├── Example
└── POSCAR
├── LICENSE
├── Parsing-Hessian-matrix-from-vasprun
├── Example
│ └── hessian.dat
├── Extract_hessian.py
├── README.md
└── parsing hessian matrix
├── README.md
├── Thermal_properties_from_phonopy
├── extract_thermal_yaml.py
└── thermal_properties.yaml
├── _config.yml
├── convert_ExcitingXml2Vasp.py
├── get_TotEle.py
├── get_forces_all_ionicSteps.py
├── get_properties_VASP.py
└── src
├── Main_file.py
├── contcar_poscar.py
├── create_phonon_directories.py
├── elastic_constants.py
├── energy.py
├── evaluate_manually_Elastic_constants.py
├── fit_energy_vs_vol.py
├── poscar.py
└── strain.py
/Example/POSCAR:
--------------------------------------------------------------------------------
1 | Hf2
2 | 1.00000000000000
3 | 3.2034364762002947 0.0000000849104951 -0.0000000010327879
4 | -1.6017181638825977 2.7742573868598530 0.0000000025125482
5 | -0.0000000032264187 0.0000000021136038 5.0548251385690195
6 | Hf
7 | 2
8 | Direct
9 | 0.3333333018142252 0.6666666970392585 0.2500000000021482
10 | 0.6666666981857747 0.3333333029607416 0.7499999999978518
11 |
12 | 0.00000000E+00 0.00000000E+00 0.00000000E+00
13 | 0.00000000E+00 0.00000000E+00 0.00000000E+00
14 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/Parsing-Hessian-matrix-from-vasprun/Extract_hessian.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | import lxml
4 | from yaml import load, dump
5 | import sys, os, yaml
6 | #from lxml import etree
7 | import numpy as np
8 | from scipy import linalg as LA
9 |
10 | #*******************************DOCUMENTATION***********************************
11 | #
12 | #AUTHOR : ASIF IQBAL BHATTI
13 | #CREATED ON : 09/02/2020
14 | #USAGE : To parse VASP vasprun.xml input file to extract Hessian Matrix
15 | #Output file has already been defined in the code (hessian.dat).
16 | #CAUTION: Use at your own risk (NOTEVEN IMPLIED GUARANTEED, WHATSOEVER),
17 | #the code has been tested but the user in the end will have to verify the ouput.
18 | #Xpath is useful tool for directly accessing the element in a Node
19 | #
20 | #-> CHECK this website for lxml introduccion: https://lxml.de/tutorial.html &
21 | #-> https://github.com/lxml/lxml
22 | #
23 | #************************END OF DOCUMENTATION***********************************
24 |
25 | try:
26 | from lxml import etree
27 | print("running with lxml.etree")
28 | except ImportError:
29 | try:
30 | # Python 2.5
31 | import xml.etree.cElementTree as etree
32 | print("running with cElementTree on Python 2.5+")
33 | except ImportError:
34 | try:
35 | # Python 2.5
36 | import xml.etree.ElementTree as etree
37 | print("running with ElementTree on Python 2.5+")
38 | except ImportError:
39 | try:
40 | # normal cElementTree install
41 | import cElementTree as etree
42 | print("running with cElementTree")
43 | except ImportError:
44 | try:
45 | # normal ElementTree install
46 | import elementtree.ElementTree as etree
47 | print("running with ElementTree")
48 | except ImportError:
49 | print("Failed to import ElementTree from any known place")
50 | #-----------------------------------------------------------------------------------
51 | # ''' Readng a File '''
52 | #-----------------------------------------------------------------------------------
53 | input_obj = open("vasprun.xml","r")
54 | input_doc = etree.parse(input_obj)
55 | root = input_doc.getroot()
56 |
57 | print("*"*80)
58 | print("dynmat")
59 | for type_tag in root.findall('*/dynmat/varray'): # search string in a Node
60 | value = type_tag.get('name')
61 | print(" |--> Child detected in a Node", value)
62 | print("*"*80)
63 | #-----------------------------------------------------------------------------------
64 |
65 | #*********************************Extracting Hessian********************************
66 | #
67 | #We know the size of Hessian is always 3*N where N is the # of atoms in the unitcell
68 | # H = (3N,3N)
69 | #-----------------------------------------------------------------------------------
70 |
71 | hessian = root.xpath('*/dynmat/varray/v/text()')
72 | hess_v = []
73 |
74 | for ind_hess in hessian:
75 | hess_v.append( ind_hess.split() )
76 | hess_v = np.array(hess_v)
77 |
78 | print("*"*80)
79 | #print(hess_v) # for debugging ONLY
80 | row = len(hess_v); print("# of rows:", row)
81 | col = len(hess_v[0]); print("# of columns:", col)
82 | print("*"*80)
83 | #-----------------------------------------------------------------------------------
84 |
85 | #*********************** writing Hessian to a file ********************************
86 | out = open('hessian.dat','w')
87 |
88 | for i in range( int(row/2) ):
89 | for j in range(col):
90 | #print(hess_v[i][j], end=' ' )
91 | out.write( "{:18.11s}".format( hess_v[i][j]) )
92 | out.write('\n')
93 | #print()
94 |
95 | out.close()
96 |
97 | #******************************End Hessian******************************************
98 |
99 |
100 | #***************************extracting basevectors**********************************
101 | '''
102 | lst_basevect = root.xpath('structure/crystal/varray/v/text()')
103 | xml_basevect = []
104 |
105 | for ind_basevect in lst_basevect:
106 | xml_basevect.append( ind_basevect.split() )
107 | print(np.array(xml_basevect))
108 |
109 | #for i in range( (len(xml_basevect)) ):
110 | # print(i, xml_basevect[i][0], xml_basevect[i][1], xml_basevect[i][2])
111 |
112 | #******************************End basevectors********************************
113 | '''
114 | #---------------------------------'''METHOD 2'''---------------------------------
115 |
116 | a = [] ; l=0
117 | f = open('hessian.dat', 'r')
118 |
119 | for line in f.readlines():
120 | a.append([])
121 | #print (line[0])
122 | if (line[0] == '#'):
123 | continue
124 | for i in line.strip().split():
125 | a[-1].append(float(i))
126 | l+=1
127 | #print (a)
128 |
129 | f.close()
130 | #------------------------------------------------------------------------
131 | #a = np.random.random((900, 900))
132 | s = np.shape(a); print('size of a Matrix', s)
133 | a = np.matrix(a)
134 | #print(a)
135 | print ('--------------------------------EIGVAL AND EIGVECTORS ARE:')
136 |
137 | eig, eig_v = LA.eigh(a)
138 |
139 | print (eig);
140 | print ( np.transpose(eig_v) )
141 |
--------------------------------------------------------------------------------
/Parsing-Hessian-matrix-from-vasprun/README.md:
--------------------------------------------------------------------------------
1 | # Parsing Hessian matrix from a file
2 | *Script to parse Hessian Matrix from a file*
3 |
4 |
5 | USAGE : To parse VASP vasprun.xml input file to extract Hessian Matrix
6 | Output file has already been defined in the code (hessian.dat).
7 |
8 | CAUTION: Use at your own risk (NOTEVEN IMPLIED GUARANTEED, WHATSOEVER),
9 | the code has been tested but the user in the end will have to verify the ouput.
10 |
11 | Xpath is useful tool for directly accessing the element in a Node
12 |
13 | -> CHECK this website for lxml introduccion: https://lxml.de/tutorial.html &
14 | -> https://github.com/lxml/lxml
15 |
16 |
17 | NB: The Matrix is obtained from VASP, vasprun.xml file. It contians the hessian matrix that can be edited with appropriate script.
18 |
19 | The complication that arises by parsing the data from the file is the trailing empty lines and tabs that need to be deleted before it can be read. In the case of a simple file format, there is no need for it. But if the file contains irregular data entry such as empty lines with commas and spaces then it needs to be formatted.
20 |
21 | In my case, I have only leading empty lines and spaces and in between columns there are white spaces of different sizes.
22 |
23 |
24 | AUTHOR : ASIF IQBAL BHATTI
25 | CREATED ON : 09/02/2020
26 |
--------------------------------------------------------------------------------
/Parsing-Hessian-matrix-from-vasprun/parsing hessian matrix:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | import numpy as np
4 | import os, sys, subprocess
5 | from scipy import linalg as LA
6 | import matplotlib.pyplot as plt
7 |
8 | ''' The complication that arises by parsing the data from the file is the trailing empty lines and tabs that need to be deleted before it can be read. In the case of a simple file format, there is no need for it. But if the file contains irregular data entry such as empty lines with commas and spaces then it needs to be formatted.
9 | In my case, I have only leading empty lines and spaces and in between columns there are white spaces of different sizes.
10 | '''
11 |
12 | filename = sys.argv[1]
13 | #########################################################################
14 | #os.system(' grep "\S" input.txt')
15 | #os.system(" sed -e '/^\s*$/d' input.txt ")
16 | #os.system(" sed -i '/^[[:space:]]*$/d' $filename ")
17 | subprocess.call(['sed','-i','/^[[:space:]]*$/d',sys.argv[1]], shell = False)
18 | #########################################################################
19 |
20 | #---------------------------------'''METHOD 1'''
21 |
22 | #a = np.loadtxt("new.dat")
23 | #print(a)
24 |
25 | #---------------------------------'''METHOD 2'''
26 |
27 | a = []
28 | f = open(filename, 'r')
29 |
30 | for line in f.readlines():
31 | a.append([])
32 | for i in line.strip().split():
33 | a[-1].append(float(i))
34 | #print (a)
35 |
36 | f.close()
37 | #------------------------------------------------------------------------
38 | #a = np.random.random((900, 900))
39 | s = np.shape(a); print('size of a Matrix', s)
40 | a = np.matrix(a)
41 | #print(a)
42 |
43 | print ('--------------------------------EIG VAL AND EIG VECTORS ARE:')
44 |
45 | w, v = LA.eigh(a)
46 |
47 | print (w);
48 | print (v)
49 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Code to extract Elastic properties, Energy, and lattice parameter from VASP output files
2 |
3 | [](https://GitHub.com/Naereen/StrapDown.js/graphs/commit-activity)
4 | 
5 | 
6 | [](http://perso.crans.org/besson/LICENSE.html)
7 |
8 | ==> supercell.py script constructs a bcc/fcc supercell for high-entropy alloys.
9 |
10 | This repository contains a set of Python scripts for analyzing High Entropy Alloys using VASP output files. The scripts can extract lattice parameters, energy, and volume from each directory in a given parent directory. Additionally, it can scan the CONTCAR file, compute the volume and lattice parameters, and print the volume difference upon structure minimization. The extracted data can be used to analyze the Elastic Constants and make decisions on adjusting ENCUT or KPOINTS to minimize Pulay stress, as indicated in the VASP manual.
11 |
12 | ```
13 | **USAGE** : Just run the Main_file.py it will call all the modules
14 | The code has been given in one script (**Extract_elastic_energy_VASP.py**) and in modules.
15 | The module form is much easier to handle than one long complex code.
16 | ~/dir/ -->
17 | dir1
18 | dir2
19 | dir3
20 | POSCAR
21 | OUTCAR
22 | Python Main_file.py
23 | ```
24 | _______________________
25 | ## Structural Minimization in VASP:
26 | For VASP structural minimization, the following tags should be used: IBRION = 2; ISIF = 3; EDIFF = 10**-8. VASP implements both the stress method (First derivative approach) and the Energy-strain method for Elastic Constants calculation. The Energy-strain method involves applying Lagrangian strains to the cell and calculating the resulting energy for various deformations. Polynomial fitting is then performed, and the second derivative is calculated at equilibrium volume.
27 |
28 | ```
29 | An exercise to print Cij matrix in a Pythonic way: 2D array is created as a List of Lists unlike C++ where you define by C[i][j]
30 |
31 | def print_Cij_Matrix():
32 | Bij = []
33 | C = "C"
34 | for i in range(0,6):
35 | Bij.append([])
36 | for j in range(0,6):
37 | Bij[i].append((C + str(i) + str(j)))
38 | l = np.matrix(Bij)
39 | print (l)
40 | ```
41 |
42 | ref: [exciting](http://exciting-code.org/nitrogen-energy-vs-strain-calculations)
43 | ref: [materialsproject](https://wiki.materialsproject.org/Elasticity_calculations)
44 |
45 | [](https://creativecommons.org/licenses/by-nd/4.0)
46 |
47 | **Parsing Hessian matrix from a file**
48 |
49 | Script to parse Hessian Matrix from a file
50 |
51 | USAGE: To parse the VASP vasprun.xml input file to extract the Hessian Matrix Output file has already been defined in the code (hessian.dat).
52 |
53 | CAUTION: Use at your own risk (NOTEVEN IMPLIED GUARANTEED, WHATSOEVER), the code has been tested but the user in the end will have to verify the ouput.
54 |
55 | Xpath is a useful tool for directly accessing the element in a Node
56 |
57 | -> CHECK this website for lxml introduccion: https://lxml.de/tutorial.html & -> https://github.com/lxml/lxml
58 |
59 | NB: The Matrix is obtained from VASP, vasprun.xml file. It contains the hessian matrix that can be edited with the appropriate script.
60 |
61 | The complication that arises by parsing the data from the file is the trailing empty lines and tabs that need to be deleted before it can be read. In the case of a simple file format, there is no need for it. But if the file contains irregular data entry such as empty lines with commas and spaces then it needs to be formatted.
62 |
63 | In my case, I have only leading empty lines and spaces and in between columns there are white spaces of different sizes.
64 |
65 | **Convert exciting(LMTO) input file to VASP input file (DFT code)**
66 |
67 |
68 | 𝗢𝗻𝗲 𝗳𝗶𝗲𝗹𝗱 𝗼𝗳 𝘄𝗼𝗿𝗸 𝗶𝗻 𝘄𝗵𝗶𝗰𝗵 𝘁𝗵𝗲𝗿𝗲 𝗵𝗮𝘀 𝗯𝗲𝗲𝗻 𝘁𝗼𝗼 𝗺𝘂𝗰𝗵 𝘀𝗽𝗲𝗰𝘂𝗹𝗮𝘁𝗶𝗼𝗻 𝗶𝘀 𝗰𝗼𝘀𝗺𝗼𝗹𝗼𝗴𝘆. 𝗧𝗵𝗲𝗿𝗲 𝗮𝗿𝗲 𝘃𝗲𝗿𝘆 𝗳𝗲𝘄 𝗵𝗮𝗿𝗱 𝗳𝗮𝗰𝘁𝘀 𝘁𝗼 𝗴𝗼 𝗼𝗻, 𝗯𝘂𝘁 𝘁𝗵𝗲𝗼𝗿𝗲𝘁𝗶𝗰𝗮𝗹 𝘄𝗼𝗿𝗸𝗲𝗿𝘀 𝗵𝗮𝘃𝗲 𝗯𝗲𝗲𝗻 𝗯𝘂𝘀𝘆 𝗰𝗼𝗻𝘀𝘁𝗿𝘂𝗰𝘁𝗶𝗻𝗴 𝘃𝗮𝗿𝗶𝗼𝘂𝘀 𝗺𝗼𝗱𝗲𝗹𝘀 𝗳𝗼𝗿 𝘁𝗵𝗲 𝗨𝗻𝗶𝘃𝗲𝗿𝘀𝗲, 𝗯𝗮𝘀𝗲𝗱 𝗼𝗻 𝗮𝗻𝘆 𝗮𝘀𝘀𝘂𝗺𝗽𝘁𝗶𝗼𝗻𝘀 𝘁𝗵𝗮𝘁 𝘁𝗵𝗲𝘆 𝗳𝗮𝗻𝗰𝘆. 𝗧𝗵𝗲𝘀𝗲 𝗺𝗼𝗱𝗲𝗹𝘀 𝗮𝗿𝗲 𝗽𝗿𝗼𝗯𝗮𝗯𝗹𝘆 𝗮𝗹𝗹 𝘄𝗿𝗼𝗻𝗴. 𝗜𝘁 𝗶𝘀 𝘂𝘀𝘂𝗮𝗹𝗹𝘆 𝗮𝘀𝘀𝘂𝗺𝗲𝗱 𝘁𝗵𝗮𝘁 𝘁𝗵𝗲 𝗹𝗮𝘄𝘀 𝗼𝗳 𝗻𝗮𝘁𝘂𝗿𝗲 𝗵𝗮𝘃𝗲 𝗮𝗹𝘄𝗮𝘆𝘀 𝗯𝗲𝗲𝗻 𝘁𝗵𝗲 𝘀𝗮𝗺𝗲 𝗮𝘀 𝘁𝗵𝗲𝘆 𝗮𝗿𝗲 𝗻𝗼𝘄. 𝗧𝗵𝗲𝗿𝗲 𝗶𝘀 𝗻𝗼 𝗷𝘂𝘀𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗳𝗼𝗿 𝘁𝗵𝗶𝘀. 𝗧𝗵𝗲 𝗹𝗮𝘄𝘀 𝗺𝗮𝘆 𝗯𝗲 𝗰𝗵𝗮𝗻𝗴𝗶𝗻𝗴, 𝗮𝗻𝗱 𝗶𝗻 𝗽𝗮𝗿𝘁𝗶𝗰𝘂𝗹𝗮𝗿, 𝗾𝘂𝗮𝗻𝘁𝗶𝘁𝗶𝗲𝘀 𝘁𝗵𝗮𝘁 𝗮𝗿𝗲 𝗰𝗼𝗻𝘀𝗶𝗱𝗲𝗿𝗲𝗱 𝘁𝗼 𝗯𝗲 𝗰𝗼𝗻𝘀𝘁𝗮𝗻𝘁𝘀 𝗼𝗳 𝗻𝗮𝘁𝘂𝗿𝗲 𝗺𝗮𝘆 𝗯𝗲 𝘃𝗮𝗿𝘆𝗶𝗻𝗴 𝘄𝗶𝘁𝗵 𝗰𝗼𝘀𝗺𝗼𝗹𝗼𝗴𝗶𝗰𝗮𝗹 𝘁𝗶𝗺𝗲. 𝗦𝘂𝗰𝗵 𝘃𝗮𝗿𝗶𝗮𝘁𝗶𝗼𝗻𝘀 𝘄𝗼𝘂𝗹𝗱 𝗰𝗼𝗺𝗽𝗹𝗲𝘁𝗲𝗹𝘆 𝘂𝗽𝘀𝗲𝘁 𝘁𝗵𝗲 𝗺𝗼𝗱𝗲𝗹 𝗺𝗮𝗸𝗲𝗿𝘀." 𝗗𝗶𝗿𝗮𝗰, 𝗣𝗮𝘂𝗹. 𝗢𝗻 𝗺𝗲𝘁𝗵𝗼𝗱𝘀 𝗶𝗻 𝘁𝗵𝗲𝗼𝗿𝗲𝘁𝗶𝗰𝗮𝗹 𝗽𝗵𝘆𝘀𝗶𝗰𝘀. (𝗧𝗿𝗶𝗲𝘀𝘁𝗲. 𝗝𝘂𝗻𝗲 𝟭𝟵𝟲𝟴 .)
69 |
70 |
--------------------------------------------------------------------------------
/Thermal_properties_from_phonopy/extract_thermal_yaml.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | import yaml
4 |
5 | with open("thermal_properties.yaml") as f:
6 | data = yaml.load(f, Loader=yaml.FullLoader)
7 |
8 |
9 | # isinstance checks whether the value is a list and if list
10 | # we count the number of elements it contains.
