├── .Doxyfile ├── .github └── ISSUE_TEMPLATE.md ├── .gitignore ├── .travis.yml ├── CMakeLists.txt ├── CONTRIBUTING.md ├── CONTRIBUTORS.md ├── INSTALL.md ├── LICENSE ├── Makefile ├── Makefile.config.example ├── README.md ├── caffe.cloc ├── cmake ├── ConfigGen.cmake ├── Cuda.cmake ├── Dependencies.cmake ├── External │ ├── gflags.cmake │ └── glog.cmake ├── Misc.cmake ├── Modules │ ├── FindAtlas.cmake │ ├── FindGFlags.cmake │ ├── FindGlog.cmake │ ├── FindLAPACK.cmake │ ├── FindLMDB.cmake │ ├── FindLevelDB.cmake │ ├── FindMKL.cmake │ ├── FindMatlabMex.cmake │ ├── FindNCCL.cmake │ ├── FindNumPy.cmake │ ├── FindOpenBLAS.cmake │ ├── FindSnappy.cmake │ └── FindvecLib.cmake ├── ProtoBuf.cmake ├── Summary.cmake ├── Targets.cmake ├── Templates │ ├── CaffeConfig.cmake.in │ ├── CaffeConfigVersion.cmake.in │ └── caffe_config.h.in ├── Uninstall.cmake.in ├── Utils.cmake └── lint.cmake ├── data ├── cifar10 │ └── get_cifar10.sh ├── ilsvrc12 │ └── get_ilsvrc_aux.sh └── mnist │ └── get_mnist.sh ├── docker ├── README.md ├── cpu │ └── Dockerfile └── gpu │ └── Dockerfile ├── docs ├── CMakeLists.txt ├── CNAME ├── README.md ├── _config.yml ├── _layouts │ └── default.html ├── development.md ├── images │ ├── GitHub-Mark-64px.png │ └── caffeine-icon.png ├── index.md ├── install_apt.md ├── install_apt_debian.md ├── install_osx.md ├── install_yum.md ├── installation.md ├── model_zoo.md ├── multigpu.md ├── stylesheets │ ├── pygment_trac.css │ ├── reset.css │ └── styles.css └── tutorial │ ├── convolution.md │ ├── data.md │ ├── fig │ ├── .gitignore │ ├── backward.jpg │ ├── forward.jpg │ ├── forward_backward.png │ ├── layer.jpg │ └── logreg.jpg │ ├── forward_backward.md │ ├── index.md │ ├── interfaces.md │ ├── layers.md │ ├── layers │ ├── absval.md │ ├── accuracy.md │ ├── argmax.md │ ├── batchnorm.md │ ├── batchreindex.md │ ├── bias.md │ ├── bnll.md │ ├── clip.md │ ├── concat.md │ ├── contrastiveloss.md │ ├── convolution.md │ ├── crop.md │ ├── data.md │ ├── deconvolution.md │ ├── dropout.md │ ├── dummydata.md │ ├── eltwise.md │ ├── elu.md │ ├── embed.md │ ├── euclideanloss.md │ ├── exp.md │ ├── filter.md │ ├── flatten.md │ ├── hdf5data.md │ ├── hdf5output.md │ ├── hingeloss.md │ ├── im2col.md │ ├── imagedata.md │ ├── infogainloss.md │ ├── innerproduct.md │ ├── input.md │ ├── log.md │ ├── lrn.md │ ├── lstm.md │ ├── memorydata.md │ ├── multinomiallogisticloss.md │ ├── mvn.md │ ├── parameter.md │ ├── pooling.md │ ├── power.md │ ├── prelu.md │ ├── python.md │ ├── recurrent.md │ ├── reduction.md │ ├── relu.md │ ├── reshape.md │ ├── rnn.md │ ├── scale.md │ ├── sigmoid.md │ ├── sigmoidcrossentropyloss.md │ ├── silence.md │ ├── slice.md │ ├── softmax.md │ ├── softmaxwithloss.md │ ├── split.md │ ├── spp.md │ ├── tanh.md │ ├── threshold.md │ ├── tile.md │ └── windowdata.md │ ├── loss.md │ ├── net_layer_blob.md │ └── solver.md ├── examples ├── 00-classification.ipynb ├── 01-learning-lenet.ipynb ├── 02-fine-tuning.ipynb ├── CMakeLists.txt ├── brewing-logreg.ipynb ├── cifar10 │ ├── cifar10_full.prototxt │ ├── cifar10_full_sigmoid_solver.prototxt │ ├── cifar10_full_sigmoid_solver_bn.prototxt │ ├── cifar10_full_sigmoid_train_test.prototxt │ ├── cifar10_full_sigmoid_train_test_bn.prototxt │ ├── cifar10_full_solver.prototxt │ ├── cifar10_full_solver_lr1.prototxt │ ├── cifar10_full_solver_lr2.prototxt │ ├── cifar10_full_train_test.prototxt │ ├── cifar10_quick.prototxt │ ├── cifar10_quick_solver.prototxt │ ├── cifar10_quick_solver_lr1.prototxt │ ├── cifar10_quick_train_test.prototxt │ ├── convert_cifar_data.cpp │ ├── create_cifar10.sh │ ├── readme.md │ ├── train_full.sh │ ├── train_full_sigmoid.sh │ ├── train_full_sigmoid_bn.sh │ └── train_quick.sh ├── cpp_classification │ ├── classification.cpp │ └── readme.md ├── detection.ipynb ├── feature_extraction │ ├── imagenet_val.prototxt │ └── readme.md ├── finetune_flickr_style │ ├── assemble_data.py │ ├── flickr_style.csv.gz │ ├── readme.md │ └── style_names.txt ├── finetune_pascal_detection │ ├── pascal_finetune_solver.prototxt │ └── pascal_finetune_trainval_test.prototxt ├── hdf5_classification │ ├── nonlinear_auto_test.prototxt │ ├── nonlinear_auto_train.prototxt │ ├── nonlinear_train_val.prototxt │ └── train_val.prototxt ├── imagenet │ ├── create_imagenet.sh │ ├── make_imagenet_mean.sh │ ├── readme.md │ ├── resume_training.sh │ └── train_caffenet.sh ├── images │ ├── cat gray.jpg │ ├── cat.jpg │ ├── cat_gray.jpg │ └── fish-bike.jpg ├── mnist │ ├── convert_mnist_data.cpp │ ├── create_mnist.sh │ ├── lenet.prototxt │ ├── lenet_adadelta_solver.prototxt │ ├── lenet_auto_solver.prototxt │ ├── lenet_consolidated_solver.prototxt │ ├── lenet_multistep_solver.prototxt │ ├── lenet_solver.prototxt │ ├── lenet_solver_adam.prototxt │ ├── lenet_solver_rmsprop.prototxt │ ├── lenet_train_test.prototxt │ ├── mnist_autoencoder.prototxt │ ├── mnist_autoencoder_solver.prototxt │ ├── mnist_autoencoder_solver_adadelta.prototxt │ ├── mnist_autoencoder_solver_adagrad.prototxt │ ├── mnist_autoencoder_solver_nesterov.prototxt │ ├── readme.md │ ├── train_lenet.sh │ ├── train_lenet_adam.sh │ ├── train_lenet_consolidated.sh │ ├── train_lenet_docker.sh │ ├── train_lenet_rmsprop.sh │ ├── train_mnist_autoencoder.sh │ ├── train_mnist_autoencoder_adadelta.sh │ ├── train_mnist_autoencoder_adagrad.sh │ └── train_mnist_autoencoder_nesterov.sh ├── net_surgery.ipynb ├── net_surgery │ ├── bvlc_caffenet_full_conv.prototxt │ └── conv.prototxt ├── pascal-multilabel-with-datalayer.ipynb ├── pycaffe │ ├── caffenet.py │ ├── layers │ │ ├── pascal_multilabel_datalayers.py │ │ └── pyloss.py │ ├── linreg.prototxt │ └── tools.py ├── siamese │ ├── convert_mnist_siamese_data.cpp │ ├── create_mnist_siamese.sh │ ├── mnist_siamese.ipynb │ ├── mnist_siamese.prototxt │ ├── mnist_siamese_solver.prototxt │ ├── mnist_siamese_train_test.prototxt │ ├── readme.md │ └── train_mnist_siamese.sh └── web_demo │ ├── app.py │ ├── exifutil.py │ ├── readme.md │ ├── requirements.txt │ └── templates │ └── index.html ├── include └── caffe │ ├── blob.hpp │ ├── caffe.hpp │ ├── common.hpp │ ├── data_transformer.hpp │ ├── filler.hpp │ ├── internal_thread.hpp │ ├── layer.hpp │ ├── layer_factory.hpp │ ├── layers │ ├── absval_layer.hpp │ ├── accuracy_layer.hpp │ ├── argmax_layer.hpp │ ├── base_conv_layer.hpp │ ├── base_data_layer.hpp │ ├── batch_norm_layer.hpp │ ├── batch_reindex_layer.hpp │ ├── bias_layer.hpp │ ├── bnll_layer.hpp │ ├── clip_layer.hpp │ ├── concat_layer.hpp │ ├── contrastive_loss_layer.hpp │ ├── conv_layer.hpp │ ├── crop_layer.hpp │ ├── cudnn_conv_layer.hpp │ ├── cudnn_deconv_layer.hpp │ ├── cudnn_lcn_layer.hpp │ ├── cudnn_lrn_layer.hpp │ ├── cudnn_pooling_layer.hpp │ ├── cudnn_relu_layer.hpp │ ├── cudnn_sigmoid_layer.hpp │ ├── cudnn_softmax_layer.hpp │ ├── cudnn_tanh_layer.hpp │ ├── data_layer.hpp │ ├── deconv_layer.hpp │ ├── dropout_layer.hpp │ ├── dummy_data_layer.hpp │ ├── eltwise_layer.hpp │ ├── elu_layer.hpp │ ├── embed_layer.hpp │ ├── euclidean_loss_layer.hpp │ ├── exp_layer.hpp │ ├── filter_layer.hpp │ ├── flatten_layer.hpp │ ├── hdf5_data_layer.hpp │ ├── hdf5_output_layer.hpp │ ├── hinge_loss_layer.hpp │ ├── im2col_layer.hpp │ ├── image_data_layer.hpp │ ├── infogain_loss_layer.hpp │ ├── inner_product_layer.hpp │ ├── input_layer.hpp │ ├── log_layer.hpp │ ├── loss_layer.hpp │ ├── lrn_layer.hpp │ ├── lstm_layer.hpp │ ├── memory_data_layer.hpp │ ├── multinomial_logistic_loss_layer.hpp │ ├── mvn_layer.hpp │ ├── neuron_layer.hpp │ ├── parameter_layer.hpp │ ├── pooling_layer.hpp │ ├── power_layer.hpp │ ├── prelu_layer.hpp │ ├── python_layer.hpp │ ├── recurrent_layer.hpp │ ├── reduction_layer.hpp │ ├── relu_layer.hpp │ ├── reshape_layer.hpp │ ├── rnn_layer.hpp │ ├── scale_layer.hpp │ ├── sigmoid_cross_entropy_loss_layer.hpp │ ├── sigmoid_layer.hpp │ ├── silence_layer.hpp │ ├── slice_layer.hpp │ ├── softmax_layer.hpp │ ├── softmax_loss_layer.hpp │ ├── split_layer.hpp │ ├── spp_layer.hpp │ ├── swish_layer.hpp │ ├── tanh_layer.hpp │ ├── threshold_layer.hpp │ ├── tile_layer.hpp │ └── window_data_layer.hpp │ ├── net.hpp │ ├── parallel.hpp │ ├── sgd_solvers.hpp │ ├── solver.hpp │ ├── solver_factory.hpp │ ├── syncedmem.hpp │ ├── test │ ├── test_caffe_main.hpp │ └── test_gradient_check_util.hpp │ └── util │ ├── benchmark.hpp │ ├── blocking_queue.hpp │ ├── cudnn.hpp │ ├── db.hpp │ ├── db_leveldb.hpp │ ├── db_lmdb.hpp │ ├── device_alternate.hpp │ ├── format.hpp │ ├── gpu_util.cuh │ ├── hdf5.hpp │ ├── im2col.hpp │ ├── insert_splits.hpp │ ├── io.hpp │ ├── math_functions.hpp │ ├── mkl_alternate.hpp │ ├── nccl.hpp │ ├── rng.hpp │ ├── signal_handler.h │ └── upgrade_proto.hpp ├── matlab ├── +caffe │ ├── +test │ │ ├── test_io.m │ │ ├── test_net.m │ │ └── test_solver.m │ ├── Blob.m │ ├── Layer.m │ ├── Net.m │ ├── Solver.m │ ├── get_net.m │ ├── get_solver.m │ ├── imagenet │ │ └── ilsvrc_2012_mean.mat │ ├── io.m │ ├── private │ │ ├── CHECK.m │ │ ├── CHECK_FILE_EXIST.m │ │ ├── caffe_.cpp │ │ └── is_valid_handle.m │ ├── reset_all.m │ ├── run_tests.m │ ├── set_device.m │ ├── set_mode_cpu.m │ ├── set_mode_gpu.m │ └── version.m ├── CMakeLists.txt ├── demo │ └── classification_demo.m └── hdf5creation │ ├── .gitignore │ ├── demo.m │ └── store2hdf5.m ├── models ├── bvlc_alexnet │ ├── deploy.prototxt │ ├── readme.md │ ├── solver.prototxt │ └── train_val.prototxt ├── bvlc_googlenet │ ├── deploy.prototxt │ ├── quick_solver.prototxt │ ├── readme.md │ ├── solver.prototxt │ └── train_val.prototxt ├── bvlc_reference_caffenet │ ├── deploy.prototxt │ ├── readme.md │ ├── solver.prototxt │ └── train_val.prototxt ├── bvlc_reference_rcnn_ilsvrc13 │ ├── deploy.prototxt │ └── readme.md └── finetune_flickr_style │ ├── deploy.prototxt │ ├── readme.md │ ├── solver.prototxt │ └── train_val.prototxt ├── python ├── CMakeLists.txt ├── caffe │ ├── __init__.py │ ├── _caffe.cpp │ ├── classifier.py │ ├── coord_map.py │ ├── detector.py │ ├── draw.py │ ├── imagenet │ │ └── ilsvrc_2012_mean.npy │ ├── io.py │ ├── net_spec.py │ ├── pycaffe.py │ └── test │ │ ├── test_coord_map.py │ │ ├── test_draw.py │ │ ├── test_io.py │ │ ├── test_layer_type_list.py │ │ ├── test_nccl.py │ │ ├── test_net.py │ │ ├── test_net_spec.py │ │ ├── test_python_layer.py │ │ ├── test_python_layer_with_param_str.py │ │ └── test_solver.py ├── classify.py ├── detect.py ├── draw_net.py ├── requirements.txt └── train.py ├── scripts ├── build_docs.sh ├── caffe ├── copy_notebook.py ├── cpp_lint.py ├── deploy_docs.sh ├── download_model_binary.py ├── download_model_from_gist.sh ├── gather_examples.sh ├── split_caffe_proto.py ├── travis │ ├── build.sh │ ├── configure-cmake.sh │ ├── configure-make.sh │ ├── configure.sh │ ├── defaults.sh │ ├── install-deps.sh │ ├── install-python-deps.sh │ ├── setup-venv.sh │ └── test.sh └── upload_model_to_gist.sh ├── src ├── caffe │ ├── CMakeLists.txt │ ├── blob.cpp │ ├── common.cpp │ ├── data_transformer.cpp │ ├── internal_thread.cpp │ ├── layer.cpp │ ├── layer_factory.cpp │ ├── layers │ │ ├── absval_layer.cpp │ │ ├── absval_layer.cu │ │ ├── accuracy_layer.cpp │ │ ├── accuracy_layer.cu │ │ ├── argmax_layer.cpp │ │ ├── base_conv_layer.cpp │ │ ├── base_data_layer.cpp │ │ ├── base_data_layer.cu │ │ ├── batch_norm_layer.cpp │ │ ├── batch_norm_layer.cu │ │ ├── batch_reindex_layer.cpp │ │ ├── batch_reindex_layer.cu │ │ ├── bias_layer.cpp │ │ ├── bias_layer.cu │ │ ├── bnll_layer.cpp │ │ ├── bnll_layer.cu │ │ ├── clip_layer.cpp │ │ ├── clip_layer.cu │ │ ├── concat_layer.cpp │ │ ├── concat_layer.cu │ │ ├── contrastive_loss_layer.cpp │ │ ├── contrastive_loss_layer.cu │ │ ├── conv_layer.cpp │ │ ├── conv_layer.cu │ │ ├── crop_layer.cpp │ │ ├── crop_layer.cu │ │ ├── cudnn_conv_layer.cpp │ │ ├── cudnn_conv_layer.cu │ │ ├── cudnn_deconv_layer.cpp │ │ ├── cudnn_deconv_layer.cu │ │ ├── cudnn_lcn_layer.cpp │ │ ├── cudnn_lcn_layer.cu │ │ ├── cudnn_lrn_layer.cpp │ │ ├── cudnn_lrn_layer.cu │ │ ├── cudnn_pooling_layer.cpp │ │ ├── cudnn_pooling_layer.cu │ │ ├── cudnn_relu_layer.cpp │ │ ├── cudnn_relu_layer.cu │ │ ├── cudnn_sigmoid_layer.cpp │ │ ├── cudnn_sigmoid_layer.cu │ │ ├── cudnn_softmax_layer.cpp │ │ ├── cudnn_softmax_layer.cu │ │ ├── cudnn_tanh_layer.cpp │ │ ├── cudnn_tanh_layer.cu │ │ ├── data_layer.cpp │ │ ├── deconv_layer.cpp │ │ ├── deconv_layer.cu │ │ ├── dropout_layer.cpp │ │ ├── dropout_layer.cu │ │ ├── dummy_data_layer.cpp │ │ ├── eltwise_layer.cpp │ │ ├── eltwise_layer.cu │ │ ├── elu_layer.cpp │ │ ├── elu_layer.cu │ │ ├── embed_layer.cpp │ │ ├── embed_layer.cu │ │ ├── euclidean_loss_layer.cpp │ │ ├── euclidean_loss_layer.cu │ │ ├── exp_layer.cpp │ │ ├── exp_layer.cu │ │ ├── filter_layer.cpp │ │ ├── filter_layer.cu │ │ ├── flatten_layer.cpp │ │ ├── hdf5_data_layer.cpp │ │ ├── hdf5_data_layer.cu │ │ ├── hdf5_output_layer.cpp │ │ ├── hdf5_output_layer.cu │ │ ├── hinge_loss_layer.cpp │ │ ├── im2col_layer.cpp │ │ ├── im2col_layer.cu │ │ ├── image_data_layer.cpp │ │ ├── infogain_loss_layer.cpp │ │ ├── inner_product_layer.cpp │ │ ├── inner_product_layer.cu │ │ ├── input_layer.cpp │ │ ├── log_layer.cpp │ │ ├── log_layer.cu │ │ ├── loss_layer.cpp │ │ ├── lrn_layer.cpp │ │ ├── lrn_layer.cu │ │ ├── lstm_layer.cpp │ │ ├── lstm_unit_layer.cpp │ │ ├── lstm_unit_layer.cu │ │ ├── memory_data_layer.cpp │ │ ├── multinomial_logistic_loss_layer.cpp │ │ ├── mvn_layer.cpp │ │ ├── mvn_layer.cu │ │ ├── neuron_layer.cpp │ │ ├── parameter_layer.cpp │ │ ├── pooling_layer.cpp │ │ ├── pooling_layer.cu │ │ ├── power_layer.cpp │ │ ├── power_layer.cu │ │ ├── prelu_layer.cpp │ │ ├── prelu_layer.cu │ │ ├── recurrent_layer.cpp │ │ ├── recurrent_layer.cu │ │ ├── reduction_layer.cpp │ │ ├── reduction_layer.cu │ │ ├── relu_layer.cpp │ │ ├── relu_layer.cu │ │ ├── reshape_layer.cpp │ │ ├── rnn_layer.cpp │ │ ├── scale_layer.cpp │ │ ├── scale_layer.cu │ │ ├── sigmoid_cross_entropy_loss_layer.cpp │ │ ├── sigmoid_cross_entropy_loss_layer.cu │ │ ├── sigmoid_layer.cpp │ │ ├── sigmoid_layer.cu │ │ ├── silence_layer.cpp │ │ ├── silence_layer.cu │ │ ├── slice_layer.cpp │ │ ├── slice_layer.cu │ │ ├── softmax_layer.cpp │ │ ├── softmax_layer.cu │ │ ├── softmax_loss_layer.cpp │ │ ├── softmax_loss_layer.cu │ │ ├── split_layer.cpp │ │ ├── split_layer.cu │ │ ├── spp_layer.cpp │ │ ├── swish_layer.cpp │ │ ├── swish_layer.cu │ │ ├── tanh_layer.cpp │ │ ├── tanh_layer.cu │ │ ├── threshold_layer.cpp │ │ ├── threshold_layer.cu │ │ ├── tile_layer.cpp │ │ ├── tile_layer.cu │ │ └── window_data_layer.cpp │ ├── net.cpp │ ├── parallel.cpp │ ├── proto │ │ └── caffe.proto │ ├── solver.cpp │ ├── solvers │ │ ├── adadelta_solver.cpp │ │ ├── adadelta_solver.cu │ │ ├── adagrad_solver.cpp │ │ ├── adagrad_solver.cu │ │ ├── adam_solver.cpp │ │ ├── adam_solver.cu │ │ ├── nesterov_solver.cpp │ │ ├── nesterov_solver.cu │ │ ├── rmsprop_solver.cpp │ │ ├── rmsprop_solver.cu │ │ ├── sgd_solver.cpp │ │ └── sgd_solver.cu │ ├── syncedmem.cpp │ ├── test │ │ ├── CMakeLists.txt │ │ ├── test_accuracy_layer.cpp │ │ ├── test_argmax_layer.cpp │ │ ├── test_batch_norm_layer.cpp │ │ ├── test_batch_reindex_layer.cpp │ │ ├── test_benchmark.cpp │ │ ├── test_bias_layer.cpp │ │ ├── test_blob.cpp │ │ ├── test_caffe_main.cpp │ │ ├── test_common.cpp │ │ ├── test_concat_layer.cpp │ │ ├── test_contrastive_loss_layer.cpp │ │ ├── test_convolution_layer.cpp │ │ ├── test_crop_layer.cpp │ │ ├── test_data │ │ │ ├── generate_sample_data.py │ │ │ ├── sample_data.h5 │ │ │ ├── sample_data_2_gzip.h5 │ │ │ ├── sample_data_list.txt │ │ │ ├── solver_data.h5 │ │ │ └── solver_data_list.txt │ │ ├── test_data_layer.cpp │ │ ├── test_data_transformer.cpp │ │ ├── test_db.cpp │ │ ├── test_deconvolution_layer.cpp │ │ ├── test_dummy_data_layer.cpp │ │ ├── test_eltwise_layer.cpp │ │ ├── test_embed_layer.cpp │ │ ├── test_euclidean_loss_layer.cpp │ │ ├── test_filler.cpp │ │ ├── test_filter_layer.cpp │ │ ├── test_flatten_layer.cpp │ │ ├── test_gradient_based_solver.cpp │ │ ├── test_hdf5_output_layer.cpp │ │ ├── test_hdf5data_layer.cpp │ │ ├── test_hinge_loss_layer.cpp │ │ ├── test_im2col_kernel.cu │ │ ├── test_im2col_layer.cpp │ │ ├── test_image_data_layer.cpp │ │ ├── test_infogain_loss_layer.cpp │ │ ├── test_inner_product_layer.cpp │ │ ├── test_internal_thread.cpp │ │ ├── test_io.cpp │ │ ├── test_layer_factory.cpp │ │ ├── test_lrn_layer.cpp │ │ ├── test_lstm_layer.cpp │ │ ├── test_math_functions.cpp │ │ ├── test_maxpool_dropout_layers.cpp │ │ ├── test_memory_data_layer.cpp │ │ ├── test_multinomial_logistic_loss_layer.cpp │ │ ├── test_mvn_layer.cpp │ │ ├── test_net.cpp │ │ ├── test_neuron_layer.cpp │ │ ├── test_platform.cpp │ │ ├── test_pooling_layer.cpp │ │ ├── test_power_layer.cpp │ │ ├── test_protobuf.cpp │ │ ├── test_random_number_generator.cpp │ │ ├── test_reduction_layer.cpp │ │ ├── test_reshape_layer.cpp │ │ ├── test_rnn_layer.cpp │ │ ├── test_scale_layer.cpp │ │ ├── test_sigmoid_cross_entropy_loss_layer.cpp │ │ ├── test_slice_layer.cpp │ │ ├── test_softmax_layer.cpp │ │ ├── test_softmax_with_loss_layer.cpp │ │ ├── test_solver.cpp │ │ ├── test_solver_factory.cpp │ │ ├── test_split_layer.cpp │ │ ├── test_spp_layer.cpp │ │ ├── test_stochastic_pooling.cpp │ │ ├── test_syncedmem.cpp │ │ ├── test_tanh_layer.cpp │ │ ├── test_threshold_layer.cpp │ │ ├── test_tile_layer.cpp │ │ ├── test_upgrade_proto.cpp │ │ └── test_util_blas.cpp │ └── util │ │ ├── benchmark.cpp │ │ ├── blocking_queue.cpp │ │ ├── cudnn.cpp │ │ ├── db.cpp │ │ ├── db_leveldb.cpp │ │ ├── db_lmdb.cpp │ │ ├── hdf5.cpp │ │ ├── im2col.cpp │ │ ├── im2col.cu │ │ ├── insert_splits.cpp │ │ ├── io.cpp │ │ ├── math_functions.cpp │ │ ├── math_functions.cu │ │ ├── signal_handler.cpp │ │ └── upgrade_proto.cpp └── gtest │ ├── CMakeLists.txt │ ├── gtest-all.cpp │ ├── gtest.h │ └── gtest_main.cc └── tools ├── CMakeLists.txt ├── caffe.cpp ├── compute_image_mean.cpp ├── convert_imageset.cpp ├── extra ├── extract_seconds.py ├── launch_resize_and_crop_images.sh ├── parse_log.py ├── parse_log.sh ├── plot_log.gnuplot.example ├── plot_training_log.py.example ├── resize_and_crop_images.py └── summarize.py ├── extract_features.cpp ├── upgrade_net_proto_binary.cpp ├── upgrade_net_proto_text.cpp └── upgrade_solver_proto_text.cpp /.github/ISSUE_TEMPLATE.md: -------------------------------------------------------------------------------- 1 | ## Important - read before submitting 2 | 3 | *Please read the [guidelines for contributing](https://github.com/BVLC/caffe/blob/master/CONTRIBUTING.md) before submitting this issue!* 4 | 5 | *Please do not post installation, build, usage, or modeling questions, or other requests for help to Issues.* 6 | Use the [caffe-users list](https://groups.google.com/forum/#!forum/caffe-users) instead. 7 | This helps developers maintain a clear, uncluttered, and efficient view of the state of Caffe. 8 | 9 | ### Issue summary 10 | 11 | 12 | ### Steps to reproduce 13 | 14 | 15 | ### Tried solutions 16 | 17 | 18 | ### System configuration 19 | 20 | * Operating system: 21 | * Compiler: 22 | * CUDA version (if applicable): 23 | * CUDNN version (if applicable): 24 | * BLAS: 25 | * Python version (if using pycaffe): 26 | * MATLAB version (if using matcaffe): 27 | 28 | ### Issue checklist 29 | 30 | - [ ] read the guidelines and removed the first paragraph 31 | - [ ] written a short summary and detailed steps to reproduce 32 | - [ ] explained how solutions to related problems failed (tick if found none) 33 | - [ ] filled system configuration 34 | - [ ] attached relevant logs/config files (tick if not applicable) 35 | -------------------------------------------------------------------------------- /CONTRIBUTORS.md: -------------------------------------------------------------------------------- 1 | # Contributors 2 | 3 | Caffe is developed by a core set of BAIR members and the open-source community. 4 | 5 | We thank all of our [contributors](https://github.com/BVLC/caffe/graphs/contributors)! 6 | 7 | **For the detailed history of contributions** of a given file, try 8 | 9 | git blame file 10 | 11 | to see line-by-line credits and 12 | 13 | git log --follow file 14 | 15 | to see the change log even across renames and rewrites. 16 | 17 | Please refer to the [acknowledgements](http://caffe.berkeleyvision.org/#acknowledgements) on the Caffe site for further details. 18 | 19 | **Copyright** is held by the original contributor according to the versioning history; see LICENSE. 20 | -------------------------------------------------------------------------------- /INSTALL.md: -------------------------------------------------------------------------------- 1 | # Installation 2 | 3 | See http://caffe.berkeleyvision.org/installation.html for the latest 4 | installation instructions. 5 | 6 | Check the users group in case you need help: 7 | https://groups.google.com/forum/#!forum/caffe-users 8 | -------------------------------------------------------------------------------- /caffe.cloc: -------------------------------------------------------------------------------- 1 | Bourne Shell 2 | filter remove_matches ^\s*# 3 | filter remove_inline #.*$ 4 | extension sh 5 | script_exe sh 6 | C 7 | filter remove_matches ^\s*// 8 | filter call_regexp_common C 9 | filter remove_inline //.*$ 10 | extension c 11 | extension ec 12 | extension pgc 13 | C++ 14 | filter remove_matches ^\s*// 15 | filter remove_inline //.*$ 16 | filter call_regexp_common C 17 | extension C 18 | extension cc 19 | extension cpp 20 | extension cxx 21 | extension pcc 22 | C/C++ Header 23 | filter remove_matches ^\s*// 24 | filter call_regexp_common C 25 | filter remove_inline //.*$ 26 | extension H 27 | extension h 28 | extension hh 29 | extension hpp 30 | CUDA 31 | filter remove_matches ^\s*// 32 | filter remove_inline //.*$ 33 | filter call_regexp_common C 34 | extension cu 35 | Python 36 | filter remove_matches ^\s*# 37 | filter docstring_to_C 38 | filter call_regexp_common C 39 | filter remove_inline #.*$ 40 | extension py 41 | make 42 | filter remove_matches ^\s*# 43 | filter remove_inline #.*$ 44 | extension Gnumakefile 45 | extension Makefile 46 | extension am 47 | extension gnumakefile 48 | extension makefile 49 | filename Gnumakefile 50 | filename Makefile 51 | filename gnumakefile 52 | filename makefile 53 | script_exe make 54 | -------------------------------------------------------------------------------- /cmake/Modules/FindLMDB.cmake: -------------------------------------------------------------------------------- 1 | # Try to find the LMBD libraries and headers 2 | # LMDB_FOUND - system has LMDB lib 3 | # LMDB_INCLUDE_DIR - the LMDB include directory 4 | # LMDB_LIBRARIES - Libraries needed to use LMDB 5 | 6 | # FindCWD based on FindGMP by: 7 | # Copyright (c) 2006, Laurent Montel, 8 | # 9 | # Redistribution and use is allowed according to the terms of the BSD license. 10 | 11 | # Adapted from FindCWD by: 12 | # Copyright 2013 Conrad Steenberg 13 | # Aug 31, 2013 14 | 15 | find_path(LMDB_INCLUDE_DIR NAMES lmdb.h PATHS "$ENV{LMDB_DIR}/include") 16 | find_library(LMDB_LIBRARIES NAMES lmdb PATHS "$ENV{LMDB_DIR}/lib" ) 17 | 18 | include(FindPackageHandleStandardArgs) 19 | find_package_handle_standard_args(LMDB DEFAULT_MSG LMDB_INCLUDE_DIR LMDB_LIBRARIES) 20 | 21 | if(LMDB_FOUND) 22 | message(STATUS "Found lmdb (include: ${LMDB_INCLUDE_DIR}, library: ${LMDB_LIBRARIES})") 23 | mark_as_advanced(LMDB_INCLUDE_DIR LMDB_LIBRARIES) 24 | 25 | caffe_parse_header(${LMDB_INCLUDE_DIR}/lmdb.h 26 | LMDB_VERSION_LINES MDB_VERSION_MAJOR MDB_VERSION_MINOR MDB_VERSION_PATCH) 27 | set(LMDB_VERSION "${MDB_VERSION_MAJOR}.${MDB_VERSION_MINOR}.${MDB_VERSION_PATCH}") 28 | endif() 29 | -------------------------------------------------------------------------------- /cmake/Modules/FindNCCL.cmake: -------------------------------------------------------------------------------- 1 | set(NCCL_INC_PATHS 2 | /usr/include 3 | /usr/local/include 4 | $ENV{NCCL_DIR}/include 5 | ) 6 | 7 | set(NCCL_LIB_PATHS 8 | /lib 9 | /lib64 10 | /usr/lib 11 | /usr/lib64 12 | /usr/local/lib 13 | /usr/local/lib64 14 | $ENV{NCCL_DIR}/lib 15 | ) 16 | 17 | find_path(NCCL_INCLUDE_DIR NAMES nccl.h PATHS ${NCCL_INC_PATHS}) 18 | find_library(NCCL_LIBRARIES NAMES nccl PATHS ${NCCL_LIB_PATHS}) 19 | 20 | include(FindPackageHandleStandardArgs) 21 | find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIR NCCL_LIBRARIES) 22 | 23 | if (NCCL_FOUND) 24 | message(STATUS "Found NCCL (include: ${NCCL_INCLUDE_DIR}, library: ${NCCL_LIBRARIES})") 25 | mark_as_advanced(NCCL_INCLUDE_DIR NCCL_LIBRARIES) 26 | endif () 27 | -------------------------------------------------------------------------------- /cmake/Modules/FindSnappy.cmake: -------------------------------------------------------------------------------- 1 | # Find the Snappy libraries 2 | # 3 | # The following variables are optionally searched for defaults 4 | # Snappy_ROOT_DIR: Base directory where all Snappy components are found 5 | # 6 | # The following are set after configuration is done: 7 | # SNAPPY_FOUND 8 | # Snappy_INCLUDE_DIR 9 | # Snappy_LIBRARIES 10 | 11 | find_path(Snappy_INCLUDE_DIR NAMES snappy.h 12 | PATHS ${SNAPPY_ROOT_DIR} ${SNAPPY_ROOT_DIR}/include) 13 | 14 | find_library(Snappy_LIBRARIES NAMES snappy 15 | PATHS ${SNAPPY_ROOT_DIR} ${SNAPPY_ROOT_DIR}/lib) 16 | 17 | include(FindPackageHandleStandardArgs) 18 | find_package_handle_standard_args(Snappy DEFAULT_MSG Snappy_INCLUDE_DIR Snappy_LIBRARIES) 19 | 20 | if(SNAPPY_FOUND) 21 | message(STATUS "Found Snappy (include: ${Snappy_INCLUDE_DIR}, library: ${Snappy_LIBRARIES})") 22 | mark_as_advanced(Snappy_INCLUDE_DIR Snappy_LIBRARIES) 23 | 24 | caffe_parse_header(${Snappy_INCLUDE_DIR}/snappy-stubs-public.h 25 | SNAPPY_VERION_LINES SNAPPY_MAJOR SNAPPY_MINOR SNAPPY_PATCHLEVEL) 26 | set(Snappy_VERSION "${SNAPPY_MAJOR}.${SNAPPY_MINOR}.${SNAPPY_PATCHLEVEL}") 27 | endif() 28 | 29 | -------------------------------------------------------------------------------- /cmake/Modules/FindvecLib.cmake: -------------------------------------------------------------------------------- 1 | # Find the vecLib libraries as part of Accelerate.framework or as standalon framework 2 | # 3 | # The following are set after configuration is done: 4 | # VECLIB_FOUND 5 | # vecLib_INCLUDE_DIR 6 | # vecLib_LINKER_LIBS 7 | 8 | 9 | if(NOT APPLE) 10 | return() 11 | endif() 12 | 13 | set(__veclib_include_suffix "Frameworks/vecLib.framework/Versions/Current/Headers") 14 | 15 | exec_program(xcode-select ARGS -print-path OUTPUT_VARIABLE CMAKE_XCODE_DEVELOPER_DIR) 16 | find_path(vecLib_INCLUDE_DIR vecLib.h 17 | DOC "vecLib include directory" 18 | PATHS /System/Library/Frameworks/Accelerate.framework/Versions/Current/${__veclib_include_suffix} 19 | /System/Library/${__veclib_include_suffix} 20 | ${CMAKE_XCODE_DEVELOPER_DIR}/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Headers/ 21 | NO_DEFAULT_PATH) 22 | 23 | include(FindPackageHandleStandardArgs) 24 | find_package_handle_standard_args(vecLib DEFAULT_MSG vecLib_INCLUDE_DIR) 25 | 26 | if(VECLIB_FOUND) 27 | if(vecLib_INCLUDE_DIR MATCHES "^/System/Library/Frameworks/vecLib.framework.