXbCMAUm7SnopMFFSHyTdD6RppQVV8dnW5XOFen22g66T9GvgDcACSVvShNkxqjTaZ5YOztKbkjSuuwPjO3jdfwM7t6zbErgMeHIE9dgX+C3wMeDODl+7Q/raK4Bfkvyi/5Yk/XJWwTJOB/6LZBKTM9JyPgX8Gvh2wTJ2BH5M8hfH7emyIl23Uwfv54fAIUOsP55kOsVOPptNgA+SpIDeN4Kfy7HA1SQn39XArcDngSkFXz8LuA34E/B/gJ8BS9LP5fAO6lH6s63T51qnz7blPe0DTE2fbw3sMZL31tRlrPSxjwMOJfmlefpLxoj4SoHXzgc+HxH/1bJ+PPC2iDivYB3OAn4UEb+XJOAE4BUR8c4O3sdZJH2Nq0iijjcl6Ye9NgpOoCjpm8CPSH7Br1bypfCbSK6e5hYtJ1PeNICIWNnJ67pF0gxg74iYX4O6PBt4OCJGNKNCnT7bOn2uUO6zTb9QviEi/izpnSSN/Ncj4q6q6zlWjZWumF+SXDVMI7naHlyKWACcIelOSV+StDdARKwr2qinbge+LOlOkqvm/+6kUc+UcQYwH3gVsDQiru6wMb4tLePHkr4ETI6IL0fETzpt1CFpdLINj6SDOy1jKCMtJyKWDzY+VdSlTBkR8VBE9HdaRjpiY+chPtvCo7BUwUiubBktn2tHo8Gqrktan8HPdiQj074FPC5pT+CjJPNEfH8E5TTXaP/JUGSh4Jc0OWU8D/gESbfH/wCfAWZWVM6uY7GMYcq9u2wZVZUzFssA3gbcR9Invgh4aWbbH8dSGXWrS+trgE8Dx420nCYvY6Ur5nTgsoj4dUXl7Q18j6RfbiRf3lRWzmiUIWnecJuAAyPiWQWPW7qcJpWRljM4K9hySfuRXEl+MpIhgk8P1x0LZdStLpnyLgcuAd5NMqfyCpJRZYXG1W8MCt8UM8r+QPKN/CbAOpJftoiCY3EhuXEEeD1wJMmXOb8DTum0IlWUU4MyXk0ynnhNa7EkQ0KLqqKcJpUBLaOwJL0W+A9JO1B8VEpdyqhbXQYdAbyd5Gr9fknPJemetEGj/SdDkQW4A9iD9IaqDl97MMnV7P0kQybfDjxrNMqpURkXA68dZtsVvSynSWWk+5YehVWXMupWFy/Fl7FyxX4Pyc03Izm7f5JkFMlHI6KTMdrdKKcuZdxB8pfPBiLiNT0up0llQHLX6QySL/QGX79a0iEkfc1jqYy61QUASS8HvgG8iGTM/zhgTURM6bSsphorfeznAM8nuap6cnB9FBjuaBuS9CGSLpwZJLd2nx8R149GOU0qo051adr7aSlvYVreT4E+krvBd42IT460zKYZKw37Z4ZaHxH/3Ou6NImk55H8ghwJbEEyxv78iOg0hKt0OU0qo005P4qIxWOtjBrWZWFE9Em6KSL2SNd1/CVsk42Jht26b2MfKdStMupUl6a8HyWhYgcB3yH5rmk5SbjfniOpSxPV+gYlSf+a/v+Xkua1LqNdv7FOScTs30g6j6Sb6zbgzaNRTpPKqFNdmvZ+UkeT9KufCPyZJKrjb0dQTmPV+opd0mMRMVnS/kNtj4jLe12nJlByJ+VRJCFK1wAXABdFxJ97XU6TyqhTXZr2fqwzdW/Y3W/WBZJ+QzKy5mdlRgpVUU6TyqhTXZr2ftJybqbNuPfB/narf8O+DBh25ItHxZhtPCTNBKaTDH/O2gG4PyKW9L5W9VTrPnaSfrRJPDP4q9MQMDNrhq8Cj0bEXdkFeDTdZqm636C0PCJOHe1KmFktTI+Im1tXRsTNGsHcqU1W9yt25e9iZhuJqW22bdGzWowBdW/YZ412BcysNhZKem/rSknHk8whbKlaf3lqZjZI0nTgQuAp/tKQ95HkxbwpIu4frbrVjRt2MxtT0tjf3dOniyLiN6NZnzpyw25m1jB172M3M7MOuWE3M2sYN+xmZg3jht3MrGHcsJuZNcz/B7KvruWWb5ciAAAAAElFTkSuQmCC\n", 1003 | "text/plain": [ 1004 | "
" 1005 | ] 1006 | }, 1007 | "metadata": { 1008 | "tags": [], 1009 | "needs_background": "light" 1010 | } 1011 | } 1012 | ] 1013 | }, 1014 | { 1015 | "cell_type": "code", 1016 | "metadata": { 1017 | "id": "_irZZDNFs5AT", 1018 | "colab_type": "code", 1019 | "outputId": "969477b5-964a-4f4a-e991-3eb4481fd536", 1020 | "colab": { 1021 | "base_uri": "https://localhost:8080/", 1022 | "height": 296 1023 | } 1024 | }, 1025 | "source": [ 1026 | "sns.countplot(x='Class',data=df,palette='GnBu')" 1027 | ], 1028 | "execution_count": 13, 1029 | "outputs": [ 1030 | { 1031 | "output_type": "execute_result", 1032 | "data": { 1033 | "text/plain": [ 1034 | "" 1035 | ] 1036 | }, 1037 | "metadata": { 1038 | "tags": [] 1039 | }, 1040 | "execution_count": 13 1041 | }, 1042 | { 1043 | "output_type": "display_data", 1044 | "data": { 1045 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEGCAYAAACpXNjrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAASSklEQVR4nO3df+xdd13H8eeLliGoY8XVMdvFTqgmdYEymm3xV0B065aYAg6yEWidC8WwGTHEMIjJCLhEExEdP2aGK+uIMgcDV2Ox1jFFE4f7Dib7JdnXCVmbsZa1bCCZ2vH2j/v5urvu9ttvx+fe2377fCQn99z3+ZzP+dykyavnnM8531QVkiT19JxpD0CStPgYLpKk7gwXSVJ3hoskqTvDRZLU3dJpD+BocfLJJ9eqVaumPQxJOqbceeed36yq5QfXDZdm1apVzMzMTHsYknRMSfL1UXUvi0mSujNcJEndGS6SpO4MF0lSd4aLJKk7w0WS1J3hIknqznCRJHVnuEiSuvMJ/Y52/sdt0x6CjkK//JJXT3sI0sR55iJJ6s5wkSR1Z7hIkrozXCRJ3RkukqTuDBdJUneGiySpO8NFktSd4SJJ6s5wkSR1Z7hIkrozXCRJ3RkukqTuDBdJUneGiySpO8NFktSd4SJJ6s5wkSR1Z7hIkrozXCRJ3RkukqTuxhYuSU5LcluS+5Lcm+S3Wv29SXYnuastFwzt8+4ks0m+muS8ofr6VptNcsVQ/fQkX2z1v0xyQqs/r32fbdtXjet3SpKeaZxnLgeAd1bVGuAc4LIka9q2D1bV2rZsB2jbLgJ+GlgPfDTJkiRLgI8A5wNrgIuH+vmD1tdLgf3Apa1+KbC/1T/Y2kmSJmRs4VJVD1fVl9r6t4H7gRXz7LIBuLGq/ruq/hOYBc5qy2xVPVhV/wPcCGxIEuAXgU+3/bcCrx3qa2tb/zTwmtZekjQBE7nn0i5LvQL4YitdnuQrSbYkWdZqK4CHhnbb1WqHqv8I8K2qOnBQ/Wl9te2PtfYHj2tzkpkkM3v37v2+fqMk6SljD5ckPwTcDLyjqh4HrgFeAqwFHgY+MO4xHEpVXVtV66pq3fLly6c1DEladMYaLkmeyyBY/ryqPgNQVY9U1ZNV9T3gYwwuewHsBk4b2n1lqx2q/ihwUpKlB9Wf1lfb/sLWXpI0AeOcLRbgOuD+qvqjofqpQ81eB9zT1rcBF7WZXqcDq4F/Be4AVreZYScwuOm/raoKuA24sO2/CbhlqK9Nbf1C4POtvSRpApYevsmz9rPAW4C7k9zVau9hMNtrLVDA14C3AVTVvUluAu5jMNPssqp6EiDJ5cAOYAmwparubf29C7gxye8BX2YQZrTPTySZBfYxCCRJ0oSMLVyq6p+BUTO0ts+zz1XAVSPq20ftV1UP8tRlteH6E8AbjmS8kqR+fEJfktSd4SJJ6s5wkSR1Z7hIkrozXCRJ3RkukqTuDBdJUneGiySpO8NFktSd4SJJ6s5wkSR1Z7hIkrozXCRJ3RkukqTuDBdJUneGiySpO8NFktSd4SJJ6s5wkSR1Z7hIkrozXCRJ3RkukqTuDBdJUneGiySpO8NFktSd4SJJ6s5wkSR1N7ZwSXJaktuS3Jfk3iS/1eovSrIzyQPtc1mrJ8nVSWaTfCXJmUN9bWrtH0iyaaj+yiR3t32uTpL5jiFJmoxxnrkcAN5ZVWuAc4DLkqwBrgBurarVwK3tO8D5wOq2bAaugUFQAFcCZwNnAVcOhcU1wFuH9lvf6oc6hiRpAsYWLlX1cFV9qa1/G7gfWAFsALa2ZluB17b1DcANNXA7cFKSU4HzgJ1Vta+q9gM7gfVt24lVdXtVFXDDQX2NOoYkaQImcs8lySrgFcAXgVOq6uG26RvAKW19BfDQ0G67Wm2++q4RdeY5xsHj2pxkJsnM3r17j/yHSZJGGnu4JPkh4GbgHVX1+PC2dsZR4zz+fMeoqmural1VrVu+fPk4hyFJx5WxhkuS5zIIlj+vqs+08iPtkhbtc0+r7wZOG9p9ZavNV185oj7fMSRJEzDO2WIBrgPur6o/Gtq0DZib8bUJuGWovrHNGjsHeKxd2toBnJtkWbuRfy6wo217PMk57VgbD+pr1DEkSROwdIx9/yzwFuDuJHe12nuA3wduSnIp8HXgjW3bduACYBb4LnAJQFXtS/J+4I7W7n1Vta+tvx24Hng+8Lm2MM8xJEkTMLZwqap/BnKIza8Z0b6Ayw7R1xZgy4j6DHDGiPqjo44hSZoMn9CXJHVnuEiSujNcJEndGS6SpO4MF0lSd4aLJKk7w0WS1J3hIknqznCRJHVnuEiSujNcJEndGS6SpO4MF0lSd4aLJKk7w0WS1J3hIknqznCRJHVnuEiSujNcJEndGS6SpO4WFC5Jbl1ITZIkgKXzbUzyA8ALgJOTLAPSNp0IrBjz2CRJx6h5wwV4G/AO4MeAO3kqXB4HPjzGcUmSjmHzhktV/QnwJ0l+s6o+NKExSZKOcYc7cwGgqj6U5GeAVcP7VNUNYxqXJOkYtqBwSfIJ4CXAXcCTrVyA4SJJeoYFhQuwDlhTVTXOwUiSFoeFPudyD/DiI+k4yZYke5LcM1R7b5LdSe5qywVD296dZDbJV5OcN1Rf32qzSa4Yqp+e5Iut/pdJTmj157Xvs237qiMZtyTp+7fQcDkZuC/JjiTb5pbD7HM9sH5E/YNVtbYt2wGSrAEuAn667fPRJEuSLAE+ApwPrAEubm0B/qD19VJgP3Bpq18K7G/1D7Z2kqQJWuhlsfceacdV9YUjOGvYANxYVf8N/GeSWeCstm22qh4ESHIjsCHJ/cAvAm9qbba2MV7T+pob76eBDyeJl/QkaXIWOlvsHzse8/IkG4EZ4J1VtZ/BA5m3D7XZxVMPaT50UP1s4EeAb1XVgRHtV8ztU1UHkjzW2n+z42+QJM1joa9/+XaSx9vyRJInkzz+LI53DYNZZ2uBh4EPPIs+ukmyOclMkpm9e/dOcyiStKgsKFyq6oer6sSqOhF4PvCrwEeP9GBV9UhVPVlV3wM+xlOXvnYDpw01Xdlqh6o/CpyUZOlB9af11ba/sLUfNZ5rq2pdVa1bvnz5kf4cSdIhHPFbkWvgr4DzDtv4IElOHfr6Ogaz0AC2ARe1mV6nA6uBfwXuAFa3mWEnMLjpv63dP7kNuLDtvwm4ZaivTW39QuDz3m+RpMla6EOUrx/6+hwGz708cZh9Pgm8isFLL3cBVwKvSrKWwQOYX2Pw7jKq6t4kNwH3AQeAy6rqydbP5cAOYAmwparubYd4F3Bjkt8Dvgxc1+rXAZ9okwL2MQgkSdIELXS22K8MrR9gEAwb5tuhqi4eUb5uRG2u/VXAVSPq24HtI+oP8tRlteH6E8Ab5hubJGm8Fjpb7JJxD0SStHgsdLbYyiSfbU/c70lyc5KV4x6cJOnYtNAb+h9ncKP8x9ry160mSdIzLDRcllfVx6vqQFuuB5y7K0kaaaHh8miSN8+97yvJmznEsyOSJC00XH4deCPwDQZP1l8I/NqYxiRJOsYtdCry+4BN7T1gJHkR8IcMQkeSpKdZ6JnLy+aCBaCq9gGvGM+QJEnHuoWGy3OSLJv70s5cFnrWI0k6ziw0ID4A/EuST7Xvb2DE0/SSJMHCn9C/IckMgz/QBfD6qrpvfMOSJB3LFnxpq4WJgSJJOqwjfuW+JEmHY7hIkrozXCRJ3RkukqTuDBdJUneGiySpO8NFktSd4SJJ6s5wkSR1Z7hIkrozXCRJ3RkukqTuDBdJUneGiySpO8NFktSd4SJJ6m5s4ZJkS5I9Se4Zqr0oyc4kD7TPZa2eJFcnmU3ylSRnDu2zqbV/IMmmofork9zd9rk6SeY7hiRpcsZ55nI9sP6g2hXArVW1Gri1fQc4H1jdls3ANTAICuBK4GzgLODKobC4Bnjr0H7rD3MMSdKEjC1cquoLwL6DyhuArW19K/DaofoNNXA7cFKSU4HzgJ1Vta+q9gM7gfVt24lVdXtVFXDDQX2NOoYkaUImfc/llKp6uK1/Azilra8AHhpqt6vV5qvvGlGf7xjPkGRzkpkkM3v37n0WP0eSNMrUbui3M46a5jGq6tqqWldV65YvXz7OoUjScWXS4fJIu6RF+9zT6ruB04barWy1+eorR9TnO4YkaUImHS7bgLkZX5uAW4bqG9ussXOAx9qlrR3AuUmWtRv55wI72rbHk5zTZoltPKivUceQJE3I0nF1nOSTwKuAk5PsYjDr6/eBm5JcCnwdeGNrvh24AJgFvgtcAlBV+5K8H7ijtXtfVc1NEng7gxlpzwc+1xbmOYYkaULGFi5VdfEhNr1mRNsCLjtEP1uALSPqM8AZI+qPjjqGJGlyfEJfktSd4SJJ6s5wkSR1Z7hIkrozXCRJ3RkukqTuDBdJUneGiySpO8NFktSd4SJJ6s5wkSR1Z7hIkrozXCRJ3RkukqTuDBdJUneGiySpO8NFktSd4SJJ6s5wkSR1Z7hIkrozXCRJ3RkukqTuDBdJUneGiySpO8NFktSd4SJJ6s5wkSR1N5VwSfK1JHcnuSvJTKu9KMnOJA+0z2WtniRXJ5lN8pUkZw71s6m1fyDJpqH6K1v/s23fTP5XStLxa5pnLq+uqrVVta59vwK4tapWA7e27wDnA6vbshm4BgZhBFwJnA2cBVw5F0itzVuH9ls//p8jSZpzNF0W2wBsbetbgdcO1W+ogduBk5KcCpwH7KyqfVW1H9gJrG/bTqyq26uqgBuG+pIkTcC0wqWAv0tyZ5LNrXZKVT3c1r8BnNLWVwAPDe27q9Xmq+8aUX+GJJuTzCSZ2bt37/fzeyRJQ5ZO6bg/V1W7k/wosDPJvw9vrKpKUuMeRFVdC1wLsG7durEfT5KOF1M5c6mq3e1zD/BZBvdMHmmXtGife1rz3cBpQ7uvbLX56itH1CVJEzLxcEnyg0l+eG4dOBe4B9gGzM342gTc0ta3ARvbrLFzgMfa5bMdwLlJlrUb+ecCO9q2x5Oc02aJbRzqS5I0AdO4LHYK8Nk2O3gp8BdV9bdJ7gBuSnIp8HXgja39duACYBb4LnAJQFXtS/J+4I7W7n1Vta+tvx24Hng+8Lm2SJImZOLhUlUPAi8fUX8UeM2IegGXHaKvLcCWEfUZ4Izve7CSpGflaJqKLElaJAwXSVJ3hoskqTvDRZLUneEiSerOcJEkdWe4SJK6M1wkSd0ZLpKk7gwXSVJ3hoskqTvDRZLUneEiSerOcJEkdWe4SJK6M1wkSd0ZLpKk7gwXSVJ3hoskqTvDRZLUneEiSerOcJEkdWe4SJK6M1wkSd0ZLpKk7gwXSVJ3hoskqTvDRZLU3aINlyTrk3w1yWySK6Y9Hkk6nizKcEmyBPgIcD6wBrg4yZrpjkqSjh9Lpz2AMTkLmK2qBwGS3AhsAO6b6qikKXnDx/9+2kPQUehTl/zS2PperOGyAnho6Psu4OyDGyXZDGxuX7+T5KsTGNvx4mTgm9MehDSC/zab/HqXbn58VHGxhsuCVNW1wLXTHsdilGSmqtZNexzSwfy3ORmL8p4LsBs4bej7ylaTJE3AYg2XO4DVSU5PcgJwEbBtymOSpOPGorwsVlUHklwO7ACWAFuq6t4pD+t44+VGHa38tzkBqappj0GStMgs1stikqQpMlwkSd0ZLurK1+7oaJVkS5I9Se6Z9liOB4aLuvG1OzrKXQ+sn/YgjheGi3r6/9fuVNX/AHOv3ZGmrqq+AOyb9jiOF4aLehr12p0VUxqLpCkyXCRJ3Rku6snX7kgCDBf15Wt3JAGGizqqqgPA3Gt37gdu8rU7Olok+STwL8BPJdmV5NJpj2kx8/UvkqTuPHORJHVnuEiSujNcJEndGS6SpO4MF0lSd4aLNAVJXpzkxiT/keTOJNuT/KRv7NVisSj/zLF0NEsS4LPA1qq6qNVeDpwy1YFJHXnmIk3eq4H/rao/nStU1b8x9NLPJKuS/FOSL7XlZ1r91CRfSHJXknuS/HySJUmub9/vTvLbk/9J0tN55iJN3hnAnYdpswf45ap6Islq4JPAOuBNwI6quqr9/ZwXAGuBFVV1BkCSk8Y3dGlhDBfp6PRc4MNJ1gJPAj/Z6ncAW5I8F/irqroryYPATyT5EPA3wN9NZcTSEC+LSZN3L/DKw7T5beAR4OUMzlhOgP//g1e/wOBt09cn2VhV+1u7fwB+A/iz8QxbWjjDRZq8zwPPS7J5rpDkZTz9zxW8EHi4qr4HvAVY0tr9OPBIVX2MQYicmeRk4DlVdTPwu8CZk/kZ0qF5WUyasKqqJK8D/jjJu4AngK8B7xhq9lHg5iQbgb8F/qvVXwX8TpL/Bb4DbGTw1z4/nmTuP4vvHvuPkA7DtyJLkrrzspgkqTvDRZLUneEiSerOcJEkdWe4SJK6M1wkSd0ZLpKk7v4Pda4xBmtkPCEAAAAASUVORK5CYII=\n", 1046 | "text/plain": [ 1047 | "
" 1048 | ] 1049 | }, 1050 | "metadata": { 1051 | "tags": [], 1052 | "needs_background": "light" 1053 | } 1054 | } 1055 | ] 1056 | }, 1057 | { 1058 | "cell_type": "code", 1059 | "metadata": { 1060 | "id": "rhW6SV0n313-", 1061 | "colab_type": "code", 1062 | "outputId": "f72e2f50-9e41-47aa-b9f9-6cab95e8d9ca", 1063 | "colab": { 1064 | "base_uri": "https://localhost:8080/", 1065 | "height": 296 1066 | } 1067 | }, 1068 | "source": [ 1069 | "sns.boxplot(x=df['Time'])" 1070 | ], 1071 | "execution_count": 14, 1072 | "outputs": [ 1073 | { 1074 | "output_type": "execute_result", 1075 | "data": { 1076 | "text/plain": [ 1077 | "" 1078 | ] 1079 | }, 1080 | "metadata": { 1081 | "tags": [] 1082 | }, 1083 | "execution_count": 14 1084 | }, 1085 | { 1086 | "output_type": "display_data", 1087 | "data": { 1088 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAEGCAYAAABIGw//AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAMjUlEQVR4nO3de6yk9V3H8c+PXaG0lpZbCDnVLnRrDWpiYUOoaRtjDQVU0EoMxqRoTRpvm22MMTUkhn/8g3pJcL00GBtbrRZbbUpMW4pK1H9o3cXlUoEyIERPloWCQptdKZeff8yzOHuyZ9kz58zMd8++Xslm5zxn5jzf55mZ95l5Zna29d4DQD2nLHoAAI5OoAGKEmiAogQaoCiBBihq61rOfM455/Rt27bNaBSAzWnv3r1f772fu9bLrSnQ27Zty549e9a6DoCTWmvt8Wku5xAHQFECDVCUQAMUJdAARQk0QFECDVCUQAMUJdAARQk0QFECDVCUQAMUJdAARQk0QFECDVCUQAMUJdAARQk0QFECDVCUQAMUtab/k5ATz+7duzMajRY9xoZbXl5OkiwtLS14kpPX9u3bs3PnzkWPsakJ9CY3Go2y7/4H8tJrz1r0KBtqy8FnkyRPPO8mvAhbDj6z6BFOCm7dJ4GXXntWDn33VYseY0Od/uDnk2TTbdeJ4vD+Z7YcgwYoSqABihJogKIEGqAogQYoSqABihJogKIEGqAogQYoSqABihJogKIEGqAogQYoSqABihJogKIEGqAogQYoSqABihJogKIEGqAogQYoSqABihJogKIEGqAogQYoSqABihJogKIEGqAogQYoSqABihJogKIEGqAogQYoSqABihJogKIEGqAogQYoSqABihJogKIEGqAogQYoai6B3r17d3bv3j2PVQFsqEX2a+s8VjIajeaxGoANt8h+OcQBUJRAAxQl0ABFCTRAUQINUJRAAxQl0ABFCTRAUQINUJRAAxQl0ABFCTRAUQINUJRAAxQl0ABFCTRAUQINUJRAAxQl0ABFCTRAUQINUJRAAxQl0ABFCTRAUQINUJRAAxQl0ABFCTRAUQINUJRAAxQl0ABFCTRAUQINUJRAAxQl0ABFCTRAUQINUJRAAxQl0ABFCTRAUQINUNTWeaxkeXk5hw4dyq5du+axOiaMRqOc8q2+6DHYZE753+cyGn3jpLhPj0ajnH766QtZ96s+gm6tfbC1tqe1tuepp56ax0wA5DgeQffeb0lyS5Ls2LFjqodiS0tLSZKbb755mouzDrt27creRw8segw2mZdfc0a2X3jeSXGfXuSzBMegAYoSaICiBBqgKIEGKEqgAYoSaICiBBqgKIEGKEqgAYoSaICiBBqgKIEGKEqgAYoSaICiBBqgKIEGKEqgAYoSaICiBBqgKIEGKEqgAYoSaICiBBqgKIEGKEqgAYoSaICiBBqgKIEGKEqgAYoSaICiBBqgKIEGKEqgAYoSaICiBBqgKIEGKEqgAYoSaICiBBqgKIEGKEqgAYoSaICits5jJdu3b5/HagA23CL7NZdA79y5cx6rAdhwi+yXQxwARQk0QFECDVCUQAMUJdAARQk0QFECDVCUQAMUJdAARQk0QFECDVCUQAMUJdAARQk0QFECDVCUQAMUJdAARQk0QFECDVCUQAMUJdAARQk0QFECDVCUQAMUJdAARQk0QFECDVCUQAMUJdAARQk0QFECDVCUQAMUJdAARQk0QFECDVCUQAMUJdAARQk0QFECDVCUQAMUtXXRAzB7Ww4+k9Mf/Pyix9hQWw4+nSSbbrtOFFsOPpPkvEWPsekJ9Ca3ffv2RY8wE8vLLyZJlpZEYjHO27S3rUoEepPbuXPnokcApuQYNEBRAg1QlEADFCXQAEUJNEBRAg1QlEADFCXQAEUJNEBRAg1QlEADFCXQAEUJNEBRAg1QlEADFCXQAEUJNEBRAg1QlEADFCXQAEW13vvxn7m1p5I8PuW6zkny9SkvuwjmnS3zzpZ5Z2ut8765937uWleypkCvR2ttT+99x1xWtgHMO1vmnS3zzta85nWIA6AogQYoap6BvmWO69oI5p0t886WeWdrLvPO7Rg0AGvjEAdAUQINUFXvfaZ/klyR5KEkoyQfnvX6Vqz7O5LcmeTfk3w1ya5h+Y1JlpPsG/5cNXGZ3xhmfSjJe19tO5JckOTLw/Jbk5y6zpkfS3LfMNeeYdlZSe5I8vDw95nD8pbk94d135vk4omfc/1w/oeTXD+x/JLh54+Gy7Z1zPq2iX24L8lzST5Uaf8m+ViSJ5PcP7Fs5vtztXVMOe9vJ3lwmOmzSd44LN+W5NDEfv7otHMda9unmHfm13+S04avR8P3t61j3lsnZn0syb4y+3c9MTmOnbElySNJLkxyapJ7klw0y3WuWP/5h3dEktcn+VqSi4Yb0K8d5fwXDTOeNtwwHhm2YdXtSPLXSa4bTn80yS+uc+bHkpyzYtlHDt9ok3w4yU3D6auSfGG48i9L8uWJG8mjw99nDqcP31C+Mpy3DZe9cgOv6yeSvLnS/k3y7iQXr7hDznx/rraOKee9PMnW4fRNE/Numzzfip+zprlW2/Yp55359Z/klzIEM8l1SW6ddt4V3//dJL9ZZf/O+hDHpUlGvfdHe+/fSvKpJNfMeJ2v6L3v773fPZz+RpIHkiwd4yLXJPlU7/353vt/ZPzb7tKssh2ttZbkh5J8Zrj8x5P8+Aw25ZrhZ69cxzVJPtHH7kryxtba+Unem+SO3vszvff/zvg3+RXD987ovd/Vx7eaT2zgvO9J8kjv/Vj/0nTu+7f3/s9JnjnKHLPen6utY83z9t6/1Ht/cfjyriRvOtbPmHKu1bZ9zfMew0Ze/5Pb8Zkk7xnOP/W8w+V/KslfHetnzHP/zjrQS0n+c+Lr/8qxAzkzrbVtSd6e8dOhJPmV1tq9rbWPtdbOHJatNu9qy89O8j8Td56N2L6e5Euttb2ttQ8Oy87rve8fTj+R5Lwp510aTq9cvhGuy5E37Kr7N5nP/lxtHev1gYwfiR12QWvt31pr/9Rae9ewbJq5Nvq+Ouvr/5XLDN9/djj/erwryYHe+8MTyxa6f0+KFwlba9+e5G+SfKj3/lySP07yliTfn2R/xk9rqnhn7/3iJFcm+eXW2rsnvzn8xi713sjW2qlJrk7y6WFR5f17hHnsz41aR2vthiQvJvnksGh/ku/svb89ya8m+cvW2hnznusoTpjrf4WfzpEPMha+f2cd6OWMX6g77E3DsrlprX1bxnH+ZO/9b5Ok936g9/5S7/3lJH+S8VOsY8272vKnM36qsnXF8qn13peHv5/M+AWhS5McOPx0aPj7ySnnXc6RT4836vq4MsndvfcDw+xl9+9gHvtztXVMpbX2s0l+NMnPDHf8DIcKnh5O7834OO53TTnXht1X53T9v3KZ4ftvGM4/leFnvC/jFwwPb8fC9++sA/2vSd7aWrtgeJR1XZLbZrzOVwzHlP40yQO999+bWD557Ocnktw/nL4tyXWttdNaaxckeWvGLwYcdTuGO8qdSa4dLn99ks+tY97XtdZef/h0xi8O3T/Mdf1R1nFbkve3scuSPDs8vbo9yeWttTOHp5eXJ7l9+N5zrbXLhn3z/vXMO+GIRx5V9++EeezP1daxZq21K5L8epKre+8HJ5af21rbMpy+MOP9+eiUc6227dPMO4/rf3I7rk3yj4d/cU3ph5M82Ht/5dBFif278lXDjf6T8auXX8v4t88Ns17finW/M+OnGPdm4i0/Sf4847fI3DvsuPMnLnPDMOtDmXiHw2rbkfErz1/J+AWPTyc5bR3zXpjxK9j3ZPy2wBuG5Wcn+YeM37rz90nOGpa3JH84zHRfkh0TP+sDw0yjJD83sXxHxneYR5L8QdbxNrvh570u40cub5hYVmb/ZvyLY3+SFzI+7vfz89ifq61jynlHGR+/POLtXkl+crid7Etyd5Ifm3auY237FPPO/PpP8prh69Hw/QunnXdY/mdJfmHFeRe+f/1Tb4CiTooXCQFORAINUJRAAxQl0ABFCTRAUQJNSa21s1tr+4Y/T7TWlofT32yt/dGi54N58DY7ymut3Zjkm73331n0LDBPHkFzQmmt/WBr7e+G0ze21j7eWvuX1trjrbX3tdY+0lq7r7X2xeGf+ae1dsnwYTd7W2u3t+P4FDGoQKA50b0l44+kvDrJXyS5s/f+fRl/0PqPDJHeneTa3vslGX9g+28talhYi62vfhYo7Qu99xdaa/dl/MHvXxyW35fxB66/Lcn3Jrlj/LEJ2ZLxP/WF8gSaE93zSdJ7f7m19kL//xdVXs749t2SfLX3/o5FDQjTcoiDze6hJOe21t6RjD9+trX2PQueCY6LQLOp9fF/oXRtkptaa/dk/MlkP7DYqeD4eJsdQFEeQQMUJdAARQk0QFECDVCUQAMUJdAARQk0QFH/B4cl8DtqedLsAAAAAElFTkSuQmCC\n", 1089 | "text/plain": [ 1090 | "
" 1091 | ] 1092 | }, 1093 | "metadata": { 1094 | "tags": [], 1095 | "needs_background": "light" 1096 | } 1097 | } 1098 | ] 1099 | }, 1100 | { 1101 | "cell_type": "code", 1102 | "metadata": { 1103 | "id": "ETLR9Hupws-4", 1104 | "colab_type": "code", 1105 | "outputId": "0d2fe307-3571-41af-8132-f66cf5010ce1", 1106 | "colab": { 1107 | "base_uri": "https://localhost:8080/", 1108 | "height": 386 1109 | } 1110 | }, 1111 | "source": [ 1112 | "sns.lmplot(x='Amount',y='V25', data= df, hue= 'Class',palette= 'Set1')" 1113 | ], 1114 | "execution_count": 15, 1115 | "outputs": [ 1116 | { 1117 | "output_type": "execute_result", 1118 | "data": { 1119 | "text/plain": [ 1120 | "" 1121 | ] 1122 | }, 1123 | "metadata": { 1124 | "tags": [] 1125 | }, 1126 | "execution_count": 15 1127 | }, 1128 | { 1129 | "output_type": "display_data", 1130 | "data": { 1131 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAFgCAYAAABOloX3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzde3xc13XY+98658zg/SDxIAiQkkhJlGzrhrJE27KctiHjxIrzkJOakqLexk5iK9K10/rRflJbap30WnIb14/EdskrP2KnjRNZdRw7seJXydZuZMWmZCuRZImiqAcJPgCQIN7EzJyz7h97ZjAzmAEGwACYwazv56MPgZkzZw5A6qzZe629tqgqxhhjTDHeel+AMcaY6mVBwhhjTEkWJIwxxpRkQcIYY0xJFiSMMcaUFKz3Baylm266Sb/xjW+s92UYY+qLrPcFrERdjSRGRkbW+xKMMaam1FWQMMYYszQWJIwxxpRkQcIYY0xJFiSMMcaUZEHCGGNMSRYkjDHGlGRBwhhjTEkWJIwxxpRkQcIYY0xJVRkkROQqEflxzn/jIvKugmN+RkTGco75D4udN3X8OGduuJHh/bcyc+jw6v0AxhizQVRlkFDVZ1T1WlW9FrgemAa+UuTQ72WOU9X/uOh5k0mks4Nw6Cxjd99jgcIYYxZRlUGiwM8Cz6nqiys9kXgeIoLX3AzxGJMHDlbg8owxZuOqhSBxG/DnJZ57rYg8LiJ/KyKvWMpJpamJ8MSJlV+dMcZsYFUdJEQkDvwK8GCRpx8DLlXV3cAngL8qcY47ROSIiBw5l0hkH9eZGfzt21fhqo0xZuOo6iAB/ALwmKqeLXxCVcdVdTL99UNATES6ixx3v6ruUdU9m4MAVSWanoZEkta77lz9n8AYY2pYtW869OuUmGoSkT7grKqqiLwaF/DOLXQyicXQC2P427fTetedNO3bW/krNsaYDaRqg4SItAA/B/xOzmN3AqjqQeDNwF0ikgJmgNtUVRc6Z7BzJ32PPLx6F22MMRuMLHJf3VD27NmjR44cWe/LMMbUF9u+1BhjzMZkQcIYY0xJFiSMMcaUZEHCGGNMSRYkjDHGlGRBwhhjTEkWJIwxxpRkQcIYY0xJFiSMMcaUZEHCGGNMSRYkjDHGlGRBwhhjTEkWJIwxxpRkQcIYY0xJdRUkkk8/zfD+W5k5dHi9L8UYY2pCXQUJfJ9w6Cxjd99jgcIYY8pQV0FCAK+5GeIxJg8cXO/LMcaYqldXQSJDmpoIT5xY78swxpiqV5dBQmdm8LdvL/rczKHDDO+/lTM33Fgyf1HOMcYYsxHUVZBQIJqehkSS1rvunPf8zKHDjN19D+HQWaSzo2j+opxjjDFmo6irIEEY4vduoePeD9K0b++8pycPHIR4DK+5GREpmr8o5xhjjNkogvW+gLUUu/pqeh58oOTz4YkTSGdH3mOF+YtyjjHGmI2iroLEYvzt20m98Dw6No4mEkg8jnS0E1y2I++YcOgs0tycfWyhHIcxxtSy+ppuSiuWeJ45dJjkSy8RnTqNTk1BMolOTRGdOUv8xtdmX9t6152QSBJNT6OqC+Y4jDGm1omqrvc1rJk9e/bo9/7ww4zdfQ/EY0hTEzoz40YOqujYGCSTcy8QARH8q66i7zvfyj48c+gwkwcOEp44gb99O6133Vk0x2GMMbglWjWr7oLE3+64nHDorEs4pyWPPuv+Gi/OgqoLDqgrhwIQYfOffsECgTFmOWo6SNTddFN44gTS1JT/YCoFqTD/Mc3/xspcjTH1qO6ChL99Ozozk/9gEEDgQ0PcfV84umposDJXY0xdqrsgUSzx7LW1IS2tyKZN4Pv5Lwh8vL4+K3M1xtSlugsSTfv20nHvB/F7t6AXxvB7t9D50Y+w6WMfJbZj51yg8H2kpQVv2zb89nYrczXG1KW6XCfRtG9v0SR05rFM641MBZSVuRpj6lXVjiRE5AUR+UcR+bGIHCnyvIjIH4vIMRH5BxG5rlLvXWy0UaqVhzHGbGTVPpLYq6ojJZ77BeDK9H+vAQ6k/6yIUqMNY4ypJ1U7kijDzcCfqvMI0CkiWxd6gW1faowxS1PNQUKBb4nIoyJyR5HnB4DccqOT6cfyiMgdInJERI6cS6ZI/Ogxzr/1Nzn7+p/PBgvbH8IYY4qr2hXXIjKgqoMi0gt8G/hdVf1uzvN/A/wnVf0/6e//J/B7qjovf5GxOx7Xh3r7wPMgFsPv7aXplv3MfOnBvDYdJJKWgzDGVIqtuF4NqjqY/nMI+Arw6oJDBoHcmtRt6ccWOzGEISQSEI8xdf+nbX8IY4wpoSqDhIi0iEhb5mvg54EnCg77GvAb6SqnG4AxVT1dxsnnvmxqQqem5rXpsIVzxhjjVGWQALYA/0dEHgd+AHxdVb8hIneKSGaxwkPAceAY8Gng/1nSO3iCzswgLS3z2nTYwjljzEplcp2DA9uPr/e1rERVlsCq6nFgd5HHD+Z8rcA7lnFyt6I6FoNEkpY73s7Mlx4kYjovJ2EL54wxy5W7IBc4v97XsxJVGSRWTWaqKQzxurZmk9Px3bttfwhjTMVMHjiYzXWGix9e1eorSKi6yqaOdoJLLskGAls4Z4yppPDECaSzY70voyKqNSexOsSVvjI5RfLo0fW+mppj60mMKU/RLQlqVJ0FCRAv/SMnEut7LTUmM8caDp1FOjsIh87aRkzGlJC7JUGtq68gAWgUASCZDYZMWXLnWG09iTELy20SCmxe7+tZibrLSUgQIB3tBJftWO+rqSnF5lhtPYkxpeXkOneu97WsRP2NJMIQkikrcV2iYnOstp7EmI2vvoKEKiQSRBcvrveV1Jxi277aehJjNr76ChKZ6qaZGcbu+9B6X01NsY2YjKlPVdsFdjXsbmzUv912CRqFECnxV73KFtAZY1abdYGtOWEIyaSVcxpjzCLqLkhoFEEqhHjcyjmNMWYR9RUkoghmZ93XySSp544Tjo8DVs65HLYC25iNr76CRC5VdGqK6MWXSJ45Y+WcRSwUBGwFtjH1oX6DRIYqDA0TXRizcs4ciwUBW4FtTH2wIJHm9/RsiOqmSk0BLRYEwhMnbEc/Y+qABQmAeBydnFzvq1ixSk4BLRQEZg4dJhobI/WTp/PyOjZlZ8zGU1+9mxZQize3mUOH8zZLCkdHs5/+AaS5mYhpJg8cXPIoyd++3QWb9LnABQFaWxm7+x6k1W37qokEOngKnZ3Fi8Vtys6YDcZGEkEAYVhzN7dio4bw6FE0mco7brlTQKXacAhAPIbf3Y2/bQCJx13V2NS0rcA2ZgOq7yAh4hbWeR6TBw5WZWVOqRxD0ZxBLEY0dDbv9cudAirVhkMnJ7PTUF5bG8HlOwle/jK8jg4LEMZsQPU13SQFq+MzLUlESL3wvNu4vIo+DWdGC1EyAeMThKdPc/7RR2n93XcWbd3t9W0hOnGSaHoaaWpy00MraMJXbFvXyRLTULU4XWeMWVx9jSRK9anSiGjkHJpKLquEc7UWlU0eOEiUTKDnzqGplJsaiyImP/FJaG2d17pbgoBg165VbcJn3WCNqS/11eAvHteHerYUf7KhAXwfv6uLvkceLvucmU/7xGN5n94rcXM+c8ONROfPo6lUdttVRSGRJNi1C52aWpX3XUxhwtyaIxqzoJpu8GdBIsPzXAK2oYH49deXfeMb3n8r4dDZbEURQDQ9jd+7hZ4HH1jR9Q7vv5XED34AQYCkp8o0irLBrOO+e+1mbUz1q+kgUV85iYWk9772tvZl1xeUk59YzW09W++6k/OPPgphiAY+RAqqeJ0d+Nu3F80ZrISNEIwxheorJ7EI6ezEb29fUouJpW7ruZT8RdO+vbT+7jvdKCeRBN/H6+5CgljFcwDWi8kYU4wFiRw6OUk0MQGUPxoolsjVsXHC0dF5gWA5N+KOd7+LzZ/5NPHXvAa/q4vgsh003bKfyQMHK5oot15MxphiLCeRSwRpbia4fOeS8gq50zTS2ko4PIzX2TEvoTx54OCK8xerlSg/c8ONSGdHNvcBoKrohbF5iXybljJmSWo6J2EjiVyq6MWLSy7rbNq3l54HH6DvkYfxNm3C6+wo+om8Ek3xVusTf7nTZjYtZUx9sSBRKIpWtL5goUCw1PzFUs9fTLk5kHLXP9i0lDH1peqChIhsF5HDIvKUiDwpIv+6yDE/IyJjIvLj9H//oWIX0NpKz4MPLHv6ZKFAUImFaKXOL62t84LBUj71l2rDUfh7WK8W4bYLnjHro+pyEiKyFdiqqo+JSBvwKPAmVX0q55ifAf6Nqv7SUs69aE4ic/7ubmK7di1rrn2xnMFK5/OLnV/HxtF0aWzue0pLC5pMVHQNx2quCyllNRcsGrMGajonUXVBopCIfBX4pKp+O+exn2EVgwSeh2zpxYvFCV61h8S3v4NOTSEtLbTc8XY63v2uBV9ebiDIHJc6ehRNJCAeLys4FW0RnkygqRQ6POLOFfiQCgmuvqqsZHS5VjsIFrMegcmYCrIgsVpE5DLgu8A1qjqe8/jPAF8GTgKncAHjyRLnuAO4A2DA96//+y1by33zuV5Pvg+xAMIIoojWd79r0UCxmMzNVlNJouGRubft7sKLxZf0KfnMDTeinkd0+hSIl772CGZd4EEViceRnm4kCFZ8cy0VCKqh8sqYKmRBYjWISCvwv4F7VfUvC55rByJVnRSRNwJ/pKpXLnbOskcS8y8GYjHE910fpaYm+n9SNCaVLfPpODp9JtubSaMICQK8rX1LupEP77+VxI8eg0jnejwlk5BK7y0Rj7t/pmGEdHay6WMfXZVpmtX6xG8jCVPjajpIVF3iGkBEYriRwp8VBggAVR1X1cn01w8BMRHpXuy8pzq2cNctH+IDb3wvjw1cU/4FqUIigYYh+J5rrJdjOUnVTAJYEwnwxJ07kUCnpghPnSb17NGyLy+TEEcVRV1/pzB0XWODAInFXEuPIFjVvbxXK6ltnWeNWT9VFyTEzSl8FviJqn60xDF96eMQkVfjfo5zi517JtbIUFs3T/bt4uN73760QAGQSMDFWYiiZVUQ5QaTaGyMcGTE7eyWCiHpbvJ4HiSTROMTZVfwNO3bS7Brl3ttKkSCAHzP5VYaGggu30nsZVcTXHnFqu7lXYkS32LKrbwyxlRe1U03ichPA98D/hGI0g+/H7gEQFUPisg7gbuAFDADvEdVF52cbu3fpde87Y+z3/dODHPgS+9f1nV6/VuRIAYtLVBGBVHhfH107hzR2SHoaIfzo7m/ABcs4nH8yy+n7zvfKut6Cs+fOnYMkin87dvw2tpKXlclWRWSMUXV9HRT1QWJ1VQYJED58mfvWPqJ0u07vK19hCdO4vX1oSOuqkjicaS7G4mivKRqsXn1cGQEnZxyn+6jaN57IMLmL3y+7BvszKHDjN33IcLjx910kwheTzdeV1e2VFa6u2FyctXaaVjLDmPmqekgUeetwpf5d6fqAkJTE4Qh0eCgq4BKJ7Z1cBD/yvw8etHtRru6UD/Av+YaEkeOuOms3C1Wo4jx+z60tJvs1BT+9m0uFzAyQnTuPCSTeN09RKpIMpE3LVaqHfpyb/aVbl9ujFlfVZeTqBm+71Y6x+NzjwluRJBKER47lpfEXnwldmL+ewQ+qePHy76kwpYZQU8P/vZtBFfuWrCnVCHrz2SMyajzILGCqbZk0k3fNDfjbRtwyeJkypWdBj5A3s11oQqdpn17IRbLH0WAS2gnEox97ONlVU8tVF20lMoj689kjMmo6yARpJLLe6GIS852dxPs2oUEAcHlO5GGBrcmwQ+QeDzv5rpYhY5/xRXZKStU5xbyeR6TH/s4yeePL/qpfqHRylIqj9arP5MxpvrUdZCIh8sMEr4HbW2Ex4+TPHqU8PkXSP7jE279xOwsJJNIj1u2kXtzzW0pnqkwyowQAGhunktgi6RXesdcaev4xKKf6hcarSxlrcFqlbIaY2pPXQeJ6YbmxQ8qJhXC8IhbBCfiKolyq8SiiGh6mnB8nNSxY4RDQ/OmicY+9nHOv+3tJH7wA6Lz5wnPnIaZGRckRFwJ7CXb3bl9zy26Syv1qX6h0cpS1hrY4jVjTIZVNy1XZkpoeLj480PDRL7vylC3DeRVEwFMfuKT2YCgU1OQu4g7CEAjNN1zKVNam33rBT7VV6K6qGnfXsjspGelrMbUtTpfJwFf/uzbl3/CIJjrj7QQEWhoQJqbIZVCZ2fdtFQQzB+FgJtm8jy35qKjnejsENLbg9/dvewFarbQzZh1U9PrJOo+SPROjNA7OcLNj3+T6wafWJ03zuso64HnuzYcpY5taHB5iNlZ4q95DfEbX0vi4e+v6FO9NckzZt3UdJCo8+kmaJ2dYrSpg8+87nbe9ndfXL1AkaG4KSTV4qOQ9OjC3zaQfwNfYWvyYov5rGLJGLOYuk5cgwvxjakEQZjiq7vfsDpvUjBak55u8Ip8uPA893jgVzxRbBVLxpjlqPsgMRVrBKAhlWCoddFu48tT0GojeukENDW5NRUATY3Q2+O+T6YAIZqeZvLAwYqtcraKJWPMctR9kBhp7WIq1shsEKd3cmTxF1RCFMHYODQ00PDPfw2JxeHcebdhUDwOKDo2RuLIEc7/5m9xevcry96nohRrt22MWY66T1wHYRJPlU0zY2uTk8jV0IC/ZQvEY2gyRfTii3PP+b6rfIK5NRNlViNZJ1ZjqkpNJ67rfiSh4hbErXmASFcvRckE4cmT+QEC5gIEQCJRdv8ka85njKmkug4SXhTSNz7MVUPPrW2AgGz7DT19xu12t4hwfLysaiRrzmeMqaS6DhKR55PyA25+/JvrfSmL0uGRsqqRrDmfMaaS6jpIAGs/zbQcsZhbpZ1IEr/xtQu2DbdSV2NMJdV3kKiVpH0UIc3NNN2yn+kv/CmJxx4jPH2axGOPceE9780LFPEbX0t44iTJJ58ieew5wpERK3U1xixbfQcJEe696V9z+298ggd3/+J6X01x8Tj+wACbPvVJLn79IaLRURfcYgGoEo2OMn7fhwCXtJ750oPI5k1IYyMkEkTnztN0y/5VqW6aOXS4rM2QjDG1q76DRNps0MCD1/1yVQYK//LLs2WvqePHXeM/z0MQt67C87JbnGaS1kFPD8HlO4m9/GX427eRePj7FbueTGA4vfuVnH/b28vaDMkYU7ssSICrYlblr3/q59fxGtKl1Jl2HSI0/PNfo+8736Jp3153800kIJFAZ2fR9J+Zx2YOHSY8cQJNpkg9d5zkT54m9dxxNJmqWNI6t7w2mp6GKELPnSOamLAqKmM2qLpv8OcIoR8w5Qfs/80DxMIUjakE2y+c4prBp3li4GqGWrtXp1tsQwNeextRpHDuHERz25Ymv/u97Cfzsbvvcc3/ksm53esyYjHG7r6HSBUdHMxug6qpFDo4iH/llRW51Nzy2jCZdD2mIkWHR6C93aqojNmAbCRRIPICZmONTDS08OKmAR687pc51dab1y32sYFrKvJe0t5O6+++E+nucQEi+4Tb7S46f57x+z6UvTn72wZcAMgVBPgD/RCPwfnzOeco+uWK5JbXSjzuAppIdtc8q6IyZuOxIFGEoKh4TDW0gCrTDc2V7Rbb1Ai+j9fRweT9nyZ85pkiF+ECRer48ezN2Wtrc+05ZG5Kyt++Da+tzW0kNDuLt20ACQJIhUgQ4G0bQCcnV3a9abnltV5vj0ughyESj1vDQGM2KAsSRSiCCkTi4WlEyp+blatIt1gFujYTnjwJ4+Pzp48KSnPzbs5tbW6Hu1gMaW7Ga2tzL5mZQVpakCBwSeuXXU1w+U4kCIp+ul9OZVJuJ1lpbcXr7nLtRZqarGGgMRuUBYkSRMHTiEg8gnBuc6BKdIuVjna4cGHhdRrp5/ydO+fWPjz1E5eMjsfc2omO9ry23y13vL2sduDL7e9U2Ek2uGwHmz/zafof/xE9Dz5gAcKYDajuu8CW4kUhLYlpphpakCh0UztRSHPiIu/47udXnrzO7fJajAi0tdHwc69n9m++7naxiyL3yT0IaPilX0RPn5nX6bWcDrCltjIlFsfftMm6xxpTWTXdBdaqm0qIhSk2T10gFI+UHyMSwWUrKiQM8/e+ziVCcPXVNP7iG5n8xCddcIjHXKJYFa9rM3r6DK133ZkNCJnS06Z9exe9sRfbylSTKaLnX4Adl+WNLrApJGPqmk03lZDyfRDYNDPO9gunufT8INsvnKY1MV35bU5zEtHEYnhdXSgw+V8PwOysCyip0C2eEyG6MEbq2aPLbglerL9TNHTWvbd1jzXG5KjaICEiN4nIMyJyTET+XZHnG0TkgfTzfy8il1Xy/UMv4FRHHw2pRN7jFd3mVBVisbkgoa6kNBIhfPZZmJ52j0cRJJNoKuUW283OEp0fJTx1iuj0mSUvZiu1lanXtyXvOFv3YIypyukmEfGBTwE/B5wEfigiX1PVp3IO+21gVFWvEJHbgP8M3FrJ60j6MU52bmXz1CgtyYtAZRLXWSIuAERRdgEcIjAyMvd1RrrclCiam6pqiLsFc6dOZQ9LPPooZ264MZtTAIrnKO79YN7jEoujyfyAaOsejDFVGSSAVwPHVPU4gIj8BXAzkBskbgZ+P/31/wA+KSKii2XiReiaPM/O4RdIBjFOt/cy3NpF5PnzDo2lEoSez3BbNzoxQpAuh63Y/hMNDe5Pz3OJ6XgMUqELCKnUXM4i5tY9EEXusc2bkNkEmkohnodGEJ05614TC7LTT6Pvfg8ignS0F80z5OYaMhVPEdNuzcXMjK17MMZUbZAYAHLnOU4Cryl1jKqmRGQM6ALyPuaLyB3AHQBbNvcDcK51M+daN/OqF37EPd/8Y3onRhhu6+JMWw9n2ns53d7L2fYeEp7PuZZNnGnvZai9lyBK0X/hTOV+yjB0bTZiMfd9MuVu9BmZeBe6dRTS3o7E43hb+9DJScLBU2gUudqJixchCPC2bHGBobmZcHDQxZitfe71zc1ETDN54OC8ZHSx0YVVNxljqjVIVIyq3g/cDzCwqU9/5fFv8NglP8XJTf388LJX8tgl/xdveOp/ccuP/ppXjg/B4JN5r4+QdKDoYaKhhbNtPfzgsmsJEa489wK+RogqjclZAl2gpLWYZNKNDJJJaGx0Sepi0qWvLXe8ncTD33flq21tMNBPNDSMXrwIIngDA/jt7XOvy4xKciyUZyinMsoYU1+qNUgMArmT4dvSjxU75qSIBEAHcI4FjDW187WfSlcmpW+eoRfw0DWv51sv+2e88sQT/LNnH2bb2Bm2jA8Tj1J4KD1T5+mZOl/0nKF4pDx/+aWxmZt4U6MLFqXWTqhy8esP0f7+9zF29z2kpoZhfMJ1gg0CpKcHiRX8dQY+hRdmeQZjzFJUa5D4IXCliOzABYPbgNsLjvka8Bbg+8CbgUOL5iOKSb8k5cf44WWv5IeXXguAn5pl8/QYWyZG6JsYoW98iP6xM/SPD9E7MUJDmHTHaYQfRiVPX7bJKTeqaGx0U0dFrjN17BhN+/aSuGW/Wz+RSrkusp0druIp/bpMTkFaWhER10ajqYlwZAQ9P4peGGN4/602nWSMWVRVBol0juGdwDcBH/icqj4pIv8ROKKqXwM+C/w3ETkGnMcFkpW8qfszXVEU+XFGWrsYbuvhCY2IRREqoCI0Ji7Slphi+/lTDIydpmfiHJunx+gfP0vf+BCBLiNoJJMugV0sQOQco+kRBSJuAyIRpKEBmpvxYnG8nBXTHR/4AOCqm5JHj6ITE3hdm/G6umyxnDGmLNaWo5ic0tNYcpZQPDwUUUh5Hur5dExdIIhSjLZsAqBr8jzxKEXKD/id7/0pu08/vSo/Q9Nb38LMn/63uZbhSTeiIR5H2lrpe+T7iO+7KaictuKlWnH4vVvoefCBVbnWQuW0DDFmA6rpthxVu5hu3UQRXpikfWYcgGSsgcgPiMQj9ARNr21oT0wx0diGpxGeRow3tWVbif/lK1dvG9SZz38B1C2uywYIcDvWjY0z/ZW/InVykNQLL5I6/jypF18kdfIkqeefhyDm1lWEIRqG0NBA6qWXWIsPCsttKmiMWV9VOd20Xtpnxum4OMGsH6P94iSNiYuMtLk1FJEf4EUhAgTpfETo+3hRJqfhfpUVXZFdSql7eirF2D3/Hv+S7ejoBTSRwOvupulNN+P19BBdGM1uGgTpJHZPD6njzyOeuJ3vPB8J3MK+zIgk92sp3PSoTLm72sHC5bjGmOphQSLHTKyReJikMXmR8y2buOXRr/Gl63+Z2aCB6Ybm7IK70HfH+mFI5LnBWKadeEVXZBeKxVweorkJHb1Q/JhEgvDYc9lvw4kJJj/2cfeN5xHFYkhDHMT1gYrf/CbX1qOtDRJJILlopVZeEMkNHoWBxZsbqBZrKmhtP4ypfhYkcqT8GKPNHbRd9OmZPM8rzj7LLY/+Nf/z6n/CcOtmIs9nvLGNyPcZaet2K7LFQ4BNMxe4GMQruyK7UDJJy+++k5m//IpbER1FblShinR3QRShF8agoQFRdW02Esm5pHwUweysK5tNm/rEJ5j6xCeQjg78gQH8/n78bQP4AwMEA+5P6exEcvI0mnINBxcNJp6k2424RX7hyLAbSYi4HlUzM/jbtlX+92SMqRgLEjlUgAgmG1q47chXAXjF2Wd5xdlns8ec7NzKf3/VrzG4qZ9kEAdVmmanCT2fTVPnuPnxb658r4kSpLmZzn/3ezS8+tWM3fchwqNH3af4Lb3uE3wiiba04Pd0Z2/qquryEBfGaP2dOwhPDhKeGiQcHCQ8OZjd2lTHxkiNjZF66qmi7+sPDOAP9OMPbHNfpwOJ19WVN2LIpZFClIJkiuZb9jPxsY8TRRHS2OgWACZTNP/qm0g+d3zx0UnmsRLvZYxZHVbdBLiP4wK4ldPx5Cx/+LX7SPqxoudR4MmtV/GV3b/AUHsPAI3Ji9z62Nf4lX/81mpdPtLeTv9P5laEF6sWmjxwkNTZM3hNTW4EoUo0NY2/eTOb/ujj884ZjY+7wHHyZDp4nCJ18iThqVPo6OjiFxWPpwNIevSxLT0aGdiG19vj9ttOm33kEab//C8IT5/G37qV5l+/jYYbblja7yBndCK+l0sOPPoAACAASURBVBdM8r72/bzRjzHrqKb/IdpIAgDXSC+zXemmi+Nsnh5lpKWLf9h6Nf/z6n/CuZZNdE2N8rNPf49XnH2Wa04/w8vOPMvfXf4q/vblP8tkYwtTsabF32qFyikjHbv7HlQuzi2qU6XtPe8muGQ7mkigswlIzLrEdns73svbib38ZfPeK5qaciOOU6dcIBlMj0JODhIND7uDEgnC558nfP75+Rfr+/hbt86NPPoHaL7tVvf91q1IrHgQXkju6GTR6a5MEPF8t/o8MxIpTMbb6MSYkmwkkeaHIUKEikfbxUne8d3PE4rHp1/3L/CjFPEwScKPEfoB+x/967wpqOlYI9/fcT1v/vHXaUqV6L9UKbGYy0E0NEB7G14sTkfBgrilrEfQTJ4ikUgHkFk3bbXIvwudnSU8fbroKCQ6e9blPxbieXi9vTmjkP5sDsQfGEAaG5f8q1kuEXFBJDfxnqnyKgwsNjoxS1fT/2jqOkh4UYpYmEJFiDyfIEzROTOOH4VsmhkD4FxTZ17jvlk/RsfFSf7V//5c3rk7ZsZpSebv9rZqPC8dLCKkqwuvcxMCpI4fB8DfuZOO979v2aWlqurWXaT/YzaBJmbRMtuPaCpFeOaMCx6Dp9JB5JQbiZw+nb++o9SP2N2dl0R3/23DH+jHa21d1s9VCfNGJ8VKhTN/GuNYkKgV80cSSvPsDG2zk4w1tZPyA4IwRcfMOCpuCqJ1dgoVIZUuf1VgOt7MHzz0kbxzr2mQgOxNCZhr6eF57p9jGCGdnWz62EeBEpsOLYOmUumgkTPySCx+w887RxgSDQ9nE+eZ6atUelprwbYkadLRkZ2+yuZBMiOQjo6q+LQ/b3SSyaMUCyxVcL1mVdX0X3DJICEiP6Wq/5D+Ogb8Hm4zoCeAD6rq9JpdZYXMCxKq+BoS4RFo6MpGRYjEY9voKdoSU4w2ddCYLnUNPa86RhIZmU2JRFxbjvTcukYReEJw2Q50agrisbyNhAqnp1ZCVQumq9L5jmg5vRaV6Nx5wsGTc3mQnFFIphJrIdLSklOJNZD330KVWOtJfC8dOIL5gaWwysvUog0bJB5T1evSX38Et6HPnwBvArpU9TfW7CorpGhOInOTVcWPQjzUBYkLp/i/f/CXfOZ1txOEKRpSCaZjjSSD2LycBKxTkCgUBEgs5m7cYQieh79927r0a9JkMj9ozM669RXLPZ8qOjY2N22VHoWk0gl1vVBicWGuhoa5Kaz+/BGI19tb9TdhEYHCiq7C0UkmsNjopJrU9F/GQtVNuT/YzwKvUtWkiHwXeHx1L2sNpf9nEiD0A/xUgu7JEWZiTVw3+ARv+7sv8tXdb2CotZueyRH2PfN37BouUslTDVLpih8/PV8eaV4bDli7Vc4Si7nqpZaW7GMahvOmq8pJkoO7QUpnJ15nJ7GXv3ze89lKrMzII5MPOXVqrhJrdrZ0JVYQzFVi5a4J2TaA39e3rEqsSlNVt5FUOQsZc0cnxUqFvZzHTNUQkT7g48CrgAvAWeBdwF+q6jXrcU0LBYkOEflVXBPABlVNAqiqisiGS2TEwySRCJ5GBBqxadKtEbhu8Im8xXGhCCMtXYRF9sSuCqn0FqhBgPT1uRLYnJHEem46JL7vglZu/6gVJskzvJYWvF27iO3aNe85vXhxrhJrMGcEcvIk0dCQq8RKpQhPnCgeQDOVWNvSq9D75xYT+v39a1qJVS4NIwgjlIVzRnmjk2wVV4k1KDY6WVXifsFfAb6gqrelH9sNbFnP61ooSPxv4FfSXz8iIltU9Ww60q1Sc6L1E6WnnJJ+bMHWGr4qm6dHOdeymUiqaH47k58AiMfxuruKbkREIknrXXeu44XmExHXRqShIe/xSiTJs+/R2EiwYwfBjh3zntNkMl2JNZgt482ORk6dcgE3iojOnCE6c4bkkUfnncPr7p4bgeQsJvS3DeDljKSq0ZJGJ+kmkHmjk0xgsdFJJewFkqp6MPOAqj4uIpdlvk9//d+AzD+sd6rqwyKyFXgAaMfd1+8CHsbtu7MHV3PzOVX92FIvqmSQUNXfLPH4Gdz00wbh/tcQVULPpzE1y9v+7osLttaIRSGbpi9wrmUTVTHdmO6FhCp4HrGrrwJc/qFwI6Ja2cNBgsCt1s4dBVUwSZ59n1iMYPt2giKjKw1DoqGhbBI9lVkPcjJdiZXugRWNjBCNjJB8fP4srHR25qwD2ZaXVK+WSqxyaaRuerDc0UmpTsK5gaWGfv41cA0w/1NIviHg51T1oohcCfw5LgjcDnxTVe8VER9oBq4FBjLTVCLSuZyLWnDFtYi0Az2q+lzB49nKp43AiyJA6Z46v2iAyGgIk3TOjHOhqWPRY1ddEGTXHkjPXJtyaWpCL4zR853VaxWyliS9vWvh9E6lk+TZ98usGN+6Fa6/Pv89VYnOnZvXCyuTD9GpKXfchQukLlwg9eSTFC6zlNbW9Kgjd/rKfe11ddXsDXQ5o5OSixdX2KJ+A4oBnxSRa4EQyMyv/hD4XLoS9a9U9ccichzYKSKfAL4OLOtGUDJIiMgtuATKUPqN36qqP0w//XnguuW8YbWJp5KkPJ+kH+eiH+eru98AUFagaE5eJPR8JhrWZ3GXdHej09PuE63vQ0c7wZa56cv1zD+spUonyct6TxH87m787m64dnfec9lKrEEXPFIFU1k65hZq6uQkqaNHSR09Ov8NGhtdgNo2MDcCyTRV7OnZMDfNzOhktVrU15gngTcvcsy7ccns3bh88UUAVf2uiPxT4BeBz4vIR1X1T9M5jTcAdwK3AL+11ItaaCTxfuB6VT0tIq/G7Sf9PlX9ClUxx7JyokpLYprxxjaCMEnX9AVGmzr4zOtuL3tE0TY7lV1ot9YEiF17bTbHMHb3PUTT0xXLP9TydqOrmSRf9L1zK7Fe8Yp5z0eTkzm5j/QoZNCV9kYj6XTfxYvZSqxE4QlisSKVWOkV6Vv78poqbiTLaVFfcgMt36/G39Mh4D4RuUNV7wc3awPkTld0ACdVNRKRtwB++rhL049/WkQagOtE5CEgoapfFpFngP++nItaaJ3EE7klV+nEyN8AX8CNKmpuJFGsLYeKBwqxKOVu9iKoQnPqIu869OmyAoUCKS8gFqVW8eqLiMXwerqRIEbHvR8EKre6OrPd6GouxKsWlUySr/haLl7MWwuSym2qmKnEWojn4W3Zkr8SvX8uoV5YIFDvFuokXMEW9WV/qBaRftwMzvW4UcILuBLYr6jqNek8xJdxt51vAO9Q1dZ0wPi3QBKYBH4Dl8T+E+a2qX6fqv7tki9+gSDxMPAvc/MRItIG/BXw06pac//aCoNEkA4MfnrzntCf+4cgkdI7da7sEcW6aGhAggBva1/FF8gN77+VcOjsuizEqwarkSRf8TVlK7FOZqeysnmQ06ddJdYivJ6egpXocyvTq70Saz2VHJ0UJuOLt1mp6ZmXhcZbF4CtQDZIqOqEiNyEm9uqeVvGhznd3uv2XPB89zepbvMhEbcl6Vd3v6F6g0QUoYnEihfIFZtWqvftRhdPks/OBZEKJMnLuqbFKrHODmWnr1Incpoq5lZiDQ8TDQ+T/PGP559/0yb8/v68leiZporS3l6zifRKWEmLer+3d02ucbUsFCS+CXw4Pc30JeDPVfVH6UV1f7YmV7fKUn5AU2qWi0EcFUFU52K+Kg2pBEOt3QueY1Vl5kxLfUJMpZDm5iUnqHODAq2t6MgI0tGOdHYQDp1l7O57kNbWqlqIVy3WI0le1nX5Pn7/Vvz+rbBnT95zGkWuEiuvqeLJbB5Ep10bNh0dJTU6SurJJ+efv7U1fwSSM5XldW2u6wBSyC1kTGSDyYYNEqr6R8AfpRMit+HKq5pwdblfVNVnS722VmRabpxu72W0uZNIPEQVP4qIRUlmgzi9k+u4bjCVyrYNKUoVbYgTnjiJXhhjeP+ti+Yh8nINnR2kjh2DZAq/tcUlXJubiZh2/8ATSSIqlwjfqNYzSV7W9Xkefk8Pfk8PXHtt3nPZSqz0AsJUYVPF3EqsZ54h9cwz88/f1ORKeXP6Ym3ESqx6taRW4SLySuBzwE+pas39zRfmJL782bfz2MA1fOZ1t5PyfC40tUN6MNE+M05Mw+rOSUA2ee11dRVNLhdOJYWjo5BMZHMNyZ88DSJuKuPynUD6xnFhjI777q3Z6qZqVU1J8nJEExNzHXmz60HcKCQ6d27xE2QqsXJau2dHIX0btxIrV+zynTU9zFr0b0hEAuAXcKOJnwX+F/D7q3pVa+SxgWvymvilvMDtKZFK0j8xxM2Pf7O6AwS4LUK73ZRYZhQweeAgTfv2zhs1hENnCZ9/AW/btuzLJR5HU26ePSMzrdS0b68FhQpbq5XkleK1teFddRWxq66a95zOzGRHHKncJPrgoNudUBWSScKXXiJ86aX5J/d9vC1b0jsS5pTxbktvb2uVWFVhocV0Pwf8OvBG4AfAXwB3qOrUGl3bqsskpQub+NWUgl3ecpPLkwcOQjyWHTVIczNhLEY0dBa/o9091tONnhyEIHAjCJtWWnPVmCQvhzQ1EVx+OcHll1N4O9dEwlViFWwuFZ48SXjmjGtlH4ZEp06ROHXKrRfOO7mkK7H688t4M5VYOUHWrK6FRhLvA74IvFdVR9foetaMaLR2SelYDP+KKwiffbasMsUlCUOSR5+FMETicaSjneAy18iuWIWS17eF6MTJ7KI7CQLXX6inB70wlp1WgnQZrE01rZtqTZKXQ+JxgksuIbjkknnPaSpFNDQ8rxdWpqyXRMJVHA4NEQ0NkfxR8UqsIDeJnttUsb19LX7EmpSuTv0j3CK8z6jqf1rsNQslrvdV8NqqjsDqJ6XTSefNn/ssAGP3fYjw6afnurVW4vyqbsvPxgZ30zg7RPz22wFcDmLobF6FkgQBwa5deU3/Oj7wgbwAUGyaauzue2ADLqSrNdWeJC+HBMFcJRavyntOo4hoZCR/T5DBk9kRic64jb10dJTk6CjJJ+bPAEhbW/6eIDnTWd7m+q3ESjf++xTwc8BJ4Ici8jVVfWqh1238rFExUYSvYcl24BWRboGdaU+duekG17wiO6Wj09N4W/uIhlztet5q2tzW38V4Xv7zYYTE49DeRuLh78O730XrXXe6Vh0FFUrtBUGhULFpqtxcR66ltO6o5TYf1Wwt2q2vFfE8/N5eVzZarBLrwgW3Er2wqWJuJdbEBKmnnyb19NPzz9/UlN0HZG4Ukm6q2NNTNX2fBge234RbQb0DeB748MDgiW+s8LSvBo6p6nEAEfkL4GZgwSCxpOqm1SYiHwZ+GUjgFvH9pqrO25dSRF4AJnBdEFOquqfwmGJa+6/Ua972CQD+6dGH+dff+5MKXfl8Xv/WbLuMyQMHi65ejoaG8Xp7so+nnjuOXrzogkXgu06amb+fnh6YnHDN0CS9+jO9QAoRvEsvwW9vz1Ym9T3yMLC8G/OZG25EOvPbWBc779h9HyI8etRVWPVtcQnZEq076qnNRzWr5iT5SkUTEwUr0eeaKkbnzy9+gngcv68vnfvYlj+VtYJKrKVWN6UDxKeAWWAa1/a7AXjHSgKFiLwZuElV35b+/l8Cr1HVdy70umobSXwb118kJSL/GZcX+b0Sx+5V1aXNFyk0Ji/SkpjmfNvmFV5qCZ7rox9ctiN7Qx57/91FVy8Tj+etRZCOdhckNnXCxVmIZsHzkC1b8ESgu5vw2LH0CXL2kPB9dHgE2tvnLXhbToVSsWmq3PNmbvjh8JALZqpEp07jD/RDPFZ0xLGU0YlZPQsmydPBoxqT5OXw2trwrr6a2NVXz3sump5OjzhOzVtMGA0Nuf+PEokFK7H8vr6i7UxWoRLr3zIXIMj589/i+jWtqaoKEqqa2+/8ERZvm7skDWGCgbGzKCwvab3YFFD6k0jhp+NSN93Yrl203nVn9pN+cNkO4rffTuLh75f85H9q9ythZsb9z9zQ4KqbPA9NJIimpytSmVRqmipz3swNn1SY7VWjUUQ0NIy/c0fR1h313uaj2mWT5DlqJUleDq+5Ge+KK4hdccW853R2dn4lVubrnEqsbGK9ULYSa2D+epD+/uVc7g6gcOgznX58JQaB3JYJ29KPLaiqgkSB38Jtx1eMAt9K77X9/2Xa6pZrWSupM1MvCwWKRILgVXvmfTJe6KZb9JP+u99V8jJiu3blTV1FExOEp8+AKn7vlorM8zft2wuZabIiwSpzw3drLFJoeo9onZ0l9eyxotuELjY6MdVnIyTJyyENDQSXXkpw6aXznnOVWEOuEquwqeKpU0UqsX407xwDg0v+IPQ8rm/edM5jzenHV+KHwJUisgMXHG7D7Wi3oDUPEiLyHaCvyFN3q+pX08fcDaQo3SPqp1V1UER6gW+LyNOq+t0S73cHcAdAc+tmLgbxBfewLkl14RYZabNf+2tm3vSmvBv1YjfdpSgMOPiugVil5/YXmqbK3vAzaywyZb0ikEoRDg8zc+hw3usXG52Y2rCRkuTlcJVY/UVHBBpFRMMj86avMmW9mUqsZfgwLicB+TmJDy/3hADpafx34vry+bg9r+c36ipQVYlrABF5K/A7wM+q6vQihyMivw9Mqup/WezYzi079c2/8q/KX0m92PRSCcHLXsaWZW4ZWk6ieb0rinKT0OFLJ9yUlyo0NuClE3zFWopbdVN90SiaG3Vk8h2JxIZIki9GVV3DxMFBWt5085JrblepumlZqipIpBd6fBT4Z6o6XOKYFsBLty1vwSW7/6OqLvoL3B2P60M9WxY7bM6mThgfh8KhdKZMrtQGMA0NDBw/lvdQuTf/SlYArWZFUebnSfz93yONjUhPN356EVNhJZQxuTRvuqo2k+RLUeu9m6qjKHjOJ4E23BTSj0XkILjdmtJb8QFsAf6PiDyOaxfy9XICxHJIIgldXS5BnKkmisVofc+7kc0lqqOKlMllq4GGzuYtTps5dDjvuNwKIBFBUynC4SHOv+3tDO+/dd7xiyk8n9fcnK0+WqmmfXvpefAB4q95jdv0KGeVq+UazEIkHsdrbcXfvBl/61aXD7jsUrfArmszXlsr0hCv20Vv1aaqEteqOr/0wD1+CtdDivRCkN3FjquoIHCfdJIJvP5+/Pb27M5sHe9+F/Hduzn/W7+d3zspHSD8nTvzTlVu+WduBVA4Pk506pQLTGFEOHSWC+95L2Pd3TA5WdZ0TXjiBOp5bv1FIuHadnR3L1pRtJRpIcs1mEqolyR5Laq2kUT1iCI3z64QnT5D8tlnCZ9/gWh0NJuU3fy5zyLd3dDUCLEYxFwfpI73vy97mplDh0k8+ijhCy+Seu440cQEULz809++fa7twPAIiAeISxKGIdHoKOELzy84GsnT2ko0OIimUm4tRSpFNDgIra0lX1LuqCejad9eOu79IH7vFtf7qXeLLZAzFSHi/u17bW34XV34/VsJLruM4NJL8Lf24W/ehNfagsRji5/MLFtV5SRW25JzErGY+ySfSLgFSO3t6Pg4JJP4u3Zlg0GpT915i86iCHCJcH+gP12VlJ/czUsIv/hStprKH+gnGhpG0wni2MvcYqHF9pw++/qfJ/Xss251ticQKYQhwZVXlkys1/ve1qY2VXOSvNZzElU13VR1UilobIDGRvytfYSD6emfwCd84XnG7r6Hjns/WPLmmZ1m2rJlbuoICE+fwe/tnTclk18qexJE8Lf24bW1EZ4cBE+QWDx7/GKL0XRyEm/bADo8MjfdtLUPnZws+Rpb9GZqkXhe8ZXkdZYkXw0WJIrJlL6qQiKJt30b0dCw28HN89xcaSos2YIiI3PD9dLBIXOzRrXklExmfUJ2VOH77v183+1pvXVupfhiCeLMegb/8rkcSTQ9jd9fejRli97MRiLxuGt8mWMjrSRfChH5HPBLwJCqXlPu6+o+J+FfcbkbLWTkVCdJczPBrl1IJontpUeNqu4f3yKfsHNzDH57O8HlO/EvvYT49dcDbmrnzA03Fq1cKpzrD3bsQDo73bWoltWCo/WuO11vqOnpVX2NMbVEfB+vqQmvsxO/t5dg2zb8HZcRbBvA7+3B6+zAa2pC/A13e/w8cNNSX1TfOQkRpK3NfYK4eNGNIKIIggCvrY3Oj36ExOOPM/mJT7qOq5nuq57g9feXXDSWUWqdQtMt+5n50oNLXr+wnMVoa/UaYzaiSqwkX05O4oYPfHPeYrpH/uANKy71F5HLgL9ZykiivoMEuJt+ENDwS7+Inj6Td2MEtw+EppJE587Ptebu6XHbf5Z5Yx+770OEx48DEKTLYzWZsOSwMTVoqUnypQaJdIAo2ip8pYFiOUGivnMSItluprN/83U2f+bTeTf84f23QjyG39mB390910xvfBz/yivL/4Q9NYW/fVt21BA+/wLe9m35l2LJYWNqwhokyauqVfiGm3RbyIubtvGBN76XxwbSQdTzENJTSGE4byVyeOKEW+CTy/PK3qd65tBhRt/xTsJTp4hOnyGamMiueo7OnM071pLDxtS2UivJl2EH+R1goTKtwpelroKEryGjTR185nW3u0CR6b2kijQ05H2Snzl0mGhsjNRTPyH13HHCs0OuLHV6GqKIxGOPceE97y25yCyTj9CpKQjSC9lOnSIcH8fr3QJJSw4bs9GJ7y/nZc/jpphyVaJV+LLUVZAAaEwlCMIUX939BlBNL1CLoL1t3s5rtDTPbehz9uzcCCIIXA/50VHG7/tQ0ffJrJGQxkbQ9BBVPHR4BIkF+Lt2rXiV8syhwwtWSBljatKHcTmITKCoSKtwEflz4PvAVSJyUkR+u5zX1WVOoiGVmNuZLpVCtvbhxeLzdl4LOjsIGxrc+oZMj6ZYLLvXraqSSiekC2XXSPT2EA6ecskucbtgkUjS8YEPrKhiKK9yKqd9BtYSw5ia9sgfvOEbN3zgm++gwtVNqvrry3ldXQaJwp3pvM5NdLz/ffN2XgO3voH2dpL/+ISblsrt8rpAzUJmUZrX1gaZthoXLyItLRXpbWR7RhuzcaUDwrrsH1Go7qabiu1M52/aNG9P6nm7SmVGD1Hk9kuIIgijeR1fM3IXpUlrq2unPTDApk99siI38WJJdauQMsZUWl0FiVB8Ns2M8ba/++LcznQCyaNH845rvetOdGyc5NFnST71E5JHn3UtjNvb3arrMHR9lAo6vuZa7e6oxQKZVUgZYyqtrqabLh09yR889JH8B8VzXV4LqKqbThIBceVtLW99C4mHv1/2SuSF9oleKdvHwRizFmzFte/jbd7E1h//KPtQrbTLtvYZxtQEaxVe64Ird+V9nzx6FGZmCDPttXu6XbvuKpvvX82RijHGQJ3lJIoKw7wpmplDh9GJCbe03s9ZBDcyAq2tti7BGFNXLEjEYnmfxicPHMTr2jy3p4QnoOm9IEZGyt7WczlscdzasN+zMeWrzyAhArEAgoDgiivyngpPnMDr6sIfcK3ASYXZbUylox2vuRkRyfZgKuz3tFxL3VvaLI/9no1ZmvoKEkEAjY2uoZ8f4G3aRHtBCWumtNRrayO4fCexl12N37/VNQNcxXUJuYvjViMIGcd+z8YsTV0FCX/7duLXXYe/dSvx666j86MfmZf4LbUzW7Bz56quS7DFcWvDfs/GLE1dVTd5bW2LlrA27dsL935wXmkpsKrrEmxv6bVhv2djlqauRhLlatq3l54HH6DvkYfpefCBbKlp0y37iYaGST31E6KhYZpu2b/ornTlJkjXc2/pekrkLuf3XE+/H2MK1dViuj179uiRI0eW9dpS+1WXarWx1OMzr1nrxXHLuc5at5Tfcz3+fkzF1fRiOgsSZVrqKuxaWbVdK9e5Xuz3YyqgpoNEXeUkluLho8P82cMvcGp0hv5NTbxxOs6eJSQ8c9uNl3P8eqmV61wv9vsx9c5yEkU8fHSY//LQTxiZmKW9KWBkYpZP/9SvcKSxL++4hRKetdKltVaus1KWml+ot9+PMYUsSBTxZw+/QMz3aIr7iAhNcZ94Rzt/te01ZSc81zMRvRS1cp2VsJyFdPX0+zGmGAsSOTKfMk88+RzBiReJxieyzzV1tjHcv6Ps/SFWez+JSqmV66yE5Sykq6ffjzHFVF3iWkR+H3g7MJx+6P2q+lCR424C/gjwgc+o6n9a7NwLJa5zq1j+/Sv/BeeDZhpTCfyBAbz2NmYSId1tDXzqra9a7o9m1tmZG25EOjsQmcsjqip6YYy+Rx5exyszG1xNJ66rdSTxMVW9Nv1fsQDhA58CfgF4OfDrIvLylbxh7qfMXzvzKKEfcDGIEw4PM5MISYYR/+LGy1byFmadWX7BmKWr1iCxmFcDx1T1uKomgL8Abl7JCXPbNVw/9hK/8+JhNqemmVCf7rYG/s0bX8aNu3pWfuVm3Vh+wZilq9YS2HeKyG8AR4D3qupowfMDQG4N4kngNcVOJCJ3AHcAXHLJJSXfsLBdw/VjL/HK00+7evgPWz38RlCq5YrlF4wpbV2ChIh8B+gr8tTdwAHg/wU0/edHgN9a7nup6v3A/eByEqWOsz2j64Pt5mfM0qxLkFDV15dznIh8GvibIk8NArkTydvSjy2bfco0xpj5qm66SUS2qurp9Le/CjxR5LAfAleKyA5ccLgNuH2l722fMo0xJl/VBQngD0XkWtx00wvA7wCISD+u1PWNqpoSkXcC38SVwH5OVZ9crws2xpiNqurWSaymlTT4M8aYZbJ1EsYYYzYmCxLGGGNKsiBhjDGmpGpMXNetwh3T4je+lsTD37eSXGPMurGRRJUobGOdeuF5Jj/2cZLPHy+7rbUxxlSaBYkqUdjGWsfGwfNgfKLsttbGGFNpFiSqRG6DQQBNJMD33J9ptm2mMWat1VWQSD79dFlbVq6HwjbWEo9DGLk/06yttTFmrdVVkMD3q3Zuv7CNtXS0QxRBe5u1tTbGrJu6ChICVTu3B2gp4gAADItJREFUX7hNZnDZDlrf/S5iO3batpnGmHVTV205ru3o0G/d+DrbstIYs5asLUetsbl9Y4wpT10FCQWb2zfGmCWorxXXYYjfu8VWLq+BwtXj9js3pjbVVU7CWoWvjczqceKxvK1gLfFu6pTlJIzJVbh6vForyowxi7MgYSqucPU42GpxY2qVBQlTcYWrx8EqyoypVXUVJKq5LcdGUrh63CrKjKlddRUkqrktx0ZSuHrcVosbU7vqqrops+I6mp7G791Cz4MPrPclGWM2PqtuqjWWRDXGmPLUZZCwJKoxxpSnroKEteUwZvlmDh1meP+tnLnhxpIFIOUcY2pLXQWJTFsOS6IaszSFe7AXKwAp5xhTe+oqcW1tOYxZnuH9txIOnXWr59MKC0DKOaZOWeLaGLOxlbOK3lbab0wWJIwxiypnFb2ttN+YLEgYYxZVzip6W2m/MVmQMMYsqpxV9LbSfmOqqsS1iDwAXJX+thO4oKrXFjnuBWACCIGUqu4p5/y7W1v1O7/wi7YBjjFmLVniulJU9VZVvTYdGL4M/OUCh+9NH1tWgACsd5MxxixRVQWJDBER4Bbgzyt6XrANcIwxZgmqMkgA/wQ4q6rPlnhegW+JyKMicsdCJxKRO0TkiIgcOZdIuMesLM8YY8oSrPUbish3gL4iT92tql9Nf/3rLDyK+GlVHRSRXuDbIvK0qn632IGqej9wP7gusGBlecYYU641DxKq+vqFnheRAPg14PoFzjGY/nNIRL4CvBooGiTyXof1bjLGmKWoxumm1wNPq+rJYk+KSIuItGW+Bn4eeKKsM1vvJmOMWZI1H0mU4TYKpppEpB/4jKq+EdgCfMXltgmAL6rqN8o5cezqq+u9h4wxxixJ1QUJVX1rkcdOAW9Mf30c2L3Gl2WMMXWpGqebjDHGVAkLEsYYY0qyIGGMMaYkCxLGGGNKsiBhjDGmJAsSxhhjSrIgYYwxpiQLEsYYY0qyIGGMMaYkCxLGGGNKsiBhqtrMocMM77+VMzfcyPD+W21HQWPWmAUJU7VmDh1m7O57CIfOIp0dtvWsMevAgoSpWpMHDkI8htfcjIjY1rPGrAMLEqZqhSdOIE1NeY/Z1rPGrC0LEqZq+du3ozMzeY/Z1rPGrC0LEqZqtd51JySSRNPTqKptPWvMOrAgYapW0769dNz7QfzeLeiFMdt61ph1UHU70xmTq2nfXgsKxqwjG0kYY4wpyYKEMcaYkixIGGOMKcmChDHGmJIsSBhjjCnJgoQxxpiSLEgYY4wpyYKEMcaYkixIGGOMKcmChDHGmJIsSBhjjCnJgoQxxpiS1iVIiMh+EXlSRCIR2VPw3PtE5JiIPCMibyjx+h0i8vfp4x4QkfjaXLkxxtSX9RpJPAH8GvDd3AdF5OXAbcArgJuA/yoifpHX/2fgY6p6BTAK/PbqXq4xxtSndQkSqvoTVX2myFM3A3+hqrOq+jxwDHh17gEiIsA+4H+kH/oC8KbVvF5jjKlX1ZaTGAByNzA+mX4sVxdwQVVTCxyTJSJ3iMgRETkyPDxc0Ys1xpiNbtU2HRKR7wB9RZ66W1W/ulrvW0hV7wfuB9izZ4+u1fsaY8xGsGpBQlVfv4yXDQK5u9xvSz+W6xzQKSJBejRR7BhTwsyhw0weOEh44gT+9u203nWn7fxmjCmp2qabvgbcJiINIrIDuBL4Qe4BqqrAYeDN6YfeAqzZyKSWzRw6zNjd9xAOnUU6OwiHzjJ29z3MHDq83pdmjKlS61UC+6sichJ4LfB1EfkmgKo+CXwJeAr4BvAOVQ3Tr3lIRPrTp/g94D0icgyXo/jsWv8MtWjywEGIx/CamxERvOZmiMfc48YYU4S4D+b1Yc+ePXrkyJH1vox1c+aGG5HODlyBmKOq6IUx+h55eB2vzJgNTRY/pHpV23STWUX+9u3ozEzeYzozg799e4lXGGPqnQWJOtJ6152QSBJNT6OqRNPTkEi6x40xpggLEnWkad9eOu79IH7vFvTCGH7vFjru/aBVNxljSlq1ElhTnZr27bWgYIwpm40kjDHGlGRBwhhjTEkWJIwxxpRkQcIYY0xJFiSMMcaUZEHCGGNMSRYkjDHGlGRBwhhjTEkWJIwxxpRUV11gRWQCKLa39kbQDYys90WsIvv5attG/vkW+9lGVPWmtbqYSqu3thzPqOqe9b6I1SAiRzbqzwb289W6jfzzbeSfDWy6yRhjzAIsSBhjjCmp3oLE/et9AatoI/9sYD9frdvIP99G/tnqK3FtjDFmaeptJGGMMWYJLEgYY4wpqS6ChIjcJCLPiMgxEfl36309SyEiL4jIP4rIj0XkSPqxzSLybRF5Nv3npvTjIiJ/nP45/0FErss5z1vSxz8rIm9Zx5/ncyIyJCJP5DxWsZ9HRK5P/76OpV8r6/yz/b6IDKb//n4sIm/Mee596et8RkTekPN40X+v8v+3d3ehUpRxHMe/v3yDykgLxMw6KkUJvWgiRmbZhaEXHQMvjkiGBVGU6UUXgjddVlAXVhRZkYplpYVCZJqd3gg9UviaZb5BmilopXVhqf8unv/CsJw57nlx5+yc/weWffbZ2dnnP//ZfXaemZ2RRkna4vXvSxpYr9j8/UdKapX0o6TdkhZ4fcPnr4PYSpO/LjOzUt+AfsB+YDQwENgOjC26XZ1o/yHg6qq6F4BFXl4EPO/lGcCngIBJwBavHwoc8PshXh5SUDxTgPHArosRD9Dm08pfO73g2J4Fnmln2rG+Lg4CRvk62q+j9RX4AGjx8uvAE3XO3XBgvJcHA3s9jobPXwexlSZ/Xb31hS2JicA+MztgZv8Cq4DmgtvUXc3AMi8vA2Zm6pdbshm4UtJw4H5go5mdNLM/gI1AIf8ANbOvgZNV1T0Sjz93hZlttvRJXJ6Z10WXE1ueZmCVmZ0xs4PAPtK62u766r+o7wNW++uzy6kuzOyomf3g5dPAHmAEJchfB7Hlabj8dVVf6CRGAL9mHh+m4+T3NgZskPS9pMe8bpiZHfXy78AwL+fF2tuXQU/FM8LL1fVFe8qHW96uDMXQ+diuAv40s7NV9YWQ1ASMA7ZQsvxVxQYlzF9n9IVOotFNNrPxwHTgSUlTsk/6L67SHMdctniA14AxwO3AUeDFYpvTfZIuB9YAC83sVPa5Rs9fO7GVLn+d1Rc6iSPAyMzja72uIZjZEb8/DnxM2pw95pvm+P1xnzwv1t6+DHoqniNerq4vjJkdM7NzZnYeWErKH3Q+thOk4Zr+VfV1JWkA6Ut0pZl95NWlyF97sZUtf13RFzqJrcANfmTBQKAFWFdwm2oi6TJJgytlYBqwi9T+yhEhDwNrvbwOmOtHlUwC/vJhgM+AaZKG+ObyNK/rLXokHn/ulKRJPgY8NzOvQlS+PN2DpPxBiq1F0iBJo4AbSDtt211f/Rd6KzDLX59dTnXhy/QtYI+ZvZR5quHzlxdbmfLXZUXvOa/HjXSUxV7SUQeLi25PJ9o9mnR0xHZgd6XtpPHNTcAvwOfAUK8X8KrHuROYkJnXI6Sda/uAeQXG9B5ps/0/0rjsoz0ZDzCB9EHeD7yCn1WgwNhWeNt3kL5YhmemX+zt/JnMUTx566uvD20e84fAoDrnbjJpKGkHsM1vM8qQvw5iK03+unqL03KEEELI1ReGm0IIIXRRdBIhhBByRScRQgghV3QSIYQQckUnEUIIIVd0EqHUJM2UZJJuKrANCyVdWtT7h9Ad0UmEspsNfOv3RVkIRCcRGlJ0EqG0/Dw8k0l/amvxunslfSVpraQDkp6TNEdSm1/HYIxP1yTpCz+x2yZJ13n9O5JmZd7j78x8v5S0WtJPklb6P42fBq4BWiW11nkRhNBt0UmEMmsG1pvZXuCEpDu8/jbgceBm4CHgRjObCLwJzPdpXgaWmdmtwEpgSQ3vN4601TCW9O/au8xsCfAbMNXMpvZMWCHUT3QSocxmk87nj99Xhpy2Wrp+wBnSqRM2eP1OoMnLdwLvenkFaYvkQtrM7LClk8Fty8wrhIbV/8KThNB4JA0lXeTlFklGumKYAZ8AZzKTns88Ps+FPxNn8R9Xki4hXX2sIjvfczXMK4ReL7YkQlnNAlaY2fVm1mRmI4GDwN01vv47fD8GMAf4xsuHgMqw1QPAgBrmdZp0ScwQGk50EqGsZpOuv5G1htqPcpoPzJO0g7TfYoHXLwXukbSdNCT1Tw3zegNYHzuuQyOKs8CGEELIFVsSIYQQckUnEUIIIVd0EiGEEHJFJxFCCCFXdBIhhBByRScRQgghV3QSIYQQcv0Pa7j3wo/el7kAAAAASUVORK5CYII=\n", 1132 | "text/plain": [ 1133 | "
" 1134 | ] 1135 | }, 1136 | "metadata": { 1137 | "tags": [], 1138 | "needs_background": "light" 1139 | } 1140 | } 1141 | ] 1142 | }, 1143 | { 1144 | "cell_type": "code", 1145 | "metadata": { 1146 | "id": "JreC3JPcydgD", 1147 | "colab_type": "code", 1148 | "outputId": "d26ef9ad-b83a-44e0-f039-73af469d0c0d", 1149 | "colab": { 1150 | "base_uri": "https://localhost:8080/", 1151 | "height": 296 1152 | } 1153 | }, 1154 | "source": [ 1155 | "cmap = sns.cubehelix_palette(dark=.3, light=.8, as_cmap=True)\n", 1156 | "sns.scatterplot(x='Amount',y='V1',data= df,hue='Class',palette='PuRd',alpha =0.2)" 1157 | ], 1158 | "execution_count": 16, 1159 | "outputs": [ 1160 | { 1161 | "output_type": "execute_result", 1162 | "data": { 1163 | "text/plain": [ 1164 | "" 1165 | ] 1166 | }, 1167 | "metadata": { 1168 | "tags": [] 1169 | }, 1170 | "execution_count": 16 1171 | }, 1172 | { 1173 | "output_type": "display_data", 1174 | "data": { 1175 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEGCAYAAACO8lkDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9a4wl6Xnf93tvVXXO6cvMzi6Xe+GKpEkpFNcxzYsMfRCtyJZJ04kphY5BBklM0TQhWLRhIHAQmUhsIBYsgYBlI0riEJA/0DDF+ItMATHkUIEVG5BlhaRJgbYsUqFIce87t+4+l6p6b/nwnKrununZndnpntt5f8Biu8+lqk739PvU+1z+f5VzplAoFAqFo+i7fQGFQqFQuPcowaFQKBQK11GCQ6FQKBSuowSHQqFQKFxHCQ6FQqFQuA57ty/gNHj44YfzG9/4xrt9GYVCoXBf8eUvf/lizvmRk557IILDG9/4Rr70pS/d7csoFAqF+wql1Hdu9FxJKxUKhULhOkpwKBQKhcJ1lOBQKBQKhet4IGoOhUKhcLN473nmmWdo2/ZuX8odo2kannzySZxzN/2eEhwKhcJG8cwzz7C9vc0b3/hGlFJ3+3LOnJwzly5d4plnnuFNb3rTTb9vY4PDyy+/jM0WFRUYiCZy4cKFu31ZhULhjGnbdmMCA4BSigsXLvDyyy/f0vs2subw8ssvo4MmdYkUEiRQK8Xlly7T9/3dvrxCoXDGbEpgGHgtn3czdw4Jwn5geXlJf9CjtWb3DbuopFhcWjC3c2Y7M+q6vttXWigUCneFjdw5GG9YvLjg6neusnh+wcGzB7zw2y+Qlon+oCctE/OX51x68RK34ncR+kA37whtOMOrLxQK9zsvvPACH/7wh/lDf+gP8a53vYsPfOADfOMb3+Dpp5++25c2spE7h9DKIp67w4U/LAPdfkdKiWpW0Ww3JBJXnr+Csorzrzv/isdcXlnSXmkhQ4yRarti+5FttN3I+FsoFG5Azpkf//Ef5y/8hb/A5z//eQC+9rWv8eKLL97lKzvORq5c1lpI1zyogCy/ON96FpcXLJ9fsv/MPqsXV1x+7jKLq4sTj9e3Pe2VlpQS7UHL6tKKvT/YY+/ZPbp5d+afp1Ao3D/8i3/xL3DO8ZM/+ZPjY3/kj/wR3vCGN4zff/vb3+aHfuiHeOc738k73/lOfuM3fgOA559/nve+97284x3v4Omnn+Zf/at/RYyRj370ozz99NP84T/8h/n5n//5U7nOjdw5MIOdJ3do91pykN3D1qNbmNqQ2kToArnPpJjwrSc9lMhkUkj0Xc/uI7tofRhXYx8hQ+gCYbVOKSV5fHlpiWtc2UEUCgUAvv71r/Oud73rFV/zute9ji9+8Ys0TcM3v/lNPvKRj/ClL32Jz33uc7zvfe/jU5/6FDFGlsslX/3qV3n22Wf5+te/DsDVq1dP5To3Mzj4zOTRCU9Mn6C72oECMzXkkAmrgK40ve8xykACv/Bj4bo76PAHHju1zB6aUTc12sjCn/zx7YjWWo7ZBSpb3Y1PWigU7kO893zyk5/kq1/9KsYYvvGNbwDwnve8h4997GN47/mxH/sx3vGOd/DmN7+Zb33rW/yVv/JX+DN/5s/wp/7UnzqVa7hnb2eVUu9XSv2uUur3lFL//WkeOycgQLfowICuNGRIMWEbizIKYwz9sif6SFgF/MJz8OIBfs8TVoHUJw4uHnD5hcvYxuK2HEoftovVO7X8dBVod8/+mAuFwh3m7W9/O1/+8pdf8TU///M/z6OPPsrXvvY1vvSlL40t9u9973v5l//yX/LEE0/w0Y9+lM9+9rOcP3+er33ta/zwD/8w/+Af/AM+/vGPn8p13pOrllLKAP8L8KeB7wc+opT6/tM6vraa/ef26a52rK6uWF1d0S97qvMVkwsTbG1JPhHagFaaGCL1bk1YBvr9noMXDpi/MCccBPqrPZefuUy2md037DJ93ZStR7dwUwdJgoStNnODVigUrudHfuRH6LqOz3zmM+Njv/3bv813v/vd8fu9vT0ee+wxtNb8o3/0j4gxAvCd73yHRx99lL/0l/4SH//4x/nKV77CxYsXSSnxoQ99iL/9t/82X/nKV07lOu/VVesHgN/LOX8LQCn1eeCDwL8/jYOnLtHPe8IigAI3cSSTxvqDdpqtx7aod2pyzsQQCUvZPTAFYwzdvKNf9tRbNba1EMBXnsn5CTlmfOexlcXNHDnnjRu6KRQKJ6OU4pd/+Zf5a3/tr/FzP/dzNE3DG9/4Rv7e3/t742v+8l/+y3zoQx/is5/9LO9///uZzWYA/Pqv/zqf/vSncc6xtbXFZz/7WZ599ll+4id+gpQkrf13/s7fOZ3rvJU+/juFUurPAe/POX98/f1/DfyxnPMnj7zmE8AnAJ566ql3fec7N/SsuI6L37rIxd+7SGoT2mn80mOcYed7dogh4hpJEWmr6fd7ur2Obtnh557phSkgMw1u6rDO0i07mllD81CDrjWmMsR5JPoojz/cMNmZnOJPqFAovFZ+53d+h7e97W13+zLuOCd9bqXUl3PO7z7p9ffqzuFVyTl/BvgMwLvf/e5binDKKlRW9Kse0xv8ysMEVFJoJQHBNpa+67G1BQuzh2bkC5nuakcKElSUUqyurqSLKfe0By07T+yQQ0YZha413aIjXU7Us8PCNUhnU+wimYypDa6+ebXEQqFQOGvu1eDwLPCGI98/uX7sVMjI4l3PakIXsI2VNtaU0FrjkyfFRFaZ1d4KLNjaop0mtAETDHbL0u13sruY9yiliD6yeHnB9JEprnaEvYBuNKEP7D23x+zhGdZZVgcr2kstMcouxdaWvJ1xU1fST4VC4Z7gXg0O/y/wVqXUm5Cg8GHgvzytg6usMNYQUqDaqghtkB0C0kKmjSanjHaavMiYZIgxkmJicm5CDBGFotlpWF1aHc4wJPmv2+8IWiau7dTipg7jDPMX52CgvdLSHXQoFKY2GGskNbXTSA2jtrKz6CNKKQlezozXn4LkFrWV60wxoY0+1i1VKBQKt8M9GRxyzkEp9UngnwMG+Ic55393eieQo5qJQSmFqQy+80zdFHpZfP3CU+1W+Nazmq/Yev0WyiiWV5Zoq6mmFcYZmvMN6WIidhFtNG7iWO4tUVnR7rXsNDusLq8IrdQoqu2KEIPsNqxCdxrjZNdChtXlFXZisU52KgpF6CWIaa3xKz/OUww7HUAK61OHa0p6qlAo3D73ZHAAyDn/M+CfncWxlVFUs4q4khkGN3FMzk+kCyl1MscQE/1+T7PbsOyW+JXHTRzKKPr9HoWifrzGTix+5bGNxTZSnFYJQghoq+nmHVprYheJfcQvPFuv36JqKvzcs7gokhzTyZRur5NdxEGHdocBKKcsU9gAWVJcMUT83EsgqS1kxsL60dpGoVAovBbu2eBwpmRIfSL4IHUEH8iLjNKK7KW2HftIvVOjncbWFoUihYTKCmUUoQvS7TTR7Dy+I8NybSCnjK0sYS2bkWMmk/G9l1bYIMFJG030kcmFCaEN9MseIqQsuxZbyYKvjZavK4heUltoyDET+oDvvOwqjFxn9LEEh0KhcNts7CoSfURphUKhlMLPPUorWcATNOcaTG3o5z0pJezEUm/XmMpga0u9W5NVpr3Uyu7AaWljtUZqBUZqBUorubNPENtICIEU0mHHU1ZMH5niV575pTmLiwuUUaCko2m8VqeIIdLPe7r9Dr/wY00iR5H96NtiVFQo3A/86q/+Kt/3fd/HW97yFn72Z3/2bl/OiWzkziHGiLIK4wzd1Y6sMpNzE3SjcVNHDJFqp5IF3ln0VMviX2nSPEmqJ2b8ytMddFSzivl8jqkM1U5FJkuaqRYpjn7e4696SRXNpI6RY5ZdxsxiGoNWMh9BkGBQTSuUUqScMMqwurIS8b+UyCkTQiAr6bpq91qMNSivCLNQUkuFwj1MjJGf+qmf4otf/CJPPvkk73nPe/izf/bP8v3ff2oiEKfCRgaHoQaQU2b6uqkMvGlN1VTE7Ui719LPe3Ye3xH5jBQxWhbo1Elw8K0nXAk0Ow3KKVSSTqHli0vpZlKSfiKAbSyThyZiR2oU7eWWarsSmfAI8xfm2InFNRKYtNHSxeQM7bwl60xcSNpqemEq54syRxGDfA7fe+qdmhRFVbaa3rzQXwoiFRJjxFiDbWwJLoXCmkvfusRzX3kOv/C4mePxdz7OhTe/dr/53/qt3+Itb3kLb37zmwH48Ic/zBe+8IUSHO4FssrSoTT3dH0nXUaNo91vib0Uqbcf3aabd/ilRxmF72T2QWlFCIH+oKeaVVRbFSklwiqMaaqwWt/Va4VvPTtP7NCcb1hdXOEqR32+Jqcsiq9L2UUoo1gtVlSzSgKSj2ir0UaTfCLFJJPXfSSFRLfsqOqKnGUHoq0WwyIrnwcZ5JZgsQpj0HGT4/LhOWXag3b0twghkHyi3q3LzEVh47n0rUv8wW/8ATlKLdIvPH/wG38A8JoDxLPPPnvMu+HJJ5/k3/ybf3P7F3vKbOTtodV2VGA1lZFA0ftxZmB2YQYa2kstfu7x+17e5+R9Gin+uonDt57YRmlpDYnQy1Dd7KEZfuXRWo+poMlDE5oLzaG/wzo4VDuVdDINgUIrcpY5C+ukMK2ypMH6eU8OGVc55hfnzF+cs7qyktRSZVBZjXMQOWeZuegCOUrHU3vQSmBaE/pwnfFRiono4x37fRQK9yrPfeW5MTAM5Jh57ivP3aUrunNs5M7BR49C0e63qKzIKdNcaKhmFdlLPj/OI8EH6llNP+9xE4eZGhKJ2IpKazWrCKtAu2hRrWKyOyFnqTegkOPlzOLighTFfjTlJMNrq0zMkcnOBGstySRmD83QTlJF82/POf+m81K41hpVKxIJN3OgIa4iVV0RjXQwxU7STvW2SIXnlMeU0zHSWhdqPQ9x3fNrTtLcGgbzQNppTWWue02h8CDhF/6WHr8ZnnjiiWMKrM888wxPPPHEaz7eWbGRwYEASismD02IPpJzJvmEQtJAMQRSl2l2Ghk0s1KQNrVh2kzHAvCwAJMlb9/Pe0xjZMjOikzH6uIKgGanIXSBvT/Y45H/6BHsliUs1p1LMck1rFUVY4i4yrG6uCLHTHfQifT31FLNKtyWk0G9lSd24lcdgrS1Kq1GH4kbiSqmJHWJFJPUPa5FyS7pKP2yP3S5Q1p9q+2qyJEXHmjczJ0YCNzstQ+bvuc97+Gb3/wmv//7v88TTzzB5z//eT73uc/dzmWeCRuZVjKVEXe3RS+yFBFUpegWUmOwbr1LiLIA55zRRuP3vHhFd7KYdwcdSsuEdQoyN4ECt+UIXWB1aQUZXC3zDmQw1tAf9CxfXIpLXCvzEpOHJtiJJfSyaNuZDNf1854UEylJqketV3NttaSgrKKdt1hnqaaV7IbW7bnW2esW/0w+lCxfBcIyyL+C4V+ChmqrOibFkbNc57XEtqSeCg82j7/zcWksOYIyisff+fhrPqa1ll/4hV/gfe97H29729v483/+z/P2t7/9di/11NnI276cM9uPbbO4skAlRbVTjekcW8n08ezCjEjELI20pk4t7bKlaipZiLcrWYTX0t7aapSVBXl5aYmtRP7CzRxplehXPZNzE1DQ7XWENrB4acHW67dAi8Xo9NyUzkrA8Z2XWoNWuKnDr7ws5BHUZdn1TB+eiptdC7ay0sWk1Vi0zlkK79HL7gYl/zDHaeuBBNV2NeozXVeIvoHm7bDTKRQeVIai82l2KwF84AMf4AMf+MBpXOKZsZHBAcQidNgBqKSYTCa4maPNLf2qBwurFyStU2/XZDIaLYuuzvQv9iitROrCSkdRfa5GVxrTiFaTsYbcZxJJvB6cptvrqM/VpCuJSTNhdXWFRqMbTbVTHYrurWQWo96t6a52MgfhJFDlnOmXogRbzSqq7XWtZB6oHqro5zIMZ6zUBDIZ17gxyAw7Ea31Ycvqehr7JJQWocJri9Sl5lDYBC68+cJtB4P7kc0MDgnmL83RWmMbS1xFDlYHPPzWh+kXPVqLD8P0YZlcJjHqLeUk3UTVViWS3UZRb9ekPo4dQX7hqbdrVv1KOpOMltmKPhLbSOwizjm6RUc1kV1LyoluvwMF9W5NvVPTr3rpYCKjnHQwDZ1FqysrUp+wtcVOLbuP7461i2HSW++I54RCifJsY8cp62EnYWozXuMr4WaOfCDdXCCBoYj8FQoPLhtZc0gp4SqpAyxeWtDv92NB2U2c5OVXieQTWq1lsb3IXdgtmXrOKdOvepReTzav0zFu4phcmOA7z2RncjjR3Ab83FOfq2XYrDEoI4NyburGOkFsIzlkupVMXk/OT9h6/RbNbjNKavjlukU2Sx0i9UmmrrPsUgb5jWsL0mElMwxDNxUZYhcxtRn1okIXTuxg0kbTnGtodhuacw31dl0kwguFB5iN3DkYa4g5jj4LQ6pmmHzOUdzZ+mUv6ZiZk7v0ypLJ0mVUJeppTUpJhufaMMpqDDl+Pz8servGSUDQivNPnWd1eUV9rhZToDZAZryOg+cPqLalTTVG6VyKfcRNHChGY6FKVbRXWiYPTVheWpLC4ezG5PwEm+yhpDcSLBRqNC4aJrbRUgcZdgUoqLfqE9NGRwfoCoXCg8tG/qXHHNl63ZbITiw9KYiJT1bSmmoquZM2xtDsNMQustxbsnh5Qb8n9YgUE9atB+HmPTlnYkjMX5iLWdBaNTXHjF94fOvHQrabOaqtCmMMJFm0U0jkNksHkJUCc7vX4qxj/pKYBDUXGgkwSklRexlw224sQJORTqiLS1Z7K1b7q7FOYGpzbLHXel1EV4rUp8PAAHKcZRHxKxQ2mY0MDkYbur11G+r6bn51ZYVCUU0qQhdEX2nZE9pACAGjDf7Ay/eteDX4VgKLqS0oJcNoQdJC1bYUl7WVQnM1k9qCsYa4ijJrgRLZcDR2Ysk6j7IasYuQoF/1zB6dYY1l+dISow0pi0osGrYf3UYZRUrSdju03qY20e11rA5W+N6DYZzXOIp2+sRupJzy+F+/6qX1tQs3nJ0oFAoPFhsZHDKyQ2ivrLWU2jAK5ZnaUO/W4trWVAS/FrHTcvc9aB35lSerLHMNg29DzDI5PJEBuawkVYWSjp8UkqSkckJZJYN3WqGsotltpDbRBYwxsutImXpXDIXsxMq09WUxB5o9POPc95yT81lzqOlEJgdJTy0vLlleXNJebVleWbL/wr7UOyYiO+5mjnqrPjlVtK5ZtHstYSm1iH7e39ZkaKFQED72sY/xute9jqeffvpuX8oN2cjgQIYc5A54EK0b/BVWF1f4hcwUxBzHIbLYyaKayVRb1bg7mD48pW/70W5UaSXzCSg0mnq3ZuvhLRlyG3yqD0TMTzuNVpLa0Wi2Ht5i57EdspKuoGqrEqXVdXHcWCNzGG1kdXHF4qXFWFCutirsRAKFnVr6lQy5DUX3+bNz9r+7z9539mivig7TYDtK5nhaCaim1RigjhK6MGo3FQqF18ZHP/pRfvVXf/VuX8YrspEF6Zwy9VZN6kQoL5GYnJ+AXtt7Gi2zBl6G4tw5N9px2sayurqi2WnIMUthebuWu/UogaZbdlhnxUmu1jIf0a5TQWrdNdSnsSCsrcZ34vfgtsRn2lhD81CDcw4i9Iue6cNTli8vZTBuS66p2+/AQrPVsF1tY4xhcWlBN++opzUkaPda2RU5Q+ol3aQrjVFHahBGH9ZanBlF/k4iJREfLBQ2gfkX/i1XPv1F4vNXMY+d4/xf/1G2PvhHb+uY733ve/n2t799Ohd4RmxkcIgxknVm8shEdgxWj94KVVORUx5bWkGKvCorunlHv5Q5iNAH0iqJr7RW8rjRIqlhFduPbstxaidFbCMmPjll6X6KYjla79YSKBS4iTv8unE0Ow2uklkC1zgOXjgQaYu1zahSip3Hdrj87ctcfu4ybtcx2ZnItLPWIv/R+1HWO/UJ1Rymt8y2OVZvyDlLQFmjnYbumh+eOhyuKxQedOZf+Ldc+hv/lLySdGp87iqX/sY/BbjtAHGvs5G3f7ayaDTLy0u6/Y7lpSVaaTDIBDEJO7XSltpF2nnLck8kMSbbooGknQy2ZfJYtyAhtYqpuL3ZxrK6vAIjC7+tLCordKWpppVYkVqDbkTUT1txoqt3a5rdBldL66p2WorlWxWudjjnJCgpRbaZ6UNT6q0alaSOMch9KKuomkoMiZQ6FNxLiaykvuE7P3Y0XZtaGixRR9ZKs2W+obApXPn0F8fAMJBXniuf/uJduqI7x0buHEgitLf9+m0R1dPi9paipH78ypOd3OHXOzXdXjfOGGQlgnuDe1pjGpptUVwdpLC11XLXP3HkkMV/eqsmhSQT0Y0EFr/0MpCnHWqmiEvxmLbagoF2/9CERznRbVLIXILWsnMwzqAfErMiv/KEXjqrqpl0SNnK4nuPn3spgFtxkPMLz3x/jptKoNGVZrI9kfc7aZdVSgKSbSwpSc3jfgsMOeVROLFQuFXi81dv6fEHiY0MDjGJuml3tZPuHWPEByHKXfpkMsHPPW7qsLVlGZdUk4pmtxkDwCDSp4wi9IHYRmxtiT7iW89kdwJGOqP6RY+xZhy6czMnHU7npWtqtb+ivdxK+6oCHCxeWjA5NxEpjJUfpcWDD9IOmyLTh6ZUW5UUz7ci7X4rO591qsxORKepntWHHVU5Y63saAbVWQDda6y1UoDW0Gw3YxeTtvq+rDH0C2m/JUttp5pV0j1WKNwk5rFzxOeuDwTmsXN34WruLPffX/wpYLVl8dJCdggx4zvP6mAl+kEhs7i0EMntl1csLy6ldbXzzF+aS7fQMHSGqKlmlUeZa9tYJrsim9Hti/pq8pLO8QvxW7C1HRfmftGP8xM5SVHbLz05yKR16KR4nWMW8T1rxpbZwcxnkAw3xjA5N2H3DbtyDi/GRN1+J14MUeonKcnAXI7ruYosAdO3nn7Vy+dd3t8tq77z4+Q5yGftF32Z0yjcEuf/+o+iJsc1xNTEcf6v/+htHfcjH/kIP/iDP8jv/u7v8uSTT/KLv/iLt3W8s2Ajdw4hBiYPTchRWka1XhekvdxtpjZhakO2UnMY0kN+5fGdiOqFVRjnE/p5j56tVVOzvCf6SL/XYyvL9KGp+DdvicBdTpl2v5VA0HoWlxcyLa3FDhTWU9MxHZPWSCGJeF+U4GSswRiDdlLDSFUSF7j15+oX/TjIlnxi+vAUO7FjsBvSa+1eK5PeePzCHzrZ5eq+9ZFO/fXttjnKz7DsHgo3y1B0Pu1upV/6pV86jcs7U+5KcFBK/RfA3wLeBvxAzvlLR577aeAvAhH4qznnf37a5zdm3dI570a/5uZcI7IYSZROMbIriClisiG0gdmFqTi8+bXMhjLEGJk8PGH+/Fzu8r3cldvGQpDW2LgVRbBPiyDeULzuFrKz0ErTL/pjw3ZZrY2A1tIWgwbSECS0Ef+JQalVGfFyyIhsR7fXiW9DFi0mbbV4T88cy5ekHTalRAhi4jPMZwySIm7m7tvAANzw2u+3mknh7rP1wT/6wHcmncTd2jl8HfjPgf/96INKqe8HPgy8HXgc+DWl1PfmnE/fckwxTjtrp8VLOuex6FrNKrEABXKf0VONcpp6UhNtpN6pWV1dsbq4wmBEqK42dPsd0Ue6vY7moYbYikT2oMBaTSpSTCyvLFleWY6GQXZiMY1MYA86SApF7KIEHERKgyzBTSHT3IMzHEpktbv9bgwmxhqZ1wgR24g8h5s6mnON7HzW6rIgwWVIuQz+DSmm0RjIVOa+KuqaWqbMj7bqDhPuhULh1bkrwSHn/Dtw4t3dB4HP55w74PeVUr8H/ADwr0/1/Ou8fr+SmYXYyR32VtySXcO6l18pJYqrq4hyCq20FH2XHoL4LrhzjpQTqUtiP3pk4jhFkdJ2U4erHKaSBSv4MPpEZCTtU80q6u0aW1nq7Xo8zuBM51uPzVYWvfVuQ1f6WNHYNU46ktbT2vMX5lKYrkTwr5pV5D4zPT+ld/3oT9G3PZNtSbPBOjg4Q7vXjourX3npXLpPPKONkyaD0IoelHa6+E8URnLO9/XO+FZ5LbW2e+0v/QngN498/8z6setQSn0C+ATAU089dUsnUUqRlKRmhkLu4IGQoqSVQgi0V9qxiOxqx2pvJcEjIF1LXmoIrnEEZBGqd2vaS620g2a5A3eVIyUJICEHuWvXihila6pqxKLTVpbmXHNd0dtYg9kyqF35x+wbLxLijfz6tNHSaosEiaHo3ew2+KWXc8wqqkklw3qVFknw9a6gOdeIvtTak2L0eziats+Iv/Y1wWEYsLvRHXkKafSIUEaOfVRGfHxdTGOX1Wnd3Q+T3oXCUZqm4dKlS1y4cGEjAkTOmUuXLtE0zS2978yCg1Lq14DXn/DUp3LOX7jd4+ecPwN8BuDd7373LYXFrLOorxJQtSKrLAtiRhbBlWdybkJ9vsZYg+9F2iK0QRbuFMci8eCk5mqZqLaNRSuNdZZsRJhPGRlOSyaJDhOKHDOTnYkMoGnASNpjwE0d3bwbF2jttAy6aUWT5JccvbS+DnMJgHQxdTKzUU2rcRcx3DU350T2Q1kJXKY2uImko9p5KzMS2yI4OKashp/bemZgONegApuyXKStrPhWrBfkFMTrIoU0OunZqaXZaaS+sqZfiPotID7XE0s1qSgUzoInn3ySZ555hpdffvluX8odo2kannzyyVt6z5kFh5zzn3wNb3sWeMOR759cP3a6JBkiiyvp/NFGun2yymQtQ3FhFVhdWWEqQz2rJa1k9Xj3W52rxjvwFMUIyE6lRbWaiVdDjpl5mMvCp0D1Ul/QtUYF8VHIIWOmMomcQ6bf7/HOU2/VTM5NpN6wDgADQ1H12PTykefqnVrmIYIs/MPks60tbipBIgVRhNVGpMdzOpTOiF0c7VCPMkh2gOyc/NLjvae9JKk2MzE0uw2zh2ZUs2qcMfArPwodhmXAWy87pdoeTpcPZHmNdbYYCxXOBOccb3rTm+72Zdzz3GtppV8BPqeU+rtIQfqtwG+d9kkUMlhWbVej6qpfeVRSTM9NWV1d0S7aw84iBdPtKdW0krmHPtHTM1hJfLUAACAASURBVGkmEli2K5KXuQZtZdHzrdQMtNHU27WY6xiR6HCVIyxFxgLD4XxDK+minMX0Z/rw9EQ3tlf9fOs0GGuZpLHQvPacgOPBJnbX1/tzkkA5dDuhOAwsUTq9+nnPam+Fn3s59oG01y7VUgrgSVpqh8BweHA55zCrcRIxxBIcCoW7yN1qZf1x4H8GHgH+T6XUV3PO78s5/zul1D8B/j0QgJ86k04lLUNkixcWkhLRsP367dGTud/vJdUTkSJsbdFGc+X5KzjjJGeekYKyTxAluPQHomLqJg635cZdxNgxkzn0gKjdWPweFFq7eYe18ivplz1uIfIdt4tS0pXUzbtDZzhnDnWSrlm7QxeIfaSaVSLvMXWye9Lr4+x34lu9kkGz6ONhd1Uv3VUxRBHuWzH6VQMoKy25Q1C+UX3hpLpEoVC4c9ytbqVfBn75Bs/9DPAzZ3sFin7VY7csRKkJ9Mseo2VuwTRG7Dq1FGG1WdcbjCV1iegDxmnoPeGqdAf1qx7lFCorQhfka6NwU7HxzEHy/HZqsZWVHQLSRRNtJCzCsXl1pdU4AX0avfl+6ccCNEDsI15JB5JpDGmxnvhe1wd0LYVto2UmJE/kOnwnKShl1agOS5IOsMHCVCk12pDmqcxdpF50ndzEjT7WsG6RdXps1z36WKFQuHvca2mlO8IgItcuWim6einUJkRuQlsNFaMtZrPTsLq6wk0d7WJJWgVUr/DOiJxFL3pHfiUCd1mJVEO1XZGjyHbrqegT2UY8IQbPZ5BupNhFUYZdMxanr4kLOa2L3K/QZRE6aZXNKUuReOqk5//a1/WBCtkZDS50vvcyaNcnOt/J/IUzxBBFEmSvkw4oo0YxwRRk96WdfL56px7TVtVWhakNvvVS31lbog7pMqXkOIPftjISODahi6RQuJfZyOCgtSb4gLWiNqq03O1rIwVnrcX4xm05mq0G33maHVFeNZUjhYSbuXWxtcdtOZSxLF5cjO2YqRYJjmZH2kSddthtO/o/DIJ5KSVc47DN2rgnI0Y81hxbJFNI9MteFuK134ObXN+3H/pwaNKjOGwj1WqcYxgYjq2UEjXZtclR7qXWkLPMg+htCVr9vB9TRDlkQgxMH5qOirXGyTBgvX08FWacDNQln4gxyk5idthNpbQqMwiFwj3GRgYHpRXNrGHRLcghoytpE80+j5PR9aQmxkhMor5qGun88bZl5/Vb+HkLPqGNwlSWxdVOpq6tmOyouO5McjKDMKiCDtjKXjczYBuxAM1ZWmSH1EvOUi8YF/f1zIEy6rpjxE7eH/soEh9G9J7s1BJXx8s3gy+1X4jUd+ik3VRZdVhEXgeJLL27MjndpHFwEGDnsZ0TO6dAgppvRWAwxTReg5970kOJZrcpu4RC4R5kI4MDQPAiZa1QpJzou54YRDCvntbY2rJ6eUVYBCkeByspksoSD1bktSCenjbo2qG07CCyl1mAofhsjBlz8EfJad2d5NOo5npSwABZYK+964d1x8+1Q2lk+mVP9nn8nNFHmp0Gs2XGzqQh+PTLtaz1cK5OdjxYxjRPvVMfq3u4RoyLUkoy1X2DwOBbKdJ3+514WneBalpJ8Tor2ZVYqU0Ya0p3UqFwD7GRwUFlmUto99pxAXQTR07SQtoj6ZN+X3wYzMSMaRm3XdMrRc4aU2nM7oQUMyklqqbCRy8pq8oyPTc9nEmYHP9R94v+eIF4vYCftEAqJYJ6OcjCn7ykrgYjnmMzEEqNgeHwQQ7TV9cs5EevwThDtNJtVO1UKNTYmgtr/aWjEhvW3DAdNAj4+daP7bOpTwQTxhSUb/0o1eHxMvw2LcNvhcK9wEYGh3Qk167cETXSlae72pG3s2gVTdaLaT7sWhqKroOlp0LugOutWlIxGpxyNLOG5lwjHgy1OXaHH308tigDMvzVBypbHb5mPYymK+kI6g46+kU/vsXNHN1BN5oCwboovDb5IUuaa5z+PoEh8AxfV1NpXzWVua7uMWgVRR/lucbesJMqRdntJJ9G0UE0Y+qqmsmMydH3hzaMbcOFQuHuspHBQSspSA9DXTlmYo6opEZ1UpVlN5FSws+9FGK1WHemTrpzjDHYiXQf6UqsP1OQxdA1jsnO5OQLuJHYx7qbM/pId9CNrwteLEiVUaN2knYiGGisGd3pAKyT67nW+/lGw3S2sYcFbNYT1rP6xDt4bfSxusmxj3RNF5U2emzNHVpX01TmSKxba0IpTcrp0GVuLVg4BIez0FsqFAo3x0YGh+QD9aRicXlJjpmwCtTnarz3VLuVtGeuB+IA6nNiIQrQXe3GyedgAlhZkHPImNnhDmEw/gntemFXh3UF7dYL5zV+NLqSBfBosffwmhO60rh0mMbJ5OtaXZWW1tB+2Y9dSm7qbri4DoN4sY2iFVXdOFV04s8yJvzCj5POgy7S2JG1CrIDinlUSh12I37ppTPqyL/C4Tr7ZX/o5KYkiJWUU6Fw59jI4KC0JltothqijzKPEPKhqJ5dL9AaNJrsxSTHaMPKr6R1dfBaCAlzweCXnvagpZpV4kNdT6SusC4AZzK972FbOpXqrVqc2mIeF78hsFwrr6sQ8TwUJHU4HzG8/tqitKkMk2py0wN0NyqE3wz9QT/WFEB0kbSWOoWrHVuv36KfS30ldIdpoyEQDX4SID8DbbTYo66u0VtahaKyWijcQTYyOCQSqU20e+3onlZtV+LbYBXNtCGFhJ1Y5i/ORUU157HmMHTXxE4kIlKQKWmiFF2rqdwx5yzdSkcZlF2NE7/nFNPY6w+HSqvXLuy2kcExZdR43qGAe6MAcNauZymkY4FhIPbxcALayucEaK+24+sVa4OjtQGPsYcL/0nHHM5XgkOhcGfYyOCgA6Q+4GaO2ImnQlxGqgsy0Wwmhv6FjrCUdNCwIGmnqWtpf1VG0iZkGarrV5K3V0bRHrQYY4g+Mjk/OdbGevROGQ7TKIP2UfIiqzEY8VhrxxkJ44ykVl5lQvqOcaNLuMHj1VY1zjuAtMSelCq6ocWnuQc+c6GwIWxkcMgpowC/9hhIPo0yD4uXF4QQaM7V9HMvcwpaSa58YiVgWNEUUlbc4VQeVOTWQ2hIgMkx08/70YcBjns2HGWYeYB1GslJGqnerqUIPXRY3UMeyNrIJPm1nVc3mnvQVtPsNtftlq7lJL0l7XTZNRQKd5CNDA5aA0d8FapZRdZ5DBKxC/gQqHdq6VwyChK0e+0oHKe0TCcrpUaLUGMN/aIfW0eHnUWK4jZna3vDYu/g+naMtVz2PbFLuAHVrMIbEfXTWmOaV68LvFrnkVISjEMXDgULq6K3VCjcSTYyOKA1OiviMpCyTCrX2zW+E+E8Uxucc9iJuKqhpHvGrzxxFWnONSJL0WfcedFMCr10JZloxGWtXs8BrLuUBk2lk0TxBtOdo3fKwHVzAMAxye17AaVlNoLpKR9XFb2lQuFuspnBIUmbqmksBogx4hcirteFDlNp4soTu4Bau59NdifjDuJom2kOmWq3Ii8yMUn9IoVEsjIEptxaZVSL18HRmYJBFK/ekfbO0Idj7a12cjhklmI61hl01Db0QSTnTPTSDTakr8rOoVC4c2xmcAgZO7GkNhC6OFprKq1E+iJbaXc9EgWijyIvsRbGG7CVFeG6ZSAuROtoWNRiiNS79SiJcVTD6Ohxh0GvQfmVLDuDo4NrfuGPdfEkn/BL8WM4TXIW6e5R86m+O3adR9uAYR0Mt+sSIAqFO8RGBgc1cfh5T8wid5ERQ5rGNUzPTdGVYrXfohS4STUKzJla3M5sZUcvaZTIWsQgcxE5Hba8piTtsrGLN5wsPsrgZX0tOecT7TSDFz+G08Qv/LEgFrpwQ82nsyL28Trr0uTTsRbZQqFwtmzkX1oOSZzcciZlhTYKtMwyuB2HUYYYEqmNZJWl1TVEJucmmPNmvJtOXjqdQhdGr+lh8ernvXxdSbG5O+hENvuazp5hbuKVGDycr52aPm0rzRTT9bubLAFi0Hy6E6R0gzmHG8w/FAqF02czBWt8JC06ZORYXNuIMqQV5oHF5cV6lkGzurwCDdVUFFBnD81w9aEmk1JSfFZWagpkWdy0k1ZXYyU1lFNGK42bSQE6IcY3Oa4ltvPJgkspih+CtsfTXHC90uvtcu0Mxqs9flYMP7NrKZLehcKdYyN3Dip4nM4EY+iuLlC1yDh0V1ZUswaMmNHUuyJAl3Mmx4yfexZpIXWFKBIPg/SEUhIIdKMx2oA/YaZh7eCmjRZhPSMLb1itC9Nbxx3UQhckcA1rc5ZjDgHptDuWtH1lzac7hbZrZdkjEhq2fu0SH4VC4dbZyL82naCu5G4/bNdklQk+oLQECdMYjJKZhXq7lmE3p4khontN27akkFjtrainNW7icFNHs9vQ7DaAqLcevdHXTtRUu4OObtFJYKkP1VNjF0mTQ0XSnGVHcfQYSq0ns89IgE4pUWTtFp0ECHV7uku3QzWtxFAoptHzoVAo3Dk2MjjkxmL6SPWoY//FfYyzKGMIIcrinmG1v6KaVfTznsmFCaENNOfET9pauau11uJbj20sfuWptqsx9VFvrb0PokhUu6kb5TFIQBIxOTSjhHVOGdZrYI75ujt4uMGw3DVEH/FLP8pfu4k71vk01hbS2v/hSJHXVIaJm4he1Hr+4m4xuMQVCoU7z0YGB73V0FcWYzW73/PQOFhWpYTK0M47kcfQipwkpVRtV1IAtoeqqUorsRAdpLiPLGSmOt6KmkIah9yOvi71CRyjV8PAIAg4Dr3Ztd3oqyzWOeVjXhApJLp5R7PbyKBdTLKrGWJMJ6852k11VE+qUChsJhsZHLAGXn+OxUsLQhtJGibnJ7jKklNm1lhiGwlBagrNdkO9VRO9DLFpo6WtcipBwVjRX7rZ7iFtpDA9dDhpI5afQw//MACWYyYsZe4hGGkptc0r/8qCD9ebCWXZTWij5ZzXbD5CF0a57Jtl8Ml+UIfwCoVN564EB6XUp4H/DOiB/w/4iZzz1fVzPw38RcRe56/mnP/5aZ8/p8zq+X2o7HoxzawuJuqthvp8Q7tcEfskFp/r2gRIMTlvZUIMOO1QRu6wU0porQl9GG08bXNcR0lbEY47Kn+hncw1uMnh63zr6Zc9/VzMeuzMSufU2tPhdtM8J3Ye5eMprVfDr8Qbmiw7Gje7sZlQoVC4P7lbf9FfBJ7OOf/HwDeAnwZQSn0/8GHg7cD7gf9VKXXq+Y246EkhERa93K1njTaWySNTVlcWTM5PqXdqqt0KO7E0O824MFfbldhoblWimNpIXtwvPe0VKVTnmPGL9QJ6hGqrkvy+ljRSvVWPgSEncY1rr7Z0+x3dfkd/0NPvy05FWz0GllfCOnv9b1UdGgJpd8KvXN98m2joAn7pRxmRYTdVKBQeLO7KziHn/H8d+fY3gT+3/vqDwOdzzh3w+0qp3wN+APjXp3l+ZbTIRPQRv4xoBbH3qLyLUWuxvSiT0815CQxkpIBrxM94mFq21srXa2vPYYcA0oF0dPcwWGcenWrOSbqSBt2l0AYJRFqPheVqJkHlWuOgEz/b2iY0rAIxiMf0UY0mW1uR9hgmkDXUs5uXpbh2iA/W9ZS1BEihUHgwuBdqDh8D/o/1108gwWLgmfVjp4p2UO00+ItLtFMoZ9h+ZEYioozcDbvaoStN6iS9ZCf22MyB4nDA7WiO/6hb2Y0G247il35cqFNI+JUfbUMHw5/RSvQmh95eyU5TKQkeqZFja6dPR69oA0oPKabxBqBQeNA5s+CglPo14PUnPPWpnPMX1q/5FBCAf/wajv8J4BMATz311C29N1uDsYrpw1NSymilyAZWl1bENuC2xEvAaYeaKPETWHsfhz5IeidDbKMY8az78GMfj+Xeb2Tsc5TQHw56Dd1NsY+YqZEOIgXNbnPqef3XusDZ+noJkNOohdzL5PUU/fC5h/Tig/yZC4UzCw455z/5Ss8rpT4K/KfAn8iHt9jPAm848rIn14+ddPzPAJ8BePe7331r+g4+o5QmrFpCH1FGU+9U6EoT27UntFHEGMFIeqinRxklNp5BTpdjpm97qSU0IsanKz1qLN2UH8ERzSRbW6otsSrFglGGerum3qlf8RB3ElMZqu0jHtnOHCuo3yuM0uansID7lT8WEFNM+IW/p34vhcJpc7e6ld4P/HfAH885L4889SvA55RSfxd4HHgr8Funfv6UafdW1Fs1ukrodceR6jKqWlt/rjuUcszMX5ozuzADxPSnmlYoLdPKKsnrqm2Z6B3SKzebqnGNkwIvkobSVqMbSfW4LUe9fe8tQHdravpmSDHRz6XhALUOZrPqtlJnRxsBUkiknEgpUaWqtPIWHlju1l/4LwA18MX1H+1v5px/Muf875RS/wT490i66adyzq/eonOLaAXOadK6qLy6tMDNxHfBVAaMpITqrZrUp7EWYCeWHA5nEIa7yWjFk4H65oPCgJs4ULI7CT6I9tI65ZO9nOtWF+KcsgSaDUx7+IU/nCLP8nP12t+W5IjSYuAUVmH8nSur8FueanLn1GoLhTvJ3epWessrPPczwM+c5fnNTkO109DuySS0ndZkwE4ctjGELqLRY7G43qnpV72I7XWBjMh4Dx1LOmj8wqOdHhVbbwXXOIw1J0pjxO7mg0POGb/0o2GQMuKPvSnTzjmd7HsR+3hbNqa2sWNH2dHHBuHFTQzChQefezM3cMa4xtHMHH3rSV0idh7bOPpFR+wt9W5NJqPRKCMSGsknjDG4xkktQkPqkrSG+kTf96Agz/I4V3BLRd9TyE6Efu0rsSZHKaQ2u81mOKjd4CPeru+FrazsPNaxW1tpZyYz6lcVCg8aG/mvOh205EsLmnMT8WrYqkg+wHDnmda56q1q/VwaVVVtbam3axHTm7j1EJ14OKz2VviVJ6wC7X57U0NrA9roE+/wb6bjafxc/fU7jxzzTYn1PQgopU6UFzHN7e+cTGVGFd2jwWAjgm5hI9nInUNa9mhn8Hst/UGPMjIX4HYbXG1Q1XpIrg1klal2qjFNMxj45HgoipfJpJgOh+XWHUhhFW4ppVNtVZIW8kEK0hN3Uyml6OPoRZ1zvm7B2qSiaTWtpKusS2PX2FEBxNeKrURv66gbna3txqTsCpvHRgYH1TgSmdxFqomln3t8SESfMI9t47Skk7QW85voRXZ7kMXQ25rmXEN/0I8DakNKI3QSEJRdt8LeynWdMEH9avSrXsT5gBgioQ/U08MOp2vvdO8UsY/4lciGG2twU3fHhsdc7aTd4RRRWlHv1IQ+kGM+bF4oFB5QNjI42HNTcmXJV1bopgYbUUZhp9Ly2O634gBn8yhnoRC5bF3JtHQ1rVAoKVBHkcnWVhO7KEXktSbTaZNiEtOftZz4Ube00ZI0Z5EMd+ZVVVzPghRFJnyY34g+Eg8ik93Jfb2LUVrd3OzKmugjoQ0SINfzIPfz5y9sFhsZHFJMuHNT7F5LTgnrNKa2ZBR+1RPadbdS8qJx1EeabVnoXe1kZ6CkE8hNHO1ee0yCW6FEIvsU7TVTSPSLw/59W1sR0btm/M9Y8ZG4m/MRoT9BNjytd2D1ZvyTSzEd89UIMZBCot65eR2rQuFuspkF6S6Qnr+CRZGBuOxRZGIX6A+82If2gbAKkgrJh/4FKadjeebo4yixHTpZAGxjb3vw6lrGwS6QekYbxkBxLcMAX+HuMbQTH+Wo4VOhcK+zkcFBrXpil8gO6t2Grcd3cDs1OSe0VlgnhcasMm7qqGaVtLY6TTNrxpROv+xZXF6s22EjOUgaqm8PZbZPgxTSsULoQA551F8aeK2zFqfJ0UnxEc1mFW9vIOiSb/REoXCPsRl7/GvJQOXousDBt18mtoHp49tU2zXBy3Tx4PusrMI5x2R3Ig5uUydWnPsdoQv0+/3opBZ9HFVU7cSe3s5hKHhfu64M6SWrZRhP6dNTWb0NtNHUW/WxgvRR2fBNwFTm2MwJIAHSblCALNzXbGRwiBNL7wP9pQXVrKbtI/6gx2w3THdqzFRaSJVVsnOYVJjK4GopKPpWFr3B55ksefZ6qxZJ50q/YodQ7CMpyaJ50u4ixURow2jtObS0hu74YjMUmwePiXuJaz20Nw3jxCHPr/xop1rNihZT4f5hI4MDTpOnE4hzcgg0F6boaYUCTC31Ajd1zM7Pji1wg6nNkOJRWmYRYhtHZzSU9NqftOjnnOnnhzIMHo+bumOqpjln+oN+PEeMMsNQ79RgZNBtGMbbqDTNfYhrnBTgi9d24T5kI4ODNRZqjWkcykd0U9EuexqrySFAqlFZOo5MZWTBXvSHpjxpLQettbioofCdCPO5ibthMTp04TovBL/yx/wQoo/X1xfWdpzVpILJGfxACmeGUmojjJAKDx4bGRySD0x8JGpF10fysqWyhnrisErL/EIbqLZkGC104dBWEwkKoQ+oSqGQwbXpI9PrRNhyziKnsc49D7YV6uhqca0+z43qlaWOWSgU7iD3VqL6TrHsyVf3mezP2XGZrZ2aygIXD8ZFOKeMMrKIH9UsGuSwbWVHuW1gNAA6yqCzRGaUjz6plfGYe5wzJ95plhRSoVC4k2zkziEuOvxvfof2a9+FkDFveQT9vY9i3vY4GEkDVNvVqNWvjCKtEr71IpcB6Fof6yCKfSSG41PA1xaQjTPjxPXo/tZcI+SmxeO5X66lObR4PrxacMhZuqSUViW/XSgUbpvXFByUUj+ac/7iaV/MnSJfWhC+ewllLdlk8sEKHRJqatHTCjMxIrTWx1GNc3lpeWx3oLJIZxwTxnuVKWClFXYmBe+hxfOkjh5TGSbVZOyIerXW1NAF+mUvRXGFFLlvQeahUCgUruW1ppV+8VSv4g4Tlz3m8fOY7RqlQT+yQ//SHN0FtNGiuBoi3UEnUhCsF9yZE12lbWltPSlFdGiHzYlBYuhgqabVq7Z6avPqMwspiqzG4DVAvsYNrVAoFF4DN9w5KKV+5UZPARfO5nLuDPbRbXIXyNMK+9gufcyY2uBjhtYDiuyyKKu2ET2TRfpoauckaWzU8drA0KI6pJdsbY+1rZ4G0ccTi9XRxzumglooFB48Ximt9EPAfwXMr3lcAT9wZld0B2je+nqmP/y9rP7v/0BKCW0N1dNPkDLkLkBTyePo0YvZ1OZYx5JSiuZ8I3WItC5QT911RjDVtLot/+JX44Y7ixIXCoXCbfBKweE3gWXO+f+59gml1O+e3SWdPdpo3Du+h6wV9IlOK9Lck1MLO9PxNcCorKqdHsXuhgG00Ispj9YarfVNSyOkkMhJPAFut3g8zEgcnY1Qa32o4VxDauyWrUsLhcLG8krB4fcBf9ITOef3ns3l3BlyTMRnLhG/exV6j5lUUDnYqlGVxjRi1mMri2tEAsEv/ZhaSikRlyJtoUSjm+gjvvNjhxNI6mlI+wz1haPDdChxf7sZt7cboZSY0PhW6gzaaGwjOkaxj8d8FYbZjds5X6FQ2AxeaZX4XeDTSqnHgH8C/FLO+d/emcs6W9L+CrXoycuOdHkBRmMfP4dptplemOFet31oqJMzvr0mRiaxAB2G5Aayz+QmE3rRRQrLMHYbKa3QlT6WmiJLsBj8IV4rSqsTU1eDrs/R84VlKMGhUCi8KjfMMeSc/37O+QeBPw5cAv6hUuo/KKX+plLqe+/YFZ4BcdETFx0hQZg2pFlNWraYLqCRGsOY7lkPsB1FKUVW11eBlVZ0Bx1+7un3evqDXhZoZHiun/fXX0zizDqLTpL5HqQ/CoVC4ZV41QR0zvk7Oeefyzn/UeAjwI8Bv3PmV3aGpJjxS0+OkXRliX9uj7DwqJ2KhCisjlIXWl1fS1Bc77SmEWE8n8Y0E8h09fD16Dd9zbHOamjtpBpIkYwuFAo3w6vmF5RSFvjTwIeBPwH8OvC3zvSqzprGomoHPmFmFdgG/cgWISryfo+tetBQb9Wj9HI+yOOduKmMDLIFWfgHldQx/ZRlqnqYps5J/u8mbpT4HrC1PTO5bTd1pIM0nh8tjxUKhcKr8UpzDj+K7BQ+APwW8HngEznnxe2eVCn1PwEfREa3XgI+mnN+Tkni/e+vz7lcP/6V2z3ftehJhX5oin3iPOHSHHwkKU3SGjPcxKe1YqqTbqDmXCOBQKmx4yfndcAIyIyDNQTWnUGNpQ8ynKaNSG24mbS6hi7I406/oqfyKNzXSVeUbewtTT5re3jdwG3XNgqFwubwSjuHnwY+B/y3Oecrp3zeT+ec/wcApdRfBf5H4CeRHcpb1//9MeB/W///VLHTCvvELvG5Pcy5CWpSkXen5KtLeN32+LoU0rFhN20PJ5Z96/ELf+y1dmqxtZjyaK2pt2uUkV3F0TbSm5178Msjiq7k8Xy3EiCUUqUAXSgUbpkbrho55x85q5PmnPePfDvjMNHyQeCzWRL+v6mUOqeUeizn/Pxpnl9bTbM7JT6+S9xfovqE0pl0TXpn6DTKSWoUoQ+jNeexrqM1oQ1Mz08xtZE5htvwkc45XyfcN5yj6CYVCoWz5q7dUiqlfgb4b4A94D9ZP/wE8N0jL3tm/dh1wUEp9QngEwBPPfXUa7kAVMzgpR3JAn3OcCTtMuTn/dIfLtRZFujYx+uVUtch7lTktYt/Q6FQuIuc2bisUurXlFJfP+G/DwLknD+Vc34D8I+BT97q8XPOn8k5vzvn/O5HHnnklt6bYqKbd4SDFfhIDhnfReqZw01FXK/ZbcTUpwv4/po5h3yybMVppm+UPjkd9Eo1ikKhUDgtzmylyTn/yZt86T8G/hnwN4FngTccee7J9WOnSugDpIy5sEVe9qTWgzXo8zNcZTETN3o9DxahburQ+jCW6lpjrR2lKYwzp94JNBzvaDrLNiU4FAqFs+eurDRKqbfmnL+5/vaDwH9Yf/0rwCeVUp9HCtF7p11vGMiVJVhLbkBvNSitUZVDb9fHvJ6VUmij8SsvuOFg9gAAEmZJREFU3tDrQQXXiGeCjfZQJ+mUO4GUFgtSl13pMioUCneUu3Ub+rNKqe9DWlm/g3QqgewgPgD8HtLK+hNncXJtRMZCbdXk/UQMCWYG9/g2elLh97tjr7eNPaw5GPGADl3Arzw5iPsaGqrZ2egWlcBQKBTuNHclOOScP3SDxzPwU2d+/phxMwcaogKdFXpmSdaKWF6M9MtepqMrg9YaN3FMzk3olyKcl3OmP+jJKeO2HMYa+nmP3tVnNtR2P1FsSwuF+5uNTGCPswsJqrqSqWUP3UFHjpnk0//f3v3HyHbWdRx/f8+v2b23tLeFiqWttJASrUGh3FSMiGJMgf7hhYQ/SggQNKkaQEg0BuQf/iFRIpJUDaYoEQhaETQ0/kAo1l8xUCrpL8DCBar0WuHyw3J7d3fm/Pj6x/PM7OyeWbq7nd0zO+fz2mz2zDOzs88zZ/Z85zzneZ5vWO+ogXpYh3zSx4oQOIabS2GMZx43o5DyE49JdnoeHOpRzfD8cJK2NBuE1KgicnT08iiWFVlY2iIuelcNw1pKaZoyOj8iSROK4wXpShpmSGfh9mQZim2mU4Pu1AVUj2pG50eM1kczF8RbFu6+GRhgMvR31pwNEVlcvTxzSLKE7FjG2nfWwoXnJBzUR+ujyRyFJN3sHkrTdPJ7llqYOR2/ICyDAXGRvhlzHEZrI6r1zYNjtVGxcuHKUp5hNGWzGRi2lw/a5SKymHoZHCAGiEEWkvBYuMiMM3NG8zgbnJmRr+asfXuNaqMiyUIAGS+Pka1mrf51b3yyBMZEExPvLGFXy47XF5YvDoostd4GByMMEx1+b8hobUSapKQrKUmRkFgyybGQrWRbJp41ZUgTmg0yHMcIZwvbE/+MeeMzZzsva9dSkrXzbY+vO4jI0dHb/1hLjGoU+sKzIgsXlC1kcxs8eTA5oG//JFyVm2cB3oQscX7OJyOgtncrWRqGuW7valnmXM7F8YIqrWjKZrLw4DJ2oYkss14GB2+c0dqIpmpo6jAyqckbVi5aoa5qquHOi9slaTLJplaeLydnAHVV05xrWD2xuiWgmBnF8SJkgZtae2mZF88bd7+x2nVNZJHVo5qmCXnP57IemcxVL4NDWD4jzHKeHpJaroX8DaPzI5pRQ3FB0TpzyFdyhtWQuqwpN0rqYU26kjI8NyQ/llON2oElKzLSEyl1FfJB6B9B+my8JM1012O2ouHOi6aX5/rjYJDmKUmeTLqYGm/IV3MMmxz8t0uLNORpiPMkstWMLMsmyYGmh7VOGy+kp8AgfVeXdWvJ+2qjmiSlksXQyzOHNE8nQ0uLY0XoGrKQFnSctY2GHd+saZ6SDsJCe+NUoFVZ4aOQkMdLn2R9E5GtxoM9WuV1ow9Pe+RNyEt/EEvs9DY45MdzyvUSa4ykSMjJwwXmqgxdTZWHNZVWqpkjbdI0jFCqhhXlRolh5Mc2zzr8nLNyYqWD1okstp0GY+jD1O41dRO6v6dGVe42w+Ru9TI4QLh2kA3Ciqp1XbO2sUa5VlKuha6k4ni43jB6bDQzo1s6SDevLzjUVodF92IAb+qGupyREGiPmqqhXC+pq5o0S8lX86Ue6STLL81T0iKdrHwMYaizzhp2b3Ru60oL1XqFpUY+mN9Al94GBwinYpaGAJAXOV7FtZMsXCMYH4SrUUWRbY3KaZ6ycuEK1bCiaZqwQN+cP/l442yc25gMg61HNXVVs3rRqhazkyPLLMwxqssar0M63bRQYNit8SjLVvlwvqsQ9Do4NHVDtV6x8ehGyO6W2WYXkhPOAnbI+gbh9LjICtIiZbhtme8kf+LD86qyai9F0TBzRJTIUWI2O9Oh7IIxOTa1yueot3tnvOR2U4dx1tVGFZaYtriMRpFMAsTjfapJ85TiSQXleknTNOR5Pp+scMojLT1WjSqqjYqmbsiKLIwk1Bnz5Exr+4ivea9C0Nvg0JSbp2bpIKWuayjBCiPLsrAia5aSrexudq83Yb6EuYVt90nWuP1K85TSyq1BwlDfrCy9uqwZnRtNbo+DxMqFGuQB4ZpomZTUo5okSchWsrl3zfU2ODhbl9keL8mdFRmDCwd7GhpWjSrK85tzIsajlQYX7e15tkvShMEFA0ZrIamQJUZxrDjwUR3uIaeF46RZqk9rcuimL1aPNeV8BnksA7NwLODYwf2N3gaHNEu3rHlkhIxl+bG952tuRjMuDsVlOZ7oGzktUlaL1c0ERQesqZutIyGSMP9D/5ByqNSl2rnejom0xLZOeksI6T7neBCc58H8sPJIV+vV1pEQDZPhvSKHZbxM/jRLTcO4D1Fvzxwgjrc+kT7hWYbpIG1lOkvy9tyIo2B61dmxpm4m3VoihyErMvy4U66Ha25plu7rrF72r9fBYeyJHvTGo5W2j6w4itI0pW629feOh86JHKLxRFX8if+Pyt4pOMxJVmRLMW47W82oq3pLn29xrNAnNumEmemDSUeO/tFM5irNU1YuWpl0k6V5qovRIj2k4CAtSZrMfREvETlajt4V0wW3Uz4HEZGjpNPgYGa/bmZuZk+Jt83MbjGz02Z2n5ld12X99qIclqx9d431764zPDecuTCWiMhR0VlwMLMrgRuA/54qfilwTfy+GXjPQdfDG6fcKBmdH4X0oftQj2rKx8owoc7D7emp/yIiR02XZw7vBn6TrXMhTwEf8ODTwAkzu+ygKtDUDRuPblCeL6k2KkbnRozW9n5QnznVP+ZzEBE5ijoJDmZ2Cjjj7vduu+ty4OtTtx+OZbOe42Yzu9vM7j579uy+6lENq0k+6UnZRqUuIRHpvQMbrWRmdwA/OOOutwG/RehS2jd3vxW4FeDkyZP7ugo8zv+8tTCW72H05k4zpDUEVESOqgMLDu7+87PKzezZwNXAvXFi1RXA58zseuAMcOXUw6+IZQciyZN2l5DtnON2J5MZ0ushK1yWZ/PJ5yAi0pFDn+fg7vcDPzC+bWYPASfd/VtmdjvwBjO7DfgJ4FF3f+Sg6pINMpqyYfjYkKZssNRYPbG/FJzLMkNaRAQWbxLc3wE3AqeBNeB1B/nHzMIy3UmekKThuxpWZIPsSC6aJyIyL50HB3e/amrbgdcf2t9unGpYkViyeY3Bw0Xp4gLNEBaR/ur1x2NvfGZSke0jmERE+qbXwcFSm3l9Icl7/bKIiPQ8OJiF7qOpVyEdpGQrnfe2iYh0qvdHwTRPWT2xSlM1mCkNoYgIKDgA4QxCE9ZERDbpY7KIiLQoOIiISIuCg4iItCg4iIhIi4KDiIi0KDiIiEiLgoOIiLQoOIiISIuCwxRvXIvuiYigGdJACAqjtdEkK1yapxTHi30l/RERWQY6cwDK9ZJ6WIflux3qUU25VnZdLRGRzig4ANWo2lWZiEhfKDgQFt5rFx5+PUREFoWCA8zM35Cv5h3URERkMeiCNJCv5JgZ9bDGcdJBSj5QcBCR/lJwiLJBRjbQyyEiAupWEhGRGRQcRESkRcFBRERaOgkOZvZ2MztjZvfE7xun7nurmZ02swfN7MVd1E9EpO+6vAL7bnf/3ekCM7sWuAn4UeBpwB1m9ix3r7uooIhIXy1at9Ip4DZ3H7r714DTwPUd10lEpHe6DA5vMLP7zOx9ZnZxLLsc+PrUYx6OZS1mdrOZ3W1md589e/ag6yoi0isHFhzM7A4ze2DG9yngPcAzgecAjwDv2uvzu/ut7n7S3U9eeumlc669iEi/Hdg1B3f/+d08zszeC/xNvHkGuHLq7itimYiIHKKuRitdNnXz5cADcft24CYzG5jZ1cA1wF2HXT8Rkb7rarTSO83sOYQMCg8Bvwzg7p83sw8DXwAq4PUaqSQicvg6CQ7u/urvc987gHccYnVERGSbRRvKKiIiC0DBQUREWhQcRESkRcFBRERaFBxERKRFwUFERFoUHEREpEXBQUREWhQcRESkRcFBRERaFBxERKRFwUFERFoUHPbJG8fdu66GiMiB6GrJ7iOrLmvKtZKmbsAgP5aTD/KuqyUiMlcKDnvg7gwfG0IzLoDysZIkSUjztNO6iYjMk7qV9qApm83AMKUeKR+RiCwXBYe9sD2Wi4gcUQoOe5BkCUm27SUzyAr1zonIclFw2AMzo7igIBtkkECapwwuGLQDhojIEaePvHuUpAnFBQUFRddVERE5MPrIKyIiLQoOIiLSouAgIiItCg4iItKi4CAiIi0KDiIi0mLLsLKomZ0F/mufv/4U4FtzrM6i61N71dbl1Ke2wsG29+nufumsO5YiODwRZna3u5/suh6HpU/tVVuXU5/aCt21V91KIiLSouAgIiItCg5wa9cVOGR9aq/aupz61FboqL29v+YgIiJtOnMQEZEWBQcREWnpdXAws5eY2YNmdtrM3tJ1ffbLzB4ys/vN7B4zuzuWXWJmnzSzL8efF8dyM7NbYpvvM7Prpp7ntfHxXzaz13bVnmlm9j4z+6aZPTBVNre2mdnz4mt3Ov5uZ3n9dmjr283sTNy395jZjVP3vTXW+0Eze/FU+cz3tZldbWafieV/YWadrTtvZlea2Z1m9gUz+7yZvSmWL+u+3am9i7t/3b2X30AKfAV4BlAA9wLXdl2vfbblIeAp28reCbwlbr8F+J24fSPw94Tkps8HPhPLLwG+Gn9eHLcvXoC2vRC4DnjgINoG3BUfa/F3X7pgbX078BszHnttfM8OgKvjezn9fu9r4MPATXH7j4Bf7bCtlwHXxe0nAV+KbVrWfbtTexd2//b5zOF64LS7f9XdR8BtwKmO6zRPp4D3x+33Ay+bKv+AB58GTpjZZcCLgU+6+3fc/bvAJ4GXHHalt3P3fwG+s614Lm2L913o7p/28B/1gannOnQ7tHUnp4Db3H3o7l8DThPe0zPf1/FT888BH4m/P/26HTp3f8TdPxe3zwFfBC5nefftTu3dSef7t8/B4XLg61O3H+b776xF5sAnzOw/zOzmWPZUd38kbv8v8NS4vVO7j9LrMa+2XR63t5cvmjfErpT3jbtZ2Htbnwz8n7tX28o7Z2ZXAc8FPkMP9u229sKC7t8+B4dl8gJ3vw54KfB6M3vh9J3xk9NSjlle5rZF7wGeCTwHeAR4V7fVmS8zuwD4KPBmd//e9H3LuG9ntHdh92+fg8MZ4Mqp21fEsiPH3c/En98E/ppw6vmNeGpN/PnN+PCd2n2UXo95te1M3N5evjDc/RvuXrt7A7yXsG9h7239NqErJttW3hkzywkHyg+5+1/F4qXdt7Pau8j7t8/B4bPANfEKfwHcBNzecZ32zMyOm9mTxtvADcADhLaMR268FvhY3L4deE0c/fF84NF4Gv8PwA1mdnE8tb0hli2iubQt3vc9M3t+7LN9zdRzLYTxgTJ6OWHfQmjrTWY2MLOrgWsIF2Bnvq/jp/A7gVfE359+3Q5dfL3/BPiiu//e1F1LuW93au9C79/Dulq/iN+EERBfIlz9f1vX9dlnG55BGLFwL/D5cTsIfZCfAr4M3AFcEssN+MPY5vuBk1PP9YuEC1+ngdd13bZYpz8nnG6XhH7UX5pn24CThH/IrwB/QFw1YIHa+sHYlvsIB4zLph7/tljvB5kaibPT+zq+V+6Kr8FfAoMO2/oCQpfRfcA98fvGJd63O7V3Yfevls8QEZGWPncriYjIDhQcRESkRcFBRERaFBxERKRFwUFERFoUHER2YGYvMzM3sx/usA5vNrNjXf196S8FB5GdvRL4t/izK28GFBzk0Ck4iMwQ18B5AWEi2k2x7GfN7J/N7GNm9lUz+20ze5WZ3RXzBjwzPu4qM/vHuJjap8zsh2L5n5rZK6b+xmNTz/tPZvYRM/tPM/tQnAn8a8DTgDvN7M5Dfgmk5xQcRGY7BXzc3b8EfNvMnhfLfxz4FeBHgFcDz3L364E/Bt4YH/P7wPvd/ceADwG37OLvPZdwlnAtYabrT7n7LcD/AC9y9xfNp1kiu6PgIDLbKwlr5RN/jruWPuthbf4hYfmCT8Ty+4Gr4vZPAn8Wtz9IOAN5PHe5+8MeFmC7Z+q5RDqRPf5DRPrFzC4hJE55tpk5IfuWA38LDKce2kzdbnj8/6eK+IHMzBJCJq+x6eetd/FcIgdKZw4iba8APujuT3f3q9z9SuBrwE/v8vf/nXidAngV8K9x+yFg3D31C0C+i+c6R0grKXKoFBxE2l5JyIsx7aPsftTSG4HXmdl9hOsSb4rl7wV+xszuJXQ9nd/Fc90KfFwXpOWwaVVWERFp0ZmDiIi0KDiIiEiLgoOIiLQoOIiISIuCg4iItCg4iIhIi4KDiIi0/D+iYqVeMiSM1AAAAABJRU5ErkJggg==\n", 1176 | "text/plain": [ 1177 | "
" 1178 | ] 1179 | }, 1180 | "metadata": { 1181 | "tags": [], 1182 | "needs_background": "light" 1183 | } 1184 | } 1185 | ] 1186 | }, 1187 | { 1188 | "cell_type": "code", 1189 | "metadata": { 1190 | "id": "2kar1en3J19A", 1191 | "colab_type": "code", 1192 | "outputId": "3a8f7ac5-690e-4228-ae27-6afcdd9a6054", 1193 | "colab": { 1194 | "base_uri": "https://localhost:8080/", 1195 | "height": 296 1196 | } 1197 | }, 1198 | "source": [ 1199 | "sns.barplot(x='Class',y='Amount',data=df,palette='PuRd')" 1200 | ], 1201 | "execution_count": 17, 1202 | "outputs": [ 1203 | { 1204 | "output_type": "execute_result", 1205 | "data": { 1206 | "text/plain": [ 1207 | "" 1208 | ] 1209 | }, 1210 | "metadata": { 1211 | "tags": [] 1212 | }, 1213 | "execution_count": 17 1214 | }, 1215 | { 1216 | "output_type": "display_data", 1217 | "data": { 1218 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAQvElEQVR4nO3dfZBddX3H8fdHolisGjQrYIIGLWop9YHuINXRUWktWjXUsQ74AEU6qVPrU51G0E7pH7VjaaeKWHGiIrFjQQatYLUqgyh2KuiCqDxojSiSDEvWB8SniIFv/7gnP9ewSy5J7j1L7vs1c+ee8zu/e893Mzv57Pmdc34nVYUkSQD36bsASdLSYShIkhpDQZLUGAqSpMZQkCQ1y/ouYHesWLGiVq9e3XcZknSvcuWVV36vqqYW2navDoXVq1czMzPTdxmSdK+S5MbFtjl8JElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJzb365jVJe79169YxOzvLgQceyOmnn953OXs9Q0HSkjY7O8vmzZv7LmNiOHwkSWoMBUlSYyhIkpqRhUKSs5NsSXLNAtvekKSSrOjWk+QdSTYm+WqSI0ZVlyRpcaM8UjgHOGbHxiQHA88Gvjuv+TnAod1rLXDWCOuSJC1iZKFQVZcBP1hg09uAdUDNa1sDfKAGLgeWJzloVLVJkhY21nMKSdYAm6vqKztsWgncNG99U9e20HesTTKTZGZubm5ElUrSZBpbKCTZD3gT8He78z1Vtb6qpqtqempqwafJSZJ20ThvXns0cAjwlSQAq4CrkhwJbAYOntd3VdcmSRqjsR0pVNXXquphVbW6qlYzGCI6oqpmgYuAE7qrkI4CflRVN4+rNknSwCgvST0X+ALw2CSbkpx8N90/AdwAbATeA/zlqOqSJC1uZMNHVXX8TravnrdcwKtGVYskaTje0SxJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkpqRPaM5ydnA84AtVXV41/bPwPOB24FvASdV1a3dtlOBk4E7gNdU1adGVZt0b3D5U97cdwlLwtZ9vw/3ga03fd9/E+Co/33LSL9/lEcK5wDH7NB2MXB4VT0e+D/gVIAkhwHHAb/TfeZdSfYZYW2SpAWMLBSq6jLgBzu0fbqqtnWrlwOruuU1wHlV9Yuq+jawEThyVLVJkhbW5zmFVwD/3S2vBG6at21T1yZJGqNeQiHJm4FtwAd34bNrk8wkmZmbm9vzxUnSBBt7KCT5MwYnoF9aVdU1bwYOntdtVdd2F1W1vqqmq2p6ampqpLVK0qQZaygkOQZYB7ygqn42b9NFwHFJ9k1yCHAo8MVx1iZJGu0lqecCzwBWJNkEnMbgaqN9gYuTAFxeVa+sqmuTnA9cx2BY6VVVdceoapMkLWxkoVBVxy/Q/L676f8WYLQX4EqS7pZ3NEuSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1IwuFJGcn2ZLkmnltD0lycZJvdu/7d+1J8o4kG5N8NckRo6pLkrS4UR4pnAMcs0PbKcAlVXUocEm3DvAc4NDutRY4a4R1SZIWMbJQqKrLgB/s0LwG2NAtbwCOndf+gRq4HFie5KBR1SZJWti4zykcUFU3d8uzwAHd8krgpnn9NnVtd5FkbZKZJDNzc3Ojq1TSkrB/7ctD77w/+9e+fZcyEZb1teOqqiS1C59bD6wHmJ6evsefl3TvctLtv913CRNl3EcKt2wfFuret3Ttm4GD5/Vb1bVJksZo3KFwEXBit3wicOG89hO6q5COAn40b5hJkjQmIxs+SnIu8AxgRZJNwGnAW4Hzk5wM3Ai8uOv+CeC5wEbgZ8BJo6pLkrS4kYVCVR2/yKajF+hbwKtGVYskaTje0SxJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqepslVUvLunXrmJ2d5cADD+T000/vuxxJPTEUBMDs7CybNzsxrTTpdhoKSS6pqqN31nZvdfm5V/RdwpKw9cdb27v/JnDU8U/uuwSpF4uGQpL7A/sxmOV0fyDdpgexyFPRJEn3bnd3pPAXwOuAhwNX8qtQuA1454jr0pjt/8D9f+1d0mRaNBSq6gzgjCSvrqozx1iTenDSc17RdwmSloCdnlOoqjOTPAVYPb9/VX1ghHVJknowzInmfwceDVwN3NE1F2AoSNJeZphLUqeBw7qno0mS9mLD3NF8DXDgqAuRJPVvmCOFFcB1Sb4I/GJ7Y1W9YGRVSZJ6MUwo/P2e3mmS1wN/zuDcxNeAk4CDgPOAhzK4BPblVXX7nt63JGlxw1x99Lk9ucMkK4HXMDhP8fMk5wPHAc8F3lZV5yV5N3AycNae3Lck6e7t9JxCkh8nua17bU1yR5LbdnO/y4DfSLKMwV3TNwPPAi7otm8Ajt3NfUiS7qFhjhQeuH05SYA1wFG7usOq2pzkX4DvAj8HPs1guOjWqtrWddvEIlNpJFkLrAV4xCMesatlSJIWcI+ep1ADHwX+aFd32M2jtAY4hMEUGg8AjrkHNayvqumqmp6amtrVMiRJCxjm5rUXzlu9D4P7Frbuxj7/APh2Vc113/8R4KnA8iTLuqOFVYDzOEvSmA1z9dHz5y1vA77D4C/9XfVd4Kgk+zEYPjoamAEuBV7E4AqkE4ELd2MfkqRdMMw5hZP25A6r6ookFwBXMQiZLwPrgY8D5yX5h67tfXtyv5KknRtm+GgVcCaDIR6AzwOvrapNu7rTqjoNOG2H5huAI3f1OyVJu2+YE83vBy5icFL44cDHujZJ0l5mmFCYqqr3V9W27nUO4GU/krQXGiYUvp/kZUn26V4vA74/6sIkSeM3TCi8AngxMMvgzuMXMZirSJK0lxnm6qMbAWdElaQJMMzVR4cAr+auj+M0KCRpLzPMzWsfZXDPwMeAO0dbjiSpT8OEwtaqesfIK5Ek9W6YUDgjyWkMZjOd/+S1q0ZWlSSpF8OEwu8CL2fwvIPtw0fVrUuS9iLDhMKfAo/y0ZiStPcb5j6Fa4Dloy5EktS/YY4UlgNfT/IlfnVOoapqd6bPliQtQcOEwvzZTAM8DThuNOVIkvq00+GjqvoccBvwPOAcBieY3z3asiRJfVj0SCHJY4Dju9f3gA8Bqapnjqk2SdKY3d3w0dcZPFDneVW1ESDJ68dSlSSpF3c3fPRCBrOiXprkPUmOZnBOQZK0l1o0FKrqo1V1HPA44FLgdcDDkpyV5NnjKlCSND7DnGj+aVX9R1U9H1gFfBl44+7sNMnyJBck+XqS65P8fpKHJLk4yTe79/13Zx+SpHtumJvXmqr6YVWtr6qjd3O/ZwCfrKrHAU8ArgdOAS6pqkOBS7p1SdIY3aNQ2BOSPBh4OoPpuKmq26vqVmANsKHrtgE4dty1SdKkG3soAIcAc8D7k3w5yXuTPAA4oKpu7vrMAgcs9OEka5PMJJmZm5sbU8mSNBn6CIVlwBHAWVX1JOCn7DBUVFXFYCbWu+iGr6aranpqamrkxUrSJOkjFDYBm6rqim79AgYhcUuSgwC69y091CZJE23soVBVs8BNSR7bNR0NXAdcBJzYtZ0IXDju2iRp0g0zId4ovBr4YJL7ATcAJzEIqPOTnAzcCLy4p9okaWL1EgpVdTUwvcCm3b3UVZK0G/o4pyBJWqIMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1PQWCkn2SfLlJP/VrR+S5IokG5N8KMn9+qpNkiZVn0cKrwWun7f+T8Dbquq3gB8CJ/dSlSRNsF5CIckq4I+B93brAZ4FXNB12QAc20dtkjTJ+jpSeDuwDrizW38ocGtVbevWNwErF/pgkrVJZpLMzM3Njb5SSZogYw+FJM8DtlTVlbvy+apaX1XTVTU9NTW1h6uTpMm2rId9PhV4QZLnAvcHHgScASxPsqw7WlgFbO6hNkmaaGM/UqiqU6tqVVWtBo4DPlNVLwUuBV7UdTsRuHDctUnSpFtK9ym8EfjrJBsZnGN4X8/1SNLE6WP4qKmqzwKf7ZZvAI7ssx5JmnRL6UhBktQzQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkZuyhkOTgJJcmuS7JtUle27U/JMnFSb7Zve8/7tokadL1caSwDXhDVR0GHAW8KslhwCnAJVV1KHBJty5JGqOxh0JV3VxVV3XLPwauB1YCa4ANXbcNwLHjrk2SJl2v5xSSrAaeBFwBHFBVN3ebZoEDFvnM2iQzSWbm5ubGUqckTYreQiHJbwIfBl5XVbfN31ZVBdRCn6uq9VU1XVXTU1NTY6hUkiZHL6GQ5L4MAuGDVfWRrvmWJAd12w8CtvRRmyRNsj6uPgrwPuD6qvrXeZsuAk7slk8ELhx3bZI06Zb1sM+nAi8Hvpbk6q7tTcBbgfOTnAzcCLy4h9okaaKNPRSq6n+ALLL56HHWIkn6dd7RLElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQsuVBIckySbyTZmOSUvuuRpEmypEIhyT7AvwHPAQ4Djk9yWL9VSdLkWFKhABwJbKyqG6rqduA8YE3PNUnSxFjWdwE7WAncNG99E/Dk+R2SrAXWdqs/SfKNMdU2CVYA3+u7iCXhJX0XoB34u7ld/nFPfMsjF9uw1EJhp6pqPbC+7zr2Rklmqmq67zqkHfm7OT5LbfhoM3DwvPVVXZskaQyWWih8CTg0ySFJ7gccB1zUc02SNDGW1PBRVW1L8lfAp4B9gLOr6tqey5okDstpqfJ3c0xSVX3XIElaIpba8JEkqUeGgiSpMRTk1CJaspKcnWRLkmv6rmVSGAoTzqlFtMSdAxzTdxGTxFCQU4toyaqqy4Af9F3HJDEUtNDUIit7qkVSzwwFSVJjKMipRSQ1hoKcWkRSYyhMuKraBmyfWuR64HynFtFSkeRc4AvAY5NsSnJy3zXt7ZzmQpLUeKQgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkIaU5MAk5yX5VpIrk3wiyWOcwVN7kyX1OE5pqUoS4D+BDVV1XNf2BOCAXguT9jCPFKThPBP4ZVW9e3tDVX2FeZMJJlmd5PNJrupeT+naD0pyWZKrk1yT5GlJ9klyTrf+tSSvH/+PJN2VRwrScA4HrtxJny3AH1bV1iSHAucC08BLgE9V1Vu651fsBzwRWFlVhwMkWT660qXhGQrSnnNf4J1JngjcATyma/8ScHaS+wIfraqrk9wAPCrJmcDHgU/3UrG0A4ePpOFcC/zeTvq8HrgFeAKDI4T7QXtQzNMZzD57TpITquqHXb/PAq8E3juasqV7xlCQhvMZYN8ka7c3JHk8vz7t+IOBm6vqTuDlwD5dv0cCt1TVexj8539EkhXAfarqw8DfAkeM58eQ7p7DR9IQqqqS/Anw9iRvBLYC3wFeN6/bu4APJzkB+CTw0679GcDfJPkl8BPgBAZPt3t/ku1/mJ068h9CGoKzpEqSGoePJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDX/Dwe8M/YAsRZMAAAAAElFTkSuQmCC\n", 1219 | "text/plain": [ 1220 | "
