├── Transparency ├── __init__.py ├── model │ └── __init__.py ├── Trainers │ └── __init__.py ├── common_code │ └── __init__.py ├── preprocess │ ├── Tweets │ │ ├── .gitignore │ │ └── README.md │ ├── SST │ │ ├── .gitignore │ │ └── README.md │ ├── SNLI │ │ ├── README.md │ │ └── .gitignore │ ├── ag_news │ │ ├── README.md │ │ ├── classes.txt │ │ └── .gitignore │ ├── 20News │ │ ├── .gitignore │ │ └── README.md │ ├── Babi │ │ └── .gitignore │ ├── .gitignore │ ├── CNN │ │ ├── README.md │ │ └── .gitignore │ ├── IMDB │ │ ├── README.md │ │ └── .gitignore │ └── README.md ├── requirements.txt ├── scripts │ ├── bc │ │ ├── sst │ │ │ ├── lstm_dot.sh │ │ │ └── cnn_dot.sh │ │ ├── amazon │ │ │ ├── lstm_dot.sh │ │ │ └── cnn_dot.sh │ │ ├── yelp │ │ │ ├── lstm_dot.sh │ │ │ └── cnn_dot.sh │ │ ├── 20news │ │ │ ├── lstm_dot.sh │ │ │ └── cnn_dot.sh │ │ └── imdb │ │ │ └── cnn_dot.sh │ ├── qa │ │ ├── cnn │ │ │ ├── lstm_dot.sh │ │ │ └── cnn_dot.sh │ │ ├── babi_2 │ │ │ ├── lstm_dot.sh │ │ │ └── cnn_dot.sh │ │ └── babi_3 │ │ │ ├── lstm_dot.sh │ │ │ └── cnn_dot.sh │ ├── nli │ │ └── snli │ │ │ ├── lstm_dot.sh │ │ │ └── cnn_dot.sh │ ├── qa_all.sh │ └── bc_all.sh ├── .gitignore └── README.md ├── Transformer-MM-Explainability ├── __init__.py ├── data │ ├── __init__.py │ ├── gqa │ │ ├── __init__.py │ │ ├── process_raw_data_scripts │ │ │ └── __init__.py │ │ └── .gitignore │ ├── nlvr2 │ │ ├── __init__.py │ │ └── process_raw_data_scripts │ │ │ └── __init__.py │ ├── mscoco_imgfeat │ │ └── __init__.py │ ├── nlvr2_imgfeat │ │ └── __init__.py │ ├── vg_gqa_imgfeat │ │ ├── __init__.py │ │ └── README.md │ ├── vqa │ │ └── .gitignore │ └── lxmert │ │ └── .gitignore ├── lxmert │ └── lxmert │ │ ├── __init__.py │ │ ├── src │ │ ├── __init__.py │ │ ├── lxrt │ │ │ └── __init__.py │ │ ├── pretrain │ │ │ └── __init__.py │ │ ├── tasks │ │ │ ├── __init__.py │ │ │ └── __pycache__ │ │ │ │ ├── __init__.cpython-38.pyc │ │ │ │ └── vqa_data.cpython-38.pyc │ │ └── __pycache__ │ │ │ ├── layers.cpython-38.pyc │ │ │ ├── param.cpython-38.pyc │ │ │ ├── utils.cpython-38.pyc │ │ │ ├── __init__.cpython-38.pyc │ │ │ ├── lxmert_lrp.cpython-38.pyc │ │ │ ├── vqa_utils.cpython-38.pyc │ │ │ ├── modeling_frcnn.cpython-38.pyc │ │ │ ├── processing_image.cpython-38.pyc │ │ │ ├── huggingface_lxmert.cpython-38.pyc │ │ │ └── ExplanationGenerator.cpython-38.pyc │ │ ├── .gitignore │ │ ├── .gitmodules │ │ ├── .ipynb_checkpoints │ │ └── Untitled-checkpoint.ipynb │ │ ├── __pycache__ │ │ └── __init__.cpython-38.pyc │ │ ├── experiments │ │ └── paper │ │ │ ├── COCO_val2014_000000127510 │ │ │ └── COCO_val2014_000000127510.jpg │ │ │ ├── COCO_val2014_000000185590 │ │ │ └── COCO_val2014_000000185590.jpg │ │ │ ├── COCO_val2014_000000200717 │ │ │ └── COCO_val2014_000000200717.jpg │ │ │ └── COCO_val2014_000000324266 │ │ │ └── COCO_val2014_000000324266.jpg │ │ └── run │ │ ├── nlvr2_test.bash │ │ ├── gqa_test.bash │ │ ├── vqa_test.bash │ │ ├── gqa_finetune.bash │ │ ├── vqa_finetune.bash │ │ ├── nlvr2_finetune.bash │ │ └── lxmert_pretrain.bash ├── VisualBERT │ ├── website │ │ ├── static │ │ │ ├── .nojekyll │ │ │ ├── CNAME │ │ │ ├── img │ │ │ │ ├── logo.png │ │ │ │ ├── favicon.png │ │ │ │ ├── oss_logo.png │ │ │ │ └── logo_white_f.png │ │ │ └── .circleci │ │ │ │ └── config.yml │ │ ├── .eslintignore │ │ ├── .prettierignore │ │ ├── docs │ │ │ └── getting_started │ │ │ │ ├── faqs.md │ │ │ │ └── video_overview.md │ │ ├── .prettierrc │ │ ├── .stylelintrc.js │ │ ├── .gitignore │ │ └── src │ │ │ └── pages │ │ │ └── api_redirect │ │ │ └── index.js │ ├── mmf │ │ ├── datasets │ │ │ ├── builders │ │ │ │ ├── clevr │ │ │ │ │ └── __init__.py │ │ │ │ ├── coco2017 │ │ │ │ │ ├── __init__.py │ │ │ │ │ └── masked_dataset.py │ │ │ │ ├── okvqa │ │ │ │ │ ├── __init__.py │ │ │ │ │ └── builder.py │ │ │ │ ├── vqacp_v2 │ │ │ │ │ ├── __init__.py │ │ │ │ │ └── builder.py │ │ │ │ ├── flickr30k │ │ │ │ │ ├── __init__.py │ │ │ │ │ └── masked_dataset.py │ │ │ │ ├── localized_narratives │ │ │ │ │ └── __init__.py │ │ │ │ ├── __init__.py │ │ │ │ ├── mmimdb │ │ │ │ │ └── __init__.py │ │ │ │ ├── nlvr2 │ │ │ │ │ └── __init__.py │ │ │ │ ├── ocrvqa │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── dataset.py │ │ │ │ │ └── builder.py │ │ │ │ ├── stvqa │ │ │ │ │ ├── __init__.py │ │ │ │ │ └── builder.py │ │ │ │ ├── textvqa │ │ │ │ │ └── __init__.py │ │ │ │ ├── textcaps │ │ │ │ │ └── __init__.py │ │ │ │ ├── hateful_memes │ │ │ │ │ └── __init__.py │ │ │ │ ├── visual_dialog │ │ │ │ │ └── __init__.py │ │ │ │ ├── visual_entailment │ │ │ │ │ └── __init__.py │ │ │ │ ├── visual_genome │ │ │ │ │ ├── __init__.py │ │ │ │ │ └── masked_builder.py │ │ │ │ ├── vqa2 │ │ │ │ │ ├── __init__.py │ │ │ │ │ └── ocr_builder.py │ │ │ │ ├── vizwiz │ │ │ │ │ ├── __init__.py │ │ │ │ │ └── builder.py │ │ │ │ ├── sbu_captions │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── masked_builder.py │ │ │ │ │ └── masked_dataset.py │ │ │ │ ├── coco │ │ │ │ │ └── __init__.py │ │ │ │ ├── gqa │ │ │ │ │ ├── __init__.py │ │ │ │ │ └── masked_builder.py │ │ │ │ └── conceptual_captions │ │ │ │ │ ├── __init__.py │ │ │ │ │ ├── builder.py │ │ │ │ │ ├── masked_builder.py │ │ │ │ │ └── masked_dataset.py │ │ │ ├── databases │ │ │ │ ├── readers │ │ │ │ │ └── __init__.py │ │ │ │ ├── __init__.py │ │ │ │ └── scene_graph_database.py │ │ │ ├── __init__.py │ │ │ └── subset_dataset.py │ │ ├── models │ │ │ ├── transformers │ │ │ │ ├── backends │ │ │ │ │ ├── layer.py │ │ │ │ │ └── __init__.py │ │ │ │ └── __init__.py │ │ │ └── interfaces │ │ │ │ └── __init__.py │ │ ├── projects │ │ │ ├── vilbert │ │ │ │ └── configs │ │ │ │ │ ├── mmimdb │ │ │ │ │ └── pretrain.yaml │ │ │ │ │ ├── hateful_memes │ │ │ │ │ ├── direct.yaml │ │ │ │ │ └── from_cc.yaml │ │ │ │ │ ├── masked_coco │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ ├── pretrain_train_val.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ │ ├── masked_vqa2 │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ ├── pretrain_train_val.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ │ ├── masked_conceptual_captions │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ │ └── vqa2 │ │ │ │ │ └── train_val.yaml │ │ │ ├── hateful_memes │ │ │ │ └── configs │ │ │ │ │ ├── vilbert │ │ │ │ │ ├── direct.yaml │ │ │ │ │ └── from_cc.yaml │ │ │ │ │ ├── visual_bert │ │ │ │ │ ├── direct.yaml │ │ │ │ │ └── from_coco.yaml │ │ │ │ │ ├── mmbt │ │ │ │ │ ├── with_features.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ │ └── unimodal │ │ │ │ │ ├── with_features.yaml │ │ │ │ │ └── bert.yaml │ │ │ ├── m4c │ │ │ │ ├── scripts │ │ │ │ │ └── __init__.py │ │ │ │ └── configs │ │ │ │ │ └── textvqa │ │ │ │ │ └── joint_with_stvqa.yaml │ │ │ ├── visual_bert │ │ │ │ └── configs │ │ │ │ │ ├── masked_coco │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ ├── defaults.yaml │ │ │ │ │ └── pretrain_train_val.yaml │ │ │ │ │ ├── masked_sbu │ │ │ │ │ └── pretrain.yaml │ │ │ │ │ ├── masked_vqa2 │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ ├── pretrain_train_val.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ │ ├── masked_conceptual_captions │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ │ ├── hateful_memes │ │ │ │ │ ├── direct.yaml │ │ │ │ │ └── from_coco.yaml │ │ │ │ │ ├── vqa2 │ │ │ │ │ └── with_raw_images.yaml │ │ │ │ │ ├── mmimdb │ │ │ │ │ └── pretrain.yaml │ │ │ │ │ └── masked_gqa │ │ │ │ │ └── defaults.yaml │ │ │ ├── m4c_captioner │ │ │ │ ├── scripts │ │ │ │ │ └── __init__.py │ │ │ │ └── configs │ │ │ │ │ ├── m4c_captioner │ │ │ │ │ ├── textcaps │ │ │ │ │ │ ├── without_ocr.yaml │ │ │ │ │ │ └── with_caffe2_feat.yaml │ │ │ │ │ └── coco │ │ │ │ │ │ └── defaults.yaml │ │ │ │ │ └── butd │ │ │ │ │ └── textcaps │ │ │ │ │ ├── eval_pretrained_coco_model.yaml │ │ │ │ │ └── beam_search.yaml │ │ │ ├── others │ │ │ │ ├── mmf_bert │ │ │ │ │ └── configs │ │ │ │ │ │ ├── masked_coco │ │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ │ ├── pretrain_joint_vqa2.yaml │ │ │ │ │ │ └── defaults.yaml │ │ │ │ │ │ ├── masked_vqa2 │ │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ │ └── defaults.yaml │ │ │ │ │ │ └── masked_conceptual_captions │ │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ │ └── defaults.yaml │ │ │ │ ├── unimodal │ │ │ │ │ └── configs │ │ │ │ │ │ └── hateful_memes │ │ │ │ │ │ ├── with_features.yaml │ │ │ │ │ │ └── bert.yaml │ │ │ │ └── cnn_lstm │ │ │ │ │ ├── clevr │ │ │ │ │ └── defaults.yaml │ │ │ │ │ └── hateful_memes │ │ │ │ │ └── defaults.yaml │ │ │ ├── lxmert │ │ │ │ └── configs │ │ │ │ │ ├── coco │ │ │ │ │ └── pretrain.yaml │ │ │ │ │ ├── vqa2 │ │ │ │ │ └── pretrain.yaml │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ ├── visual_genome │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ └── masked.yaml │ │ │ │ │ └── defaults.yaml │ │ │ ├── pretrain_vl_right │ │ │ │ └── configs │ │ │ │ │ ├── vilbert │ │ │ │ │ ├── masked_coco │ │ │ │ │ │ ├── full.yaml │ │ │ │ │ │ ├── ten_pc.yaml │ │ │ │ │ │ ├── fifty_pc.yaml │ │ │ │ │ │ └── defaults.yaml │ │ │ │ │ ├── masked_vqa2 │ │ │ │ │ │ ├── full.yaml │ │ │ │ │ │ ├── fifty_pc.yaml │ │ │ │ │ │ ├── ten_pc.yaml │ │ │ │ │ │ └── defaults.yaml │ │ │ │ │ └── masked_conceptual_captions │ │ │ │ │ │ ├── full.yaml │ │ │ │ │ │ ├── half.yaml │ │ │ │ │ │ ├── small.yaml │ │ │ │ │ │ ├── small_fifty_pc.yaml │ │ │ │ │ │ ├── small_ten_pc.yaml │ │ │ │ │ │ ├── full_coco_generated.yaml │ │ │ │ │ │ ├── half_coco_generated.yaml │ │ │ │ │ │ ├── small_coco_generated.yaml │ │ │ │ │ │ └── defaults.yaml │ │ │ │ │ └── visual_bert │ │ │ │ │ ├── masked_coco │ │ │ │ │ ├── full.yaml │ │ │ │ │ ├── fifty_pc.yaml │ │ │ │ │ ├── ten_pc.yaml │ │ │ │ │ ├── defaults.yaml │ │ │ │ │ └── full_train_val.yaml │ │ │ │ │ ├── masked_vqa2 │ │ │ │ │ ├── full.yaml │ │ │ │ │ ├── fifty_pc.yaml │ │ │ │ │ ├── ten_pc.yaml │ │ │ │ │ ├── full_train_val.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ │ └── masked_conceptual_captions │ │ │ │ │ ├── full.yaml │ │ │ │ │ ├── half.yaml │ │ │ │ │ ├── small.yaml │ │ │ │ │ ├── small_ten_pc.yaml │ │ │ │ │ ├── small_fifty_pc.yaml │ │ │ │ │ ├── full_coco_generated.yaml │ │ │ │ │ ├── half_coco_generated.yaml │ │ │ │ │ ├── small_coco_generated.yaml │ │ │ │ │ └── defaults.yaml │ │ │ ├── mmbt │ │ │ │ └── configs │ │ │ │ │ ├── vqa2 │ │ │ │ │ └── with_raw_images.yaml │ │ │ │ │ ├── mmimdb │ │ │ │ │ └── with_features.yaml │ │ │ │ │ ├── hateful_memes │ │ │ │ │ ├── with_features.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ │ └── masked_coco │ │ │ │ │ └── defaults.yaml │ │ │ ├── pythia │ │ │ │ └── configs │ │ │ │ │ ├── masked_q_vqa2 │ │ │ │ │ └── defaults.yaml │ │ │ │ │ ├── visual_genome │ │ │ │ │ └── defaults.yaml │ │ │ │ │ └── vqa2 │ │ │ │ │ ├── debug.yaml │ │ │ │ │ ├── resnet_only.yaml │ │ │ │ │ └── train_val_resnet_only.yaml │ │ │ ├── butd │ │ │ │ └── configs │ │ │ │ │ ├── coco │ │ │ │ │ ├── beam_search.yaml │ │ │ │ │ ├── nucleus_sampling.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ │ ├── conceptual_captions │ │ │ │ │ ├── beam_search.yaml │ │ │ │ │ ├── nucleus_sampling.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ │ └── textcaps │ │ │ │ │ ├── eval_pretrained_coco_model.yaml │ │ │ │ │ └── beam_search.yaml │ │ │ ├── ban │ │ │ │ └── configs │ │ │ │ │ ├── vqa2 │ │ │ │ │ └── defaults.yaml │ │ │ │ │ ├── vizwiz │ │ │ │ │ └── defaults.yaml │ │ │ │ │ └── textvqa │ │ │ │ │ └── defaults.yaml │ │ │ └── lorra │ │ │ │ └── configs │ │ │ │ └── vqa2 │ │ │ │ └── train_val.yaml │ │ ├── configs │ │ │ ├── models │ │ │ │ ├── mmbt │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ ├── classification.yaml │ │ │ │ │ └── with_features.yaml │ │ │ │ ├── fusions │ │ │ │ │ └── defaults.yaml │ │ │ │ ├── lxmert │ │ │ │ │ └── pretrain.yaml │ │ │ │ ├── vilbert │ │ │ │ │ └── pretrain.yaml │ │ │ │ ├── visual_bert │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ ├── classification.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ ├── unimodal │ │ │ │ │ ├── with_features.yaml │ │ │ │ │ ├── bert.yaml │ │ │ │ │ └── image.yaml │ │ │ │ ├── cnn_lstm │ │ │ │ │ └── defaults.yaml │ │ │ │ └── ban │ │ │ │ │ └── defaults.yaml │ │ │ └── datasets │ │ │ │ ├── conceptual_captions │ │ │ │ └── train_small.yaml │ │ │ │ ├── mmimdb │ │ │ │ └── with_features.yaml │ │ │ │ ├── hateful_memes │ │ │ │ ├── with_features.yaml │ │ │ │ └── bert.yaml │ │ │ │ ├── textvqa │ │ │ │ └── with_resnet.yaml │ │ │ │ └── vqa2 │ │ │ │ └── with_raw_images.yaml │ │ ├── utils │ │ │ ├── __init__.py │ │ │ ├── phoc │ │ │ │ └── __init__.py │ │ │ ├── torchscript.py │ │ │ └── transform.py │ │ ├── trainers │ │ │ ├── core │ │ │ │ ├── __init__.py │ │ │ │ └── profiling.py │ │ │ ├── callbacks │ │ │ │ └── __init__.py │ │ │ └── __init__.py │ │ ├── modules │ │ │ ├── __init__.py │ │ │ └── optimizers.py │ │ ├── common │ │ │ └── __init__.py │ │ ├── version.py │ │ └── __init__.py │ ├── perturbation_arguments.py │ ├── projects │ │ ├── vilbert │ │ │ └── configs │ │ │ │ ├── mmimdb │ │ │ │ └── pretrain.yaml │ │ │ │ ├── hateful_memes │ │ │ │ ├── direct.yaml │ │ │ │ └── from_cc.yaml │ │ │ │ ├── masked_coco │ │ │ │ ├── pretrain.yaml │ │ │ │ ├── pretrain_train_val.yaml │ │ │ │ └── defaults.yaml │ │ │ │ ├── masked_vqa2 │ │ │ │ ├── pretrain.yaml │ │ │ │ ├── pretrain_train_val.yaml │ │ │ │ └── defaults.yaml │ │ │ │ ├── masked_conceptual_captions │ │ │ │ ├── pretrain.yaml │ │ │ │ └── defaults.yaml │ │ │ │ └── vqa2 │ │ │ │ └── train_val.yaml │ │ ├── hateful_memes │ │ │ └── configs │ │ │ │ ├── vilbert │ │ │ │ ├── direct.yaml │ │ │ │ └── from_cc.yaml │ │ │ │ ├── visual_bert │ │ │ │ ├── direct.yaml │ │ │ │ └── from_coco.yaml │ │ │ │ ├── mmbt │ │ │ │ ├── with_features.yaml │ │ │ │ └── defaults.yaml │ │ │ │ └── unimodal │ │ │ │ ├── with_features.yaml │ │ │ │ ├── bert.yaml │ │ │ │ └── text.yaml │ │ ├── m4c │ │ │ ├── scripts │ │ │ │ └── __init__.py │ │ │ └── configs │ │ │ │ └── textvqa │ │ │ │ └── joint_with_stvqa.yaml │ │ ├── visual_bert │ │ │ └── configs │ │ │ │ ├── masked_coco │ │ │ │ ├── pretrain.yaml │ │ │ │ ├── defaults.yaml │ │ │ │ └── pretrain_train_val.yaml │ │ │ │ ├── masked_sbu │ │ │ │ └── pretrain.yaml │ │ │ │ ├── masked_vqa2 │ │ │ │ ├── pretrain.yaml │ │ │ │ ├── pretrain_train_val.yaml │ │ │ │ └── defaults.yaml │ │ │ │ ├── masked_conceptual_captions │ │ │ │ ├── pretrain.yaml │ │ │ │ └── defaults.yaml │ │ │ │ ├── hateful_memes │ │ │ │ ├── direct.yaml │ │ │ │ └── from_coco.yaml │ │ │ │ ├── vqa2 │ │ │ │ └── with_raw_images.yaml │ │ │ │ ├── mmimdb │ │ │ │ └── pretrain.yaml │ │ │ │ └── masked_gqa │ │ │ │ └── defaults.yaml │ │ ├── others │ │ │ ├── mmf_bert │ │ │ │ └── configs │ │ │ │ │ ├── masked_coco │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ ├── pretrain_joint_vqa2.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ │ ├── masked_vqa2 │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ │ └── masked_conceptual_captions │ │ │ │ │ ├── pretrain.yaml │ │ │ │ │ └── defaults.yaml │ │ │ ├── unimodal │ │ │ │ └── configs │ │ │ │ │ └── hateful_memes │ │ │ │ │ ├── with_features.yaml │ │ │ │ │ └── bert.yaml │ │ │ └── cnn_lstm │ │ │ │ ├── clevr │ │ │ │ └── defaults.yaml │ │ │ │ └── hateful_memes │ │ │ │ └── defaults.yaml │ │ ├── lxmert │ │ │ └── configs │ │ │ │ ├── coco │ │ │ │ └── pretrain.yaml │ │ │ │ ├── vqa2 │ │ │ │ └── pretrain.yaml │ │ │ │ ├── pretrain.yaml │ │ │ │ ├── visual_genome │ │ │ │ ├── pretrain.yaml │ │ │ │ └── masked.yaml │ │ │ │ └── defaults.yaml │ │ ├── m4c_captioner │ │ │ ├── scripts │ │ │ │ └── __init__.py │ │ │ └── configs │ │ │ │ ├── m4c_captioner │ │ │ │ ├── textcaps │ │ │ │ │ ├── without_ocr.yaml │ │ │ │ │ └── with_caffe2_feat.yaml │ │ │ │ └── coco │ │ │ │ │ └── defaults.yaml │ │ │ │ └── butd │ │ │ │ └── textcaps │ │ │ │ ├── eval_pretrained_coco_model.yaml │ │ │ │ └── beam_search.yaml │ │ ├── pretrain_vl_right │ │ │ └── configs │ │ │ │ ├── vilbert │ │ │ │ ├── masked_coco │ │ │ │ │ ├── full.yaml │ │ │ │ │ ├── ten_pc.yaml │ │ │ │ │ ├── fifty_pc.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ ├── masked_vqa2 │ │ │ │ │ ├── full.yaml │ │ │ │ │ ├── fifty_pc.yaml │ │ │ │ │ ├── ten_pc.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ └── masked_conceptual_captions │ │ │ │ │ ├── full.yaml │ │ │ │ │ ├── half.yaml │ │ │ │ │ ├── small.yaml │ │ │ │ │ ├── small_fifty_pc.yaml │ │ │ │ │ ├── small_ten_pc.yaml │ │ │ │ │ ├── full_coco_generated.yaml │ │ │ │ │ ├── half_coco_generated.yaml │ │ │ │ │ ├── small_coco_generated.yaml │ │ │ │ │ └── defaults.yaml │ │ │ │ └── visual_bert │ │ │ │ ├── masked_coco │ │ │ │ ├── full.yaml │ │ │ │ ├── fifty_pc.yaml │ │ │ │ ├── ten_pc.yaml │ │ │ │ ├── defaults.yaml │ │ │ │ └── full_train_val.yaml │ │ │ │ ├── masked_vqa2 │ │ │ │ ├── full.yaml │ │ │ │ ├── fifty_pc.yaml │ │ │ │ ├── ten_pc.yaml │ │ │ │ ├── full_train_val.yaml │ │ │ │ └── defaults.yaml │ │ │ │ └── masked_conceptual_captions │ │ │ │ ├── full.yaml │ │ │ │ ├── half.yaml │ │ │ │ ├── small.yaml │ │ │ │ ├── small_ten_pc.yaml │ │ │ │ ├── small_fifty_pc.yaml │ │ │ │ ├── full_coco_generated.yaml │ │ │ │ ├── half_coco_generated.yaml │ │ │ │ ├── small_coco_generated.yaml │ │ │ │ └── defaults.yaml │ │ ├── mmbt │ │ │ └── configs │ │ │ │ ├── vqa2 │ │ │ │ └── with_raw_images.yaml │ │ │ │ ├── mmimdb │ │ │ │ └── with_features.yaml │ │ │ │ ├── hateful_memes │ │ │ │ ├── with_features.yaml │ │ │ │ └── defaults.yaml │ │ │ │ └── masked_coco │ │ │ │ └── defaults.yaml │ │ ├── pythia │ │ │ └── configs │ │ │ │ ├── masked_q_vqa2 │ │ │ │ └── defaults.yaml │ │ │ │ ├── visual_genome │ │ │ │ └── defaults.yaml │ │ │ │ └── vqa2 │ │ │ │ ├── debug.yaml │ │ │ │ ├── resnet_only.yaml │ │ │ │ └── train_val_resnet_only.yaml │ │ ├── butd │ │ │ └── configs │ │ │ │ ├── coco │ │ │ │ ├── beam_search.yaml │ │ │ │ ├── nucleus_sampling.yaml │ │ │ │ └── defaults.yaml │ │ │ │ ├── conceptual_captions │ │ │ │ ├── beam_search.yaml │ │ │ │ ├── nucleus_sampling.yaml │ │ │ │ └── defaults.yaml │ │ │ │ └── textcaps │ │ │ │ ├── eval_pretrained_coco_model.yaml │ │ │ │ └── beam_search.yaml │ │ ├── ban │ │ │ └── configs │ │ │ │ ├── vqa2 │ │ │ │ └── defaults.yaml │ │ │ │ ├── vizwiz │ │ │ │ └── defaults.yaml │ │ │ │ └── textvqa │ │ │ │ └── defaults.yaml │ │ └── lorra │ │ │ └── configs │ │ │ └── vqa2 │ │ │ └── train_val.yaml │ ├── mmf_cli │ │ ├── __init__.py │ │ └── predict.py │ ├── tests │ │ ├── __init__.py │ │ ├── common │ │ │ └── __init__.py │ │ ├── configs │ │ │ └── __init__.py │ │ ├── datasets │ │ │ └── __init__.py │ │ ├── models │ │ │ ├── __init__.py │ │ │ └── interfaces │ │ │ │ └── __init__.py │ │ ├── modules │ │ │ └── __init__.py │ │ ├── trainers │ │ │ ├── __init__.py │ │ │ └── callbacks │ │ │ │ └── __init__.py │ │ └── utils │ │ │ ├── __init__.py │ │ │ └── test_distributed.py │ ├── tools │ │ ├── __init__.py │ │ ├── scripts │ │ │ ├── __init__.py │ │ │ ├── bert │ │ │ │ └── extract_bert.sh │ │ │ └── gqa │ │ │ │ └── README.md │ │ └── sweeps │ │ │ └── README.md │ ├── MANIFEST.in │ ├── .flake8 │ ├── requirements.txt │ ├── .editorconfig │ ├── .gitignore │ └── predict.py ├── scripts │ ├── lxmert │ │ ├── gqa │ │ │ ├── extract_imgfeature.sh │ │ │ └── gqa_save_exp.sh │ │ └── vqa │ │ │ └── save_exp.sh │ └── visualBert │ │ └── gqa │ │ └── gqa_finetune.sh └── requirements.txt └── figures ├── factor.png ├── boxmap22.png ├── dataset.png ├── examples.png ├── exp_list.png ├── radar_plot.png └── vio_factor.png /Transparency/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transparency/model/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transparency/Trainers/__init__.py: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transparency/common_code/__init__.py: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/data/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/data/gqa/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/data/nlvr2/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/data/mscoco_imgfeat/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/data/nlvr2_imgfeat/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/data/vg_gqa_imgfeat/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/static/.nojekyll: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/lxrt/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/pretrain/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/tasks/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transparency/preprocess/Tweets/.gitignore: -------------------------------------------------------------------------------- 1 | vec_adr.p 2 | *.csv 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/static/CNAME: -------------------------------------------------------------------------------- 1 | mmf.sh 2 | -------------------------------------------------------------------------------- /Transparency/preprocess/SST/.gitignore: -------------------------------------------------------------------------------- 1 | vec_sst.p 2 | .ipynb_checkpoints -------------------------------------------------------------------------------- /Transformer-MM-Explainability/data/gqa/process_raw_data_scripts/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/data/nlvr2/process_raw_data_scripts/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/clevr/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/coco2017/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/okvqa/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/vqacp_v2/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/models/transformers/backends/layer.