*") 28 | set(vecLib_LINKER_LIBS -lcblas "-framework vecLib") 29 | message(STATUS "Found standalone vecLib.framework") 30 | else() 31 | set(vecLib_LINKER_LIBS -lcblas "-framework Accelerate") 32 | message(STATUS "Found vecLib as part of Accelerate.framework") 33 | endif() 34 | 35 | mark_as_advanced(vecLib_INCLUDE_DIR) 36 | endif() 37 | -------------------------------------------------------------------------------- /cmake/Templates/CaffeConfigVersion.cmake.in: -------------------------------------------------------------------------------- 1 | set(PACKAGE_VERSION "@Caffe_VERSION@") 2 | 3 | # Check whether the requested PACKAGE_FIND_VERSION is compatible 4 | if("${PACKAGE_VERSION}" VERSION_LESS "${PACKAGE_FIND_VERSION}") 5 | set(PACKAGE_VERSION_COMPATIBLE FALSE) 6 | else() 7 | set(PACKAGE_VERSION_COMPATIBLE TRUE) 8 | if ("${PACKAGE_VERSION}" VERSION_EQUAL "${PACKAGE_FIND_VERSION}") 9 | set(PACKAGE_VERSION_EXACT TRUE) 10 | endif() 11 | endif() 12 | -------------------------------------------------------------------------------- /cmake/Templates/caffe_config.h.in: -------------------------------------------------------------------------------- 1 | /* Sources directory */ 2 | #define SOURCE_FOLDER "${PROJECT_SOURCE_DIR}" 3 | 4 | /* Binaries directory */ 5 | #define BINARY_FOLDER "${PROJECT_BINARY_DIR}" 6 | 7 | /* This is an absolute path so that we can run test from any build 8 | * directory */ 9 | #define ABS_TEST_DATA_DIR "${PROJECT_SOURCE_DIR}/src/caffe/test/test_data/" 10 | 11 | /* Test device */ 12 | #define CUDA_TEST_DEVICE ${CUDA_TEST_DEVICE} 13 | -------------------------------------------------------------------------------- /cmake/Uninstall.cmake.in: -------------------------------------------------------------------------------- 1 | if(NOT EXISTS "@CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt") 2 | message(FATAL_ERROR "Cannot find install manifest: @CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt") 3 | endif(NOT EXISTS "@CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt") 4 | 5 | if (NOT DEFINED CMAKE_INSTALL_PREFIX) 6 | set (CMAKE_INSTALL_PREFIX "@CMAKE_INSTALL_PREFIX@") 7 | endif () 8 | message(${CMAKE_INSTALL_PREFIX}) 9 | 10 | file(READ "@CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt" files) 11 | string(REGEX REPLACE "\n" ";" files "${files}") 12 | foreach(file ${files}) 13 | message(STATUS "Uninstalling $ENV{DESTDIR}${file}") 14 | if(IS_SYMLINK "$ENV{DESTDIR}${file}" OR EXISTS "$ENV{DESTDIR}${file}") 15 | exec_program( 16 | "@CMAKE_COMMAND@" ARGS "-E remove \"$ENV{DESTDIR}${file}\"" 17 | OUTPUT_VARIABLE rm_out 18 | RETURN_VALUE rm_retval 19 | ) 20 | if(NOT "${rm_retval}" STREQUAL 0) 21 | message(FATAL_ERROR "Problem when removing $ENV{DESTDIR}${file}") 22 | endif(NOT "${rm_retval}" STREQUAL 0) 23 | else(IS_SYMLINK "$ENV{DESTDIR}${file}" OR EXISTS "$ENV{DESTDIR}${file}") 24 | message(STATUS "File $ENV{DESTDIR}${file} does not exist.") 25 | endif(IS_SYMLINK "$ENV{DESTDIR}${file}" OR EXISTS "$ENV{DESTDIR}${file}") 26 | endforeach(file) -------------------------------------------------------------------------------- /data/cifar10/get_cifar10.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This scripts downloads the CIFAR10 (binary version) data and unzips it. 3 | 4 | DIR="$( cd "$(dirname "$0")" ; pwd -P )" 5 | cd "$DIR" 6 | 7 | echo "Downloading..." 8 | 9 | wget --no-check-certificate http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz 10 | 11 | echo "Unzipping..." 12 | 13 | tar -xf cifar-10-binary.tar.gz && rm -f cifar-10-binary.tar.gz 14 | mv cifar-10-batches-bin/* . && rm -rf cifar-10-batches-bin 15 | 16 | # Creation is split out because leveldb sometimes causes segfault 17 | # and needs to be re-created. 18 | 19 | echo "Done." 20 | -------------------------------------------------------------------------------- /data/ilsvrc12/get_ilsvrc_aux.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # 3 | # N.B. This does not download the ilsvrcC12 data set, as it is gargantuan. 4 | # This script downloads the imagenet example auxiliary files including: 5 | # - the ilsvrc12 image mean, binaryproto 6 | # - synset ids and words 7 | # - Python pickle-format data of ImageNet graph structure and relative infogain 8 | # - the training splits with labels 9 | 10 | DIR="$( cd "$(dirname "$0")" ; pwd -P )" 11 | cd "$DIR" 12 | 13 | echo "Downloading..." 14 | 15 | wget -c http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz 16 | 17 | echo "Unzipping..." 18 | 19 | tar -xf caffe_ilsvrc12.tar.gz && rm -f caffe_ilsvrc12.tar.gz 20 | 21 | echo "Done." 22 | -------------------------------------------------------------------------------- /data/mnist/get_mnist.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This scripts downloads the mnist data and unzips it. 3 | 4 | DIR="$( cd "$(dirname "$0")" ; pwd -P )" 5 | cd "$DIR" 6 | 7 | echo "Downloading..." 8 | 9 | for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte 10 | do 11 | if [ ! -e $fname ]; then 12 | wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz 13 | gunzip ${fname}.gz 14 | fi 15 | done 16 | -------------------------------------------------------------------------------- /docker/cpu/Dockerfile: -------------------------------------------------------------------------------- 1 | FROM ubuntu:16.04 2 | LABEL maintainer caffe-maint@googlegroups.com 3 | 4 | RUN apt-get update && apt-get install -y --no-install-recommends \ 5 | build-essential \ 6 | cmake \ 7 | git \ 8 | wget \ 9 | libatlas-base-dev \ 10 | libboost-all-dev \ 11 | libgflags-dev \ 12 | libgoogle-glog-dev \ 13 | libhdf5-serial-dev \ 14 | libleveldb-dev \ 15 | liblmdb-dev \ 16 | libopencv-dev \ 17 | libprotobuf-dev \ 18 | libsnappy-dev \ 19 | protobuf-compiler \ 20 | python-dev \ 21 | python-numpy \ 22 | python-pip \ 23 | python-setuptools \ 24 | python-scipy && \ 25 | rm -rf /var/lib/apt/lists/* 26 | 27 | ENV CAFFE_ROOT=/opt/caffe 28 | WORKDIR $CAFFE_ROOT 29 | 30 | # FIXME: use ARG instead of ENV once DockerHub supports this 31 | # https://github.com/docker/hub-feedback/issues/460 32 | ENV CLONE_TAG=1.0 33 | 34 | RUN git clone -b ${CLONE_TAG} --depth 1 https://github.com/BVLC/caffe.git . && \ 35 | pip install --upgrade pip && \ 36 | cd python && for req in $(cat requirements.txt) pydot; do pip install $req; done && cd .. && \ 37 | mkdir build && cd build && \ 38 | cmake -DCPU_ONLY=1 .. && \ 39 | make -j"$(nproc)" 40 | 41 | ENV PYCAFFE_ROOT $CAFFE_ROOT/python 42 | ENV PYTHONPATH $PYCAFFE_ROOT:$PYTHONPATH 43 | ENV PATH $CAFFE_ROOT/build/tools:$PYCAFFE_ROOT:$PATH 44 | RUN echo "$CAFFE_ROOT/build/lib" >> /etc/ld.so.conf.d/caffe.conf && ldconfig 45 | 46 | WORKDIR /workspace 47 | -------------------------------------------------------------------------------- /docs/CNAME: -------------------------------------------------------------------------------- 1 | caffe.berkeleyvision.org 2 | -------------------------------------------------------------------------------- /docs/README.md: -------------------------------------------------------------------------------- 1 | # Caffe Documentation 2 | 3 | To generate the documentation, run `$CAFFE_ROOT/scripts/build_docs.sh`. 4 | 5 | To push your changes to the documentation to the gh-pages branch of your or the BVLC repo, run `$CAFFE_ROOT/scripts/deploy_docs.sh `. 6 | -------------------------------------------------------------------------------- /docs/_config.yml: -------------------------------------------------------------------------------- 1 | defaults: 2 | - 3 | scope: 4 | path: "" # an empty string here means all files in the project 5 | values: 6 | layout: "default" 7 | 8 | -------------------------------------------------------------------------------- /docs/images/GitHub-Mark-64px.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/docs/images/GitHub-Mark-64px.png -------------------------------------------------------------------------------- /docs/images/caffeine-icon.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/docs/images/caffeine-icon.png -------------------------------------------------------------------------------- /docs/stylesheets/reset.css: -------------------------------------------------------------------------------- 1 | /* MeyerWeb Reset */ 2 | 3 | html, body, div, span, applet, object, iframe, 4 | h1, h2, h3, h4, h5, h6, p, blockquote, pre, 5 | a, abbr, acronym, address, big, cite, code, 6 | del, dfn, em, img, ins, kbd, q, s, samp, 7 | small, strike, strong, sub, sup, tt, var, 8 | b, u, i, center, 9 | dl, dt, dd, ol, ul, li, 10 | fieldset, form, label, legend, 11 | table, caption, tbody, tfoot, thead, tr, th, td, 12 | article, aside, canvas, details, embed, 13 | figure, figcaption, footer, header, hgroup, 14 | menu, nav, output, ruby, section, summary, 15 | time, mark, audio, video { 16 | margin: 0; 17 | padding: 0; 18 | border: 0; 19 | font: inherit; 20 | vertical-align: baseline; 21 | } 22 | -------------------------------------------------------------------------------- /docs/tutorial/convolution.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Convolution 3 | --- 4 | # Caffeinated Convolution 5 | 6 | The Caffe strategy for convolution is to reduce the problem to matrix-matrix multiplication. 7 | This linear algebra computation is highly-tuned in BLAS libraries and efficiently computed on GPU devices. 8 | 9 | For more details read Yangqing's [Convolution in Caffe: a memo](https://github.com/Yangqing/caffe/wiki/Convolution-in-Caffe:-a-memo). 10 | 11 | As it turns out, this same reduction was independently explored in the context of conv. nets by 12 | 13 | > K. Chellapilla, S. Puri, P. Simard, et al. High performance convolutional neural networks for document processing. In Tenth International Workshop on Frontiers in Handwriting Recognition, 2006. 14 | -------------------------------------------------------------------------------- /docs/tutorial/fig/.gitignore: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/docs/tutorial/fig/.gitignore -------------------------------------------------------------------------------- /docs/tutorial/fig/backward.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/docs/tutorial/fig/backward.jpg -------------------------------------------------------------------------------- /docs/tutorial/fig/forward.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/docs/tutorial/fig/forward.jpg -------------------------------------------------------------------------------- /docs/tutorial/fig/forward_backward.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/docs/tutorial/fig/forward_backward.png -------------------------------------------------------------------------------- /docs/tutorial/fig/layer.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/docs/tutorial/fig/layer.jpg -------------------------------------------------------------------------------- /docs/tutorial/fig/logreg.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/docs/tutorial/fig/logreg.jpg -------------------------------------------------------------------------------- /docs/tutorial/layers/absval.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Absolute Value Layer 3 | --- 4 | 5 | # Absolute Value Layer 6 | 7 | * Layer type: `AbsVal` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1AbsValLayer.html) 9 | * Header: [`./include/caffe/layers/absval_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/absval_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/absval_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/absval_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/absval_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/absval_layer.cu) 12 | 13 | * Sample 14 | 15 | layer { 16 | name: "layer" 17 | bottom: "in" 18 | top: "out" 19 | type: "AbsVal" 20 | } 21 | 22 | The `AbsVal` layer computes the output as abs(x) for each input element x. 23 | -------------------------------------------------------------------------------- /docs/tutorial/layers/accuracy.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Accuracy and Top-k 3 | --- 4 | 5 | # Accuracy and Top-k 6 | 7 | `Accuracy` scores the output as the accuracy of output with respect to target -- it is not actually a loss and has no backward step. 8 | 9 | * Layer type: `Accuracy` 10 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1AccuracyLayer.html) 11 | * Header: [`./include/caffe/layers/accuracy_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/accuracy_layer.hpp) 12 | * CPU implementation: [`./src/caffe/layers/accuracy_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/accuracy_layer.cpp) 13 | 14 | ## Parameters 15 | * Parameters (`AccuracyParameter accuracy_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/AccuracyParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/argmax.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: ArgMax Layer 3 | --- 4 | 5 | # ArgMax Layer 6 | 7 | * Layer type: `ArgMax` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ArgMaxLayer.html) 9 | * Header: [`./include/caffe/layers/argmax_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/argmax_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/argmax_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/argmax_layer.cpp) 11 | 12 | ## Parameters 13 | * Parameters (`ArgMaxParameter argmax_param`) 14 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 15 | 16 | {% highlight Protobuf %} 17 | {% include proto/ArgMaxParameter.txt %} 18 | {% endhighlight %} 19 | -------------------------------------------------------------------------------- /docs/tutorial/layers/batchnorm.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Batch Norm Layer 3 | --- 4 | 5 | # Batch Norm Layer 6 | 7 | * Layer type: `BatchNorm` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BatchNormLayer.html) 9 | * Header: [`./include/caffe/layers/batch_norm_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/batch_norm_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/batch_norm_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_norm_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/batch_norm_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_norm_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`BatchNormParameter batch_norm_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/BatchNormParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/batchreindex.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Batch Reindex Layer 3 | --- 4 | 5 | # Batch Reindex Layer 6 | 7 | * Layer type: `BatchReindex` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BatchReindexLayer.html) 9 | * Header: [`./include/caffe/layers/batch_reindex_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/batch_reindex_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/batch_reindex_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_reindex_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/batch_reindex_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_reindex_layer.cu) 12 | 13 | 14 | ## Parameters 15 | 16 | No parameters. 17 | -------------------------------------------------------------------------------- /docs/tutorial/layers/bias.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Bias Layer 3 | --- 4 | 5 | # Bias Layer 6 | 7 | * Layer type: `Bias` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BiasLayer.html) 9 | * Header: [`./include/caffe/layers/bias_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/bias_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/bias_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bias_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/bias_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bias_layer.cu) 12 | 13 | ## Parameters 14 | * Parameters (`BiasParameter bias_param`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/BiasParameter.txt %} 19 | {% endhighlight %} 20 | -------------------------------------------------------------------------------- /docs/tutorial/layers/bnll.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: BNLL Layer 3 | --- 4 | 5 | # BNLL Layer 6 | 7 | * Layer type: `BNLL` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BNLLLayer.html) 9 | * Header: [`./include/caffe/layers/bnll_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/bnll_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/bnll_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bnll_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/bnll_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bnll_layer.cu) 12 | 13 | The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x. 14 | 15 | ## Parameters 16 | No parameters. 17 | 18 | ## Sample 19 | 20 | layer { 21 | name: "layer" 22 | bottom: "in" 23 | top: "out" 24 | type: BNLL 25 | } 26 | -------------------------------------------------------------------------------- /docs/tutorial/layers/clip.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Clip Layer 3 | --- 4 | 5 | # Clip Layer 6 | 7 | * Layer type: `Clip` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ClipLayer.html) 9 | * Header: [`./include/caffe/layers/clip_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/clip_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/clip_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/clip_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/clip_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/clip_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`ClipParameter clip_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/ClipParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/contrastiveloss.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Contrastive Loss Layer 3 | --- 4 | 5 | # Contrastive Loss Layer 6 | 7 | * Layer type: `ContrastiveLoss` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ContrastiveLossLayer.html) 9 | * Header: [`./include/caffe/layers/contrastive_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/contrastive_loss_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/contrastive_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/contrastive_loss_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/contrastive_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/contrastive_loss_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`ContrastiveLossParameter contrastive_loss_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/ContrastiveLossParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/crop.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Crop Layer 3 | --- 4 | 5 | # Crop Layer 6 | 7 | * Layer type: `Crop` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1CropLayer.html) 9 | * Header: [`./include/caffe/layers/crop_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/crop_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/crop_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/crop_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/crop_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/crop_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`CropParameter crop_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/CropParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/data.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Database Layer 3 | --- 4 | 5 | # Database Layer 6 | 7 | * Layer type: `Data` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DataLayer.html) 9 | * Header: [`./include/caffe/layers/data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/data_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/data_layer.cpp) 11 | 12 | 13 | ## Parameters 14 | 15 | * Parameters (`DataParameter data_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/DataParameter.txt %} 20 | {% endhighlight %} 21 | 22 | * Parameters 23 | - Required 24 | - `source`: the name of the directory containing the database 25 | - `batch_size`: the number of inputs to process at one time 26 | - Optional 27 | - `rand_skip`: skip up to this number of inputs at the beginning; useful for asynchronous sgd 28 | - `backend` [default `LEVELDB`]: choose whether to use a `LEVELDB` or `LMDB` 29 | 30 | -------------------------------------------------------------------------------- /docs/tutorial/layers/deconvolution.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Deconvolution Layer 3 | --- 4 | 5 | # Deconvolution Layer 6 | 7 | * Layer type: `Deconvolution` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DeconvolutionLayer.html) 9 | * Header: [`./include/caffe/layers/deconv_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/deconv_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/deconv_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/deconv_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/deconv_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/deconv_layer.cu) 12 | 13 | ## Parameters 14 | 15 | Uses the same parameters as the Convolution layer. 16 | 17 | * Parameters (`ConvolutionParameter convolution_param`) 18 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 19 | 20 | {% highlight Protobuf %} 21 | {% include proto/ConvolutionParameter.txt %} 22 | {% endhighlight %} 23 | -------------------------------------------------------------------------------- /docs/tutorial/layers/dropout.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Dropout Layer 3 | --- 4 | 5 | # Dropout Layer 6 | 7 | * Layer type: `Dropout` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DropoutLayer.html) 9 | * Header: [`./include/caffe/layers/dropout_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/dropout_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/dropout_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dropout_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/dropout_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dropout_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`DropoutParameter dropout_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/DropoutParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/dummydata.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Dummy Data Layer 3 | --- 4 | 5 | # Dummy Data Layer 6 | 7 | * Layer type: `DummyData` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DummyDataLayer.html) 9 | * Header: [`./include/caffe/layers/dummy_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/dummy_data_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/dummy_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dummy_data_layer.cpp) 11 | 12 | 13 | ## Parameters 14 | 15 | * Parameters (`DummyDataParameter dummy_data_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/DummyDataParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/eltwise.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Eltwise Layer 3 | --- 4 | 5 | # Eltwise Layer 6 | 7 | * Layer type: `Eltwise` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EltwiseLayer.html) 9 | * Header: [`./include/caffe/layers/eltwise_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/eltwise_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/eltwise_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/eltwise_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/eltwise_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/eltwise_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`EltwiseParameter eltwise_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/EltwiseParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/elu.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: ELU Layer 3 | --- 4 | 5 | # ELU Layer 6 | 7 | * Layer type: `ELU` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ELULayer.html) 9 | * Header: [`./include/caffe/layers/elu_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/elu_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/elu_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/elu_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/elu_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/elu_layer.cu) 12 | 13 | ## References 14 | 15 | * Clevert, Djork-Arne, Thomas Unterthiner, and Sepp Hochreiter. 16 | "Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)" [arXiv:1511.07289](https://arxiv.org/abs/1511.07289). (2015). 17 | 18 | ## Parameters 19 | 20 | * Parameters (`ELUParameter elu_param`) 21 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 22 | 23 | {% highlight Protobuf %} 24 | {% include proto/ELUParameter.txt %} 25 | {% endhighlight %} 26 | -------------------------------------------------------------------------------- /docs/tutorial/layers/embed.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Embed Layer 3 | --- 4 | 5 | # Embed Layer 6 | 7 | * Layer type: `Embed` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EmbedLayer.html) 9 | * Header: [`./include/caffe/layers/embed_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/embed_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/embed_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/embed_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/embed_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/embed_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`EmbedParameter embed_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/EmbedParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/euclideanloss.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Euclidean Loss Layer 3 | --- 4 | # Sum-of-Squares / Euclidean Loss Layer 5 | 6 | * Layer type: `EuclideanLoss` 7 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EuclideanLossLayer.html) 8 | * Header: [`./include/caffe/layers/euclidean_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/euclidean_loss_layer.hpp) 9 | * CPU implementation: [`./src/caffe/layers/euclidean_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/euclidean_loss_layer.cpp) 10 | * CUDA GPU implementation: [`./src/caffe/layers/euclidean_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/euclidean_loss_layer.cu) 11 | 12 | The Euclidean loss layer computes the sum of squares of differences of its two inputs, $$\frac 1 {2N} \sum_{i=1}^N \| x^1_i - x^2_i \|_2^2$$. 13 | 14 | ## Parameters 15 | 16 | Does not take any parameters. 17 | -------------------------------------------------------------------------------- /docs/tutorial/layers/exp.