11 | # dict = {key, value} pair
12 |
13 | count = sum(len(data[x]) for x in data if isinstance(data[x], list))
14 | print(f"# of elements detected in the list: {count}")
15 |
16 |
17 | print ("{:1s} {:14.12s} {:14.12s} {}".format(' ','Temperature', 'Entropy', 'Free_energy') )
18 | for i in range(count):
19 | temperature=data['thermal_properties'][i]['temperature']
20 | free_energy=data['thermal_properties'][i]['free_energy']
21 | entropy=data['thermal_properties'][i]['entropy']
22 | heat_capacity=data['thermal_properties'][i]['heat_capacity']
23 | energy=data['thermal_properties'][i]['energy']
24 | print ("{:10.3f} {:15.8f} {:15.8f}".format(temperature, entropy, free_energy) )
--------------------------------------------------------------------------------
/Thermal_properties_from_phonopy/thermal_properties.yaml:
--------------------------------------------------------------------------------
1 | # Thermal properties / unit cell (natom)
2 |
3 | unit:
4 | temperature: K
5 | free_energy: kJ/mol
6 | entropy: J/K/mol
7 | heat_capacity: J/K/mol
8 |
9 | natom: 20
10 | cutoff_frequency: 0.000
11 | num_modes: 60000
12 | num_integrated_modes: 59704
13 |
14 | zero_point_energy: 42.9872098
15 | high_T_entropy: 2141.4755667
16 |
17 | thermal_properties:
18 | - temperature: 0.0000000
19 | free_energy: 42.9872098
20 | entropy: 0.0000000
21 | heat_capacity: 0.0000000
22 | energy: 42.9872098
23 |
24 | - temperature: 10.0000000
25 | free_energy: 42.9701598
26 | entropy: 5.0621935
27 | heat_capacity: 10.0394672
28 | energy: 43.0207817
29 |
30 | - temperature: 20.0000000
31 | free_energy: 42.8486108
32 | entropy: 21.4264301
33 | heat_capacity: 45.8642680
34 | energy: 43.2771394
35 |
36 | - temperature: 30.0000000
37 | free_energy: 42.4997264
38 | entropy: 50.1853341
39 | heat_capacity: 101.7453167
40 | energy: 44.0052864
41 |
42 | - temperature: 40.0000000
43 | free_energy: 41.8153259
44 | entropy: 87.8154694
45 | heat_capacity: 162.6125091
46 | energy: 45.3279447
47 |
48 | - temperature: 50.0000000
49 | free_energy: 40.7274267
50 | entropy: 130.2807415
51 | heat_capacity: 218.8599497
52 | energy: 47.2414637
53 |
54 | - temperature: 60.0000000
55 | free_energy: 39.2038334
56 | entropy: 174.5477101
57 | heat_capacity: 266.6851313
58 | energy: 49.6766960
59 |
60 | - temperature: 70.0000000
61 | free_energy: 37.2369562
62 | entropy: 218.6973499
63 | heat_capacity: 305.7350219
64 | energy: 52.5457707
65 |
66 | - temperature: 80.0000000
67 | free_energy: 34.8339454
68 | entropy: 261.6468591
69 | heat_capacity: 337.0831464
70 | energy: 55.7656941
71 |
72 | - temperature: 90.0000000
73 | free_energy: 32.0098700
74 | entropy: 302.8514103
75 | heat_capacity: 362.1458102
76 | energy: 59.2664969
77 |
78 | - temperature: 100.0000000
79 | free_energy: 28.7835039
80 | entropy: 342.0857215
81 | heat_capacity: 382.2401526
82 | energy: 62.9920761
83 |
84 | - temperature: 110.0000000
85 | free_energy: 25.1748838
86 | entropy: 379.3046380
87 | heat_capacity: 398.4548176
88 | energy: 66.8983940
89 |
90 | - temperature: 120.0000000
91 | free_energy: 21.2039627
92 | entropy: 414.5596025
93 | heat_capacity: 411.6456883
94 | energy: 70.9511150
95 |
96 | - temperature: 130.0000000
97 | free_energy: 16.8899083
98 | entropy: 447.9502538
99 | heat_capacity: 422.4714642
100 | energy: 75.1234413
101 |
102 | - temperature: 140.0000000
103 | free_energy: 12.2507712
104 | entropy: 479.5970017
105 | heat_capacity: 431.4354531
106 | energy: 79.3943515
107 |
108 | - temperature: 150.0000000
109 | free_energy: 7.3033610
110 | entropy: 509.6258367
111 | heat_capacity: 438.9223243
112 | energy: 83.7472365
113 |
114 | - temperature: 160.0000000
115 | free_energy: 2.0632353
116 | entropy: 538.1601906
117 | heat_capacity: 445.2273388
118 | energy: 88.1688658
119 |
120 | - temperature: 170.0000000
121 | free_energy: -3.4552514
122 | entropy: 565.3168297
123 | heat_capacity: 450.5786019
124 | energy: 92.6486097
125 |
126 | - temperature: 180.0000000
127 | free_energy: -9.2388708
128 | entropy: 591.2040311
129 | heat_capacity: 455.1536804
130 | energy: 97.1778548
131 |
132 | - temperature: 190.0000000
133 | free_energy: -15.2754323
134 | entropy: 615.9210317
135 | heat_capacity: 459.0919218
136 | energy: 101.7495637
137 |
138 | - temperature: 200.0000000
139 | free_energy: -21.5536929
140 | entropy: 639.5581662
141 | heat_capacity: 462.5035816
142 | energy: 106.3579404
143 |
144 | - temperature: 210.0000000
145 | free_energy: -28.0632701
146 | entropy: 662.1973578
147 | heat_capacity: 465.4766070
148 | energy: 110.9981751
149 |
150 | - temperature: 220.0000000
151 | free_energy: -34.7945615
152 | entropy: 683.9127687
153 | heat_capacity: 468.0817060
154 | energy: 115.6662476
155 |
156 | - temperature: 230.0000000
157 | free_energy: -41.7386705
158 | entropy: 704.7715019
159 | heat_capacity: 470.3761596
160 | energy: 120.3587749
161 |
162 | - temperature: 240.0000000
163 | free_energy: -48.8873391
164 | entropy: 724.8342962
165 | heat_capacity: 472.4067087
166 | energy: 125.0728920
167 |
168 | - temperature: 250.0000000
169 | free_energy: -56.2328873
170 | entropy: 744.1561819
171 | heat_capacity: 474.2117581
172 | energy: 129.8061581
173 |
174 | - temperature: 260.0000000
175 | free_energy: -63.7681599
176 | entropy: 762.7870843
177 | heat_capacity: 475.8230705
178 | energy: 134.5564820
179 |
180 | - temperature: 270.0000000
181 | free_energy: -71.4864774
182 | entropy: 780.7723695
183 | heat_capacity: 477.2670794
184 | energy: 139.3220623
185 |
186 | - temperature: 280.0000000
187 | free_energy: -79.3815933
188 | entropy: 798.1533334
189 | heat_capacity: 478.5659125
190 | energy: 144.1013400
191 |
192 | - temperature: 290.0000000
193 | free_energy: -87.4476556
194 | entropy: 814.9676367
195 | heat_capacity: 479.7381969
196 | energy: 148.8929591
197 |
198 | - temperature: 300.0000000
199 | free_energy: -95.6791722
200 | entropy: 831.2496905
201 | heat_capacity: 480.7996959
202 | energy: 153.6957349
203 |
204 | - temperature: 310.0000000
205 | free_energy: -104.0709805
206 | entropy: 847.0309972
207 | heat_capacity: 481.7638159
208 | energy: 158.5086286
209 |
210 | - temperature: 320.0000000
211 | free_energy: -112.6182196
212 | entropy: 862.3404519
213 | heat_capacity: 482.6420132
214 | energy: 163.3307250
215 |
216 | - temperature: 330.0000000
217 | free_energy: -121.3163055
218 | entropy: 877.2046087
219 | heat_capacity: 483.4441216
220 | energy: 168.1612154
221 |
222 | - temperature: 340.0000000
223 | free_energy: -130.1609091
224 | entropy: 891.6479157
225 | heat_capacity: 484.1786182
226 | energy: 172.9993822
227 |
228 | - temperature: 350.0000000
229 | free_energy: -139.1479363
230 | entropy: 905.6929236
231 | heat_capacity: 484.8528402
232 | energy: 177.8445869
233 |
234 | - temperature: 360.0000000
235 | free_energy: -148.2735096
236 | entropy: 919.3604695
237 | heat_capacity: 485.4731629
238 | energy: 182.6962594
239 |
240 | - temperature: 370.0000000
241 | free_energy: -157.5339519
242 | entropy: 932.6698408
243 | heat_capacity: 486.0451459
244 | energy: 187.5538892
245 |
246 | - temperature: 380.0000000
247 | free_energy: -166.9257722
248 | entropy: 945.6389204
249 | heat_capacity: 486.5736544
250 | energy: 192.4170175
251 |
252 | - temperature: 390.0000000
253 | free_energy: -176.4456515
254 | entropy: 958.2843158
255 | heat_capacity: 487.0629602
256 | energy: 197.2852316
257 |
258 | - temperature: 400.0000000
259 | free_energy: -186.0904312
260 | entropy: 970.6214746
261 | heat_capacity: 487.5168259
262 | energy: 202.1581586
263 |
264 | - temperature: 410.0000000
265 | free_energy: -195.8571016
266 | entropy: 982.6647872
267 | heat_capacity: 487.9385758
268 | energy: 207.0354611
269 |
270 | - temperature: 420.0000000
271 | free_energy: -205.7427923
272 | entropy: 994.4276792
273 | heat_capacity: 488.3311550
274 | energy: 211.9168330
275 |
276 | - temperature: 430.0000000
277 | free_energy: -215.7447624
278 | entropy: 1005.9226933
279 | heat_capacity: 488.6971806
280 | energy: 216.8019957
281 |
282 | - temperature: 440.0000000
283 | free_energy: -225.8603924
284 | entropy: 1017.1615643
285 | heat_capacity: 489.0389837
286 | energy: 221.6906959
287 |
288 | - temperature: 450.0000000
289 | free_energy: -236.0871766
290 | entropy: 1028.1552850
291 | heat_capacity: 489.3586463
292 | energy: 226.5827016
293 |
294 | - temperature: 460.0000000
295 | free_energy: -246.4227154
296 | entropy: 1038.9141666
297 | heat_capacity: 489.6580324
298 | energy: 231.4778012
299 |
300 | - temperature: 470.0000000
301 | free_energy: -256.8647095
302 | entropy: 1049.4478931
303 | heat_capacity: 489.9388147
304 | energy: 236.3758003
305 |
306 | - temperature: 480.0000000
307 | free_energy: -267.4109532
308 | entropy: 1059.7655702
309 | heat_capacity: 490.2024974
310 | energy: 241.2765205
311 |
312 | - temperature: 490.0000000
313 | free_energy: -278.0593293
314 | entropy: 1069.8757696
315 | heat_capacity: 490.4504363
316 | energy: 246.1797978
317 |
318 | - temperature: 500.0000000
319 | free_energy: -288.8078039
320 | entropy: 1079.7865696
321 | heat_capacity: 490.6838561
322 | energy: 251.0854809
323 |
324 | - temperature: 510.0000000
325 | free_energy: -299.6544215
326 | entropy: 1089.5055916
327 | heat_capacity: 490.9038648
328 | energy: 255.9934302
329 |
330 | - temperature: 520.0000000
331 | free_energy: -310.5973006
332 | entropy: 1099.0400334
333 | heat_capacity: 491.1114673
334 | energy: 260.9035168
335 |
336 | - temperature: 530.0000000
337 | free_energy: -321.6346296
338 | entropy: 1108.3966998
339 | heat_capacity: 491.3075762
340 | energy: 265.8156213
341 |
342 | - temperature: 540.0000000
343 | free_energy: -332.7646635
344 | entropy: 1117.5820301
345 | heat_capacity: 491.4930220
346 | energy: 270.7296328
347 |
348 | - temperature: 550.0000000
349 | free_energy: -343.9857195
350 | entropy: 1126.6021239
351 | heat_capacity: 491.6685618
352 | energy: 275.6454487
353 |
354 | - temperature: 560.0000000
355 | free_energy: -355.2961745
356 | entropy: 1135.4627639
357 | heat_capacity: 491.8348869
358 | energy: 280.5629733
359 |
360 | - temperature: 570.0000000
361 | free_energy: -366.6944616
362 | entropy: 1144.1694375
363 | heat_capacity: 491.9926294
364 | energy: 285.4821178
365 |
366 | - temperature: 580.0000000
367 | free_energy: -378.1790674
368 | entropy: 1152.7273563
369 | heat_capacity: 492.1423682
370 | energy: 290.4027992
371 |
372 | - temperature: 590.0000000
373 | free_energy: -389.7485294
374 | entropy: 1161.1414740
375 | heat_capacity: 492.2846346
376 | energy: 295.3249403
377 |
378 | - temperature: 600.0000000
379 | free_energy: -401.4014333
380 | entropy: 1169.4165032
381 | heat_capacity: 492.4199162
382 | energy: 300.2484687
383 |
384 | - temperature: 610.0000000
385 | free_energy: -413.1364108
386 | entropy: 1177.5569305
387 | heat_capacity: 492.5486621
388 | energy: 305.1733168
389 |
390 | - temperature: 620.0000000
391 | free_energy: -424.9521375
392 | entropy: 1185.5670306
393 | heat_capacity: 492.6712854
394 | energy: 310.0994215
395 |
396 | - temperature: 630.0000000
397 | free_energy: -436.8473306
398 | entropy: 1193.4508793
399 | heat_capacity: 492.7881676
400 | energy: 315.0267234
401 |
402 | - temperature: 640.0000000
403 | free_energy: -448.8207472
404 | entropy: 1201.2123658
405 | heat_capacity: 492.8996607
406 | energy: 319.9551669
407 |
408 | - temperature: 650.0000000
409 | free_energy: -460.8711824
410 | entropy: 1208.8552033
411 | heat_capacity: 493.0060904
412 | energy: 324.8846997
413 |
414 | - temperature: 660.0000000
415 | free_energy: -472.9974676
416 | entropy: 1216.3829401
417 | heat_capacity: 493.1077581
418 | energy: 329.8152728
419 |
420 | - temperature: 670.0000000
421 | free_energy: -485.1984689
422 | entropy: 1223.7989684
423 | heat_capacity: 493.2049431
424 | energy: 334.7468400
425 |
426 | - temperature: 680.0000000
427 | free_energy: -497.4730855
428 | entropy: 1231.1065339
429 | heat_capacity: 493.2979047
430 | energy: 339.6793576
431 |
432 | - temperature: 690.0000000
433 | free_energy: -509.8202484
434 | entropy: 1238.3087437
435 | heat_capacity: 493.3868836
436 | energy: 344.6127848
437 |
438 | - temperature: 700.0000000
439 | free_energy: -522.2389191
440 | entropy: 1245.4085741
441 | heat_capacity: 493.4721038
442 | energy: 349.5470828
443 |
444 | - temperature: 710.0000000
445 | free_energy: -534.7280881
446 | entropy: 1252.4088777
447 | heat_capacity: 493.5537735
448 | energy: 354.4822150
449 |
450 | - temperature: 720.0000000
451 | free_energy: -547.2867740
452 | entropy: 1259.3123904
453 | heat_capacity: 493.6320871
454 | energy: 359.4181470
455 |
456 | - temperature: 730.0000000
457 | free_energy: -559.9140221
458 | entropy: 1266.1217373
459 | heat_capacity: 493.7072257
460 | energy: 364.3548462
461 |
462 | - temperature: 740.0000000
463 | free_energy: -572.6089033
464 | entropy: 1272.8394390
465 | heat_capacity: 493.7793582
466 | energy: 369.2922815
467 |
468 | - temperature: 750.0000000
469 | free_energy: -585.3705134
470 | entropy: 1279.4679164
471 | heat_capacity: 493.8486427
472 | energy: 374.2304238
473 |
474 | - temperature: 760.0000000
475 | free_energy: -598.1979720
476 | entropy: 1286.0094965
477 | heat_capacity: 493.9152270
478 | energy: 379.1692454
479 |
480 | - temperature: 770.0000000
481 | free_energy: -611.0904212
482 | entropy: 1292.4664169
483 | heat_capacity: 493.9792493
484 | energy: 384.1087199
485 |
486 | - temperature: 780.0000000
487 | free_energy: -624.0470253
488 | entropy: 1298.8408302
489 | heat_capacity: 494.0408393
490 | energy: 389.0488223
491 |
492 | - temperature: 790.0000000
493 | free_energy: -637.0669697
494 | entropy: 1305.1348084
495 | heat_capacity: 494.1001184
496 | energy: 393.9895289
497 |
498 | - temperature: 800.0000000
499 | free_energy: -650.1494600
500 | entropy: 1311.3503467
501 | heat_capacity: 494.1572006
502 | energy: 398.9308173
503 |
504 | - temperature: 810.0000000
505 | free_energy: -663.2937216
506 | entropy: 1317.4893673
507 | heat_capacity: 494.2121931
508 | energy: 403.8726660
509 |
510 | - temperature: 820.0000000
511 | free_energy: -676.4989985
512 | entropy: 1323.5537232
513 | heat_capacity: 494.2651965
514 | energy: 408.8150545
515 |
516 | - temperature: 830.0000000
517 | free_energy: -689.7645531
518 | entropy: 1329.5452008
519 | heat_capacity: 494.3163054
520 | energy: 413.7579636
521 |
522 | - temperature: 840.0000000
523 | free_energy: -703.0896653
524 | entropy: 1335.4655238
525 | heat_capacity: 494.3656090
526 | energy: 418.7013746
527 |
528 | - temperature: 850.0000000
529 | free_energy: -716.4736320
530 | entropy: 1341.3163553
531 | heat_capacity: 494.4131912
532 | energy: 423.6452700
533 |
534 | - temperature: 860.0000000
535 | free_energy: -729.9157662
536 | entropy: 1347.0993013
537 | heat_capacity: 494.4591311
538 | energy: 428.5896330
539 |
540 | - temperature: 870.0000000
541 | free_energy: -743.4153969
542 | entropy: 1352.8159130
543 | heat_capacity: 494.5035033
544 | energy: 433.5344474
545 |
546 | - temperature: 880.0000000
547 | free_energy: -756.9718683
548 | entropy: 1358.4676890
549 | heat_capacity: 494.5463784
550 | energy: 438.4796981
551 |
552 | - temperature: 890.0000000
553 | free_energy: -770.5845394
554 | entropy: 1364.0560782
555 | heat_capacity: 494.5878227
556 | energy: 443.4253702
557 |
558 | - temperature: 900.0000000
559 | free_energy: -784.2527832
560 | entropy: 1369.5824813
561 | heat_capacity: 494.6278993
562 | energy: 448.3714500
563 |
564 | - temperature: 910.0000000
565 | free_energy: -797.9759869
566 | entropy: 1375.0482536
567 | heat_capacity: 494.6666675
568 | energy: 453.3179239
569 |
570 | - temperature: 920.0000000
571 | free_energy: -811.7535506
572 | entropy: 1380.4547062
573 | heat_capacity: 494.7041837
574 | energy: 458.2647791
575 |
576 | - temperature: 930.0000000
577 | free_energy: -825.5848875
578 | entropy: 1385.8031087
579 | heat_capacity: 494.7405011
580 | energy: 463.2120035
581 |
582 | - temperature: 940.0000000
583 | free_energy: -839.4694234
584 | entropy: 1391.0946901
585 | heat_capacity: 494.7756703
586 | energy: 468.1595853
587 |
588 | - temperature: 950.0000000
589 | free_energy: -853.4065959
590 | entropy: 1396.3306412
591 | heat_capacity: 494.8097390
592 | energy: 473.1075133
593 |
594 | - temperature: 960.0000000
595 | free_energy: -867.3958546
596 | entropy: 1401.5121158
597 | heat_capacity: 494.8427527
598 | energy: 478.0557766
599 |
600 | - temperature: 970.0000000
601 | free_energy: -881.4366604
602 | entropy: 1406.6402323
603 | heat_capacity: 494.8747545
604 | energy: 483.0043650
605 |
606 | - temperature: 980.0000000
607 | free_energy: -895.5284850
608 | entropy: 1411.7160750
609 | heat_capacity: 494.9057851
610 | energy: 487.9532684
611 |
612 | - temperature: 990.0000000
613 | free_energy: -909.6708111
614 | entropy: 1416.7406956
615 | heat_capacity: 494.9358836
616 | energy: 492.9024776
617 |
618 | - temperature: 1000.0000000
619 | free_energy: -923.8631316
620 | entropy: 1421.7151147
621 | heat_capacity: 494.9650869
622 | energy: 497.8519831
623 |
--------------------------------------------------------------------------------
/_config.yml:
--------------------------------------------------------------------------------
1 | theme: jekyll-theme-midnight
--------------------------------------------------------------------------------
/convert_ExcitingXml2Vasp.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | from lxml import etree
4 | import xml.etree.ElementTree as xml
5 | from math import *
6 | import sys, getopt, os
7 | from sys import stdout
8 | from array import *
9 | import numpy as np
10 |
11 | from termcolor import colored
12 |
13 | #*******************************DOCUMENTATION***********************************
14 | #
15 | #AUTHOR : ASIF IQBAL BHATTI
16 | #CREATED ON : 29/04/2020
17 | #USAGE : To parse an EXCITING xml input file to VASP format.
18 | #Output file has already been defined in the code (POSCAR.vasp).
19 | #CAUTION: Use at your own risk (NOTEVEN IMPLIED GUARANTEED, WHATSOEVER),
20 | #the code has been tested but the user in the end will have to verify the ouput
21 | #geometry and be vary of the order of atoms in list.
22 | #
23 | #************************END OF DOCUMENTATION***********************************
24 |
25 | Bohr2angstrom = 0.529177249
26 | yellow = '\033[01;33m'
27 | red = '\033[01;31m'
28 | blue = '\x1b[01;34m'
29 | cyan = '\x1b[01;36m'
30 | green = yellow
31 |
32 | #*********************DEFINITION FOR INPUTFILE**********************************
33 |
34 | if len(sys.argv) < 2:
35 | sys.exit(f'Usage: {sys.argv[0]} ')
36 |
37 | tree = xml.parse(sys.argv[1])
38 | root = tree.getroot()
39 |
40 | struct = root.getchildren()[1] # pivot for controling element
41 | lattice = struct.getchildren()
42 |
43 |
44 | with open('POSCAR.vasp', 'w+') as f:
45 | print (colored("\nExtracting information from input file... ", 'yellow'))
46 | print ('-'*80)
47 | print (colored(" | Title is: ", 'yellow'), root.findtext('title'))
48 | f.write(root.findtext('title'))
49 |
50 | #*************************DETECTING # OF SPECIES******************************
51 |
52 | i = 0
53 | for _ in struct:
54 | i = i+1
55 | print (colored(" | Species detected: ", 'yellow'), i-1 )
56 | f.write(" |\t Number of species detected: {:d}\n".format(i-1))
57 |
58 | #***************************SCALING DEFINITION********************************
59 | #reading from a file
60 | for sca in struct.findall('crystal'):
61 | for key in sca.attrib:
62 | sc = sca.get('scale') if key == 'scale' else 1.0
63 | print (colored(" | Scaling factor is: ", 'yellow'), float(sc))
64 | print (colored(" | Converting bohr to angstrom ... ", 'yellow'))
65 | print (colored(" | Writing to a File in VASP format ... ", 'yellow'))
66 | f.write("%f\n" % 1.0)
67 | print ('-'*80)
68 |
69 | #***********************LATTICE VECTORS SECTION************************
70 | #reading from a file
71 | lv = []
72 | for vect in struct.findall('crystal'):
73 | #lat = vect.find('basevect')
74 | lv.extend(k.text.split() for k in vect.findall('basevect'))
75 | ###
76 |
77 | convertion = Bohr2angstrom*float(sc)
78 | for list in lv:
79 | print ("\t{:10.8f} {:10.8f} {:10.8f}".format(float(list[0])*convertion,
80 | float(list[1])*convertion, float(list[2])*convertion ) )
81 | f.write ("\t{:10.8f} {:10.8f} {:10.8f}\n".format(float(list[0])*convertion,
82 | float(list[1])*convertion, float(list[2])*convertion ) )
83 |
84 | #******************SPECIES CONTROL SECTION*********************************
85 |
86 | lab = []
87 | for coord in struct.findall('species'):
88 | spe = coord.get('speciesfile')
89 | jj = os.path.splitext(spe)
90 | lab.append(jj[0])
91 |
92 | sp = []
93 | for x in range(i-1):
94 | print("{:s}".format(lab[x]))
95 | f.write("\t%s" % lab[x])
96 | sp.extend(lab[x] for _ in struct[x+1].iter('atom'))
97 | f.write("\n")
98 |
99 | for h in range(i-1):
100 | print("\t{:d}".format(sp.count(lab[h])) )
101 | f.write("\t%d" % sp.count(lab[h]))
102 | f.write("\n")
103 |
104 | #*******************CONTROL SECTION FOR CARTESIAN COORDINATE***************
105 |
106 | lll = []
107 | ccl = []
108 | checker = False
109 | for cart in root.findall('structure'):
110 | ca = cart.get('cartesian')
111 | for key in cart.attrib:
112 | if key == 'cartesian':
113 | checker = True
114 | if ca == "true":
115 | print ("Cartesian")
116 | f.write("Cartesian\n")
117 | for i in range(i-1):
118 | for s in struct[i+1].iter('atom'):
119 | atom = s.get('coord')
120 | ccl.append(atom.split())
121 | lll.append(lab[i])
122 | # print (atom, lab[i])
123 |
124 | for list in ccl:
125 | print ("{:5.8f} {:5.8f} {:5.8f}".format(float(list[0])* Bohr2angstrom,
126 | float(list[1])* Bohr2angstrom, float(list[2])* Bohr2angstrom ) )
127 | f.write ("{:5.8f} {:5.8f} {:5.8f}\n".format(float(list[0])* Bohr2angstrom,
128 | float(list[1])* Bohr2angstrom, float(list[2])* Bohr2angstrom ) )
129 |
130 | #**************************DIRECT COORDINATE*********************
131 |
132 | else:
133 | print ("Direct")
134 | f.write ("Direct\n")
135 | for i in range(i-1):
136 | for s in struct[i+1].iter('atom'):
137 | atom = s.get('coord')
138 | ccl.append(atom.split())
139 | lll.append(lab[i])
140 | # print (atom, lab[i])
141 | # print (ccl)
142 |
143 | for list in ccl:
144 | print ("{:5.8f} {:5.8f} {:5.8f}".format(float(list[0]),
145 | float(list[1]), float(list[2]) ) )
146 | f.write ("{:5.8f} {:5.8f} {:5.8f}\n".format(float(list[0]),
147 | float(list[1]), float(list[2]) ) )
148 |
149 | print (colored("File generated ... ", 'green'))
150 |
--------------------------------------------------------------------------------
/get_TotEle.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | '''
4 | #=====================================================
5 | # AUTHOR: Asif Iqbal
6 | # GitHUB: Asif_em
7 | # PURPOSE: Read CHGCAR file and compute the integrated
8 | # charge density to sum up to # of electrons.
9 | # Dependency on pymatgen module
10 | # The following code is uploaded to my GitHub
11 | #
12 | #=====================================================
13 | '''
14 |
15 | import numpy as np
16 | import matplotlib.pyplot as plt
17 | from pymatgen.io.vasp.outputs import VolumetricData
18 |
19 | poscar, data, data_aug = VolumetricData.parse_file('CHGCAR')
20 | latt = np.array(poscar.structure.lattice.matrix)
21 |
22 | # As per VASP the CHGCAR needs to be divided by Volume
23 | # COuld be total or diff if ISPIN = 2
24 | chgd = data["total"] / np.linalg.det(latt)
25 | pos = poscar.structure.cart_coords
26 | # get volume per grid point
27 | dv = np.linalg.det(latt)/(np.array(chgd).shape[0]*np.array(chgd).shape[1]*np.array(chgd).shape[2])
28 | # get the step size in each direction (x, y, z)
29 | dr = latt/np.array(chgd).shape
30 | total_elect = np.sum(np.array(chgd))*dv
31 | num_grid_points = np.prod(np.array(chgd).shape)
32 | integrated_charge = np.cumsum(np.array(chgd)) * dv
33 | # Measure the charge density sphere
34 | distance = np.linspace(0, np.linalg.norm(dr), num_grid_points)
35 |
36 | print(dv, np.linalg.norm(dr))
37 | print(f"Shape of data in CHGCAR file:: {np.array(chgd).shape}")
38 | print(f"Total integrated electron number = {total_elect:8.5f}")
39 | # ploting
40 | plt.plot(distance, integrated_charge, '-o', color='m', linewidth=0.5, markersize=0.5, markerfacecolor='none')
41 | plt.xlabel("Distance from the freestanding O atom (Å)")
42 | plt.ylabel("Integrated charge")
43 | plt.savefig('dvsQ.png', dpi=400, bbox_inches='tight')
44 | plt.show()
45 |
46 |
--------------------------------------------------------------------------------
/get_forces_all_ionicSteps.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | '''
4 | # *****************************************************************************
5 | # USAGE :: python3 grad2.py
6 | # AUTHOR:: ADAPTATION OF Peter Larsson script to new version @ASIFIQBAL
7 | # please see => https://www.nsc.liu.se/~pla/vasptools/
8 | # ABOUT THE PROGRAM:
9 | # It prints out the forces at each ionic steps during simulation
10 | # *****************************************************************************
11 | '''
12 |
13 | import os, sys, re
14 | import numpy as np
15 | import subprocess
16 |
17 | def get_number_of_atoms(out_car):
18 | return int(subprocess.Popen('grep "NIONS" ' + out_car, stdout=subprocess.PIPE, shell=True).communicate()[0].split()[11])
19 | #print( int(subprocess.Popen('grep "NIONS" ' + where, stdout=subprocess.PIPE, shell=True).communicate()[0].split()[11]) )
20 |
21 | def get_ediff(out_car):
22 | return float(subprocess.Popen('grep " EDIFF" ' + out_car, stdout=subprocess.PIPE, shell=True).communicate()[0].split()[2])
23 | #print( float(subprocess.Popen('grep " EDIFF" ' + where, stdout=subprocess.PIPE, shell=True).communicate()[0].split()[2]) )
24 |
25 | OKGREEN = '\033[92m'
26 | WARNING = '\033[93m'
27 | FAIL = '\033[91m'
28 | ENDC = '\033[0m'
29 |
30 | # *****************************************
31 | # Main program
32 | # *****************************************
33 | try:
34 | outcar = open(sys.argv[1],"r")
35 | except IOError:
36 | sys.stderr.write(FAIL)
37 | sys.stderr.write("No OUTCAR file")
38 | sys.stderr.write(ENDC+"\n")
39 | sys.exit(1)
40 |
41 | if outcar != None:
42 | outcarfile = sys.argv[1]
43 | outcarlines = outcar.readlines()
44 |
45 | #Find max iterations
46 | nelmax = int(
47 | subprocess.Popen(
48 | 'grep "NELM " ' + outcarfile, stdout=subprocess.PIPE,
49 | shell=True).communicate()[0].split()[2][:-1])
50 | natoms = get_number_of_atoms(outcarfile)
51 | ediff = np.log10(float(get_ediff(outcarfile)))
52 |
53 | re_energy = re.compile("free energy")
54 | re_iteration = re.compile("Iteration")
55 | re_force = re.compile("TOTAL-FORCE")
56 | re_mag = re.compile("number of electron")
57 | re_volume = re.compile("volume of cell")
58 |
59 | lastenergy = 0.0
60 | energy = 0.0
61 | steps = 1
62 | iterations = 0
63 | cputime = 0.0
64 | totaltime = 0.0
65 | dE = 0.0
66 | magmom = 0.0
67 | spinpolarized = False
68 | volume = 0.0
69 | #average = 0.0
70 | #maxforce = 0.0
71 |
72 | i = 0
73 | for line in outcarlines:
74 |
75 | if re_iteration.search(line):
76 | iterations = iterations + 1
77 |
78 | if re_force.search(line):
79 | # Calculate forces here...
80 | forces = []
81 | magnitudes = []
82 | for j in range(natoms):
83 | parts = outcarlines[i+j+2].split()
84 | x = float(parts[3])
85 | y = float(parts[4])
86 | z = float(parts[5])
87 | forces.append([x,y,z])
88 | magnitudes.append(np.sqrt(x**2 + y**2 + z**2))
89 |
90 | average = sum(magnitudes)/natoms
91 | maxforce = max(magnitudes)
92 |
93 | if re_mag.search(line):
94 | parts = line.split()
95 | if len(parts) > 5 and parts[0].strip() != "NELECT":
96 | spinpolarized = True
97 | magmom = float(parts[5])
98 |
99 | if re_volume.search(line):
100 | parts = line.split()
101 | if len(parts) > 4:
102 | volume = float(parts[4])
103 |
104 | if re_energy.search(line):
105 | lastenergy = energy
106 | energy = float(line.split()[4])
107 | dE = np.log10(abs(energy-lastenergy+1.0E-12))
108 |
109 | # CONSTRUCT OUTPUT STRING
110 | try:
111 | stepstr = str(steps).rjust(4)
112 | energystr = f'Energy: {energy:3.6f}'.rjust(12)
113 | logdestr = f'Log|dE|: {dE:1.3f}'.rjust(6)
114 | iterstr = f'SCF: {iterations:3d}'
115 | avgfstr = f'Avg|F|: {average:2.3f}'.rjust(6)
116 | maxfstr = f'Max|F|: {maxforce:2.3f}'.rjust(6)
117 | volstr = f'Vol.: {volume:3.1f}'.rjust(5)
118 | except NameError:
119 | print(f"Cannot understand this OUTCAR file...try to read ahead")
120 | continue
121 |
122 | if iterations == nelmax:
123 | sys.stdout.write(FAIL)
124 | #print " ^--- SCF cycle reached NELMAX. Check convergence!"