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/perturbation_arguments.py: -------------------------------------------------------------------------------- 1 | args = None 2 | -------------------------------------------------------------------------------- /Transparency/preprocess/SNLI/README.md: -------------------------------------------------------------------------------- 1 | Please run all cells in `SNLI.ipynb` notebook -------------------------------------------------------------------------------- /Transparency/preprocess/SST/README.md: -------------------------------------------------------------------------------- 1 | Please run all cells in `SST.ipynb` notebook. -------------------------------------------------------------------------------- /Transparency/preprocess/ag_news/README.md: -------------------------------------------------------------------------------- 1 | Please run all cells in `AGNews.ipynb` -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/flickr30k/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/vilbert/configs/mmimdb/pretrain.yaml: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/vilbert/configs/mmimdb/pretrain.yaml: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transparency/preprocess/20News/.gitignore: -------------------------------------------------------------------------------- 1 | 20News_sports_dataset.csv 2 | vec_20news_sports.p -------------------------------------------------------------------------------- /Transparency/preprocess/Babi/.gitignore: -------------------------------------------------------------------------------- 1 | */** 2 | * 3 | !Babi.ipynb 4 | !.gitignore 5 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/localized_narratives/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/.gitignore: -------------------------------------------------------------------------------- 1 | *.caffemodel 2 | *.tsv 3 | /snap 4 | -------------------------------------------------------------------------------- /Transparency/preprocess/.gitignore: -------------------------------------------------------------------------------- 1 | .vector_cache 2 | .ipynb_checkpoints 3 | MIMIC_Datasets 4 | -------------------------------------------------------------------------------- /Transparency/preprocess/CNN/README.md: -------------------------------------------------------------------------------- 1 | Please run all the cells in `CNN.ipynb` notebook. 2 | 3 | -------------------------------------------------------------------------------- /Transparency/preprocess/ag_news/classes.txt: -------------------------------------------------------------------------------- 1 | World 2 | Sports 3 | Business 4 | Sci/Tech 5 | -------------------------------------------------------------------------------- /Transparency/preprocess/IMDB/README.md: -------------------------------------------------------------------------------- 1 | Please run all the cells in `IMDB.ipynb` notebook. 2 | 3 | -------------------------------------------------------------------------------- /figures/factor.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/figures/factor.png -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/.eslintignore: -------------------------------------------------------------------------------- 1 | .docusaurus 2 | static/api 3 | build/ 4 | -------------------------------------------------------------------------------- /Transparency/preprocess/20News/README.md: -------------------------------------------------------------------------------- 1 | Please run all the cells in `20News.ipynb` notebook. 2 | 3 | -------------------------------------------------------------------------------- /figures/boxmap22.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/figures/boxmap22.png -------------------------------------------------------------------------------- /figures/dataset.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/figures/dataset.png -------------------------------------------------------------------------------- /figures/examples.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/figures/examples.png -------------------------------------------------------------------------------- /figures/exp_list.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/figures/exp_list.png -------------------------------------------------------------------------------- /figures/radar_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/figures/radar_plot.png -------------------------------------------------------------------------------- /figures/vio_factor.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/figures/vio_factor.png -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/mmbt/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/utils/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf_cli/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tests/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tools/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transparency/preprocess/CNN/.gitignore: -------------------------------------------------------------------------------- 1 | cnn/** 2 | cnn_dataset.csv 3 | cnn.tar.gz 4 | entity_list.txt 5 | vec_cnn.p -------------------------------------------------------------------------------- /Transparency/preprocess/IMDB/.gitignore: -------------------------------------------------------------------------------- 1 | imdb_dataset.csv 2 | imdb_word_index.json 3 | imdb_full.pkl 4 | vec_imdb.p -------------------------------------------------------------------------------- /Transparency/preprocess/ag_news/.gitignore: -------------------------------------------------------------------------------- 1 | agnews_dataset.csv 2 | agnews_dataset_split.csv 3 | vec_agnews.p 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/fusions/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./concat_bert.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tests/common/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tests/configs/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tests/datasets/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tests/models/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tests/modules/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tests/trainers/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tests/utils/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tools/scripts/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/data/gqa/.gitignore: -------------------------------------------------------------------------------- 1 | /submit.json 2 | /testdev.json 3 | /train.json 4 | /valid.json 5 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/data/vqa/.gitignore: -------------------------------------------------------------------------------- 1 | /minival.json 2 | /nominival.json 3 | /train.json 4 | /test.json 5 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/trainers/core/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/.prettierignore: -------------------------------------------------------------------------------- 1 | node_modules 2 | build 3 | .docusaurus 4 | static/api 5 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/models/interfaces/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/models/transformers/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/hateful_memes/configs/vilbert/direct.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/m4c/scripts/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/vilbert/configs/hateful_memes/direct.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/vilbert/configs/masked_coco/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/vilbert/configs/masked_vqa2/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/trainers/callbacks/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/hateful_memes/configs/vilbert/direct.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/m4c/scripts/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/vilbert/configs/hateful_memes/direct.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/vilbert/configs/masked_coco/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/vilbert/configs/masked_vqa2/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/masked_coco/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/masked_sbu/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/masked_vqa2/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tests/models/interfaces/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tests/trainers/callbacks/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/lxmert/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/models/lxmert/defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/mmimdb/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/nlvr2/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/ocrvqa/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/stvqa/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/textvqa/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/masked_coco/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/masked_sbu/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/masked_vqa2/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/others/mmf_bert/configs/masked_coco/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/others/mmf_bert/configs/masked_vqa2/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transparency/preprocess/SNLI/.gitignore: -------------------------------------------------------------------------------- 1 | *.zip 2 | snli_dataset.csv 3 | entity_list.txt 4 | snli_1.0/** 5 | __MACOSX/** 6 | vec_snli.p -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/vilbert/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/models/vilbert/defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/textcaps/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/databases/readers/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/models/transformers/backends/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/m4c_captioner/scripts/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/others/mmf_bert/configs/masked_coco/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/others/mmf_bert/configs/masked_vqa2/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/lxmert/configs/coco/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../defaults.yaml 3 | - ./masked.yaml 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/lxmert/configs/vqa2/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../defaults.yaml 3 | - ./masked.yaml 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/m4c_captioner/scripts/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_coco/full.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_vqa2/full.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/visual_bert/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/models/visual_bert/defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/hateful_memes/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/visual_dialog/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/visual_entailment/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/visual_genome/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/lxmert/configs/coco/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../defaults.yaml 3 | - ./masked.yaml 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/lxmert/configs/vqa2/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../defaults.yaml 3 | - ./masked.yaml 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_coco/full.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_vqa2/full.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_coco/full.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_vqa2/full.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_coco/full.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_vqa2/full.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/others/mmf_bert/configs/masked_conceptual_captions/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/data/lxmert/.gitignore: -------------------------------------------------------------------------------- 1 | /mscoco_minival.json 2 | /mscoco_nominival.json 3 | /mscoco_train.json 4 | /vgnococo.json 5 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/others/mmf_bert/configs/masked_conceptual_captions/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/full.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/full.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/full.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/full.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/.gitmodules: -------------------------------------------------------------------------------- 1 | [submodule "data/nlvr2/nlvr"] 2 | path = data/nlvr2/nlvr 3 | url = https://github.com/lil-lab/nlvr.git 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/visual_bert/classification.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | visual_bert: 3 | training_head_type: classification 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/utils/phoc/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from .build_phoc import build_phoc # NoQA 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/hateful_memes/configs/visual_bert/direct.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | training: 5 | batch_size: 128 6 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/hateful_memes/direct.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | training: 5 | batch_size: 128 6 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/hateful_memes/configs/visual_bert/direct.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | training: 5 | batch_size: 128 6 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/hateful_memes/direct.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | training: 5 | batch_size: 128 6 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/mmbt/configs/vqa2/with_raw_images.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - ../../../../mmf/configs/datasets/vqa2/with_raw_images.yaml 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/.ipynb_checkpoints/Untitled-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [], 3 | "metadata": {}, 4 | "nbformat": 4, 5 | "nbformat_minor": 5 6 | } 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/mmbt/configs/vqa2/with_raw_images.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - ../../../../mmf/configs/datasets/vqa2/with_raw_images.yaml 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/vqa2/with_raw_images.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - ../../../../mmf/configs/datasets/vqa2/with_raw_images.yaml 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/trainers/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | __all__ = ["BaseTrainer"] 3 | 4 | from .base_trainer import BaseTrainer 5 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/vqa2/with_raw_images.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - ../../../../mmf/configs/datasets/vqa2/with_raw_images.yaml 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/docs/getting_started/faqs.md: -------------------------------------------------------------------------------- 1 | --- 2 | id: faqs 3 | title: Frequently Asked Questions (FAQ) 4 | sidebar_label: FAQs 5 | --- 6 | ## Coming Soon! 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/static/img/logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/VisualBERT/website/static/img/logo.png -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/MANIFEST.in: -------------------------------------------------------------------------------- 1 | include requirements.txt 2 | include LICENSE 3 | include NOTICES 4 | recursive-include mmf/configs/ *.yaml 5 | recursive-include projects/ *.yaml 6 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/static/img/favicon.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/VisualBERT/website/static/img/favicon.png -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/static/img/oss_logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/VisualBERT/website/static/img/oss_logo.png -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tools/sweeps/README.md: -------------------------------------------------------------------------------- 1 | # Sweep Scripts 2 | 3 | See [https://mmf.sh/docs/tutorials/slurm](https://mmf.sh/docs/tutorials/slurm) for tutorial on how to use these scripts. 4 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/static/img/logo_white_f.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/VisualBERT/website/static/img/logo_white_f.png -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/mmbt/configs/mmimdb/with_features.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - configs/models/mmbt/with_features.yaml 4 | - configs/datasets/mmimdb/with_features.yaml 5 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/mmbt/configs/mmimdb/with_features.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - configs/models/mmbt/with_features.yaml 4 | - configs/datasets/mmimdb/with_features.yaml 5 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/__pycache__/__init__.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/__pycache__/__init__.cpython-38.pyc -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/layers.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/layers.cpython-38.pyc -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/param.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/param.cpython-38.pyc -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/utils.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/utils.cpython-38.pyc -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/mmbt/classification.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | mmbt: 3 | training_head_type: classification 4 | num_labels: 2 5 | losses: 6 | - type: cross_entropy 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/__init__.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/__init__.cpython-38.pyc -------------------------------------------------------------------------------- /Transparency/preprocess/README.md: -------------------------------------------------------------------------------- 1 | For each dataset you want to run the experiments for , please go to the corresponding directory to generate its necessary preprocessed files and follow the instruction in corresponding `README.md`. -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/hateful_memes/configs/vilbert/from_cc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | checkpoint: 5 | resume_pretrained: true 6 | resume_zoo: vilbert.pretrained.cc.original 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/vilbert/configs/hateful_memes/from_cc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | checkpoint: 5 | resume_pretrained: true 6 | resume_zoo: vilbert.pretrained.cc.original 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/hateful_memes/configs/vilbert/from_cc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | checkpoint: 5 | resume_pretrained: true 6 | resume_zoo: vilbert.pretrained.cc.original 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/hateful_memes/configs/visual_bert/from_coco.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | checkpoint: 5 | resume_pretrained: true 6 | resume_zoo: visual_bert.pretrained.coco 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/vilbert/configs/hateful_memes/from_cc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | checkpoint: 5 | resume_pretrained: true 6 | resume_zoo: vilbert.pretrained.cc.original 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/hateful_memes/from_coco.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | checkpoint: 5 | resume_pretrained: true 6 | resume_zoo: visual_bert.pretrained.coco 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/lxmert_lrp.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/lxmert_lrp.cpython-38.pyc -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/vqa_utils.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/vqa_utils.cpython-38.pyc -------------------------------------------------------------------------------- /Transparency/preprocess/Tweets/README.md: -------------------------------------------------------------------------------- 1 | For obtaining ADR tweets data, please contact the authors of 'Attention is Not Explanation' paper (https://arxiv.org/abs/1902.10186). 2 | 3 | Then, run all cells in `Tweet_ADR.ipynb` notebook. -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/datasets/conceptual_captions/train_small.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | conceptual_captions: 3 | annotations: 4 | train: 5 | - cc/defaults/annotations/train_small.npy 6 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/hateful_memes/configs/visual_bert/from_coco.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | checkpoint: 5 | resume_pretrained: true 6 | resume_zoo: visual_bert.pretrained.coco 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/hateful_memes/from_coco.