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Exponential Layer 3 | --- 4 | 5 | # Exponential Layer 6 | 7 | * Layer type: `Exp` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ExpLayer.html) 9 | * Header: [`./include/caffe/layers/exp_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/exp_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/exp_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/exp_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/exp_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/exp_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`Parameter exp_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/ExpParameter.txt %} 20 | {% endhighlight %} 21 | 22 | ## See also 23 | 24 | * [Power layer](power.html) 25 | -------------------------------------------------------------------------------- /docs/tutorial/layers/filter.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Filter Layer 3 | --- 4 | 5 | # Filter Layer 6 | 7 | * Layer type: `Filter` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1FilterLayer.html) 9 | * Header: [`./include/caffe/layers/filter_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/filter_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/filter_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/filter_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/filter_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/filter_layer.cu) 12 | 13 | ## Parameters 14 | 15 | Does not take any parameters. 16 | -------------------------------------------------------------------------------- /docs/tutorial/layers/flatten.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Flatten Layer 3 | --- 4 | 5 | # Flatten Layer 6 | 7 | * Layer type: `Flatten` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1FlattenLayer.html) 9 | * Header: [`./include/caffe/layers/flatten_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/flatten_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/flatten_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/flatten_layer.cpp) 11 | 12 | The `Flatten` layer is a utility layer that flattens an input of shape `n * c * h * w` to a simple vector output of shape `n * (c*h*w)`. 13 | 14 | ## Parameters 15 | 16 | * Parameters (`FlattenParameter flatten_param`) 17 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 18 | 19 | {% highlight Protobuf %} 20 | {% include proto/FlattenParameter.txt %} 21 | {% endhighlight %} 22 | -------------------------------------------------------------------------------- /docs/tutorial/layers/hdf5data.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: HDF5 Data Layer 3 | --- 4 | 5 | # HDF5 Data Layer 6 | 7 | * Layer type: `HDF5Data` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HDF5DataLayer.html) 9 | * Header: [`./include/caffe/layers/hdf5_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hdf5_data_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/hdf5_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_data_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/hdf5_data_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_data_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`HDF5DataParameter hdf5_data_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/HDF5DataParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/hdf5output.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: HDF5 Output Layer 3 | --- 4 | 5 | # HDF5 Output Layer 6 | 7 | * Layer type: `HDF5Output` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HDF5OutputLayer.html) 9 | * Header: [`./include/caffe/layers/hdf5_output_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hdf5_output_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/hdf5_output_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_output_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/hdf5_output_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_output_layer.cu) 12 | 13 | The HDF5 output layer performs the opposite function of the other layers in this section: it writes its input blobs to disk. 14 | 15 | ## Parameters 16 | 17 | * Parameters (`HDF5OutputParameter hdf5_output_param`) 18 | - Required 19 | - `file_name`: name of file to write to 20 | 21 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 22 | 23 | {% highlight Protobuf %} 24 | {% include proto/HDF5OutputParameter.txt %} 25 | {% endhighlight %} 26 | -------------------------------------------------------------------------------- /docs/tutorial/layers/hingeloss.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Hinge Loss Layer 3 | --- 4 | 5 | # Hinge (L1, L2) Loss Layer 6 | 7 | * Layer type: `HingeLoss` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HingeLossLayer.html) 9 | * Header: [`./include/caffe/layers/hinge_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hinge_loss_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/hinge_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hinge_loss_layer.cpp) 11 | 12 | ## Parameters 13 | 14 | * Parameters (`HingeLossParameter hinge_loss_param`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/HingeLossParameter.txt %} 19 | {% endhighlight %} 20 | -------------------------------------------------------------------------------- /docs/tutorial/layers/im2col.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Im2col Layer 3 | --- 4 | 5 | # im2col 6 | 7 | * File type: `Im2col` 8 | * Header: [`./include/caffe/layers/im2col_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/im2col_layer.hpp) 9 | * CPU implementation: [`./src/caffe/layers/im2col_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/im2col_layer.cpp) 10 | * CUDA GPU implementation: [`./src/caffe/layers/im2col_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/im2col_layer.cu) 11 | 12 | `Im2col` is a helper for doing the image-to-column transformation that you most 13 | likely do not need to know about. This is used in Caffe's original convolution 14 | to do matrix multiplication by laying out all patches into a matrix. 15 | 16 | 17 | -------------------------------------------------------------------------------- /docs/tutorial/layers/imagedata.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: ImageData Layer 3 | --- 4 | 5 | # ImageData Layer 6 | 7 | * Layer type: `ImageData` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ImageDataLayer.html) 9 | * Header: [`./include/caffe/layers/image_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/image_data_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/image_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/image_data_layer.cpp) 11 | 12 | ## Parameters 13 | 14 | * Parameters (`ImageDataParameter image_data_parameter`) 15 | - Required 16 | - `source`: name of a text file, with each line giving an image filename and label 17 | - `batch_size`: number of images to batch together 18 | - Optional 19 | - `rand_skip` 20 | - `shuffle` [default false] 21 | - `new_height`, `new_width`: if provided, resize all images to this size 22 | 23 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 24 | 25 | {% highlight Protobuf %} 26 | {% include proto/ImageDataParameter.txt %} 27 | {% endhighlight %} 28 | -------------------------------------------------------------------------------- /docs/tutorial/layers/infogainloss.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Infogain Loss Layer 3 | --- 4 | 5 | # Infogain Loss Layer 6 | 7 | * Layer type: `InfogainLoss` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1InfogainLossLayer.html) 9 | * Header: [`./include/caffe/layers/infogain_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/infogain_loss_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/infogain_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/infogain_loss_layer.cpp) 11 | 12 | A generalization of [MultinomialLogisticLossLayer](multinomiallogisticloss.html) that takes an "information gain" (infogain) matrix specifying the "value" of all label pairs. 13 | 14 | Equivalent to the [MultinomialLogisticLossLayer](multinomiallogisticloss.html) if the infogain matrix is the identity. 15 | 16 | ## Parameters 17 | 18 | * Parameters (`Parameter infogain_param`) 19 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 20 | 21 | {% highlight Protobuf %} 22 | {% include proto/InfogainLossParameter.txt %} 23 | {% endhighlight %} 24 | -------------------------------------------------------------------------------- /docs/tutorial/layers/input.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Input Layer 3 | --- 4 | 5 | # Input Layer 6 | 7 | * Layer type: `Input` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1InputLayer.html) 9 | * Header: [`./include/caffe/layers/input_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/input_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/input_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/input_layer.cpp) 11 | 12 | ## Parameters 13 | 14 | * Parameters (`InputParameter input_param`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/InputParameter.txt %} 19 | {% endhighlight %} 20 | -------------------------------------------------------------------------------- /docs/tutorial/layers/log.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Log Layer 3 | --- 4 | 5 | # Log Layer 6 | 7 | * Layer type: `Log` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1LogLayer.html) 9 | * Header: [`./include/caffe/layers/log_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/log_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/log_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/log_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/log_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/log_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`Parameter log_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/LogParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/lstm.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: LSTM Layer 3 | --- 4 | 5 | # LSTM Layer 6 | 7 | * Layer type: `LSTM` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1LSTMLayer.html) 9 | * Header: [`./include/caffe/layers/lstm_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/lstm_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/lstm_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lstm_layer.cpp) 11 | * CPU implementation (helper): [`./src/caffe/layers/lstm_unit_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lstm_unit_layer.cpp) 12 | * CUDA GPU implementation (helper): [`./src/caffe/layers/lstm_unit_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lstm_unit_layer.cu) 13 | 14 | ## Parameters 15 | 16 | * Parameters (`Parameter recurrent_param`) 17 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 18 | 19 | {% highlight Protobuf %} 20 | {% include proto/RecurrentParameter.txt %} 21 | {% endhighlight %} 22 | -------------------------------------------------------------------------------- /docs/tutorial/layers/memorydata.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Memory Data Layer 3 | --- 4 | 5 | # Memory Data Layer 6 | 7 | * Layer type: `MemoryData` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MemoryDataLayer.html) 9 | * Header: [`./include/caffe/layers/memory_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/memory_data_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/memory_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/memory_data_layer.cpp) 11 | 12 | The memory data layer reads data directly from memory, without copying it. In order to use it, one must call `MemoryDataLayer::Reset` (from C++) or `Net.set_input_arrays` (from Python) in order to specify a source of contiguous data (as 4D row major array), which is read one batch-sized chunk at a time. 13 | 14 | # Parameters 15 | 16 | * Parameters (`MemoryDataParameter memory_data_param`) 17 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 18 | 19 | {% highlight Protobuf %} 20 | {% include proto/MemoryDataParameter.txt %} 21 | {% endhighlight %} 22 | 23 | * Parameters 24 | - Required 25 | - `batch_size`, `channels`, `height`, `width`: specify the size of input chunks to read from memory 26 | -------------------------------------------------------------------------------- /docs/tutorial/layers/multinomiallogisticloss.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Multinomial Logistic Loss Layer 3 | --- 4 | 5 | # Multinomial Logistic Loss Layer 6 | 7 | * Layer type: `MultinomialLogisticLoss` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MultinomialLogisticLossLayer.html) 9 | * Header: [`./include/caffe/layers/multinomial_logistic_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/multinomial_logistic_loss_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/multinomial_logistic_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/multinomial_logistic_loss_layer.cpp) 11 | 12 | ## Parameters 13 | 14 | * Parameters (`LossParameter loss_param`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/LossParameter.txt %} 19 | {% endhighlight %} 20 | -------------------------------------------------------------------------------- /docs/tutorial/layers/mvn.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Mean-Variance Normalization (MVN) Layer 3 | --- 4 | 5 | # Mean-Variance Normalization (MVN) Layer 6 | 7 | * Layer type: `MVN` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MVNLayer.html) 9 | * Header: [`./include/caffe/layers/mvn_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/mvn_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/mvn_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/mvn_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/mvn_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/mvn_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`MVNParameter mvn_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/MVNParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/parameter.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Parameter Layer 3 | --- 4 | 5 | # Parameter Layer 6 | 7 | * Layer type: `Parameter` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ParameterLayer.html) 9 | * Header: [`./include/caffe/layers/parameter_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/parameter_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/parameter_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/parameter_layer.cpp) 11 | 12 | See [https://github.com/BVLC/caffe/pull/2079](https://github.com/BVLC/caffe/pull/2079). 13 | 14 | ## Parameters 15 | 16 | * Parameters (`ParameterParameter parameter_param`) 17 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 18 | 19 | {% highlight Protobuf %} 20 | {% include proto/ParameterParameter.txt %} 21 | {% endhighlight %} 22 | -------------------------------------------------------------------------------- /docs/tutorial/layers/power.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Power Layer 3 | --- 4 | 5 | # Power Layer 6 | 7 | * Layer type: `Power` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PowerLayer.html) 9 | * Header: [`./include/caffe/layers/power_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/power_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/power_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/power_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/power_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/power_layer.cu) 12 | 13 | The `Power` layer computes the output as (shift + scale * x) ^ power for each input element x. 14 | 15 | ## Parameters 16 | * Parameters (`PowerParameter power_param`) 17 | - Optional 18 | - `power` [default 1] 19 | - `scale` [default 1] 20 | - `shift` [default 0] 21 | 22 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 23 | 24 | {% highlight Protobuf %} 25 | {% include proto/PowerParameter.txt %} 26 | {% endhighlight %} 27 | 28 | 29 | 30 | ## Sample 31 | 32 | layer { 33 | name: "layer" 34 | bottom: "in" 35 | top: "out" 36 | type: "Power" 37 | power_param { 38 | power: 1 39 | scale: 1 40 | shift: 0 41 | } 42 | } 43 | 44 | ## See also 45 | 46 | * [Exponential layer](exp.html) 47 | -------------------------------------------------------------------------------- /docs/tutorial/layers/prelu.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: PReLU Layer 3 | --- 4 | 5 | # PReLU Layer 6 | 7 | * Layer type: `PReLU` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PReLULayer.html) 9 | * Header: [`./include/caffe/layers/prelu_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/prelu_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/prelu_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/prelu_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/prelu_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/prelu_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`PReLUParameter prelu_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/PReLUParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/python.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Python Layer 3 | --- 4 | 5 | # Python Layer 6 | 7 | * Layer type: `Python` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PythonLayer.html) 9 | * Header: [`./include/caffe/layers/python_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/python_layer.hpp) 10 | 11 | The Python layer allows users to add customized layers without modifying the Caffe core code. 12 | 13 | ## Parameters 14 | 15 | * Parameters (`PythonParameter python_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/PythonParameter.txt %} 20 | {% endhighlight %} 21 | 22 | ## Examples and tutorials 23 | 24 | * Simple Euclidean loss example 25 | ** [Python code](https://github.com/BVLC/caffe/blob/master/examples/pycaffe/layers/pyloss.py) 26 | ** [Prototxt](https://github.com/BVLC/caffe/blob/master/examples/pycaffe/linreg.prototxt) 27 | * [Tutorial for writing Python layers with DIGITS](https://github.com/NVIDIA/DIGITS/tree/master/examples/python-layer) 28 | -------------------------------------------------------------------------------- /docs/tutorial/layers/recurrent.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Recurrent Layer 3 | --- 4 | 5 | # Recurrent Layer 6 | 7 | * Layer type: `Recurrent` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1RecurrentLayer.html) 9 | * Header: [`./include/caffe/layers/recurrent_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/recurrent_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/recurrent_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/recurrent_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/recurrent_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/recurrent_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`RecurrentParameter recurrent_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/RecurrentParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/reduction.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Reduction Layer 3 | --- 4 | 5 | # Reduction Layer 6 | 7 | * Layer type: `Reduction` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ReductionLayer.html) 9 | * Header: [`./include/caffe/layers/reduction_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/reduction_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/reduction_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/reduction_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/reduction_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/reduction_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`ReductionParameter reduction_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/ReductionParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/rnn.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: RNN Layer 3 | --- 4 | 5 | # RNN Layer 6 | 7 | * Layer type: `RNN` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1RNNLayer.html) 9 | * Header: [`./include/caffe/layers/rnn_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/rnn_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/rnn_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/rnn_layer.cpp) 11 | 12 | ## Parameters 13 | 14 | * Parameters (`RecurrentParameter recurrent_param`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/RecurrentParameter.txt %} 19 | {% endhighlight %} 20 | -------------------------------------------------------------------------------- /docs/tutorial/layers/scale.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Scale Layer 3 | --- 4 | 5 | # Scale Layer 6 | 7 | * Layer type: `Scale` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ScaleLayer.html) 9 | * Header: [`./include/caffe/layers/scale_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/scale_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/scale_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/scale_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/scale_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/scale_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`ScaleParameter scale_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/ScaleParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/sigmoid.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Sigmoid Layer 3 | --- 4 | 5 | # Sigmoid Layer 6 | 7 | * Layer type: `Sigmoid` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SigmoidLayer.html) 9 | * Header: [`./include/caffe/layers/sigmoid_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/sigmoid_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/sigmoid_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/sigmoid_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_layer.cu) 12 | * Example (from [`./examples/mnist/mnist_autoencoder.prototxt`](https://github.com/BVLC/caffe/blob/master/examples/mnist/mnist_autoencoder.prototxt)): 13 | 14 | layer { 15 | name: "encode1neuron" 16 | bottom: "encode1" 17 | top: "encode1neuron" 18 | type: "Sigmoid" 19 | } 20 | 21 | The `Sigmoid` layer computes `sigmoid(x)` for each element `x` in the bottom blob. 22 | 23 | ## Parameters 24 | 25 | * Parameters (`SigmoidParameter sigmoid_param`) 26 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 27 | 28 | {% highlight Protobuf %} 29 | {% include proto/SigmoidParameter.txt %} 30 | {% endhighlight %} 31 | -------------------------------------------------------------------------------- /docs/tutorial/layers/sigmoidcrossentropyloss.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Sigmoid Cross-Entropy Loss Layer 3 | --- 4 | 5 | # Sigmoid Cross-Entropy Loss Layer 6 | 7 | * Layer type: `SigmoidCrossEntropyLoss` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SigmoidCrossEntropyLossLayer.html) 9 | * Header: [`./include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu) 12 | 13 | To-do. 14 | -------------------------------------------------------------------------------- /docs/tutorial/layers/silence.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Silence Layer 3 | --- 4 | 5 | # Silence Layer 6 | 7 | * Layer type: `Silence` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SilenceLayer.html) 9 | * Header: [`./include/caffe/layers/silence_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/silence_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/silence_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/silence_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/silence_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/silence_layer.cu) 12 | 13 | Silences a blob, so that it is not printed. 14 | 15 | ## Parameters 16 | 17 | No parameters. 18 | -------------------------------------------------------------------------------- /docs/tutorial/layers/softmax.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Softmax Layer 3 | --- 4 | 5 | # Softmax Layer 6 | 7 | * Layer type: `Softmax` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SoftmaxLayer.html) 9 | * Header: [`./include/caffe/layers/softmax_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/softmax_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/softmax_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/softmax_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`SoftmaxParameter softmax_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/SoftmaxParameter.txt %} 20 | {% endhighlight %} 21 | 22 | ## See also 23 | 24 | * [Softmax loss layer](softmaxwithloss.html) 25 | -------------------------------------------------------------------------------- /docs/tutorial/layers/split.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Split Layer 3 | --- 4 | 5 | # Split Layer 6 | 7 | * Layer type: `Split` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SplitLayer.html) 9 | * Header: [`./include/caffe/layers/split_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/split_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/split_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/split_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/split_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/split_layer.cu) 12 | 13 | The `Split` layer is a utility layer that splits an input blob to multiple output blobs. This is used when a blob is fed into multiple output layers. 14 | 15 | ## Parameters 16 | 17 | Does not take any parameters. 18 | -------------------------------------------------------------------------------- /docs/tutorial/layers/spp.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Spatial Pyramid Pooling Layer 3 | --- 4 | 5 | # Spatial Pyramid Pooling Layer 6 | 7 | * Layer type: `SPP` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SPPLayer.html) 9 | * Header: [`./include/caffe/layers/spp_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/spp_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/spp_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/spp_layer.cpp) 11 | 12 | 13 | ## Parameters 14 | 15 | * Parameters (`SPPParameter spp_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/SPPParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/tanh.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: TanH Layer 3 | --- 4 | 5 | # TanH Layer 6 | 7 | * Header: [`./include/caffe/layers/tanh_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/tanh_layer.hpp) 8 | * CPU implementation: [`./src/caffe/layers/tanh_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tanh_layer.cpp) 9 | * CUDA GPU implementation: [`./src/caffe/layers/tanh_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tanh_layer.cu) 10 | 11 | ## Parameters 12 | 13 | * Parameters (`TanHParameter tanh_param`) 14 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 15 | 16 | {% highlight Protobuf %} 17 | {% include proto/TanHParameter.txt %} 18 | {% endhighlight %} 19 | -------------------------------------------------------------------------------- /docs/tutorial/layers/threshold.