└── pandas_program.ipynb /pandas_program.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [] 7 | }, 8 | "kernelspec": { 9 | "name": "python3", 10 | "display_name": "Python 3" 11 | }, 12 | "language_info": { 13 | "name": "python" 14 | } 15 | }, 16 | "cells": [ 17 | { 18 | "cell_type": "code", 19 | "execution_count": 1, 20 | "metadata": { 21 | "id": "rnToqL7NO13d" 22 | }, 23 | "outputs": [], 24 | "source": [ 25 | "import pandas as pd\n", 26 | "import numpy as np\n", 27 | "import matplotlib.pyplot as plt" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "source": [ 33 | "data = {\n", 34 | " 'Name': ['Ashok', 'Angel', 'Boopathy', 'sachin', 'rohith'],\n", 35 | " 'Employee ID': [101, 102, 103, 104, 105],\n", 36 | " 'Age': [30, 25, 35, 46, 42],\n", 37 | " 'Salary': [np.nan, 60000, 100000, 70000, 55000],\n", 38 | " 'Department': ['HR', 'IT', 'Finance', 'HR', 'IT']\n", 39 | "}" 40 | ], 41 | "metadata": { 42 | "id": "uS346jVPO7Xq" 43 | }, 44 | "execution_count": 11, 45 | "outputs": [] 46 | }, 47 | { 48 | "cell_type": "code", 49 | "source": [ 50 | "df = pd.DataFrame(data)" 51 | ], 52 | "metadata": { 53 | "id": "RwFLHoEHPXbG" 54 | }, 55 | "execution_count": 12, 56 | "outputs": [] 57 | }, 58 | { 59 | "cell_type": "code", 60 | "source": [ 61 | "print(\"Original DataFrame:\")\n", 62 | "print(df)" 63 | ], 64 | "metadata": { 65 | "colab": { 66 | "base_uri": "https://localhost:8080/" 67 | }, 68 | "id": "kuZiDsC6PfKS", 69 | "outputId": "7da2c4a7-0d73-4e5a-b6bd-d54fea12a6fe" 70 | }, 71 | "execution_count": 13, 72 | "outputs": [ 73 | { 74 | "output_type": "stream", 75 | "name": "stdout", 76 | "text": [ 77 | "Original DataFrame:\n", 78 | " Name Employee ID Age Salary Department\n", 79 | "0 Ashok 101 30 NaN HR\n", 80 | "1 Angel 102 25 60000.0 IT\n", 81 | "2 Boopathy 103 35 100000.0 Finance\n", 82 | "3 sachin 104 46 70000.0 HR\n", 83 | "4 rohith 105 42 55000.0 IT\n" 84 | ] 85 | } 86 | ] 87 | }, 88 | { 89 | "cell_type": "code", 90 | "source": [ 91 | "df.fillna({'Age': df['Age'].mean(), 'Salary': df['Salary'].median()}, inplace=True)\n" 92 | ], 93 | "metadata": { 94 | "id": "w8jthLEPP6Qt" 95 | }, 96 | "execution_count": 14, 97 | "outputs": [] 98 | }, 99 | { 100 | "cell_type": "code", 101 | "source": [ 102 | "print(\"\\nCleaned DataFrame:\")\n", 103 | "print(df)" 104 | ], 105 | "metadata": { 106 | "colab": { 107 | "base_uri": "https://localhost:8080/" 108 | }, 109 | "id": "MWCyWSvSQGYH", 110 | "outputId": "8f99ffb9-540d-415e-e598-c492556a2c8f" 111 | }, 112 | "execution_count": 15, 113 | "outputs": [ 114 | { 115 | "output_type": "stream", 116 | "name": "stdout", 117 | "text": [ 118 | "\n", 119 | "Cleaned DataFrame:\n", 120 | " Name Employee ID Age Salary Department\n", 121 | "0 Ashok 101 30 65000.0 HR\n", 122 | "1 Angel 102 25 60000.0 IT\n", 123 | "2 Boopathy 103 35 100000.0 Finance\n", 124 | "3 sachin 104 46 70000.0 HR\n", 125 | "4 rohith 105 42 55000.0 IT\n" 126 | ] 127 | } 128 | ] 129 | }, 130 | { 131 | "cell_type": "code", 132 | "source": [ 133 | "plt.figure(figsize=(10, 6))\n", 134 | "plt.bar(df['Name'], df['Salary'], color='skyblue')\n", 135 | "plt.xlabel('Employee Name')\n", 136 | "plt.ylabel('Salary')\n", 137 | "plt.title('Employee Salary Growth')\n", 138 | "plt.xticks(rotation=45)\n", 139 | "plt.tight_layout()\n", 140 | "plt.show()" 141 | ], 142 | "metadata": { 143 | "colab": { 144 | "base_uri": "https://localhost:8080/", 145 | "height": 529 146 | }, 147 | "id": "v7jvX1y5QMzc", 148 | "outputId": "195e19b3-f203-4834-c426-13b3b3b57ef4" 149 | }, 150 | "execution_count": 16, 151 | "outputs": [ 152 | { 153 | "output_type": "display_data", 154 | "data": { 155 | "text/plain": [ 156 | "
" 157 | ], 158 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo+UlEQVR4nO3dd3xO9///8eeVHdHETgSNvfcoUbNSMfoppVbtvUKtKqoxqqX2rFGKomqVogS1ixqxN62W0sROaiQhOb8/+sv5uioUdVzB4367XbeP67zf55zXdXo+V/LM+5z3sRmGYQgAAAAAADx1To4uAAAAAACAFxWhGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAICnbNOmTbLZbNq0aZOjS0l2ODbWsdlsCgkJcXQZAIB/IHQDAJ5rs2bNks1me+Dr559/dnSJz7W4uDiNGzdOxYoVk7e3t1KlSqUCBQqoXbt2On78uKPLe6oOHjyoli1bKlu2bPLw8FDKlClVtGhR9e7dW7/++qujy5Mkbd++XQMHDtT169cdXQoA4BG5OLoAAACehsGDBytbtmz3Lc+ZM6cDqnlx1K1bV6tXr1ajRo3Utm1b3blzR8ePH9fKlStVtmxZ5c2b19ElPhVffvmlOnbsqHTp0qlx48bKmzev7t69q8OHD+vrr7/W2LFjdfv2bTk7Ozu0zu3bt2vQoEFq0aKFUqVK5dBaAACPhtANAHghVK9eXSVLlnR0GS+U3bt3a+XKlfr000/Vr18/u7aJEycmi9HWmzdvysvL6z9tY/v27erYsaNef/11rVy5Uq+88opd+6hRo/Tpp5/+63Zu3bqlFClS/KdaAAAvHi4vBwC8FH777TfZbDaNHDlSkyZNUvbs2ZUiRQpVrVpV586dk2EY+uSTT5Q5c2Z5enqqVq1aunr1qt02smbNqrfeektr165V0aJF5eHhofz58+u77757pBoWLVqkEiVKyNPTU+nSpVOTJk10/vx5