├── docs
├── CNAME
├── images
│ ├── Levi.png
│ ├── Aedin.jpg
│ ├── logo_bioconductor.gif
│ └── sponsors
│ │ ├── OICRlogo.png
│ │ ├── genentech.jpg
│ │ ├── rpci-logo_1.png
│ │ ├── novartis_logo_pos_rgb.png
│ │ └── RStudio-Logo-Blue-Gray-125.png
├── Gemfile
├── poster
│ └── Bioc2018_Poster.pdf
├── assets
│ ├── fonts
│ │ ├── Noto-Sans-700
│ │ │ ├── Noto-Sans-700.eot
│ │ │ ├── Noto-Sans-700.ttf
│ │ │ ├── Noto-Sans-700.woff
│ │ │ ├── Noto-Sans-700.woff2
│ │ │ └── Noto-Sans-700.svg
│ │ ├── Noto-Sans-italic
│ │ │ ├── Noto-Sans-italic.eot
│ │ │ ├── Noto-Sans-italic.ttf
│ │ │ ├── Noto-Sans-italic.woff
│ │ │ └── Noto-Sans-italic.woff2
│ │ ├── Noto-Sans-regular
│ │ │ ├── Noto-Sans-regular.eot
│ │ │ ├── Noto-Sans-regular.ttf
│ │ │ ├── Noto-Sans-regular.woff
│ │ │ └── Noto-Sans-regular.woff2
│ │ └── Noto-Sans-700italic
│ │ │ ├── Noto-Sans-700italic.eot
│ │ │ ├── Noto-Sans-700italic.ttf
│ │ │ ├── Noto-Sans-700italic.woff
│ │ │ ├── Noto-Sans-700italic.woff2
│ │ │ └── Noto-Sans-700italic.svg
│ ├── js
│ │ └── scale.fix.js
│ └── css
│ │ └── style.css
├── _config.yml
├── registration-cancel.md
├── registration-finish.md
├── scholarships.md
├── index.md
├── code_of_conduct.md
├── sponsor.md
├── registration.md
├── call-for-abstracts.md
├── travel-accommodations.md
├── _layouts
│ └── default.html
├── schedule-developer-day.md
├── posters.md
├── Gemfile.lock
├── schedule.md
├── workshops.md
└── talks-community.md
├── .gitignore
├── README.md
└── resources
└── workshop-syllabus.md
/docs/CNAME:
--------------------------------------------------------------------------------
1 | bioc2018.bioconductor.org
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | docs/_site
2 | resources/
3 |
--------------------------------------------------------------------------------
/docs/images/Levi.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/images/Levi.png
--------------------------------------------------------------------------------
/docs/images/Aedin.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/images/Aedin.jpg
--------------------------------------------------------------------------------
/docs/Gemfile:
--------------------------------------------------------------------------------
1 | source 'https://rubygems.org'
2 | gem 'github-pages', group: :jekyll_plugins
3 | gem 'minimal'
4 |
--------------------------------------------------------------------------------
/docs/poster/Bioc2018_Poster.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/poster/Bioc2018_Poster.pdf
--------------------------------------------------------------------------------
/docs/images/logo_bioconductor.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/images/logo_bioconductor.gif
--------------------------------------------------------------------------------
/docs/images/sponsors/OICRlogo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/images/sponsors/OICRlogo.png
--------------------------------------------------------------------------------
/docs/images/sponsors/genentech.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/images/sponsors/genentech.jpg
--------------------------------------------------------------------------------
/docs/images/sponsors/rpci-logo_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/images/sponsors/rpci-logo_1.png
--------------------------------------------------------------------------------
/docs/images/sponsors/novartis_logo_pos_rgb.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/images/sponsors/novartis_logo_pos_rgb.png
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-700/Noto-Sans-700.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-700/Noto-Sans-700.eot
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-700/Noto-Sans-700.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-700/Noto-Sans-700.ttf
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-700/Noto-Sans-700.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-700/Noto-Sans-700.woff
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-700/Noto-Sans-700.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-700/Noto-Sans-700.woff2
--------------------------------------------------------------------------------
/docs/images/sponsors/RStudio-Logo-Blue-Gray-125.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/images/sponsors/RStudio-Logo-Blue-Gray-125.png
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-italic/Noto-Sans-italic.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-italic/Noto-Sans-italic.eot
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-italic/Noto-Sans-italic.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-italic/Noto-Sans-italic.ttf
--------------------------------------------------------------------------------
/docs/_config.yml:
--------------------------------------------------------------------------------
1 | title: BioC 2018
2 | description:
3 | Where Software and Biology Connect.
4 | July 25 - 27, Toronto, Canada.
5 | theme: jekyll-theme-minimal
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-italic/Noto-Sans-italic.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-italic/Noto-Sans-italic.woff
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-italic/Noto-Sans-italic.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-italic/Noto-Sans-italic.woff2
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-regular/Noto-Sans-regular.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-regular/Noto-Sans-regular.eot
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-regular/Noto-Sans-regular.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-regular/Noto-Sans-regular.ttf
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-regular/Noto-Sans-regular.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-regular/Noto-Sans-regular.woff
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-regular/Noto-Sans-regular.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-regular/Noto-Sans-regular.woff2
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-700italic/Noto-Sans-700italic.eot:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-700italic/Noto-Sans-700italic.eot
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-700italic/Noto-Sans-700italic.ttf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-700italic/Noto-Sans-700italic.ttf
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-700italic/Noto-Sans-700italic.woff:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-700italic/Noto-Sans-700italic.woff
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-700italic/Noto-Sans-700italic.woff2:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Bioconductor/BioC2018/devel/docs/assets/fonts/Noto-Sans-700italic/Noto-Sans-700italic.woff2
--------------------------------------------------------------------------------
/docs/registration-cancel.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day), 26, and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | **Registration Cancelled**
14 |
15 | - [Start over][1].
16 | - View the [schedule][2].
17 | - Questions? Send [email][3].
18 |
19 | [1]: ./registration
20 | [2]: ./schedule
21 | [3]: mailto:bioc2018@bioconductor.org?subject=BioC%202018%20registration
22 |
--------------------------------------------------------------------------------
/docs/registration-finish.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day), 26, and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | **Registration successful**
14 |
15 | - Submit a [talk, poster, workshop, or birds-of-a-feather][2] abstract.