125 |
126 | if (dE < ediff):
127 | sys.stdout.write(OKGREEN)
128 |
129 | if spinpolarized:
130 | magstr=f'Mag: {magmom:2.2f}'.rjust(6)
131 | print (f'{stepstr},{energystr},{logdestr},{iterstr},{avgfstr},{maxfstr},{volstr},{magstr}')
132 | else:
133 | print (f'{stepstr},{energystr},{logdestr},{iterstr},{avgfstr},{maxfstr},{volstr}')
134 |
135 | sys.stdout.write(ENDC)
136 |
137 | steps = steps + 1
138 | iterations = 0
139 | totaltime = totaltime + cputime
140 | cputime = 0.0
141 |
142 | i = i + 1
143 |
144 |
--------------------------------------------------------------------------------
/get_properties_VASP.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | '''
4 | #####---------------------------------------------------------
5 | #####---------------------------------------------------------
6 | # Credit :Asif Iqbal BHATTI
7 | # CODE to: OBTAIN Elastic properties from OUTCAR file,
8 | # compare POSCAR and CONTCAR volume deformation
9 | # upon minimization, and extract energy from a number
10 | # of directories. extract lattice distortion
11 | # VERSION: This script runs with python3 or later
12 | # FORMAT :POSCAR VASP5 format
13 | # DATE :28/12/2019
14 | # USAGE :python3 sys.argv[0]
15 | # VERSION: 4.0
16 | #####---------------------------------------------------------
17 | #####---------------------------------------------------------
18 | '''
19 |
20 | import os, sys, spglib, scipy
21 | import math, glob
22 | import numpy as np
23 | import subprocess
24 | from os import listdir
25 | from os.path import isfile, join
26 | from pathlib import Path
27 | from termcolor import colored
28 | import multiprocessing as mp
29 | from colorama import Fore, Back, Style, init
30 | from pylab import *
31 | init(autoreset=True)
32 |
33 |
34 | '''
35 | ##########################---------------------------------------------------------
36 | # 1- Read only POSCAR file in a given directory & obtain local lattice distortion
37 | ##########################---------------------------------------------------------
38 | '''
39 |
40 | def poscar():
41 | if not os.path.exists('POSCAR'):
42 | print (' ERROR: POSCAR does not exist here.')
43 | sys.exit(0)
44 | print('Reading POSCAR/CONTCAR: \n')
45 | pos = []; kk = []; lattice = []; sum = 0
46 | file = open('POSCAR','r') or open('CONTCAR','r')
47 |
48 | firstline = file.readline() # IGNORE first line comment
49 | secondfline = file.readline() # scale
50 | Latvec1 = file.readline()
51 | #print ("Lattice vector 1:", (Latvec1), end = '')
52 | Latvec2 = file.readline()
53 | #print ("Lattice vector 2:", (Latvec2), end = '')
54 | Latvec3 = file.readline()
55 | #print ("Lattice vector 3:", (Latvec3), end = '')
56 | elementtype=file.readline().split()
57 | if (str.isdigit(elementtype[0])):
58 | sys.exit("VASP 4.X POSCAR detected. Please add the atom types")
59 | print ("Types of elements:", str(elementtype), end = '\n')
60 | numberofatoms=file.readline()
61 | Coordtype=file.readline()
62 | print ("Coordtype:", (Coordtype), end = '\n')
63 |
64 | ########################---------------------------------------------------------
65 | print (">>>>>>>>>-------------------# of Atoms--------------------")
66 | nat = numberofatoms.split()
67 | nat = [int(i) for i in nat]
68 | print (nat)
69 | for i in nat:
70 | sum = sum + i
71 | numberofatoms = sum
72 | print ("Number of atoms:", (numberofatoms), end = '\n')
73 | ########################---------------------------------------------------------
74 |
75 | #print (">>>>>>>>>---------------Atomic positions------------------")
76 | for x in range(int(numberofatoms)):
77 | coord = file.readline().split()
78 | coord = [float(i) for i in coord]
79 | pos = pos + [coord]
80 | pos = np.array(pos)
81 | #print (pos)
82 |
83 | file.close()
84 |
85 | ########################---------------------------------------------------------
86 | a=[]; b=[]; c=[];
87 | Latvec1=Latvec1.split()
88 | Latvec2=Latvec2.split()
89 | Latvec3=Latvec3.split()
90 | for ai in Latvec1:
91 | a.append(float(ai))
92 | for bi in Latvec2:
93 | b.append(float(bi))
94 | for ci in Latvec3:
95 | c.append(float(ci))
96 |
97 | ########################---------------------------------------------------------
98 |
99 | print (">>>>>>>>>---------------Lattice vectors distortions-----------------")
100 | lattice = np.array([a] + [b] + [c])
101 | #determinant = np.linalg.det(lattice)
102 | lld = lattic_distortion.local_lattice_distortion(a,b,c)
103 | print ("lattice distortion parameter g: {}".format(lld) )
104 |
105 | print (">>>>>>>>>---------------Space group-----------------")
106 | print (" ")
107 | sp, symm = space_group_analyse(lattice, pos)
108 | print ( sp, symm )
109 | print (" ")
110 | print (">>>>>>>>>--------------------------------------------")
111 | print ('a=', a)
112 | print ('b=', b)
113 | print ('c=', c)
114 | gamma = math.degrees(math.acos(np.dot(a,b) / (np.linalg.norm(a) * np.linalg.norm(b))))
115 | alpha = math.degrees(math.acos(np.dot(b,c) / (np.linalg.norm(b) * np.linalg.norm(c))))
116 | beta = math.degrees(math.acos(np.dot(a,c) / (np.linalg.norm(a) * np.linalg.norm(c))))
117 | print ("ratio c/a = %2f" %(np.linalg.norm(c) / np.linalg.norm(a) ))
118 | print ("-"*100)
119 | print ('||a||=%2f, \u03B1= %2f' %(np.linalg.norm(a), alpha))
120 | print ('||b||=%2f \u03B2= %2f' %(np.linalg.norm(b), beta))
121 | print ('||c||=%2f \u03B3= %2f' %(np.linalg.norm(c), gamma))
122 | print ('Vol= %4.8f A^3; %4.8f [a.u]^3' %(volume(a,b,c,math.radians(alpha),math.radians(beta),math.radians(gamma) )))
123 |
124 | ###
125 | class lattic_distortion():
126 | @classmethod
127 | def local_lattice_distortion(a1,b1,c1):
128 | #print ("The lattice distortion in paracrystals is measured by the lattice distortion parameter g")
129 | #print (Back.YELLOW + "Wang, S. Atomic structure modeling of multi-principal-element alloys by the principle")
130 | #print (Back.YELLOW + "of maximum entropy. Entropy 15, 5536–5548 (2013).")
131 | #print ("")
132 | a=np.linalg.norm(a1); b=np.linalg.norm(b1); c=np.linalg.norm(c1)
133 | d = np.array([a,b,c])
134 | d_mean = np.mean(d); d_std = np.std(d)
135 | d_square_mean = (a**2 + b**2 + c**2)/3
136 | g = np.sqrt( d_square_mean/(d_mean)**2 - 1 )
137 | return g
138 | ###
139 |
140 | def local_lattice_distortion_DEF1():
141 | #print ("The lattice distortion in paracrystals is measured by the lattice distortion parameter g")
142 | #print (Back.YELLOW + "Wang, S. Atomic structure modeling of multi-principal-element alloys by the principle")
143 | #print (Back.YELLOW + "of maximum entropy. Entropy 15, 5536–5548 (2013).")
144 | print ("+"*40,"HUME ROTHERY RULE","+"*40)
145 | C_i=C=0.2 ; r_avg = 0.0; del_sum=0.0
146 | elements = ["Nb", "Hf", "Ta", "Ti", "Zr"]
147 | eta = {
148 | "Nb" : 1.98,
149 | "Hf" : 2.08,
150 | "Ta" : 2.00,
151 | "Ti" : 1.76,
152 | "Zr" : 2.06, }
153 |
154 | print (" {element: atomic radius}")
155 | print (eta)
156 |
157 | for i in elements:
158 | r_avg = r_avg + C * eta[i]
159 |
160 | for j in elements:
161 | del_sum = del_sum + C * ( 1 - float(eta[j]) / r_avg )**2
162 | del_sum = 100 * np.sqrt(del_sum)
163 | print("HEA_atomic_size_mismatch: \u03B4={}".format(del_sum))
164 | ###
165 |
166 | def local_lattice_distortion_DEF2():
167 | print (">"*10,"local_lattice_distortion_DEF2")
168 | print (" Song, H. et al. Local lattice distortion in high-entropy alloys.")
169 | print (" Phys. Rev. Mater. 1, 23404 (2017).")
170 | print (" (***) Different definition of the atomic radius for the description ")
171 | print (" of the local lattice distortion in HEAs")
172 |
173 | if not os.path.exists('POSCAR' and 'CONTCAR'):
174 | print ('>>> ERROR: POSCAR & CONTCAR does not exist (Both should be in the same directory)')
175 | sys.exit(0)
176 | print('Reading POSCAR and CONTCAR ... \n')
177 |
178 | x = []; y =[]; z=[]
179 | xp =[]; yp = []; zp = []; temp=0
180 |
181 | f = open('POSCAR','r')
182 | lines_poscar = f.readlines()
183 | f.close()
184 |
185 | f = open('CONTCAR','r')
186 | lines_contcar = f.readlines()
187 | f.close()
188 |
189 | file_P = ase.io.read('POSCAR')
190 | pos = file_P.get_cell_lengths_and_angles()
191 | print (CRED + "POSCAR=>Length&Angles->{}".format(pos) + CEND)
192 | file_C = ase.io.read('CONTCAR')
193 | con = file_C.get_cell_lengths_and_angles()
194 | print (CRED + "CONTCAR=>Length&Angles->{}".format(con) + CEND)
195 | print ("Cell vectors difference:: ",con-pos)
196 |
197 | sum_atoms = lines_poscar[6].split() ### reading 7th lines for reading # of atoms
198 | sum_atoms = [int(i) for i in sum_atoms]
199 | sum_atoms = sum(sum_atoms)
200 |
201 | for i in lines_poscar:
202 | if "Direct" in i:
203 | lp=lines_poscar.index(i)
204 | for j in lines_contcar:
205 | if "Direct" in j:
206 | lc=lines_contcar.index(j)
207 |
208 | for i in range(sum_atoms):
209 | x, y, z = lines_poscar[lp+1+i].split()
210 | xc, yc, zc = lines_contcar[lp+1+i].split()
211 | x = float(x); y = float(y); z = float(z)
212 | xc = float(xc); yc = float(yc); zc = float(zc)
213 | temp = temp + np.sqrt( (x-xc)**2 + (y-yc)**2 + (z-zc)**2 )
214 | temp = temp/sum_atoms
215 | print("local lattice distortion (LLD): \u0394d={}".format(temp))
216 |
217 | ###
218 | def space_group_analyse(lattice, pos):
219 | numbers = [1,2]
220 | cell = (lattice, pos, numbers)
221 | sp=spglib.get_spacegroup(cell, symprec=1e-5)
222 | symm=spglib.get_symmetry(cell, symprec=1e-5)
223 | #print(spglib.niggli_reduce(lattice, eps=1e-5))
224 |
225 | #mesh = [8, 8, 8]
226 | #mapping, grid = spglib.get_ir_reciprocal_mesh(mesh, cell, is_shift=[0, 0, 0])
227 | ## All k-points and mapping to ir-grid points
228 | #for i, (ir_gp_id, gp) in enumerate(zip(mapping, grid)):
229 | # print("%3d ->%3d %s" % (i, ir_gp_id, gp.astype(float) / mesh))
230 | #
231 | ## Irreducible k-points
232 | #print("Number of ir-kpoints: %d" % len(np.unique(mapping)))
233 | #print(grid[np.unique(mapping)] / np.array(mesh, dtype=float))
234 | #
235 | ##
236 | ## With shift
237 | ##
238 | #mapping, grid = spglib.get_ir_reciprocal_mesh(mesh, cell, is_shift=[1, 1, 1])
239 | #
240 | ## All k-points and mapping to ir-grid points
241 | #for i, (ir_gp_id, gp) in enumerate(zip(mapping, grid)):
242 | # print("%3d ->%3d %s" % (i, ir_gp_id, (gp + [0.5, 0.5, 0.5]) / mesh))
243 | #
244 | ## Irreducible k-points
245 | #print("Number of ir-kpoints: %d" % len(np.unique(mapping)))
246 | #print((grid[np.unique(mapping)] + [0.5, 0.5, 0.5]) / mesh)
247 | return sp, symm
248 | ###
249 |
250 | def poscar_VASP42VASP5():
251 | if not os.path.exists('POSCAR' and 'POTCAR'):
252 | print (' ERROR: POSCAR does not exist here.')
253 | sys.exit(0)
254 | file1 = open("POSCAR",'r')
255 | line1 = file1.readlines()
256 | file1.close()
257 |
258 | file2 = open("POTCAR",'r')
259 | line2 = file2.readlines()
260 | file2.close()
261 |
262 | atom_number=[]
263 | for i in line1:
264 | if ("Direct" or "direct" or "d" or "D") in i:
265 | PP=line1.index(i)
266 | atom_number = line1[5].split()
267 | print(atom_number)
268 |
269 | elementtype=[]; count=0
270 | for i in line2:
271 | if ("VRHFIN") in i:
272 | count+=1
273 | #print (i.split('=')[1].split(':')[0])
274 | elementtype.append(i.split('=')[1].split(':')[0])
275 |
276 | test = open("POSCAR_W",'w')
277 |
278 | for i in range(5):
279 | test.write( line1[i] )
280 |
281 | for j in elementtype:
282 | test.write("\t" + j)
283 | test.write("\n" )
284 |
285 | for j in atom_number:
286 | test.write("\t" + j )
287 | test.write("\n" )
288 |
289 | test.write("Selective dynamics")
290 | test.write("\n" )
291 |
292 | for i in range(len(line1)-PP):
293 | test.write(line1[PP+i] )
294 |
295 | test.close()
296 |
297 | print (" File is converted: POSCAR_W")
298 | ###
299 |
300 | '''
301 | #####---------------------------------------------------------
302 | # 2- Looping over all directories containing POSCAR & CONTCAR files
303 | #####---------------------------------------------------------
304 | '''
305 |
306 | def main_poscar():
307 | count = 0
308 | os.system("rm out_POSCARS.dat")
309 | VOL_P = []; pos = []; kk = []; lattice = [];
310 | mypath = os.getcwd()
311 | print ("-"*100)
312 | print (Back.YELLOW + "{:15s} {:15s} {:15.6s} {:15.6s} {:15.6s} {:15.15s}".format("Directory", "# of atoms", "||a||", \
313 | "||b||", "||c||", "VOL_POS[A^3]"),end="\n" )
314 | print ("-"*100)
315 |
316 | for entry in os.listdir(mypath):
317 | if os.path.isdir(os.path.join(mypath, entry)):
318 | #print (entry)
319 | for file in os.listdir(entry):
320 | if file == "POSCAR":
321 | count+=1; sum = 0
322 | filepath = os.path.join(entry, file)
323 | #f = open(filepath, 'r')
324 | #print (f.read())
325 | #f.close()
326 | fo = open(filepath, 'r')
327 | ofile=open('out_POSCARS.dat','a')
328 |
329 | #print (colored('>>>>>>>> Name of the file: ','red'), fo.name, end = '\n', flush=True)
330 |
331 | ofile.write (fo.name + '\n')
332 | ofile.write ("")
333 | firstline = fo.readline()
334 | secondfline = fo.readline()
335 | Latvec1 = fo.readline()
336 | #print ("Lattice vector 1:", (Latvec1), end = '')
337 | #ofile.write (Latvec1)
338 | Latvec2 = fo.readline()
339 | #print ("Lattice vector 2:", (Latvec2), end = '')
340 | #ofile.write (Latvec2)
341 | Latvec3 = fo.readline()
342 | #print ("Lattice vector 3:", (Latvec3), end = '')
343 | #ofile.write (Latvec3)
344 | elementtype=fo.readline()
345 | elementtype = elementtype.split()
346 | #print ("Types of elements:", str(elementtype), end = '')
347 | #ofile.write (str(elementtype))
348 | numberofatoms=fo.readline()
349 | #print ("Number of atoms:", (numberofatoms), end = '')
350 | #ofile.write ((numberofatoms))
351 | Coordtype=fo.readline()
352 |
353 | ##########################---------------------------------------------------------
354 | #print ("**********-------------------# of Atoms--------------------")
355 |
356 | nat = numberofatoms.split()
357 | nat = [int(i) for i in nat]
358 | for i in nat:
359 | sum = sum + i
360 | numberofatoms = sum
361 | #print ("{} :: Number of atoms: {}".format(nat, numberofatoms) )
362 | ##########################---------------------------------------------------------
363 | #print ("-----------------------Atomic positions-----------------")
364 | #print ("Coordtype:", (Coordtype), end = '')
365 | for x in range(int(numberofatoms)):
366 | coord = fo.readline().split()
367 | coord = [float(i) for i in coord]
368 | pos = pos + [coord]
369 | pos = np.array(pos)
370 | #print (pos)
371 |
372 | ofile.write ("\n")
373 | fo.close()
374 | ##########################---------------------------------------------------------
375 |
376 | a=[]; b=[]; c=[];
377 | Latvec1=Latvec1.split()
378 | Latvec2=Latvec2.split()
379 | Latvec3=Latvec3.split()
380 |
381 | ##########################---------------------------------------------------------
382 | for ai in Latvec1: a.append(float(ai))
383 | for bi in Latvec2: b.append(float(bi))
384 | for ci in Latvec3: c.append(float(ci))
385 | #print ('a=', a)
386 | ofile.write ("'a=' {}\n".format(a))
387 | #print ('b=', b)
388 | ofile.write ("'b=' {}\n".format(b))
389 | #print ('c=', c)
390 | ofile.write ("'c=' {}\n".format(c))
391 | lld = lattic_distortion.local_lattice_distortion(a,b,c)
392 | ##########################---------------------------------------------------------
393 |
394 | alpha, beta, gamma = lattice_angles(a,b,c)
395 | VOL_POS = np.dot(a, np.cross(b,c))
396 | VOL_P.append(VOL_POS)
397 |
398 | ofile.write ("'\u03B1=' {} '\u03B2=' {} '\u03B3=' {}\n".format(alpha,beta,gamma))
399 | ofile.write ("'||a||=' {}\n".format(np.linalg.norm(a)))
400 | ofile.write ("'||b||=' {}\n".format(np.linalg.norm(b)))
401 | ofile.write ("'||c||=' {}\n".format(np.linalg.norm(c)))
402 | #print ("#####------------------------------------------------")
403 |
404 | #print ("a={} \t ||a||={:10.6f}".format(a, np.linalg.norm(a)) )
405 | #print ("b={} \t ||b||={:10.6f}".format(b, np.linalg.norm(b)) )
406 | #print ("c={} \t ||c||={:10.6f}".format(c, np.linalg.norm(c)) )
407 | print ("{:15s} {:6d} {:15.6f} {:15.6f} {:15.6f} {:15.6f}".format(fo.name, numberofatoms, np.linalg.norm(a), \
408 | np.linalg.norm(b), np.linalg.norm(c), VOL_POS) )
409 |
410 | print ("'\u03B1=' {:6.6f} '\u03B2=' {:6.6f} '\u03B3=' {:6.6f} g={:6.6f}".format(alpha,beta,gamma,lld))
411 | print ("."*5)
412 | #print ('Vol= {:6.6f} A^3'.format(VOL_POS))
413 | ofile.write ("***************************************************\n")
414 | ofile.close()
415 | print ("_"*30)
416 | print ("Number of folders detected: ", count)
417 | return VOL_P
418 |
419 | ####
420 | def main_contcar():
421 | count = 0
422 | os.system("rm out_CONTCARS.dat")
423 | VOL_C = []; pos = []; kk = []; lattice = []; sum = 0
424 | mypath = os.getcwd()
425 | print ("-"*100)
426 | print (Back.GREEN + "{:15s} {:15s} {:15.6s} {:15.6s} {:15.6s} {:15.15s}".format("Directory", "# of atoms", "||a||", \
427 | "||b||", "||c||", "VOL_CON[A^3]"),end="\n" )
428 | print ("-"*100)
429 | print(Style.RESET_ALL)
430 | for entry in os.listdir(mypath):
431 | if os.path.isdir(os.path.join(mypath, entry)):
432 | for file in os.listdir(entry):
433 |
434 | if file == "CONTCAR":
435 | count+=1; sum = 0
436 | filepath = os.path.join(entry, file)
437 | fo = open(filepath, 'r')
438 |
439 | ofile=open('out_CONTCARS.dat','a')
440 |
441 | #print (colored('>>>>>>>> Name of the file: ','yellow'), fo.name, end = '\n', flush=True)
442 | ofile.write (fo.name + '\n')
443 | ofile.write ("")
444 | firstline = fo.readline()
445 | secondfline = fo.readline()
446 | Latvec1 = fo.readline()
447 | Latvec2 = fo.readline()
448 | Latvec3 = fo.readline()
449 | elementtype=fo.readline()
450 | elementtype = elementtype.split()
451 | numberofatoms=fo.readline()
452 | Coordtype=fo.readline()
453 | #print ("Coordtype:", (Coordtype), end = '')
454 | ##########################---------------------------------------------------------
455 | #print ("**********-------------------# of Atoms--------------------")
456 |
457 | nat = numberofatoms.split()
458 | nat = [int(i) for i in nat]
459 | for i in nat:
460 | sum = sum + i
461 | numberofatoms = sum
462 | #print ("{} :: Number of atoms: {}".format(nat, numberofatoms) )
463 | ##########################---------------------------------------------------------
464 | #print ("//////---------------Atomic positions-----------------")
465 | for x in range(int(numberofatoms)):
466 | coord = fo.readline().split()
467 | coord = [float(i) for i in coord]
468 | pos = pos + [coord]
469 | pos = np.array(pos)
470 | #print (pos)
471 |
472 | ofile.write ("\n")
473 | fo.close()
474 | ##########################---------------------------------------------------------
475 | a=[]; b=[]; c=[];
476 | Latvec1=Latvec1.split()
477 | Latvec2=Latvec2.split()
478 | Latvec3=Latvec3.split()
479 | ##########################---------------------------------------------------------
480 | for ai in Latvec1: a.append(float(ai))
481 | for bi in Latvec2: b.append(float(bi))
482 | for ci in Latvec3: c.append(float(ci))
483 | #print ('a=', a)
484 | ofile.write ("'a=' {}\n".format(a))
485 | #print ('b=', b)
486 | ofile.write ("'b=' {}\n".format(b))
487 | #print ('c=', c)
488 | ofile.write ("'c=' {}\n".format(c))
489 | lld = lattic_distortion.local_lattice_distortion(a,b,c)
490 | ##########################---------------------------------------------------------
491 |
492 | alpha, beta, gamma = lattice_angles(a,b,c)
493 | VOL_CON = np.dot(a, np.cross(b,c))
494 | VOL_C.append(VOL_CON)
495 |
496 | ofile.write ("'\u03B1=' {} '\u03B2=' {} '\u03B3=' {}\n".format(alpha,beta,gamma))
497 | ofile.write ("'||a||=' {}\n".format(np.linalg.norm(a)))
498 | ofile.write ("'||b||=' {}\n".format(np.linalg.norm(b)))
499 | ofile.write ("'||c||=' {}\n".format(np.linalg.norm(c)))
500 | #print ("-"*80)
501 |
502 | #print ("a={} \t ||a||={:10.6f}".format(a, np.linalg.norm(a)) )
503 | #print ("b={} \t ||b||={:10.6f}".format(b, np.linalg.norm(b)) )
504 | #print ("c={} \t ||c||={:10.6f}".format(c, np.linalg.norm(c)) )
505 | print ("{:15s} {:6d} {:15.6f} {:15.6f} {:15.6f} {:15.6f}".format(fo.name, numberofatoms, np.linalg.norm(a), \
506 | np.linalg.norm(b), np.linalg.norm(c), VOL_CON) )
507 |
508 | print ("'\u03B1=' {:6.6f} '\u03B2=' {:6.6f} '\u03B3=' {:6.6f} g={:6.6f}".format(alpha,beta,gamma,lld))
509 | print ("."*5)
510 | #print ('Vol= {:6.6f} A^3'.format(VOL_CON), end="\n")
511 | ofile.write ("***************************************************\n")
512 | ofile.close()
513 | #print (VOL_C)
514 | print ("-"*80)
515 | print ("Number of folders detected: ", count)
516 | return VOL_C
517 |
518 | #### math.sin function takes argument in radians ONLY
519 | def volume(a,b,c,alpha,beta,gamma):
520 | ang2atomic = 1.889725988579 # 1 A = 1.889725988579 [a.u]
521 | Ang32Bohr3 = 6.74833304162 # 1 A^3 = 6.7483330371 [a.u]^3
522 |
523 | length = np.linalg.norm(a) * np.linalg.norm(b) * np.linalg.norm(c)
524 | volume = length * ( np.sqrt(1 + 2 * math.cos(alpha) * math.cos(beta) * math.cos(gamma) - math.cos(alpha)**2 - math.cos(beta)**2 - math.cos(gamma)**2) )
525 | vol_au = volume * Ang32Bohr3
526 | return volume, vol_au
527 |
528 | #### Ordering of returning angles variables does matter
529 | def lattice_angles(a,b,c):
530 | ### gamma = Cos-1( (a.b)/||a||.||b|| )
531 | ### alpha = Cos-1( (b.c)/||b||.||c|| )
532 | ### beta = Cos-1( (a.c)/||a||.||c|| )
533 | gamma = math.degrees(math.acos(np.dot(a,b) / (np.linalg.norm(a) * np.linalg.norm(b))))
534 | alpha = math.degrees(math.acos(np.dot(b,c) / (np.linalg.norm(b) * np.linalg.norm(c))))
535 | beta = math.degrees(math.acos(np.dot(a,c) / (np.linalg.norm(a) * np.linalg.norm(c))))
536 | return alpha, beta, gamma
537 |
538 | ####### BASH way of finding the # of directories in a working directory ###
539 | def volume_diff(VOL_P, VOL_C):
540 | n=os.popen("find . -mindepth 1 -maxdepth 1 -type d | wc -l").read()
541 | print ("-"*80)
542 | print ("VOL Diff A^3 %18s %12s %15.15s" %("CONTCAR", "POSCAR", "contcar-poscar"))
543 | print ("-"*80)
544 | for i in range(int(n)):
545 | print ("The difference is: %12.6f %12.6f %15.8f " %(VOL_C[i], VOL_P[i], VOL_C[i] - VOL_P[i]) )
546 |
547 | ####
548 |
549 | '''
550 | #####---------------------------------------------------------
551 | # 3- ELASTIC PROPERTIES from VASP OUTCAR file "STRESS APPROACH"
552 | #####---------------------------------------------------------
553 | '''
554 |
555 | class Elastic_Matrix:
556 | def print_Cij_Matrix(): ###EXERCISE
557 | Bij = []; C = "C"
558 | for i in range(0, 6, 1):
559 | Bij.append([])
560 | for j in range(1,7, 1):
561 | Bij[i].append((C + str(i+1) + str(j)))
562 | l = np.matrix(Bij)
563 | return l
564 |
565 | def langragian_strain():
566 | kk = ('x', 'y', 'z'); C = "E"; Eij=[]
567 | eta = {
568 | "xx" : 11,
569 | "yy" : 22,
570 | "zz" : 33,
571 | "yz" : 23,
572 | "xz" : 13,
573 | "xy" : 12 }
574 | print ( "The Langragian strain in Voigt notation: ")
575 | print ( eta.items())
576 |
577 | for n in kk:
578 | for m in kk:
579 | Eij.append( (C + str(n) + str(m)) )
580 | ls = np.matrix(Eij).reshape(3,3)
581 | return ls
582 |
583 | ###
584 | def elastic_matrix_VASP_STRESS():
585 | while True:
586 | if not os.path.exists('OUTCAR'):
587 | print (' ERROR: OUTCAR does not exist here.')
