├── .flake8
├── .github
└── ISSUE_TEMPLATE
│ ├── bug-performance-issue--custom-images-.md
│ ├── bug-performance-issue--physical-robot-.md
│ ├── bug-performance-issue--replication-.md
│ ├── installation-issue.md
│ └── other-issue.md
├── .gitignore
├── .style.yapf
├── .travis.yml
├── CMakeLists.txt
├── LICENSE
├── README.md
├── cfg
├── examples
│ ├── antipodal_grasp_sampling.yaml
│ ├── fc_gqcnn_pj.yaml
│ ├── fc_gqcnn_suction.yaml
│ ├── gqcnn_pj.yaml
│ ├── gqcnn_suction.yaml
│ ├── replication
│ │ ├── dex-net_2.0.yaml
│ │ ├── dex-net_2.1.yaml
│ │ ├── dex-net_3.0.yaml
│ │ ├── dex-net_4.0_fc_pj.yaml
│ │ ├── dex-net_4.0_fc_suction.yaml
│ │ ├── dex-net_4.0_pj.yaml
│ │ └── dex-net_4.0_suction.yaml
│ └── ros
│ │ ├── fc_gqcnn_pj.yaml
│ │ ├── fc_gqcnn_suction.yaml
│ │ ├── gqcnn_pj.yaml
│ │ └── gqcnn_suction.yaml
├── finetune.yaml
├── finetune_dex-net_4.0_pj.yaml
├── finetune_dex-net_4.0_suction.yaml
├── finetune_example_pj.yaml
├── finetune_example_suction.yaml
├── hyperparam_search
│ ├── train_dex-net_4.0_fc_suction_hyperparam_search.yaml
│ └── train_hyperparam_search.yaml
├── tools
│ ├── analyze_gqcnn_performance.yaml
│ └── run_policy.yaml
├── train.yaml
├── train_dex-net_2.0.yaml
├── train_dex-net_3.0.yaml
├── train_dex-net_4.0_fc_pj.yaml
├── train_dex-net_4.0_fc_suction.yaml
├── train_dex-net_4.0_pj.yaml
├── train_dex-net_4.0_suction.yaml
├── train_example_pj.yaml
├── train_example_suction.yaml
└── train_fc.yaml
├── ci
└── travis
│ └── format.sh
├── data
├── calib
│ ├── phoxi
│ │ ├── phoxi.intr
│ │ └── phoxi_to_world.tf
│ └── primesense
│ │ ├── primesense.intr
│ │ └── primesense.tf
├── examples
│ ├── clutter
│ │ ├── phoxi
│ │ │ ├── dex-net_4.0
│ │ │ │ ├── color_0.png
│ │ │ │ ├── color_1.png
│ │ │ │ ├── color_2.png
│ │ │ │ ├── color_3.png
│ │ │ │ ├── color_4.png
│ │ │ │ ├── depth_0.npy
│ │ │ │ ├── depth_1.npy
│ │ │ │ ├── depth_2.npy
│ │ │ │ ├── depth_3.npy
│ │ │ │ ├── depth_4.npy
│ │ │ │ ├── segmask_0.png
│ │ │ │ ├── segmask_1.png
│ │ │ │ ├── segmask_2.png
│ │ │ │ ├── segmask_3.png
│ │ │ │ └── segmask_4.png
│ │ │ └── fcgqcnn
│ │ │ │ ├── color_0.png
│ │ │ │ ├── color_1.png
│ │ │ │ ├── color_2.png
│ │ │ │ ├── color_3.png
│ │ │ │ ├── color_4.png
│ │ │ │ ├── depth_0.npy
│ │ │ │ ├── depth_1.npy
│ │ │ │ ├── depth_2.npy
│ │ │ │ ├── depth_3.npy
│ │ │ │ ├── depth_4.npy
│ │ │ │ ├── segmask_0.png
│ │ │ │ ├── segmask_1.png
│ │ │ │ ├── segmask_2.png
│ │ │ │ ├── segmask_3.png
│ │ │ │ └── segmask_4.png
│ │ └── primesense
│ │ │ ├── color_0.png
│ │ │ ├── color_1.png
│ │ │ ├── color_2.png
│ │ │ ├── color_3.png
│ │ │ ├── color_4.png
│ │ │ ├── depth_0.npy
│ │ │ ├── depth_1.npy
│ │ │ ├── depth_2.npy
│ │ │ ├── depth_3.npy
│ │ │ ├── depth_4.npy
│ │ │ ├── segmask_0.png
│ │ │ ├── segmask_1.png
│ │ │ ├── segmask_2.png
│ │ │ ├── segmask_3.png
│ │ │ └── segmask_4.png
│ └── single_object
│ │ └── primesense
│ │ ├── color_0.png
│ │ ├── color_1.png
│ │ ├── color_2.png
│ │ ├── color_3.png
│ │ ├── color_4.png
│ │ ├── color_5.png
│ │ ├── color_6.png
│ │ ├── color_7.png
│ │ ├── color_8.png
│ │ ├── color_9.png
│ │ ├── depth_0.npy
│ │ ├── depth_1.npy
│ │ ├── depth_2.npy
│ │ ├── depth_3.npy
│ │ ├── depth_4.npy
│ │ ├── depth_5.npy
│ │ ├── depth_6.npy
│ │ ├── depth_7.npy
│ │ ├── depth_8.npy
│ │ ├── depth_9.npy
│ │ ├── segmask_0.png
│ │ ├── segmask_1.png
│ │ ├── segmask_2.png
│ │ ├── segmask_3.png
│ │ ├── segmask_4.png
│ │ ├── segmask_5.png
│ │ ├── segmask_6.png
│ │ ├── segmask_7.png
│ │ ├── segmask_8.png
│ │ └── segmask_9.png
└── training
│ └── README.md
├── docker
├── cpu
│ └── Dockerfile
└── gpu
│ └── Dockerfile
├── docs
├── Makefile
├── gh_deploy.sh
├── make.bat
└── source
│ ├── api
│ ├── analysis.rst
│ ├── gqcnn.rst
│ ├── policies.rst
│ └── training.rst
│ ├── benchmarks
│ └── benchmarks.rst
│ ├── conf.py
│ ├── images
│ ├── cem.png
│ ├── dataset_tensorboard_output.png
│ ├── dexnet_benchmark.png
│ ├── fcgqcnn_arch_diagram.png
│ ├── gqcnn.png
│ ├── gqcnn_leaderboard.png
│ ├── plots
│ │ ├── pj_error_rate.png
│ │ ├── pj_roc.png
│ │ ├── suction_error_rate.png
│ │ └── suction_roc.png
│ ├── policy_final_grasp.png
│ ├── sample_grasp.png
│ └── tensorboard.png
│ ├── index.rst
│ ├── info
│ └── info.rst
│ ├── install
│ └── install.rst
│ ├── license
│ └── license.rst
│ ├── replication
│ └── replication.rst
│ └── tutorials
│ ├── analysis.rst
│ ├── planning.rst
│ ├── training.rst
│ └── tutorial.rst
├── examples
├── antipodal_grasp_sampling.py
├── policy.py
├── policy_ros.py
└── policy_with_image_proc.py
├── gqcnn
├── __init__.py
├── analysis
│ ├── __init__.py
│ └── analyzer.py
├── grasping
│ ├── __init__.py
│ ├── actions.py
│ ├── constraint_fn.py
│ ├── grasp.py
│ ├── grasp_quality_function.py
│ ├── image_grasp_sampler.py
│ └── policy
│ │ ├── __init__.py
│ │ ├── enums.py
│ │ ├── fc_policy.py
│ │ └── policy.py
├── model
│ ├── __init__.py
│ └── tf
│ │ ├── __init__.py
│ │ ├── fc_network_tf.py
│ │ └── network_tf.py
├── search
│ ├── __init__.py
│ ├── enums.py
│ ├── resource_manager.py
│ ├── search.py
│ ├── trial.py
│ └── utils.py
├── training
│ ├── __init__.py
│ └── tf
│ │ ├── __init__.py
│ │ └── trainer_tf.py
├── utils
│ ├── __init__.py
│ ├── enums.py
│ ├── policy_exceptions.py
│ ├── train_stats_logger.py
│ └── utils.py
└── version.py
├── launch
└── grasp_planning_service.launch
├── msg
├── Action.msg
├── BoundingBox.msg
├── GQCNNGrasp.msg
└── Observation.msg
├── package.xml
├── post-checkout
├── requirements
├── cpu_requirements.txt
├── docs_requirements.txt
└── gpu_requirements.txt
├── ros_nodes
└── grasp_planner_node.py
├── scripts
├── docker
│ └── build-docker.sh
├── downloads
│ ├── datasets
│ │ ├── download_dex-net_2.0.sh
│ │ ├── download_dex-net_2.1.sh
│ │ ├── download_dex-net_3.0.sh
│ │ ├── download_dex-net_4.0_fc_pj.sh
│ │ ├── download_dex-net_4.0_fc_suction.sh
│ │ ├── download_dex-net_4.0_pj.sh
│ │ ├── download_dex-net_4.0_suction.sh
│ │ └── download_example_datasets.sh
│ ├── download_example_data.sh
│ └── models
│ │ └── download_models.sh
├── policies
│ ├── run_all_dex-net_2.0_examples.sh
│ ├── run_all_dex-net_2.1_examples.sh
│ ├── run_all_dex-net_3.0_examples.sh
│ ├── run_all_dex-net_4.0_fc_pj_examples.sh
│ ├── run_all_dex-net_4.0_fc_suction_examples.sh
│ ├── run_all_dex-net_4.0_pj_examples.sh
│ └── run_all_dex-net_4.0_suction_examples.sh
└── training
│ ├── train_dex-net_2.0.sh
│ ├── train_dex-net_2.1.sh
│ ├── train_dex-net_3.0.sh
│ ├── train_dex-net_4.0_fc_pj.sh
│ ├── train_dex-net_4.0_fc_suction.sh
│ ├── train_dex-net_4.0_pj.sh
│ └── train_dex-net_4.0_suction.sh
├── setup.py
├── srv
├── GQCNNGraspPlanner.srv
├── GQCNNGraspPlannerBoundingBox.srv
├── GQCNNGraspPlannerFull.srv
└── GQCNNGraspPlannerSegmask.srv
└── tools
├── analyze_gqcnn_performance.py
├── finetune.py
├── hyperparam_search.py
├── plot_training_losses.py
├── run_policy.py
└── train.py
/.flake8:
--------------------------------------------------------------------------------
1 | [flake8]
2 | ignore = C408, E121, E123, E126, E226, E24, E704, W503, W504, W605
3 | exclude = docs/source/conf.py
4 | inline-quotes = "
5 | no-avoid-escape = 1
6 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/bug-performance-issue--custom-images-.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Bug/Performance Issue [Custom Images]
3 | about: You are testing your own images in software.
4 | title: 'Issue: Bug/Performance Issue [Custom Images]'
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **System information**
11 | - OS Platform and Distribution (e.g., Linux Ubuntu 16.04):
12 | - Python version:
13 | - Installed using pip or ROS:
14 | - Camera:
15 | - GPU model (if applicable):
16 |
17 | **Describe what you are trying to do**
18 |
19 | **Describe current behavior**
20 |
21 | **Describe the expected behavior**
22 |
23 | **Describe the input images**
24 | Provide details such as original captured resolution, pre-processing, final resolution, etc.
25 |
26 | **Describe the physical camera setup**
27 | Provide details such as the distance from camera to workspace, orientation, etc.. Attach a picture if possible.
28 |
29 | **Other info / logs**
30 | Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached.
31 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/bug-performance-issue--physical-robot-.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Bug/Performance Issue [Physical Robot]
3 | about: You are running on a physical robot.
4 | title: 'Issue: Bug/Performance Issue [Physical Robot]'
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **System information**
11 | - OS Platform and Distribution (e.g., Linux Ubuntu 16.04):
12 | - Python version:
13 | - Installed using pip or ROS:
14 | - Camera:
15 | - Gripper:
16 | - Robot:
17 | - GPU model (if applicable):
18 |
19 | **Describe what you are trying to do**
20 | Provide details such as what angle you are attempting grasps at relative to the workspace.
21 |
22 | **Describe current behavior**
23 |
24 | **Describe the expected behavior**
25 |
26 | **Describe the input images**
27 | Provide details such as original captured resolution, pre-processing, final resolution, etc.
28 |
29 | **Describe the physical camera setup**
30 | Provide details such as the distance from camera to workspace, orientation, etc.. Attach a picture if possible.
31 |
32 | **Describe the physical robot setup**
33 | Attach a picture if possible.
34 |
35 | **Other info / logs**
36 | Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached.
37 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/bug-performance-issue--replication-.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Bug/Performance Issue [Replication]
3 | about: You are replicating training or the policy with the provided images/datasets/models.
4 | title: 'Issue: Bug/Performance Issue [Replication]'
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **System information**
11 | - OS Platform and Distribution (e.g., Linux Ubuntu 16.04):
12 | - Python version:
13 | - Installed using pip or ROS:
14 | - GPU model (if applicable):
15 |
16 | **Describe the result you are trying to replicate**
17 | If you can, provide a link to the section in the [documentation](https://berkeleyautomation.github.io/gqcnn/index.html).
18 |
19 | **Provide the exact sequence of commands / steps that you executed to replicate this result**
20 |
21 | **Describe the unexpected behavior**
22 |
23 | **Other info / logs**
24 | Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached.
25 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/installation-issue.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Installation Issue
3 | about: You are experiencing installation issues.
4 | title: 'Issue: Installation Issue'
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **System information**
11 | - OS Platform and Distribution (e.g., Linux Ubuntu 16.04):
12 | - Python version:
13 | - Installed using pip or ROS:
14 |
15 | **Describe the problem**
16 |
17 | **Provide the exact sequence of commands / steps that you executed before running into the problem**
18 |
19 | **Any other info / logs**
20 | Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached.
21 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/other-issue.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Other Issue
3 | about: Your issue doesn't fall into the above categories.
4 | title: 'Issue: Other Issue'
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **System information**
11 | - OS Platform and Distribution (e.g., Linux Ubuntu 16.04):
12 | - Python version:
13 | - Installed using pip or ROS:
14 |
15 | **What is the problem**
16 | Provide as much detail as possible and steps to replicate it if applicable.
17 |
18 | **Other info / logs**
19 | Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached.
20 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | env/
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | data/training/
17 | eggs/
18 | .eggs/
19 | lib/
20 | lib64/
21 | parts/
22 | sdist/
23 | var/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 |
28 | # PyInstaller
29 | # Usually these files are written by a python script from a template
30 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
31 | *.manifest
32 | *.spec
33 |
34 | # Installer logs
35 | pip-log.txt
36 | pip-delete-this-directory.txt
37 |
38 | # Unit test / coverage reports
39 | htmlcov/
40 | .tox/
41 | .coverage
42 | .coverage.*
43 | .cache
44 | nosetests.xml
45 | coverage.xml
46 | *,cover
47 | .hypothesis/
48 |
49 | # Translations
50 | *.mo
51 | *.pot
52 |
53 | # Django stuff:
54 | *.log
55 | local_settings.py
56 |
57 | # Flask stuff:
58 | instance/
59 | .webassets-cache
60 |
61 | # Scrapy stuff:
62 | .scrapy
63 |
64 | # PyBuilder
65 | target/
66 |
67 | # IPython Notebook
68 | .ipynb_checkpoints
69 |
70 | # pyenv
71 | .python-version
72 |
73 | # celery beat schedule file
74 | celerybeat-schedule
75 |
76 | # dotenv
77 | .env
78 |
79 | # virtualenv
80 | venv/
81 | ENV/
82 |
83 | # Spyder project settings
84 | .spyderproject
85 |
86 | # Rope project settings
87 | .ropeproject
88 |
89 | # Temp files
90 | *~
91 | .#*
92 | #*
--------------------------------------------------------------------------------
/.style.yapf:
--------------------------------------------------------------------------------
1 | [style]
2 | based_on_style=pep8
3 | allow_split_before_dict_value=False
4 | join_multiple_lines=False
5 |
--------------------------------------------------------------------------------
/.travis.yml:
--------------------------------------------------------------------------------
1 | # Copyright ©2017. The Regents of the University of California (Regents).
2 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
3 | # software and its documentation for educational, research, and not-for-profit
4 | # purposes, without fee and without a signed licensing agreement, is hereby
5 | # granted, provided that the above copyright notice, this paragraph and the
6 | # following two paragraphs appear in all copies, modifications, and
7 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
8 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
9 | # otl@berkeley.edu,
10 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
11 |
12 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
13 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
14 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
15 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
16 |
17 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
18 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
20 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
21 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
22 | language: python
23 |
24 | matrix:
25 | - name: "Python 3.5 on Xenial Linux"
26 | python: 3.5
27 | dist: xenial
28 |
29 | - name: "Python 3.6 on Xenial Linux"
30 | python: 3.6
31 | dist: xenial
32 |
33 | - name: "Python 3.7 on Xenial Linux"
34 | python: 3.7
35 | dist: xenial
36 |
37 | - name: "Linter"
38 | python: 3.7
39 | dist: xenial
40 | before_install: []
41 | install: []
42 | script:
43 | - pip install yapf==0.27.0 # Must use specific version.
44 | - pip install flake8 flake8-comprehensions flake8-quotes==2.0.0
45 | - ./ci/travis/format.sh --all # Should exit with 0 for no diffs.
46 | - flake8
47 |
48 | before_install:
49 | - sudo apt-get update
50 | - sudo apt-get install -y curl g++ make
51 | - sudo apt-get install -y python-opengl # For GLU.
52 | - pushd ~
53 | - curl -L http://download.osgeo.org/libspatialindex/spatialindex-src-1.8.5.tar.gz | tar xz
54 | - cd spatialindex-src-1.8.5
55 | - ./configure
56 | - make
57 | - sudo make install
58 | - sudo ldconfig
59 | - popd
60 | - pip install -U setuptools # Required for easy_install to find right
61 | # skimage version for Python 3.5.
62 |
63 | install:
64 | - pip install .
65 |
66 | script:
67 | - python -c "import gqcnn"
68 |
69 | notifications:
70 | email: false
71 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Copyright ©2017. The Regents of the University of California (Regents). All Rights Reserved.
2 | Permission to use, copy, modify, and distribute this software and its documentation for educational,
3 | research, and not-for-profit purposes, without fee and without a signed licensing agreement, is
4 | hereby granted, provided that the above copyright notice, this paragraph and the following two
5 | paragraphs appear in all copies, modifications, and distributions. Contact The Office of Technology
6 | Licensing, UC Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-
7 | 7201, otl@berkeley.edu, http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
8 |
9 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
10 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
11 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
12 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
13 |
14 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
15 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
17 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
18 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
19 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ## Note: Python 2.x support has officially been dropped.
2 |
3 | # Berkeley AUTOLAB's GQCNN Package
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 | ## Package Overview
20 | The gqcnn Python package is for training and analysis of Grasp Quality Convolutional Neural Networks (GQ-CNNs). It is part of the ongoing [Dexterity-Network (Dex-Net)](https://berkeleyautomation.github.io/dex-net/) project created and maintained by the [AUTOLAB](https://autolab.berkeley.edu) at UC Berkeley.
21 |
22 | ## Installation and Usage
23 | Please see the [docs](https://berkeleyautomation.github.io/gqcnn/) for installation and usage instructions.
24 |
25 | ## Citation
26 | If you use any part of this code in a publication, please cite [the appropriate Dex-Net publication](https://berkeleyautomation.github.io/gqcnn/index.html#academic-use).