16 | - View the [schedule][1] for updated speakers and workshops.
17 | - Follow [#bioc2018][tweet] for late-breaking announcements.
18 |
19 | Remember to arrange your own lodging. See you in Toronto!
20 |
21 | [1]: ./schedule
22 | [2]: ./call-for-abstracts
23 |
--------------------------------------------------------------------------------
/docs/assets/js/scale.fix.js:
--------------------------------------------------------------------------------
1 | (function(document) {
2 | var metas = document.getElementsByTagName('meta'),
3 | changeViewportContent = function(content) {
4 | for (var i = 0; i < metas.length; i++) {
5 | if (metas[i].name == "viewport") {
6 | metas[i].content = content;
7 | }
8 | }
9 | },
10 | initialize = function() {
11 | changeViewportContent("width=device-width, minimum-scale=1.0, maximum-scale=1.0");
12 | },
13 | gestureStart = function() {
14 | changeViewportContent("width=device-width, minimum-scale=0.25, maximum-scale=1.6");
15 | },
16 | gestureEnd = function() {
17 | initialize();
18 | };
19 |
20 |
21 | if (navigator.userAgent.match(/iPhone/i)) {
22 | initialize();
23 |
24 | document.addEventListener("touchstart", gestureStart, false);
25 | document.addEventListener("touchend", gestureEnd, false);
26 | }
27 | })(document);
28 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | This repository contains material for the _Bioconductor_ annual
2 | conference. [View the conference web site][1].
3 |
4 | Edit or add material as markdown files in the docs/ directory. Please
5 | wrap lines to 80 character width and aim for simple markdown rather
6 | than elaborate html or other content.
7 |
8 | Please follow best practices by previewing changes locally.
9 |
10 | 1. Make sure that ruby and bundler are installed, following the
11 | 'Requirements' section of [GitHub's documentation][2].
12 |
13 | 2. Clone the repository and switch to the `docs/` directory
14 |
15 | cd BioC2018/docs
16 |
17 | 3. Install ruby pre-requisites.
18 |
19 | bundle install # once only; references Gemfile
20 |
21 | 4. Execute the jekyll server
22 |
23 | bundle exec jekyll serve
24 |
25 | and view the results at https://localhost:4000
26 |
27 | [1]: https://bioconductor.github.io/BioC2018
28 | [2]: https://help.github.com/articles/setting-up-your-github-pages-site-locally-with-jekyll/#requirements
29 |
--------------------------------------------------------------------------------
/docs/scholarships.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day), 26, and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | ## Scholarships
14 |
15 | Scholarships are available and targeted toward _Bioconductor_ package
16 | developers and contributors. Scholarships cover registration, travel
17 | (up to $500 per person), and accommodation. All scholarship recipients
18 | must present a talk or poster. To apply for a scholarship, complete
19 | the [Poster / Talk Submission Form][].
20 |
21 | Key dates for scholarships:
22 |
23 | - Thursday March 15, 2018: Abstract Submissions opens.
24 | - Thursday May 17, 2018: Abstract Submission deadline.
25 | - Thursday May 31, 2018: Notification of talk, poster acceptance.
26 |
27 | [Poster / Talk Submission Form]: https://goo.gl/forms/meoGgX7eipL2ZHKD2
28 |
--------------------------------------------------------------------------------
/docs/index.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day), 26, and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | This conference highlights current developments within and beyond
14 | _Bioconductor_. Morning scientific talks and afternoon workshops
15 | provide conference participants with insights and tools required for
16 | the analysis and comprehension of high-throughput genomic
17 | data. 'Developer Day' precedes the main conference on July 25,
18 | providing developers and would-be developers an opportunity to gain
19 | insights into project direction and software development best
20 | practices.
21 |
22 | The conference venue is at [Victoria University][uvic] on the downtown
23 | (St. George) campus of the University of Toronto on the north-east
24 | edge of Queen's Park. The specific building is Victoria College,
25 | indicated on the [map][ut].
26 |
27 | More information: [workshop@bioconductor.org][contact]
28 |
29 | [ut]: http://map.utoronto.ca/utsg/building/501
30 | [uvic]: http://www.vicu.utoronto.ca/
31 | [contact]: mailto:workshop@bioconductor.org?subject=BioC2018%20question
32 |
--------------------------------------------------------------------------------
/docs/code_of_conduct.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day), 26, and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | ## Code of Conduct
14 |
15 | _Bioconductor_ is built on the free and open exchange of scientific
16 | ideas from the contributions of our diverse user community. In this
17 | spirit, _BioC 2018_ strives to provide a harassment-free experience
18 | for everyone. Harassment of any form will not be tolerated in talks,
19 | workshops, poster sessions, social activities, or online.
20 |
21 | Reach out to conference organizers ([workshop@biocondutor.org][0]) or
22 | our on-site response team with any concerns
23 |
24 | --- | ---
25 | ![Aedin Culhane][1] Aedin Culhane [aedin@jimmy.harvard.edu][2] | ![Levi Waldron][3] Levi Waldron [lwaldron.research@gmail.com][4]
26 |
27 |
28 | [0]: mailto:workshop@bioconductor.org?subject=BioC2018%20code-of-conduct
29 | [1]: images/Aedin.jpg
30 | [2]: mailto:aedin@jimmy.harvard.edu?subject=BioC2018%20code-of-conduct
31 | [3]: images/Levi.png
32 | [4]: mailto:lwaldron.research@gmail.com?subject=BioC2018%20Code-of-conduct
33 |
--------------------------------------------------------------------------------
/docs/sponsor.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day), 26, and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | ## Sponsor Opportunities
14 |
15 | Interested in sponsoring this conference? Please contact
16 | Martin.Morgan@RoswellPark.org.
17 |
18 | Three levels of sponsorship are available:
19 |
20 | - Gold: $7,500 USD -- Up to 8 free registrations. Recognition in
21 | promotional and scheduling material. Sponsored session (e.g.,
22 | 'Morning talks', 'Afternoon workshops').