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Threshold Layer 3 | --- 4 | 5 | # Threshold Layer 6 | 7 | * Header: [`./include/caffe/layers/threshold_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/threshold_layer.hpp) 8 | * CPU implementation: [`./src/caffe/layers/threshold_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/threshold_layer.cpp) 9 | * CUDA GPU implementation: [`./src/caffe/layers/threshold_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/threshold_layer.cu) 10 | 11 | ## Parameters 12 | 13 | * Parameters (`ThresholdParameter threshold_param`) 14 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 15 | 16 | {% highlight Protobuf %} 17 | {% include proto/ThresholdParameter.txt %} 18 | {% endhighlight %} 19 | -------------------------------------------------------------------------------- /docs/tutorial/layers/tile.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Tile Layer 3 | --- 4 | 5 | # Tile Layer 6 | 7 | * Layer type: `Tile` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1TileLayer.html) 9 | * Header: [`./include/caffe/layers/tile_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/tile_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/tile_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tile_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/tile_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tile_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`TileParameter tile_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/TileParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /docs/tutorial/layers/windowdata.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: WindowData Layer 3 | --- 4 | 5 | # WindowData Layer 6 | 7 | * Layer type: `WindowData` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1WindowDataLayer.html) 9 | * Header: [`./include/caffe/layers/window_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/window_data_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/window_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/window_data_layer.cpp) 11 | 12 | ## Parameters 13 | 14 | * Parameters (`WindowDataParameter`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/WindowDataParameter.txt %} 19 | {% endhighlight %} 20 | -------------------------------------------------------------------------------- /examples/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | file(GLOB_RECURSE examples_srcs "${PROJECT_SOURCE_DIR}/examples/*.cpp") 2 | 3 | foreach(source_file ${examples_srcs}) 4 | # get file name 5 | get_filename_component(name ${source_file} NAME_WE) 6 | 7 | # get folder name 8 | get_filename_component(path ${source_file} PATH) 9 | get_filename_component(folder ${path} NAME_WE) 10 | 11 | add_executable(${name} ${source_file}) 12 | target_link_libraries(${name} ${Caffe_LINK}) 13 | caffe_default_properties(${name}) 14 | 15 | # set back RUNTIME_OUTPUT_DIRECTORY 16 | set_target_properties(${name} PROPERTIES 17 | RUNTIME_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/examples/${folder}") 18 | 19 | caffe_set_solution_folder(${name} examples) 20 | 21 | # install 22 | install(TARGETS ${name} DESTINATION ${CMAKE_INSTALL_BINDIR}) 23 | 24 | 25 | if(UNIX OR APPLE) 26 | # Funny command to make tutorials work 27 | # TODO: remove in future as soon as naming is standardized everywhere 28 | set(__outname ${PROJECT_BINARY_DIR}/examples/${folder}/${name}${Caffe_POSTFIX}) 29 | add_custom_command(TARGET ${name} POST_BUILD 30 | COMMAND ln -sf "${__outname}" "${__outname}.bin") 31 | endif() 32 | endforeach() 33 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_full_sigmoid_solver.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_sigmoid_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 10 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.001 14 | momentum: 0.9 15 | #weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "step" 18 | gamma: 1 19 | stepsize: 5000 20 | # Display every 100 iterations 21 | display: 100 22 | # The maximum number of iterations 23 | max_iter: 60000 24 | # snapshot intermediate results 25 | snapshot: 10000 26 | snapshot_prefix: "examples/cifar10_full_sigmoid" 27 | # solver mode: CPU or GPU 28 | solver_mode: GPU 29 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 10 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.001 14 | momentum: 0.9 15 | #weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "step" 18 | gamma: 1 19 | stepsize: 5000 20 | # Display every 100 iterations 21 | display: 100 22 | # The maximum number of iterations 23 | max_iter: 60000 24 | # snapshot intermediate results 25 | snapshot: 10000 26 | snapshot_prefix: "examples/cifar10_full_sigmoid_bn" 27 | # solver mode: CPU or GPU 28 | solver_mode: GPU 29 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_full_solver.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 100 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.001 14 | momentum: 0.9 15 | weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "fixed" 18 | # Display every 200 iterations 19 | display: 200 20 | # The maximum number of iterations 21 | max_iter: 60000 22 | # snapshot intermediate results 23 | snapshot: 10000 24 | snapshot_format: HDF5 25 | snapshot_prefix: "examples/cifar10/cifar10_full" 26 | # solver mode: CPU or GPU 27 | solver_mode: GPU 28 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_full_solver_lr1.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 100 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.0001 14 | momentum: 0.9 15 | weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "fixed" 18 | # Display every 200 iterations 19 | display: 200 20 | # The maximum number of iterations 21 | max_iter: 65000 22 | # snapshot intermediate results 23 | snapshot: 5000 24 | snapshot_format: HDF5 25 | snapshot_prefix: "examples/cifar10/cifar10_full" 26 | # solver mode: CPU or GPU 27 | solver_mode: GPU 28 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_full_solver_lr2.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 100 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.00001 14 | momentum: 0.9 15 | weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "fixed" 18 | # Display every 200 iterations 19 | display: 200 20 | # The maximum number of iterations 21 | max_iter: 70000 22 | # snapshot intermediate results 23 | snapshot: 5000 24 | snapshot_format: HDF5 25 | snapshot_prefix: "examples/cifar10/cifar10_full" 26 | # solver mode: CPU or GPU 27 | solver_mode: GPU 28 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_quick_solver.prototxt: -------------------------------------------------------------------------------- 1 | # reduce the learning rate after 8 epochs (4000 iters) by a factor of 10 2 | 3 | # The train/test net protocol buffer definition 4 | net: "examples/cifar10/cifar10_quick_train_test.prototxt" 5 | # test_iter specifies how many forward passes the test should carry out. 6 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 7 | # covering the full 10,000 testing images. 8 | test_iter: 100 9 | # Carry out testing every 500 training iterations. 10 | test_interval: 500 11 | # The base learning rate, momentum and the weight decay of the network. 12 | base_lr: 0.001 13 | momentum: 0.9 14 | weight_decay: 0.004 15 | # The learning rate policy 16 | lr_policy: "fixed" 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 4000 21 | # snapshot intermediate results 22 | snapshot: 4000 23 | snapshot_prefix: "examples/cifar10/cifar10_quick" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_quick_solver_lr1.prototxt: -------------------------------------------------------------------------------- 1 | # reduce the learning rate after 8 epochs (4000 iters) by a factor of 10 2 | 3 | # The train/test net protocol buffer definition 4 | net: "examples/cifar10/cifar10_quick_train_test.prototxt" 5 | # test_iter specifies how many forward passes the test should carry out. 6 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 7 | # covering the full 10,000 testing images. 8 | test_iter: 100 9 | # Carry out testing every 500 training iterations. 10 | test_interval: 500 11 | # The base learning rate, momentum and the weight decay of the network. 12 | base_lr: 0.0001 13 | momentum: 0.9 14 | weight_decay: 0.004 15 | # The learning rate policy 16 | lr_policy: "fixed" 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 5000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_format: HDF5 24 | snapshot_prefix: "examples/cifar10/cifar10_quick" 25 | # solver mode: CPU or GPU 26 | solver_mode: GPU 27 | -------------------------------------------------------------------------------- /examples/cifar10/create_cifar10.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This script converts the cifar data into leveldb format. 3 | set -e 4 | 5 | EXAMPLE=examples/cifar10 6 | DATA=data/cifar10 7 | DBTYPE=lmdb 8 | 9 | echo "Creating $DBTYPE..." 10 | 11 | rm -rf $EXAMPLE/cifar10_train_$DBTYPE $EXAMPLE/cifar10_test_$DBTYPE 12 | 13 | ./build/examples/cifar10/convert_cifar_data.bin $DATA $EXAMPLE $DBTYPE 14 | 15 | echo "Computing image mean..." 16 | 17 | ./build/tools/compute_image_mean -backend=$DBTYPE \ 18 | $EXAMPLE/cifar10_train_$DBTYPE $EXAMPLE/mean.binaryproto 19 | 20 | echo "Done." 21 | -------------------------------------------------------------------------------- /examples/cifar10/train_full.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_full_solver.prototxt $@ 8 | 9 | # reduce learning rate by factor of 10 10 | $TOOLS/caffe train \ 11 | --solver=examples/cifar10/cifar10_full_solver_lr1.prototxt \ 12 | --snapshot=examples/cifar10/cifar10_full_iter_60000.solverstate $@ 13 | 14 | # reduce learning rate by factor of 10 15 | $TOOLS/caffe train \ 16 | --solver=examples/cifar10/cifar10_full_solver_lr2.prototxt \ 17 | --snapshot=examples/cifar10/cifar10_full_iter_65000.solverstate $@ 18 | -------------------------------------------------------------------------------- /examples/cifar10/train_full_sigmoid.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_full_sigmoid_solver.prototxt $@ 8 | 9 | -------------------------------------------------------------------------------- /examples/cifar10/train_full_sigmoid_bn.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt $@ 8 | 9 | -------------------------------------------------------------------------------- /examples/cifar10/train_quick.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_quick_solver.prototxt $@ 8 | 9 | # reduce learning rate by factor of 10 after 8 epochs 10 | $TOOLS/caffe train \ 11 | --solver=examples/cifar10/cifar10_quick_solver_lr1.prototxt \ 12 | --snapshot=examples/cifar10/cifar10_quick_iter_4000.solverstate $@ 13 | -------------------------------------------------------------------------------- /examples/finetune_flickr_style/flickr_style.csv.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/examples/finetune_flickr_style/flickr_style.csv.gz -------------------------------------------------------------------------------- /examples/finetune_flickr_style/style_names.txt: -------------------------------------------------------------------------------- 1 | Detailed 2 | Pastel 3 | Melancholy 4 | Noir 5 | HDR 6 | Vintage 7 | Long Exposure 8 | Horror 9 | Sunny 10 | Bright 11 | Hazy 12 | Bokeh 13 | Serene 14 | Texture 15 | Ethereal 16 | Macro 17 | Depth of Field 18 | Geometric Composition 19 | Minimal 20 | Romantic 21 | -------------------------------------------------------------------------------- /examples/finetune_pascal_detection/pascal_finetune_solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/finetune_pascal_detection/pascal_finetune_trainval_test.prototxt" 2 | test_iter: 100 3 | test_interval: 1000 4 | base_lr: 0.001 5 | lr_policy: "step" 6 | gamma: 0.1 7 | stepsize: 20000 8 | display: 20 9 | max_iter: 100000 10 | momentum: 0.9 11 | weight_decay: 0.0005 12 | snapshot: 10000 13 | snapshot_prefix: "examples/finetune_pascal_detection/pascal_det_finetune" 14 | -------------------------------------------------------------------------------- /examples/hdf5_classification/nonlinear_auto_test.prototxt: -------------------------------------------------------------------------------- 1 | layer { 2 | name: "data" 3 | type: "HDF5Data" 4 | top: "data" 5 | top: "label" 6 | hdf5_data_param { 7 | source: "examples/hdf5_classification/data/test.txt" 8 | batch_size: 10 9 | } 10 | } 11 | layer { 12 | name: "ip1" 13 | type: "InnerProduct" 14 | bottom: "data" 15 | top: "ip1" 16 | inner_product_param { 17 | num_output: 40 18 | weight_filler { 19 | type: "xavier" 20 | } 21 | } 22 | } 23 | layer { 24 | name: "relu1" 25 | type: "ReLU" 26 | bottom: "ip1" 27 | top: "ip1" 28 | } 29 | layer { 30 | name: "ip2" 31 | type: "InnerProduct" 32 | bottom: "ip1" 33 | top: "ip2" 34 | inner_product_param { 35 | num_output: 2 36 | weight_filler { 37 | type: "xavier" 38 | } 39 | } 40 | } 41 | layer { 42 | name: "accuracy" 43 | type: "Accuracy" 44 | bottom: "ip2" 45 | bottom: "label" 46 | top: "accuracy" 47 | } 48 | layer { 49 | name: "loss" 50 | type: "SoftmaxWithLoss" 51 | bottom: "ip2" 52 | bottom: "label" 53 | top: "loss" 54 | } 55 | -------------------------------------------------------------------------------- /examples/hdf5_classification/nonlinear_auto_train.prototxt: -------------------------------------------------------------------------------- 1 | layer { 2 | name: "data" 3 | type: "HDF5Data" 4 | top: "data" 5 | top: "label" 6 | hdf5_data_param { 7 | source: "examples/hdf5_classification/data/train.txt" 8 | batch_size: 10 9 | } 10 | } 11 | layer { 12 | name: "ip1" 13 | type: "InnerProduct" 14 | bottom: "data" 15 | top: "ip1" 16 | inner_product_param { 17 | num_output: 40 18 | weight_filler { 19 | type: "xavier" 20 | } 21 | } 22 | } 23 | layer { 24 | name: "relu1" 25 | type: "ReLU" 26 | bottom: "ip1" 27 | top: "ip1" 28 | } 29 | layer { 30 | name: "ip2" 31 | type: "InnerProduct" 32 | bottom: "ip1" 33 | top: "ip2" 34 | inner_product_param { 35 | num_output: 2 36 | weight_filler { 37 | type: "xavier" 38 | } 39 | } 40 | } 41 | layer { 42 | name: "accuracy" 43 | type: "Accuracy" 44 | bottom: "ip2" 45 | bottom: "label" 46 | top: "accuracy" 47 | } 48 | layer { 49 | name: "loss" 50 | type: "SoftmaxWithLoss" 51 | bottom: "ip2" 52 | bottom: "label" 53 | top: "loss" 54 | } 55 | -------------------------------------------------------------------------------- /examples/hdf5_classification/train_val.prototxt: -------------------------------------------------------------------------------- 1 | name: "LogisticRegressionNet" 2 | layer { 3 | name: "data" 4 | type: "HDF5Data" 5 | top: "data" 6 | top: "label" 7 | include { 8 | phase: TRAIN 9 | } 10 | hdf5_data_param { 11 | source: "examples/hdf5_classification/data/train.txt" 12 | batch_size: 10 13 | } 14 | } 15 | layer { 16 | name: "data" 17 | type: "HDF5Data" 18 | top: "data" 19 | top: "label" 20 | include { 21 | phase: TEST 22 | } 23 | hdf5_data_param { 24 | source: "examples/hdf5_classification/data/test.txt" 25 | batch_size: 10 26 | } 27 | } 28 | layer { 29 | name: "fc1" 30 | type: "InnerProduct" 31 | bottom: "data" 32 | top: "fc1" 33 | param { 34 | lr_mult: 1 35 | decay_mult: 1 36 | } 37 | param { 38 | lr_mult: 2 39 | decay_mult: 0 40 | } 41 | inner_product_param { 42 | num_output: 2 43 | weight_filler { 44 | type: "xavier" 45 | } 46 | bias_filler { 47 | type: "constant" 48 | value: 0 49 | } 50 | } 51 | } 52 | layer { 53 | name: "loss" 54 | type: "SoftmaxWithLoss" 55 | bottom: "fc1" 56 | bottom: "label" 57 | top: "loss" 58 | } 59 | layer { 60 | name: "accuracy" 61 | type: "Accuracy" 62 | bottom: "fc1" 63 | bottom: "label" 64 | top: "accuracy" 65 | include { 66 | phase: TEST 67 | } 68 | } 69 | -------------------------------------------------------------------------------- /examples/imagenet/make_imagenet_mean.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # Compute the mean image from the imagenet training lmdb 3 | # N.B. this is available in data/ilsvrc12 4 | 5 | EXAMPLE=examples/imagenet 6 | DATA=data/ilsvrc12 7 | TOOLS=build/tools 8 | 9 | $TOOLS/compute_image_mean $EXAMPLE/ilsvrc12_train_lmdb \ 10 | $DATA/imagenet_mean.binaryproto 11 | 12 | echo "Done." 13 | -------------------------------------------------------------------------------- /examples/imagenet/resume_training.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=models/bvlc_reference_caffenet/solver.prototxt \ 6 | --snapshot=models/bvlc_reference_caffenet/caffenet_train_10000.solverstate.h5 \ 7 | $@ 8 | -------------------------------------------------------------------------------- /examples/imagenet/train_caffenet.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=models/bvlc_reference_caffenet/solver.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/images/cat gray.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/examples/images/cat gray.jpg -------------------------------------------------------------------------------- /examples/images/cat.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/examples/images/cat.jpg -------------------------------------------------------------------------------- /examples/images/cat_gray.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/examples/images/cat_gray.jpg -------------------------------------------------------------------------------- /examples/images/fish-bike.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/examples/images/fish-bike.jpg -------------------------------------------------------------------------------- /examples/mnist/create_mnist.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This script converts the mnist data into lmdb/leveldb format, 3 | # depending on the value assigned to $BACKEND. 4 | set -e 5 | 6 | EXAMPLE=examples/mnist 7 | DATA=data/mnist 8 | BUILD=build/examples/mnist 9 | 10 | BACKEND="lmdb" 11 | 12 | echo "Creating ${BACKEND}..." 13 | 14 | rm -rf $EXAMPLE/mnist_train_${BACKEND} 15 | rm -rf $EXAMPLE/mnist_test_${BACKEND} 16 | 17 | $BUILD/convert_mnist_data.bin $DATA/train-images-idx3-ubyte \ 18 | $DATA/train-labels-idx1-ubyte $EXAMPLE/mnist_train_${BACKEND} --backend=${BACKEND} 19 | $BUILD/convert_mnist_data.bin $DATA/t10k-images-idx3-ubyte \ 20 | $DATA/t10k-labels-idx1-ubyte $EXAMPLE/mnist_test_${BACKEND} --backend=${BACKEND} 21 | 22 | echo "Done." 23 | -------------------------------------------------------------------------------- /examples/mnist/lenet_adadelta_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 1.0 11 | lr_policy: "fixed" 12 | momentum: 0.95 13 | weight_decay: 0.0005 14 | # Display every 100 iterations 15 | display: 100 16 | # The maximum number of iterations 17 | max_iter: 10000 18 | # snapshot intermediate results 19 | snapshot: 5000 20 | snapshot_prefix: "examples/mnist/lenet_adadelta" 21 | # solver mode: CPU or GPU 22 | solver_mode: GPU 23 | type: "AdaDelta" 24 | delta: 1e-6 25 | -------------------------------------------------------------------------------- /examples/mnist/lenet_auto_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | train_net: "mnist/lenet_auto_train.prototxt" 3 | test_net: "mnist/lenet_auto_test.prototxt" 4 | # test_iter specifies how many forward passes the test should carry out. 5 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 6 | # covering the full 10,000 testing images. 7 | test_iter: 100 8 | # Carry out testing every 500 training iterations. 9 | test_interval: 500 10 | # The base learning rate, momentum and the weight decay of the network. 11 | base_lr: 0.01 12 | momentum: 0.9 13 | weight_decay: 0.0005 14 | # The learning rate policy 15 | lr_policy: "inv" 16 | gamma: 0.0001 17 | power: 0.75 18 | # Display every 100 iterations 19 | display: 100 20 | # The maximum number of iterations 21 | max_iter: 10000 22 | # snapshot intermediate results 23 | snapshot: 5000 24 | snapshot_prefix: "mnist/lenet" 25 | -------------------------------------------------------------------------------- /examples/mnist/lenet_multistep_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.9 12 | weight_decay: 0.0005 13 | # The learning rate policy 14 | lr_policy: "multistep" 15 | gamma: 0.9 16 | stepvalue: 5000 17 | stepvalue: 7000 18 | stepvalue: 8000 19 | stepvalue: 9000 20 | stepvalue: 9500 21 | # Display every 100 iterations 22 | display: 100 23 | # The maximum number of iterations 24 | max_iter: 10000 25 | # snapshot intermediate results 26 | snapshot: 5000 27 | snapshot_prefix: "examples/mnist/lenet_multistep" 28 | # solver mode: CPU or GPU 29 | solver_mode: GPU 30 | -------------------------------------------------------------------------------- /examples/mnist/lenet_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.9 12 | weight_decay: 0.0005 13 | # The learning rate policy 14 | lr_policy: "inv" 15 | gamma: 0.0001 16 | power: 0.75 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 10000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/mnist/lenet" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | -------------------------------------------------------------------------------- /examples/mnist/lenet_solver_adam.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | # this follows "ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION" 3 | net: "examples/mnist/lenet_train_test.prototxt" 4 | # test_iter specifies how many forward passes the test should carry out. 5 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 6 | # covering the full 10,000 testing images. 7 | test_iter: 100 8 | # Carry out testing every 500 training iterations. 9 | test_interval: 500 10 | # All parameters are from the cited paper above 11 | base_lr: 0.001 12 | momentum: 0.9 13 | momentum2: 0.999 14 | # since Adam dynamically changes the learning rate, we set the base learning 15 | # rate to a fixed value 16 | lr_policy: "fixed" 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 10000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/mnist/lenet" 24 | # solver mode: CPU or GPU 25 | type: "Adam" 26 | solver_mode: GPU 27 | -------------------------------------------------------------------------------- /examples/mnist/lenet_solver_rmsprop.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.0 12 | weight_decay: 0.0005 13 | # The learning rate policy 14 | lr_policy: "inv" 15 | gamma: 0.0001 16 | power: 0.75 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 10000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/mnist/lenet_rmsprop" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | type: "RMSProp" 27 | rms_decay: 0.98 28 | -------------------------------------------------------------------------------- /examples/mnist/mnist_autoencoder_solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 0.01 9 | lr_policy: "step" 10 | gamma: 0.1 11 | stepsize: 10000 12 | display: 100 13 | max_iter: 65000 14 | weight_decay: 0.0005 15 | snapshot: 10000 16 | snapshot_prefix: "examples/mnist/mnist_autoencoder" 17 | momentum: 0.9 18 | # solver mode: CPU or GPU 19 | solver_mode: GPU 20 | -------------------------------------------------------------------------------- /examples/mnist/mnist_autoencoder_solver_adadelta.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 1.0 9 | lr_policy: "fixed" 10 | momentum: 0.95 11 | delta: 1e-8 12 | display: 100 13 | max_iter: 65000 14 | weight_decay: 0.0005 15 | snapshot: 10000 16 | snapshot_prefix: "examples/mnist/mnist_autoencoder_adadelta_train" 17 | # solver mode: CPU or GPU 18 | solver_mode: GPU 19 | type: "AdaDelta" 20 | -------------------------------------------------------------------------------- /examples/mnist/mnist_autoencoder_solver_adagrad.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 0.01 9 | lr_policy: "fixed" 10 | display: 100 11 | max_iter: 65000 12 | weight_decay: 0.0005 13 | snapshot: 10000 14 | snapshot_prefix: "examples/mnist/mnist_autoencoder_adagrad_train" 15 | # solver mode: CPU or GPU 16 | solver_mode: GPU 17 | type: "AdaGrad" 18 | -------------------------------------------------------------------------------- /examples/mnist/mnist_autoencoder_solver_nesterov.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 0.01 9 | lr_policy: "step" 10 | gamma: 0.1 11 | stepsize: 10000 12 | display: 100 13 | max_iter: 65000 14 | weight_decay: 0.0005 15 | snapshot: 10000 16 | snapshot_prefix: "examples/mnist/mnist_autoencoder_nesterov_train" 17 | momentum: 0.95 18 | # solver mode: CPU or GPU 19 | solver_mode: GPU 20 | type: "Nesterov" 21 | -------------------------------------------------------------------------------- /examples/mnist/train_lenet.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt $@ 5 | -------------------------------------------------------------------------------- /examples/mnist/train_lenet_adam.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train --solver=examples/mnist/lenet_solver_adam.prototxt $@ 5 | -------------------------------------------------------------------------------- /examples/mnist/train_lenet_consolidated.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/lenet_consolidated_solver.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/mnist/train_lenet_rmsprop.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/lenet_solver_rmsprop.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/mnist/train_mnist_autoencoder.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/mnist/train_mnist_autoencoder_adadelta.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver_adadelta.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/mnist/train_mnist_autoencoder_adagrad.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver_adagrad.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/mnist/train_mnist_autoencoder_nesterov.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver_nesterov.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/net_surgery/conv.prototxt: -------------------------------------------------------------------------------- 1 | # Simple single-layer network to showcase editing model parameters. 2 | name: "convolution" 3 | layer { 4 | name: "data" 5 | type: "Input" 6 | top: "data" 7 | input_param { shape: { dim: 1 dim: 1 dim: 100 dim: 100 } } 8 | } 9 | layer { 10 | name: "conv" 11 | type: "Convolution" 12 | bottom: "data" 13 | top: "conv" 14 | convolution_param { 15 | num_output: 3 16 | kernel_size: 5 17 | stride: 1 18 | weight_filler { 19 | type: "gaussian" 20 | std: 0.01 21 | } 22 | bias_filler { 23 | type: "constant" 24 | value: 0 25 | } 26 | } 27 | } 28 | -------------------------------------------------------------------------------- /examples/pycaffe/layers/pyloss.py: -------------------------------------------------------------------------------- 1 | import caffe 2 | import numpy as np 3 | 4 | 5 | class EuclideanLossLayer(caffe.Layer): 6 | """ 7 | Compute the Euclidean Loss in the same manner as the C++ EuclideanLossLayer 8 | to demonstrate the class interface for developing layers in Python. 9 | """ 10 | 11 | def setup(self, bottom, top): 12 | # check input pair 13 | if len(bottom) != 2: 14 | raise Exception("Need two inputs to compute distance.") 15 | 16 | def reshape(self, bottom, top): 17 | # check input dimensions match 18 | if bottom[0].count != bottom[1].count: 19 | raise Exception("Inputs must have the same dimension.") 