27 |
28 |
--------------------------------------------------------------------------------
/cfg/examples/antipodal_grasp_sampling.yaml:
--------------------------------------------------------------------------------
1 | # policy params
2 | policy:
3 | # general params
4 | deterministic: 1
5 | gripper_width: 0.05
6 |
7 | # sampling params
8 | sampling:
9 | # type
10 | type: antipodal_depth
11 |
12 | # antipodality
13 | friction_coef: 0.5
14 | depth_grad_thresh: 0.0025
15 | depth_grad_gaussian_sigma: 1.0
16 | downsample_rate: 4
17 | max_rejection_samples: 4000
18 |
19 | # distance
20 | max_dist_from_center: 1000
21 | min_dist_from_boundary: 45
22 | min_grasp_dist: 10.0
23 | angle_dist_weight: 5.0
24 |
25 | # depth sampling
26 | depth_sampling_mode: uniform
27 | depth_samples_per_grasp: 1
28 | depth_sample_win_height: 1
29 | depth_sample_win_width: 1
30 | min_depth_offset: 0.015
31 | max_depth_offset: 0.05
32 |
33 | # metrics
34 | metric:
35 | type: zero
36 |
37 | # visualization
38 | vis:
39 | grasp_sampling: 0
40 | final_grasp: 1
41 | vmin: 0.4
42 | vmax: 1.0
43 |
--------------------------------------------------------------------------------
/cfg/examples/fc_gqcnn_pj.yaml:
--------------------------------------------------------------------------------
1 | policy:
2 | type: fully_conv_pj
3 |
4 | sampling_method: top_k
5 | num_depth_bins: 16
6 | gripper_width: 0.05
7 | gqcnn_stride: 4
8 | gqcnn_recep_h: 96
9 | gqcnn_recep_w: 96
10 |
11 | # filtering params
12 | max_grasps_to_filter: 50
13 | filter_grasps: 0
14 |
15 | # metrics
16 | metric:
17 | type: fcgqcnn
18 | gqcnn_model: /path/to/your/FC-GQ-Image-Wise
19 | gqcnn_backend: tf
20 | fully_conv_gqcnn_config:
21 | im_height: 386
22 | im_width: 516
23 |
24 | # visualization
25 | policy_vis:
26 | scale: 0.5
27 | show_axis: 1
28 | num_samples: 0
29 | actions_2d: 0
30 | actions_3d: 0
31 | affordance_map: 0
32 | vis:
33 | final_grasp: 1
34 |
35 | vmin: 0.5
36 | vmax: 0.8
37 |
38 | # image pre-processing before input to policy
39 | inpaint_rescale_factor: 0.5
40 |
--------------------------------------------------------------------------------
/cfg/examples/fc_gqcnn_suction.yaml:
--------------------------------------------------------------------------------
1 | policy:
2 | type: fully_conv_suction
3 |
4 | sampling_method: top_k
5 | gqcnn_stride: 4
6 | gqcnn_recep_h: 96
7 | gqcnn_recep_w: 96
8 |
9 | # filtering params
10 | max_grasps_to_filter: 50
11 | filter_grasps: 0
12 |
13 | # metrics
14 | metric:
15 | type: fcgqcnn
16 | gqcnn_model: /path/to/your/FC-GQ-Image-Wise-Suction
17 | gqcnn_backend: tf
18 | fully_conv_gqcnn_config:
19 | im_height: 386
20 | im_width: 516
21 |
22 | # visualization
23 | policy_vis:
24 | scale: 0.5
25 | show_axis: 1
26 | num_samples: 0
27 | actions_2d: 0
28 | actions_3d: 0
29 | affordance_map: 0
30 | vis:
31 | final_grasp: 1
32 |
33 | vmin: 0.5
34 | vmax: 0.8
35 |
36 | # image pre-processing before input to policy
37 | inpaint_rescale_factor: 0.5
38 |
--------------------------------------------------------------------------------
/cfg/examples/gqcnn_pj.yaml:
--------------------------------------------------------------------------------
1 | policy:
2 | # optimization params
3 | num_seed_samples: 128
4 | num_gmm_samples: 64
5 | num_iters: 3
6 | gmm_refit_p: 0.25
7 | gmm_component_frac: 0.4
8 | gmm_reg_covar: 0.01
9 |
10 | # general params
11 | deterministic: 1
12 | gripper_width: 0.05
13 |
14 | # sampling params
15 | sampling:
16 | # type
17 | type: antipodal_depth
18 |
19 | # antipodality
20 | friction_coef: 1.0
21 | depth_grad_thresh: 0.0025
22 | depth_grad_gaussian_sigma: 1.0
23 | downsample_rate: 4
24 | max_rejection_samples: 4000
25 |
26 | # distance
27 | max_dist_from_center: 160
28 | min_dist_from_boundary: 45
29 | min_grasp_dist: 2.5
30 | angle_dist_weight: 5.0
31 |
32 | # depth sampling
33 | depth_sampling_mode: uniform
34 | depth_samples_per_grasp: 3
35 | depth_sample_win_height: 1
36 | depth_sample_win_width: 1
37 | min_depth_offset: 0.015
38 | max_depth_offset: 0.05
39 |
40 | # metrics
41 | metric:
42 | type: gqcnn
43 | gqcnn_model: models/GQCNN-4.0-PJ
44 |
45 | crop_height: 96
46 | crop_width: 96
47 |
48 | # visualization
49 | vis:
50 | grasp_sampling : 0
51 | tf_images: 0
52 | grasp_candidates: 0
53 | elite_grasps: 0
54 | grasp_ranking: 0
55 | grasp_plan: 0
56 | final_grasp: 1
57 |
58 | vmin: 0.5
59 | vmax: 0.8
60 |
61 | k: 25
62 |
63 | # image proc params
64 | inpaint_rescale_factor: 0.5
65 |
--------------------------------------------------------------------------------
/cfg/examples/gqcnn_suction.yaml:
--------------------------------------------------------------------------------
1 | policy:
2 | # optimization params
3 | num_seed_samples: 200
4 | num_gmm_samples: 50
5 | num_iters: 3
6 | gmm_refit_p: 0.25
7 | gmm_component_frac: 0.4
8 | gmm_reg_covar: 0.01
9 |
10 | # general params
11 | deterministic: 1
12 | gripper_width: 0.05
13 | crop_height: 96
14 | crop_width: 96
15 |
16 | # sampling params
17 | sampling:
18 | # type
19 | type: suction
20 |
21 | # params
22 | max_suction_dir_optical_axis_angle: 30
23 | delta_theta: 5
24 | delta_phi: 5
25 | sigma_depth: 0.0025
26 | min_suction_dist: 1.0
27 | angle_dist_weight: 5.0
28 | depth_gaussian_sigma: 1.0
29 | num_grasp_samples: 1000
30 |
31 | max_dist_from_center: 260
32 | max_num_samples: 10000
33 |
34 | # metric params
35 | metric:
36 | type: gqcnn
37 | gqcnn_model: models/GQCNN-4.0-SUCTION
38 |
39 | crop_height: 96
40 | crop_width: 96
41 |
42 | # visualization
43 | vis:
44 | grasp_sampling : 0
45 | tf_images: 0
46 | plane: 0
47 | grasp_candidates: 0
48 | elite_grasps: 0
49 | grasp_ranking: 0
50 | grasp_plan: 0
51 | grasp_affordance_map: 0
52 | final_grasp: 1
53 |
54 | vmin: 0.5
55 | vmax: 0.8
56 |
57 | k: 25
58 |
59 | # image proc params
60 | inpaint_rescale_factor: 0.5
61 |
62 | # detection params
63 | detection:
64 | type: point_cloud_box
65 |
66 | foreground_mask_tolerance: 60
67 | min_pt:
68 | - 0.205
69 | - -0.3
70 | - 0.01
71 |
72 | max_pt:
73 | - 0.65
74 | - 0.3
75 | - 0.15
76 |
77 | selection_policy: min
78 | focus: 0
79 |
80 | min_contour_area: 250.0
81 | max_contour_area: 1000000.0
82 | min_box_area: 250.0
83 | max_box_area: 1000000.0
84 | box_padding_px: 15
85 |
86 | rescale_factor: 1.0
87 | interpolation: bilinear
88 | depth_grad_thresh: 10.0
89 | contour_dist_thresh: 2.5
90 |
91 | point_cloud_mask_only: 1
92 |
93 | image_width: 640
94 | image_height: 480
95 |
96 | filter_dim: 1
97 |
--------------------------------------------------------------------------------
/cfg/examples/replication/dex-net_2.0.yaml:
--------------------------------------------------------------------------------
1 | # policy params
2 | policy:
3 | # optimization params
4 | num_seed_samples: 250
5 | num_gmm_samples: 50
6 | num_iters: 3
7 | gmm_refit_p: 0.25
8 | gmm_component_frac: 0.4
9 | gmm_reg_covar: 0.01
10 |
11 | # general params
12 | deterministic: 1
13 | gripper_width: 0.05
14 |
15 | # sampling params
16 | sampling:
17 | # type
18 | type: antipodal_depth
19 |
20 | # antipodality
21 | friction_coef: 0.8
22 | depth_grad_thresh: 0.0025
23 | depth_grad_gaussian_sigma: 1.0
24 | downsample_rate: 2
25 | max_rejection_samples: 4000
26 |
27 | # distance
28 | max_dist_from_center: 160
29 | min_dist_from_boundary: 45
30 | min_grasp_dist: 2.5
31 | angle_dist_weight: 5.0
32 |
33 | # depth sampling
34 | depth_sampling_mode: uniform
35 | depth_samples_per_grasp: 1
36 | depth_sample_win_height: 1
37 | depth_sample_win_width: 1
38 | min_depth_offset: 0.005
39 | max_depth_offset: 0.04
40 |
41 | # metrics
42 | metric:
43 | type: gqcnn
44 | gqcnn_model: models/GQCNN-2.0
45 |
46 | crop_height: 96
47 | crop_width: 96
48 |
49 | # visualization
50 | vis:
51 | grasp_sampling : 0
52 | tf_images: 0
53 | grasp_candidates: 0
54 | elite_grasps: 0
55 | grasp_ranking: 0
56 | grasp_plan: 0
57 | final_grasp: 1
58 |
59 | vmin: 0.0
60 | vmax: 1.0
61 |
62 | k: 25
63 |
64 | # image proc params
65 | inpaint_rescale_factor: 0.5
66 |
--------------------------------------------------------------------------------
/cfg/examples/replication/dex-net_2.1.yaml:
--------------------------------------------------------------------------------
1 | # policy params
2 | policy:
3 | # optimization params
4 | num_seed_samples: 250
5 | num_gmm_samples: 50
6 | num_iters: 3
7 | gmm_refit_p: 0.25
8 | gmm_component_frac: 0.4
9 | gmm_reg_covar: 0.01
10 |
11 | # general params
12 | deterministic: 1
13 | gripper_width: 0.05
14 |
15 | # sampling params
16 | sampling:
17 | # type
18 | type: antipodal_depth
19 |
20 | # antipodality
21 | friction_coef: 0.8
22 | depth_grad_thresh: 0.0025
23 | depth_grad_gaussian_sigma: 1.0
24 | downsample_rate: 2
25 | max_rejection_samples: 4000
26 |
27 | # distance
28 | max_dist_from_center: 160
29 | min_dist_from_boundary: 45
30 | min_grasp_dist: 2.5
31 | angle_dist_weight: 5.0
32 |
33 | # depth sampling
34 | depth_sampling_mode: uniform
35 | depth_samples_per_grasp: 1
36 | depth_sample_win_height: 1
37 | depth_sample_win_width: 1
38 | min_depth_offset: 0.005
39 | max_depth_offset: 0.04
40 |
41 | # metrics
42 | metric:
43 | type: gqcnn
44 | gqcnn_model: models/GQCNN-2.1
45 |
46 | crop_height: 96
47 | crop_width: 96
48 |
49 | # visualization
50 | vis:
51 | grasp_sampling : 0
52 | tf_images: 0
53 | grasp_candidates: 0
54 | elite_grasps: 0
55 | grasp_ranking: 0
56 | grasp_plan: 0
57 | final_grasp: 1
58 |
59 | vmin: 0.0
60 | vmax: 1.0
61 |
62 | k: 25
63 |
64 | # image proc params
65 | inpaint_rescale_factor: 0.5
66 |
--------------------------------------------------------------------------------
/cfg/examples/replication/dex-net_3.0.yaml:
--------------------------------------------------------------------------------
1 | # policy params
2 | policy:
3 | # optimization params
4 | num_seed_samples: 250
5 | num_gmm_samples: 50
6 | num_iters: 3
7 | gmm_refit_p: 0.25
8 | gmm_component_frac: 0.4
9 | gmm_reg_covar: 0.01
10 |
11 | # general params
12 | deterministic: 1
13 | max_approach_angle: 80
14 |
15 | # sampling params
16 | sampling:
17 | # type
18 | type: suction
19 |
20 | # params
21 | max_suction_dir_optical_axis_angle: 30
22 | delta_theta: 1
23 | delta_phi: 1
24 | mean_depth: 0.0025
25 | sigma_depth: 0.000001
26 | min_suction_dist: 1.0
27 | angle_dist_weight: 5.0
28 | depth_gaussian_sigma: 1.0
29 |
30 | max_dist_from_center: 10000000000
31 | max_num_samples: 10000
32 |
33 | num_grasp_samples: 500
34 |
35 | # metric params
36 | metric:
37 | type: gqcnn
38 | gqcnn_model: models/GQCNN-3.0
39 |
40 | crop_height: 96
41 | crop_width: 96
42 |
43 | # visualization
44 | vis:
45 | grasp_sampling : 0
46 | tf_images: 0
47 | plane: 0
48 | grasp_candidates: 0
49 | elite_grasps: 0
50 | grasp_ranking: 0
51 | grasp_plan: 0
52 | final_grasp: 1
53 |
54 | vmin: 0.0
55 | vmax: 1.0
56 |
57 | k: 25
58 |
59 | # image proc params
60 | inpaint_rescale_factor: 0.5
61 |
--------------------------------------------------------------------------------
/cfg/examples/replication/dex-net_4.0_fc_pj.yaml:
--------------------------------------------------------------------------------
1 | policy:
2 | type: fully_conv_pj
3 |
4 | sampling_method: top_k
5 | num_depth_bins: 16
6 | gripper_width: 0.05
7 | gqcnn_stride: 4
8 | gqcnn_recep_h: 96
9 | gqcnn_recep_w: 96
10 |
11 | # filtering params
12 | max_grasps_to_filter: 50
13 | filter_grasps: 0
14 |
15 | # metrics
16 | metric:
17 | type: fcgqcnn
18 | gqcnn_model: models/FCGQCNN-4.0-PJ
19 | gqcnn_backend: tf
20 | fully_conv_gqcnn_config:
21 | im_height: 480
22 | im_width: 640
23 |
24 | # visualization
25 | policy_vis:
26 | scale: 0.5
27 | show_axis: 1
28 | num_samples: 0
29 | actions_2d: 0
30 | actions_3d: 0
31 | affordance_map: 0
32 | vis:
33 | final_grasp: 1
34 |
35 | vmin: 0.0
36 | vmax: 1.0
37 |
38 | # image pre-processing before input to policy
39 | inpaint_rescale_factor: 0.5
40 |
--------------------------------------------------------------------------------
/cfg/examples/replication/dex-net_4.0_fc_suction.yaml:
--------------------------------------------------------------------------------
1 | policy:
2 | type: fully_conv_suction
3 |
4 | sampling_method: top_k
5 | gqcnn_stride: 4
6 | gqcnn_recep_h: 96
7 | gqcnn_recep_w: 96
8 |
9 | # filtering params
10 | max_grasps_to_filter: 50
11 | filter_grasps: 0
12 |
13 | # metrics
14 | metric:
15 | type: fcgqcnn
16 | gqcnn_model: models/FCGQCNN-4.0-SUCTION
17 | gqcnn_backend: tf
18 | fully_conv_gqcnn_config:
19 | im_height: 480
20 | im_width: 640
21 |
22 | # visualization
23 | policy_vis:
24 | scale: 0.5
25 | show_axis: 1
26 | num_samples: 0
27 | actions_2d: 0
28 | actions_3d: 0
29 | affordance_map: 0
30 | vis:
31 | final_grasp: 1
32 |
33 | vmin: 0.0
34 | vmax: 1.0
35 |
36 | # image pre-processing before input to policy
37 | inpaint_rescale_factor: 0.5
38 |
--------------------------------------------------------------------------------
/cfg/examples/replication/dex-net_4.0_pj.yaml:
--------------------------------------------------------------------------------
1 | policy:
2 | # optimization params
3 | num_seed_samples: 128
4 | num_gmm_samples: 64
5 | num_iters: 3
6 | gmm_refit_p: 0.25
7 | gmm_component_frac: 0.4
8 | gmm_reg_covar: 0.01
9 |
10 | # general params
11 | deterministic: 1
12 | gripper_width: 0.05
13 |
14 | # sampling params
15 | sampling:
16 | # type
17 | type: antipodal_depth
18 |
19 | # antipodality
20 | friction_coef: 1.0
21 | depth_grad_thresh: 0.0025
22 | depth_grad_gaussian_sigma: 1.0
23 | downsample_rate: 4
24 | max_rejection_samples: 4000
25 |
26 | # distance
27 | max_dist_from_center: 160
28 | min_dist_from_boundary: 45
29 | min_grasp_dist: 2.5
30 | angle_dist_weight: 5.0
31 |
32 | # depth sampling
33 | depth_sampling_mode: uniform
34 | depth_samples_per_grasp: 3
35 | depth_sample_win_height: 1
36 | depth_sample_win_width: 1
37 | min_depth_offset: 0.015
38 | max_depth_offset: 0.05
39 |
40 | # metrics
41 | metric:
42 | type: gqcnn
43 | gqcnn_model: models/GQCNN-4.0-PJ
44 |
45 | crop_height: 96
46 | crop_width: 96
47 |
48 | # visualization
49 | vis:
50 | grasp_sampling : 0
51 | tf_images: 0
52 | grasp_candidates: 0
53 | elite_grasps: 0
54 | grasp_ranking: 0
55 | grasp_plan: 0
56 | final_grasp: 1
57 |
58 | vmin: 0.0
59 | vmax: 1.0
60 |
61 | k: 25
62 |
63 | # image proc params
64 | inpaint_rescale_factor: 0.5
65 |
--------------------------------------------------------------------------------
/cfg/examples/replication/dex-net_4.0_suction.yaml:
--------------------------------------------------------------------------------
1 | policy:
2 | # optimization params
3 | num_seed_samples: 200
4 | num_gmm_samples: 50
5 | num_iters: 3
6 | gmm_refit_p: 0.25
7 | gmm_component_frac: 0.4
8 | gmm_reg_covar: 0.01
9 |
10 | # general params
11 | deterministic: 1
12 | gripper_width: 0.05
13 | crop_height: 96
14 | crop_width: 96
15 |
16 | # sampling params
17 | sampling:
18 | # type
19 | type: suction
20 |
21 | # params
22 | max_suction_dir_optical_axis_angle: 30
23 | delta_theta: 5
24 | delta_phi: 5
25 | sigma_depth: 0.0025
26 | min_suction_dist: 1.0
27 | angle_dist_weight: 5.0
28 | depth_gaussian_sigma: 1.0
29 | num_grasp_samples: 1000
30 |
31 | max_dist_from_center: 260
32 | max_num_samples: 10000
33 |
34 | # metric params
35 | metric:
36 | type: gqcnn
37 | gqcnn_model: models/GQCNN-4.0-SUCTION
38 |
39 | crop_height: 96
40 | crop_width: 96
41 |
42 | # visualization
43 | vis:
44 | grasp_sampling : 0
45 | tf_images: 0
46 | plane: 0
47 | grasp_candidates: 0
48 | elite_grasps: 0
49 | grasp_ranking: 0
50 | grasp_plan: 0
51 | grasp_affordance_map: 0
52 | final_grasp: 1
53 |
54 | vmin: 0.0
55 | vmax: 1.0
56 |
57 | k: 25
58 |
59 | # image proc params
60 | inpaint_rescale_factor: 0.5
61 |
62 | # detection params
63 | detection:
64 | type: point_cloud_box
65 |
66 | foreground_mask_tolerance: 60
67 | min_pt:
68 | - 0.205
69 | - -0.3
70 | - 0.01
71 |
72 | max_pt:
73 | - 0.65
74 | - 0.3
75 | - 0.15
76 |
77 | selection_policy: min
78 | focus: 0
79 |
80 | min_contour_area: 250.0
81 | max_contour_area: 1000000.0
82 | min_box_area: 250.0
83 | max_box_area: 1000000.0
84 | box_padding_px: 15
85 |
86 | rescale_factor: 1.0
87 | interpolation: bilinear
88 | depth_grad_thresh: 10.0
89 | contour_dist_thresh: 2.5
90 |
91 | point_cloud_mask_only: 1
92 |
93 | image_width: 640
94 | image_height: 480
95 |
96 | filter_dim: 1
97 |
--------------------------------------------------------------------------------
/cfg/examples/ros/fc_gqcnn_pj.yaml:
--------------------------------------------------------------------------------
1 | !include ../fc_gqcnn_pj.yaml
2 |
3 | # ROS-specific visualization
4 | vis:
5 | rgbd_state: 0
6 | cropped_rgbd_image: 0
7 | color_image: 0
8 | depth_image: 0
9 | segmask: 0
10 |
11 |
--------------------------------------------------------------------------------
/cfg/examples/ros/fc_gqcnn_suction.yaml:
--------------------------------------------------------------------------------
1 | !include ../fc_gqcnn_suction.yaml
2 |
3 | # ROS-specific visualization
4 | vis:
5 | rgbd_state: 0
6 | cropped_rgbd_image: 0
7 | color_image: 0
8 | depth_image: 0
9 | segmask: 0
10 |
11 |
--------------------------------------------------------------------------------
/cfg/examples/ros/gqcnn_pj.yaml:
--------------------------------------------------------------------------------
1 | !include ../gqcnn_pj.yaml
2 |
3 | # ROS-specific visualization
4 | vis:
5 | rgbd_state: 0
6 | cropped_rgbd_image: 0
7 | color_image: 0
8 | depth_image: 0
9 | segmask: 0
10 |
11 |
--------------------------------------------------------------------------------
/cfg/examples/ros/gqcnn_suction.yaml:
--------------------------------------------------------------------------------
1 | !include ../gqcnn_suction.yaml
2 |
3 | # ROS-specific visualization
4 | vis:
5 | rgbd_state: 0
6 | cropped_rgbd_image: 0
7 | color_image: 0
8 | depth_image: 0
9 | segmask: 0
10 |
11 |
--------------------------------------------------------------------------------
/cfg/tools/analyze_gqcnn_performance.yaml:
--------------------------------------------------------------------------------
1 | log_rate: 10
2 | font_size: 15
3 | line_width: 4
4 | dpi: 100
5 | num_bins: 100
6 | num_vis: 10
7 |
--------------------------------------------------------------------------------
/cfg/tools/run_policy.yaml:
--------------------------------------------------------------------------------
1 | # policy params
2 | policy:
3 | # optimization params
4 | num_seed_samples: 250
5 | num_gmm_samples: 100
6 | num_iters: 3
7 | gmm_refit_p: 0.125
8 | gmm_component_frac: 0.8
9 | gmm_reg_covar: 0.01