23 |
24 | - Silver: $5,000 USD -- Up to 5 free registrations. Recognition in
25 | promotional and scheduling material. Sponsored food or social event
26 | (e.g., 'breakfast', 'lunch', 'poster session', 'reception').
27 |
28 | - Bronze: $2,500 USD. Up to 2 free registrations. Recognition in
29 | promotional and scheduling material.
30 |
31 | Approximate conference demographics:
32 |
33 | - 150+ participants from the global bioinformatics community.
34 |
35 | - Academic (50%), corporate (e.g., pharmaceutical; 30%);
36 | not-for-profit (e.g., Cancer Center; 15%), and government (5%)
37 | participants.
38 |
39 | - Lab / group leaders (10%), postdoctoral researchers (40%),
40 | bioinformatics core staff (20%), and graduate students (30%).
41 |
42 | - PhD (60%), MS (20%), and other degrees.
43 |
44 | - Thought leaders contributing to leading-edge methodological
45 | development, hands-on practitioners incorporating _R_ /
46 | _Bioconductor_ into robust work flows, and researchers developing
47 | bespoke solutions.
48 |
--------------------------------------------------------------------------------
/docs/registration.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day), 26, and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | ## Registration
14 |
15 | Includes:
16 |
17 | - Admission to conference facilities.
18 | - Continental breakfast, lunch, and light hors d'oeuvres, as well as
19 | morning and afternoon coffee breaks.
20 |
21 | ## Travel and accommodation
22 |
23 | Participants must arrange and pay for their own travel and
24 | accommodation; we have NOT arranged conference rates at nearby
25 | hotels. The conference venue is at [Victoria University][uvic] on the
26 | downtown (St. George) campus of the University of Toronto on the
27 | north-east edge of Queen's Park. The specific building is Victoria College,
28 | indicated on the [map][ut].
29 |
30 | [uvic]: http://www.vicu.utoronto.ca/
31 | [ut]: http://map.utoronto.ca/utsg/building/501
32 |
33 | ## Fees
34 |
35 | Developer Day (July 25)
36 |
37 | - Included with main conference registration.
38 |
39 | Main Conference (July 26, 27)
40 |
41 | - Before July 10: Academic and not-for-profit: $300. Commercial: $400.
42 | - After July 10: Academic and not-for-profit: $600. Commercial: $800.
43 |
44 | ## Register now!
45 |
46 |
47 |
60 |
61 |
62 | - Registering for someone else? Use the 'shipping address' to specify
63 | their name.
64 | - Unfortunately, we are not able to process purchase orders.
65 |
--------------------------------------------------------------------------------
/docs/call-for-abstracts.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day), 26, and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | ## Call for Posters
14 |
15 | Use the [Poster Submission Form][] to submit an abstract (up to 300
16 | words) for a poster up until July 19 for inclusion in the online
17 | programme. Include links to software where relevant.
18 |
19 | [Poster Submission Form]: https://goo.gl/forms/YwkZt6f9FCHYaMYn1
20 |
21 | ## Call for Birds of a Feather / Special Interest Groups
22 |
23 | We invite participants to form groups dedicated to discuss or work on
24 | topics of interest. We will make rooms available for groups to meet
25 | during the lunch breaks. We encourage students, postdocs and junior
26 | faculty to participant and form groups.
27 |
28 | To create a special interest group [open an issue][] describing the
29 | topic. The issue title should start with SIG: followed by a short but
30 | descriptive title. In the issue, include:
31 |
32 | - An introduction of yourself.
33 | - A description of the topic.
34 | - Whether it should be held during Developer Day (Wednesday July 25)
35 | or the conference days (July 26-27).
36 | - Desired outputs (could be code, a piece of documentation, or general
37 | discussion), and possible outcomes.
38 |
39 | Interested participants should use the issue to ask questions and/or
40 | express their interest in participating. Proposals with interest shown
41 | by at least 3 additional participants by July 12 will be announced on
42 | the conference web page, and will have a room reserved for their
43 | meeting.
44 |
45 | [open an issue]: https://github.com/Bioconductor/BioC2018/issues
46 |
47 | ## Call for F1000Research articles
48 |
49 | There is an [invitation][] to submit F1000Research articles to the
50 | [Bioconductor gateway][] which will be associated with Bioc2018. The
51 | deadline is June 18, 2018. See this
52 | support site thread for
53 | more details.
54 |
55 | [invitation]: https://support.bioconductor.org/p/107477
56 | [Bioconductor gateway]: https://f1000research.com/gateways/bioconductor
57 |
58 | ## Call for Talks
59 |
60 | The call for talks is closed. Talks will be peer-reviewed by the
61 | conference committee.
62 |
63 | ## Call for Workshops
64 |
65 | The call for workshops is closed. Workshop proposals will be
66 | peer-reviewed by the conference committee. Join the _Bioconductor_
67 | [Community Slack][] and `#bioc2018-workshops` channel for up-to-date
68 | information.
69 |
70 | [Community Slack]: https://bioc-community.herokuapp.com/
71 |
72 | ## Key dates
73 |
74 | | Notification of Acceptance for talks and reviewed posters | May 31 |
75 | | Deadline for poster abstracts and BoF proposals | July 12 |
76 | | BioC 2018 Meeting | July 25 (Developer Day), 26, and 27 |
77 |
--------------------------------------------------------------------------------
/docs/travel-accommodations.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 |
5 | # BioC 2018: Where Software and Biology Connect
6 |
7 | When: July 25 (Developer Day), 26, and 27, 2018
8 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
9 | Twitter: [#bioc2018][tweet]
10 |
11 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
12 | [venue]: ./travel-accommodations
13 |
14 | ## Venue
15 |
16 | The conference venue is at [Victoria University][uvic] on the downtown
17 | (St. George) campus of the University of Toronto on the north-east
18 | edge of Queen's Park. The specific building is Victoria College,
19 | indicated on the [map][ut].
20 |
21 | [uvic]: http://www.vicu.utoronto.ca/
22 | [ut]: http://map.utoronto.ca/utsg/building/501
23 |
24 | ## Accommodations
25 |
26 | Conference organizers and invited speakers will be staying at the
27 | [Chelsea Hotel][chelsea], which is a short walk to the conference at
28 | Victoria College.
29 |
30 | Here is a [list of hotels from booking.com][hotels] that are available
31 | July 24-27, sorted by distance from Victoria College.