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | checkpoint: 5 | resume_pretrained: true 6 | resume_zoo: visual_bert.pretrained.coco 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/modeling_frcnn.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/modeling_frcnn.cpython-38.pyc -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/processing_image.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/processing_image.cpython-38.pyc -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/tasks/__pycache__/__init__.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/src/tasks/__pycache__/__init__.cpython-38.pyc -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/tasks/__pycache__/vqa_data.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/src/tasks/__pycache__/vqa_data.cpython-38.pyc -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/m4c_captioner/configs/m4c_captioner/textcaps/without_ocr.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | dataset_config: 4 | textcaps: 5 | use_ocr: False # remove all the OCRs from each image 6 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/huggingface_lxmert.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/huggingface_lxmert.cpython-38.pyc -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/m4c_captioner/configs/m4c_captioner/textcaps/without_ocr.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | dataset_config: 4 | textcaps: 5 | use_ocr: False # remove all the OCRs from each image 6 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/ExplanationGenerator.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/src/__pycache__/ExplanationGenerator.cpython-38.pyc -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/vqa2/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | __all__ = ["VQA2Builder", "VQA2Dataset"] 3 | 4 | from .builder import VQA2Builder 5 | from .dataset import VQA2Dataset 6 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/lxmert/configs/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - coco/masked.yaml 4 | - gqa/masked.yaml 5 | - visual_genome/masked.yaml 6 | - vqa2/masked.yaml 7 | - configs/models/lxmert/defaults.yaml 8 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/others/mmf_bert/configs/masked_conceptual_captions/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../masked_coco/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | return_features_info: true 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/lxmert/configs/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - coco/masked.yaml 4 | - gqa/masked.yaml 5 | - visual_genome/masked.yaml 6 | - vqa2/masked.yaml 7 | - configs/models/lxmert/defaults.yaml 8 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/others/mmf_bert/configs/masked_conceptual_captions/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../masked_coco/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | return_features_info: true 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/.flake8: -------------------------------------------------------------------------------- 1 | # This is an example .flake8 config used when developing *Black* itself. 2 | 3 | [flake8] 4 | max-line-length = 88 5 | max-complexity = 18 6 | select = B,C,E,F,W,T4,B9 7 | ignore = E203, E266, C901, C408, W503 8 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/scripts/lxmert/gqa/extract_imgfeature.sh: -------------------------------------------------------------------------------- 1 | samples=-1 2 | CUDA_VISIBLE_DEVICES=2 PYTHONPATH=`pwd` python lxmert/lxmert/extract_img_features.py \ 3 | --COCO_path /home/lyb/vqa_data/gqa/images/ \ 4 | --num-samples=$samples \ 5 | --task gqa 6 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/vizwiz/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .builder import VizWizBuilder 3 | from .dataset import VizWizDataset 4 | 5 | 6 | __all__ = ["VizWizBuilder", "VizWizDataset"] 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tools/scripts/bert/extract_bert.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | N_REM=`expr $3 - 1` 3 | 4 | for i in $(seq 0 $N_REM); do 5 | python tools/scripts/bert/extract_bert_embeddings.py --imdb_path $1 --out_path $2 --group_id $i --n_groups $3 & 6 | done 7 | -------------------------------------------------------------------------------- /Transparency/requirements.txt: -------------------------------------------------------------------------------- 1 | pandas==0.24.2 2 | nltk==3.4.5 3 | tqdm==4.31.1 4 | typing==3.6.4 5 | numpy==1.16.2 6 | allennlp==0.8.3 7 | scipy==1.2.1 8 | seaborn==0.9.0 9 | gensim==3.7.2 10 | spacy==2.1.3 11 | matplotlib==3.0.3 12 | ipython==7.4.0 13 | scikit_learn==0.20.3 14 | -------------------------------------------------------------------------------- /Transparency/scripts/bc/sst/lstm_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=sst 2 | output_path=./outputs 3 | encoder_type=lstm 4 | attention_type=dot 5 | python train_and_run_experiments_bc.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/modules/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | import VisualBERT.mmf.modules.losses 3 | import VisualBERT.mmf.modules.metrics 4 | import VisualBERT.mmf.modules.optimizers 5 | import VisualBERT.mmf.modules.schedulers 6 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/modules/optimizers.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from VisualBERT.mmf.common.registry import registry 4 | from transformers.optimization import AdamW 5 | 6 | 7 | registry.register_optimizer("adam_w")(AdamW) 8 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/.prettierrc: -------------------------------------------------------------------------------- 1 | { 2 | "arrowParens": "always", 3 | "bracketSpacing": false, 4 | "jsxBracketSameLine": true, 5 | "printWidth": 80, 6 | "proseWrap": "never", 7 | "singleQuote": true, 8 | "trailingComma": "all" 9 | } 10 | -------------------------------------------------------------------------------- /Transparency/scripts/bc/amazon/lstm_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=amazon 2 | output_path=./outputs 3 | encoder_type=lstm 4 | attention_type=dot 5 | python train_and_run_experiments_bc.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} -------------------------------------------------------------------------------- /Transparency/scripts/bc/yelp/lstm_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=yelp 2 | output_path=./outputs 3 | encoder_type=lstm 4 | attention_type=dot 5 | python train_and_run_experiments_bc.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/common/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .meter import Meter 3 | from .registry import registry 4 | from .sample import Sample, SampleList 5 | 6 | 7 | __all__ = ["Sample", "SampleList", "Meter", "registry"] 8 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/experiments/paper/COCO_val2014_000000127510/COCO_val2014_000000127510.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/experiments/paper/COCO_val2014_000000127510/COCO_val2014_000000127510.jpg -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/experiments/paper/COCO_val2014_000000185590/COCO_val2014_000000185590.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/experiments/paper/COCO_val2014_000000185590/COCO_val2014_000000185590.jpg -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/experiments/paper/COCO_val2014_000000200717/COCO_val2014_000000200717.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/experiments/paper/COCO_val2014_000000200717/COCO_val2014_000000200717.jpg -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/experiments/paper/COCO_val2014_000000324266/COCO_val2014_000000324266.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BierOne/Attention-Faithfulness/HEAD/Transformer-MM-Explainability/lxmert/lxmert/experiments/paper/COCO_val2014_000000324266/COCO_val2014_000000324266.jpg -------------------------------------------------------------------------------- /Transparency/scripts/qa/cnn/lstm_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=cnn 2 | output_path=./outputs 3 | encoder_type=lstm 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_qa.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pythia/configs/masked_q_vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./pythia.yaml 3 | 4 | evaluation: 5 | metrics: 6 | - accuracy 7 | 8 | training: 9 | early_stop: 10 | criteria: masked_q_vqa2/accuracy 11 | minimize: false 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pythia/configs/masked_q_vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./pythia.yaml 3 | 4 | evaluation: 5 | metrics: 6 | - accuracy 7 | 8 | training: 9 | early_stop: 10 | criteria: masked_q_vqa2/accuracy 11 | minimize: false 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/requirements.txt: -------------------------------------------------------------------------------- 1 | demjson==2.2.4 2 | torchtext==0.5.0 3 | GitPython==3.1.0 4 | requests==2.23.0 5 | fasttext==0.9.1 6 | nltk==3.4.5 7 | editdistance==0.5.3 8 | transformers==3.4.0 9 | omegaconf==2.0.1rc4 10 | lmdb==0.98 11 | termcolor==1.1.0 12 | -------------------------------------------------------------------------------- /Transparency/scripts/bc/20news/lstm_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=20News_sports 2 | output_path=./outputs 3 | encoder_type=lstm 4 | attention_type=dot 5 | python train_and_run_experiments_bc.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} -------------------------------------------------------------------------------- /Transparency/scripts/nli/snli/lstm_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=snli 2 | output_path=./outputs 3 | encoder_type=lstm 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_qa.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} -------------------------------------------------------------------------------- /Transparency/scripts/qa/babi_2/lstm_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=babi_2 2 | output_path=./outputs 3 | encoder_type=lstm 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_qa.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} -------------------------------------------------------------------------------- /Transparency/scripts/qa/babi_3/lstm_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=babi_3 2 | output_path=./outputs 3 | encoder_type=lstm 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_qa.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/sbu_captions/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | __all__ = ["MaskedSBUBuilder", "MaskedSBUDataset"] 4 | 5 | from .masked_builder import MaskedSBUBuilder 6 | from .masked_dataset import MaskedSBUDataset 7 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/butd/configs/coco/beam_search.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | model_config: 5 | butd: 6 | inference: 7 | type: beam_search 8 | params: 9 | beam_length: 5 10 | 11 | training: 12 | batch_size: 1 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/mmimdb/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_mmimdb: 6 | return_features_info: true 7 | 8 | model_config: 9 | visual_bert: 10 | training_head_type: pretraining 11 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/docs/getting_started/video_overview.md: -------------------------------------------------------------------------------- 1 | --- 2 | id: video_overview 3 | title: Video overview 4 | sidebar_label: Video overview 5 | --- 6 | 7 |
8 | 9 |
10 | -------------------------------------------------------------------------------- /Transparency/.gitignore: -------------------------------------------------------------------------------- 1 | outputs/*/* 2 | outputs_dev/*/* 3 | caml-mimic/* 4 | __pycache__ 5 | .ipynb_checkpoints 6 | .vscode 7 | TACL-Attention 8 | # graph_outputs 9 | Workshop-NAACL-Attention 10 | graph_outputs/adv_* 11 | graph_outputs/*kendalltop* 12 | graph_outputs/**/*.pdf 13 | NAACLAttention* 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/.editorconfig: -------------------------------------------------------------------------------- 1 | root = true 2 | 3 | [*.py] 4 | charset = utf-8 5 | trim_trailing_whitespace = true 6 | end_of_line = lf 7 | insert_final_newline = true 8 | indent_style = space 9 | indent_size = 4 10 | 11 | [*.md] 12 | trim_trailing_whitespace = false 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/butd/configs/coco/beam_search.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | model_config: 5 | butd: 6 | inference: 7 | type: beam_search 8 | params: 9 | beam_length: 5 10 | 11 | training: 12 | batch_size: 1 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/mmimdb/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_mmimdb: 6 | return_features_info: true 7 | 8 | model_config: 9 | visual_bert: 10 | training_head_type: pretraining 11 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/ban/configs/vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../../../mmf/configs/vqa2/defaults.yaml 3 | 4 | evaluation: 5 | metrics: 6 | - vqa_accuracy 7 | 8 | training: 9 | early_stop: 10 | criteria: vqa2/vqa_accuracy 11 | minimize: false 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/ban/configs/vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../../../mmf/configs/vqa2/defaults.yaml 3 | 4 | evaluation: 5 | metrics: 6 | - vqa_accuracy 7 | 8 | training: 9 | early_stop: 10 | criteria: vqa2/vqa_accuracy 11 | minimize: false 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/ban/configs/vizwiz/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../../../mmf/configs/vizwiz/defaults.yaml 3 | 4 | evaluation: 5 | metrics: 6 | - vqa_accuracy 7 | 8 | training: 9 | early_stop: 10 | criteria: vizwiz/vqa_accuracy 11 | minimize: false 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/datasets/mmimdb/with_features.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | mmimdb: 3 | use_images: false 4 | use_features: true 5 | # Disable this in your config if you do not need features info 6 | # and are running out of memory 7 | return_features_info: false 8 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/ban/configs/vizwiz/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../../../mmf/configs/vizwiz/defaults.yaml 3 | 4 | evaluation: 5 | metrics: 6 | - vqa_accuracy 7 | 8 | training: 9 | early_stop: 10 | criteria: vizwiz/vqa_accuracy 11 | minimize: false 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/ban/configs/textvqa/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../../../mmf/configs/textvqa/defaults.yaml 3 | 4 | evaluation: 5 | metrics: 6 | - vqa_accuracy 7 | 8 | training: 9 | early_stop: 10 | criteria: textvqa/vqa_accuracy 11 | minimize: false 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/butd/configs/coco/nucleus_sampling.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | model_config: 5 | butd: 6 | inference: 7 | type: nucleus_sampling 8 | params: 9 | sum_threshold: 0.8 10 | 11 | training: 12 | batch_size: 1 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/ban/configs/textvqa/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../../../mmf/configs/textvqa/defaults.yaml 3 | 4 | evaluation: 5 | metrics: 6 | - vqa_accuracy 7 | 8 | training: 9 | early_stop: 10 | criteria: textvqa/vqa_accuracy 11 | minimize: false 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/butd/configs/coco/nucleus_sampling.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | model_config: 5 | butd: 6 | inference: 7 | type: nucleus_sampling 8 | params: 9 | sum_threshold: 0.8 10 | 11 | training: 12 | batch_size: 1 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/version.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | import sys 4 | 5 | 6 | __version__ = "1.0.0rc12" 7 | 8 | msg = "MMF is only compatible with Python 3.6 and newer." 9 | 10 | 11 | if sys.version_info < (3, 6): 12 | raise ImportError(msg) 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/butd/configs/conceptual_captions/beam_search.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | model_config: 5 | butd: 6 | inference: 7 | type: nucleus_sampling 8 | params: 9 | sum_threshold: 0.8 10 | 11 | training: 12 | batch_size: 1 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/datasets/hateful_memes/with_features.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | hateful_memes: 3 | use_images: false 4 | use_features: true 5 | # Disable this in your config if you do not need features info 6 | # and are running out of memory 7 | return_features_info: true 8 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/butd/configs/conceptual_captions/beam_search.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | model_config: 5 | butd: 6 | inference: 7 | type: nucleus_sampling 8 | params: 9 | sum_threshold: 0.8 10 | 11 | training: 12 | batch_size: 1 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/butd/configs/conceptual_captions/nucleus_sampling.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | model_config: 5 | butd: 6 | inference: 7 | type: nucleus_sampling 8 | params: 9 | sum_threshold: 0.8 10 | 11 | training: 12 | batch_size: 1 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/hateful_memes/configs/mmbt/with_features.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - configs/models/mmbt/with_features.yaml 4 | - configs/datasets/hateful_memes/with_features.yaml 5 | 6 | optimizer: 7 | type: adam_w 8 | params: 9 | lr: 5e-5 10 | eps: 1e-8 11 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/mmbt/configs/hateful_memes/with_features.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - configs/models/mmbt/with_features.yaml 4 | - configs/datasets/hateful_memes/with_features.yaml 5 | 6 | optimizer: 7 | type: adam_w 8 | params: 9 | lr: 5e-5 10 | eps: 1e-8 11 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/butd/configs/conceptual_captions/nucleus_sampling.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | model_config: 5 | butd: 6 | inference: 7 | type: nucleus_sampling 8 | params: 9 | sum_threshold: 0.8 10 | 11 | training: 12 | batch_size: 1 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/hateful_memes/configs/mmbt/with_features.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - configs/models/mmbt/with_features.yaml 4 | - configs/datasets/hateful_memes/with_features.yaml 5 | 6 | optimizer: 7 | type: adam_w 8 | params: 9 | lr: 5e-5 10 | eps: 1e-8 11 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/mmbt/configs/hateful_memes/with_features.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - configs/models/mmbt/with_features.yaml 4 | - configs/datasets/hateful_memes/with_features.yaml 5 | 6 | optimizer: 7 | type: adam_w 8 | params: 9 | lr: 5e-5 10 | eps: 1e-8 11 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_coco/ten_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_coco/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | annotations: 7 | train: 8 | - coco/defaults/annotations/imdb_karpathy_train_by_image_10_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_vqa2/fifty_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_vqa2/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | annotations: 7 | train: 8 | - vqa2/defaults/annotations/imdb_train2014_len_coco_50_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_coco/ten_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_coco/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | annotations: 7 | train: 8 | - coco/defaults/annotations/imdb_karpathy_train_by_image_10_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_vqa2/fifty_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_vqa2/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | annotations: 7 | train: 8 | - vqa2/defaults/annotations/imdb_train2014_len_coco_50_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/hateful_memes/configs/unimodal/with_features.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./image.yaml 3 | - configs/datasets/hateful_memes/with_features.yaml 4 | - configs/models/unimodal/with_features.yaml 5 | 6 | 7 | optimizer: 8 | type: adam_w 9 | params: 10 | lr: 5e-5 11 | eps: 1e-8 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/others/mmf_bert/configs/masked_vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../masked_coco/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | annotations: 7 | train: 8 | - vqa2/defaults/annotations/imdb_train2014_len_coco.npy 9 | return_features_info: true 10 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_coco/fifty_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_coco/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | annotations: 7 | train: 8 | - coco/defaults/annotations/imdb_karpathy_train_by_image_50_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_vqa2/fifty_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_vqa2/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | annotations: 7 | train: 8 | - vqa2/defaults/annotations/imdb_train2014_len_coco_50_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_vqa2/ten_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_vqa2/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | annotations: 7 | train: 8 | - vqa2/defaults/annotations/imdb_train2014_len_coco_10_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/static/.circleci/config.yml: -------------------------------------------------------------------------------- 1 | # This config file will prevent tests from being run on the gh-pages branch. 