10 | max_resamples_per_iteration: 10
11 |
12 | # general params
13 | deterministic: 0
14 | gripper: yumi_metal_spline
15 | gripper_width: 0.05
16 | max_approach_angle: 60
17 | logging_dir: logs/debug
18 |
19 | # sampling params
20 | sampling:
21 | # type
22 | type: antipodal_depth
23 |
24 | # antipodality
25 | friction_coef: 0.8
26 | depth_grad_thresh: 0.002
27 | depth_grad_gaussian_sigma: 0.5
28 | min_num_edge_pixels: 25
29 | downsample_rate: 2
30 | max_rejection_samples: 4000
31 |
32 | # distance
33 | max_dist_from_center: 100000
34 | min_dist_from_boundary: 45
35 | min_grasp_dist: 1.0
36 | angle_dist_weight: 5.0
37 |
38 | # depth sampling
39 | depth_samples_per_grasp: 1
40 | depth_sample_win_height: 1
41 | depth_sample_win_width: 1
42 |
43 | depth_sampling_mode: uniform
44 | min_depth_offset: 0.015
45 | max_depth_offset: 0.04
46 |
47 | # metric params
48 | metric:
49 | type: gqcnn
50 |
51 | gqcnn_model: /mnt/data/diskstation/models/icra2019/gqcnn_mini_dexnet/
52 |
53 | crop_height: 96
54 | crop_width: 96
55 |
56 | # filter params
57 | filter_collisions: 1
58 | filter_ik: 1
59 | filter_unreachable: 0
60 | max_grasps_filter: 10
61 |
62 | collision_free_filter:
63 | approach_dist: 0.075
64 | rescale_factor: 0.125
65 | ik_filter:
66 | approach_dist: 0.075
67 | traj_len: 0
68 | group_name: left_jaws
69 | ik_timeout: 0.1
70 | reachability_filter:
71 | unreachable_pose_dir: /mnt/data/diskstation/unreachable_poses/left/
72 | min_rot_dist: 0.1
73 | min_trans_dist: 0.01
74 |
75 | # visualization
76 | vis:
77 | input_images: 0
78 | grasp_sampling : 0
79 | tf_images: 0
80 | grasp_candidates: 0
81 | elite_grasps: 0
82 | grasp_ranking: 0
83 | grasp_plan: 0
84 | seg_point_cloud: 0
85 | filtered_point_cloud: 0
86 | final_grasp: 1
87 |
88 | grasp_scale: 1
89 |
90 | vmin: 0.6
91 | vmax: 0.9
92 |
93 | k: 25
94 |
--------------------------------------------------------------------------------
/cfg/train_dex-net_2.0.yaml:
--------------------------------------------------------------------------------
1 | # general optimization params
2 | train_batch_size: 64
3 | val_batch_size: &val_batch_size 64
4 |
5 | # logging params
6 | num_epochs: 50 # number of epochs to train for
7 | eval_frequency: 5 # how often to get validation error (in epochs)
8 | save_frequency: 5 # how often to save output (in epochs)
9 | vis_frequency: 10000 # how often to visualize filters (in epochs)
10 | log_frequency: 1 # how often to log output (in steps)
11 |
12 | # train / val split params
13 | train_pct: 0.8 # percentage of the data to use for training vs validation
14 | total_pct: 1.0 # percentage of all the files to use
15 | eval_total_train_error: 0 # whether or not to evaluate the total training error on each validataion
16 | max_files_eval: 1000 # the number of validation files to use in each eval
17 |
18 | # optimization params
19 | loss: sparse
20 | optimizer: momentum
21 | train_l2_regularizer: 0.0005
22 | base_lr: 0.01
23 | decay_step_multiplier: 0.66 # number of times to go through training datapoints before stepping down decay rate (in epochs)
24 | decay_rate: 0.95
25 | momentum_rate: 0.9
26 | max_training_examples_per_load: 128
27 | drop_rate: 0.0
28 | max_global_grad_norm: 100000000000
29 |
30 | # input params
31 | training_mode: classification
32 | image_field_name: depth_ims_tf_table
33 | pose_field_name: hand_poses
34 |
35 | # label params
36 | target_metric_name: robust_ferrari_canny # name of the field to use for the labels
37 | metric_thresh: 0.002 # threshold for positive examples (label = 1 if grasp_metric > metric_thresh)
38 |
39 | # preproc params
40 | num_random_files: 10000 # the number of random files to compute dataset statistics in preprocessing (lower speeds initialization)
41 | preproc_log_frequency: 100 # how often to log preprocessing (in steps)
42 |
43 | # denoising / synthetic data params
44 | multiplicative_denoising: 1
45 | gamma_shape: 1000.00
46 |
47 | symmetrize: 1
48 |
49 | gaussian_process_denoising: 1
50 | gaussian_process_rate: 0.5
51 | gaussian_process_scaling_factor: 4.0
52 | gaussian_process_sigma: 0.005
53 |
54 | # tensorboard
55 | tensorboard_port: 6006
56 |
57 | # debugging params
58 | debug: &debug 0
59 | debug_num_files: 10 # speeds up initialization
60 | seed: &seed 24098
61 |
62 | ### GQCNN CONFIG ###
63 | gqcnn:
64 | # basic data metrics
65 | im_height: 32
66 | im_width: 32
67 | im_channels: 1
68 | debug: *debug
69 | seed: *seed
70 |
71 | # needs to match input data mode that was used for training, determines the pose dimensions for the network
72 | gripper_mode: legacy_parallel_jaw
73 |
74 | # prediction batch size, in training this will be overriden by the val_batch_size in the optimizer's config file
75 | batch_size: *val_batch_size
76 |
77 | # architecture
78 | architecture:
79 | im_stream:
80 | conv1_1:
81 | type: conv
82 | filt_dim: 7
83 | num_filt: 64
84 | pool_size: 1
85 | pool_stride: 1
86 | pad: SAME
87 | norm: 0
88 | norm_type: local_response
89 | conv1_2:
90 | type: conv
91 | filt_dim: 5
92 | num_filt: 64
93 | pool_size: 2
94 | pool_stride: 2
95 | pad: SAME
96 | norm: 1
97 | norm_type: local_response
98 | conv2_1:
99 | type: conv
100 | filt_dim: 3
101 | num_filt: 64
102 | pool_size: 1
103 | pool_stride: 1
104 | pad: SAME
105 | norm: 0
106 | norm_type: local_response
107 | conv2_2:
108 | type: conv
109 | filt_dim: 3
110 | num_filt: 64
111 | pool_size: 2
112 | pool_stride: 2
113 | pad: SAME
114 | norm: 1
115 | norm_type: local_response
116 | fc3:
117 | type: fc
118 | out_size: 1024
119 | pose_stream:
120 | pc1:
121 | type: pc
122 | out_size: 16
123 | pc2:
124 | type: pc
125 | out_size: 0
126 | merge_stream:
127 | fc4:
128 | type: fc_merge
129 | out_size: 1024
130 | fc5:
131 | type: fc
132 | out_size: 2
133 |
134 | # architecture normalization constants
135 | radius: 2
136 | alpha: 2.0e-05
137 | beta: 0.75
138 | bias: 1.0
139 |
140 | # leaky relu coefficient
141 | relu_coeff: 0.0
142 |
--------------------------------------------------------------------------------
/cfg/train_dex-net_4.0_fc_pj.yaml:
--------------------------------------------------------------------------------
1 | # general optimization params
2 | train_batch_size: 64
3 | val_batch_size: &val_batch_size 64
4 |
5 | # logging params
6 | num_epochs: 50 # number of epochs to train for
7 | eval_frequency: 10 # how often to get validation error (in epochs)
8 | save_frequency: 10 # how often to save output (in epochs)
9 | vis_frequency: 10000 # how often to visualize filters (in epochs)
10 | log_frequency: 1 # how often to log output (in steps)
11 |
12 | # train / val split params
13 | train_pct: 0.8 # percentage of the data to use for training vs validation
14 | total_pct: 1.0 # percentage of all the files to use
15 | eval_total_train_error: 0 # whether or not to evaluate the total training error on each validataion
16 | max_files_eval: 1000 # the number of validation files to use in each eval
17 |
18 | # optimization params
19 | loss: sparse
20 | optimizer: momentum
21 | train_l2_regularizer: 0.0005
22 | base_lr: 0.01
23 | decay_step_multiplier: 0.5 # number of times to go through training datapoints before stepping down decay rate (in epochs)
24 | decay_rate: 0.95
25 | momentum_rate: 0.9
26 | max_training_examples_per_load: 128
27 | drop_rate: 0.0
28 | max_global_grad_norm: 100000000000
29 |
30 | # input params
31 | training_mode: classification
32 | image_field_name: tf_depth_ims
33 | pose_field_name: grasps
34 |
35 | # label params
36 | target_metric_name: grasp_metrics # name of the field to use for the labels
37 | metric_thresh: 0.5 # threshold for positive examples (label = 1 if grasp_metric > metric_thresh)
38 |
39 | # preproc params
40 | num_random_files: 10000 # the number of random files to compute dataset statistics in preprocessing (lower speeds initialization)
41 | preproc_log_frequency: 100 # how often to log preprocessing (in steps)
42 |
43 | # denoising / synthetic data params
44 | multiplicative_denoising: 0
45 | gamma_shape: 1000.00
46 |
47 | symmetrize: 0
48 |
49 | gaussian_process_denoising: 0
50 | gaussian_process_rate: 0.5
51 | gaussian_process_scaling_factor: 4.0
52 | gaussian_process_sigma: 0.005
53 |
54 | # tensorboard
55 | tensorboard_port: 6006
56 |
57 | # debugging params
58 | debug: &debug 0
59 | debug_num_files: 10 # speeds up initialization
60 | seed: &seed 24098
61 |
62 | ### GQCNN CONFIG ###
63 | gqcnn:
64 | # basic data metrics
65 | im_height: 96
66 | im_width: 96
67 | im_channels: 1
68 | debug: *debug
69 | seed: *seed
70 |
71 | # needs to match input data mode that was used for training, determines the pose dimensions for the network
72 | gripper_mode: parallel_jaw
73 |
74 | # method by which to integrate depth into the network
75 | input_depth_mode: im_depth_sub
76 |
77 | # used for training with multiple angular predictions
78 | angular_bins: 16
79 |
80 | # prediction batch size, in training this will be overriden by the val_batch_size in the optimizer's config file
81 | batch_size: *val_batch_size
82 |
83 | # architecture
84 | architecture:
85 | im_stream:
86 | conv1_1:
87 | type: conv
88 | filt_dim: 9
89 | num_filt: 16
90 | pool_size: 1
91 | pool_stride: 1
92 | pad: VALID
93 | norm: 0
94 | norm_type: local_response
95 | conv1_2:
96 | type: conv
97 | filt_dim: 5
98 | num_filt: 16
99 | pool_size: 2
100 | pool_stride: 2
101 | pad: VALID
102 | norm: 0
103 | norm_type: local_response
104 | conv2_1:
105 | type: conv
106 | filt_dim: 5
107 | num_filt: 16
108 | pool_size: 1
109 | pool_stride: 1
110 | pad: VALID
111 | norm: 0
112 | norm_type: local_response
113 | conv2_2:
114 | type: conv
115 | filt_dim: 5
116 | num_filt: 16
117 | pool_size: 2
118 | pool_stride: 2
119 | pad: VALID
120 | norm: 0
121 | norm_type: local_response
122 | fc3:
123 | type: fc
124 | out_size: 128
125 | fc4:
126 | type: fc
127 | out_size: 128
128 | fc5:
129 | type: fc
130 | out_size: 32
131 |
132 | # architecture normalization constants
133 | radius: 2
134 | alpha: 2.0e-05
135 | beta: 0.75
136 | bias: 1.0
137 |
138 | # leaky relu coefficient
139 | relu_coeff: 0.0
140 |
--------------------------------------------------------------------------------
/cfg/train_dex-net_4.0_fc_suction.yaml:
--------------------------------------------------------------------------------
1 | # general optimization params
2 | train_batch_size: 64
3 | val_batch_size: &val_batch_size 64
4 |
5 | # logging params
6 | num_epochs: 50 # number of epochs to train for
7 | eval_frequency: 10 # how often to get validation error (in epochs)
8 | save_frequency: 10 # how often to save output (in epochs)
9 | vis_frequency: 10000 # how often to visualize filters (in epochs)
10 | log_frequency: 1 # how often to log output (in steps)
11 |
12 | # train / val split params
13 | train_pct: 0.8 # percentage of the data to use for training vs validation
14 | total_pct: 1.0 # percentage of all the files to use
15 | eval_total_train_error: 0 # whether or not to evaluate the total training error on each validataion
16 | max_files_eval: 1000 # the number of validation files to use in each eval
17 |
18 | # optimization params
19 | loss: sparse
20 | optimizer: momentum
21 | train_l2_regularizer: 0.0005
22 | base_lr: 0.01
23 | decay_step_multiplier: 0.5 # number of times to go through training datapoints before stepping down decay rate (in epochs)
24 | decay_rate: 0.95
25 | momentum_rate: 0.9
26 | max_training_examples_per_load: 128
27 | drop_rate: 0.0
28 | max_global_grad_norm: 100000000000
29 |
30 | # input params
31 | training_mode: classification
32 | image_field_name: tf_depth_ims
33 | pose_field_name: grasps
34 |
35 | # label params
36 | target_metric_name: grasp_metrics # name of the field to use for the labels
37 | metric_thresh: 0.5 # threshold for positive examples (label = 1 if grasp_metric > metric_thresh)
38 |
39 | # preproc params
40 | num_random_files: 10000 # the number of random files to compute dataset statistics in preprocessing (lower speeds initialization)
41 | preproc_log_frequency: 100 # how often to log preprocessing (in steps)
42 |
43 | # denoising / synthetic data params
44 | multiplicative_denoising: 0
45 | gamma_shape: 1000.00
46 |
47 | symmetrize: 1
48 |
49 | gaussian_process_denoising: 0
50 | gaussian_process_rate: 0.5
51 | gaussian_process_scaling_factor: 4.0
52 | gaussian_process_sigma: 0.005
53 |
54 | # tensorboard
55 | tensorboard_port: 6006
56 |
57 | # debugging params
58 | debug: &debug 0
59 | debug_num_files: 10 # speeds up initialization
60 | seed: &seed 24098
61 |
62 | ### GQCNN CONFIG ###
63 | gqcnn:
64 | # basic data metrics
65 | im_height: 96
66 | im_width: 96
67 | im_channels: 1
68 | debug: *debug
69 | seed: *seed
70 |
71 | # needs to match input data mode that was used for training, determines the pose dimensions for the network
72 | gripper_mode: suction
73 |
74 | # method by which to integrate depth into the network
75 | input_depth_mode: im_only
76 |
77 | # used for training with multiple angular predictions
78 | angular_bins: 0
79 |
80 | # prediction batch size, in training this will be overriden by the val_batch_size in the optimizer's config file
81 | batch_size: *val_batch_size
82 |
83 | # architecture
84 | architecture:
85 | im_stream:
86 | conv1_1:
87 | type: conv
88 | filt_dim: 9
89 | num_filt: 16
90 | pool_size: 1
91 | pool_stride: 1
92 | pad: VALID
93 | norm: 0
94 | norm_type: local_response
95 | conv1_2:
96 | type: conv
97 | filt_dim: 5
98 | num_filt: 16
99 | pool_size: 2
100 | pool_stride: 2
101 | pad: VALID
102 | norm: 0
103 | norm_type: local_response
104 | conv2_1:
105 | type: conv
106 | filt_dim: 5
107 | num_filt: 16
108 | pool_size: 1
109 | pool_stride: 1
110 | pad: VALID
111 | norm: 0
112 | norm_type: local_response
113 | conv2_2:
114 | type: conv
115 | filt_dim: 5
116 | num_filt: 16
117 | pool_size: 2
118 | pool_stride: 2
119 | pad: VALID
120 | norm: 0
121 | norm_type: local_response
122 | fc3:
123 | type: fc
124 | out_size: 128
125 | fc4:
126 | type: fc
127 | out_size: 128
128 | fc5:
129 | type: fc
130 | out_size: 2
131 |
132 | # architecture normalization constants
133 | radius: 2
134 | alpha: 2.0e-05
135 | beta: 0.75
136 | bias: 1.0
137 |
138 | # leaky relu coefficient
139 | relu_coeff: 0.0
140 |
--------------------------------------------------------------------------------
/cfg/train_fc.yaml:
--------------------------------------------------------------------------------
1 | # general optimization params
2 | train_batch_size: 64
3 | val_batch_size: &val_batch_size 64
4 |
5 | # logging params
6 | num_epochs: 50 # number of epochs to train for
7 | eval_frequency: 10 # how often to get validation error (in epochs)
8 | save_frequency: 10 # how often to save output (in epochs)
9 | vis_frequency: 10000 # how often to visualize filters (in epochs)
10 | log_frequency: 1 # how often to log output (in steps)
11 |
12 | # train / val split params
13 | train_pct: 0.8 # percentage of the data to use for training vs validation
14 | total_pct: 1.0 # percentage of all the files to use
15 | eval_total_train_error: 0 # whether or not to evaluate the total training error on each validataion
16 | max_files_eval: 1000 # the number of validation files to use in each eval
17 |
18 | # optimization params
19 | loss: sparse
20 | optimizer: momentum
21 | train_l2_regularizer: 0.0005
22 | base_lr: 0.01
23 | decay_step_multiplier: 0.5 # number of times to go through training datapoints before stepping down decay rate (in epochs)
24 | decay_rate: 0.95
25 | momentum_rate: 0.9
26 | max_training_examples_per_load: 128
27 | drop_rate: 0.0
28 | max_global_grad_norm: 100000000000
29 |
30 | # input params
31 | training_mode: classification
32 | image_field_name: tf_depth_ims
33 | pose_field_name: grasps
34 |
35 | # label params
36 | target_metric_name: grasp_metrics # name of the field to use for the labels
37 | metric_thresh: 0.5 # threshold for positive examples (label = 1 if grasp_metric > metric_thresh)
38 |
39 | # preproc params
40 | num_random_files: 10000 # the number of random files to compute dataset statistics in preprocessing (lower speeds initialization)
41 | preproc_log_frequency: 100 # how often to log preprocessing (in steps)
42 |
43 | # denoising / synthetic data params
44 | multiplicative_denoising: 0
45 | gamma_shape: 1000.00
46 |
47 | symmetrize: 0
48 |
49 | gaussian_process_denoising: 0
50 | gaussian_process_rate: 0.5
51 | gaussian_process_scaling_factor: 4.0
52 | gaussian_process_sigma: 0.005
53 |
54 | # tensorboard
55 | tensorboard_port: 6006
56 |
57 | # debugging params
58 | debug: &debug 0
59 | debug_num_files: 10 # speeds up initialization
60 | seed: &seed 24098
61 |
62 | ### GQCNN CONFIG ###
63 | gqcnn:
64 | # basic data metrics
65 | im_height: 96
66 | im_width: 96
67 | im_channels: 1
68 | debug: *debug
69 | seed: *seed
70 |
71 | # needs to match input data mode that was used for training, determines the pose dimensions for the network
72 | gripper_mode: parallel_jaw
73 |
74 | # method by which to integrate depth into the network
75 | input_depth_mode: im_depth_sub
76 |
77 | # used for training with multiple angular predictions
78 | angular_bins: 16
79 |
80 | # prediction batch size, in training this will be overriden by the val_batch_size in the optimizer's config file
81 | batch_size: *val_batch_size
82 |
83 | # architecture
84 | architecture:
85 | im_stream:
86 | conv1_1:
87 | type: conv
88 | filt_dim: 9
89 | num_filt: 16
90 | pool_size: 1
91 | pool_stride: 1
92 | pad: VALID
93 | norm: 0
94 | norm_type: local_response
95 | conv1_2:
96 | type: conv
97 | filt_dim: 5
98 | num_filt: 16
99 | pool_size: 2
100 | pool_stride: 2
101 | pad: VALID
102 | norm: 0
103 | norm_type: local_response
104 | conv2_1:
105 | type: conv
106 | filt_dim: 5
107 | num_filt: 16
108 | pool_size: 1
109 | pool_stride: 1
110 | pad: VALID
111 | norm: 0
112 | norm_type: local_response
113 | conv2_2:
114 | type: conv
115 | filt_dim: 5
116 | num_filt: 16
117 | pool_size: 2
118 | pool_stride: 2
119 | pad: VALID
120 | norm: 0
121 | norm_type: local_response
122 | fc3:
123 | type: fc
124 | out_size: 128
125 | fc4:
126 | type: fc
127 | out_size: 128
128 | fc5:
129 | type: fc
130 | out_size: 32
131 |
132 | # architecture normalization constants
133 | radius: 2
134 | alpha: 2.0e-05
135 | beta: 0.75
136 | bias: 1.0
137 |
138 | # leaky relu coefficient
139 | relu_coeff: 0.0
140 |
--------------------------------------------------------------------------------
/ci/travis/format.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | # Script for YAPF formatting. Adapted from https://github.com/ray-project/ray/blob/master/ci/travis/format.sh.