32 |
33 | [chelsea]: http://www.chelseatoronto.com/en/
34 | [hotels]: https://www.booking.com/searchresults.html?label=gen173nr-1FCAEoggJCAlhYSDNYBHIFdXNfbnmIAQGYATG4AQfIAQzYAQHoAQH4AQKSAgF5qAID&sid=0b1cb2185b9c5f9a23cf24f780ea5920&checkin_month=7&checkin_monthday=24&checkin_year=2018&checkout_month=7&checkout_monthday=27&checkout_year=2018&class_interval=1&dtdisc=0&from_sf=1&group_adults=2&group_children=0&inac=0&index_postcard=0&label_click=undef&no_rooms=1&place_id=ChIJWWeUhro0K4gRPfZbL-0v2EM&place_id_lat=43.6669317&place_id_lon=-79.39196349999997&postcard=0&room1=A%2CA&sb_price_type=total&src=searchresults&ss=Victoria%20College%2C%20Toronto%2C%20ON%2C%20Canada&ss_all=0&ssb=empty&sshis=0&ssne=Victoria%20College%2C%20Toronto%2C%20ON%2C%20Canada&ssne_untouched=Victoria%20College%2C%20Toronto%2C%20ON%2C%20Canada&=&=&nflt=oos%3D1%3B&rsf=oos-1&lsf=oos%7C1%7C-1
35 |
36 | ## Local transportation
37 |
38 | Toronto is a safe and walkable city, with many hotels within walking
39 | distance of Victoria College. Victoria College is also at the
40 | intersection of subway lines, near both the north-south
41 | Yonge-University line and the east-west Bloor line, making it fast to
42 | arrive from anywhere along those subway lines. It is near the Museum,
43 | Bay, and Wellesley stops ([subway map][subway])
44 |
45 | [subway]: https://www.ttc.ca/Subway/interactive_map/interactive_map.jsp#
46 |
47 | ## Arriving by air
48 |
49 | Toronto is served by two airports. Pearson International Airport (YYZ)
50 | is the largest. It is served by the
51 | [Union Pearson Express Train][train] which takes 25 minutes to arrive
52 | downtown at Union Station where you can take a short subway or taxi
53 | ride to any downtown hotel. Otherwise, there is a flat fare of CDN$56
54 | to take a taxi directly to/from Pearson Airport to the University of
55 | Toronto downtown campus and surrounding hotels. Here is a
56 | [full list][pearson] of transportation options to/from Pearson
57 | Airport.
58 |
59 | The downtown [Billy Bishop Toronto City Airport][billy] (YTZ) is
60 | smaller and served only by propeller-driven flights from eastern
61 | Canada and the U.S. (Boston, New York-Newark, Chicago,
62 | Washington-Dulles). It's convenient if it serves where you are coming
63 | from.
64 |
65 | [train]: https://www.torontopearson.com/en/toandfrom/upexpress/#
66 | [pearson]: https://www.torontopearson.com/en/toandfrom/ground/#
67 | [billy]: https://www.billybishopairport.com/
68 |
69 | ## Driving and parking
70 |
71 | For those driving to Toronto and staying at the Chelsea Hotel, the
72 | hotel offers parking for a fee:
73 |
74 | * Daily Parking is $16+applicable taxes
75 | * Self-Parking is $35+applicable taxes with in and out privileges
76 | * Valet Parking is $45+applicable taxes with in and out privileges
77 |
78 | For those wanting to park near Victoria College, there are a
79 | [few options listed on their website][parking].
80 |
81 | [parking]: http://www.vicu.utoronto.ca/hospitality/resaccommodations/parking.htm
82 |
83 | ## Arriving by train
84 |
85 | Trains arrive at Union Station, which is a couple kilometers away from
86 | Victoria College and accessible by taxi or subway.
87 |
88 |
--------------------------------------------------------------------------------
/docs/_layouts/default.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 | {% seo %}
8 |
9 |
10 |
11 |
14 |
15 |
16 |
109 |
110 |
111 | {% if site.google_analytics %}
112 |
121 | {% endif %}
122 |
123 |
124 |
--------------------------------------------------------------------------------
/resources/workshop-syllabus.md:
--------------------------------------------------------------------------------
1 | # Insert Workshop Title
2 |
3 | # Instructor(s) name(s) and contact information
4 |
5 | Provide names and contact information for all instructors.
6 |
7 | # Workshop Description
8 |
9 | Along with the topic of your workshop, include how students can expect
10 | to spend their time. For the description may also include information
11 | about what type of workshop it is (e.g. instructor-led live demo, lab,
12 | lecture + lab, etc.). Instructors are strongly recommended to provide
13 | completely worked examples for lab sessions, and a set of stand-alone
14 | notes that can be read and understood outside of the workshop.
15 |
16 | ## Pre-requisites
17 |
18 | List any workshop prerequisites, for example:
19 |
20 | * Basic knowledge of R syntax
21 | * Familiarity with the GenomicRanges class
22 | * Familiarity with xyz vignette (provide link)
23 |
24 | List relevant background reading for the workshop, including any
25 | theoretical background you expect students to have.
26 |
27 | * List any textbooks, papers, or other reading that students should be
28 | familiar with. Include direct links where possible.
29 |
30 | ## Workshop Participation
31 |
32 | Describe how students will be expected to participate in the workshop.
33 |
34 | ## _R_ / _Bioconductor_ packages used
35 |
36 | List any _R_ / _Bioconductor_ packages that will be explicitly covered.
37 |
38 | ## Time outline
39 |
40 | An example for a 45-minute workshop:
41 |
42 | | Activity | Time |
43 | |------------------------------|------|
44 | | Packages | 15m |
45 | | Package Development | 15m |
46 | | Contributing to Bioconductor | 5m |
47 | | Best Practices | 10m |
48 |
49 | # Workshop goals and objectives
50 |
51 | List "big picture" student-centered workshop goals and learning
52 | objectives. Learning goals and objectives are related, but not the
53 | same thing. These goals and objectives will help some people to decide
54 | whether to attend the conference for training purposes, so please make
55 | these as precise and accurate as possible.