" 1221 | ] 1222 | }, 1223 | "metadata": { 1224 | "tags": [], 1225 | "needs_background": "light" 1226 | } 1227 | } 1228 | ] 1229 | }, 1230 | { 1231 | "cell_type": "code", 1232 | "metadata": { 1233 | "id": "aKOIm0hkKWcT", 1234 | "colab_type": "code", 1235 | "outputId": "284f1397-b96e-4eb0-ee3b-3ccc1dc4b692", 1236 | "colab": { 1237 | "base_uri": "https://localhost:8080/", 1238 | "height": 296 1239 | } 1240 | }, 1241 | "source": [ 1242 | "sns.barplot(x='Class',y='Time',data=df,palette='Purples')" 1243 | ], 1244 | "execution_count": 18, 1245 | "outputs": [ 1246 | { 1247 | "output_type": "execute_result", 1248 | "data": { 1249 | "text/plain": [ 1250 | "" 1251 | ] 1252 | }, 1253 | "metadata": { 1254 | "tags": [] 1255 | }, 1256 | "execution_count": 18 1257 | }, 1258 | { 1259 | "output_type": "display_data", 1260 | "data": { 1261 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEGCAYAAACkQqisAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAQM0lEQVR4nO3dfcxedX3H8ffHIsyHCSgNaEtsNytLZT5ghzgzt8kGxRnrEjXoYhtDbBZh82EZwrIEn0jUGHFOZWFSAWOsDHXUCXYEZG7LQMrDhMIYt0WlDYVqEacGpfjdH/evetHeLTe/eu6rd+/3K7lyn/M9v3Ou7yFNPpxznet3paqQJKnHE8bdgCRp9jJEJEndDBFJUjdDRJLUzRCRJHU7aNwNzLQjjjiiFi1aNO42JGnWuPHGG79XVfOn2jbnQmTRokVs2LBh3G1I0qyR5Dt72ubtLElSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVK3OfeN9X31jRvuHncL2g8d/zuLx92CNBZeiUiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbv7Eu6YBz5plnsnXrVo466ig+9KEPjbudA5ohIumAs3XrVrZs2TLuNuYEb2dJkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSp26AhkuQdSTYmuS3J55L8WpLFSa5PMpHk80kObmMPaesTbfuikeOc3ep3Jjl5pL681SaSnDXkuUiSdjdYiCRZAPwlsKyqjgXmAacCHwTOq6rnAA8Ap7VdTgMeaPXz2jiSLG37PQ9YDnwyybwk84BPAKcAS4E3tLGSpBky9DfWDwKelORh4MnAvcArgDe27RcD7wbOB1a0ZYDLgI8nSauvraqfAncnmQCOb+MmqmoTQJK1beztA5+TtN9691n/NO4W9gvbv/ejX/z1vwm8+wOvG+zYg12JVNUW4MPAd5kMjweBG4EfVNWONmwzsKAtLwDuafvuaOOfMVrfZZ891XeTZHWSDUk2bNu2bd9PTpIEDHs763AmrwwWA88CnsLk7agZV1UXVNWyqlo2f/78cbQgSQekIT9Y/yPg7qraVlUPA18EXgYclmTnbbSFwM5Z0rYARwO07YcC3x+t77LPnuqSpBkyZIh8FzghyZPbZxsnMvl5xdeA17Yxq4DL2/K6tk7bfk1VVauf2p7eWgwsAb4B3AAsaU97Hczkh+/rBjwfSdIuBvtgvaquT3IZcBOwA7gZuAD4CrA2yftb7cK2y4XAZ9oH59uZDAWqamOSS5kMoB3A6VX1CECSM4D1TD75taaqNg51PpKk3Q36dFZVnQOcs0t5E798ump07EPAlI8QVNW5wLlT1K8Artj3TiVJPfzGuiSpmyEiSepmiEiSuvkb65IOOIcc8uuP+qvhGCKSDji/fcyrxt3CnOHtLElSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUbdAQSXJYksuS/E+SO5K8NMnTk1yV5K729/A2Nkk+lmQiyTeTHDdynFVt/F1JVo3UX5zk1rbPx5JkyPORJD3a0Fcifwd8tap+C3gBcAdwFnB1VS0Brm7rAKcAS9prNXA+QJKnA+cALwGOB87ZGTxtzFtG9ls+8PlIkkYMFiJJDgVeDlwIUFU/q6ofACuAi9uwi4HXtOUVwCU16TrgsCTPBE4Grqqq7VX1AHAVsLxte1pVXVdVBVwycixJ0gwY8kpkMbAN+HSSm5N8KslTgCOr6t42ZitwZFteANwzsv/mVttbffMU9d0kWZ1kQ5IN27Zt28fTkiTtNGSIHAQcB5xfVS8Cfswvb10B0K4gasAedr7PBVW1rKqWzZ8/f+i3k6Q5Y8gQ2Qxsrqrr2/plTIbKfe1WFO3v/W37FuDokf0Xttre6gunqEuSZshgIVJVW4F7khzTSicCtwPrgJ1PWK0CLm/L64CV7SmtE4AH222v9cBJSQ5vH6ifBKxv236Y5IT2VNbKkWNJkmbAQQMf/y+AzyY5GNgEvJnJ4Lo0yWnAd4DXt7FXAK8EJoCftLFU1fYk7wNuaOPeW1Xb2/JbgYuAJwFXtpckaYYMGiJVdQuwbIpNJ04xtoDT93CcNcCaKeobgGP3sU1JUie/sS5J6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuj1miCQ5MsmFSa5s60vbdzwkSXPcdK5ELmLyW+PPauv/C7x9qIYkSbPHdELkiKq6FPg5QFXtAB4ZtCtJ0qwwnRD5cZJn0Gbb3Tmv1aBdSZJmhelMe/JOJidH/M0k/wnMB147aFeSpFnhMUOkqm5K8vvAMUCAO6vq4cE7kyTt9x4zRJLMY3J23UVt/ElJqKqPDNybJGk/N53bWV8GHgJupX24LkkSTC9EFlbV8wfvRJI060zn6awrk5w0eCeSpFlnOlci1wFfSvIE4GEmP1yvqnraoJ1JkvZ70wmRjwAvBW5tvz4oSRIwvdtZ9wC3GSCSpF1N50pkE3Btm4DxpzuLPuIrSZpOiNzdXge3lyRJwPS+sf6emWhEkjT77DFEkny8qs5I8mXa5IujqurVg3YmSdrv7e1KZCVwBvDhGepFkjTL7C1EvgVQVf82Q71IkmaZvYXI/CTv3NNGn86SJO0tROYBT2XyG+qSJO1mbyFyb1W9d8Y6kSTNOnv7xrpXIJKkvdpbiJw4Y11IkmalPYZIVW2fyUYkSbPPdCZglCRpSoaIJKmbISJJ6jZ4iCSZl+TmJP/S1hcnuT7JRJLPJzm41Q9p6xNt+6KRY5zd6ncmOXmkvrzVJpKcNfS5SJIebSauRN4G3DGy/kHgvKp6DvAAcFqrnwY80OrntXEkWQqcCjwPWA58sgXTPOATwCnAUuANbawkaYYMGiJJFgJ/AnyqrQd4BXBZG3Ix8Jq2vKKt07af2MavANZW1U+r6m5gAji+vSaqalNV/QxY28ZKkmbI0FciHwXOBH7e1p8B/KCqdrT1zcCCtryAyZ/ipW1/sI3/RX2XffZUlyTNkMFCJMmrgPur6sah3uNx9LI6yYYkG7Zt2zbudiTpgDHklcjLgFcn+TaTt5peAfwdcFiSnXN2LQS2tOUtwNEAbfuhwPdH67vss6f6bqrqgqpaVlXL5s+fv+9nJkkCBgyRqjq7qhZW1SImPxi/pqr+DPga8No2bBVweVte19Zp26+pqmr1U9vTW4uBJcA3gBuAJe1pr4Pbe6wb6nwkSbt7zN9YH8C7gLVJ3g/cDFzY6hcCn0kyAWxnMhSoqo1JLgVuB3YAp1fVIwBJzgDWMzlt/Zqq2jijZyJJc9yMhEhVXQtc25Y3Mflk1a5jHgJet4f9zwXOnaJ+BXDFr7BVSdLj4DfWJUndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktRtsBBJcnSSryW5PcnGJG9r9acnuSrJXe3v4a2eJB9LMpHkm0mOGznWqjb+riSrRuovTnJr2+djSTLU+UiSdjfklcgO4K+qailwAnB6kqXAWcDVVbUEuLqtA5wCLGmv1cD5MBk6wDnAS4DjgXN2Bk8b85aR/ZYPeD6SpF0MFiJVdW9V3dSW/w+4A1gArAAubsMuBl7TllcAl9Sk64DDkjwTOBm4qqq2V9UDwFXA8rbtaVV1XVUVcMnIsSRJM2BGPhNJsgh4EXA9cGRV3ds2bQWObMsLgHtGdtvcanurb56iPtX7r06yIcmGbdu27dO5SJJ+afAQSfJU4AvA26vqh6Pb2hVEDd1DVV1QVcuqatn8+fOHfjtJmjMGDZEkT2QyQD5bVV9s5fvarSja3/tbfQtw9MjuC1ttb/WFU9QlSTNkyKezAlwI3FFVHxnZtA7Y+YTVKuDykfrK9pTWCcCD7bbXeuCkJIe3D9RPAta3bT9MckJ7r5Ujx5IkzYCDBjz2y4A3AbcmuaXV/gb4AHBpktOA7wCvb9uuAF4JTAA/Ad4MUFXbk7wPuKGNe29VbW/LbwUuAp4EXNlekqQZMliIVNV/AHv63saJU4wv4PQ9HGsNsGaK+gbg2H1oU5K0D/zGuiSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6zfoQSbI8yZ1JJpKcNe5+JGkumdUhkmQe8AngFGAp8IYkS8fblSTNHbM6RIDjgYmq2lRVPwPWAivG3JMkzRkHjbuBfbQAuGdkfTPwkl0HJVkNrG6rP0py5wz0NhccAXxv3E1Ie+C/z+Y9H9znQzx7Txtme4hMS1VdAFww7j4ONEk2VNWycfchTcV/nzNjtt/O2gIcPbK+sNUkSTNgtofIDcCSJIuTHAycCqwbc0+SNGfM6ttZVbUjyRnAemAesKaqNo65rbnEW4Tan/nvcwakqsbdgyRplprtt7MkSWNkiEiSuhki6uJ0M9pfJVmT5P4kt427l7nAENHj5nQz2s9dBCwfdxNzhSGiHk43o/1WVX0d2D7uPuYKQ0Q9pppuZsGYepE0RoaIJKmbIaIeTjcjCTBE1MfpZiQBhog6VNUOYOd0M3cAlzrdjPYXST4H/BdwTJLNSU4bd08HMqc9kSR180pEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRBpLkqCRrk3wryY1JrkjyXGeX1YFkVv88rrS/ShLgS8DFVXVqq70AOHKsjUm/Yl6JSMP4Q+DhqvqHnYWq+m9GJq5MsijJvye5qb1+t9WfmeTrSW5JcluS30syL8lFbf3WJO+Y+VOSdueViDSMY4EbH2PM/cAfV9VDSZYAnwOWAW8E1lfVue23W54MvBBYUFXHAiQ5bLjWpekzRKTxeSLw8SQvBB4BntvqNwBrkjwR+OequiXJJuA3kvw98BXgX8fSsbQLb2dJw9gIvPgxxrwDuA94AZNXIAfDL35U6eVMzox8UZKVVfVAG3ct8OfAp4ZpW3p8DBFpGNcAhyRZvbOQ5Pk8egr9Q4F7q+rnwJuAeW3cs4H7quofmQyL45IcATyhqr4A/C1w3MychrR33s6SBlBVleRPgY8meRfwEPBt4O0jwz4JfCHJSuCrwI9b/Q+Av07yMPAjYCWTvxz56SQ7/8fv7MFPQpoGZ/GVJHXzdpYkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6/T8P9BJF302nEAAAAABJRU5ErkJggg==\n", 1262 | "text/plain": [ 1263 | "
" 1264 | ] 1265 | }, 1266 | "metadata": { 1267 | "tags": [], 1268 | "needs_background": "light" 1269 | } 1270 | } 1271 | ] 1272 | }, 1273 | { 1274 | "cell_type": "code", 1275 | "metadata": { 1276 | "id": "aO4f0k-Ovddd", 1277 | "colab_type": "code", 1278 | "outputId": "84713212-f5e0-4aad-fd57-16bb76facefc", 1279 | "colab": { 1280 | "base_uri": "https://localhost:8080/", 1281 | "height": 296 1282 | } 1283 | }, 1284 | "source": [ 1285 | "sns.stripplot(x=\"Class\", y=\"Time\", data=df , palette= \"Purples\")" 1286 | ], 1287 | "execution_count": 19, 1288 | "outputs": [ 1289 | { 1290 | "output_type": "execute_result", 1291 | "data": { 1292 | "text/plain": [ 1293 | "" 1294 | ] 1295 | }, 1296 | "metadata": { 1297 | "tags": [] 1298 | }, 1299 | "execution_count": 19 1300 | }, 1301 | { 1302 | "output_type": "display_data", 1303 | "data": { 1304 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEGCAYAAABYV4NmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3hc5Znw/+89Rb33bsm9FyxwwQ1MMS0QShZIIQkJm8JmEzabkHff3ZTdvL9kN5vsJpuQJYEFkqWFEhy6MZhicJF7t2S5SVaXrF6mPL8/5kie8cyoYMuSrPtzXXNp5j7POXOOQ3Tr6WKMQSmllDrfbCN9A0oppS5OmmCUUkoNC00wSimlhoUmGKWUUsNCE4xSSqlh4RjpGxgt0tLSTGFh4UjfhlJKjSnbtm2rN8akhzqmCcZSWFhISUnJSN+GUkqNKSJyPNwxbSJTSik1LDTBKKWUGhaaYJRSSg2LYUswIvKoiNSKyF6/2DMistN6HRORnVa8UEQ6/Y791u+chSKyR0TKROSXIiJWPEVE1olIqfUz2YqLVa5MRHaLyCXD9YxKKaXCG84azGPAGv+AMeavjDHzjTHzgeeBF/wOH+k9Zoz5il/8IeDLwBTr1XvNB4H1xpgpwHrrM8B1fmXvs85XSil1gQ3bKDJjzHsiUhjqmFUL+RRwZX/XEJFsIMEYs8n6/ARwC/AacDOwyir6OLAB+K4Vf8L4VvHcJCJJIpJtjKk6x0caF5pbOqmpacPpsNHQ0I7Y7ERGCC63ISHBSVenm+joCNrbe4iMctDT7cHhBIfdgd1hw2YTurs9uHrc2OwANhwOG16vB0FobesBhOhoO5GRTjxuN13dXpKTomlr68HhFIyBlOQYUlNjsSqsSqkxaKSGKS8HaowxpX6xIhHZAbQA/9cY8z6QC1T4lamwYgCZfkmjGsi03ucCJ0OcE5RgROQ+fLUcCgoKzumBxjpjDFu2nsTrPfuIh54e37uuLg8ALa1uANra3X7lXEP5Nnp6vAHntLe3BpRoaOiitKyR6dPSSE6OGcK1lVKjxUh18t8FPOX3uQooMMYsAB4AnhSRhMFezKqtDHnfAWPMw8aYYmNMcXp6yHlC40ZNTVuI5DLyDh6qH+lbUEp9TBe8BiMiDuBWYGFvzBjTDXRb77eJyBFgKlAJ5PmdnmfFAGp6m76sprRaK14J5Ic5R4Vx9FjTSN+CUiOmob6dQ/tqSEmNZerMDGw2X9Os12v63quhG4kmsquAg8aYvqYvEUkHGo0xHhGZiK+DvtwY0ygiLSKyGNgMfA74lXXaWuAe4CfWz5f84veLyNPAIqBZ+1+Uujh0dbmIiHCc8y/9k8ea6O52UzQ5leNHG/mf32zG4/FV4afPyuSq66fx/JM7qapsYeKUNO74zHwSk6LPxyOMK8OWYETkKXyd8GkiUgF83xjzCHAngc1jACuAH4mIC/ACXzHGNFrHvoZvRFo0vs7916z4T4BnReRe4Di+QQMArwLXA2VAB/CF8/5wSqkLqrWlm6ceK+HYkUYSEqO49a55TJ2RMeTreL2GP/5+Kwf31QCQkRVPYmJUX3IBOLivhqNl9XR3+/ocy0vrWfvcHj77pcvOz8OMI8M5iuyuMPHPh4g9j2/YcqjyJcDsEPEGYHWIuAG+PsTbVUqNYm/85QDHjvj+5mxp7uLZP2znuz+8GqfTPqTrlB2q60suALXVrQHJpVdvculVcfz0x7hrpYtdKqVGvVMVzQGfO9pdNDd1kpYRB0DlydO88NQuqk+1MHlaOrd/ej7xCVFB12lv6w6KZWbH01DX3u/3T5iY0ncfh/fXkpkdz/TZmTqMfgC6VIxSatSbPDUt4HNsXASJyb4+EWMMTz+2narKFoyB0oN1vPzCvqBr1Ne20dzUhTMisNZjswk3fHJWQCwxKZqComScEXZmzM7kE7fPYc/OU/z6Z+/x5isH+cPvt7L2T3vO81NefLQGo5Qa9a66YRq1NW0cPuAbLNre1sOf/riDu79QTHtbDw31gTWQk2eNiiw7VMfj/70Zjyd4NsO+XVXcdNsc0jJi2VlSSXxCJMuumERCYmAN6P23j2D8Tt/60QmuuXE60TER5+kpLz6aYJRSo15EhIOO9p6A2N6dVTQ1dpCUHE1aRiz1tWeSTKHVpNXrvfVlIZMLgDHg8XiZNjOTaTMzQ5YJxwx59t34ok1kSqkxobm5KyhWVdGMiHDX54vJn5CE02ljxpxMbrg1sMnL6w2fCWbOzSIpeeAhyMuvmIR/l0vx4gJiYrX20h+twSilxoSsnHhaz0oy0dYv+OzcBL76wPKw516+ciJHyxr6ahwxsRF9NaK21m56ut1ERPb/63DOghxS0mI4fKCWzOwEps8aWm1nPNIEo5QaE669cQZHyxpwu3zDivMLk4KawsKZMSeLrz6wnAN7q+np9rBxQ3nfsRNHm9i+pYLFywsHvE5ufhK5+Ukf6/7HI00wSqkxIScvkW8+uIo9O6uIi49k9rxstm+p4PCBWk5VNNPa0kXRpFRu+/R8GuvaOXygjozseGbPy8ZmE/IKksgrSGLzxmNB124+3Tng9+/fU82BPdWkpseyZHkRkVH663Mg+i+klBozUtJiWXnVZABeeXFfQE0E4ND+Wh7+j43U+81rmT0/m7u/UNz3ecbsLF5+fm9Ap39nRw8///HbREU5WX3dVCZPS+fAnmo6O1zMmJvFob01PP/Urr7yZYfq+dL9S4brMS8ammCUUmPSlg+Ph4zXnzVpcu/OKqorm8nKTQSgp9sdNKJsy4cn+t7/8fclZOcl9M3ef/0vB0hOCdwyory0nsaGDlJSdSuJ/ugoMqXUmBQ1hCaq/XvPLA9zuqn/5jCPxxuwNExnh4vOjsAh0jabEBk5tGVqxiNNMEqpMaetrZsp00Pv4RQV7QyKxcadGU48YWJK0CTKgeTkJRLpN8psxepJxMZFDuka45E2kSmlxpTamlb++z820tnh2xE1Mzue9tZu2tp8tYyuzuDdVTMz4/veO512vnT/EjasK6W1pZu5l+RQdqie3dsrcUbYueLqKezcVklNlW+XVYfTxhXXTuWTd87jSGk9aelxZOcOej/EcU0TjFJqTPnw3aN9yQXoSwThOCNsZObGB8TSMuKYtzCXo2UNxMRE8Fefu4Trb5nJfqtj/45PL+DokQY6OnqYtzCXDCtBxcVFsnfXKRrq25k1N0sXuxyAJhil1JjidnkGLuTH1ePlkf/6iNVrplFQlExsXCRvv36It1473Fdm1dWTKS9t4IS1htk7bxzmr7+5jJw838CA7VtO8uqf9wcsV7NkRRE33Ra0k4jyowlGKTWmLLg0j+1bKgYu6OdURQt/+P1WnE4buQVJfXvL9PpgQ3nfBE4Al8vL80/u5NIlE8jOTeD5J3cGrTu2ZeNxrr1x+oArAIxn+i+jlBozfBMihfiESFpbgvd2GYjL5Q1KLgC2EE1dVZUtrH1uD1FRjpCLWooNbSIbgCYYpdSYsHFDOa+9tB+v1+BwhB4Au2L1RN5bXx7yWH+uuHYK618/HFCL6dXV5Q55zuUrJwbtLaMCaYJRSo16XV0u3nz5QN+qyG53cCIAaD7djd1uC7kNcjgxsRGsvGoK5WUNlB6oG7B8RlYcN946m8nTQg+TVmcM2zwYEXlURGpFZK9f7AciUikiO63X9X7HviciZSJySESu9YuvsWJlIvKgX7xIRDZb8WdEJMKKR1qfy6zjhcP1jEqpC6Orw4XrrNpFdEzwfJfd2yu57PIJQ7r20pVFACQmDrxkP0BTQ4cOUx6k4Zxo+RiwJkT8F8aY+dbrVQARmQncCcyyzvmNiNhFxA78GrgOmAncZZUF+Kl1rclAE3CvFb8XaLLiv7DKKaXGsISkaJLPWpbFf6hyL2Ng7iW5zC/ODTnhMoDAlWumcOW1U33nMrjdw1wuLyUfnRi4oBq+BGOMeQ8I7k0L7WbgaWNMtzHmKFAGXGa9yowx5caYHuBp4Gbx9axdCTxnnf84cIvftR633j8HrBbtiVNqTNuwrpSmho6+z+GWaZlQlMyLT+9iZ0llyAmXAQycKG+ipbmLX//sPbZtOjno+zlV0YzR7SwHNBJLxdwvIrutJrRkK5YL+P+vW2HFwsVTgdPGGPdZ8YBrWcebrfJBROQ+ESkRkZK6uoHbXpVSI2PXtsqAz93dwXNh7HZh+ZWTqK3uf+Klv46OHta/fojKk819MREhJtaJw2ljQlEyN90+G6cz8Fflnp1VrH1u79mXU2e50AnmIWASMB+oAv79An9/AGPMw8aYYmNMcXq6dtgpNVq1t/UMWMbjMbz95uEBy/lbuLiA2uq2gJgxho52F26Xl+NHmygvbQi55fKWjcdoax36UOnx5IImGGNMjTHGY4zxAr/D1wQGUAnk+xXNs2Lh4g1Akog4zooHXMs6nmiVV0qNUWevZhzOqZMtA5YRm5CVE8+dn19IXn4S3gFGnO3fUxW0vD/4+nuGMlptPLqgw5RFJNsYU2V9/CTQW8dcCzwpIj8HcoApwBZAgCkiUoQvcdwJ3G2MMSLyDnA7vn6Ze4CX/K51D/CRdfxto42lSo1peROSOWkt4zJUly6dQMvpTrLzEpi7IJe0jDgcDhsnjzXx3/+5sa92YrMLhRNTKC8N/HvUeEGEoMmWOXmJJCYNbuTZeDWcw5SfwvdLfpqIVIjIvcC/isgeEdkNXAF8C8AYsw94FtgPvA583arpuIH7gTeAA8CzVlmA7wIPiEgZvj6WR6z4I0CqFX8A6BvarJQam267a17fumBnS04J/0veZoOICDuHD9Sy4c0ynn1ie1/n/7bNJwOavrwew+UrJzJjTuag7mn1dVOH8ATjk+gf9z7FxcWmpKRkpG9jxHy0afQOu1yyuGCkb0GNEo/8+kOOHD5Tw4iLj+S7P7yKri4Xv/rpe7Q0dwWUj4pyBM3EX7F6Ems+MZPX1x7gvfVlAccWL5tAW1sPdpuwf091wNwb/1rM3Ety+NRnL8Fm0wGqIrLNGFMc6phuOKaUGjNu+ORskqwai9NpZ+qMdJoaOoiNjeTuLyzsO9Zr5tysoGucskaMLVlRSGLSmY3HEpOi2PTBcfburGLX9lNBEzv9/xYvXlygyWUQNMEopcaMrJwEvv2Pq5k8LQ2Xy8P2LRX850/epby0noKiFL7z/atYtOzMTP4dW4NXXe60msgSk6L51j9cwWfuLebery+htaUrqGw4z/5h+7k/zDigCUYpNaY0NXZQdqi+77PH4+WDd3wLXLa1drPlwzPNvaF6ACKjzoxtiohwMGlaOgWFyUPaArmttYeK46c/xt2PL7rYpVJqTDEh5qQYY2g+3ckTv9sS8ri/FVdNZte2Slpbujhe3sj+PdWICJOmptHeVh9yzov6eDTBKKXGlLSMOGbMzuTA3hoAbDZh6cqJvPLiPqoq+p8HU1CYxJ/+sCNo4qYxhtKDdSxbVcT+vTU01neEuYLPxCmp5E1IOrcHGQc0wSilxpy7v1jMnh2naGzoYOacLLJyEnjpT7v7PUcEThzrv1nrgw1HuevzC3nnzVKqT7WEnP8yb2EOt909/1wfYVzQBKOUGnPsdhvzi/MCYpOnprOl/njYcwY7I+NURTPf+O5KXD0ePnr/KK+vPRBwfOqMTBwO3WhsMLSTXyl1Ubju5pksXJRPfEIkUVEf/2/n3tn5zgg7S5YXUVCU3HescFIKcxZkn/O9jhdag1FKXRQioxx9TVd/+P1WDuypDjjudNoC5rZExzj57Jcu5ZUX9lFZ4ZsbM6EomUsuO1MzckbY+fLfLOWj947i6vGwdFWR1l6GQBOMUmrMamrs4KVn93D8aCMREXZychNYefUU4hOChxznFyVTXdlCR7uLiAg7t945j8JJqXz971dQfaoFt9tLXkFgx73Xa/ifhzb1rU+2ddMJvvqtZcQnRAVdXwXTBKOUGrOefWI7x4/6FsHs7nJzqKWOstIGsnKCtzQu91tipqfHw1+e38v02ZnY7baQ5QFKD9YGLH55urGTLRuPs/q6aef5SS5O2gejlBqTPB5vX3IJiLu9VJ4YeBJkS3MXe3ee6nfJ/e6z1jED2PrRCapPDbwtgNIEo5QaYxrq2nnpT3t44aldpKTFnNO1nnliBw//50bc7uAdMgGmzcoMWK8MfInpfx8t0S2TB0ETjFJqzOjscPHQLz5g8wfH2LG1gqaGDpJTh7Yni+Os7Y9PHj/N/t3VIctGRjr46gPLiY5xBsQb6tppPj34tcvGK+2DUUqNGYcP1NLRfmYWvjEwfVYW1940naaGTkTgrdcOsXenb19Dp9NO8ZICSjadwNXjITc/kaLJqX1rl/U6VdHMzLlZeD2GiMjAX4sJiVFMnZHBrm2VAbFQAwlUIE0wSqkxwePxUlMd3PcRHx9JRISDzOx4AGbNy+bI4Xo6O11kZsfh9Xq56bbZFE5KIS09jkP7a4MSzO7tp9j0/jF6ejw4HDYysuNYuXoys+fncKqimZzcBBrr2zl5/DQpaTHcdtd87HZtABqIJhil1Jjw7B92sGfHqYBYRlY8l11+Znn+1pZu/vSHHX0LVlacaKbiRDNwnMJJKUydkRFyDbHTTZ19791uL6dOtvDUY9vJzCqlprq171huXgJzLskNmHypwtMEo5Qa9ZoaO4KSS05+Al97YEXAxl+VJ0+HXQ352JFGjh1pJC4+EptNBrVqsn9yAaisaKGyooWmhg5u/tTcj/Ek44vW8ZRSo16ovSNjYyODdpXMsprJ+tPW2n3OS/KH2shMBdMEo5Qa9ZJSYpi3MLfvs80mLLtiUshyg1lG32YPvd2xnBV2RoReFiYuXjv4B2PYEoyIPCoitSKy1y/2byJyUER2i8iLIpJkxQtFpFNEdlqv3/qds1BE9ohImYj8UsT3n4CIpIjIOhEptX4mW3GxypVZ33PJcD2jUurCueMzC7j7i8Ws+cQMvvHdlUyZnh6y3L1fW8LKqyYzdUYGi5dNIG9CUkBCSU2P5cprpwadN2NOJtfdMjMg5urxBA1RBpi7IOccn2Z8GM4+mMeA/wKe8IutA75njHGLyE+B7wHftY4dMcaE2mThIeDLwGbgVWAN8BrwILDeGPMTEXnQ+vxd4DpgivVaZJ2/6Pw+mlLqQrPZhNnzBl7JODLKwbU3zQDgkV9/FLC18aSpaXzmS5cSGelgxuwsqiqbKZyUQlx8JHa7jR//w5tB1+vscAXFvDrJclCGLcEYY94TkcKzYv7/620Cbu/vGiKSDSQYYzZZn58AbsGXYG4GVllFHwc24EswNwNPGN80200ikiQi2caYqnN8JKXUGNLd5ebI4fqAWF1NG5HWPJfs3ARS0mJ47c/7OXywloyseLq7gpNJKPkTdBTZYIxkH8wX8SWKXkUiskNE3hWR5VYsF/DvTauwYgCZfkmjGsj0O+dkmHMCiMh9IlIiIiV1dXXn8ChKqdHGGWEnITFwmRePx8t//mQDb/zlAG63l9de2s+WD49zurGTw/triQyzj0xsbATRMU4iIu2sunoyswZRk1IjNExZRP4BcAP/a4WqgAJjTIOILAT+LCKzBns9Y4wRkSHXWY0xDwMPAxQXF2udV6mLiM0m3PKpuTz7xx10dbqw2YT2th7a23qoqfINPy49GPiHZVenmyuvncreXaeorW7ri7e393DHZ+YzvzgPOXskgArrgtdgROTzwI3Ap61mLIwx3caYBuv9NuAIMBWoBPz3Rc2zYgA1VhNab1NarRWvBPLDnKOUGkemz87kwR9dxRe+sihoaPLBfTVkn7VMf0JiFFeumcrsecGd+C89u4fKk83Der8XmwuaYERkDfAd4BPGmA6/eLqI2K33E/F10JdbTWAtIrLYGj32OeAl67S1wD3W+3vOin/OGk22GGjW/helxq+ICAeFk1ODRoOlZ8ZxwydnkZOXCPiSy+2fno/NJswvzg0aotzT42HdKwcv2H1fDIatiUxEnsLXCZ8mIhXA9/GNGosE1lnVzE3GmK8AK4AfiYgL8AJfMcY0Wpf6Gr4RadH4+mx6+21+AjwrIvcCx4FPWfFXgeuBMqAD+MJwPaNSavTweg0Vx5uIjY8kNS024JjTaeeWv5rLi0/toqvLTUZWPGtumkFyagz3//0K2tq6iYmJ6Ju4mZYRxz1/fRm//9VHAddpadYVlIdiOEeR3RUi/EiYss8Dz4c5VgLMDhFvAFaHiBvg60O6WaXUmNba0sXv/+sj6mp8/SZLVxZx461nfm10d7vZsvE4XV1uRGD6rExS/JJQXFzwxMmJk9OYOCU1YEfL+QtDjhdSYehMfqXUmPfBO+V9yQXgw3eP9nXkA2z+4FjfkGVj4L31ZVSeHHjXy09/sZgVqyczfVYmN98xhxVXTT7/N38R08UulVJjltdrKC+t5+Sx4K2Tm0939i3hX1/XHnS8oa6d3Pz+l5WJjolgzSdmnJ+bHYc0wSilxiSv1/Dobz4KaMLqFRcfycYN5fzpjzsompzKzDlZlHx0ou94RKSdydNCLzWjzh9NMEqpMenw/tqg5JKeGceEiSmcqmjum+Oyd2cVXo/h9k/PZ+uHx4mOieCKa6YQExsxErc9rmiCUUqNSZ2dwcu6zJidydU3TOcfH3glIH6ktJ7PfOlSLrksP+gcNXy0k18pNSbNmJ1JfMKZ0V8Oh435xXnY7bagfWFy8xMv9O0ptAajlBqjoqKdfPVby9j0wTF6ejwULy4gy5qZf/tnFvDME9upq2kjJy+RW3T3yRGhCUYpNWYlpcSw5hMzg+I5eYn8zXdW4nJ5iI4O3s/FX/PpTmLjInE4bHg8XgDsdm3cOR80wSilLioul4cXn97F7u2ncDhsLLg0jxtvmx2UNE43dfLH32/hVEULMbFOiialcvhgHQIsv3ISq6+bNjIPcBHRNK2Uuqh8+O5RdpZU4vUaeno8bN54nD/8bktQudfXHuBURQsAHe0u9u2uxtXjoafHw/rXDwftJaOGThOMUuqiUnEieIb+4QN1NDZ0BMRqq1uDyvk7eiR4fo0aGk0wCgC7feAySo0FEyenhoyfvY3LQCPLPG7v+bqlcUsTjAJ86zMpdTFYtKyQOQsC93OZvzCX5JSYgNhA64pl5yb0e1wNTDv5FQBe/WNNXSRsNuGuzy/k6uuncWBvDanpsUyflRlULj0jjssun8CWjccBXw2n9w+t/AlJzJybdSFv+6KkCUYpdVFKy4hj+ZVx/Za55VNzueTSPJoaOymclELlidPY7TYmT0/XocrngSYYpdS4VlCUQkGR731iUnTIMr2rNosIRZNT+zYmU/3TBKOUGhe8Xl/7V7jk4PF4sdkEEcHrNYiAiNDT4+Z3v/yQypPNAOQXJvOl+5fgdOrImIFoglEAFOQncsL6P5BSo5HL5WH9a4coPVhHVk4C1940g+hoJwf31QCGbZtPUnqoHofdxuWrioiLj6SqsoUp09NpbOjg3XVluFwenE4bNqv5a9rMDBZels/Tj2+nvb0Hu93GhKJkThxvwum0c+W1Uyk9WNuXXABOHmti785TLLhUF84ciBgdPgRAcXGxKSkpGenbGDFut5etJRUjfRshLVlcMNK3oEaBV17Yy8Z3j/Z9zs1PpKvLTUOIzcSGwuGw4R7ikOTLlk7glr/S9c0ARGSbMaY41LFh7cUSkUdFpFZE9vrFUkRknYiUWj+TrbiIyC9FpExEdovIJX7n3GOVLxWRe/ziC0Vkj3XOL0V8I93DfYcKr7aubeBCSo2g/XtrAj5Xnmw+5+QCDDm5AGz58DhvvnzgnL/7YjfcwyQeA9acFXsQWG+MmQKstz4DXAdMsV73AQ+BL1kA3wcWAZcB3/dLGA8BX/Y7b80A36HCqKpqGelbUKpf6RmxI30LATZuKMft9oz0bYxqw5pgjDHvAY1nhW8GHrfePw7c4hd/wvhsApJEJBu4FlhnjGk0xjQB64A11rEEY8wm42vne+Ksa4X6DhVGT49OhFGj2/W3zBr0LpTJKWdGgzkcNpauLCIpORqHI8yvPKvfPyLCzqy5WQH7zIRj0AnKAxmJTv5MY0yV9b4a6J0BlQuc9CtXYcX6i1eEiPf3HUqpMSojK57Va6byl+f3hi3jcAhf+dZycvISqalupfpUC0WTUklIjOLGW2cD0N7WzU9/sA6360x2cDps/PBnNwRc638e2tS37XIoS5YX6UiyAYzoKDJjjBGRYf0boL/vEJH78DXHUVAwvjuS/WcxKzVazS/O463XDtHZcWa7ZLtdcEbYiU+IIiExip0lFcTFR5KZFU9mVnzQNWLjIilePIFN7x/ri12yKPj//7feNY8/P7ObY+WNFBQms/KqyfT0eKg82UxOXgIzZutM/4GMRIKpEZFsY0yV1cxVa8UrAf9xf3lWrBJYdVZ8gxXPC1G+v+8IYIx5GHgYfKPIzuWhlFLDLzrGybf/aTUvPbubI4fraW/rweMxeDrddHW2UVfTxpHD9RzcV8PfPrgq7Gz8Gz45i7SMOI6XNzKhKJlFywoBOHakgQ/fO4qIcPmqidzz14sAaKxvZ/vWCpxOO4uWTSAubuAmNDUyCWYtcA/wE+vnS37x+0XkaXwd+s1WgngD+H9+HfvXAN8zxjSKSIuILAY2A58DfjXAd6gwtPaiRju328vLz+1he0kFHrcXhyN881R9bTsnjzVROCn0ysp2u42lK4pYuqKoL1Zb08ojv97Ut6vlgb3V/O2DqxDgV//2Ht1dbgA2f3CMv31wFZFROo1wIMP6LyQiT+GrfaSJSAW+0WA/AZ4VkXuB48CnrOKvAtcDZUAH8AUAK5H8M7DVKvcjY0zvwIGv4RupFg28Zr3o5zuUUmPUhnWlbPnoRN9nl6v/EVxx8eFrGZ0dLko2HWf39lM0NXaSmhZDTn5iX3IBcLu8PPe/O3E4bH3JBXw7YW7eeIwVq/tfjVnpRMs+432i5UebTgxcaIToREvV1eni5z9+h7bW7kGV7+1TjIi043Ta8XoNxhjcbi9u17mPmIyKcvCPP1mDnL3JzDh0ThMtRSRTRB4RkdeszzOtmoG6iDidI30HSoX3wtO7Bp1c4EyTb0+3h/a2Hjo7XHR1us9LcgHo6nLz6p/3n5drXcwGMw/mMaVqWHoAACAASURBVOANoHcHn8PAN4frhtTIcLkGLqPUSDmwp2bgQhfY4YMhxw4pP4NJMGnGmGcBL4Axxg3o9NWLjNb01WiWNspm8QMI+n+agQwmwbSLSCq+iatYo7Z02d2LjEMHxKhR7OY75vR12kdGOYJm5EdGOUhJDb2XS3/O5Q8rm+5HNqDB/Fp5AN+w30kishFIB24f1rtSF5xumaxGs8JJqXznB1fR2NBOSmqstQKyB4fDjsvlxhj4wd+/NvCFzrLq6im882ZpQKx4cT7X3TyLR37zIadOhl+jL79Q19AdyIA52BizHVgJLAX+GphljNk93DemLiyPNnqqUc7hsJGRGd9Xe+mdB+N0OnA67SQkBg9LDrv2GL5mt0uXTsDhDCxTXtpA8+lOihdPCIhn5sSTnBKNCEydkc61N84410e66A1YgxERO775KYVW+WtEBGPMz4f53pRSalBEhJvvmMtTj23D7fZitwtXXjuFyooW9u+uDiiblh7LlBkZrFg9iZjYCPIKkjh25MyavI0NHTz7xHa+8eAqoqOdHNhbTVpGHMtWTSQyyoHH0/8kT3XGYJrI/gJ0AXuwOvqVUmq02be7um9vl+gYJ/MW5rF9y+agcvd+fQmJyb7+mg/fLQ9ILr2qq1rp6XEzb2Eu8xbmcrSsgf17qpk6M0OXiRmCwSSYPGOMbt2mlBpxbreHtc/t5cihetIyYrn6hunk5idSdqie7VvOLLre1trDn/64gwkTk2moP7MpWWZ2PB6v6eu/qa5qDfk9ufmJ2GxCU0MHb79xmG2bfdeOjHTw5W8sJScvcXgf9CIxmATzmohcY4x5c9jvRimlwjDG8Kt/fY+6Gt/uq02NHZQerCM6xhlyNNjxo02cqmwmKyeB1pYuMjLjON3Uyc9+tJ6YWCe3f3oBU6enU/JR4CoW0TFOFlyWz//3j+sCVm0G6O528/Ybh/nMvZcO23NeTAaTYDYBL4qIDXDh25rHGGMShvXOlFLKz7Hyxr7k4u/sJODP1eOl+pRvJNiJrtN4rCa0jnYXLz69iyV+i136X2/dywfp7nYHHQM4crgel8uje8EMwmBGcv8cWALEGGMSjDHxmlyUUhfaua6b2JtcerW2dAfsCeMvXHIB6O5y89arh87pXsaLwSSYk8Beo6tiKqVGUOHEVHLyz9/ftrGxEWGX3E9N73/lgLJD4Xe6VGcMpomsHNhgLXbZt9qcDlNWSl1INptw3zcuZ9e2Smqr2+jqdHFwXw2RkQ6WrCjilRf3Del6S1cWkZIey7NPbO9bHNMZYWfFlZNYuCif19YeoKaqlaycePburMLrPfM3dnaudvIPxmASzFHrFWG9lFJqREREOLh0yYSQx2x24eXn9/Yli4TEKFqauwLKiPjmzMxbmMuKqyZjt9tITo7mkd9swtXjwdXjYcO6MmbNy+auzy/sO+9gcQ1/fmY3Lc1dFE1O5dqbdJLlYAyYYIwxP7wQN6KUUh9XQ307bS3drLpmCgkJkcTERZKdk8Av/t87Abu1zi/O4xN3zCEy8syvvtrqNlw9Z5ay8Hi87NpWSVbOmea46bMy+c4PrqKn201UtO5tMVhhE4yI/Jcx5n4R+QvWQpf+jDGfGNY7U0qpQWisb+e//LY0TkiM4pvfW0VUtJNV10xhw5ulGAPxCZEYY3jr1UMsXlbY188SGxfcMBMqZrOJJpch6q8G8zngfuBnF+helFJqyLZvrQjY0riluYt9u6tZuCifq6+fzsJFBRwvb+DFZ3azs6TSd86Wk3zr/1xBXHwkU2dmMHlaGmWH6gHIyo6n2G8X1fraNk4ca6KgMJm0jLgL+3BjXH8J5giAMebdC3QvSinVL4/Hy5svH2TvzlPExUdy1fXTQ85HOXK4jinT06mrbePt1w9TU9UasJtlZ4eLF57eRUNdO/EJkVxz4wyWrOim9GAdeflJ2K1FMks2neDFp3dhjK//Jjk1hp5uD5Onp3H73Quw2XRPmP5IuNHHIlKBbw5MSBfbKLLi4mJTUlIy0rcxYj7adGLgQiNkid9fk2p8e/uNw0FzUC5dXEDp4TpON3YGxKOjnbhcnr71yfoTGeVABLo6fTWhvIIk/vqbl/OvP3iL1pbQWzVPmpLKvfcv/ZhPcvEQkW3GmOJQx/qbB2MH4oD4MK+PezPTRGSn36tFRL4pIj8QkUq/+PV+53xPRMpE5JCIXOsXX2PFykTkQb94kYhstuLPiIiOflNqjHP1eHhvfVlQfOumE1xx9WQKJ6cExDs7XYNKLuCbPNmbXAAqTpym7FBdvxMuy8saBn398aq/JrIqY8yPzvcXGmMOAfOhbyuASuBF4AvAL4wxAX0+IjITuBOYBeQAb4nIVOvwr4GrgQpgq4isNcbsB35qXetpEfktcC/w0Pl+FqXUhbNn5yl6ukNvXPTiM3vO6doicHZjjtdrWHR5Ie+/faTf81R4/dVgLsQ/3WrgiDHmeD9lbgaeNsZ0G2OOAmXAZdarzBhTbozpAZ4GbhYRAa4EnrPOfxy4ZdieQCl1QfS35lgosXERLLtiYl9/SlgCV1w7JWDocmZ2PFOmZzBzTiZ2e+hfhTGxEdjtum9yf/qrway+AN9/J/CU3+f7ReRzQAnwd8aYJiAX34KbvSqsGPiWsfGPLwJSgdPGGHeI8gFE5D7gPoCCAm3nV2o0mz0/m/WvH6ar80yiycyJp76mDY/nTPUjMsrB1ddPY86CXOITIqmtbuXwgTNLu0THOAOS1cw5WVx13XQWXlbArm2VREU7mX9pLg6HjffWHwm4tr/Ojh66u90BiUkFCpt+jTHBu/CcR1a/yCeAP1mhh4BJ+JrPqoB/H87vBzDGPGyMKTbGFKenpw/31ymlzkFiUjRfe2AZl68sIiPTN1y45lRrUA1l5erJLF05kfiESJoaOgKSC4DxBiaMzo4ewDdCbNU1U1i8vJCoKN98F5cr/F7iNrtNm8gGMJKp9zpguzGmBqD3J4CI/A542fpYCeT7nZdnxQgTbwCSRMRh1WL8yyulxrC0jDguWVTAxneP9sV6uj1MmZ5ORmYc3d0edpZUcOhALVdcM4WsnISg/pWzO+6PljXi9RpaW7rY8uFxXN0eFi4uIDM7nsXLizhyuD6ofwbg8pUTiYjQ2kt/RvJf5y78msdEJNsYU2V9/CSw13q/FnhSRH6Or5N/CrAFXx/RFBEpwpdA7gTuNsYYEXkHuB1fv8w9wEsX4HmUUhdAe1vwsOHomAjcHi8lfsPtn3h4C9/6hysoXlLA1g99cbvDht0uAYMF4hMi+fd/fpvm0519C1pu3niMr397BTPnZHHfNy5nz85TNNa309baTWS0k8tXTmT6rMxhftKxb0QSjIjE4hv99dd+4X8Vkfn4lqU51nvMGLNPRJ4F9gNu4OvGGI91nfuBN/ANqX7UGNO7nOp3gadF5F+AHcAjw/5QSqlhtWfHKd58+SAdHT1ERTv7+mJEYPa8LJ56bFtAea/XcPhALbd8ai5z5udQX9fOwb3VAU1mNpuEnOficnnZsbWCa2+awYSJKewsqeDgvtq+4zExEZpgBmFEEowxph1fZ7x/7LP9lP8x8OMQ8VeBV0PEy/GNMlNKXQRON3bwzBPbA5bMnzojg9i4COYX55GcEh2yGSsj0zdlr621m+rKFo4fbQo47vWG3+bK7rDxx99v4Xh5Ex1njWDbt6sKj8ero8gGoA2ISqlR7/ixpqBkEBcfyfziXFqau8jKicfuEDzuM2WycuKZNDWNN185yIY3S4f0fU6nnZKPjtPSHHoWf3xCpCaXQdAEo5Qa9fIKkoI662uqWnj0N76ZChER9oDkApCZ7Vtuf8vGY0P+PpfLg6s59AgyZ4Sdm26bPeRrjkeagpVSo15qWiyfvHMesXEROBw25l6SQ+XJ5r7jPT3BycDptPH049vpaB/aBE2AqOjQf3vPvSSHB394NTPnZg/5muOR1mCUUmNC8eICihcX4PUaTh5vYvf2U2HLxsRGICLs3v7xZih0dbpJy4ilvra9LxYRaWfNTTOIjtE9YQZLazBKqTGlu8vFn5/eFfb4yqsn8+1/vJL6uvagY4lJUSHPiY4J/lu7qbGTyMgzWwEsWzWJpJSYj3HH45cmGKXUmLJl43FqqtvCHs/NTyIq2smEiYGrK0dFO/v6Zc7W2RG8arLH7aXbb77Mu2+V0tYautNfhaYJRik1ppw8fjrssaTkaKbO8C37dMXVU1i4KJ+ICDvxCZF4vV5KD9UGlB/KUi8ej9EEM0SaYJRSY0bz6U4O7qsJiDkcNiKspiybDRqspjFnhJ3b7p7PV/9uOa0t3fR0ezBnbd8SZr/FkLJyEsjM/thbYY1LmmCUUmNGeWlD0HwYh8PWt/RLY0Mnf/x9CS88tYvtW05ijKHyRPgaTy8R36tocgrxCZFBxzOz4/nCVxchurrlkOgoMqXUmNHVFTzkuKsrsP+kqbGDkk0nKNl0guqqFooXF2CzSb+z9o2Bv/3eSupr23n+yZ1Bx6fNzCQ+IfQAARWeJhil1JhQX9vGKy/sC4jFxUcQGxdBTVXoTv8P3i5n8/vHWHBpHkdK6znd2Bn2+j3dHp58tCSo2Sw+IZLFywvP9fbHJW0iU0qNCYcP1AbVQtpae6ipasPhtAUMKfbncnnZtvkkX/za4rDXnj0/m7JDdSH7ZO74zHySkqPP6d7HK63BKKXGhP42/3K7vAQPNA507EgjEyamcLz8zF6KDqeNJcsLuebGGezbVRXyvNfXHmTBpW1UnjhN0ZRUFi7yNbmpgWkNRik16nV3uXlniAtWnu3ksSY+9ZkFFBQm98XcLi8fvFPO3p1VTJ+dSUpa8ETK6qoWXnlxHzu3VfLi07t569WD53Qf44kmGKXUqFd9qiVgk7CPdY2qFpJTY5g5Nysgbgw888R2/u2H67n1rnmkW9sx9/J6AtvNSjadPKf7GE80wSilRr3M7Pi+uS4fV1q6L3GkZcSFPN7e1sMbaw+QnNJ/f4sZyuSZcU4TjFJq1IuKdnLn5xaSnBqDzSZBc1VsNiEiInwC8vWZGB777SZqqlpYcGleyHIN9R1Bm4udLdxgAhVME4xSakyYPjuTmXOy8HpN0DbHxUsK+PY/rSY1LTbkuV6vYcfWSg4fqGPdK4fo7go9JKCry0VUdP+rJedNSO73uDpDE4xSakyoqWpl44bykMdKD9QSGxfBV/9uGQ7HwL/WDh+oDRn3egxlB+vCnpeeGcc1N0wf3A0rHaaslBobTjd1hD3W1NhJT4+Hhtp2CiencLS0AY8nfF9JXHwkp5vCT7o8W0ZWHJ+591JS02N1uZghGLEajIgcE5E9IrJTREqsWIqIrBORUutnshUXEfmliJSJyG4RucTvOvdY5UtF5B6/+ELr+mXWufpfhVJjWGdn+Jku+ROSeO6PO/jtf3xA2cH6gOQiArn5iTgcvl8BEZF2PnnnXK65YTqRUQ6c/fTd9LrimqmkZcRpchmika7BXGGMqff7/CCw3hjzExF50Pr8XeA6YIr1WgQ8BCwSkRTg+0AxYIBtIrLWGNNklfkysBl4FVgDvHZhHkspdb7VnGoJisXGRTBpahonjjWFXcbfGPji15bQ2dHNxnePEp8QRXZuIlOmZ7BwcT7RMRG89eoh3ltfFnRufEIkN902m9nzc87784wHI51gznYzsMp6/ziwAV+CuRl4wvjGB24SkSQRybbKrjPGNAKIyDpgjYhsABKMMZus+BPALWiCUWrMmjgljXffCkwCxYsLQOh3++Tc/ETEBo/8ZjNNDb5mtg/eKSc6xklDXTtJKdHcdvd8SjYdp6M9cARZ4aRUTS7nYCQ7+Q3wpohsE5H7rFimMaZ3vYZqINN6nwv4z26qsGL9xStCxAOIyH0iUiIiJXV14Tv2lFIjb8r0dG745CySkqOx231NVe++Vca764JrHr3i4iO56/ML2buzqi+5AHS09/TtG3O6sZM/P7ObL3x1ccDwZ2eEjRWrJ7F/dxU///Hb/PP3XufVF/f1uyqzCjSSNZhlxphKEckA1olIwPoLxhgjIsP6v6Qx5mHgYYDi4mL9r0apUe7yVROJT4zi6ce2Dap8W2t3wLbH4TTUtZOeGceDP7qao2UNNDV2MnVGBsYYfvuLjXg8vp3KPthQTkp6LIuXFZ7LY4wbI1aDMcZUWj9rgReBy4Aaq+kL62fvWMJKIN/v9Dwr1l88L0RcKTXGmSHWIFw9bmbPzw65zlivCRNTiIhwICJMnJLGwkX5xCdEUnG8qS+59Nq2+cTHuu/xaEQSjIjEikh873vgGmAvsBboHQl2D/CS9X4t8DlrNNlioNlqSnsDuEZEkq0RZ9cAb1jHWkRksTV67HN+11JKjWFp6aEnU4aSnBpDUko0UVFO7v/2Cm7+1ByycxOCyt18x5yQ5+cWJAXF6qrbdLmYQRqpGkwm8IGI7AK2AK8YY14HfgJcLSKlwFXWZ/CNAisHyoDfAV8DsDr3/xnYar1+1Nvhb5X5vXXOEbSDX6mLwr7doZfVD6WpoYOf/fPblB2qIyrayaLLC0MOS7bZQw8/TkyKDloaxuPxhtw3RgUbkT4YY0w5MC9EvAFYHSJugK+HudajwKMh4iXA7HO+WaXUqOJwDm0tMLfLy2O/3UxBUTI33jqbeQtzOXG0qe94bn4iaelx1Ne2kZAURURE4K/FpSsnBmwVcOnSCbofzCCNtmHKSikVlqvHQ3lZ/cAFz+L1Go4daeS//3Mj3/n+apxOO/t3V5OYHEViUjT/9qP1NDd1EhXt4NY75zFzbjbrXz/Eji0VgCF/QhLJqTFMmprGwkUF5//BLlKaYJRSY8J768t44y8Hzql5ytXj4Sf/tA5jfM1ibldgB35Xp5s/P7Ob2upW3nnjTK3ldFMXJ4+f5jKtvQyJLnaplBr1Wpq7eH3tuSWXXh6Pwes1QcmlV0eHi7deOxzy2F+e36vzYIZAE4xSatQLt/rxhVZb3co//d0rPPvEdlw957bD5nigCUYpNeqFGlo8Eozx9efs3FbJ++8cGenbGfU0wSilRr3c/CSWriga6dsIUBFmcU11hnbyK6XGhBtvm82i5YX89hfv09lxZun+G26dyaQpadRUt/HSs7vp6nSTkRXHjbfOYu+uKpoaOyiYkEJqeix1NW0cPlBL9almPFYLV3S0g9kLcpg5JwsMvPNmKe3tPVxyaR6TpqXR2e4iJS2WX//sPXr8msUKJ6Vc6H+CMUcTjFJqzDhxtInISCder28SZHpmLHU17bS1dvPhu8f6+kVqq9vYvrmCOz67gC0fHufAnhoOHailq9NFUlI0n7tvEa4eD6npcTTWt7NzWyWlB+tYfuUkvvKtZQHfeXBfDW+/cZipMzKoqWqlra2b+cV5XL5q4kj8E4wpmmCUUmNCVWULLzy1s28kWW11K7XVreHLn2rh3bfKePPlgHV0qa9t50hpPff97eUc3FfNG385c/zgvhq+9X+uwG630dPj5tD+Wp76nzMLa6ZnxPEPP75WhyoPkiYYpdSYcKy8YUjDlCdPS2PjhvKQx4yBx/97M11n7ZLZWN9BeVkDO7dWsGtb8Pq4dbVtHNhTxax5ukfMYGgnv1JqTMgvSB5UuahoJ4uXFwLQ3tYTttzZyaXX0bIGdmytwOs1Iee87NoWfnMzFUgTjFJqTMibkMR1N88kKtqJ3RH6V1dsXARf+dbltJzuYuOGo2Gv5Qhz/pIVRbSc7ur3PtrbwyctFUibyJRSY8byKyex7IqJGAMtpzt5d30ZNVWtOOw2CienctnSCbz3Vhn791SHvcbc+TnMmJPJM3/Y0ReLjYvgi19bTHZuIju2VrB9y8mw58+al31en+lipglGKTWmiAgikJQSw813zA06XnEy9PyUrJx4Ll0ygUXLCrHZBJvdxo6SCuITIll51RRSUn0bki24NI/TTR2880YpbnfgcjKXryxiidX8pgamCUYpdVFobeniw3ePhu1bWX7lZBZcemaj2zkLcpiz4Exnvddr2L7lJCeONVE4MYWlK4t4b/2Z2foOp41Fy4vw7WGoBkP7YJRSY4rH42XvzlO88sJeNm4op621G4/Hy8O//JB33yqj+lRLyPN2bA3f7AXwyov7eOGpXZR8dILn/ncnXo9hzoIcevOJ2+XlVz/dwJHDQ98uYLzSGoxSasxobe7iP3+6gY52V1/srVcPceWaqTTUtfd7btmhev7y/F4KJ6bw7luleD2Gy6+YxMJF+XR1uvjovcBBAds2n+S7P7yKA3uqcLt9o8lcLi9vvXaISVPTzv/DXYQ0wSilxozH/ntzQHIB6O5289pL+wd1/qb3jwYkkuef3ElqWgwVJ4L7bbq73Rw+WIvHEzhU+XRTJx6PF7tdG4AGov9CSqkxwe32UFUZuvkLGNTs+lATNUsP1oWcL+P1Gp58dBs5eYkB8eamTn7503fp7HAFnaMCXfAEIyL5IvKOiOwXkX0i8rdW/AciUikiO63X9X7nfE9EykTkkIhc6xdfY8XKRORBv3iRiGy24s+ISMSFfUql1Plmt9uIiXWGPW6MYeKU1IBYdEz48r0ysuOZtzA3bIKqr2sLitXVtLFt84kBrz3ejUQNxg38nTFmJrAY+LqIzLSO/cIYM996vQpgHbsTmAWsAX4jInYRsQO/Bq4DZgJ3+V3np9a1JgNNwL0X6uHGqghNwWqUa6zvoKszfK0hLj6S40cb+z7PnJsVMsGcPQhsx5aTZOUkcPUN00Jet7sr9MZiWoMZ2AVPMMaYKmPMdut9K3AAyO3nlJuBp40x3caYo0AZcJn1KjPGlBtjeoCngZvFN4bwSuA56/zHgVuG52kuHp7QIzuVGjV276jEG3qXYwDiEiLwuM+0gR3YU83UGRlB5c5OOocP1FFV2cyyKyaRmRU/qHtxOIR5xf392lIwwn0wIlIILAA2W6H7RWS3iDwqIr0LD+UC/uMLK6xYuHgqcNoY4z4rHur77xOREhEpqaurOw9PNHY5I7Q7To1usXGRQTFnhJ1Z87L4/FcWERkZmDiMgctXFTF5+pkRX4nJUeRPCF7TzOs12O02vvHgSq66biqJSVFBZRxOGxOKklm4OJ+vPrCcjMzBJaPxbMRGkYlIHPA88E1jTIuIPAT8M2Csn/8OfHE478EY8zDwMEBxcfEQ1mm9+AxllVqlRsL8hbls/fA4lSebAZgwMZl7v760b12xzk4Xx46caSKbNjOD1LQ4vvjVJRhj6O52ExXl5Hh5I2WH6vF4fNWhiVNSyc1Pwu32UHqwjoKiFJZdOYl/+d4bATP5l6wo5LpPzLqATzz2jUiCEREnvuTyv8aYFwCMMTV+x38HvGx9rATy/U7Ps2KEiTcASSLisGox/uVVGC5XP20PSo0CEZEOvvrAcsoO13G0tAGbXairaSU7N5G6mjaOlzcyfVYmkVEOJhSlsHDxmV8PIkJUlK+GM2FiCn/znRXs3VVFYmIUcxfm0tHew2//4wPqa31zaQonpXD/369g7XN7qK1po6vTxQdvl1Nf086nPnsJkVE6w2MwLvi/ktVH8ghwwBjzc794tjGmyvr4SWCv9X4t8KSI/BzIAaYAWwABpohIEb4EcidwtzHGiMg7wO34+mXuAV4a/icb23T1CzUW2GzC5vePcWCv7+/Rd9eVcdvd81j7p710d/taxZ1OGwsuzeN/HtpE5YnTTJySxq13zSM+4UyzV0ZWPFf69be8sfZAX3IBOHakkfq6dv7qcwv51x+s65sLc2BvDe+tL+PqG6ZfiMcd80ai4f1y4LPAlWcNSf5XEdkjIruBK4BvARhj9gHPAvuB14GvG2M8Vu3kfuANfAMFnrXKAnwXeEBEyvD1yTxyAZ9vTEpLjR7pW1BqQA117X3JBXx9J88/uasvuYCvNv78kzs5dqQRl8vLof21vPSnPWGv2dPjZstHx4PiXZ0uaqtbgyZa7tmp+8EM1gWvwRhjPsBX+zjbq/2c82PgxyHir4Y6zxhTjm+UmRqk5mbd40KNfqHWGQu1KVhrS3fA58MHanntpf0sWlZISmoMVZXNuN1e8gqSOHG0CfdZTcR2h40ZszOx2YL/Bm9q6MTrNbpt8iBoQ6ICoKs79Fh/pUYLj8fL2ufC10R6paTGYLNLQJOX2+Xl/bePsG3zSXLzEyk96Bs1WlCUzG13zUMkcKDLtBkZ1Ne1Ex8fPHLN4/Gy7aMTXHr5hHN/qIucJhil1JjQUNceVDMJpbGhgxAVDwA62nv6kgvAiaNNHDncwPW3zOLNlw/gcnmJjHKwf081+/dUk5kVF/I6f/7TbvKLksnKSfhYzzJe6OQHBUBkpFb31eiWkhZDTOzglpzob0Lm2VqaO7l81US+9y/XsOamGXR3nenPqakOXiYGfLUd/1UDVGiaYBQAEU6tzKrRzeGwc+c9l5CSFvOxr5Gbn0hEhL3vs80mfZuORUU5cXuCM9PsedlERNqD4gWFKR/7PsYL/a2iAN9CgUqNdpOnpfPtf1yNx+PlN//+fr+rK/e65LJ8Zs3LwuGwMWlqOtWnWti4oRy328viZYVk555ZLXnO/Bw2rCvt6/R3OH1/g89bmIvXa9i7owqH08ZV100jO1ebxwaiCUYB0BFmm1mlRiO73cbNn5rLb//jA9/aHyHEJ0SSnBpDaloMhRNT+9Ygy8lL5I7PLAh5TnpmHF/+m6Vsev8YnZ0uDu+vYe8u3/S86Bgnf//91YNuplOaYJRlKG3WSo2E002dlB6sJTU9lomT09i/uypscomNj6CttZvWlm5OHG3io/ePkp4ZR+GkVFZdNQVnRHCTF/hWSK6raWPWvGyOHWngoDfw2MF9NVxyWX7Ic1UwTTAKALsdPDpSWY1SR8sa+J/fbuprupo5Nwu7I7gLOS4+kts/PZ+STSfYu7OqL97W2kNbayNHyxppPt3FZUsnEBXlICMrHmMM77xZSsmmE7Q2d/VNrExIDF7wzOmKBAAAB4dJREFUMjZOay9DoQlGAZpc1Oj27lulAZMh9++u7usf8Sc2mDojo69ZK5QdW06yfbNvIfZLLssjvzCZt149FFSupbkr4HNKWgxTpgcv/6/C01FkSqlRr6cn+C8gt8sbtIZe7/4vy1ZNDLubpf94lu1bKti9fXBLv8TERujs/SHSBKOUGvWWLC8KGU9MiiY9Mw4RmDkni+s+4dvUNiMrnr/7v1eydEVRwN4uoRLEYEdQ1pxq5d23yj7G3Y9f2kSmAO2DUaObN0wS6Olx8+1/Wh0ycezZeYoP3zsaeJ0Q65b57yHTH5fLwxt/OUBsXATFiwsGdc54pzUYBUBiiA5NpUaLd944HDLe0e6i4sTpIZ3TnwkTk8nK6X+nypee3U1VZfOQrz0eaYJRAHi19qJGMf+dJc+2f091UKy7y01L88Drlp2trqad/MLgLZX9eTyGD94pH/K1xyNNMAoAg2YYNXotXRG6DwbgdGNHUKytdejJBXxLycxdkDvgBnz9JTx1hvbBKEAnWv7/7d1fbJX1Hcfx96dHWqCUktFqKd2Ahj9rV6RiZQzRsgQVlm2GLCRAEC9I1Asv5sWyzXipiZca/8Q4w+CKxoRpzGxkIctEo0b+BAXm2ICxAUFa49hUrC3tdxfntGltK1XOc556zueV9OL55WnP5yQn+fT3POf5/WxyW9XeSMXUDC91HB11H2XlbfNHnT+7tpK6+plj7h8znqqZFfx841Jm11SydfstHHjn3wjovzLAmdMfD32TraxMrFw9+jVtNBeMAf6PzCa3vt5+9nX+fUS5lJeXcedPm5jfOHvM37n3/hXs6zxBd9enNLXUUd9QTceuQ3x+uQ/IbhNeVT2VysopLG6uY+36xWQy2Ys6TUvraFpaN/S3vvjiCoffPcv/LvVw4/L6EeuX2fhcMAZAT48vkdnkdeofH/HfSyMffGxpncuq9sZxf6d61jR+saV1xNjDj97Jib920fN5H00tNzBt+sSezK+ouG7cr0rb+FwwBox8+MxsspkxY/TOkjPG2G3yajKZMpqHzUwsWb7Jb2aTXsO8Wdx0S8PQ8XdqprOqPb8ziv7+Afr6+kctEWPfXNHOYCStA54EMsALEfF4ypHM7Bps3HoTt65p5PJnvSxYOHvofsm1GhgIOl8+zjtvnmEgt9Dl9XVVbN3eRs31Y2+ZbBNTlDMYSRngGWA90AxsltScbiozu1b1DdUsXFKbt3IBeP/wed56/Z9D5QLQ9eEn/PEPx/L2GqWqKAsGWAGcjIjTEdELdAB3p5zJzCah8+OsBHDxwicFTlJ8irVg5gJnhx2fy42NIOk+SQclHezu7i5YuMloaoVXibXStGBRzZjjgysz2zdXrAUzIRHxfES0RURbbW1t2nFS1dracPWTUlA/pzLtCFbkmpfWcdfPmqiaWUF5eYYZVRX8cPV8frLhB2lH+9Yr1pv854Hh+5o25MZsHJL40crv8cHfPuTSpd604wDQumwO06aNvaeHWT61r11I+9qFaccoOsVaMAeARZIWkC2WTcCWdCN9OzR9388ImFl+FGXBRMQVSQ8Ce8l+TXlHRBxPOZaZWUkpyoIBiIhOoDPtHGZmpaqkb/KbmVlyXDBmZpYIF4yZmSXCBWNmZolQeJ12ACR1A/9KO0cRqQE+SjuE2Rj82cyveREx5pPqLhhLhKSDEdGWdg6zL/Nns3B8iczMzBLhgjEzs0S4YCwpz6cdwGwc/mwWiO/BmJlZIjyDMTOzRLhgzMwsES4YyytJ6ySdkHRS0m/SzmM2SNIOSV2SjqWdpVS4YCxvJGWAZ4D1QDOwWVJzuqnMhuwE1qUdopS4YCyfVgAnI+J0RPQCHcDdKWcyAyAi9gMfp52jlLhgLJ/mAmeHHZ/LjZlZCXLBmJlZIlwwlk/nge8OO27IjZlZCXLBWD4dABZJWiCpHNgEvJJyJjNLiQvG8iYirgAPAnuBD4AXI+J4uqnMsiTtBt4Glkg6J2l72pmKnZeKMTOzRHgGY2ZmiXDBmJlZIlwwZmaWCBeMmZklwgVjZmaJcMGYpUBSnaQOSackHZLUKWmxV/q1YnJd2gHMSo0kAS8BuyJiU25sGXBDqsHM8swzGLPC+zHQFxHPDQ5ExHsMWyhU0nxJb0g6nPtZlRufI2m/pCOSjkm6TVJG0s7c8VFJDxX+LZmN5hmMWeG1AIeuck4XcEdE9EhaBOwG2oAtwN6IeCy3/850oBWYGxEtAJJmJRfdbOJcMGaT0xTgaUmtQD+wODd+ANghaQrwckQckXQaaJT0FPAq8KdUEpt9iS+RmRXeceDmq5zzEHARWEZ25lIOQ5tm3U52leqdkrZFxH9y5/0FeAB4IZnYZl+PC8as8P4MVEi6b3BA0o2M3OqgGrgQEQPAPUAmd9484GJE/I5skSyXVAOURcQe4BFgeWHehtlX8yUyswKLiJC0AXhC0q+BHuAM8Mthpz0L7JG0DXgN+Cw3vgb4laQ+4FNgG9ldQ38vafAfxt8m/ibMJsCrKZuZWSJ8iczMzBLhgjEzs0S4YMzMLBEuGDMzS4QLxszMEuGCMTOzRLhgzMwsEf8HX+pr5v8g61YAAAAASUVORK5CYII=\n", 1305 | "text/plain": [ 1306 | "
" 1307 | ] 1308 | }, 1309 | "metadata": { 1310 | "tags": [], 1311 | "needs_background": "light" 1312 | } 1313 | } 1314 | ] 1315 | }, 1316 | { 1317 | "cell_type": "code", 1318 | "metadata": { 1319 | "id": "_Z2t79B7WdYt", 1320 | "colab_type": "code", 1321 | "colab": {} 1322 | }, 1323 | "source": [ 1324 | "import numpy as np\n", 1325 | "from sklearn.decomposition import PCA\n", 1326 | "X = df.drop(columns='Class')\n", 1327 | "y = df['Class']" 1328 | ], 1329 | "execution_count": 0, 1330 | "outputs": [] 1331 | }, 1332 | { 1333 | "cell_type": "markdown", 1334 | "metadata": { 1335 | "id": "p8DrMhXDYCjS", 1336 | "colab_type": "text" 1337 | }, 1338 | "source": [ 1339 | "'''pca = PCA(n_components=2)\n", 1340 | "pca.fit_transform(X)'''" 1341 | ] 1342 | }, 1343 | { 1344 | "cell_type": "code", 1345 | "metadata": { 1346 | "id": "LzthJAEabIYX", 1347 | "colab_type": "code", 1348 | "outputId": "487e0da9-32f6-41d8-d67d-6d4f25dd5f91", 1349 | "colab": { 1350 | "base_uri": "https://localhost:8080/", 1351 | "height": 224 1352 | } 1353 | }, 1354 | "source": [ 1355 | "X.head()" 1356 | ], 1357 | "execution_count": 21, 1358 | "outputs": [ 1359 | { 1360 | "output_type": "execute_result", 1361 | "data": { 1362 | "text/html": [ 1363 | "
\n", 1364 | "\n", 1377 | "\n", 1378 | " \n", 1379 | " \n", 1380 | " \n", 1381 | " \n", 1382 | " \n", 1383 | " \n", 1384 | " \n", 1385 | " \n", 1386 | " \n", 1387 | " \n", 1388 | " \n", 1389 | " \n", 1390 | " \n", 1391 | " \n", 1392 | " \n", 1393 | " \n", 1394 | " \n", 1395 | " \n", 1396 | " \n", 1397 | " \n", 1398 | " \n", 1399 | " \n", 1400 | " \n", 1401 | " \n", 1402 | " \n", 1403 | " \n", 1404 | " \n", 1405 | " \n", 1406 | " \n", 1407 | " \n", 1408 | " \n", 1409 | " \n", 1410 | " \n", 1411 | " \n", 1412 | " \n", 1413 | " \n", 1414 | " \n", 1415 | " \n", 1416 | " \n", 1417 | " \n", 1418 | " \n", 1419 | " \n", 1420 | " \n", 1421 | " \n", 1422 | " \n", 1423 | " \n", 1424 | " \n", 1425 | " \n", 1426 | " \n", 1427 | " \n", 1428 | " \n", 1429 | " \n", 1430 | " \n", 1431 | " \n", 1432 | " \n", 1433 | " \n", 1434 | " \n", 1435 | " \n", 1436 | " \n", 1437 | " \n", 1438 | " \n", 1439 | " \n", 1440 | " \n", 1441 | " \n", 1442 | " \n", 1443 | " \n", 1444 | " \n", 1445 | " \n", 1446 | " \n", 1447 | " \n", 1448 | " \n", 1449 | " \n", 1450 | " \n", 1451 | " \n", 1452 | " \n", 1453 | " \n", 1454 | " \n", 1455 | " \n", 1456 | " \n", 1457 | " \n", 1458 | " \n", 1459 | " \n", 1460 | " \n", 1461 | " \n", 1462 | " \n", 1463 | " \n", 1464 | " \n", 1465 | " \n", 1466 | " \n", 1467 | " \n", 1468 | " \n", 1469 | " \n", 1470 | " \n", 1471 | " \n", 1472 | " \n", 1473 | " \n", 1474 | " \n", 1475 | " \n", 1476 | " \n", 1477 | " \n", 1478 | " \n", 1479 | " \n", 1480 | " \n", 1481 | " \n", 1482 | " \n", 1483 | " \n", 1484 | " \n", 1485 | " \n", 1486 | " \n", 1487 | " \n", 1488 | " \n", 1489 | " \n", 1490 | " \n", 1491 | " \n", 1492 | " \n", 1493 | " \n", 1494 | " \n", 1495 | " \n", 1496 | " \n", 1497 | " \n", 1498 | " \n", 1499 | " \n", 1500 | " \n", 1501 | " \n", 1502 | " \n", 1503 | " \n", 1504 | " \n", 1505 | " \n", 1506 | " \n", 1507 | " \n", 1508 | " \n", 1509 | " \n", 1510 | " \n", 1511 | " \n", 1512 | " \n", 1513 | " \n", 1514 | " \n", 1515 | " \n", 1516 | " \n", 1517 | " \n", 1518 | " \n", 1519 | " \n", 1520 | " \n", 1521 | " \n", 1522 | " \n", 1523 | " \n", 1524 | " \n", 1525 | " \n", 1526 | " \n", 1527 | " \n", 1528 | " \n", 1529 | " \n", 1530 | " \n", 1531 | " \n", 1532 | " \n", 1533 | " \n", 1534 | " \n", 1535 | " \n", 1536 | " \n", 1537 | " \n", 1538 | " \n", 1539 | " \n", 1540 | " \n", 1541 | " \n", 1542 | " \n", 1543 | " \n", 1544 | " \n", 1545 | " \n", 1546 | " \n", 1547 | " \n", 1548 | " \n", 1549 | " \n", 1550 | " \n", 1551 | " \n", 1552 | " \n", 1553 | " \n", 1554 | " \n", 1555 | " \n", 1556 | " \n", 1557 | " \n", 1558 | " \n", 1559 | " \n", 1560 | " \n", 1561 | " \n", 1562 | " \n", 1563 | " \n", 1564 | " \n", 1565 | " \n", 1566 | " \n", 1567 | " \n", 1568 | " \n", 1569 | " \n", 1570 | " \n", 1571 | " \n", 1572 | " \n", 1573 | " \n", 1574 | " \n", 1575 | " \n", 1576 | " \n", 1577 | " \n", 1578 | " \n", 1579 | " \n", 1580 | "
TimeV1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20V21V22V23V24V25V26V27V28Amount
00.0-1.359807-0.0727812.5363471.378155-0.3383210.4623880.2395990.0986980.3637870.090794-0.551600-0.617801-0.991390-0.3111691.468177-0.4704010.2079710.0257910.4039930.251412-0.0183070.277838-0.1104740.0669280.128539-0.1891150.133558-0.021053149.62