2 | version: 2 3 | jobs: 4 | build: 5 | machine: true 6 | branches: 7 | ignore: gh-pages 8 | steps: 9 | -run: echo "Skipping tests on gh-pages branch" 10 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/hateful_memes/configs/unimodal/with_features.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./image.yaml 3 | - configs/datasets/hateful_memes/with_features.yaml 4 | - configs/models/unimodal/with_features.yaml 5 | 6 | 7 | optimizer: 8 | type: adam_w 9 | params: 10 | lr: 5e-5 11 | eps: 1e-8 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/others/mmf_bert/configs/masked_vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../masked_coco/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | annotations: 7 | train: 8 | - vqa2/defaults/annotations/imdb_train2014_len_coco.npy 9 | return_features_info: true 10 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_coco/fifty_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_coco/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | annotations: 7 | train: 8 | - coco/defaults/annotations/imdb_karpathy_train_by_image_50_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_vqa2/fifty_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_vqa2/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | annotations: 7 | train: 8 | - vqa2/defaults/annotations/imdb_train2014_len_coco_50_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_vqa2/ten_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_vqa2/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | annotations: 7 | train: 8 | - vqa2/defaults/annotations/imdb_train2014_len_coco_10_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_coco/fifty_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_coco/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | annotations: 7 | train: 8 | - coco/defaults/annotations/imdb_karpathy_train_by_image_50_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_coco/ten_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_coco/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | annotations: 7 | train: 8 | - coco/defaults/annotations/imdb_karpathy_train_by_image_10_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_coco/fifty_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_coco/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | annotations: 7 | train: 8 | - coco/defaults/annotations/imdb_karpathy_train_by_image_50_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_coco/ten_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_coco/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | annotations: 7 | train: 8 | - coco/defaults/annotations/imdb_karpathy_train_by_image_10_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/others/unimodal/configs/hateful_memes/with_features.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./image.yaml 3 | - configs/datasets/hateful_memes/with_features.yaml 4 | - configs/models/unimodal/with_features.yaml 5 | 6 | 7 | optimizer: 8 | type: adam_w 9 | params: 10 | lr: 5e-5 11 | eps: 1e-8 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/others/unimodal/configs/hateful_memes/with_features.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./image.yaml 3 | - configs/datasets/hateful_memes/with_features.yaml 4 | - configs/models/unimodal/with_features.yaml 5 | 6 | 7 | optimizer: 8 | type: adam_w 9 | params: 10 | lr: 5e-5 11 | eps: 1e-8 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/half.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_mid.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/half.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_mid.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/small.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_small.npy 9 | -------------------------------------------------------------------------------- /Transparency/scripts/bc/imdb/cnn_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=imdb # ['imdb', 'sst', 'yelp', '20News_sports', 'amazon'] 2 | output_path=./outputs 3 | encoder_type=cnn 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_bc.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} --gpu ${gpu} -------------------------------------------------------------------------------- /Transparency/scripts/bc/yelp/cnn_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=yelp # ['imdb', 'sst', 'yelp', '20News_sports', 'amazon'] 2 | output_path=./outputs 3 | encoder_type=cnn 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_bc.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} --gpu ${gpu} -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/small.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_small.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/half.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_mid.npy 9 | -------------------------------------------------------------------------------- /Transparency/scripts/bc/amazon/cnn_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=amazon # ['imdb', 'sst', 'yelp', '20News_sports', 'amazon'] 2 | output_path=./outputs 3 | encoder_type=cnn 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_bc.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} --gpu ${gpu} -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/half.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_mid.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/small.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_small.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/requirements.txt: -------------------------------------------------------------------------------- 1 | Pillow>=8.1.1 2 | einops == 0.3.0 3 | imageio == 2.9.0 4 | matplotlib == 3.3.2 5 | opencv_python 6 | scikit_image == 0.17.2 7 | scipy == 1.5.2 8 | sklearn 9 | tqdm == 4.51.0 10 | transformers == 3.5.1 11 | utils == 1.0.1 12 | demjson 13 | torchtext 14 | omegaconf 15 | captum 16 | wget 17 | ftfy 18 | regex -------------------------------------------------------------------------------- /Transparency/scripts/bc/sst/cnn_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=sst # [sst, imdb, 20News_sports, tweet, Anemia, Diabetes, AgNews] 2 | output_path=./outputs 3 | encoder_type=cnn 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_bc.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} --gpu ${gpu} -------------------------------------------------------------------------------- /Transparency/scripts/nli/snli/cnn_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=snli # [sst, imdb, 20News_sports, tweet, Anemia, Diabetes, AgNews] 2 | output_path=./outputs 3 | encoder_type=cnn 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_qa.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} --gpu ${gpu} -------------------------------------------------------------------------------- /Transparency/scripts/qa/cnn/cnn_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=cnn # [sst, imdb, 20News_sports, tweet, Anemia, Diabetes, AgNews] 2 | output_path=./outputs 3 | encoder_type=cnn 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_qa.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} --gpu ${gpu} -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/small.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_small.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/small_fifty_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_small_50_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/small_ten_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_small_10_pc.npy 9 | -------------------------------------------------------------------------------- /Transparency/scripts/qa/babi_2/cnn_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=babi_2 # [sst, imdb, 20News_sports, tweet, Anemia, Diabetes, AgNews] 2 | output_path=./outputs 3 | encoder_type=cnn 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_qa.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} --gpu ${gpu} -------------------------------------------------------------------------------- /Transparency/scripts/qa/babi_3/cnn_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=babi_3 # [sst, imdb, 20News_sports, tweet, Anemia, Diabetes, AgNews] 2 | output_path=./outputs 3 | encoder_type=cnn 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_qa.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} --gpu ${gpu} -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/small_fifty_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_small_50_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/small_ten_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_small_10_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/small_ten_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_small_10_pc.npy 9 | -------------------------------------------------------------------------------- /Transparency/scripts/bc/20news/cnn_dot.sh: -------------------------------------------------------------------------------- 1 | dataset_name=20News_sports # [sst, imdb, 20News_sports, tweet, Anemia, Diabetes, AgNews] 2 | output_path=./outputs 3 | encoder_type=cnn 4 | attention_type=dot 5 | gpu=2 6 | python train_and_run_experiments_bc.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} --gpu ${gpu} -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/small_ten_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_small_10_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/small_fifty_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_small_50_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/small_fifty_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | annotations: 7 | train: 8 | - cc/defaults/annotations/train_small_50_pc.npy 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/coco/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | __all__ = ["COCOBuilder", "COCODataset", "MaskedCOCOBuilder", "MaskedCOCODataset"] 3 | 4 | from .builder import COCOBuilder 5 | from .dataset import COCODataset 6 | from .masked_builder import MaskedCOCOBuilder 7 | from .masked_dataset import MaskedCOCODataset 8 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/gqa/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | __all__ = ["GQABuilder", "GQADataset", "MaskedGQABuilder", "MaskedGQADataset"] 4 | 5 | from .builder import GQABuilder 6 | from .dataset import GQADataset 7 | from .masked_builder import MaskedGQABuilder 8 | from .masked_dataset import MaskedGQADataset 9 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/others/cnn_lstm/clevr/defaults.yaml: -------------------------------------------------------------------------------- 1 | optimizer: 2 | type: Adamax 3 | params: 4 | eps: 1.0e-08 5 | lr: 0.01 6 | weight_decay: 0 7 | 8 | evaluation: 9 | metrics: 10 | - accuracy 11 | 12 | training: 13 | batch_size: 128 14 | snapshot_interval: 6000 15 | early_stop: 16 | criteria: clevr/accuracy 17 | minimize: false 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/hateful_memes/configs/unimodal/bert.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./text.yaml 3 | - configs/datasets/hateful_memes/bert.yaml 4 | - configs/models/unimodal/bert.yaml 5 | 6 | model_config: 7 | unimodal_text: 8 | classifier: 9 | type: mlp 10 | params: 11 | in_dim: 768 12 | num_layers: 2 13 | 14 | training: 15 | batch_size: 128 16 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/others/cnn_lstm/clevr/defaults.yaml: -------------------------------------------------------------------------------- 1 | optimizer: 2 | type: Adamax 3 | params: 4 | eps: 1.0e-08 5 | lr: 0.01 6 | weight_decay: 0 7 | 8 | evaluation: 9 | metrics: 10 | - accuracy 11 | 12 | training: 13 | batch_size: 128 14 | snapshot_interval: 6000 15 | early_stop: 16 | criteria: clevr/accuracy 17 | minimize: false 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/hateful_memes/configs/unimodal/bert.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./text.yaml 3 | - configs/datasets/hateful_memes/bert.yaml 4 | - configs/models/unimodal/bert.yaml 5 | 6 | model_config: 7 | unimodal_text: 8 | classifier: 9 | type: mlp 10 | params: 11 | in_dim: 768 12 | num_layers: 2 13 | 14 | training: 15 | batch_size: 128 16 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/others/unimodal/configs/hateful_memes/bert.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./text.yaml 3 | - configs/datasets/hateful_memes/bert.yaml 4 | - configs/models/unimodal/bert.yaml 5 | 6 | model_config: 7 | unimodal_text: 8 | classifier: 9 | type: mlp 10 | params: 11 | in_dim: 768 12 | num_layers: 2 13 | 14 | training: 15 | batch_size: 128 16 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/others/unimodal/configs/hateful_memes/bert.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./text.yaml 3 | - configs/datasets/hateful_memes/bert.yaml 4 | - configs/models/unimodal/bert.yaml 5 | 6 | model_config: 7 | unimodal_text: 8 | classifier: 9 | type: mlp 10 | params: 11 | in_dim: 768 12 | num_layers: 2 13 | 14 | training: 15 | batch_size: 128 16 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/.stylelintrc.js: -------------------------------------------------------------------------------- 1 | /** 2 | * Copyright (c) Facebook, Inc. and its affiliates. 3 | * 4 | * This source code is licensed under the MIT license found in the 5 | * LICENSE file in the root directory of this source tree. 6 | */ 7 | 8 | module.exports = { 9 | plugins: ['stylelint-copyright'], 10 | rules: { 11 | 'docusaurus/copyright-header': true, 12 | }, 13 | }; 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/datasets/hateful_memes/bert.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | hateful_memes: 3 | processors: 4 | text_processor: 5 | type: bert_tokenizer 6 | params: 7 | tokenizer_config: 8 | type: bert-base-uncased 9 | params: 10 | do_lower_case: true 11 | mask_probability: 0 12 | max_seq_length: 128 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tools/scripts/gqa/README.md: -------------------------------------------------------------------------------- 1 | # Converstion of GQA to VQA format 2 | 3 | * Download GQA datasets and store as format shown in conversion script 4 | * Download glove embeddings 300D file 5 | * Run the script from the root of the repo as by changing relevant paths: 6 | 7 | ``` 8 | python tools/scripts/gqa/convert_gqa_to_vqa.py --gqa_dir --out_dir 9 | ``` 10 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/others/mmf_bert/configs/masked_coco/pretrain_joint_vqa2.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - ../masked_vqa2/defaults.yaml 4 | 5 | model_config: 6 | mmf_bert: 7 | training_head_type: pretraining,vqa 8 | 9 | scheduler: 10 | type: warmup_linear 11 | params: 12 | num_warmup_steps: 3000 13 | num_training_steps: 33000 14 | 15 | training: 16 | max_updates: 34000 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/others/mmf_bert/configs/masked_coco/pretrain_joint_vqa2.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | - ../masked_vqa2/defaults.yaml 4 | 5 | model_config: 6 | mmf_bert: 7 | training_head_type: pretraining,vqa 8 | 9 | scheduler: 10 | type: warmup_linear 11 | params: 12 | num_warmup_steps: 3000 13 | num_training_steps: 33000 14 | 15 | training: 16 | max_updates: 34000 17 | -------------------------------------------------------------------------------- /Transparency/scripts/qa_all.sh: -------------------------------------------------------------------------------- 1 | output_path=./outputs/qa 2 | #qqp snli babi_1 babi_2 babi_3 3 | gpu=0 4 | for dataset_name in qqp snli babi_1 5 | do 6 | for attention_type in tanh dot 7 | do 8 | for encoder_type in cnn lstm 9 | do 10 | python train_and_run_experiments_qa.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} --gpu $gpu; 11 | done 12 | done 13 | done -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/.gitignore: -------------------------------------------------------------------------------- 1 | *.log 2 | *.err 3 | *.pyc 4 | *.swp 5 | .idea/* 6 | **/__pycache__/* 7 | **/output/* 8 | data/.DS_Store 9 | docs/build 10 | results/* 11 | build 12 | dist 13 | boards/* 14 | *.egg-info/ 15 | checkpoint 16 | *.pth 17 | *.ckpt 18 | *_cache 19 | .cache 20 | data 21 | save 22 | *.eggs 23 | .eggs 24 | eggs/ 25 | *.egg 26 | .DS_Store 27 | .vscode 28 | .vscode/* 29 | *.so 30 | *-checkpoint.ipynb 31 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/utils/torchscript.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from typing import Dict, Optional 4 | 5 | from torch import Tensor 6 | 7 | 8 | def getattr_torchscriptable( 9 | dictionary: Dict[str, Tensor], key: str, default: Optional[Tensor] = None 10 | ) -> Optional[Tensor]: 11 | if key in dictionary: 12 | return dictionary[key] 13 | else: 14 | return default 15 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pythia/configs/visual_genome/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | visual_genome: 3 | return_scene_graph: false 4 | return_objects: false 5 | return_relationships: false 6 | return_features_info: false 7 | no_unk: true 8 | 9 | evaluation: 10 | metrics: 11 | - vqa_accuracy 12 | 13 | training: 14 | early_stop: 15 | criteria: visual_genome/vqa_accuracy 16 | minimize: false 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pythia/configs/visual_genome/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | visual_genome: 3 | return_scene_graph: false 4 | return_objects: false 5 | return_relationships: false 6 | return_features_info: false 7 | no_unk: true 8 | 9 | evaluation: 10 | metrics: 11 | - vqa_accuracy 12 | 13 | training: 14 | early_stop: 15 | criteria: visual_genome/vqa_accuracy 16 | minimize: false 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/.gitignore: -------------------------------------------------------------------------------- 1 | # Dependencies 2 | /node_modules 3 | 4 | # Production 5 | /build 6 | 7 | # Generated files 8 | .docusaurus 9 | .cache-loader 10 | 11 | # Misc 12 | .DS_Store 13 | .env.local 14 | .env.development.local 15 | .env.test.local 16 | .env.production.local 17 | 18 | npm-debug.log* 19 | yarn-debug.log* 20 | yarn-error.log* 21 | 22 | # ESLint 23 | .eslintcache 24 | 25 | # Static Docs 26 | static/api 27 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/predict.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 -u 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | 4 | import sys 5 | 6 | from run import run 7 | 8 | 9 | def predict(opts=None): 10 | if opts is None: 11 | sys.argv.extend(["evaluation.predict=true"]) 12 | else: 13 | opts.extend(["evaluation.predict=true"]) 14 | 15 | run(predict=True) 16 | 17 | 18 | if __name__ == "__main__": 19 | predict() 20 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/data/vg_gqa_imgfeat/README.md: -------------------------------------------------------------------------------- 1 | # VG and GQA images 2 | 3 | - Please download the gqa images from [GQA official website](https://cs.stanford.edu/people/dorarad/gqa/download.html) (20 GB). 4 | 5 | - The Visual Genome images are contained in GQA dataset with the same image id as VG. 6 | Thus we only need to extract features for all GQA images. 7 | 8 | - GQA testing images (labeled as 'nXXXXXXX') are collected from MS COCO test sets. 9 | 10 | 11 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/mmbt/with_features.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | mmbt: 3 | model_data_dir: ${env.data_dir} 4 | direct_features_input: true 5 | modal_encoder: 6 | type: finetune_faster_rcnn_fpn_fc7 7 | params: 8 | in_dim: 2048 9 | bias_file: models/detectron.defaults/fc7_b.pkl 10 | weights_file: models/detectron.defaults/fc7_w.pkl 11 | model_data_dir: ${model_config.mmbt.model_data_dir} 12 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf_cli/predict.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 -u 2 | # Copyright (c) Facebook, Inc. and its affiliates. 3 | 4 | import sys 5 | 6 | from VisualBERT.mmf_cli.run import run 7 | 8 | 9 | def predict(opts=None): 10 | if opts is None: 11 | sys.argv.extend(["evaluation.predict=true"]) 12 | else: 13 | opts.extend(["evaluation.predict=true"]) 14 | 15 | run(predict=True) 16 | 17 | 18 | if __name__ == "__main__": 19 | predict() 20 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/masked_gqa/defaults.yaml: -------------------------------------------------------------------------------- 1 | optimizer: 2 | type: adam_w 3 | params: 4 | lr: 5e-5 5 | eps: 1e-8 6 | 7 | scheduler: 8 | type: warmup_linear 9 | params: 10 | num_warmup_steps: 2000 11 | num_training_steps: 88000 12 | 13 | training: 14 | batch_size: 480 15 | lr_scheduler: true 16 | # Don't forget to update schedule_attributes if you update this 17 | max_updates: 88000 18 | find_unused_parameters: true 19 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/masked_gqa/defaults.yaml: -------------------------------------------------------------------------------- 1 | optimizer: 2 | type: adam_w 3 | params: 4 | lr: 5e-5 5 | eps: 1e-8 6 | 7 | scheduler: 8 | type: warmup_linear 9 | params: 10 | num_warmup_steps: 2000 11 | num_training_steps: 88000 12 | 13 | training: 14 | batch_size: 480 15 | lr_scheduler: true 16 | # Don't forget to update schedule_attributes if you update this 17 | max_updates: 88000 18 | find_unused_parameters: true 19 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/run/nlvr2_test.bash: -------------------------------------------------------------------------------- 1 | # The name of this experiment. 