56 |
57 | *Learning goals* are high-level descriptions of what
58 | participants will learn and be able to do after the workshop is
59 | over. *Learning objectives*, on the other hand, describe in very
60 | specific and measurable terms specific skills or knowledge
61 | attained. The [Bloom's Taxonomy](#bloom) may be a useful framework
62 | for defining and describing your goals and objectives, although there
63 | are others.
64 |
65 | ## Learning goals
66 |
67 | Some examples:
68 |
69 | * describe how to...
70 | * identify methods for...
71 | * understand the difference between...
72 |
73 | ## Learning objectives
74 |
75 | * analyze xyz data to produce...
76 | * create xyz plots
77 | * evaluate xyz data for artifacts
78 |
79 | ### A note about learning goals and objectives (#bloom)
80 |
81 | While not a new or modern system for thinking about learning,
82 | [Bloom's taxonomy][1] is one useful framework for understanding the
83 | cognitive processes involved in learning. From lowest to highest
84 | cognitive requirements:
85 |
86 | 1. Knowledge: Learners must be able to recall or remember the
87 | information.
88 | 2. Comprehension: Learners must be able to understand the information.
89 | 3. Application: Learners must be able to use the information they have
90 | learned at the same or different contexts.
91 | 4. Analysis: Learners must be able to analyze the information, by
92 | identifying its different components.
93 | 5. Synthesis: Learners must be able to create something new using
94 | different chunks of the information they have already mastered.
95 | 6. Evaluation: Learners must be able to present opinions, justify
96 | decisions, and make judgments about the information presented,
97 | based on previously acquired knowledge.
98 |
99 | To use Bloom's taxonomy, consider the following sets of verbs and
100 | descriptions for learning objectives:
101 |
102 | 1. Remember: Memorize, show, pick, spell, list, quote, recall, repeat,
103 | catalogue, cite, state, relate, record, name.
104 | 2. Understand: Explain, restate, alter, outline, discuss, expand,
105 | identify, locate, report, express, recognize, discuss, qualify,
106 | covert, review, infer.
107 | 3. Apply: Translate, interpret, explain, practice, illustrate,
108 | operate, demonstrate, dramatize, sketch, put into action, complete,
109 | model, utilize, experiment, schedule, use.
110 | 4. Analyze: Distinguish, differentiate, separate, take apart,
111 | appraise, calculate, criticize, compare, contrast, examine, test,
112 | relate, search, classify, experiment.
113 | 5. Evaluate: Decide, appraise, revise, score, recommend, select,
114 | measure, argue, value, estimate, choose, discuss, rate, assess,
115 | think.
116 | 6. Create: Compose, plan, propose, produce, predict, design, assemble,
117 | prepare, formulate, organize, manage, construct, generate, imagine,
118 | set-up.
119 |
120 | [1]: https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/ "Bloom's Taxonomy"
121 |
--------------------------------------------------------------------------------
/docs/schedule-developer-day.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day) 26 and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | ## Developer Day Schedule (Tentative)
14 |
15 | Logistics:
16 |
17 | - Lightning talks -- [sign up][]! Include authors, affiliation, title.
18 | - Start your [course AMI][]
19 | - Join the [bioc-community slack][]
20 | - Provide interactive feedback on [sli.do][] `#bioc2018`
21 |
22 | [sign up]: mailto:stvjc@channing.harvard.edu?subject=lightning talk
23 | [course AMI]: https://courses.bioconductor.org
24 | [bioc-community slack]: https://bioc-community.herokuapp.com/
25 | [sli.do]: https://sli.do
26 |
27 | 8:30 - 9:00 -- Registration and breakfast, VC second floor foyer
28 |
29 | 9:00 - 9:40 -- Welcome
30 | : Orientation & project updates -- [slides][1] -- VC 213 Chapel
31 |
32 | 9:40 - 10:00 -- Peter F. Hickey
33 | : Lessons from switching to on-disk storage using DelayedArray
34 | containers -- [slides][2] -- VC 213 Chapel
35 |
36 | 10:00 - 10:30 -- Lightning talks I
37 | : Lightning talk platforms will be available to all
38 | Developer Day attendees -- VC 213 Chapel
39 |
40 | - Qian Liu\*, Hervé Pagès, Martin Morgan, Roswell Park Comprehensive
41 | Cancer Center. DelayedDataFrame: an on-disk data representation in
42 | DataFrame metaphor.
43 | - Aedin Culhane\*, Dana Farber Cancer Institute. TCGA immune
44 | subtypes.
45 | - Wolfgang Huber\*, Susan Holmes, EMBL. Short preview of our new
46 | book "Modern Statistics for Modern Biology".
47 | - Lori Shepherd\*, Roswell Park Comprehensive Cancer
48 | Center. Submitting packages to Bioconductor
49 | - Martin Morgan\*, Roswell Park Comprehensive Cancer Center. Ad hoc
50 | workshops -- alternative activities during workshop / BoF
51 | sessions.
52 |
53 | 10:30 - 11:00 -- Break
54 | :
55 |
56 | 11:00 - 12:00 -- Birds-of-a-feather I / Workshops I
57 | : - BoF: Stephanie Hicks, [Statistical Analysis and Comprehension of
58 | the Human Cell Atlas in R/Bioconductor][hca] -- VC 206
59 | - Workshop: Nitesh Turaga,
60 | [Maintaining your Bioconductor package][510] -- VC 212
61 | - Impromptu: tidyverse and _Bioconductor_ -- VC 211
62 |
63 |
68 |
69 | 12:00 - 1:00 -- Lunch -- VC Foyer & Alumni Hall
70 | :
71 |
72 | 1:00 - 1:30 -- Lightning talks II
73 | : VC 213 Chapel
74 |
75 | - Aedin Culhane\*, Dana Farber Cancer Institute. Update in Bioconductor meet ups.
76 | - Lori Shepherd\*, Roswell Park Comprehensive Cancer Center. BiocFileCache
77 | - Qian Liu\*, Martin Morgan, Roswell Park Comprehensive Cancer
78 | Center. VariantExperiment: A RangedSummarizedExperiment container
79 | for VCF/GDS data with GDS back-end.
80 | - Nitesh Turaga\*, Bioconductor Core Team. Scalable Computing in
81 | Bioconductor: from cores to clusters.