10.01.1918570.2661510.1664800.4481540.060018-0.082361-0.0788030.085102-0.255425-0.1669741.6127271.0652350.489095-0.1437720.6355580.463917-0.114805-0.183361-0.145783-0.069083-0.225775-0.6386720.101288-0.3398460.1671700.125895-0.0089830.0147242.69
21.0-1.358354-1.3401631.7732090.379780-0.5031981.8004990.7914610.247676-1.5146540.2076430.6245010.0660840.717293-0.1659462.345865-2.8900831.109969-0.121359-2.2618570.5249800.2479980.7716790.909412-0.689281-0.327642-0.139097-0.055353-0.059752378.66
31.0-0.966272-0.1852261.792993-0.863291-0.0103091.2472030.2376090.377436-1.387024-0.054952-0.2264870.1782280.507757-0.287924-0.631418-1.059647-0.6840931.965775-1.232622-0.208038-0.1083000.005274-0.190321-1.1755750.647376-0.2219290.0627230.061458123.50
42.0-1.1582330.8777371.5487180.403034-0.4071930.0959210.592941-0.2705330.8177390.753074-0.8228430.5381961.345852-1.1196700.175121-0.451449-0.237033-0.0381950.8034870.408542-0.0094310.798278-0.1374580.141267-0.2060100.5022920.2194220.21515369.99
\n", 1581 | "
" 1582 | ], 1583 | "text/plain": [ 1584 | " Time V1 V2 V3 ... V26 V27 V28 Amount\n", 1585 | "0 0.0 -1.359807 -0.072781 2.536347 ... -0.189115 0.133558 -0.021053 149.62\n", 1586 | "1 0.0 1.191857 0.266151 0.166480 ... 0.125895 -0.008983 0.014724 2.69\n", 1587 | "2 1.0 -1.358354 -1.340163 1.773209 ... -0.139097 -0.055353 -0.059752 378.66\n", 1588 | "3 1.0 -0.966272 -0.185226 1.792993 ... -0.221929 0.062723 0.061458 123.50\n", 1589 | "4 2.0 -1.158233 0.877737 1.548718 ... 0.502292 0.219422 0.215153 69.99\n", 1590 | "\n", 1591 | "[5 rows x 30 columns]" 1592 | ] 1593 | }, 1594 | "metadata": { 1595 | "tags": [] 1596 | }, 1597 | "execution_count": 21 1598 | } 1599 | ] 1600 | }, 1601 | { 1602 | "cell_type": "code", 1603 | "metadata": { 1604 | "id": "LCwuXkafPGKk", 1605 | "colab_type": "code", 1606 | "outputId": "c5c29036-8577-4060-c771-61cbc22a243a", 1607 | "colab": { 1608 | "base_uri": "https://localhost:8080/", 1609 | "height": 34 1610 | } 1611 | }, 1612 | "source": [ 1613 | "df.shape" 1614 | ], 1615 | "execution_count": 22, 1616 | "outputs": [ 1617 | { 1618 | "output_type": "execute_result", 1619 | "data": { 1620 | "text/plain": [ 1621 | "(284807, 31)" 1622 | ] 1623 | }, 1624 | "metadata": { 1625 | "tags": [] 1626 | }, 1627 | "execution_count": 22 1628 | } 1629 | ] 1630 | }, 1631 | { 1632 | "cell_type": "markdown", 1633 | "metadata": { 1634 | "id": "lp0nQkXX11CV", 1635 | "colab_type": "text" 1636 | }, 1637 | "source": [ 1638 | "The data is highly imbalanced. Hence,we train our model before and after resampling .\n", 1639 | "\n", 1640 | "# Imbalanced Data : " 1641 | ] 1642 | }, 1643 | { 1644 | "cell_type": "code", 1645 | "metadata": { 1646 | "id": "nWAEWbo0dCvy", 1647 | "colab_type": "code", 1648 | "colab": {} 1649 | }, 1650 | "source": [ 1651 | "from sklearn.model_selection import train_test_split\n", 1652 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)\n" 1653 | ], 1654 | "execution_count": 0, 1655 | "outputs": [] 1656 | }, 1657 | { 1658 | "cell_type": "code", 1659 | "metadata": { 1660 | "id": "uxFAGvAhWSZ3", 1661 | "colab_type": "code", 1662 | "outputId": "2c91170f-33b7-4c8a-e09e-2180ee24e06b", 1663 | "colab": { 1664 | "base_uri": "https://localhost:8080/", 1665 | "height": 238 1666 | } 1667 | }, 1668 | "source": [ 1669 | "from sklearn.preprocessing import StandardScaler\n", 1670 | "scaler = StandardScaler()\n", 1671 | "scaler.fit(X_train)\n", 1672 | "scaler.transform(X_train)" 1673 | ], 1674 | "execution_count": 24, 1675 | "outputs": [ 1676 | { 1677 | "output_type": "execute_result", 1678 | "data": { 1679 | "text/plain": [ 1680 | "array([[ 0.4628655 , -0.76417848, -0.58517942, ..., -0.05427856,\n", 1681 | " 0.47278134, 0.27637606],\n", 1682 | " [ 0.99884641, -0.43199832, 0.8362486 , ..., -0.21155863,\n", 1683 | " -0.17561255, -0.20845219],\n", 1684 | " [-1.06243719, -0.5473776 , 0.36358059, ..., -0.1751781 ,\n", 1685 | " 0.27717173, -0.30005801],\n", 1686 | " ...,\n", 1687 | " [-0.31423311, -0.07216301, 0.59345235, ..., -0.29402614,\n", 1688 | " -0.59027941, -0.32887389],\n", 1689 | " [-0.1428877 , -1.49506753, 1.40403542, ..., 1.21908694,\n", 1690 | " 1.01135271, -0.34027614],\n", 1691 | " [-0.38613248, 0.62850772, -0.46466388, ..., 0.00552523,\n", 1692 | " 0.11653329, 0.09409522]])" 1693 | ] 1694 | }, 1695 | "metadata": { 1696 | "tags": [] 1697 | }, 1698 | "execution_count": 24 1699 | } 1700 | ] 1701 | }, 1702 | { 1703 | "cell_type": "code", 1704 | "metadata": { 1705 | "id": "7FXiXz8KdeoJ", 1706 | "colab_type": "code", 1707 | "outputId": "e51933e8-611a-4b95-e768-ffd03526e0db", 1708 | "colab": { 1709 | "base_uri": "https://localhost:8080/", 1710 | "height": 153 1711 | } 1712 | }, 1713 | "source": [ 1714 | "from sklearn.linear_model import LogisticRegression\n", 1715 | "clf = LogisticRegression(random_state=0).fit(X_train, y_train)\n", 1716 | "y_pred = clf.predict(X_test)" 1717 | ], 1718 | "execution_count": 25, 1719 | "outputs": [ 1720 | { 1721 | "output_type": "stream", 1722 | "text": [ 1723 | "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_logistic.py:940: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 1724 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 1725 | "\n", 1726 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 1727 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 1728 | "Please also refer to the documentation for alternative solver options:\n", 1729 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 1730 | " extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)\n" 1731 | ], 1732 | "name": "stderr" 1733 | } 1734 | ] 1735 | }, 1736 | { 1737 | "cell_type": "code", 1738 | "metadata": { 1739 | "id": "W5UT0_Yvdx58", 1740 | "colab_type": "code", 1741 | "outputId": "a2ce191b-5f01-422f-a35c-f9996f4f2dfe", 1742 | "colab": { 1743 | "base_uri": "https://localhost:8080/", 1744 | "height": 34 1745 | } 1746 | }, 1747 | "source": [ 1748 | "clf.score(X_test,y_test)" 1749 | ], 1750 | "execution_count": 26, 1751 | "outputs": [ 1752 | { 1753 | "output_type": "execute_result", 1754 | "data": { 1755 | "text/plain": [ 1756 | "0.9990256576810653" 1757 | ] 1758 | }, 1759 | "metadata": { 1760 | "tags": [] 1761 | }, 1762 | "execution_count": 26 1763 | } 1764 | ] 1765 | }, 1766 | { 1767 | "cell_type": "code", 1768 | "metadata": { 1769 | "id": "GWYwNPcceVQA", 1770 | "colab_type": "code", 1771 | "outputId": "fdfd0355-caee-43c1-d19b-679cfba50d70", 1772 | "colab": { 1773 | "base_uri": "https://localhost:8080/", 1774 | "height": 34 1775 | } 1776 | }, 1777 | "source": [ 1778 | "clf.score(X_train,y_train)" 1779 | ], 1780 | "execution_count": 27, 1781 | "outputs": [ 1782 | { 1783 | "output_type": "execute_result", 1784 | "data": { 1785 | "text/plain": [ 1786 | "0.998987617331055" 1787 | ] 1788 | }, 1789 | "metadata": { 1790 | "tags": [] 1791 | }, 1792 | "execution_count": 27 1793 | } 1794 | ] 1795 | }, 1796 | { 1797 | "cell_type": "code", 1798 | "metadata": { 1799 | "id": "JKMYOLD4ejKE", 1800 | "colab_type": "code", 1801 | "outputId": "c267c750-3e35-4150-eb49-2212b1f538a3", 1802 | "colab": { 1803 | "base_uri": "https://localhost:8080/", 1804 | "height": 170 1805 | } 1806 | }, 1807 | "source": [ 1808 | " from sklearn.metrics import classification_report\n", 1809 | " target_names = ['not_fraud', 'fraud']\n", 1810 | "print(classification_report(y_test, y_pred, target_names=target_names))" 1811 | ], 1812 | "execution_count": 28, 1813 | "outputs": [ 1814 | { 1815 | "output_type": "stream", 1816 | "text": [ 1817 | " precision recall f1-score support\n", 1818 | "\n", 1819 | " not_fraud 1.00 1.00 1.00 113732\n", 1820 | " fraud 0.73 0.67 0.70 191\n", 1821 | "\n", 1822 | " accuracy 1.00 113923\n", 1823 | " macro avg 0.86 0.83 0.85 113923\n", 1824 | "weighted avg 1.00 1.00 1.00 113923\n", 1825 | "\n" 1826 | ], 1827 | "name": "stdout" 1828 | } 1829 | ] 1830 | }, 1831 | { 1832 | "cell_type": "code", 1833 | "metadata": { 1834 | "id": "2Yg_RgmVTjZt", 1835 | "colab_type": "code", 1836 | "outputId": "422a7c02-5bda-4ee4-8c75-37b89f76ae83", 1837 | "colab": { 1838 | "base_uri": "https://localhost:8080/", 1839 | "height": 34 1840 | } 1841 | }, 1842 | "source": [ 1843 | "from sklearn.metrics import log_loss\n", 1844 | "log_loss(y_test,y_pred)" 1845 | ], 1846 | "execution_count": 29, 1847 | "outputs": [ 1848 | { 1849 | "output_type": "execute_result", 1850 | "data": { 1851 | "text/plain": [ 1852 | "0.033652928385943554" 1853 | ] 1854 | }, 1855 | "metadata": { 1856 | "tags": [] 1857 | }, 1858 | "execution_count": 29 1859 | } 1860 | ] 1861 | }, 1862 | { 1863 | "cell_type": "code", 1864 | "metadata": { 1865 | "id": "NzmzFLoZmV5s", 1866 | "colab_type": "code", 1867 | "outputId": "e9b4117d-4d23-45d0-f261-cb8616770c1d", 1868 | "colab": { 1869 | "base_uri": "https://localhost:8080/", 1870 | "height": 221 1871 | } 1872 | }, 1873 | "source": [ 1874 | "from sklearn.tree import DecisionTreeClassifier\n", 1875 | "dtc = DecisionTreeClassifier(random_state=42)\n", 1876 | "dtc.fit(X_train,y_train)\n", 1877 | "y_pred = dtc.predict(X_test)\n", 1878 | "print(\"Test accuracy\",dtc.score(X_test,y_test))\n", 1879 | "print(\"Train accuracy\",dtc.score(X_train,y_train))\n", 1880 | "print(\"Classification report :\")\n", 1881 | "print(classification_report(y_test,y_pred, target_names=target_names))" 1882 | ], 1883 | "execution_count": 30, 1884 | "outputs": [ 1885 | { 1886 | "output_type": "stream", 1887 | "text": [ 1888 | "Test accuracy 0.9991222141270858\n", 1889 | "Train accuracy 1.0\n", 1890 | "Classification report :\n", 1891 | " precision recall f1-score support\n", 1892 | "\n", 1893 | " not_fraud 1.00 1.00 1.00 113732\n", 1894 | " fraud 0.71 0.80 0.75 191\n", 1895 | "\n", 1896 | " accuracy 1.00 113923\n", 1897 | " macro avg 0.86 0.90 0.88 113923\n", 1898 | "weighted avg 1.00 1.00 1.00 113923\n", 1899 | "\n" 1900 | ], 1901 | "name": "stdout" 1902 | } 1903 | ] 1904 | }, 1905 | { 1906 | "cell_type": "code", 1907 | "metadata": { 1908 | "id": "6A62wpyeWDRg", 1909 | "colab_type": "code", 1910 | "outputId": "c530c3e8-b7d8-487b-f4f4-363baf300bbc", 1911 | "colab": { 1912 | "base_uri": "https://localhost:8080/", 1913 | "height": 221 1914 | } 1915 | }, 1916 | "source": [ 1917 | "from sklearn.ensemble import RandomForestClassifier\n", 1918 | "from sklearn.datasets import make_classification\n", 1919 | "rfc = RandomForestClassifier(max_depth=2, random_state=42,n_estimators=10)\n", 1920 | "rfc.fit(X_train, y_train)\n", 1921 | "y_pred = rfc.predict(X_test)\n", 1922 | "print(\"Test accuracy\",rfc.score(X_test,y_test))\n", 1923 | "print(\"Train accuracy\",rfc.score(X_train,y_train))\n", 1924 | "print(\"Classification report :\")\n", 1925 | "print(classification_report(y_test,y_pred, target_names=target_names))" 1926 | ], 1927 | "execution_count": 31, 1928 | "outputs": [ 1929 | { 1930 | "output_type": "stream", 1931 | "text": [ 1932 | "Test accuracy 0.9991748812794606\n", 1933 | "Train accuracy 0.9991573230963695\n", 1934 | "Classification report :\n", 1935 | " precision recall f1-score support\n", 1936 | "\n", 1937 | " not_fraud 1.00 1.00 1.00 113732\n", 1938 | " fraud 0.86 0.60 0.71 191\n", 1939 | "\n", 1940 | " accuracy 1.00 113923\n", 1941 | " macro avg 0.93 0.80 0.85 113923\n", 1942 | "weighted avg 1.00 1.00 1.00 113923\n", 1943 | "\n" 1944 | ], 1945 | "name": "stdout" 1946 | } 1947 | ] 1948 | }, 1949 | { 1950 | "cell_type": "code", 1951 | "metadata": { 1952 | "id": "r-A-rJ16X0Eh", 1953 | "colab_type": "code", 1954 | "outputId": "73b7ca6a-45f6-4643-8b92-22aedc595440", 1955 | "colab": { 1956 | "base_uri": "https://localhost:8080/", 1957 | "height": 221 1958 | } 1959 | }, 1960 | "source": [ 1961 | "from sklearn.pipeline import make_pipeline\n", 1962 | "from sklearn.svm import SVC\n", 1963 | "svc = make_pipeline(StandardScaler(), SVC(gamma='auto',random_state=42,kernel='sigmoid'))\n", 1964 | "svc.fit(X_train, y_train)\n", 1965 | "y_pred = svc.predict(X_test)\n", 1966 | "print(\"Test accuracy\",svc.score(X_test,y_test))\n", 1967 | "print(\"Train accuracy\",svc.score(X_train,y_train))\n", 1968 | "print(\"Classification report :\")\n", 1969 | "print(classification_report(y_pred,y_test, target_names=target_names))" 1970 | ], 1971 | "execution_count": 32, 1972 | "outputs": [ 1973 | { 1974 | "output_type": "stream", 1975 | "text": [ 1976 | "Test accuracy 0.9986130983207956\n", 1977 | "Train accuracy 0.9984024250368672\n", 1978 | "Classification report :\n", 1979 | " precision recall f1-score support\n", 1980 | "\n", 1981 | " not_fraud 1.00 1.00 1.00 113750\n", 1982 | " fraud 0.54 0.60 0.57 173\n", 1983 | "\n", 1984 | " accuracy 1.00 113923\n", 1985 | " macro avg 0.77 0.80 0.78 113923\n", 1986 | "weighted avg 1.00 1.00 1.00 113923\n", 1987 | "\n" 1988 | ], 1989 | "name": "stdout" 1990 | } 1991 | ] 1992 | }, 1993 | { 1994 | "cell_type": "markdown", 1995 | "metadata": { 1996 | "id": "XrAZ1c-b1lma", 1997 | "colab_type": "text" 1998 | }, 1999 | "source": [ 2000 | "# **Neural Networks**" 2001 | ] 2002 | }, 2003 | { 2004 | "cell_type": "code", 2005 | "metadata": { 2006 | "id": "w1kV1lunr0Ne", 2007 | "colab_type": "code", 2008 | "colab": {} 2009 | }, 2010 | "source": [ 2011 | "#Using neural networks \n", 2012 | "import tensorflow as tf\n", 2013 | "from tensorflow.keras.callbacks import EarlyStopping\n", 2014 | "from tensorflow.keras.layers import Dense,Activation,Flatten\n", 2015 | "from tensorflow.keras import Sequential" 2016 | ], 2017 | "execution_count": 0, 2018 | "outputs": [] 2019 | }, 2020 | { 2021 | "cell_type": "code", 2022 | "metadata": { 2023 | "id": "DvEVDxuCgHrx", 2024 | "colab_type": "code", 2025 | "outputId": "0fbb6f51-28a8-425c-89de-c3fd9c8480cd", 2026 | "colab": { 2027 | "base_uri": "https://localhost:8080/", 2028 | "height": 428 2029 | } 2030 | }, 2031 | "source": [ 2032 | "model = Sequential()\n", 2033 | "model.add(Flatten())\n", 2034 | "model.add(Dense(2,activation='relu'))\n", 2035 | "model.add(Dense(2,activation='relu'))\n", 2036 | "model.add(Dense(2,activation='relu'))\n", 2037 | "model.add(Dense(2,activation='relu'))\n", 2038 | "model.add(Dense(1,activation='sigmoid'))\n", 2039 | "\n", 2040 | "earlystop = EarlyStopping(monitor='val_loss',patience=2,verbose=0,mode='min')\n", 2041 | "\n", 2042 | "model.compile(optimizer='adam',loss = 'binary_crossentropy',metrics = ['accuracy'])\n", 2043 | "\n", 2044 | "model.fit(X_train,y_train,epochs =10,validation_data = (X_test,y_test),callbacks = [earlystop])\n" 2045 | ], 2046 | "execution_count": 34, 2047 | "outputs": [ 2048 | { 2049 | "output_type": "stream", 2050 | "text": [ 2051 | "Epoch 1/10\n", 2052 | "WARNING:tensorflow:Layer flatten is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2. The layer has dtype float32 because it's dtype defaults to floatx.\n", 2053 | "\n", 2054 | "If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2.\n", 2055 | "\n", 2056 | "To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor.\n", 2057 | "\n", 2058 | "5341/5341 [==============================] - 10s 2ms/step - loss: 0.1994 - accuracy: 0.9982 - val_loss: 0.0415 - val_accuracy: 0.9983\n", 2059 | "Epoch 2/10\n", 2060 | "5341/5341 [==============================] - 10s 2ms/step - loss: 0.0223 - accuracy: 0.9982 - val_loss: 0.0138 - val_accuracy: 0.9983\n", 2061 | "Epoch 3/10\n", 2062 | "5341/5341 [==============================] - 10s 2ms/step - loss: 0.0133 - accuracy: 0.9982 - val_loss: 0.0125 - val_accuracy: 0.9983\n", 2063 | "Epoch 4/10\n", 2064 | "5341/5341 [==============================] - 10s 2ms/step - loss: 0.0129 - accuracy: 0.9982 - val_loss: 0.0124 - val_accuracy: 0.9983\n", 2065 | "Epoch 5/10\n", 2066 | "5341/5341 [==============================] - 10s 2ms/step - loss: 0.0129 - accuracy: 0.9982 - val_loss: 0.0124 - val_accuracy: 0.9983\n", 2067 | "Epoch 6/10\n", 2068 | "5341/5341 [==============================] - 10s 2ms/step - loss: 0.0129 - accuracy: 0.9982 - val_loss: 0.0124 - val_accuracy: 0.9983\n", 2069 | "Epoch 7/10\n", 2070 | "5341/5341 [==============================] - 10s 2ms/step - loss: 0.0129 - accuracy: 0.9982 - val_loss: 0.0124 - val_accuracy: 0.9983\n", 2071 | "Epoch 8/10\n", 2072 | "5341/5341 [==============================] - 10s 2ms/step - loss: 0.0129 - accuracy: 0.9982 - val_loss: 0.0124 - val_accuracy: 0.9983\n" 2073 | ], 2074 | "name": "stdout" 2075 | }, 2076 | { 2077 | "output_type": "execute_result", 2078 | "data": { 2079 | "text/plain": [ 2080 | "" 2081 | ] 2082 | }, 2083 | "metadata": { 2084 | "tags": [] 2085 | }, 2086 | "execution_count": 34 2087 | } 2088 | ] 2089 | }, 2090 | { 2091 | "cell_type": "code", 2092 | "metadata": { 2093 | "id": "o_cG0yexswSr", 2094 | "colab_type": "code", 2095 | "outputId": "af67a168-2b9a-42a6-c4ee-254ad4ecb427", 2096 | "colab": { 2097 | "base_uri": "https://localhost:8080/", 2098 | "height": 282 2099 | } 2100 | }, 2101 | "source": [ 2102 | "loss = pd.DataFrame(model.history.history)\n", 2103 | "loss.plot()" 2104 | ], 2105 | "execution_count": 35, 2106 | "outputs": [ 2107 | { 2108 | "output_type": "execute_result", 2109 | "data": { 2110 | "text/plain": [ 2111 | "" 2112 | ] 2113 | }, 2114 | "metadata": { 2115 | "tags": [] 2116 | }, 2117 | "execution_count": 35 2118 | }, 2119 | { 2120 | "output_type": "display_data", 2121 | "data": { 2122 