2 | name=$2 3 | 4 | # Save logs and models under snap/nlvr2; make backup. 5 | output=snap/nlvr2/$name 6 | mkdir -p $output/src 7 | cp -r src/* $output/src/ 8 | cp $0 $output/run.bash 9 | 10 | # See Readme.md for option details. 11 | CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \ 12 | python src/tasks/nlvr2.py \ 13 | --tiny --llayers 9 --xlayers 5 --rlayers 5 \ 14 | --tqdm --output $output ${@:3} 15 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/full_coco_generated.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | zoo_requirements: 7 | - cc.coco_generated 8 | - cc.defaults 9 | annotations: 10 | train: 11 | - cc/coco_generated/annotations/train_all.npy 12 | val: 13 | - cc/coco_generated/annotations/val.npy 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/half_coco_generated.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | zoo_requirements: 7 | - cc.coco_generated 8 | - cc.defaults 9 | annotations: 10 | train: 11 | - cc/coco_generated/annotations/train_mid.npy 12 | val: 13 | - cc/coco_generated/annotations/val.npy 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/small_coco_generated.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | zoo_requirements: 7 | - cc.coco_generated 8 | - cc.defaults 9 | annotations: 10 | train: 11 | - cc/coco_generated/annotations/train_small.npy 12 | val: 13 | - cc/coco_generated/annotations/val.npy 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_vqa2/ten_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_vqa2/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | return_features_info: true 7 | use_images: false 8 | use_features: true 9 | features: 10 | train: 11 | - coco/defaults/features/coco_trainval2014.lmdb 12 | annotations: 13 | train: 14 | - vqa2/defaults/annotations/imdb_train2014_len_coco_10_pc.npy 15 | -------------------------------------------------------------------------------- /Transparency/scripts/bc_all.sh: -------------------------------------------------------------------------------- 1 | # sst yelp 20News_sports AgNews 2 | # tanh dot 3 | # cnn lstm 4 | gpu=0 5 | output_path=./outputs/mc 6 | echo $output_path 7 | 8 | for dataset_name in sst yelp 20News_sports AgNews 9 | do 10 | for attention_type in tanh dot 11 | do 12 | for encoder_type in cnn lstm 13 | do 14 | python train_and_run_experiments_bc.py --dataset ${dataset_name} --data_dir . --output_dir ${output_path} --attention ${attention_type} --encoder ${encoder_type} --gpu $gpu; 15 | done 16 | done 17 | done -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/full_coco_generated.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | zoo_requirements: 7 | - cc.coco_generated 8 | - cc.defaults 9 | annotations: 10 | train: 11 | - cc/coco_generated/annotations/train_all.npy 12 | val: 13 | - cc/coco_generated/annotations/val.npy 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/half_coco_generated.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | zoo_requirements: 7 | - cc.coco_generated 8 | - cc.defaults 9 | annotations: 10 | train: 11 | - cc/coco_generated/annotations/train_mid.npy 12 | val: 13 | - cc/coco_generated/annotations/val.npy 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/small_coco_generated.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | zoo_requirements: 7 | - cc.coco_generated 8 | - cc.defaults 9 | annotations: 10 | train: 11 | - cc/coco_generated/annotations/train_small.npy 12 | val: 13 | - cc/coco_generated/annotations/val.npy 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_vqa2/ten_pc.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/vilbert/configs/masked_vqa2/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | return_features_info: true 7 | use_images: false 8 | use_features: true 9 | features: 10 | train: 11 | - coco/defaults/features/coco_trainval2014.lmdb 12 | annotations: 13 | train: 14 | - vqa2/defaults/annotations/imdb_train2014_len_coco_10_pc.npy 15 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/full_coco_generated.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | zoo_requirements: 7 | - cc.coco_generated 8 | - cc.defaults 9 | annotations: 10 | train: 11 | - cc/coco_generated/annotations/train_all.npy 12 | val: 13 | - cc/coco_generated/annotations/val.npy 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/full_coco_generated.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | zoo_requirements: 7 | - cc.coco_generated 8 | - cc.defaults 9 | annotations: 10 | train: 11 | - cc/coco_generated/annotations/train_all.npy 12 | val: 13 | - cc/coco_generated/annotations/val.npy 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pythia/configs/vqa2/debug.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | vqa2: 6 | use_images: false 7 | use_features: true 8 | features: 9 | train: 10 | - coco/defaults/features/trainval2014.lmdb 11 | val: 12 | - coco/defaults/features/trainval2014.lmdb 13 | annotations: 14 | train: 15 | - vqa2/defaults/annotations/imdb_debug.npy 16 | val: 17 | - vqa2/defaults/annotations/imdb_debug.npy 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/datasets/textvqa/with_resnet.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | textvqa: 3 | features: 4 | train: 5 | - textvqa/defaults/features/open_images/detectron.lmdb,textvqa/defaults/features/open_images/resnet152.lmdb 6 | val: 7 | - textvqa/defaults/features/open_images/detectron.lmdb,textvqa/defaults/features/open_images/resnet152.lmdb 8 | test: 9 | - textvqa/defaults/features/open_images/detectron.lmdb,textvqa/defaults/features/open_images/resnet152.lmdb 10 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/lxmert/configs/visual_genome/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./masked.yaml 3 | 4 | optimizer: 5 | type: adam_w 6 | params: 7 | lr: 1e-4 8 | eps: 1e-8 9 | 10 | scheduler: 11 | type: warmup_linear 12 | params: 13 | num_warmup_steps: 1000 14 | num_training_steps: ${training.max_updates} 15 | 16 | training: 17 | batch_size: 480 18 | lr_scheduler: true 19 | # Don't forget to update schedule_attributes if you update this 20 | max_updates: 11000 21 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pythia/configs/vqa2/debug.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | vqa2: 6 | use_images: false 7 | use_features: true 8 | features: 9 | train: 10 | - coco/defaults/features/trainval2014.lmdb 11 | val: 12 | - coco/defaults/features/trainval2014.lmdb 13 | annotations: 14 | train: 15 | - vqa2/defaults/annotations/imdb_debug.npy 16 | val: 17 | - vqa2/defaults/annotations/imdb_debug.npy 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/lxmert/configs/visual_genome/pretrain.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./masked.yaml 3 | 4 | optimizer: 5 | type: adam_w 6 | params: 7 | lr: 1e-4 8 | eps: 1e-8 9 | 10 | scheduler: 11 | type: warmup_linear 12 | params: 13 | num_warmup_steps: 1000 14 | num_training_steps: ${training.max_updates} 15 | 16 | training: 17 | batch_size: 480 18 | lr_scheduler: true 19 | # Don't forget to update schedule_attributes if you update this 20 | max_updates: 11000 21 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/half_coco_generated.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | zoo_requirements: 7 | - cc.coco_generated 8 | - cc.defaults 9 | 10 | annotations: 11 | train: 12 | - cc/coco_generated/annotations/train_mid.npy 13 | val: 14 | - cc/coco_generated/annotations/val.npy 15 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/small_coco_generated.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | zoo_requirements: 7 | - cc.coco_generated 8 | - cc.defaults 9 | 10 | annotations: 11 | train: 12 | - cc/coco_generated/annotations/train_small.npy 13 | val: 14 | - cc/coco_generated/annotations/val.npy 15 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/half_coco_generated.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | zoo_requirements: 7 | - cc.coco_generated 8 | - cc.defaults 9 | 10 | annotations: 11 | train: 12 | - cc/coco_generated/annotations/train_mid.npy 13 | val: 14 | - cc/coco_generated/annotations/val.npy 15 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/small_coco_generated.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ../projects/visual_bert/configs/masked_conceptual_captions/pretrain.yaml 3 | 4 | dataset_config: 5 | masked_conceptual_captions: 6 | zoo_requirements: 7 | - cc.coco_generated 8 | - cc.defaults 9 | 10 | annotations: 11 | train: 12 | - cc/coco_generated/annotations/train_small.npy 13 | val: 14 | - cc/coco_generated/annotations/val.npy 15 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/butd/configs/textcaps/eval_pretrained_coco_model.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./beam_search.yaml 3 | 4 | dataset_config: 5 | textcaps: 6 | processors: 7 | text_processor: 8 | params: 9 | vocab: 10 | vocab_file: textcaps/defaults/extras/vocabs/coco_vocabulary_captioning_thresh5.txt 11 | caption_processor: 12 | params: 13 | vocab: 14 | vocab_file: textcaps/defaults/extras/vocabs/coco_vocabulary_captioning_thresh5.txt 15 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/unimodal/with_features.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | unimodal_image: 3 | model_data_dir: ${env.data_dir} 4 | direct_features_input: true 5 | modal_encoder: 6 | type: finetune_faster_rcnn_fpn_fc7 7 | params: 8 | in_dim: 2048 9 | bias_file: models/detectron.defaults/fc7_b.pkl 10 | weights_file: models/detectron.defaults/fc7_w.pkl 11 | model_data_dir: ${model_config.unimodal_image.model_data_dir} 12 | num_output_features: 1 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/databases/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | import mmf.datasets.databases.readers # noqa 3 | 4 | from .annotation_database import AnnotationDatabase 5 | from .features_database import FeaturesDatabase 6 | from .image_database import ImageDatabase 7 | from .scene_graph_database import SceneGraphDatabase 8 | 9 | 10 | __all__ = [ 11 | "AnnotationDatabase", 12 | "FeaturesDatabase", 13 | "ImageDatabase", 14 | "SceneGraphDatabase", 15 | ] 16 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/butd/configs/textcaps/eval_pretrained_coco_model.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./beam_search.yaml 3 | 4 | dataset_config: 5 | textcaps: 6 | processors: 7 | text_processor: 8 | params: 9 | vocab: 10 | vocab_file: textcaps/defaults/extras/vocabs/coco_vocabulary_captioning_thresh5.txt 11 | caption_processor: 12 | params: 13 | vocab: 14 | vocab_file: textcaps/defaults/extras/vocabs/coco_vocabulary_captioning_thresh5.txt 15 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/butd/configs/textcaps/beam_search.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | textcaps: 6 | zoo_requirements: 7 | - textvqa.defaults 8 | - textcaps.defaults 9 | annotations: 10 | val: 11 | - textcaps/defaults/annotations/imdb_val_filtered_by_image_id.npy 12 | 13 | model_config: 14 | butd: &butd 15 | inference: 16 | type: beam_search 17 | params: 18 | beam_length: 5 19 | 20 | training: 21 | batch_size: 1 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/run/gqa_test.bash: -------------------------------------------------------------------------------- 1 | # The name of this experiment. 2 | name=$2 3 | 4 | # Save logs and models under snap/gqa; make backup. 5 | output=snap/gqa/$name 6 | mkdir -p $output/src 7 | cp -r src/* $output/src/ 8 | cp $0 $output/run.bash 9 | 10 | # See Readme.md for option details. 11 | CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \ 12 | python src/tasks/gqa.py \ 13 | --tiny --train train --valid "" \ 14 | --llayers 9 --xlayers 5 --rlayers 5 \ 15 | --tqdm --output $output ${@:3} 16 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/butd/configs/textcaps/beam_search.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | textcaps: 6 | zoo_requirements: 7 | - textvqa.defaults 8 | - textcaps.defaults 9 | annotations: 10 | val: 11 | - textcaps/defaults/annotations/imdb_val_filtered_by_image_id.npy 12 | 13 | model_config: 14 | butd: &butd 15 | inference: 16 | type: beam_search 17 | params: 18 | beam_length: 5 19 | 20 | training: 21 | batch_size: 1 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/m4c_captioner/configs/butd/textcaps/eval_pretrained_coco_model.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./beam_search.yaml 3 | 4 | dataset_config: 5 | textcaps: 6 | processors: 7 | text_processor: 8 | params: 9 | vocab: 10 | vocab_file: textcaps/defaults/extras/vocabs/coco_vocabulary_captioning_thresh5.txt 11 | caption_processor: 12 | params: 13 | vocab: 14 | vocab_file: textcaps/defaults/extras/vocabs/coco_vocabulary_captioning_thresh5.txt 15 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/vilbert/configs/vqa2/train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | vqa2: 6 | use_images: false 7 | use_features: true 8 | features: 9 | train: 10 | - coco/defaults/features/coco_trainval2014.lmdb 11 | - coco/defaults/features/coco_trainval2014.lmdb 12 | annotations: 13 | train: 14 | - vqa2/defaults/annotations/imdb_train2014.npy 15 | - vqa2/defaults/annotations/imdb_val2014.npy 16 | return_features_info: true 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/m4c_captioner/configs/butd/textcaps/eval_pretrained_coco_model.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./beam_search.yaml 3 | 4 | dataset_config: 5 | textcaps: 6 | processors: 7 | text_processor: 8 | params: 9 | vocab: 10 | vocab_file: textcaps/defaults/extras/vocabs/coco_vocabulary_captioning_thresh5.txt 11 | caption_processor: 12 | params: 13 | vocab: 14 | vocab_file: textcaps/defaults/extras/vocabs/coco_vocabulary_captioning_thresh5.txt 15 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/vilbert/configs/vqa2/train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | vqa2: 6 | use_images: false 7 | use_features: true 8 | features: 9 | train: 10 | - coco/defaults/features/coco_trainval2014.lmdb 11 | - coco/defaults/features/coco_trainval2014.lmdb 12 | annotations: 13 | train: 14 | - vqa2/defaults/annotations/imdb_train2014.npy 15 | - vqa2/defaults/annotations/imdb_val2014.npy 16 | return_features_info: true 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/m4c_captioner/configs/butd/textcaps/beam_search.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | textcaps: 6 | zoo_requirements: 7 | - textvqa.defaults 8 | - textcaps.defaults 9 | annotations: 10 | val: 11 | - textcaps/defaults/annotations/imdb_val_filtered_by_image_id.npy 12 | 13 | model_config: 14 | butd: &butd 15 | inference: 16 | type: beam_search 17 | params: 18 | beam_length: 5 19 | 20 | training: 21 | batch_size: 1 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/masked_coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_coco: 3 | return_features_info: true 4 | 5 | optimizer: 6 | type: adam_w 7 | params: 8 | lr: 5e-5 9 | eps: 1e-8 10 | 11 | scheduler: 12 | type: warmup_linear 13 | params: 14 | num_warmup_steps: 1000 15 | num_training_steps: 11000 16 | 17 | training: 18 | batch_size: 480 19 | lr_scheduler: true 20 | # Don't forget to update schedule_attributes if you update this 21 | max_updates: 11000 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/tests/utils/test_distributed.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | import unittest 3 | 4 | import mmf.utils.distributed as distributed 5 | 6 | 7 | class TestUtilsDistributed(unittest.TestCase): 8 | def test_object_byte_tensor_conversion(self): 9 | test_obj = [1, "2", {3: 4}, [5]] 10 | test_obj_bytes = distributed.object_to_byte_tensor(test_obj) 11 | test_obj_dec = distributed.byte_tensor_to_object(test_obj_bytes) 12 | self.assertEqual(test_obj_dec, test_obj) 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/conceptual_captions/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | __all__ = [ 3 | "ConceptualCaptionsBuilder", 4 | "ConceptualCaptionsDataset", 5 | "MaskedConceptualCaptionsBuilder", 6 | "MaskedConceptualCaptionsDataset", 7 | ] 8 | 9 | from .builder import ConceptualCaptionsBuilder 10 | from .dataset import ConceptualCaptionsDataset 11 | from .masked_builder import MaskedConceptualCaptionsBuilder 12 | from .masked_dataset import MaskedConceptualCaptionsDataset 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/m4c_captioner/configs/butd/textcaps/beam_search.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | textcaps: 6 | zoo_requirements: 7 | - textvqa.defaults 8 | - textcaps.defaults 9 | annotations: 10 | val: 11 | - textcaps/defaults/annotations/imdb_val_filtered_by_image_id.npy 12 | 13 | model_config: 14 | butd: &butd 15 | inference: 16 | type: beam_search 17 | params: 18 | beam_length: 5 19 | 20 | training: 21 | batch_size: 1 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/masked_coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_coco: 3 | return_features_info: true 4 | 5 | optimizer: 6 | type: adam_w 7 | params: 8 | lr: 5e-5 9 | eps: 1e-8 10 | 11 | scheduler: 12 | type: warmup_linear 13 | params: 14 | num_warmup_steps: 1000 15 | num_training_steps: 11000 16 | 17 | training: 18 | batch_size: 480 19 | lr_scheduler: true 20 | # Don't forget to update schedule_attributes if you update this 21 | max_updates: 11000 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/others/mmf_bert/configs/masked_coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_coco: 3 | return_features_info: true 4 | 5 | optimizer: 6 | type: adam_w 7 | params: 8 | lr: 5e-5 9 | eps: 1e-8 10 | 11 | scheduler: 12 | type: warmup_linear 13 | params: 14 | num_warmup_steps: 1000 15 | num_training_steps: 11000 16 | 17 | training: 18 | batch_size: 480 19 | lr_scheduler: true 20 | # Don't forget to update schedule_attributes if you update this 21 | max_updates: 11000 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/others/mmf_bert/configs/masked_coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_coco: 3 | return_features_info: true 4 | 5 | optimizer: 6 | type: adam_w 7 | params: 8 | lr: 5e-5 9 | eps: 1e-8 10 | 11 | scheduler: 12 | type: warmup_linear 13 | params: 14 | num_warmup_steps: 1000 15 | num_training_steps: 11000 16 | 17 | training: 18 | batch_size: 480 19 | lr_scheduler: true 20 | # Don't forget to update schedule_attributes if you update this 21 | max_updates: 11000 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/scripts/visualBert/gqa/gqa_finetune.sh: -------------------------------------------------------------------------------- 1 | # Since VisualBert-GQA is not provided now, we need first finetune the pretrained model 2 | 3 | gpu=2,3 4 | task=gqa 5 | CUDA_VISIBLE_DEVICES=$gpu PYTHONPATH=`pwd` python VisualBERT/run.py \ 6 | --task=$task \ 7 | config=projects/visual_bert/configs/gqa/defaults.yaml \ 8 | model=visual_bert \ 9 | dataset=gqa \ 10 | run_type=train_val \ 11 | checkpoint.resume=True \ 12 | env.data_dir=./env/data_dir \ 13 | training.num_workers=2 \ 14 | training.batch_size=8 \ 15 | training.trainer=mmf \ 16 | training.seed=1234 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/lxmert/configs/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/models/lxmert/defaults.yaml 3 | 4 | optimizer: 5 | type: adam_w 6 | params: 7 | lr: 1e-4 8 | eps: 1e-8 9 | 10 | training: 11 | seed: 9595 12 | batch_size: 4 13 | lr_scheduler: false 14 | find_unused_parameters: true 15 | use_warmup: true 16 | warmup_factor: 0.05 17 | warmup_iterations: 1000 18 | max_epochs: 20 19 | max_updates: null 20 | pin_memory: true 21 | 22 | 23 | evaluation: 24 | metrics: 25 | - vqa_accuracy 26 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/lxmert/configs/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/models/lxmert/defaults.yaml 3 | 4 | optimizer: 5 | type: adam_w 6 | params: 7 | lr: 1e-4 8 | eps: 1e-8 9 | 10 | training: 11 | seed: 9595 12 | batch_size: 4 13 | lr_scheduler: false 14 | find_unused_parameters: true 15 | use_warmup: true 16 | warmup_factor: 0.05 17 | warmup_iterations: 1000 18 | max_epochs: 20 19 | max_updates: null 20 | pin_memory: true 21 | 22 | 23 | evaluation: 24 | metrics: 25 | - vqa_accuracy 26 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/lxmert/configs/visual_genome/masked.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_visual_genome: 3 | use_features: true 4 | add_answer: true 5 | max_features: 36 6 | features: 7 | train: 8 | - visual_genome/detectron_fix_100/fc6/,visual_genome/resnet152/ 9 | - visual_genome/detectron_fix_100/fc6/,visual_genome/resnet152/ 10 | annotations: 11 | train: 12 | - imdb/visual_genome/vg_question_answers.jsonl 13 | - imdb/visual_genome/vg_question_answers_placeholder.jsonl 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/lxmert/configs/visual_genome/masked.