588 | sys.exit(0)
589 |
590 | s=np.zeros((6,6))
591 | c=np.zeros((6,6))
592 | file = open("OUTCAR",'r')
593 | lines = file.readlines()
594 | file.close()
595 |
596 | for i in lines:
597 | if "TOTAL ELASTIC MODULI (kBar)" in i:
598 | ll=lines.index(i)
599 | if "LATTYP" in i:
600 | crystaltype=str(i.split()[3])
601 | print ("DETECTED CRYSTAL FROM OUTCAR:", crystaltype)
602 | print (" ")
603 | for i in range(0,6):
604 | l=lines[ll+3+i] # indexing a line in huge file
605 | word = l.split()
606 | s[i][:] = word[1:7]
607 | for j in range(0,6):
608 | c[i][j] = float(s[i][j])/10.0
609 |
610 | ##########-------------------stress tensor------------------
611 |
612 | Cij = np.matrix(c)
613 | np.set_printoptions(precision=4, suppress=True)
614 | print (Cij)
615 | print(Elastic_Matrix.print_Cij_Matrix() )
616 | print(Elastic_Matrix.langragian_strain() )
617 | print ("\nEigen Values of the matrix Cij:")
618 | evals = np.linalg.eigvals(Cij)
619 | if evals.all() > 0:
620 | print(evals)
621 | print("All Eigen values are positive")
622 |
623 | ##########-------------------Compliance tensor------------------
624 | ##########------------------- s_{ij} = C_{ij}^{-1}
625 |
626 | Sij = np.linalg.inv(Cij)
627 |
628 | #---------------------------- ELASTIC PROPERTIES -----------------------------------
629 |
630 | stability_test(Cij, crystaltype)
631 |
632 | #------------------------------- Voigt bulk modulus K_v $(GPa)$---------------
633 | #------------------ 9K_v = (C_{11}+C_{22}+C_{33}) + 2(C_{12} + C_{23} + C_{31})
634 | Kv = ((Cij[0,0] + Cij[1,1] + Cij[2,2]) + 2 * (Cij[0,1] + Cij[1,2] + Cij[2,0]))/9.0
635 | #------------------------------- Reuss shear modulus G_v $(GPa)$------------------
636 | #------------------ 15/G_R = 4(s_{11}+s_{22}+s_{33}) - 4(s_{12} + s_{23} + s_{31}) + 3(s_{44} + s_{55} + s_{66})$
637 | Gv = ((Cij[0,0] + Cij[1,1] + Cij[2,2]) - (Cij[0,1] + Cij[1,2] + Cij[2,0]) + 3 * (Cij[3,3] + Cij[4,4] + Cij[5,5]))/15.0
638 | #------------------------------- Reuss bulk modulus K_r $(GPa)$----------------
639 | #------------------ 1/K_R = (s_{11}+s_{22}+s_{33}) + 2(s_{12} + s_{23} + s_{31})$
640 | Kr = 1/((Sij[0,0] + Sij[1,1] + Sij[2,2]) + 2 * (Sij[0,1] + Sij[1,2] + Sij[2,0]) )
641 | #------------------------------- Reuss shear modulus G_r $(GPa)$------------------
642 | Gr = 15/(4 * (Sij[0,0] + Sij[1,1] + Sij[2,2]) - 4 * (Sij[0,1] + Sij[1,2] + Sij[2,0]) + 3 * (Sij[3,3] + Sij[4,4] + Sij[5,5]))
643 |
644 | #-----------------------------------------------------------------------------------
645 |
646 | ## Young's Modulus "E": Voigt
647 | Ev = (9*Kv*Gv)/(3*Kv + Gv)
648 | ## Young's: Reuss
649 | Er = (9*Kr*Gr)/(3*Kr + Gr)
650 |
651 | ## Poisson's ratio: Voigt
652 | Nu_V = (3*Kv - Ev)/(6*Kv)
653 | ## Poisson's ratio: Reuss
654 | Nu_R = (3*Kr - Er)/(6*Kr)
655 |
656 | ## P-wave modulus, M: Voigt
657 | MV = Kv + (4*Gv/3.0)
658 | ## P-wave modulus, M: Reuss
659 | MR = Kr + (4*Gr/3.0)
660 |
661 | #-----------------------------------------------------------------------------------
662 | #-------------- Voigt-Reuss-Hill Approximation: average of both methods
663 | Kvrh = (Kv + Kr)/2.0
664 | Gvrh = (Gv + Gr)/2.0
665 | Mvrh = (MV + MR)/2.0
666 | Evrh = (Ev + Er)/2.0
667 | Nu_vrh = (Nu_V + Nu_R)/2.0
668 | KG_ratio_V = Kv/Gv
669 | KG_ratio_R = Kr/Gr
670 | KG_ratio_vrh = Kvrh/Gvrh
671 | #-------------- Isotropic Poisson ratio $\mu
672 | #-------------- $\mu = (3K_{vrh} - 2G_{vrh})/(6K_{vrh} + 2G_{vrh})$
673 | mu = (3 * Kvrh - 2 * Gvrh) / (6 * Kvrh + 2 * Gvrh )
674 |
675 | #----------------------------------------------------------------------
676 | #-----------------------------------------------------------------------------------
677 |
678 | print ("\n \n Voigt Reuss Average")
679 | print ("-------------------------------------------------------")
680 | print ("Bulk modulus (GPa) %9.3f %9.3f %9.3f " % (Kv, Kr, Kvrh))
681 | print ("Shear modulus (GPa) %9.3f %9.3f %9.3f " % (Gv, Gr, Gvrh))
682 | print ("Young modulus (GPa) %9.3f %9.3f %9.3f " % (Ev, Er, Evrh))
683 | print ("Poisson ratio %9.3f %9.3f %9.3f " % (Nu_V, Nu_R, Nu_vrh))
684 | print ("P-wave modulus (GPa) %9.3f %9.3f %9.3f " % (MV, MR, Mvrh))
685 | print ("Bulk/Shear ratio %9.3f %9.3f %9.3f (%s) " %(KG_ratio_V, KG_ratio_R, KG_ratio_vrh, ductile_test(KG_ratio_vrh) ))
686 | print ("-------------------------------------------------------")
687 | print("Isotropic Poisson ratio: ", mu)
688 | break
689 |
690 | ###
691 | def ductile_test(ratio):
692 | if(ratio > 1.75):
693 | return "ductile"
694 | else:
695 | return "brittle"
696 | ###
697 |
698 | def stability_test(matrix, crystaltype):
699 | c = np.copy(matrix)
700 |
701 | if(crystaltype =="cubic"):
702 | print ("Cubic crystal system \n")
703 | print ("Born stability criteria for the stability of cubic system are : \ [Ref- Mouhat and Coudert, PRB 90, 224104 (2014)] \n")
704 | print ("(i) C11 - C12 > 0; (ii) C11 + 2C12 > 0; (iii) C44 > 0 \n ")
705 |
706 | ## check (i) keep in mind list starts with 0, so c11 is stored as c00
707 | if(c[0][0] - c[0][1] > 0.0):
708 | print ("Condition (i) satisfied.")
709 | else:
710 | print ("Condition (i) NOT satisfied.")
711 |
712 | if(c[0][0] + 2*c[0][1] > 0.0):
713 | print ("Condition (ii) satified.")
714 | else:
715 | print ("Condition (ii) NOT satisfied.")
716 |
717 | if(c[3][3] > 0.0):
718 | print ("Condition (iii) satified.")
719 | else:
720 | print ("Condition (iii) NOT satisfied.")
721 |
722 | if(crystaltype =="hexagonal"):
723 | print ("Hexagonal crystal system \n")
724 | print ("Born stability criteria for the stability of hexagonal system are \: [Ref- Mouhat and Coudert, PRB 90, 224104 (2014)] \n")
725 | print ("(i) C11 - C12 > 0; (ii) 2*C13^2 < C33(C11 + C12); (iii) C44 > 0 \n ")
726 |
727 | ## check (i) keep in mind list starts with 0, so c11 is stored as c00
728 | if(c[0][0] - c[0][1] > 0.0):
729 | print ("Condition (i) satisfied.")
730 | else:
731 | print ("Condition (i) NOT satisfied.")
732 |
733 | if(2*(c[0][2]*c[0][2]) < c[2][2]*(c[0][0] + c[0][1])):
734 | print ("Condition (ii) satified.")
735 | else:
736 | print ("Condition (ii) NOT satisfied.")
737 |
738 | if(c[3][3] > 0.0):
739 | print ("Condition (iii) satified.")
740 | else:
741 | print ("Condition (iii) NOT satisfied.")
742 | ###
743 |
744 | def born_stability_criterion():
745 | print ("Born stability criteria for the stability of following systems \n")
746 | print ("Cubic crystal system.... \n")
747 | print ("(i) C11 - C12 > 0; (ii) C11 + 2C12 > 0; (iii) C44 > 0 \n ")
748 | print ("Hexagonal crystal system.... \n")
749 | print ("(i) C11 - C12 > 0; (ii) 2*C13^2 < C33(C11 + C12); (iii) C44 > 0 \n ")
750 | print ("Tetragonal crystal system.... \n")
751 | print ("(i) C11 - C12 > 0; (ii) 2*C13^2 < C33(C11 + C12); (iii) C44 > 0; (iv) C66 > 0; (v) 2C16^2 < C66*(C11-C12) \n ")
752 | print ("rhombohedral crystal system.... \n")
753 | print ("(i) C11 - C12 > 0; (ii) C13^2 < (1/2)*C33(C11 + C12); (iii) C14^2 < (1/2)*C44*(C11-C12) = C44*C66; (iv) C44 > 0; \n ")
754 | print ("orthorhombic crystal system.... \n")
755 | print ("(i) C11 > 0; (ii) C11*C22 > C12^2; (iii) C11*C22*C33 + 2C12*C13*C23 - C11*C23^2 - C22*C13^2 - C33*C12^2 > 0; (iv) C44 > 0; (v) C55 > 0 ; (vi) C66 > 0 \n")
756 | print ("Monoclinic crystal system.... \n")
757 | print ("[Ref- Mouhat and Coudert, PRB 90, 224104 (2014), and Wu et al. PRB 76, 054115 (2007)] \n")
758 | print ("(i) C11 > 0; (ii) C22 > 0; (iii) C33 > 0; (iv) C44 > 0; (v) C55 > 0 ; (vi) C66 > 0 ")
759 | print ("(vii) [C11 + C22 + C33 + 2*(C12 + C13 + C23)] > 0; (viii) C33*C55 - C35^2 > 0; (ix) C44*C66 - C46^2 > 0; (x) C22 + C33 - 2*C23 > 0 ")
760 | print ("(xi) C22*(C33*C55 - C35^2) + 2*C23*C25*C35 - (C23^2)*C55 - (C25^2)*C33 > 0 ")
761 | print ("(xii) 2*[C15*C25*(C33*C12 - C13*C23) + C15*C35*(C22*C13 - C12*C23) + C25*C35*(C11*C23 - C12*C13)] - [C15*C15*(C22*C33 - C23^2) + C25*C25*(C11*C33 - C13^2) + C35*C35*(C11*C22 - C12^2)] + C55*g > 0 ")
762 | print (" where, g = [C11*C22*C33 - C11*C23*C23 - C22*C13*C13 - C33*C12*C12 + 2*C12*C13*C23 ] " )
763 | ###
764 |
765 | '''
766 | #####---------------------------------------------------------
767 | # 4- CREATE ENERGY vs VOLUME file from VASP OUTCAR file "STRAIN APPROACH"
768 | #####---------------------------------------------------------
769 | '''
770 |
771 | def create_energy_vs_volume():
772 | import fnmatch
773 | mypath = os.getcwd()
774 | os.system("rm energy-vs-volume energy-vs-strain")
775 | eV2Hartree=0.036749309
776 | Ang32Bohr3=6.74833304162
777 |
778 | E=[]; dir_list=[]; count = 0; dir_E=[];
779 | vol_cell=[]; strain_file=[]; strain_value=[] # strain_value is deformation
780 |
781 | print (" >>>>> Extracting Energies from directories <<<<<<")
782 | for entry in os.listdir(mypath):
783 | if not os.path.exists('strain-01'):
784 | print (' ERROR: strain-* files does not exist. create a strain file for each deformation values.')
785 | sys.exit(0)
786 | if fnmatch.fnmatchcase(entry,'strain-*'):
787 | f = open(entry,'r')
788 | lines = f.readline() #Read first line only
789 | strain_value.append( float(lines) )
790 | f.close()
791 | if os.path.isfile(os.path.join(mypath, entry)):
792 | strain_file.append(entry)
793 |
794 | if os.path.isdir(os.path.join(mypath, entry)):
795 | dir_list.append(entry)
796 |
797 | for file in os.listdir(entry):
798 | if file == "OUTCAR":
799 | filepath = os.path.join(entry, file)
800 | if not os.path.exists(filepath):
801 | print (' ERROR: OUTCAR does not exist here.')
802 | sys.exit(0)
803 | f = open(filepath,'r')
804 | lines = f.readlines()
805 | f.close()
806 |
807 | for i in lines:
808 | if " free energy TOTEN =" in i:
809 | m=float(i.split()[4])
810 | if " volume of cell :" in i:
811 | v=float(i.split()[4])
812 | vol_cell.append(v)
813 | E.append(m)
814 | count+=1
815 | print("# of folders detected: ", count)
816 | print ("Directory :%10.6s %14s %18s %25.20s " % ("Folder", "Energy(eV)", "Vol_of_cell(A^3)", "strain_deformation" ))
817 |
818 | for i in range(math.floor(count/2)): # 0 to 4
819 | print ("Folder name: %10.10s %16.8f %16.8f %16.12s %14.4f" %(dir_list[i], E[i], vol_cell[i], strain_file[i], strain_value[i] ))
820 | if (bool(math.floor(count/2))):
821 | i = math.floor(count/2)
822 | print(Back.GREEN + 'Folder name: %10.10s %16.8f %16.8f %16.12s %14.4f <--Ref' % (dir_list[i], E[i], vol_cell[i], strain_file[i], strain_value[i] ))
823 | print(Style.RESET_ALL, end="")
824 | for i in range(math.ceil(count/2), count, 1):
825 | print ("Folder name: %10.10s %16.8f %16.8f %16.12s %14.4f" %(dir_list[i], E[i], vol_cell[i], strain_file[i], strain_value[i] ))
826 | #rc = subprocess.Popen(['bash', 'extract_energy.sh'])
827 |
828 | print (colored('ENERGIES & VOLUMES ARE WRITTEN IN ATOMIC UNITS TO A FILE ','yellow'), end = '\n', flush=True)
829 | print (colored('IT WILL BE READ BY ELASTIC SCRIPTS FOR POSTPROCESSING eV-->Ha; A^3-->Bohr^3','yellow'), end = '\n', flush=True)
830 |
831 | file = open("energy-vs-volume",'w')
832 | for i in range(count):
833 | file.write ("%14.6f %14.6f\n" %(vol_cell[i] * Ang32Bohr3, E[i] * eV2Hartree))
834 | file.close()
835 |
836 | file = open("energy-vs-strain",'w')
837 | for i in range(count):
838 | file.write ("%12.6f %14.6f\n" %(strain_value[i], E[i] * eV2Hartree))
839 | file.close()
840 | ###
841 |
842 | '''
843 | #####---------------------------------------------------------
844 | # 5- FITTING ENERGY vs VOLUME CURVE from VASP OUTCAR file
845 | #####---------------------------------------------------------
846 | '''
847 |
848 | ###
849 | def fitting_energy_vs_volume_curve_ELASTIC():
850 | from sys import stdin
851 | import matplotlib.pyplot as plt
852 | import matplotlib.ticker as ptk
853 | import pylab as pyl
854 | import matplotlib.style
855 |
856 | bohr_radius = 0.529177
857 | bohr32ang3 = 0.14818474347
858 | joule2hartree = 4.3597482
859 | joule2rydberg = joule2hartree/2.
860 | unitconv = joule2hartree/bohr_radius**3*10.**3
861 |
862 | if (str(os.path.exists('energy-vs-volume'))=='False'):
863 | sys.exit("ERROR: file energy-vs-volume not found!\n")
864 | energy = []; volume = []
865 | read_energy = open('energy-vs-volume',"r")
866 |
867 | while True:
868 | line = read_energy.readline()
869 | line = line.strip()
870 | if len(line) == 0: break
871 | energy.append(float(line.split()[1]))
872 | volume.append(float(line.split()[0]))
873 | volume,energy=sortvolume(volume,energy)
874 |
875 | print ("===============================")
876 | print ("Lattice symmetry codes" )
877 | print ("-------------------------------")
878 | print ("1 --> Simple cubic (sc)" )
879 | print ("2 --> Body-centered cubic (bcc)")
880 | print ("3 --> Face-centered cubic (fcc)")
881 | print ("-------------------------------")
882 | print ("0 --> Others")
883 | print ("===============================\n")
884 | scheck = input("Enter lattice symmetry code [default 0] >>>> ").replace(" ", "")
885 |
886 | '''
887 | These factors are for the conversion from the conventional cell to primitive cell
888 | BCC: (a^3)/2 primitive cell volume
889 | FCC: (a^3)/4 primitive cell volume
890 |
891 | '''
892 |
893 | isym = 0; factor = 1
894 | if ( scheck == "1" ): isym = 1 ; factor=1 ; slabel = "(sc) "
895 | if ( scheck == "2" ): isym = 2 ; factor=2 ; slabel = "(bcc)"
896 | if ( scheck == "3" ): isym = 3 ; factor=4 ; slabel = "(fcc)"
897 | print ("Verification lattice symmetry code >>>> %d " %(isym) )
898 | #-------------------------------------------------------------------------------
899 | print ('%s' %('-'*105) )
900 | print ('%20.25s %29.30s %21.30s %11.12s %18.30s' %("Opt_vol Bohr^3 (Ang^3)", "Lattice_const Bohr (A)", "Bulk_modulus [GPa]", "Log(chi)", "Polynomial_order"))
901 | print ('%s' %('-'*105) )
902 | for order_of_fit in range(2, 11): #order of polynomial fitting
903 | if order_of_fit % 2 == 0:
904 | order_of_fit = int(order_of_fit)
905 | fitr = np.polyfit(volume,energy,order_of_fit)
906 | curv = np.poly1d(fitr)
907 | oned = np.poly1d(np.polyder(fitr,1)) #
908 | bulk = np.poly1d(np.polyder(fitr,2))
909 | bpri = np.poly1d(np.polyder(fitr,3)) #
910 | vmin = np.roots(np.polyder(fitr))
911 | dmin=[]
912 | for i in range(len(vmin)):
913 | if (abs(vmin[i].imag) < 1.e-10):
914 | if (volume[0] <= vmin[i] and vmin[i] <= volume[-1]):
915 | if(bulk(vmin[i]) > 0): dmin.append(vmin[i].real)
916 |
917 | xvol = np.linspace(volume[0],volume[-1],100)
918 | if (len(dmin) > 1): print ("WARNING: Multiple minima are found!\n")
919 | if (len(dmin) == 0): print ("WARNING: No minimum in the given xrange!\n")
920 |
921 | chi = 0
922 | for i in range(len(energy)):
923 | chi=chi+(energy[i]-curv(volume[i]))**2
924 | chi=math.sqrt(chi)/len(energy)
925 | #-------------------------------------------------------------------------------
926 | for i in range(len(dmin)):
927 | x0=dmin[len(dmin)-1-i]
928 | v0=dmin[len(dmin)-1-i]
929 | a0=(factor*v0)**(0.33333333333)
930 | b0=bulk(v0)*v0*unitconv
931 | #if (isym > 0): print ('Lattice constant = %5s %12.6f %12.6f' %(slabel,a0, a0*bohr_radius), '[Bohr, Angstrom]')
932 | if (isym > 0):
933 | print("%12.6f (%11.6f) %12.6f (%9.6f) %17.6f %13.2f %10d\n" %(v0, v0*bohr32ang3, a0, a0*bohr_radius, b0, math.log10(chi), order_of_fit), end="")
934 | else:
935 | print("%12.6f(%12.6f) %12.6f(%12.6f) %17.6f %13.2f %10d\n" %(v0, v0*bohr32ang3, a0, a0*bohr_radius, b0, math.log10(chi), order_of_fit), end="")
936 | print ('%s' %('-'*105) )
937 | #-------------------------------------------------------------------------------
938 |
939 | xlabel = u'Volume [Bohr\u00B3]'; ylabel = r'Energy [Ha]'
940 |
941 | fontlabel=20
942 | fonttick=14
943 |
944 | params = {'ytick.minor.size': 6,
945 | 'xtick.major.pad': 8,
946 | 'ytick.major.pad': 4,
947 | 'patch.linewidth': 2.,
948 | 'axes.linewidth': 2.,
949 | 'lines.linewidth': 1.8,
950 | 'lines.markersize': 8.0,
951 | 'axes.formatter.limits': (-4, 6)}
952 |
953 | plt.rcParams.update(params)
954 | plt.subplots_adjust(left=0.21, right=0.93,
955 | bottom=0.18, top=0.88,
956 | wspace=None, hspace=None)
957 |
958 | yfmt = ptk.ScalarFormatter(useOffset=True,useMathText=True)
959 |
960 | figure = plt.figure(1, figsize=(9,9))
961 | ax = figure.add_subplot(111)
962 | ax.text(0.5,-0.18,xlabel,size=fontlabel, transform=ax.transAxes,ha='center',va='center')
963 | ax.text(-0.25,0.5,ylabel,size=fontlabel, transform=ax.transAxes,ha='center',va='center',rotation=90)
964 | for line in ax.get_xticklines() + ax.get_yticklines():
965 | line.set_markersize(6)
966 | line.set_markeredgewidth(2)
967 | plt.xticks(size=fonttick)
968 | plt.yticks(size=fonttick)
969 | pyl.grid(True)
970 | ############***************************************************************************
971 |
972 | file=open("tmp","w")
973 | for j in range( len(xvol) ):
974 | file.write("{:12.8f} {} {:12.8f}\n".format(xvol[j]," ",curv(xvol[j]) ) )
975 | #for i in range( len(strain) ):
976 | # file.write( "{} {}\n".format(strain[i],energy[i]) )
977 | file.close()
978 |
979 | os.system("paste -d ' ' tmp energy-vs-volume > volume.dat ")
980 | #subprocess.call(("paste -d tmp energy-vs-volume > volume.dat "), shell = True)
981 | os.system("rm tmp")
982 |
983 | ############***************************************************************************
984 | plt.plot(xvol,curv(xvol),'b-',label='n='+str(order_of_fit)+' fit')
985 | plt.plot(volume,energy,'go',label='calculated')
986 | plt.plot(dmin,curv(dmin),'ro')
987 | plt.legend(loc=9,borderaxespad=.8,numpoints=1)
988 |
989 | ymax = max(max(curv(xvol)),max(energy))
990 | ymin = min(min(curv(xvol)),min(energy))
991 | dxx = abs(max(xvol)-min(xvol))/18
992 | dyy = abs(ymax-ymin)/18
993 | ax.yaxis.set_major_formatter(yfmt)
994 | ax.set_xlim(min(xvol)-dxx,max(xvol)+dxx)
995 | ax.set_ylim(ymin-dyy,ymax+dyy)
996 |
997 | ax.xaxis.set_major_locator(MaxNLocator(7))
998 |
999 | plt.savefig('PLOT.png',orientation='portrait',format='png')
1000 | ###
1001 |
1002 | def sortvolume(s,e):
1003 | ss=[]; ee=[]; ww=[]
1004 | for i in range(len(s)): ww.append(s[i])
1005 | ww.sort()
1006 | for i in range(len(s)):
1007 | ss.append(s[s.index(ww[i])])
1008 | ee.append(e[s.index(ww[i])])
1009 | return ss, ee
1010 | ###
1011 |
1012 | '''
1013 | #####---------------------------------------------------------
1014 | # 6- EVALUATE Mechanical properties from Cij Matrix
1015 | #####---------------------------------------------------------
1016 | '''
1017 |
1018 |
1019 | def mechanical_properties():
1020 | import numpy as np
1021 | import math, scipy, os, sys
1022 | from numpy import linalg as LA
1023 | import statistics as st
1024 | import ase.io
1025 |
1026 | np.set_printoptions(precision=3)
1027 | CRED = '\033[91m';CEND = '\033[0m'
1028 | CYEL = '\033[33m'; CEND = '\033[0m'
1029 | CPIN = '\033[46m';
1030 | # Elastic constants have been obtained from SOEC approach mentioned in the above
1031 | # paper. For three distortions of the crystal three constants are extracted:
1032 | # C11, C44, C12. For cubic system the matrix is symmetric.