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAfnUlEQVR4nO3deXhU5d3/8fc3CwQIsm9JQLBlEyIiERcqohaLimBVjBR9FAXqAqL2V0VERcXWutRqRZRSRRBFRLEUqT6iWIpCNSCCLCIPsiRsYSdCSDJz//7IEAPZhjBhZk4+r+vKxVnuc853Rq9PTu5zzn3MOYeIiES/mHAXICIioaFAFxHxCAW6iIhHKNBFRDxCgS4i4hFx4Tpw48aNXevWrcN1eBGRqLRkyZKdzrkmpa0LW6C3bt2ajIyMcB1eRCQqmdnGstapy0VExCMU6CIiHqFAFxHxCAW6iIhHKNBFRDyiwkA3s1fNbIeZfVvGejOzF8xsnZktN7OzQl+miIhUJJgz9MlAn3LWXwa0DfwMAyaceFkiInK8KrwP3Tm3wMxal9OkPzDFFY7Du9jM6ptZC+fc1hDVeJRtw67g8A9bqmLXIiInRc02STSf+EHI9xuKPvRkYHOx+czAshLMbJiZZZhZRnZ2dggOLSIiR5zUJ0WdcxOBiQBpaWmVerNGVfxWExHxglCcoWcBLYvNpwSWiYjISRSKQJ8N/E/gbpdzgX1V1X8uIiJlq7DLxczeAnoBjc0sE3gEiAdwzr0MzAUuB9YBB4HBVVWsiIiULZi7XAZWsN4Bd4asIhERqRQ9KSoi4hEKdBERj1Cgi4h4hAJdRMQjFOgiIh6hQBcR8QgFuoiIRyjQRUQ8QoEuIuIRCnQREY9QoIuIeIQCXUTEIxToIiIeoUAXEfEIBbqIiEco0EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMU6CIiHqFAFxHxCAW6iIhHKNBFRDxCgS4i4hEKdBERj1Cgi4h4hAJdRMQjFOgiIh6hQBcR8QgFuoiIRwQV6GbWx8y+M7N1ZjaqlPWtzGy+mX1tZsvN7PLQlyoiIuWpMNDNLBYYD1wGnA4MNLPTj2k2BpjhnOsKXA+8FOpCRUSkfMGcoXcH1jnn1jvn8oDpQP9j2jjglMB0PWBL6EoUEZFgBBPoycDmYvOZgWXFjQVuMLNMYC4worQdmdkwM8sws4zs7OxKlCsiImUJ1UXRgcBk51wKcDkw1cxK7Ns5N9E5l+acS2vSpEmIDi0iIhBcoGcBLYvNpwSWFXcrMAPAObcISAAah6JAEREJTjCB/hXQ1szamFkNCi96zj6mzSbgEgAz60hhoKtPRUTkJKow0J1zBcBw4CNgNYV3s6w0s8fMrF+g2e+AoWb2DfAWcLNzzlVV0SIiUlJcMI2cc3MpvNhZfNnDxaZXAT1CW5qIiBwPPSkqIuIRCnQREY9QoIuIeIQCXUTEIxToIiIeoUAXEfEIBbqIiEco0EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMU6CIiHqFAFxHxCAW6iIhHKNBFRDxCgS4i4hEKdBERj1Cgi4h4hAJdRMQjFOgiIh4RF+4CRCQy5Ofnk5mZSW5ubrhLESAhIYGUlBTi4+OD3kaBLiIAZGZmUrduXVq3bo2Zhbucas05x65du8jMzKRNmzZBb6cuFxEBIDc3l0aNGinMI4CZ0ahRo+P+a0mBLiJFFOaRozL/LRToIiIeoUAXkYiRmJgY7hKimgJdRMQjdJeLiJTw6D9XsmrL/pDu8/SkU3jkyk5BtXXOcd999/Gvf/0LM2PMmDGkp6ezdetW0tPT2b9/PwUFBUyYMIHzzz+fW2+9lYyMDMyMW265hXvuuSektUcLBbqIRJz33nuPZcuW8c0337Bz507OPvtsevbsyZtvvsmvfvUrHnzwQXw+HwcPHmTZsmVkZWXx7bffArB3794wVx8+CnQRKSHYM+mqsnDhQgYOHEhsbCzNmjXjwgsv5KuvvuLss8/mlltuIT8/n6uuuoozzzyT0047jfXr1zNixAiuuOIKLr300rDWHk5B9aGbWR8z+87M1pnZqDLaXGdmq8xspZm9GdoyRUSgZ8+eLFiwgOTkZG6++WamTJlCgwYN+Oabb+jVqxcvv/wyQ4YMCXeZYVNhoJtZLDAeuAw4HRhoZqcf06Yt8ADQwznXCbi7CmoVkWriggsu4O2338bn85Gdnc2CBQvo3r07GzdupFmzZgwdOpQhQ4awdOlSdu7cid/v55prrmHcuHEsXbo03OWHTTBdLt2Bdc659QBmNh3oD6wq1mYoMN45twfAObcj1IWKSPXx61//mkWLFtGlSxfMjKeeeormzZvz+uuv8/TTTxMfH09iYiJTpkwhKyuLwYMH4/f7AfjjH/8Y5urDx5xz5Tcwuxbo45wbEpi/ETjHOTe8WJv3gbVADyAWGOuc+7CUfQ0DhgG0atWq28aNG0P1OUTkBK1evZqOHTuGuwwpprT/Jma2xDmXVlr7UN2HHge0BXoBA4G/mVn9Yxs55yY659Kcc2lNmjQJ0aFFRASCC/QsoGWx+ZTAsuIygdnOuXzn3A8Unq23DU2JIiISjGAC/SugrZm1MbMawPXA7GPavE/h2Tlm1hhoB6wPYZ0iIlKBCgPdOVcADAc+AlYDM5xzK83sMTPrF2j2EbDLzFYB84HfO+d2VVXRIiJSUlAPFjnn5gJzj1n2cLFpB9wb+BERkTDQ4FwiIh6hQBcR8QgFuohUOwUFBeEuoUpocC4RKelfo2DbitDus3kqXPZkhc2uuuoqNm/eTG5uLiNHjmTYsGF8+OGHjB49Gp/PR+PGjfnkk0/IyclhxIgRRcPmPvLII1xzzTUkJiaSk5MDwMyZM5kzZw6TJ0/m5ptvJiEhga+//poePXpw/fXXM3LkSHJzc6lVqxavvfYa7du3x+fzcf/99/Phhx8SExPD0KFD6dSpEy+88ALvv/8+AB9//DEvvfQSs2bNCu13dIIU6CISUV599VUaNmzIoUOHOPvss+nfvz9Dhw5lwYIFtGnTht27dwPw+OOPU69ePVasKPzFs2fPngr3nZmZyRdffEFsbCz79+/nP//5D3FxccybN4/Ro0fz7rvvMnHiRDZs2MCyZcuIi4tj9+7dNGjQgDvuuIPs7GyaNGnCa6+9xi233FKl30NlKNBFpKQgzqSrygsvvFB05rt582YmTpxIz549adOmDQANGzYEYN68eUyfPr1ouwYNGlS47wEDBhAbGwvAvn37uOmmm/j+++8xM/Lz84v2e9tttxEXF3fU8W688UbeeOMNBg8ezKJFi5gyZUqIPnHoKNBFJGJ89tlnzJs3j0WLFlG7dm169erFmWeeyZo1a4Leh5kVTefm5h61rk6dOkXTDz30EBdddBGzZs1iw4YN9OrVq9z9Dh48mCuvvJKEhAQGDBhQFPiRRBdFRSRi7Nu3jwYNGlC7dm3WrFnD4sWLyc3NZcGCBfzwww8ARV0uvXv3Zvz48UXbHulyadasGatXr8bv95fbx71v3z6Sk5MBmDx5ctHy3r1788orrxRdOD1yvKSkJJKSkhg3bhyDBw8O3YcOIQW6iESMPn36UFBQQMeOHRk1ahTnnnsuTZo0YeLEiVx99dV06dKF9PR0AMaMGcOePXvo3LkzXbp0Yf78+QA8+eST9O3bl/PPP58WLVqUeaz77ruPBx54gK5dux5118uQIUNo1aoVZ5xxBl26dOHNN396X8+gQYNo2bJlxI5KWeHwuVUlLS3NZWRkhOXYIlKShs+t2PDhw+natSu33nrrSTne8Q6fG3mdQCIiEahbt27UqVOHZ599NtyllEmBLiIShCVLloS7hAqpD11ExCMU6CIiHqFAFxHxCAW6iIhHKNBFJColJiaWuW7Dhg107tz5JFYTGRToIiIeodsWRaSEP335J9bsDn78lGB0aNiB+7vfX+b6UaNG0bJlS+68804Axo4dS1xcHPPnz2fPnj3k5+czbtw4+vfvf1zHzc3N5fbbbycjI4O4uDj+/Oc/c9FFF7Fy5UoGDx5MXl4efr+fd999l6SkJK677joyMzPx+Xw89NBDRU+mRgMFuohEhPT0dO6+++6iQJ8xYwYfffQRd911F6eccgo7d+7k3HPPpV+/fkcNwFWR8ePHY2asWLGCNWvWcOmll7J27VpefvllRo4cyaBBg8jLy8Pn8zF37lySkpL44IMPgMLxXqKJAl1ESijvTLqqdO3alR07drBlyxays7Np0KABzZs355577mHBggXExMSQlZXF9u3bad68edD7XbhwISNGjACgQ4cOnHrqqaxdu5bzzjuPJ554gszMTK6++mratm1Lamoqv/vd77j//vvp27cvF1xwQVV93CqhPnQRiRgDBgxg5syZvP3226SnpzNt2jSys7NZsmQJy5Yto1mzZiWGxK2s3/zmN8yePZtatWpx+eWX8+mnn9KuXTuWLl1KamoqY8aM4bHHHgvJsU4WnaGLSMRIT09n6NCh7Ny5k3//+9/MmDGDpk2bEh8fz/z589m4ceNx7/OCCy5g2rRpXHzxxaxdu5ZNmzbRvn171q9fz2mnncZdd93Fpk2bWL58OR06dKBhw4bccMMN1K9fn0mTJlXBp6w6CnQRiRidOnXiwIEDJCcn06JFCwYNGsSVV15JamoqaWlpdOjQ4bj3eccdd3D77beTmppKXFwckydPpmbNmsyYMYOpU6cSHx9P8+bNGT16NF999RW///3viYmJIT4+ngkTJlTBp6w6Gj5XRAANnxuJjnf4XPWhi4h4hLpcRCRqrVixghtvvPGoZTVr1uS///1vmCoKLwW6iESt1NRUli1bFu4yIoa6XEREPEKBLiLiEQp0ERGPCCrQzayPmX1nZuvMbFQ57a4xM2dmpd5SIyIiVafCQDezWGA8cBlwOjDQzE4vpV1dYCRQPS8vi8hJVd546NVVMGfo3YF1zrn1zrk8YDpQ2viVjwN/AkIz0IKISBQoKCgIdwlFgrltMRnYXGw+EzineAMzOwto6Zz7wMx+X9aOzGwYMAygVatWx1+tiJwU2/7wBw6vDu146DU7dqD56NFlrg/leOg5OTn079+/1O2mTJnCM888g5lxxhlnMHXqVLZv385tt93G+vXrAZgwYQJJSUn07duXb7/9FoBnnnmGnJwcxo4dS69evTjzzDNZuHAhAwcOpF27dowbN468vDwaNWrEtGnTaNasGTk5OYwYMYKMjAzMjEceeYR9+/axfPly/vKXvwDwt7/9jVWrVvHcc8+d0PcLIbgP3cxigD8DN1fU1jk3EZgIhY/+n+ixRcQ7QjkeekJCArNmzSqx3apVqxg3bhxffPEFjRs3Zvfu3QDcddddXHjhhcyaNQufz0dOTg579uwp9xh5eXkcGb5kz549LF68GDNj0qRJPPXUUzz77LM8/vjj1KtXjxUrVhS1i4+P54knnuDpp58mPj6e1157jVdeeeVEvz4guEDPAloWm08JLDuiLtAZ+CzwJTcHZptZP+ecBmsRiULlnUlXlVCOh+6cY/To0SW2+/TTTxkwYACNGzcGoGHDhgB8+umnTJkyBYDY2Fjq1atXYaAXf5NRZmYm6enpbN26lby8PNq0aQPAvHnzmD59elG7Bg0aAHDxxRczZ84cOnbsSH5+Pqmpqcf5bZUumED/CmhrZm0oDPLrgd8cWemc2wc0PjJvZp8B/09hLiLH68h46Nu2bSsxHnp8fDytW7cOajz0ym5XXFxcHH6/v2j+2O3r1KlTND1ixAjuvfde+vXrx2effcbYsWPL3feQIUP4wx/+QIcOHRg8ePBx1VWeCi+KOucKgOHAR8BqYIZzbqWZPWZm/UJWiYhUe+np6UyfPp2ZM2cyYMAA9u3bV6nx0Mva7uKLL+add95h165dAEVdLpdccknRULk+n499+/bRrFkzduzYwa5duzh8+DBz5swp93jJyckAvP7660XLe/fuzfjx44vmj5z1n3POOWzevJk333yTgQMHBvv1VCio+9Cdc3Odc+2ccz9zzj0RWPawc252KW176excRCqjtPHQMzIySE1NZcqUKUGPh17Wdp06deLBBx/kwgsvpEuXLtx7770APP/888yfP5/U1FS6devGqlWriI+P5+GHH6Z79+707t273GOPHTuWAQMG0K1bt6LuHIAxY8awZ88eOnfuTJcuXZg/f37Ruuuuu44ePXoUdcOEgsZDFxFA46GfbH379uWee+7hkksuKbONxkMXEYlge/fupV27dtSqVavcMK8MDZ8rIlErGsdDr1+/PmvXrq2SfSvQRaSIc67Ce7wjiZfHQ69Md7i6XEQEKHwYZ9euXZUKEgkt5xy7du0iISHhuLbTGbqIAJCSkkJmZibZ2dnhLkUo/AWbkpJyXNso0EUEgPj4+KInHCU6qctFRMQjFOgiIh6hQBcR8QgFuoiIRyjQRUQ8QoEuIuIRCnQREY9QoIuIeIQCXUTEIxToIiIeoUAXEfEIBbqIiEco0EVEPEKBLiLiEQp0ERGPUKCLiHiEAl1ExCMU6CIiHqFAFxHxCAW6iIhHKNBFRDxCgS4i4hEKdBERj1Cgi4h4RFCBbmZ9zOw7M1tnZqNKWX+vma0ys+Vm9omZnRr6UkVEpDwVBrqZxQLjgcuA04GBZnb6Mc2+BtKcc2cAM4GnQl2oiIiUL5gz9O7AOufceudcHjAd6F+8gXNuvnPuYGB2MZAS2jJ/svdgHrO/2VJVuxcRiVrBBHoysLnYfGZgWVluBf5V2gozG2ZmGWaWkZ2dHXyVxUz6zw/c9dbXPPrPlRT4/JXah4iIF8WFcmdmdgOQBlxY2nrn3ERgIkBaWpqrzDHu/mVbDub5ePXzH/h+ew4v/qYr9WvXqHTNIiJeEcwZehbQsth8SmDZUczsl8CDQD/n3OHQlFdSXGwMD195Ok9dewZf/rCb/uM/Z+32A1V1OBGRqBFMoH8FtDWzNmZWA7gemF28gZl1BV6hMMx3hL7Mkq5La8lbw87lYJ6PX4//nI9XbT8ZhxURiVgVBrpzrgAYDnwErAZmOOdWmtljZtYv0OxpIBF4x8yWmdnsMnYXUt1ObcDs4T34WdNEhk3N4MVPv8e5SvXkiIhEPQtXAKalpbmMjIyQ7Cs338eod5fz/rItXHFGC56+9gxq1wjp5QERkYhgZkucc2mlrfPEk6IJ8bE8l34mD1zWgbkrtnLthEVk7T0U7rJERE4qTwQ6gJnx2wt/xqs3nc3m3Qfp99eFfPnD7nCXJSJy0ngm0I+4qENTZt3Zg3q14hk0aTFvfbkp3CWJiJwUngt0gJ83TWTWnT04/2eNeeC9FTz8j2/J10NIIuJxngx0gHq14nn15rP5bc/TmLJoIzf+/b/s/jEv3GWJiFQZzwY6QGyM8cDlHXkuvQtLN+2l34sLWbNtf7jLEhGpEp4O9CN+3TWFGb89j3yfn6tf+oIPv90a7pJEREKuWgQ6wJkt6/PP4b+gXbO63PbGUp77eC1+vx5CEhHvqDaBDtD0lASmDzuXa85K4flPvueOaUv58XBBuMsSEQmJahXoUPgQ0jMDzmDMFR3531XbuGbCF2zefbDiDUVEIly1C3QofAhpyAWnMXlwd7bsPUS/Fxfyxf/tDHdZIiInpFoG+hE92zXhH8N/QaPEmtz49y+ZumiDBvcSkahVrQMdoE3jOsy643x6tWvCQ/9YyehZ35JXoIeQRCT6VPtAB6ibEM/E/0njjl4/460vNzFo0mJ25lTZOzpERKqEAj0gNsa4r08HXhjYlRVZ++j/4ud8m7Uv3GWJiARNgX6Mfl2SmHnb+fid49qXv2DO8i3hLklEJCgK9FJ0Tq7H7OG/oHNSPYa/+TXPfPSdHkISkYinQC9Dk7o1mTb0HNLTWvLi/HUMm7qEA7n54S5LRKRMCvRy1IyL5clrUnm0Xyfmf7eDq1/6go27fgx3WSIipVKgV8DMuOn81ky9pTvZOYfp9+LnLPxeDyGJSORRoAfp/J83Zvadv6DZKTW56bUveXXhD3oISUQiigL9OLRqVJv37ujBJR2a8ticVdw3czmHC3zhLktEBFCgH7fEmnG8fEM37rqkLe8syWTgxMXsOJAb7rJERBTolRETY9zbux0vDTqL1VsP0O+vn7M8c2+4yxKRak6BfgIuT23BzNvPIzbGGPDyIv6xLCvcJYlINRYX7gKO1/xN8/nghw9ITkwmOTGZlMQUkhKTSEpMokZsjZNeT6ekeswe3oPbpy1l5PRlrNq6n/t+1YHYGDvptYhI9RZ1gb738F5W71rNJ5s+ocD/09uGDKNJ7SZFAV8U+HVTSE5MpmntpsTFVM3HbZRYkzduPYdH/7mSV/69nrXbDvD8wK6ckhBfJccTESmNhevWu7S0NJeRkVHp7X1+H9mHssk8kMmWH7eQdSCLzJxMsnKy2JKzhe0Ht+N3Pw2DG2dxNKvTjJTEFJLrJpNUJ4nkuoVn+MmJyTSq1YgYO/EeqDcWb2Ts7JW0alSbSf+TxmlNEk94nyIiR5jZEudcWqnrojXQK5Lvy2fbj9vIzMlkS84WsnKODvydh45+OKhmbE1a1GlxVMgnJSYVTderWQ+z4LpRFq/fxR3TlpLv8/PXgV3p1b5pVXxEEamGqmWgV+RQwSG25mw9KuSzcrLIPFA4vz9v/1Ht68TXKerKORLyRaFfN4U68XWOar9590GGTslg7fYDdEqqR60asdSKj6V24N9aNYpPx5WxPJbaNeKOWp4QH6v+eZFqTIFeCQfyDrAlZ0th4B/IKtGtc6jg0FHt69esX+KsvnFCcz78Jo8tu30cynMcLvBzKM9PboGf3Dw/h/Ich/J9FN1s5Aw48nPs/E/La8bFFAZ8IOgLp+OO/qVx1HQcteJjqF0jjoTAdrVrxBZOB7ZNqFG4vmZczJGjH/UXyU/LSq4TkZOnvEAP6iqhmfUBngdigUnOuSePWV8TmAJ0A3YB6c65DSdSdLjVrVGX9g3b075h+xLrnHPsPbz3p26cAz+d4X+/53s+2/wZ+f5iIzPGAAkljxEH1D3uygwD/MSQA+QQA65wORj4DHfQ4CA4Z+DAFf+FULxt0XwMR/8Sqawgty21mR3PHqKWef4TSjCubnMzj/7yhpDvt8JAN7NYYDzQG8gEvjKz2c65VcWa3Qrscc793MyuB/4EpIe82ghhZjRIaECDhAZ0bty5xHq/87Pz0E6ycrLIyskityAXh8O5wh8//qILtn7nL1zOT+uOmnd+/PjBUbTuqG2P7Bd31PyRab/zU+Dzk+/3k+/zke/zUeD3k+/zB/71UeB3FPh8FPh9+EoZ990dM1Xq33Tu2FalK+0PQlfuFie2XUTR2D8S0KZhkyrZbzBn6N2Bdc659QBmNh3oDxQP9P7A2MD0TOBFMzNXTUevirEYmtZuStPaTenatGu4yxGRaiKY+/SSgc3F5jMDy0pt45wrAPYBjY7dkZkNM7MMM8vIzs6uXMUiIlKqk/rov3NuonMuzTmX1qRJ1fzJISJSXQUT6FlAy2LzKYFlpbYxszigHoUXR0VE5CQJJtC/AtqaWRszqwFcD8w+ps1s4KbA9LXAp9W1/1xEJFwqvCjqnCsws+HARxTetviqc26lmT0GZDjnZgN/B6aa2TpgN4WhLyIiJ1FQ96E75+YCc49Z9nCx6VxgQGhLExGR46Hx0EVEPEKBLiLiEWEby8XMsoGNldy8MbCzwlaRI5rqjaZaIbrqjaZaIbrqjaZa4cTqPdU5V+p932EL9BNhZhllDU4TiaKp3miqFaKr3miqFaKr3miqFaquXnW5iIh4hAJdRMQjojXQJ4a7gOMUTfVGU60QXfVGU60QXfVGU61QRfVGZR+6iIiUFK1n6CIicgwFuoiIR0RdoJtZHzP7zszWmdmocNdTHjN71cx2mNm34a6lImbW0szmm9kqM1tpZiPDXVNZzCzBzL40s28CtT4a7pqCYWaxZva1mc0Jdy3lMbMNZrbCzJaZWeS++DfAzOqb2UwzW2Nmq83svHDXVBozax/4To/87Dezu0N6jGjqQw+8Dm8txV6HBww85nV4EcPMegI5wBTnXMl31UUQM2sBtHDOLTWzusAS4KpI/G6t8A3VdZxzOWYWDywERjrnFoe5tHKZ2b1AGnCKc65vuOspi5ltANKcc1HxoI6ZvQ78xzk3KTAibG3n3N5w11WeQJZlAec45yr7gGUJ0XaGXvQ6POdcHnDkdXgRyTm3gMLRJyOec26rc25pYPoAsJqSb6aKCK5QTmA2PvAT0WcmZpYCXAFMCnctXmJm9YCeFI74inMuL9LDPOAS4P9CGeYQfYEezOvw5ASZWWugK/Df8FZStkD3xTJgB/Cxcy5iaw34C3Af4A93IUFwwP+a2RIzGxbuYirQBsgGXgt0Z00yszrhLioI1wNvhXqn0RboUsXMLBF4F7jbObc/3PWUxTnnc86dSeEbtLqbWcR2aZlZX2CHc25JuGsJ0i+cc2cBlwF3BroOI1UccBYwwTnXFfgRiPRrazWAfsA7od53tAV6MK/Dk0oK9Ee/C0xzzr0X7nqCEfjzej7QJ9y1lKMH0C/QNz0duNjM3ghvSWVzzmUF/t0BzKKwqzNSZQKZxf5Cm0lhwEeyy4Clzrntod5xtAV6MK/Dk0oIXGj8O7DaOffncNdTHjNrYmb1A9O1KLxIvia8VZXNOfeAcy7FOdeawv9nP3XO3RDmskplZnUCF8UJdF1cCkTsXVrOuW3AZjNrH1h0CRBxF/KPMZAq6G6BIN9YFCnKeh1emMsqk5m9BfQCGptZJvCIc+7v4a2qTD2AG4EVgb5pgNGBt1VFmhbA64E7BWKAGc65iL4VMIo0A2YV/n4nDnjTOfdheEuq0AhgWuAkbz0wOMz1lCnwS7I38Nsq2X803bYoIiJli7YuFxERKYMCXUTEIxToIiIeoUAXEfEIBbqIiEco0EVEPEKBLiLiEf8f0Wzj7oxloq4AAAAASUVORK5CYII=\n", 2123 | "text/plain": [ 2124 | "
" 2125 | ] 2126 | }, 2127 | "metadata": { 2128 | "tags": [], 2129 | "needs_background": "light" 2130 | } 2131 | } 2132 | ] 2133 | }, 2134 | { 2135 | "cell_type": "markdown", 2136 | "metadata": { 2137 | "id": "Ytnu_pa-yGhD", 2138 | "colab_type": "text" 2139 | }, 2140 | "source": [ 2141 | "# Let's try after resampling data \n", 2142 | "# Oversampling the data : \n", 2143 | "\n" 2144 | ] 2145 | }, 2146 | { 2147 | "cell_type": "code", 2148 | "metadata": { 2149 | "id": "RQyQ-jNitbmo", 2150 | "colab_type": "code", 2151 | "outputId": "71832729-e1c1-48d9-9869-2670e9bc4058", 2152 | "colab": { 2153 | "base_uri": "https://localhost:8080/", 2154 | "height": 68 2155 | } 2156 | }, 2157 | "source": [ 2158 | "#Since the data is imbalanced ,Resampling :\n", 2159 | " \n", 2160 | "#Oversampling \n", 2161 | " \n", 2162 | "from sklearn.utils import resample\n", 2163 | "\n", 2164 | "# Separate input features and target\n", 2165 | "y = df.Class\n", 2166 | "X = df.drop('Class', axis=1)\n", 2167 | "\n", 2168 | "# setting up testing and training sets\n", 2169 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=27)\n", 2170 | "\n", 2171 | "# concatenate our training data back together\n", 2172 | "X = pd.concat([X_train, y_train], axis=1)\n", 2173 | "\n", 2174 | "# separate minority and majority classes\n", 2175 | "not_fraud = X[X.Class==0]\n", 2176 | "fraud = X[X.Class==1]\n", 2177 | "\n", 2178 | "# upsample minority\n", 2179 | "fraud_upsampled = resample(fraud,\n", 2180 | " replace=True, # sample with replacement\n", 2181 | " n_samples=len(not_fraud), # match number in majority class\n", 2182 | " random_state=27) # reproducible results\n", 2183 | "\n", 2184 | "# combine majority and upsampled minority\n", 2185 | "upsampled = pd.concat([not_fraud, fraud_upsampled])\n", 2186 | "\n", 2187 | "# check new class counts\n", 2188 | "upsampled.Class.value_counts()" 2189 | ], 2190 | "execution_count": 36, 2191 | "outputs": [ 2192 | { 2193 | "output_type": "execute_result", 2194 | "data": { 2195 | "text/plain": [ 2196 | "1 213245\n", 2197 | "0 213245\n", 2198 | "Name: Class, dtype: int64" 2199 | ] 2200 | }, 2201 | "metadata": { 2202 | "tags": [] 2203 | }, 2204 | "execution_count": 36 2205 | } 2206 | ] 2207 | }, 2208 | { 2209 | "cell_type": "code", 2210 | "metadata": { 2211 | "id": "CniNA7EevVdr", 2212 | "colab_type": "code", 2213 | "outputId": "376b977d-2fbf-4890-a01e-6c7d75c3f923", 2214 | "colab": { 2215 | "base_uri": "https://localhost:8080/", 2216 | "height": 357 2217 | } 2218 | }, 2219 | "source": [ 2220 | "\n", 2221 | "# trying logistic regression again with the balanced dataset\n", 2222 | "y_train = upsampled.Class\n", 2223 | "X_train = upsampled.drop('Class', axis=1)\n", 2224 | "\n", 2225 | "rfc = LogisticRegression()\n", 2226 | "rfc.fit(X_train, y_train)\n", 2227 | "y_pred = rfc.predict(X_test)\n", 2228 | "print(\"Test accuracy\",rfc.score(X_test,y_test))\n", 2229 | "print(\"Train accuracy\",rfc.score(X_train,y_train))\n", 2230 | "print(\"Classification report :\")\n", 2231 | "print(classification_report(y_test,y_pred, target_names=target_names))" 2232 | ], 2233 | "execution_count": 37, 2234 | "outputs": [ 2235 | { 2236 | "output_type": "stream", 2237 | "text": [ 2238 | "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/_logistic.py:940: ConvergenceWarning: lbfgs failed to converge (status=1):\n", 2239 | "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", 2240 | "\n", 2241 | "Increase the number of iterations (max_iter) or scale the data as shown in:\n", 2242 | " https://scikit-learn.org/stable/modules/preprocessing.html\n", 2243 | "Please also refer to the documentation for alternative solver options:\n", 2244 | " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", 2245 | " extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)\n" 2246 | ], 2247 | "name": "stderr" 2248 | }, 2249 | { 2250 | "output_type": "stream", 2251 | "text": [ 2252 | "Test accuracy 0.9677818038819135\n", 2253 | "Train accuracy 0.9500246195690403\n", 2254 | "Classification report :\n", 2255 | " precision recall f1-score support\n", 2256 | "\n", 2257 | " not_fraud 1.00 0.97 0.98 71070\n", 2258 | " fraud 0.05 0.89 0.09 132\n", 2259 | "\n", 2260 | " accuracy 0.97 71202\n", 2261 | " macro avg 0.52 0.93 0.54 71202\n", 2262 | "weighted avg 1.00 0.97 0.98 71202\n", 2263 | "\n" 2264 | ], 2265 | "name": "stdout" 2266 | } 2267 | ] 2268 | }, 2269 | { 2270 | "cell_type": "markdown", 2271 | "metadata": { 2272 | "id": "hj6c_zsQxkU4", 2273 | "colab_type": "text" 2274 | }, 2275 | "source": [ 2276 | "# **Undersampling the data:**" 2277 | ] 2278 | }, 2279 | { 2280 | "cell_type": "code", 2281 | "metadata": { 2282 | "id": "KRRVvMFJvlcx", 2283 | "colab_type": "code", 2284 | "outputId": "a672ac9c-2030-4f5b-b0b7-679e7ed988dc", 2285 | "colab": { 2286 | "base_uri": "https://localhost:8080/", 2287 | "height": 221 2288 | } 2289 | }, 2290 | "source": [ 2291 | "# still using our separated classes fraud and not_fraud from above\n", 2292 | "\n", 2293 | "# downsample majority\n", 2294 | "not_fraud_downsampled = resample(not_fraud,\n", 2295 | " replace = False, # sample without replacement\n", 2296 | " n_samples = len(fraud), # match minority n\n", 2297 | " random_state = 27) # reproducible results\n", 2298 | "\n", 2299 | "# combine minority and downsampled majority\n", 2300 | "downsampled = pd.concat([not_fraud_downsampled, fraud])\n", 2301 | "\n", 2302 | "y_train = downsampled.Class\n", 2303 | "X_train = downsampled.drop('Class', axis=1)\n", 2304 | "\n", 2305 | "rfc = RandomForestClassifier(max_depth=2, random_state=42,n_estimators=10)\n", 2306 | "rfc.fit(X_train, y_train)\n", 2307 | "y_pred = rfc.predict(X_test)\n", 2308 | "print(\"Test accuracy\",rfc.score(X_test,y_test))\n", 2309 | "print(\"Train accuracy\",rfc.score(X_train,y_train))\n", 2310 | "print(\"Classification report :\")\n", 2311 | "print(classification_report(y_test,y_pred, target_names=target_names))" 2312 | ], 2313 | "execution_count": 38, 2314 | "outputs": [ 2315 | { 2316 | "output_type": "stream", 2317 | "text": [ 2318 | "Test accuracy 0.9829780062357799\n", 2319 | "Train accuracy 0.9361111111111111\n", 2320 | "Classification report :\n", 2321 | " precision recall f1-score support\n", 2322 | "\n", 2323 | " not_fraud 1.00 0.98 0.99 71070\n", 2324 | " fraud 0.09 0.86 0.16 132\n", 2325 | "\n", 2326 | " accuracy 0.98 71202\n", 2327 | " macro avg 0.54 0.92 0.57 71202\n", 2328 | "weighted avg 1.00 0.98 0.99 71202\n", 2329 | "\n" 2330 | ], 2331 | "name": "stdout" 2332 | } 2333 | ] 2334 | }, 2335 | { 2336 | "cell_type": "markdown", 2337 | "metadata": { 2338 | "id": "cYIWz7rc3NkB", 2339 | "colab_type": "text" 2340 | }, 2341 | "source": [ 2342 | "# **Generate synthetic samples using SMOTE**" 2343 | ] 2344 | }, 2345 | { 2346 | "cell_type": "code", 2347 | "metadata": { 2348 | "id": "EHgSzYSwwxOE", 2349 | "colab_type": "code", 2350 | "outputId": "d4c40d9e-1f35-4998-f248-35af4b0584fd", 2351 | "colab": { 2352 | "base_uri": "https://localhost:8080/", 2353 | "height": 343 2354 | } 2355 | }, 2356 | "source": [ 2357 | "from imblearn.over_sampling import SMOTE\n", 2358 | "\n", 2359 | "# Separate input features and target\n", 2360 | "y = df.Class\n", 2361 | "X = df.drop('Class', axis=1)\n", 2362 | "\n", 2363 | "# setting up testing and training sets\n", 2364 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=27)\n", 2365 | "\n", 2366 | "sm = SMOTE(random_state=27, ratio=1.0)\n", 2367 | "X_train, y_train = sm.fit_sample(X_train, y_train)\n", 2368 | "\n", 2369 | "\n", 2370 | "rfc = RandomForestClassifier(max_depth=2, random_state=42,n_estimators=10)\n", 2371 | "rfc.fit(X_train, y_train)\n", 2372 | "y_pred = rfc.predict(X_test)\n", 2373 | "print(\"Test accuracy\",rfc.score(X_test,y_test))\n", 2374 | "print(\"Train accuracy\",rfc.score(X_train,y_train))\n", 2375 | "print(\"Classification report :\")\n", 2376 | "print(classification_report(y_test,y_pred, target_names=target_names))" 2377 | ], 2378 | "execution_count": 39, 2379 | "outputs": [ 2380 | { 2381 | "output_type": "stream", 2382 | "text": [ 2383 | "/usr/local/lib/python3.6/dist-packages/sklearn/externals/six.py:31: FutureWarning: The module is deprecated in version 0.21 and will be removed in version 0.23 since we've dropped support for Python 2.7. Please rely on the official version of six (https://pypi.org/project/six/).\n", 2384 | " \"(https://pypi.org/project/six/).\", FutureWarning)\n", 2385 | "/usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.neighbors.base module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.neighbors. Anything that cannot be imported from sklearn.neighbors is now part of the private API.\n", 2386 | " warnings.warn(message, FutureWarning)\n", 2387 | "/usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function safe_indexing is deprecated; safe_indexing is deprecated in version 0.22 and will be removed in version 0.24.\n", 2388 | " warnings.warn(msg, category=FutureWarning)\n" 2389 | ], 2390 | "name": "stderr" 2391 | }, 2392 | { 2393 | "output_type": "stream", 2394 | "text": [ 2395 | "Test accuracy 0.98706497008511\n", 2396 | "Train accuracy 0.9605993106520668\n", 2397 | "Classification report :\n", 2398 | " precision recall f1-score support\n", 2399 | "\n", 2400 | " not_fraud 1.00 0.99 0.99 71070\n", 2401 | " fraud 0.11 0.85 0.20 132\n", 2402 | "\n", 2403 | " accuracy 0.99 71202\n", 2404 | " macro avg 0.56 0.92 0.59 71202\n", 2405 | "weighted avg 1.00 0.99 0.99 71202\n", 2406 | "\n" 2407 | ], 2408 | "name": "stdout" 2409 | } 2410 | ] 2411 | }, 2412 | { 2413 | "cell_type": "code", 2414 | "metadata": { 2415 | "id": "0EbTf0QGfHLf", 2416 | "colab_type": "code", 2417 | "colab": {} 2418 | }, 2419 | "source": [ 2420 | "" 2421 | ], 2422 | "execution_count": 0, 2423 | "outputs": [] 2424 | } 2425 | ] 2426 | } --------------------------------------------------------------------------------