26 |
27 | YAPF_FLAGS=(
28 | '--style' ".style.yapf"
29 | '--recursive'
30 | '--parallel'
31 | )
32 |
33 | YAPF_EXCLUDES=()
34 |
35 | # Format specified files
36 | format() {
37 | yapf --in-place "${YAPF_FLAGS[@]}" -- "$@"
38 | }
39 |
40 | # Format all files, and print the diff to `stdout` for Travis.
41 | format_all() {
42 | yapf --diff "${YAPF_FLAGS[@]}" "${YAPF_EXCLUDES[@]}" .
43 | }
44 |
45 | # This flag formats individual files. `--files` *must* be the first command line
46 | # arg to use this option.
47 | if [[ "$1" == '--files' ]]; then
48 | format "${@:2}"
49 | # If `--all` is passed, then any further arguments are ignored and the
50 | # entire Python directory is formatted.
51 | elif [[ "$1" == '--all' ]]; then
52 | format_all
53 | fi
54 |
--------------------------------------------------------------------------------
/data/calib/phoxi/phoxi.intr:
--------------------------------------------------------------------------------
1 | {"_cy": 191.75, "_cx": 255.5, "_fy": 552.5, "_height": 386, "_fx": 552.5, "_width": 516, "_skew": 0.0, "_K": 0, "_frame": "phoxi"}
--------------------------------------------------------------------------------
/data/calib/phoxi/phoxi_to_world.tf:
--------------------------------------------------------------------------------
1 | phoxi
2 | world
3 | 0.385146 -0.121589 0.808145
4 | 0.005659 -0.999983 0.001249
5 | -0.989208 -0.005415 0.146420
6 | -0.146410 -0.002064 -0.989222
7 |
--------------------------------------------------------------------------------
/data/calib/primesense/primesense.intr:
--------------------------------------------------------------------------------
1 | {"_cy": 239.5, "_cx": 319.5, "_fy": 525.0, "_height": 480, "_fx": 525.0, "_width": 640, "_skew": 0.0, "_K": 0, "_frame": "primesense_overhead"}
--------------------------------------------------------------------------------
/data/calib/primesense/primesense.tf:
--------------------------------------------------------------------------------
1 | primesense_overhead
2 | world
3 | 0.214280 0.004186 0.872913
4 | 0.021188 -0.975273 0.219984
5 | -0.999765 -0.021698 0.000098
6 | 0.004678 -0.219934 -0.975504
7 |
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/color_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/color_0.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/color_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/color_1.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/color_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/color_2.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/color_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/color_3.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/color_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/color_4.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/depth_0.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/depth_0.npy
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/depth_1.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/depth_1.npy
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/depth_2.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/depth_2.npy
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/depth_3.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/depth_3.npy
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/depth_4.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/depth_4.npy
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/segmask_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/segmask_0.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/segmask_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/segmask_1.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/segmask_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/segmask_2.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/segmask_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/segmask_3.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/dex-net_4.0/segmask_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/dex-net_4.0/segmask_4.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/color_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/color_0.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/color_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/color_1.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/color_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/color_2.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/color_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/color_3.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/color_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/color_4.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/depth_0.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/depth_0.npy
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/depth_1.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/depth_1.npy
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/depth_2.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/depth_2.npy
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/depth_3.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/depth_3.npy
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/depth_4.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/depth_4.npy
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/segmask_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/segmask_0.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/segmask_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/segmask_1.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/segmask_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/segmask_2.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/segmask_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/segmask_3.png
--------------------------------------------------------------------------------
/data/examples/clutter/phoxi/fcgqcnn/segmask_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/phoxi/fcgqcnn/segmask_4.png
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/color_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/color_0.png
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/color_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/color_1.png
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/color_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/color_2.png
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/color_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/color_3.png
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/color_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/color_4.png
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/depth_0.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/depth_0.npy
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/depth_1.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/depth_1.npy
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/depth_2.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/depth_2.npy
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/depth_3.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/depth_3.npy
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/depth_4.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/depth_4.npy
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/segmask_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/segmask_0.png
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/segmask_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/segmask_1.png
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/segmask_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/segmask_2.png
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/segmask_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/segmask_3.png
--------------------------------------------------------------------------------
/data/examples/clutter/primesense/segmask_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/clutter/primesense/segmask_4.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/color_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/color_0.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/color_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/color_1.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/color_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/color_2.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/color_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/color_3.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/color_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/color_4.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/color_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/color_5.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/color_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/color_6.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/color_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/color_7.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/color_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/color_8.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/color_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/color_9.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/depth_0.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/depth_0.npy
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/depth_1.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/depth_1.npy
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/depth_2.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/depth_2.npy
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/depth_3.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/depth_3.npy
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/depth_4.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/depth_4.npy
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/depth_5.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/depth_5.npy
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/depth_6.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/depth_6.npy
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/depth_7.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/depth_7.npy
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/depth_8.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/depth_8.npy
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/depth_9.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/depth_9.npy
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/segmask_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/segmask_0.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/segmask_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/segmask_1.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/segmask_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/segmask_2.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/segmask_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/segmask_3.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/segmask_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/segmask_4.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/segmask_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/segmask_5.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/segmask_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/segmask_6.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/segmask_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/segmask_7.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/segmask_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/segmask_8.png
--------------------------------------------------------------------------------
/data/examples/single_object/primesense/segmask_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/examples/single_object/primesense/segmask_9.png
--------------------------------------------------------------------------------
/data/training/README.md:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/data/training/README.md
--------------------------------------------------------------------------------
/docker/cpu/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM ubuntu:xenial
2 |
3 | MAINTAINER Vishal Satish
4 |
5 | # Args.
6 | # Must be an absolute path.
7 | ARG work_dir=/root/Workspace
8 |
9 | # Install `apt-get` deps.
10 | RUN apt-get update && apt-get install -y \
11 | build-essential \
12 | python3 \
13 | python3-dev \
14 | python3-tk \
15 | python-opengl \
16 | curl \
17 | libsm6 \
18 | libxext6 \
19 | libglib2.0-0 \
20 | libxrender1 \
21 | wget \
22 | unzip
23 |
24 | # Install libspatialindex (required for latest rtree).
25 | RUN curl -L http://download.osgeo.org/libspatialindex/spatialindex-src-1.8.5.tar.gz | tar xz && \
26 | cd spatialindex-src-1.8.5 && \
27 | ./configure && \
28 | make && \
29 | make install && \
30 | ldconfig && \
31 | cd ..
32 |
33 | # Install pip (`apt-get install python-pip` causes trouble w/ networkx).
34 | RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
35 | python3 get-pip.py && \
36 | rm get-pip.py
37 |
38 | # Required for easy_install to find right skimage version for Python 3.5.
39 | RUN pip3 install -U setuptools
40 |
41 | # Make working directory.
42 | WORKDIR ${work_dir}
43 |
44 | # Copy the library.
45 | ADD docker/gqcnn.tar .
46 |
47 | # This is because `python setup.py develop` skips `install_requires` (I think).
48 | RUN python3 -m pip install -r gqcnn/requirements/cpu_requirements.txt
49 |
50 | # Install the library in editable mode because it's more versatile (in case we want to develop or if users want to modify things)
51 | # Keep the egg outside of the library in site-packages in case we want to mount the library (overwriting it) for development with docker
52 | ENV PYTHONPATH ${work_dir}/gqcnn
53 | WORKDIR /usr/local/lib/python3.5/site-packages/
54 | RUN python3 ${work_dir}/gqcnn/setup.py develop --docker
55 |
56 | # Move to the top-level gqcnn package dir.
57 | WORKDIR ${work_dir}/gqcnn
58 |
--------------------------------------------------------------------------------
/docker/gpu/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04
2 |
3 | MAINTAINER Vishal Satish
4 |
5 | # Args
6 | # `work_dir` must be an absolute path.
7 | ARG work_dir=/root/Workspace
8 |
9 | # Install `apt-get` deps.
10 | RUN apt-get update && apt-get install -y \
11 | build-essential \
12 | python3 \
13 | python3-dev \
14 | python3-tk \
15 | python-opengl \
16 | curl \
17 | libsm6 \
18 | libxext6 \
19 | libglib2.0-0 \
20 | libxrender1 \
21 | wget \
22 | unzip
23 |
24 | # Install libspatialindex (required for latest rtree).
25 | RUN curl -L http://download.osgeo.org/libspatialindex/spatialindex-src-1.8.5.tar.gz | tar xz && \
26 | cd spatialindex-src-1.8.5 && \
27 | ./configure && \
28 | make && \
29 | make install && \
30 | ldconfig && \
31 | cd ..
32 |
33 | # Install pip (`apt-get install python-pip` causes trouble w/ networkx).
34 | RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
35 | python3 get-pip.py && \
36 | rm get-pip.py
37 |
38 | # Required for easy_install to find right skimage version for Python 3.5.
39 | RUN pip3 install -U setuptools
40 |
41 | # Make working directory.
42 | WORKDIR ${work_dir}
43 |
44 | # Copy the library.
45 | ADD docker/gqcnn.tar .
46 |
47 | # This is because `python setup.py develop` skips install_requires (I think) and also because we want to explicitly use the GPU requirements.
48 | RUN python3 -m pip install -r gqcnn/requirements/gpu_requirements.txt
49 |
50 | # Install the library in editable mode because it's more versatile (in case we want to develop or if users want to modify things)
51 | # Keep the egg outside of the library in site-packages in case we want to mount the library (overwriting it) for development with docker
52 | ENV PYTHONPATH ${work_dir}/gqcnn
53 | WORKDIR /usr/local/lib/python3.5/site-packages/
54 | RUN python3 ${work_dir}/gqcnn/setup.py develop --docker
55 |
56 | # Move to the base library dir
57 | WORKDIR ${work_dir}/gqcnn
58 |
--------------------------------------------------------------------------------
/docs/Makefile:
--------------------------------------------------------------------------------
1 | # Minimal makefile for Sphinx documentation
2 | #
3 |
4 | # You can set these variables from the command line.
5 | SPHINXOPTS =
6 | SPHINXBUILD = sphinx-build
7 | SPHINXPROJ = GQCNN
8 | SOURCEDIR = source
9 | BUILDDIR = build
10 | GH_PAGES_SOURCES = docs examples gqcnn tools
11 |
12 | # Put it first so that "make" without argument is like "make help".
13 | help:
14 | @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
15 |
16 | .PHONY: help Makefile
17 |
18 | .PHONY: clean
19 | clean:
20 | rm -rf $(BUILDDIR)/*
21 |
22 | .PHONY: gh-pages
23 | gh-pages:
24 | git checkout gh-pages && \
25 | cd .. && \
26 | git rm -rf . && git clean -fxd && \
27 | git checkout master $(GH_PAGES_SOURCES) && \
28 | git reset HEAD && \
29 | cd docs && \
30 | make html && \
31 | cd .. && \
32 | mv -fv docs/build/html/* ./ && \
33 | touch .nojekyll && \
34 | rm -rf $(GH_PAGES_SOURCES) && \
35 | git add -A && \
36 | git commit -m "Generated gh-pages for `git log master -1 --pretty=short --abbrev-commit`" && \
37 | git push origin --delete gh-pages && \
38 | git push origin gh-pages ; \
39 | git checkout master
40 |
41 | # Catch-all target: route all unknown targets to Sphinx using the new
42 | # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
43 | %: Makefile
44 | @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
45 |
--------------------------------------------------------------------------------
/docs/gh_deploy.sh:
--------------------------------------------------------------------------------
1 | #!/bin/sh
2 | make gh-pages
3 | cd ../docs
4 |
--------------------------------------------------------------------------------
/docs/make.bat:
--------------------------------------------------------------------------------
1 | @ECHO OFF
2 |
3 | pushd %~dp0
4 |
5 | REM Command file for Sphinx documentation
6 |
7 | if "%SPHINXBUILD%" == "" (
8 | set SPHINXBUILD=sphinx-build
9 | )
10 | set SOURCEDIR=source
11 | set BUILDDIR=build
12 | set SPHINXPROJ=GQCNN
13 |
14 | if "%1" == "" goto help
15 |
16 | %SPHINXBUILD% >NUL 2>NUL
17 | if errorlevel 9009 (
18 | echo.
19 | echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
20 | echo.installed, then set the SPHINXBUILD environment variable to point
21 | echo.to the full path of the 'sphinx-build' executable. Alternatively you
22 | echo.may add the Sphinx directory to PATH.
23 | echo.
24 | echo.If you don't have Sphinx installed, grab it from
25 | echo.http://sphinx-doc.org/
26 | exit /b 1
27 | )
28 |
29 | %SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
30 | goto end
31 |
32 | :help
33 | %SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
34 |
35 | :end
36 | popd
37 |
--------------------------------------------------------------------------------
/docs/source/api/analysis.rst:
--------------------------------------------------------------------------------
1 | Analysis
2 | ========
3 |
4 | GQCNNAnalyzer
5 | ~~~~~~~~~~~~~
6 | A tool for analyzing trained GQ-CNNs. Calculates statistics such as training/valiation errors and losses. Also plots Precision-Recall Curve and ROC, and saves sample TP/TN/FP/FN training/validation examples.
7 |
8 | .. autoclass:: gqcnn.GQCNNAnalyzer
9 |
10 |
--------------------------------------------------------------------------------
/docs/source/api/gqcnn.rst:
--------------------------------------------------------------------------------
1 | GQ-CNN
2 | ======
3 |
4 | GQ-CNN and FC-GQ-CNN classes are **never accessed directly**, but through a lightweight factory function that returns the corresponding class depending on the specified backend. ::
5 |
6 | $ from gqcnn import get_gqcnn_model
7 | $
8 | $ backend = 'tf'
9 | $ my_gqcnn = get_gqcnn_model(backend)()
10 |
11 | .. autofunction:: gqcnn.get_gqcnn_model
12 |
13 | .. autofunction:: gqcnn.get_fc_gqcnn_model
14 |
15 | GQCNNTF
16 | ~~~~~~~
17 |
18 | Tensorflow implementation of GQ-CNN model.
19 |
20 | .. autoclass:: gqcnn.model.tf.GQCNNTF
21 | :exclude-members: init_mean_and_std,
22 | set_base_network,
23 | init_weights_file,
24 | initialize_network,
25 | set_batch_size,
26 | set_im_mean,
27 | get_im_mean,
28 | set_im_std,
29 | get_im_std,
30 | set_pose_mean,
31 | get_pose_mean,
32 | set_pose_std,
33 | get_pose_std,
34 | set_im_depth_sub_mean,
35 | set_im_depth_sub_std,
36 | add_softmax_to_output,
37 | add_sigmoid_to_output,
38 | update_batch_size,
39 |
40 | FCGQCNNTF
41 | ~~~~~~~~~
42 |
43 | Tensorflow implementation of FC-GQ-CNN model.