20 | # difference is shape of inputs 21 | self.diff = np.zeros_like(bottom[0].data, dtype=np.float32) 22 | # loss output is scalar 23 | top[0].reshape(1) 24 | 25 | def forward(self, bottom, top): 26 | self.diff[...] = bottom[0].data - bottom[1].data 27 | top[0].data[...] = np.sum(self.diff**2) / bottom[0].num / 2. 28 | 29 | def backward(self, top, propagate_down, bottom): 30 | for i in range(2): 31 | if not propagate_down[i]: 32 | continue 33 | if i == 0: 34 | sign = 1 35 | else: 36 | sign = -1 37 | bottom[i].diff[...] = sign * self.diff / bottom[i].num 38 | -------------------------------------------------------------------------------- /examples/pycaffe/linreg.prototxt: -------------------------------------------------------------------------------- 1 | name: 'LinearRegressionExample' 2 | # define a simple network for linear regression on dummy data 3 | # that computes the loss by a PythonLayer. 4 | layer { 5 | type: 'DummyData' 6 | name: 'x' 7 | top: 'x' 8 | dummy_data_param { 9 | shape: { dim: 10 dim: 3 dim: 2 } 10 | data_filler: { type: 'gaussian' } 11 | } 12 | } 13 | layer { 14 | type: 'DummyData' 15 | name: 'y' 16 | top: 'y' 17 | dummy_data_param { 18 | shape: { dim: 10 dim: 3 dim: 2 } 19 | data_filler: { type: 'gaussian' } 20 | } 21 | } 22 | # include InnerProduct layers for parameters 23 | # so the net will need backward 24 | layer { 25 | type: 'InnerProduct' 26 | name: 'ipx' 27 | top: 'ipx' 28 | bottom: 'x' 29 | inner_product_param { 30 | num_output: 10 31 | weight_filler { type: 'xavier' } 32 | } 33 | } 34 | layer { 35 | type: 'InnerProduct' 36 | name: 'ipy' 37 | top: 'ipy' 38 | bottom: 'y' 39 | inner_product_param { 40 | num_output: 10 41 | weight_filler { type: 'xavier' } 42 | } 43 | } 44 | layer { 45 | type: 'Python' 46 | name: 'loss' 47 | top: 'loss' 48 | bottom: 'ipx' 49 | bottom: 'ipy' 50 | python_param { 51 | # the module name -- usually the filename -- that needs to be in $PYTHONPATH 52 | module: 'pyloss' 53 | # the layer name -- the class name in the module 54 | layer: 'EuclideanLossLayer' 55 | } 56 | # set loss weight so Caffe knows this is a loss layer. 57 | # since PythonLayer inherits directly from Layer, this isn't automatically 58 | # known to Caffe 59 | loss_weight: 1 60 | } 61 | -------------------------------------------------------------------------------- /examples/siamese/create_mnist_siamese.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This script converts the mnist data into leveldb format. 3 | set -e 4 | 5 | EXAMPLES=./build/examples/siamese 6 | DATA=./data/mnist 7 | 8 | echo "Creating leveldb..." 9 | 10 | rm -rf ./examples/siamese/mnist_siamese_train_leveldb 11 | rm -rf ./examples/siamese/mnist_siamese_test_leveldb 12 | 13 | $EXAMPLES/convert_mnist_siamese_data.bin \ 14 | $DATA/train-images-idx3-ubyte \ 15 | $DATA/train-labels-idx1-ubyte \ 16 | ./examples/siamese/mnist_siamese_train_leveldb 17 | $EXAMPLES/convert_mnist_siamese_data.bin \ 18 | $DATA/t10k-images-idx3-ubyte \ 19 | $DATA/t10k-labels-idx1-ubyte \ 20 | ./examples/siamese/mnist_siamese_test_leveldb 21 | 22 | echo "Done." 23 | -------------------------------------------------------------------------------- /examples/siamese/mnist_siamese_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/siamese/mnist_siamese_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.9 12 | weight_decay: 0.0000 13 | # The learning rate policy 14 | lr_policy: "inv" 15 | gamma: 0.0001 16 | power: 0.75 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 50000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/siamese/mnist_siamese" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | -------------------------------------------------------------------------------- /examples/siamese/train_mnist_siamese.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train --solver=examples/siamese/mnist_siamese_solver.prototxt $@ 7 | -------------------------------------------------------------------------------- /examples/web_demo/exifutil.py: -------------------------------------------------------------------------------- 1 | """ 2 | This script handles the skimage exif problem. 3 | """ 4 | 5 | from PIL import Image 6 | import numpy as np 7 | 8 | ORIENTATIONS = { # used in apply_orientation 9 | 2: (Image.FLIP_LEFT_RIGHT,), 10 | 3: (Image.ROTATE_180,), 11 | 4: (Image.FLIP_TOP_BOTTOM,), 12 | 5: (Image.FLIP_LEFT_RIGHT, Image.ROTATE_90), 13 | 6: (Image.ROTATE_270,), 14 | 7: (Image.FLIP_LEFT_RIGHT, Image.ROTATE_270), 15 | 8: (Image.ROTATE_90,) 16 | } 17 | 18 | 19 | def open_oriented_im(im_path): 20 | im = Image.open(im_path) 21 | if hasattr(im, '_getexif'): 22 | exif = im._getexif() 23 | if exif is not None and 274 in exif: 24 | orientation = exif[274] 25 | im = apply_orientation(im, orientation) 26 | img = np.asarray(im).astype(np.float32) / 255. 27 | if img.ndim == 2: 28 | img = img[:, :, np.newaxis] 29 | img = np.tile(img, (1, 1, 3)) 30 | elif img.shape[2] == 4: 31 | img = img[:, :, :3] 32 | return img 33 | 34 | 35 | def apply_orientation(im, orientation): 36 | if orientation in ORIENTATIONS: 37 | for method in ORIENTATIONS[orientation]: 38 | im = im.transpose(method) 39 | return im 40 | -------------------------------------------------------------------------------- /examples/web_demo/requirements.txt: -------------------------------------------------------------------------------- 1 | werkzeug 2 | flask 3 | tornado 4 | numpy 5 | pandas 6 | pillow 7 | pyyaml 8 | -------------------------------------------------------------------------------- /include/caffe/caffe.hpp: -------------------------------------------------------------------------------- 1 | // caffe.hpp is the header file that you need to include in your code. It wraps 2 | // all the internal caffe header files into one for simpler inclusion. 3 | 4 | #ifndef CAFFE_CAFFE_HPP_ 5 | #define CAFFE_CAFFE_HPP_ 6 | 7 | #include "caffe/blob.hpp" 8 | #include "caffe/common.hpp" 9 | #include "caffe/filler.hpp" 10 | #include "caffe/layer.hpp" 11 | #include "caffe/layer_factory.hpp" 12 | #include "caffe/net.hpp" 13 | #include "caffe/parallel.hpp" 14 | #include "caffe/proto/caffe.pb.h" 15 | #include "caffe/solver.hpp" 16 | #include "caffe/solver_factory.hpp" 17 | #include "caffe/util/benchmark.hpp" 18 | #include "caffe/util/io.hpp" 19 | #include "caffe/util/upgrade_proto.hpp" 20 | 21 | #endif // CAFFE_CAFFE_HPP_ 22 | -------------------------------------------------------------------------------- /include/caffe/layers/cudnn_lrn_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_LRN_LAYER_HPP_ 2 | #define CAFFE_CUDNN_LRN_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/lrn_layer.hpp" 11 | 12 | namespace caffe { 13 | 14 | #ifdef USE_CUDNN 15 | template 16 | class CuDNNLRNLayer : public LRNLayer { 17 | public: 18 | explicit CuDNNLRNLayer(const LayerParameter& param) 19 | : LRNLayer(param), handles_setup_(false) {} 20 | virtual void LayerSetUp(const vector*>& bottom, 21 | const vector*>& top); 22 | virtual void Reshape(const vector*>& bottom, 23 | const vector*>& top); 24 | virtual ~CuDNNLRNLayer(); 25 | 26 | protected: 27 | virtual void Forward_gpu(const vector*>& bottom, 28 | const vector*>& top); 29 | virtual void Backward_gpu(const vector*>& top, 30 | const vector& propagate_down, const vector*>& bottom); 31 | 32 | bool handles_setup_; 33 | cudnnHandle_t handle_; 34 | cudnnLRNDescriptor_t norm_desc_; 35 | cudnnTensorDescriptor_t bottom_desc_, top_desc_; 36 | 37 | int size_; 38 | Dtype alpha_, beta_, k_; 39 | }; 40 | #endif 41 | 42 | } // namespace caffe 43 | 44 | #endif // CAFFE_CUDNN_LRN_LAYER_HPP_ 45 | -------------------------------------------------------------------------------- /include/caffe/layers/cudnn_relu_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_RELU_LAYER_HPP_ 2 | #define CAFFE_CUDNN_RELU_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/neuron_layer.hpp" 11 | #include "caffe/layers/relu_layer.hpp" 12 | 13 | namespace caffe { 14 | 15 | #ifdef USE_CUDNN 16 | /** 17 | * @brief CuDNN acceleration of ReLULayer. 18 | */ 19 | template 20 | class CuDNNReLULayer : public ReLULayer { 21 | public: 22 | explicit CuDNNReLULayer(const LayerParameter& param) 23 | : ReLULayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNReLULayer(); 29 | 30 | protected: 31 | virtual void Forward_gpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | 36 | bool handles_setup_; 37 | cudnnHandle_t handle_; 38 | cudnnTensorDescriptor_t bottom_desc_; 39 | cudnnTensorDescriptor_t top_desc_; 40 | cudnnActivationDescriptor_t activ_desc_; 41 | }; 42 | #endif 43 | 44 | } // namespace caffe 45 | 46 | #endif // CAFFE_CUDNN_RELU_LAYER_HPP_ 47 | -------------------------------------------------------------------------------- /include/caffe/layers/cudnn_sigmoid_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_SIGMOID_LAYER_HPP_ 2 | #define CAFFE_CUDNN_SIGMOID_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/neuron_layer.hpp" 11 | #include "caffe/layers/sigmoid_layer.hpp" 12 | 13 | namespace caffe { 14 | 15 | #ifdef USE_CUDNN 16 | /** 17 | * @brief CuDNN acceleration of SigmoidLayer. 18 | */ 19 | template 20 | class CuDNNSigmoidLayer : public SigmoidLayer { 21 | public: 22 | explicit CuDNNSigmoidLayer(const LayerParameter& param) 23 | : SigmoidLayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNSigmoidLayer(); 29 | 30 | protected: 31 | virtual void Forward_gpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | 36 | bool handles_setup_; 37 | cudnnHandle_t handle_; 38 | cudnnTensorDescriptor_t bottom_desc_; 39 | cudnnTensorDescriptor_t top_desc_; 40 | cudnnActivationDescriptor_t activ_desc_; 41 | }; 42 | #endif 43 | 44 | } // namespace caffe 45 | 46 | #endif // CAFFE_CUDNN_SIGMOID_LAYER_HPP_ 47 | -------------------------------------------------------------------------------- /include/caffe/layers/cudnn_softmax_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_SOFTMAX_LAYER_HPP_ 2 | #define CAFFE_CUDNN_SOFTMAX_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/softmax_layer.hpp" 11 | 12 | namespace caffe { 13 | 14 | #ifdef USE_CUDNN 15 | /** 16 | * @brief cuDNN implementation of SoftmaxLayer. 17 | * Fallback to SoftmaxLayer for CPU mode. 18 | */ 19 | template 20 | class CuDNNSoftmaxLayer : public SoftmaxLayer { 21 | public: 22 | explicit CuDNNSoftmaxLayer(const LayerParameter& param) 23 | : SoftmaxLayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNSoftmaxLayer(); 29 | 30 | protected: 31 | virtual void Forward_gpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | 36 | bool handles_setup_; 37 | cudnnHandle_t handle_; 38 | cudnnTensorDescriptor_t bottom_desc_; 39 | cudnnTensorDescriptor_t top_desc_; 40 | }; 41 | #endif 42 | 43 | } // namespace caffe 44 | 45 | #endif // CAFFE_CUDNN_SOFTMAX_LAYER_HPP_ 46 | -------------------------------------------------------------------------------- /include/caffe/layers/cudnn_tanh_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_TANH_LAYER_HPP_ 2 | #define CAFFE_CUDNN_TANH_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/neuron_layer.hpp" 11 | #include "caffe/layers/tanh_layer.hpp" 12 | 13 | namespace caffe { 14 | 15 | #ifdef USE_CUDNN 16 | /** 17 | * @brief CuDNN acceleration of TanHLayer. 18 | */ 19 | template 20 | class CuDNNTanHLayer : public TanHLayer { 21 | public: 22 | explicit CuDNNTanHLayer(const LayerParameter& param) 23 | : TanHLayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNTanHLayer(); 29 | 30 | protected: 31 | virtual void Forward_gpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | 36 | bool handles_setup_; 37 | cudnnHandle_t handle_; 38 | cudnnTensorDescriptor_t bottom_desc_; 39 | cudnnTensorDescriptor_t top_desc_; 40 | cudnnActivationDescriptor_t activ_desc_; 41 | }; 42 | #endif 43 | 44 | } // namespace caffe 45 | 46 | #endif // CAFFE_CUDNN_TANH_LAYER_HPP_ 47 | -------------------------------------------------------------------------------- /include/caffe/layers/data_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_DATA_LAYER_HPP_ 2 | #define CAFFE_DATA_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/data_transformer.hpp" 8 | #include "caffe/internal_thread.hpp" 9 | #include "caffe/layer.hpp" 10 | #include "caffe/layers/base_data_layer.hpp" 11 | #include "caffe/proto/caffe.pb.h" 12 | #include "caffe/util/db.hpp" 13 | 14 | namespace caffe { 15 | 16 | template 17 | class DataLayer : public BasePrefetchingDataLayer { 18 | public: 19 | explicit DataLayer(const LayerParameter& param); 20 | virtual ~DataLayer(); 21 | virtual void DataLayerSetUp(const vector*>& bottom, 22 | const vector*>& top); 23 | virtual inline const char* type() const { return "Data"; } 24 | virtual inline int ExactNumBottomBlobs() const { return 0; } 25 | virtual inline int MinTopBlobs() const { return 1; } 26 | virtual inline int MaxTopBlobs() const { return 2; } 27 | 28 | protected: 29 | void Next(); 30 | bool Skip(); 31 | virtual void load_batch(Batch* batch); 32 | 33 | shared_ptr db_; 34 | shared_ptr cursor_; 35 | uint64_t offset_; 36 | }; 37 | 38 | } // namespace caffe 39 | 40 | #endif // CAFFE_DATA_LAYER_HPP_ 41 | -------------------------------------------------------------------------------- /include/caffe/layers/image_data_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_IMAGE_DATA_LAYER_HPP_ 2 | #define CAFFE_IMAGE_DATA_LAYER_HPP_ 3 | 4 | #include 5 | #include 6 | #include 7 | 8 | #include "caffe/blob.hpp" 9 | #include "caffe/data_transformer.hpp" 10 | #include "caffe/internal_thread.hpp" 11 | #include "caffe/layer.hpp" 12 | #include "caffe/layers/base_data_layer.hpp" 13 | #include "caffe/proto/caffe.pb.h" 14 | 15 | namespace caffe { 16 | 17 | /** 18 | * @brief Provides data to the Net from image files. 19 | * 20 | * TODO(dox): thorough documentation for Forward and proto params. 21 | */ 22 | template 23 | class ImageDataLayer : public BasePrefetchingDataLayer { 24 | public: 25 | explicit ImageDataLayer(const LayerParameter& param) 26 | : BasePrefetchingDataLayer(param) {} 27 | virtual ~ImageDataLayer(); 28 | virtual void DataLayerSetUp(const vector*>& bottom, 29 | const vector*>& top); 30 | 31 | virtual inline const char* type() const { return "ImageData"; } 32 | virtual inline int ExactNumBottomBlobs() const { return 0; } 33 | virtual inline int ExactNumTopBlobs() const { return 2; } 34 | 35 | protected: 36 | shared_ptr prefetch_rng_; 37 | virtual void ShuffleImages(); 38 | virtual void load_batch(Batch* batch); 39 | 40 | vector > lines_; 41 | int lines_id_; 42 | }; 43 | 44 | 45 | } // namespace caffe 46 | 47 | #endif // CAFFE_IMAGE_DATA_LAYER_HPP_ 48 | -------------------------------------------------------------------------------- /include/caffe/layers/input_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_INPUT_LAYER_HPP_ 2 | #define CAFFE_INPUT_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief Provides data to the Net by assigning tops directly. 14 | * 15 | * This data layer is a container that merely holds the data assigned to it; 16 | * forward, backward, and reshape are all no-ops. 17 | */ 18 | template 19 | class InputLayer : public Layer { 20 | public: 21 | explicit InputLayer(const LayerParameter& param) 22 | : Layer(param) {} 23 | virtual void LayerSetUp(const vector*>& bottom, 24 | const vector*>& top); 25 | // Data layers have no bottoms, so reshaping is trivial. 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top) {} 28 | 29 | virtual inline const char* type() const { return "Input"; } 30 | virtual inline int ExactNumBottomBlobs() const { return 0; } 31 | virtual inline int MinTopBlobs() const { return 1; } 32 | 33 | protected: 34 | virtual void Forward_cpu(const vector*>& bottom, 35 | const vector*>& top) {} 36 | virtual void Backward_cpu(const vector*>& top, 37 | const vector& propagate_down, const vector*>& bottom) {} 38 | }; 39 | 40 | } // namespace caffe 41 | 42 | #endif // CAFFE_INPUT_LAYER_HPP_ 43 | -------------------------------------------------------------------------------- /include/caffe/layers/neuron_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_NEURON_LAYER_HPP_ 2 | #define CAFFE_NEURON_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief An interface for layers that take one blob as input (@f$ x @f$) 14 | * and produce one equally-sized blob as output (@f$ y @f$), where 15 | * each element of the output depends only on the corresponding input 16 | * element. 17 | */ 18 | template 19 | class NeuronLayer : public Layer { 20 | public: 21 | explicit NeuronLayer(const LayerParameter& param) 22 | : Layer(param) {} 23 | virtual void Reshape(const vector*>& bottom, 24 | const vector*>& top); 25 | 26 | virtual inline int ExactNumBottomBlobs() const { return 1; } 27 | virtual inline int ExactNumTopBlobs() const { return 1; } 28 | }; 29 | 30 | } // namespace caffe 31 | 32 | #endif // CAFFE_NEURON_LAYER_HPP_ 33 | -------------------------------------------------------------------------------- /include/caffe/layers/tile_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_TILE_LAYER_HPP_ 2 | #define CAFFE_TILE_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief Copy a Blob along specified dimensions. 14 | */ 15 | template 16 | class TileLayer : public Layer { 17 | public: 18 | explicit TileLayer(const LayerParameter& param) 19 | : Layer(param) {} 20 | virtual void Reshape(const vector*>& bottom, 21 | const vector*>& top); 22 | 23 | virtual inline const char* type() const { return "Tile"; } 24 | virtual inline int ExactNumBottomBlobs() const { return 1; } 25 | virtual inline int ExactNumTopBlobs() const { return 1; } 26 | 27 | protected: 28 | virtual void Forward_cpu(const vector*>& bottom, 29 | const vector*>& top); 30 | virtual void Forward_gpu(const vector*>& bottom, 31 | const vector*>& top); 32 | 33 | virtual void Backward_cpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | virtual void Backward_gpu(const vector*>& top, 36 | const vector& propagate_down, const vector*>& bottom); 37 | 38 | unsigned int axis_, tiles_, outer_dim_, inner_dim_; 39 | }; 40 | 41 | } // namespace caffe 42 | 43 | #endif // CAFFE_TILE_LAYER_HPP_ 44 | -------------------------------------------------------------------------------- /include/caffe/util/benchmark.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_BENCHMARK_H_ 2 | #define CAFFE_UTIL_BENCHMARK_H_ 3 | 4 | #include 5 | 6 | #include "caffe/util/device_alternate.hpp" 7 | 8 | namespace caffe { 9 | 10 | class Timer { 11 | public: 12 | Timer(); 13 | virtual ~Timer(); 14 | virtual void Start(); 15 | virtual void Stop(); 16 | virtual float MilliSeconds(); 17 | virtual float MicroSeconds(); 18 | virtual float Seconds(); 19 | 20 | inline bool initted() { return initted_; } 21 | inline bool running() { return running_; } 22 | inline bool has_run_at_least_once() { return has_run_at_least_once_; } 23 | 24 | protected: 25 | void Init(); 26 | 27 | bool initted_; 28 | bool running_; 29 | bool has_run_at_least_once_; 30 | #ifndef CPU_ONLY 31 | cudaEvent_t start_gpu_; 32 | cudaEvent_t stop_gpu_; 33 | #endif 34 | boost::posix_time::ptime start_cpu_; 35 | boost::posix_time::ptime stop_cpu_; 36 | float elapsed_milliseconds_; 37 | float elapsed_microseconds_; 38 | }; 39 | 40 | class CPUTimer : public Timer { 41 | public: 42 | explicit CPUTimer(); 43 | virtual ~CPUTimer() {} 44 | virtual void Start(); 45 | virtual void Stop(); 46 | virtual float MilliSeconds(); 47 | virtual float MicroSeconds(); 48 | }; 49 | 50 | } // namespace caffe 51 | 52 | #endif // CAFFE_UTIL_BENCHMARK_H_ 53 | -------------------------------------------------------------------------------- /include/caffe/util/blocking_queue.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_BLOCKING_QUEUE_HPP_ 2 | #define CAFFE_UTIL_BLOCKING_QUEUE_HPP_ 3 | 4 | #include 5 | #include 6 | 7 | namespace caffe { 8 | 9 | template 10 | class BlockingQueue { 11 | public: 12 | explicit BlockingQueue(); 13 | 14 | void push(const T& t); 15 | 16 | bool try_pop(T* t); 17 | 18 | // This logs a message if the threads needs to be blocked 19 | // useful for detecting e.g. when data feeding is too slow 20 | T pop(const string& log_on_wait = ""); 21 | 22 | bool try_peek(T* t); 23 | 24 | // Return element without removing it 25 | T peek(); 26 | 27 | size_t size() const; 28 | 29 | protected: 30 | /** 31 | Move synchronization fields out instead of including boost/thread.hpp 32 | to avoid a boost/NVCC issues (#1009, #1010) on OSX. Also fails on 33 | Linux CUDA 7.0.18. 34 | */ 35 | class sync; 36 | 37 | std::queue queue_; 38 | shared_ptr sync_; 39 | 40 | DISABLE_COPY_AND_ASSIGN(BlockingQueue); 41 | }; 42 | 43 | } // namespace caffe 44 | 45 | #endif 46 | -------------------------------------------------------------------------------- /include/caffe/util/db.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_DB_HPP 2 | #define CAFFE_UTIL_DB_HPP 3 | 4 | #include 5 | 6 | #include "caffe/common.hpp" 7 | #include "caffe/proto/caffe.pb.h" 8 | 9 | namespace caffe { namespace db { 10 | 11 | enum Mode { READ, WRITE, NEW }; 12 | 13 | class Cursor { 14 | public: 15 | Cursor() { } 16 | virtual ~Cursor() { } 17 | virtual void SeekToFirst() = 0; 18 | virtual void Next() = 0; 19 | virtual string key() = 0; 20 | virtual string value() = 0; 21 | virtual bool valid() = 0; 22 | 23 | DISABLE_COPY_AND_ASSIGN(Cursor); 24 | }; 25 | 26 | class Transaction { 27 | public: 28 | Transaction() { } 29 | virtual ~Transaction() { } 30 | virtual void Put(const string& key, const string& value) = 0; 31 | virtual void Commit() = 0; 32 | 33 | DISABLE_COPY_AND_ASSIGN(Transaction); 34 | }; 35 | 36 | class DB { 37 | public: 38 | DB() { } 39 | virtual ~DB() { } 40 | virtual void Open(const string& source, Mode mode) = 0; 41 | virtual void Close() = 0; 42 | virtual Cursor* NewCursor() = 0; 43 | virtual Transaction* NewTransaction() = 0; 44 | 45 | DISABLE_COPY_AND_ASSIGN(DB); 46 | }; 47 | 48 | DB* GetDB(DataParameter::DB backend); 49 | DB* GetDB(const string& backend); 50 | 51 | } // namespace db 52 | } // namespace caffe 53 | 54 | #endif // CAFFE_UTIL_DB_HPP 55 | -------------------------------------------------------------------------------- /include/caffe/util/format.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_FORMAT_H_ 2 | #define CAFFE_UTIL_FORMAT_H_ 3 | 4 | #include // NOLINT(readability/streams) 5 | #include // NOLINT(readability/streams) 6 | #include 7 | 8 | namespace caffe { 9 | 10 | inline std::string format_int(int n, int numberOfLeadingZeros = 0 ) { 11 | std::ostringstream s; 12 | s << std::setw(numberOfLeadingZeros) << std::setfill('0') << n; 13 | return s.str(); 14 | } 15 | 16 | } 17 | 18 | #endif // CAFFE_UTIL_FORMAT_H_ 19 | -------------------------------------------------------------------------------- /include/caffe/util/gpu_util.cuh: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_GPU_UTIL_H_ 2 | #define CAFFE_UTIL_GPU_UTIL_H_ 3 | 4 | namespace caffe { 5 | 6 | template 7 | inline __device__ Dtype caffe_gpu_atomic_add(const Dtype val, Dtype* address); 8 | 9 | template <> 10 | inline __device__ 11 | float caffe_gpu_atomic_add(const float val, float* address) { 12 | return atomicAdd(address, val); 13 | } 14 | 15 | // double atomicAdd implementation taken from: 16 | // http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3PVCpVsEG 17 | template <> 18 | inline __device__ 19 | double caffe_gpu_atomic_add(const double val, double* address) { 20 | unsigned long long int* address_as_ull = // NOLINT(runtime/int) 21 | // NOLINT_NEXT_LINE(runtime/int) 22 | reinterpret_cast(address); 23 | unsigned long long int old = *address_as_ull; // NOLINT(runtime/int) 24 | unsigned long long int assumed; // NOLINT(runtime/int) 25 | do { 26 | assumed = old; 27 | old = atomicCAS(address_as_ull, assumed, 28 | __double_as_longlong(val + __longlong_as_double(assumed))); 29 | } while (assumed != old); 30 | return __longlong_as_double(old); 31 | } 32 | 33 | } // namespace caffe 34 | 35 | #endif // CAFFE_UTIL_GPU_UTIL_H_ 36 | -------------------------------------------------------------------------------- /include/caffe/util/hdf5.hpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_HDF5 2 | #ifndef CAFFE_UTIL_HDF5_H_ 3 | #define CAFFE_UTIL_HDF5_H_ 4 | 5 | #include 6 | 7 | #include "hdf5.h" 8 | #include "hdf5_hl.h" 9 | 10 | #include "caffe/blob.hpp" 11 | 12 | namespace caffe { 13 | 14 | template 15 | void hdf5_load_nd_dataset_helper( 16 | hid_t file_id, const char* dataset_name_, int min_dim, int max_dim, 17 | Blob* blob, bool reshape); 18 | 19 | template 20 | void hdf5_load_nd_dataset( 21 | hid_t file_id, const char* dataset_name_, int min_dim, int max_dim, 22 | Blob* blob, bool reshape = false); 23 | 24 | template 25 | void hdf5_save_nd_dataset( 26 | const hid_t file_id, const string& dataset_name, const Blob& blob, 27 | bool write_diff = false); 28 | 29 | int hdf5_load_int(hid_t loc_id, const string& dataset_name); 30 | void hdf5_save_int(hid_t loc_id, const string& dataset_name, int i); 31 | string hdf5_load_string(hid_t loc_id, const string& dataset_name); 32 | void hdf5_save_string(hid_t loc_id, const string& dataset_name, 33 | const string& s); 34 | 35 | int hdf5_get_num_links(hid_t loc_id); 36 | string hdf5_get_name_by_idx(hid_t loc_id, int idx); 37 | 38 | } // namespace caffe 39 | 40 | #endif // CAFFE_UTIL_HDF5_H_ 41 | #endif // USE_HDF5 42 | -------------------------------------------------------------------------------- /include/caffe/util/insert_splits.hpp: -------------------------------------------------------------------------------- 1 | #ifndef _CAFFE_UTIL_INSERT_SPLITS_HPP_ 2 | #define _CAFFE_UTIL_INSERT_SPLITS_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/proto/caffe.pb.h" 7 | 8 | namespace caffe { 9 | 10 | // Copy NetParameters with SplitLayers added to replace any shared bottom 11 | // blobs with unique bottom blobs provided by the SplitLayer. 12 | void InsertSplits(const NetParameter& param, NetParameter* param_split); 13 | 14 | void ConfigureSplitLayer(const string& layer_name, const string& blob_name, 15 | const int blob_idx, const int split_count, const float loss_weight, 16 | LayerParameter* split_layer_param); 17 | 18 | string SplitLayerName(const string& layer_name, const string& blob_name, 19 | const int blob_idx); 20 | 21 | string SplitBlobName(const string& layer_name, const string& blob_name, 22 | const int blob_idx, const int split_idx); 23 | 24 | } // namespace caffe 25 | 26 | #endif // CAFFE_UTIL_INSERT_SPLITS_HPP_ 27 | -------------------------------------------------------------------------------- /include/caffe/util/nccl.