s33mzJmy2Wzat2/ffet+9tlncnZ2tuu/c+dOVatWTT4+PkqRIoUqVqyobdu23bfu+fPn1apVK/n6+srd3V0FChTQV1999a/1/vLLL5Kk119//b42Z2dnpU2b1nz/+++/q1OnTsqTJ488PT2VNm1a1atXT7/99tu/7mfr1q2qV6+eXn31Vbm7uytLlizq3r27bt++bdevRYsWSpkypX755RfVqFFDr7zyiho3bqwBAwbI1dVVly5dum/b7dq1U6pUqRQTE/PA/Q8aNEg2m03z5s27L3BLkoeHhz755BO7Ue5KlSqpYMGCCg8PV4UKFZQiRQrzDxMXL15U69at5evrKw8PDxUpUkSzZ8+222bx4sVVp04du2WFChWSzWbTwYMHzWULFiyQzWbTsWPHNHDgQH3wwQeSpGzZspm3UPzzGC9btkwFCxY0/1uHhYU98LMDAKxH6AYAvBCioqJ0+fJlu9eVK1fu6zdv3jx98cUX6tKli3r27KnNmzerfv366t+/v8LCwvThhx+qXbt2WrFihXr16nXf+qdOnVKDBg1UvXp1DR06VC4uLqpXr57WrVv30PpmzZql+vXry9nZWUOHDlXbtm313XffqVy5cuaI8bvvvitPT0/NmzcvyborVaqkTJkySZI2bNigChUqKDo6WgMGDNBnn32m69ev64033tCuXbvM9SIjI1WmTBn9+OOPCgkJ0bhx45QzZ061bt1aY8eOfWjNAQEB5r7v3r370L67d+/W9u3b1bBhQ40fP14dOnTQ+vXrValSJd26deuh6y5atEi3bt1Sx44dNWHCBAUHB2vChAlq1qzZfX3v3r2r4OBgZciQQSNHjlTdunXVtGlT3b17VwsWLLDrGxcXp8WLF6tu3bry8PBIct+3bt3Shg0bVKlSJWXOnPmhdf7TlStXVL16dRUtWlRjx45V5cqVdfv2bVWqVElz5sxR48aNNWLECPn4+KhFixYaN26cuW758uX1008/me+vXr2qI0eOyMnJSVu3bjWXb926VenTp1e+fPlUp04dNWrUSJI0ZswYzZkzR3PmzFH69OnN/j/99JM6deqkhg0bavjw4YqJiVHdunWT/P8CAOAZMQAAeI7NnDnTkJTky93d3ex35swZQ5KRPn164/r16+byvn37GpKMIkWKGHfu3DGXN2rUyHBzczNiYmLMZQEBAYYkY8mSJeayqKgoI2PGjEaxYsXMZRs3bjQkGRs3bjQMwzDi4uKMDBkyGAULFjRu375t9lu5cqUhyQgNDbXbr7+/vxEfH28u27t3ryHJmDlzpmEYhpGQkGDkypXLCA4ONhISEsx+t27dMrJly2a8+eab5rLWrVsbGTNmNC5fvmx33Bo2bGj4+PgYt27deuCxTUhIMCpWrGhIMnx9fY1GjRoZkyZNMn7//ff7+ia1nR07dhiSjK+//vqBx+ZB6w4dOtSw2Wx2+2revLkhyejTp899/QMDA43SpUvbLfvuu+/u29c/HThwwJBkdOvW7b62K1euGJcuXTJfsbGxZlvicZkyZYrdOmPHjjUkGXPnzjWXxcXFGYGBgUbKlCmN6OhowzAMY9GiRYYk4+jRo4ZhGMby5csNd3d34+233zYaNGhgrlu4cGHjnXfeMd+PGDHCkGScOXPmvnolGW5ubsbp06fv+3wTJkx44DEAAFiLkW4AwAth0qRJWrdund1r9erV9/WrV6+efHx8zPelS5eWJDVp0kQuLi52y+Pi4uwu55Ykf39/vfPOO+Z7b29vNWvWTPv27VNERESSte3Zs0cXL15Up06d7EZca9asqbx58+qHH34wlzVr1kwXLlzQxo0bzWXz5s2Tp6en6tatK0nav3+/Tp06pffee09XrlwxR/Zv3rypKlWqaMuWLUpISJBhGFqyZIn+97//yTAMu6sAgoODFRUVpb179z7wmNpsNq1Zs0ZDhgxR6tSpNX/+fHXu3FkBAQFq0KCB3T3dnp6e5r/v3LmjK1euKGfOnEqVKtVD9/HPdW/evKnLly+rbNmyMgwjyUvtO3bseN+yZs2aaefOneYl8YnHLUuWLKpYseID9x0dHS1JSpky5X1t2bNnV/r06c3X8uXL7drd3d3VsmVLu2WrVq2Sn5+fOSItSa6ururatatu3LihzZs3S/p7pFuStmzZIunvEe1SpUrpzTffNEe6r1+/rsOHD5t9H0VQUJBy5Mhhvi9cuLC8vb2TzezrAPAyInQDAF4Ir732moKCguxelStXvq/fq6++avc+MYBnyZIlyeXXrl2zW54zZ07ZbDa7Zblz55akB96//Pvvv0uS8uTJc19b3rx5zXZJevPNN5UxY0bzEvOEhATNnz9ftWrVMu83PnXqlCSpefPmdqEwffr0mj59umJjYxUVFaVLly7p+vXrmjZt2n39EsPixYsXk6w5kbu7uz766CMdO3ZMFy5c0Pz581WmTBktXLjQ7pnQt2/fVmhoqLJkySJ3d3elS5dO6dOn1/Xr1xUVFfXQfZw9e1YtWrRQmjRplDJlSqVPn94Myv9c18XFJcnLwBs0aCB3d3fzuEVFRWnlypVq3Ljxff+97pV4TG/cuHFf2/fff69169Zp5MiRSa6bKVMmubm52S37/ffflStXLjk52f+KlS9fPrNdknx9fZUrVy4zYG/dulXly5dXhQoVdOHCBf3666/atm2bEhISHit0//P8lqTUqVPfdx4DAJ4dZi8HALxUHvTIpwctNwzDynKSrOO9997Tl19+qS+++ELbtm3ThQsX1KRJE7NPQkKCJGnEiBEqWrRokttJmTKleR9vkyZN1Lx58yT7FS5c+JFry5gxoxo2bKi6deuqQIECWrhwoWbNmiUXFxd16dJFM2fOVLdu3RQYGCgfHx/ZbDY1bNjQrDcp8fHxevPNN3X16lV9+OGHyps3r7y8vHT+/Hm1aNHivnXd3d3vC7TS38Hyrbfe0rx58xQaGqrFixcrNjbW7rglJWfOnHJxcdHhw4fva0sM/vdeAXGve0fon0S5cuW0fv163b59W+Hh4QoNDVXBggWVKlUqbd26VceOHVPKlClVrFixR95mcjmPAQD/h9ANAMBjOH36tAzDsBs9PXnypKS/ZzdPSuKEZCdOnNAbb7xh13bixAmzPVGzZs00atQorVixQqtXr1b69OkVHBxstidePuzt7a2goKAH1po+fXq98sorio+Pf2i/x+Xq6qrChQvr1KlTunz5svz8/LR48WI1b95co0aNMvvFxMT862PFDh06pJMnT2r27Nl2E6f928R0SWnWrJlq1aql3bt3a968eSpWrJgKFCjw0HW8vLxUqVIlbd68WefPnzcnqntSAQEBOnjwoBISEuz+OHD8+HGzPVH58uU1c+ZMffvtt4qPj1fZsmXl5OSkcuXKmaG7bNmydkH6YaP2AIDkicvLAQB4DBcuXNDSpUvN99HR0fr6669VtGhR+fn5JblOyZIllSFDBk2ZMkWxsbHm8tWrV+vYsWOqWbOmXf/ChQurcOHCmj59upYsWaKGDRvajbaWKFFCOXLk0MiRI5O8LDrx0VnOzs6qW7eulixZkuRIblKP2LrXqVOndPbs2fuWX79+XTt27FDq1KnNmbOdnZ3vG02dMGGC4uPjH7qPxEB577qGYdjN9P2oqlevrnTp0unzzz/X5s2b/3WUO1FoaKji4+PVpEmTJI/n44wS16hRQxEREXYzqd+9e1cTJkxQypQp7e4vT7xs/PPPP1fhwoXNWxrKly+v9evXa8+ePfddWp74TPLk8Ix0AMCjYaQbAPBCWL16tTmaeK+yZcsqe/bsT20/uXPnVuvWrbV79275+vrqq6++UmRkpGbOnPnAdVxdXfX555+rZcuWqlixoho1aqTIyEiNGzdOWbNmVffu3e9bp1mzZuYjy/4ZHp2cnDR9+nRVr15dBQoUUMuWLZUpUyadP39eGzdulLe3t1asWCFJGjZsmDZu3KjSpUurbdu2yp8/v65evaq9e/fqxx9/vO9Z5Pc6cOCA3nvvPVWvXl3ly5dXmjRpdP78ec2ePVsXLlzQ2LFjzdD81ltvac6cOfLx8VH+/Pm1Y8cO/fjjj3bP8k5K3rx5lSNHDvXq1Uvnz5+Xt7e3lixZ8kT3ILu6uqphw4aaOHGinJ2d7SYze5jy5ctr4sSJ6tKli3LlyqXGjRsrb968iouL08mTJzVv3jy5ubk98I8q92rXrp2mTp2qFi1aKDw8XFmzZtXixYu1bds2jR071u454Dlz5pSfn59OnDihLl26mMsrVKigDz/80KztXiVKlJAkffTRR2rYsKFcXV31v//9zwzjAIBkyFHTpgMA8DQ87JFhuucxW4mPDBsxYoTd+omPsFq0aFGS2929e7e5LCAgwKhZs6axZs0ao3Dhwoa7u7uRN2/e+9ZN6rFYhmEYCxYsMIoVK2a4u7sbadKkMRo3bmz88ccfSX6uP//803B2djZy5879wM++b98+o06dOkbatGkNd3d3IyAgwKhfv76xfv16u36RkZFG586djSxZshiurq6Gn5+fUaVKFWPatGkP3HbiesOGDTMqVqxoZMyY0XBxcTFSp05tvPHGG8bixYvt+l67ds1o2bKlkS5dOiNlypRGcHCwcfz4cSMgIMBo3rz5Q4/N0aNHjaCgICNlypRGunTpjLZt25qPukr872cYfz8yzMvL66E179q1y5BkVK1a9aH9krJv3z6jWbNmxquvvmq4ubkZXl5eRuHChY2ePXvaPYbLMP5+ZFiBAgWS3E5kZKR5LNzc3IxChQrZfY571atXz5BkLFiwwFwWFxdnpEiRwnBzc7N7xFyiTz75xMiUKZPh5ORk9/gwSUbnzp3v6//P/wYAgGfLZhjMrAEAwKPImjWrChYsqJUrV1q+r8uXLytjxowKDQ3Vxx9/bPn+XhQHDhxQ0aJF9fXXX6tp06aOLgcAAO7pBgAgOZo1a5bi4+MJjo/pyy+/VMqUKVWnTh1HlwIAgCTu6QYAIFnZsGGDjh49qk8//VS1a9d+4IzosLdixQodPXpU06ZNU0hICPc4AwCSDUI3AADJyODBg7V9+3a9/vrrmjBhgqPLeW506dJFkZGRqlGjhgYNGuTocgAAMHFPNwAAAAAAFuGebgAAAAAALELoBgAAAADAItzT/QwlJCTowoULeuWVV2Sz2RxdDgAAAADgCRmGob/++kv+/v5ycnrweDah+xm6cOGCsmTJ4ugyAAAAAABPyblz55Q5c+YHthO6n6FXXnlF0t//Uby9vR1cDQAAAADgSUVHRytLlixmznsQQvczlHhJube3N6EbAAAAAF4A/3brMBOpAQAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARh4buLVu26H//+5/8/f1ls9m0bNkyu3bDMBQaGqqMGTPK09NTQUFBOnXqlF2fq1evqnHjxvL29laqVKnUunVr3bhxw67PwYMHVb58eXl4eChLliwaPnz4fbUsWrRIefPmlYeHhwoVKqRVq1Y9di0AAAAAANzLoaH75s2bKlKkiCZNmpRk+/DhwzV+/HhNmTJFO3fulJeXl4KDgxUTE2P2ady4sY4cOaJ169Zp5cqV2rJli9q1a2e2R0dHq2rVqgoICFB4eLhGjBihgQMHatq0aWaf7du3q1GjRmrdurX27dun2rVrq3bt2jp8+PBj1QIAAAAAwL1shmEYji5Ckmw2m5YuXaratWtL+ntk2d/fXz179lSvXr0kSVFRUfL19dWsWbPUsGFDHTt2TPnz59fu3btVsmRJSVJYWJhq1KihP/74Q/7+/po8ebI++ugjRUREyM3NTZLUp08fLVu2TMePH5ckNWjQQDdv3tTKlSvNesqUKaOiRYtqypQpj1TLo4iOjpaPj4+ioqLk7e39VI4bAAAAAODZe9R8l2zv6T5z5owiIiIUFBRkLvPx8VHp0qW1Y8cOSdKOHTuUKlUqM3BLUlBQkJycnLRz506zT4UKFczALUnBwcE6ceKErl27Zva5dz+JfRL38yi1JCU2NlbR0dF2LwAAAADAy8PF0QU8SEREhCTJ19fXbrmvr6/ZFhERoQwZMti1u7i4KE2aNHZ9smXLdt82EttSp06tiIiIf93Pv9WSlKFDh2rQoEH//mEBAC+EYfsuO7oEJEN9iqVzdAkAAAdKtiPdL4K+ffsqKirKfJ07d87RJQEAAAAAnqFkG7r9/PwkSZGRkXbLIyMjzTY/Pz9dvHjRrv3u3bu6evWqXZ+ktnHvPh7U5972f6slKe7u7vL29rZ7AQAAAABeHsk2dGfLlk1+fn5av369uSw6Olo7d+5UYGCgJCkwMFDXr19XeHi42WfDhg1KSEhQ6dKlzT5btmzRnTt3zD7r1q1Tnjx5lDp1arPPvftJ7JO4n0epBQAAAACAf3Jo6L5x44b279+v/fv3S/p7wrL9+/fr7Nmzstls6tatm4YMGaLly5fr0KFDatasmfz9/c0ZzvPly6dq1aqpbdu22rVrl7Zt26aQkBA1bNhQ/v7+kqT33ntPbm5uat26tY4cOaIFCxZo3Lhx6tGjh1nH+++/r7CwMI0aNUrHjx/XwIEDtWfPHoWEhEjSI9UCAAAAAMA/OXQitT179qhy5crm+8Qg3Lx5c82aNUu9e/fWzZs31a5dO12/fl3lypVTWFiYPDw8zHXmzZunkJAQValSRU5OTqpbt67Gjx9vtvv4+Gjt2rXq3LmzSpQooXTp0ik0NNTuWd5ly5bVN998o/79+6tfv37KlSuXli1bpoIFC5p9HqUWAAAAAADulWye0/0y4DndAPBiY/ZyJIXZywHgxfTcP6cbAAAAAIDnHaEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsEiyDt3x8fH6+OOPlS1bNnl6eipHjhz65JNPZBiG2ccwDIWGhipjxozy9PRUUFCQTp06Zbedq1evqnHjxvL29laqVKnUunVr3bhxw67PwYMHVb58eXl4eChLliwaPnz4ffUsWrRIefPmlYeHhwoVKqRVq1ZZ88EBAAAAAC+EZB26P//8c02ePFkTJ07UsWPH9Pnnn2v48OGaMGGC2Wf48OEaP368pkyZop07d8rLy0vBwcGKiYkx+zRu3FhHjhzRunXrtHLlSm3ZskXt2rUz26Ojo1W1alUFBAQoPDxcI0aM0MCBAzVt2jSzz/bt29WoUSO1bt1a+/btU+3atVW7dm0dPnz42RwMAAAAAMBzx2bcO2yczLz11lvy9fXVjBkzzGV169aVp6en5s6dK8Mw5O/vr549e6pXr16SpKioKPn6+mrWrFlq2LChjh07pvz582v37t0qWbKkJCksLEw1atTQH3/8IX9/f02ePFkfffSRIiIi5ObmJknq06ePli1bpuPHj0uSGjRooJs3b2rlypVmLWXKlFHRokU1ZcqUR/o80dHR8vHxUVRUlLy9vZ/KMQIAJB/D9l12dAlIhvoUS+foEgAAFnjUfJesR7rLli2r9evX6+TJk5KkAwcO6KefflL16tUlSWfOnFFERISCgoLMdXx8fFS6dGnt2LFDkrRjxw6lSpXKDNySFBQUJCcnJ+3cudPsU6FCBTNwS1JwcLBOnDiha9eumX3u3U9in8T9JCU2NlbR0dF2LwAAAADAy8PF0QU8TJ8+fRQdHa28efPK2dlZ8fHx+vTTT9W4cWNJUkREhCTJ19fXbj1fX1+zLSIiQhkyZLBrd3FxUZo0aez6ZMuW7b5tJLalTp1aERERD91PUoYOHapBgwY97scGAAAAALwgkvVI98KFCzVv3jx988032rt3r2bPnq2RI0dq9uzZji7tkfTt21dRUVHm69y5c44uCQAAAADwDCXrke4PPvhAffr0UcOGDSVJhQoV0u+//66hQ4eqefPm8vPzkyRFRkYqY8aM5nqRkZEqWrSoJMnPz08XL1602+7du3d19epVc30/Pz9FRkba9Ul8/299EtuT4u7uLnd398f92AAAAACAF0SyHum+deuWnJzsS3R2dlZCQoIkKVu2bPLz89P69evN9ujoaO3cuVOBgYGSpMDAQF2/fl3h4eFmnw0bNighIUGlS5c2+2zZskV37twx+6xbt0558uRR6tSpzT737iexT+J+AAAAAAD4p2Qduv/3v//p008/1Q8//KDffvtNS5cu1ejRo/XOO+9Ikmw2m7p166YhQ4Zo+fLlOnTokJo1ayZ/f3/Vrl1bkpQvXz5Vq1ZNbdu21a5du7Rt2zaFhISoYcOG8vf3lyS99957cnNzU+vWrXXkyBEtWLBA48aNU48ePcxa3n//fYWFhWnUqFE6fvy4Bg4cqD179igkJOSZHxcAAAAAwPMhWV9ePmHCBH388cfq1KmTLl68KH9/f7Vv316hoaFmn969e+vmzZtq166drl+/rnLlyiksLEweHh5mn3nz5ikkJERVqlSRk5OT6tatq/Hjx5vtPj4+Wrt2rTp37qwSJUooXbp0Cg0NtXuWd9myZfXNN9+of//+6tevn3LlyqVly5apYMGCz+ZgAAAAAACeO8n6Od0vGp7TDQAvNp7TjaTwnG4AeDG9EM/pBgAAAADgeUboBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALOLi6AIAAABgvWH7Lju6BCRDfYqlc3QJwAuPkW4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALOLi6AKQvAzbd9nRJSCZ6lMsnaNLAAAAAJ47jHQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgEUI3AAAAAAAWIXQDAAAAAGARQjcAAAAAABYhdAMAAAAAYBFCNwAAAAAAFiF0AwAAAABgkWQfus+fP68mTZoobdq08vT0VKFChbRnzx6z3TAMhYaGKmPGjPL09FRQUJBOnTplt42rV6+qcePG8vb2VqpUqdS6dWvduHHDrs/BgwdVvnx5eXh4KEuWLBo+fPh9tSxatEh58+aVh4eHChUqpFWrVlnzoQEAAAAAL4RkHbqvXbum119/Xa6urlq9erWOHj2qUaNGKXXq1Gaf4cOHa/z48ZoyZYp27twpLy8vBQcHKyYmxuzTuHFjHTlyROvWrdPKlSu1ZcsWtWvXzmyPjo5W1apVFRAQoPDwcI0YMUIDBw7UtGnTzD7bt29Xo0aN1Lp1a+3bt0+1a9dW7dq1dfjw4WdzMAAAAAAAzx2bYRiGo4t4kD59+mjbtm3aunVrku2GYcjf3189e/ZUr169JElRUVHy9fXVrFmz1LBhQx07dkz58+fX7t27VbJkSUlSWFiYatSooT/++EP+/v6aPHmyPvroI0VERMjNzc3c97Jly3T8+HFJUoMGDXTz5k2tXLnS3H+ZMmVUtGhRTZky5ZE+T3R0tHx8fBQVFSVvb+8nPi5WGrbvsqNLQDLVp1g6R5cAJHt8hyIpyeX7k/MTSUku5yfwPHrUfJesR7qXL1+ukiVLql69esqQIYOKFSumL7/80mw/c+aMIiIiFBQUZC7z8fFR6dKltWPHDknSjh07lCpVKjNwS1JQUJCcnJy0c+dOs0+FChXMwC1JwcHBOnHihK5du2b2uXc/iX0S95OU2NhYRUdH270AAAAAAC8PF0cX8DC//vqrJk+erB49eqhfv37avXu3unbtKjc3NzVv3lwRERGSJF9fX7v1fH19zbaIiAhlyJDBrt3FxUVp0qSx65MtW7b7tpHYljp1akVERDx0P0kZOnSoBg0a9ASfHEBSGKXBgzBSAwAAkqtkPdKdkJCg4sWL67PPPlOxYsXUrl07tW3b9pEv53a0vn37KioqynydO3fO0SUBAAAAAJ6hZB26M2bMqPz589sty5cvn86ePStJ8vPzkyRFRkba9YmMjDTb/Pz8dPHiRbv2u3fv6urVq3Z9ktrGvft4UJ/E9qS4u7vL29vb7gUAAAAAeHkk69D9+uuv68SJE3bLTp48qYCAAElStmzZ5Ofnp/Xr15vt0dHR2rlzpwIDAyVJgYGBun79usLDw80+GzZsUEJCgkqXLm322bJli+7cuWP2WbdunfLkyWPOlB4YGGi3n8Q+ifsBAAAAAOCfknXo7t69u37++Wd99tlnOn36tL755htNmzZNnTt3liTZbDZ169ZNQ4YM0fLly3Xo0CE1a9ZM/v7+ql27tqS/R8arVaumtm3bateuXdq2bZtCQkLUsGFD+fv7S5Lee+89ubm5qXXr1jpy5IgWLFigcePGqUePHmYt77//vsLCwjRq1CgdP35cAwcO1J49exQSEvLMjwsAAAAA4PmQrCdSK1WqlJYuXaq+fftq8ODBypYtm8aOHavGjRubfXr37q2bN2+qXbt2un79usqVK6ewsDB5eHiYfebNm6eQkBBVqVJFTk5Oqlu3rsaPH2+2+/j4aO3atercubNKlCihdOnSKTQ01O5Z3mXLltU333yj/v37q1+/fsqVK5eWLVumggULPpuDAQAAAAB47iTr53S/aHhON55nyWF2aM5PPEhyOD8lzlEkjfMTyVlyOT+B59EL8ZxuAAAAAACeZ4RuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALPJEoXvjxo1Puw4AAAAAAF44TxS6q1Wrphw5cmjIkCE6d+7c064JAAAAAIAXwhOF7vPnzyskJESLFy9W9uzZFRwcrIULFyouLu5p1wcAAAAAwHPriUJ3unTp1L17d+3fv187d+5U7ty51alTJ/n7+6tr1646cODA064TAAAAAIDnzn+eSK148eLq27evQkJCdOPGDX311VcqUaKEypcvryNHjjyNGgEAAAAAeC49cei+c+eOFi9erBo1aiggIEBr1qzRxIkTFRkZqdOnTysgIED16tV7mrUCAAAAAPBccXmSlbp06aL58+fLMAw1bdpUw4cPV8GCBc12Ly8vjRw5Uv7+/k+tUAAAAAAAnjdPFLqPHj2qCRMmqE6dOnJ3d0+yT7p06Xi0GAAAAADgpfbYl5ffuXNHAQEBKlOmzAMDtyS5uLioYsWK/6k4AAAAAACeZ4890u3q6qolS5bo448/tqIeAAAAAC+ZYfsuO7oEJFN9iqVzdAn/2RNNpFa7dm0tW7bsKZcCAAAAAMCL5Ynu6c6VK5cGDx6sbdu2qUSJEvLy8rJr79q161MpDgAAAACA59kThe4ZM2YoVapUCg8PV3h4uF2bzWYjdAMAAAAAoCcM3WfOnHnadQAAAAAA8MJ5onu6AQAAAADAv3uikW5J+uOPP7R8+XKdPXtWcXFxdm2jR4/+z4UBAAAAAPC8e6LQvX79er399tvKnj27jh8/roIFC+q3336TYRgqXrz4064RAAAAAIDn0hNdXt63b1/16tVLhw4dkoeHh5YsWaJz586pYsWKqlev3tOuEQAAAACA59IThe5jx46pWbNmkiQXFxfdvn1bKVOm1ODBg/X5558/1QIBAAAAAHhePVHo9vLyMu/jzpgxo3755Rez7fLly0+nMgAAAAAAnnNPdE93mTJl9NNPPylfvnyqUaOGevbsqUOHDum7775TmTJlnnaNAAAAAAA8l54odI8ePVo3btyQJA0aNEg3btzQggULlCtXLmYuBwAAAADg/3ui0J09e3bz315eXpoyZcpTKwgAAAAAgBfFE93TDQAAAAAA/t0jj3SnTp1aNpvtkfpevXr1iQsCAAAAAOBF8cihe+zYsRaWAQAAAADAi+eRQ3fz5s2trAMAAAAAgBfOE02kdq+YmBjzmd2JvL29/+tmAQAAAAB47j3RRGo3b95USEiIMmTIIC8vL6VOndruBQAAAAAAnjB09+7dWxs2bNDkyZPl7u6u6dOna9CgQfL399fXX3/9tGsEAAAAAOC59ESXl69YsUJff/21KlWqpJYtW6p8+fLKmTOnAgICNG/ePDVu3Php1wkAAAAAwHPniUa6r169quzZs0v6+/7txEeElStXTlu2bHl61QEAAAAA8Bx7otCdPXt2nTlzRpKUN29eLVy4UNLfI+CpUqV6asUBAAAAAPA8e6LQ3bJlSx04cECS1KdPH02aNEkeHh7q3r27Pvjgg6daIAAAAAAAz6snuqe7e/fu5r+DgoJ0/PhxhYeHK2fOnCpcuPBTKw4AAAAAgOfZY41079ixQytXrrRbljihWocOHTRx4kTFxsY+1QIBAAAAAHhePVboHjx4sI4cOWK+P3TokFq3bq2goCD17dtXK1as0NChQ596kQAAAAAAPI8eK3Tv379fVapUMd9/++23Kl26tL788kt1795d48ePNydVAwAAAADgZfdYofvatWvy9fU132/evFnVq1c335cqVUrnzp17etUBAAAAAPAce6zQ7evraz4qLC4uTnv37lWZMmXM9r/++kuurq5Pt0IAAAAAAJ5TjxW6a9SooT59+mjr1q3q27evUqRIofLly5vtBw8eVI4cOZ56kQAAAAAAPI8e65Fhn3zyierUqaOKFSsqZcqUmj17ttzc3Mz2r776SlWrVn3qRQIAAAAA8Dx6rNCdLl06bdmyRVFRUUqZMqWcnZ3t2hctWqSUKVM+1QIBAAAAAHhePVboTuTj45Pk8jRp0vynYgAAAAAAeJE81j3dAAAAAADg0RG6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwyHMVuocNGyabzaZu3bqZy2JiYtS5c2elTZtWKVOmVN26dRUZGWm33tmzZ1WzZk2lSJFCGTJk0AcffKC7d+/a9dm0aZOKFy8ud3d35cyZU7Nmzbpv/5MmTVLWrFnl4eGh0qVLa9euXVZ8TAAAAADAC+K5Cd27d+/W1KlTVbhwYbvl3bt314oVK7Ro0SJt3rxZFy5cUJ06dcz2+Ph41axZU3Fxcdq+fbtmz56tWbNmKTQ01Oxz5swZ1axZU5UrV9b+/fvVrVs3tWnTRmvWrDH7LFiwQD169NCAAQO0d+9eFSlSRMHBwbp48aL1Hx4AAAAA8Fx6LkL3jRs31LhxY3355ZdKnTq1uTwqKkozZszQ6NGj9cYbb6hEiRKaOXOmtm/frp9//lmStHbtWh09elRz585V0aJFVb16dX3yySeaNGmS4uLiJElTpkxRtmzZNGrUKOXLl08hISF69913NWbMGHNfo0ePVtu2bdWyZUvlz59fU6ZMUYoUKfTVV18924MBAAAAAHhuPBehu3PnzqpZs6aCgoLsloeHh+vOnTt2y/PmzatXX31VO3bskCTt2LFDhQoVkq+vr9knODhY0dHROnLkiNnnn9sODg42txEXF6fw8HC7Pk5OTgoKCjL7AAAAAADwTy6OLuDffPvtt9q7d6927959X1tERITc3NyUKlUqu+W+vr6KiIgw+9wbuBPbE9se1ic6Olq3b9/WtWvXFB8fn2Sf48ePP7D22NhYxcbGmu+jo6P/5dMCAAAAAF4kyXqk+9y5c3r//fc1b948eXh4OLqcxzZ06FD5+PiYryxZsji6JAAAAADAM5SsQ3d4eLguXryo4sWLy8XFRS4uLtq8ebPGjx8vFxcX+fr6Ki4uTtevX7dbLzIyUn5+fpIkPz+/+2YzT3z/b328vb3l6empdOnSydnZOck+idtISt++