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_visual_genome: 3 | use_features: true 4 | add_answer: true 5 | max_features: 36 6 | features: 7 | train: 8 | - visual_genome/detectron_fix_100/fc6/,visual_genome/resnet152/ 9 | - visual_genome/detectron_fix_100/fc6/,visual_genome/resnet152/ 10 | annotations: 11 | train: 12 | - imdb/visual_genome/vg_question_answers.jsonl 13 | - imdb/visual_genome/vg_question_answers_placeholder.jsonl 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_coco: 3 | return_features_info: true 4 | 5 | optimizer: 6 | type: adam_w 7 | params: 8 | lr: 5e-5 9 | eps: 1e-8 10 | 11 | scheduler: 12 | type: warmup_linear 13 | params: 14 | num_warmup_steps: 1000 15 | num_training_steps: 11000 16 | 17 | training: 18 | batch_size: 480 19 | lr_scheduler: true 20 | # Don't forget to update schedule_attributes if you update this 21 | max_updates: 11000 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_coco: 3 | return_features_info: true 4 | 5 | optimizer: 6 | type: adam_w 7 | params: 8 | lr: 5e-5 9 | eps: 1e-8 10 | 11 | scheduler: 12 | type: warmup_linear 13 | params: 14 | num_warmup_steps: 1000 15 | num_training_steps: 11000 16 | 17 | training: 18 | batch_size: 480 19 | lr_scheduler: true 20 | # Don't forget to update schedule_attributes if you update this 21 | max_updates: 11000 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/masked_vqa2/pretrain_train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | use_images: false 7 | use_features: true 8 | features: 9 | train: 10 | - coco/defaults/features/coco_trainval2014.lmdb 11 | - coco/defaults/features/coco_trainval2014.lmdb 12 | annotations: 13 | train: 14 | - vqa2/defaults/annotations/imdb_train2014.npy 15 | - vqa2/defaults/annotations/imdb_val2014.npy 16 | return_features_info: true 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | # isort:skip_file 3 | # flake8: noqa: F401 4 | 5 | from VisualBERT.mmf import utils, common, modules, datasets, models 6 | from VisualBERT.mmf.modules import losses, schedulers, optimizers, metrics 7 | from VisualBERT.mmf.version import __version__ 8 | 9 | 10 | __all__ = [ 11 | "utils", 12 | "common", 13 | "modules", 14 | "datasets", 15 | "models", 16 | "losses", 17 | "schedulers", 18 | "optimizers", 19 | "metrics", 20 | ] 21 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/masked_vqa2/pretrain_train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | use_images: false 7 | use_features: true 8 | features: 9 | train: 10 | - coco/defaults/features/coco_trainval2014.lmdb 11 | - coco/defaults/features/coco_trainval2014.lmdb 12 | annotations: 13 | train: 14 | - vqa2/defaults/annotations/imdb_train2014.npy 15 | - vqa2/defaults/annotations/imdb_val2014.npy 16 | return_features_info: true 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_vqa2/full_train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | use_images: false 7 | use_features: true 8 | features: 9 | train: 10 | - coco/defaults/features/coco_trainval2014.lmdb 11 | - coco/defaults/features/coco_trainval2014.lmdb 12 | annotations: 13 | train: 14 | - vqa2/defaults/annotations/imdb_train2014.npy 15 | - vqa2/defaults/annotations/imdb_val2014.npy 16 | return_features_info: true 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_vqa2/full_train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | use_images: false 7 | use_features: true 8 | features: 9 | train: 10 | - coco/defaults/features/coco_trainval2014.lmdb 11 | - coco/defaults/features/coco_trainval2014.lmdb 12 | annotations: 13 | train: 14 | - vqa2/defaults/annotations/imdb_train2014.npy 15 | - vqa2/defaults/annotations/imdb_val2014.npy 16 | return_features_info: true 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/masked_coco/pretrain_train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | return_features_info: true 7 | use_images: false 8 | use_features: true 9 | features: 10 | train: 11 | - coco/defaults/features/trainval2014.lmdb 12 | - coco/defaults/features/trainval2014.lmdb 13 | annotations: 14 | train: 15 | - coco/defaults/annotations/imdb_karpathy_train_by_image.npy 16 | - coco/defaults/annotations/imdb_karpathy_val_by_image.npy 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/ocrvqa/dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from VisualBERT.mmf.datasets.builders.textvqa.dataset import TextVQADataset 3 | 4 | 5 | class OCRVQADataset(TextVQADataset): 6 | def __init__(self, config, dataset_type, imdb_file_index, *args, **kwargs): 7 | super().__init__(config, dataset_type, imdb_file_index, *args, **kwargs) 8 | self.dataset_name = "ocrvqa" 9 | 10 | def preprocess_sample_info(self, sample_info): 11 | # Do nothing in this case 12 | return sample_info 13 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/masked_coco/pretrain_train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | return_features_info: true 7 | use_images: false 8 | use_features: true 9 | features: 10 | train: 11 | - coco/defaults/features/trainval2014.lmdb 12 | - coco/defaults/features/trainval2014.lmdb 13 | annotations: 14 | train: 15 | - coco/defaults/annotations/imdb_karpathy_train_by_image.npy 16 | - coco/defaults/annotations/imdb_karpathy_val_by_image.npy 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/mmbt/configs/masked_coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/models/mmbt/pretrain.yaml 3 | - configs/models/mmbt/with_features.yaml 4 | 5 | scheduler: 6 | type: warmup_linear 7 | params: 8 | num_warmup_steps: 2000 9 | num_training_steps: ${training.max_updates} 10 | 11 | optimizer: 12 | type: adam_w 13 | params: 14 | lr: 5e-5 15 | eps: 1e-8 16 | 17 | training: 18 | batch_size: 128 19 | lr_scheduler: true 20 | max_updates: 22000 21 | 22 | checkpoint: 23 | pretrained_state_mapping: 24 | bert: bert 25 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/vilbert/configs/masked_coco/pretrain_train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | return_features_info: true 7 | use_images: false 8 | use_features: true 9 | features: 10 | train: 11 | - coco/defaults/features/coco_trainval2014.lmdb 12 | - coco/defaults/features/coco_trainval2014.lmdb 13 | annotations: 14 | train: 15 | - coco/defaults/annotations/imdb_karpathy_train_by_image.npy 16 | - coco/defaults/annotations/imdb_karpathy_val_by_image.npy 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/unimodal/bert.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | unimodal_text: 3 | bert_model_name: bert-base-uncased 4 | text_hidden_size: 768 5 | num_labels: 2 6 | text_encoder: 7 | type: transformer 8 | params: 9 | bert_model_name: ${model_config.unimodal_text.bert_model_name} 10 | hidden_size: 768 11 | num_hidden_layers: 12 12 | num_attention_heads: 12 13 | output_attentions: false 14 | output_hidden_states: false 15 | 16 | classifier: 17 | params: 18 | in_dim: 768 19 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/mmbt/configs/masked_coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/models/mmbt/pretrain.yaml 3 | - configs/models/mmbt/with_features.yaml 4 | 5 | scheduler: 6 | type: warmup_linear 7 | params: 8 | num_warmup_steps: 2000 9 | num_training_steps: ${training.max_updates} 10 | 11 | optimizer: 12 | type: adam_w 13 | params: 14 | lr: 5e-5 15 | eps: 1e-8 16 | 17 | training: 18 | batch_size: 128 19 | lr_scheduler: true 20 | max_updates: 22000 21 | 22 | checkpoint: 23 | pretrained_state_mapping: 24 | bert: bert 25 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/vilbert/configs/masked_coco/pretrain_train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | return_features_info: true 7 | use_images: false 8 | use_features: true 9 | features: 10 | train: 11 | - coco/defaults/features/coco_trainval2014.lmdb 12 | - coco/defaults/features/coco_trainval2014.lmdb 13 | annotations: 14 | train: 15 | - coco/defaults/annotations/imdb_karpathy_train_by_image.npy 16 | - coco/defaults/annotations/imdb_karpathy_val_by_image.npy 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/run/vqa_test.bash: -------------------------------------------------------------------------------- 1 | # The name of this experiment. 2 | name=$2 3 | 4 | # Save logs and models under snap/vqa; make backup. 5 | output=snap/vqa/$name 6 | mkdir -p $output/src 7 | cp -r src/* $output/src/ 8 | cp $0 $output/run.bash 9 | 10 | # See Readme.md for option details. 11 | CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \ 12 | python src/tasks/vqa.py \ 13 | --tiny --train train --valid "" \ 14 | --llayers 9 --xlayers 5 --rlayers 5 \ 15 | --batchSize 32 --optim bert --lr 5e-5 --epochs 4 \ 16 | --tqdm --output $output ${@:3} 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from .base_dataset import BaseDataset 3 | from .base_dataset_builder import BaseDatasetBuilder 4 | from .concat_dataset import ConcatDataset 5 | from .mmf_dataset import MMFDataset 6 | from .mmf_dataset_builder import MMFDatasetBuilder 7 | from .multi_dataset_loader import MultiDatasetLoader 8 | 9 | 10 | __all__ = [ 11 | "BaseDataset", 12 | "BaseDatasetBuilder", 13 | "ConcatDataset", 14 | "MultiDatasetLoader", 15 | "MMFDataset", 16 | "MMFDatasetBuilder", 17 | ] 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_coco/full_train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | return_features_info: true 7 | use_images: false 8 | use_features: true 9 | features: 10 | train: 11 | - coco/defaults/features/trainval2014.lmdb 12 | - coco/defaults/features/trainval2014.lmdb 13 | annotations: 14 | train: 15 | - coco/defaults/annotations/imdb_karpathy_train_by_image.npy 16 | - coco/defaults/annotations/imdb_karpathy_val_by_image.npy 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_coco/full_train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_coco: 6 | return_features_info: true 7 | use_images: false 8 | use_features: true 9 | features: 10 | train: 11 | - coco/defaults/features/trainval2014.lmdb 12 | - coco/defaults/features/trainval2014.lmdb 13 | annotations: 14 | train: 15 | - coco/defaults/annotations/imdb_karpathy_train_by_image.npy 16 | - coco/defaults/annotations/imdb_karpathy_val_by_image.npy 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/vilbert/configs/masked_vqa2/pretrain_train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | use_images: false 7 | use_features: true 8 | features: 9 | train: 10 | - coco/defaults/features/coco_trainval2014.lmdb 11 | - coco/defaults/features/coco_trainval2014.lmdb 12 | annotations: 13 | train: 14 | - vqa2/defaults/annotations/imdb_train2014.npy 15 | - vqa2/defaults/annotations/imdb_val2014.npy 16 | return_features_info: true 17 | use_image_feature_masks: true 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/vilbert/configs/masked_vqa2/pretrain_train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | masked_vqa2: 6 | use_images: false 7 | use_features: true 8 | features: 9 | train: 10 | - coco/defaults/features/coco_trainval2014.lmdb 11 | - coco/defaults/features/coco_trainval2014.lmdb 12 | annotations: 13 | train: 14 | - vqa2/defaults/annotations/imdb_train2014.npy 15 | - vqa2/defaults/annotations/imdb_val2014.npy 16 | return_features_info: true 17 | use_image_feature_masks: true 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/masked_conceptual_captions/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_conceptual_captions: 3 | return_features_info: true 4 | 5 | optimizer: 6 | type: adam_w 7 | params: 8 | lr: 5e-5 9 | eps: 1e-8 10 | 11 | scheduler: 12 | type: warmup_linear 13 | params: 14 | num_warmup_steps: 1000 15 | num_training_steps: 11000 16 | 17 | training: 18 | batch_size: 480 19 | lr_scheduler: true 20 | # Don't forget to update schedule_attributes if you update this 21 | max_updates: 11000 22 | find_unused_parameters: true 23 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/masked_conceptual_captions/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_conceptual_captions: 3 | return_features_info: true 4 | 5 | optimizer: 6 | type: adam_w 7 | params: 8 | lr: 5e-5 9 | eps: 1e-8 10 | 11 | scheduler: 12 | type: warmup_linear 13 | params: 14 | num_warmup_steps: 1000 15 | num_training_steps: 11000 16 | 17 | training: 18 | batch_size: 480 19 | lr_scheduler: true 20 | # Don't forget to update schedule_attributes if you update this 21 | max_updates: 11000 22 | find_unused_parameters: true 23 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/cnn_lstm/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | cnn_lstm: 3 | losses: 4 | - type: logit_bce 5 | text_embedding: 6 | embedding_dim: 20 7 | lstm: 8 | input_size: 20 9 | hidden_size: 50 10 | bidirectional: true 11 | batch_first: true 12 | cnn: 13 | layers: 14 | input_dims: [3, 64, 128, 128, 64, 64] 15 | output_dims: [64, 128, 128, 64, 64, 10] 16 | kernel_sizes: [7, 5, 5, 5, 5, 1] 17 | classifier: 18 | type: mlp 19 | params: 20 | in_dim: 450 21 | out_dim: 2 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/databases/scene_graph_database.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from VisualBERT.mmf.datasets.databases.annotation_database import AnnotationDatabase 3 | 4 | 5 | class SceneGraphDatabase(AnnotationDatabase): 6 | def __init__(self, config, scene_graph_path, *args, **kwargs): 7 | super().__init__(config, scene_graph_path, *args, **kwargs) 8 | self.data_dict = {} 9 | for item in self.data: 10 | self.data_dict[item["image_id"]] = item 11 | 12 | def __getitem__(self, idx): 13 | return self.data_dict[idx] 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pythia/configs/vqa2/resnet_only.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | vqa2: 6 | use_images: false 7 | use_features: true 8 | zoo_requirements: 9 | - coco.resnet152 10 | - vqa2.defaults 11 | features: 12 | train: 13 | - coco/resnet152/features/trainval2014.lmdb 14 | val: 15 | - coco/resnet152/features/trainval2014.lmdb 16 | test: 17 | - coco/resnet152/features/test2015.lmdb 18 | model_config: 19 | pythia: 20 | image_feature_encodings: 21 | - type: default 22 | params: {} 23 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pythia/configs/vqa2/resnet_only.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | vqa2: 6 | use_images: false 7 | use_features: true 8 | zoo_requirements: 9 | - coco.resnet152 10 | - vqa2.defaults 11 | features: 12 | train: 13 | - coco/resnet152/features/trainval2014.lmdb 14 | val: 15 | - coco/resnet152/features/trainval2014.lmdb 16 | test: 17 | - coco/resnet152/features/test2015.lmdb 18 | model_config: 19 | pythia: 20 | image_feature_encodings: 21 | - type: default 22 | params: {} 23 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_conceptual_captions: 3 | return_features_info: true 4 | 5 | optimizer: 6 | type: adam_w 7 | params: 8 | lr: 5e-5 9 | eps: 1e-8 10 | 11 | scheduler: 12 | type: warmup_linear 13 | params: 14 | num_warmup_steps: 1000 15 | num_training_steps: 11000 16 | 17 | training: 18 | batch_size: 480 19 | lr_scheduler: true 20 | # Don't forget to update schedule_attributes if you update this 21 | max_updates: 11000 22 | find_unused_parameters: true 23 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_conceptual_captions/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_conceptual_captions: 3 | return_features_info: true 4 | 5 | optimizer: 6 | type: adam_w 7 | params: 8 | lr: 5e-5 9 | eps: 1e-8 10 | 11 | scheduler: 12 | type: warmup_linear 13 | params: 14 | num_warmup_steps: 1000 15 | num_training_steps: 11000 16 | 17 | training: 18 | batch_size: 480 19 | lr_scheduler: true 20 | # Don't forget to update schedule_attributes if you update this 21 | max_updates: 11000 22 | find_unused_parameters: true 23 | -------------------------------------------------------------------------------- /Transparency/README.md: -------------------------------------------------------------------------------- 1 | ## Reproduction of Results 2 | 3 | 1. Pls follow the original [repo](https://github.com/akashkm99/Interpretable-Attention) to prepare required data and environments. Note that all datasets should be firstly preprocessed by runing .ipynb files in *preprocess folder*. 4 | 5 | 2. Run the shell script in [scripts folder](https://github.com/BierOne/Attention-Faithfulness/tree/master/Transparency/scripts) to **train the model**. For example, 6 | ``` 7 | bash ./scripts/bc_all.sh 8 | ``` 9 | 10 | 3. Run the notebook (*nlp_baseline_check_bc.ipynb* or *nlp_baseline_check_qa.ipynb*) to evaluate explanations and check results. 11 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/trainers/core/profiling.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | import logging 4 | from abc import ABC 5 | from typing import Type 6 | 7 | from VisualBERT.mmf.utils.timer import Timer 8 | 9 | 10 | logger = logging.getLogger(__name__) 11 | 12 | 13 | class TrainerProfilingMixin(ABC): 14 | profiler: Type[Timer] = Timer() 15 | 16 | def profile(self, text: str) -> None: 17 | if self.training_config.logger_level != "debug": 18 | return 19 | logging.debug(f"{text}: {self.profiler.get_time_since_start()}") 20 | self.profiler.reset() 21 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/visual_bert/configs/masked_vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_vqa2: 3 | annotations: 4 | train: 5 | - vqa2/defaults/annotations/imdb_train2014.npy 6 | return_features_info: true 7 | 8 | optimizer: 9 | type: adam_w 10 | params: 11 | lr: 5e-5 12 | eps: 1e-8 13 | 14 | scheduler: 15 | type: warmup_linear 16 | params: 17 | num_warmup_steps: 1000 18 | num_training_steps: 11000 19 | 20 | training: 21 | batch_size: 480 22 | lr_scheduler: true 23 | # Don't forget to update schedule_attributes if you update this 24 | max_updates: 11000 25 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/visual_bert/configs/masked_vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_vqa2: 3 | annotations: 4 | train: 5 | - vqa2/defaults/annotations/imdb_train2014.npy 6 | return_features_info: true 7 | 8 | optimizer: 9 | type: adam_w 10 | params: 11 | lr: 5e-5 12 | eps: 1e-8 13 | 14 | scheduler: 15 | type: warmup_linear 16 | params: 17 | num_warmup_steps: 1000 18 | num_training_steps: 11000 19 | 20 | training: 21 | batch_size: 480 22 | lr_scheduler: true 23 | # Don't forget to update schedule_attributes if you update this 24 | max_updates: 11000 25 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/run/gqa_finetune.bash: -------------------------------------------------------------------------------- 1 | # The name of this experiment. 2 | name=$2 3 | 4 | # Save logs and models under snap/gqa; make backup. 5 | output=snap/gqa/$name 6 | mkdir -p $output/src 7 | cp -r src/* $output/src/ 8 | cp $0 $output/run.bash 9 | 10 | # See Readme.md for option details. 11 | CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \ 12 | python src/tasks/gqa.py \ 13 | --train train,valid --valid testdev \ 14 | --llayers 9 --xlayers 5 --rlayers 5 \ 15 | --loadLXMERTQA snap/pretrained/model \ 16 | --batchSize 32 --optim bert --lr 1e-5 --epochs 4 \ 17 | --tqdm --output $output ${@:3} 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/run/vqa_finetune.bash: -------------------------------------------------------------------------------- 1 | # The name of this experiment. 2 | name=$2 3 | 4 | # Save logs and models under snap/vqa; make backup. 5 | output=snap/vqa/$name 6 | mkdir -p $output/src 7 | cp -r src/* $output/src/ 8 | cp $0 $output/run.bash 9 | 10 | # See Readme.md for option details. 11 | CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \ 12 | python src/tasks/vqa.py \ 13 | --train train,nominival --valid minival \ 14 | --llayers 9 --xlayers 5 --rlayers 5 \ 15 | --loadLXMERTQA snap/pretrained/model \ 16 | --batchSize 32 --optim bert --lr 5e-5 --epochs 4 \ 17 | --tqdm --output $output ${@:3} 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/run/nlvr2_finetune.bash: -------------------------------------------------------------------------------- 1 | # The name of this experiment. 2 | name=$2 3 | 4 | # Save logs and models under snap/nlvr2; Make backup. 5 | output=snap/nlvr2/$name 6 | mkdir -p $output/src 7 | cp -r src/* $output/src/ 8 | cp $0 $output/run.bash 9 | 10 | # See run/Readme.md for option details. 11 | CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \ 12 | python src/tasks/nlvr2.py \ 13 | --train train --valid valid \ 14 | --llayers 9 --xlayers 5 --rlayers 5 \ 15 | --loadLXMERT snap/pretrained/model \ 16 | --batchSize 32 --optim bert --lr 5e-5 --epochs 4 \ 17 | --tqdm --output $output ${@:3} 18 | 19 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/vqa2/ocr_builder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from VisualBERT.mmf.common.registry import Registry 3 | from VisualBERT.mmf.datasets.builders.vizwiz import VizWizBuilder 4 | from VisualBERT.mmf.datasets.builders.vqa2.ocr_dataset import VQA2OCRDataset 5 | 6 | 7 | @Registry.register_builder("vqa2_ocr") 8 | class TextVQABuilder(VizWizBuilder): 9 | def __init__(self): 10 | super().