1033 |
1034 | print (CRED + "Values has to be supplied in the script::" + CEND)
1035 |
1036 | ########################## INPUT PARAMETERS assuming cubic #######################
1037 |
1038 | c11=c22=c33=123.22 ;
1039 | c44=c55=c66=47
1040 | B = 120
1041 | #c12=c21=c13=c31=c23=c32=(1/6) * (9 * B - 3 * c11)
1042 | c12=c21=c13=c31=c23=c32=94.22
1043 | c14=c15=c16=c24=c25=c26=c34=c35=c36=0
1044 | c45=c46=c56=0
1045 | ################################################################################
1046 |
1047 | print (CRED +"{:_^80s}".format("The STIFNESS MATRIX Cij is:")+ CEND)
1048 | Cij=[ [c11,c12,c13,c14,c15,c16],
1049 | [c21,c22,c23,c24,c25,c26],
1050 | [c31,c32,c33,c34,c35,c36],
1051 | [0 ,0 ,0 ,c44,c45,c46],
1052 | [0 ,0 ,0 ,0 ,c55,c56],
1053 | [0 ,0 ,0 ,0 ,0 ,c66] ]
1054 | Cij=np.matrix(Cij).reshape((6,6))
1055 | print (Cij)
1056 |
1057 | ########------------Calculate variance and Mean of the Cij -----------
1058 | # ONLY for C11 , C22 , C33
1059 | Cij_stat = [ Cij[0,0] , Cij[1,1] , Cij[2,2] ]
1060 | print (">>>", (Cij_stat) )
1061 | STD = np.std(Cij_stat); Var = np.var(Cij_stat) ; Mean = np.mean(Cij_stat)
1062 | print ("{:6.3s} {:6.3s} {:6.3s}".format("C", "STD", "Var") )
1063 | print ("{:6.3f} {:6.3f} {:6.3f}".format(Mean, STD/np.sqrt(3), Var) )
1064 |
1065 | ######## ------------------------------------------------------------
1066 |
1067 | evals, eigenvec = LA.eig(Cij)
1068 | print ("-"*40)
1069 | print("Eigenvalues are: ", evals>0)
1070 | print ("-"*40)
1071 | # ### Compliance tensor s_{ij}$ $(GPa^{-1})$
1072 | # s_{ij} = C_{ij}^{-1}$
1073 |
1074 | print (CRED +"{:_^80s}".format("The COMPLIANCE MATRIX Sij is:")+ CEND)
1075 | Sij = np.linalg.inv(Cij)
1076 |
1077 | print ("{} ".format(Sij))
1078 | print ("-"*80)
1079 |
1080 | ######## -----------------------------VOIGT-------------------------------
1081 |
1082 | '''Voigt bulk modulus (GPa)'''
1083 |
1084 | #9K_v = (C_{11}+C_{22}+C_{33}) + 2(C_{12} + C_{23} + C_{31})
1085 | Bv = ((Cij[0,0] + Cij[1,1] + Cij[2,2]) + 2 * (Cij[0,1] + Cij[1,2] + Cij[2,0])) / 9.0
1086 |
1087 | '''Voigt shear modulus (GPa)'''
1088 |
1089 | #15*G_v = (C_{11}+C_{22}+C_{33}) - (C_{12} + C_{23} + C_{31}) + 3(C_{44} + C_{55} + C_{66})$
1090 | Gv = ((Cij[0,0] + Cij[1,1] + Cij[2,2]) - (Cij[0,1] + Cij[1,2] + Cij[2,0])
1091 | + 3 * (Cij[3,3] + Cij[4,4] + Cij[5,5]))/15.0
1092 |
1093 | ## Young's: Voigt
1094 | Ev = (9*Bv*Gv)/(3*Bv + Gv)
1095 |
1096 | ## Poisson's ratio: Voigt
1097 | NuV = (3*Bv - Ev)/(6*Bv)
1098 |
1099 | ######## -----------------------------REUSS-------------------------------
1100 |
1101 | # Reuss bulk modulus K_R $(GPa)$
1102 | # 1/K_R = (s_{11}+s_{22}+s_{33}) + 2(s_{12} + s_{23} + s_{31})$
1103 | Br = 1/((Sij[0,0] + Sij[1,1] + Sij[2,2]) + 2*(Sij[0,1] + Sij[1,2] + Sij[2,0]))
1104 |
1105 | # Reuss shear modulus G_v $(GPa)$
1106 | # 15/G_R = 4*(s_{11}+s_{22}+s_{33}) - 4*(s_{12} + s_{23} + s_{31}) + 3(s_{44} + s_{55} + s_{66})$
1107 | Gr = (4 * (Sij[0,0] + Sij[1,1] + Sij[2,2]) - 4*(Sij[0,1] + Sij[1,2] + Sij[2,0])
1108 | + 3 * (Sij[3,3] + Sij[4,4] + Sij[5,5]))
1109 | Gr = 15.0/Gr
1110 |
1111 | ## Young's: Reuss
1112 | Er = (9*Br*Gr)/(3*Br + Gr)
1113 |
1114 | ## Poisson's ratio: Reuss
1115 | NuR = (3*Br - Er)/(6*Br)
1116 |
1117 | ##########################################################################
1118 |
1119 | ######## -----------------------------Averages-------------------------------
1120 |
1121 | # #Hill bulk modulus K_{VRH}$ $(GPa)$
1122 | # K_{VRH} = (K_R + K_v)/2
1123 | B_H = (Bv + Br)/2
1124 | #print ("VRH bulk modulus (GPa): %20.8f " %(B_H) )
1125 |
1126 | # Hill shear modulus G_{VRH}$ $(GPa)$
1127 | # G_{VRH} = (G_R + G_v)/2
1128 | G_H = (Gv + Gr)/2
1129 | #print ("VRH shear modulus (GPa): %20.8f " %(G_H) )
1130 |
1131 | # Young modulus E = 9BG/(3B+G)
1132 | #E_H = (9 * B_H * G_H) / (3 * B_H + G_H)
1133 | E_H = (Ev + Er)/2
1134 | #print ("Young modulus E : {:1.8s} {:20.8f}".format(" ",E_H) )
1135 |
1136 | # ### Isotropic Poisson ratio $\mu
1137 | # $\mu = (3K_{VRH} - 2G_{VRH})/(6K_{VRH} + 2G_{VRH})$
1138 | #nu_H = (3 * B_H - 2 * G_H) / (6 * B_H + 2 * G_H )
1139 | nu_H = (NuV + NuR) / 2
1140 | #print ("Isotropic Poisson ratio: {:15.8f} ".format(nu_H) )
1141 |
1142 | ## Elastic Anisotropy
1143 | ## Zener anisotropy for cubic crystals only
1144 | A = 2*(c44)/(c11-c12)
1145 |
1146 | # Universal Elastic Anisotropy AU
1147 | AU = (Bv/Br) + 5*(Gv/Gr) - 6.0
1148 |
1149 | # C' tetragonal shear modulus
1150 | C = (c11-c12)/2
1151 |
1152 | ratio_V = Bv/Gv
1153 | ratio_R = Br/Gr
1154 |
1155 | print ("{:30.8s} {:20.8s} {:20.8s} {:20.8s}".format(" ","Voigt", "Reuss ", "Hill") )
1156 | print ("{:_^80}".format("GPa"))
1157 | print ("{:16.20s} {:20.3f} {:20.3f} {:20.3f}".format("Bulk Modulus",Bv, Br, B_H) )
1158 | print ("{:16.20s} {:20.3f} {:20.3f} {:20.3f}".format("Shear Modulus",Gv, Gr, G_H) )
1159 | print ("{:16.20s} {:20.3f} {:20.3f} {:20.3f}".format("Young Modulus",Ev, Er, E_H) )
1160 | print ("{:16.20s} {:20.3f} {:20.3f} {:20.3f}".format("Poisson ratio ", NuV, NuR, nu_H) )
1161 | print ("{:16.20s} {:20.3f} {:20.3f} {:20.3f}({:5.3f})".format("B/G ratio ",Bv/Gv,Br/Gr, B_H/G_H, G_H/B_H) )
1162 | print ("{:16.20s} {:20.3s} {:20.3s} {:20.3f}".format("Avr ratio ",'','', (Gv-Gr)/(Gv+Gr)) )
1163 | print ("{:16.20s} {:20.3s} {:20.3s} {:20.3f}".format("Zener ratio ",'','', A) )
1164 | print ("{:16.20s} {:20.3s} {:20.3s} {:20.3f}".format("AU ",'','', AU) )
1165 | print ("{:16.20s} {:20.3s} {:20.3s} {:20.3f}".format("Cauchy pressure ",'','', (c12-c44)) )
1166 | print ("{:16.20s} {:20.3s} {:20.3s} {:20.3f}".format("C'tetra Shear ",'','', C) )
1167 |
1168 | print ("-"*80)
1169 | return Sij
1170 | ###
1171 |
1172 |
1173 | '''
1174 | #####---------------------------------------------------------
1175 | # INTRODUCTION
1176 | #####---------------------------------------------------------
1177 | '''
1178 |
1179 | ####
1180 | def Introduction():
1181 |
1182 | print(colored('@'*80,'yellow'), end = '\n', flush=True)
1183 | print("Credit : Asif Iqbal BHATTI")
1184 | print("USAGE : Extract essential properties from VASP outputfiles.")
1185 | print("VERSION : python3 or above ")
1186 | print("FORMAT : POSCAR VASP5 format ")
1187 | print("DATE : 28/12/2019 ")
1188 | print('USAGE : execute by typing python3 sys.argv[0]')
1189 | print("VERSION : 4.0 ")
1190 | print(colored('@'*80,'yellow'), end = '\n', flush=True)
1191 | print(" ____| Python script to process various properties |____")
1192 |
1193 | '''
1194 | #####---------------------------------------------------------
1195 | # MAIN ENGINE
1196 | #####---------------------------------------------------------
1197 | '''
1198 |
1199 | ####
1200 | if __name__ == "__main__":
1201 |
1202 | Introduction()
1203 |
1204 | print("Number of processors Detected: ", mp.cpu_count())
1205 | print(Back.MAGENTA + ' NB: POSCAR should be in VASP 5 format & without selective dynamics', end = '\n', flush=True)
1206 | print(Style.RESET_ALL)
1207 | print(colored('~'*80,'red'), end = '\n', flush=True)
1208 | print("**** Following are the options: ")
1209 | print(colored('-'*80,'red'), end = '\n', flush=True)
1210 |
1211 | print("(01) To execute only POSCAR file (local lattice distortion DEF 1-3)")
1212 | print("(02) To execute POSCAR CELL VOLUME DIFFERENCE with final CONTCAR file")
1213 | print("(03) To extract ENERGY from directories")
1214 | print("(04) To extract ELASTIC CONSTANTS from OUTCAR file (IBRION=6,ISIF=3)")
1215 | print("(05) To Fit energy vs volume curve to extract Elastic Moduli: B0 ... ")
1216 | print("(06) CONVERT POSCAR file from VASP4 to VASP5 format")
1217 | print("(07) Calculate manually Elastic properties by entering Cij values (Energy-vs-Strain)")
1218 | print("(08) Calculate lattice distortion of the structure")
1219 | print("(09) Create directories for PHONON calculations generated with PHONOPY code")
1220 |
1221 | print (colored('~'*80,'red'), end = '\n', flush=True)
1222 |
1223 | option = input("Enter the option as listed above: ")
1224 | option = int(option)
1225 |
1226 | if (option == 1):
1227 | poscar()
1228 |
1229 | elif (option == 2):
1230 | VOL_P = main_poscar()
1231 | VOL_C = main_contcar()
1232 | volume_diff(VOL_P, VOL_C)
1233 |
1234 | elif (option == 3):
1235 | create_energy_vs_volume()
1236 |
1237 | elif (option == 4):
1238 | print("OUTCAR should be in the same directory from which this script is run ")
1239 | pool = mp.Pool(mp.cpu_count())
1240 | elastic_matrix_VASP_STRESS()
1241 | pool.close()
1242 |
1243 | elif (option == 5):
1244 | fitting_energy_vs_volume_curve_ELASTIC()
1245 |
1246 | elif (option == 6):
1247 | poscar_VASP42VASP5()
1248 |
1249 | elif (option == 7):
1250 | mechanical_properties()
1251 |
1252 | elif (option == 8):
1253 | #lattic_distortion.local_lattice_distortion(a,b,c)
1254 | lattic_distortion.local_lattice_distortion_DEF1()
1255 | #lattic_distortion.local_lattice_distortion_DEF2()
1256 |
1257 | elif (option == 9):
1258 | pass
1259 |
1260 | else:
1261 | print ("INVALID OPTION")
1262 |
1263 |
1264 |
1265 |
1266 |
1267 |
1268 |
--------------------------------------------------------------------------------
/src/Main_file.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | '''
4 | #####---------------------------------------------------------
5 | #####---------------------------------------------------------
6 | # Credit : Asif Iqbal BHATTI
7 | # CODE to: convert Cell Matrix to Cell Parameters
8 | # VERSION: This script runs with python3 or later
9 | # FORMAT : POSCAR VASP5 format
10 | # DATE : 28/12/2019
11 | # USAGE : python3 sys.argv[0]
12 | #####---------------------------------------------------------
13 | #####---------------------------------------------------------
14 | '''
15 |
16 | def Introduction():
17 | global message
18 | message = " ____| Python script to process various properties |____"
19 | print(message)
20 |
21 | if __name__ == "__main__":
22 |
23 | from elastic_constants import *
24 | from energy import *
25 | from contcar_poscar import *
26 | from poscar import *
27 | from fit_energy_vs_vol import *
28 | from strain import *
29 | from create_phonon_directories import *
30 | from evaluate_manually_Elastic_constants import *
31 |
32 | from colorama import Fore, Back, Style, init
33 | from termcolor import colored
34 | from pylab import *
35 | import multiprocessing as mp
36 | import compileall
37 |
38 | print ("This may take a while!")
39 | compileall.compile_dir(".", force=1)
40 |
41 | Introduction()
42 | init(autoreset=True)
43 | print(colored('@'*80,'red'), end = '\n', flush=True)
44 | print("Number of processors Detected: ", mp.cpu_count())
45 | print(Back.MAGENTA + ' NB: POSCAR should be in VASP 5 format & without selective dynamics', end = '\n', flush=True)
46 | print(Style.RESET_ALL)
47 | print(colored('-'*80,'red'), end = '\n', flush=True)
48 | print('>>> USAGE: execute by typing python3 sys.argv[0]')
49 | print(colored('~'*80,'red'), end = '\n', flush=True)
50 | print("**** Following are the options: ")
51 | print(colored('-'*80,'red'), end = '\n', flush=True)
52 |
53 | print("(01) To execute only POSCAR file (Convert Lattice Matrix to Lattice parameter)")
54 | print("(02) To execute POSCAR CELL VOLUME DIFFERENCE with final CONTCAR file")
55 | print("(03) To extract ENERGY from directories")
56 | print("(04) To extract ELASTIC CONSTANTS from OUTCAR file (IBRION=6,ISIF=3)")
57 | print("(05) To Fit energy vs volume curve to extract Elastic Moduli: B0")
58 | print("(06) CONVERT POSCAR file from VASP4 to VASP5 format")
59 | print("(07) Extract 'ELASTIC' constants (Cij) by deforming a crystal")
60 | print("(08) Create directories for PHONON calculations generated by PHONOPY code")
61 | print("(09) Calculate manually Elastic constants by inputting Cij values")
62 | print("(10) Calculate local lattice distortion for High Entropy Alloys: DEF1")
63 | print("(11) Calculate local lattice distortion for High Entropy Alloys: DEF2")
64 |
65 | print (colored('~'*80,'red'), end = '\n', flush=True)
66 | print (colored('*'*80,'red'), end = '\n', flush=True)
67 |
68 | while True:
69 | option = input("Enter the option as listed above: ")
70 | option = int(option)
71 |
72 | if (option == 1):
73 | poscar()
74 |
75 | elif (option == 2):
76 | VOL_P = main_poscar()
77 | VOL_C = main_contcar()
78 | volume_diff(VOL_P, VOL_C)
79 |
80 | elif (option == 3):
81 | energy_vs_volume()
82 |
83 | elif (option == 4):
84 | print("OUTCAR should be in the same directory from which this script is run ")
85 | pool = mp.Pool(mp.cpu_count())
86 | elastic_matrix_VASP_STRESS()
87 | pool.close()
88 |
89 | elif (option == 5):
90 | fitting_energy_vs_volume_curve()
91 |
92 | elif (option == 6):
93 | poscar_VASP42VASP5()
94 |
95 | elif (option == 7):
96 | Elastic_strain()
97 |
98 | elif (option == 8):
99 | create_phonon_directories()
100 |
101 | elif (option == 9):
102 | mechanical_properties()
103 |
104 | elif (option == 10):
105 | local_lattice_distortion_DEF1()
106 |
107 | elif (option == 11):
108 | local_lattice_distortion_DEF2()
109 |
110 | else:
111 | print ("INVALID OPTION")
112 |
113 |
114 |
115 |
116 |
117 |
118 |
--------------------------------------------------------------------------------
/src/contcar_poscar.py:
--------------------------------------------------------------------------------
1 | import os, sys, spglib
2 | import math, glob
3 | import numpy as np
4 | import subprocess
5 | from os import listdir
6 | from os.path import isfile, join
7 | from pathlib import Path
8 | from colorama import Fore, Back, Style, init
9 |
10 | ang2atomic = 1.889725988579 # 1 A = 1.889725988579 [a.u]
11 | ang2bohr = 6.7483330371 # 1 A^3 = 6.7483330371 [a.u]^3
12 |
13 | def main_poscar():
14 |
15 | count = 0
16 | os.system("rm out_POSCARS.dat")
17 | VOL_P = []; pos = []; kk = []; lattice = [];
18 | mypath = os.getcwd()
19 | print ("-"*100)
20 | print (Back.YELLOW + "{:15s} {:15s} {:15.6s} {:15.6s} {:15.6s} {:15.15s}".format("Directory", "# of atoms", "||a||", \
21 | "||b||", "||c||", "VOL_POS[A^3]"),end="\n" )
22 | print ("-"*100)
23 |
24 | for entry in os.listdir(mypath):
25 | if os.path.isdir(os.path.join(mypath, entry)):
26 | #print (entry)
27 | for file in os.listdir(entry):
28 | if file == "POSCAR":
29 | count+=1; sum = 0
30 | filepath = os.path.join(entry, file)
31 | #f = open(filepath, 'r')
32 | #print (f.read())
33 | #f.close()
34 | fo = open(filepath, 'r')
35 | ofile=open('out_POSCARS.dat','a')
36 |
37 | #print (colored('>>>>>>>> Name of the file: ','red'), fo.name, end = '\n', flush=True)
38 |
39 | ofile.write (fo.name + '\n')
40 | ofile.write ("")
41 | firstline = fo.readline()
42 | secondfline = fo.readline()
43 | Latvec1 = fo.readline()
44 | #print ("Lattice vector 1:", (Latvec1), end = '')
45 | #ofile.write (Latvec1)
46 | Latvec2 = fo.readline()
47 | #print ("Lattice vector 2:", (Latvec2), end = '')
48 | #ofile.write (Latvec2)
49 | Latvec3 = fo.readline()
50 | #print ("Lattice vector 3:", (Latvec3), end = '')
51 | #ofile.write (Latvec3)
52 | elementtype=fo.readline()
53 | elementtype = elementtype.split()
54 | #print ("Types of elements:", str(elementtype), end = '')
55 | #ofile.write (str(elementtype))
56 | numberofatoms=fo.readline()
57 | #print ("Number of atoms:", (numberofatoms), end = '')
58 | #ofile.write ((numberofatoms))
59 | Coordtype=fo.readline()
60 |
61 | ##########################---------------------------------------------------------
62 | #print ("**********-------------------# of Atoms--------------------")
63 |
64 | nat = numberofatoms.split()
65 | nat = [int(i) for i in nat]
66 | for i in nat:
67 | sum = sum + i
68 | numberofatoms = sum
69 | #print ("{} :: Number of atoms: {}".format(nat, numberofatoms) )
70 | ##########################---------------------------------------------------------
71 | #print ("-----------------------Atomic positions-----------------")
72 | #print ("Coordtype:", (Coordtype), end = '')
73 | for x in range(int(numberofatoms)):
74 | coord = fo.readline().split()
75 | coord = [float(i) for i in coord]
76 | pos = pos + [coord]
77 | pos = np.array(pos)
78 | #print (pos)
79 |
80 | ofile.write ("\n")
81 | fo.close()
82 | ##########################---------------------------------------------------------
83 |
84 | a=[]; b=[]; c=[];
85 | Latvec1=Latvec1.split()
86 | Latvec2=Latvec2.split()
87 | Latvec3=Latvec3.split()
88 |
89 | ##########################---------------------------------------------------------
90 | for ai in Latvec1: a.append(float(ai))
91 | for bi in Latvec2: b.append(float(bi))
92 | for ci in Latvec3: c.append(float(ci))
93 | #print ('a=', a)
94 | ofile.write ("'a=' {}\n".format(a))
95 | #print ('b=', b)
96 | ofile.write ("'b=' {}\n".format(b))
97 | #print ('c=', c)
98 | ofile.write ("'c=' {}\n".format(c))
99 | lld = local_lattice_distortion(a,b,c)
100 | ##########################---------------------------------------------------------
101 |
102 | alpha, beta, gamma = lattice_angles(a,b,c)
103 | VOL_POS = np.dot(a, np.cross(b,c))
104 | VOL_P.append(VOL_POS)
105 |
106 | ofile.write ("'\u03B1=' {} '\u03B2=' {} '\u03B3=' {}\n".format(alpha,beta,gamma))
107 | ofile.write ("'||a||=' {}\n".format(np.linalg.norm(a)))
108 | ofile.write ("'||b||=' {}\n".format(np.linalg.norm(b)))
109 | ofile.write ("'||c||=' {}\n".format(np.linalg.norm(c)))
110 | #print ("#####------------------------------------------------")
111 |
112 | #print ("a={} \t ||a||={:10.6f}".format(a, np.linalg.norm(a)) )
113 | #print ("b={} \t ||b||={:10.6f}".format(b, np.linalg.norm(b)) )
114 | #print ("c={} \t ||c||={:10.6f}".format(c, np.linalg.norm(c)) )
115 | print ("{:15s} {:6d} {:15.6f} {:15.6f} {:15.6f} {:15.6f}".format(fo.name, numberofatoms, np.linalg.norm(a), \
116 | np.linalg.norm(b), np.linalg.norm(c), VOL_POS) )
117 |
118 | print ("'\u03B1=' {:6.6f} '\u03B2=' {:6.6f} '\u03B3=' {:6.6f} g={:6.6f}".format(alpha,beta,gamma,lld))
119 | print ("."*5)
120 | #print ('Vol= {:6.6f} A^3'.format(VOL_POS))
121 | ofile.write ("***************************************************\n")
122 | ofile.close()
123 | print ("_"*30)
124 | print ("Number of folders detected: ", count)
125 | return VOL_P
126 |
127 | ####
128 | def main_contcar():
129 | count = 0
130 | os.system("rm out_CONTCARS.dat")
131 | VOL_C = []; pos = []; kk = []; lattice = []; sum = 0
132 | mypath = os.getcwd()
133 | print ("-"*100)
134 | print (Back.GREEN + "{:15s} {:15s} {:15.6s} {:15.6s} {:15.6s} {:15.15s}".format("Directory", "# of atoms", "||a||", \
135 | "||b||", "||c||", "VOL_CON[A^3]"),end="\n" )
136 | print ("-"*100)
137 | print(Style.RESET_ALL)
138 | for entry in os.listdir(mypath):
139 | if os.path.isdir(os.path.join(mypath, entry)):
140 | for file in os.listdir(entry):
141 |
142 | if file == "CONTCAR":
143 | count+=1; sum = 0
144 | filepath = os.path.join(entry, file)
145 | fo = open(filepath, 'r')
146 |
147 | ofile=open('out_CONTCARS.dat','a')
148 |
149 | #print (colored('>>>>>>>> Name of the file: ','yellow'), fo.name, end = '\n', flush=True)
150 | ofile.write (fo.name + '\n')
151 | ofile.write ("")
152 | firstline = fo.readline()
153 | secondfline = fo.readline()
154 | Latvec1 = fo.readline()
155 | Latvec2 = fo.readline()
156 | Latvec3 = fo.readline()
157 | elementtype=fo.readline()
158 | elementtype = elementtype.split()
159 | numberofatoms=fo.readline()
160 | Coordtype=fo.readline()
161 | #print ("Coordtype:", (Coordtype), end = '')
162 | ##########################---------------------------------------------------------
163 | #print ("**********-------------------# of Atoms--------------------")
164 |
165 | nat = numberofatoms.split()
166 | nat = [int(i) for i in nat]
167 | for i in nat:
168 | sum = sum + i
169 | numberofatoms = sum
170 | #print ("{} :: Number of atoms: {}".format(nat, numberofatoms) )
171 | ##########################---------------------------------------------------------
172 | #print ("//////---------------Atomic positions-----------------")
173 | for x in range(int(numberofatoms)):
174 | coord = fo.readline().split()
175 | coord = [float(i) for i in coord]
176 | pos = pos + [coord]
177 | pos = np.array(pos)
178 | #print (pos)
179 |
180 | ofile.write ("\n")
181 | fo.close()
182 | ##########################---------------------------------------------------------
183 | a=[]; b=[]; c=[];
184 | Latvec1=Latvec1.split()
185 | Latvec2=Latvec2.split()
186 | Latvec3=Latvec3.split()
187 | ##########################---------------------------------------------------------
188 | for ai in Latvec1: a.append(float(ai))
189 | for bi in Latvec2: b.append(float(bi))
190 | for ci in Latvec3: c.append(float(ci))
191 | #print ('a=', a)
192 | ofile.write ("'a=' {}\n".format(a))
193 | #print ('b=', b)
194 | ofile.write ("'b=' {}\n".format(b))
195 | #print ('c=', c)
196 | ofile.write ("'c=' {}\n".format(c))
197 | lld = local_lattice_distortion(a,b,c)
198 | ##########################---------------------------------------------------------
199 |
200 | alpha, beta, gamma = lattice_angles(a,b,c)
201 | VOL_CON = np.dot(a, np.cross(b,c))
202 | VOL_C.append(VOL_CON)
203 |
204 | ofile.write ("'\u03B1=' {} '\u03B2=' {} '\u03B3=' {}\n".format(alpha,beta,gamma))
205 | ofile.write ("'||a||=' {}\n".format(np.linalg.norm(a)))
206 | ofile.write ("'||b||=' {}\n".format(np.linalg.norm(b)))
207 | ofile.write ("'||c||=' {}\n".format(np.linalg.norm(c)))
208 | #print ("-"*80)
209 |
210 | #print ("a={} \t ||a||={:10.6f}".format(a, np.linalg.norm(a)) )
211 | #print ("b={} \t ||b||={:10.6f}".format(b, np.linalg.norm(b)) )
212 | #print ("c={} \t ||c||={:10.6f}".format(c, np.linalg.norm(c)) )
213 | print ("{:15s} {:6d} {:15.6f} {:15.6f} {:15.6f} {:15.6f}".format(fo.name, numberofatoms, np.linalg.norm(a), \
214 | np.linalg.norm(b), np.linalg.norm(c), VOL_CON) )
215 |
216 | print ("'\u03B1=' {:6.6f} '\u03B2=' {:6.6f} '\u03B3=' {:6.6f} g={:6.6f}".format(alpha,beta,gamma,lld))
217 | print ("."*5)
218 | #print ('Vol= {:6.6f} A^3'.format(VOL_CON), end="\n")
219 | ofile.write ("***************************************************\n")
220 | ofile.close()
221 | #print (VOL_C)
222 | print ("-"*80)
223 | print ("Number of folders detected: ", count)
224 | return VOL_C
225 |
226 |
227 | #### math.sin function takes argument in radians ONLY
228 | def volume(a,b,c,alpha,beta,gamma):
229 | length = np.linalg.norm(a) * np.linalg.norm(b) * np.linalg.norm(c)
230 | volume = length * ( np.sqrt(1 + 2 * math.cos(alpha) * math.cos(beta) * math.cos(gamma) - math.cos(alpha)**2 - math.cos(beta)**2 - math.cos(gamma)**2) )
231 | vol_au = volume * ang2bohr
232 | return volume, vol_au
233 |
234 | #### Ordering of angles does matter
235 | def lattice_angles(a,b,c):
236 | ### gamma = Cos-1( (a.b)/||a||.||b|| )
237 | ### alpha = Cos-1( (b.c)/||b||.||c|| )
238 | ### beta = Cos-1( (a.c)/||a||.||c|| )
239 | gamma = math.degrees(math.acos(np.dot(a,b) / (np.linalg.norm(a) * np.linalg.norm(b))))
240 | alpha = math.degrees(math.acos(np.dot(b,c) / (np.linalg.norm(b) * np.linalg.norm(c))))
241 | beta = math.degrees(math.acos(np.dot(a,c) / (np.linalg.norm(a) * np.linalg.norm(c))))
242 | return alpha, beta, gamma
243 | ####
244 | def volume_diff(VOL_P, VOL_C):
245 | n=os.popen("find . -mindepth 1 -maxdepth 1 -type d | wc -l").read()
246 | print ("-"*100)
247 | print ("VOL Diff A^3 %18s %12s %15.15s" %("CONTCAR", "POSCAR", "contcar-poscar"))
248 | print ("-"*100)
249 | for i in range(int(n)):
250 | print ("The difference is: %12.6f %12.6f %15.8f " %(VOL_C[i], VOL_P[i], VOL_C[i] - VOL_P[i]) )
251 |
252 |
--------------------------------------------------------------------------------
/src/create_phonon_directories.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | #_____________________________________________________________________________
3 | '''
4 | USAGE: python3 script to create directories from POSCAR files generated from
5 | PHONOPY code.