44 |
45 | .. autoclass:: gqcnn.model.tf.FCGQCNNTF
46 | :exclude-members: __init__
47 |
--------------------------------------------------------------------------------
/docs/source/api/policies.rst:
--------------------------------------------------------------------------------
1 | Policies
2 | ========
3 |
4 | All GQ-CNN grasping policies are child classes of the base :ref:`GraspingPolicy` class that implements `__call__()`, which operates on :ref:`RgbdImageStates ` and returns a :ref:`GraspAction`. ::
5 |
6 | $ from gqcnn import RgbdImageState, CrossEntropyRobustGraspingPolicy
7 | $
8 | $ im = RgbdImageState.load()
9 | $ my_policy = CrossEntropyRobustGraspingPolicy()
10 | $
11 | $ my_grasp_action = my_policy(im)
12 |
13 | Primary Policies
14 | ~~~~~~~~~~~~~~~~
15 |
16 | CrossEntropyRobustGraspingPolicy
17 | --------------------------------
18 | An implementation of the `Cross Entropy Method (CEM)`_ used in `Dex-Net 2.0`_, `Dex-Net 2.1`_, `Dex-Net 3.0`_, and `Dex-Net 4.0`_ to iteratively locate the best grasp.
19 |
20 | .. autoclass:: gqcnn.CrossEntropyRobustGraspingPolicy
21 |
22 | FullyConvolutionalGraspingPolicyParallelJaw
23 | -------------------------------------------
24 | An implementation of the `FC-GQ-CNN`_ parallel jaw policy that uses dense, parallelized fully convolutional networks.
25 |
26 | .. autoclass:: gqcnn.FullyConvolutionalGraspingPolicyParallelJaw
27 |
28 | FullyConvolutionalGraspingPolicySuction
29 | ---------------------------------------
30 | An implementation of the `FC-GQ-CNN`_ suction policy that uses dense, parallelized fully convolutional networks.
31 |
32 | .. autoclass:: gqcnn.FullyConvolutionalGraspingPolicySuction
33 |
34 | Grasps and Image Wrappers
35 | ~~~~~~~~~~~~~~~~~~~~~~~~~
36 |
37 | .. _RgbdImageState:
38 |
39 | RgbdImageState
40 | --------------
41 | A wrapper for states containing an RGBD (RGB + Depth) image, camera intrinisics, and segmentation masks.
42 |
43 | .. autoclass:: gqcnn.RgbdImageState
44 |
45 | .. _GraspAction:
46 |
47 | GraspAction
48 | -----------
49 | A wrapper for 2D grasp actions such as :ref:`Grasp2D` or :ref:`SuctionPoint2D`.
50 |
51 | .. autoclass:: gqcnn.grasping.policy.policy.GraspAction
52 |
53 | .. _Grasp2D:
54 |
55 | Grasp2D
56 | -------
57 | A wrapper for 2D parallel jaw grasps.
58 |
59 | .. autoclass:: gqcnn.grasping.grasp.Grasp2D
60 |
61 | .. _SuctionPoint2D:
62 |
63 | SuctionPoint2D
64 | --------------
65 | A wrapper for 2D suction grasps.
66 |
67 | .. autoclass:: gqcnn.grasping.grasp.SuctionPoint2D
68 |
69 | Miscellaneous and Parent Policies
70 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
71 |
72 | Policy
73 | ------
74 |
75 | .. autoclass:: gqcnn.grasping.policy.policy.Policy
76 |
77 |
78 | .. _GraspingPolicy:
79 |
80 | GraspingPolicy
81 | --------------
82 |
83 | .. autoclass:: gqcnn.grasping.policy.policy.GraspingPolicy
84 |
85 | FullyConvolutionalGraspingPolicy
86 | --------------------------------
87 | .. autoclass:: gqcnn.grasping.policy.fc_policy.FullyConvolutionalGraspingPolicy
88 |
89 | RobustGraspingPolicy
90 | --------------------
91 |
92 | .. autoclass:: gqcnn.RobustGraspingPolicy
93 |
94 | UniformRandomGraspingPolicy
95 | ---------------------------
96 |
97 | .. autoclass:: gqcnn.UniformRandomGraspingPolicy
98 |
99 | .. _Cross Entropy Method (CEM): https://en.wikipedia.org/wiki/Cross-entropy_method
100 | .. _Dex-Net 2.0: https://berkeleyautomation.github.io/dex-net/#dexnet_2
101 | .. _Dex-Net 2.1: https://berkeleyautomation.github.io/dex-net/#dexnet_21
102 | .. _Dex-Net 3.0: https://berkeleyautomation.github.io/dex-net/#dexnet_3
103 | .. _Dex-Net 4.0: https://berkeleyautomation.github.io/dex-net/#dexnet_4
104 | .. _FC-GQ-CNN: https://berkeleyautomation.github.io/fcgqcnn
105 |
106 |
--------------------------------------------------------------------------------
/docs/source/api/training.rst:
--------------------------------------------------------------------------------
1 | Training
2 | ========
3 |
4 | GQ-CNN training classes are **never accessed directly**, but through a lightweight factory function that returns the corresponding class depending on the specified backend. ::
5 |
6 | $ from gqcnn import get_gqcnn_trainer
7 | $
8 | $ backend = 'tf'
9 | $ my_trainer = get_gqcnn_trainer(backend)()
10 |
11 | .. autofunction:: gqcnn.get_gqcnn_trainer
12 |
13 | GQCNNTrainerTF
14 | ~~~~~~~~~~~~~~
15 |
16 | .. autoclass:: gqcnn.training.tf.GQCNNTrainerTF
17 |
18 |
--------------------------------------------------------------------------------
/docs/source/benchmarks/benchmarks.rst:
--------------------------------------------------------------------------------
1 | Dex-Net 2.0
2 | ~~~~~~~~~~~
3 | Below are the highest classification accuracies achieved on the `Dex-Net 2.0`_ dataset on a randomized 80-20 train-validation split using various splitting rules:
4 |
5 | .. image:: ../images/gqcnn_leaderboard.png
6 | :width: 100%
7 |
8 | The current leader is a ConvNet submitted by nomagic.ai. `GQ` is our best GQ-CNN for `Dex-Net 2.0`_.
9 |
10 | We believe grasping performance on the physical robot can be improved if these validation error rates can be further reduced by modifications to the network architecture and optimization.
11 | If you achieve superior numbers on a randomized validation set, please email Jeff Mahler (jmahler@berkeley.edu) with the subject "Dex-Net 2.0 Benchmark Submission" and we will consider testing on our ABB YuMi.
12 |
13 | .. _Dex-Net 2.0: https://berkeleyautomation.github.io/dex-net/#dexnet_2
14 |
15 |
--------------------------------------------------------------------------------
/docs/source/images/cem.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/cem.png
--------------------------------------------------------------------------------
/docs/source/images/dataset_tensorboard_output.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/dataset_tensorboard_output.png
--------------------------------------------------------------------------------
/docs/source/images/dexnet_benchmark.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/dexnet_benchmark.png
--------------------------------------------------------------------------------
/docs/source/images/fcgqcnn_arch_diagram.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/fcgqcnn_arch_diagram.png
--------------------------------------------------------------------------------
/docs/source/images/gqcnn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/gqcnn.png
--------------------------------------------------------------------------------
/docs/source/images/gqcnn_leaderboard.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/gqcnn_leaderboard.png
--------------------------------------------------------------------------------
/docs/source/images/plots/pj_error_rate.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/plots/pj_error_rate.png
--------------------------------------------------------------------------------
/docs/source/images/plots/pj_roc.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/plots/pj_roc.png
--------------------------------------------------------------------------------
/docs/source/images/plots/suction_error_rate.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/plots/suction_error_rate.png
--------------------------------------------------------------------------------
/docs/source/images/plots/suction_roc.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/plots/suction_roc.png
--------------------------------------------------------------------------------
/docs/source/images/policy_final_grasp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/policy_final_grasp.png
--------------------------------------------------------------------------------
/docs/source/images/sample_grasp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/sample_grasp.png
--------------------------------------------------------------------------------
/docs/source/images/tensorboard.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BerkeleyAutomation/gqcnn/499a609fe9dfb074bdfb6c4e6e33667ea50f4c21/docs/source/images/tensorboard.png
--------------------------------------------------------------------------------
/docs/source/info/info.rst:
--------------------------------------------------------------------------------
1 | What are GQ-CNNs?
2 | -----------------
3 | GQ-CNNs are neural network architectures that take as input a depth image and grasp, and output the predicted probability that the grasp will successfully hold the object while lifting, transporting, and shaking the object.
4 |
5 | .. figure:: ../images/gqcnn.png
6 | :width: 100%
7 | :align: center
8 |
9 | Original GQ-CNN architecture from `Dex-Net 2.0`_.
10 |
11 | .. figure:: ../images/fcgqcnn_arch_diagram.png
12 | :width: 100%
13 | :align: center
14 |
15 | Alternate faster GQ-CNN architecture from `FC-GQ-CNN`_.
16 |
17 |
18 | The GQ-CNN weights are trained on datasets of synthetic point clouds, parallel jaw grasps, and grasp metrics generated from physics-based models with domain randomization for sim-to-real transfer. See the ongoing `Dexterity Network (Dex-Net)`_ project for more information.
19 |
20 | .. _Dexterity Network (Dex-Net): https://berkeleyautomation.github.io/dex-net
21 | .. _Dex-Net 2.0: https://berkeleyautomation.github.io/dex-net/#dexnet_2
22 | .. _FC-GQ-CNN: https://berkeleyautomation.github.io/fcgqcnn
23 |
--------------------------------------------------------------------------------
/docs/source/install/install.rst:
--------------------------------------------------------------------------------
1 | Prerequisites
2 | ~~~~~~~~~~~~~
3 |
4 | Python
5 | """"""
6 |
7 | The `gqcnn` package has only been tested with `Python 3.5`, `Python 3.6`, and `Python 3.7`.
8 |
9 | Ubuntu
10 | """"""
11 |
12 | The `gqcnn` package has only been tested with `Ubuntu 12.04`, `Ubuntu 14.04` and `Ubuntu 16.04`.
13 |
14 | Virtualenv
15 | """"""""""
16 |
17 | We highly recommend using a Python environment management system, in particular `Virtualenv`, with the Pip and ROS installations. **Note: Several users have encountered problems with dependencies when using Conda.**
18 |
19 | Pip Installation
20 | ~~~~~~~~~~~~~~~~
21 |
22 | The pip installation is intended for users who are **only interested in 1) Training GQ-CNNs or 2) Grasp planning on saved RGBD images**, not
23 | interfacing with a physical robot.
24 | If you have intentions of using GQ-CNNs for grasp planning on a physical robot, we suggest you `install as a ROS package`_.
25 |
26 | .. _install as a ROS package: https://berkeleyautomation.github.io/gqcnn/install/install.html#ros-installation
27 |
28 | 1. Clone the repository
29 | """""""""""""""""""""""
30 | Clone or download the `project`_ from Github. ::
31 |
32 | $ git clone https://github.com/BerkeleyAutomation/gqcnn.git
33 |
34 | .. _project: https://github.com/BerkeleyAutomation/gqcnn
35 |
36 | 2. Run pip installation
37 | """""""""""""""""""""""
38 | Change directories into the `gqcnn` repository and run the pip installation. ::
39 |
40 | $ pip install .
41 |
42 | This will install `gqcnn` in your current virtual environment.
43 |
44 | .. _ros-install:
45 |
46 | ROS Installation
47 | ~~~~~~~~~~~~~~~~
48 |
49 | Installation as a ROS package is intended for users who wish to use GQ-CNNs to plan grasps on a physical robot.
50 |
51 | 1. Clone the repository
52 | """""""""""""""""""""""
53 | Clone or download the `project`_ from Github. ::
54 |
55 | $ cd /src
56 | $ git clone https://github.com/BerkeleyAutomation/gqcnn.git
57 |
58 | 2. Build the catkin package
59 | """""""""""""""""""""""""""
60 | Build the catkin package. ::
61 |
62 | $ cd
63 | $ catkin_make
64 |
65 | Then re-source `devel/setup.bash` for the package to be available through Python.
66 |
67 | Docker Installation
68 | ~~~~~~~~~~~~~~~~~~~
69 |
70 | We currently do not provide pre-built Docker images, but you can build them yourself. This will require you to have installed `Docker`_ or `Nvidia-Docker`_ if you plan on using GPUs. Note that our provided build for GPUs uses CUDA 10.0 and cuDNN 7.0, so make sure that this is compatible with your GPU hardware. If you wish to use a different CUDA/cuDNN version, change the base image in `docker/gpu/Dockerfile` to the desired `CUDA/cuDNN image distribution`_. **Note that other images have not yet been tested.**
71 |
72 | .. _Docker: https://www.docker.com/
73 | .. _Nvidia-Docker: https://github.com/NVIDIA/nvidia-docker
74 | .. _CUDA/cuDNN image distribution: https://hub.docker.com/r/nvidia/cuda/
75 |
76 | 1. Clone the repository
77 | """""""""""""""""""""""
78 | Clone or download the `project`_ from Github. ::
79 |
80 | $ git clone https://github.com/BerkeleyAutomation/gqcnn.git
81 |
82 | .. _project: https://github.com/BerkeleyAutomation/gqcnn
83 |
84 | 2. Build Docker images
85 | """"""""""""""""""""""
86 | Change directories into the `gqcnn` repository and run the build script. ::
87 |
88 | $ ./scripts/docker/build-docker.sh
89 |
90 | This will build the images `gqcnn/cpu` and `gqcnn/gpu`.
91 |
92 | 3. Run Docker image
93 | """"""""""""""""""""
94 | To run `gqcnn/cpu`: ::
95 |
96 | $ docker run --rm -it gqcnn/cpu
97 |
98 | To run `gqcnn/gpu`: ::
99 |
100 | $ nvidia-docker run --rm -it gqcnn/gpu
101 |
102 | Note the use of `nvidia-docker` in the latter to enable the Nvidia runtime.
103 |
104 | You will then see an interactive shell like this: ::
105 |
106 | $ root@a96488604093:~/Workspace/gqcnn#
107 |
108 | Now you can proceed to run the examples and tutorial!
109 |
110 |
--------------------------------------------------------------------------------
/docs/source/license/license.rst:
--------------------------------------------------------------------------------
1 | License
2 | ~~~~~~~
3 | The `gqcnn` library, pre-trained models, and raw datasets are licensed under The Regents of the University of California (Regents). Copyright ©2019. All Rights Reserved.
4 |
5 | Permission to use, copy, modify, and distribute this software and its documentation for educational,
6 | research, and not-for-profit purposes, without fee and without a signed licensing agreement, is
7 | hereby granted, provided that the above copyright notice, this paragraph and the following two
8 | paragraphs appear in all copies, modifications, and distributions. Contact The Office of Technology
9 | Licensing, UC Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-
10 | 7201, otl@berkeley.edu, http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
11 |
12 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
13 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
14 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
15 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
16 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
17 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
19 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
20 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
21 |
22 | The raw datasets are generated from 3D object models from `3DNet`_ and `the KIT Object Database`_ that may be subject to copyright.
23 |
24 | .. _3DNet: https://repo.acin.tuwien.ac.at/tmp/permanent/3d-net.org/
25 | .. _the KIT Object Database: https://h2t-projects.webarchiv.kit.edu/Projects/ObjectModelsWebUI/
26 |
--------------------------------------------------------------------------------
/docs/source/tutorials/analysis.rst:
--------------------------------------------------------------------------------
1 | Analysis
2 | ~~~~~~~~
3 | It is helpful to check the training and validation loss and classification errors to ensure that the network has trained successfully. To analyze the performance of a trained GQ-CNN, run: ::
4 |
5 | $ python tools/analyze_gqcnn_performance.py
6 |
7 | The args are:
8 |
9 | #. **model_name**: Name of a trained model.
10 |
11 | The script will store a detailed analysis in `analysis//`.
12 |
13 | To analyze the networks we just trained, run: ::
14 |
15 | $ python tools/analyze_gqcnn_performance.py gqcnn_example_pj
16 | $ python tools/analyze_gqcnn_performance.py gqcnn_example_suction
17 |
18 | Below is the expected output for the **parallel jaw** network. Please keep in mind that the exact performance values may change due to randomization in the training dataset and random weight initialization: ::
19 |
20 | $ GQCNNAnalyzer INFO TRAIN
21 | $ GQCNNAnalyzer INFO Original error: 36.812
22 | $ GQCNNAnalyzer INFO Final error: 6.061
23 | $ GQCNNAnalyzer INFO Orig loss: 0.763
24 | $ GQCNNAnalyzer INFO Final loss: 0.248
25 | $ GQCNNAnalyzer INFO VAL
26 | $ GQCNNAnalyzer INFO Original error: 32.212
27 | $ GQCNNAnalyzer INFO Final error: 7.509
28 | $ GQCNNAnalyzer INFO Normalized error: 0.233
29 |
30 | A set of plots will be saved to `analysis/gqcnn_example_pj/`. The plots `training_error_rates.png` and `precision_recall.png` should look like the following:
31 |
32 | .. image:: ../images/plots/pj_error_rate.png
33 | :width: 49 %
34 |
35 | .. image:: ../images/plots/pj_roc.png
36 | :width: 49 %
37 |
38 | Here is the expected output for the **suction** network: ::
39 |
40 | $ GQCNNAnalyzer INFO TRAIN
41 | $ GQCNNAnalyzer INFO Original error: 17.844
42 | $ GQCNNAnalyzer INFO Final error: 6.417
43 | $ GQCNNAnalyzer INFO Orig loss: 0.476
44 | $ GQCNNAnalyzer INFO Final loss: 0.189
45 | $ GQCNNAnalyzer INFO VAL
46 | $ GQCNNAnalyzer INFO Original error: 18.036
47 | $ GQCNNAnalyzer INFO Final error: 6.907
48 | $ GQCNNAnalyzer INFO Normalized error: 0.383
49 |
50 | A set of plots will be saved to `analysis/gqcnn_example_suction/`. The plots `training_error_rates.png` and `precision_recall.png` should look like the following:
51 |
52 | .. image:: ../images/plots/suction_error_rate.png
53 | :width: 49 %
54 |
55 | .. image:: ../images/plots/suction_roc.png
56 | :width: 49 %
57 |
58 |
--------------------------------------------------------------------------------
/docs/source/tutorials/training.rst:
--------------------------------------------------------------------------------
1 | Training
2 | ~~~~~~~~
3 | The `gqcnn` package can be used to train a `Dex-Net 4.0`_ GQ-CNN model on a custom offline `Dex-Net`_ dataset. Because training from scratch can be time-consuming, the most efficient way to train a new network is to fine-tune the weights of a pre-trained `Dex-Net 4.0`_ GQ-CNN model, which has already been trained on millions of images.
4 |
5 | .. _Dex-Net 4.0: https://berkeleyautomation.github.io/dex-net/#dexnet_4
6 | .. _Dex-Net: https://berkeleyautomation.github.io/dex-net/
7 |
8 | To fine-tune a GQ-CNN run: ::
9 |
10 | $ python tools/finetune.py --config_filename --name
11 |
12 | The args are:
13 |
14 | #. **training_dataset_path**: Path to the training dataset.
15 | #. **pretrained_network_name**: Name of pre-trained GQ-CNN.
16 | #. **config_filename**: Name of the config file to use.
17 | #. **model_name**: Name for the model.
18 |
19 | To train a GQ-CNN for a **parallel jaw** gripper on a sample dataset, run the fine-tuning script: ::
20 |
21 | $ python tools/finetune.py data/training/example_pj/ GQCNN-4.0-PJ --config_filename cfg/finetune_example_pj.yaml --name gqcnn_example_pj
22 |
23 | To train a GQ-CNN for a **suction** gripper run: ::
24 |
25 | $ python tools/finetune.py data/training/example_suction/ GQCNN-4.0-SUCTION --config_filename cfg/finetune_example_suction.yaml --name gqcnn_example_suction
26 |
27 | Visualizing Training
28 | --------------------
29 | The `gqcnn` model contains support for visualizing training progress through Tensorboard. Tensorboard is automatically launched when the training script is run and can be accessed by navigating to **localhost:6006** in a web browser. There you will find something like the following:
30 |
31 | .. image:: ../images/tensorboard.png
32 | :width: 100 %
33 |
34 | Which displays useful training statistics such as validation error, minibatch loss, and learning rate.