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_NCCL_H_ 2 | #define CAFFE_UTIL_NCCL_H_ 3 | #ifdef USE_NCCL 4 | 5 | #include 6 | 7 | #include "caffe/common.hpp" 8 | 9 | #define NCCL_CHECK(condition) \ 10 | { \ 11 | ncclResult_t result = condition; \ 12 | CHECK_EQ(result, ncclSuccess) << " " \ 13 | << ncclGetErrorString(result); \ 14 | } 15 | 16 | namespace caffe { 17 | 18 | namespace nccl { 19 | 20 | template class dataType; 21 | 22 | template<> class dataType { 23 | public: 24 | static const ncclDataType_t type = ncclFloat; 25 | }; 26 | template<> class dataType { 27 | public: 28 | static const ncclDataType_t type = ncclDouble; 29 | }; 30 | 31 | } // namespace nccl 32 | 33 | } // namespace caffe 34 | 35 | #endif // end USE_NCCL 36 | 37 | #endif // CAFFE_UTIL_NCCL_H_ 38 | -------------------------------------------------------------------------------- /include/caffe/util/rng.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_RNG_CPP_HPP_ 2 | #define CAFFE_RNG_CPP_HPP_ 3 | 4 | #include 5 | #include 6 | 7 | #include "boost/random/mersenne_twister.hpp" 8 | #include "boost/random/uniform_int.hpp" 9 | 10 | #include "caffe/common.hpp" 11 | 12 | namespace caffe { 13 | 14 | typedef boost::mt19937 rng_t; 15 | 16 | inline rng_t* caffe_rng() { 17 | return static_cast(Caffe::rng_stream().generator()); 18 | } 19 | 20 | // Fisher–Yates algorithm 21 | template 22 | inline void shuffle(RandomAccessIterator begin, RandomAccessIterator end, 23 | RandomGenerator* gen) { 24 | typedef typename std::iterator_traits::difference_type 25 | difference_type; 26 | typedef typename boost::uniform_int dist_type; 27 | 28 | difference_type length = std::distance(begin, end); 29 | if (length <= 0) return; 30 | 31 | for (difference_type i = length - 1; i > 0; --i) { 32 | dist_type dist(0, i); 33 | std::iter_swap(begin + i, begin + dist(*gen)); 34 | } 35 | } 36 | 37 | template 38 | inline void shuffle(RandomAccessIterator begin, RandomAccessIterator end) { 39 | shuffle(begin, end, caffe_rng()); 40 | } 41 | } // namespace caffe 42 | 43 | #endif // CAFFE_RNG_HPP_ 44 | -------------------------------------------------------------------------------- /include/caffe/util/signal_handler.h: -------------------------------------------------------------------------------- 1 | #ifndef INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_ 2 | #define INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_ 3 | 4 | #include "caffe/proto/caffe.pb.h" 5 | #include "caffe/solver.hpp" 6 | 7 | namespace caffe { 8 | 9 | class SignalHandler { 10 | public: 11 | // Constructor. Specify what action to take when a signal is received. 12 | SignalHandler(SolverAction::Enum SIGINT_action, 13 | SolverAction::Enum SIGHUP_action); 14 | ~SignalHandler(); 15 | ActionCallback GetActionFunction(); 16 | private: 17 | SolverAction::Enum CheckForSignals() const; 18 | SolverAction::Enum SIGINT_action_; 19 | SolverAction::Enum SIGHUP_action_; 20 | }; 21 | 22 | } // namespace caffe 23 | 24 | #endif // INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_ 25 | -------------------------------------------------------------------------------- /matlab/+caffe/+test/test_io.m: -------------------------------------------------------------------------------- 1 | classdef test_io < matlab.unittest.TestCase 2 | methods (Test) 3 | function test_read_write_mean(self) 4 | % randomly generate mean data 5 | width = 200; 6 | height = 300; 7 | channels = 3; 8 | mean_data_write = 255 * rand(width, height, channels, 'single'); 9 | % write mean data to binary proto 10 | mean_proto_file = tempname(); 11 | caffe.io.write_mean(mean_data_write, mean_proto_file); 12 | % read mean data from saved binary proto and test whether they are equal 13 | mean_data_read = caffe.io.read_mean(mean_proto_file); 14 | self.verifyEqual(mean_data_write, mean_data_read) 15 | delete(mean_proto_file); 16 | end 17 | end 18 | end 19 | -------------------------------------------------------------------------------- /matlab/+caffe/Layer.m: -------------------------------------------------------------------------------- 1 | classdef Layer < handle 2 | % Wrapper class of caffe::Layer in matlab 3 | 4 | properties (Access = private) 5 | hLayer_self 6 | attributes 7 | % attributes fields: 8 | % hBlob_blobs 9 | end 10 | properties (SetAccess = private) 11 | params 12 | end 13 | 14 | methods 15 | function self = Layer(hLayer_layer) 16 | CHECK(is_valid_handle(hLayer_layer), 'invalid Layer handle'); 17 | 18 | % setup self handle and attributes 19 | self.hLayer_self = hLayer_layer; 20 | self.attributes = caffe_('layer_get_attr', self.hLayer_self); 21 | 22 | % setup weights 23 | self.params = caffe.Blob.empty(); 24 | for n = 1:length(self.attributes.hBlob_blobs) 25 | self.params(n) = caffe.Blob(self.attributes.hBlob_blobs(n)); 26 | end 27 | end 28 | function layer_type = type(self) 29 | layer_type = caffe_('layer_get_type', self.hLayer_self); 30 | end 31 | end 32 | end 33 | -------------------------------------------------------------------------------- /matlab/+caffe/get_net.m: -------------------------------------------------------------------------------- 1 | function net = get_net(varargin) 2 | % net = get_net(model_file, phase_name) or 3 | % net = get_net(model_file, weights_file, phase_name) 4 | % Construct a net from model_file, and load weights from weights_file 5 | % phase_name can only be 'train' or 'test' 6 | 7 | CHECK(nargin == 2 || nargin == 3, ['usage: ' ... 8 | 'net = get_net(model_file, phase_name) or ' ... 9 | 'net = get_net(model_file, weights_file, phase_name)']); 10 | if nargin == 3 11 | model_file = varargin{1}; 12 | weights_file = varargin{2}; 13 | phase_name = varargin{3}; 14 | elseif nargin == 2 15 | model_file = varargin{1}; 16 | phase_name = varargin{2}; 17 | end 18 | 19 | CHECK(ischar(model_file), 'model_file must be a string'); 20 | CHECK(ischar(phase_name), 'phase_name must be a string'); 21 | CHECK_FILE_EXIST(model_file); 22 | CHECK(strcmp(phase_name, 'train') || strcmp(phase_name, 'test'), ... 23 | sprintf('phase_name can only be %strain%s or %stest%s', ... 24 | char(39), char(39), char(39), char(39))); 25 | 26 | % construct caffe net from model_file 27 | hNet = caffe_('get_net', model_file, phase_name); 28 | net = caffe.Net(hNet); 29 | 30 | % load weights from weights_file 31 | if nargin == 3 32 | CHECK(ischar(weights_file), 'weights_file must be a string'); 33 | CHECK_FILE_EXIST(weights_file); 34 | net.copy_from(weights_file); 35 | end 36 | 37 | end 38 | -------------------------------------------------------------------------------- /matlab/+caffe/get_solver.m: -------------------------------------------------------------------------------- 1 | function solver = get_solver(solver_file) 2 | % solver = get_solver(solver_file) 3 | % Construct a Solver object from solver_file 4 | 5 | CHECK(ischar(solver_file), 'solver_file must be a string'); 6 | CHECK_FILE_EXIST(solver_file); 7 | pSolver = caffe_('get_solver', solver_file); 8 | solver = caffe.Solver(pSolver); 9 | 10 | end 11 | -------------------------------------------------------------------------------- /matlab/+caffe/imagenet/ilsvrc_2012_mean.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat -------------------------------------------------------------------------------- /matlab/+caffe/private/CHECK.m: -------------------------------------------------------------------------------- 1 | function CHECK(expr, error_msg) 2 | 3 | if ~expr 4 | error(error_msg); 5 | end 6 | 7 | end 8 | -------------------------------------------------------------------------------- /matlab/+caffe/private/CHECK_FILE_EXIST.m: -------------------------------------------------------------------------------- 1 | function CHECK_FILE_EXIST(filename) 2 | 3 | if exist(filename, 'file') == 0 4 | error('%s does not exist', filename); 5 | end 6 | 7 | end 8 | -------------------------------------------------------------------------------- /matlab/+caffe/private/is_valid_handle.m: -------------------------------------------------------------------------------- 1 | function valid = is_valid_handle(hObj) 2 | % valid = is_valid_handle(hObj) or is_valid_handle('get_new_init_key') 3 | % Check if a handle is valid (has the right data type and init_key matches) 4 | % Use is_valid_handle('get_new_init_key') to get new init_key from C++; 5 | 6 | % a handle is a struct array with the following fields 7 | % (uint64) ptr : the pointer to the C++ object 8 | % (double) init_key : caffe initialization key 9 | 10 | persistent init_key; 11 | if isempty(init_key) 12 | init_key = caffe_('get_init_key'); 13 | end 14 | 15 | % is_valid_handle('get_new_init_key') to get new init_key from C++; 16 | if ischar(hObj) && strcmp(hObj, 'get_new_init_key') 17 | init_key = caffe_('get_init_key'); 18 | return 19 | else 20 | % check whether data types are correct and init_key matches 21 | valid = isstruct(hObj) ... 22 | && isscalar(hObj.ptr) && isa(hObj.ptr, 'uint64') ... 23 | && isscalar(hObj.init_key) && isa(hObj.init_key, 'double') ... 24 | && hObj.init_key == init_key; 25 | end 26 | 27 | end 28 | -------------------------------------------------------------------------------- /matlab/+caffe/reset_all.m: -------------------------------------------------------------------------------- 1 | function reset_all() 2 | % reset_all() 3 | % clear all solvers and stand-alone nets and reset Caffe to initial status 4 | 5 | caffe_('reset'); 6 | is_valid_handle('get_new_init_key'); 7 | 8 | end 9 | -------------------------------------------------------------------------------- /matlab/+caffe/run_tests.m: -------------------------------------------------------------------------------- 1 | function results = run_tests() 2 | % results = run_tests() 3 | % run all tests in this caffe matlab wrapper package 4 | 5 | % use CPU for testing 6 | caffe.set_mode_cpu(); 7 | 8 | % reset caffe before testing 9 | caffe.reset_all(); 10 | 11 | % put all test cases here 12 | results = [... 13 | run(caffe.test.test_net) ... 14 | run(caffe.test.test_solver) ... 15 | run(caffe.test.test_io) ]; 16 | 17 | % reset caffe after testing 18 | caffe.reset_all(); 19 | 20 | end 21 | -------------------------------------------------------------------------------- /matlab/+caffe/set_device.m: -------------------------------------------------------------------------------- 1 | function set_device(device_id) 2 | % set_device(device_id) 3 | % set Caffe's GPU device ID 4 | 5 | CHECK(isscalar(device_id) && device_id >= 0, ... 6 | 'device_id must be non-negative integer'); 7 | device_id = double(device_id); 8 | 9 | caffe_('set_device', device_id); 10 | 11 | end 12 | -------------------------------------------------------------------------------- /matlab/+caffe/set_mode_cpu.m: -------------------------------------------------------------------------------- 1 | function set_mode_cpu() 2 | % set_mode_cpu() 3 | % set Caffe to CPU mode 4 | 5 | caffe_('set_mode_cpu'); 6 | 7 | end 8 | -------------------------------------------------------------------------------- /matlab/+caffe/set_mode_gpu.m: -------------------------------------------------------------------------------- 1 | function set_mode_gpu() 2 | % set_mode_gpu() 3 | % set Caffe to GPU mode 4 | 5 | caffe_('set_mode_gpu'); 6 | 7 | end 8 | -------------------------------------------------------------------------------- /matlab/+caffe/version.m: -------------------------------------------------------------------------------- 1 | function version_str = version() 2 | % version() 3 | % show Caffe's version. 4 | 5 | version_str = caffe_('version'); 6 | 7 | end 8 | -------------------------------------------------------------------------------- /matlab/hdf5creation/.gitignore: -------------------------------------------------------------------------------- 1 | *.h5 2 | list.txt 3 | -------------------------------------------------------------------------------- /models/bvlc_alexnet/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: BAIR/BVLC AlexNet Model 3 | caffemodel: bvlc_alexnet.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel 5 | license: unrestricted 6 | sha1: 9116a64c0fbe4459d18f4bb6b56d647b63920377 7 | caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077 8 | --- 9 | 10 | This model is a replication of the model described in the [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) publication. 11 | 12 | Differences: 13 | - not training with the relighting data-augmentation; 14 | - initializing non-zero biases to 0.1 instead of 1 (found necessary for training, as initialization to 1 gave flat loss). 15 | 16 | The bundled model is the iteration 360,000 snapshot. 17 | The best validation performance during training was iteration 358,000 with validation accuracy 57.258% and loss 1.83948. 18 | This model obtains a top-1 accuracy 57.1% and a top-5 accuracy 80.2% on the validation set, using just the center crop. 19 | (Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy.) 20 | 21 | This model was trained by Evan Shelhamer @shelhamer 22 | 23 | ## License 24 | 25 | This model is released for unrestricted use. 26 | -------------------------------------------------------------------------------- /models/bvlc_alexnet/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/bvlc_alexnet/train_val.prototxt" 2 | test_iter: 1000 3 | test_interval: 1000 4 | base_lr: 0.01 5 | lr_policy: "step" 6 | gamma: 0.1 7 | stepsize: 100000 8 | display: 20 9 | max_iter: 450000 10 | momentum: 0.9 11 | weight_decay: 0.0005 12 | snapshot: 10000 13 | snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_train" 14 | solver_mode: GPU 15 | -------------------------------------------------------------------------------- /models/bvlc_googlenet/quick_solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/bvlc_googlenet/train_val.prototxt" 2 | test_iter: 1000 3 | test_interval: 4000 4 | test_initialization: false 5 | display: 40 6 | average_loss: 40 7 | base_lr: 0.01 8 | lr_policy: "poly" 9 | power: 0.5 10 | max_iter: 2400000 11 | momentum: 0.9 12 | weight_decay: 0.0002 13 | snapshot: 40000 14 | snapshot_prefix: "models/bvlc_googlenet/bvlc_googlenet_quick" 15 | solver_mode: GPU 16 | -------------------------------------------------------------------------------- /models/bvlc_googlenet/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/bvlc_googlenet/train_val.prototxt" 2 | test_iter: 1000 3 | test_interval: 4000 4 | test_initialization: false 5 | display: 40 6 | average_loss: 40 7 | base_lr: 0.01 8 | lr_policy: "step" 9 | stepsize: 320000 10 | gamma: 0.96 11 | max_iter: 10000000 12 | momentum: 0.9 13 | weight_decay: 0.0002 14 | snapshot: 40000 15 | snapshot_prefix: "models/bvlc_googlenet/bvlc_googlenet" 16 | solver_mode: GPU 17 | -------------------------------------------------------------------------------- /models/bvlc_reference_caffenet/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: BAIR/BVLC CaffeNet Model 3 | caffemodel: bvlc_reference_caffenet.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel 5 | license: unrestricted 6 | sha1: 4c8d77deb20ea792f84eb5e6d0a11ca0a8660a46 7 | caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077 8 | --- 9 | 10 | This model is the result of following the Caffe [ImageNet model training instructions](http://caffe.berkeleyvision.org/gathered/examples/imagenet.html). 11 | It is a replication of the model described in the [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) publication with some differences: 12 | 13 | - not training with the relighting data-augmentation; 14 | - the order of pooling and normalization layers is switched (in CaffeNet, pooling is done before normalization). 15 | 16 | This model is snapshot of iteration 310,000. 17 | The best validation performance during training was iteration 313,000 with validation accuracy 57.412% and loss 1.82328. 18 | This model obtains a top-1 accuracy 57.4% and a top-5 accuracy 80.4% on the validation set, using just the center crop. 19 | (Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy still.) 20 | 21 | This model was trained by Jeff Donahue @jeffdonahue 22 | 23 | ## License 24 | 25 | This model is released for unrestricted use. 26 | -------------------------------------------------------------------------------- /models/bvlc_reference_caffenet/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/bvlc_reference_caffenet/train_val.prototxt" 2 | test_iter: 1000 3 | test_interval: 1000 4 | base_lr: 0.01 5 | lr_policy: "step" 6 | gamma: 0.1 7 | stepsize: 100000 8 | display: 20 9 | max_iter: 450000 10 | momentum: 0.9 11 | weight_decay: 0.0005 12 | snapshot: 10000 13 | snapshot_prefix: "models/bvlc_reference_caffenet/caffenet_train" 14 | solver_mode: GPU 15 | -------------------------------------------------------------------------------- /models/bvlc_reference_rcnn_ilsvrc13/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: BAIR/BVLC Reference RCNN ILSVRC13 Model 3 | caffemodel: bvlc_reference_rcnn_ilsvrc13.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_rcnn_ilsvrc13.caffemodel 5 | license: unrestricted 6 | sha1: bdd8abb885819cba5e2fe1eb36235f2319477e64 7 | caffe_commit: a7e397abbda52c0b90323c23ab95bdeabee90a98 8 | --- 9 | 10 | The pure Caffe instantiation of the [R-CNN](https://github.com/rbgirshick/rcnn) model for ILSVRC13 detection. 11 | This model was made by transplanting the R-CNN SVM classifiers into a `fc-rcnn` classification layer, provided here as an off-the-shelf Caffe detector. 12 | Try the [detection example](http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/detection.ipynb) to see it in action. 13 | 14 | *N.B. For research purposes, make use of the official R-CNN package and not this example.* 15 | 16 | This model was trained by Ross Girshick @rbgirshick 17 | 18 | ## License 19 | 20 | This model is released for unrestricted use. 21 | -------------------------------------------------------------------------------- /models/finetune_flickr_style/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: Finetuning CaffeNet on Flickr Style 3 | caffemodel: finetune_flickr_style.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/finetune_flickr_style.caffemodel 5 | license: non-commercial 6 | sha1: b61b5cef7d771b53b0c488e78d35ccadc073e9cf 7 | caffe_commit: 737ea5e936821b5c69f9c3952d72693ae5843370 8 | gist_id: 034c6ac3865563b69e60 9 | --- 10 | 11 | This model is trained exactly as described in `docs/finetune_flickr_style/readme.md`, using all 80000 images. 12 | The final performance: 13 | 14 | I1017 07:36:17.370688 31333 solver.cpp:228] Iteration 100000, loss = 0.757952 15 | I1017 07:36:17.370730 31333 solver.cpp:247] Iteration 100000, Testing net (#0) 16 | I1017 07:36:34.248730 31333 solver.cpp:298] Test net output #0: accuracy = 0.3916 17 | 18 | This model was trained by Sergey Karayev @sergeyk 19 | 20 | ## License 21 | 22 | The Flickr Style dataset contains only URLs to images. 23 | Some of the images may have copyright. 24 | Training a category-recognition model for research/non-commercial use may constitute fair use of this data, but the result should not be used for commercial purposes. 25 | -------------------------------------------------------------------------------- /models/finetune_flickr_style/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/finetune_flickr_style/train_val.prototxt" 2 | test_iter: 100 3 | test_interval: 1000 4 | # lr for fine-tuning should be lower than when starting from scratch 5 | base_lr: 0.001 6 | lr_policy: "step" 7 | gamma: 0.1 8 | # stepsize should also be lower, as we're closer to being done 9 | stepsize: 20000 10 | display: 20 11 | max_iter: 100000 12 | momentum: 0.9 13 | weight_decay: 0.0005 14 | snapshot: 10000 15 | snapshot_prefix: "models/finetune_flickr_style/finetune_flickr_style" 16 | # uncomment the following to default to CPU mode solving 17 | # solver_mode: CPU 18 | -------------------------------------------------------------------------------- /python/caffe/__init__.py: -------------------------------------------------------------------------------- 1 | from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver, NCCL, Timer 2 | from ._caffe import init_log, log, set_mode_cpu, set_mode_gpu, set_device, Layer, get_solver, layer_type_list, set_random_seed, solver_count, set_solver_count, solver_rank, set_solver_rank, set_multiprocess, has_nccl 3 | from ._caffe import __version__ 4 | from .proto.caffe_pb2 import TRAIN, TEST 5 | from .classifier import Classifier 6 | from .detector import Detector 7 | from . import io 8 | from .net_spec import layers, params, NetSpec, to_proto 9 | -------------------------------------------------------------------------------- /python/caffe/imagenet/ilsvrc_2012_mean.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/python/caffe/imagenet/ilsvrc_2012_mean.npy -------------------------------------------------------------------------------- /python/caffe/test/test_draw.py: -------------------------------------------------------------------------------- 1 | import os 2 | import unittest 3 | 4 | from google.protobuf import text_format 5 | 6 | import caffe.draw 7 | from caffe.proto import caffe_pb2 8 | 9 | def getFilenames(): 10 | """Yields files in the source tree which are Net prototxts.""" 11 | result = [] 12 | 13 | root_dir = os.path.abspath(os.path.join( 14 | os.path.dirname(__file__), '..', '..', '..')) 15 | assert os.path.exists(root_dir) 16 | 17 | for dirname in ('models', 'examples'): 18 | dirname = os.path.join(root_dir, dirname) 19 | assert os.path.exists(dirname) 20 | for cwd, _, filenames in os.walk(dirname): 21 | for filename in filenames: 22 | filename = os.path.join(cwd, filename) 23 | if filename.endswith('.prototxt') and 'solver' not in filename: 24 | yield os.path.join(dirname, filename) 25 | 26 | 27 | class TestDraw(unittest.TestCase): 28 | def test_draw_net(self): 29 | for filename in getFilenames(): 30 | net = caffe_pb2.NetParameter() 31 | with open(filename) as infile: 32 | text_format.Merge(infile.read(), net) 33 | caffe.draw.draw_net(net, 'LR') 34 | 35 | 36 | if __name__ == "__main__": 37 | unittest.main() 38 | -------------------------------------------------------------------------------- /python/caffe/test/test_layer_type_list.py: -------------------------------------------------------------------------------- 1 | import unittest 2 | 3 | import caffe 4 | 5 | class TestLayerTypeList(unittest.TestCase): 6 | 7 | def test_standard_types(self): 8 | #removing 'Data' from list 9 | for type_name in ['Data', 'Convolution', 'InnerProduct']: 10 | self.assertIn(type_name, caffe.layer_type_list(), 11 | '%s not in layer_type_list()' % type_name) 12 | -------------------------------------------------------------------------------- /python/caffe/test/test_nccl.py: -------------------------------------------------------------------------------- 1 | import sys 2 | import unittest 3 | 4 | import caffe 5 | 6 | 7 | class TestNCCL(unittest.TestCase): 8 | 9 | def test_newuid(self): 10 | """ 11 | Test that NCCL uids are of the proper type 12 | according to python version 13 | """ 14 | if caffe.has_nccl(): 15 | uid = caffe.NCCL.new_uid() 16 | if sys.version_info.major >= 3: 17 | self.assertTrue(isinstance(uid, bytes)) 18 | else: 19 | self.assertTrue(isinstance(uid, str)) 20 | -------------------------------------------------------------------------------- /python/requirements.txt: -------------------------------------------------------------------------------- 1 | Cython>=0.19.2 2 | numpy>=1.7.1 3 | scipy>=0.13.2 4 | scikit-image>=0.9.3 5 | matplotlib>=1.3.1 6 | ipython>=3.0.0 7 | h5py>=2.2.0 8 | leveldb>=0.191 9 | networkx>=1.8.1 10 | nose>=1.3.0 11 | pandas>=0.12.0 12 | python-dateutil>=1.4,<2 13 | protobuf>=2.5.0 14 | python-gflags>=2.0 15 | pyyaml>=3.10 16 | Pillow>=2.3.0 17 | six>=1.1.0 -------------------------------------------------------------------------------- /scripts/build_docs.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # Build documentation for display in web browser. 3 | 4 | PORT=${1:-4000} 5 | 6 | echo "usage: build_docs.sh [port]" 7 | 8 | # Find the docs dir, no matter where the script is called 9 | ROOT_DIR="$( cd "$(dirname "$0")"/.. ; pwd -P )" 10 | cd $ROOT_DIR 11 | 12 | # Gather docs. 13 | scripts/gather_examples.sh 14 | 15 | # Split caffe.proto for inclusion by layer catalogue. 16 | scripts/split_caffe_proto.py 17 | 18 | # Generate developer docs. 19 | make docs 20 | 21 | # Display docs using web server. 22 | cd docs 23 | jekyll serve -w -s . -d _site --port=$PORT 24 | -------------------------------------------------------------------------------- /scripts/copy_notebook.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | """ 3 | Takes as arguments: 4 | 1. the path to a JSON file (such as an IPython notebook). 5 | 2. the path to output file 6 | 7 | If 'metadata' dict in the JSON file contains 'include_in_docs': true, 8 | then copies the file to output file, appending the 'metadata' property 9 | as YAML front-matter, adding the field 'category' with value 'notebook'. 10 | """ 11 | import os 12 | import sys 13 | import json 14 | 15 | filename = sys.argv[1] 16 | output_filename = sys.argv[2] 17 | content = json.load(open(filename)) 18 | 19 | if 'include_in_docs' in content['metadata'] and content['metadata']['include_in_docs']: 20 | yaml_frontmatter = ['---'] 21 | for key, val in content['metadata'].iteritems(): 22 | if key == 'example_name': 23 | key = 'title' 24 | if val == '': 25 | val = os.path.basename(filename) 26 | yaml_frontmatter.append('{}: {}'.format(key, val)) 27 | yaml_frontmatter += ['category: notebook'] 28 | yaml_frontmatter += ['original_path: ' + filename] 29 | 30 | with open(output_filename, 'w') as fo: 31 | fo.write('\n'.join(yaml_frontmatter + ['---']) + '\n') 32 | fo.write(open(filename).read()) 33 | -------------------------------------------------------------------------------- /scripts/download_model_from_gist.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | 3 | GIST=$1 4 | DIRNAME=${2:-./models} 5 | 6 | if [ -z $GIST ]; then 7 | echo "usage: download_model_from_gist.sh " 8 | exit 9 | fi 10 | 11 | GIST_DIR=$(echo $GIST | tr '/' '-') 12 | MODEL_DIR="$DIRNAME/$GIST_DIR" 13 | 14 | if [ -d $MODEL_DIR ]; then 15 | echo "$MODEL_DIR already exists! Please make sure you're not overwriting anything important!" 16 | exit 17 | fi 18 | 19 | echo "Downloading Caffe model info to $MODEL_DIR ..." 20 | mkdir -p $MODEL_DIR 21 | wget https://gist.github.com/$GIST/download -O $MODEL_DIR/gist.zip 22 | unzip -j $MODEL_DIR/gist.zip -d $MODEL_DIR 23 | rm $MODEL_DIR/gist.zip 24 | echo "Done" 25 | -------------------------------------------------------------------------------- /scripts/gather_examples.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # Assemble documentation for the project into one directory via symbolic links. 