82 | - Levi Waldron\*, CUNY. Creating the Bioc2018 workshop book and AMIs.
83 | - Daniel Van Twisk\*, RPCI. Organism.dplyr: A dplyr compatible
84 | Annotation Resource Interface.
85 |
86 | 1:30 - 2:30 -- Birds-of-a-feather II / Workshops II
87 | : - BoF: Levi Waldron, [New Data Structures for Bioconductor][structures] -- VC
88 | 206
89 | - Workshop: Peter Hickey,
90 | [Effectively using the DelayedArray framework to support the analysis of large datasets][500] -- VC 212
91 | - Impromptu: unit tests -- VC 211
92 |
93 | 2:30 - 3:00 -- Break
94 | :
95 |
96 | 3:00 - 3:30 -- Lightning talks III
97 | : VC 213 Chapel
98 |
99 | - Michael Steinbaugh\*, HSPH. Bioconductor tricks for dealing with
100 | genome annotations. [slides][3.1]
101 | - Charlotte Soneson\*, UZH; Kevin Rue-Albrecht, Uni Oxford; Federico
102 | Marini, Uni Mainz; Aaron Lun, CRUK: iSEE: Interactive
103 | SummarizedExperiment Explorer
104 | - Nathan Sheffield\*, UVA, Managing genomic project metadata
105 | - Shian Su\*, WEHI: BiocExplorer
106 | - Vincent Carey*, S Gopaulakrishnan, S Pollack, BJ Stubbs, A
107 | Culhane. Harvard Medical School/Harvard School of Public
108 | Health. Recent cloud-scale innovations in Bioconductor.
109 | - Tim Triche, USC: Sesame: a simple way/to analyze a methylation
110 | array
111 |
112 | [3.1]: https://github.com/steinbaugh/presentations/raw/master/2018-07-25/bioc2018.pdf
113 |
114 | 3:30 - 4:30 -- Community activities
115 | : VC 213 Chapel
116 |
117 | + Tracking down a bug: rownames and `SummarizedExperiment`. [issue][4.1]
118 | + Toward a better support site. [notes][4.2]
119 | + Designing PharmaGX data representations. [demo code][4.3]
120 | + Collaborative opportunities: Biocverse package discovery. [slides][4.4]
121 |
122 | [4.1]: https://github.com/Bioconductor/SummarizedExperiment/issues/13
123 | [4.2]: https://docs.google.com/document/d/1TPKn5sdBLrSuMEiXtdAyGipd7p2XNXghbHGYzmH_Xpk/edit?usp=sharing
124 | [4.3]: https://github.com/bhklab/longArray
125 | [4.4]: https://docs.google.com/presentation/d/1_SkOfeLT7j7wdQCwxfwmuChjuB7wtW-2evrbYKMWnIg/edit#slide=id.p
126 |
127 | 4:30 - 5:00 -- Panel discussion: project directions and opportunities
128 | : VC 213 Chapel
129 |
130 | [hca]: https://github.com/Bioconductor/BioC2018/issues/5
131 | [structures]: https://github.com/Bioconductor/BioC2018/issues/8
132 |
133 | [1]: https://docs.google.com/presentation/d/1QamlkH7H6B9hY8iCtDBA1qr7qSPXKc_y5ze2dH67C5s/edit?usp=sharing
134 | [2]: https://docs.google.com/presentation/d/1MsmcvCZz_k-0Xw0GEai0x61_-D1YzefnBB84zT3hnpQ/edit?usp=sharing
135 | [500]: http://bioconductor.github.io/BiocWorkshops/effectively-using-the-delayedarray-framework-to-support-the-analysis-of-large-datasets.html
136 | [510]: http://bioconductor.github.io/BiocWorkshops/maintaining-your-bioconductor-package.html
137 |
--------------------------------------------------------------------------------
/docs/posters.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day) 26 and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | ## Posters
14 |
15 | Ba-Alawi W\*, Haibe-Kains B. Enhancing Drug Sensitivity Prediction using Logical Models. Keywords: GeneExpression, Pharmacogenomics, StatisticalMethod, BiomarkerDiscovery.
16 |
17 | Burton D\*, McCall M. Incorporating Uncertainty in a Ternary Gene Regulatory Network Model. Keywords: CellBiology, GraphAndNetwork, Software.
18 |
19 | Daniela Cassol\* and Thomas Girke. systemPipeR: NGS Workflow Environment with Command-Line Interface. Keywords: Generic Workflow Environment, NGS Data Analysis, Command-line Interface, Visualization, Reporting Infrastructure.
20 |
21 | Cheng PF\*, Dummer R, Robinson M, Morgan M, Levesque MP. TCGAbrowser. Keywords: Software, WorkflowStep, Visualization.
22 |
23 | Clark O\*, Safikhani Z, Smirnov P, and Haibe-Kains B. Gene isoforms as expression-based biomarkers predictive of drug response in vitro. Keywords: PharmacoGx, Biomarkers, Isoforms, Splicing, Drug Response.
24 |
25 | Daniel Giguere\*, Jean Macklaim, Greg Gloor. omicplotR: A Shiny app for exploring omic datasets as compositions software. Keywords: RNASeq, Metagenomics, Visualization, GUI.
26 |
27 | Diya Das\*, Levi Gadye, Michael A. Sanchez, Kelly Street, Ariane Baudhuin, Allon Wagner, Michael B. Cole, Yoon Gi Choi, Nir Yosef, Elizabeth Purdom, Sandrine Dudoit, Davide Risso, John Ngai and Russell B. Fletcher. Unraveling Tissue Regeneration With Single-Cell RNA-Sequencing. Keywords: Normalization, Clustering, RNASeq, SingleCell, Software.
28 |
29 | Drnevich J\*, Tseng M\*, Dalling J, Heath K, and Ferrer A. Transcriptome assembly problems found using Bioconductor packages. Keywords: Transcription, RNASeq, Clustering, Visualization.
30 |
31 | Ho C\*, Kofia V, Smirnov P, Ba-alawi W, Safikhani Z, Haibe-Kains B. PharmacoDB: an integrative web application for mining multiple pharmacogenomic datasets. Keywords: pharmacogenetics, pharmacogenomics, visualization.