35 |
36 | The Tensorflow summaries are stored in `models//tensorboard_summaries/`.
37 |
38 |
--------------------------------------------------------------------------------
/docs/source/tutorials/tutorial.rst:
--------------------------------------------------------------------------------
1 | Overview
2 | ~~~~~~~~
3 | There are two main use cases of the `gqcnn` package:
4 |
5 | #. :ref:`training` a `Dex-Net 4.0`_ GQ-CNN model on an offline `Dex-Net`_ dataset of point clouds, grasps, and grasp success metrics, and then grasp planning on RGBD images.
6 | #. :ref:`grasp planning` on RGBD images using a pre-trained `Dex-Net 4.0`_ GQ-CNN model.
7 |
8 | .. _Dex-Net 4.0: https://berkeleyautomation.github.io/dex-net/#dexnet_4
9 | .. _Dex-Net: https://berkeleyautomation.github.io/dex-net/
10 |
11 | Click on the links or scroll down to get started!
12 |
13 | Prerequisites
14 | -------------
15 | Before running the tutorials please download the example models and datasets: ::
16 |
17 | $ cd /path/to/your/gqcnn
18 | $ ./scripts/downloads/download_example_data.sh
19 | $ ./scripts/downloads/models/download_models.sh
20 |
21 |
22 | Running Python Scripts
23 | ----------------------
24 | All `gqcnn` Python scripts are designed to be run from the top-level directory of your `gqcnn` repo by default. This is because every script takes in a YAML file specifying parameters for the script, and this YAML file is stored relative to the repository root directory.
25 |
26 | We recommend that you run all scripts using this paradigm: ::
27 |
28 | cd /path/to/your/gqcnn
29 | python /path/to/script.py
30 |
31 | .. _training:
32 | .. include:: training.rst
33 |
34 | .. _analysis:
35 | .. include:: analysis.rst
36 |
37 | .. _grasp planning:
38 | .. include:: planning.rst
39 |
40 |
--------------------------------------------------------------------------------
/gqcnn/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 | """
25 | from .model import get_gqcnn_model, get_fc_gqcnn_model
26 | from .training import get_gqcnn_trainer
27 | from .grasping import (RobustGraspingPolicy, UniformRandomGraspingPolicy,
28 | CrossEntropyRobustGraspingPolicy, RgbdImageState,
29 | FullyConvolutionalGraspingPolicyParallelJaw,
30 | FullyConvolutionalGraspingPolicySuction)
31 | from .analysis import GQCNNAnalyzer
32 | from .search import GQCNNSearch
33 | from .utils import NoValidGraspsException, NoAntipodalPairsFoundException
34 |
35 | __all__ = [
36 | "get_gqcnn_model", "get_fc_gqcnn_model", "get_gqcnn_trainer",
37 | "RobustGraspingPolicy", "UniformRandomGraspingPolicy",
38 | "CrossEntropyRobustGraspingPolicy", "RgbdImageState",
39 | "FullyConvolutionalGraspingPolicyParallelJaw",
40 | "FullyConvolutionalGraspingPolicySuction", "GQCNNAnalyzer", "GQCNNSearch",
41 | "NoValidGraspsException", "NoAntipodalPairsFoundException"
42 | ]
43 |
--------------------------------------------------------------------------------
/gqcnn/analysis/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 | """
25 | from .analyzer import GQCNNAnalyzer
26 |
27 | __all__ = ["GQCNNAnalyzer"]
28 |
--------------------------------------------------------------------------------
/gqcnn/grasping/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 | """
25 | from .grasp import Grasp2D, SuctionPoint2D, MultiSuctionPoint2D
26 | from .grasp_quality_function import (GraspQualityFunctionFactory,
27 | GQCnnQualityFunction)
28 | from .image_grasp_sampler import (ImageGraspSamplerFactory,
29 | AntipodalDepthImageGraspSampler)
30 | from .constraint_fn import GraspConstraintFnFactory
31 | from .policy import (RobustGraspingPolicy, CrossEntropyRobustGraspingPolicy,
32 | FullyConvolutionalGraspingPolicyParallelJaw,
33 | FullyConvolutionalGraspingPolicySuction,
34 | UniformRandomGraspingPolicy, RgbdImageState, GraspAction)
35 | from .actions import (NoAction, ParallelJawGrasp3D, SuctionGrasp3D,
36 | MultiSuctionGrasp3D)
37 |
38 | __all__ = [
39 | "Grasp2D", "SuctionPoint2D", "MultiSuctionPoint2D",
40 | "GraspQualityFunctionFactory", "GQCnnQualityFunction",
41 | "ImageGraspSamplerFactory", "AntipodalDepthImageGraspSampler",
42 | "RobustGraspingPolicy", "CrossEntropyRobustGraspingPolicy",
43 | "FullyConvolutionalGraspingPolicyParallelJaw",
44 | "FullyConvolutionalGraspingPolicySuction", "UniformRandomGraspingPolicy",
45 | "RgbdImageState", "GraspAction", "GraspConstraintFnFactory", "NoAction",
46 | "ParallelJawGrasp3D", "SuctionGrasp3D", "MultiSuctionGrasp3D"
47 | ]
48 |
--------------------------------------------------------------------------------
/gqcnn/grasping/policy/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 | """
25 | from .fc_policy import (FullyConvolutionalGraspingPolicyParallelJaw,
26 | FullyConvolutionalGraspingPolicySuction)
27 | from .policy import (RobustGraspingPolicy, CrossEntropyRobustGraspingPolicy,
28 | RgbdImageState, GraspAction, UniformRandomGraspingPolicy)
29 |
30 | __all__ = [
31 | "FullyConvolutionalGraspingPolicyParallelJaw",
32 | "FullyConvolutionalGraspingPolicySuction", "RobustGraspingPolicy",
33 | "CrossEntropyRobustGraspingPolicy", "UniformRandomGraspingPolicy",
34 | "RgbdImageState", "GraspAction"
35 | ]
36 |
--------------------------------------------------------------------------------
/gqcnn/grasping/policy/enums.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | Enums for GQ-CNN policies.
26 |
27 | Author
28 | ------
29 | Vishal Satish
30 | """
31 |
32 |
33 | class SamplingMethod(object):
34 | TOP_K = "top_k"
35 | UNIFORM = "uniform"
36 |
--------------------------------------------------------------------------------
/gqcnn/model/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | Factory functions to obtain `GQCNN`/`FCGQCNN` class based on backend.
26 | Author: Vishal Satish
27 | """
28 | from .tf import GQCNNTF, FCGQCNNTF
29 |
30 | from autolab_core import Logger
31 |
32 |
33 | def get_gqcnn_model(backend="tf", verbose=True):
34 | """Get the GQ-CNN model for the provided backend.
35 |
36 | Note:
37 | Currently only TensorFlow is supported.
38 |
39 | Parameters
40 | ----------
41 | backend : str
42 | The backend to use, currently only "tf" is supported.
43 | verbose : bool
44 | Whether or not to log initialization output to `stdout`.
45 |
46 | Returns
47 | -------
48 | :obj:`gqcnn.model.tf.GQCNNTF`
49 | GQ-CNN model with TensorFlow backend.
50 | """
51 |
52 | # Set up logger.
53 | logger = Logger.get_logger("GQCNNModelFactory", silence=(not verbose))
54 |
55 | # Return desired GQ-CNN instance based on backend.
56 | if backend == "tf":
57 | logger.info("Initializing GQ-CNN with Tensorflow as backend...")
58 | return GQCNNTF
59 | else:
60 | raise ValueError("Invalid backend: {}".format(backend))
61 |
62 |
63 | def get_fc_gqcnn_model(backend="tf", verbose=True):
64 | """Get the FC-GQ-CNN model for the provided backend.
65 |
66 | Note:
67 | Currently only TensorFlow is supported.
68 |
69 | Parameters
70 | ----------
71 | backend : str
72 | The backend to use, currently only "tf" is supported.
73 | verbose : bool
74 | Whether or not to log initialization output to `stdout`.
75 |
76 | Returns
77 | -------
78 | :obj:`gqcnn.model.tf.FCGQCNNTF`
79 | FC-GQ-CNN model with TensorFlow backend.
80 | """
81 |
82 | # Set up logger.
83 | logger = Logger.get_logger("FCGQCNNModelFactory", silence=(not verbose))
84 |
85 | # Return desired Fully-Convolutional GQ-CNN instance based on backend.
86 | if backend == "tf":
87 | logger.info("Initializing FC-GQ-CNN with Tensorflow as backend...")
88 | return FCGQCNNTF
89 | else:
90 | raise ValueError("Invalid backend: {}".format(backend))
91 |
--------------------------------------------------------------------------------
/gqcnn/model/tf/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 | """
25 | from .network_tf import GQCNNTF
26 | from .fc_network_tf import FCGQCNNTF
27 |
28 | __all__ = ["GQCNNTF", "FCGQCNNTF"]
29 |
--------------------------------------------------------------------------------
/gqcnn/search/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 | """
25 | from .search import GQCNNSearch
26 |
27 | __all__ = ["GQCNNSearch"]
28 |
--------------------------------------------------------------------------------
/gqcnn/search/enums.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | Enums for hyper-parameter search.
26 |
27 | Author
28 | ------
29 | Vishal Satish
30 | """
31 |
32 |
33 | class TrialConstants(object):
34 | TRIAL_CPU_LOAD = 300 # Decrease to get more aggressize CPU utilization.
35 | TRIAL_GPU_LOAD = 33 # Decrease to get more aggressize GPU utilization.
36 | # This really depends on model size (`TRIAL_GPU_LOAD` does too, but it's
37 | # not a hard limit per se). Ideally we would initialize models one-by-one
38 | # and monitor the space left, but because model initialization comes after
39 | # some metric calculation, we set this to be some upper bound based on the
40 | # largest model and do batch initalizations from there.
41 | TRIAL_GPU_MEM = 2000
42 |
43 |
44 | class SearchConstants(object):
45 | SEARCH_THREAD_SLEEP = 2
46 | MIN_TIME_BETWEEN_SCHEDULE_ATTEMPTS = 20
47 |
--------------------------------------------------------------------------------
/gqcnn/training/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | Factory functions to obtain GQCNNTrainer class based on chosen deep learning
26 | backend. Currently only Tensorflow is supported.
27 | Author: Vishal Satish
28 | """
29 | from .tf import GQCNNTrainerTF
30 |
31 |
32 | def get_gqcnn_trainer(backend="tf"):
33 | """Get the GQ-CNN Trainer for the provided backend.
34 |
35 | Note
36 | ----
37 | Currently only TensorFlow is supported.
38 |
39 | Parameters
40 | ----------
41 | backend : str
42 | The backend to use, currently only "tf" is supported.
43 |
44 | Returns
45 | -------
46 | :obj:`gqcnn.training.tf.GQCNNTrainerTF`
47 | GQ-CNN Trainer with TensorFlow backend.
48 | """
49 | # Return desired `GQCNNTrainer` instance based on backend.
50 | if backend == "tf":
51 | return GQCNNTrainerTF
52 | else:
53 | raise ValueError("Invalid backend: {}".format(backend))
54 |
--------------------------------------------------------------------------------
/gqcnn/training/tf/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 | """
25 | from .trainer_tf import GQCNNTrainerTF
26 |
27 | __all__ = ["GQCNNTrainerTF"]
28 |
--------------------------------------------------------------------------------
/gqcnn/utils/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 | """
25 | from .enums import (ImageMode, TrainingMode, GripperMode, InputDepthMode,
26 | GeneralConstants, GQCNNTrainingStatus, GQCNNFilenames)
27 | from .policy_exceptions import (NoValidGraspsException,
28 | NoAntipodalPairsFoundException)
29 | from .train_stats_logger import TrainStatsLogger
30 | from .utils import (is_py2, set_cuda_visible_devices, pose_dim, read_pose_data,
31 | reduce_shape, weight_name_to_layer_name, imresize)
32 |
33 | __all__ = [
34 | "is_py2", "set_cuda_visible_devices", "pose_dim", "read_pose_data",
35 | "reduce_shape", "weight_name_to_layer_name", "imresize", "ImageMode",
36 | "TrainingMode", "GripperMode", "InputDepthMode", "GeneralConstants",
37 | "GQCNNTrainingStatus", "NoValidGraspsException",
38 | "NoAntipodalPairsFoundException", "TrainStatsLogger", "GQCNNFilenames"
39 | ]
40 |
--------------------------------------------------------------------------------
/gqcnn/utils/enums.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | Constants/enums.
26 |
27 | Author
28 | ------
29 | Vishal Satish
30 | """
31 | import math
32 |
33 | import tensorflow as tf
34 |
35 |
36 | # Other constants.
37 | class GeneralConstants(object):
38 | SEED = 3472134
39 | SEED_SAMPLE_MAX = 2**32 - 1 # Max range for `np.random.seed`.
40 | timeout_option = tf.RunOptions(timeout_in_ms=1000000)
41 | MAX_PREFETCH_Q_SIZE = 250
42 | NUM_PREFETCH_Q_WORKERS = 3
43 | QUEUE_SLEEP = 0.001
44 | PI = math.pi
45 | FIGSIZE = 16 # For visualization.
46 |
47 |
48 | # Enum for image modalities.
49 | class ImageMode(object):
50 | BINARY = "binary"
51 | DEPTH = "depth"
52 | BINARY_TF = "binary_tf"
53 | COLOR_TF = "color_tf"
54 | GRAY_TF = "gray_tf"
55 | DEPTH_TF = "depth_tf"
56 | DEPTH_TF_TABLE = "depth_tf_table"
57 | TF_DEPTH_IMS = "tf_depth_ims"
58 |
59 |
60 | # Enum for training modes.
61 | class TrainingMode(object):
62 | CLASSIFICATION = "classification"
63 | REGRESSION = "regression" # Has not been tested, for experimentation only!
64 |
65 |
66 | # Enum for input pose data formats.
67 | class GripperMode(object):
68 | PARALLEL_JAW = "parallel_jaw"
69 | SUCTION = "suction"
70 | MULTI_SUCTION = "multi_suction"
71 | LEGACY_PARALLEL_JAW = "legacy_parallel_jaw"
72 | LEGACY_SUCTION = "legacy_suction"
73 |
74 |
75 | # Enum for input depth mode.
76 | class InputDepthMode(object):
77 | POSE_STREAM = "pose_stream"
78 | SUB = "im_depth_sub"
79 | IM_ONLY = "im_only"
80 |
81 |
82 | # Enum for training status.
83 | class GQCNNTrainingStatus(object):
84 | NOT_STARTED = "not_started"
85 | SETTING_UP = "setting_up"
86 | TRAINING = "training"
87 |
88 |
89 | # Enum for filenames.
90 | class GQCNNFilenames(object):
91 | PCT_POS_VAL = "pct_pos_val.npy"
92 | PCT_POS_TRAIN = "pct_pos_train.npy"
93 | LEARNING_RATES = "learning_rates.npy"
94 |
95 | TRAIN_ITERS = "train_eval_iters.npy"
96 | TRAIN_LOSSES = "train_losses.npy"
97 | TRAIN_ERRORS = "train_errors.npy"
98 | TOTAL_TRAIN_LOSSES = "total_train_losses.npy"
99 | TOTAL_TRAIN_ERRORS = "total_train_errors.npy"
100 |
101 | VAL_ITERS = "val_eval_iters.npy"
102 | VAL_LOSSES = "val_losses.npy"
103 | VAL_ERRORS = "val_errors.npy"
104 |
105 | LEG_MEAN = "mean.npy"
106 | LEG_STD = "std.npy"
107 | IM_MEAN = "im_mean.npy"
108 | IM_STD = "im_std.npy"
109 | IM_DEPTH_SUB_MEAN = "im_depth_sub_mean.npy"
110 | IM_DEPTH_SUB_STD = "im_depth_sub_std.npy"
111 | POSE_MEAN = "pose_mean.npy"
112 | POSE_STD = "pose_std.npy"
113 |
114 | FINAL_MODEL = "model.ckpt"
115 | INTER_MODEL = "model_{}.ckpt"
116 |
117 | SAVED_ARCH = "architecture.json"
118 | SAVED_CFG = "config.json"
119 |
--------------------------------------------------------------------------------
/gqcnn/utils/policy_exceptions.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Copyright ©2017. The Regents of the University of California (Regents).
4 | All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | software and its documentation for educational, research, and not-for-profit
6 | purposes, without fee and without a signed licensing agreement, is hereby
7 | granted, provided that the above copyright notice, this paragraph and the
8 | following two paragraphs appear in all copies, modifications, and
9 | distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | otl@berkeley.edu,
12 | http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | Exceptions that can be thrown by sub-classes of `GraspingPolicy`.
26 |
27 | Author
28 | ------
29 | Vishal Satish
30 | """
31 |
32 |
33 | class NoValidGraspsException(Exception):
34 | """Exception for when antipodal point pairs can be found in the depth
35 | image but none are valid grasps that can be executed."""
36 |
37 | def __init__(self,
38 | in_collision=True,
39 | not_confident=False,
40 | *args,
41 | **kwargs):
42 | self.in_collision = in_collision
43 | self.not_confident = not_confident
44 | Exception.__init__(self, *args, **kwargs)
45 |
46 |
47 | class NoAntipodalPairsFoundException(Exception):
48 | """Exception for when no antipodal point pairs can be found in the depth
49 | image."""
50 | pass
51 |
--------------------------------------------------------------------------------
/gqcnn/version.py:
--------------------------------------------------------------------------------
1 | __version__ = "1.3.0"
2 |
--------------------------------------------------------------------------------
/launch/grasp_planning_service.launch:
--------------------------------------------------------------------------------
1 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
--------------------------------------------------------------------------------
/msg/Action.msg:
--------------------------------------------------------------------------------
1 | # Copyright ©2017. The Regents of the University of California (Regents).
2 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
3 | # software and its documentation for educational, research, and not-for-profit
4 | # purposes, without fee and without a signed licensing agreement, is hereby
5 | # granted, provided that the above copyright notice, this paragraph and the
6 | # following two paragraphs appear in all copies, modifications, and
7 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
8 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
9 | # otl@berkeley.edu,
10 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
11 |
12 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
13 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
14 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
15 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
16 |
17 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
18 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
20 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
21 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
22 |
23 | uint32 width
24 | uint32 height
25 | uint8[] mask_data
26 | string action_type
27 | float32[] action_data
28 | float32 confidence
29 |
--------------------------------------------------------------------------------
/msg/BoundingBox.msg:
--------------------------------------------------------------------------------
1 | # Copyright ©2017. The Regents of the University of California (Regents).
2 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
3 | # software and its documentation for educational, research, and not-for-profit
4 | # purposes, without fee and without a signed licensing agreement, is hereby
5 | # granted, provided that the above copyright notice, this paragraph and the
6 | # following two paragraphs appear in all copies, modifications, and
7 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
8 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
9 | # otl@berkeley.edu,
10 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
11 |
12 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
13 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
14 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
15 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
16 |
17 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
18 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
20 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
21 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
22 |
23 | float64 minX
24 | float64 minY
25 | float64 maxX
26 | float64 maxY
27 |
--------------------------------------------------------------------------------
/msg/GQCNNGrasp.msg:
--------------------------------------------------------------------------------
1 | # Copyright ©2017. The Regents of the University of California (Regents).