3 | 4 | # Find the docs dir, no matter where the script is called 5 | ROOT_DIR="$( cd "$(dirname "$0")"/.. ; pwd -P )" 6 | cd $ROOT_DIR 7 | 8 | # Gather docs from examples/**/readme.md 9 | GATHERED_DIR=docs/gathered 10 | rm -r $GATHERED_DIR 11 | mkdir $GATHERED_DIR 12 | for README_FILENAME in $(find examples -iname "readme.md"); do 13 | # Only use file if it is to be included in docs. 14 | if grep -Fxq "include_in_docs: true" $README_FILENAME; then 15 | # Make link to readme.md in docs/gathered/. 16 | # Since everything is called readme.md, rename it by its dirname. 17 | README_DIRNAME=`dirname $README_FILENAME` 18 | DOCS_FILENAME=$GATHERED_DIR/$README_DIRNAME.md 19 | mkdir -p `dirname $DOCS_FILENAME` 20 | ln -s $ROOT_DIR/$README_FILENAME $DOCS_FILENAME 21 | fi 22 | done 23 | 24 | # Gather docs from examples/*.ipynb and add YAML front-matter. 25 | for NOTEBOOK_FILENAME in $(find examples -depth -iname "*.ipynb"); do 26 | DOCS_FILENAME=$GATHERED_DIR/$NOTEBOOK_FILENAME 27 | mkdir -p `dirname $DOCS_FILENAME` 28 | python scripts/copy_notebook.py $NOTEBOOK_FILENAME $DOCS_FILENAME 29 | done 30 | -------------------------------------------------------------------------------- /scripts/split_caffe_proto.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | import mmap 3 | import re 4 | import os 5 | import errno 6 | 7 | script_path = os.path.dirname(os.path.realpath(__file__)) 8 | 9 | # a regex to match the parameter definitions in caffe.proto 10 | r = re.compile(r'(?://.*\n)*message ([^ ]*) \{\n(?: .*\n|\n)*\}') 11 | 12 | # create directory to put caffe.proto fragments 13 | try: 14 | os.mkdir( 15 | os.path.join(script_path, 16 | '../docs/_includes/')) 17 | os.mkdir( 18 | os.path.join(script_path, 19 | '../docs/_includes/proto/')) 20 | except OSError as exception: 21 | if exception.errno != errno.EEXIST: 22 | raise 23 | 24 | caffe_proto_fn = os.path.join( 25 | script_path, 26 | '../src/caffe/proto/caffe.proto') 27 | 28 | with open(caffe_proto_fn, 'r') as fin: 29 | 30 | for m in r.finditer(fin.read(), re.MULTILINE): 31 | fn = os.path.join( 32 | script_path, 33 | '../docs/_includes/proto/%s.txt' % m.group(1)) 34 | with open(fn, 'w') as fout: 35 | fout.write(m.group(0)) 36 | -------------------------------------------------------------------------------- /scripts/travis/build.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # build the project 3 | 4 | BASEDIR=$(dirname $0) 5 | source $BASEDIR/defaults.sh 6 | 7 | if ! $WITH_CMAKE ; then 8 | make --jobs $NUM_THREADS all test pycaffe warn 9 | else 10 | cd build 11 | make --jobs $NUM_THREADS all test.testbin 12 | fi 13 | make lint 14 | -------------------------------------------------------------------------------- /scripts/travis/configure-cmake.sh: -------------------------------------------------------------------------------- 1 | # CMake configuration 2 | 3 | mkdir -p build 4 | cd build 5 | 6 | ARGS="-DCMAKE_BUILD_TYPE=Release -DBLAS=Open" 7 | 8 | if $WITH_PYTHON3 ; then 9 | ARGS="$ARGS -Dpython_version=3" 10 | fi 11 | 12 | if $WITH_IO ; then 13 | ARGS="$ARGS -DUSE_OPENCV=On -DUSE_LMDB=On -DUSE_LEVELDB=On" 14 | else 15 | ARGS="$ARGS -DUSE_OPENCV=Off -DUSE_LMDB=Off -DUSE_LEVELDB=Off" 16 | fi 17 | 18 | if $WITH_CUDA ; then 19 | # Only build SM50 20 | ARGS="$ARGS -DCPU_ONLY=Off -DCUDA_ARCH_NAME=Manual -DCUDA_ARCH_BIN=\"50\" -DCUDA_ARCH_PTX=\"\"" 21 | else 22 | ARGS="$ARGS -DCPU_ONLY=On" 23 | fi 24 | 25 | if $WITH_CUDNN ; then 26 | ARGS="$ARGS -DUSE_CUDNN=On" 27 | else 28 | ARGS="$ARGS -DUSE_CUDNN=Off" 29 | fi 30 | 31 | cmake .. $ARGS 32 | 33 | -------------------------------------------------------------------------------- /scripts/travis/configure-make.sh: -------------------------------------------------------------------------------- 1 | # raw Makefile configuration 2 | 3 | LINE () { 4 | echo "$@" >> Makefile.config 5 | } 6 | 7 | cp Makefile.config.example Makefile.config 8 | 9 | LINE "BLAS := open" 10 | LINE "WITH_PYTHON_LAYER := 1" 11 | 12 | if $WITH_PYTHON3 ; then 13 | # TODO(lukeyeager) this path is currently disabled because of test errors like: 14 | # ImportError: dynamic module does not define init function (PyInit__caffe) 15 | LINE "PYTHON_LIBRARIES := python3.4m boost_python-py34" 16 | LINE "PYTHON_INCLUDE := /usr/include/python3.4 /usr/lib/python3/dist-packages/numpy/core/include" 17 | LINE "INCLUDE_DIRS := \$(INCLUDE_DIRS) \$(PYTHON_INCLUDE)" 18 | fi 19 | 20 | if ! $WITH_IO ; then 21 | LINE "USE_OPENCV := 0" 22 | LINE "USE_LEVELDB := 0" 23 | LINE "USE_LMDB := 0" 24 | fi 25 | 26 | if $WITH_CUDA ; then 27 | # Only build SM50 28 | LINE "CUDA_ARCH := -gencode arch=compute_50,code=sm_50" 29 | else 30 | LINE "CPU_ONLY := 1" 31 | fi 32 | 33 | if $WITH_CUDNN ; then 34 | LINE "USE_CUDNN := 1" 35 | fi 36 | 37 | -------------------------------------------------------------------------------- /scripts/travis/configure.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # configure the project 3 | 4 | BASEDIR=$(dirname $0) 5 | source $BASEDIR/defaults.sh 6 | 7 | if ! $WITH_CMAKE ; then 8 | source $BASEDIR/configure-make.sh 9 | else 10 | source $BASEDIR/configure-cmake.sh 11 | fi 12 | -------------------------------------------------------------------------------- /scripts/travis/defaults.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # set default environment variables 3 | 4 | set -e 5 | 6 | WITH_CMAKE=${WITH_CMAKE:-false} 7 | WITH_PYTHON3=${WITH_PYTHON3:-false} 8 | WITH_IO=${WITH_IO:-true} 9 | WITH_CUDA=${WITH_CUDA:-false} 10 | WITH_CUDNN=${WITH_CUDNN:-false} 11 | -------------------------------------------------------------------------------- /scripts/travis/install-python-deps.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # install extra Python dependencies 3 | # (must come after setup-venv) 4 | 5 | BASEDIR=$(dirname $0) 6 | source $BASEDIR/defaults.sh 7 | 8 | if ! $WITH_PYTHON3 ; then 9 | # Python2 10 | : 11 | else 12 | # Python3 13 | pip install --pre protobuf==3.0.0b3 14 | pip install pydot 15 | fi 16 | -------------------------------------------------------------------------------- /scripts/travis/setup-venv.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # setup a Python virtualenv 3 | # (must come after install-deps) 4 | 5 | BASEDIR=$(dirname $0) 6 | source $BASEDIR/defaults.sh 7 | 8 | VENV_DIR=${1:-~/venv} 9 | 10 | # setup our own virtualenv 11 | if $WITH_PYTHON3; then 12 | PYTHON_EXE='/usr/bin/python3' 13 | else 14 | PYTHON_EXE='/usr/bin/python2' 15 | fi 16 | 17 | # use --system-site-packages so that Python will use deb packages 18 | virtualenv $VENV_DIR -p $PYTHON_EXE --system-site-packages 19 | -------------------------------------------------------------------------------- /scripts/travis/test.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # test the project 3 | 4 | BASEDIR=$(dirname $0) 5 | source $BASEDIR/defaults.sh 6 | 7 | if $WITH_CUDA ; then 8 | echo "Skipping tests for CUDA build" 9 | exit 0 10 | fi 11 | 12 | if ! $WITH_CMAKE ; then 13 | make runtest 14 | make pytest 15 | else 16 | cd build 17 | make runtest 18 | make pytest 19 | fi 20 | -------------------------------------------------------------------------------- /scripts/upload_model_to_gist.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | # Check for valid directory 4 | DIRNAME=$1 5 | if [ ! -f $DIRNAME/readme.md ]; then 6 | echo "usage: upload_model_to_gist.sh " 7 | echo " /readme.md must exist" 8 | fi 9 | cd $DIRNAME 10 | FILES=`find . -maxdepth 1 -type f ! -name "*.caffemodel*" | xargs echo` 11 | 12 | # Check for gist tool. 13 | gist -v >/dev/null 2>&1 || { echo >&2 "I require 'gist' but it's not installed. Do 'gem install gist'."; exit 1; } 14 | 15 | NAME=`sed -n 's/^name:[[:space:]]*//p' readme.md` 16 | if [ -z "$NAME" ]; then 17 | echo " /readme.md must contain name field in the front-matter." 18 | fi 19 | 20 | GIST=`sed -n 's/^gist_id:[[:space:]]*//p' readme.md` 21 | if [ -z "$GIST" ]; then 22 | echo "Uploading new Gist" 23 | gist -p -d "$NAME" $FILES 24 | else 25 | echo "Updating existing Gist, id $GIST" 26 | gist -u $GIST -d "$NAME" $FILES 27 | fi 28 | 29 | RESULT=$? 30 | if [ $RESULT -eq 0 ]; then 31 | echo "You've uploaded your model!" 32 | echo "Don't forget to add the gist_id field to your /readme.md now!" 33 | echo "Run the command again after you do that, to make sure the Gist id propagates." 34 | echo "" 35 | echo "And do share your model over at https://github.com/BVLC/caffe/wiki/Model-Zoo" 36 | else 37 | echo "Something went wrong!" 38 | fi 39 | -------------------------------------------------------------------------------- /src/caffe/layer.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/layer.hpp" 2 | 3 | namespace caffe { 4 | 5 | INSTANTIATE_CLASS(Layer); 6 | 7 | } // namespace caffe 8 | -------------------------------------------------------------------------------- /src/caffe/layers/absval_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/absval_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void AbsValLayer::LayerSetUp(const vector*>& bottom, 10 | const vector*>& top) { 11 | NeuronLayer::LayerSetUp(bottom, top); 12 | CHECK_NE(top[0], bottom[0]) << this->type() << " Layer does not " 13 | "allow in-place computation."; 14 | } 15 | 16 | template 17 | void AbsValLayer::Forward_cpu( 18 | const vector*>& bottom, const vector*>& top) { 19 | const int count = top[0]->count(); 20 | Dtype* top_data = top[0]->mutable_cpu_data(); 21 | caffe_abs(count, bottom[0]->cpu_data(), top_data); 22 | } 23 | 24 | template 25 | void AbsValLayer::Backward_cpu(const vector*>& top, 26 | const vector& propagate_down, const vector*>& bottom) { 27 | const int count = top[0]->count(); 28 | const Dtype* top_diff = top[0]->cpu_diff(); 29 | if (propagate_down[0]) { 30 | const Dtype* bottom_data = bottom[0]->cpu_data(); 31 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 32 | caffe_cpu_sign(count, bottom_data, bottom_diff); 33 | caffe_mul(count, bottom_diff, top_diff, bottom_diff); 34 | } 35 | } 36 | 37 | #ifdef CPU_ONLY 38 | STUB_GPU(AbsValLayer); 39 | #endif 40 | 41 | INSTANTIATE_CLASS(AbsValLayer); 42 | REGISTER_LAYER_CLASS(AbsVal); 43 | 44 | } // namespace caffe 45 | -------------------------------------------------------------------------------- /src/caffe/layers/absval_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/absval_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void AbsValLayer::Forward_gpu( 10 | const vector*>& bottom, const vector*>& top) { 11 | const int count = top[0]->count(); 12 | Dtype* top_data = top[0]->mutable_gpu_data(); 13 | caffe_gpu_abs(count, bottom[0]->gpu_data(), top_data); 14 | } 15 | 16 | template 17 | void AbsValLayer::Backward_gpu(const vector*>& top, 18 | const vector& propagate_down, const vector*>& bottom) { 19 | const int count = top[0]->count(); 20 | const Dtype* top_diff = top[0]->gpu_diff(); 21 | if (propagate_down[0]) { 22 | const Dtype* bottom_data = bottom[0]->gpu_data(); 23 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 24 | caffe_gpu_sign(count, bottom_data, bottom_diff); 25 | caffe_gpu_mul(count, bottom_diff, top_diff, bottom_diff); 26 | } 27 | } 28 | 29 | INSTANTIATE_LAYER_GPU_FUNCS(AbsValLayer); 30 | 31 | 32 | } // namespace caffe 33 | -------------------------------------------------------------------------------- /src/caffe/layers/base_data_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/base_data_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void BasePrefetchingDataLayer::Forward_gpu( 9 | const vector*>& bottom, const vector*>& top) { 10 | if (prefetch_current_) { 11 | prefetch_free_.push(prefetch_current_); 12 | } 13 | prefetch_current_ = prefetch_full_.pop("Waiting for data"); 14 | // Reshape to loaded data. 15 | top[0]->ReshapeLike(prefetch_current_->data_); 16 | top[0]->set_gpu_data(prefetch_current_->data_.mutable_gpu_data()); 17 | if (this->output_labels_) { 18 | // Reshape to loaded labels. 19 | top[1]->ReshapeLike(prefetch_current_->label_); 20 | top[1]->set_gpu_data(prefetch_current_->label_.mutable_gpu_data()); 21 | } 22 | } 23 | 24 | INSTANTIATE_LAYER_GPU_FORWARD(BasePrefetchingDataLayer); 25 | 26 | } // namespace caffe 27 | -------------------------------------------------------------------------------- /src/caffe/layers/bnll_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "caffe/layers/bnll_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | const float kBNLL_THRESHOLD = 50.; 9 | 10 | template 11 | void BNLLLayer::Forward_cpu(const vector*>& bottom, 12 | const vector*>& top) { 13 | const Dtype* bottom_data = bottom[0]->cpu_data(); 14 | Dtype* top_data = top[0]->mutable_cpu_data(); 15 | const int count = bottom[0]->count(); 16 | for (int i = 0; i < count; ++i) { 17 | top_data[i] = bottom_data[i] > 0 ? 18 | bottom_data[i] + log(1. + exp(-bottom_data[i])) : 19 | log(1. + exp(bottom_data[i])); 20 | } 21 | } 22 | 23 | template 24 | void BNLLLayer::Backward_cpu(const vector*>& top, 25 | const vector& propagate_down, 26 | const vector*>& bottom) { 27 | if (propagate_down[0]) { 28 | const Dtype* bottom_data = bottom[0]->cpu_data(); 29 | const Dtype* top_diff = top[0]->cpu_diff(); 30 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 31 | const int count = bottom[0]->count(); 32 | Dtype expval; 33 | for (int i = 0; i < count; ++i) { 34 | expval = exp(std::min(bottom_data[i], Dtype(kBNLL_THRESHOLD))); 35 | bottom_diff[i] = top_diff[i] * expval / (expval + 1.); 36 | } 37 | } 38 | } 39 | 40 | #ifdef CPU_ONLY 41 | STUB_GPU(BNLLLayer); 42 | #endif 43 | 44 | INSTANTIATE_CLASS(BNLLLayer); 45 | REGISTER_LAYER_CLASS(BNLL); 46 | 47 | } // namespace caffe 48 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_lrn_layer.cu: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_lrn_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNLRNLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->gpu_data(); 12 | Dtype* top_data = top[0]->mutable_gpu_data(); 13 | 14 | CUDNN_CHECK(cudnnLRNCrossChannelForward( 15 | handle_, norm_desc_, CUDNN_LRN_CROSS_CHANNEL_DIM1, 16 | cudnn::dataType::one, 17 | bottom_desc_, bottom_data, 18 | cudnn::dataType::zero, 19 | top_desc_, top_data) ); 20 | } 21 | 22 | template 23 | void CuDNNLRNLayer::Backward_gpu(const vector*>& top, 24 | const vector& propagate_down, const vector*>& bottom) { 25 | const Dtype* top_diff = top[0]->gpu_diff(); 26 | const Dtype* top_data = top[0]->gpu_data(); 27 | const Dtype* bottom_data = bottom[0]->gpu_data(); 28 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 29 | 30 | CUDNN_CHECK(cudnnLRNCrossChannelBackward( 31 | handle_, norm_desc_, CUDNN_LRN_CROSS_CHANNEL_DIM1, 32 | cudnn::dataType::one, 33 | top_desc_, top_data, 34 | top_desc_, top_diff, 35 | bottom_desc_, bottom_data, 36 | cudnn::dataType::zero, 37 | bottom_desc_, bottom_diff) ); 38 | } 39 | 40 | INSTANTIATE_LAYER_GPU_FUNCS(CuDNNLRNLayer); 41 | 42 | }; // namespace caffe 43 | 44 | #endif 45 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_pooling_layer.cu: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_pooling_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNPoolingLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->gpu_data(); 12 | Dtype* top_data = top[0]->mutable_gpu_data(); 13 | CUDNN_CHECK(cudnnPoolingForward(handle_, pooling_desc_, 14 | cudnn::dataType::one, 15 | bottom_desc_, bottom_data, 16 | cudnn::dataType::zero, 17 | top_desc_, top_data)); 18 | } 19 | 20 | template 21 | void CuDNNPoolingLayer::Backward_gpu(const vector*>& top, 22 | const vector& propagate_down, const vector*>& bottom) { 23 | if (!propagate_down[0]) { 24 | return; 25 | } 26 | const Dtype* top_diff = top[0]->gpu_diff(); 27 | const Dtype* top_data = top[0]->gpu_data(); 28 | const Dtype* bottom_data = bottom[0]->gpu_data(); 29 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 30 | CUDNN_CHECK(cudnnPoolingBackward(handle_, pooling_desc_, 31 | cudnn::dataType::one, 32 | top_desc_, top_data, top_desc_, top_diff, 33 | bottom_desc_, bottom_data, 34 | cudnn::dataType::zero, 35 | bottom_desc_, bottom_diff)); 36 | } 37 | 38 | INSTANTIATE_LAYER_GPU_FUNCS(CuDNNPoolingLayer); 39 | 40 | } // namespace caffe 41 | #endif 42 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_softmax_layer.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "thrust/device_vector.h" 5 | 6 | #include "caffe/layers/cudnn_softmax_layer.hpp" 7 | 8 | namespace caffe { 9 | 10 | template 11 | void CuDNNSoftmaxLayer::LayerSetUp(const vector*>& bottom, 12 | const vector*>& top) { 13 | SoftmaxLayer::LayerSetUp(bottom, top); 14 | // Initialize CUDNN. 15 | CUDNN_CHECK(cudnnCreate(&handle_)); 16 | cudnn::createTensor4dDesc(&bottom_desc_); 17 | cudnn::createTensor4dDesc(&top_desc_); 18 | handles_setup_ = true; 19 | } 20 | 21 | template 22 | void CuDNNSoftmaxLayer::Reshape(const vector*>& bottom, 23 | const vector*>& top) { 24 | SoftmaxLayer::Reshape(bottom, top); 25 | int N = this->outer_num_; 26 | int K = bottom[0]->shape(this->softmax_axis_); 27 | int H = this->inner_num_; 28 | int W = 1; 29 | cudnn::setTensor4dDesc(&bottom_desc_, N, K, H, W); 30 | cudnn::setTensor4dDesc(&top_desc_, N, K, H, W); 31 | } 32 | 33 | template 34 | CuDNNSoftmaxLayer::~CuDNNSoftmaxLayer() { 35 | // Check that handles have been setup before destroying. 36 | if (!handles_setup_) { return; } 37 | 38 | cudnnDestroyTensorDescriptor(bottom_desc_); 39 | cudnnDestroyTensorDescriptor(top_desc_); 40 | cudnnDestroy(handle_); 41 | } 42 | 43 | INSTANTIATE_CLASS(CuDNNSoftmaxLayer); 44 | 45 | } // namespace caffe 46 | #endif 47 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_tanh_layer.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_tanh_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNTanHLayer::LayerSetUp(const vector*>& bottom, 10 | const vector*>& top) { 11 | TanHLayer::LayerSetUp(bottom, top); 12 | // initialize cuDNN 13 | CUDNN_CHECK(cudnnCreate(&handle_)); 14 | cudnn::createTensor4dDesc(&bottom_desc_); 15 | cudnn::createTensor4dDesc(&top_desc_); 16 | cudnn::createActivationDescriptor(&activ_desc_, CUDNN_ACTIVATION_TANH); 17 | handles_setup_ = true; 18 | } 19 | 20 | template 21 | void CuDNNTanHLayer::Reshape(const vector*>& bottom, 22 | const vector*>& top) { 23 | TanHLayer::Reshape(bottom, top); 24 | const int N = bottom[0]->num(); 25 | const int K = bottom[0]->channels(); 26 | const int H = bottom[0]->height(); 27 | const int W = bottom[0]->width(); 28 | cudnn::setTensor4dDesc(&bottom_desc_, N, K, H, W); 29 | cudnn::setTensor4dDesc(&top_desc_, N, K, H, W); 30 | } 31 | 32 | template 33 | CuDNNTanHLayer::~CuDNNTanHLayer() { 34 | // Check that handles have been setup before destroying. 35 | if (!handles_setup_) { return; } 36 | 37 | cudnnDestroyTensorDescriptor(this->bottom_desc_); 38 | cudnnDestroyTensorDescriptor(this->top_desc_); 39 | cudnnDestroy(this->handle_); 40 | } 41 | 42 | INSTANTIATE_CLASS(CuDNNTanHLayer); 43 | 44 | } // namespace caffe 45 | #endif 46 | -------------------------------------------------------------------------------- /src/caffe/layers/euclidean_loss_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/euclidean_loss_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void EuclideanLossLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | int count = bottom[0]->count(); 12 | caffe_gpu_sub( 13 | count, 14 | bottom[0]->gpu_data(), 15 | bottom[1]->gpu_data(), 16 | diff_.mutable_gpu_data()); 17 | Dtype dot; 18 | caffe_gpu_dot(count, diff_.gpu_data(), diff_.gpu_data(), &dot); 19 | Dtype loss = dot / bottom[0]->num() / Dtype(2); 20 | top[0]->mutable_cpu_data()[0] = loss; 21 | } 22 | 23 | template 24 | void EuclideanLossLayer::Backward_gpu(const vector*>& top, 25 | const vector& propagate_down, const vector*>& bottom) { 26 | for (int i = 0; i < 2; ++i) { 27 | if (propagate_down[i]) { 28 | const Dtype sign = (i == 0) ? 1 : -1; 29 | const Dtype alpha = sign * top[0]->cpu_diff()[0] / bottom[i]->num(); 30 | caffe_gpu_axpby( 31 | bottom[i]->count(), // count 32 | alpha, // alpha 33 | diff_.gpu_data(), // a 34 | Dtype(0), // beta 35 | bottom[i]->mutable_gpu_diff()); // b 36 | } 37 | } 38 | } 39 | 40 | INSTANTIATE_LAYER_GPU_FUNCS(EuclideanLossLayer); 41 | 42 | } // namespace caffe 43 | -------------------------------------------------------------------------------- /src/caffe/layers/exp_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/exp_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void ExpLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const int count = bottom[0]->count(); 12 | const Dtype* bottom_data = bottom[0]->gpu_data(); 13 | Dtype* top_data = top[0]->mutable_gpu_data(); 14 | if (inner_scale_ == Dtype(1)) { 15 | caffe_gpu_exp(count, bottom_data, top_data); 16 | } else { 17 | caffe_gpu_scale(count, inner_scale_, bottom_data, top_data); 18 | caffe_gpu_exp(count, top_data, top_data); 19 | } 20 | if (outer_scale_ != Dtype(1)) { 21 | caffe_gpu_scal(count, outer_scale_, top_data); 22 | } 23 | } 24 | 25 | template 26 | void ExpLayer::Backward_gpu(const vector*>& top, 27 | const vector& propagate_down, const vector*>& bottom) { 28 | if (!propagate_down[0]) { return; } 29 | const int count = bottom[0]->count(); 30 | const Dtype* top_data = top[0]->gpu_data(); 31 | const Dtype* top_diff = top[0]->gpu_diff(); 32 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 33 | caffe_gpu_mul(count, top_data, top_diff, bottom_diff); 34 | if (inner_scale_ != Dtype(1)) { 35 | caffe_gpu_scal(count, inner_scale_, bottom_diff); 36 | } 37 | } 38 | 39 | INSTANTIATE_LAYER_GPU_FUNCS(ExpLayer); 40 | 41 | 42 | } // namespace caffe 43 | -------------------------------------------------------------------------------- /src/caffe/layers/hdf5_data_layer.cu: -------------------------------------------------------------------------------- 1 | #ifdef USE_HDF5 2 | /* 3 | TODO: 4 | - only load parts of the file, in accordance with a prototxt param "max_mem" 5 | */ 6 | 7 | #include 8 | #include 9 | 10 | #include "hdf5.h" 11 | #include "hdf5_hl.h" 12 | 13 | #include "caffe/layers/hdf5_data_layer.hpp" 14 | 15 | namespace caffe { 16 | 17 | template 18 | void HDF5DataLayer::Forward_gpu(const vector*>& bottom, 19 | const vector*>& top) { 20 | const int batch_size = this->layer_param_.hdf5_data_param().batch_size(); 21 | for (int i = 0; i < batch_size; ++i) { 22 | while (Skip()) { 23 | Next(); 24 | } 25 | for (int j = 0; j < this->layer_param_.top_size(); ++j) { 26 | int data_dim = top[j]->count() / top[j]->shape(0); 27 | caffe_copy(data_dim, 28 | &hdf_blobs_[j]->cpu_data()[data_permutation_[current_row_] 29 | * data_dim], &top[j]->mutable_gpu_data()[i * data_dim]); 30 | } 31 | Next(); 32 | } 33 | } 34 | 35 | INSTANTIATE_LAYER_GPU_FUNCS(HDF5DataLayer); 36 | 37 | } // namespace caffe 38 | #endif // USE_HDF5 39 | -------------------------------------------------------------------------------- /src/caffe/layers/hdf5_output_layer.cu: -------------------------------------------------------------------------------- 1 | #ifdef USE_HDF5 2 | #include 3 | 4 | #include "hdf5.h" 5 | #include "hdf5_hl.h" 6 | 7 | #include "caffe/layers/hdf5_output_layer.hpp" 8 | 9 | namespace caffe { 10 | 11 | template 12 | void HDF5OutputLayer::Forward_gpu(const vector*>& bottom, 13 | const vector*>& top) { 14 | CHECK_GE(bottom.size(), 2); 15 | CHECK_EQ(bottom[0]->num(), bottom[1]->num()); 16 | data_blob_.Reshape(bottom[0]->num(), bottom[0]->channels(), 17 | bottom[0]->height(), bottom[0]->width()); 18 | label_blob_.Reshape(bottom[1]->num(), bottom[1]->channels(), 19 | bottom[1]->height(), bottom[1]->width()); 20 | const int data_datum_dim = bottom[0]->count() / bottom[0]->num(); 21 | const int label_datum_dim = bottom[1]->count() / bottom[1]->num(); 22 | 23 | for (int i = 0; i < bottom[0]->num(); ++i) { 24 | caffe_copy(data_datum_dim, &bottom[0]->gpu_data()[i * data_datum_dim], 25 | &data_blob_.mutable_cpu_data()[i * data_datum_dim]); 26 | caffe_copy(label_datum_dim, &bottom[1]->gpu_data()[i * label_datum_dim], 27 | &label_blob_.mutable_cpu_data()[i * label_datum_dim]); 28 | } 29 | SaveBlobs(); 30 | } 31 | 32 | template 33 | void HDF5OutputLayer::Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom) { 35 | return; 36 | } 37 | 38 | INSTANTIATE_LAYER_GPU_FUNCS(HDF5OutputLayer); 39 | 40 | } // namespace caffe 41 | #endif // USE_HDF5 42 | -------------------------------------------------------------------------------- /src/caffe/layers/input_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/input_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void InputLayer::LayerSetUp(const vector*>& bottom, 9 | const vector*>& top) { 10 | const int num_top = top.size(); 11 | const InputParameter& param = this->layer_param_.input_param(); 12 | const int num_shape = param.shape_size(); 13 | CHECK(num_shape == 0 || num_shape == 1 || num_shape == num_top) 14 | << "Must specify 'shape' once, once per top blob, or not at all: " 15 | << num_top << " tops vs. " << num_shape << " shapes."; 16 | if (num_shape > 0) { 17 | for (int i = 0; i < num_top; ++i) { 18 | const int shape_index = (param.shape_size() == 1) ? 0 : i; 19 | top[i]->Reshape(param.shape(shape_index)); 20 | } 21 | } 22 | } 23 | 24 | INSTANTIATE_CLASS(InputLayer); 25 | REGISTER_LAYER_CLASS(Input); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /src/caffe/layers/loss_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/loss_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void LossLayer::LayerSetUp( 9 | const vector*>& bottom, const vector*>& top) { 10 | // LossLayers have a non-zero (1) loss by default. 11 | if (this->layer_param_.loss_weight_size() == 0) { 12 | this->layer_param_.add_loss_weight(Dtype(1)); 13 | } 14 | } 15 | 16 | template 17 | void LossLayer::Reshape( 18 | const vector*>& bottom, const vector*>& top) { 19 | CHECK_EQ(bottom[0]->shape(0), bottom[1]->shape(0)) 20 | << "The data and label should have the same first dimension."; 21 | vector loss_shape(0); // Loss layers output a scalar; 0 axes. 22 | top[0]->Reshape(loss_shape); 23 | } 24 | 25 | INSTANTIATE_CLASS(LossLayer); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /src/caffe/layers/neuron_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/neuron_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void NeuronLayer::Reshape(const vector*>& bottom, 9 | const vector*>& top) { 10 | top[0]->ReshapeLike(*bottom[0]); 11 | } 12 | 13 | INSTANTIATE_CLASS(NeuronLayer); 14 | 15 | } // namespace caffe 16 | -------------------------------------------------------------------------------- /src/caffe/layers/parameter_layer.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/layers/parameter_layer.hpp" 2 | 3 | namespace caffe { 4 | 5 | INSTANTIATE_CLASS(ParameterLayer); 6 | REGISTER_LAYER_CLASS(Parameter); 7 | 8 | } // namespace caffe 9 | -------------------------------------------------------------------------------- /src/caffe/layers/recurrent_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/blob.hpp" 4 | #include "caffe/common.hpp" 5 | #include "caffe/filler.hpp" 6 | #include "caffe/layer.hpp" 7 | #include "caffe/layers/recurrent_layer.hpp" 8 | #include "caffe/util/math_functions.hpp" 9 | 10 | namespace caffe { 11 | 12 | template 13 | void RecurrentLayer::Forward_gpu(const vector*>& bottom, 14 | const vector*>& top) { 15 | // Hacky fix for test time... reshare all the shared blobs. 