├── README.md
├── Bengali Digit Recognizer
└── .gitignore
├── .gitignore
├── Image Preprocessing
└── .gitignore
├── LICENSE
└── Exploratory Data Analysis
└── Part 2 - Exploring dataset E.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # Numta
2 |
3 | This repository contains tutorials based on the [NumtaDB](https://bengali.ai/datasets/) database.
4 | The database is also hosted on [Kaggle](https://www.kaggle.com/BengaliAI/numta) where you will find many useful tutorials/analysis based on this dataset.
5 |
--------------------------------------------------------------------------------
/Bengali Digit Recognizer/.gitignore:
--------------------------------------------------------------------------------
1 | # Build and Release Folders
2 | bin-debug/
3 | bin-release/
4 | [Oo]bj/
5 | [Bb]in/
6 |
7 | # Other files and folders
8 | .settings/
9 |
10 | # Executables
11 | *.swf
12 | *.air
13 | *.ipa
14 | *.apk
15 |
16 | # Project files, i.e. `.project`, `.actionScriptProperties` and `.flexProperties`
17 | # should NOT be excluded as they contain compiler settings and other important
18 | # information for Eclipse / Flash Builder.
19 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Build and Release Folders
2 | bin/
3 | bin-debug/
4 | bin-release/
5 | [Oo]bj/ # FlashDevelop obj
6 | [Bb]in/ # FlashDevelop bin
7 |
8 | # Other files and folders
9 | .settings/
10 |
11 | # Executables
12 | *.swf
13 | *.air
14 | *.ipa
15 | *.apk
16 |
17 | # Project files, i.e. `.project`, `.actionScriptProperties` and `.flexProperties`
18 | # should NOT be excluded as they contain compiler settings and other important
19 | # information for Eclipse / Flash Builder.
20 |
--------------------------------------------------------------------------------
/Image Preprocessing/.gitignore:
--------------------------------------------------------------------------------
1 | # Build and Release Folders
2 | bin/
3 | bin-debug/
4 | bin-release/
5 | [Oo]bj/ # FlashDevelop obj
6 | [Bb]in/ # FlashDevelop bin
7 |
8 | # Other files and folders
9 | .settings/
10 |
11 | # Executables
12 | *.swf
13 | *.air
14 | *.ipa
15 | *.apk
16 |
17 | # Project files, i.e. `.project`, `.actionScriptProperties` and `.flexProperties`
18 | # should NOT be excluded as they contain compiler settings and other important
19 | # information for Eclipse / Flash Builder.
20 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2018 BengaliAI
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/Exploratory Data Analysis/Part 2 - Exploring dataset E.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Exploring dataset E"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "As we have seen in the previuos notebook, there are some additional information in the label file of dataset **E**. We are going to explore that in this notebook.\n",
15 | "
\n",
16 | "
\n",
17 | "The digits from dataset **E** are extracted from the `BanglaLekha-Isolated` dataset which contains Bangla handwritten numerals, basic characters and compound characters. \n",
18 | "
\n",
19 | "The `BanglaLekha-Isolated` dataset was collected from Dhaka and Comilla. The age group of the subjects ranged from 6 years to 28 years with a high density between the ages of 16–20. Among the subjects, 59.4% were males while the remaining 40.6% were females.\n",
20 | "More details can be found in the dataset description [here.](https://www.sciencedirect.com/science/article/pii/S2352340917301117)"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 2,
26 | "metadata": {
27 | "collapsed": true
28 | },
29 | "outputs": [],
30 | "source": [
31 | "# Importing necessary libraries\n",
32 | "import numpy as np\n",
33 | "import os\n",
34 | "import glob\n",
35 | "import cv2\n",
36 | "import matplotlib.pyplot as plt\n",
37 | "import pandas as pd"
38 | ]
39 | },
40 | {
41 | "cell_type": "code",
42 | "execution_count": 3,
43 | "metadata": {
44 | "collapsed": true
45 | },
46 | "outputs": [],
47 | "source": [
48 | "# Declare fontsize variables which will be used while plotting the data\n",
49 | "FS_AXIS_LABEL=14\n",
50 | "FS_TITLE=17\n",
51 | "FS_TICKS=12\n",
52 | "FIG_WIDTH=16"
53 | ]
54 | },
55 | {
56 | "cell_type": "code",
57 | "execution_count": 50,
58 | "metadata": {
59 | "collapsed": true
60 | },
61 | "outputs": [],
62 | "source": [
63 | "# Setup paths\n",
64 | "project_dir='..'\n",
65 | "path_label_train_e=os.path.join(project_dir,'Final_DB','training-e.csv')\n",
66 | "path_label_test_e=os.path.join(project_dir,'Final_DB','testing-e.csv')"
67 | ]
68 | },
69 | {
70 | "cell_type": "code",
71 | "execution_count": 57,
72 | "metadata": {
73 | "scrolled": true
74 | },
75 | "outputs": [
76 | {
77 | "data": {
78 | "text/html": [
79 | "
\n",
80 | "\n",
93 | "
\n",
94 | " \n",
95 | " \n",
96 | " | \n",
97 | " original filename | \n",
98 | " districtid | \n",
99 | " institutionid | \n",
100 | " gender | \n",
101 | " age | \n",
102 | " datestamp | \n",
103 | " scanid | \n",
104 | " digit | \n",
105 | " database name original | \n",
106 | " database name | \n",
107 | " filename | \n",
108 | "
\n",
109 | " \n",
110 | " \n",
111 | " \n",
112 | " | 0 | \n",
113 | " 01_0001_0_17_0916_0193_55.png | \n",
114 | " 1 | \n",
115 | " 1 | \n",
116 | " 0 | \n",
117 | " 17 | \n",
118 | " 916 | \n",
119 | " 193 | \n",
120 | " 4 | \n",
121 | " BanglaLekha-Isolated | \n",
122 | " training-e | \n",
123 | " e00000.png | \n",
124 | "
\n",
125 | " \n",
126 | " | 1 | \n",
127 | " 02_0002_0_23_1016_0858_57.png | \n",
128 | " 2 | \n",
129 | " 2 | \n",
130 | " 0 | \n",
131 | " 23 | \n",
132 | " 1016 | \n",
133 | " 858 | \n",
134 | " 6 | \n",
135 | " BanglaLekha-Isolated | \n",
136 | " training-e | \n",
137 | " e00001.png | \n",
138 | "
\n",
139 | " \n",
140 | " | 2 | \n",
141 | " 02_0002_0_14_1016_1673_51.png | \n",
142 | " 2 | \n",
143 | " 2 | \n",
144 | " 0 | \n",
145 | " 14 | \n",
146 | " 1016 | \n",
147 | " 1673 | \n",
148 | " 0 | \n",
149 | " BanglaLekha-Isolated | \n",
150 | " training-e | \n",
151 | " e00002.png | \n",
152 | "
\n",
153 | " \n",
154 | " | 3 | \n",
155 | " 02_0002_0_26_1016_1828_56.png | \n",
156 | " 2 | \n",
157 | " 2 | \n",
158 | " 0 | \n",
159 | " 26 | \n",
160 | " 1016 | \n",
161 | " 1828 | \n",
162 | " 5 | \n",
163 | " BanglaLekha-Isolated | \n",
164 | " training-e | \n",
165 | " e00003.png | \n",
166 | "
\n",
167 | " \n",
168 | " | 4 | \n",
169 | " 02_0002_1_19_1016_1336_59.png | \n",
170 | " 2 | \n",
171 | " 2 | \n",
172 | " 1 | \n",
173 | " 19 | \n",
174 | " 1016 | \n",
175 | " 1336 | \n",
176 | " 8 | \n",
177 | " BanglaLekha-Isolated | \n",
178 | " training-e | \n",
179 | " e00004.png | \n",
180 | "
\n",
181 | " \n",
182 | "
\n",
183 | "
"
184 | ],
185 | "text/plain": [
186 | " original filename districtid institutionid gender age \\\n",
187 | "0 01_0001_0_17_0916_0193_55.png 1 1 0 17 \n",
188 | "1 02_0002_0_23_1016_0858_57.png 2 2 0 23 \n",
189 | "2 02_0002_0_14_1016_1673_51.png 2 2 0 14 \n",
190 | "3 02_0002_0_26_1016_1828_56.png 2 2 0 26 \n",
191 | "4 02_0002_1_19_1016_1336_59.png 2 2 1 19 \n",
192 | "\n",
193 | " datestamp scanid digit database name original database name filename \n",
194 | "0 916 193 4 BanglaLekha-Isolated training-e e00000.png \n",
195 | "1 1016 858 6 BanglaLekha-Isolated training-e e00001.png \n",
196 | "2 1016 1673 0 BanglaLekha-Isolated training-e e00002.png \n",
197 | "3 1016 1828 5 BanglaLekha-Isolated training-e e00003.png \n",
198 | "4 1016 1336 8 BanglaLekha-Isolated training-e e00004.png "
199 | ]
200 | },
201 | "execution_count": 57,
202 | "metadata": {},
203 | "output_type": "execute_result"
204 | }
205 | ],
206 | "source": [
207 | "# Let's get the label files in a dataframe \n",
208 | "df_train_e=pd.read_csv(path_label_train_e)\n",
209 | "df_test_e=pd.read_csv(path_label_test_e)\n",
210 | "df_train_e.head()"
211 | ]
212 | },
213 | {
214 | "cell_type": "markdown",
215 | "metadata": {},
216 | "source": [
217 | "The information in the districtid and institutionid column is similar. Here, `1` stands for `Dhaka` and `2` stands for `Comilla`. For the `gender` column `0` denotes `Male` and `1` denotes `Female`."
218 | ]
219 | },
220 | {
221 | "cell_type": "markdown",
222 | "metadata": {},
223 | "source": [
224 | "### Distribution of digits by age"
225 | ]
226 | },
227 | {
228 | "cell_type": "markdown",
229 | "metadata": {},
230 | "source": [
231 | "The `age` columns contains the age information of the participants. We are going to use the `.value_counts()` method to get the number of occurrence of each age. The `.sort_index()` method sorts the index (age) of the resulting Series so that we can plot the age values in ascending order. This will give us a better understanding of the distribution of the participant's ages."
232 | ]
233 | },
234 | {
235 | "cell_type": "code",
236 | "execution_count": 64,
237 | "metadata": {
238 | "collapsed": true
239 | },
240 | "outputs": [],
241 | "source": [
242 | "train_age_vc=df_train_e['age'].value_counts().sort_index()"
243 | ]
244 | },
245 | {
246 | "cell_type": "code",
247 | "execution_count": 173,
248 | "metadata": {},
249 | "outputs": [
250 | {
251 | "data": {
252 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAFoCAYAAACVGOJ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcZGV97/HPFwbByCLIgASECbiAoKDgjohhcSEoMEYh\niiB4wXuDF4UESRTBJQoq7htEEERFg6CoEAMquEW9DuKAKKLiEESQAVFm2Jff/eOcxqLtpaq7p6p7\n6vN+vc6ru57nnKd+Vf3MdP/qWU6qCkmSJEmShtUqgw5AkiRJkqRBMjGWJEmSJA01E2NJkiRJ0lAz\nMZYkSZIkDTUTY0mSJEnSUDMxliRJkiQNNRNjSdLQSXJgkkqyoE/PV0mOG+P5d+zT8y9on+/Afjzf\nODGskeTaJP93gDEcn+TOKV67IMk9SXaa6bgkSYNnYixJ6lmSfdpE66Ykqw04lpEkc+S4M8n1Sb6R\n5Kgk683gc+2V5M0z1d5Ma9+LgSWekzgMeAjw7/DAhwXdHMcNNOpWVS0BzgTeMeBQJEkrQKpq0DFI\nkuaYJF8EtgX+BnhxVX15gLEcCHwSeBtwFTAPmA/sCOwB3Ay8pKq+03HNqsBqwF3Vwy/CJKcBr6iq\neT3GuAZwb1XdOyrmZ1fVd3tpa5LnuRjYpKoePao8wOrAPVV130w9Xw9xrQpcC3yqqo5uy14x6rRD\ngGcBB4wqv6yqLpuhOOYBq1bVXVO8/unA94Edq+p7MxGTJGl26OkXuyRJ7QjsC4EjgFcB+wMDS4w7\nXDAqyXx3kicD/wV8Kcnjq+r3AG1yuEITxCSrAA+pqjurakrTd2dKm/wPMoYXAhsBnxspqKpPd56Q\nZFfgmaPLx9Mm+2tU1R3dBtF+MHFvt+ePcf0Pkiyh6fcmxpK0EnEqtSSpVy+j+f3xH8BngT2TPHz0\nSWm8sV1XekeSHyR5VpKL25HNznNXa8+9MsldSW5IcvJ0p0FX1Y+B1wPr0UzlHXm+v1hjnGTzJGcm\nua4jhvOTPKGtv5hmNHPVzqm+bd3IGt43JTk0yZXAXcDz2/rxpgSvnuR9SX6f5Lb2+UaP9p7WJmOM\nKn/Qa2jPeQ6wRUd8S0bFd+CoNrZOcm6SPya5vf0Z/d2oc3Zur90/yZFJrmmnq/+g/eChG3sDN1bV\nT7o8f/RrXaON4cNJXpbkMpr394C2/tXt1Pkb2p/dr5O8NaOm+WeMNcbtNV9N8sz2Nd2Z5H+SHMbY\nLgD2bhNzSdJKwhFjSVKv9ge+XlVLk3wOeDfw97RrRzv8G/AvwIU0I8qPBr4C/AH47chJbYJxNrAb\ncApwGbA58FrgqUmePs0R18+3sT0POGasE9oE6gLgYcDH2vg2pEk0Hwdc3r6eVRh7uu+IfYF1gJPa\n17lkkthOpBnBfCfN9O/DgYuTPLGq/tDVq/uz17XtrAv8U1u2fLyTkzwW+G/gHuD9wK3AgcCXk7ys\nqs4adcnhNNOxP0jz98M/A19M8uiqumeS2J4FXNLTqxnbc2ne448AvwOuaMv/L3ApcB5wO/Bs4E3A\nxsDBXbS7BfBFmuntnwL+AfhQksur6lujzv0RzbTvx3c8vyRpjjMxliR1rR3NfAZNckxV/a4dSd2f\njsQ4yQY0ydkFwAuq6v62/HLgE3QkxjSJzp7A7lV1YUcb36SZBv2gtntVVfckuYomMR/P42mSo5eO\nSgjf2dHOhUlezsTTfTcHHltVvx2nfrQ1gCeNTAdu38sLaJLOf+myjZH4vpTkdcBqXU5HfgfNBwHb\nVtUV7fP/O7AYeH+SL46siW6tB2zdEesvaJLJ3WkS0jG163ofQ/MByXRtCWxXVZePKn96Vd3e8fjj\nSX4DHJ3kX6rqxi7afW5VXdzGfBrNmuhXA6MT46vbrybGkrQScSq1JKkXr6AZkftSR9lngR3z4Fsf\n7UqzudVHRpLi1unAH0e1+TKaZOPSJOuPHMCPgT8BfzsDcS8D1pqg/k/t1+cnWXMaz/PlHpJigJM6\n18i2Hwz8DPi78S+ZvjSbYT0fOH8kKW6ffxnNiPlfA6OnSZ82aj3vSMK4+SRPtx4Q4JZpBd34zhhJ\nMSNJcZJVkzy87T/fAlYFtuui3Z+PJMUd7S1i7Nc2MpK/fo+xS5JmMRNjSVIvXgF8F3hkkke3I8iL\ngfvbuhGbtV9/2XlxOwL5m1FtPpYmAVk6xrEOsMEMxL0WTXI8pvZWPO8CDgJubtdBvyHJJj0+z697\nPP8X45T9TY/t9Go+zWjxlWPU/az9OjqGazofVNVIotvtOvCZWJM75vubZMck36L50OYWmr5zQVv9\nF+vfx3DNGGW3MPZrc22xJK2EnEotSepKkmfSTDfeglEJb2t/4O1TaHoVmgTttePUT2ukMclDaJLv\nvxhp7FRVb0hyKvAimhHvtwDHJHlxVX2jy6freofkHox3O6lVV8BzTWS8XbwnSxRvpnkN685ADH/x\n/rZrpb9O04deD/wPzQ7cC2im4HczCNDLaxt5HTd10a4kaY4wMZYkdWt/ms2cXjVG3bbAm5I8tar+\nH38egXsM8PORk9r1pn9DM8o84lfA04Bvjpp2PVNeSrOW92uTnVhVv6DZTOzdSR5Fs6HTm4CRxLjr\nex536XHA+WOUdY6q38LYo54LxijrNr6lwG00a2tH26r9Onpkf0qq6r4kv6T5QGVF2JtmU7DnV9UN\nI4VJXrSCnm/kdfxswrMkSXOKU6klSZNqR11fCnytqr4w+gBOoLl9zv7tJV+n2W35H9Pcz3fEAfxl\nkvc5mvWarxvjeVfNNG7Z1N5O6H0060I/MsF5a7dJ+wOq6lqaBLIz3ttobtc0nXXInQ5J8tCOOHaj\n2dSpczOrXwHrJHlSx3lrMvbO2LfRxdTh9j7O/wm8IMlIIjzS7v+m2fH5x729lAl9D9hhBtvrNPJh\nygP9rF1DfcQKer6n0PQnE2NJWok4YixJ6sYeNOstvzxWZVUtb3eR3jfJEVV1Y5ITgTcAX0tyLs2u\n0AfQrBPtHNn8DLAQODHJs2k2TbqXZmRuIfBm4LQuYty93QBsVZo1tDvSbGJ1M7BPVf1+gmv/FvhY\nki8AV9HcwujvaEZU39Bx3sgthz6U5OvAfVX1uS5iG89dwHeSnEGzlvpw4HqaUesRZwLH09wa6QM0\nm5odBPweeNSo9i4B9kjynvb75VX1lXGe+400O0p/O8mH+fPtmv4GeNmoHamn60vAq5JsX1Uzcdum\nTufT3Errv5KcTPP+7MeKm2q+G3BuVc307AFJ0gCZGEuSurE/zTrMcW/LA5wLvIBmt+OvAP9KM4J5\nKM19ZRfT3JbpAzRrQAGoqkryEpo1xge2199NMx3788A3u4xx5B7Fd9PsfH1FG8MpVXXzJNcuBr5K\nc6/jg2gS86uAg6rqkx3nfRp4OrAPTZIfmhHvqTqS5j15I7Am8G3gtZ3xVtUtSV5MM/J9AnAd8F6a\nzcQ+Oaq999Ik8we3bV9D87P4C1V1Vbtu/J00o6sPoXkfXlRVX53GaxrL+TQJ/77MzP2MH1BVVyTZ\nG3gbzfvzR5p+c8ZMP1eSp9FMYT91JtuVJA1e/MBTktQv7RTXG4Fzqup/DToe9U+SfwKOAjYbddun\nOSPJ6cBjquqZg45FkjSzXGMsSVohkqwxRvGraKZkdzsKrJXHh2mmjs/JD0SSbAb8A/Avg45FkjTz\nHDGWJK0QSV4BvIZmivIfaTYtOpDmtklPraq7BxedJEnSn7nGWJK0ovyUZo3xETQ7Jd8MnAL8q0mx\nJEmaTRwxliRJkiQNNdcYS5IkSZKGmomxJEmSJGmomRhLkiRJkoaaibEkSZIkaaiZGEuSJEmShpqJ\nsSRJkiRpqJkYS5IkSZKGmomxJEmSJGmomRhLkiRJkoaaibEkSZIkaaiZGEuSJEmShpqJsSRJkiRp\nqJkYS5IkSZKGmomxJEmSJGmomRhLkiRJkoaaibEkSZIkaaiZGEuSJEmShtq8QQcwSOuvv34tWLBg\n0GFIklYSl1xyyU1VNX/Qccxl/m6WJM2kbn83D3VivGDBAhYtWjToMCRJK4kk1ww6hrnO382SpJnU\n7e9mp1JLkiRJkoaaibEkSZIkaaiZGEuSJEmShpqJsSRJkiRpqPUtMU6yepJTklyTZFmSnyR5QVu3\nIEklWd5xHNNxbZKckOTm9jghSTrqFyS5KMntSa5Msmu/XpckSZIkaW7r567U84BrgecA/wO8EPiP\nJE/oOOfhVXXvGNceAuwFbAsUcCHwG+Djbf2ZwPfbNl8IfCHJY6pq6Yp4IZIkSZKklUffRoyr6raq\nOq6qllTV/VX1VZrkdvsuLj8AOLGqfltV1wHvAQ4ESPJY4MnAsVV1R1WdDVwGLFwhL0SSJEmStFIZ\n2BrjJBsCjwWu6Ci+Jslvk3wyyfod5VsDizseL27LRuqurqpl49SPft5DkixKsmjpUgeUJUmSJGnY\nDSQxTrIa8Bng9Kq6ErgJeAqwGc0I8lpt/Yg1gT91PL4VWLNdZzy6bqR+rbGeu6pOrqodqmqH+fPn\nz8TLkSRJkiTNYf1cYwxAklWAM4C7gcMAqmo5sKg95fdJDgOuT7JWOxK8HFi7o5l1gOVVVUlG143U\nL0OSJEmSpEn0dcS4HeE9BdgQWFhV94xzarVfR+K7gmbjrRHb8ucp2FcAmydZa5x6SZIkaVZJMtBD\n0oP1e8T4Y8BWwK5VdcdIYZKnAX8EfgmsC3wQuLiqRqZIfwo4Isn57eMj23OoqquS/AQ4NsmbaHal\nfgJwdh9ej7TSWXD0eZOes+T4PfoQiSRJK6+qmvykCSSZdhuS/qxviXGSzYBDgbuAGzo+qToUuB94\nB7ABzfrgC4H9Oi4/CdgcuLx9/Im2bMS+wGnALTS3gnqJt2qSJEmSJHWjb4lxVV0DTDRv48wJri3g\nqPYYq34JsPM0wpMkSZIkDamB3a5JkiRJkqTZwMRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJ\nkiRJQ83EWJIkSZI01EyMJUmSJElDzcRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJkiRJQ83E\nWJIkSZI01EyMJUmSJElDzcRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJkiRJQ83EWJIkSZI0\n1EyMJUmSJElDzcRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNTmDToASTNnwdHnTVi/5Pg9+hSJJEmS\nNHc4YixJkiRJGmomxpIkSZKkoWZiLEmSJEkaaibGkiRpWpI8KslFSX6W5Iokh7flxyW5LslP2uOF\ng45VkqSxuPmWJEmarnuBI6vqx0nWAi5JcmFb976qes8AY5MkaVImxpIkaVqq6nrg+vb7ZUl+Dmw8\n2KgkSeqeU6klSdKMSbIAeBLww7botUkuS3JqknUHFpgkSRMwMZYkSTMiyZrA2cDrqupW4GPA5sB2\nNCPKJ45z3SFJFiVZtHTp0r7FK0nSCBNjSZI0bUlWo0mKP1NV5wBU1e+r6r6quh/4d+CpY11bVSdX\n1Q5VtcP8+fP7F7QkSS0TY0mSNC1JApwC/Lyq3ttRvlHHaXsDP+13bJIkdcPNtyRJ0nQ9C9gfuDzJ\nT9qyfwX2S7IdUMAS4NDBhCdJ0sRMjCVJ0rRU1XeBjFF1fr9jkSRpKpxKLUmSJEkaaibGkiRJkqSh\nZmIsSZIkSRpqJsaSJEmSpKFmYixJkiRJGmomxpIkSZKkoWZiLEmSJEkaan1LjJOsnuSUJNckWZbk\nJ0le0FG/S5Irk9ye5KIkm3XUJckJSW5ujxOSpKN+QXvN7W0bu/brdUmSJEmS5rZ+jhjPA64FngOs\nA7wJ+I82qV0fOAc4BlgPWAR8vuPaQ4C9gG2BJwJ7Aod21J8JXAo8Angj8IUk81foq5EkSZIkrRT6\nlhhX1W1VdVxVLamq+6vqq8BvgO2BfYArquqsqroTOA7YNsmW7eUHACdW1W+r6jrgPcCBAEkeCzwZ\nOLaq7qiqs4HLgIX9em2SJEmSpLlrYGuMk2wIPBa4AtgaWDxSV1W3Ab9qyxld337fWXd1VS0bp16S\nJEmSpHENJDFOshrwGeD0qroSWBP406jTbgXWar8fXX8rsGa7zniya0c/9yFJFiVZtHTp0um9EEmS\nJEnSnNf3xDjJKsAZwN3AYW3xcmDtUaeuAywbp34dYHlVVRfXPkhVnVxVO1TVDvPnuwxZkiRJkoZd\nXxPjdoT3FGBDYGFV3dNWXUGzsdbIeQ8DtmjL/6K+/b6zbvMka41TL0mSJEnSuPo9YvwxYCtgz6q6\no6P8i8A2SRYmWQM4FljcTrMG+BRwRJKNk2wMHAmcBlBVVwE/AY5NskaSfYAnAGf35RVJkiRJkua0\nef16ova+xIcCdwE3dNyG+NCq+kyShcCHgU8DPwT27bj8JGBz4PL28SfashH70iTKtwD/A7ykqlxA\nLEmSJEmaVN8S46q6BsgE9V8HthynroCj2mOs+iXAztMOUpIkSZI0dAZ2uyZJkiRJkmYDE2NJkiRJ\n0lAzMZYkSZIkDTUTY0mSJEnSUOvb5luSNCgLjj5v0nOWHL9HHyKRJEnSbOSIsSRJkiRpqJkYS5Ik\nSZKGmomxJEmSJGmomRhLkiRJkoaaibEkSZIkaaiZGEuSJEmShpqJsSRJkiRpqJkYS5IkSZKGmomx\nJEmSJGmomRhLkiRJkoaaibEkSZIkaaiZGEuSJEmShpqJsSRJkiRpqJkYS5IkSZKGmomxJEmSJGmo\nzRt0AJI0ngVHnzfpOUuO36MPkTRmWzySJEmaGY4YS5IkSZKGmomxJEmSJGmomRhLkiRJwLXXXstz\nn/tcHv/4x7P11lvzgQ98AICzzjqLrbfemlVWWYVFixY9cP56661HkoEcwECed7311hvIz0Za0Vxj\nLEmSJAHz5s3jxBNP5MlPfjLLli1j++23Z7fddmObbbbhnHPO4dBDD33Q+bfccgtVNaBoB2MkKZdW\nNibGkiRJErDRRhux0UYbAbDWWmux1VZbcd1117HbbrsNODJJK5pTqSVJkqRRlixZwqWXXsrTnva0\nQYciqQ9MjCVJkqQOy5cvZ+HChbz//e9n7bXXHnQ4kvrAxFiSJElq3XPPPSxcuJCXv/zl7LPPPoMO\nR1KfmBhLkiRJQFVx8MEHs9VWW3HEEUcMOhxJfWRiLEmSpiXJo5JclORnSa5Icnhbvl6SC5P8sv26\n7qBjlSbyve99jzPOOINvfvObbLfddmy33Xacf/75fPGLX2STTTbh+9//PnvssQfPe97zBh2qpBnm\nrtSSJGm67gWOrKofJ1kLuCTJhcCBwDeq6vgkRwNHA28YYJzShHbcccdxb7+099579zkaSf3kiLEk\nSZqWqrq+qn7cfr8M+DmwMfBi4PT2tNOBvQYToSRJEzMxliRJMybJAuBJwA+BDavq+rbqBmDDAYUl\nSdKEekqMk6y3ogKRJElzW5I1gbOB11XVrZ111cxPHXOOapJDkixKsmjp0qV9iFSSpAfrdcT4d0k+\nl2S3FRKNJEmak5KsRpMUf6aqzmmLf59ko7Z+I+DGsa6tqpOraoeq2mH+/Pn9CViSpA69JsZ7t9d8\nJcmSJMcm2WwFxCVJkuaIJAFOAX5eVe/tqPoycED7/QHAuf2OTZKkbvSUGFfVf1bVS4G/Bt5Hs4nG\nr5NckORlSR6yIoKUJEmz2rOA/YG/TfKT9nghcDywW5JfAru2jyVJmnWmtPlWVf2hqj5QVU8CXgfs\nBJxJM9X67Un+aiaDlCRJs1dVfbeqUlVPrKrt2uP8qrq5qnapqsdU1a5V9YdBxypp+g466CA22GAD\nttlmmwfKFi9ezDOe8Qye8IQnsOeee3LrrbdO0II0+0wpMU6yQZJ/SnIF8C7gC8AuwOE0t2b40syF\nKEmSJGm2OPDAA/na1772oLJXv/rVHH/88Vx++eXsvffevPvd7x5QdNLU9Lor9YuSfAm4FnglcBKw\ncVW9oqouqqrP0Eyv3nnGI5UkSZI0cDvttBPrrffgm9VcddVV7LTTTgDstttunH322YMITZqyXkeM\nPwPcBOzUTpf6YFXdMuqc3wEnzEh0kiRJkma9rbfemnPPbfbXO+uss7j22msHHJHUm14T442q6tVV\n9cPxTqiqO6rqmGnGJUmSJGmOOPXUU/noRz/K9ttvz7Jly3jIQ9yTV3NLr4nx7kn+bnRhkj2T7D3Z\nxUkOS7IoyV1JTusoX5CkkizvOI7pqE+SE5Lc3B4ntLeG6Lz+oiS3J7kyya49vi5JkiRJU7Tlllty\nwQUXcMkll7DffvuxxRZbDDokqSe9JsZvBe4ao/zOtm4yvwPeDpw6Tv3Dq2rN9nhbR/khNGuXtwWe\nCOwJHNpRfyZwKfAI4I3AF5LM7yIeSZIkSdN04403AnD//ffz9re/nde85jUDjkjqzbwez98CuGqM\n8l+2dROqqnMAkuwAbNLD8x4AnFhVv22vfw9NsvzxJI8FngzsXlV3AGcnORxYCHy8h+eQJEmSulbH\nrg3HrTPoMPqqjl2b/fbbj4svvpibbrqJTTbZhLe85S0sX76cj3zkIwDss88+vOpVrxpwpFJvek2M\n/wg8GrhmVPljgGUzEM81SQq4EPjnqrqpLd8aWNxx3uK2bKTu6qpaNk79gyQ5hCapZtNNN52BkCVJ\nkjSM8pZbqapBh9FXSag6c8y6ww8/vM/RSDOn16nUXwbel+SB0eEkjwZObOum6ibgKcBmwPbAWjQ7\nYI9YE/hTx+NbgTXbdcaj60bq1xrriarq5Kraoap2mD/f2daSJEmSNOx6TYyPAm4HrkzymyS/AX4O\n3AH881SDqKrlVbWoqu6tqt8Dh9Fs9DWS3C4H1u64ZB1geTUf0Y2uG6mfiRFsSZIkSdJKrqep1FX1\npyTPAJ4PbNcWXwr8V83sPJKRtkYS9ytoNt76f+3jbduykbrNk6zVMZ16Wx484ixJkiRJ0ph6XWNM\nmwD/Z3v0JMm89jlXBVZNsgZwL8306T/SbOK1LvBB4OKqGpki/SngiCTnt4+PbM+hqq5K8hPg2CRv\nAl4IPAE4u9f4JEmSJEnDp+fEOMn2wC7ABoyail1VR0xy+ZuAYzsevwJ4C/AL4B1tm7fSbL61X8d5\nJwGbA5e3jz/Rlo3YFzgNuAX4H+AlVbW029ckSZIkSRpePSXGSV5Ps9HWEpp7EndOn550KnVVHQcc\nN0712Nvb8cAo9VHtMVb9EmDnyZ5fkiRJkqTReh0xfj1wRFW9f0UEI0mSJElSv/W6K/U6TO+2TJIk\nSZIkzSq9Jsb/Aey+IgKRJEmSJGkQep1K/WvgbUmeTrMR1j2dlVX1wZkKTJIkSZKkfug1Mf5H4E6a\nXal3GVVXtLdQkiRJc0uSHYAtgK9W1W1JHgbcVVX3Djg0SZJWuJ4S46p61IoKRJIk9V+SDYFzgafS\nfMj9GOBq4L00H4YfPrjoJEnqj17XGD8gySOSZCaDkSRJffc+4PfAI4DbO8rPwn1FJElDoqfEOMlq\nSd6R5I80v0T/pi1/Z5LXrIgAJUnSCrUL8MaqumVU+a+BTQcQjyRJfdfriPExwELgYOCujvJLgFfN\nVFCSJKlvHgrcPUb5fJqp1JIkrfR6TYxfDhxaVWcD93eUXw48bsaikiRJ/fJt4MCOx5VkVeANwDcG\nEpEkSX3W667Ufw0sGaN81Sm0JUmSBu8o4FtJngKsDpwIbA2sAzxrkIFJktQvvY4Y/wx49hjlfw9c\nOv1wJElSP1XVz4AnAP8NXACsQbPx1pOq6teDjE2SpH7pdZT3rcBpSf6aJqneJ8njgFcCe850cJIk\nacWrqhuAYwcdhyRJg9LrfYzPTfJy4I0006f/jWakeK+qumAFxCdJK5UFR5836TlLjt+jD5FIjSQ7\njVNVNJtv/bqq/tDHkCRJ6rue1wVX1fnA+SsgFkmS1H8X0yTBAGm/dj6+P8mXgf2r6rY+xyZJUl/0\nusZYkiStXF5As4fIK4BHt8crgCtobtG4ENgOOH5QAUqStKL1NGKc5Bb+/CnyX6iq9aYdkSRJ6qe3\nA6+rqs5bM12dZClwQlVtn+Q+4EPAawcSoSRJK1ivU6n/adTj1YAnAXsB75yRiCRJUj9tA1w3Rvl1\nwOPb7y8HHtm3iCRJ6rNeN986ZazyJIuA58xIRJIkqZ9+Brwxyaur6i6AJKsD/9rWATwKuGFA8UmS\ntML1vPnWOL4BvHeG2pIkSf3zf4CvANcl+Wlbtg1wP/B37ePNgY8OIDZJkvpiphLjvwdunqG2JElS\nn1TVD5P8Dc2GW49riz/bHk9vz/nUgMKTJKkvet1861IevPlWaNYczQcOm8G4JM1x3q9Xmjva2zCd\nBJBkY+BVwGJgAbDq4CKTJKk/eh0x/uqox/cDS4GLquqKmQlJkiT1U5JVgRcDBwO7A5fRJMpnDTIu\nSZL6pdfNt45ZUYFIkqT+SvI44NXAK4HbaKZPPw/Yv6p+NtG1kiStTFYZdACSJKn/knwH+AGwLvDS\nqtq8qt7Eg5dMSZI0FHpdY3wPXf7CrKqHTCkiSZLUD88APgKc7HIoSdKw63XE+EjgVuAzNJttHdZ+\nfytwBLB/xyFJkmavp9B8QP7dJJcmeX2SRw46KGnQDjroIDbYYAO22WabB5V/6EMfYsstt2Trrbfm\nqKOOeqA8yVAd6667br9/JFJf9Lr51t8Cb6yqkzrKTk7yGuCFVfWimQtNkiStKFV1KfCPSY6kue3i\nQcC7aD403yPJ9VV1yyBjlAbhwAMP5LDDDuOVr3zlA2UXXXQR5557LosXL2b11VfnxhtvBKBqcCsP\nkgz0+aWVTa8jxrsC3xij/OvALtMPR5Ik9VNV3VlVZ1TVc4GtgHcDrwduSPKfg41O6r+ddtqJ9dZb\n70FlH/vYxzj66KNZffXVAdhggw0GEZqkFajXxPhmYJ8xyvcGbpp+OJIkaVCq6ldVdTTwKOClwN0D\nDkmaFa666iq+853v8LSnPY3nPOc5/OhHPxp0SJJmWK9TqY8DPpHkOcD327KnA88HDpnBuCRJ0oBU\n1X3Aue0hDb17772XP/zhD/zgBz/gRz/6ES996Uu5+uqrSTLo0CTNkJ5GjKvqk8CzgeU0nyS/lOa+\nh8+pqlNyClWWAAAYqElEQVRnPjxJkiRpsDbZZBP22WcfkvDUpz6VVVZZhZtucrKktDLpdcSYqvpv\n4L9XQCySJEnSrLPXXntx0UUX8dznPperrrqKu+++m/XXX3/QYUmaQb2uMSbJ/CSvS/LBJI9oy56e\nZLOZD0+SJEnqn/32249nPOMZ/OIXv2CTTTbhlFNO4aCDDuLqq69mm222Yd999+X00093GrW0kulp\nxDjJk2h2pb4OeBzwfpoNuV4APBp4+UwHKEmSZrckpwJ/B9xYVdu0ZccB/wtY2p72r1V1/mAilLp3\n5plnjln+6U9/us+RSOqnXkeMTwQ+WlVPAO7qKP8asOOMRSVJkuaS02g24hztfVW1XXuYFEuSZq1e\nE+PtgU+OUf47YMPphyNJkuaaqvo28IdBxyFJ0lT1mhjfCaw9Rvnj+PNUKUmSJIDXJrksyalJ1h3v\npCSHJFmUZNHSpf45IUnqv14T468Ab06yWvu4kmwKHA+cM6ORSZKkuexjwObAdsD1NMuxxlRVJ1fV\nDlW1w/z58/sVnyRJD+g1MT4SeCRwI/BQ4FvAr4DbgTfObGiSJGmuqqrfV9V9VXU/8O/AUwcdkyRJ\n4+lpV+qq+lOSZwK7AU+mSax/DPxXVdUKiE+SJM1BSTaqquvbh3sDPx1kPJIkTaTrxLidPn0xcFBV\nXQBcsKKCkiRJc0eSM4GdgfWT/BY4Ftg5yXZAAUuAQwcWoCRJk+h6KnVV3QM8Brh/qk+W5LB2c427\nkpw2qm6XJFcmuT3JRUk266hLkhOS3NweJ6TjrupJFrTX3N62setUY5QkSb2pqv2qaqOqWq2qNqmq\nU6pq/6p6QlU9sape1DF6LEnSrNPrGuMzgIOn8Xy/A94OnNpZmGR9ms27jgHWAxYBn+845RBgL2Bb\n4InAnjz4k+czgUuBR9Csdf5CEnfvkCRJkiRNqqc1xsBDgFe3I7KXALd1VlbVERNdXFXnACTZAdik\no2of4IqqOqutPw64KcmWVXUlcABwYlX9tq1/D02y/PEkj6VZ77x7Vd0BnJ3kcGAh8PEeX58kSZIk\nacj0mhhvB1zWfv/4UXXT2Xxra2DxAw1V3ZbkV235laPr2++37rj26qpaNk69JEmSJEnj6ioxTvJE\n4KdV9ewVFMeawNJRZbcCa3XU/2lU3ZrtOuPRdSP1G4/1REkOoRltZtNNN51e1JIkSZKkOa/bNcaX\nAuuPPEhyXpKNZjCO5cDao8rWAZaNU78OsLy9RdRk1z5IVZ1cVTtU1Q7z57sMWZIkSZKGXbeJcUY9\n3gl46AzGcQXNxlrNkyUPA7Zoy/+ivv2+s27zJGuNUy9JkiRJ0rh63ZV6WpLMS7IGsCqwapI1kswD\nvghsk2RhW38ssLjdeAvgU8ARSTZOsjFwJHAaQFVdBfwEOLZtbx/gCcDZ/XxtkiRJkqS5qdvEuPjL\nzbWmstnWm4A7gKOBV7Tfv6mqltLsIv1vwC3AU4F9O647CfgKcHl7fLUtG7EvsEN77TuBl7RtSpIk\nSZI0oW53pQ7w6SR3tY/XAP49ye2dJ1XViyZqpKqOA44bp+7rwJbj1BVwVHuMVb8E2Hmi55YkSZIk\naSzdJsanj3r86ZkORJIkSZKkQegqMa6qV63oQCRJkiRJGoS+br4lSZIkSdJsY2IsSZIkSRpqJsaS\nJEmSpKFmYixJkiRJGmomxpIkSZKkoWZiLEmSJEkaaibGkiRJkqSh1tV9jCVJs8uCo8+b9Jwlx+/R\nh0gkSZLmPkeMJUmSJElDzcRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJkiRJQ83EWJIkSZI0\n1EyMJUmSJElDzcRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJkiRJQ83EWJIkSZI01EyMJUmS\nJElDzcRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNTmDToASdLgLDj6vEnPWXL8Hn2IRJIkaXAcMZYk\nSZIkDTUTY0mSJEnSUDMxliRJkiQNNdcYS7OA6zwlSZKkwXHEWJIkSZI01EyMJUmSJElDzcRYkiRJ\nkjTUXGMsTYNrgyVJkqS5zxFjSZIkSdJQMzGWJEmSJA01E2NJkiRJ0lAzMZYkSdOS5NQkNyb5aUfZ\nekkuTPLL9uu6g4xRkqSJmBhLkqTpOg14/qiyo4FvVNVjgG+0jyVJmpVMjCVJ0rRU1beBP4wqfjFw\nevv96cBefQ1KkqQemBhLkqQVYcOqur79/gZgw0EGI0nSREyMJUnSClVVBdR49UkOSbIoyaKlS5f2\nMTJJkhqzKjFOcnGSO5Msb49fdNTtkuTKJLcnuSjJZh11SXJCkpvb44QkGcyrkCRJwO+TbATQfr1x\nvBOr6uSq2qGqdpg/f37fApQkacSsSoxbh1XVmu3xOIAk6wPnAMcA6wGLgM93XHMIzdqlbYEnAnsC\nh/Y1akmS1OnLwAHt9wcA5w4wFkmSJjQbE+Ox7ANcUVVnVdWdwHHAtkm2bOsPAE6sqt9W1XXAe4AD\nBxKpJElDJsmZwPeBxyX5bZKDgeOB3ZL8Eti1fSxJ0qw0b9ABjOGdSY4HfgG8saouBrYGFo+cUFW3\nJflVW37l6Pr2+63HajzJITQjzGy66aYrIn5JkoZKVe03TtUufQ1EkqQpmm0jxm8ANgc2Bk4GvpJk\nC2BN4E+jzr0VWKv9fnT9rcCaY60zdh2TJEmSJKnTrEqMq+qHVbWsqu6qqtOB7wEvBJYDa486fR1g\nWfv96Pp1gOXtLpiSJEmSJI1rViXGYyggwBU0G2sBkORhwBZtOaPr2++vQJIkSZKkScyaxDjJw5M8\nL8kaSeYleTmwE/A14IvANkkWJlkDOBZYXFVXtpd/CjgiycZJNgaOBE4bwMuQJEmSJM0xs2nzrdWA\ntwNbAvfRbKq1V1VdBZBkIfBh4NPAD4F9O649iWZt8uXt40+0ZZIkSZIkTWjWJMZVtRR4ygT1X6dJ\nmseqK+Co9pAkSZIkqWuzJjGWJEmShsUYN0/paxvuUSs9mImxJEmS1GcmptLsMms235IkSZIkaRBM\njCVJkiRJQ83EWJIkSZI01EyMJUmSJElDzcRYkiRJkjTUTIwlSZIkSUPN2zVJkiRJc8RY9y721k/S\n9DliLEmSJM0BnUnx5z73uTHLJU2NibEkSZI0h1QVL3vZyxwplmaQibEkSZI0R3SOFI/1WNLUmBhL\nkiRJc8S+++474WNJU2NiLEmSJM0hSfj85z/v2mJpBpkYS5IkSXNA55rizpFi1xpL0+ftmiRJkqQ5\nwiRYWjEcMZYkSZIkDTUTY0mSJEnSUDMxliRJkiQNNdcYS5IkSXPEWDtRu+5Ymj5HjCVJkqQ5oDMp\nPuaYY8YslzQ1jhhraC04+rwJ65ccv0efIpEkSereyAjxW9/6VpNiaYY4YixJkiTNEZ0jxWM9ljQ1\nJsaSJEnSHPG2t71twseSpsbEWJIkSZpDkvDmN7/ZadTSDHKNsfpmsjW94LpeaS7y37Yk9UdVPZAM\nd44Uuyu1NH0mxpIkSdIcYRIsrRhOpZYkSZIkDTVHjDXnOG1TkiRJ0kxyxFiSJEmSNNQcMVZXHKWV\nJEkavLF2onbdsTR9jhhLkiRJc0BnUnzCCSeMWS5pakyMJUmSpDmkqjjqqKMcKZZmkFOpJUmzgks2\nJGlynSPFI4/f8IY3DCgaaeXhiLEkSZI0R4xOgk2KpZlhYixJkiTNIUl417ve5dpiaQaZGEuSJElz\nQOea4s6RYtcaS9PnGmNJkiRpjjAJllYME2NJ0kplsk283MBLkiSN5lRqSZIkSdJQMzGWJEmSJA01\np1Kv5LwvqCRpkJIsAZYB9wH3VtUOg41IkqS/tNIkxknWA04BdgduAv6lqj47iFhMRiVJepDnVtVN\ngw5CkqTxrDSJMfAR4G5gQ2A74Lwki6vqim4bMKGVJEmSpOGzUiTGSR4GLAS2qarlwHeTnAvsDxw9\n0OCmyCRdkgbH/4NnVAFfT3IfcFJVnTzogCRJGm2lSIyBx9KsW7qqo2wxsPNgwpEkSa0dq+q6JBsA\nFya5sqq+3XlCkkOAQwA23XTTQcQoSRpyWRluEp7k2cBZVfXIjrL/Bby8qnYede4Dv3yBxwG/mKT5\n9WnWLE/HTLSxMsYyU+3Mplhmqp3ZFMtMtTObYpmpdoxlxbYzm2Lptp3Nqmr+DDzXSinJccDyqnrP\nBOcsBa7pW1CSpJVdV7+bV5YR4+XA2qPK1qHZBfNB2ilcXU/jSrJoujtozkQbK2MsM9XObIplptqZ\nTbHMVDuzKZaZasdYVmw7symWmWxnmLRLnVapqmXt97sDb53oGj9YkCQNwsqSGF8FzEvymKr6ZVu2\nLdD1xluSJGnGbQh8MQk0f3N8tqq+NtiQJEn6SytFYlxVtyU5B3hrklcDTwJeBDxzsJFJkjS8qupq\nmg+qJUma1VYZdAAz6P8ADwVuBD4L/O9ebtU0gZnYPXOmduBc2WKZqXZmUywz1c5simWm2plNscxU\nO8ayYtuZTbHMZDuSJGmWWSk235IkSZIkaapWphFjSZIkSZJ6ZmIsSZIkSRpqJsYTSLJvkp8nuS3J\nr9v7JXd77fJRx31JPjTFOBYkOT/JLUluSPLhJD1tnJZkqyTfTPKnJL9KsneX1x2WZFGSu5KcNqpu\nlyRXJrk9yUVJNuuljSQPSfKFJEuSVJKdpxJLkqcnuTDJH5IsTXJWko2m0M7j2/Jb2uPrSR7f6/vS\ncc6b29e16xRiWdBe29mHjum1nbbur5J8NMlN7c//2z3G8vJRcdzexrb9FGJ5aftvalmSnyXZa4qv\n6dVtP16e5GtJ/nqcNlZPckqSa9rn/EmSF3TUT9qHJ2qjlz48STtd9+FJ2umqD0/2vnScN2EfniSW\nrvtwFz+nSfvwJLF03Ye7iKXrPixJkuYOE+NxJNkNOAF4FbAWsBNwdbfXV9WaIwfwSOAO4KwphvNR\nYCmwEbAd8Byazca6kiaJPhf4KrAecAjw6SSP7eLy3wFvB04d1eb6wDnAMW2bi4DP99JG67vAK4Ab\nphoLsC7NpjgLgM1o7l/9ySm08zvgZcD67fFl4HM9tgFAki2AvweunyCOSdsBHt7Rl942xXZOpvkZ\nbdV+fX0vbVTVZ0b15/9D82/hx720k2Rj4NPAETT3Hf9n4LNJNuixnZ2BdwAvbl/Pb4Azx2ljHnAt\nzb+ZdYA3Af/RJm3d9uFx22jru+3DE7XTSx+eqJ1u+/Bkr6nbPjxpO3TXhydrp5s+PG4bPfbhifpM\nr31YkiTNFVXlMcYB/Ddw8Ay1dQDNH2GZ4vU/B17Y8fjdwEk9XL8NsLzz+YELgLf10MbbgdM6Hh8C\n/HfH44fRJP9bdtvGqLrfAjtPJZYx6p8MLJtOOzR/HP8jcPtU2gC+BrwQWALsOoX3dwFQwLwe+8ro\ndrYEbgXWnmobY9RfBBw7hVieBtw46pylwDN6bOc9wEc7Hv91+15t0eXruwxYOJU+PLqNqfbhidrp\npQ9PEk9XfXi8Nnrtw2O8v1Pqw2O003Mf7uL97aoPjxHLlPqwh4eHh4eHx+w/HDEeQ5JVgR2A+Wmm\na/42zfTlh06xyQOAT1XVVLcAfz/wsnY64cbAC2j+aJ2O0CTMU7U1sHjkQVXdBvyqLR+0nYAp36or\nyR+BO4EP0YxM9nr93wN3VdX5U42hwzVt//tkO8LZq6cC1wBvaaehXp5k4VSDSTPVeCfgU1O4fBHw\n8yR7Jlm1nYJ6F03SMR1pv07an5NsCDyWpn9MqQ+PamPKJmmn6z48Vju99uHRbUy1D4/zmnruw6Pa\nmVIfHu/97bUPj2pnRfVhSZI0YCbGY9sQWA14CfBsmunLT6KZUteT9o+w5wCnTyOeb9P80X8rzajU\nIuBLPVz/C5r7O/9zktWS7N7G9FfTiGlN4E+jym6lmXY+MEmeCLyZZorjlFTVw2mmUB4GXNrj869F\nk4gcPtXnb90EPIVmWu32NO/rZ6bQziY0fedPNCOrhwGnJ9lqinG9EvhOVf2m1wur6j6aZORMmmTi\ns8ChbULai68Bf5/kie2HVW+mGZmcsD8nWY3mPTy9qq5kCn14jDamZKJ2eunD47XTSx8e3cZU+/AY\nsUypD4/RTs99eJKfU9d9eHQ7M9iHJUnSLGNiPLY72q8fqqrrq+om4L000wp7tT/w3akkEgBJVqFJ\nBM6hmeq5Ps16xBO6baOq7gH2AvagWQd5JPAfNEn2VC2nWWPXaR2atZEDkeTRwH8Ch1fVd6bTVvuH\n7seBT/W4fvA44IyqWjLN519eVYuq6t6q+j1NMrB7m7T04g7gHuDtVXV3VX2LZhrp7lMM7ZVM8UOe\nNBs4vQvYGXgIzYczn0iyXS/tVNXXad7ns2mm+S6h6Xfj9uf239EZwN007yX02IfHaaNnE7XTSx+e\nLJ5u+vA4bRxHj314rHam0ofHiaenPtzFz6mrPjxWOzPVhyVJ0uxjYjyGqrqF5o/szqnPU50GPeVE\norUesCnw4aq6q6puptmUp6ckvaouq6rnVNUjqup5wObA/5tGXFcA2448SPIwYAumOb10qtqR+a/T\nrJs+Y4aaXYVmFHLjHq7ZBfi/aXYPvwF4FM3GPW+YZiwj/a/Xf7NjTfGcUl9O8iyaEbsvTOV6mpkX\n326Tpfur6kfAD4Fxd+0eT1V9pKoeU1Ub0iTI84CfjhN3gFNoZoIsbD8ogh768ARt9GSidnrpwz3E\nM24fnqCNnvpwD7FM2IcnaKfrPjxZLN324QnambE+LEmSZhcT4/F9Enhtkg2SrEuzC+pXe2kgyTNp\n/iCd6m7UtKPVvwFek2RekofTrFnuaU1bO+10jXad8j/R7HB9WhfXzUuyBrAqsGrbxjzgi8A2SRa2\n9ccCi8eaXjpBGyO3RlmjPfUhbV1GtzFRO2nWXX+T5sODj0/1NSXZLcmT2rWDa9PMEriFZvOzbl/T\nLjTTPrdrj98BhwIf6TGWpyV5XJJVkjwC+CBwcVWNnvo7WTzfBv4H+Jf2nGcBzwX+q4c2RhwAnF1V\nE84KmKCdHwE7joyuJXkSzVKFMfvyBO/NGkm2SWNTmh2LP9B+oDWWj9HsZrxnVd3RUd51H56gjZ76\n8Hjt9NqHJ2in6z48wWvqqQ9PEEtPfXiCeLruwxO0MaKrPjxBOz31YUmSNIcMevev2XrQrDH+KPBH\nmunHHwTW6LGNk2imJE43lu2Ai2n+wL2JZhr0hj228e72+uU0UzUf3eV1x9GMznQex7V1uwJX0kx1\nvBhYMIU2loxR11M7NAlNta/tgaPX10Rza5or2+uXAucBT+z1NY06bwkT7Og7QSz70XwgchvN7XI+\nBTxyij+nrYHvt239DNh7Cm2sQfNvYZdp9pnDaDa4WkazU/uRU3hvHk6TiNxG82/zncCq47SxWXvd\nnaP6x8u77cNdtLFkjDh7aoce+vAk7XTVhyd7Td324Uli6boPd/EeT9qHu2ijqz7cRTtd92EPDw8P\nDw+PuXOkaqozhCVJkiRJmvucSi1JkiRJGmomxpIkSZKkoWZiLEmSJEkaaibGkiRJkqShZmIsSZIk\nSRpqJsaSJEmSpKFmYixJkiRJGmomxtKQSvLkJPcl+d6gY5EkSZIGycRYGl6vBj4KbJNkq0EHI0mS\nJA2KibE0hJI8FPgH4GTgC8DBo+qfluTHSe5MckmS5yepJDt3nPP4JOclWZbkxiRnJnlkX1+IJEmS\nNANMjKXh9BLgmqq6HDgDeGWS1QCSrAl8FbgS2B44GnhP58VJNgK+DfwUeCqwK7AmcG4S/1+RJEnS\nnOIfsNJwOpgmIQb4FnA78OL28cuBVYGDq+qKqroQeMeo6/83sLiq3lBVP6+qy4BX0iTJO6zw6CVJ\nkqQZZGIsDZkkjwZ2BD4LUFUFfIY/T6fekv/fzh27aHHEcRz+TLBJEdKIkkIIWsZOEERIZSdil/YQ\n/RMEiZXWadLYeKUQDClSBMHO2kabs7VQkAS0E6JI3BT7Hhx6QuDy3pHs88CwsLM7/Lb8Mju/2pqm\n6c8drz38YJlT1bdjjNfbo3q+mjuxtuIBAGANDh10AcC+u9K8I/xsjLF9b1SNMY79wzU+q+5VV3eZ\n+2OvBQIAwH4SjGFBxhiHqo3q++ZzxDvdqS41ny3eGGN8vmPX+PQHzz6qvms+p/xujSUDAMDa+ZUa\nluV8dbjanKZpa+eo7jYH45+qv6rNVefpc9X11fvT6nqr+rL6edXB+vgY49wY4/YY44v9/SQAANgb\nwRiW5XL1YJqmV7vM/VJ9XZ2pLlTfVI+rH6obq2feVE3T9KI6W72v7ldPmsPy29UAAID/jDH33QH4\ntDHGxerX6sg0TS8Puh4AAPg3OWMMfGSMsVE9be40fbL6sfpNKAYA4P9IMAZ2c7S6WX1V/d7cgfra\ngVYEAABr4ldqAAAAFk3zLQAAABZNMAYAAGDRBGMAAAAWTTAGAABg0QRjAAAAFk0wBgAAYNH+BtSt\nBopG0xC5AAAAAElFTkSuQmCC\n",
253 | "text/plain": [
254 | ""
255 | ]
256 | },
257 | "metadata": {},
258 | "output_type": "display_data"
259 | }
260 | ],
261 | "source": [
262 | "#barplot\n",
263 | "plt.figure(figsize=(FIG_WIDTH,5))\n",
264 | "plt.suptitle('Age Distribution (Train)',fontsize=FS_TITLE)\n",
265 | "plt.subplot(1,2,1)\n",
266 | "train_age_vc.plot(kind='bar')\n",
267 | "plt.xticks(rotation='horizontal',fontsize=FS_TICKS)\n",
268 | "plt.yticks(fontsize=FS_TICKS)\n",
269 | "plt.xlabel('Age', fontsize=FS_AXIS_LABEL)\n",
270 | "plt.ylabel('Frequency', fontsize=FS_AXIS_LABEL)\n",
271 | "#boxplot\n",
272 | "plt.subplot(1,2,2)\n",
273 | "bp_dict=plt.boxplot(df_train_e['age'])\n",
274 | "plt.xticks([0],[''],fontsize=FS_TICKS)\n",
275 | "plt.ylabel('Age', fontsize=FS_AXIS_LABEL)\n",
276 | "for line in bp_dict['medians']:\n",
277 | " # get position data for median line (2nd quartile line)\n",
278 | " x, y = line.get_xydata()[1] # terminal point of median line\n",
279 | " plt.text(x, y, '{:.0f}'.format(y), horizontalalignment='left') \n",
280 | "\n",
281 | "for line in bp_dict['boxes']:\n",
282 | " # get position data for 1st quartile line\n",
283 | " x, y = line.get_xydata()[0] \n",
284 | " plt.text(x,y, '{:.0f}'.format(y), horizontalalignment='right', verticalalignment='top') \n",
285 | " # get position data for 3rd quartile line\n",
286 | " x, y = line.get_xydata()[3] \n",
287 | " plt.text(x,y, '{:.0f}'.format(y), horizontalalignment='right', verticalalignment='top')\n",
288 | "plt.show()"
289 | ]
290 | },
291 | {
292 | "cell_type": "code",
293 | "execution_count": 66,
294 | "metadata": {
295 | "collapsed": true
296 | },
297 | "outputs": [],
298 | "source": [
299 | "test_age_vc=df_test_e['age'].value_counts().sort_index()"
300 | ]
301 | },
302 | {
303 | "cell_type": "code",
304 | "execution_count": 174,
305 | "metadata": {},
306 | "outputs": [
307 | {
308 | "data": {