2 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
3 | # software and its documentation for educational, research, and not-for-profit
4 | # purposes, without fee and without a signed licensing agreement, is hereby
5 | # granted, provided that the above copyright notice, this paragraph and the
6 | # following two paragraphs appear in all copies, modifications, and
7 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
8 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
9 | # otl@berkeley.edu,
10 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
11 |
12 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
13 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
14 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
15 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
16 |
17 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
18 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
20 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
21 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
22 |
23 | geometry_msgs/Pose pose
24 | float64 q_value
25 |
26 | uint8 PARALLEL_JAW=0
27 | uint8 SUCTION=1
28 | uint8 grasp_type
29 |
30 | float64[2] center_px
31 | float64 angle
32 | float64 depth
33 | sensor_msgs/Image thumbnail
34 |
--------------------------------------------------------------------------------
/msg/Observation.msg:
--------------------------------------------------------------------------------
1 | # Copyright ©2017. The Regents of the University of California (Regents).
2 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
3 | # software and its documentation for educational, research, and not-for-profit
4 | # purposes, without fee and without a signed licensing agreement, is hereby
5 | # granted, provided that the above copyright notice, this paragraph and the
6 | # following two paragraphs appear in all copies, modifications, and
7 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
8 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
9 | # otl@berkeley.edu,
10 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
11 |
12 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
13 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
14 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
15 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
16 |
17 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
18 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
20 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
21 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
22 |
23 | uint32 width
24 | uint32 height
25 | float32[] image_data
26 |
--------------------------------------------------------------------------------
/package.xml:
--------------------------------------------------------------------------------
1 |
2 |
25 |
26 | gqcnn
27 | 1.3.0
28 | ROS package for deploying Grasp Quality Convolutional Neural Networks (GQ-CNNs).
29 |
30 |
31 |
32 |
33 | Vishal Satish
34 |
35 |
36 |
37 |
38 |
39 | Regents
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 | catkin
66 | rospy
67 | rospy
68 | message_generation
69 | message_runtime
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
--------------------------------------------------------------------------------
/post-checkout:
--------------------------------------------------------------------------------
1 | #!/bin/sh
2 | #
3 | # An example hook script to prepare a packed repository for use over
4 | # dumb transports.
5 | #
6 | # To enable this hook, rename this file to "post-update".
7 |
8 | find . -name "*.pyc" -exec rm '{}' ';'
--------------------------------------------------------------------------------
/requirements/cpu_requirements.txt:
--------------------------------------------------------------------------------
1 | autolab-core
2 | autolab-perception
3 | visualization
4 | numpy
5 | opencv-python
6 | scipy
7 | matplotlib
8 | tensorflow<=1.15.0
9 | scikit-learn
10 | scikit-image
11 | gputil
12 | psutil
13 |
--------------------------------------------------------------------------------
/requirements/docs_requirements.txt:
--------------------------------------------------------------------------------
1 | sphinx
2 | sphinxcontrib-napoleon
3 | sphinx_rtd_theme
4 |
5 |
--------------------------------------------------------------------------------
/requirements/gpu_requirements.txt:
--------------------------------------------------------------------------------
1 | autolab-core
2 | autolab-perception
3 | visualization
4 | numpy
5 | opencv-python
6 | scipy
7 | matplotlib
8 | tensorflow-gpu<=1.15.0
9 | scikit-learn
10 | scikit-image
11 | gputil
12 | psutil
13 |
--------------------------------------------------------------------------------
/scripts/docker/build-docker.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | # Build the CPU and GPU docker images.
26 |
27 | git archive --format=tar -o docker/gqcnn.tar --prefix=gqcnn/ master
28 | docker build --no-cache -t gqcnn/gpu -f docker/gpu/Dockerfile .
29 | docker build --no-cache -t gqcnn/cpu -f docker/cpu/Dockerfile .
30 | rm docker/gqcnn.tar
31 |
--------------------------------------------------------------------------------
/scripts/downloads/datasets/download_dex-net_2.0.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | wget -O data/training/dexnet_2.zip https://berkeley.box.com/shared/static/15oid8m9q6n9cvr8og4vm37bwghjjslp.zip
26 |
27 | cd data/training
28 | unzip dexnet_2.zip
29 | mv dexnet_2_tensor dex-net_2.0
30 | cd ../..
31 |
--------------------------------------------------------------------------------
/scripts/downloads/datasets/download_dex-net_2.1.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | wget -O data/training/dexnet_2.1.zip https://berkeley.box.com/shared/static/4g0g0lstl45hv5g5232f89aoeccjk32j.zip
26 |
27 | cd data/training
28 | unzip dexnet_2.1.zip
29 | mv dexnet_2.1_eps_90 dex-net_2.1
30 | cd ../..
31 |
--------------------------------------------------------------------------------
/scripts/downloads/datasets/download_dex-net_3.0.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | wget -O data/training/dexnet_3.tar.gz https://berkeley.box.com/shared/static/wd5s51f1n786i71t8dufckec0262za4f.gz
26 |
27 | cd data/training
28 | tar -xvzf dexnet_3.tar.gz
29 | mv dexnet_3 dex-net_3.0
30 | cd ../..
31 |
--------------------------------------------------------------------------------
/scripts/downloads/datasets/download_dex-net_4.0_fc_pj.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | wget -O data/training/dexnet_4_fc_pj_aa https://berkeley.box.com/shared/static/xhv3preqlada05cz38g6mqutvcw7x2pi
26 | wget -O data/training/dexnet_4_fc_pj_ab https://berkeley.box.com/shared/static/8o501rclohrue80eny2dgkh0ftlg660y
27 | wget -O data/training/dexnet_4_fc_pj_ac https://berkeley.box.com/shared/static/khyvf5vw4im0jg46orkix8a8pdnu2t9o
28 | wget -O data/training/dexnet_4_fc_pj_ad https://berkeley.box.com/shared/static/bq9dibanj2tg3zhj5ntcbkbut71rk7y4
29 | wget -O data/training/dexnet_4_fc_pj_ae https://berkeley.box.com/shared/static/oa46t5oz1srqocncxvywpqizwmz5f6by
30 | wget -O data/training/dexnet_4_fc_pj_af https://berkeley.box.com/shared/static/t27a1x89es2g4l4jlm2j8c3brypixb76
31 | wget -O data/training/dexnet_4_fc_pj_ag https://berkeley.box.com/shared/static/09o1gjaqz0s7ol1kmqj1vnyrnynlgozn
32 | wget -O data/training/dexnet_4_fc_pj_ah https://berkeley.box.com/shared/static/s6s9dtl8r6cr3evy7gt13g66dpblowhd
33 | wget -O data/training/dexnet_4_fc_pj_ai https://berkeley.box.com/shared/static/q61i5muzddrmo37899nmyptpme4u42hx
34 | wget -O data/training/dexnet_4_fc_pj_aj https://berkeley.box.com/shared/static/s4q2lkh17dsxsz8zr1dttvcqj5veq1ze
35 |
36 | cd data/training
37 | cat dexnet_4_fc_pj_a* > dexnet_4_fc_pj.zip
38 | unzip dexnet_4_fc_pj.zip
39 | mv grasps dex-net_4.0_fc_pj
40 | cd ../..
41 |
--------------------------------------------------------------------------------
/scripts/downloads/datasets/download_dex-net_4.0_fc_suction.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | wget -O data/training/dexnet_4_fc_suction_aa https://berkeley.box.com/shared/static/51xm8pm4wz7bsr71jp8eikoupjzk1bjz
26 | wget -O data/training/dexnet_4_fc_suction_ab https://berkeley.box.com/shared/static/pp56ryq1oq7sklfodfnnl5nt2cho1p14
27 | wget -O data/training/dexnet_4_fc_suction_ac https://berkeley.box.com/shared/static/fcxvnabs6rwlo5gmvcg5eq0epjb3xhhx
28 |
29 | cd data/training
30 | cat dexnet_4_fc_suction_a* > dexnet_4_fc_suction.zip
31 | unzip dexnet_4_fc_suction.zip
32 | mv grasps dex-net_4.0_fc_suction
33 | cd ../..
34 |
--------------------------------------------------------------------------------
/scripts/downloads/datasets/download_dex-net_4.0_pj.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | wget -O data/training/dexnet_4_pj_aa https://berkeley.box.com/shared/static/vx59bt10e7nl409e7oy081ymwdx13sun.0_pj_aa
26 | wget -O data/training/dexnet_4_pj_ab https://berkeley.box.com/shared/static/dujezomcb9228uht952qiek30heo2kvt.0_pj_ab
27 | wget -O data/training/dexnet_4_pj_ac https://berkeley.box.com/shared/static/gzz6jhilvg927ke3ad373rmhpzi8hh60.0_pj_ac
28 | wget -O data/training/dexnet_4_pj_ad https://berkeley.box.com/shared/static/kgnmwexu82t0q5e72zd5vitjylbbu9f7.0_pj_ad
29 | wget -O data/training/dexnet_4_pj_ae https://berkeley.box.com/shared/static/jmiemqczh8wajbo11v94408gz4f3utw4.0_pj_ae
30 | wget -O data/training/dexnet_4_pj_af https://berkeley.box.com/shared/static/b8wi2grdsmr3nulx6l2c8yhd4rda88ul.0_pj_af
31 |
32 | cd data/training
33 | cat dexnet_4_pj_a* > dexnet_4_pj.zip
34 | unzip dexnet_4_pj.zip
35 | mv parallel_jaw dexnet_4_pj
36 | cd ../..
37 |
--------------------------------------------------------------------------------
/scripts/downloads/datasets/download_dex-net_4.0_suction.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | wget -O data/training/dexnet_4_suction_aa https://berkeley.box.com/shared/static/ivg7t1bxgc7m9jufa1adxoadoxxj2os0.0_suction_aa
26 | wget -O data/training/dexnet_4_suction_ab https://berkeley.box.com/shared/static/zl0q7xwd4s6gecbbree6hito7czb7090.0_suction_ab
27 | wget -O data/training/dexnet_4_suction_ac https://berkeley.box.com/shared/static/3ndm5s0l69eo5zdrvlr98smbnmrd2lsm.0_suction_ac
28 | wget -O data/training/dexnet_4_suction_ad https://berkeley.box.com/shared/static/geclz22raqdx6h7e8h5bvvao86rrjph8.0_suction_ad
29 | wget -O data/training/dexnet_4_suction_ae https://berkeley.box.com/shared/static/9b0ruxrkidswwl11icggmndag071geuy.0_suction_ae
30 | wget -O data/training/dexnet_4_suction_af https://berkeley.box.com/shared/static/jwqnedw95k1tgfvmhzti7l0w6spqhduk.0_suction_af
31 | wget -O data/training/dexnet_4_suction_ag https://berkeley.box.com/shared/static/0d7lbx5rdshiox6uii7eqk95ljm0ja3o.0_suction_ag
32 |
33 | cd data/training
34 | cat dexnet_4_suction_a* > dexnet_4_suction.zip
35 | unzip dexnet_4_suction.zip
36 | mv suction dexnet_4_suction
37 | cd ../..
38 |
--------------------------------------------------------------------------------
/scripts/downloads/datasets/download_example_datasets.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 | # PARALLEL JAW.
25 |
26 | wget -O data/training/example_training_dataset_pj.zip https://berkeley.box.com/shared/static/wpo8jbushrdq0adwjdsampui2tu1w1xz.zip
27 |
28 | mkdir -p data/training
29 | cd data/training
30 | unzip example_training_dataset_pj.zip
31 | mv grasps example_pj
32 | cd ../..
33 |
34 | # SUCTION.
35 | wget -O data/training/example_training_dataset_suction.zip https://berkeley.box.com/shared/static/fc9zb2cbql5rz6qtp11f6m7s0hyt1dwf.zip
36 |
37 | cd data/training
38 | unzip example_training_dataset_suction.zip
39 | mv grasps example_suction
40 | cd ../..
41 |
42 | # FULLY-CONVOLUTIONAL PARALLEL JAW.
43 | wget -O data/training/example_training_dataset_pj_angular.zip https://berkeley.box.com/shared/static/2u4ew5444m90waucgsor8uoijgr9dgwr.zip
44 |
45 | cd data/training
46 | unzip example_training_dataset_pj_angular.zip
47 | mv grasps example_fc_pj
48 | cd ../..
49 |
--------------------------------------------------------------------------------
/scripts/downloads/download_example_data.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | # DOWNLOAD MODELS (if they don't exist already).
26 | mkdir -p models
27 | cd models
28 |
29 | if [ ! -d "GQCNN-4.0-PJ" ]; then
30 | wget -O GQCNN-4.0-PJ.zip https://berkeley.box.com/shared/static/boe4ilodi50hy5as5zun431s1bs7t97l.zip
31 | unzip -a GQCNN-4.0-PJ.zip
32 | else
33 | echo "Found existing 4.0 PJ model..."
34 | fi
35 |
36 | if [ ! -d "GQCNN-4.0-SUCTION" ]; then
37 | wget -O GQCNN-4.0-SUCTION.zip https://berkeley.box.com/shared/static/kzg19axnflhwys9t7n6bnuqsn18zj9wy.zip
38 | unzip -a GQCNN-4.0-SUCTION.zip
39 | else
40 | echo "Found existing 4.0 suction model..."
41 | fi
42 |
43 | cd ..
44 |
45 | # DOWNLOAD DATASETS (if they don't already exist).
46 |
47 | # PARALLEL JAW.
48 | mkdir -p data/training
49 | cd data/training
50 |
51 | if [ ! -d "example_pj" ]; then
52 | wget -O example_training_dataset_pj.zip https://berkeley.box.com/shared/static/wpo8jbushrdq0adwjdsampui2tu1w1xz.zip
53 | unzip example_training_dataset_pj.zip
54 | mv grasps example_pj
55 | else
56 | echo "Found existing example PJ dataset..."
57 | fi
58 |
59 | # SUCTION.
60 | if [ ! -d "example_suction" ]; then
61 | wget -O example_training_dataset_suction.zip https://berkeley.box.com/shared/static/fc9zb2cbql5rz6qtp11f6m7s0hyt1dwf.zip
62 | unzip example_training_dataset_suction.zip
63 | mv grasps example_suction
64 | else
65 | echo "Found existing example suction dataset..."
66 | fi
67 |
68 | cd ../..
69 |
--------------------------------------------------------------------------------
/scripts/downloads/models/download_models.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | mkdir -p models
26 |
27 | # STANDARD.
28 | wget -O models/GQCNN-2.0.zip https://berkeley.box.com/shared/static/j4k4z6077ytucxpo6wk1c5hwj47mmpux.zip
29 | wget -O models/GQCNN-2.1.zip https://berkeley.box.com/shared/static/zr1gohe29r2dtaaq20iz0lqcbk5ub07y.zip
30 | wget -O models/GQCNN-3.0.zip https://berkeley.box.com/shared/static/8l47knzbzffu8zb9y5u46q0g0rvtuk74.zip
31 | wget -O models/GQCNN-4.0-PJ.zip https://berkeley.box.com/shared/static/boe4ilodi50hy5as5zun431s1bs7t97l.zip
32 | wget -O models/GQCNN-4.0-SUCTION.zip https://berkeley.box.com/shared/static/kzg19axnflhwys9t7n6bnuqsn18zj9wy.zip
33 |
34 | # FULLY-CONVOLUTIONAL.
35 | wget -O models/FC-GQCNN-4.0-PJ.zip https://berkeley.box.com/shared/static/d9tvdnudd7f0743gxixcn0k0jeg1ds71.zip
36 | wget -O models/FC-GQCNN-4.0-SUCTION.zip https://berkeley.box.com/shared/static/ini7q54957u0cmaaxfihzn1i876m0ghd.zip
37 |
38 | cd models
39 | unzip -a GQCNN-2.0.zip
40 | mv GQ-Image-Wise GQCNN-2.0
41 | unzip -a GQCNN-2.1.zip
42 | mv GQ-Bin-Picking-Eps90 GQCNN-2.1
43 | unzip -a GQCNN-3.0.zip
44 | mv GQ-Suction GQCNN-3.0
45 | unzip -a GQCNN-4.0-PJ.zip
46 | unzip -a GQCNN-4.0-SUCTION.zip
47 | unzip -a FC-GQCNN-4.0-PJ.zip
48 | unzip -a FC-GQCNN-4.0-SUCTION.zip
49 | cd ..
