├── .gitignore └── README.md /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | pip-wheel-metadata/ 24 | share/python-wheels/ 25 | *.egg-info/ 26 | .installed.cfg 27 | *.egg 28 | MANIFEST 29 | 30 | # PyInstaller 31 | # Usually these files are written by a python script from a template 32 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 33 | *.manifest 34 | *.spec 35 | 36 | # Installer logs 37 | pip-log.txt 38 | pip-delete-this-directory.txt 39 | 40 | # Unit test / coverage reports 41 | htmlcov/ 42 | .tox/ 43 | .nox/ 44 | .coverage 45 | .coverage.* 46 | .cache 47 | nosetests.xml 48 | coverage.xml 49 | *.cover 50 | *.py,cover 51 | .hypothesis/ 52 | .pytest_cache/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | target/ 76 | 77 | # Jupyter Notebook 78 | .ipynb_checkpoints 79 | 80 | # IPython 81 | profile_default/ 82 | ipython_config.py 83 | 84 | # pyenv 85 | .python-version 86 | 87 | # pipenv 88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 91 | # install all needed dependencies. 92 | #Pipfile.lock 93 | 94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 95 | __pypackages__/ 96 | 97 | # Celery stuff 98 | celerybeat-schedule 99 | celerybeat.pid 100 | 101 | # SageMath parsed files 102 | *.sage.py 103 | 104 | # Environments 105 | .env 106 | .venv 107 | env/ 108 | venv/ 109 | ENV/ 110 | env.bak/ 111 | venv.bak/ 112 | 113 | # Spyder project settings 114 | .spyderproject 115 | .spyproject 116 | 117 | # Rope project settings 118 | .ropeproject 119 | 120 | # mkdocs documentation 121 | /site 122 | 123 | # mypy 124 | .mypy_cache/ 125 | .dmypy.json 126 | dmypy.json 127 | 128 | # Pyre type checker 129 | .pyre/ 130 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Model 2 | “悟道”项目现有7个开源模型成果,本仓库提供所有开源成果的模型参数文件链接。 3 | 4 | ### 文本类 5 | * **[GLM](https://wudaoai.cn/model/detail/GLM系列)** 6 | 7 | GLM (General Language Model) 是一个全新的预训练框架,打破BERT和GPT的瓶颈。单一GLM模型在语言理解和生成任务方面取得了最佳结果,并且超过了对相同数据量进行训练的常见预训练模型(例如BERT,RoBERTa和T5)。 8 | 9 | * **[Transformer-XL](https://wudaoai.cn/model/detail/Transformer-XL)** 10 | 11 | Transformers具有长期学习依赖的潜力,但在语言建模设置中受到固定长度上下文的限制。而Transformer-XL作为一种新神经网络架构可以很好地解决长文本依赖问题。悟道基于Transformer-XL训练并开放29亿的语言模型,在长文本生成方面具有优势。 12 | 13 | * **[CPM](https://wudaoai.cn/model/detail/CPM系列)** 14 | 15 | 2020年11月,CPM系列正式发布,并推出当时参数最大的26亿中文预训练语言模型CPM-1(Chinese Pretrained Models),可支持简单对话、文章生成和语言理解等下游任务。2021年6月,CPM-2(Cost-efficient Pre-trained language Models)在北京智源大会上发布,推出了110亿的中英双语语言模型和对应的1980亿MoE版模型。 16 | 17 | * **[EVA](https://github.com/BAAI-WuDao/EVA)** 18 | 19 | EVA是一个开放领域的中文对话预训练模型,是目前最大的汉语对话模型,参数量达到28亿,并且在包括不同领域14亿汉语的悟道对话数据集(WDC)上进行预训练。 20 | 21 | * **[Lawformer](https://wudaoai.cn/model/detail/Lawformer)** 22 | 23 | 在数千万的法律文书上训练能够处理法律长文本的预训练语言模型,参数规模为1亿,支持中文法律长文本输入的理解任务。 24 | 25 | ### 图文类 26 | * **[CogView](https://wudaoai.cn/model/detail/CogView)** 27 | 28 | 世界最大的中文多模态生成模型,参数量为40亿。模型支持文生成图为基础的多领域下游任务,在应用维度上具备通用性,经过微调后可实现国画、油画、水彩画、轮廓画等图像生成。 29 | 30 | * **[BriVL](https://wudaoai.cn/model/detail/BriVL)** 31 | 32 | BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 33 | 34 | ### 蛋白质类 35 | * **[ProteinLM](https://wudaoai.cn/model/detail/ProteinLM)** 36 | 37 | 蛋白质序列预训练模型,目前已开源2亿和30亿参数规模的模型,能支持蛋白质二级结构预测、荧光性预测、接触预测、折叠稳定性预测和远缘同源性检测任务。相较于基线模型TAPE(3800万参数),我们的模型在下游任务上表现有所提升,尤其是在蛋白质折叠问题的接触预测问题上,模型较基线模型提高了16%。 38 | 39 | 40 | --------------------------------------------------------------------------------