309 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA74AAAFoCAYAAABwhicaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm4XFWZ7/HvjwSlmwBKE2hGIzSCQAs2adQWGQQRwQHh\nqnAVRbBj9229KvRFbAfQtlu8ikg7R1FQFJEWFCWioDjgSEAiMooYL5MQECEBAQPv/WPvYFGck5w6\np85U+X6eZz+n9lprr3or5xTFW2vYqSokSZIkSRpUa0x2AJIkSZIkjScTX0mSJEnSQDPxlSRJkiQN\nNBNfSZIkSdJAM/GVJEmSJA00E19JkiRJ0kAz8ZUkDbwkhyWpJHMm6PkqyXFDPP+uE/T8c9rnO2wi\nnm+YGNZKckOS/z1ZMaxKknWS/D7JqyY7FknS+DLxlSStUpID20Tq9iRrTnIsK5LIFcd9SW5J8u0k\nRydZv4/PdUCSd/Srv35r/y2mamL5OuAxwCfh4S8DRnIc1+9Akuyd5Lgkf9lZXlVLgQ8Dx07237Uk\naXylqiY7BknSFJfkbGBH4InAi6rqnEmM5TDgM8C/A9cCM4HZwK7A/sAdwP+oqh90XDMDWBO4v3r4\n4EtyCvCKqprZY4xrAcuranlXzM+qqot66WsVz/NdYLOq+puu8gCPBf5UVQ/26/l6iGsGcAPw2ao6\npi17RVezecAzge7R1l9U1S/6HM/xwJuB2VV1e1fdJm2sr6yqz/fzeSVJU0dPH+SSpNVPO4K6H3Ak\n8GrgUGDSEt8O3+pKIt+X5O+AbwJfSbJdVd0K0CZ/45oAJlkDeExV3VdV943nc61Km9xPZgz7ARsD\nX1xRUFWndTZIsjfwD93lE62qbk7yA5q/bRNfSRpQTnWWJK3Ky2g+L74EfAF4QZLHdTdK463tus4/\nJvlJkmcm+W47MtnZds227dVJ7k/yuyTzxzpNuaouBd4ErE8z1XbF8z1qjW+SLZOcnuSmjhgWJPnb\ntv67NKORMzqn4rZ1K9bQvi3Ja5NcDdwP7NvWDzdl97FJTkxya5J72ufrHq09Jcni7gu7X0PbZndg\nq474FnfFd1hXH9sn+WqSPyS5t/0dPb+rzR7ttYcmOSrJb9vp5D9pv1gYiRcDt1XVZSNsP6Qk/zPJ\nxW2sdyU5J8mTu9psnORTSf5f+3u8rZ32/sy2/os0o70ASzr+rf66o5tvAnsO9XctSRoMjvhKklbl\nUOCCqlrSJhHvA15Cu3azw38AbwHOpxkR/hvga8DvgRtXNGqn4X4ZeA5wMvALYEvg9cAuSZ4+xhHT\nM9rYngu8fagG7XrObwFrAx9r49uIJpHcBri8fT1rMPR03BUOBtYDPtG+zsWriO0EYDnwHprp2W8A\nvpvkKVX1+xG9uj97Y9vP44F/bcuWDdc4yZOAHwF/Aj4I3A0cBpyT5GVVdWbXJW+gmS79XzT/v/B/\ngLOT/E1V/WkVsT0TuKSnV/PoeN9GM539v2mmia8L/AvwoyR/V1W/aZt+BXgS8BHgemAD4Bk0U/N/\nSLOGd23g+cA/8+d/oz90PN3F/Pl3fe5Y4pYkTU0mvpKkYbWjkc+gSX5XTAv9bnv+yY52G9IkX98C\nnldVD7XllwOfoiPxpUkWXwDsU1Xnd/TxHZqRt0f03auq+lOSa2kS7+FsB2wFvLQr4XtPRz/nJ3k5\nK5+OuyXwpKq6cZj6bmsBT62qP8LDo8rfokkq3zLCPlbE95UkbwTWHOF04f+kSQB3rKor2uf/JLAI\n+GCSs1esSW6tD2zfEes1wNnAPqwkOUwyE9ia5guQUUmyFfBO4B1V9e8d5Z8DrgLeBhyRZCNgF+B/\nV9WHhuqrqi5qR7WfD/x39xrf1vXtz+0w8ZWkgeRUZ0nSyrwCuJdmVG2FLwC75pG3BtqbZvOoj6xI\nelun8siRNWimTl8P/DzJBisO4FLgLuDZfYh7KbDOSurvan/um2TWGJ7nnB6SXoBPrEgkoUmugStp\nkrJxk2azqX2BBSuS3vb5l9KMeG8CdE9jPqUzVuB77c8tV/F06wMB7hxDyC9p+zij62/kfprR2RV/\nI/fQjKDvNcZp8itG2zcYQx+SpCnMxFeStDKvAC4C/jrJ37QjwIuAh9q6FZ7Q/vxV58XtCOJveKQn\n0SRPS4Y41gM27EPc69Akv0OqqsXA/wUOB+5o1yG/OclmPT7Pr3tsf80wZU/ssZ9ezaYZ7b16iLor\n25/dMfy286SqViSyI00wM+LoHu1J7fXX8Oi/kWfT/o1U1TLgGJovDm5N8qMkx3avmx7nWCVJ04BT\nnSVJQ0ryDzTTgbeiK6FtHQq8exRdr0GTgL1+mPqxjBSS5DE0idPlK2tXVW9O8mnghTQj1u8E3p7k\nRVX17RE+3R9X3aRnw91uacY4PNfKDLcL9qqSxDtoXsPjx/Dca7R9PG+YOB4uq6oTknyZ5ve4F820\n8X9LcmhVfWmEz7ci1qGmQUuSBoCJryRpOIfSbAT06iHqdgTelmSXqvoZfx4d3JpmDSbw8HrPJ9KM\nEq9wHfA04Dtd06L75aU0a2nPW1XDqrqGZrOu9yXZHPg5zfrRFYlvv292vw2wYIiyzlHxO4Ghdhee\nM0TZSONbQjMteNsh6lbsktw9Mj8qVfVgkl/RfGEyWtfRJNi/qaprR/Cci2k24fqvJH8F/Izmi4wV\nie+q/p1WxHrlSltJkqYtpzpLkh6lHTV9KXBeVf139wG8l2a95aHtJRfQrLX8lzT3s13hVTw6ifsi\nzVrKNw7xvDPGslazvd3OiTRrNj+yknbrtkn5w6rqBpoEsTPee2huZzSWdcCd5iX5i444nsOjN1S6\nDlgvyVM72s1i6J2l72HoJPkR2vsYfwN4XuftgNp+/xm4mWaNdb/8EJg7huvPpJlO/86uvycAksxu\nf66dZK3Ouqq6A7iBR/8eYfh/q7+nSY5/OIaYJUlTmCO+kqSh7E+zlvOcoSqralm7C/PBSY6sqtuS\nnEBzv9TzknyVZlflV9Gsg+0ccfs8cBBwQpJn0WyatJxm1O0g4B3AKSOIcZ92g60ZNGtYd6VZ63kH\ncGBV3bqSa58NfCzJfwPX0tzi5/k0I6Jv7mi34pY8H0pyAfBgVX1xBLEN537gB+3uxBvS3DLoFppR\n5xVOB46nuXXQSTSbhh0O3Aps3tXfJcD+Sd7fPl5WVV8b5rnfSrMj8/eTfJg/387oicDLunZ0Hquv\nAK9OsnNV9Xxbo6q6pr2d0X8CWyY5m+bLjCcA+wE/Bf4J+Fvg3Pb3eBXNRmx70tyW6sSOLlfE8H/b\nvv4EfKXjtln7AN+tqu6N2CRJA8LEV5I0lENp1lGu7NYuX6VZg7kvzf16/41mZO21wLNopje/ADgJ\nePi+vFVVSf4HzRrfw9rrH6CZLn0G8J0RxrjiHr0P0OwcfUUbw8ntqN/KLAK+TnOv38NpEu9rgcOr\n6jMd7U4Dng4cSJPEh2bEerSOovk3eSswC/g+8PrOeKvqziQvoknc3gvcBHyAZrOuz3T19wGaZP2I\ntu/f0vwuHqWqrm3Xbb8HOBJ4DM2/wwur6utjeE1DWUCT0B/MKO/nW1XvSXIV8Caa3+tMmtti/YDm\n/s/Q7A5+Os0XGf+zo+wNPHLE/zyaLxcOBQ6g+T1uDPwuySY0f6/D3atZkjQAUtXv5UuSJDXa2+jc\nBpxVVf842fFo4iT5V+Bo4Aldt0WaUpK8kybpfVJVPTDZ8UiSxodrfCVJfdG91rL1apop0yMdxdXg\n+DDN1O4p+4VHu8b59cCxJr2SNNgc8ZUk9UWSV9Csu/w6zdTjv6eZynw5sIuJhSRJmiyu8ZUk9csv\nadb4Hkmze+4dNGsx/82kV5IkTSZHfCVJkiRJA801vpIkSZKkgWbiK0mSJEkaaCa+kiRJkqSBZuIr\nSZIkSRpoJr6SJEmSpIFm4itJkiRJGmgmvpIkSZKkgWbiK0mSJEkaaCa+kiRJkqSBZuIrSZIkSRpo\nJr6SJEmSpIFm4itJkiRJGmgmvpIkSZKkgWbiK0mSJEkaaCa+kiRJkqSBZuIrSZIkSRpoJr6SJEmS\npIE2c7IDGE8bbLBBzZkzZ7LDkCQNiEsuueT2qpo92XFMZ342S5L6aaSfzQOd+M6ZM4eFCxdOdhiS\npAGR5LeTHcN052ezJKmfRvrZ7FRnSZIkSdJAM/GVJEmSJA00E19JkiRJ0kAz8ZUkSZIkDTQTX0mS\nJEnSQDPxlSRJkiQNNBNfSZIkSdJAM/GVJEmSJA00E19JkiRJ0kAz8ZUkSZIkDbSZkx2AJEmSNIiS\nTNpzV9WkPbc0FZn4SuNkzjHnrrLN4uP3n4BIJEnSZBhL8pnE5FXqI6c6S5IkSZIGmiO+kiStppJs\nDnwW2AgoYH5VnZTkDGCbttnjgD9U1U5DXL8YWAo8CCyvqrkTErgkST0y8ZUkafW1HDiqqi5Nsg5w\nSZLzq+plKxokOQG4ayV97FlVt493oJIkjYWJryRJq6mqugW4pX28NMlVwKbAlQBpduZ5KfDsSQtS\nkqQ+cI2vJEkiyRzgqcBPO4qfBdxaVb8a5rICLkhySZJ54xuhJEmj54ivJEmruSSzgC8Db6yquzuq\nDgFOX8mlu1bVTUk2BM5PcnVVfX+I/ucB8wC22GKLPkYuSdLIOOIrSdJqLMmaNEnv56vqrI7ymcCB\nwBnDXVtVN7U/bwPOBnYZpt38qppbVXNnz57dz/AlSRoRE19JklZT7Rrek4GrquoDXdV7A1dX1Y3D\nXLt2uyEWSdYG9gF+OZ7xSpI0Wia+kiStvp4JHAo8O8ll7bFfW3cwXdOck2ySZEF7uhFwUZJFwM+A\nc6vqvIkKXJKkXrjGV5Kk1VRVXQRkmLrDhii7GdivfXw9sON4xidJUr844itJkiRJGmgmvpIkSZKk\ngWbiK0mSJEkaaCa+kiRJkqSBZuIrSZIkSRpoJr6SJEmSpIFm4itJkiRJGmgmvpIkSZKkgTahiW+S\n7ya5L8my9rimo26vJFcnuTfJhUme0FGXJO9Nckd7vDdJJjJ2SZIkSdL0NBkjvq+rqlntsQ1Akg2A\ns4C3A+sDC4EzOq6ZBxwA7Ag8BXgB8NoJjVqSJEmSNC1NlanOBwJXVNWZVXUfcBywY5Jt2/pXASdU\n1Y1VdRPwfuCwSYlUkiRJkjStTEbi+54ktyf5YZI92rLtgUUrGlTVPcB1bfmj6tvH2yNJkiRJ0ipM\ndOL7ZmBLYFNgPvC1JFsBs4C7utreDazTPu6uvxuYNdQ63yTzkixMsnDJkiX9jl+SJEmSNM1MaOJb\nVT+tqqVVdX9VnQr8ENgPWAas29V8PWBp+7i7fj1gWVXVEM8xv6rmVtXc2bNn9/9FSJIkSZKmlcle\n41tAgCtoNq4CIMnawFZtOd317eMrkCRJkiRpFSYs8U3yuCTPTbJWkplJXg7sBpwHnA3skOSgJGsB\nxwKLqurq9vLPAkcm2TTJpsBRwCkTFbskSZIkafqaOYHPtSbwbmBb4EHgauCAqroWIMlBwIeB04Cf\nAgd3XPsJmrXBl7fnn2rLJEmSJElaqQlLfKtqCfD3K6m/gCYpHqqugKPbQ5IkSZKkEZvsNb6SJEmS\nJI0rE19JkiRJ0kAz8ZUkSZIkDTQTX0mSJEnSQDPxlSRpNZVk8yQXJrkyyRVJ3tCWH5fkpiSXtcd+\nw1y/b5JrklyX5JiJjV6SpJGbyNsZSZKkqWU5cFRVXZpkHeCSJOe3dSdW1fuHuzDJDOAjwHOAG4GL\nk5xTVVeOe9SSJPXIEV9JklZTVXVLVV3aPl4KXAVsOsLLdwGuq6rrq+oB4IvAi8YnUkmSxsbEV5Ik\nkWQO8FTgp23R65P8Ismnkzx+iEs2BW7oOL+RYZLmJPOSLEyycMmSJX2MWpKkkTHxlSRpNZdkFvBl\n4I1VdTfwMWBLYCfgFuCEsfRfVfOram5VzZ09e/aY45UkqVcmvpIkrcaSrEmT9H6+qs4CqKpbq+rB\nqnoI+CTNtOZuNwGbd5xv1pZJkjTlmPhKkrSaShLgZOCqqvpAR/nGHc1eDPxyiMsvBrZO8sQkjwEO\nBs4Zz3glSRotd3WWJGn19UzgUODyJJe1Zf8GHJJkJ6CAxcBrAZJsAnyqqvarquVJXgd8E5gBfLqq\nrpjoFyBJ0kiY+EqStJqqqouADFG1YJj2NwP7dZwvGK6tJElTiVOdJUmSJEkDzcRXkiRJkjTQTHwl\nSZIkSQPNxFeSJEmSNNBMfCVJkiRJA83EV5IkSZI00Ex8JUmSJEkDzcRXkiRJkjTQTHwlSZIkSQPN\nxFeSJEmSNNBMfCVJkiRJA83EV5IkSZI00Ex8JUmSJEkDzcRXkiRJkjTQZk52AJJWbc4x566yzeLj\n95+ASCRJkqTpxxFfSZIkSdJAM/GVJEmSJA00E19JkiRJ0kAz8ZUkSZIkDTQTX0mSJEnSQDPxlSRJ\nkiQNNBNfSZIkSdJAM/GVJGk1lWTzJBcmuTLJFUne0Ja/L8nVSX6R5Owkjxvm+sVJLk9yWZKFExu9\nJEkjZ+IrSdLqazlwVFVtBzwd+Jck2wHnAztU1VOAa4G3rKSPPatqp6qaO/7hSpI0OpOS+CbZOsl9\nSU7rKNur/Xb53vbb5yd01CXJe5Pc0R7vTZLJiF2SpEFRVbdU1aXt46XAVcCmVfWtqlreNvsJsNlk\nxShJUj9M1ojvR4CLV5wk2QA4C3g7sD6wEDijo/084ABgR+ApwAuA105UsJIkDbokc4CnAj/tqjoc\n+MYwlxVwQZJLksxbSd/zkixMsnDJkiX9CFeSpJ5MeOKb5GDgD8C3O4oPBK6oqjOr6j7gOGDHJNu2\n9a8CTqiqG6vqJuD9wGETF7UkSYMrySzgy8Abq+rujvK30kyH/vwwl+5aVTsBz6OZJr3bUI2qan5V\nza2qubNnz+5z9JIkrdqEJr5J1gXeBRzZVbU9sGjFSVXdA1zXlj+qvn28PZIkaUySrEmT9H6+qs7q\nKD8MeD7w8qqqoa5tv4ymqm4DzgZ2GfeAJUkahYke8f134OSqurGrfBZwV1fZ3cA6w9TfDcwaap2v\n06kkSRqZ9nP0ZOCqqvpAR/m+wNHAC6vq3mGuXTvJOiseA/sAvxz/qCVJ6t2EJb5JdgL2Bk4conoZ\nsG5X2XrA0mHq1wOWDfUNtNOpJEkasWcChwLPbm9JdFmS/YAP03z5fH5b9nGAJJskWdBeuxFwUZJF\nwM+Ac6vqvEl4DZIkrdLMCXyuPYA5wP9rB2pnATPa2yZ8nGYdL/DwN8dbAVe0RVfQbGz1s/Z8x446\nSZI0ClV1ETDUXRIWDFFGVd0M7Nc+vp7m81iSpClvIqc6z6dJZndqj48D5wLPpVkXtEOSg5KsBRwL\nLKqqq9trPwscmWTTJJsCRwGnTGDskiRJkqRpasJGfNs1Qg+vE0qyDLivqpa05wfRTK06jeZWCgd3\nXP4JYEvg8vb8U22ZJEmSJEkrNZFTnR+hqo7rOr8A2HaYtkWzycbR4x+ZJEmSJGmQTPh9fCVJkiRJ\nmkgmvpIkSZKkgWbiK0mSJEkaaCa+kiRJkqSBZuIrSZIkSRpoJr6SJEmSpIFm4itJkiRJGmgmvpIk\nSZKkgWbiK0mSJEkaaCa+kiRJkqSBZuIrSZKk1cYNN9zAnnvuyXbbbcf222/PSSedBMCZZ57J9ttv\nzxprrMHChQsfbr/++uuTZMIPYFKed/3115+U34s03mZOdgCSJEnSRJk5cyYnnHACf/d3f8fSpUvZ\neeedec5znsMOO+zAWWedxWtf+9pHtL/zzjupqkmKduKtSLqlQWPiK0mSpNXGxhtvzMYbbwzAOuus\nw5Of/GRuuukmnvOc50xyZJLGU09TnZM490GSJEkDYfHixfz85z/naU972mSHImmc9brG9+YkX0zi\nV2KSJEmatpYtW8ZBBx3EBz/4QdZdd93JDkfSOOs18X1xe83XkixOcmySJ4xDXJIkSdK4+NOf/sRB\nBx3Ey1/+cg488MDJDkfSBOgp8a2qb1TVS4FNgBOBA4BfJ/lWkpclecx4BClJkiT1Q1VxxBFH8OQn\nP5kjjzxyssORNEFGdTujqvp9VZ1UVU8F3gjsBpxOMxX63Un+sp9BSpIkSf3wwx/+kM997nN85zvf\nYaeddmKnnXZiwYIFnH322Wy22Wb8+Mc/Zv/99+e5z33uZIcqqY9Gtatzkg2BVwKvBp4I/DdwMs1I\n8DHALsA+fYpRkiSNgySbA58FNgIKmF9VJ7WbWZ4BzAEWAy+tqjuHuH5f4CRgBvCpqjp+gkKXRm3X\nXXcd9vZEL37xiyc4GkkTpafEN8kLgcOB5wHXAJ8APtf5YZjkJ8BV/QxSkiSNi+XAUVV1aZJ1gEuS\nnA8cBny7qo5PcgzNl9pv7rwwyQzgI8BzgBuBi5OcU1VXTugrkCRpBHqd6vx54HZgt6p6SlX91xDf\nAN8MvLcv0UmSpHFTVbdU1aXt46U0X1xvCrwIOLVtdirNnh7ddgGuq6rrq+oB4IvtdZIkTTm9TnXe\nuKqWraxBVf0RePvoQ5IkSRMtyRzgqcBPgY2q6pa26nc0U6G7bQrc0HF+I+DNUCVJU1KvI777JHl+\nd2GSFyRxUYQkSdNQklnAl4E3VtXdnXXVLIYcekHkyPufl2RhkoVLliwZS1eSJI1KryO+7wLeNET5\nfcAHgLPHHJGk1dacY85dZZvFx+8/AZFIq48ka9IkvZ+vqrPa4luTbFxVtyTZGLhtiEtvAjbvON+s\nLXuUqpoPzAeYO3fumJJoSZJGo9cR362Aa4co/1VbJ0mSpokkobkrw1VV9YGOqnOAV7WPXwV8dYjL\nLwa2TvLEJI8BDm6vkyRpyuk18f0D8DdDlG8NLB17OJIkaQI9EzgUeHaSy9pjP+B44DlJfgXs3Z6T\nZJMkCwCqajnwOuCbNJtifamqrpiMFyFJ0qr0OtX5HODEJC+uql8DJPkb4AT8lleSpGmlqi4CMkz1\nXkO0vxnYr+N8AbBgfKKTJKl/eh3xPRq4F7g6yW+S/IbmW94/Av+n38FJkiRJkjRWPY34VtVdSZ4B\n7Avs1Bb/HPhmu+ujJEmSJElTSq9TnVfc1uAb7SFJkiRJ0pTWc+KbZGeadT8b0jVVuqqO7FNckiRJ\nkiT1RU+Jb5I30WxktRi4mUfe0N6pzpIkSZKkKafXEd83AUdW1QfHIxhJ6pc5x5w7onaLj99/nCOR\nJEnSZOt1V+f18LZFkiRJkqRppNfE90vAPuMRiCRJkiRJ46HXqc6/Bv49ydOBy4E/dVZW1X/1KzBJ\nkiRJkvqh18T3X4D7aHZ13qurrgATX0mSJliSucBWwNer6p4kawP3V9XySQ5NkqQpoaepzlW1+UqO\nLVZ1fZLTkvwuyd1Jrk3ymo66vZJcneTeJBcmeUJHXZK8N8kd7fHeJOntpUqSNFiSbJTkJ8DPgC8A\nG7VVH6C5C4MkSaL3Nb4PS/JXo0g+jwe2rKp1gRcC706yc5INgLOAtwPrAwuBMzqumwccAOwIPAV4\nAfDa0cYuSdKAOBG4Ffgr4N6O8jNxTw5Jkh7WU+KbZM0k/5nkDzQftE9sy9+T5J9WdX1V/bKqVnww\nV3tsBRwIXFFVZ1bVfcBxwI5Jtm3bvgo4oapurKqbgPcDh/USuyRJA2gv4K1VdWdX+a+BVc7EkqTh\nHH744Wy44YbssMMOD5dddtllPP3pT2ennXZi7ty5/OxnP5vECKXe9Dri+3bgIOAI4P6O8kuAV4+k\ngyQfTXIvcDVwC7AA2B5YtKJNVd0DXNeW013fPt4eSZJWb38BPDBE+WyaPTkkaVQOO+wwzjvvvEeU\nHX300Rx77LFcdtllvOtd7+Loo4+epOik3vWa+L4ceG1VfRl4qKP8cmCbkXRQVf8LWAd4Fs305vuB\nWcBdXU3vbtsxRP3dwKyhplonmZdkYZKFS5YsGUlIkiRNV9/nkTOgKskM4M3AtyclIkkDYbfddmP9\n9dd/RFkS7r77bgDuuusuNtlkk8kITRqVXnd13gRYPET5jF76qqoHgYuSvAL4Z2AZsG5Xs/WApe3j\n7vr1gGVVVUP0PR+YDzB37txH1UuSNECOBr6X5O+Bx9JsaLU9zefkMyczMEmD54Mf/CDPfe5z+dd/\n/VceeughfvSjH012SNKI9TrieyXNSG23lwA/H8Xzz6RZ43sFzcZVALS3YVhRTnd9+/gKJElajVXV\nlcDfAj8CvgWsRbOx1VOr6teTGZukwfOxj32ME088kRtuuIETTzyRI444YrJDkkas1xHfdwGnJNmE\nJmk+MMk2wCtpdloeVpINgWcDXwf+COwNHNIePwbel+Qg4FzgWGBRVV3dXv5Z4MgkC9rzo/CewZIk\nUVW/o/nclKRxdeqpp3LSSScB8JKXvITXvOY1q7hCmjp6Snyr6qtJXg68lWZ683/QjPQeUFXfWtXl\nNNOaP06TNP8WeGNVnQPQJr0fBk4Dfgoc3HHtJ4AtadYSA3yqLZMkabWVZLdhqopmc6tfV9XvJzAk\nSQNsk0024Xvf+x577LEH3/nOd9h6660nOyRpxHod8aWqFtDsxNzrdUuA3VdSfwGw7TB1RbOOya3j\nJEn6s+/SJLkAKzZ87Dx/KMk5wKHtHRMkaUQOOeQQvvvd73L77bez2Wab8c53vpNPfvKTvOENb2D5\n8uWstdZazJ8/f7LDlEas58RXkiRNGc+jubf9f9LMlgJ4GvAWmunPDwEnAscDr5+MAKXpro5dF45b\nb7LDmDB1bLOf7Omnnz5k/SWXXDKR4Uh901Pim+RO/vxN8qNU1frD1UmSpL57N82yoc5bF12fZAnw\n3qraOcmDwIcw8ZVGJe+8myFuJDKwklDHTXYUUv/1OuL7r13nawJPBQ4A3tOXiCRJ0kjtANw0RPlN\nwHbt48uBvx6ugySfBp4P3FZVO7RlZwDbtE0eB/yhqnYa4trFNLcefBBYXlVzR/cyJEkaX71ubnXy\nUOVJFrKS9buSJGlcXAm8Nclrqup+gCSPBf6trQPYHPjdSvo4hWZzyc+uKKiql614nOQE4K6VXL9n\nVd0+quglSZog/Vrj+23gA33qS5Ikjcz/Ar4G3JTkl23ZDjRre5/fnm8JfHS4Dqrq+0nmDFWXJMBL\naW5HKEmEioWuAAAdBElEQVTStNWvxPclwB196kuSJI1AVf00yROBV/DnqclfaI+nt20+O8zlI/Es\n4Naq+tVwIQAXtOuIP1FVbvEqSZqSet3c6uc8cnOr0Kwbmg28ro9xSZKkEWhvU/QJgCSbAq8GFgFz\ngBlj7P4QYOitXRu7VtVNSTYEzk9ydVV9v7tRknnAPIAttthijCFJktS7Xkd8v951/hCwBLiwqq7o\nT0iSJGmkkswAXgQcAewD/IImET5zjP3OBA4Edh6uTVXd1P68LcnZwC7AoxLfdiR4PsDcuXNXn+1x\nJUlTRq+bW719vAKRJEkjl2Qb4DXAK4F7aKY3Pxc4tKquXNm1I7Q3cHVV3TjM868NrFFVS9vH+wDv\n6sPzSpLUd2tMdgCSJKk3SX4A/AR4PPDSqtqyqt7GI5cjjbSv04EfA9skuTHJEW3VwXRNc06ySZIF\n7elGwEVJFgE/A86tqvNG94okSRpfva7x/RMj/FCtqseMKiJJkrQqzwA+Aswf61KjqjpkmPLDhii7\nGdivfXw9sONYnluSpInS6xrfo4B30Nw64cdt2TOAFwDH0az3lSRJ4+vvaaY5X5RkMc09eFe2CZUk\nSau1XhPfZwNvrapPdJTNT/JPwH5V9cL+hSZJkoZSVT8H/iXJUTS3FDwc+L80S5j2T3JLVd05mTFK\nkjSV9LrGd2/g20OUXwDsNfZwJEnSSFXVfVX1uaraE3gy8D7gTcDvknxjcqOTJGnq6DXxvYPm1gbd\nXgzcPvZwJEnSaFTVdVV1DLA58FLggUkOSZKkKaPXqc7HAZ9Ksjt/XuP7dGBf2hvTS5KkyVNVDwJf\nbQ9JkkTv9/H9TJJrgDfQfJsMcBWwe1X9sN/BSZIkSZI0Vr2O+FJVPwJ+NA6xSJIkSZLUdz0nvklm\nAy8HtgTeWVV3JHk6cEtV/bbfAUrqrznHnDuidouP33+cI5EkSZImRk+bWyV5KnANcATwT8B6bdXz\ngP/sb2iSJEmSJI1dr7s6nwB8tKr+Fri/o/w8YNe+RSVJkiRJUp/0mvjuDHxmiPKbgY3GHo4kSZIk\nSf3Va+J7H7DuEOXbAEvGHo4kSZIkSf3Va+L7NeAdSdZszyvJFsDxwFl9jUySJEmSpD7odVfno2jW\n894G/AXwPeCvgZ8Bb+1vaJKmOneIliRJ0nTQ04hvVd0F/APwMuBtwMeBFwLPqqpl/Q9PkiRJ6p/D\nDz+cDTfckB122OER5R/60IfYdttt2X777Tn66KMfUZdktTke//jHT+SvQ5owIx7xbac3fxc4vKq+\nBXxrvIKSJEmSxsNhhx3G6173Ol75ylc+XHbhhRfy1a9+lUWLFvHYxz6W22677eG6qpqMMEkyac8t\nDaIRj/hW1Z+ArYGHxi8cSZIkafzsttturL/++o8o+9jHPsYxxxzDYx/7WAA23HDDyQhN0jjqdXOr\nzwFHjEcgkiRJ0mS49tpr+cEPfsDTnvY0dt99dy6++OLJDklSn/W6udVjgNck2Ru4BLins7KqjuxX\nYJIkSdJEWL58Ob///e/5yU9+wsUXX8xLX/pSrr/+epJMdmiS+qTXxHcn4Bft4+266lyEIEmSpGln\ns80248ADDyQJu+yyC2ussQa33347s2fPnuzQJPXJiBLfJE8BfllVzxrneCRJkqQJdcABB3DhhRey\n5557cu211/LAAw+wwQYbTHZYkvpopGt8fw48/O5Pcm6SjccnJEmSJGl8HHLIITzjGc/gmmuuYbPN\nNuPkk0/m8MMP5/rrr2eHHXbg4IMP5tRTT3WaszRgRjrVufudvxvwF32ORZIkTbAknwaeD9xWVTu0\nZccB/wgsaZv9W1UtGOLafYGTgBnAp6rq+AkJWhqD008/fcjy0047bYIjkTSRet3VWZIkDZZTgH2H\nKD+xqnZqj6GS3hnAR4Dn0ez7cUiS7v0/JEmaEkaa+BaP3rzKzawkSZrmqur7wO9HcekuwHVVdX1V\nPQB8EXhRX4OTJKlPepnqfFqS+9vztYBPJrm3s1FVvbCfwUmSpEnz+iSvBBYCR1XVnV31mwI3dJzf\nCDxtooKTJKkXIx3xPRW4GbijPU6j+bC7o+uQJEnT38eALWluY3gLcMJYOksyL8nCJAuXLFmy6gsk\nSeqzEY34VtWrx/pESR4LfBTYG1gf+DXwlqr6Rlu/F81aoS2AnwKHVdVv27oAxwOvabv7FHBMVTnd\nWpKkPquqW1c8TvJJ4OtDNLsJ2LzjfLO2bKj+5gPzAebOnetntyRpwk3k5lYzaUaJdwfWA94GfCnJ\nnCQbAGcBb6dJihcCZ3RcOw84ANgReArwAuC1Exe6JEmrj65bFr4Y+OUQzS4Gtk7yxCSPAQ4GzpmI\n+CRJ6tVI1/iOWVXdAxzXUfT1JL8Bdgb+Criiqs6Eh2+jcHuSbavqauBVwAlVdWNb/36aZPjjExW/\nJEmDKMnpwB7ABkluBI4F9kiyE81Glotpv2xOsgnNbYv2q6rlSV4HfJPmdkafrqorJuElSJK0ShOW\n+HZLshHwJOAK4J+BRSvqquqeJNcB2wNXtz8XdVy+qC0bqt95NEkxW2yxxbjELknSoKiqQ4YoPnmY\ntjcD+3WcLwAedasjSZKmmkm5j2+SNYHPA6e2I7qzgLu6mt0NrNM+7q6/G5jVrv19hKqaX1Vzq2ru\n7Nmz+x+8JEmSJGlamfAR3yRrAJ8DHgBe1xYvA9btaroesHSY+vWAZW5uJWk6mnPMuatss/j4/Scg\nEkmSpNXDhI74tiO0JwMbAQdV1Z/aqitoNq5a0W5tYKu2/FH17WPXEUmSJEmSVmmipzp/DHgy8IKq\n+mNH+dnADkkOSrIWzcYai9pp0ACfBY5MsmmSTYGjgFMmMG5JkiRJ0jQ1YYlvkifQ7Aq5E/C7JMva\n4+VVtQQ4CPgP4E5gF5rbIqzwCeBrwOXt8fW2TJIkSZKklZrI2xn9FnjUZlQd9RcA2w5TV8DR7SFJ\nkiRJ0ohNyq7OkiRJkiRNFBNfSZIkSdJAM/GVJEmSJA00E19JkiRJ0kAz8ZUkSZIkDTQTX0mSJEnS\nQDPxlSRJkiQNNBNfSZIkSdJAM/GVJEmSJA00E19JkiRJ0kAz8ZUkSZIkDTQTX0mSJEnSQDPxlSRJ\nkiQNNBNfSZIkSdJAM/GVJEmSJA00E19JkiRJ0kAz8ZUkaTWW5NNJbkvyy46y9yW5Oskvkpyd5HHD\nXLs4yeVJLkuycOKiliSpNzMnOwBJmurmHHPuiNotPn7/cY5EGhenAB8GPttRdj7wlqpanuS9wFuA\nNw9z/Z5Vdfv4hihJ0tg44itJ0mqsqr4P/L6r7FtVtbw9/Qmw2YQHJklSH5n4SpKklTkc+MYwdQVc\nkOSSJPMmMCZJknriVGdJkjSkJG8FlgOfH6bJrlV1U5INgfOTXN2OIHf3Mw+YB7DFFluMW7ySJA3H\nEV9JkvQoSQ4Dng+8vKpqqDZVdVP78zbgbGCXYdrNr6q5VTV39uzZ4xSxJEnDc8RXarmBkSQ1kuwL\nHA3sXlX3DtNmbWCNqlraPt4HeNcEhilJ0og54itJ0mosyenAj4FtktyY5AiaXZ7XoZm+fFmSj7dt\nN0myoL10I+CiJIuAnwHnVtV5k/ASJElaJUd8JUlajVXVIUMUnzxM25uB/drH1wM7jmNokiT1jSO+\nkiRJkqSB5oivpjXX5UqSJElaFUd8JUmSJEkDzcRXkiRJkjTQTHwlSZIkSQPNxFeSJEmSNNBMfCVJ\nkiRJA83EV5IkSZI00Ex8JUmSJEkDzcRXkiRJkjTQTHwlSZIkSQPNxFeSJEmSNNAmNPFN8rokC5Pc\nn+SUrrq9klyd5N4kFyZ5Qkddkrw3yR3t8d4kmcjYJUmSJEnT00SP+N4MvBv4dGdhkg2As4C3A+sD\nC4EzOprMAw4AdgSeArwAeO0ExCtJkiRJmuYmNPGtqrOq6ivAHV1VBwJXVNWZVXUfcBywY5Jt2/pX\nASdU1Y1VdRPwfuCwCQpbkiRJkjSNTZU1vtsDi1acVNU9wHVt+aPq28fbI0mSJEnSKkyVxHcWcFdX\n2d3AOsPU3w3MGmqdb5J57TrihUuWLBmXYCVJkiRJ08dUSXyXAet2la0HLB2mfj1gWVVVd0dVNb+q\n5lbV3NmzZ49LsJIkSZKk6WOqJL5X0GxcBUCStYGt2vJH1bePr0CSJEmSpFWY6NsZzUyyFjADmJFk\nrSQzgbOBHZIc1NYfCyyqqqvbSz8LHJlk0ySbAkcBp0xk7JIkSZKk6WmiR3zfBvwROAZ4Rfv4bVW1\nBDgI+A/gTmAX4OCO6z4BfA24vD2+3pZJkiRJkrRSMyfyyarqOJpbFQ1VdwGw7TB1BRzdHpIkSZIk\njdhUWeMrSZImQZJPJ7ktyS87ytZPcn6SX7U/Hz/MtfsmuSbJdUmOmbioJUnqjYmvJEmrt1OAfbvK\njgG+XVVbA99uzx8hyQzgI8DzgO2AQ5JsN76hSpI0Oia+kiStxqrq+8Dvu4pfBJzaPj4VOGCIS3cB\nrquq66vqAeCL7XWSJE05Jr6SJKnbRlV1S/v4d8BGQ7TZFLih4/zGtkySpCnHxFeSJA2r3WCyxtJH\nknlJFiZZuGTJkj5FJknSyJn4SpKkbrcm2Rig/XnbEG1uAjbvON+sLXuUqppfVXOrau7s2bP7Hqwk\nSati4itJkrqdA7yqffwq4KtDtLkY2DrJE5M8Bji4vU6SpCnHxFeSpNVYktOBHwPbJLkxyRHA8cBz\nkvwK2Ls9J8kmSRYAVNVy4HXAN4GrgC9V1RWT8RokSVqVmZMdgCRJmjxVdcgwVXsN0fZmYL+O8wXA\ngnEKTZKkvjHxlaRpbM4x546o3eLj9x/nSCRJkqYupzpLkiRJkgaaia8kSZIkaaCZ+EqSJEmSBpqJ\nryRJkiRpoJn4SpIkSZIGmomvJEmSJGmgeTsjSZIkaRwkmbTrq2pMzy0NGhNfTbiR3HfUe45KkqTp\nzuRTmjqc6ixJkiRJGmgmvpIkSZKkgWbiK0mSJEkaaCa+kiRJkqSBZuIrSZIkSRpoJr6SJEmSpIFm\n4itJkiRJGmgmvpIkSdIUMWPGDJI8fMyYMWOyQ5IGgomvJEmSNAXMmDGDhx56iFmzZnHJJZcwa9Ys\nHnroIZNfqQ9mTnYAGh9zjjl3RO0WH7//OEciSZKkkViR9C5duhSApUuXss4667Bs2bJJjkya/hzx\nlSRJkqaI733veys9lzQ6Jr6SJEnSFLH77ruv9FzS6Jj4SpIkSVPAGmuswbJly1hnnXW49NJLH57m\nvMYa/i+7NFau8ZUkTXnuWzDxkmwDnNFRtCXwjqr6YEebPYCvAr9pi86qqndNWJDSgHnwwQeZMWMG\ny5YtY+eddwaaZPjBBx+c5Mik6c/EV5IkPUpVXQPsBJBkBnATcPYQTX9QVc+fyNikQWaSK40P501I\nkqRV2Qv4dVX9drIDkSRpNEx8JUnSqhwMnD5M3T8k+UWSbyTZfiKDkiRppEx8JUnSsJI8BnghcOYQ\n1ZcCW1TVU4APAV8Zpo95SRYmWbhkyZLxC1aSpGGsdmt8p/IGKSOJbarGBW4qI013/X6v+9+0gfE8\n4NKqurW7oqru7ni8IMlHk2xQVbd3tZsPzAeYO3dujXfAkiR1mzaJb5L1gZOBfYDbgbdU1RcmMyb/\n50mStBo4hGGmOSf5a+DWqqoku9DMJLtjIoOTJGkkpk3iC3wEeADYiGaXyXOTLKqqKyY3LEmSBlOS\ntYHnAK/tKPsngKr6OPA/gH9Oshz4I3BwVTmiK0macqZF4tt+8B4E7FBVy4CLknwVOBQ4ZlKDkyRp\nQFXVPcBfdZV9vOPxh4EPT3RckiT1arpsbvUkYHlVXdtRtghw90hJkiRJ0kplOsxISvIs4Myq+uuO\nsn8EXl5Ve3S1nQfMa0+3Aa4ZwVNsQLNuuB+mal/97m+q9tXv/qZqX/3ub6r21e/+pmpf/e5vqvbV\n7/4mo68nVNXsPj3nainJEsD7AUuS+mVEn83TYqozsAxYt6tsPWBpd8POnSNHKsnCqpo7+vCmfl/9\n7m+q9tXv/qZqX/3ub6r21e/+pmpf/e5vqvbV7/6mal9aOb84kCRNhuky1flaYGaSrTvKdgTc2EqS\nJEmStFLTIvFtN9c4C3hXkrWT7Aq8EPjc5EYmSZIkSZrqpkXi2/pfwF8AtwFfAP65j7cy6mlq9DTt\nq9/9TdW++t3fVO2r3/1N1b763d9U7avf/U3Vvvrd31TtS5IkTTHTYnMrSZIkSZJGazqN+EqSJEmS\n1DMTX0mSJEnSQFutE98kc5IsSHJnkt8l+XCSUd3iKcmTk3wnyV1Jrkvy4h6ufV2ShUnuT3JKV91e\nSa5Ocm+SC5M8YTR9JXlMkv9OsjhJJdljLLEleXqS85P8PsmSJGcm2XiUfW3Xlt/ZHhck2W40fXW1\neUf7Wvcew+uc0/axrON4+2hjS/KXST6a5Pb2b+X7o4zr5V0x3dvGufMYYntpkquSLE1yZZIDxtDX\na9r3wbIk5yXZZBV9PTbJyUl+2z7/ZUme11E/4vfByvoazftgFf319D5YRV89vQ9W9W/W0W5E74NV\nxNbT+2AEv88Rvw9WEVdP74MRxNXTe0CSJE0fq3XiC3wUWAJsDOwE7E6ziVZP0iTLXwW+DqwPzANO\nS/KkEXZxM/Bu4NNd/W5As5v129t+FwJnjKav1kXAK4DfjTCulfX3eJrNYOYAT6C5p/JnRtnXzcDL\ngA3a4xzgi6PsC4AkWwEvAW5ZRT8j6g94XFXNao9/H0Nf82l+l09uf75pNH1V1ec74plF83d7PXDp\naPpLsilwGnAkzT2z/w/whSQbjqKvPYD/BF5E8xp/A5y+irhmAjfQvAfXA94GfKlNuHp9HwzbV1vf\n6/tgZf31+j5YWV+9vg9W9Tp7fR+ssj9G/j5YVV+9vA+G7WsU74OV/Z2N5j0gSZKmi6pabQ/gKmC/\njvP3AZ8YRT87AMtoNwtry74F/HuP/bwbOKXjfB7wo47ztYE/Atv22ldX3Y3AHmOJbYj6vwOWjrUv\nmv8x/Rfg3rH0BZwH7AcsBvYew+9gDlDAzFH8XXT3tS1wN7DuWPsaov5C4NgxxPY04LauNkuAZ4yi\nr/cDH+0436T9N9yqx9f8C+CgsbwPuvvqKuv5fbCy/tryEb8PVhFbT++D4foa7ftgiN/BqN8HQ/Q1\n6vfBCP79e3ofdMU16veAh4eHh4eHx9Q/VvcR3w8CL2un3W0KPI/mfxT7ITQJ8VhsDyxacVLN/Yyv\na8unmt2AMd1eKskfgPuAD9GMGI62n5cA91fVgrHE0+W3SW5M8pl2BHI0dgF+C7yzneJ5eZKDxhpY\nmmm/u/H/27v/UL3qOoDj7892J1ttOVCaUpro+mGOpa2UmJWxtSIZFmVQwkZMsGDkHxrL/qgFUZQR\nFa1EC9qGsx+aRY2MpOYkwlyKtuX6p5aBaExMnW1zzU9/fM+ty8Nzn+c559y7u537fsGXy33Ocz58\nzvM8n8v53PM93we2tQizB3gsItZGxNxqiudRSlPQOsXq58j1EBFLgNdRPlOt6qAnVmtD4tWqg36x\nmtZBb6y2dTDJcTaqg55Yrepgste/SR30xJrOGpAkSTNstje+uykn489Rrv7sAX7aIM5fKN8v/KmI\nmBcRayhT6V7WMr+FwLM9jz0HLGoZd0pFxHLgs5SpgY1l5mLK9MONwMMNc1lEaRaub5PLBAeBt1Km\nsa6gvPa3N4z1asrn7VnKVdCNwNaIuLBljuuA+zPzb00DZOZxSsNwB+VkfwdwXdVk1nUPcHVELI+I\nBZTPRjJiPUTEPMprvDUz99OiDvrEamVQvLp1MFmsJnXQG6ttHfTJrXEd9InVuA6GvJ+16qA31hTX\ngCRJOsnM2sY3IuZQTtB/Qpk6eSblfr0v142VmceA9wNXUu4bvAH4EaWZbuMQ5V6ziU6n3Ed4UoiI\npcAvgesz8/628aqTzFuAbQ3vrdsMbM/MA21zqfI5lJl7MvM/mfkU5SR9TdVY1HUYOAZ8ITNfzMz7\nKFMz17RMcx2wtU2AKAsffQW4AjiN8o+b70bExXVjZea9lPfhLsoU2wOUz+zQeqjqcjvwIuW1hoZ1\nMEmsxgbFq1sHw3KrUweTxNpMwzroF69pHUySW6M6GOH9HLkO+sWayhqQJEknn1nb+FIWVDkX+FZm\nHs3MpymL0ryvSbDMfDQz35mZZ2Tme4DzgT+0zHEf8KbxXyLi5cAFTNGUzbaqqYX3Uu5l3j6FoedQ\nrg6+qsG+q4BPRlml+0ngHMriNZumKLeckGNd/aZMZp/HRhYRKylXze5sE4eyuNvuqrl5KTMfBB4A\nhq6I3U9mbsnM12bmEkoDPAbsHbRPRATwPWAJ5f7NY9Wm2nUwIFYjg+LVrYMauQ2tgwGxGtVBjdyG\n1sGAWLXrYFhedepgQKwprQFJknRymbWNb2YepKw2+/GIGIuIxcB6Gt7PVU3rnF/dL3wjZaXo74+4\n71hEzAfmAnOrOGPA3cCyiPhgtf1zwCODpmwOiDX+VR7zq6eeVm2LyWINihflnujfUP5xcEub44yI\nd0fEJdV9da8AvgY8Q1l8rO5xrqJMo7y4Gk8A1wFbGuZ2WUS8PiLmRMQZwDeBXZnZO/V2lNx2A48D\nN1XPWQm8C/hVg1jj1gN3ZeZIswAGxHsQuHz86lZEXAK8nQH1MOA1mx8Ry6I4l7KC7zcy85kh6X2H\nssrv2sw8POHx2nUwIFajOpgsXpM6GBCrdh1MFouGdTAgt9p1MCC32nUwINa4OnUwWazaNSBJkk4h\nM7261kwOygnhLsrJ5UHK9OQlDWPdXMU5RJnyuLTGvpspVzwmjs3VttXAfsr0wF3AeS1iHeizrVE8\nSvOR1fH+bzSMdXV1jIcoq6juBJY3Pc6e5x1ghNVsB+T2Eco/SF6gfCXMNuCsFu/BRcDvq3h/Bj7Q\nItZ84F/Aqin6rG2kLBr1POUrYW5o+JotpjQLL1Cm/n8JmDsk1muq/Y/0fKauqVsHI8Q60CfvRvGo\nWQdDYtWqg2HHWbcOhuRWqw5GeA9GroMRYo1cByPEqlUDDofD4XA4Tp0Rma1mWkqSJEmSdFKbtVOd\nJUmSJEmzg42vJEmSJKnTbHwlSZIkSZ1m4ytJkiRJ6jQbX0mSJElSp9n4SpIkSZI6zcZXkiRJktRp\nNr5Sh0XEmyPieET8bqZzkSRJkmaKja/UbdcC3waWRcSFM52MJEmSNBNsfKWOiogFwEeBW4E7gQ09\n2y+LiIci4khE/DEi3hsRGRFXTHjOGyNiZ0Q8HxH/jIg7IuKsE3ogkiRJUks2vlJ3fQj4e2b+CdgO\nrIuIeQARsRD4BbAfWAF8GvjqxJ0j4mxgN7AXuBRYDSwEfhYR/u2QJEnSKcOTV6m7NlAaXoD7gH8D\nV1W/XwPMBTZk5r7M/DXwxZ79PwE8kpmbMvOxzHwUWEdpgt8y7dlLkiRJU8TGV+qgiFgKXA7sAMjM\nBG7n/9Od3wDszczDE3Z7oCfMCuAdEXFofAD/qLZdMG3JS5IkSVNsbKYTkDQtrqVc0X08IsYfC4CI\nOGfEGHOAncCNfbY91TZBSZIk6USx8ZU6JiLGgPXATZT7eCfaDnyMcm/v+ohYMOGq76U9z30I+DDl\nPuFj05iyJEmSNK2c6ix1z5XAmcBtmbl34gB+QGl8dwDHgduqlZtXA5+p9s/q5xbgdOCH1QrQ50fE\n6oi4NSIWndhDkiRJkpqz8ZW6ZwPw28x8us+2HwPnAW8D1gIXAQ8DNwObq+ccAcjMJ4CVwEvAPcA+\nSjN8tBqSJEnSKSHKmjeSZruIuAq4G3hlZh6c6XwkSZKkqeI9vtIsFRHrgb9SVmpeBnwd+LlNryRJ\nkrrGxleavZYAnwfOBp6krOC8aUYzkiRJkqaBU50lSZIkSZ3m4laSJEmSpE6z8ZUkSZIkdZqNryRJ\nkiSp02x8JUmSJEmdZuMrSZIkSeo0G19JkiRJUqf9F22tkcThQe8OAAAAAElFTkSuQmCC\n",
310 | "text/plain": [
311 | ""
312 | ]
313 | },
314 | "metadata": {},
315 | "output_type": "display_data"
316 | }
317 | ],
318 | "source": [
319 | "#barplot\n",
320 | "plt.figure(figsize=(FIG_WIDTH,5))\n",
321 | "plt.suptitle('Age Distribution (Test)',fontsize=FS_TITLE)\n",
322 | "plt.subplot(1,2,1)\n",
323 | "test_age_vc.plot(kind='bar')\n",
324 | "plt.xticks(rotation='horizontal',fontsize=FS_TICKS)\n",
325 | "plt.yticks(fontsize=FS_TICKS)\n",
326 | "plt.xlabel('Age', fontsize=FS_AXIS_LABEL)\n",
327 | "plt.ylabel('Frequency', fontsize=FS_AXIS_LABEL)\n",
328 | "#boxplot\n",
329 | "plt.subplot(1,2,2)\n",
330 | "bp_dict=plt.boxplot(df_test_e['age'])\n",
331 | "plt.xticks([0],[''],fontsize=FS_TICKS)\n",
332 | "plt.ylabel('Age', fontsize=FS_AXIS_LABEL)\n",
333 | "for line in bp_dict['medians']:\n",
334 | " # get position data for median line (2nd quartile line)\n",
335 | " x, y = line.get_xydata()[1] # terminal point of median line\n",
336 | " plt.text(x, y, '{:.0f}'.format(y), horizontalalignment='left') \n",
337 | "\n",
338 | "for line in bp_dict['boxes']:\n",
339 | " # get position data for 1st quartile line\n",
340 | " x, y = line.get_xydata()[0] \n",
341 | " plt.text(x,y, '{:.0f}'.format(y), horizontalalignment='right', verticalalignment='top') \n",
342 | " # get position data for 3rd quartile line\n",
343 | " x, y = line.get_xydata()[3] \n",
344 | " plt.text(x,y, '{:.0f}'.format(y), horizontalalignment='right', verticalalignment='top')\n",
345 | "plt.show()"
346 | ]
347 | },
348 | {
349 | "cell_type": "markdown",
350 | "metadata": {},
351 | "source": [
352 | "There are some differences between the distribution in the test and train set (e.g., 17, 19, 22 year old participants). The interquartile range (the range within which the innermost 50% of the data resides) for both train and test set is between 16 to 21 years. "
353 | ]
354 | },
355 | {
356 | "cell_type": "markdown",
357 | "metadata": {},
358 | "source": [
359 | "### Distribution of digits by district"
360 | ]
361 | },
362 | {
363 | "cell_type": "code",
364 | "execution_count": 111,
365 | "metadata": {},
366 | "outputs": [],
367 | "source": [
368 | "train_district_vc=df_train_e['districtid'].value_counts()"
369 | ]
370 | },
371 | {
372 | "cell_type": "code",
373 | "execution_count": 112,
374 | "metadata": {
375 | "scrolled": true
376 | },
377 | "outputs": [
378 | {
379 | "data": {
380 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA80AAAFYCAYAAABpgh4sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcHWWd7/HPVwJGIaBAREUhgiIKyDLRq44MKIjb4MXg\ngguCywVHnTsjKuMCgjqAjOBy3QYURQURZVFBxwUHXBENyiLDIkJQUDQghiQEZPndP6o6HA5dSZ+k\nO33S+bxfr/PqPvXUU/XUCVr9Pc9SqSokSZIkSdL9PWCyGyBJkiRJ0rAyNEuSJEmS1MHQLEmSJElS\nB0OzJEmSJEkdDM2SJEmSJHUwNEuSJEmS1MHQLEmaNEn2T1JJZq2i81WSw1fFuQa1KtuW5MQk80Y5\n/2dWxfnb852X5LxVdb6ONhyT5MJJPP/W7ee+zwrW/16Sz413uyRJ92VoliSNi54APPK6Pckfk3w/\nycFJNhzHc+2V5D3jdbwxnO/wJC8cYP/ez+HuJLckuTjJp5LsNI7tmtW27UnjdczxlGSHtn2bTXZb\n+iV5FPAm4Ij2/Yl9/25dr3mT2vD7OgrYN8nWk90QSZrKUlWT3QZJ0hSQZH/gc8D7gauAacBM4BnA\nC4CbgRdX1Y966qwFrA3cUQPckJKcCLyqqqYN2MbpwF1VddeA9Qo4oapeP8D+5wEnAAFmANsALwE2\nBo6uqneubNuS7AqcC+xbVScNUG9t4AFVdUdfm8d8jWM8z/40/03sXFU/7itbB6Cq/jZe5xtEkv8A\nXgU8qqruSfI0YMueXZ4AvAv4FPDTnu2Lqupr49SGAA8E/lZV96zgMa4AflRV/2c82iRJur+B/tiQ\nJGkMvtsXkD7Y9q5+B/hakidW1Z8Aqupu4O6JbEySBwDrVNXtVXX7RJ6rz2/7g2ySg4FTgHckuaaq\nPj1StiralmTdqlpcVXdO9LmWZ7LCMkCSacCrgS+PhNWqOh84v2efXWlC80/H+oXEyOc71na0XxSt\n7L/7l4G3JPmXqrptJY8lSRqFw7MlSROuqn4JvAXYEHjzyPbR5jQn2SLJKUluSHJHkhuTfCvJdm35\necB+wFq9w2bbslnt+0OSHNj2wt0BPLctv9+84SQzkhyV5Or2fH9M8vUk24wcr931dT3nO3EFP4fF\nwCuBW4BD257GkXbcp21J1kryziRXJLktyV+T/CrJP418djS9zABf7Gnb/iOfU3tN27ZzXxcCJ7dl\n95vT3HPeOUkubYfXX5HklX3lu7bn2XWUukuvof05Mt/2Rz3t27Wnfef11Z+e5Mgk85L8rf15ZJIH\n9u03L8k5SZ6c5CdJliT5fZKDRv3g7+/pwCbAd8e4//0k+XKSRUke0/73sgA4py3bMcnnk/y2/Rxv\nTnJGkq36jnG/Oc1JPtBu2yLJCWmG9i9sz/eQUZryHWB9YPcVvRZJ0rLZ0yxJWlVOBT4NPAc4dLQd\n0gwb/i6wLs2w2Otpws0uwOOBS2nmoD4A+Hua8DyafYANgOOAvwDzOs73YJph1DsCJwE/owkgzwT+\nDjgd2Bf4IvcOtwb47fIvd3RVtTDJmcBraYYA/0/Hru9pX58FjgUeBDyRZrj7p4AfAkdy/yHEvUOJ\n1we+B3wD+CqwZDnN+1/Ai4GPAzfR9MaelOSuqjp17FcJwBnAI4ADuHfIPsDlo+3cfoFwBvA8mn+L\n82nC7TuB7YA9+6psBpxF829zEvAy4Ngkl1XVd5bTtr9vf84d4HpGM43mv9cLgIN7tj+fZqj3F4A/\ntG19A82XB9tU1U1jOPZXgBuAdwNb08y/XgK8pm+/i4C7gJ1p/p0lSePM0CxJWiWq6s4kVwGPXcZu\nT6QJGy+tqq/2bD+q5zjfa3s/n76MYbNbAFtV1fXLadbbgJ2A11TViT3bP5Ak7fDZk5J8kVGGW6+E\nX7c/H0t3aH4h8K2qet1ohVV1TZLvsewhxDOBt1bVh8bYrm2BZ1XVuQBJjgcuBo5Jclo7nH5MquqS\nJOfThOb+IfujeQFNYP5Az3zvTyb5I/C2JM+vqm/17P844HlV9e22rZ8Ffge8nqb3dVmeACyuqj+P\n9Xo6PBA4s6oO7tv+4ao6ondDki8Bl9B80XPsGI7966rav6f+OsBrk7yxqpZ++VFVS9rP6IkreA2S\npOVweLYkaVVaSLMoVpcF7c/nJllvJc7zjTEEZmgW5rqqLzADS+ebTpSF7c9lfRZ/BbZJ8oSVOM89\nwH8OsP8lI4EZoJ0jezzwKGCHlWjHWPxj+/OYvu3/0Vc+4tqRwAzQLmr2M5ovTJZnY5oh8uPhk/0b\neucWJ1kvyUbAfOAamhEMK3LcH9AsmveoUfb9C801SZImgKFZkrQqzeDewHg/VTWPJiS9Fri5nff6\nb2keDzSIsQ6ffiz39vquSiNhufOzAA4B1gP+J8mVST4x2jzi5bhxwMWhrlzGtscMeO5BzQLmV9XN\nvRuraj7NUPH+8183yjFuoZk3PxZZ/i7LdRdN7/Z9D5xsmOS4JPNp/o1vognNWwGjzUseTf/1jYT8\n0a5vPK5FktTB0CxJWiXa4aVbAVcva7+q+jeaOZyH0Czi9V7giiS7DXC65c3dnWzbtj87P4uq+gnN\nUPVXAj8B9gLOTTJIz/FEfA6j9sCneXzYqtQ1VHwsAfIm4KHj0IY7Oh4VdTrN46w+RTNH/DnAs4Hf\nMPa/vQa5vofSXJMkaQIYmiVJq8pLgenAt5e3Y1VdWVUfrKrn0MxdvZ0mRC/dZZzadDWwbe8q1hMt\nyQzgRTQ9lKMuijWiqhZU1Zeq6rXA5jSrXx+YZPORXca5eY9fxrZr258jPZ79PaazRqk7SPvmATPb\nocxLJdmYZujxtaNVWkGXAw9O8vBxPCYASTYBdgXeV1XvqarTq+q7wPeBjZZZecXO9yCaBde65sZL\nklaSoVmSNOHSPKf5wzRzLz+xjP3WT/MM3aWq6vc0Q1t7Q9pimkdOrcy8Z2hWlN6KUVbh7gvSixn7\nsNpOSdalCb4PBf59WfOm+8NjVd3FvUPJR9qyuO/9ynpSkmf2tOHBNAt53UCzSjM04fZumhXGe72Z\n+xukfWe1P/sfG/X2vvLx8JP255PH8ZgjRnqe+//Geh1jHzo+iB1pFnZd3kJrkqQV5OrZkqTxtkea\n5y6vRbN68zNoFnG6GZhTVX9aRt1nAZ9KchrNI4rubOtuDfxbz34Xtj8/luQc4O6q+vIKtPUYYA7w\n2STPonnM0bptO75M88igkfPtkeQtwB9pFqG6YDnH3jLJq9rfZwDb0Cw8NhM4uqo+vZz6lyf5MfAL\n4E80Pb5vpgnOl47sQzME+41JltCE1AuqakV7ZX8NnJlk5JFT+9LM+37lyMrZVXVrklOAN6V5hvWV\nNAF6tDnPv6TpbX5n+yXAHcB/d6xa/S2aUQjvauewXwA8tW3D2VX1Xyt4TaM5H/gzsAfjG8apqvnt\nquGHtKMKrgOeQrMa+mjzsFfWHjTzps+ZgGNLkjA0S5LG38gzmP9GswL0ZTSPRTqhf5GnUVwMnE0z\nB/S1NAstXQW8tqo+17PfSTSBag5NL3FoQu5Aquq2JLu0bX4xzfOdb6ZZhbn3Gb5vppmfegTN85I/\nTxPqlmXX9nUPTai5juY5xJ+pqgu7qy31YZpnE7+VZkGwG4DPAEeMzKOtqsVJ9gPeR7NK9jSa5/iu\naGi+ADiMZh7549o271dVX+rb719oVnJ+XXt9Z9M8Lmp+707tY7H+b3sNJ9B8kfJMmsBK376VZA7N\ns6lfAbyc5guKo9rrGzft488+D7w6yb8O8iitMXoJzb/fgcA6NP897U7z3PDx9jLgK1W1eLl7SpJW\nSCb2iRqSJEnDp+3N/g2wb1WdNtntWRHtUPrvAdtV1TLnx0uSVpyhWZIkrZGSHAM8s6rG+uzkoZLk\ne8D1VfWayW6LJE1lhmZJkiRJkjq4erYkSZIkSR0MzZIkSZIkdTA0S5IkSZLUwUdOddh4441r1qxZ\nk90MSZIkSdIEuPDCC2+qqpnL28/Q3GHWrFnMnTt3+TtKkiRJklY7Sa4by34Oz5YkSZIkqYOhWZIk\nSZKkDoZmSZIkSZI6GJolSZIkSepgaJYkSZIkqYOhWZIkSZKkDoZmSZIkSZI6GJolSZIkSepgaJYk\nSZIkqYOhWZIkSZKkDoZmSZIkSZI6TJvsBkgTYdY7vjnZTZDWSPM+8ILJboIkSdK4sqdZkiRJkqQO\nhmZJkiRJkjoYmiVJkiRJ6mBoliRJkiSpg6FZkiRJkqQOhmZJkiRJkjoYmiVJkiRJ6rBKQ3OSNyeZ\nm+SOJCf2le2W5IoktyU5N8nmPWVJcnSSm9vX0UnSUz6rrXNbe4zd+479iiTXJVmc5GtJNpzwi5Uk\nSZIkrfZWdU/zH4B/Bz7buzHJxsAZwKHAhsBc4NSeXQ4A9gK2B54E7Akc2FN+CvArYCPg3cBpSWa2\nx94GOA7YF9gEuA345DhflyRJkiRpClqlobmqzqiqrwE39xXNAS6rqq9W1e3A4cD2SbZuy/cDjq2q\n66vqBuAYYH+AJFsBOwGHVdWSqjoduATYu637SuCsqvphVS2iCeZzksyYsAuVJEmSJE0JwzKneRvg\n4pE3VbUYuLrdfr/y9vfesmuqauEyynuP/VvgDmCrcWy/JEmSJGkKGpbQvB6woG/brcCMjvJbgfXa\nec2D1u0vXyrJAe2c67nz588f+CIkSZIkSVPLsITmRcD6fds2ABZ2lG8ALKqqWoG6/eVLVdXxVTW7\nqmbPnDlz4IuQJEmSJE0twxKaL6NZ5AuAJOsCW7bb71fe/t5btkXfHOX+8t5jbwmsA1w1ju2XJEmS\nJE1Bq/qRU9OSTAfWAtZKMj3JNOBMYNske7flhwEXV9UVbdUvAAcl2TTJpsBbgRMBquoq4CLgsPZ4\nc4DtgNPbuicDeybZuQ3j7wfO6JsDLUmSJEnS/azqnuZDgCXAO4BXtb8fUlXzaVa7PgK4BXgKsE9P\nveOAs4BL29fZ7bYR+wCz27pHAS9uj0lVXQa8gSY8/xlYF3jjxFyeJEmSJGkqSTMtWP1mz55dc+fO\nnexmaAXNesc3J7sJ0hpp3gdeMNlNkCRJGpMkF1bV7OXtNyxzmiVJkiRJGjqGZkmSJEmSOhiaJUmS\nJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmS\nJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmS\nJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiW\nJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhia\nJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6G\nZkmSJEmSOhiaJUmSJEnqMFShOcmsJN9KckuSG5N8PMm0tmy3JFckuS3JuUk276mXJEcnubl9HZ0k\nfcc9t617RZLdJ+P6JEmSJEmrl6EKzcAngfnAI4AdgF2ANybZGDgDOBTYEJgLnNpT7wBgL2B74EnA\nnsCBPeWnAL8CNgLeDZyWZOaEXokkSZIkabU3bKH5McCpVXV7Vd0IfBvYBpgDXFZVX62q24HDge2T\nbN3W2w84tqqur6obgGOA/QGSbAXsBBxWVUuq6nTgEmDvVXhdkiRJkqTV0LCF5o8AL0vy4CSbAs/j\n3uB88chOVbUYuLrdTn95+3tv2TVVtbCjXJIkSZKkUQ1baP4hsC1wK3A9zTDsrwHrAQv69r0VmNH+\n3l9+K7BeO695eXWXSnJAkrlJ5s6fP38lL0WSJEmStLobmtCc5AE0vcpnAOsCGwMPBY4GFgHr91XZ\nABjpPe4v3wBYVFU1hrpLVdXxVTW7qmbPnOmUZ0mSJEla0w1NaKZZ4Gsz4ONVdUdV3Qx8Dng+cBnN\nIl8AJFkX2LLdTn95+3tv2RZJZnSUS5IkSZI0qqEJzVV1E3At8IYk05I8hGaBr0uAM4Ftk+ydZDpw\nGHBxVV3RVv8CcFCSTdu50G8FTmyPexVwEXBYkulJ5gDbAaevwsuTJEmSJK2GhiY0t+bQLP41n2ah\nrzuBt1TVfJrVro8AbgGeAuzTU+844Czg0vZ1drttxD7A7LbuUcCL22NKkiRJktRp2mQ3oFdVXQTs\n2lF2DrB1R1kBB7ev0crndR1XkiRJkqQuw9bTLEmSJEnS0DA0S5IkSZLUwdAsSZIkSVIHQ7MkSZIk\nSR0MzZIkSZIkdTA0S5IkSZLUwdAsSZIkSVIHQ7MkSZIkSR0MzZIkSZIkdTA0S5IkSZLUwdAsSZIk\nSVIHQ7MkSZIkSR0MzZIkSZIkdTA0S5IkSZLUwdAsSZIkSVIHQ7MkSZIkSR0MzZIkSZIkdTA0S5Ik\nSZLUwdAsSZIkSVIHQ7MkSZIkSR0MzZIkSZIkdTA0S5IkSZLUYaDQnGTDiWqIJEmSJEnDZtCe5j8k\n+XKSZ09IayRJkiRJGiKDhuYXtXXOSjIvyWFJNp+AdkmSJEmSNOkGCs1V9V9V9VLgkcCHgb2A3yb5\nbpKXJVlnIhopSZIkSdJkWKGFwKrqL1X10araEfhX4B+AU2iGb/97kgePZyMlSZIkSZoM01akUpKH\nAa8GXgM8BjgNOIGmB/odwFOAPcapjZIkSZIkTYqBQnOSFwKvBZ4HXAkcB3yxqm7p2ednwOXj2UhJ\nkiRJkibDoD3NJwOnAv9QVRd07PMH4OiVapUkSZIkSUNg0ND8iKpatKwdqmoJcOiKN0mSJEmSpOEw\n6EJgeyT5x/6NSfZM8qJxapMkSZIkSUNh0ND8PuCOUbbf3pZJkiRJkjRlDBqatwSuGmX7b9oySZIk\nSZKmjEFD81+Bx46y/XHAwpVvjiRJkiRJw2PQ0PwN4MNJlvYqJ3kscGxbJkmSJEnSlDHo6tkHA98B\nrkhyfbvtUcAvgbePZ8MkSZI0NrPe8c3JboK0xpr3gRdMdhM0wQYKzVW1IMnTgOcCO7SbfwV8p6pq\nvBsnSZIkSdJkGrSnmTYc/1f7kiRJkiRpyho4NCf5O2A34GH0zYmuqoPGqV2SJEmSJE26gRYCS/IW\n4BfAG4CnAk/uec0ejwYl2SfJ5UkWJ/ltkp3b7bsluSLJbUnOTbJ5T50kOTrJze3r6CTpKZ/V1rmt\nPcbu49FWSZIkSdLUNmhP81uAg6rqIxPRmCTPBo4GXgb8HHhEu31j4Azg9cBZwPuBU2mCO8ABwF7A\n9kAB3wOuBf6zLT8FOB94fvs6Lcnjqmr+RFyHJEmSJGlqGPSRUxswsY+Wei/wvqr6WVXdU1U3VNUN\nwBzgsqr6alXdDhwObJ9k67befsCxVXV9u/8xwP4ASbYCdgIOq6olVXU6cAmw9wRehyRJkiRpChg0\nNH8F2GMiGpJkLZoh3jOTXJ3k+iQfT/IgYBvg4pF9q2oxcHW7nf7y9vfesmuqamFHeW8bDkgyN8nc\n+fPthJYkSZKkNd2gw7N/C7w/yVOBS4E7ewur6v+tRFs2AdYGXgzs3B7768AhwHpAf4q9FZjR/r4e\nsKCvbL12XnN/2Uj5pv0NqKrjgeMBZs+e7SO0JEmSJGkNN2hofhNwO83q2bv1lRWwMqF5SfvzY1X1\nR4AkH6IJzT8E1u/bfwNgpPd4UV/5BsCiqqok/WX9dSVJkiRJGtVAobmqHj1RDamqW5JcTxO+l25u\nf15GM28ZgCTrAlu220fKt6dZPIz2996yLZLM6BmivT1w8rhfhCRJkiRpShl0TvNSSTbqfazTOPkc\n8M9JHpbkoTSrdZ8NnAlsm2TvJNOBw4CLq+qKtt4XgIOSbJpkU+CtwIkAVXUVcBFwWJLpSeYA2wGn\nj3PbJUmSJElTzKDPaV47yZFJ/gr8CXhMu/2oJG8Yh/a8n+Y50FcBlwO/Ao5oHw21N3AEcAvwFGCf\nnnrH0TyK6tL2dXa7bcQ+NIuM3QIcBbzYx01JkiRJkpZn0DnNh9KE19fR9O6OuBB4O/c+F3mFVNWd\nwBvbV3/ZOcDW96vUlBVwcPsarXwesOvKtE2SJEmStOYZdHj2K4ED22cd39Oz/VLg8ePWKkmSJEmS\nhsCgofmRwLxRtq/F4L3WkiRJkiQNtUFD8//QPEO530to5h9LkiRJkjRlDNo7/D7gxCSPpAncc5I8\nHng1sOd4N06SJEmSpMk0UE9zVX2dZl7zC2mGZB9B8/imvarqu+PfPEmSJEmSJs/A85Cr6lvAtyag\nLZIkSZIkDZVB5zRLkiRJkrTGGKinOcktQHWVV9WGK90iSZIkSZKGxKDDs9/W935tYEdgL+CocWmR\nJEmSJElDYqDQXFUnjLY9yVxgl3FpkSRJkiRJQ2K85jR/H/jf43QsSZIkSZKGwniF5pcAN4/TsSRJ\nkiRJGgqDLgT2K+67EFiAhwMzgTePY7skSZIkSZp0gy4Ednbf+3uA+cC5VXXZ+DRJkiRJkqThMOhC\nYIdOVEMkSZIkSRo24zWnWZIkSZKkKWfQOc13ct85zZ2qap0VapEkSZIkSUNi0DnNbwXeA5wFnN9u\nexqwJ3A4zfxmSZIkSZKmhEFD87OAd1fVcT3bjk/yBuD5VfXC8WuaJEmSJEmTa9A5zbsD3x9l+znA\nbivfHEmSJEmShsegoflmYM4o218E3LTyzZEkSZIkaXgMOjz7cOAzSXbh3jnNTwWeCxwwju2SJEmS\nJGnSDfqc5s8luRL4F+Cl7ebLgV2q6ifj3ThJkiRJkibToD3NVNVPgZ9OQFskSZIkSRoqg85pJsnM\nJP+a5P8l2ajd9tQkm49/8yRJkiRJmjwDheYkOwJXAq8D3gBs0BY9DzhyfJsmSZIkSdLkGrSn+Vjg\nk1W1HXBHz/ZvA88Yt1ZJkiRJkjQEBg3Nfwd8bpTtfwA2WfnmSJIkSZI0PAYNzbcD64+y/fHA/JVv\njiRJkiRJw2PQ0HwW8J4ka7fvK8lmwAeAM8a1ZZIkSZIkTbJBQ/NbgYcDfwYeBPwAuBq4DXj3+DZN\nkiRJkqTJNdBzmqtqQZKnA88GdqIJ3b8EvlNVNQHtkyRJkiRp0ow5NLdDss8DXltV3wW+O1GNkiRJ\nkiRpGIx5eHZV3Qk8Drhn4pojSZIkSdLwGHRO8xeB101EQyRJkiRJGjYDzWkG1gFen2R34EJgcW9h\nVR00Xg2TJEmSJGmyDRqadwAuaX9/Yl+ZC4FJkiRJkqaUMYXmJE8Cfl1VO09weyRJkiRJGhpjndP8\nK2DjkTdJvpnkERPTJEmSJEmShsNYQ3P63v8D8KBxbktzouRxSW5PclLPtt2SXJHktiTnJtm8pyxJ\njk5yc/s6Okl6yme1dW5rj7H7RLRbkiRJkjT1DLp69qrwCeAXI2+SbAycARwKbAjMBU7t2f8AYC9g\ne+BJwJ7AgT3lp9D0lG8EvBs4LcnMCWy/JEmSJGmKGGtoLu6/0Ne4L/yVZB/gr8D3ezbPAS6rqq9W\n1e3A4cD2SbZuy/cDjq2q66vqBuAYYP/2eFsBOwGHVdWSqjqdZiGzvce77ZIkSZKkqWesq2cHOCnJ\nHe376cCnk9zWu1NVvXBFG5JkfeB9wLOA1/cUbQNc3HOOxUmubrdf0V/e/r5NT91rqmphR7kkSZIk\nSZ3GGpo/3/f+pFH3WjnvB06oqut7piQDrAfM79v3VmBGT/mCvrL12nnN/WUj5ZuO1oAkB9AM92az\nzTZbgUuQJEmSJE0lYwrNVfWaiWxEkh2A3YEdRyleBKzft20DYGFH+QbAoqqqJMurex9VdTxwPMDs\n2bN97rQkSZIkreGGZSGwXYFZwO+S3Ai8Ddg7yS+By2gW+QIgybrAlu12+svb33vLtkgyo6NckiRJ\nkqROwxKaj6cJwju0r/8Evgk8BzgT2DbJ3kmmA4cBF1fVFW3dLwAHJdk0yabAW4ETAarqKuAi4LAk\n05PMAbYDTl9lVyZJkiRJWm2NdU7zhKqq24Cli4q1w6pvr6r57fu9gY/TzKW+ANinp/pxwBbApe37\nz7TbRuxDE6JvAX4HvHjkuJIkSZIkLctQhOZ+VXV43/tzgK079i3g4PY1Wvk8muHfkiRJkiQNZFiG\nZ0uSJEmSNHQMzZIkSZIkdTA0S5IkSZLUwdAsSZIkSVIHQ7MkSZIkSR0MzZIkSZIkdTA0S5IkSZLU\nwdAsSZIkSVIHQ7MkSZIkSR0MzZIkSZIkdTA0S5IkSZLUwdAsSZIkSVIHQ7MkSZIkSR0MzZIkSZIk\ndTA0S5IkSZLUwdAsSZIkSVIHQ7MkSZIkSR0MzZIkSZIkdTA0S5IkSZLUwdAsSZIkSVIHQ7MkSZIk\nSR0MzZIkSZIkdTA0S5IkSZLUwdAsSZIkSVIHQ7MkSZIkSR0MzZIkSZIkdTA0S5IkSZLUwdAsSZIk\nSVIHQ7MkSZIkSR0MzZIkSZIkdTA0S5IkSZLUwdAsSZIkSVIHQ7MkSZIkSR0MzZIkSZIkdTA0S5Ik\nSZLUwdAsSZIkSVIHQ7MkSZIkSR0MzZIkSZIkdTA0S5IkSZLUwdAsSZIkSVKHoQnNSR6Y5IQk1yVZ\nmOSiJM/rKd8tyRVJbktybpLNe8qS5OgkN7evo5Okp3xWW+e29hi7r+rrkyRJkiStfoYmNAPTgN8D\nuwAbAIcAX2kD78bAGcChwIbAXODUnroHAHsB2wNPAvYEDuwpPwX4FbAR8G7gtCQzJ/RqJEmSJEmr\nvaEJzVW1uKoOr6p5VXVPVZ0NXAv8HTAHuKyqvlpVtwOHA9sn2bqtvh9wbFVdX1U3AMcA+wMk2QrY\nCTisqpZU1enAJcDeq/L6JEmSJEmrn6EJzf2SbAJsBVwGbANcPFJWVYuBq9vt9Je3v/eWXVNVCzvK\ne895QJK5SebOnz9/vC5FkiRJkrSaGsrQnGRt4GTg81V1BbAesKBvt1uBGe3v/eW3Auu185qXV3ep\nqjq+qmZX1eyZMx29LUmSJElruqELzUkeAHwR+Bvw5nbzImD9vl03ABZ2lG8ALKqqGkNdSZIkSZJG\nNVShue3om+o8AAAQJUlEQVQZPgHYBNi7qu5siy6jWeRrZL91gS3b7fcrb3/vLdsiyYyOckmSJEmS\nRjVUoRn4FPAEYM+qWtKz/Uxg2yR7J5kOHAZc3A7dBvgCcFCSTZNsCrwVOBGgqq4CLgIOSzI9yRxg\nO+D0VXJFkiRJkqTV1rTJbsCI9rnLBwJ3ADf2PGb5wKo6OcnewMeBk4ALgH16qh8HbAFc2r7/TLtt\nxD40IfoW4HfAi6vKlb4kSZIkScs0NKG5qq4Dsozyc4CtO8oKOLh9jVY+D9h1pRspSZIkSVqjDNvw\nbEmSJEmShoahWZIkSZKkDoZmSZIkSZI6GJolSZIkSepgaJYkSZIkqYOhWZIkSZKkDoZmSZIkSZI6\nGJolSZIkSepgaJYkSZIkqYOhWZIkSZKkDoZmSZIkSZI6GJolSZIkSepgaJYkSZIkqYOhWZIkSZKk\nDoZmSZIkSZI6GJolSZIkSepgaJYkSZIkqYOhWZIkSZKkDoZmSZIkSZI6GJolSZIkSepgaJYkSZIk\nqYOhWZIkSZKkDoZmSZIkSZI6GJolSZIkSepgaJYkSZIkqYOhWZIkSZKkDoZmSZIkSZI6GJolSZIk\nSepgaJYkSZIkqYOhWZIkSZKkDoZmSZIkSZI6GJolSZIkSepgaJYkSZIkqYOhWZIkSZKkDoZmSZIk\nSZI6GJolSZIkSepgaJYkSZIkqYOhWZIkSZKkDoZmSZIkSZI6rBGhOcmGSc5MsjjJdUleMdltkiRJ\nkiQNv2mT3YBV5BPA34BNgB2Abya5uKoum9xmSZIkSZKG2ZTvaU6yLrA3cGhVLaqqHwNfB/ad3JZJ\nkiRJkobdlA/NwFbAXVV1Vc+2i4FtJqk9kiRJkqTVxJowPHs94Na+bbcCM/p3THIAcED7dlGSKye4\nbZJGtzFw02Q3QoPL0ZPdAklaLXnfW41571utbT6WndaE0LwIWL9v2wbAwv4dq+p44PhV0ShJ3ZLM\nrarZk90OSZJWBe970nBbE4ZnXwVMS/K4nm3bAy4CJkmSJElapikfmqtqMXAG8L4k6yZ5BvBC4IuT\n2zJJkiRJ0rCb8qG59UbgQcCfgS8B/+TjpqSh5jQJSdKaxPueNMRSVZPdBkmSJEmShtKa0tMsSZIk\nSdLADM3SGirJiUn+fQXrHp7kpHFsy0+S7Dhex5sMSX6exOe/S9IUlORdST7T/j4rSSWZ1r4/L8nr\nV+LYpyTZa7zaOh6SbJLk8iQPnOy2SMPA0CxNQUnmJVmSZGGSvyb5aZI3JBm6/80n2RNYWFW/at/v\nk+TKJLcm+XOSzydZv2f/RX2vu5N8rOPY+7flvfvv2lP+hCT/nWRBkquTvKin7NFJfpbkL0mO7Tvu\nfyXpfzTIMcD7Vv4TkSSNVZJXJJnb/v/7H9v/f37GeJ+nqo6sqhUOxl2SPInmqS5f79k2M8mX2nvT\nLUlO7ik7Jslv2vv7FUlePcbzfLYN+o/t2fbS9u+D25Kc17t/Vf0JOBc4oGf/3ZJcm+TGJPv0bH9I\nkl8mmbECH4G0Whi6P6AljZs9q2oGzUPbPwD8G3DC5DZpVG/gvqvZ/xTYparWB7ageZ780h7xqlpv\n5AU8HFgCfHUZxz+/t05VnQfQ9hB8HTgb2JDmD4OTkmzV1nsn8HngMcBeIyE5ycuAa6tqbt95vgE8\nM8nDB/4EJEkDS3IQ8BHgSGATYDPgEzRPSVldHAicXPddZOgM4Eaa63kYzZeyIxYDewIbAPsBH03y\n9GWdoP0SYctRiv5C8/l9oKPqyW37RnykPfdzgE8mWavdfhTwgapauKx2SKszQ7M0xVXVgqr6BvAy\nYL8k2/YUPzTJN9tvrC9IsvSmmuSjSX7f9vhemGTn0Y6fZO12aNnpSdZJ8pQk57c93H9M8vEk63TU\nXQd4FvCDnvb+rqpu7NntbuCx/XVbe9Osiv+jsXwWfbYGHgl8uKrurqr/Bn4C7NuWPwb476paAPwC\n2KLt8X4H8K7+g1XV7cCFNH9MSJImUJINaEb3vKmqzqiqxVV1Z1WdXVUHt/s8MMlHkvyhfX1kZLhx\nkl2TXJ/k4HZU0x+T7JXk+UmuakcZvavnfGOalpRky3YE081JbkpycpKHLKPK8+i5BybZA3g08Pb2\n/n3nyEgsgKo6rKquqKp7quoCmvvf05bRnmnAx4B/7i+rqnOq6ivAHzqqX0Bz79u8fb9uVf26qi4G\n/gZslOQpwGPa40hTlqFZWkNU1c+B64He8LsP8F7gocDVwBE9Zb8AdqDphf0S8NUk03uPmeRBwNeA\nO4CXVtXfaELuW4CNaW7ku9E89m00jwPuqarr+477jCQLgIU0wfgjHfX3A77Q9w19vx3bP1yuSnJo\n+wdElwAjXyr8Gnh2+8fO3wGXAe8HPlJVf+2ofznNMDtJ0sR6GjAdOHMZ+7wbeCrNvWx74CnAIT3l\nD2+PsSnwHuDTwKto/j9/Z+DQJI8ZsF2h6Xl9JPAEmgB8+Kg7JuvSfEF7Zc/mp7bvP98G718k2aWj\n/oOAJ9Pcn7q8BfhhVV0y4HVQVXfR/G0wcl/7c5Ltk2wP3APcAnwU+L+DHlta3RiapTXLH2hC8Igz\nq+rn7Y3xZJo/LACoqpOq6uaququqjgUeCDy+p+76wLeB3wKvqaq723oXVtXP2nrzgOOAUW/4wENo\ngvF9VNWPq2oD4FHAB4F5/fu033zvQjOEussPaULww2jC98uBt7dlV9L0Ur+97S3foz3eg9vyo2j+\naPoB8ElgHeBJwFntXLMfJnlz3/kWttckSZpYGwE3tfevLq8E3ldVf66q+TRfEu/bU34ncERV3Ql8\nmebL3o9W1cKqugz4Hwb8IrSqrq6q71XVHe05P8Sy74Fw3/vgo4A9aOYTPxw4Fvh6ko1Hqf+fwMXA\nd0Y7eJJH0wyvfs8g19Cn9772BpqQfDzN5/hPwDnA9CTfSXJuV8CXVnfL6nGRNPVsSjOHaUTvMOjb\ngPVG3iR5G/A6mm/LiyYk9960nwqsDby8t6e3nRP8IWA2TQCdRjNseTS3AJ0Lh1TVDUm+TfPHzE59\nxfsCP66qa5dR/5qet5cmeR9NaD6qqu5Ms1rpx2jme88FvkLTa05V/YVmSDtpFlD7Ic0fDO+g6YXe\nH/hlku9X1eXtOWYAXb3QkqTxczOwcZJpywjOjwSu63l/Xbtt6TFGvvClWR8D4E895UvouS+ORZJN\naILlzjT3hAfQ3OtGM3K/mAHc3nPOeVU1sgbJl5O8G/h77rtY2AdpvhR+5jJGW32E5kuDBYNcQ5+l\n97WqugjYtT3/I2gC/dNovlz+V5ov5n+YZPPljACTVjv2NEtriCRPpgnNPx7DvjsDBwMvBR5aVQ8B\nFtAMOxvxXZre2O+3fySM+BRwBfC4djGvd/XV63V1c7psuozmTGP0BUxezbJ7mUdTvW2pqkuqapeq\n2qiqnkOz8NjPR6l3APCzqvo1sB0wtx2Kfmn7fsQTaL71lyRNrPNpvuRc1qOa/kCzGOaIzeievzte\njqS512zX3gNfRcc9sKoW04zW2qpn8yVt/fvs2vsmyXtp5kLvUVW3LqMtuwEfbFe7HvmS/PwkrxjL\nhbTTmR7L6Pe1DwOHVNUS7r0vzqP5Mn3mWI4vrU4MzdIUl2T9JP9I01t7UlVdOoZqM4C7gPnAtCTv\noelpvo+q+g+a+c7f7xk6NgO4FViUZGua4VujaoPnOfQMXUvyyiSbtb9vTjPP+vt91/R0mi8AlrVq\nNkmeNxLo27Ycyn2/qX9SkulJHtz2rD8COLHvGA8D3sS9c9KupVklez2a3vRr2v2m08yD+96y2iRJ\nWnlt7+l7gE+0C3g9uJ1q87wk/9HudgpwSJpHOG3c7r/cxbxW0gxgEbCg/UL47cvZ/1vcd/j2mTSL\ndO6XZK0kL6YZsv0TgCTvBF4B7F5VNy/n2FvRDC/fgXunX+3ZnoP2+NNpvpx+QHs/XLun/lNoer17\ne+tJ8mxgelWd3W66FnhWkm1opnItr13SasfQLE1dZyVZCPyeZjGUDwGvGWPd79DMV76KZjjb7e1x\n7qeq3k+zGNg5STYE3kZzQ19Is6jKqcs513Hcd47ZE4GfJllM80fClcD/6auzH3BG/+MtkmyW5lmd\nm7WbdgMuaY/1LZrHeBzZU2Vf4I80c5t3A55dVXf0nesYmuFti9r3R9Gs+P174KyeR0/tCZxXVRPd\niyFJAtr1Ng6iWdxrPs3/L7+Z5p4EzeMK59L03l4K/JKeRxhOkPfSTCdaAHyT5r6zLMcDr0wSWDo1\n6IU099IFNFOC/ndV3dTufyRNj/nV7f1uUd8q34va0WK0c7lvHHm1u9zU9g5Dcw9cQjNCbOf290/3\ntO2VNPOml2pXH/8g8C89m/+53e8c4I09Q96lKSNOOZA02ZL8BHhz72M1VjdJLgBe1w7hliRpTJJ8\nCfhKVX1tuTuvIu0oqx8AO7aPVJTWaIZmSZIkSZI6ODxbkiRJkqQOhmZJkiRJkjoYmiVJkiRJ6mBo\nliRJkiSpg6FZkiRJkqQOhmZJkqaYJOcl+fgEHHdWkkoye7yPLUnSsDI0S5K0mkhyYhtaK8mdSf6c\n5Nwkb0qyds+uc4B3jvGYhycZ6/PFfw88ArhogPaePcZjS5I0lAzNkiStXs6hCa6zgD2As4D3Aj9K\nsi5AVf2lqhaO50mTrFNVd1fVjVV113geW5KkYWZoliRp9XJHG1xvqKqLqupDwK7ATsDBcP/h2Unm\nJLkkyZIkf0nygySbJNkfOAzYpqcHe/+2TrU92GckWQwcOdrw7CRbJ/lGkgVJFiU5P8l2SQ4H9gNe\n0HPsXVfJJyRJ0jiaNtkNkCRJK6eqfp3k28DeNCF4qSQPB75MM1z7dGA94Klt8anAtsA/0gRvgAU9\n1Q8D3gW8Daj+8yZ5JPBj4CfAs4G/AE8G1gKOAZ4AbAjs21b5y4pfpSRJk8PQLEnS1PA/wO6jbH8k\nsDZwWlVd125bOoc5ySLgrqq6cZS6p1bVZ3r2ndVX/iZgMfCSqvpbu+3qnv2X0PaMD3YpkiQND4dn\nS5I0NYRReoOBi2nmQf86yelJ/inJzDEec+5yyncEftwTmCVJmnIMzZIkTQ1PBK7p31hVd9MsGLYH\ncAnwOuA3SbYfwzEXj2sLJUlaDRmaJUlazSXZFngucNpo5dU4v6reSzPn+A/Ay9riv9HMQV4RvwKe\nkWSdjvKVObYkSUPB0CxJ0urlgUkenuSRSbZPchBwHnAhzeJb95HkqUkOSfLkJJsBLwQeTTMHGmAe\nsHmSnZJsnOSBA7TlkzQLi32lPf5jk7w8yQ49x942yePbY6/deSRJkoaUoVmSpNXL7sAfgd8B36cJ\nwYcD/1BVow2nXgD8PXA28BvgWOD9VXVSW3468K32WPOBl4+1IVV1A/APwDrAuTQ9z/8MjDzH+dPA\n5TRzo+e37ZAkabWSqtHWDJEkSZIkSfY0S5IkSZLUwdAsSZIkSVIHQ7MkSZIkSR0MzZIkSZIkdTA0\nS5IkSZLUwdAsSZIkSVIHQ7MkSZIkSR0MzZIkSZIkdTA0S5IkSZLU4f8DctDdZumKTCAAAAAASUVO\nRK5CYII=\n",
381 | "text/plain": [
382 | ""
383 | ]
384 | },
385 | "metadata": {},
386 | "output_type": "display_data"
387 | }
388 | ],
389 | "source": [
390 | "plt.figure(figsize=(FIG_WIDTH,5))\n",
391 | "train_district_vc.plot(kind='bar')\n",
392 | "plt.yticks(fontsize=FS_TICKS)\n",
393 | "xlabels=['Dhaka ({:.2f}%)'.format(train_district_vc.loc[1]/train_district_vc.sum()*100),\n",
394 | " 'Comilla ({:.2f})%'.format(train_district_vc.loc[2]/train_district_vc.sum()*100)]\n",
395 | "plt.xticks([0,1],xlabels,rotation='horizontal',fontsize=FS_TICKS)\n",
396 | "plt.xlabel('District', fontsize=FS_AXIS_LABEL)\n",
397 | "plt.ylabel('Frequency', fontsize=FS_AXIS_LABEL)\n",
398 | "plt.title('District Distribution (Train)',fontsize=FS_TITLE)\n",
399 | "plt.show()"
400 | ]
401 | },
402 | {
403 | "cell_type": "code",
404 | "execution_count": 113,
405 | "metadata": {
406 | "collapsed": true
407 | },
408 | "outputs": [],
409 | "source": [
410 | "test_district_vc=df_test_e['districtid'].value_counts()"
411 | ]
412 | },
413 | {
414 | "cell_type": "code",
415 | "execution_count": 114,
416 | "metadata": {
417 | "scrolled": true
418 | },
419 | "outputs": [
420 | {
421 | "data": {
422 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAFYCAYAAACRYuXbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe4ZWV99vHvLQOizFB0xgIGRkRQEbGMhiQWVMQSQQLG\nEgtYXtTI+5qgIRaUsaEkYIsVRYoQRAULWEHBiiajCIgCKgwKCA6gMDMUKb/3j7U2bDb7zJw9c+qs\n7+e69nXOXs8qv7Up69x7Pc+zUlVIkiRJktRVd5vuAiRJkiRJmk4GY0mSJElSpxmMJUmSJEmdZjCW\nJEmSJHWawViSJEmS1GkGY0mSJElSpxmMJUlTJsk+SSrJwik6XiVZPBXHGtVU1pbkqCRLhxz/U1Nx\n/PZ4ZyQ5Y6qON0YNhyb56XTWsDpJPpnkO9NdhyR1jcFYkrRG+kJu73Vjkj8k+XaSA5LcawKPtUeS\nt03U/sZxvMVJdh9h/f7P4dYkf0pydpKPJXn0BNa1sK3tERO1z4mU5JFtfVtOdy2DkjwAeC3w7vb9\nUQP/3MZ6LZ2EWua3n9PfDmn+D+BJSZ420ceVJI0tVTXdNUiSZqEk+wBHAu8ELgTmAAuAxwN/D1wN\nPLeqvt+3zXrA+sBNNcIFKMlRwIuras6INW4I3FJVt4y4XQFHVNUrR1j/DOAIIMA8YHvgH4H5wCFV\n9aa1rS3JzsDpwEuq6tgRtlsfuFtV3TRQ87jPcZzH2Yfm34knVNUPBto2AKiqv0zU8UaR5D+AFwMP\nqKrbkvwN8KC+VR4KvBn4GPCjvuUrqupLE1zLQ4BfAf9WVYcOaf8GsF5VGY4laYqM9AeGJElDfGsg\nBP1ne5f0m8CXkjysqq4EqKpbgVsns5gkdwM2qKobq+rGyTzWgN8OhtUkBwDHA29MclFVfbLXNhW1\nJdmoqlZW1c2TfazVma5ADJBkDvBS4LNVdVtbz5nAmX3r7EwTjH80ypcOk+SzwBFJtqyq301zLZLU\nCXalliRNuKr6GfCvwL2A/XrLh40xTrJ1kuOTXJbkpiRXJPlakh3a9jOAvYH1+ru4tm0L2/cHJnlV\nkvOBm4BntO13GcebZF6S9yT5TXu8PyT5cpLte/trV31F3/GOWsPPYSXwIuBPwFuTpK+OO9WWZL0k\nb0pyfpLrk/w5yVlJXtP77GjuFgN8pq+2fXqfU3tOD09yapLlwHFt213GGPcdd88k57Zd4c9P8qKB\n9p3b4+w8ZNvbz6H9eWTb9P2++nbuq++Mge03THJwkqVJ/tL+PDjJ3QfWW5rktCSPTfLDJDck+X2S\n/Yd+8Hf1t8B9gW+Nc/2hkmyX5IQkV7Wf1zm9z39gvf3az3RlkuuS/CLJm9q2Z9DcLYbmS6Te5/TG\nvl18k+ZvtD3Wpl5J0vh5x1iSNFlOAD4JPB1467AV2i6+3wI2ounCeilNgHkSsB1wLs2Y0LsBf0cT\nkId5AbAJ8AngGmDpGMe7J02X50cBxwI/BjYGngw8BjgReAnwGe7oGg3w29Wf7nBVtTzJF4GX03TX\n/eUYq76tfX0aOAy4B/Awmq7pHwO+BxzMXbv79nf73Rg4FfgK8HnghtWU99fAc4EPA1fR3FU9Nskt\nVXXC+M8SgJOA+wP7ckf3ergjBN5J+yXBScAzaf5ZnEkTYN8E7ADsNrDJlsDJNP9sjgWeDxyW5Lyq\n+uZqavu79ueSEc5nsN7tgR8CVwCHAtcBzwaOTLJpVX2gXe81wH/RfP4fofl39yHAE4D3AGcDB9CM\nJT4e+Fp7iLN6x6qqPyS5rN3mQ2tasyRp/AzGkqRJUVU3J7kQ2GYVqz2MZpzn86rq833L39O3n1Pb\nu5h/u4ourlsD21bVpasp6w3Ao4GXVdVRfcvfmyTtuOdjk3yGIV2j18Iv2p/bMHYw3h34WlW9Ylhj\nVV2U5FRW3d13AfD6qnrfOOt6OPCUqjodIMnhNMHt0CRfaLu+j0tVnZPkTJpgPNi9fpi/pwnF7+0b\nf/3RJH8A3pDkWVX1tb71Hww8s6q+0db6aeB3wCtp7rCuykOBlVX1x/GezxAfpfni5rFV1fvC4aNJ\nTgTenuSTbQ+B3YGfVdXzhu2kDb0n0wTjn63i37GLaP77kCRNAbtSS5Im03KaiajGcm378xlJ5q7F\ncb4yjlAMzWRYFw6EYgBGmQxsDSxvf67qs/gzsH2Sh67FcW4DPj7C+uf0QjFAVV0PHA48AHjkWtQx\nHs9ufw5OPvUfA+09F/dCMUA7kdiPab4UWZ35NN3Z10iS+wFPpOkFsVGaWaXnJ5kPfJ3mTv2idvU/\nAwuTLBq+t3G7hqZuSdIUMBhLkibTPO4IhXdRVUtpgtDLgavbcaj/nubROqMYb1fnbbjj7u1U6gXi\nMT8L4EBgLvDLJBck+ciwcb2rcUUbbsfrglUse+CIxx7VQmBZVV3dv7CqltF06x48/iVD9vEnmnHs\n45HVrzKmbduf7wCWDbx6E6rdp/35bpou7P+b5OI0zyV+1hocc23qlSSNyGAsSZoUaR7Psy3wm1Wt\nV1X/TjMG80CaibPeDpyf5KkjHG51Y2mn28Pbn2N+FlX1Q5pu5S+iGcu6B3B6klHuAE/G5zD0Tnqa\nR29NpbG6dY8nQF4FbLYWx+79vXQo8LQxXt8DqKpf0Px7/1yaLt67AF9N8sX+ydfGYbO2bknSFDAY\nS5Imy/OADYFvrG7Fqrqgqv6zqp5OM5b0RpqgfPsqE1TTb4CHjxhQ1kqSecA/0IyHHToRVU9VXVtV\n/11VLwe2oplV+lVJtuqtMsHlbbeKZRe3P3tdkDcdWG/hkG1HqW8psCDJvfsXtt2T5/cdfyL8Crhn\n2yV6TfR6JNxcVaeN8bqyt3JVXV9VJ1bVq2m6en+A5ouOx/VWGccxH8TY49ElSRPMYCxJmnBpnmP8\nfppxkh9ZxXobp3nG7O2q6vc0XVT7g9hKmsc1rc04ZGhmCt6WIbNbD4Tlldw1CI4syUY04XYz4F2r\nGsc8GBCr6hbu6Pbdq2XlwPu19YgkT+6r4Z40k2ddBvy8XbyU5m7tkwe23Y+7GqW+k9ufg49c+reB\n9onww/bnY9dk4/bfyR8Cr06yxWB7kgV9vw/+cyyaCc1gnP8ck2wObA6sbgIzSdIEcVZqSdLa2jXN\nc4nXo5kV+fE0EyddDezZfydtiKcAH0vyBZrH+9zcbvsQ4N/71vtp+/O/kpwG3FpVn12DWg8F9gQ+\nneQpNI8I2qit47PAMX3H2zXJvwJ/oJn46Ser2feDkry4/X0esD3NZF8LgEOq6pNjbtn4VZIfAP8L\nXElz53Y/mnB8bm8dmu7S/5zkBpqA9ZOqWtO7q78Avpik97iml9CMw35Rb0bqqrouyfHAa9M84/kC\nmpA8bAzyz2juhr6pDYg3Ad8ZYzbor9H0JnhzO6b8J8BObQ2nVNXX1/CchjkT+COwK2seuF8FfB84\nN8mngF/T3Nl+NM0jyTZu1/tekkvaY15Oc+f/tTQzWveC7mU0j316aZLf00xCd3ZV9XoU7ErzOX5p\nDWuVJI3IYCxJWlu9ZxT/hWZG3vNoHil0xODESkOcDZxCEyxeDtxCE5BfXlVH9q13LE1o2pPmbm9o\nguxIqur6JE9qa34uzfOPr6aZ3bj/Gbf70Twr+N00zxM+mia4rcrO7es2mkm2LqF5Tu+nquqnY292\nu/fTPLv39TSTcF0GfAp4d1Xd1ta/MsneNJNAfZzmOv4y1rzb8U+Ag2jGdT+4rXnvqvrvgfVeB6wP\nvKI9v1NoHrW0rH+l9pFS/689hyNovix5Mk0oZWDdSrInzbOb/wl4Ic2XEO9pz2/CtI8OO5omiP7L\nKI+h6tvHeUke09b7YppQfBXNv+9v6Fv1IzTDCP4vzbO1r6D59+Cd7eOceue+N/CfNM88Xp/m+c29\nYPx8mi8Uhk04JkmaBJncp1NIkiRNv/au9K+Bl1TVF6a7nrEk2QY4H3hWVX1ruuuRpK4wGEuSpE5I\ncijw5Kp6zHTXMpYknwS2qarBMd2SpElkMJYkSZIkdZqzUkuSJEmSOs1gLEmSJEnqNIOxJEmSJKnT\nOv24pvnz59fChQunuwxJkiRJ0gSbP38+3/zmN79ZVc9Y3bqdDsYLFy5kyZIlq19RkiRJkjTrJJk/\nnvXsSi1JkiRJ6jSDsSRJkiSp0wzGkiRJkqROMxhLkiRJkjrNYCxJkiRJ6rQpDcZJ9kuyJMlNSY7q\nW/6iJCv6XtcnqSSPadsXJ7l5YJ2t+7ZfmOT0drvzk+wyleclSZIkSZq9pvqO8eXAu4BP9y+squOq\nam7vBfwzcBHws77VTuhfp6ou6ms7HjgLuDfwFuALSRZM6plIkiRJktYJUxqMq+qkqvoScPVqVt0b\nOKaqanX7TLIt8GjgoKq6oapOBM4B9lrrgiVJkiRJ67wZN8Y4yVbAE4FjBpp2S3JNkvOSvKZv+fbA\nRVW1vG/Z2e1ySZIkSZJWacYFY+ClwPer6uK+ZZ8DHgosAP4P8LYkL2zb5gLXDuzjOmDesJ0n2bcd\n57xk2bJlE1u5JEmSJGnWmanB+Oj+BVX1y6q6vKpuraofAR8Ents2rwA2HtjHJsByhqiqw6tqUVUt\nWrDAYciSJEmS1HVzpruAfkn+Dtgc+MJqVi0g7e/nAVsnmdfXnXpH4LjJqVIzwcI3fnW6S5A6a+l7\n/366S5AkSZpQU/24pjlJNgTWA9ZLsmGS/nC+N3DiwHhhkjwnyWZpPA54HfBlgKq6EPg5cFC7vz2B\nHYATp+KcJEmSJEmz21R3pT4QuAF4I/Di9vcDAdrA/DwGulG3XgD8hqZ79DHAe6vq6IH2RcCfgPcA\nz60qBxBLkiRJklZrSrtSV9ViYPEYbTcCm47R9sJhy/valwI7r1VxkiRJkqROmomTb0mSJEmSNGUM\nxpIkSZKkTjMYS5IkSZI6zWAsSZIkSeo0g7EkSZIkqdMMxpIkSZKkTjMYS5IkSZI6zWAsSZIkSeo0\ng7EkSZIkqdMMxpIkSZKkTjMYS5IkSZI6zWAsSZIkSeo0g7EkSZIkqdMMxpIkSZKkTjMYS5IkSZI6\nzWAsSZIkSeo0g7EkSZIkqdMMxpIkSZKkTjMYS5IkSZI6zWAsSZIkSeo0g7EkSZIkqdMMxpIkSZKk\nTjMYS5IkSZI6zWAsSZIkSeo0g7EkSZIkqdMMxpIkSZKkTjMYS5IkSZI6bUqDcZL9kixJclOSo/qW\nL0xSSVb0vd7a154khyS5un0dkiQD25+e5Pok5yfZZSrPS5IkSZI0e82Z4uNdDrwLeDpwjyHtm1bV\nLUOW7wvsAewIFHAqcDHw8bb9eOBM4Fnt6wtJHlxVyya2fEmSJEnSumZK7xhX1UlV9SXg6hE33Rs4\nrKourarLgEOBfQCSbAs8Gjioqm6oqhOBc4C9Jq5ySZIkSdK6aqaNMb4kyaVJjkwyv2/59sDZfe/P\nbpf12i6qquVjtEuSJEmSNKaZEoyvAh4LbAU8BpgHHNfXPhe4tu/9dcDcdpzxYFuvfd6wAyXZtx3n\nvGTZMntaS5IkSVLXzYhgXFUrqmpJVd1SVVcC+wG7JumF2xXAxn2bbAKsqKoa0tZrX84QVXV4VS2q\nqkULFiyY2BORJEmSJM06MyIYD1Htz15959FMvNWzY7us17Z1X4gebJckSZIkaUxT/bimOUk2BNYD\n1kuyYbvsr5Nsl+RuSe4NfAg4o6p6XaSPAfZPskWSLYDXA0cBVNWFwM+Bg9r97QnsAJw4lecmSZIk\nSZqdpvpxTQcCB/W9fzHwduAC4GDgPjTjg08FXti33ieArYFz2/