__init__() 11 | self.dataset_name = "VQA2_OCR" 12 | self.set_dataset_class(VQA2OCRDataset) 13 | 14 | @classmethod 15 | def config_path(self): 16 | return None 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/visual_bert/masked_vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_vqa2: 3 | annotations: 4 | train: 5 | - vqa2/defaults/annotations/imdb_train2014.npy 6 | return_features_info: true 7 | 8 | optimizer: 9 | type: adam_w 10 | params: 11 | lr: 5e-5 12 | eps: 1e-8 13 | 14 | scheduler: 15 | type: warmup_linear 16 | params: 17 | num_warmup_steps: 1000 18 | num_training_steps: 11000 19 | 20 | training: 21 | batch_size: 480 22 | lr_scheduler: true 23 | # Don't forget to update schedule_attributes if you update this 24 | max_updates: 11000 25 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/visual_bert/masked_vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | masked_vqa2: 3 | annotations: 4 | train: 5 | - vqa2/defaults/annotations/imdb_train2014.npy 6 | return_features_info: true 7 | 8 | optimizer: 9 | type: adam_w 10 | params: 11 | lr: 5e-5 12 | eps: 1e-8 13 | 14 | scheduler: 15 | type: warmup_linear 16 | params: 17 | num_warmup_steps: 1000 18 | num_training_steps: 11000 19 | 20 | training: 21 | batch_size: 480 22 | lr_scheduler: true 23 | # Don't forget to update schedule_attributes if you update this 24 | max_updates: 11000 25 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/visual_bert/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | visual_bert: 3 | bert_model_name: bert-base-uncased 4 | training_head_type: pretraining 5 | visual_embedding_dim: 2048 6 | special_visual_initialize: true 7 | embedding_strategy: plain 8 | bypass_transformer: false 9 | output_attentions: false 10 | output_hidden_states: false 11 | random_initialize: false 12 | freeze_base: false 13 | finetune_lr_multiplier: 1 14 | # Default points to BERT pooler strategy which is to take 15 | # representation of CLS token after passing it through a dense layer 16 | pooler_strategy: default 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/utils/transform.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from torch import Tensor 4 | 5 | 6 | def transform_to_batch_sequence(tensor: Tensor) -> Tensor: 7 | if len(tensor.size()) == 2: 8 | return tensor 9 | else: 10 | assert len(tensor.size()) == 3 11 | return tensor.contiguous().view(-1, tensor.size(-1)) 12 | 13 | 14 | def transform_to_batch_sequence_dim(tensor: Tensor) -> Tensor: 15 | if len(tensor.size()) == 3: 16 | return tensor 17 | else: 18 | assert len(tensor.size()) == 4 19 | return tensor.contiguous().view(-1, tensor.size(-2), tensor.size(-1)) 20 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/scripts/lxmert/vqa/save_exp.sh: -------------------------------------------------------------------------------- 1 | 2 | # All exp methods: ours_no_lrp transformer_att partial_lrp raw_attn rollout attn_grad attn_norm inputGrad ig rand 3 | 4 | samples=10000 5 | for text in False 6 | do 7 | for method_name in ours_no_lrp transformer_att partial_lrp raw_attn rollout attn_grad attn_norm inputGrad ig 8 | do 9 | CUDA_VISIBLE_DEVICES=2 PYTHONPATH=`pwd` python lxmert/lxmert/save_exp.py \ 10 | --COCO_path /home/lyb/vqa_data/mscoco/val2014/ \ 11 | --method $method_name \ 12 | --is-text-pert $text \ 13 | --is-positive-pert True \ 14 | --load_cached_exp=False \ 15 | --num-samples=$samples \ 16 | --load_raw_img False 17 | done 18 | done -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/stvqa/builder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from VisualBERT.mmf.common.registry import Registry 3 | from VisualBERT.mmf.datasets.builders.stvqa.dataset import STVQADataset 4 | from VisualBERT.mmf.datasets.builders.textvqa.builder import TextVQABuilder 5 | 6 | 7 | @Registry.register_builder("stvqa") 8 | class STVQABuilder(TextVQABuilder): 9 | def __init__(self): 10 | super().__init__() 11 | self.dataset_name = "stvqa" 12 | self.set_dataset_class(STVQADataset) 13 | 14 | @classmethod 15 | def config_path(cls): 16 | return "configs/datasets/stvqa/defaults.yaml" 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/m4c_captioner/configs/m4c_captioner/textcaps/with_caffe2_feat.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | textcaps: 6 | zoo_requirements: 7 | - textvqa.caffe2 8 | - textvqa.ocr_en 9 | - textcaps.defaults 10 | features: 11 | train: 12 | - textvqa/caffe2/features/open_images/detectron.lmdb,textvqa/ocr_en/features/ocr_en_frcn_features.lmdb 13 | val: 14 | - textvqa/caffe2/features/open_images/detectron.lmdb,textvqa/ocr_en/features/ocr_en_frcn_features.lmdb 15 | test: 16 | - textvqa/caffe2/features/open_images/detectron.lmdb,textvqa/ocr_en/features/ocr_en_frcn_features.lmdb 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/ocrvqa/builder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from VisualBERT.mmf.common.registry import Registry 3 | from VisualBERT.mmf.datasets.builders.ocrvqa.dataset import OCRVQADataset 4 | from VisualBERT.mmf.datasets.builders.textvqa.builder import TextVQABuilder 5 | 6 | 7 | @Registry.register_builder("ocrvqa") 8 | class OCRVQABuilder(TextVQABuilder): 9 | def __init__(self): 10 | super().__init__() 11 | self.dataset_name = "ocrvqa" 12 | self.set_dataset_class(OCRVQADataset) 13 | 14 | @classmethod 15 | def config_path(cls): 16 | return "configs/datasets/ocrvqa/defaults.yaml" 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/m4c_captioner/configs/m4c_captioner/textcaps/with_caffe2_feat.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | textcaps: 6 | zoo_requirements: 7 | - textvqa.caffe2 8 | - textvqa.ocr_en 9 | - textcaps.defaults 10 | features: 11 | train: 12 | - textvqa/caffe2/features/open_images/detectron.lmdb,textvqa/ocr_en/features/ocr_en_frcn_features.lmdb 13 | val: 14 | - textvqa/caffe2/features/open_images/detectron.lmdb,textvqa/ocr_en/features/ocr_en_frcn_features.lmdb 15 | test: 16 | - textvqa/caffe2/features/open_images/detectron.lmdb,textvqa/ocr_en/features/ocr_en_frcn_features.lmdb 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/scripts/lxmert/gqa/gqa_save_exp.sh: -------------------------------------------------------------------------------- 1 | # All exp methods: ours_no_lrp transformer_att partial_lrp raw_attn rollout attn_grad attn_norm inputGrad ig rand 2 | 3 | samples=10000 4 | for text in False 5 | do 6 | for method_name in ours_no_lrp transformer_att partial_lrp raw_attn rollout attn_grad attn_norm inputGrad ig 7 | do 8 | CUDA_VISIBLE_DEVICES=2 PYTHONPATH=`pwd` python lxmert/lxmert/save_exp.py \ 9 | --COCO_path /home/lyb/vqa_data/gqa/images/ \ 10 | --method $method_name \ 11 | --is-text-pert $text \ 12 | --is-positive-pert True \ 13 | --load_cached_exp=False \ 14 | --num-samples=$samples \ 15 | --load_raw_img False \ 16 | --task gqa 17 | done 18 | done -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/vilbert/configs/masked_coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | vilbert: 3 | training_head_type: pretraining 4 | 5 | dataset_config: 6 | masked_coco: 7 | return_features_info: true 8 | use_image_feature_masks: true 9 | 10 | optimizer: 11 | type: adam_w 12 | params: 13 | lr: 5e-5 14 | eps: 1e-8 15 | 16 | scheduler: 17 | type: warmup_linear 18 | params: 19 | num_warmup_steps: 1000 20 | num_training_steps: 11000 21 | 22 | training: 23 | batch_size: 480 24 | lr_scheduler: true 25 | # Don't forget to update schedule_attributes if you update this 26 | max_updates: 11000 27 | find_unused_parameters: true 28 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/gqa/masked_builder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from VisualBERT.mmf.common.registry import registry 4 | from VisualBERT.mmf.datasets.builders.gqa.builder import GQABuilder 5 | from VisualBERT.mmf.datasets.builders.gqa.masked_dataset import MaskedGQADataset 6 | 7 | 8 | @registry.register_builder("masked_gqa") 9 | class MaskedGQABuilder(GQABuilder): 10 | def __init__(self): 11 | super().__init__() 12 | self.dataset_name = "masked_gqa" 13 | self.dataset_class = MaskedGQADataset 14 | 15 | @classmethod 16 | def config_path(cls): 17 | return "configs/datasets/gqa/masked.yaml" 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/sbu_captions/masked_builder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from VisualBERT.mmf.common.registry import registry 4 | from VisualBERT.mmf.datasets.builders.coco import MaskedCOCOBuilder 5 | 6 | from .masked_dataset import MaskedSBUDataset 7 | 8 | 9 | @registry.register_builder("masked_sbu") 10 | class MaskedSBUBuilder(MaskedCOCOBuilder): 11 | def __init__(self): 12 | super().__init__() 13 | self.dataset_name = "masked_sbu" 14 | self.set_dataset_class(MaskedSBUDataset) 15 | 16 | @classmethod 17 | def config_path(cls): 18 | return "configs/datasets/sbu_captions/masked.yaml" 19 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/vilbert/configs/masked_coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | vilbert: 3 | training_head_type: pretraining 4 | 5 | dataset_config: 6 | masked_coco: 7 | return_features_info: true 8 | use_image_feature_masks: true 9 | 10 | optimizer: 11 | type: adam_w 12 | params: 13 | lr: 5e-5 14 | eps: 1e-8 15 | 16 | scheduler: 17 | type: warmup_linear 18 | params: 19 | num_warmup_steps: 1000 20 | num_training_steps: 11000 21 | 22 | training: 23 | batch_size: 480 24 | lr_scheduler: true 25 | # Don't forget to update schedule_attributes if you update this 26 | max_updates: 11000 27 | find_unused_parameters: true 28 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/subset_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from torch.utils.data.dataset import Subset 4 | 5 | 6 | class MMFSubset(Subset): 7 | def __init__(self, dataset, indices): 8 | super().__init__(dataset, indices) 9 | self._dir_representation = dir(self) 10 | 11 | def __getattr__(self, name): 12 | if "_dir_representation" in self.__dict__ and name in self._dir_representation: 13 | return getattr(self, name) 14 | elif "dataset" in self.__dict__ and hasattr(self.dataset, name): 15 | return getattr(self.dataset, name) 16 | else: 17 | raise AttributeError(name) 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | vilbert: 3 | training_head_type: pretraining 4 | 5 | dataset_config: 6 | masked_coco: 7 | return_features_info: true 8 | use_image_feature_masks: true 9 | 10 | optimizer: 11 | type: adam_w 12 | params: 13 | lr: 5e-5 14 | eps: 1e-8 15 | 16 | scheduler: 17 | type: warmup_linear 18 | params: 19 | num_warmup_steps: 1000 20 | num_training_steps: 11000 21 | 22 | training: 23 | batch_size: 480 24 | lr_scheduler: true 25 | # Don't forget to update schedule_attributes if you update this 26 | max_updates: 11000 27 | find_unused_parameters: true 28 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | vilbert: 3 | training_head_type: pretraining 4 | 5 | dataset_config: 6 | masked_coco: 7 | return_features_info: true 8 | use_image_feature_masks: true 9 | 10 | optimizer: 11 | type: adam_w 12 | params: 13 | lr: 5e-5 14 | eps: 1e-8 15 | 16 | scheduler: 17 | type: warmup_linear 18 | params: 19 | num_warmup_steps: 1000 20 | num_training_steps: 11000 21 | 22 | training: 23 | batch_size: 480 24 | lr_scheduler: true 25 | # Don't forget to update schedule_attributes if you update this 26 | max_updates: 11000 27 | find_unused_parameters: true 28 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/okvqa/builder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from VisualBERT.mmf.common.registry import registry 3 | from VisualBERT.mmf.datasets.builders.okvqa.dataset import OKVQADataset 4 | from VisualBERT.mmf.datasets.mmf_dataset_builder import MMFDatasetBuilder 5 | 6 | 7 | @registry.register_builder("okvqa") 8 | class OKVQABuilder(MMFDatasetBuilder): 9 | def __init__( 10 | self, dataset_name="okvqa", dataset_class=OKVQADataset, *args, **kwargs 11 | ): 12 | super().__init__(dataset_name, dataset_class, *args, **kwargs) 13 | 14 | @classmethod 15 | def config_path(cls): 16 | return "configs/datasets/okvqa/defaults.yaml" 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/vilbert/configs/masked_conceptual_captions/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | vilbert: 3 | training_head_type: pretraining 4 | 5 | dataset_config: 6 | masked_conceptual_captions: 7 | return_features_info: true 8 | use_image_feature_masks: true 9 | 10 | optimizer: 11 | type: adam_w 12 | params: 13 | lr: 5e-5 14 | eps: 1e-8 15 | 16 | scheduler: 17 | type: warmup_linear 18 | params: 19 | num_warmup_steps: 1000 20 | num_training_steps: 11000 21 | 22 | training: 23 | batch_size: 480 24 | lr_scheduler: true 25 | # Don't forget to update schedule_attributes if you update this 26 | max_updates: 11000 27 | find_unused_parameters: true 28 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/vilbert/configs/masked_conceptual_captions/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | vilbert: 3 | training_head_type: pretraining 4 | 5 | dataset_config: 6 | masked_conceptual_captions: 7 | return_features_info: true 8 | use_image_feature_masks: true 9 | 10 | optimizer: 11 | type: adam_w 12 | params: 13 | lr: 5e-5 14 | eps: 1e-8 15 | 16 | scheduler: 17 | type: warmup_linear 18 | params: 19 | num_warmup_steps: 1000 20 | num_training_steps: 11000 21 | 22 | training: 23 | batch_size: 480 24 | lr_scheduler: true 25 | # Don't forget to update schedule_attributes if you update this 26 | max_updates: 11000 27 | find_unused_parameters: true 28 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pythia/configs/vqa2/train_val_resnet_only.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./resnet_only.yaml 3 | 4 | dataset_config: 5 | vqa2: 6 | use_images: false 7 | use_features: true 8 | features: 9 | train: 10 | - coco/resnet152/features/trainval2014.lmdb 11 | - coco/resnet152/features/trainval2014.lmdb 12 | val: 13 | - coco/resnet152/features/trainval2014.lmdb 14 | test: 15 | - coco/resnet152/features/test2015.lmdb 16 | annotations: 17 | train: 18 | - vqa2/defaults/annotations/imdb_train2014.npy 19 | - vqa2/defaults/annotations/imdb_valminusminival2014.npy 20 | val: 21 | - vqa2/defaults/annotations/imdb_minival2014.npy 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/conceptual_captions/builder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from VisualBERT.mmf.common.registry import registry 4 | from VisualBERT.mmf.datasets.builders.coco import COCOBuilder 5 | 6 | from .dataset import ConceptualCaptionsDataset 7 | 8 | 9 | @registry.register_builder("conceptual_captions") 10 | class ConceptualCaptionsBuilder(COCOBuilder): 11 | def __init__(self): 12 | super().__init__() 13 | self.dataset_name = "conceptual_captions" 14 | self.set_dataset_class(ConceptualCaptionsDataset) 15 | 16 | @classmethod 17 | def config_path(cls): 18 | return "configs/datasets/conceptual_captions/defaults.yaml" 19 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pythia/configs/vqa2/train_val_resnet_only.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./resnet_only.yaml 3 | 4 | dataset_config: 5 | vqa2: 6 | use_images: false 7 | use_features: true 8 | features: 9 | train: 10 | - coco/resnet152/features/trainval2014.lmdb 11 | - coco/resnet152/features/trainval2014.lmdb 12 | val: 13 | - coco/resnet152/features/trainval2014.lmdb 14 | test: 15 | - coco/resnet152/features/test2015.lmdb 16 | annotations: 17 | train: 18 | - vqa2/defaults/annotations/imdb_train2014.npy 19 | - vqa2/defaults/annotations/imdb_valminusminival2014.npy 20 | val: 21 | - vqa2/defaults/annotations/imdb_minival2014.npy 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | vilbert: 3 | training_head_type: pretraining 4 | 5 | dataset_config: 6 | masked_conceptual_captions: 7 | return_features_info: true 8 | use_image_feature_masks: true 9 | 10 | optimizer: 11 | type: adam_w 12 | params: 13 | lr: 5e-5 14 | eps: 1e-8 15 | 16 | scheduler: 17 | type: warmup_linear 18 | params: 19 | num_warmup_steps: 1000 20 | num_training_steps: 11000 21 | 22 | training: 23 | batch_size: 480 24 | lr_scheduler: true 25 | # Don't forget to update schedule_attributes if you update this 26 | max_updates: 11000 27 | find_unused_parameters: true 28 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/vqacp_v2/builder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from VisualBERT.mmf.common.registry import registry 3 | from VisualBERT.mmf.datasets.builders.vqacp_v2.dataset import VQACPv2Dataset 4 | from VisualBERT.mmf.datasets.mmf_dataset_builder import MMFDatasetBuilder 5 | 6 | 7 | @registry.register_builder("vqacp_v2") 8 | class VQACPv2Builder(MMFDatasetBuilder): 9 | def __init__( 10 | self, dataset_name="vqacp_v2", dataset_class=VQACPv2Dataset, *args, **kwargs 11 | ): 12 | super().__init__(dataset_name, dataset_class, *args, **kwargs) 13 | 14 | @classmethod 15 | def config_path(cls): 16 | return "configs/datasets/vqacp_v2/defaults.yaml" 17 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/m4c/configs/textvqa/joint_with_stvqa.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | textvqa: 6 | use_images: false 7 | use_features: true 8 | zoo_requirements: 9 | - textvqa.defaults 10 | - textvqa.ocr_en 11 | - stvqa.defaults 12 | - stvqa.ocr_en 13 | features: 14 | train: 15 | - textvqa/defaults/features/open_images/detectron.lmdb,textvqa/ocr_en/features/ocr_en_frcn_features.lmdb 16 | - stvqa/defaults/features/detectron.lmdb,stvqa/ocr_en/features/ocr_en_frcn_features.lmdb 17 | annotations: 18 | train: 19 | - textvqa/defaults/annotations/imdb_train_ocr_en.npy 20 | - stvqa/defaults/annotations/imdb_subtrain.npy 21 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_conceptual_captions/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | vilbert: 3 | training_head_type: pretraining 4 | 5 | dataset_config: 6 | masked_conceptual_captions: 7 | return_features_info: true 8 | use_image_feature_masks: true 9 | 10 | optimizer: 11 | type: adam_w 12 | params: 13 | lr: 5e-5 14 | eps: 1e-8 15 | 16 | scheduler: 17 | type: warmup_linear 18 | params: 19 | num_warmup_steps: 1000 20 | num_training_steps: 11000 21 | 22 | training: 23 | batch_size: 480 24 | lr_scheduler: true 25 | # Don't forget to update schedule_attributes if you update this 26 | max_updates: 11000 27 | find_unused_parameters: true 28 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/m4c/configs/textvqa/joint_with_stvqa.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | dataset_config: 5 | textvqa: 6 | use_images: false 7 | use_features: true 8 | zoo_requirements: 9 | - textvqa.defaults 10 | - textvqa.ocr_en 11 | - stvqa.defaults 12 | - stvqa.ocr_en 13 | features: 14 | train: 15 | - textvqa/defaults/features/open_images/detectron.lmdb,textvqa/ocr_en/features/ocr_en_frcn_features.lmdb 16 | - stvqa/defaults/features/detectron.lmdb,stvqa/ocr_en/features/ocr_en_frcn_features.lmdb 17 | annotations: 18 | train: 19 | - textvqa/defaults/annotations/imdb_train_ocr_en.npy 20 | - stvqa/defaults/annotations/imdb_subtrain.npy 21 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/butd/configs/coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | optimizer: 2 | type: Adamax 3 | params: 4 | eps: 1.0e-08 5 | lr: 0.01 6 | weight_decay: 0 7 | 8 | evaluation: 9 | metrics: 10 | - caption_bleu4 11 | 12 | training: 13 | clip_norm_mode: all 14 | clip_gradients: true 15 | lr_ratio: 0.1 16 | lr_scheduler: true 17 | lr_steps: 18 | - 15000 19 | - 25000 20 | - 35000 21 | - 45000 22 | max_grad_l2_norm: 0.25 23 | max_updates: 50000 24 | use_warmup: true 25 | warmup_factor: 0.2 26 | warmup_iterations: 1000 27 | batch_size: 256 28 | num_workers: 7 29 | task_size_proportional_sampling: true 30 | early_stop: 31 | criteria: coco/caption_bleu4 32 | minimize: false 33 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/datasets/vqa2/with_raw_images.yaml: -------------------------------------------------------------------------------- 1 | dataset_config: 2 | vqa2: 3 | use_images: true 4 | use_features: false 5 | processors: 6 | image_processor: 7 | type: torchvision_transforms 8 | params: 9 | transforms: 10 | - type: Resize 11 | params: 12 | size: [256, 256] 13 | - type: CenterCrop 14 | params: 15 | size: [224, 224] 16 | - ToTensor 17 | - GrayScaleTo3Channels 18 | - type: Normalize 19 | params: 20 | mean: [0.46777044, 0.44531429, 0.40661017] 21 | std: [0.12221994, 0.12145835, 0.14380469] 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/ban/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | ban: 3 | losses: 4 | - type: logit_bce 5 | text_embedding: 6 | num_hidden: 1280 7 | vocab_size: 1280 8 | emb_size: 300 9 | num_layers: 1 10 | dropout: 0.0 11 | bidirectional: False 12 | rnn_type: 'GRU' 13 | bilinear_attention: 14 | bc_net: 15 | k: 1 16 | dropout: [0.2, 0.5] 17 | h_out: 18 | fc_net: 19 | dims: 600 20 | activation: 21 | dropout: 0.2 22 | gamma: 4 23 | visual_feat_dim: 2048 24 | classifier: 25 | # out dim will be taken from registry as set by dataset builder 26 | hidden_size: 600 27 | dropout: 0.5 28 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/butd/configs/coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | optimizer: 2 | type: Adamax 3 | params: 4 | eps: 1.0e-08 5 | lr: 0.01 6 | weight_decay: 0 7 | 8 | evaluation: 9 | metrics: 10 | - caption_bleu4 11 | 12 | training: 13 | clip_norm_mode: all 14 | clip_gradients: true 15 | lr_ratio: 0.1 16 | lr_scheduler: true 17 | lr_steps: 18 | - 15000 19 | - 25000 20 | - 35000 21 | - 45000 22 | max_grad_l2_norm: 0.25 23 | max_updates: 50000 24 | use_warmup: true 25 | warmup_factor: 0.2 26 | warmup_iterations: 1000 27 | batch_size: 256 28 | num_workers: 7 29 | task_size_proportional_sampling: true 30 | early_stop: 31 | criteria: coco/caption_bleu4 32 | minimize: false 33 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/website/src/pages/api_redirect/index.js: -------------------------------------------------------------------------------- 1 | /** 2 | * Copyright (c) Facebook, Inc. and its affiliates. 3 | * 4 | * This source code is licensed under the MIT license found in the 5 | * LICENSE file in the root directory of this source tree. 6 | * 7 | * @format 8 | */ 9 | import React from 'react'; 10 | import BrowserOnly from '@docusaurus/BrowserOnly'; 11 | import {useHistory} from 'react-router-dom'; 12 | 13 | const API = () => { 14 | const history = useHistory(); 15 | history.push('/'); 16 | return ( 17 | Some Fallback Content