fRUVFWW+zp0790THAQAAAADwfErWobtKlSo6dOiQ9u/fb75Kliypxo0bm/92dXXV+vXrzXVOnDihs2fPKjAwUJIUGBioQ4cO2c0yvm7dOnl7eyt//vxmn3u3kdgncRtubm4qUaKEXZ+EhAStX7/e7JMUd3d3eXt7270AAAAAAC+PZH1P9yuvvKKCBQvaLfPy8lLatGnN5a1bt1aPHj2UJk0aeXt7q0uXLgoMDFSZMmUkSVWrVlX+/PnVtGlTDR8+XBEREerfv786d+4sd3d3SVKHDh00ceJE9e7dW61atdKGDRu0cOFC/fDDD+Z+e/TooebNm6tkyZJ67bXXNHbsWN28eVMtW7Z8RkcDAAAAAPC8Sdah+1GMGTNGTk5Oqlu3rmJjYxUcHKwvvvjCbHd2dtbKlSvVsWNHBQYGysvLS82bN9fgwYPNPtmyZdMPP/yg7t27a9y4ccqcObOmT5+u4OBgs0+DBg106dIlhYaGKiIiQkWLFlVYWNh9k6sBAAAAAJDouQvdmzZtsnvv4eGhSZMmadKkSQ9cJyAgQKtWrXroditVqqR9+/Y9tE9ISIhCQkIeuVYAAAAAwMstWd/TDQAAAADA84zQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFgkWYfuoUOHqlSpUnrllVeUIUMG1a5dWydOnLDrExMTo86dOytt2rRKmTKl6tatq8jISLs+Z8+eVc2aNZUiRQplyJBBH3zwge7evWvXZ9OmTSpevLjc3d2VM2dOzZo16756Jk2apKxZs8rDw0OlS5fWrl27nvpnBgAAAAC8OJJ16N68ebM6d+6sn3/+WevWrdOdO3dUtWpV3bx50+zTvXt3rVixQosWLdLmzZt14cIF1alTx2yPj49XzZo1FRcXp+3bt2v27NmaNWuWQkNDzT5nzpxRzZo1VblyZe3fv1/dunVTmzZttGbNGrPPggUL1KNHDw0YMEB79+5VkSJFFBwcrIsXLz6bgwEAAAAAeO7YDMMwHF3Eo7p06ZIyZMigzZs3q0KFCoqKilL69On1zTff6N1335UkHT9+XPny5dOOHTtUpkwZrV69Wm+99ZYuXLggX19fSdKUKVP04Ycf6tKlS3Jzc9OHH36oH374QYcPHzb31bBhQ12/fl1hYWGSpNKlS6tUqVKaOHGiJCkhIUFZsmRRly5d1KdPn0eqPzo6Wj4+PoqKipK3t/fTPDRPzbB9lx1dApKpPsXSOboEzk88UHI4PyXOUSSN8xPJGecnkrvkco4m5VHzXbIe6f6nqKgoSVKaNGkkSeHh4bpz546CgoLMPnnz5tWrr76qHTt2SJJ27NihQoUKmYFbkoKDgxUdHa0jR46Yfe7dRmKfxG3ExcUpPDzcro+Tk5OCgoLMPgAAAAAA/JOLowt4VAkJCerWrZtef/11FSxYUJIUEREhNzc3pUqVyq6vr6+vIiIizD73Bu7E9sS2h/WJjo7W7du3de3aNcXHxyfZ5/jx4w+sOTY2VrGxseb76Ojox/jEAAAAAIDn3XMz0t25c2cdPnxY3377raNLeWRDhw6Vj4+P+cqSJYujSwIAAAAAPEPPRegOCQnRypUrtXHjRmXOnNlc7ufnp7i4OF2/ft2uf2RkpPz8/Mw+/5zNPPH9v/Xx9vaWp6en0qVLJ2dn5yT7JG4jKX379lVUVJT5Onfu3ON9cAAAAADAcy1Zh27DMBQSEqKlS5dqw4YNypYtm117iRIl5OrqqvXr15vLTpw4obNnzyowMFCSFBgYqEOHDtnNMr5u3Tp5e3srf/78Zp97t5HYJ3Ebbm5uKlGihF2fhIQErV+/3uyTFHd3d3l7e9u9AAAAAAAvj2R9T3fnzp31zTff6Pvvv9crr7xi3oPt4+MjT09P+fj4qHXr1urRo4fSpEkjb29vdenSRYGBgSpTpowkqWrVqsqfP7+aNm2q4cOHKyIiQv3791fnzp3l7u4uSerQoYMmTpyo3r17q1WrVtqwYYMWLlyoH374waylR48eat68uUqWLKnXXntNY8eO1c2bN9WyZctnf2AAAAAAAM+FZB26J0+eLEmqVKmS3fKZM2eqRYsWkqQxY8bIyclJdevWVWxsrIKDg/XFF1+YfZ2dnbVy5Up17NhRgYGB8vLyUvPmzTV48GCzT7Zs2fTDDz+oe/fuGjdunDJnzqzp06crODjY7NOgQQNdunRJoaGhioiIUNGiRRUWFnbf5GoAAAAAACRK1qH7UR4h7uHhoUmTJmnSpEkP7BMQEKBVq1Y9dDuVKlXSvn37HtonJCREISEh/1oTAAAAAABSMr+nGwAAAACA5xmhGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIoRsAAAAAAIsQugEAAAAAsAihGwAAAAAAixC6AQAAAACwCKEbAAAAAACLELoBAAAAALAIofsxTZo0SVmzZpWHh4dKly6tXbt2ObokAAAAAEAyReh+DAsWLFCPHj00YMAA7d27V0WKFFFwcLAuXrzo6NIAAAAAAMkQofsxjB49Wm3btlXLli2VP39+TZkyRSlSpNBXX33l6NIAAAAAAMkQofsRxcXFKTw8XEFBQeYyJycnBQUFaceOHQ6sDAAAAACQXLk4uoDnxeXLlxUfHy9fX1+75b6+vjp+/HiS68TGxio2NtZ8HxUVJUmKjo62rtD/KObGX44uAclUdLSbo0vg/MQDJYfzU+IcRdI4P5GccX4iuUsu52hSEnOdYRgP7UfottDQoUM1aNCg+5ZnyZLFAdUA/839ZzKQfHB+Ijnj/ERyxvmJ5O55OEf/+usv+fj4PLCd0P2I0qVLJ2dnZ0VGRtotj4yMlJ+fX5Lr9O3bVz169DDfJyQk6OrVq0qbNq1sNpul9eK/i46OVpYsWXTu3Dl5e3s7uhzADucnkjPOTyRnnJ9Izjg/ny+GYeivv/6Sv7//Q/sRuh+Rm5ubSpQoofXr16t27dqS/g7R69evV0hISJLruLu7y93d3W5ZqlSpLK4UT5u3tzdfeki2OD+RnHF+Ijnj/ERyxvn5/HjYCHciQvdj6NGjh5o3b66SJUvqtdde09ixY3Xz5k21bNnS0aUBAAAAAJIhQvdjaNCggS5duqTQ0FBFRESoaNGiCgsLu29yNQAAAAAAJEL3YwsJCXng5eR4sbi7u2vAgAH33SIAJAecn0jOOD+RnHF+Ijnj/Hwx2Yx/m98cAAAAAAA8ESdHFwAAAAAAwIuK0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAPCCadu2rX7++WdHlwEAAAARuoH/JHHy//j4eAdXAvwtLi5OBw4cUP369bV3715HlwP8J/98wEpCQoKDKgEA4MkRuoEnZBiGbDabVqxYoenTp9/3yyHgCG5ubtq8ebMKFSqkt99+m+CN55rNZpMkjRw5UocPH5aTkxPftQBwD74Tnw+EbuAxbNy4Ub/++qv5PiEhQV9++aVsNpv5yyHgaJ6enlq0aBHBGy+EW7duadmyZRo/frzi4+P5rsUzkRhk9u7dq1mzZmnHjh26cuWKg6vCyy4+Pt684ufy5cuKi4tTXFycg6vCoyB0A4/AMAzt27dP1atX1+TJk/X777/LZrPJyclJly5d4q+McLh/noMpUqTQ0qVLlT9/foI3nmspUqRQjRo1tHfvXt28eVMSIzuwns1m09KlS1WxYkUNHTpU1atXV//+/bV//35Hl4aX0NKlS3X06FE5OzvLyclJy5YtU82aNVWyZEn1799fBw8elMR3Y3JG6AYegc1mU7FixTR69GgtXLhQkydPNke83dzclD59ekn/d2+3YRh88eGZSUhIMEf/fvvtN506dUp//PGHPDw8FBYWpnz58hG88Vx40D3b3bt318WLFzV8+HBJYrQblkhISDB/dp87d05z5szR6NGjdejQIY0aNUqHDh3SsGHDtG/fPgdXipfJoUOHNGjQIPXv319nz57VmTNn1Lx5c9WuXVuVKlXS3r171b17d+3atUs2m43fP5MpQjfwCBJ/EezUqZP69u2rOXPmaNKkSTp58qQ8PT2VMWNGSZKzs7Okv38hjI2NdVi9eHkYhiEnp7+/yj/++GM1bNhQZcuWVdu2bdW3b185OTlp5cqVKlSokGrVqkXwRrKWeC7PnTtXP/74o27duiXp71smOnfurJ9//lmXLl1yZIl4Ae3atUvS3+efzWbTrl27NGzYMCUkJKhWrVpyc3NT69at1blzZ50/f16ff/45I954ZgoVKqT3339fUVFR6tOnjxYtWqQePXqob9++Gj9+vHr16qUUKVKod+/eBO9kzGbwXwV4JHfv3pWLi4skafLkyRo6dKjq16+vOXPmyNvbW8WKFZNhGLp9+7acnJyUK1cuDR06VG5ubg6uHC+DIUOGaOzYsVq4cKFeffVVffLJJ5ozZ4727t2rokWL6vbt26pbt67Wrl2rI0eOKE+ePI4uGUjSjRs3VLx4cfn4+CguLk4jR45UoUKFJEl58uTRjBkz9O677