50 |
--------------------------------------------------------------------------------
/scripts/policies/run_all_dex-net_2.0_examples.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | set -e
26 |
27 | echo "RUNNING EXAMPLE 1"
28 | python examples/policy.py GQCNN-2.0 --depth_image data/examples/single_object/primesense/depth_0.npy --segmask data/examples/single_object/primesense/segmask_0.png --config_filename cfg/examples/replication/dex-net_2.0.yaml
29 |
30 | echo "RUNNING EXAMPLE 2"
31 | python examples/policy.py GQCNN-2.0 --depth_image data/examples/single_object/primesense/depth_1.npy --segmask data/examples/single_object/primesense/segmask_1.png --config_filename cfg/examples/replication/dex-net_2.0.yaml
32 |
33 | echo "RUNNING EXAMPLE 3"
34 | python examples/policy.py GQCNN-2.0 --depth_image data/examples/single_object/primesense/depth_2.npy --segmask data/examples/single_object/primesense/segmask_2.png --config_filename cfg/examples/replication/dex-net_2.0.yaml
35 |
36 | echo "RUNNING EXAMPLE 4"
37 | python examples/policy.py GQCNN-2.0 --depth_image data/examples/single_object/primesense/depth_3.npy --segmask data/examples/single_object/primesense/segmask_3.png --config_filename cfg/examples/replication/dex-net_2.0.yaml
38 |
39 | echo "RUNNING EXAMPLE 5"
40 | python examples/policy.py GQCNN-2.0 --depth_image data/examples/single_object/primesense/depth_4.npy --segmask data/examples/single_object/primesense/segmask_4.png --config_filename cfg/examples/replication/dex-net_2.0.yaml
41 |
42 | echo "RUNNING EXAMPLE 6"
43 | python examples/policy.py GQCNN-2.0 --depth_image data/examples/single_object/primesense/depth_5.npy --segmask data/examples/single_object/primesense/segmask_5.png --config_filename cfg/examples/replication/dex-net_2.0.yaml
44 |
45 | echo "RUNNING EXAMPLE 7"
46 | python examples/policy.py GQCNN-2.0 --depth_image data/examples/single_object/primesense/depth_6.npy --segmask data/examples/single_object/primesense/segmask_6.png --config_filename cfg/examples/replication/dex-net_2.0.yaml
47 |
48 | echo "RUNNING EXAMPLE 8"
49 | python examples/policy.py GQCNN-2.0 --depth_image data/examples/single_object/primesense/depth_7.npy --segmask data/examples/single_object/primesense/segmask_7.png --config_filename cfg/examples/replication/dex-net_2.0.yaml
50 |
51 | echo "RUNNING EXAMPLE 9"
52 | python examples/policy.py GQCNN-2.0 --depth_image data/examples/single_object/primesense/depth_8.npy --segmask data/examples/single_object/primesense/segmask_8.png --config_filename cfg/examples/replication/dex-net_2.0.yaml
53 |
54 | echo "RUNNING EXAMPLE 10"
55 | python examples/policy.py GQCNN-2.0 --depth_image data/examples/single_object/primesense/depth_9.npy --segmask data/examples/single_object/primesense/segmask_9.png --config_filename cfg/examples/replication/dex-net_2.0.yaml
56 |
57 |
--------------------------------------------------------------------------------
/scripts/policies/run_all_dex-net_2.1_examples.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | set -e
26 |
27 | echo "RUNNING EXAMPLE 1"
28 | python examples/policy.py GQCNN-2.1 --depth_image data/examples/clutter/primesense/depth_0.npy --segmask data/examples/clutter/primesense/segmask_0.png --config_filename cfg/examples/replication/dex-net_2.1.yaml
29 |
30 | echo "RUNNING EXAMPLE 2"
31 | python examples/policy.py GQCNN-2.1 --depth_image data/examples/clutter/primesense/depth_1.npy --segmask data/examples/clutter/primesense/segmask_1.png --config_filename cfg/examples/replication/dex-net_2.1.yaml
32 |
33 | echo "RUNNING EXAMPLE 3"
34 | python examples/policy.py GQCNN-2.1 --depth_image data/examples/clutter/primesense/depth_2.npy --segmask data/examples/clutter/primesense/segmask_2.png --config_filename cfg/examples/replication/dex-net_2.1.yaml
35 |
36 | echo "RUNNING EXAMPLE 4"
37 | python examples/policy.py GQCNN-2.1 --depth_image data/examples/clutter/primesense/depth_3.npy --segmask data/examples/clutter/primesense/segmask_3.png --config_filename cfg/examples/replication/dex-net_2.1.yaml
38 |
39 | echo "RUNNING EXAMPLE 5"
40 | python examples/policy.py GQCNN-2.1 --depth_image data/examples/clutter/primesense/depth_4.npy --segmask data/examples/clutter/primesense/segmask_4.png --config_filename cfg/examples/replication/dex-net_2.1.yaml
41 |
42 |
--------------------------------------------------------------------------------
/scripts/policies/run_all_dex-net_3.0_examples.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | set -e
26 |
27 | echo "RUNNING EXAMPLE 1"
28 | python examples/policy.py GQCNN-3.0 --depth_image data/examples/single_object/primesense/depth_0.npy --segmask data/examples/single_object/primesense/segmask_0.png --config_filename cfg/examples/replication/dex-net_3.0.yaml
29 |
30 | echo "RUNNING EXAMPLE 2"
31 | python examples/policy.py GQCNN-3.0 --depth_image data/examples/single_object/primesense/depth_1.npy --segmask data/examples/single_object/primesense/segmask_1.png --config_filename cfg/examples/replication/dex-net_3.0.yaml
32 |
33 | echo "RUNNING EXAMPLE 3"
34 | python examples/policy.py GQCNN-3.0 --depth_image data/examples/single_object/primesense/depth_2.npy --segmask data/examples/single_object/primesense/segmask_2.png --config_filename cfg/examples/replication/dex-net_3.0.yaml
35 |
36 | echo "RUNNING EXAMPLE 4"
37 | python examples/policy.py GQCNN-3.0 --depth_image data/examples/single_object/primesense/depth_3.npy --segmask data/examples/single_object/primesense/segmask_3.png --config_filename cfg/examples/replication/dex-net_3.0.yaml
38 |
39 | echo "RUNNING EXAMPLE 5"
40 | python examples/policy.py GQCNN-3.0 --depth_image data/examples/single_object/primesense/depth_4.npy --segmask data/examples/single_object/primesense/segmask_4.png --config_filename cfg/examples/replication/dex-net_3.0.yaml
41 |
42 | echo "RUNNING EXAMPLE 6"
43 | python examples/policy.py GQCNN-3.0 --depth_image data/examples/single_object/primesense/depth_5.npy --segmask data/examples/single_object/primesense/segmask_5.png --config_filename cfg/examples/replication/dex-net_3.0.yaml
44 |
45 | echo "RUNNING EXAMPLE 7"
46 | python examples/policy.py GQCNN-3.0 --depth_image data/examples/single_object/primesense/depth_6.npy --segmask data/examples/single_object/primesense/segmask_6.png --config_filename cfg/examples/replication/dex-net_3.0.yaml
47 |
48 | echo "RUNNING EXAMPLE 8"
49 | python examples/policy.py GQCNN-3.0 --depth_image data/examples/single_object/primesense/depth_7.npy --segmask data/examples/single_object/primesense/segmask_7.png --config_filename cfg/examples/replication/dex-net_3.0.yaml
50 |
51 | echo "RUNNING EXAMPLE 9"
52 | python examples/policy.py GQCNN-3.0 --depth_image data/examples/single_object/primesense/depth_8.npy --segmask data/examples/single_object/primesense/segmask_8.png --config_filename cfg/examples/replication/dex-net_3.0.yaml
53 |
54 | echo "RUNNING EXAMPLE 10"
55 | python examples/policy.py GQCNN-3.0 --depth_image data/examples/single_object/primesense/depth_9.npy --segmask data/examples/single_object/primesense/segmask_9.png --config_filename cfg/examples/replication/dex-net_3.0.yaml
56 |
57 |
--------------------------------------------------------------------------------
/scripts/policies/run_all_dex-net_4.0_fc_pj_examples.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | set -e
26 |
27 | echo "RUNNING EXAMPLE 1"
28 | python examples/policy.py FC-GQCNN-4.0-PJ --fully_conv --depth_image data/examples/clutter/phoxi/fcgqcnn/depth_0.npy --segmask data/examples/clutter/phoxi/fcgqcnn/segmask_0.png --config_filename cfg/examples/replication/dex-net_4.0_fc_pj.yaml --camera_intr data/calib/phoxi/phoxi.intr
29 |
30 | echo "RUNNING EXAMPLE 2"
31 | python examples/policy.py FC-GQCNN-4.0-PJ --fully_conv --depth_image data/examples/clutter/phoxi/fcgqcnn/depth_1.npy --segmask data/examples/clutter/phoxi/fcgqcnn/segmask_1.png --config_filename cfg/examples/replication/dex-net_4.0_fc_pj.yaml --camera_intr data/calib/phoxi/phoxi.intr
32 |
33 | echo "RUNNING EXAMPLE 3"
34 | python examples/policy.py FC-GQCNN-4.0-PJ --fully_conv --depth_image data/examples/clutter/phoxi/fcgqcnn/depth_2.npy --segmask data/examples/clutter/phoxi/fcgqcnn/segmask_2.png --config_filename cfg/examples/replication/dex-net_4.0_fc_pj.yaml --camera_intr data/calib/phoxi/phoxi.intr
35 |
36 | echo "RUNNING EXAMPLE 4"
37 | python examples/policy.py FC-GQCNN-4.0-PJ --fully_conv --depth_image data/examples/clutter/phoxi/fcgqcnn/depth_3.npy --segmask data/examples/clutter/phoxi/fcgqcnn/segmask_3.png --config_filename cfg/examples/replication/dex-net_4.0_fc_pj.yaml --camera_intr data/calib/phoxi/phoxi.intr
38 |
39 | echo "RUNNING EXAMPLE 5"
40 | python examples/policy.py FC-GQCNN-4.0-PJ --fully_conv --depth_image data/examples/clutter/phoxi/fcgqcnn/depth_4.npy --segmask data/examples/clutter/phoxi/fcgqcnn/segmask_4.png --config_filename cfg/examples/replication/dex-net_4.0_fc_pj.yaml --camera_intr data/calib/phoxi/phoxi.intr
41 |
--------------------------------------------------------------------------------
/scripts/policies/run_all_dex-net_4.0_fc_suction_examples.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | set -e
26 |
27 | echo "RUNNING EXAMPLE 1"
28 | python examples/policy.py FC-GQCNN-4.0-SUCTION --fully_conv --depth_image data/examples/clutter/phoxi/fcgqcnn/depth_0.npy --segmask data/examples/clutter/phoxi/fcgqcnn/segmask_0.png --config_filename cfg/examples/replication/dex-net_4.0_fc_suction.yaml --camera_intr data/calib/phoxi/phoxi.intr
29 |
30 | echo "RUNNING EXAMPLE 2"
31 | python examples/policy.py FC-GQCNN-4.0-SUCTION --fully_conv --depth_image data/examples/clutter/phoxi/fcgqcnn/depth_1.npy --segmask data/examples/clutter/phoxi/fcgqcnn/segmask_1.png --config_filename cfg/examples/replication/dex-net_4.0_fc_suction.yaml --camera_intr data/calib/phoxi/phoxi.intr
32 |
33 | echo "RUNNING EXAMPLE 3"
34 | python examples/policy.py FC-GQCNN-4.0-SUCTION --fully_conv --depth_image data/examples/clutter/phoxi/fcgqcnn/depth_2.npy --segmask data/examples/clutter/phoxi/fcgqcnn/segmask_2.png --config_filename cfg/examples/replication/dex-net_4.0_fc_suction.yaml --camera_intr data/calib/phoxi/phoxi.intr
35 |
36 | echo "RUNNING EXAMPLE 4"
37 | python examples/policy.py FC-GQCNN-4.0-SUCTION --fully_conv --depth_image data/examples/clutter/phoxi/fcgqcnn/depth_3.npy --segmask data/examples/clutter/phoxi/fcgqcnn/segmask_3.png --config_filename cfg/examples/replication/dex-net_4.0_fc_suction.yaml --camera_intr data/calib/phoxi/phoxi.intr
38 |
39 | echo "RUNNING EXAMPLE 5"
40 | python examples/policy.py FC-GQCNN-4.0-SUCTION --fully_conv --depth_image data/examples/clutter/phoxi/fcgqcnn/depth_4.npy --segmask data/examples/clutter/phoxi/fcgqcnn/segmask_4.png --config_filename cfg/examples/replication/dex-net_4.0_fc_suction.yaml --camera_intr data/calib/phoxi/phoxi.intr
41 |
--------------------------------------------------------------------------------
/scripts/policies/run_all_dex-net_4.0_pj_examples.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | set -e
26 |
27 | echo "RUNNING EXAMPLE 1"
28 | python examples/policy.py GQCNN-4.0-PJ --depth_image data/examples/clutter/phoxi/dex-net_4.0/depth_0.npy --segmask data/examples/clutter/phoxi/dex-net_4.0/segmask_0.png --config_filename cfg/examples/replication/dex-net_4.0_pj.yaml --camera_intr data/calib/phoxi/phoxi.intr
29 |
30 | echo "RUNNING EXAMPLE 2"
31 | python examples/policy.py GQCNN-4.0-PJ --depth_image data/examples/clutter/phoxi/dex-net_4.0/depth_1.npy --segmask data/examples/clutter/phoxi/dex-net_4.0/segmask_1.png --config_filename cfg/examples/replication/dex-net_4.0_pj.yaml --camera_intr data/calib/phoxi/phoxi.intr
32 |
33 | echo "RUNNING EXAMPLE 3"
34 | python examples/policy.py GQCNN-4.0-PJ --depth_image data/examples/clutter/phoxi/dex-net_4.0/depth_2.npy --segmask data/examples/clutter/phoxi/dex-net_4.0/segmask_2.png --config_filename cfg/examples/replication/dex-net_4.0_pj.yaml --camera_intr data/calib/phoxi/phoxi.intr
35 |
36 | echo "RUNNING EXAMPLE 4"
37 | python examples/policy.py GQCNN-4.0-PJ --depth_image data/examples/clutter/phoxi/dex-net_4.0/depth_3.npy --segmask data/examples/clutter/phoxi/dex-net_4.0/segmask_3.png --config_filename cfg/examples/replication/dex-net_4.0_pj.yaml --camera_intr data/calib/phoxi/phoxi.intr
38 |
39 | echo "RUNNING EXAMPLE 5"
40 | python examples/policy.py GQCNN-4.0-PJ --depth_image data/examples/clutter/phoxi/dex-net_4.0/depth_4.npy --segmask data/examples/clutter/phoxi/dex-net_4.0/segmask_4.png --config_filename cfg/examples/replication/dex-net_4.0_pj.yaml --camera_intr data/calib/phoxi/phoxi.intr
41 |
--------------------------------------------------------------------------------
/scripts/policies/run_all_dex-net_4.0_suction_examples.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | set -e
26 |
27 | echo "RUNNING EXAMPLE 1"
28 | python examples/policy.py GQCNN-4.0-SUCTION --depth_image data/examples/clutter/phoxi/dex-net_4.0/depth_0.npy --segmask data/examples/clutter/phoxi/dex-net_4.0/segmask_0.png --config_filename cfg/examples/replication/dex-net_4.0_suction.yaml --camera_intr data/calib/phoxi/phoxi.intr
29 |
30 | echo "RUNNING EXAMPLE 2"
31 | python examples/policy.py GQCNN-4.0-SUCTION --depth_image data/examples/clutter/phoxi/dex-net_4.0/depth_1.npy --segmask data/examples/clutter/phoxi/dex-net_4.0/segmask_1.png --config_filename cfg/examples/replication/dex-net_4.0_suction.yaml --camera_intr data/calib/phoxi/phoxi.intr
32 |
33 | echo "RUNNING EXAMPLE 3"
34 | python examples/policy.py GQCNN-4.0-SUCTION --depth_image data/examples/clutter/phoxi/dex-net_4.0/depth_2.npy --segmask data/examples/clutter/phoxi/dex-net_4.0/segmask_2.png --config_filename cfg/examples/replication/dex-net_4.0_suction.yaml --camera_intr data/calib/phoxi/phoxi.intr
35 |
36 | echo "RUNNING EXAMPLE 4"
37 | python examples/policy.py GQCNN-4.0-SUCTION --depth_image data/examples/clutter/phoxi/dex-net_4.0/depth_3.npy --segmask data/examples/clutter/phoxi/dex-net_4.0/segmask_3.png --config_filename cfg/examples/replication/dex-net_4.0_suction.yaml --camera_intr data/calib/phoxi/phoxi.intr
38 |
39 | echo "RUNNING EXAMPLE 5"
40 | python examples/policy.py GQCNN-4.0-SUCTION --depth_image data/examples/clutter/phoxi/dex-net_4.0/depth_4.npy --segmask data/examples/clutter/phoxi/dex-net_4.0/segmask_4.png --config_filename cfg/examples/replication/dex-net_4.0_suction.yaml --camera_intr data/calib/phoxi/phoxi.intr
41 |
--------------------------------------------------------------------------------
/scripts/training/train_dex-net_2.0.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | python tools/train.py data/training/dex-net_2.0 --config_filename cfg/train_dex-net_2.0.yaml --name GQCNN-2.0
26 |
--------------------------------------------------------------------------------
/scripts/training/train_dex-net_2.1.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | echo "Please contact Vishal Satish (vsatish@berkeley.edu) or Jeffrey Mahler (jmahler@berkeley.edu) for instructions on training Dex-Net 2.1."
26 |
--------------------------------------------------------------------------------
/scripts/training/train_dex-net_3.0.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | python tools/train.py data/training/dex-net_3.0 --config_filename cfg/train_dex-net_3.0.yaml --name GQCNN-3.0
26 |
--------------------------------------------------------------------------------
/scripts/training/train_dex-net_4.0_fc_pj.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | python tools/train.py data/training/dex-net_4.0_fc_pj --config_filename cfg/train_dex-net_4.0_fc_pj.yaml --name GQCNN-4.0-FC-PJ
26 |
--------------------------------------------------------------------------------
/scripts/training/train_dex-net_4.0_fc_suction.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | python tools/train.py data/training/dex-net_4.0_fc_suction --config_filename cfg/train_dex-net_4.0_fc_suction.yaml --name GQCNN-4.0-FC-Suction
26 |
--------------------------------------------------------------------------------
/scripts/training/train_dex-net_4.0_pj.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | python tools/train.py data/training/dexnet_4_pj --config_filename cfg/train_dex-net_4.0_pj.yaml --name GQCNN-4.0-PJ
26 |
--------------------------------------------------------------------------------
/scripts/training/train_dex-net_4.0_suction.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Copyright ©2017. The Regents of the University of California (Regents).
4 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
5 | # software and its documentation for educational, research, and not-for-profit
6 | # purposes, without fee and without a signed licensing agreement, is hereby
7 | # granted, provided that the above copyright notice, this paragraph and the
8 | # following two paragraphs appear in all copies, modifications, and
9 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
10 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
11 | # otl@berkeley.edu,
12 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
13 |
14 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
15 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
16 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
17 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
18 |
19 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
22 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
23 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24 |
25 | python tools/train.py data/training/dexnet_4_suction --config_filename cfg/train_dex-net_4.0_suction.yaml --name GQCNN-4.0-Suction
26 |
--------------------------------------------------------------------------------
/srv/GQCNNGraspPlanner.srv:
--------------------------------------------------------------------------------
1 | # Copyright ©2017. The Regents of the University of California (Regents).
2 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
3 | # software and its documentation for educational, research, and not-for-profit
4 | # purposes, without fee and without a signed licensing agreement, is hereby
5 | # granted, provided that the above copyright notice, this paragraph and the
6 | # following two paragraphs appear in all copies, modifications, and
7 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
8 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
9 | # otl@berkeley.edu,
10 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
11 |
12 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
13 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
14 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
15 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
16 |
17 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
18 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
20 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
21 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
22 |
23 | # request params
24 | sensor_msgs/Image color_image
25 | sensor_msgs/Image depth_image
26 | sensor_msgs/CameraInfo camera_info
27 | ---
28 | # response params
29 | GQCNNGrasp grasp
30 |
--------------------------------------------------------------------------------
/srv/GQCNNGraspPlannerBoundingBox.srv:
--------------------------------------------------------------------------------
1 | # Copyright ©2017. The Regents of the University of California (Regents).
2 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
3 | # software and its documentation for educational, research, and not-for-profit
4 | # purposes, without fee and without a signed licensing agreement, is hereby
5 | # granted, provided that the above copyright notice, this paragraph and the
6 | # following two paragraphs appear in all copies, modifications, and
7 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
8 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
9 | # otl@berkeley.edu,
10 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
11 |
12 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
13 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
14 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
15 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
16 |
17 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
18 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
20 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
21 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
22 |
23 | # request params
24 | sensor_msgs/Image color_image
25 | sensor_msgs/Image depth_image
26 | sensor_msgs/CameraInfo camera_info
27 | BoundingBox bounding_box
28 | ---
29 | # response params
30 | GQCNNGrasp grasp
31 |
--------------------------------------------------------------------------------
/srv/GQCNNGraspPlannerFull.srv:
--------------------------------------------------------------------------------
1 | # Copyright ©2017. The Regents of the University of California (Regents).
2 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
3 | # software and its documentation for educational, research, and not-for-profit
4 | # purposes, without fee and without a signed licensing agreement, is hereby
5 | # granted, provided that the above copyright notice, this paragraph and the
6 | # following two paragraphs appear in all copies, modifications, and
7 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
8 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
9 | # otl@berkeley.edu,
10 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
11 |
12 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
13 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
14 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
15 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
16 |
17 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
18 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
20 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
21 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
22 |
23 | # request params
24 | sensor_msgs/Image color_image
25 | sensor_msgs/Image depth_image
26 | sensor_msgs/CameraInfo camera_info
27 | BoundingBox bounding_box
28 | sensor_msgs/Image segmask
29 | ---
30 | # response params
31 | GQCNNGrasp grasp
32 |
--------------------------------------------------------------------------------
/srv/GQCNNGraspPlannerSegmask.srv:
--------------------------------------------------------------------------------
1 | # Copyright ©2017. The Regents of the University of California (Regents).
2 | # All Rights Reserved. Permission to use, copy, modify, and distribute this
3 | # software and its documentation for educational, research, and not-for-profit
4 | # purposes, without fee and without a signed licensing agreement, is hereby
5 | # granted, provided that the above copyright notice, this paragraph and the
6 | # following two paragraphs appear in all copies, modifications, and
7 | # distributions. Contact The Office of Technology Licensing, UC Berkeley, 2150
8 | # Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
9 | # otl@berkeley.edu,
10 | # http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
11 |
12 | # IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
13 | # INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
14 | # THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
15 | # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
16 |
17 | # REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
18 | # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 | # PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
20 | # HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
21 | # MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
22 |
23 | # request params
24 | sensor_msgs/Image color_image
25 | sensor_msgs/Image depth_image
26 | sensor_msgs/CameraInfo camera_info
27 | sensor_msgs/Image segmask
28 | ---
29 | # response params
30 | GQCNNGrasp grasp
31 |
--------------------------------------------------------------------------------