6 | Credit: Asif Iqbal Bhatti
7 | DATED: 19-01-2020
8 |
9 | '''
10 | #_____________________________________________________________________________
11 | import os, sys, scipy
12 | import pathlib, subprocess, shutil
13 | from os import listdir
14 | from os.path import isfile, join
15 | import os.path
16 | import multiprocessing as mp
17 | import fnmatch
18 | import time
19 |
20 | #_____________________________________________________________________________
21 | os.system('rm -r disp-*')
22 | #os.system('phonopy -d --dim="2 2 2"') ## It will call a phonopy code
23 | #subprocess.call(['phonopy','-v', '-d', '--dim=3 3 3'],shell = False) ## It will call a phonopy code
24 | #_____________________________________________________________________________
25 |
26 |
27 | def copy_fntn(k):
28 | for i in range(1, int(k)+1):
29 | shutil.rmtree('disp-'+str(i).zfill(3), ignore_errors=True) #overwrite a directory
30 | os.mkdir('disp-'+str(i).zfill(3))
31 | #subprocess.check_call(['mkdir', 'disp-'+str(i).zfill(3)])
32 | #subprocess.check_call('cd disp-'+str(i).zfill(3), shell=True)
33 | # print(str(i).zfill(3))
34 | #
35 | # The zfill()/rjust() is a function associated with the string object.
36 | # 3 is the expected length of the string after padding.
37 | #
38 | os.system('cp INCAR disp-'+str(i).zfill(3) )
39 | os.system('cp POTCAR disp-'+str(i).zfill(3) )
40 | os.system('cp KPOINTS disp-'+str(i).zfill(3) )
41 | #os.system('cp job.sh disp-'+str(i).zfill(3) )
42 | #os.system('cp WAVECAR disp-'+str(i).zfill(3) )
43 | subprocess.call(['cp','-r','POSCAR-'+str(i).zfill(3),'disp-'+str(i).zfill(3)], shell = False)
44 | os.chdir('disp-'+str(i).zfill(3))
45 | shutil.copyfile("POSCAR-"+str(i).zfill(3), "POSCAR")
46 | #os.system('ls')
47 | os.chdir('../')
48 |
49 |
50 | def create_phonon_directories():
51 | print("Number of processors Detected: ", mp.cpu_count())
52 | pool = mp.Pool(4)
53 | print("*"*80)
54 | if not os.path.exists('POSCAR'):
55 | print (' ERROR: POSCAR does not exist here.')
56 | sys.exit(0)
57 | else:
58 | counter=0
59 | mypath = os.getcwd()
60 | for entry in os.listdir(mypath):
61 | if os.path.isfile(os.path.join(mypath, entry)):
62 | if fnmatch.fnmatchcase(entry,'POSCAR-*'):
63 | counter+=1
64 | print ("# of POSCAR-* files generated with Phonopy code: ----> {}".format(counter) )
65 | print("*"*80)
66 |
67 | start_time = time.time()
68 | #copy_fntn(counter)
69 | #p = mp.Process(target=copy_fntn, args=('9',))
70 | #p.start()
71 | #p.join()
72 | with pool as p:
73 | p.map(copy_fntn, [counter])
74 | end_time = time.time()
75 | print("total time taken for this loop: ", end_time - start_time)
76 |
77 | if __name__ == "__main__":
78 | create_phonon_directories()
79 |
80 |
81 |
--------------------------------------------------------------------------------
/src/elastic_constants.py:
--------------------------------------------------------------------------------
1 | import os, sys, spglib
2 | import math, glob
3 | import numpy as np
4 | import subprocess
5 | from os import listdir
6 | from os.path import isfile, join
7 | from pathlib import Path
8 |
9 | ang2atomic = 1.889725988579 # 1 A = 1.889725988579 [a.u]
10 | ang2bohr = 6.7483330371 # 1 A^3 = 6.7483330371 [a.u]^3
11 |
12 | class Elastic_Matrix:
13 | def print_Cij_Matrix(): ###EXERCISE
14 | Bij = []; C = "C"
15 | for i in range(0, 6, 1):
16 | Bij.append([])
17 | for j in range(1,7, 1):
18 | Bij[i].append((C + str(i+1) + str(j)))
19 | l = np.matrix(Bij)
20 | return l
21 |
22 | def langragian_strain():
23 | kk = ('x', 'y', 'z'); C = "E"; Eij=[]
24 | eta = {
25 | "xx" : 11,
26 | "yy" : 22,
27 | "zz" : 33,
28 | "yz" : 23,
29 | "xz" : 13,
30 | "xy" : 12 }
31 | print ( "The Langragian strain in Voigt notation: ")
32 | print ( eta.items())
33 |
34 | for n in kk:
35 | for m in kk:
36 | Eij.append( (C + str(n) + str(m)) )
37 | ls = np.matrix(Eij).reshape(3,3)
38 | return ls
39 |
40 |
41 | def elastic_matrix_VASP_STRESS():
42 | while True:
43 | if not os.path.exists('OUTCAR'):
44 | print (' ERROR: OUTCAR does not exist here.')
45 | sys.exit(0)
46 |
47 | s=np.zeros((6,6))
48 | c=np.zeros((6,6))
49 | file = open("OUTCAR",'r')
50 | lines = file.readlines()
51 | file.close()
52 |
53 | for i in lines:
54 | if "TOTAL ELASTIC MODULI (kBar)" in i:
55 | ll=lines.index(i)
56 | if "LATTYP" in i:
57 | crystaltype=str(i.split()[3])
58 | print ("DETECTED CRYSTAL FROM OUTCAR:", crystaltype)
59 | print (" ")
60 | for i in range(0,6):
61 | l=lines[ll+3+i] # indexing a line in huge file
62 | word = l.split()
63 | s[i][:] = word[1:7]
64 | for j in range(0,6):
65 | c[i][j] = float(s[i][j])/10.0
66 |
67 | ##########-------------------stress tensor------------------
68 |
69 | Cij = np.matrix(c)
70 | np.set_printoptions(precision=4, suppress=True)
71 | print (Cij)
72 | print(Elastic_Matrix.print_Cij_Matrix() )
73 | print(Elastic_Matrix.langragian_strain() )
74 | print ("\nEigen Values of the matrix Cij:")
75 | evals = np.linalg.eigvals(Cij)
76 | if evals.all() > 0:
77 | print(evals)
78 | print("All Eigen values are positive")
79 |
80 | ##########-------------------Compliance tensor------------------
81 | ##########------------------- s_{ij} = C_{ij}^{-1}
82 |
83 | Sij = np.linalg.inv(Cij)
84 |
85 | #---------------------------- ELASTIC PROPERTIES -----------------------------------
86 |
87 | stability_test(Cij, crystaltype)
88 |
89 | ######## -----------------------------VOIGT-------------------------------
90 |
91 | '''Voigt bulk modulus (GPa)'''
92 |
93 | #9K_v = (C_{11}+C_{22}+C_{33}) + 2(C_{12} + C_{23} + C_{31})
94 | Bv = ((Cij[0,0] + Cij[1,1] + Cij[2,2]) + 2 * (Cij[0,1] + Cij[1,2] + Cij[2,0])) / 9.0
95 |
96 | '''Voigt shear modulus (GPa)'''
97 |
98 | #15*G_v = (C_{11}+C_{22}+C_{33}) - (C_{12} + C_{23} + C_{31}) + 3(C_{44} + C_{55} + C_{66})$
99 | Gv = ((Cij[0,0] + Cij[1,1] + Cij[2,2]) - (Cij[0,1] + Cij[1,2] + Cij[2,0])
100 | + 3 * (Cij[3,3] + Cij[4,4] + Cij[5,5]))/15.0
101 |
102 | ## Young's: Voigt
103 | Ev = (9*Bv*Gv)/(3*Bv + Gv)
104 |
105 | ## Poisson's ratio: Voigt
106 | NuV = (3*Bv - Ev)/(6*Bv)
107 |
108 | ######## -----------------------------REUSS-------------------------------
109 |
110 | # Reuss bulk modulus K_R $(GPa)$
111 | # 1/K_R = (s_{11}+s_{22}+s_{33}) + 2(s_{12} + s_{23} + s_{31})$
112 | Br = 1/((Sij[0,0] + Sij[1,1] + Sij[2,2]) + 2*(Sij[0,1] + Sij[1,2] + Sij[2,0]))
113 |
114 | # Reuss shear modulus G_v $(GPa)$
115 | # 15/G_R = 4*(s_{11}+s_{22}+s_{33}) - 4*(s_{12} + s_{23} + s_{31}) + 3(s_{44} + s_{55} + s_{66})$
116 | Gr = (4 * (Sij[0,0] + Sij[1,1] + Sij[2,2]) - 4*(Sij[0,1] + Sij[1,2] + Sij[2,0])
117 | + 3 * (Sij[3,3] + Sij[4,4] + Sij[5,5]))
118 | Gr = 15.0/Gr
119 |
120 | ## Young's: Reuss
121 | Er = (9*Br*Gr)/(3*Br + Gr)
122 |
123 | ## Poisson's ratio: Reuss
124 | NuR = (3*Br - Er)/(6*Br)
125 |
126 | ##########################################################################
127 |
128 | ######## -----------------------------Averages-------------------------------
129 |
130 | # #Hill bulk modulus K_{VRH}$ $(GPa)$
131 | # K_{VRH} = (K_R + K_v)/2
132 | B_H = (Bv + Br)/2
133 | #print ("VRH bulk modulus (GPa): %20.8f " %(B_H) )
134 |
135 | # Hill shear modulus G_{VRH}$ $(GPa)$
136 | # G_{VRH} = (G_R + G_v)/2
137 | G_H = (Gv + Gr)/2
138 | #print ("VRH shear modulus (GPa): %20.8f " %(G_H) )
139 |
140 | # Young modulus E = 9BG/(3B+G)
141 | #E_H = (9 * B_H * G_H) / (3 * B_H + G_H)
142 | E_H = (Ev + Er)/2
143 | #print ("Young modulus E : {:1.8s} {:20.8f}".format(" ",E_H) )
144 |
145 | # ### Isotropic Poisson ratio $\mu
146 | # $\mu = (3K_{VRH} - 2G_{VRH})/(6K_{VRH} + 2G_{VRH})$
147 | #nu_H = (3 * B_H - 2 * G_H) / (6 * B_H + 2 * G_H )
148 | nu_H = (NuV + NuR) / 2
149 | #print ("Isotropic Poisson ratio: {:15.8f} ".format(nu_H) )
150 |
151 | ## Elastic Anisotropy
152 | ## Zener anisotropy for cubic crystals only
153 | A = 2*(c44)/(c11-c12)
154 |
155 | # Universal Elastic Anisotropy AU
156 | AU = (Bv/Br) + 5*(Gv/Gr) - 6.0
157 |
158 | # C' tetragonal shear modulus
159 | C = (c11-c12)/2
160 |
161 | ratio_V = Bv/Gv
162 | ratio_R = Br/Gr
163 | print ("{:_^80}".format("GPa"))
164 | print ("{:25.8s} {:15.8s} {:15.8s} {:15.8s}".format(" ","Voigt", "Reuss ", "Hill") )
165 | print ("{:16.20s} {:15.3f} {:15.3f} {:15.3f}".format("Bulk Modulus",Bv, Br, B_H) )
166 | print ("{:16.20s} {:15.3f} {:15.3f} {:15.3f}".format("Shear Modulus",Gv, Gr, G_H) )
167 | print ("{:16.20s} {:15.3f} {:15.3f} {:15.3f}".format("Young Modulus",Ev, Er, E_H) )
168 | print ("{:-^80}".format("-"))
169 | print ("{:16.20s} {:15.3f} {:15.3f} {:15.3f}".format("Poisson ratio ", NuV, NuR, nu_H) )
170 | print ("{:16.20s} {:15.3f} {:15.3f} {:15.3f}({:5.3f})".format("B/G ratio ",Bv/Gv,Br/Gr, B_H/G_H, G_H/B_H) )
171 | print ("{:16.20s} {:15.3s} {:15.3s} {:15.3f}".format("Zener ratio Az",'','', A) )
172 | print ("{:16.20s} {:15.3s} {:15.3s} {:15.3f}".format("Avr ratio ",'','', (Gv-Gr)/(Gv+Gr)) )
173 | print ("{:16.20s} {:15.3s} {:15.3s} {:15.3f}".format("AU ",'','', AU) )
174 | print ("{:16.20s} {:15.3s} {:15.3s} {:15.3f}".format("Cauchy pressure ",'','', (c12-c44)) )
175 | print ("{:16.20s} {:15.3s} {:15.3s} {:15.3f}".format("C'tetra Shear ",'','', C) )
176 |
177 | print ("-"*80)
178 | return Sij
179 |
180 |
181 |
182 | def ductile_test(ratio):
183 | if(ratio > 1.75):
184 | return "ductile"
185 | else:
186 | return "brittle"
187 | ###
188 |
189 | def stability_test(matrix, crystaltype):
190 | c = np.copy(matrix)
191 |
192 | if(crystaltype =="cubic"):
193 | print ("Cubic crystal system \n")
194 | print ("Born stability criteria for the stability of cubic system are : \ [Ref- Mouhat and Coudert, PRB 90, 224104 (2014)] \n")
195 | print ("(i) C11 - C12 > 0; (ii) C11 + 2C12 > 0; (iii) C44 > 0 \n ")
196 |
197 | ## check (i) keep in mind list starts with 0, so c11 is stored as c00
198 | if(c[0][0] - c[0][1] > 0.0):
199 | print ("Condition (i) satisfied.")
200 | else:
201 | print ("Condition (i) NOT satisfied.")
202 |
203 | if(c[0][0] + 2*c[0][1] > 0.0):
204 | print ("Condition (ii) satified.")
205 | else:
206 | print ("Condition (ii) NOT satisfied.")
207 |
208 | if(c[3][3] > 0.0):
209 | print ("Condition (iii) satified.")
210 | else:
211 | print ("Condition (iii) NOT satisfied.")
212 |
213 | if(crystaltype =="hexagonal"):
214 | print ("Hexagonal crystal system \n")
215 | print ("Born stability criteria for the stability of hexagonal system are \: [Ref- Mouhat and Coudert, PRB 90, 224104 (2014)] \n")
216 | print ("(i) C11 - C12 > 0; (ii) 2*C13^2 < C33(C11 + C12); (iii) C44 > 0 \n ")
217 |
218 | ## check (i) keep in mind list starts with 0, so c11 is stored as c00
219 | if(c[0][0] - c[0][1] > 0.0):
220 | print ("Condition (i) satisfied.")
221 | else:
222 | print ("Condition (i) NOT satisfied.")
223 |
224 | if(2*(c[0][2]*c[0][2]) < c[2][2]*(c[0][0] + c[0][1])):
225 | print ("Condition (ii) satified.")
226 | else:
227 | print ("Condition (ii) NOT satisfied.")
228 |
229 | if(c[3][3] > 0.0):
230 | print ("Condition (iii) satified.")
231 | else:
232 | print ("Condition (iii) NOT satisfied.")
233 | ###
234 |
235 | def born_stability_criterion():
236 | print ("Born stability criteria for the stability of following systems \n")
237 | print ("Cubic crystal system.... \n")
238 | print ("(i) C11 - C12 > 0; (ii) C11 + 2C12 > 0; (iii) C44 > 0 \n ")
239 | print ("Hexagonal crystal system.... \n")
240 | print ("(i) C11 - C12 > 0; (ii) 2*C13^2 < C33(C11 + C12); (iii) C44 > 0 \n ")
241 | print ("Tetragonal crystal system.... \n")
242 | print ("(i) C11 - C12 > 0; (ii) 2*C13^2 < C33(C11 + C12); (iii) C44 > 0; (iv) C66 > 0; (v) 2C16^2 < C66*(C11-C12) \n ")
243 | print ("rhombohedral crystal system.... \n")
244 | print ("(i) C11 - C12 > 0; (ii) C13^2 < (1/2)*C33(C11 + C12); (iii) C14^2 < (1/2)*C44*(C11-C12) = C44*C66; (iv) C44 > 0; \n ")
245 | print ("orthorhombic crystal system.... \n")
246 | print ("(i) C11 > 0; (ii) C11*C22 > C12^2; (iii) C11*C22*C33 + 2C12*C13*C23 - C11*C23^2 - C22*C13^2 - C33*C12^2 > 0; (iv) C44 > 0; (v) C55 > 0 ; (vi) C66 > 0 \n")
247 | print ("Monoclinic crystal system.... \n")
248 | print ("[Ref- Mouhat and Coudert, PRB 90, 224104 (2014), and Wu et al. PRB 76, 054115 (2007)] \n")
249 | print ("(i) C11 > 0; (ii) C22 > 0; (iii) C33 > 0; (iv) C44 > 0; (v) C55 > 0 ; (vi) C66 > 0 ")
250 | print ("(vii) [C11 + C22 + C33 + 2*(C12 + C13 + C23)] > 0; (viii) C33*C55 - C35^2 > 0; (ix) C44*C66 - C46^2 > 0; (x) C22 + C33 - 2*C23 > 0 ")
251 | print ("(xi) C22*(C33*C55 - C35^2) + 2*C23*C25*C35 - (C23^2)*C55 - (C25^2)*C33 > 0 ")
252 | print ("(xii) 2*[C15*C25*(C33*C12 - C13*C23) + C15*C35*(C22*C13 - C12*C23) + C25*C35*(C11*C23 - C12*C13)] - [C15*C15*(C22*C33 - C23^2) + C25*C25*(C11*C33 - C13^2) + C35*C35*(C11*C22 - C12^2)] + C55*g > 0 ")
253 | print (" where, g = [C11*C22*C33 - C11*C23*C23 - C22*C13*C13 - C33*C12*C12 + 2*C12*C13*C23 ] " )
254 | ###
255 |
--------------------------------------------------------------------------------
/src/energy.py:
--------------------------------------------------------------------------------
1 | import os, sys, spglib
2 | import math, glob
3 | import numpy as np
4 | import subprocess
5 | from os import listdir
6 | from os.path import isfile, join
7 | from pathlib import Path
8 |
9 | ang2atomic = 1.889725988579 # 1 A = 1.889725988579 [a.u]
10 | Ang32Bohr3 = 6.74833304162 # 1 A^3 = 6.7483330371 [a.u]^3
11 | eV2Hartree = 0.036749309
12 |
13 | def energy_vs_volume():
14 | import fnmatch
15 | mypath = os.getcwd()
16 | os.system("rm energy-vs-volume energy-vs-strain")
17 | eV2Hartree=0.036749309
18 | Ang32Bohr3=6.74833304162
19 |
20 | E=[]; dir_list=[]; count = 0; dir_E=[];
21 | vol_cell=[]; strain_file=[]; strain_value=[] # strain_value is deformation
22 |
23 | print (" >>>>> Extracting Energy from directories <<<<<<")
24 | for entry in os.listdir(mypath):
25 | if not os.path.exists('strain-01'):
26 | print (' ERROR: strain-* does not exist here.')
27 | sys.exit(0)
28 | if fnmatch.fnmatchcase(entry,'strain-*'):
29 | f = open(entry,'r')
30 | lines = f.readline() #Read first line only
31 | strain_value.append( float(lines) )
32 | f.close()
33 | if os.path.isfile(os.path.join(mypath, entry)):
34 | strain_file.append(entry)
35 |
36 | if os.path.isdir(os.path.join(mypath, entry)):
37 | dir_list.append(entry)
38 |
39 | for file in os.listdir(entry):
40 | if file == "OUTCAR":
41 | filepath = os.path.join(entry, file)
42 | if not os.path.exists(filepath):
43 | print (' ERROR: OUTCAR does not exist here.')
44 | sys.exit(0)
45 | f = open(filepath,'r')
46 | lines = f.readlines()
47 | f.close()
48 |
49 | for i in lines:
50 | if " free energy TOTEN =" in i:
51 | m=float(i.split()[4])
52 | if " volume of cell :" in i:
53 | v=float(i.split()[4])
54 | vol_cell.append(v)
55 | E.append(m)
56 | count+=1
57 | print("# of folders detected: ", count)
58 | print ("Directory :%10.6s %14s %18s %25.20s " % ("Folder", "Energy(eV)", "Vol_of_cell(A^3)", "strain_deformation" ))
59 |
60 | for i in range(math.floor(count/2)): # 0 to 4
61 | print ("Folder name: %10.10s %16.8f %16.8f %16.12s %14.4f" %(dir_list[i], E[i], vol_cell[i], strain_file[i], strain_value[i] ))
62 | if (bool(math.floor(count/2))):
63 | i = math.floor(count/2)
64 | print(Back.GREEN + 'Folder name: %10.10s %16.8f %16.8f %16.12s %14.4f <--Ref' % (dir_list[i], E[i], vol_cell[i], strain_file[i], strain_value[i] ))
65 | print(Style.RESET_ALL, end="")
66 | for i in range(math.ceil(count/2), count, 1):
67 | print ("Folder name: %10.10s %16.8f %16.8f %16.12s %14.4f" %(dir_list[i], E[i], vol_cell[i], strain_file[i], strain_value[i] ))
68 | #rc = subprocess.Popen(['bash', 'extract_energy.sh'])
69 |
70 | print (colored('ENERGIES & VOLUMES ARE WRITTEN IN ATOMIC UNITS TO A FILE ','yellow'), end = '\n', flush=True)
71 | print (colored('IT WILL BE READ BY ELASTIC SCRIPTS FOR POSTPROCESSING eV-->Ha; A^3-->Bohr^3','yellow'), end = '\n', flush=True)
72 |
73 | file = open("energy-vs-volume",'w')
74 | for i in range(count):
75 | file.write ("%14.6f %14.6f\n" %(vol_cell[i] * Ang32Bohr3, E[i] * eV2Hartree))
76 | file.close()
77 |
78 | file = open("energy-vs-strain",'w')
79 | for i in range(count):
80 | file.write ("%12.6f %14.6f\n" %(strain_value[i], E[i] * eV2Hartree))
81 | file.close()
82 | ###
--------------------------------------------------------------------------------
/src/evaluate_manually_Elastic_constants.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | '''
4 | # | Elastic Properties
5 | # | Code for calculating mechanical properties
6 | # from Energy vs Strain relationship
7 | #
8 | # Equations can be found at Golesorkhtabar, R., Pavone, P., Spitaler, J.,
9 | # Puschnig, P. & Draxl, C. ElaStic: A tool for calculating second-order elastic
10 | # constants from first principles. Comput. Phys. Commun. 184, 1861–1873 (2013).