32 |
33 | Chiaowen Joyce Hsiao\*, PoYuan Tung, John Blischak, Jonathan Burnett, Kenneth Barr, Yoav Gilad and Matthew Stephens. The identification and assessment of cell cycle signatures in single-cell gene expression data. Keywords: SingleCell, RNASeq, Transcriptomics, GeneRegulation, Classification.
34 |
35 | Chiaowen Joyce Hsiao\*, PoYuan Tung, John Blischak, Jonathan Burnett, Kenneth Barr, Yoav Gilad and Matthew Stephens. Identification and assessment of cell cycle signatures in single-cell gene expression data. Keywords: SingleCell, RNASeq, Transcriptomics, GeneRegulation, Classification.
36 |
37 | Chang Cao, Davide Chicco\*, Michael M. Hoffman. The MCC-F1 curve: a performance evaluation technique for binary classification. Keywords: Matthews Correlation Coefficient, Confusion Matrix, F1 Score, Accuracy, Applied Statistics.
38 |
39 | Innes BT\* and Bader GD. scClustViz - Single-cell RNAseq Cluster Assessment and Interactive Visualisation. Keywords: Visualization, SingleCell, Transcriptomics, GUI.
40 |
41 | Benjamin K Johnson\*, Asif Zubair, Timothy J Triche Jr. ATACseeker: a toolkit for ATAC- and scATAC-seq analysis. Keywords: ATACSeq, QualityControl, SingleCell, DifferentialPeakCalling, Visualization.
42 |
43 | Bo Li\*, Wail Ba-Alawi, Benjamin Haibe-Kains. R-LOBICO: an R package for building logical models. Keywords: Software, Classification, Pharmacogenomics.
44 |
45 | Tamara Mahbubani\*, Chantal Ho, Wail Ba-Alawi, Petr Smirnov, Benjamin Haibe-Kains, Arvind Singh Mer. BioHeat: an R Package for Interactive Heat Map Visualization. Keywords: Visualization, Pathways, Software, MultipleComparison.
46 |
47 | Ann Meyer\*, Michelle D Brazas, and B.F.F. Ouellette. Tracking Workshop Development and Online User Access. Keywords: Education.
48 |
49 | Zhun Miao\*, Ke Deng, Xiaowo Wang, Xuegong Zhang. DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Keywords: DifferentialExpression, GeneExpression, RNASeq, SingleCell, Transcriptomics.
50 |
51 | Nagraj VP, Magee M, and Sheffield NC\*. LOLAweb: A containerized web application for interactive genomic locus overlap enrichment analysis. Keywords: ChIPSeq, FunctionalGenomics, GeneRegulation, GeneSetEnrichment, GenomeAnnotation.
52 |
53 | Vandana Sandhu\*, Knut Jorgen Labori, Ayelet Borgida, Ilinca Lungu, John Bartlett, Sara Hafezi-Bakhtiari, Rob Denroche, Gun Ho Jang, Danielle Pasternack, Faridah Mbaabali, Matthew Watson, Julie Wilson, Elin H. Kure, Steven Gallinger, Benjamin Haibe-Kains. Meta-analysis of transcriptomic profiles identifies prognostic model for pancreatic ductal adenocarcinoma patients. Keywords: Meta-analysis, One Sample Classifier, Top Scoring Pairs, Overall Survival Predictive Model.
54 |
55 | Heewon Seo\* and Benjamin Haibe-Kains. Pharmacogenomics of Gemcitabine in Pancreatic Cancer Cell Lines. Keywords: Pharmacogenomics, Gemcitabine, Pancreatic Cancer, Cell Lines.
56 |
57 | Shorser S\*, Reactome Team, Wu G, Hermajob H, D’Eustachio P and Stein L. The Reactome Knowledgebase.
58 |
59 | Mer, Arvind Singh\*, Brew Ben Ortmann, Janosch Goldenberg Anna Haibe-Kains Benjamin. Xeva: an R package for patient derived xenograft data management and analysis. Keywords: Pharmacogenomics, Biomarker, Xenografts, Drug Response.
60 |
61 | Smirnov P\*, Kofia V, Zhu K, Safikhani K, Ho C, Pugh T, Haibe-Kains B. Leveraging Preclinical Pharmacogenomics Studies to Inform Precision Medicine Research. Keywords: Pharmacogenomics, Visualization, GeneExpression, Regression, Software.
62 |
63 | Smith I\*, Haibe-Kains B. Identifying Biomarkers For Drug Sensitivity in Cancer With DNA Methylation Data. Keywords: Pharmacogenomics, DifferentialMethylation, DNAMethylation, DimensionReduction, CancerData.
64 |
65 | Sohail N\*, Johnson B, Zubair A, Triche T. MTseeker: mitochondrial variant analysis tools for Bioconductor. Keywords: MitochondrialVariation, VariantAnnotation, FunctionalPrediction, DataRepresentation, Visualization.
66 |
67 | Luyi Tian, Shian Su\*, Xueyi Dong, Daniela Amann-Zalcenstein, Christine Biben, Shalin H Naik, Matthew E Ritchie. Tools for preprocessing and benchmarking single cell RNA-sequencing data. Keywords: SingleCell, Preprocessing, Sequencing, QualityControl.
68 |
69 | Seyed Ali Madani Tonekaboni\*, Parisa Mazrooei, Victor Kofia, Benjamin Haibe-Kains, Mathieu Lupien. CREAM as an open source R package for calling clusters of genomic regions. Keywords: Cis-Regulatory Element, Clustering, CORE, Super-enhancer.