zq4Srwo5s6dq9mzZ2vhwoVKlSqVbDabPv/8c40ZM0aGYWjTpk3Kly+f2f/bb7/V1KlTlSJFCg0dOlSFCxd2YPV40d37u+e8efM0Y8YM/frrr2rYsKGGDRtm9lu9erW++OIL3bp1S4MHD9brr7/uqJLxAIRu4F8kzlL+T+PHj9fgwYOVOXNmFShQQIGBgYqOjtbly5eVMmVK1atXz/xFEbDStWvX1KhRI3Xo0EG1a9dWWFiY6tevr9GjR6tNmzaKiYmRh4eHYmNj1bdvX40YMcK8KgNwtPj4+PvOx9u3b+vIkSOaPHmytm/frpQpU6p9+/bavHmzzp49q++++05p06Z1UMV4kRw/flyenp4KCAjQH3/8ocyZM0uSpk2bphEjRqhy5cr68MMPlSNHDnOd2bNna8GCBfryyy+VKVMmR5WOF1RCQoKcnJwUFxdnDtwcOnRI+fPn1+LFi/XZZ58pPj5eS5cuVa5cucz11qxZo08//VTe3t5avHix3N3duRUnGSF0Aw+RGLi3bt2qH3/8UXfu3FHOnDnVqlUrSdLUqVM1ZMgQNWnSRD169DDv7Qas9M8/BEVFRem1117T3LlzdfHiRTVs2FAjRoxQhw4dFBcXp2nTpql48eIqW7asuU5SQQd41u49l5cvX67o6GilT59ewcHBZp+ff/5Z+/fv1+DBg2Wz2XT16lVt3rxZr732mvnLKfBfHTx4UO3bt1fTpk3VqVMnSdKYMWM0Z84clStXTt26dVP27NnN/tHR0fL29nZUuXjBnTlzRi1btlRYWJhWrFihli1bavPmzSpRooS++eYbffHFF8qUKZM++eQT5c6d21zvxx9/VJ48eZQlSxYHVo+kELqBf/Hdd9+padOmqlatms6cOaO//vpL/v7+2rx5s6S/R7xHjx6tmjVrqnfv3goICHBwxXhZJAaW69evq3HjxkqXLp1WrFihzz77TB06dJAknT59Wj169FCLFi1Up04dB1cM/O3dd99V3rx5NWTIEElSnz59NGnSJGXNmlVHjhxR79699eGHHyp16tTmOn/++ad27NihYcOGKXXq1FqzZo2jyscL6MiRIxowYIAuXbqkpk2bqk2bNpKkUaNGad68eapUqZI6deqknDlzOrhSvMhiY2Pl7u6uiIgIVahQQU5OTjp58qRmzZqlZs2amf1mz56tmTNnKn369Prss8/sRryRTBkAHujcuXNGjhw5jHHjxhmGYRi3bt0y1q9fb+TOnduoXLmy2W/UqFFG/vz5jcjISEeVipdAfHy8+e/58+cbNWvWNO7cuWMYhmHMmDHDsNlsRr169cxl169fN2rUqGFUqlTJuHv3rkNqBpIyYsQIw9nZ2Rg2bJhx/Phxo3Tp0kZ4eLhx8eJF47vvvjNcXV2NkJAQ49q1a4ZhGEZCQoK5blhYmFG4cGHjxIkTDqoez7PEc+necyrRgQMHjCZNmhhly5Y1vvzyS3P5mDFjjKxZsxoffvih+f0KPG3vv/++MX78ePNn/fTp0w2bzWZky5bNuHz5smEY9r8HzJo1y6hSpYoRHBxsnD592iE149G5ODr0A8nZ1atXFRMTozfeeEPS3zPoVqhQQRMnTlTnzp21aNEi1atXTz169FCrVq2UKlUqxxaMF9a9l9Fu2LBBGzZsUFhYmDp27KgvvvhCrVq10qVLl9SvXz+98847SkhI0I0bN3T9+nXt2bNHzs7OXFKOZMEwDPXq1UspU6ZU586d9euvv6pAgQIqUqSInJ2d9c4772jp0qV65513ZLPZ9Mknn8jHx8dcv2jRorp48aIiIyPtLqsE/s0/75XdsWOHDh06JHd3d9WpU0eFCxdWz549NWrUKM2cOVOS1KZNG3Xr1k2urq6qUaOGOakV8LRlzZpV5cqVM3/WFytWTOPHj9dXX32loKAgfffdd8qWLZv5s7x58+YyDEMLFiyQh4eHg6vHv+HycuAhLl68qJIlS+qjjz5S+/btzeVRUVEqUaKE2rVrp969e0t68IRrwNPUs2dPbd68WSVLltS+fft09uxZVa5cWbNnz5arq6uWLl2qXbt2KSoqSvny5VPHjh3l4uJiNwMqkFxMnz5d7du3V8GCBbVlyxb5+PiY36WrVq1S3bp19e6772ry5MlKmTKlpL9nm27Xrp2OHj2qrFmzOvYD4LkxY8YMjRo1Svv27ZO7u7sWLlyoNm3aKHPmzLp9+7ZSpUqlH3/8UWnTptX+/fs1atQonT17VvXq1VNISIijy8dLZNWqVTp48KB69uwpV1dX/fnnnwoODpazs7OWLVtm3sa4du1aValSRbdv3za/H5F8MfsIoL8Dc+KzuBPfS5KHh4cCAwP1/fffm/dwS5KPj4+yZctm9zgwAjestm7dOn399deaMGGCpkyZoh07dqh37946evSoWrRooTt37uidd97RkCFD9MUXX6hLly5ycXFRfHw8gRsOt2PHDv3222+S/n6m/LJly9SmTRtNnz5dhw8f1sSJE83AbRiGatSooblz5+rs2bNKkSKFpL+/m11cXBQeHk7gxiMzDEMZM2aUk5OTgoKCFB0drfXr12vixInatWuXvv76a6VIkULFihXTlStXVLRoUfXq1UupU6fWypUrdf36dUd/BLxEDh06pH79+mnixImKjo5WxowZtXbtWvO58evWrdOHH36ohg0b6sKFCwTu5wQj3XipnTlzRtmyZTPfr1mzRitWrNBff/2lkJAQlSpVSocPH1aLFi2UNm1aBQcHq3Tp0lqyZIlmzpyp3bt3M6kKnpl58+apd+/eOnjwoPm4pL/++ksjR47UyJEj1ahRI02ePFmurq7M6oxk5ddff9V7772nbNmyKWXKlJoxY4YOHjyoggULSpKmTJmizp0767PPPlPv3r3N4H3vHzO5PQL/RXx8vDZt2qSePXvKZrMpU6ZMGjlypPLmzSvp76DTvn17/fHHH9q3b5/Spk2rw4cPK02aNPL393dw9XjZjBw5Ur1799bw4cPVtm1b+fj46Nq1a6pWrZquXr2qhIQELVq0SMWLF3d0qXhUDriPHEgWVq5cadhsNmPVqlWGYRjG6tWrjRQpUhi1atUySpcubbi7u5sTqRw5csRo3ry5ERAQYOTIkcMoUqSIsXfvXkeWjxfcvZP8JE6csnXrViNv3rzG2rVr7fqePXvWyJQpk5ErVy6jdevWTJqGZGnevHlGxowZDXd3d+OHH34wDMOwm5Rq8uTJhrOzszF8+PAkJ7kCnlTid+jdu3eNdevWGeXLlzc8PDyM8+fPG4bxf9+3Bw8eNMqXL294eXkZV65ccVi9eHkkfgf+9ttvxpEjR4zr16+bbUOHDjVsNpsxYsQIu+X79+83Ll269MxrxX/D9YZ4adWsWVPNmjXTe++9p0WLFmnPnj0aPXq0ee92aGioOnTooPj4eLVv317Tp0/XrVu3dOXKFaVOnZpJ02CZf45SJ77PlSuXUqRIofHjxytjxozmKOGdO3cUGBioIkWK6LvvvtPPP/+s119/3VHlA3YSz9/MmTMrVapU8vPz0/z585U7d27lzJlTCQkJstls6tChg2w2mzp27KiMGTOqSZMmji4dLwDDMOTk5KRff/1VKVKkUFBQkCSpS5cuqlWrlrZv3y5XV1dJUqFChTR+/Hh9+OGHunLlitKkSePI0vGC+uabb3T37l01a9ZMLi4uWrhwofr166crV66odOnSatiwoVq0aKE+ffpIknr37i0nJyc1b95cadOmVZEiRRz8CfAkuLwcL72WLVtqyZIlyp49uz7++GPVrVvXbAsNDdVnn32mqVOnqkmTJnJ3d3dgpXjZjBw5Urt371Z8fLx69OihsmXL6sSJE6pSpYoKFCig4OBgFSlSRMOGDVP69Ok1adIkBQQEaNCgQerevbujy8dLzvjH5eHXrl2Tk5OTvv/+e02fPl3+/v769NNPlSNHDrv1li9fzizReCoSz8GlS5eaf0hv1KiRfHx8zEvNPT09tWnTJruf74mzmwNP27Vr11SzZk25ubmpS5cuKlq0qGrWrKmQkBDlyJFDU6ZM0dWrV1WnTh3z5/iIESP04Ycfavz48ercuTNzCD2nuOEPL6V7/9Y0c+ZMtWrVSgcPHlRERIRd++DBg/Xxxx+rbdu2WrhwoUNqxcvj3sn8Bg8erOHDh8vb21tXr15V+fLlNW/ePOXJk0cbN26Uj4+Ppk2bpvbt2+vOnTuaMWOGUqdOrYIFC3L/IRwucfRaks6ePauzZ89K+nsSymbNmqlJkya6cOGCBgwYoF9++UWS1LRpU4WFhentt982Z9wH/gubzaawsDA1btxYbdu2Vd26dZUmTRo5OzurUqVKGjlypGJiYvTmm28qNjbWXI/ADaukTp1as2bNUsqUKTVz5kzNnTtX1apVU0hIiKpXr64vv/xSuXLl0uLFizVmzBhJ0gcffKDRo0frjTfeIHA/xxjpxksn8S/fR44c0a1bt1SqVClJUocOHTR37lwtXrxY1apVs1tn6NChql27tvLly+eIkvGSOX/+vGbMmKE33nhD5cqV0+3btzVo0CDz2bFNmjTR7du3FRMTo+joaPPxIf369dPs2bO1bds2ZnaGw9x7e8TAgQMVFhamU6dOqWrVqnrrrbfUuHFjSdKXX36pb775RhcvXlTq1Kn166+/6uzZs4xw46lISEhQXFycGjZsqNy5c2v48OFmW+IjFOPj47V161Y1a9ZM+fLl05o1axxYMV4Gid+PJ0+eVNeuXbV//34VLlxYa9euNftERESob9++OnPmjN5880199NFHDqwYTwsj3XipJAbu7777Tm+99ZY2b95sjsBMnjxZ9evXV7169RQWFma3Xt++fQnceCa+//57ZcmSRbNmzTJHWzw9PfXJJ5+oZ8+eatWqlb799lt5enoqderUCggI0P79+/X2229r9uzZWrlyJYEbDpUYuAcMGKBJkyapX79+WrJkiW7cuKF+/fpp6tSpkqS2bduqZ8+eatSokUqVKmUG7vj4eEeWjxeEk5OT3Nzc9Pvvv8vX11fS/11NlPiHncuXL6tSpUqaO3euJk+e7LBa8fLJnTu3Jk6cqJIlS+r06dOaO3eu2ebn56dhw4YpXbp02rp1q65everASvHUOGgCN8BhVq9ebXh5eRkTJ040oqOj72tv2rSpkSZNGuP77793QHV42STOqpv4v+fPnzc6depkODs7G8uWLbNru3PnjtGvXz/DZrMZP/74o912Jk2aZBw/fvwZVg482KZNm4xChQoZ27ZtMwzDMNavX294enoab7zxhpE9e3ZjxowZSa7HzPt42ooWLWo0b97cfJ/4fXrmzBlj9OjRxsWLFx1UGV4miTPk37x50zAMw7h165ZhGIZx/Phxo1q1akZQUJDx7bff2q0TGRlpXLhw4dkWCstweTleGoZh6Pbt22rQoIEKFCigYcOG6caNG/rzzz+1fPlyubi46P3335ckvfvuu9q1a5eOHTsmLy8vB1eOF9W3336rtWvXqk+fPsqUKZN5rkVGRuqDDz7QkiVLtG7dOpUtW9a8SiPx/u02bdpwGS6SrUuXLmnChAnq37+/Nm7cqKZNm2ro0KGqXLmy3n77bV25ckW9e/dmwj88NcY/Ju5LNG/ePPXo0UPdunVT3759zeW9e/fW5s2btWrVKqVNm/ZZloqXTOK5uXr1ak2bNk1RUVFKly6d+vbtq2LFiunkyZN6//33defOHbVv31716tVzdMmwAKEbL6QHPXJJkho0aKBXXnlF3bp10+TJk3XixAn9+uuviouLMy8zk6Q///xTGTNmdEj9ePFFR0erePHiio6Olp+fn1577TWVK1dOLVq0kCTdunVLrVu31vLly7V27Vq9/vrr9/1SmXhfIuBI//y+TXT79m25u7urfv36ypMnjwYPHixnZ2fVr19fp0+fVsGCBTV79mwmBsJ/lvjduGXLFm3fvl1nz55VmzZtVLBgQd26dUtjxozRlClTVLFiRWXPnl3nz5/XihUrtGnTJhUtWtTR5eMlsHz5ctWrV089evTQrVu3dPr0aa1fv17ffvutateurWPHjql3796KiIhQv3799M477zi6ZDxl3NONF5KTk5OOHz+ujz76SL///rvdL3V58+bVkSNHVLRoUV26dElt2rTRgQMH1KZNG/3111/mPV8EbljJy8tL9evX1yeffKJZs2Ypb9686t69u9577z0NGzZMrq6umjBhgpo3b65q1app48aN94UTAjcc7d7AfeTIEe3evVuxsbG6c+eOPD09devWLR05ckROTk5ydnbWX3/9JScnJ/Xu3dsM3PztH/9V4mPBatWqpZ9++kknT55UtWrVNHHiRDk5OalPnz6aMWOGLl++rPDwcBmGoW3bthG48UzcuXNHU6ZMUY8ePTR06FCNGzdOixcvVseOHdWwYUMdOnRI+fLl0/Dhw5U1a1aVKFHC0SXDAox044V0584dvf7669qzZ49y5sypWrVqqWTJkmrQoIEk6eTJkzp79qyCgoLMXxrbtWun69eva+7cuTwuBM/E6tWr1aBBA/30008qXLiwYmJi9Nlnn2nIkCEqXry46tevr+LFi2vatGm6evWqfvzxR0eXDCTpww8/1Ndff62YmBj5+PioSZMmatWqlbJnz66OHTsqPDxclStX1u7du/XXX3/p559/lrOz8wNHyYHH8fPPP6tu3boaMmSIWrZsqbt378rT01MZMmRQp06d1KFDB7tLyO/cuSNXV1cHVoyXxffff69Tp07pq6++UteuXdWhQwcZhmHe8vjOO+8oICBAEydOlLu7O+fmC4yfdHghubq6ql69eho1apQmTZokLy8vdezYUe+9956mTZumXLlyKSgoSNLfz5Dt1auXFi1apNDQUAI3npnq1auradOm5mzOHh4eWrJkiWrVqqVKlSpp48aNqlq1qsqUKWP3OBHA0e59pvzSpUs1f/58TZ8+Xbt27VKzZs20ceNGffrpp7p69arat2+vkiVLasuWLUqbNq22b99O4MZT9csvv6hp06Zq2bKlzpw5o1y5cqlTp05q3ry5BgwYoOnTp+v33383+3OVEJ6F8PBwtWrVSgEBAcqdO7d++OEH3bp1SzabTTabTV5eXvL19dXly5fl7u4uSQTuFxgj3Xhhbdq0SbVq1dL69etVsmRJ/fnnn5o2bZo+//xzFS5cWK1bt9aNGzd04cIFrVq1SvPmzeNSMzxzM2bM0MyZM7VixQpVqVJFKVKk0KpVq+Tt7a0//vhD27dvV506deTi4kJIQbIzZ84cXbp0STExMerXr5+5fMqUKZo4caJ69uypli1bKjY2VjabTa6urrLZbMxHgP8k8R7uAwcOKH369DIMQ1FRUcqePbvefvttvfrqq5o+fbokKXPmzLp586ZCQ0PVtWtXOTs7O7h6vAxOnz6tOXPmKDY2VsOGDdPUqVM1c+ZM1axZUx988IE8PDwkSS1btpTNZtPUqVPl4uLCHBcvMH57wwurUqVKateuncaOHauYmBhlzJhRx44dU0BAgPLmzatFixapT58++uuvv7Rx40YCNxyidevWiouLU9q0aeXt7a3ly5fL29tb0t+/LNavX18uLi66e/cugRvJys2bNzVw4ED16tVLJ0+etGvr0KGDChQoYD772M3NTW5ubuY93ARuPKnEwL1s2TJVr15dU6ZMUerUqZU/f379+eefioiIUN26dSVJ58+fV+XKldW2bVv973//I3DjmYiOjlajRo00efJkxcbGSvr7Z3358uW1YsUK1axZU0OHDlWLFi20ePFi9ezZ0/yDJF5c/AaHF1rp0qX166+/ys3NTW3atNGmTZu0ePFizZo1S+PGjdPo0aPVpUsXZciQwdGl4iWUeKFR165dVaBAAY0aNUpp0qRJcmIpQgoc7Z/npZeXl3766SdVrFhRGzZs0MGDB+3ay5YtK09PT8XExNj9MskvlvgvbDabfvjhB7333nsaPHiwOnTooBQpUkiSbty4oStXrujSpUv6/fffNX36dJ09e1aDBg1Szpw5HVw5Xhbe3t6aNm2aUqVKpU2bNmnv3r1ycXHRsGHDFBISIj8/Py1btkw3btzQ9u3bVaBAAUeXjGeAy8vxwqtYsaJ++ukn+fn5adWqVSpSpIijSwLsnD9/XqVKlVLXrl3Vp08fR5cD3OfeWxtiYmIUHx9v91z5qlWryjAMTZ48WXny5JG7u7tq1qyptGnTaunSpY4sHS+YmJgYNWvWTLly5dKnn36qW7duKSIiQosWLVKpUqU0dOhQ7du3T6lTp1ZUVJTCwsJUvHhxR5eNl9DBgwfVtGlTvfbaa+rSpYsKFy5stt2+fVsuLi7cw/0SIXTjhZV4CdqqVavUvXt3ff7556pdu/Z9zzoGkoMJEyZo0KBB2rJli/Lnz+/ocgDTvYF72LBh2rZtm44cOaIGDRqoYsWKqlatmi5evKjg4GCdPHlSOXLkUMGCBXX69Gn99NNPcnNz43sXT83t27dVoUIFBQYGauDAgRowYIAOHTqkEydOyMPDQz179lRAQIAMw1DhwoWVNWtWR5eMl9i+ffvUpk0bFS9eXN26dWNU+yXG5eV4YSX+gleiRAklJCQoPDzcbjmQnNSoUUM1a9ZU3rx5HV0KYCcxcH/00UcaMWKEKlWqpHr16mnHjh0KDQ3V/PnzlSFDBq1Zs0Zly5bVmTNnFBISol27dsnNzU137tzhexdPjaenp7p06aLp06crW7ZsOn/+vFq1aqU///xTb731lpYvX66aNWvq7bffJnDD4YoVK6bp06fr4MGDGjJkiI4fP+7okuAgjHTjpTB37lx16NBBGzZs0GuvvebocoAkJY4GxsfHM+EPkpVTp06pbt26Gj58uKpVqybp7xGcKVOm6PDhw5o4caKKFSumiIgIBQcHy2az6fvvv1dAQICDK8eL6ujRozp//rzefPNN82qMkJAQRUdH68svvzQfwQQkB7t379YHH3yg+fPnK2PGjI4uBw7ASDdeCpUrV1apUqXk7+/v6FKAB0ocDSRwI7lxcXHRhQsXzJl4pb9HcNq2basLFy7o1KlTkiQ/Pz+tXbtWrq6uqlChgt2zkYGnKX/+/HrzzTclSSdPntRHH32kuXPnqnfv3gRuJDulSpVSWFgYgfslRujGSyFTpkxavXq1MmfO7OhSACBZS7wA7t4L4Ww2m/z9/fXLL78oPj7ebCtZsqQyZsyoXbt2mX19fX21fPlyBQQEKD4+/tkWj5dOeHi4Bg8erKVLl2rz5s0qWLCgo0sCkpT4bG68nHgGDV4afNkBwMPdO2la4uy6bm5uypo1q2rXrq1+/fopW7Zseuutt+Tq6qro6GjFxsbedxl5xowZtXHjRq7agOXy58+vjh07KmvWrMqSJYujywGAJHFPNwAAsAvcI0aM0Jo1axQTE6MsWbJo/PjxSp8+vbp3767JkyerUaNGSp06tQ4ePKjIyEjt27ePZ8kDAPAAXF4OAADMwN2/f38NHz5cQUFBevPNN3Xo0CG99tpr2r17t8aMGaNRo0bp7t27OnLkiHLnzq29e/fKxcWFS8kBAHgARroBAIASEhJ09uxZBQcHa9iwYXrnnXckSfHx8XrzzTd17tw5HT16VK6urrp7966cnZ3Nyf/u3r3LSDcAAA/ASDcAAC+puLg43bp1S9LfI903b97UlStXzOcbx8XFydnZWcuWLVNsbKzGjh1r9k0M3IZhELgBAHgIQjcAAC+hJUuWqFGjRipXrpyGDBkiScqXL59Spkypb775RpLk5uamu3fvytXVVZkyZTIfGZZ4Kbr0f4+6AwAASSN0AwDwkpk6dapatWqlgIAAVaxYUQMHDtSkSZPk5OSkTp06acOGDRo5cqSkv5/R7e7urvj4eJ4CAQDAE+B6MAAAXiLTp09Xly5dtHDhQtWuXVuSFBkZqfj4eN24cUMNGjTQn3/+qTlz5mjTpk0qUaKENm3apJs3b6pbt24OrR0AgOcRE6kBAPCS2LRpk9544w0NHDhQoaGh5vKiRYsqISFBZ86cUYUKFRQYGKjcuXNr2rRpSpEihTJkyKDJkyfL1dVV8fHxPH8bAIDHwEg3AAAviUyZMqlcuXIKDw/Xnj17VLJkSdWtW1c3b97Up59+Km9vb/Xs2VMXLlzQDz/8oPr169utzyzlAAA8Pka6AQB4iZw6dUpdu3aVs7Ozrl+/rtu3b2vJkiXmjOV79+5VyZIl9d1335mXn0t/z1LOpGkAADw+JlIDAOAlkitXLo0fP16xsbE6fPiw+vTpo6xZsyohIUGJf4fPly+f0qdPb7cegRsAgCfDSDcAAC+hX375RZ07d5aTk5P69u2r8uXLS5L+97//6caNG1q/fr3do8EAAMCTIXQDAPCSSrzUPDF4jxkzRocPH9bhw4fl6uqqhIQEgjcAAP8RP0kBAHhJJV5qbrPZ9MYbb+jIkSNm4L579y6BGwCAp4CRbgAAXnLHjx/XF198odGjR8vFxYVZygEAeIoI3QAAwETgBgDg6SJ0AwAAAABgEW7WAgAAAADAIoRuAAAAAAAsQugGAAAAAMAihG4AAAAAACxC6AYAAAAAwCKEbgAAAAAALELoBgDgJdOiRQvVrl3b0WUAAPBSIHQDAOAALVq0kM1mu+9VrVo1R5eWbAwcOFA2m00dOnSwW75//37ZbDb99ttvjikMAIDHQOgGAMBBqlWrpj///NPuNX/+fEeXlax4eHhoxowZOnXqlKNLAQDgiRC6AQBwEHd3d/n5+dm9UqdObbbbbDZNnTpVb731llKkSKF8+fJpx44dOn36tCpVqiQvLy+VLVtWv/zyi7nOwIEDVbRoUU2dOlVZsmRRihQpVL9+fUVFRT2wjtjYWHXt2lUZMmSQh4eHypUrp927d0uSDMNQzpw5NXLkSLt1EkebT58+LUm6fv262rRpo/Tp08vb21tvvPGGDhw4YLfO999/r+LFi8vDw0PZs2fXoEGDdPfu3Yceozx58qhy5cr66KOPHtgnPj5erVu3VrZs2eTp6ak8efJo3Lhxdn0SL6n/7LPP5Ovrq1SpUmnw4MG6e/euPvjgA6VJk0aZM2fWzJkz7dY7d+6c6tevr1SpUilNmjSqVasWI+wAgMdC6AYAIBn75JNP1KxZM+3fv1958+bVe++9p/bt26tv377as2ePDMNQSEiI3TqnT5/WwoULtWLFCoWFhWnfvn3q1KnTA/fRu3dvLVmyRLNnz9bevXuVM2dOBQcH6+rVq7LZbGrVqtV9YXTmzJmqUKGCcubMKUmqV6+eLl68qNWrVys8PFzFixdXlSpVdPXqVUnS1q1b1axZM73//vs6evSopk6dqlmzZunTTz/912MwbNgwLVmyRHv27EmyPSEhQZkzZ9aiRYt09OhRhYaGql+/flq4cKFdvw0bNujChQvasmWLRo8erQEDBuitt95S6tSptXPnTnXo0EHt27fXH3/8IUm6c+eOgoOD9corr2jr1q3atm2bUqZMqWrVqikuLu5f6wYAQJJkAACAZ6558+aGs7Oz4eXlZff69NNPzT6SjP79+5vvd+zYYUgyZsyYYS6bP3++4eHhYb4fMGCA4ezsbPzxxx/mstWrVxtOTk7Gn3/+ae67Vq1ahmEYxo0bNwxXV1dj3rx5Zv+4uDjD39/fGD58uGEYhnH+/HnD2dnZ2Llzp9meLl06Y9asWYZhGMbWrVsNb29vIyYmxu4z5siRw5g6daphGIZRpUoV47PPPrNrnzNnjpExY8YHHqMBAwYYRYoUMQzDMBo2bGi88cYbhmEYxr59+wxJxpkzZx64bufOnY26deua75s3b24EBAQY8fHx5rI8efIY5cuXN9/fvXvX8PLyMubPn2/WlydPHiMhIcHsExsba3h6ehpr1qx54L4BALiXi4MzPwAAL63KlStr8uTJdsvSpElj975w4cLmv319fSVJhQoVslsWExOj6OhoeXt7S5JeffVVZcqUyewTGBiohIQEnThxQn5+fnbb/+WXX3Tnzh29/vrr5jJXV1e99tprOnbsmCTJ399fNWvW1FdffaXXXntNK1asUGxsrOrVqydJOnDggG7cuKG0adPabfv27dvmpe8HDhzQtm3b7Ea24+PjFRMTo1u3bilFihQPPVZDhgxRvnz5tHbtWmXIkOG+9kmTJumrr77S2bNndfv2bcXFxalo0aJ2fQoUKCAnp/+7yM/X11cFCxY03zs7Oytt2rS6ePGiWfPp06f1yiuv2G0nJibG7pJ+AAAehtANAICDeHl5mZdnP4irq6v5b5vN9sBlCQkJFlT4f9q0aaOmTZtqzJgxmjlzpho0aGAG5Rs3bihjxozatGnTfeulSpXK7DNo0CDVqVPnvj4eHh7/uv8cOXKobdu26tOnj2bMmGHX9u2336pXr14aNWqUAgMD9corr2jEiBHauXOnXb97j5v097FLalnisbxx44ZKlCihefPm3VdP+vTp/7VmAAAkQjcAAC+cs2fP6sKFC/L395ck/fzzz3JyclKePHnu65sjRw65ublp27ZtCggIkPT3vcy7d+9Wt27dzH41atSQl5eXJk+erLCwMG3ZssVsK168uCIiIuTi4qKsWbMmWVPx4sV14sSJf/0jw8OEhoYqR44c+vbbb+2Wb9u2TWXLlrW7b/1pjEQXL15cCxYsUIYMGcyrCAAAeFxMpAYAgIPExsYqIiLC7nX58uX/vF0PDw81b95cBw4c0NatW9W1a1fVr1//vkvLpb9H2zt27KgPPvhAYWFhOnr0qNq2batbt26pdevWZj9nZ2e1aNFCffv2Va5cuRQYGGi2BQUFKTAwULVr19batWv122+/afv27froo4/Myc9CQ0P19ddfa9CgQTpy5IiOHTumb7/9Vv3793/kz+Xr66sePXpo/Pjxdstz5cqlPXv2aM2aNTp58qQ+/vhjc/b1/6Jx48ZKly6datWqpa1bt+rMmTPatGmTunbtak62BgDAvyF0AwDgIGFhYcqYMaPdq1y5cv95uzlz5lSdOnVUo0YNVa1aVYULF9YXX3zxwP7Dhg1T3bp11bRpUxUvXlynT5/WmjVr7B5fJkmtW7dWXFycWrZsabfcZrNp1apVqlChglq2bKncuXOrYcOG+v3338370IODg7Vy5UqtXbtWpUqVUpkyZTRmzBhzdP1R9erVSylTprRb1r59e9WpU0cNGjRQ6dKldeXKlYfO1v6oUqRIoS1btujVV19VnTp1lC9fPrVu3VoxMTGMfAMAHpnNMAzD0UUAAICnY+DAgVq2bJn279//1Le9detWValSRefOnTPDNAAAeDju6QYAAA8VGxurS5cuaeDAgapXrx6BGwCAx8Dl5QAA4KHmz5+vgIAAXb9+XcOHD3d0OQAAPFe4vBwAAAAAAIsw0g0AAAAAgEUI3QAAAAAAWITQDQAAAACARQjdAAAAAABYhNANAAAAAIBFCN0AAAAAAFiE0A0AAAAAgEUI3QAAAAAAWITQDQAAAACARf4fXmJVQDDGSioAAAAASUVORK5CYII=\n" 159 | }, 160 | "metadata": {} 161 | } 162 | ] 163 | } 164 | ] 165 | } --------------------------------------------------------------------------------