11 | OR http://wolf.ifj.edu.pl/elastic/index.html
12 | https://www.materialsproject.org/wiki/index.php/Elasticity_calculations
13 | '''
14 |
15 | import numpy as np
16 | import math, scipy, os, sys
17 | from numpy import linalg as LA
18 | import statistics as st
19 | import ase.io
20 |
21 | np.set_printoptions(precision=3)
22 | CRED = '\033[91m';CEND = '\033[0m'
23 | CYEL = '\033[33m'; CEND = '\033[0m'
24 | CPIN = '\033[46m';
25 |
26 | def mechanical_properties():
27 | # Elastic constants have been obtained from SOEC approach mentioned in the above
28 | # paper. For three distortions of the crystal three constants are extracted:
29 | # C11, C44, C12. For cubic system the matrix is symmetric.
30 |
31 | print (CRED + "Values has to be supplied in the script::" + CEND)
32 |
33 | ########################## INPUT PARAMETERS assuming cubic #######################
34 |
35 | c11=c22=c33=123.22 ;
36 | c44=c55=c66=47
37 | B = 120
38 | #c12=c21=c13=c31=c23=c32=(1/6) * (9 * B - 3 * c11)
39 | c12=c21=c13=c31=c23=c32=94.22
40 | c14=c15=c16=c24=c25=c26=c34=c35=c36=0
41 | c45=c46=c56=0
42 | ################################################################################
43 |
44 | print (CRED +"{:_^80s}".format("The STIFNESS MATRIX Cij is:")+ CEND)
45 | Cij=[ [c11,c12,c13,c14,c15,c16],
46 | [c21,c22,c23,c24,c25,c26],
47 | [c31,c32,c33,c34,c35,c36],
48 | [0 ,0 ,0 ,c44,c45,c46],
49 | [0 ,0 ,0 ,0 ,c55,c56],
50 | [0 ,0 ,0 ,0 ,0 ,c66] ]
51 | Cij=np.matrix(Cij).reshape((6,6))
52 | print (Cij)
53 |
54 | ########------------Calculate variance and Mean of the Cij -----------
55 | # ONLY for C11 , C22 , C33
56 | Cij_stat = [ Cij[0,0] , Cij[1,1] , Cij[2,2] ]
57 | print (">>>", (Cij_stat) )
58 | STD = np.std(Cij_stat); Var = np.var(Cij_stat) ; Mean = np.mean(Cij_stat)
59 | print ("{:6.3s} {:6.3s} {:6.3s}".format("C", "STD", "Var") )
60 | print ("{:6.3f} {:6.3f} {:6.3f}".format(Mean, STD/np.sqrt(3), Var) )
61 |
62 | ######## ------------------------------------------------------------
63 |
64 | evals, eigenvec = LA.eig(Cij)
65 | print ("-"*40)
66 | print("Eigenvalues are: ", evals>0)
67 | print ("-"*40)
68 | # ### Compliance tensor s_{ij}$ $(GPa^{-1})$
69 | # s_{ij} = C_{ij}^{-1}$
70 |
71 | print (CRED +"{:_^80s}".format("The COMPLIANCE MATRIX Sij is:")+ CEND)
72 | Sij = np.linalg.inv(Cij)
73 |
74 | print ("{} ".format(Sij))
75 | print ("-"*80)
76 |
77 | ######## -----------------------------VOIGT-------------------------------
78 |
79 | '''Voigt bulk modulus (GPa)'''
80 |
81 | #9K_v = (C_{11}+C_{22}+C_{33}) + 2(C_{12} + C_{23} + C_{31})
82 | Bv = ((Cij[0,0] + Cij[1,1] + Cij[2,2]) + 2 * (Cij[0,1] + Cij[1,2] + Cij[2,0])) / 9.0
83 |
84 | '''Voigt shear modulus (GPa)'''
85 |
86 | #15*G_v = (C_{11}+C_{22}+C_{33}) - (C_{12} + C_{23} + C_{31}) + 3(C_{44} + C_{55} + C_{66})$
87 | Gv = ((Cij[0,0] + Cij[1,1] + Cij[2,2]) - (Cij[0,1] + Cij[1,2] + Cij[2,0])
88 | + 3 * (Cij[3,3] + Cij[4,4] + Cij[5,5]))/15.0
89 |
90 | ## Young's: Voigt
91 | Ev = (9*Bv*Gv)/(3*Bv + Gv)
92 |
93 | ## Poisson's ratio: Voigt
94 | NuV = (3*Bv - Ev)/(6*Bv)
95 |
96 | ######## -----------------------------REUSS-------------------------------
97 |
98 | # Reuss bulk modulus K_R $(GPa)$
99 | # 1/K_R = (s_{11}+s_{22}+s_{33}) + 2(s_{12} + s_{23} + s_{31})$
100 | Br = 1/((Sij[0,0] + Sij[1,1] + Sij[2,2]) + 2*(Sij[0,1] + Sij[1,2] + Sij[2,0]))
101 |
102 | # Reuss shear modulus G_v $(GPa)$
103 | # 15/G_R = 4*(s_{11}+s_{22}+s_{33}) - 4*(s_{12} + s_{23} + s_{31}) + 3(s_{44} + s_{55} + s_{66})$
104 | Gr = (4 * (Sij[0,0] + Sij[1,1] + Sij[2,2]) - 4*(Sij[0,1] + Sij[1,2] + Sij[2,0])
105 | + 3 * (Sij[3,3] + Sij[4,4] + Sij[5,5]))
106 | Gr = 15.0/Gr
107 |
108 | ## Young's: Reuss
109 | Er = (9*Br*Gr)/(3*Br + Gr)
110 |
111 | ## Poisson's ratio: Reuss
112 | NuR = (3*Br - Er)/(6*Br)
113 |
114 | ##########################################################################
115 |
116 | ######## -----------------------------Averages-------------------------------
117 |
118 | # #Hill bulk modulus K_{VRH}$ $(GPa)$
119 | # K_{VRH} = (K_R + K_v)/2
120 | B_H = (Bv + Br)/2
121 | #print ("VRH bulk modulus (GPa): %20.8f " %(B_H) )
122 |
123 | # Hill shear modulus G_{VRH}$ $(GPa)$
124 | # G_{VRH} = (G_R + G_v)/2
125 | G_H = (Gv + Gr)/2
126 | #print ("VRH shear modulus (GPa): %20.8f " %(G_H) )
127 |
128 | # Young modulus E = 9BG/(3B+G)
129 | #E_H = (9 * B_H * G_H) / (3 * B_H + G_H)
130 | E_H = (Ev + Er)/2
131 | #print ("Young modulus E : {:1.8s} {:20.8f}".format(" ",E_H) )
132 |
133 | # ### Isotropic Poisson ratio $\mu
134 | # $\mu = (3K_{VRH} - 2G_{VRH})/(6K_{VRH} + 2G_{VRH})$
135 | #nu_H = (3 * B_H - 2 * G_H) / (6 * B_H + 2 * G_H )
136 | nu_H = (NuV + NuR) / 2
137 | #print ("Isotropic Poisson ratio: {:15.8f} ".format(nu_H) )
138 |
139 | ## Elastic Anisotropy
140 | ## Zener anisotropy for cubic crystals only
141 | A = 2*(c44)/(c11-c12)
142 |
143 | # Universal Elastic Anisotropy AU
144 | AU = (Bv/Br) + 5*(Gv/Gr) - 6.0
145 |
146 | # C' tetragonal shear modulus
147 | C = (c11-c12)/2
148 |
149 | ratio_V = Bv/Gv
150 | ratio_R = Br/Gr
151 |
152 | print ("{:30.8s} {:20.8s} {:20.8s} {:20.8s}".format(" ","Voigt", "Reuss ", "Hill") )
153 | print ("{:_^80}".format("GPa"))
154 | print ("{:16.20s} {:20.3f} {:20.3f} {:20.3f}".format("Bulk Modulus",Bv, Br, B_H) )
155 | print ("{:16.20s} {:20.3f} {:20.3f} {:20.3f}".format("Shear Modulus",Gv, Gr, G_H) )
156 | print ("{:16.20s} {:20.3f} {:20.3f} {:20.3f}".format("Young Modulus",Ev, Er, E_H) )
157 | print ("{:16.20s} {:20.3f} {:20.3f} {:20.3f}".format("Poisson ratio ", NuV, NuR, nu_H) )
158 | print ("{:16.20s} {:20.3f} {:20.3f} {:20.3f}({:5.3f})".format("B/G ratio ",Bv/Gv,Br/Gr, B_H/G_H, G_H/B_H) )
159 | print ("{:16.20s} {:20.3s} {:20.3s} {:20.3f}".format("Avr ratio ",'','', (Gv-Gr)/(Gv+Gr)) )
160 | print ("{:16.20s} {:20.3s} {:20.3s} {:20.3f}".format("Zener ratio ",'','', A) )
161 | print ("{:16.20s} {:20.3s} {:20.3s} {:20.3f}".format("AU ",'','', AU) )
162 | print ("{:16.20s} {:20.3s} {:20.3s} {:20.3f}".format("Cauchy pressure ",'','', (c12-c44)) )
163 | print ("{:16.20s} {:20.3s} {:20.3s} {:20.3f}".format("C'tetra Shear ",'','', C) )
164 |
165 | print ("-"*80)
166 | return Sij
167 |
168 | def elastic_anisotropy(S):
169 | #Elastic anisotropy of crystals is important since it correlates with the
170 | #possibility to induce micro-cracks in materials
171 | v=[]
172 | f = open('CONTCAR','r')
173 | lines = f.readlines()
174 | f.close()
175 |
176 | s = float(lines[1])
177 | for i in range(2,5,1):
178 | l = s*float(lines[i].split()[0]), s*float(lines[i].split()[1]), s*float(lines[i].split()[2])
179 | v.append( l )
180 | v = np.mat(v)
181 | print("Reading lattice vectors into matrix form")
182 | print(v[:])
183 |
184 | # l1, l2, l3 are the direction cosines
185 | n1 = np.linalg.norm(v[0])
186 | n2 = np.linalg.norm(v[1])
187 | n3 = np.linalg.norm(v[2])
188 | l1 = math.degrees(math.acos(np.dot(v[0],np.transpose(v[1]))/(n1*n2)))
189 | l2 = math.degrees(math.acos(np.dot(v[1],np.transpose(v[2]))/(n2*n3)))
190 | l3 = math.degrees(math.acos(np.dot(v[2],np.transpose(v[0]))/(n3*n1)))
191 | print ("l's are direction Cosines:: l1={:6.6f} l2={:6.6f} l3={:6.6f}".format(l1, l2, l3) )
192 | B = 1/(3*(S[0,0] + 2*S[0,1] ))
193 | G = 1/( S[3,3] +4*(S[0,0] - S[0,1] -1/(2*S[3,3]) ) * (l1**2 * l2**2 + l2**2 * l3**2 + l1**2 * l3**2) )
194 | E = 1/( S[0,0] -2*(S[0,0] - S[0,1] -1/(2*S[3,3]) ) * (l1**2 * l2**2 + l2**2 * l3**2 + l1**2 * l3**2) )
195 | print ("B={:6.6f} G={:6.6f} E={:6.6f}".format(B, G, E) )
196 |
197 | ############
198 | def local_lattice_distortion_DEF1():
199 | #print ("The lattice distortion in paracrystals is measured by the lattice distortion parameter g")
200 | #print (Back.YELLOW + "Wang, S. Atomic structure modeling of multi-principal-element alloys by the principle")
201 | #print (Back.YELLOW + "of maximum entropy. Entropy 15, 5536–5548 (2013).")
202 | print (">"*10,"HUME ROTHERY RULE")
203 | C_i=C=0.2 ; r_avg = 0.0; del_sum=0.0
204 | elements = ["Nb", "Hf", "Ta", "Ti", "Zr"]
205 | eta = {
206 | "Nb" : 1.98,
207 | "Hf" : 2.08,
208 | "Ta" : 2.00,
209 | "Ti" : 1.76,
210 | "Zr" : 2.06, }
211 |
212 | print (" {element: atomic radius}")
213 | print (eta)
214 |
215 | for i in elements:
216 | r_avg = r_avg + C * eta[i]
217 |
218 | for j in elements:
219 | del_sum = del_sum + C * ( 1 - float(eta[j]) / r_avg )**2
220 | del_sum = 100 * np.sqrt(del_sum)
221 | print("HEA_atomic_size_mismatch: \u03B4={}".format(del_sum))
222 |
223 | ############
224 | def local_lattice_distortion_DEF2():
225 | print (">"*10,"local_lattice_distortion_DEF2")
226 | print (" Song, H. et al. Local lattice distortion in high-entropy alloys.")
227 | print (" Phys. Rev. Mater. 1, 23404 (2017).")
228 | print (" (***) Different definition of the atomic radius for the description ")
229 | print (" of the local lattice distortion in HEAs")
230 |
231 | if not os.path.exists('POSCAR' and 'CONTCAR'):
232 | print ('>>> ERROR: POSCAR & CONTCAR does not exist (Both should be in the same directory)')
233 | sys.exit(0)
234 | print('Reading POSCAR and CONTCAR ... \n')
235 |
236 | x = []; y =[]; z=[]
237 | xp =[]; yp = []; zp = []; temp=0
238 |
239 | f = open('POSCAR','r')
240 | lines_poscar = f.readlines()
241 | f.close()
242 |
243 | f = open('CONTCAR','r')
244 | lines_contcar = f.readlines()
245 | f.close()
246 |
247 | file_P = ase.io.read('POSCAR')
248 | pos = file_P.get_cell_lengths_and_angles()
249 | print (CRED + "POSCAR=>Length&Angles->{}".format(pos) + CEND)
250 | file_C = ase.io.read('CONTCAR')
251 | con = file_C.get_cell_lengths_and_angles()
252 | print (CRED + "CONTCAR=>Length&Angles->{}".format(con) + CEND)
253 | print ("Cell vectors difference:: ",con-pos)
254 |
255 | sum_atoms = lines_poscar[6].split() ### reading 7th lines for reading # of atoms
256 | sum_atoms = [int(i) for i in sum_atoms]
257 | sum_atoms = sum(sum_atoms)
258 |
259 | for i in lines_poscar:
260 | if "Direct" in i:
261 | lp=lines_poscar.index(i)
262 | for j in lines_contcar:
263 | if "Direct" in j:
264 | lc=lines_contcar.index(j)
265 |
266 | for i in range(sum_atoms):
267 | x, y, z = lines_poscar[lp+1+i].split()
268 | xc, yc, zc = lines_contcar[lp+1+i].split()
269 | x = float(x); y = float(y); z = float(z)
270 | xc = float(xc); yc = float(yc); zc = float(zc)
271 | temp = temp + np.sqrt( (x-xc)**2 + (y-yc)**2 + (z-zc)**2 )
272 | temp = temp/sum_atoms
273 | print("local lattice distortion (LLD): \u0394d={}".format(temp))
274 |
275 | if __name__ == "__main__":
276 |
277 | S = mechanical_properties()
278 | print ("_"*30,"Elastic Anisotropy Analysis","_"*30)
279 | elastic_anisotropy(S)
280 |
281 | print ("")
282 | print ("_"*30,"Lattice Distortion Analysis","_"*30)
283 | #local_lattice_distortion_DEF1()
284 | print ("")
285 | local_lattice_distortion_DEF2()
286 |
287 |
288 |
289 |
--------------------------------------------------------------------------------
/src/fit_energy_vs_vol.py:
--------------------------------------------------------------------------------
1 | from sys import stdin
2 | import matplotlib.pyplot as plt
3 | import matplotlib.ticker as ptk
4 | import pylab as pyl
5 | import matplotlib.style
6 |
7 | bohr_radius = 0.529177
8 | bohr32ang3 = 0.14818474347
9 | joule2hartree = 4.3597482
10 | joule2rydberg = joule2hartree/2.
11 | unitconv = joule2hartree/bohr_radius**3*10.**3
12 |
13 | def energy_vs_volume():
14 | import fnmatch
15 | mypath = os.getcwd()
16 | os.system("rm energy-vs-volume energy-vs-strain")
17 | eV2Hartree=0.036749309
18 | Ang32Bohr3=6.74833304162
19 |
20 | E=[]; dir_list=[]; count = 0; dir_E=[];
21 | vol_cell=[]; strain_file=[]; strain_value=[] # strain_value is deformation
22 |
23 | print (" >>>>> Extracting Energies from directories <<<<<<")
24 | for entry in os.listdir(mypath):
25 | if not os.path.exists('strain-01'):
26 | print (' ERROR: strain-* files does not exist. create a strain file for each deformation values.')
27 | sys.exit(0)
28 | if fnmatch.fnmatchcase(entry,'strain-*'):
29 | f = open(entry,'r')
30 | lines = f.readline() #Read first line only
31 | strain_value.append( float(lines) )
32 | f.close()
33 | if os.path.isfile(os.path.join(mypath, entry)):
34 | strain_file.append(entry)
35 |
36 | if os.path.isdir(os.path.join(mypath, entry)):
37 | dir_list.append(entry)
38 |
39 | for file in os.listdir(entry):
40 | if file == "OUTCAR":
41 | filepath = os.path.join(entry, file)
42 | if not os.path.exists(filepath):
43 | print (' ERROR: OUTCAR does not exist here.')
44 | sys.exit(0)
45 | f = open(filepath,'r')
46 | lines = f.readlines()
47 | f.close()
48 |
49 | for i in lines:
50 | if " free energy TOTEN =" in i:
51 | m=float(i.split()[4])
52 | if " volume of cell :" in i:
53 | v=float(i.split()[4])
54 | vol_cell.append(v)
55 | E.append(m)
56 | count+=1
57 | print("# of folders detected: ", count)
58 | print ("Directory :%10.6s %14s %18s %25.20s " % ("Folder", "Energy(eV)", "Vol_of_cell(A^3)", "strain_deformation" ))
59 |
60 | for i in range(math.floor(count/2)): # 0 to 4
61 | print ("Folder name: %10.10s %16.8f %16.8f %16.12s %14.4f" %(dir_list[i], E[i], vol_cell[i], strain_file[i], strain_value[i] ))
62 | if (bool(math.floor(count/2))):
63 | i = math.floor(count/2)
64 | print(Back.GREEN + 'Folder name: %10.10s %16.8f %16.8f %16.12s %14.4f <--Ref' % (dir_list[i], E[i], vol_cell[i], strain_file[i], strain_value[i] ))
65 | print(Style.RESET_ALL, end="")
66 | for i in range(math.ceil(count/2), count, 1):
67 | print ("Folder name: %10.10s %16.8f %16.8f %16.12s %14.4f" %(dir_list[i], E[i], vol_cell[i], strain_file[i], strain_value[i] ))
68 | #rc = subprocess.Popen(['bash', 'extract_energy.sh'])
69 |
70 | print (colored('ENERGIES & VOLUMES ARE WRITTEN IN ATOMIC UNITS TO A FILE ','yellow'), end = '\n', flush=True)
71 | print (colored('IT WILL BE READ BY ELASTIC SCRIPTS FOR POSTPROCESSING eV-->Ha; A^3-->Bohr^3','yellow'), end = '\n', flush=True)
72 |
73 | file = open("energy-vs-volume",'w')
74 | for i in range(count):
75 | file.write ("%14.6f %14.6f\n" %(vol_cell[i] * Ang32Bohr3, E[i] * eV2Hartree))
76 | file.close()
77 |
78 | file = open("energy-vs-strain",'w')
79 | for i in range(count):
80 | file.write ("%12.6f %14.6f\n" %(strain_value[i], E[i] * eV2Hartree))
81 | file.close()
82 | ###
83 |
84 | '''
85 | #####---------------------------------------------------------
86 | # 5- FITTING ENERGY vs VOLUME CURVE from VASP OUTCAR file
87 | #####---------------------------------------------------------
88 | '''
89 |
90 | def fitting_energy_vs_volume_curve():
91 | from sys import stdin
92 | import matplotlib.pyplot as plt
93 | import matplotlib.ticker as ptk
94 | import pylab as pyl
95 | import matplotlib.style
96 |
97 | bohr_radius = 0.529177
98 | bohr32ang3 = 0.14818474347
99 | joule2hartree = 4.3597482
100 | joule2rydberg = joule2hartree/2.
101 | unitconv = joule2hartree/bohr_radius**3*10.**3
102 |
103 | if (str(os.path.exists('energy-vs-volume'))=='False'):
104 | sys.exit("ERROR: file energy-vs-volume not found!\n")
105 | energy = []; volume = []
106 | read_energy = open('energy-vs-volume',"r")
107 |
108 | while True:
109 | line = read_energy.readline()
110 | line = line.strip()
111 | if len(line) == 0: break
112 | energy.append(float(line.split()[1]))
113 | volume.append(float(line.split()[0]))
114 | volume,energy=sortvolume(volume,energy)
115 |
116 | print ("===============================")
117 | print ("Lattice symmetry codes" )
118 | print ("-------------------------------")
119 | print ("1 --> Simple cubic (sc)" )
120 | print ("2 --> Body-centered cubic (bcc)")
121 | print ("3 --> Face-centered cubic (fcc)")
122 | print ("-------------------------------")
123 | print ("0 --> Others")
124 | print ("===============================\n")
125 | scheck = input("Enter lattice symmetry code [default 0] >>>> ").replace(" ", "")
126 |
127 | '''
128 | These factors are for the conversion from the conventional cell to primitive cell
129 | BCC: (a^3)/2 primitive cell volume
130 | FCC: (a^3)/4 primitive cell volume
131 |
132 | '''
133 |
134 | isym = 0; factor = 1
135 | if ( scheck == "1" ): isym = 1 ; factor=1 ; slabel = "(sc) "
136 | if ( scheck == "2" ): isym = 2 ; factor=2 ; slabel = "(bcc)"
137 | if ( scheck == "3" ): isym = 3 ; factor=4 ; slabel = "(fcc)"
138 | print ("Verification lattice symmetry code >>>> %d " %(isym) )
139 | #-------------------------------------------------------------------------------
140 | print ('%s' %('-'*105) )
141 | print ('%20.25s %29.30s %21.30s %11.12s %18.30s' %("Opt_vol Bohr^3 (Ang^3)", "Lattice_const Bohr (A)", "Bulk_modulus [GPa]", "Log(chi)", "Polynomial_order"))
142 | print ('%s' %('-'*105) )
143 | for order_of_fit in range(2, 11): #order of polynomial fitting
144 | if order_of_fit % 2 == 0:
145 | order_of_fit = int(order_of_fit)
146 | fitr = np.polyfit(volume,energy,order_of_fit)
147 | curv = np.poly1d(fitr)
148 | oned = np.poly1d(np.polyder(fitr,1)) #
149 | bulk = np.poly1d(np.polyder(fitr,2))
150 | bpri = np.poly1d(np.polyder(fitr,3)) #
151 | vmin = np.roots(np.polyder(fitr))
152 | dmin=[]
153 | for i in range(len(vmin)):
154 | if (abs(vmin[i].imag) < 1.e-10):
155 | if (volume[0] <= vmin[i] and vmin[i] <= volume[-1]):
156 | if(bulk(vmin[i]) > 0): dmin.append(vmin[i].real)
157 |
158 | xvol = np.linspace(volume[0],volume[-1],100)
159 | if (len(dmin) > 1): print ("WARNING: Multiple minima are found!\n")
160 | if (len(dmin) == 0): print ("WARNING: No minimum in the given xrange!\n")
161 |
162 | chi = 0
163 | for i in range(len(energy)):
164 | chi=chi+(energy[i]-curv(volume[i]))**2
165 | chi=math.sqrt(chi)/len(energy)
166 | #-------------------------------------------------------------------------------
167 | for i in range(len(dmin)):
168 | x0=dmin[len(dmin)-1-i]
169 | v0=dmin[len(dmin)-1-i]
170 | a0=(factor*v0)**(0.33333333333)
171 | b0=bulk(v0)*v0*unitconv
172 | #if (isym > 0): print ('Lattice constant = %5s %12.6f %12.6f' %(slabel,a0, a0*bohr_radius), '[Bohr, Angstrom]')
173 | if (isym > 0):
174 | print("%12.6f (%11.6f) %12.6f (%9.6f) %17.6f %13.2f %10d\n" %(v0, v0*bohr32ang3, a0, a0*bohr_radius, b0, math.log10(chi), order_of_fit), end="")
175 | else:
176 | print("%12.6f(%12.6f) %12.6f(%12.6f) %17.6f %13.2f %10d\n" %(v0, v0*bohr32ang3, a0, a0*bohr_radius, b0, math.log10(chi), order_of_fit), end="")
177 | print ('%s' %('-'*105) )
178 | #-------------------------------------------------------------------------------
179 |
180 | xlabel = u'Volume [Bohr\u00B3]'; ylabel = r'Energy [Ha]'
181 |
182 | fontlabel=20
183 | fonttick=14
184 |
185 | params = {'ytick.minor.size': 6,
186 | 'xtick.major.pad': 8,
187 | 'ytick.major.pad': 4,
188 | 'patch.linewidth': 2.,
189 | 'axes.linewidth': 2.,
190 | 'lines.linewidth': 1.8,
191 | 'lines.markersize': 8.0,
192 | 'axes.formatter.limits': (-4, 6)}
193 |
194 | plt.rcParams.update(params)
195 | plt.subplots_adjust(left=0.21, right=0.93,
196 | bottom=0.18, top=0.88,
197 | wspace=None, hspace=None)
198 |
199 | yfmt = ptk.ScalarFormatter(useOffset=True,useMathText=True)
200 |
201 | figure = plt.figure(1, figsize=(9,9))
202 | ax = figure.add_subplot(111)
203 | ax.text(0.5,-0.18,xlabel,size=fontlabel, transform=ax.transAxes,ha='center',va='center')
204 | ax.text(-0.25,0.5,ylabel,size=fontlabel, transform=ax.transAxes,ha='center',va='center',rotation=90)
205 | for line in ax.get_xticklines() + ax.get_yticklines():
206 | line.set_markersize(6)
207 | line.set_markeredgewidth(2)
208 | plt.xticks(size=fonttick)
209 | plt.yticks(size=fonttick)
210 | pyl.grid(True)
211 | plt.plot(xvol,curv(xvol),'b-',label='n='+str(order_of_fit)+' fit')
212 | plt.plot(volume,energy,'go',label='calculated')
213 | plt.plot(dmin,curv(dmin),'ro')
214 | plt.legend(loc=9,borderaxespad=.8,numpoints=1)
215 |
216 | ymax = max(max(curv(xvol)),max(energy))
217 | ymin = min(min(curv(xvol)),min(energy))
218 | dxx = abs(max(xvol)-min(xvol))/18
219 | dyy = abs(ymax-ymin)/18
220 | ax.yaxis.set_major_formatter(yfmt)
221 | ax.set_xlim(min(xvol)-dxx,max(xvol)+dxx)
222 | ax.set_ylim(ymin-dyy,ymax+dyy)
223 |
224 | ax.xaxis.set_major_locator(MaxNLocator(7))
225 |
226 | plt.savefig('PLOT.png',orientation='portrait',format='png')
227 | ###
228 |
229 |
230 | def sortvolume(s,e):
231 | ss=[]; ee=[]; ww=[]
232 | for i in range(len(s)): ww.append(s[i])
233 | ww.sort()
234 | for i in range(len(s)):
235 | ss.append(s[s.index(ww[i])])
236 | ee.append(e[s.index(ww[i])])
237 | return ss, ee
238 | ###
--------------------------------------------------------------------------------
/src/poscar.py:
--------------------------------------------------------------------------------
1 | import os, sys, spglib
2 | import math, glob
3 | import numpy as np
4 | import subprocess
5 | from os import listdir
6 | from os.path import isfile, join
7 | from pathlib import Path
8 |
9 | ang2atomic = 1.889725988579 # 1 A = 1.889725988579 [a.u]
10 | Ang32Bohr3 = 6.74833304162 # 1 A^3 = 6.7483330371 [a.u]^3
11 |
12 | def poscar():
13 | if not os.path.exists('POSCAR'):
14 | print (' ERROR: POSCAR does not exist here.')