16 | // TODO: somehow make this work non-hackily. 17 | if (this->phase_ == TEST) { 18 | unrolled_net_->ShareWeights(); 19 | } 20 | 21 | DCHECK_EQ(recur_input_blobs_.size(), recur_output_blobs_.size()); 22 | if (!expose_hidden_) { 23 | for (int i = 0; i < recur_input_blobs_.size(); ++i) { 24 | const int count = recur_input_blobs_[i]->count(); 25 | DCHECK_EQ(count, recur_output_blobs_[i]->count()); 26 | const Dtype* timestep_T_data = recur_output_blobs_[i]->gpu_data(); 27 | Dtype* timestep_0_data = recur_input_blobs_[i]->mutable_gpu_data(); 28 | caffe_copy(count, timestep_T_data, timestep_0_data); 29 | } 30 | } 31 | 32 | unrolled_net_->ForwardTo(last_layer_index_); 33 | 34 | if (expose_hidden_) { 35 | const int top_offset = output_blobs_.size(); 36 | for (int i = top_offset, j = 0; i < top.size(); ++i, ++j) { 37 | top[i]->ShareData(*recur_output_blobs_[j]); 38 | } 39 | } 40 | } 41 | 42 | INSTANTIATE_LAYER_GPU_FORWARD(RecurrentLayer); 43 | 44 | } // namespace caffe 45 | -------------------------------------------------------------------------------- /src/caffe/layers/relu_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "caffe/layers/relu_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void ReLULayer::Forward_cpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->cpu_data(); 12 | Dtype* top_data = top[0]->mutable_cpu_data(); 13 | const int count = bottom[0]->count(); 14 | Dtype negative_slope = this->layer_param_.relu_param().negative_slope(); 15 | for (int i = 0; i < count; ++i) { 16 | top_data[i] = std::max(bottom_data[i], Dtype(0)) 17 | + negative_slope * std::min(bottom_data[i], Dtype(0)); 18 | } 19 | } 20 | 21 | template 22 | void ReLULayer::Backward_cpu(const vector*>& top, 23 | const vector& propagate_down, 24 | const vector*>& bottom) { 25 | if (propagate_down[0]) { 26 | const Dtype* bottom_data = bottom[0]->cpu_data(); 27 | const Dtype* top_diff = top[0]->cpu_diff(); 28 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 29 | const int count = bottom[0]->count(); 30 | Dtype negative_slope = this->layer_param_.relu_param().negative_slope(); 31 | for (int i = 0; i < count; ++i) { 32 | bottom_diff[i] = top_diff[i] * ((bottom_data[i] > 0) 33 | + negative_slope * (bottom_data[i] <= 0)); 34 | } 35 | } 36 | } 37 | 38 | 39 | #ifdef CPU_ONLY 40 | STUB_GPU(ReLULayer); 41 | #endif 42 | 43 | INSTANTIATE_CLASS(ReLULayer); 44 | 45 | } // namespace caffe 46 | -------------------------------------------------------------------------------- /src/caffe/layers/sigmoid_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "caffe/layers/sigmoid_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | inline Dtype sigmoid(Dtype x) { 10 | return 0.5 * tanh(0.5 * x) + 0.5; 11 | } 12 | 13 | template 14 | void SigmoidLayer::Forward_cpu(const vector*>& bottom, 15 | const vector*>& top) { 16 | const Dtype* bottom_data = bottom[0]->cpu_data(); 17 | Dtype* top_data = top[0]->mutable_cpu_data(); 18 | const int count = bottom[0]->count(); 19 | for (int i = 0; i < count; ++i) { 20 | top_data[i] = sigmoid(bottom_data[i]); 21 | } 22 | } 23 | 24 | template 25 | void SigmoidLayer::Backward_cpu(const vector*>& top, 26 | const vector& propagate_down, 27 | const vector*>& bottom) { 28 | if (propagate_down[0]) { 29 | const Dtype* top_data = top[0]->cpu_data(); 30 | const Dtype* top_diff = top[0]->cpu_diff(); 31 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 32 | const int count = bottom[0]->count(); 33 | for (int i = 0; i < count; ++i) { 34 | const Dtype sigmoid_x = top_data[i]; 35 | bottom_diff[i] = top_diff[i] * sigmoid_x * (1. - sigmoid_x); 36 | } 37 | } 38 | } 39 | 40 | #ifdef CPU_ONLY 41 | STUB_GPU(SigmoidLayer); 42 | #endif 43 | 44 | INSTANTIATE_CLASS(SigmoidLayer); 45 | 46 | 47 | } // namespace caffe 48 | -------------------------------------------------------------------------------- /src/caffe/layers/silence_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/silence_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void SilenceLayer::Backward_cpu(const vector*>& top, 10 | const vector& propagate_down, const vector*>& bottom) { 11 | for (int i = 0; i < bottom.size(); ++i) { 12 | if (propagate_down[i]) { 13 | caffe_set(bottom[i]->count(), Dtype(0), 14 | bottom[i]->mutable_cpu_diff()); 15 | } 16 | } 17 | } 18 | 19 | #ifdef CPU_ONLY 20 | STUB_GPU(SilenceLayer); 21 | #endif 22 | 23 | INSTANTIATE_CLASS(SilenceLayer); 24 | REGISTER_LAYER_CLASS(Silence); 25 | 26 | } // namespace caffe 27 | -------------------------------------------------------------------------------- /src/caffe/layers/silence_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/silence_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void SilenceLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | // Do nothing. 12 | } 13 | 14 | template 15 | void SilenceLayer::Backward_gpu(const vector*>& top, 16 | const vector& propagate_down, const vector*>& bottom) { 17 | for (int i = 0; i < bottom.size(); ++i) { 18 | if (propagate_down[i]) { 19 | caffe_gpu_set(bottom[i]->count(), Dtype(0), 20 | bottom[i]->mutable_gpu_diff()); 21 | } 22 | } 23 | } 24 | 25 | INSTANTIATE_LAYER_GPU_FUNCS(SilenceLayer); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /src/caffe/layers/split_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/split_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void SplitLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | for (int i = 0; i < top.size(); ++i) { 12 | top[i]->ShareData(*bottom[0]); 13 | } 14 | } 15 | 16 | template 17 | void SplitLayer::Backward_gpu(const vector*>& top, 18 | const vector& propagate_down, const vector*>& bottom) { 19 | if (!propagate_down[0]) { return; } 20 | if (top.size() == 1) { 21 | caffe_copy(count_, top[0]->gpu_diff(), bottom[0]->mutable_gpu_diff()); 22 | return; 23 | } 24 | caffe_gpu_add(count_, top[0]->gpu_diff(), top[1]->gpu_diff(), 25 | bottom[0]->mutable_gpu_diff()); 26 | // Add remaining top blob diffs. 27 | for (int i = 2; i < top.size(); ++i) { 28 | const Dtype* top_diff = top[i]->gpu_diff(); 29 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 30 | caffe_gpu_axpy(count_, Dtype(1.), top_diff, bottom_diff); 31 | } 32 | } 33 | 34 | 35 | INSTANTIATE_LAYER_GPU_FUNCS(SplitLayer); 36 | 37 | } // namespace caffe 38 | -------------------------------------------------------------------------------- /src/caffe/layers/tanh_layer.cpp: -------------------------------------------------------------------------------- 1 | // TanH neuron activation function layer. 2 | // Adapted from ReLU layer code written by Yangqing Jia 3 | 4 | #include 5 | 6 | #include "caffe/layers/tanh_layer.hpp" 7 | 8 | namespace caffe { 9 | 10 | template 11 | void TanHLayer::Forward_cpu(const vector*>& bottom, 12 | const vector*>& top) { 13 | const Dtype* bottom_data = bottom[0]->cpu_data(); 14 | Dtype* top_data = top[0]->mutable_cpu_data(); 15 | const int count = bottom[0]->count(); 16 | for (int i = 0; i < count; ++i) { 17 | top_data[i] = tanh(bottom_data[i]); 18 | } 19 | } 20 | 21 | template 22 | void TanHLayer::Backward_cpu(const vector*>& top, 23 | const vector& propagate_down, 24 | const vector*>& bottom) { 25 | if (propagate_down[0]) { 26 | const Dtype* top_data = top[0]->cpu_data(); 27 | const Dtype* top_diff = top[0]->cpu_diff(); 28 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 29 | const int count = bottom[0]->count(); 30 | Dtype tanhx; 31 | for (int i = 0; i < count; ++i) { 32 | tanhx = top_data[i]; 33 | bottom_diff[i] = top_diff[i] * (1 - tanhx * tanhx); 34 | } 35 | } 36 | } 37 | 38 | #ifdef CPU_ONLY 39 | STUB_GPU(TanHLayer); 40 | #endif 41 | 42 | INSTANTIATE_CLASS(TanHLayer); 43 | 44 | } // namespace caffe 45 | -------------------------------------------------------------------------------- /src/caffe/layers/threshold_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/threshold_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void ThresholdLayer::LayerSetUp(const vector*>& bottom, 9 | const vector*>& top) { 10 | NeuronLayer::LayerSetUp(bottom, top); 11 | threshold_ = this->layer_param_.threshold_param().threshold(); 12 | } 13 | 14 | template 15 | void ThresholdLayer::Forward_cpu(const vector*>& bottom, 16 | const vector*>& top) { 17 | const Dtype* bottom_data = bottom[0]->cpu_data(); 18 | Dtype* top_data = top[0]->mutable_cpu_data(); 19 | const int count = bottom[0]->count(); 20 | for (int i = 0; i < count; ++i) { 21 | top_data[i] = (bottom_data[i] > threshold_) ? Dtype(1) : Dtype(0); 22 | } 23 | } 24 | 25 | #ifdef CPU_ONLY 26 | STUB_GPU_FORWARD(ThresholdLayer, Forward); 27 | #endif 28 | 29 | INSTANTIATE_CLASS(ThresholdLayer); 30 | REGISTER_LAYER_CLASS(Threshold); 31 | 32 | } // namespace caffe 33 | -------------------------------------------------------------------------------- /src/caffe/layers/threshold_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/threshold_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | __global__ void ThresholdForward(const int n, const Dtype threshold, 9 | const Dtype* in, Dtype* out) { 10 | CUDA_KERNEL_LOOP(index, n) { 11 | out[index] = in[index] > threshold ? 1 : 0; 12 | } 13 | } 14 | 15 | template 16 | void ThresholdLayer::Forward_gpu(const vector*>& bottom, 17 | const vector*>& top) { 18 | const Dtype* bottom_data = bottom[0]->gpu_data(); 19 | Dtype* top_data = top[0]->mutable_gpu_data(); 20 | const int count = bottom[0]->count(); 21 | // NOLINT_NEXT_LINE(whitespace/operators) 22 | ThresholdForward<<>>( 23 | count, threshold_, bottom_data, top_data); 24 | CUDA_POST_KERNEL_CHECK; 25 | } 26 | 27 | 28 | INSTANTIATE_LAYER_GPU_FORWARD(ThresholdLayer); 29 | 30 | 31 | } // namespace caffe 32 | -------------------------------------------------------------------------------- /src/caffe/solvers/adadelta_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void AdaDeltaUpdate(int N, Dtype* g, Dtype* h, Dtype* h2, 8 | Dtype momentum, Dtype delta, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float hi = h[i] = momentum * h[i] + (1-momentum) * gi * gi; 12 | gi = gi * sqrt((h2[i] + delta) / (hi + delta)); 13 | h2[i] = momentum * h2[i] + (1-momentum) * gi * gi; 14 | g[i] = local_rate * gi; 15 | } 16 | } 17 | template 18 | void adadelta_update_gpu(int N, Dtype* g, Dtype* h, Dtype* h2, Dtype momentum, 19 | Dtype delta, Dtype local_rate) { 20 | AdaDeltaUpdate // NOLINT_NEXT_LINE(whitespace/operators) 21 | <<>>( 22 | N, g, h, h2, momentum, delta, local_rate); 23 | CUDA_POST_KERNEL_CHECK; 24 | } 25 | template void adadelta_update_gpu(int , float*, float*, float*, 26 | float, float, float); 27 | template void adadelta_update_gpu(int, double*, double*, double*, 28 | double, double, double); 29 | 30 | } // namespace caffe 31 | -------------------------------------------------------------------------------- /src/caffe/solvers/adagrad_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void AdaGradUpdate(int N, Dtype* g, Dtype* h, Dtype delta, 8 | Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float hi = h[i] = h[i] + gi*gi; 12 | g[i] = local_rate * gi / (sqrt(hi) + delta); 13 | } 14 | } 15 | template 16 | void adagrad_update_gpu(int N, Dtype* g, Dtype* h, Dtype delta, 17 | Dtype local_rate) { 18 | AdaGradUpdate // NOLINT_NEXT_LINE(whitespace/operators) 19 | <<>>( 20 | N, g, h, delta, local_rate); 21 | CUDA_POST_KERNEL_CHECK; 22 | } 23 | template void adagrad_update_gpu(int, float*, float*, float, float); 24 | template void adagrad_update_gpu(int, double*, double*, double, double); 25 | 26 | } // namespace caffe 27 | -------------------------------------------------------------------------------- /src/caffe/solvers/adam_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void AdamUpdate(int N, Dtype* g, Dtype* m, Dtype* v, 8 | Dtype beta1, Dtype beta2, Dtype eps_hat, Dtype corrected_local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float mi = m[i] = m[i]*beta1 + gi*(1-beta1); 12 | float vi = v[i] = v[i]*beta2 + gi*gi*(1-beta2); 13 | g[i] = corrected_local_rate * mi / (sqrt(vi) + eps_hat); 14 | } 15 | } 16 | template 17 | void adam_update_gpu(int N, Dtype* g, Dtype* m, Dtype* v, Dtype beta1, 18 | Dtype beta2, Dtype eps_hat, Dtype corrected_local_rate) { 19 | AdamUpdate // NOLINT_NEXT_LINE(whitespace/operators) 20 | <<>>( 21 | N, g, m, v, beta1, beta2, eps_hat, corrected_local_rate); 22 | CUDA_POST_KERNEL_CHECK; 23 | } 24 | template void adam_update_gpu(int, float*, float*, float*, 25 | float, float, float, float); 26 | template void adam_update_gpu(int, double*, double*, double*, 27 | double, double, double, double); 28 | 29 | } // namespace caffe 30 | -------------------------------------------------------------------------------- /src/caffe/solvers/nesterov_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void NesterovUpdate(int N, Dtype* g, Dtype* h, 8 | Dtype momentum, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float hi = h[i]; 11 | float hi_new = h[i] = momentum * hi + local_rate * g[i]; 12 | g[i] = (1+momentum) * hi_new - momentum * hi; 13 | } 14 | } 15 | template 16 | void nesterov_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum, 17 | Dtype local_rate) { 18 | NesterovUpdate // NOLINT_NEXT_LINE(whitespace/operators) 19 | <<>>( 20 | N, g, h, momentum, local_rate); 21 | CUDA_POST_KERNEL_CHECK; 22 | } 23 | template void nesterov_update_gpu(int, float*, float*, float, float); 24 | template void nesterov_update_gpu(int, double*, double*, double, 25 | double); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /src/caffe/solvers/rmsprop_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void RMSPropUpdate(int N, Dtype* g, Dtype* h, 8 | Dtype rms_decay, Dtype delta, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float hi = h[i] = rms_decay*h[i] + (1-rms_decay)*gi*gi; 12 | g[i] = local_rate * g[i] / (sqrt(hi) + delta); 13 | } 14 | } 15 | template 16 | void rmsprop_update_gpu(int N, Dtype* g, Dtype* h, Dtype rms_decay, 17 | Dtype delta, Dtype local_rate) { 18 | RMSPropUpdate // NOLINT_NEXT_LINE(whitespace/operators) 19 | <<>>( 20 | N, g, h, rms_decay, delta, local_rate); 21 | CUDA_POST_KERNEL_CHECK; 22 | } 23 | template void rmsprop_update_gpu(int, float*, float*, float, float, 24 | float); 25 | template void rmsprop_update_gpu(int, double*, double*, double, double, 26 | double); 27 | 28 | } // namespace caffe 29 | -------------------------------------------------------------------------------- /src/caffe/solvers/sgd_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void SGDUpdate(int N, Dtype* g, Dtype* h, 8 | Dtype momentum, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | g[i] = h[i] = momentum*h[i] + local_rate*g[i]; 11 | } 12 | } 13 | template 14 | void sgd_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum, 15 | Dtype local_rate) { 16 | SGDUpdate // NOLINT_NEXT_LINE(whitespace/operators) 17 | <<>>( 18 | N, g, h, momentum, local_rate); 19 | CUDA_POST_KERNEL_CHECK; 20 | } 21 | template void sgd_update_gpu(int, float*, float*, float, float); 22 | template void sgd_update_gpu(int, double*, double*, double, double); 23 | 24 | } // namespace caffe 25 | -------------------------------------------------------------------------------- /src/caffe/test/test_caffe_main.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | #include "caffe/test/test_caffe_main.hpp" 3 | 4 | namespace caffe { 5 | #ifndef CPU_ONLY 6 | cudaDeviceProp CAFFE_TEST_CUDA_PROP; 7 | #endif 8 | } 9 | 10 | #ifndef CPU_ONLY 11 | using caffe::CAFFE_TEST_CUDA_PROP; 12 | #endif 13 | 14 | int main(int argc, char** argv) { 15 | ::testing::InitGoogleTest(&argc, argv); 16 | caffe::GlobalInit(&argc, &argv); 17 | #ifndef CPU_ONLY 18 | // Before starting testing, let's first print out a few cuda device info. 19 | int device; 20 | cudaGetDeviceCount(&device); 21 | cout << "Cuda number of devices: " << device << endl; 22 | if (argc > 1) { 23 | // Use the given device 24 | device = atoi(argv[1]); 25 | cudaSetDevice(device); 26 | cout << "Setting to use device " << device << endl; 27 | } else if (CUDA_TEST_DEVICE >= 0) { 28 | // Use the device assigned in build configuration; but with a lower priority 29 | device = CUDA_TEST_DEVICE; 30 | } 31 | cudaGetDevice(&device); 32 | cout << "Current device id: " << device << endl; 33 | cudaGetDeviceProperties(&CAFFE_TEST_CUDA_PROP, device); 34 | cout << "Current device name: " << CAFFE_TEST_CUDA_PROP.name << endl; 35 | #endif 36 | // invoke the test. 37 | return RUN_ALL_TESTS(); 38 | } 39 | -------------------------------------------------------------------------------- /src/caffe/test/test_data/sample_data.h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/src/caffe/test/test_data/sample_data.h5 -------------------------------------------------------------------------------- /src/caffe/test/test_data/sample_data_2_gzip.h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/src/caffe/test/test_data/sample_data_2_gzip.h5 -------------------------------------------------------------------------------- /src/caffe/test/test_data/sample_data_list.txt: -------------------------------------------------------------------------------- 1 | src/caffe/test/test_data/sample_data.h5 2 | src/caffe/test/test_data/sample_data_2_gzip.h5 3 | -------------------------------------------------------------------------------- /src/caffe/test/test_data/solver_data.h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BVLC/caffe/9b891540183ddc834a02b2bd81b31afae71b2153/src/caffe/test/test_data/solver_data.h5 -------------------------------------------------------------------------------- /src/caffe/test/test_data/solver_data_list.txt: -------------------------------------------------------------------------------- 1 | src/caffe/test/test_data/solver_data.h5 2 | -------------------------------------------------------------------------------- /src/caffe/test/test_internal_thread.cpp: -------------------------------------------------------------------------------- 1 | #include "glog/logging.h" 2 | #include "gtest/gtest.h" 3 | 4 | #include "caffe/internal_thread.hpp" 5 | #include "caffe/util/math_functions.hpp" 6 | 7 | #include "caffe/test/test_caffe_main.hpp" 8 | 9 | namespace caffe { 10 | 11 | 12 | class InternalThreadTest : public ::testing::Test {}; 13 | 14 | TEST_F(InternalThreadTest, TestStartAndExit) { 15 | InternalThread thread; 16 | EXPECT_FALSE(thread.is_started()); 17 | thread.StartInternalThread(); 18 | EXPECT_TRUE(thread.is_started()); 19 | thread.StopInternalThread(); 20 | EXPECT_FALSE(thread.is_started()); 21 | } 22 | 23 | class TestThreadA : public InternalThread { 24 | void InternalThreadEntry() { 25 | EXPECT_EQ(4244559767, caffe_rng_rand()); 26 | } 27 | }; 28 | 29 | class TestThreadB : public InternalThread { 30 | void InternalThreadEntry() { 31 | EXPECT_EQ(1726478280, caffe_rng_rand()); 32 | } 33 | }; 34 | 35 | TEST_F(InternalThreadTest, TestRandomSeed) { 36 | TestThreadA t1; 37 | Caffe::set_random_seed(9658361); 38 | t1.StartInternalThread(); 39 | t1.StopInternalThread(); 40 | 41 | TestThreadA t2; 42 | Caffe::set_random_seed(9658361); 43 | t2.StartInternalThread(); 44 | t2.StopInternalThread(); 45 | 46 | TestThreadB t3; 47 | Caffe::set_random_seed(3435563); 48 | t3.StartInternalThread(); 49 | t3.StopInternalThread(); 50 | } 51 | 52 | } // namespace caffe 53 | 54 | -------------------------------------------------------------------------------- /src/caffe/test/test_protobuf.cpp: -------------------------------------------------------------------------------- 1 | // This is simply a script that tries serializing protocol buffer in text 2 | // format. Nothing special here and no actual code is being tested. 3 | #include 4 | 5 | #include "google/protobuf/text_format.h" 6 | #include "gtest/gtest.h" 7 | 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/test/test_caffe_main.hpp" 11 | 12 | namespace caffe { 13 | 14 | class ProtoTest : public ::testing::Test {}; 15 | 16 | TEST_F(ProtoTest, TestSerialization) { 17 | LayerParameter param; 18 | param.set_name("test"); 19 | param.set_type("Test"); 20 | std::cout << "Printing in binary format." << std::endl; 21 | std::cout << param.SerializeAsString() << std::endl; 22 | std::cout << "Printing in text format." << std::endl; 23 | std::string str; 24 | google::protobuf::TextFormat::PrintToString(param, &str); 25 | std::cout << str << std::endl; 26 | EXPECT_TRUE(true); 27 | } 28 | 29 | } // namespace caffe 30 | -------------------------------------------------------------------------------- /src/caffe/util/cudnn.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include "caffe/util/cudnn.hpp" 3 | 4 | namespace caffe { 5 | namespace cudnn { 6 | 7 | float dataType::oneval = 1.0; 8 | float dataType::zeroval = 0.0; 9 | const void* dataType::one = 10 | static_cast(&dataType::oneval); 11 | const void* dataType::zero = 12 | static_cast(&dataType::zeroval); 13 | 14 | double dataType::oneval = 1.0; 15 | double dataType::zeroval = 0.0; 16 | const void* dataType::one = 17 | static_cast(&dataType::oneval); 18 | const void* dataType::zero = 19 | static_cast(&dataType::zeroval); 20 | 21 | } // namespace cudnn 22 | } // namespace caffe 23 | #endif 24 | -------------------------------------------------------------------------------- /src/caffe/util/db.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/util/db.hpp" 2 | #include "caffe/util/db_leveldb.hpp" 3 | #include "caffe/util/db_lmdb.hpp" 4 | 5 | #include 6 | 7 | namespace caffe { namespace db { 8 | 9 | DB* GetDB(DataParameter::DB backend) { 10 | switch (backend) { 11 | #ifdef USE_LEVELDB 12 | case DataParameter_DB_LEVELDB: 13 | return new LevelDB(); 14 | #endif // USE_LEVELDB 15 | #ifdef USE_LMDB 16 | case DataParameter_DB_LMDB: 17 | return new LMDB(); 18 | #endif // USE_LMDB 19 | default: 20 | LOG(FATAL) << "Unknown database backend"; 21 | return NULL; 22 | } 23 | } 24 | 25 | DB* GetDB(const string& backend) { 26 | #ifdef USE_LEVELDB 27 | if (backend == "leveldb") { 28 | return new LevelDB(); 29 | } 30 | #endif // USE_LEVELDB 31 | #ifdef USE_LMDB 32 | if (backend == "lmdb") { 33 | return new LMDB(); 34 | } 35 | #endif // USE_LMDB 36 | LOG(FATAL) << "Unknown database backend"; 37 | return NULL; 38 | } 39 | 40 | } // namespace db 41 | } // namespace caffe 42 | -------------------------------------------------------------------------------- /src/caffe/util/db_leveldb.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_LEVELDB 2 | #include "caffe/util/db_leveldb.hpp" 3 | 4 | #include 5 | 6 | namespace caffe { namespace db { 7 | 8 | void LevelDB::Open(const string& source, Mode mode) { 9 | leveldb::Options options; 10 | options.block_size = 65536; 11 | options.write_buffer_size = 268435456; 12 | options.max_open_files = 100; 13 | options.error_if_exists = mode == NEW; 14 | options.create_if_missing = mode != READ; 15 | leveldb::Status status = leveldb::DB::Open(options, source, &db_); 16 | CHECK(status.ok()) << "Failed to open leveldb " << source 17 | << std::endl << status.ToString(); 18 | LOG(INFO) << "Opened leveldb " << source; 19 | } 20 | 21 | } // namespace db 22 | } // namespace caffe 23 | #endif // USE_LEVELDB 24 | -------------------------------------------------------------------------------- /src/gtest/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | add_library(gtest STATIC EXCLUDE_FROM_ALL gtest.h gtest-all.cpp) 2 | caffe_default_properties(gtest) 3 | target_include_directories(gtest PUBLIC ${Caffe_SRC_DIR}) 4 | target_compile_definitions(gtest PUBLIC -DGTEST_USE_OWN_TR1_TUPLE) 5 | 6 | 7 | #add_library(gtest_main gtest_main.cc) 8 | #target_link_libraries(gtest_main gtest) 9 | -------------------------------------------------------------------------------- /tools/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | # Collect source files 2 | file(GLOB_RECURSE srcs ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp) 3 | 4 | # Build each source file independently 5 | foreach(source ${srcs}) 6 | get_filename_component(name ${source} NAME_WE) 7 | 8 | # caffe target already exits 9 | if(name MATCHES "caffe") 10 | set(name ${name}.bin) 11 | endif() 12 | 13 | # target 14 | add_executable(${name} ${source}) 15 | target_link_libraries(${name} ${Caffe_LINK}) 16 | caffe_default_properties(${name}) 17 | 18 | # set back RUNTIME_OUTPUT_DIRECTORY 19 | caffe_set_runtime_directory(${name} "${PROJECT_BINARY_DIR}/tools") 20 | caffe_set_solution_folder(${name} tools) 21 | 22 | # restore output name without suffix 23 | if(name MATCHES "caffe.bin") 24 | set_target_properties(${name} PROPERTIES OUTPUT_NAME caffe) 25 | endif() 26 | 27 | # Install 28 | install(TARGETS ${name} DESTINATION ${CMAKE_INSTALL_BINDIR}) 29 | 30 | endforeach(source) 31 | -------------------------------------------------------------------------------- /tools/extra/launch_resize_and_crop_images.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | #### https://github.com/Yangqing/mincepie/wiki/Launch-Your-Mapreducer 3 | 4 | # If you encounter error that the address already in use, kill the process. 5 | # 11235 is the port of server process 6 | # https://github.com/Yangqing/mincepie/blob/master/mincepie/mince.py 7 | # sudo netstat -ap | grep 11235 8 | # The last column of the output is PID/Program name 9 | # kill -9 PID 10 | # Second solution: 11 | # nmap localhost 12 | # fuser -k 11235/tcp 13 | # Or just wait a few seconds. 14 | 15 | ## Launch your Mapreduce locally 16 | # num_clients: number of processes 17 | # image_lib: OpenCV or PIL, case insensitive. The default value is the faster OpenCV. 18 | # input: the file containing one image path relative to input_folder each line 19 | # input_folder: where are the original images 20 | # output_folder: where to save the resized and cropped images 21 | ./resize_and_crop_images.py --num_clients=8 --image_lib=opencv --input=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images.txt --input_folder=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images_train/ --output_folder=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images_train_resized/ 22 | 23 | ## Launch your Mapreduce with MPI 24 | # mpirun -n 8 --launch=mpi resize_and_crop_images.py --image_lib=opencv --input=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images.txt --input_folder=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images_train/ --output_folder=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images_train_resized/ 25 | --------------------------------------------------------------------------------