}> 18 | {() => { 19 | window.location.href = '/api'; 20 | }} 21 |
22 | ); 23 | }; 24 | 25 | export default API; 26 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/configs/models/unimodal/image.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | unimodal_image: 3 | # Either pretraining or classification 4 | direct_features_input: false 5 | freeze_base: false 6 | finetune_lr_multiplier: 1 7 | # Dimension of the embedding finally returned by the modal encoder 8 | modal_hidden_size: 2048 9 | # Used when classification head is activated 10 | num_labels: 2 11 | modal_encoder: 12 | type: resnet152 13 | params: 14 | pretrained: true 15 | pool_type: avg 16 | num_output_features: 1 17 | 18 | classifier: 19 | type: mlp 20 | params: 21 | in_dim: 2048 22 | out_dim: 2 23 | hidden_dim: 768 24 | num_layers: 0 25 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/butd/configs/conceptual_captions/defaults.yaml: -------------------------------------------------------------------------------- 1 | optimizer: 2 | type: Adamax 3 | params: 4 | eps: 1.0e-08 5 | lr: 0.01 6 | weight_decay: 0 7 | 8 | evaluation: 9 | metrics: 10 | - caption_bleu4 11 | 12 | training: 13 | clip_norm_mode: all 14 | clip_gradients: true 15 | lr_ratio: 0.1 16 | lr_scheduler: true 17 | lr_steps: 18 | - 15000 19 | - 25000 20 | - 35000 21 | - 45000 22 | max_grad_l2_norm: 0.25 23 | max_updates: 50000 24 | use_warmup: true 25 | warmup_factor: 0.2 26 | warmup_iterations: 1000 27 | batch_size: 256 28 | num_workers: 7 29 | task_size_proportional_sampling: true 30 | early_stop: 31 | criteria: conceptual_captions/caption_bleu4 32 | minimize: false 33 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/conceptual_captions/masked_builder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from VisualBERT.mmf.common.registry import registry 3 | from VisualBERT.mmf.datasets.builders.coco import MaskedCOCOBuilder 4 | 5 | from .masked_dataset import MaskedConceptualCaptionsDataset 6 | 7 | 8 | @registry.register_builder("masked_conceptual_captions") 9 | class MaskedConceptualCaptionsBuilder(MaskedCOCOBuilder): 10 | def __init__(self): 11 | super().__init__() 12 | self.dataset_name = "masked_conceptual_captions" 13 | self.set_dataset_class(MaskedConceptualCaptionsDataset) 14 | 15 | @classmethod 16 | def config_path(cls): 17 | return "configs/datasets/conceptual_captions/masked.yaml" 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/sbu_captions/masked_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from VisualBERT.mmf.datasets.builders.coco import MaskedCOCODataset 4 | 5 | 6 | class MaskedSBUDataset(MaskedCOCODataset): 7 | def __init__(self, config, dataset_type, imdb_file_index, *args, **kwargs): 8 | super().__init__(config, dataset_type, imdb_file_index, *args, **kwargs) 9 | self.dataset_name = "masked_sbu" 10 | self._two_sentence = config.get("two_sentence", True) 11 | self._false_caption = config.get("false_caption", True) 12 | self._two_sentence_probability = config.get("two_sentence_probability", 0.5) 13 | self._false_caption_probability = config.get("false_caption_probability", 0.5) 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/butd/configs/conceptual_captions/defaults.yaml: -------------------------------------------------------------------------------- 1 | optimizer: 2 | type: Adamax 3 | params: 4 | eps: 1.0e-08 5 | lr: 0.01 6 | weight_decay: 0 7 | 8 | evaluation: 9 | metrics: 10 | - caption_bleu4 11 | 12 | training: 13 | clip_norm_mode: all 14 | clip_gradients: true 15 | lr_ratio: 0.1 16 | lr_scheduler: true 17 | lr_steps: 18 | - 15000 19 | - 25000 20 | - 35000 21 | - 45000 22 | max_grad_l2_norm: 0.25 23 | max_updates: 50000 24 | use_warmup: true 25 | warmup_factor: 0.2 26 | warmup_iterations: 1000 27 | batch_size: 256 28 | num_workers: 7 29 | task_size_proportional_sampling: true 30 | early_stop: 31 | criteria: conceptual_captions/caption_bleu4 32 | minimize: false 33 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/hateful_memes/configs/mmbt/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/models/mmbt/classification.yaml 3 | - configs/datasets/hateful_memes/bert.yaml 4 | 5 | scheduler: 6 | type: warmup_linear 7 | params: 8 | num_warmup_steps: 2000 9 | num_training_steps: ${training.max_updates} 10 | 11 | optimizer: 12 | type: adam_w 13 | params: 14 | lr: 1e-5 15 | eps: 1e-8 16 | 17 | evaluation: 18 | metrics: 19 | - accuracy 20 | - binary_f1 21 | - roc_auc 22 | 23 | training: 24 | batch_size: 32 25 | lr_scheduler: true 26 | max_updates: 22000 27 | early_stop: 28 | criteria: hateful_memes/roc_auc 29 | minimize: false 30 | 31 | checkpoint: 32 | pretrained_state_mapping: 33 | bert: bert 34 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/mmbt/configs/hateful_memes/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/models/mmbt/classification.yaml 3 | - configs/datasets/hateful_memes/bert.yaml 4 | 5 | scheduler: 6 | type: warmup_linear 7 | params: 8 | num_warmup_steps: 2000 9 | num_training_steps: ${training.max_updates} 10 | 11 | optimizer: 12 | type: adam_w 13 | params: 14 | lr: 1e-5 15 | eps: 1e-8 16 | 17 | evaluation: 18 | metrics: 19 | - accuracy 20 | - binary_f1 21 | - roc_auc 22 | 23 | training: 24 | batch_size: 32 25 | lr_scheduler: true 26 | max_updates: 22000 27 | early_stop: 28 | criteria: hateful_memes/roc_auc 29 | minimize: false 30 | 31 | checkpoint: 32 | pretrained_state_mapping: 33 | bert: bert 34 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/hateful_memes/configs/mmbt/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/models/mmbt/classification.yaml 3 | - configs/datasets/hateful_memes/bert.yaml 4 | 5 | scheduler: 6 | type: warmup_linear 7 | params: 8 | num_warmup_steps: 2000 9 | num_training_steps: ${training.max_updates} 10 | 11 | optimizer: 12 | type: adam_w 13 | params: 14 | lr: 1e-5 15 | eps: 1e-8 16 | 17 | evaluation: 18 | metrics: 19 | - accuracy 20 | - binary_f1 21 | - roc_auc 22 | 23 | training: 24 | batch_size: 32 25 | lr_scheduler: true 26 | max_updates: 22000 27 | early_stop: 28 | criteria: hateful_memes/roc_auc 29 | minimize: false 30 | 31 | checkpoint: 32 | pretrained_state_mapping: 33 | bert: bert 34 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/mmbt/configs/hateful_memes/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/models/mmbt/classification.yaml 3 | - configs/datasets/hateful_memes/bert.yaml 4 | 5 | scheduler: 6 | type: warmup_linear 7 | params: 8 | num_warmup_steps: 2000 9 | num_training_steps: ${training.max_updates} 10 | 11 | optimizer: 12 | type: adam_w 13 | params: 14 | lr: 1e-5 15 | eps: 1e-8 16 | 17 | evaluation: 18 | metrics: 19 | - accuracy 20 | - binary_f1 21 | - roc_auc 22 | 23 | training: 24 | batch_size: 32 25 | lr_scheduler: true 26 | max_updates: 22000 27 | early_stop: 28 | criteria: hateful_memes/roc_auc 29 | minimize: false 30 | 31 | checkpoint: 32 | pretrained_state_mapping: 33 | bert: bert 34 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/vizwiz/builder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | from VisualBERT.mmf.common.registry import registry 3 | from VisualBERT.mmf.datasets.builders.vizwiz.dataset import VizWizDataset 4 | from VisualBERT.mmf.datasets.builders.vqa2 import VQA2Builder 5 | 6 | 7 | @registry.register_builder("vizwiz") 8 | class VizWizBuilder(VQA2Builder): 9 | def __init__(self): 10 | super().__init__() 11 | self.dataset_name = "vizwiz" 12 | self.set_dataset_class(VizWizDataset) 13 | 14 | @classmethod 15 | def config_path(cls): 16 | return "configs/datasets/vizwiz/defaults.yaml" 17 | 18 | def update_registry_for_model(self, config): 19 | super().update_registry_for_model(config) 20 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/m4c_captioner/configs/m4c_captioner/coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/datasets/coco/ocr_en.yaml 3 | optimizer: 4 | params: 5 | eps: 1.0e-08 6 | lr: 1e-4 7 | weight_decay: 0 8 | type: Adam 9 | 10 | evaluation: 11 | metrics: 12 | - textcaps_bleu4 13 | 14 | training: 15 | clip_norm_mode: all 16 | clip_gradients: true 17 | max_grad_l2_norm: 0.25 18 | lr_scheduler: true 19 | lr_steps: 20 | - 14000 21 | - 19000 22 | lr_ratio: 0.1 23 | use_warmup: true 24 | warmup_factor: 0.2 25 | warmup_iterations: 1000 26 | max_iterations: 24000 27 | batch_size: 128 28 | num_workers: 8 29 | early_stop: 30 | criteria: coco/textcaps_bleu4 31 | minimize: false 32 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/others/cnn_lstm/hateful_memes/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | cnn_lstm: 3 | losses: 4 | - type: cross_entropy 5 | classifier: 6 | type: mlp 7 | params: 8 | in_dim: 190 9 | out_dim: 2 10 | 11 | scheduler: 12 | type: warmup_linear 13 | params: 14 | num_warmup_steps: 2000 15 | num_training_steps: ${training.max_updates} 16 | 17 | optimizer: 18 | type: adam_w 19 | params: 20 | lr: 5e-5 21 | eps: 1e-8 22 | 23 | evaluation: 24 | metrics: 25 | - accuracy 26 | - binary_f1 27 | - roc_auc 28 | 29 | training: 30 | batch_size: 480 31 | lr_scheduler: true 32 | max_updates: 60000 33 | early_stop: 34 | criteria: hateful_memes/roc_auc 35 | minimize: false 36 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/m4c_captioner/configs/m4c_captioner/coco/defaults.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - configs/datasets/coco/ocr_en.yaml 3 | optimizer: 4 | params: 5 | eps: 1.0e-08 6 | lr: 1e-4 7 | weight_decay: 0 8 | type: Adam 9 | 10 | evaluation: 11 | metrics: 12 | - textcaps_bleu4 13 | 14 | training: 15 | clip_norm_mode: all 16 | clip_gradients: true 17 | max_grad_l2_norm: 0.25 18 | lr_scheduler: true 19 | lr_steps: 20 | - 14000 21 | - 19000 22 | lr_ratio: 0.1 23 | use_warmup: true 24 | warmup_factor: 0.2 25 | warmup_iterations: 1000 26 | max_iterations: 24000 27 | batch_size: 128 28 | num_workers: 8 29 | early_stop: 30 | criteria: coco/textcaps_bleu4 31 | minimize: false 32 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/others/cnn_lstm/hateful_memes/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | cnn_lstm: 3 | losses: 4 | - type: cross_entropy 5 | classifier: 6 | type: mlp 7 | params: 8 | in_dim: 190 9 | out_dim: 2 10 | 11 | scheduler: 12 | type: warmup_linear 13 | params: 14 | num_warmup_steps: 2000 15 | num_training_steps: ${training.max_updates} 16 | 17 | optimizer: 18 | type: adam_w 19 | params: 20 | lr: 5e-5 21 | eps: 1e-8 22 | 23 | evaluation: 24 | metrics: 25 | - accuracy 26 | - binary_f1 27 | - roc_auc 28 | 29 | training: 30 | batch_size: 480 31 | lr_scheduler: true 32 | max_updates: 60000 33 | early_stop: 34 | criteria: hateful_memes/roc_auc 35 | minimize: false 36 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/vilbert/configs/masked_vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | vilbert: 3 | training_head_type: pretraining 4 | 5 | dataset_config: 6 | masked_vqa2: 7 | annotations: 8 | train: 9 | - vqa2/defaults/annotations/imdb_train2014.npy 10 | return_features_info: true 11 | use_image_feature_masks: true 12 | 13 | optimizer: 14 | type: adam_w 15 | params: 16 | lr: 5e-5 17 | eps: 1e-8 18 | 19 | scheduler: 20 | type: warmup_linear 21 | params: 22 | num_warmup_steps: 1000 23 | num_training_steps: 11000 24 | 25 | training: 26 | batch_size: 480 27 | lr_scheduler: true 28 | # Don't forget to update schedule_attributes if you update this 29 | max_updates: 11000 30 | find_unused_parameters: true 31 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/lxmert/lxmert/run/lxmert_pretrain.bash: -------------------------------------------------------------------------------- 1 | # The name of experiment 2 | name=lxmert 3 | 4 | # Create dirs and make backup 5 | output=snap/pretrain/$name 6 | mkdir -p $output/src 7 | cp -r src/* $output/src/ 8 | cp $0 $output/run.bash 9 | 10 | # Pre-training 11 | CUDA_VISIBLE_DEVICES=$1 PYTHONPATH=$PYTHONPATH:./src \ 12 | python src/pretrain/lxmert_pretrain.py \ 13 | --taskMaskLM --taskObjPredict --taskMatched --taskQA \ 14 | --visualLosses obj,attr,feat \ 15 | --wordMaskRate 0.15 --objMaskRate 0.15 \ 16 | --train mscoco_train,mscoco_nominival,vgnococo --valid mscoco_minival \ 17 | --llayers 9 --xlayers 5 --rlayers 5 \ 18 | --fromScratch \ 19 | --batchSize 256 --optim bert --lr 1e-4 --epochs 20 \ 20 | --tqdm --output $output ${@:2} 21 | 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/vilbert/configs/masked_vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | vilbert: 3 | training_head_type: pretraining 4 | 5 | dataset_config: 6 | masked_vqa2: 7 | annotations: 8 | train: 9 | - vqa2/defaults/annotations/imdb_train2014.npy 10 | return_features_info: true 11 | use_image_feature_masks: true 12 | 13 | optimizer: 14 | type: adam_w 15 | params: 16 | lr: 5e-5 17 | eps: 1e-8 18 | 19 | scheduler: 20 | type: warmup_linear 21 | params: 22 | num_warmup_steps: 1000 23 | num_training_steps: 11000 24 | 25 | training: 26 | batch_size: 480 27 | lr_scheduler: true 28 | # Don't forget to update schedule_attributes if you update this 29 | max_updates: 11000 30 | find_unused_parameters: true 31 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/visual_genome/masked_builder.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from VisualBERT.mmf.common.registry import registry 4 | from VisualBERT.mmf.datasets.builders.visual_genome.builder import VisualGenomeBuilder 5 | from VisualBERT.mmf.datasets.builders.visual_genome.masked_dataset import MaskedVisualGenomeDataset 6 | 7 | 8 | @registry.register_builder("masked_visual_genome") 9 | class MaskedVisualGenomeBuilder(VisualGenomeBuilder): 10 | def __init__(self): 11 | super().__init__() 12 | self.dataset_name = "masked_visual_genome" 13 | self.dataset_class = MaskedVisualGenomeDataset 14 | 15 | @classmethod 16 | def config_path(cls): 17 | return "configs/datasets/visual_genome/masked.yaml" 18 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/lorra/configs/vqa2/train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | # Use soft copy 5 | dataset_config: 6 | vqa2_train_val: 7 | use_ocr: true 8 | processors: 9 | context_processor: 10 | type: fasttext 11 | params: 12 | download_initially: true 13 | max_length: 50 14 | model_file: wiki.en.bin 15 | answer_processor: 16 | type: soft_copy_answer 17 | params: 18 | vocab_file: vqa2/defaults/extras/vocabs/answers_vqa.txt 19 | preprocessor: 20 | type: simple_word 21 | params: {} 22 | context_preprocessor: 23 | type: simple_word 24 | params: {} 25 | max_length: 50 26 | num_answers: 10 27 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/lorra/configs/vqa2/train_val.yaml: -------------------------------------------------------------------------------- 1 | includes: 2 | - ./defaults.yaml 3 | 4 | # Use soft copy 5 | dataset_config: 6 | vqa2_train_val: 7 | use_ocr: true 8 | processors: 9 | context_processor: 10 | type: fasttext 11 | params: 12 | download_initially: true 13 | max_length: 50 14 | model_file: wiki.en.bin 15 | answer_processor: 16 | type: soft_copy_answer 17 | params: 18 | vocab_file: vqa2/defaults/extras/vocabs/answers_vqa.txt 19 | preprocessor: 20 | type: simple_word 21 | params: {} 22 | context_preprocessor: 23 | type: simple_word 24 | params: {} 25 | max_length: 50 26 | num_answers: 10 27 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/projects/pretrain_vl_right/configs/vilbert/masked_vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | vilbert: 3 | training_head_type: pretraining 4 | 5 | dataset_config: 6 | masked_vqa2: 7 | annotations: 8 | train: 9 | - vqa2/defaults/annotations/imdb_train2014.npy 10 | return_features_info: true 11 | use_image_feature_masks: true 12 | 13 | optimizer: 14 | type: adam_w 15 | params: 16 | lr: 5e-5 17 | eps: 1e-8 18 | 19 | scheduler: 20 | type: warmup_linear 21 | params: 22 | num_warmup_steps: 1000 23 | num_training_steps: 11000 24 | 25 | training: 26 | batch_size: 480 27 | lr_scheduler: true 28 | # Don't forget to update schedule_attributes if you update this 29 | max_updates: 11000 30 | find_unused_parameters: true 31 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/pretrain_vl_right/configs/vilbert/masked_vqa2/defaults.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | vilbert: 3 | training_head_type: pretraining 4 | 5 | dataset_config: 6 | masked_vqa2: 7 | annotations: 8 | train: 9 | - vqa2/defaults/annotations/imdb_train2014.npy 10 | return_features_info: true 11 | use_image_feature_masks: true 12 | 13 | optimizer: 14 | type: adam_w 15 | params: 16 | lr: 5e-5 17 | eps: 1e-8 18 | 19 | scheduler: 20 | type: warmup_linear 21 | params: 22 | num_warmup_steps: 1000 23 | num_training_steps: 11000 24 | 25 | training: 26 | batch_size: 480 27 | lr_scheduler: true 28 | # Don't forget to update schedule_attributes if you update this 29 | max_updates: 11000 30 | find_unused_parameters: true 31 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/coco2017/masked_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from VisualBERT.mmf.common.typings import MMFDatasetConfigType 4 | from VisualBERT.mmf.datasets.builders.localized_narratives.masked_dataset import ( 5 | MaskedLocalizedNarrativesDatasetMixin, 6 | ) 7 | from VisualBERT.mmf.datasets.mmf_dataset import MMFDataset 8 | 9 | 10 | class MaskedCoco2017Dataset(MaskedLocalizedNarrativesDatasetMixin, MMFDataset): 11 | def __init__( 12 | self, 13 | config: MMFDatasetConfigType, 14 | dataset_type: str, 15 | index: int, 16 | *args, 17 | **kwargs, 18 | ): 19 | super().__init__( 20 | "masked_coco2017", config, dataset_type, index, *args, **kwargs 21 | ) 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/flickr30k/masked_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from VisualBERT.mmf.common.typings import MMFDatasetConfigType 4 | from VisualBERT.mmf.datasets.builders.localized_narratives.masked_dataset import ( 5 | MaskedLocalizedNarrativesDatasetMixin, 6 | ) 7 | from VisualBERT.mmf.datasets.mmf_dataset import MMFDataset 8 | 9 | 10 | class MaskedFlickr30kDataset(MaskedLocalizedNarrativesDatasetMixin, MMFDataset): 11 | def __init__( 12 | self, 13 | config: MMFDatasetConfigType, 14 | dataset_type: str, 15 | index: int, 16 | *args, 17 | **kwargs, 18 | ): 19 | super().__init__( 20 | "masked_flickr30k", config, dataset_type, index, *args, **kwargs 21 | ) 22 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/mmf/datasets/builders/conceptual_captions/masked_dataset.py: -------------------------------------------------------------------------------- 1 | # Copyright (c) Facebook, Inc. and its affiliates. 2 | 3 | from VisualBERT.mmf.datasets.builders.coco import MaskedCOCODataset 4 | 5 | 6 | class MaskedConceptualCaptionsDataset(MaskedCOCODataset): 7 | def __init__(self, config, dataset_type, imdb_file_index, *args, **kwargs): 8 | super().__init__(config, dataset_type, imdb_file_index, *args, **kwargs) 9 | self.dataset_name = "masked_conceptual_captions" 10 | self._two_sentence = config.get("two_sentence", True) 11 | self._false_caption = config.get("false_caption", True) 12 | self._two_sentence_probability = config.get("two_sentence_probability", 0.5) 13 | self._false_caption_probability = config.get("false_caption_probability", 0.5) 14 | -------------------------------------------------------------------------------- /Transformer-MM-Explainability/VisualBERT/projects/hateful_memes/configs/unimodal/text.yaml: -------------------------------------------------------------------------------- 1 | model_config: 2 | unimodal_text: 3 | classifier: 4 | type: mlp 5 | params: 6 | num_layers: 2 7 | losses: 8 | - type: cross_entropy 9 | 10 | scheduler: 11 | type: warmup_linear 12 | params: 13 | num_warmup_steps: 2000 14 | num_training_steps: ${training.max_updates} 15 | 16 | optimizer: 17 | type: adam_w 18 | params: 19 | lr: 5e-5 20 | eps: 1e-8 21 | 22 | evaluation: 23 | metrics: 24 | - accuracy 25 | - binary_f1 26 | - roc_auc 27 | 28 | training: 29 | batch_size: 32 30 | lr_scheduler: true 31 | max_updates: 22000 32 | early_stop: 33 | criteria: hateful_memes/roc_auc 34 | minimize: false 35 | 36 | checkpoint: 37 | pretrained_state_mapping: 38 | base: base 39 | --------------------------------------------------------------------------------