15 | sys.exit(0)
16 | print('Reading POSCAR/CONTCAR: \n')
17 | pos = []; kk = []; lattice = []; sum = 0
18 | file = open('POSCAR','r') or open('CONTCAR','r')
19 |
20 | firstline = file.readline() # IGNORE first line comment
21 | secondfline = file.readline() # scale
22 | Latvec1 = file.readline()
23 | #print ("Lattice vector 1:", (Latvec1), end = '')
24 | Latvec2 = file.readline()
25 | #print ("Lattice vector 2:", (Latvec2), end = '')
26 | Latvec3 = file.readline()
27 | #print ("Lattice vector 3:", (Latvec3), end = '')
28 | elementtype=file.readline().split()
29 | if (str.isdigit(elementtype[0])):
30 | sys.exit("VASP 4.X POSCAR detected. Please add the atom types")
31 | print ("Types of elements:", str(elementtype), end = '\n')
32 | numberofatoms=file.readline()
33 | Coordtype=file.readline()
34 | print ("Coordtype:", (Coordtype), end = '\n')
35 |
36 | ########################---------------------------------------------------------
37 | print (">>>>>>>>>-------------------# of Atoms--------------------")
38 | nat = numberofatoms.split()
39 | nat = [int(i) for i in nat]
40 | print (nat)
41 | for i in nat:
42 | sum = sum + i
43 | numberofatoms = sum
44 | print ("Number of atoms:", (numberofatoms), end = '\n')
45 | ########################---------------------------------------------------------
46 |
47 | #print (">>>>>>>>>---------------Atomic positions------------------")
48 | for x in range(int(numberofatoms)):
49 | coord = file.readline().split()
50 | coord = [float(i) for i in coord]
51 | pos = pos + [coord]
52 | pos = np.array(pos)
53 | #print (pos)
54 |
55 | file.close()
56 |
57 | ########################---------------------------------------------------------
58 | a=[]; b=[]; c=[];
59 | Latvec1=Latvec1.split()
60 | Latvec2=Latvec2.split()
61 | Latvec3=Latvec3.split()
62 | for ai in Latvec1:
63 | a.append(float(ai))
64 | for bi in Latvec2:
65 | b.append(float(bi))
66 | for ci in Latvec3:
67 | c.append(float(ci))
68 |
69 | ########################---------------------------------------------------------
70 |
71 | print (">>>>>>>>>---------------Lattice vectors distortions-----------------")
72 | lattice = np.array([a] + [b] + [c])
73 | #determinant = np.linalg.det(lattice)
74 | lld = local_lattice_distortion(a,b,c)
75 | print ("lattice distortion parameter g: {}".format(lld) )
76 |
77 | print (">>>>>>>>>---------------Space group-----------------")
78 | print (" ")
79 | sp, symm = space_group_analyse(lattice, pos)
80 | print ( sp, symm )
81 | print (" ")
82 | print (">>>>>>>>>--------------------------------------------")
83 | print ('a=', a)
84 | print ('b=', b)
85 | print ('c=', c)
86 | gamma = math.degrees(math.acos(np.dot(a,b) / (np.linalg.norm(a) * np.linalg.norm(b))))
87 | alpha = math.degrees(math.acos(np.dot(b,c) / (np.linalg.norm(b) * np.linalg.norm(c))))
88 | beta = math.degrees(math.acos(np.dot(a,c) / (np.linalg.norm(a) * np.linalg.norm(c))))
89 | print ("ratio c/a = %2f" %(np.linalg.norm(c) / np.linalg.norm(a) ))
90 | print ("-"*100)
91 | print ('||a||=%2f, \u03B1= %2f' %(np.linalg.norm(a), alpha))
92 | print ('||b||=%2f \u03B2= %2f' %(np.linalg.norm(b), beta))
93 | print ('||c||=%2f \u03B3= %2f' %(np.linalg.norm(c), gamma))
94 | print ('Vol= %4.8f A^3; %4.8f [a.u]^3' %(volume(a,b,c,math.radians(alpha),math.radians(beta),math.radians(gamma) )))
95 | ###
96 |
97 | def local_lattice_distortion(a1,b1,c1):
98 | #print ("The lattice distortion in paracrystals is measured by the lattice distortion parameter g")
99 | #print (Back.YELLOW + "Wang, S. Atomic structure modeling of multi-principal-element alloys by the principle")
100 | #print (Back.YELLOW + "of maximum entropy. Entropy 15, 5536–5548 (2013).")
101 | #print ("")
102 | a=np.linalg.norm(a1); b=np.linalg.norm(b1); c=np.linalg.norm(c1)
103 | d = np.array([a,b,c])
104 | d_mean = np.mean(d); d_std = np.std(d)
105 | d_square_mean = (a**2 + b**2 + c**2)/3
106 | g = np.sqrt( d_square_mean/(d_mean)**2 - 1 )
107 | return g
108 | ###
109 | # Song, H. et al. Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 23404 (2017).
110 | # Senkov, O. N. & Miracle, D. B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 36, 2183–2198 (2001).
111 | # Takeuchi, A. et al. Entropies in alloy design for high-entropy and bulk glassy alloys. Entropy 15, 3810–3821 (2013).
112 |
113 | def local_lattice_distortion_DEF1():
114 | #print ("The lattice distortion in paracrystals is measured by the lattice distortion parameter g")
115 | #print (Back.YELLOW + "Wang, S. Atomic structure modeling of multi-principal-element alloys by the principle")
116 | #print (Back.YELLOW + "of maximum entropy. Entropy 15, 5536–5548 (2013).")
117 | print ("+"*40,"HUME ROTHERY RULE","+"*40)
118 | C_i=C=0.2 ; r_avg = 0.0; del_sum=0.0
119 | elements = ["Nb", "Hf", "Ta", "Ti", "Zr"]
120 | eta = {
121 | "Nb" : 1.98,
122 | "Hf" : 2.08,
123 | "Ta" : 2.00,
124 | "Ti" : 1.76,
125 | "Zr" : 2.06, }
126 |
127 | print (" {element: atomic radius}")
128 | print (eta)
129 |
130 | for i in elements:
131 | r_avg = r_avg + C * eta[i]
132 |
133 | for j in elements:
134 | del_sum = del_sum + C * ( 1 - float(eta[j]) / r_avg )**2
135 | del_sum = 100 * np.sqrt(del_sum)
136 | print("HEA_atomic_size_mismatch: \u03B4={}".format(del_sum))
137 | ###
138 |
139 | def local_lattice_distortion_DEF2():
140 | print ("Song, H. et al. Local lattice distortion in high-entropy alloys.")
141 | print ("Phys. Rev. Mater. 1, 23404 (2017).")
142 | print ("_____| Different definition of the atomic radius for the description ")
143 | print (" of the local lattice distortion in HEAs")
144 |
145 | if not os.path.exists('POSCAR' and 'CONTCAR'):
146 | print (' ERROR: POSCAR & CONTCAR does not exist')
147 | sys.exit(0)
148 | print('Reading POSCAR and CONTCAR ... \n')
149 |
150 | x = []; y =[]; z=[]
151 | xp =[]; yp = []; zp = []; temp=0
152 |
153 | f = open('POSCAR','r')
154 | lines_poscar = f.readlines()
155 | f.close()
156 |
157 | f = open('CONTCAR','r')
158 | lines_contcar = f.readlines()
159 | f.close()
160 |
161 | sum_atoms = lines_poscar[6].split() ### reading 7th lines for reading # of atoms
162 | sum_atoms = [int(i) for i in sum_atoms]
163 | sum_atoms = sum(sum_atoms)
164 |
165 | for i in lines_poscar:
166 | if "Direct" in i:
167 | lp=lines_poscar.index(i)
168 | for j in lines_contcar:
169 | if "Direct" in j:
170 | lc=lines_contcar.index(j)
171 |
172 | for i in range(sum_atoms):
173 | x, y, z = lines_poscar[lp+1+i].split()
174 | xp, yp, zp = lines_contcar[lp+1+i].split()
175 | x = float(x); y = float(y); z = float(z)
176 | xp = float(xp); yp = float(yp); zp = float(zp)
177 | temp = temp + np.sqrt( (x-xp)**2 + (y-yp)**2 + (z-zp)**2 )
178 | temp = temp/sum_atoms
179 | print("local lattice distortion: \u0394d={}".format(temp))
180 | ###
181 |
182 | def space_group_analyse(lattice, pos):
183 | numbers = [1,2]
184 | cell = (lattice, pos, numbers)
185 | sp=spglib.get_spacegroup(cell, symprec=1e-5)
186 | symm=spglib.get_symmetry(cell, symprec=1e-5)
187 | #print(spglib.niggli_reduce(lattice, eps=1e-5))
188 |
189 | #mesh = [8, 8, 8]
190 | #mapping, grid = spglib.get_ir_reciprocal_mesh(mesh, cell, is_shift=[0, 0, 0])
191 | ## All k-points and mapping to ir-grid points
192 | #for i, (ir_gp_id, gp) in enumerate(zip(mapping, grid)):
193 | # print("%3d ->%3d %s" % (i, ir_gp_id, gp.astype(float) / mesh))
194 | #
195 | ## Irreducible k-points
196 | #print("Number of ir-kpoints: %d" % len(np.unique(mapping)))
197 | #print(grid[np.unique(mapping)] / np.array(mesh, dtype=float))
198 | #
199 | ##
200 | ## With shift
201 | ##
202 | #mapping, grid = spglib.get_ir_reciprocal_mesh(mesh, cell, is_shift=[1, 1, 1])
203 | #
204 | ## All k-points and mapping to ir-grid points
205 | #for i, (ir_gp_id, gp) in enumerate(zip(mapping, grid)):
206 | # print("%3d ->%3d %s" % (i, ir_gp_id, (gp + [0.5, 0.5, 0.5]) / mesh))
207 | #
208 | ## Irreducible k-points
209 | #print("Number of ir-kpoints: %d" % len(np.unique(mapping)))
210 | #print((grid[np.unique(mapping)] + [0.5, 0.5, 0.5]) / mesh)
211 | return sp, symm
212 | ###
213 |
214 | def poscar_VASP42VASP5():
215 | if not os.path.exists('POSCAR' and 'POTCAR'):
216 | print (' ERROR: POSCAR does not exist here.')
217 | sys.exit(0)
218 | file1 = open("POSCAR",'r')
219 | line1 = file1.readlines()
220 | file1.close()
221 |
222 | file2 = open("POTCAR",'r')
223 | line2 = file2.readlines()
224 | file2.close()
225 |
226 | atom_number=[]
227 | for i in line1:
228 | if ("Direct" or "direct" or "d" or "D") in i:
229 | PP=line1.index(i)
230 | atom_number = line1[5].split()
231 | print(atom_number)
232 |
233 | elementtype=[]; count=0
234 | for i in line2:
235 | if ("VRHFIN") in i:
236 | count+=1
237 | #print (i.split('=')[1].split(':')[0])
238 | elementtype.append(i.split('=')[1].split(':')[0])
239 |
240 | test = open("POSCAR_W",'w')
241 |
242 | for i in range(5):
243 | test.write( line1[i] )
244 |
245 | for j in elementtype:
246 | test.write("\t" + j)
247 | test.write("\n" )
248 |
249 | for j in atom_number:
250 | test.write("\t" + j )
251 | test.write("\n" )
252 |
253 | test.write("Selective dynamics")
254 | test.write("\n" )
255 |
256 | for i in range(len(line1)-PP):
257 | test.write(line1[PP+i] )
258 |
259 | test.close()
260 |
261 | print (" File is converted: POSCAR_W")
262 | ###
263 |
264 |
265 |
266 | #### math.sin function takes argument in radians ONLY
267 | def volume(a,b,c,alpha,beta,gamma):
268 | ang2atomic = 1.889725988579 # 1 A = 1.889725988579 [a.u]
269 | Ang32Bohr3 = 6.74833304162 # 1 A^3 = 6.7483330371 [a.u]^3
270 |
271 | length = np.linalg.norm(a) * np.linalg.norm(b) * np.linalg.norm(c)
272 | volume = length * ( np.sqrt(1 + 2 * math.cos(alpha) * math.cos(beta) * math.cos(gamma) - math.cos(alpha)**2 - math.cos(beta)**2 - math.cos(gamma)**2) )
273 | vol_au = volume * Ang32Bohr3
274 | return volume, vol_au
275 |
276 |
--------------------------------------------------------------------------------
/src/strain.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | #_______________________________________________________________________________
4 |
5 | from numpy import *
6 | import subprocess
7 | import os.path
8 | import shutil
9 | import numpy, scipy
10 | import math
11 | import sys, os
12 | import matplotlib.pyplot as plt
13 | from colorama import Fore, Back, Style, init
14 | init(autoreset=True)
15 |
16 | #_______________________________________________________________________________
17 |
18 | def Elastic_strain():
19 | print("*"*80)
20 | print ("________| http://exciting-code.org/nitrogen-energy-vs-strain-calculations")
21 | print ("________| \u03B7 = \u03B5 + 1/2*\u03B5**2")
22 | print ("________| r' = (I + \u03B5) * r ")
23 | print ("________| Deformation uses Voigt notation.")
24 | print("*"*80)
25 |
26 | if (str(os.path.exists('CONTCAR'))=='False'):
27 | sys.exit("ERROR: Input file CONTCAR not found!\n")
28 |
29 | maximum_strain = float(input("\nEnter maximum Lagrangian strain [smax] >>>> "))
30 | if (maximum_strain == 0):
31 | work_directory = 'workdir'
32 | if (os.path.exists(work_directory)): shutil.rmtree(work_directory)
33 | os.mkdir(work_directory)
34 |
35 | os.system("cp CONTCAR workdir/CONTCAR-01")
36 | output_info = open('workdir/INFO-elastic-constants',"w")
37 | output_info.write("\nMaximum Lagrangian strain = 0" )
38 | output_info.write("\nNumber of strain values = 1", )
39 | output_info.write("\nVolume of equilibrium unit cell = 1.0 [A]^3",)
40 | output_info.write("\nDeformation code = 000000", )
41 | output_info.write("\nDeformation label = single\n" )
42 | output_info.close()
43 |
44 | output_eta = open('workdir/strain-01',"w")
45 | output_info.write("0.00")
46 | output_eta.close()
47 | print
48 | sys.exit("Single unstrained calculation\n")
49 |
50 | if (1 < maximum_strain or maximum_strain < 0):
51 | sys.exit("ERROR: Maximum Lagrangian strain is out of range [0-1]!\n")
52 | strain_points = int(input("\nEnter the number of strain values in [-smax,smax] >>>> "))
53 | strain_points = int(abs(strain_points))
54 | if (3 > strain_points or strain_points > 99):
55 | sys.exit("ERROR: Number of strain values is out of range [3-99]!\n")
56 |
57 | print(Style.RESET_ALL)
58 | print (Back.GREEN + "------------------------------------------------------------------------" )
59 | print (Back.GREEN + " List of deformation codes for strains in Voigt notation" )
60 | print (Back.GREEN + "------------------------------------------------------------------------" )
61 | print (Back.YELLOW + " 0 => ( eta, eta, eta, 0, 0, 0) | volume strain " )
62 | print (Back.YELLOW + " 1 => ( eta, 0, 0, 0, 0, 0) | linear strain along x " )
63 | print (Back.GREEN + " 2 => ( 0, eta, 0, 0, 0, 0) | linear strain along y " )
64 | print (Back.GREEN + " 3 => ( 0, 0, eta, 0, 0, 0) | linear strain along z " )
65 | print (Back.GREEN + " 4 => ( 0, 0, 0, eta, 0, 0) | yz shear strain" )
66 | print (Back.GREEN + " 5 => ( 0, 0, 0, 0, eta, 0) | xz shear strain" )
67 | print (Back.GREEN + " 6 => ( 0, 0, 0, 0, 0, eta) | xy shear strain" )
68 | print (Back.YELLOW + " 7 => ( 0, 0, 0, eta, eta, eta) | shear strain along (111)" )
69 | print (Back.GREEN + " 8 => ( eta, eta, 0, 0, 0, 0) | xy in-plane strain " )
70 | print (Back.GREEN + " 9 => ( eta, -eta, 0, 0, 0, 0) | xy in-plane shear strain" )
71 | print (Back.GREEN + " 10 => ( eta, eta, eta, eta, eta, eta) | global strain" )
72 | print (Back.GREEN + " 11 => ( eta, 0, 0, eta, 0, 0) | mixed strain" )
73 | print (Back.GREEN + " 12 => ( eta, 0, 0, 0, eta, 0) | mixed strain" )
74 | print (Back.GREEN + " 13 => ( eta, 0, 0, 0, 0, eta) | mixed strain" )
75 | print (Back.GREEN + " 14 => ( eta, eta, 0, eta, 0, 0) | mixed strain" )
76 | print (Back.GREEN + "------------------------------------------------------------------------" )
77 | print(Style.RESET_ALL)
78 |
79 | deformation_code = int(input("\nEnter deformation code >>>> "))
80 | if (0 > deformation_code or deformation_code > 14):
81 | sys.exit("ERROR: Deformation code is out of range [0-14]!\n")
82 |
83 | if (deformation_code == 0 ): dc='EEE000'
84 | if (deformation_code == 1 ): dc='E00000'
85 | if (deformation_code == 2 ): dc='0E0000'
86 | if (deformation_code == 3 ): dc='00E000'
87 | if (deformation_code == 4 ): dc='000E00'
88 | if (deformation_code == 5 ): dc='0000E0'
89 | if (deformation_code == 6 ): dc='00000E'
90 | if (deformation_code == 7 ): dc='000EEE'
91 | if (deformation_code == 8 ): dc='EE0000'
92 | if (deformation_code == 9 ): dc='Ee0000'
93 | if (deformation_code == 10): dc='EEEEEE'
94 | if (deformation_code == 11): dc='E00E00'
95 | if (deformation_code == 12): dc='E000E0'
96 | if (deformation_code == 13): dc='E0000E'
97 | if (deformation_code == 14): dc='EE0E00'
98 |
99 | #-------------------------------------------------------------------------------
100 | file1 = open("CONTCAR",'r')
101 | line1 = file1.readlines()
102 | file1.close()
103 | for i in line1:
104 | if ("Direct" or "direct" or "d" or "D") in i:
105 | PP=line1.index(i)
106 | #-------------------------------------------------------------------------------
107 |
108 | input_obj = open("CONTCAR","r")
109 |
110 | firstline = input_obj.readline() # IGNORE first line comment
111 | xml_scale = float(input_obj.readline()) # scale
112 | Latvec1 = input_obj.readline()
113 | Latvec2 = input_obj.readline()
114 | Latvec3 = input_obj.readline()
115 | elementtype = input_obj.readline().split()
116 | if (str.isdigit(elementtype[0])):
117 | sys.exit("VASP 4.X POSCAR detected. Please add the atom types")
118 | atom_number = input_obj.readline()
119 | Coordtype = input_obj.readline()
120 | nat = atom_number.split()
121 | nat = [int(i) for i in nat]
122 | print ("Number of atoms in the cell {} ".format( sum(nat)) )
123 |
124 | input_obj.close()
125 | #-------------------------------------------------------------------------------
126 | a=[]; b=[]; c=[];
127 | Latvec1 = Latvec1.split()
128 | Latvec2 = Latvec2.split()
129 | Latvec3 = Latvec3.split()
130 | for ai in Latvec1: a.append(float(ai))
131 | for bi in Latvec2: b.append(float(bi))
132 | for ci in Latvec3: c.append(float(ci))
133 |
134 | xml_basevect = numpy.array([a] + [b] + [c])
135 | print ("{}".format(xml_basevect),end="\n" )
136 | axis_matrix = numpy.array(xml_basevect)
137 | determinant = numpy.linalg.det(axis_matrix)
138 | volume = numpy.abs(determinant*xml_scale**3)
139 | print("Equilibrium volume of cell {} ".format(volume) )
140 | #-------------------------------------------------------------------------------
141 | work_directory = 'workdir'
142 | if (len(sys.argv) > 1): work_directory = sys.argv[1]
143 | if (os.path.exists(work_directory)): shutil.rmtree(work_directory)
144 | os.mkdir(work_directory)
145 | os.chdir(work_directory)
146 |
147 | output_info = open('INFO-elastic-constants',"w")
148 |
149 | output_info.write("\nMaximum Lagrangian strain = {}".format( maximum_strain ))
150 | output_info.write("\nNumber of strain values = {}".format(strain_points))
151 | output_info.write("\nVolume of equilibrium unit cell = {} [A]^3".format(volume))
152 | output_info.write("\nDeformation code = {}".format(deformation_code))
153 | output_info.write("\nDeformation label = {}".format(dc, "\n"))
154 |
155 | output_info.close()
156 |
157 | #-------------------------------------------------------------------------------
158 |
159 | delta=strain_points-1 ;# print (delta)
160 | convert=1
161 | if (strain_points <= 1):
162 | strain_points=1
163 | convert=-1
164 | delta=1
165 |
166 | eta_step=2*maximum_strain/delta
167 | #print(eta_step)
168 | #-------------------------------------------------------------------------------
169 |
170 | for i in range(0,strain_points):
171 |
172 | #-------------------------------------------------------------------------------
173 |
174 | eta=i*eta_step-maximum_strain*convert
175 | #print (eta)
176 | if (i+1 < 10): strainfile = 'strain-0'+str(i+1)
177 | else: strainfile = 'strain-'+str(i+1)
178 | output_str = open(strainfile,"w")
179 | output_str.write( "{:11.8f}".format(eta) )
180 | output_str.close()
181 |
182 | if (abs(eta) < 0): eta=0
183 | ep=eta
184 | if (eta < 0.0): em=abs(eta)
185 | else: em=-eta
186 |
187 | #-------------------------------------------------------------------------------
188 |
189 | e=[]
190 | for j in range(6):
191 | ev=0
192 | if (dc[j:j+1] == 'E' ): ev=ep; #print (ev)
193 | elif(dc[j:j+1] == 'e' ): ev=em
194 | elif(dc[j:j+1] == '0' ): ev=0
195 | else: print ("==> "), dc; sys.exit("ERROR: deformation code not allowed!")
196 | e.append(ev)
197 | e = numpy.array(e)
198 | #print(numpy.array(e))
199 | #-------------------------------------------------------------------------------
200 |
201 | eta_matrix=numpy.mat( [
202 | [ e[0] , e[5]/2, e[4]/2],
203 | [ e[5]/2, e[1] , e[3]/2],
204 | [ e[4]/2, e[3]/2, e[2] ] ], dtype=float32 )
205 | if i == 6: # for test purposes
206 | print (eta_matrix)
207 | one_matrix=numpy.identity(3)
208 |
209 | #-------------------------------------------------------------------------------
210 |
211 | norma=1
212 | inorma=0
213 | eps_matrix=eta_matrix
214 |
215 | if (numpy.linalg.norm(eta_matrix) > 0.7):sys.exit("ERROR: too large deformation!")
216 |
217 | while ( norma > 0.0 ):
218 | x=eta_matrix - (1/2) * numpy.dot(eps_matrix,eps_matrix)
219 | norma=numpy.linalg.norm(x-eps_matrix)
220 | #print(norma)
221 | eps_matrix=x
222 | inorma=inorma+1
223 |
224 | def_matrix=one_matrix+eps_matrix
225 | #print (eps_matrix)
226 | #if i == 6:
227 | # print ( numpy.dot(def_matrix,axis_matrix) )
228 | # print ( "{} {}" .format(def_matrix, axis_matrix ) )
229 | # print ( numpy.transpose(numpy.dot(def_matrix,numpy.transpose(axis_matrix)) ) )
230 | new_axis_matrix=numpy.transpose(numpy.dot(def_matrix,numpy.transpose(axis_matrix)))
231 | nam=numpy.mat( new_axis_matrix, dtype=float32 )
232 |
233 | #-------------------------------------------------------------------------------
234 |
235 | if (i+1 < 10):
236 | outputfile = 'POSCAR-0'+str(i+1)
237 | else:
238 | outputfile = 'POSCAR-'+str(i+1)
239 | output_obj = open(outputfile,"w")
240 | output_obj.write(firstline)
241 | output_obj.write("{:10.8f}".format((xml_scale))+"\n")
242 |
243 | for j in range(3):
244 | output_obj.write("{:22.16f} {:22.16f} {:22.16f}\n".format( (nam[j,0]), (nam[j,1]), (nam[j,2]) ) )
245 | #output_obj.write( str(fmt%nam[j,0])+str(fmt%nam[j,1])+str(fmt%nam[j,2])+"\n" )
246 |
247 | for j in elementtype:
248 | output_obj.write("\t" + j)
249 | output_obj.write("\n" )
250 |
251 | for j in atom_number:
252 | output_obj.write( "{}".format(j) )
253 |
254 | for i in range(len(line1)-PP):
255 | output_obj.write(line1[PP+i] )
256 | output_obj.close()
257 |
258 | #-------------------------------------------------------------------------------
259 | os.chdir('../')
260 | print
261 |
262 | #plt.imshow(numpy.log(numpy.abs(numpy.fft.fftn(nam))**2))
263 | #plt.show()
264 |
--------------------------------------------------------------------------------