efapf1vIAmKP8J+B3wXB/VJEmS\nJEkajykNxlW1GFg8RvPxq9iugAPa17D2pcDOa1WcJEmSJKmTZuoYY0mSJEmSpoTBWJIkSZLUaQZj\nSZIkSVKnGYwlSZIkSZ1mMJYkSZIkdZrBWJIkSZLUaQZjSZIkSVKnGYwlSZIkSZ1mMJYkSZIkdZrB\nWJIkSZLUaQZjSZIkSVKnGYwlSZIkSZ1mMJYkSZIkdZrBWJIkSZLUaQZjSZIkSVKnGYwlSZIkSZ1m\nMJYkSZIkdZrBWJIkSZLUaQZjSZIkSVKnGYwlSZIkSZ1mMJYkSZIkdZrBWJIkSZLUaQZjSZIkSVKn\nGYwlSZIkSZ1mMJYkSZIkdZrBWJIkSZLUaQZjSZIkSVKnTWkwTrJfkiVJbkpyVN/ynZKcmuSaJMuS\nfD7J/fvaFye5OcmKvtfWfe0Lk5ye5Pok5yfZZSrPS5IkSZI0e031HePLgXcBnx5YvhlwOLAQ2ApY\nDhw5sM4JVTW373VRX9vxwFnAvYG3AF9IsmAS6pckSZIkrWPmTOXBquokgCSLgAf0Lf96/3pJPgx8\ndzz7TLIt8Ghg16q6ATgxyeuAvYCPT1DpkiRJkqR11EwdY/xE4LyBZbu1Xa3PS/KavuXbAxdV1fK+\nZWe3yyVJkiRJWqUpvWM8HkkeAbwNeE7f4s/RdLW+EvhrmrvCf66q44G5wLUDu7kO2GKM/e8L7Auw\n5ZZbTmzxkiRJkqRZZ0bdMU6yDfB14HVV9f3e8qr6ZVVdXlW3VtWPgA8Cz22bVwAbD+xqE5pxyndR\nVYdX1aKqWrRggcOQJUmSJKnrZswd4yRbAacB76yqz6xm9QLS/n4esHWSeX3dqXcEjpucSiVJkqbe\nwjd+dbpLkDpp6Xv/frpL0BSY6sc1zUmyIbAesF6SDdtlWwDfAT5cVXeZMCvJc5JslsbjgNcBXwao\nqguBnwMHtfvbE9gBOHGqzkuSJEmSNHtN9R3jA4GD+t6/GHg7zR3grYHFSRb3GqtqbvvrC2ge8XR3\n4FLgvVV1dN9+XgAcBfwJ+B3w3KpaNjmnIEmSJElal0z145oWA4vHaH77KrZ74Wr2uxTYeQ3LkiRJ\nkiR12IyafEuSJEmSpKlmMJYkSZIkdZrBWJIkSZLUaQZjSZIkSVKnGYwlSZIkSZ1mMJYkSZIkdZrB\nWJIkSZLUaQZjSZIkSVKnGYwlSZIkSZ1mMJYkSZIkdZrBWJIkSZLUaSMF4yT3mqxCJEmSJEmaDqPe\nMb48yWeTPG1SqpEkSZIkaYqNGoz/od3m5CRLkxyUZKtJqEuSJEmSpCkxUjCuqq9X1fOAzYH3A3sA\nv03yrSTPT7LBZBQpSZIkSdJkWaPJt6rqmqr6YFU9CvgX4InA8TRdrd+V5J4TWaQkSZIkSZNlzpps\nlOQ+wEuBlwEPBL4AHEFzJ/mNwOOAXSeoRkmSJEmSJs1IwTjJ7sDLgWcCFwCfAD5TVX/qW+fHwK8m\nskhJkiRJkibLqHeMjwNOAJ5YVT8ZY53LgUPWqipJkiRJkqbIqMH4/lW1YlUrVNUNwFvXvCRJkiRJ\nkqbOqJNv7Zrk2YMLk+yW5B8mqCZJkiRJkqbMqMH4HcBNQ5bf2LZJkiRJkjSrjBqMHwRcOGT5r9s2\nSZIkSZJmlVGD8Z+BbYYsfzCwfO3LkSRJkiRpao0ajL8CvD/J7XeHk2wDHNa2SZIkSZI0q4wajA8A\nrgfOT3Jxkotpnll8A/BvE12cJEmSJEmTbaTHNVXVtUn+BngG8Mh28VnAN6uqJro4SZIkSZIm26jP\nMaYNwF9vX5IkSZIkzWqjdqUmyWOSHJDk0CTv63+NY9v9kixJclOSowbanprk/CTXJzk9yVZ9bUly\nSJKr29chSdLXvrDd5vp2H7uMel6SJEmSpG4a6Y5xkn+lmWhrKXA50N99ejxdqS8H3gU8HbhH337n\nAycBrwROBt4JnADs1K6yL7AHsGN7nFOBi4GPt+3HA2cCz2pfX0jy4KpaNsr5SZIkSZK6Z9Su1P8K\n7F9VH1iTg1XVSQBJFgEP6GvaEzivqj7fti8GrkrykKo6H9gbOKyqLm3bD6UJyx9Psi3waGDXqroB\nODHJ64C9uCM4S5IkSZI01KhdqTdhch7LtD1wdu9NVa0EftMuv0t7+3t/20VVtXyMdkmSJEmSxjRq\nMP4csOsk1DEXuHZg2XXAvDHarwPmtuOMV7ftnSTZtx3nvGTZMntaS5IkSVLXjdqV+rfAO5PsBJwL\n3NzfWFUfWsM6VgAbDyzbBFg+RvsmwIqqqiSr2/ZOqupw4HCARYsW+YgpSZIkSeq4UYPxa4Ebgae2\nr34FrGkwPo9mHDEASTYCHtQu77XvCPxP+37Hgbatk8zr6069I3DcGtYiSZIkSeqQkbpSV9VfreK1\n5eq2TzInyYbAesB6STZMMgf4IvDwJHu17QcBZ7cTbwEcA+yfZIskWwCvB45qa7oQ+DlwULu/PYEd\ngBNHOTdJkiRJUjeN/BzjniT37n+W8DgdCNwAvBF4cfv7ge1jlfYC3g38CXgc8IK+7T5B8xinc9vX\nKe2ynhcAi9pt3wM810c1SZIkSZLGY9TnGK8PvB34Z5pJr7YFLkryHuCSqlrl45GqajGweIy204CH\njNFWwAHta1j7UmDncZyCJEmSJEl3Muod47fS3Nl9BXBT3/KfAi+bqKIkSZIkSZoqowbjFwGvqqoT\ngdv6lp8LbDdhVUmSJEmSNEVGDcabA0uHLF+P0We4liRJkiRp2o0ajH8JPGHI8n8Ezlr7ciRJkiRJ\nmlqj3uV9B3BUks1pQvWeSbYDXgrsNtHFSZIkSZI02UZ9jvGXacYZ707TffrdNM8M3qOqvjXx5UmS\nJEmSNLlGHhdcVV8DvjYJtUiSJEmSNOVGHWMsSZIkSdI6ZaQ7xkn+BNRY7VV1r7WuSJIkSZKkKTRq\nV+o3DLxfH3gUsAfwngmpSJIkSZKkKTRSMK6qI4YtT7IEeNKEVCRJkiRJ0hSaqDHG3waeM0H7kiRJ\nkiRpykxUMP5H4OoJ2pckSZIkSVNm1Mm3zuLOk28FuB+wANhvAuuSJEmSJGlKjDr51ikD728DlgGn\nV9V5E1OSJEmSJElTZ9TJt946WYVIkiRJkjQdJmqMsSRJkiRJs9KoY4xv5s5jjMdUVRusUUWSJEmS\nJE2hUccYvx54G3AycGa77G+A3YDFNOONJUmSJEmaNUYNxk8B3lJVn+hbdniSVwPPqqrdJ640SZIk\nSZIm36hjjHcBvj1k+WnAU9e+HEmSJEmSptaowfhqYM8hy/8BuGrty5EkSZIkaWqN2pV6MfCpJE/i\njjHGOwHPAPadwLokSZIkSZoSoz7H+MgkFwCvA57XLv4V8KSq+uFEFydJkiRJ0mQb9Y4xVfUj4EeT\nUIskSZIkSVNu1DHGJFmQ5F+SfCjJvdtlOyXZauLLkyRJkiRpco0UjJM8CrgAeAXwamCTtumZwMET\nW5okSZIkSZNv1DvGhwEfraodgJv6ln8DePzaFJJkxcDr1iT/1bYtTFID7W/t2zZJDklydfs6JEnW\nph5JkiRJUjeMOsb4McD/GbL8cuC+a1NIVc3t/Z5kLnAF8PmB1TatqluGbL4vsAewI1DAqcDFwMfX\npiZJkiRJ0rpv1DvGNwIbD1m+HbBs7cu53V7AH4Hvj3P9vYHDqurSqroMOBTYZwLrkSRJkiSto0YN\nxicDb0uyfvu+kmwJvBc4aQLr2hs4pqpqYPklSS5NcmSS+X3LtwfO7nt/drtMkiRJkqRVGjUYvx64\nH83d3HsA3wV+A1wPvGUiCmpnt34ScHTf4quAxwJb0XTnngcc19c+F7i27/11wNxh44yT7JtkSZIl\ny5ZN5E1uSZIkSdJsNNIY46q6NsnfAk8DHk0TrH8GfHPI3d019RLgB1V1cd9xVwBL2rdXJtkP+EOS\neVW1HFjBnbt4bwKsGFZTVR0OHA6waNGiiapZkiRJkjRLjTsYt92nzwBeXlXfAr41STW9lKZr9qr0\nAm3vjvd5NBNv/U/7fsd2mSRJkiRJqzTurtRVdTPwYOC2ySqmvRu9BQOzUSf56yTbJblbknsDHwLO\nqKpe9+ljgP2TbJFkC5ou30dNVp2SJEmSpHXHqGOMPwO8YjIKae0NnNR2j+63Nc2zkpcDv6B5hvIL\n+9o/QTMx2Lnt65R2mSRJkiRJqzTqc4w3AF6ZZBfgp8DK/saq2n9tiqmqV42x/Hjg+FVsV8AB7UuS\nJEmSpHEbNRg/Ejin/f1hA21OZCVJkiRJmnXGFYyTPAL4RVU9YZLrkSRJkiRpSo13jPFZwPzemyRf\nTXL/ySlJkiRJkqSpM95gnIH3TwTuMcG1SJIkSZI05UadlVqSJEmSpHXKeINxcdfJtZxsS5IkSZI0\n6413VuoAxya5qX2/IfDJJNf3r1RVu09kcZIkSZIkTbbxBuOjB94fO9GFSJIkSZI0HcYVjKvqZZNd\niCRJkiRJ08HJtyRJkiRJnWYwliRJkiR1msFYkiRJktRpBmNJkiRJUqcZjCVJkiRJnWYwliRJkiR1\nmsFYkiRJktRpBmNJkiRJUqcZjCVJkiRJnWYwliRJkiR1msFYkiRJktRpBmNJkiRJUqcZjCVJkiRJ\nnWYwliRJkiR1msFYkiRJktRpBmNJkiRJUqcZjCVJkiRJnWYwliRJkiR12owKxknOSHJjkhXt64K+\ntqcmOT/J9UlOT7JVX1uSHJLk6vZ1SJJMz1lIkiRJkmaTGRWMW/tV1dz2tR1AkvnAScBbgXsBS4AT\n+rbZF9gD2BF4BLAb8KoprVqSJEmSNCvNxGA8zJ7AeVX1+aq6EVgM7JjkIW373sBhVXVpVV0GHArs\nMy2VSpIkSZJmlZkYjN+T5KokP0yyc7tse+Ds3gpVtRL4Tbv8Lu3t79sjSZIkSdJqzLRg/O/A1sAW\nwOHAyUkeBMwFrh1Y9zpgXvv7YPt1wNxh44yT7JtkSZIly5Ytm+j6JUmSJEmzzIwKxlX1k6paXlU3\nVdXRwA+BZwErgI0HVt8EWN7+Pti+CbCiqmrIMQ6vqkVVtWjBggUTfxKSJEmSpFllRgXjIQoIcB7N\nxFoAJNkIeFC7nMH29vfzkCRJkiRpNWZMME6yaZKnJ9kwyZwkLwKeCHwD+CLw8CR7JdkQOAg4u6rO\nbzc/Btg/yRZJtgBeDxw1DachSZIkSZpl5kx3AX3WB94FPAS4FTgf2KOqLgRIshfwYeBY4CfAC/q2\n/QTN2ORz2/efapdJkiRJkrRKMyYYV9Uy4LGraD+NJjQPayvggPYlSZIkSdK4zZiu1JIkSZIkTQeD\nsSRJkiTexP94AAARzklEQVSp0wzGkiRJkqROMxhLkiRJkjrNYCxJkiRJ6jSDsSRJkiSp0wzGkiRJ\nkqROMxhLkiRJkjrNYCxJkiRJ6jSDsSRJkiSp0wzGkiRJkqROMxhLkiRJkjrNYCxJkiRJ6jSDsSRJ\nkiSp0wzGkiRJkqROMxhLkiRJkjrNYCxJkiRJ6jSDsSRJkiSp0wzGkiRJkqROMxhLkiRJkjrNYCxJ\nkiRJ6jSDsSRJkiSp0wzGkiRJkqROMxhLkiRJkjrNYCxJkiRJ6jSDsSRJkiSp0wzGkiRJkqROMxhL\nkiRJkjptxgTjJHdPckSSS5IsT/LzJM9s2xYmqSQr+l5v7ds2SQ5JcnX7OiRJpu9sJEmSJEmzxZzp\nLqDPHOD3wJOA3wHPAj6XZIe+dTatqluGbLsvsAewI1DAqcDFwMcntWJJkiRJ0qw3Y+4YV9XKqlpc\nVUur6raqOoUm3D5mHJvvDRxWVZdW1WXAocA+k1iuJEmSJGkdMWOC8aAk9wW2Bc7rW3xJkkuTHJlk\nft/y7YGz+96f3S4btt99kyxJsmTZsmUTXrckSZIkaXaZkcE4yfrAccDRVXU+cBXwWGArmjvI89r2\nnrnAtX3vrwPmDhtnXFWHV9Wiqlq0YMGCyToFSZIkSdIsMZPGGAOQ5G7AZ4C/APsBVNUKYEm7ypVJ\n9gP+kGReVS0HVgAb9+1mE2BFVdXUVS5JkiRJmo1m1B3j9g7vEcB9gb2q6uYxVu0F3l7959FMvNWz\nI3fugi1JkiRJ0lAzKhgDHwMeCuxWVTf0Fib56yTbJblbknsDHwLOqKpe9+ljgP2TbJFkC+D1wFFT\nXLskSZIkaRaaMV2pk2wFvAq4Cbiib3jwq4DbgIOB+9CMHz4VeGHf5p8AtgbObd9/ql0mSZIkSdIq\nzZhgXFWXAHeZLKvP8avYtoAD2pckSZIkSeM207pSS5IkSZI0pQzGkiRJkqROMxhLkiRJkjrNYCxJ\nkiRJ6jSDsSRJkiSp0wzGkiRJkqROMxhLkiRJkjrNYCxJkiRJ6jSDsSRJkiSp0wzGkiRJkqROMxhL\nkiRJkjrNYCxJkiRJ6jSDsSRJkiSp0wzGkiRJkqROMxhLkiRJkjrNYCxJkiRJ6jSDsSRJkiSp0wzG\nkiRJkqROMxhLkiRJkjrNYCxJkiRJ6jSDsSRJkiSp0wzGkiRJkqROMxhLkiRJkjrNYCxJkiRJ6jSD\nsSRJkiSp0wzGkiRJkqROMxhLkiRJkjptnQnGSe6V5ItJVia5JMk/TXdNkiRJkqSZb850FzCBPgL8\nBbgv8Ejgq0nOrqrzprcsSZIkSdJMtk7cMU6yEbAX8NaqWlFVPwC+DLxkeiuTJEmSJM1060QwBrYF\nbqmqC/uWnQ1sP031SJIkSZJmiXWlK/Vc4LqBZdcB8wZXTLIvsG/7dkWSCya5Nkl3NR+4arqL0JrJ\nIdNdgSTNOl73ZjGve7PauP+7W1eC8Qpg44FlmwDLB1esqsOBw6eiKEnDJVlSVYumuw5JkqaC1z1p\n5ltXulJfCMxJ8uC+ZTsCTrwlSZIkSVqldSIYV9VK4CTgHUk2SvJ4YHfgM9NbmSRJkiRpplsngnHr\nn4F7AH8E/ht4jY9qkmYshzNIkrrE6540w6WqprsGSZIkSZKmzbp0x1iSJEmSpJEZjKV1VJKjkrxr\nDbddnOTYCazlh0keNVH7mw5J/ieJz0aXpHVQkjcn+VT7+8IklWRO+/6MJK9ci30fn2SPiap1IiS5\nb5JfJbn7dNcizRQGY2kWSrI0yQ1Jlif5c5IfJXl1khn333SS3YDlVXXWkLZv9//x0S7bL8mSJDcl\nOWoc+986ySntZ3FVkv8Yss6Dk9zYH/aT/FWSHye5JslhA+t/PcngYzUOBd6x+jOWJE2UJP/UXhNW\nJPlD+//nx0/0carq4Kpa4/A7liSPoHlSypfb9zsnua09n95r777175XkhCRXt9e045IMPpK0t+6T\nk5zb/h1wdZIvJtliYJ1dkvwsycoklyZ5Xnu+VwKnA/v2rfvUJBcnuSLJC/qWb9ruY95EfjbSTDPj\n/oiWNG67VdU8YCvgvcC/A0dMb0lDvZohM8QneRGw/pD1LwfeBXx6dTtOsgFwKvAd4H7AA4Bhd7o/\nAvzvwLI3AUcDDwT26AXhJM8HLq6qJQPrfwV4cpL7ra4uSdLaS7I/8AHgYOC+wJY0/z/ffTrrGtGr\ngOPqzpP6XF5Vc/teR/e1vQvYjOba9CCa8148xr5/CTyrXX9z4NfAx3qNSR5GMyHtW4BNaAL6T/u2\nP66tr+cDwG7A04GPJlmvXf4e4L1VtXy8Jy3NRgZjaZarqmur6ivA84G9kzy8r3mzJF9t76b+JMmD\neg1JPpjk90muS/LTJE8Ytv8k67fdwE5MskGSxyU5s/2G+g9JPtwG1GHbbgA8BfjuwPJNgIOAA4ac\nz0lV9SXg6nGc/j40f2C8r6pWVtWNVXXOwLFeAPwZ+PbAtg8EvlNV19KE5q3bb+XfCLx5SF030vxB\n8fRx1CVJWgvtdeIdwGvb68LKqrq5qk6pqgPade6e5ANJLm9fH+h1DW7vzF6a5IAkf2yvV3skeVaS\nC9veQm/uO964hhAleVCS7wzc0d10FZs8k4Fr4Go8EPhSVV3XXp++CAwdxlNVV1bV7/tC963ANn2r\nHAh8oqq+XlW3VNXVVfXbvvaf0Fz7tmrfb1RVv6iqs4G/APdO8jjggVX1uRHOQZqVDMbSOqKq/ge4\nFOgPuC8A3k7zbfJvgHf3tf0v8EjgXjTfKH8+yYb9+0xyD+BLwE3A86rqLzQX3n8F5gN/AzyV5nFp\nwzwYuK2qLh1YfjDNt9pXjHaWd7ETsLTtWndVmnFgO/TVvzHNH1b7D9n2F8DT2j9oHgOcB7wT+EBV\n/XmM4/2K5ht3SdLk+htgQ5pgOJa30FwHHknz/+bH0YTBnvu1+9gCeBvwSeDFNP/PfwLw1iQPHLGu\n0NxB3Rx4KPBXjHFHN8lGNEH3goGm+yS5su22/P52vZ6PAM9OslmSzYC9gK+PWUyyZZI/AzcAbwD6\nhxPt1K5zbvvFwLFJ7tVrrKpbaP426F3X/phkxyQ7ArcBfwI+CPy/sT8Oad1hMJbWLZfTBN2eL1bV\n/7QXv+No/ngAoKqObb89vqWqDgPuDmzXt+3GwDeA3wIvq6pb2+1+WlU/brdbCnwCeNIY9WwK3Knr\nVdtl+e+A/1qL8+x5AE34/xDNHylfBb7cdwf7ncARQ4I5NH/YPIHmm/yPAhsAjwBOTvLfSb6XZL+B\nbZa35yRJmlz3Bq5qr19jeRHwjqr6Y1Uto/ki+CV97TcD766qm4HP0nyh+8GqWl5V59F0RR7py86q\n+k1VnVpVN7XHfB+rvgbCna+D59Nci+9P06PqMe0+en5Gcz26un3dSnONGque31XVpu25Hdjuv+cB\nNJ/HXjRfVN+Du157+69rr6YJwoe3270GOA3YMMk3k5yeZKxzlWa9OatfRdIssgVwTd/7/juy1wNz\ne2+SvAF4BU2gLJogPL9v/Z1oxgC/sH9sVJJtaS7ii4B70vx/pH/MUr8/AbdP1pFmcrCPAq+rqluS\njHh6d3ED8IOq+nq7/0Np/jB4aJqd7wIMnQ27qq6h6X7eq+t7NH8UvJHmbvI+wM+SfLuqftVuNo+m\nW7YkaXJdDcxPMmcV4Xhz4JK+95e0y27fR+9LXZrrBcCVfe030HddHI8k96UJj0+guSbcjeZaN0zv\nejEPuBGgqq7gjmvzxUkOAE7hjrG+nwPOAZ5Dc3f6UJq5M563qrqq6pokRwNnJ9mi/cxuAI6sqgvb\n2g+mCbr9br+uVdXPgZ3bde8PHEZz5/67wL/QfPn+vSRbDYyZltYJ3jGW1hFJHksTjH8wjnWfQDO+\n93nAZu23zdfSXIR7vkVzV/Xb7R8CPR+j+Ub6wVW1Mc143LES7m+aw90+S+bGNIH6hCRXcMeEWJeO\nNcZ5Nc6hCfXD7AwsBH7XHusNwF5JfjZk3X2BH1fVL4AdgCVtt/Fz2/c9DwXOXoM6JUmjOZNmGM+q\nHnN0Oc0ElD1btssm08E0150d2mvgixnjGlhVK2l6XW27iv0Vd/57/JE044JXVtUK4OM0E2yNxxzg\nPjTXWrjrNfJO18s0T4TYhuHXtfcDB1bVDdxxXVxK84X5gnHWI80qBmNplkuycZJn03QTO7aqzh3H\nZvOAW4BlwJwkb+OOC+ntquo/aMYffzvJ/L5trwNWJHkITVerodpweRp3dDO7lubb/Ee2r97F/jE0\nk4CQZE471nk9YL0kG6bvcU4DjgV2SvM4ivVovtG+imYs8OE0M3r2jvVxmq7Wd5o8K8l9gNdyxxix\ni2lmn55LE+IvatfbsK3z1LHOV5I0MdqJp94GfKSdNOue7WSQz8wdj+U7HjgwyYL2GvU2hj+ZYCLN\nA1YA17Zf+v7batb/Gn1drdM8YmmrNP4KOIT2UU6t/wVemeQe7Twf+9IE3LtIsmeS7ZLcLckCmt5c\nZ7U9ogCOBF6W5rGG96TpEXVK3y4eByytqksG9vs0YMOq6q17MfCUJNvTDLsaz+SY0qxjMJZmr5OT\nLAd+TzMByfuAl41z22/SjB++kKbr2Y3tfu6iqt5JMwHXae2kHW8A/olmXNIngRNWc6xP0I75qsYV\nvRdNMAe4sg3R0HSFvoHmAv7i9vcD4fZJRlYk2bLd3wXtOh+n6cr2HGD3qvpLVV0/cKwVwI3tmLB+\nh9KMUVvRvn8Pzbiv3wMn9z22aTfgjKqa7LsRkiSgnf9if5prwDKa/y/vR3NNgubRRktoguO5NONz\n3zXJZb0deDTNF71fBU5azfqHAy/KHWOHHgX8CFjZ/jyHO09u9XKa3k6XApcBWwP9zzle0dfDagua\na/lymvO/DfiH3rpV9WngGJovni+huQPff6wX0Vw/b5dmVu//BF7Xt/j/tuudBvxzX/d0aZ0ShwhI\nmmxJfgjsV1VnTXctayrJT4BXtN2tJUkalyT/DXyufRThjND2lvou8Kj2cYRS5xmMJUmSJEmdZldq\nSZIkSVKnGYwlSZIkSZ1mMJYkSZIkdZrBWJIkSZLUaQZjSZIkSVKnGYwlSZplkpyR5MOTsN+FSSrJ\noonetyRJM5nBWJKkGSLJUW0wrSQ3J/ljktOTvDbJ+n2r7gm8aZz7XJxkvM/f/j1wf+DnI9R7yjj3\nLUnSjGUwliRpZjmNJpwuBHYFTgbeDnw/yUYAVXVNVS2fyIMm2aCqbq2qK6rqlonctyRJM53BWJKk\nmeWmNpxeVlU/r6r3ATsDjwYOgLt2pU6yZ5JzktyQ5Jok301y3yT7AAcB2/fdid6n3abaO9EnJVkJ\nHDysK3WShyT5SpJrk6xIcmaSHZIsBvYG/r5v3ztPySckSdIEmzPdBUiSpFWrql8k+QawF03QvV2S\n+wGfpelafSIwF9ipbT4BeDjwbJpwDXBt3+YHAW8G3gDU4HGTbA78APgh8DTgGuCxwHrAocBDgXsB\nL2k3uWbNz1KSpOljMJYkaXb4JbDLkOWbA+sDX6iqS9plt48pTrICuKWqrhiy7QlV9am+dRcOtL8W\nWAn8Y1X9pV32m771b6C9wz3aqUiSNLPYlVqSpNkhDLmrC5xNMy75F0lOTPKaJAvGuc8lq2l/FPCD\nvlAsSdI6yWAsSdLs8DDgosGFVXUrzSRduwLnAK8Afp1kx3Hsc+WEVihJ0ixlMJYkaYZL8nDgGcAX\nhrVX48yqejvNGODLgee3zX+hGRO8Js4CHp9kgzHa12bfkiTNGAZjSZJmlrsnuV+SzZPsmGR/4Azg\npzQTXt1Jkp2SHJjksUm2BHYH/opmTDLAUmCrJI9OMj/J3Ueo5aM0k3l9rt3/NklemOSRfft+eJLt\n2n2vP+aeJEmawQzGkiTNLLsAfwB+B3ybJuguBp5YVcO6Pl8L/B1wCvBr4DDgnVV1bNt+IvC1dl/L\ngBeOt5Cqugx4IrABcDrNHeT/C/Sec/xJ4Fc0Y5WXtXVIkjTrpGrYPB6SJEmSJHWDd4wlSZIkSZ1m\nMJYkSZIkdZrBWJIkSZLUaQZjSZIkSVKnGYwlSZIkSZ1mMJYkSZIkdZrBWJIkSZLUaQZjSZIkSVKn\nGYwlSZIkSZ32/wHqvrmdmkqIhwAAAABJRU5ErkJggg==\n",
423 | "text/plain": [
424 | ""
425 | ]
426 | },
427 | "metadata": {},
428 | "output_type": "display_data"
429 | }
430 | ],
431 | "source": [
432 | "plt.figure(figsize=(FIG_WIDTH,5))\n",
433 | "test_district_vc.plot(kind='bar')\n",
434 | "plt.yticks(fontsize=FS_TICKS)\n",
435 | "xlabels=['Dhaka ({:.2f}%)'.format(test_district_vc.loc[1]/test_district_vc.sum()*100),\n",
436 | " 'Comilla ({:.2f})%'.format(test_district_vc.loc[2]/test_district_vc.sum()*100)]\n",
437 | "plt.xticks([0,1],xlabels,rotation='horizontal',fontsize=FS_TICKS)\n",
438 | "plt.xlabel('District', fontsize=FS_AXIS_LABEL)\n",
439 | "plt.ylabel('Frequency', fontsize=FS_AXIS_LABEL)\n",
440 | "plt.title('District Distribution (Test)',fontsize=FS_TITLE)\n",
441 | "plt.show()"
442 | ]
443 | },
444 | {
445 | "cell_type": "markdown",
446 | "metadata": {},
447 | "source": [
448 | "There are less digits from Dhaka than Comilla. The ratio is slightly higher in the test dataset. "
449 | ]
450 | },
451 | {
452 | "cell_type": "markdown",
453 | "metadata": {},
454 | "source": [
455 | "### Distribution of images by gender"
456 | ]
457 | },
458 | {
459 | "cell_type": "code",
460 | "execution_count": 97,
461 | "metadata": {},
462 | "outputs": [],
463 | "source": [
464 | "train_gender_vc=df_train_e['gender'].value_counts()"
465 | ]
466 | },
467 | {
468 | "cell_type": "code",
469 | "execution_count": 39,
470 | "metadata": {},
471 | "outputs": [
472 | {
473 | "data": {
474 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA80AAAFHCAYAAACbAq5iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu4HVV9//H3RwJGCQSBiJoqEQRRLkHMY7GVSwvaqkWR\noKVaBasNarUqIGoRQ0XF9Ce1KqigVgSUIhcvKN5Q1FbUGoSAkUgVUAHRiEDIDVG+vz9mDm42Z0J2\ncpKzT/J+Pc9+2HutNTPfnT+Y89mzZk2qCkmSJEmSdH8PGu8CJEmSJEkaVoZmSZIkSZI6GJolSZIk\nSepgaJYkSZIkqYOhWZIkSZKkDoZmSZIkSZI6GJolSZIkSepgaJYkSZIkqYOhWZIkSZKkDpPGu4Bh\nte2229aMGTPGuwxJkiRJ0jpw+eWX/6aqpj3QOENzhxkzZjB//vzxLkOSJEmStA4k+dnqjHN6tiRJ\nkiRJHQzNkiRJkiR1MDRLkiRJktTB0CxJkiRJUgdDsyRJkiRJHQzNkiRJkiR1MDRLkiRJktTB0CxJ\nkiRJUof1GpqTvDrJ/CR3JTmjr++AJIuSLE9yaZLte/qSZF6SW9vXvCTp6Z/RbrO83ceBfft+YZKf\nJVmW5DNJtl7nX1aSJEmSNOGt7yvNNwNvB/6ztzHJtsCFwPHA1sB84NyeIXOAg4GZwB7AQcCRPf3n\nAFcA2wDHAecnmdbue1fgNODFwHbAcuADY/y9JEmSJEkboPUamqvqwqr6DHBrX9chwMKqOq+qVgIn\nADOT7NL2Hw6cXFU3VtVNwLuBIwCS7AzsBcytqhVVdQFwFTC73fZFwEVV9a2qWkoTzA9JssU6+6KS\nJEmSpA3CpPEuoLUrsGDkQ1UtS/KTtn1Rf3/7fteeba+rqjtX0X9Zz75/muQuYGfg8jH+HhoSM970\nhfEuQdoo3fCuZ493CZIkSWNqWBYCmwLc0de2BNiio38JMKW9r3nQbfv775VkTnvP9fzFixcP/CUk\nSZIkSRuWYQnNS4Et+9qmAnd29E8FllZVrcG2/f33qqrTq2pWVc2aNm3awF9CkiRJkrRhGZbQvJBm\nkS8AkmwO7Ni236+/fd/bt0PfPcr9/b373hHYDLh2DOuXJEmSJG2A1vcjpyYlmQxsAmySZHKSScCn\ngd2SzG775wILqmpRu+mZwFFJpieZDhwNnAFQVdcCVwJz2/0dAuwOXNBu+wngoCT7tGH8RODCvnug\nJUmSJEm6n/V9pfktwArgTcDft+/fUlWLaVa7fgdwG/AU4LCe7U4DLgKubl+fb9tGHAbMarc9CTi0\n3SdVtRB4BU14/jWwOfCqdfP1JEmSJEkbkjS3BavfrFmzav78+eNdhtaQq2dL48PVsyVJ0kSR5PKq\nmvVA44blnmZJkiRJkoaOoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6G\nZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmD\noVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnq\nYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmS\nOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmS\npA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmS\nJKmDoVmSJEmSpA5DFZqTzEhycZLbktyS5JQkk9q+A5IsSrI8yaVJtu/ZLknmJbm1fc1Lkr79Xtpu\nuyjJgePx/SRJkiRJE8tQhWbgA8Bi4JHAnsB+wKuSbAtcCBwPbA3MB87t2W4OcDAwE9gDOAg4sqf/\nHOAKYBvgOOD8JNPW6TeRJEmSJE14wxaaHwucW1Urq+oW4EvArsAhwMKqOq+qVgInADOT7NJudzhw\nclXdWFU3Ae8GjgBIsjOwFzC3qlZU1QXAVcDs9fi9JEmSJEkT0LCF5v8A/jbJQ5NMB57JH4PzgpFB\nVbUM+EnbTn9/+76377qqurOj/15J5iSZn2T+4sWLx+grSZIkSZImqmELzd8CdgOWADfSTMP+DDAF\nuKNv7BJgi/Z9f/8SYEp7X/MDbXuvqjq9qmZV1axp05y9LUmSJEkbu6EJzUkeRHNV+UJgc2Bb4GHA\nPGApsGXfJlOBkavH/f1TgaVVVauxrSRJkiRJoxqa0EyzwNdjgFOq6q6quhX4GPAsYCHNIl8AJNkc\n2LFtp7+/fd/bt0OSLTr6JUmSJEka1dCE5qr6DXA98Iokk5JsRbPA11XAp4HdksxOMhmYCyyoqkXt\n5mcCRyWZ3t4LfTRwRrvfa4ErgblJJic5BNgduGA9fj1JkiRJ0gQ0NKG5dQjN4l+LaRb6uht4fVUt\nplnt+h3AbcBTgMN6tjsNuAi4un19vm0bcRgwq932JODQdp+SJEmSJHWaNN4F9KqqK4H9O/ouAXbp\n6Cvg2PY1Wv8NXfuVJEmSJKnLsF1pliRJkiRpaBiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmS\nJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmS\nJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiW\nJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOkwa\n7wIkSZK0dma86QvjXYK00brhXc8e7xK0jnmlWZIkSZKkDoZmSZIkSZI6GJolSZIkSepgaJYkSZIk\nqcNAoTnJ1uuqEEmSJEmShs2gV5pvTvJfSZ6+TqqRJEmSJGmIDBqan9duc1GSG5LMTbL9OqhLkiRJ\nkqRxN1BorqovVtULgEcB7wEOBn6a5CtJ/jbJZuuiSEmSJEmSxsMaLQRWVb+tqvdW1ZOA1wH7AufQ\nTN9+e5KHjmWRkiRJkiSNh0lrslGShwMvAV4KPBY4H/gozRXoNwFPAZ4xRjVKkiRJkjQuBgrNSZ4D\n/APwTODHwGnAWVV1W8+Y7wLXjGWRkiRJkiSNh0GvNH8COBfYt6q+1zHmZmDeWlUlSZIkSdIQGDQ0\nP7Kqlq5qQFWtAI5f85IkSZIkSRoOgy4E9owkf9PfmOSgJM8bo5okSZIkSRoKg4bmtwF3jdK+su2T\nJEmSJGmDMWho3hG4dpT2/2v7JEmSJEnaYAwamm8HHjdK+07AnWtfDiQ5LMk1SZYl+WmSfdr2A5Is\nSrI8yaVJtu/ZJknmJbm1fc1Lkp7+Ge02y9t9HDgWtUqSJEmSNmyDhubPAe9Jcu9V5SSPA05u+9ZK\nkqfTrLz9UmALYF/guiTbAhfSLDC2NTCfZhXvEXOAg4GZwB7AQcCRPf3nAFcA2wDHAecnmba29UqS\nJEmSNmyDhuZjgeXAoiTXJ7me5pnMK4A3jEE9/wq8raq+W1X3VNVNVXUTcAiwsKrOq6qVwAnAzCS7\ntNsdDpxcVTe2498NHAGQZGdgL2BuVa2oqguAq4DZY1CvJEmSJGkDNtAjp6rqjiRPBf4a2LNtvgL4\nclXV2hSSZBNgFvC5JD8BJgOfoQnjuwILeupY1o7ZFVjU39++37V9vytwXVXd2dHfW8McmqvWPOYx\nj1mbryNJkiRJ2gAM+pxm2nD8xfY1lrYDNgUOBfYB7gY+C7wFmAIs7hu/hGYKN23/HX19U9r7mvv7\nRvqn9xdQVacDpwPMmjVrrX4EkCRJkiRNfAOH5iRPBg4AHk7f9O6qOmotalnR/vf9VfXL9lj/ThOa\nvwVs2Td+Kn9cfGxpX/9UYGlVVZL+vv5tJUmSJEka1UChOcnraRb9ugG4Gei9GrtWV2ar6rYkN3bs\ncyHNfcsjdWxO84irhT39M4H/bT/P7OvbIckWPVO0ZwKfWJt6JUmSJEkbvkEXAns9cFRV7VBVT6uq\nfXpe+45BPR8DXpPk4Uke1h7v88Cngd2SzE4yGZgLLKiqRe12ZwJHJZmeZDpwNHAGQFVdC1wJzE0y\nOckhwO7ABWNQryRJkiRpAzbo9OypjMGjpVbhRGBb4FpgJfAp4B1VtTLJbOAU4Gzge8BhPdudBuwA\nXN1+/kjbNuIwmhB9G/Bz4NCq6r9HWpIkSZKk+xg0NH8KeAbwoXVQC1V1N/Cq9tXfdwmwy/024t7F\nyY5tX6P13wDsP1Z1SpIkSZI2DoOG5p8CJybZm+aq7t29nVX1vrEqTJIkSZKk8TZoaP4nmmnTB7Sv\nXgUYmiVJkiRJG4yBQnNVPXpdFSJJkiRJ0rAZdPXseyXZJknGshhJkiRJkobJQKE5yaZJ3pnkduBX\nwGPb9pOSvGJdFChJkiRJ0ngZ9Erz8cBs4GXAXT3tlwMvHauiJEmSJEkaBoOG5hcBR1bVBcA9Pe1X\nA48fs6okSZIkSRoCg4bmRwE3jNK+CYOvxC1JkiRJ0lAbNDT/CNhnlPbnA1esfTmSJEmSJA2PQa8O\nvw04I8mjaAL3IUkeD7wEOGisi5MkSZIkaTwNdKW5qj5Lc1/zc2imZL8D2B04uKq+MvblSZIkSZI0\nfga+D7mqLgYuXge1SJIkSZI0VAa9p1mSJEmSpI3GQFeak9wGVFd/VW291hVJkiRJkjQkBp2efUzf\n502BJwEHAyeNSUWSJEmSJA2JgUJzVX10tPYk84H9xqQiSZIkSZKGxFjd0/w14LljtC9JkiRJkobC\nWIXm5wO3jtG+JEmSJEkaCoMuBHYF910ILMAjgGnAq8ewLkmSJEmSxt2gC4F9vu/zPcBi4NKqWjg2\nJUmSJEmSNBwGXQjs+HVViCRJkiRJw2as7mmWJEmSJGmDM+g9zXdz33uaO1XVZmtUkSRJkiRJQ2LQ\ne5qPBt4KXAR8p217KnAQcALN/c2SJEmSJG0QBg3NfwkcV1Wn9bSdnuQVwLOq6jljV5okSZIkSeNr\n0HuaDwS+Nkr7JcABa1+OJEmSJEnDY9DQfCtwyCjtzwN+s/blSJIkSZI0PAadnn0C8JEk+/HHe5r3\nBv4amDOGdUmSJEmSNO4GfU7zx5L8GHgt8IK2+Rpgv6r69lgXJ0mSJEnSeBr0SjNVdRlw2TqoRZIk\nSZKkoTLoPc0kmZbkdUnel2Sbtm3vJNuPfXmSJEmSJI2fgUJzkicBPwZeBrwCmNp2PRN459iWJkmS\nJEnS+Br0SvPJwAeqanfgrp72LwFPG7OqJEmSJEkaAoOG5icDHxul/WZgu7UvR5IkSZKk4TFoaF4J\nbDlK++OBxWtfjiRJkiRJw2PQ0HwR8NYkm7afK8ljgHcBF45pZZIkSZIkjbNBQ/PRwCOAXwMPAb4J\n/ARYDhw3tqVJkiRJkjS+BnpOc1XdkeTPgKcDe9GE7h8AX66qWgf1SZIkSZI0blY7NLdTsr8B/ENV\nfQX4yroqSpIkSZKkYbDa07Or6m5gJ+CedVeOJEmSJEnDY9B7ms8CXrYuCpEkSZIkadgMGpo3A16Z\nZH6S05L8e+9rLApKslOSlUnO7mk7IMmiJMuTXJpk+56+JJmX5Nb2NS9JevpntNssb/dx4FjUKUmS\nJEna8A20EBiwJ3BV+/6JfX1jtRDYqcD3Rz4k2ZbmcVYvp3nk1YnAucDe7ZA5wMHAzLaGrwLXAx9q\n+88BvgM8q32dn2SnqvK50pIkSZKkVVqt0JxkD+CHVbXPuiwmyWHA7cBlwOPa5kOAhVV1XjvmBOA3\nSXapqkXA4cDJVXVj2/9umiD9oSQ706zy/YyqWgFckOS1wGz+GKolSZIkSRrV6k7PvgLYduRDki8k\neeRYFpJkS+BtwFF9XbsCC0Y+VNUymmdD7zpaf/u+t++6qrqzo1+SJEmSpE6rG5rT93lf4CFjXMuJ\nwEdHrhj3mALc0de2BNiio38JMKW9r/mBtr2PJHPa+7XnL17s7G1JkiRJ2tgNuhDYOpFkT+BA4D2j\ndC8Ftuxrmwrc2dE/FVhaVbUa295HVZ1eVbOqata0adMG+xKSJEmSpA3O6obm4v4LfY3Vwl8A+wMz\ngJ8nuQU4Bpid5AfAQppFvgBIsjmwY9tOf3/7vrdvhyRbdPRLkiRJktRpdVfPDnB2krvaz5OBDydZ\n3juoqp6zhnWcDvxXz+djaEL0K9vP/y/JbOALwFxgQbsIGMCZwFFJLm4/Hw28r63n2iRXAnOTvIVm\n9ezdgQvWsE5JkiRJ0kZkdUPzx/s+nz3qqDVUVcuBewN4kqXAypHHQrWB+ZT2uN8DDuvZ/DRgB+Dq\n9vNH2rYRhwFnALcBPwcO9XFTkiRJkqTVsVqhuapeuq4L6TveCX2fLwF26RhbwLHta7T+G2imf0uS\nJEmSNJChWAhMkiRJkqRhZGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmD\noVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnq\nYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmS\nOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmS\npA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmS\nJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmS\nJEnqYGiWJEmSJKnD0ITmJA9O8tEkP0tyZ5Irkzyzp/+AJIuSLE9yaZLte/qSZF6SW9vXvCTp6Z/R\nbrO83ceB6/v7SZIkSZImnqEJzcAk4BfAfsBU4C3Ap9rAuy1wIXA8sDUwHzi3Z9s5wMHATGAP4CDg\nyJ7+c4ArgG2A44Dzk0xbp99GkiRJkjThDU1orqplVXVCVd1QVfdU1eeB64EnA4cAC6vqvKpaCZwA\nzEyyS7v54cDJVXVjVd0EvBs4AiDJzsBewNyqWlFVFwBXAbPX5/eTJEmSJE08QxOa+yXZDtgZWAjs\nCiwY6auqZcBP2nb6+9v3vX3XVdWdHf29x5yTZH6S+YsXLx6rryJJkiRJmqCGMjQn2RT4BPDxqloE\nTAHu6Bu2BNiifd/fvwSY0t7X/EDb3quqTq+qWVU1a9o0Z29LkiRJ0sZu6EJzkgcBZwG/A17dNi8F\ntuwbOhW4s6N/KrC0qmo1tpUkSZIkaVRDFZrbK8MfBbYDZlfV3W3XQppFvkbGbQ7s2Lbfr79939u3\nQ5ItOvolSZIkSRrVUIVm4IPAE4CDqmpFT/ungd2SzE4yGZgLLGinbgOcCRyVZHqS6cDRwBkAVXUt\ncCUwN8nkJIcAuwMXrJdvJEmSJEmasCaNdwEj2ucuHwncBdzS85jlI6vqE0lmA6cAZwPfAw7r2fw0\nYAfg6vbzR9q2EYfRhOjbgJ8Dh1aVK31JkiRJklZpaEJzVf0MyCr6LwF26egr4Nj2NVr/DcD+a12k\nJEmSJGmjMmzTsyVJkiRJGhqGZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmS\nOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmS\npA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmS\nJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmS\nJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmS\nJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmSJEnqYGiWJEmSJKmDoVmS\nJEmSpA6GZkmSJEmSOmwUoTnJ1kk+nWRZkp8leeF41yRJkiRJGn6TxruA9eRU4HfAdsCewBeSLKiq\nheNbliRJkiRpmG3wV5qTbA7MBo6vqqVV9T/AZ4EXj29lkiRJkqRhtzFcad4Z+H1VXdvTtgDYv39g\nkjnAnPbj0iQ/XvflSRrFtsBvxrsIDS7zxrsCSZqQPO9NYJ77JrTtV2fQxhCapwBL+tqWAFv0D6yq\n04HT10dRkrolmV9Vs8a7DkmS1gfPe9Jw2+CnZwNLgS372qYCd45DLZIkSZKkCWRjCM3XApOS7NTT\nNhNwETBJkiRJ0ipt8KG5qpYBFwJvS7J5kqcBzwHOGt/KJK2Ct0lIkjYmnvekIZaqGu8a1rkkWwP/\nCTwduBV4U1V9cnyrkiRJkiQNu40iNEuSJEmStCY2+OnZksZOkhlJKskarbyf5IlJ5ifJWNe2viTZ\nI8ll412HJGn8JTkhydlrsf1JSV43ljWtrSQPTrIoybTxrkUaFoZmaSOR5IYkv0uybV/7FW0QnrEe\nyjgReHe1U1ySfCPJyiRL29d9no2e5OVJftL2fSnJo7p23LOPkdcfkry/p/+hST6Q5DdJ7kjyrZ6+\nFyb5Zftv9Bc97TsmuSzJJiNtVXUVcHuSg8bmn0SStCba/2ev6Pt/f+d5Yti0ofQlwGmj9L21PTcf\n2NOWJPOS3Nq+5nX9CJ1k7yRfTfLbJIuTnJfkkaOM2yzJNUluHGmrqrtobmt8U8+4mUkWtufQo3ra\nN03yvSSPXtN/B2kiMDRLG5frgb8b+ZBkd+Ch6+PA7cn6L4DP9HW9uqqmtK/H94zfH3gn8Fxga5ra\nz+naf88+pgCPAFYA5/UMOb3dzxPa/76+Pc4k4F3AXsCrgff3bPM+4PVV9Ye+w30COHI1vrYkad06\nqPf//1V183gXNIAjgIurakVvY5IdgecDv+wbPwc4mOYpMHsAB9F9LnoYzXlvBrA9zaNWPzbKuDcA\ni0dp/yRweJIHt59PAo5pj31ckke07UcBF1TVLzrqkDYIhmZp43IWza/aIw4HzuwdkOTZ7dXnJUl+\nkeSErp0lmZrko+1V2puSvL33qmyfpwM/qKqVq1nr3wDnV9XCqvodzVXqfds/Jh7IbODXwH+3de5C\ns2r+nKpaXFV/qKrL27HbADdV1S+BS4Ad2m0Obdu/N8r+vwEc0PPHhCRpiLRXWi9LcnuSBe0PsSN9\n32jPV5e1V6cvSrJNkk+0577v986+SvLe9ny4JMnlSfZZk+OO4pnAN0dpPxV4I/C7vvbDgZOr6saq\nugl4N03wvp+q+mJVnVdVS6pqOXAK8Od9tT4W+HuaQNy//Y3AbcDebdNjga+3x/0/4DFJtqc5375n\nFd9R2iAYmqWNy3eBLZM8oQ23hwH992ItownWWwHPBl6Z5OCO/Z0B/B54HPAk4BnAyzvG7g78eJT2\nk9rpXt9+gD8uRqag7baKMSMOB84cmQYOPAX4GfCv7bGuTjK77VsMbJPkT2iC/cIkWwBvAd482s7b\nPxruBh4/Wr8kafwkmQ58AXg7zcyiY4ALct97dA8DXgxMB3YEvkNzJXZr4Bpgbs/Y7wN7tn2fBM5L\nMnkNj9vrfufFJM8H7qqqi0cZvyuwoOfzgrZtdewLLOxrez/wLzQzs0ZzDc2VZYAfAs9oz5UzgJ8C\n7wXeUFV3r2YN0oRlaJY2PiNXm59Oc0K8qbezqr5RVVdX1T3t/bvnAPv17yTJdsCzgNdV1bKq+jXN\nr82HdRx3K5rpYb3eSHNldzrNNLKLeq4kfwl4fpqFtx4CvBUoHmA6efvL937Ax3ua/4QmbN8BPIpm\nGvbHkzyhqu4BXgmcT/MHzj8C/0rzx8QeSS5N8uUk/WH9zvY7SZLGz2faq7q3Jxm5/efvaaY9X9ye\ny74KzKc5Z434WFX9tKruAL4I/LSqLqmq39Pc2vOkkYFVdXZV3VpVv6+qk4EHM/qPpqtz3F73OS+2\nP9i+E3htx/gpNOexEUuAKV33Nffsdw+ac+gbetqeB2xSVZ9exaa957ljaM6Vn6O5venP2/7rk3w2\nyTfbwC9tkNZoBVxJE9pZwLdoplqd2d+Z5E9p7vHdDdiM5o+D8/rH0dwjtSnwy57z9YOArvuabgO2\n6G3om/r88SR/R/PHxfur6pJ2avgFwJbAf9CcoG9k1V4M/E9VXd/TtoLmyvDb2z+IvpnkUpor49dU\n1deAr7XffyYwi+aPixuApwGPBj7CH6ep0X6X2x+gFknSunVwVV3S17Y9zY+uvQs2bgpc2vP5Vz3v\nV4zyecrIhyTHAC+j+dG1aM5J91lUc4Dj9uo/L54AnFVVN3SMX9oee8RUYGnPrKr7SfI4mh8FXltV\nI7csbQ78G91hfsS957mq+tnI+CQPpbky/wyaH5jPpbnC/sMkX6uq3z7AfqUJxyvN0kamPfFdT3Py\nu3CUIZ+k+SX50VU1FfgQf5wa3esXwF3AtlW1Vfvasqq6popdBez8QOX1HquqTq2qnapqO5rwPIlm\nitiqvIT7XmUeOfZox7qP9tf6U4B/pvmDaJP23+v7NIuujIybTvODwmjTzSVJ4+sXNOFzq57X5lX1\nrkF31N6/fCzwAuBhVbUVzdXervPiIMftPy8eAPxzkluS3ELzg+2nkryx7V/IH6dL077vn3LdW/v2\nNGt1nFhVZ/V07UQzxfq/2+NcCDyyPe6MnnFP4L7TwUe8FfhwVf2KZor5/PaK/Y00t2tJGxxDs7Rx\nehnwl1W1bJS+LYDfVtXKJE8BXjjaDtqFs74CnJxkyyQPSvOIpvtN5W59Fdhr5D6wJFsl+askk5NM\nSvIimnuuvtT2T06yWxqPoZm+/d6quq3rSyX5M5qp3v1Xxr8F/Bx4c3usP6dZyfvLfeNeTrNY2ZXA\nrcBDkjx3C0cIAAAFWklEQVSxHXtdz7j9aBZEuaurFknSuDkbOKg9x2zSnk/2b+/HHdQWNGt3LAYm\nJXkr973auzbHvZj73v50AM0srz3b1800q2Of2vafCRyVZHr74+3RNGuL3E/b/3XglKr6UF/3D2kC\n+chxXk5zpX1P2tli7fZb06yF0rvfJwL7Ax9sm64H/rK9ZWsnmnOttMExNEsbofY+rvkd3a8C3pbk\nTppfkz+1il29hOaK649oppmdD9zvOZDtMX9FcwJ/btu0Kc1iKYuB3wCvoZlmd23bP5nmqvdS4H9p\npoIdP7K/JP+S5It9hzkcuLCq7nPvdLtIyXNprq7fAXwYeElVLerZ37Y095Ed327ze5p7n79Oc7X9\nNT27fFHbJkkaMu3jj55Ls8jVYpog+AbW7O/eL9P8mHstzYKSK+m4DWkNjnsm8Kx23Q7a+6ZvGXkB\nfwBuq6ql7fjTgIuAq9vX5+l5xnOa5yi/qP34cpo1Q05Iz3Os2+P8vu84vwXuaT+PPGLxhcDHR/lx\n+FSaqd4j495MMztrIfDOdn/SBieruA1CksZU+wv1x4GnrOoerGHWLqhyWlU9dbxrkSRNbEneCfy6\nqv5jvGsZkeZxiguAfdtFPqWNnqFZkiRJkqQOTs+WJEmSJKmDoVmSJEmSpA6GZkmSJEmSOhiaJUmS\nJEnqYGiWJEmSJKmDoVmSJEmSpA6GZkmStFqSHJPkhvGuQ5Kk9cnQLEnSBJJkuyTvSfJ/SVYm+XWS\ny5K8JsmU8a5PkqQNzaTxLkCSJK2eJDOAbwNLgOOBq4AVwK7Ay4FbgU+OU3mrJclmVfW78a5DkqTV\n5ZVmSZImjg8C9wCzquq/qupHVXV9VX2+qg4GzgFIMjXJ6e1V6DuTfDPJrJGdJDkiydIkByT5YZJl\nSS5N8tjegyU5Nskt7dgzgftdyU7y0iQ/aq96X5vk9Uke1NNfSf4pyYVJlgHvXEf/NpIkrROGZkmS\nJoAk2wB/BZxaVctGG1NVlSTAF4DpwN8ATwK+BXw9ySN7hj8YeDPwD8BTga2AD/Uc7wXA24G5wF7A\nj4Gj+mr6R5oQ/FbgCcDRwBuBV/WVNhe4GNgdOHXAry5J0rhKVY13DZIk6QEk+VPgu8AhVfXpnvYb\naQIvwNnAp4DPAdOqakXPuCuBT1bVvyU5AvgYsEtV/bjtfxHwn8DkNnxfBiysqn/s2cclwOOqakb7\n+efAcVV1Vs+Y1wFzquqJ7ecCTqmq14zpP4gkSeuJ9zRLkjSx7QNsApwOTAaeDDwUWNxcdL7XZGDH\nns93jQTm1s3AZsDDgN/SXDn+SN+xvgM8DiDJNODRwGlJPtgzZhKQvu3mD/ytJEkaEoZmSZImhp8A\nBezS21hV1wMkWd42PQj4FU2Y7rek5/3v+/pGpp6t7q1bI+NeAVz2AGNHnU4uSdJEYGiWJGkCqKpb\nk3wFeHWS91fV0o6hPwC2A+6pquvW4pDXAHvTTNkesXdPPb9KcjOwY1WduRbHkSRpqBmaJUmaOF5F\n88ipy5OcACyguWL8ZGAm8BXgknbMZ5McCywCHgH8NXBJVf33ah7rvcCZSb4PfAM4FPhTmqnbI+YC\n709yO81CX5vSLBo2vapOWvOvKUnS8DA0S5I0QVTVdUmeRLPq9Yk09xTfTXNV+AM0C25VkmfRrHz9\nYeDhNNO1vw2s9hXhqjo3yQ7AO2jukf4c8O/AET1jPtI+RuoNwEk0z4xeCJyydt9UkqTh4erZkiRJ\nkiR18DnNkiRJkiR1MDRLkiRJktTB0CxJkiRJUgdDsyRJkiRJHQzNkiRJkiR1MDRLkiRJktTB0CxJ\nkiRJUgdDsyRJkiRJHf4/UAOK0AB8m4QAAAAASUVORK5CYII=\n",
475 | "text/plain": [
476 | ""
477 | ]
478 | },
479 | "metadata": {},
480 | "output_type": "display_data"
481 | }
482 | ],
483 | "source": [
484 | "plt.figure(figsize=(FIG_WIDTH,5))\n",
485 | "train_gender_vc.plot(kind='bar')\n",
486 | "plt.yticks(fontsize=FS_TICKS)\n",
487 | "xlabels=['Male ({:.2f}%)'.format(train_gender_vc.loc[0]/train_gender_vc.sum()*100),\n",
488 | " 'Female ({:.2f})%'.format(train_gender_vc.loc[1]/train_gender_vc.sum()*100)]\n",
489 | "plt.xticks([0,1],xlabels,rotation='horizontal',fontsize=FS_TICKS)\n",
490 | "plt.xlabel('Gender', fontsize=FS_AXIS_LABEL)\n",
491 | "plt.ylabel('Frequency', fontsize=FS_AXIS_LABEL)\n",
492 | "plt.title('Gender Distribution (Train)',fontsize=FS_TITLE)\n",
493 | "plt.show()"
494 | ]
495 | },
496 | {
497 | "cell_type": "code",
498 | "execution_count": 106,
499 | "metadata": {
500 | "collapsed": true
501 | },
502 | "outputs": [],
503 | "source": [
504 | "test_gender_vc=df_test_e['gender'].value_counts()"
505 | ]
506 | },
507 | {
508 | "cell_type": "code",
509 | "execution_count": 107,
510 | "metadata": {},
511 | "outputs": [
512 | {
513 | "data": {
514 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAFYCAYAAACRYuXbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4XFWZ7/HvT4KChEFIpDUKERxQFBDTNt6+KC1gKwoi\nqE2rLThF24utguKEEgVF+oIjKiAKAg7I4Ai2guJw26GNQ8QoIgIi4BDGTIz63j/2LiiKOsmpk5Mz\npL6f59nPqb3W2nu/VTmwz1tr2KkqJEmSJEkaVveZ7AAkSZIkSZpMJsaSJEmSpKFmYixJkiRJGmom\nxpIkSZKkoWZiLEmSJEkaaibGkiRJkqShZmIsSVrnJJmbpJIcNNmxjCTJt5N8e4KudVD7ecztuf5l\nE3H99noLkkzqMyKTPCvJyiRbTmYcq5LkhUluSLLZZMciScPExFiSNGZJtkhyZJKfJVma5LYkv09y\nZpK9Jzu+idImmdW1LUvy2ySfS7JPkozjtRYk2We8zjeekmzWxvfkyY6lV5L7AO8GTq6qP3d9WTCa\nbe5aiOcNSV7Qp+pzwE3AG8f7mpKkkaVqUr+8lSRNU0keD5wPbA6cBfwQWAlsBewF/D0wv6o+Pgmx\nzQWuAF5SVadOwPW+DWwHvKEtuj/wMGBvYHvgAmC/qlredcx9Aarq9gGvVcAnqurlAxyzHrA+cFu1\nN/425odU1cMHuf5qrjOX5nN/e1Ud1VM3A5hRVbeO1/UGkWQv4Dzg0VV1SZJtgP/V0+x04NvAJ3rK\nv1BVK8Y5nj8BC6vqWX3q3gy8Bfi7qrplPK8rSepvxmQHIEmafpJsCnwZCPCEqvplT5MFSfagSRCn\nvSTr03yZvKokdnlVndFz3FuBw4F3AScCL+zUDZoQj0WSjapqRVX9Ffjr2r7eqlTVncCdkxjCy4BF\nVXVJG8/lwOXdDZKcDvyu999xEpwJHA3sD0x2LJI0FBxKLUkai1cCDwEO6ZMUA1BVF1bVl7vLkmyc\n5D+TXJHk9iRXJfm/STbsaVdJTk7yjHaY9q1JLus39DTJg5Kc1Q5fviHJJ4BN+sWUZNskn0mypB32\n/cskr+hps1t7/RcneVuSK4FbgccM8gG1n0FV1ZHAN4F/TfKIruvca45xkv2T/CjJzUlWtO/5Y23d\n3K45ui/rGuZ7alu/oN1/XJJPJrkOuLqtu9cc465rbp/kovZ6f0zy7rZ3t7tNJVnQ59i73kOS3Wh6\niwGO7IpvQXd8fc7x0iSL2n/jJUlOT/KQnjanJrkzyZZJPp9m2P6N7e/Ihr3n7HON+9KMYvjG6tqu\n5jybJXlfmukCt7c/j05yv552eyb5Tvv7eEuSK5N8Ksn9kmzQfg5bAs/s+pz+q3N8VV0BXArstybx\nSpJGzx5jSdJY7APcApw92gOSbAB8C3gEcBJwGbAD8DrgsUn26gzzbf09zVDkE2iGtr4cOD3Jz6rq\n113n/CbwcOAjND2A+wGn9bn+I4EfADcA7wduBJ4BnJRki6p6b88hh9F8gfwRmp7OG0b7Xvv4FLA7\nsCfw234NkuxOMyT928DbgDuAbdoYAZYA/8a9h/v+rudUn6VJiI8AZq4mro1phnl/rb32nsBbaYbH\n//so3le3XwOvp/lszwa+1Jb/YqQD2iHDRwP/j+bzngP8B/DkJI+vqu7PPMB/Ab8C3kTz+/Eyms/l\nLauJ7QnABsDCwd7SPWLdCPgO8FCa39/LgZ1p5gI/Gti3bbcjzZDtn9OMFFgBbE3z38yGwFKaf8fj\nab5IOK69xLU9l/wx8LSxxitJGoyJsSRpLB4DXNo7HDjJTJoEpOP2qlravn498Djg76vq4q5jfkEz\nzHgPmiStY3tgp06PdJKzgKuAl3L3wkSvoElKXlpVp7TtPgpc1CfmDwPXATt3zRf9WJLPAG9P8rGq\nurmr/QOA7apq2Wo/jdXr9Kqvaj7vs4BlwJ7t0OeONwG0MZ8xiuG+vwP27fmSYSQPBN5VVUe0+x9N\n8mnglUk+2Bl2PBrtglZfpEmMF61uOHKSWcAC4HvAU9uh1iT5LvBV4M00yXLHfYCvV9Wb2/2PJdmc\n5guT1SXGj25/Xr7KVqt2GM2/385V9Zuu9/Er4INJdq2q7wFPp/n7ao+u331ohtR3nJHkWOCaVXxO\nlwOzk8yuqiVrELckaRQcSi1JGotNaJK4Xh+g6cHrbOd21f0LTY/tH5PM6mzAhW39U3vO9d3uYdpV\n9WfgEppe1I5nAdfT9KJ22v2VJgm+S5IH0PSGngVs2HP9r9HMhd6l5/qnj1NSDHd/Vhuvos1NwEbA\nM5I1WsX6Y6NMigEK+GBP2QdoemefuQYxjMYewP2AD3SSYoCqOo+mV/hei1IBH+3Z/w4wK8mqPleA\nWe3PG8cYKzS/v98Dru/5/el8mdP5/b2J5vN7TpqVsMeq01s+a5WtJEnjwh5jSdJYLKV/kncczeNm\n4N6LBj2SZijpSL1fD+zZ/32fNjfSDPPt2Bq4vDuxav2mZ/8RNMnK29ptNNfvHaK8Jjqf1aoS7Y/S\nLLb0FeDPSS6iWeDs7Kq6Y4BrDRL3dT3DleHuz+5hA5xnLOa2P/v1SvdLjP9GO2e6SyfR3ZxVf7Yd\nY/rCof2i4hHAo1j97+/pwIuBU4H3tXOwvwp8bsAVpsftEV+SpNUzMZYkjcWvgccnuW/3cOp27m9n\n/m/vY3nuQ9PDdxT99c6xHGkV5bEkDJ2euw/RJJ79LO7ZH8/H5Dy2/XnZSA2qakmSnWl6Hp9O08N9\nAPDGJP+7qlaO8loT+Xif9Zi41a6rqv42Qt3qfieua38+YIzX7pz/AuA/R2hzNUBVrUyyK7Arzfzw\nPYBPAm9LsktVXTfC8b06sY62vSRpDZgYS5LG4is0z4B9HvDpUR5zGbBJVV242paj93vgCUlm9PQa\nP6qnXacX9a/jfP3RejHNsOVVrorcvodvdNol+XeanuTn0SzgNd5mJdm8p9e489ld0VV2I7BZn+Pn\ncs8e6tEO4Qa4sv25HU0PcbdH91x/Tf26/bktzaJWA6mqvyW5Apg5mt+fNoH/TruR5Dk00wpeBhzT\nabaa02wLLHF+sSRNDOcYS5LG4gSaHt73Jdl+hDa9vXifo+llfs69GjaPsFndPNF+zgO2oFnlt3Ou\n9YDXdDdqk4tv0jzmaOs+1589hmuPSpLDaXoNP1tVI/YYJ9miT/HP2p/dSekK+iepYwoPeG1P2eva\nn+d3lV0G7HaPA5Nn0zyyq1tnUbPRxHcBcBvw2u7HQyV5Bs3CayP17I/FT2geufX3a3COzwFPSrJX\nb0WSDduF58bz3/Hvgf8eY6ySpAHZYyxJGlhV3dQmRucBP21XjP4hzTDeB9M8mmYr7l5YC+BYmnmj\nZyc5A/gfYH2aucfPB55L8xiiQXwceDVwYpLH0azkuz/9n2P8appEY1GSk2meE7s5sBPNo3Y26HPM\nIGYmeVH7ekOaObr70CR5F9A8+3lVTk7yQJoE/iqaRZdeRZNAdT8P+ifA05K8HvgjcEVV/WiMMf8F\neEX73OCf0CTwzwFO6jwSq3ViG9+XaBLm7YB/pWc+c1Vdl+Qq4AVJfkfT0/zLfs+6rqrr22ccHw18\nM8nZ3P24pqu4u2d1jVXV7Um+xpo9/uhomqHRX05yGs2jn+5H08P+fJrnJP8QeHeSf6D5nK6k+V18\nGc0jv7ofb/YTYL/2kVVXAn+sqk4P81yaOc0jTTuQJI0zE2NJ0phU1cK2t/h1NM8b3pcm0f0zTYJw\nZFV9uav9rUmeSvPYmwPabTnNkNnjWcXzblcRwy3t838/CMwHbge+0O4v6ml7aZInAO9or/1Amvmb\nvwYOHfTafWzJ3atjr6D5HH5Ms9jXl0exUvQZNAnUK2gS9utoVvE+sqq6hxUfDHwMeDdNAv4pYKyJ\n8TKaf7cP0yS6S4H30nxG3U6hGTb9Cprk8n9o5kF/oM85DwTe19bdF3gndz+u6h6q6r1JltD0Wh/b\nxnMu8OY+i4KtqZOB85JsX1W988lXq6pWJHkKzWOkng+8kCbey2keUdVZROwcmt+FA4HZNF8O/AR4\neVX9pOuUb6b5dz6cZjXyr9MOvaZZAXspAzwnXJK0ZjL6JzpIkiRNT+2jk35O8xiwgyc7npG0UwEu\nBc6sqrdOdjySNCycYyxJktZ57YJYb6WZZ77lZMezCgfQ9CSPtPq1JGktsMdYkiRJkjTU7DGWJEmS\nJA01E2NJkiRJ0lAzMZYkSZIkDbWhflzTrFmzau7cuZMdhiRJkiRpnM2aNYuvf/3rX6+qp6+u7VAn\nxnPnzmXhwoWTHYYkSZIkaS1IMms07RxKLUmSJEkaaibGkiRJkqShZmIsSZIkSRpqJsaSJEmSpKFm\nYixJkiRJGmomxpIkSZKkoWZiLEmSJEkaaibGkiRJkqShZmIsSZIkSRpqJsaSJEmSpKFmYixJkiRJ\nGmozJjsAaSzmvvm8yQ5BGlpXvveZkx2CJEnSuLLHWJIkSZI01EyMJUmSJElDzcRYkiRJkjTUTIwl\nSZIkSUPNxFiSJEmSNNRMjCVJkiRJQ83EWJIkSZI01EyMJUmSJElDzcRYkiRJkjTUTIwlSZIkSUPN\nxFiSJEmSNNRMjCVJkiRJQ21CE+MkBydZmOS2JKf21N0/yUeTXJfk5iTf7apLkmOSXN9uxyRJV/3c\nJBclWZnkkiR7TODbkiRJkiRNYzMm+HrXAkcB/wxs2FN3UhvPo4EbgJ266uYD+wI7AgVcAFwBnNDW\nfxb4AbBXu52d5BFVtWTtvA1JkiRJ0rpiQnuMq+rcqvoicH13eZLtgH2A+VW1pKr+WlU/6WpyIHBc\nVV1dVdcAxwIHtcc+EtgZOKKqbqmqc4BfAPuv/XckSZIkSZrupsoc4ycCvwfe2Q6lvjhJd2K7PbCo\na39RW9apu7yqlo1Qfw9J5rfDuRcuWWKHsiRJkiQNu6mSGD8EeCxwM/Bg4GDgU0ke3dbPbOs6lgIz\n23nGvXWd+o37XaiqTqqqeVU1b/bs2eP4FiRJkiRJ09FUSYxvAe4Ajqqq26vqO8BFwNPa+uXAJl3t\nNwWWV1X1qevUL0OSJEmSpNWYKonxL/qUVdfrxTQLb3Xs2JZ16rZJsvEI9ZIkSZIkjWiiH9c0I8kG\nwHrAekk2SDID+C5wFfCWts0/Av8EfL099DTgkCRzkswBDgVOBaiqS4GfA0e059sPeBxwzkS+N0mS\nJEnS9DTRPcaH0wybfjPwovb14VV1B/Bsmkct3Qx8HHhxVV3SHnci8BXg4nb7alvWcQAwD7gROBp4\nro9qkiRJkiSNxoQ+x7iqFgALRqhbDDxphLoCDmu3fvVXAruNQ4iSJEmSpCEzVeYYS5IkSZI0KUyM\nJUmSJElDzcRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJkiRJQ83EWJIkSZI01EyMJUmSJElD\nzcRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJkiRJQ83EWJIkSZI01EyMJUmSJElDzcRYkiRJ\nkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJkiRJQ83EWJIkSZI01EyMJUmSJElDbUIT4yQHJ1mY5LYk\np47Q5h1JKskeXWVJckyS69vtmCTpqp+b5KIkK5Nc0n2sJEmSJEmrMtE9xtcCRwGf7FeZZFvgecAf\ne6rmA/sCOwI7AHsDr+yq/yzwM2AL4G3A2Ulmj2vkkiRJkqR10oQmxlV1blV9Ebh+hCYfAd4E3N5T\nfiBwXFVdXVXXAMcCBwEkeSSwM3BEVd1SVecAvwD2XwtvQZIkSZK0jpkyc4yTPA+4rarO71O9PbCo\na39RW9apu7yqlo1QL0mSJEnSiGZMdgAASTYG3gPsOUKTmcDNXftLgZntPOPeuk79nBGuNZ9maDZb\nbbXVGkQtSZIkSVoXTJUe4wXA6VV15Qj1y4FNuvY3BZZXVfWp69Qvo4+qOqmq5lXVvNmznYYsSZIk\nScNuqiTGuwP/keRPSf4EPBT4fJI3tfWLaRbe6tixLevUbdP2OverlyRJkiRpRBM6lDrJjPaa6wHr\nJdkAuJMmMV6/q+mPgUOAr7X7pwGHJOnMPz4U+BBAVV2a5OfAEUkOB/YCHgecs5bfjiRJkiRpHTDR\nc4wPB47o2n8R8M6qWtDdKMlfgRuranlbdCKwDXBxu39yW9ZxAHAqcCNwFfDcqloy3sFLkiRJktY9\nE5oYtwnwglG0m9uzX8Bh7dav/ZXAbmsYniRJkiRpCE2VOcaSJEmSJE0KE2NJkiRJ0lAzMZYkSZIk\nDTUTY0mSJEnSUDMxliRJkiQNNRNjSZIkSdJQMzGWJEmSJA01E2NJkiRJ0lAzMZYkSZIkDTUTY0mS\nJEnSUDMxliRJkiQNNRNjSZIkSdJQMzGWJEmSJA01E2NJkiRJ0lAzMZYkSZIkDbUZkx2AJEmSVm/u\nm8+b7BCkoXTle5852SFoAthjLEmSJEkaaibGkiRJkqShZmIsSZIkSRpqJsaSJEmSpKE2oYlxkoOT\nLExyW5JTu8p3SXJBkhuSLElyVpIHddUnyTFJrm+3Y5Kkq35ukouSrExySZI9JvJ9SZIkSZKmr4nu\nMb4WOAr4ZE/5A4CTgLnA1sAy4JSu+vnAvsCOwA7A3sAru+o/C/wM2AJ4G3B2ktnjH74kSZIkaV0z\noYlxVZ1bVV8Eru8p/1pVnVVVS6tqJXA88I9dTQ4Ejquqq6vqGuBY4CCAJI8EdgaOqKpbquoc4BfA\n/mv/HUmSJEmSprupOsf4ycDirv3tgUVd+4vask7d5VW1bIR6SZIkSZJGNGOyA+iVZAfgHcCzu4pn\nAjd37S8FZrbzjHvrOvVzRjj/fJqh2Wy11VbjFLUkSZIkabqaUj3GSR4OfA14bVV9r6tqObBJ1/6m\nwPKqqj51nfpl9FFVJ1XVvKqaN3u205AlSZIkadhNmcQ4ydbAhcCRVXV6T/VimoW3Onbk7qHWi4Ft\nkmw8Qr0kSZIkSSOa6Mc1zUiyAbAesF6SDdqyOcC3gOOr6oQ+h54GHJJkTtv2UOBUgKq6FPg5cER7\nvv2AxwHnTMBbkiRJkiRNcxM9x/hw4Iiu/RcB7wQK2AZYkGRBp7KqZrYvT2zrL273T27LOg6gSZRv\nBK4CnltVS8Y/fEmSJEnSumZCE+OqWgAsGKH6nas4roDD2q1f/ZXAbmsUnCRJkiRpKE2ZOcaSJEmS\nJE0GE2NJkiRJ0lAzMZYkSZIkDTUTY0mSJEnSUDMxliRJkiQNNRNjSZIkSdJQGygxTrL52gpEkiRJ\nkqTJMGiP8bVJPpdkz7USjSRJkiRJE2zQxPg57TFfSXJlkiOSbL0W4pIkSZIkaUIMlBhX1deq6vnA\ng4H3A/sCv0vyjST/kuS+ayNISZIkSZLWljEtvlVVN1TVB6vq8cDrgCcDn6UZan1UkvuPZ5CSJEmS\nJK0tM8ZyUJIHAi8GXgI8DDgb+ARNT/KbgScCTxunGCVJkiRJWmsGSoyT7AO8FHgG8BvgROD0qrqx\nq80PgV+PZ5CSJEmSJK0tg/YYfxo4E3hyVf1ohDbXAsesUVSSJEmSJE2QQRPjB1XV8lU1qKpbgLeP\nPSRJkiRJkibOoItvPS3Js3oLk+yd5DnjFJMkSZIkSRNm0MT4XcBtfcpvbeskSZIkSZpWBk2MtwUu\n7VP+27ZOkiRJkqRpZdDE+Cbg4X3KHwEsW/NwJEmSJEmaWIMmxl8G3p/krt7hJA8HjmvrJEmSJEma\nVgZNjA8DVgKXJLkiyRU0zyy+BXjjeAcnSZIkSdLaNlBiXFU3A08C9gFOare9gV2q6qbVHZ/k4CQL\nk9yW5NSeut2TXJJkZZKLkmzdVZckxyS5vt2OSZKu+rntMSvbc+wxyPuSJEmSJA2vQZ9jTFUV8LV2\nG9S1wFHAPwMbdgqTzALOBV4OfAU4EjgT2KVtMh/YF9gRKOAC4ArghLb+s8APgL3a7ewkj6iqJWOI\nUZIkSZI0RAZOjJM8AdgdeCA9Pc5Vdciqjq2qc9tzzAMe0lW1H7C4qs5q6xcA1yXZrqouAQ4Ejquq\nq9v6Y2mS5ROSPBLYGXhaVd0CnJPktcD+3J04S5IkSZLU10CJcZLX0yy0dSVN7291VVe/Y0Zpe2DR\nXSeqWpHksrb8kt769vX2XcdeXlXLRqjvfQ/zaZJqttpqqzUIWZIkSZK0Lhi0x/j1wCFV9YFxjmMm\n0DvseSmwcVf9zT11M9t5xr11nfo5/S5UVZ250cybN29NknlJkiRJ0jpg0FWpN2XtPJZpObBJn2st\nG6F+U2B5O995dcdKkiRJkjSiQRPjzwNPWwtxLKZZWAuAJBsB27bl96pvX3fXbZNk4xHqJUmSJEka\n0aBDqX8HHJlkF+Bi4I7uyqr60KoOTjKjveZ6wHpJNgDuBL4A/N8k+wPnAUcAi9qFtwBOAw5Jcn67\nfyjwofaalyb5OXBEksNpVqV+HHDOgO9NkiRJkjSEBk2M/w9wK82q1Lv31BVtsroKh9MkvR0vAt5Z\nVQvapPh44AzgR8ABXe1OBLahScYBTm7LOg4ATgVuBK4CnuujmiRJkiRJozFQYlxVD12Ti1XVAmDB\nCHUXAtuNUFfAYe3Wr/5KYLc1iU2SJEmSNJwGnWN8lyRbtKtCS5IkSZI0bQ2UGCdZP8l7ktwE/Bl4\nWFt+dJJXrY0AJUmSJElamwbtMX47sD/wMuC2rvKfAC8Zr6AkSZIkSZoogybGLwReWVXnAH/rKr8Y\neNS4RSVJkiRJ0gQZNDF+MHBln/L1GHyFa0mSJEmSJt2gifGvgF37lD8P+NmahyNJkiRJ0sQatJf3\nXcCpSR5Mk1Tvl+RRwIuBvcc7OEmSJEmS1raBeoyr6ks084z3oRk+/W7gccC+VfWN8Q9PkiRJkqS1\na+B5wVV1PnD+WohFkiRJkqQJN+gcY0mSJEmS1ikD9RgnuRGokeqravM1jkiSJEmSpAk06FDqN/Ts\nrw88HtgXOHpcIpIkSZIkaQINlBhX1Sf6lSdZCDxlXCKSJEmSJGkCjdcc428Czx6nc0mSJEmSNGHG\nKzF+HnD9OJ1LkiRJkqQJM+jiWz/jnotvBfg7YDZw8DjGJUmSJEnShBh08a2v9uz/DVgCXFRVi8cn\nJEmSJEmSJs6gi2+9fW0FIkmSJEnSZBivOcaSJEmSJE1Lg84xvoN7zjEeUVXdd0wRSZIkSZI0gQbt\nMT4UWAp8mmaxrYPb10uBQ4B/69oGlmRukvOT3JjkT0mOTzKjrds9ySVJVia5KMnWXcclyTFJrm+3\nY5JkLDFIkiRJkobLoItvPRV4W1Wd2FV2UpJXAXtV1T5rGM9HaRbzehCwGXAB8OoknwHOBV4OfAU4\nEjgT2KU9bj6wL7AjTY/2BcAVwAlrGI8kSZIkaR03aI/xHsA3+5RfCOy+5uHwMODMqrq1qv4E/Bew\nPbAfsLiqzqqqW4EFwI5JtmuPOxA4rqqurqprgGOBg8YhHkmSJEnSOm7QxPh6miS113OA69Y8HD4A\n/EuS+yeZAzyDu5PjRZ1GVbUCuKwtp7e+fb09kiRJkiStxqBDqRcAJyd5CvCDtmwX4Ok0w5nX1Hfb\n8ywF1gM+BXwReBbNEOtuS4GN29czgZt76mYmSVXdY7GwJPM7sW611VbjELIkSZIkaTobqMe4qk4B\ndgWWA89vtxXAU6rqk2sSSJL70PQOnwtsBMwCHgAc015vk55DNgWWta976zcFlvcmxe17OKmq5lXV\nvNmzZ69JyJIkSZKkdcCgPcZU1feB76+FWDYHtgKOr6rbgNuSnAIcBXyIZh4xAEk2ArYFFrdFi2kW\n3vqfdn/HrjpJkiRJkkY06BxjksxO8rokH0qyRVu2S/fjk8aiqq6jWUn6VUlmJNmMJhn+BfAF4LFJ\n9k+yAXAEsKiqLmkPPw04JMmcdm7yocCpaxKPJEmSJGk4DJQYJ3k88BvgZcCraIYsQ7NI1nvGIZ79\n2nMtoVlc6w7g9VW1BNgfeDdwI/BE4ICu406keYzTxe321bZMkiRJkqRVGnQo9XHAR6vq8CTLusr/\nC/jcmgZTVT8Hdhuh7kJguxHqCjis3SRJkiRJGrVBh1I/ATilT/m1wJZrHo4kSZIkSRNr0MT4Vu69\nOjTAo7j345QkSZIkSZryBk2MvwK8I8n67X4l2Qp4L81jliRJkiRJmlYGTYwPBf4O+AuwIfAdmkWy\nVgJvG9/QJEmSJEla+wZafKuqbk7yv4A9gZ1pEuufAl9vF8CSJEmSJGlaGXVi3A6f/jbw0qr6BvCN\ntRWUJEmSJEkTZdRDqavqDuARwN/WXjiSJEmSJE2sQecYnw68bG0EIkmSJEnSZBhojjFwX+DlSfYA\nfgKs6K6sqkPGKzBJkiRJkibCoInxTsAv2teP6alz8S1JkiRJ0rQzqsQ4yQ7AL6tq17UcjyRJkiRJ\nE2q0c4x/Bszq7CQ5L8mD1k5IkiRJkiRNnNEmxunZfzKw4TjHIkmSJEnShBt0VWpJkiRJktYpo02M\ni3svruViW5IkSZKkaW+0q1IHOCPJbe3+BsDHk6zsblRV+4xncJIkSZIkrW2jTYw/1bN/xngHIkmS\nJEnSZBhVYlxVL1nbgUiSJEmSNBlcfEuSJEmSNNRMjCVJkiRJQ23KJcZJDkjy6yQrkvwuya5t+e5J\nLkmyMslFSbbuOiZJjklyfbsdk6T32cuSJEmSJN3LlEqMk+wJHAO8BNgYeDJweZJZwLnA24HNgYXA\nmV2Hzgf2BXYEdgD2Bl45cZFLkiRJkqarKZUYA+8E3lVVP6yqv1XVNVV1DbAfsLiqzqqqW4EFwI5J\ntmuPOxA4rqqubtsfCxw0CfFLkiRJkqaZKZMYJ1kPmAfMTnJZkquTHJ9kQ2B7YFGnbVWtAC5ry+mt\nb19vjyRJkiRJqzFlEmNgS2B94LnArsBOwOOBw4GZwM097ZfSDLemT/1SYGa/ecZJ5idZmGThkiVL\nxvcdSJIkSZKmnamUGN/S/vxwVf2xqq4D3gfsBSwHNulpvymwrH3dW78psLyqqvciVXVSVc2rqnmz\nZ88e1zcgSZIkSZp+pkxiXFU3AlcD3cls5/VimoW1AEiyEbBtW36v+vb1YiRJkiRJWo0pkxi3TgFe\nk+SBSR4AIbTJAAATR0lEQVQAvB74KvAF4LFJ9k+yAXAEsKiqLmmPOw04JMmcJHOAQ4FTJz58SZIk\nSdJ0M2OyA+hxJDALuBS4Ffg88O6qujXJ/sDxwBnAj4ADuo47EdgGuLjdP7ktkyRJkiRplaZUYlxV\ndwCvbrfeuguB7e51UFNXwGHtJkmSJEnSqE21odSSJEmSJE0oE2NJkiRJ0lAzMZYkSZIkDTUTY0mS\nJEnSUDMxliRJkiQNNRNjSZIkSdJQMzGWJEmSJA01E2NJkiRJ0lAzMZYkSZIkDTUTY0mSJEnSUDMx\nliRJkiQNNRNjSZIkSdJQMzGWJEmSJA01E2NJkiRJ0lAzMZYkSZIkDTUTY0mSJEnSUDMxliRJkiQN\nNRNjSZIkSdJQMzGWJEmSJA01E2NJkiRJ0lCbcolxkkckuTXJGV1luye5JMnKJBcl2bqrLkmOSXJ9\nux2TJJMTvSRJkiRpuplyiTHwEeDHnZ0ks4BzgbcDmwMLgTO72s8H9gV2BHYA9gZeOVHBSpIkSZKm\ntymVGCc5ALgJ+GZX8X7A4qo6q6puBRYAOybZrq0/EDiuqq6uqmuAY4GDJi5qSZIkSdJ0NmUS4ySb\nAO8CDump2h5Y1NmpqhXAZW35verb19sjSZIkSdIoTJnEGDgS+ERVXd1TPhO4uadsKbDxCPVLgZkj\nzTNOMj/JwiQLlyxZMg5hS5IkSZKmsymRGCfZCdgDeH+f6uXAJj1lmwLLRqjfFFheVdXvWlV1UlXN\nq6p5s2fPXrPAJUmSJEnT3ozJDqC1GzAXuKrt6J0JrJfkMcAJNPOIAUiyEbAtsLgtWkyz8Nb/tPs7\ndtVJkiRJkrRKU6LHGDiJJtndqd1OAM4D/hn4AvDYJPsn2QA4AlhUVZe0x54GHJJkTpI5wKHAqRMc\nvyRJkiRpmpoSPcZVtRJY2dlPshy4taqWtPv7A8cDZwA/Ag7oOvxEYBvg4nb/5LZMkiRJkqTVmhKJ\nca+qWtCzfyGw3QhtCzis3SRJkiRJGshUGUotSZIkSdKkMDGWJEmSJA01E2NJkiRJ0lAzMZYkSZIk\nDTUTY0mSJEnSUDMxliRJkiQNNRNjSZIkSdJQMzGWJEmSJA01E2NJkiRJ0lAzMZYkSZIkDTUTY0mS\nJEnSUDMxliRJkiQNNRNjSZIkSdJQMzGWJEmSJA01E2NJkiRJ0lAzMZYkSZIkDTUTY0mSJEnSUDMx\nliRJkiQNNRNjSZIkSdJQMzGWJEmSJA01E2NJkiRJ0lCbMolxkvsl+USS3ydZluTnSZ7RVb97kkuS\nrExyUZKtu+qS5Jgk17fbMUkyOe9EkiRJkjSdTJnEGJgB/AF4CrApcDjw+SRzk8wCzgXeDmwOLATO\n7Dp2PrAvsCOwA7A38MqJC12SJEmSNF3NmOwAOqpqBbCgq+irSa4AngBsASyuqrMAkiwArkuyXVVd\nAhwIHFdVV7f1x9IkyydM3DuQJEmSJE1HU6nH+B6SbAk8ElgMbA8s6tS1SfRlbTm99e3r7ZEkSZIk\naTWmZGKcZH3g08Cn2h7hmcDNPc2WAhu3r3vrlwIz+80zTjI/ycIkC5csWTL+wUuSJEmSppUplxgn\nuQ9wOnA7cHBbvBzYpKfppsCyEeo3BZZXVfWev6pOqqp5VTVv9uzZ4xq7JEmSJGn6mVKJcdvD+wlg\nS2D/qrqjrVpMs7BWp91GwLZt+b3q29eLkSRJkiRpNaZUYgx8DHg0sHdV3dJV/gXgsUn2T7IBcASw\nqB1mDXAacEiSOUnmAIcCp05g3JIkSZKkaWrKJMbtc4lfCewE/CnJ8nZ7YVUtAfYH3g3cCDwROKDr\n8BOBrwAXt9tX2zJJkiRJklZpKj2u6ffAvRbL6qq/ENhuhLoCDms3SZIkSZJGbcr0GEuSJEmSNBlM\njCVJkiRJQ83EWJIkSZI01EyMJUmSJElDzcRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJkiRJ\nQ83EWJIkSZI01EyMJUmSJElDzcRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJkiRJQ83EWJIk\nSZI01EyMJUmSJElDzcRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJkiRJQ22dSYyTbJ7kC0lW\nJPl9khdMdkySJEmSpKlvxmQHMI4+AtwObAnsBJyXZFFVLZ7csCRJkiRJU9k60WOcZCNgf+DtVbW8\nqv4f8CXg3yY3MkmSJEnSVLdOJMbAI4E7q+rSrrJFwPaTFI8kSZIkaZpYV4ZSzwSW9pQtBTbubZhk\nPjC/3V2e5DdrOTZJ9zYLuG6yg9DY5JjJjkCSph3ve9OY971pbdT/3a0rifFyYJOesk2BZb0Nq+ok\n4KSJCEpSf0kWVtW8yY5DkqSJ4H1PmvrWlaHUlwIzkjyiq2xHwIW3JEmSJEmrtE4kxlW1AjgXeFeS\njZL8b2Af4PTJjUySJEmSNNWtE4lx69XAhsBfgM8A/+6jmqQpy+kMkqRh4n1PmuJSVZMdgyRJkiRJ\nk2Zd6jGWJEmSJGlgJsaS7pJkbpJKMqYV65M8JsnCJBnv2CZKkh2SfH+y45AkTQ1JFiQ5Yw2OPzrJ\n68YzpjWV5H5JLkkye7JjkaYKE2NpHZHkyiS3J5nVU/6zNtmdOwFhHAkcW+0cjSTfTnJrkuXtdtdz\nw5O8sKt8eZKVbZxP6Hfi1ZxrlyQXJLkhyZIkZyV5UFf9C5L8sf2M/qmrfNsk30+yXqesqn4B3JRk\n7/H9aCRJg2r/v31Lz/3iwZMd12i1ieeLgRP71L2jve/t0VX2xiS/TLIsyRVJ3jjK6/Q71/2SnJDk\nz+398StJ5gBU1W3AJ4E3d7XfMcniJNclOaSrfP0kP0ry0LF8BtJ0YWIsrVuuAP61s5PkccD9J+LC\nbSL6T8AXe6oOrqqZ7faoTmFVfbqrfCbNAnqXAz9dxWX6ngt4AM3CJnOBrWmeYX5KG9cM4L3AzsDB\nwIe7jvsQ8Pqq+mvPdT4NvHI071uStNbt3X2/qKprJzugARwEnF9Vt3QXJtkWeB7wx572oUmkHwA8\nHTg4yQGrusAqzvVa4EnADsCDgRu55z3wM8CBSe7X7h8NvIHmkadvS/J3bfkhwDlV9YdVvlNpmjMx\nltYtp9PcUDsOBE7rbpDkmW0v8tIkf0iyYKSTJdk0ySfa3tZrkhzV3bvaY0/gp1V16xhjPxA4rcaw\nImBVfa2qzqqqpVW1Ejge+Me2egvgmqr6I3AhsA1Akue25T/qc8pvA7t3/bEgSZpi2tFC309yU5JF\nSXbrqvt2e8/6ftvL/JUkWyT5dHv/+3H3SKokH2zviUuT/CTJrmO5bh/PAL7Tp/wjwJuA27sLq+o/\nq+qnVXVnVf0G+BJ3389G0vdcwMOAr1fVn9t785nA9l3XupomWd6lq/23quoa4LfAVkm2BvYH3r+a\nGKRpz8RYWrf8ENgkyaPbBPYAoHde1Aqa5Hkz4JnAvyfZd4TznQrcCTwceDzwNODlI7R9HPCbPuVH\nt8Oy/nukPx7aG++T6Unix3Ku1pOBzuPalgBbJHkITfK+OMnGwOHAW/od3P5RcAfwqH71kqTJ1Q4J\nPg84CticpqfznNxzzuwBwL8Bc4BtgR/QjCbaHPg1cERX2x8DO7V1nwHOSrLBGK/b7V73xiTPA26r\nqvNX8x4D7Mrd97N+bVZ1rk8A/5jkwUnuD7wQ+FpPm1/T9BAD/BJ4Wnu/nAv8Dvgg8MaqumNVsUrr\nAhNjad3T6TXek+aGd013ZVV9u6ourqq/tfNpPws8pfckSbYE9gJeV1UrquovNN8YjzSkazOaIczd\n3kTTQzuHZqjzV9ohX71eDHyvqq5Yxfsa1bmS7AC8A3hj+37/Bvw7cDbNHzCvAN5JM5xshyQXJfl6\nksf2nGpZ+54kSZPri23v7E1JOtN1XkQzRPn89n52AbCQ5r7VcUpV/a6qbqZJCH9XVRdW1Z3AWTRf\n+AJQVWdU1fVtT+1xwP3o/+XoaK7b7R73xvaL2ffQDHNenQU0f6uf0q9yFOf6LfAHmr8DlgKPBt7V\n06b7XvcGmvvll4HX0/RULwOuSPKlJN9pE3FpnTSmlWclTWmnA9+lGRJ1rx7YJP9AM+f2scB9aW7+\nZ/U5z9bA+sAfc/ci0/ehucn2cyOwcXdBzzDlTyX5V5o/HrrnOEGTGL9nxHc0ynMleTjNHz+vrarv\ndR37TeCbbZsdgXk0ifOVwP8GHgqczN3DyWjfy02rikmSNCH2raoLe8q2Bp7Xs1Di+sBFXft/7np9\nS5/9mZ2dJG8AXkYzF7eATYB7LGY5wHW79d4bFwCnV9WVI7TvxHMwzb1x13ahrH5Wd66PABvQTCla\nARxGc4/8h642d93rqur3tAl+28P8A5qRYh+mGYZ9HvDLJN+sqhtWFb80HdljLK1j2hvbFTQ3t3P7\nNPkMzbfBD62qTYETaBb76PUH4DZgVlVt1m6bVNX2fdoC/AJ45OrC671Wkn+k+UPk7NUcu8pztcOx\nLwSOrKrT+x3QDks7HvgPmj941ms/rx/TLE7SaTeH5kuDfkPDJUmT7w80SeFmXdtGVfXeQU/Uzic+\nDHg+8ICq2gy4mZHvjYNct/feuDvwH0n+lORPNF/Mfj7Jm7rieSnNatG7t/OAR7K6c+1E02t+Q5tc\nfxh4Yu759IpHA4v6nPsdwMer6s80w8EXtj3vV9NMr5LWOSbG0rrpZcBTq2pFn7qNgRuq6tYkTwRe\n0O8E7WJV3wCOS7JJkvukebzRvYZdty4Adu7MyUqyWZJ/TrJBkhlJXkgz9/e/eo47kGa1y95h2HdZ\n3bnaRPZbwPFVdcJI56GZH/3Tqvo5cD2wYZLH0KymfXlXu6fQLEAy0rf0kqTJdQawd3tvWK+9P+zW\nzo8d1MY062ksAWYkeQdNj/F4XPd87jldaXeaEVs7tdu1NE9B+Ag0jzKkGUG1Z1Vdzqqt8lw0X/q+\nOM1CmuvTPP3h2qq6rr3WHJp50j/sPml7X9wN+FhbdAXw1HaK1SOAq1YTlzQtmRhL66B2TtXCEapf\nDbwryTKab4Q/v4pTvZim5/RXNMPBzgYe1K9h+63yt4Bnt0Xr0yxOsgS4DngNzXC4SzvHtEn084FP\n9Z4vyVuTfG2U53o5zfzjBel61mXP+WbRzMN6exvvnTSPb/oWTa/5a7qav7AtkyRNQe2jg54NvJXm\n3vAHmikyY/nb9us0X7ReCvweuJURpg2N4bqnAXsl2bA9/vqq+lNnA/4K3FhVnXvWUTRDn3/cdT+7\n636U5jnDLxzlud7QvpfftrHuBTynK7YXAJ/q8yXwR2imJHUeZfgWmpFWi4H3tNeS1jkZw5NRJKmv\n9lvmTwFPHMtjl6aCdvGuE6vqSZMdiyRp+kvyHuAvVfWByY6lI83jCBcBT24X15SGnomxJEmSJGmo\nOZRakiRJkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJkiRJQ83EWJIkSZI01EyMJUkSAEnekOTKyY5D\nkqSJZmIsSdIUkmTLJO9P8tsktyb5S5LvJ3lNkpmTHZ8kSeuiGZMdgCRJaiSZC/w3sBR4O/AL4BZg\ne+DlwPXAZyYpvFFJct+qun2y45AkaRD2GEuSNHV8DPgbMK+qPldVv6qqK6rqq1W1L/BZgCSbJjmp\n7U1eluQ7SeZ1TpLkoCTLk+ye5JdJViS5KMnDui+W5LAkf2rbngbcq0c6yUuS/Krtvb40yeuT3Ker\nvpL8nyTnJlkBvGctfTaSJK01JsaSJE0BSbYA/hn4SFWt6NemqipJgPOAOcCzgMcD3wW+leRBXc3v\nB7wFeCnwJGAz4ISu6z0fOAo4AtgZ+A1wSE9Mr6BJdN8BPBo4FHgT8Oqe0I4AzgceB3xkwLcuSdKk\nS1VNdgySJA29JP8A/BDYr6q+0FV+NU1SC3AG8Hngy8Dsqrqlq93Pgc9U1X8mOQg4Bdiuqn7T1r8Q\n+CSwQZtgfx9YXFWv6DrHhcDDq2puu38V8LaqOr2rzeuA+VX1mHa/gOOr6jXj+oFIkjSBnGMsSdLU\ntiuwHnASsAHwBOD+wJKm8/guGwDbdu3f1kmKW9cC9wUeANxA0wN8cs+1fgA8HCDJbOChwIlJPtbV\nZgaQnuMWDvyuJEmaQkyMJUmaGi4DCtiuu7CqrgBIsrItug/wZ5qEudfSrtd39tR1hoiNdhpVp92r\ngO+vpm3fod+SJE0XJsaSJE0BVXV9km8AByf5cFUtH6HpT4Etgb9V1eVrcMlfA7vQDK/u2KUrnj8n\nuRbYtqpOW4PrSJI05ZkYS5I0dbya5nFNP0myAFhE0/P7BGBH4BvAhW2bLyU5DLgE+Dvg6cCFVfW9\nUV7rg8BpSX4MfBt4LvAPNMOsO44APpzkJprFtdanWahrTlUdPfa3KUnS1GJiLEnSFFFVlyd5PM1q\n0kfSzPG9g6Z396M0i1xVkr1oVpT+OPBAmqHV/w2Mume3qs5Msg3wbpo5y18G3gcc1NXm5PYRTG8E\njqZ5pvJi4Pg1e6eSJE0trkotSZIkSRpqPsdYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNRMjCVJkiRJ\nQ83EWJIkSZI01EyMJUmSJElDzcRYkiRJkjTUTIwlSZIkSUPNxFiSJEmSNNT+P+jGB64xpd4eAAAA\nAElFTkSuQmCC\n",
515 | "text/plain": [
516 | ""
517 | ]
518 | },
519 | "metadata": {},
520 | "output_type": "display_data"
521 | }
522 | ],
523 | "source": [
524 | "plt.figure(figsize=(FIG_WIDTH,5))\n",
525 | "test_gender_vc.plot(kind='bar')\n",
526 | "plt.yticks(fontsize=FS_TICKS)\n",
527 | "xlabels=['Male ({:.2f}%)'.format(test_gender_vc.loc[0]/test_gender_vc.sum()*100),\n",
528 | " 'Female ({:.2f})%'.format(test_gender_vc.loc[1]/test_gender_vc.sum()*100)]\n",
529 | "plt.xticks([0,1],xlabels,rotation='horizontal',fontsize=FS_TICKS)\n",
530 | "plt.xlabel('Gender', fontsize=FS_AXIS_LABEL)\n",
531 | "plt.ylabel('Frequency', fontsize=FS_AXIS_LABEL)\n",
532 | "plt.title('Gender Distribution (Test)',fontsize=FS_TITLE)\n",
533 | "plt.show()"
534 | ]
535 | },
536 | {
537 | "cell_type": "markdown",
538 | "metadata": {},
539 | "source": [
540 | "There are more digits from male participants. The male to female ratio is similar in both test and train set."
541 | ]
542 | },
543 | {
544 | "cell_type": "markdown",
545 | "metadata": {},
546 | "source": [
547 | "Since we have age, district and gender information of the participants, the digits could be differenciated based on them. We have to bear in mind that the dataset is imbalanced (with respect to age/distric/gender) which would have significant effect on the classifier model."
548 | ]
549 | }
550 | ],
551 | "metadata": {
552 | "kernelspec": {
553 | "display_name": "Python 3",
554 | "language": "python",
555 | "name": "python3"
556 | },
557 | "language_info": {
558 | "codemirror_mode": {
559 | "name": "ipython",
560 | "version": 3
561 | },
562 | "file_extension": ".py",
563 | "mimetype": "text/x-python",
564 | "name": "python",
565 | "nbconvert_exporter": "python",
566 | "pygments_lexer": "ipython3",
567 | "version": "3.5.3"
568 | }
569 | },
570 | "nbformat": 4,
571 | "nbformat_minor": 2
572 | }
573 |
--------------------------------------------------------------------------------