70 |
--------------------------------------------------------------------------------
/docs/Gemfile.lock:
--------------------------------------------------------------------------------
1 | GEM
2 | remote: https://rubygems.org/
3 | specs:
4 | actionpack (4.2.9)
5 | actionview (= 4.2.9)
6 | activesupport (= 4.2.9)
7 | rack (~> 1.6)
8 | rack-test (~> 0.6.2)
9 | rails-dom-testing (~> 1.0, >= 1.0.5)
10 | rails-html-sanitizer (~> 1.0, >= 1.0.2)
11 | actionview (4.2.9)
12 | activesupport (= 4.2.9)
13 | builder (~> 3.1)
14 | erubis (~> 2.7.0)
15 | rails-dom-testing (~> 1.0, >= 1.0.5)
16 | rails-html-sanitizer (~> 1.0, >= 1.0.3)
17 | activesupport (4.2.9)
18 | i18n (~> 0.7)
19 | minitest (~> 5.1)
20 | thread_safe (~> 0.3, >= 0.3.4)
21 | tzinfo (~> 1.1)
22 | addressable (2.5.2)
23 | public_suffix (>= 2.0.2, < 4.0)
24 | builder (3.2.3)
25 | coffee-script (2.4.1)
26 | coffee-script-source
27 | execjs
28 | coffee-script-source (1.11.1)
29 | colorator (1.1.0)
30 | commonmarker (0.17.7.1)
31 | ruby-enum (~> 0.5)
32 | concurrent-ruby (1.0.5)
33 | crass (1.0.3)
34 | erubis (2.7.0)
35 | ethon (0.11.0)
36 | ffi (>= 1.3.0)
37 | execjs (2.7.0)
38 | faraday (0.13.1)
39 | multipart-post (>= 1.2, < 3)
40 | ffi (1.9.18)
41 | forwardable-extended (2.6.0)
42 | gemoji (3.0.0)
43 | github-pages (172)
44 | activesupport (= 4.2.9)
45 | github-pages-health-check (= 1.3.5)
46 | jekyll (= 3.6.2)
47 | jekyll-avatar (= 0.5.0)
48 | jekyll-coffeescript (= 1.0.2)
49 | jekyll-commonmark-ghpages (= 0.1.3)
50 | jekyll-default-layout (= 0.1.4)
51 | jekyll-feed (= 0.9.2)
52 | jekyll-gist (= 1.4.1)
53 | jekyll-github-metadata (= 2.9.3)
54 | jekyll-mentions (= 1.2.0)
55 | jekyll-optional-front-matter (= 0.3.0)
56 | jekyll-paginate (= 1.1.0)
57 | jekyll-readme-index (= 0.2.0)
58 | jekyll-redirect-from (= 0.12.1)
59 | jekyll-relative-links (= 0.5.2)
60 | jekyll-remote-theme (= 0.2.3)
61 | jekyll-sass-converter (= 1.5.0)
62 | jekyll-seo-tag (= 2.3.0)
63 | jekyll-sitemap (= 1.1.1)
64 | jekyll-swiss (= 0.4.0)
65 | jekyll-theme-architect (= 0.1.0)
66 | jekyll-theme-cayman (= 0.1.0)
67 | jekyll-theme-dinky (= 0.1.0)
68 | jekyll-theme-hacker (= 0.1.0)
69 | jekyll-theme-leap-day (= 0.1.0)
70 | jekyll-theme-merlot (= 0.1.0)
71 | jekyll-theme-midnight (= 0.1.0)
72 | jekyll-theme-minimal (= 0.1.0)
73 | jekyll-theme-modernist (= 0.1.0)
74 | jekyll-theme-primer (= 0.5.2)
75 | jekyll-theme-slate (= 0.1.0)
76 | jekyll-theme-tactile (= 0.1.0)
77 | jekyll-theme-time-machine (= 0.1.0)
78 | jekyll-titles-from-headings (= 0.5.0)
79 | jemoji (= 0.8.1)
80 | kramdown (= 1.14.0)
81 | liquid (= 4.0.0)
82 | listen (= 3.0.6)
83 | mercenary (~> 0.3)
84 | minima (= 2.1.1)
85 | rouge (= 2.2.1)
86 | terminal-table (~> 1.4)
87 | github-pages-health-check (1.3.5)
88 | addressable (~> 2.3)
89 | net-dns (~> 0.8)
90 | octokit (~> 4.0)
91 | public_suffix (~> 2.0)
92 | typhoeus (~> 0.7)
93 | html-pipeline (2.7.1)
94 | activesupport (>= 2)
95 | nokogiri (>= 1.4)
96 | i18n (0.9.1)
97 | concurrent-ruby (~> 1.0)
98 | jekyll (3.6.2)
99 | addressable (~> 2.4)
100 | colorator (~> 1.0)
101 | jekyll-sass-converter (~> 1.0)
102 | jekyll-watch (~> 1.1)
103 | kramdown (~> 1.14)
104 | liquid (~> 4.0)
105 | mercenary (~> 0.3.3)
106 | pathutil (~> 0.9)
107 | rouge (>= 1.7, < 3)
108 | safe_yaml (~> 1.0)
109 | jekyll-avatar (0.5.0)
110 | jekyll (~> 3.0)
111 | jekyll-coffeescript (1.0.2)
112 | coffee-script (~> 2.2)
113 | coffee-script-source (~> 1.11.1)
114 | jekyll-commonmark (1.1.0)
115 | commonmarker (~> 0.14)
116 | jekyll (>= 3.0, < 4.0)
117 | jekyll-commonmark-ghpages (0.1.3)
118 | commonmarker (~> 0.17.6)
119 | jekyll-commonmark (~> 1)
120 | rouge (~> 2)
121 | jekyll-default-layout (0.1.4)
122 | jekyll (~> 3.0)
123 | jekyll-feed (0.9.2)
124 | jekyll (~> 3.3)
125 | jekyll-gist (1.4.1)
126 | octokit (~> 4.2)
127 | jekyll-github-metadata (2.9.3)
128 | jekyll (~> 3.1)
129 | octokit (~> 4.0, != 4.4.0)
130 | jekyll-mentions (1.2.0)
131 | activesupport (~> 4.0)
132 | html-pipeline (~> 2.3)
133 | jekyll (~> 3.0)
134 | jekyll-optional-front-matter (0.3.0)
135 | jekyll (~> 3.0)
136 | jekyll-paginate (1.1.0)
137 | jekyll-readme-index (0.2.0)
138 | jekyll (~> 3.0)
139 | jekyll-redirect-from (0.12.1)
140 | jekyll (~> 3.3)
141 | jekyll-relative-links (0.5.2)
142 | jekyll (~> 3.3)
143 | jekyll-remote-theme (0.2.3)
144 | jekyll (~> 3.5)
145 | rubyzip (>= 1.2.1, < 3.0)
146 | typhoeus (>= 0.7, < 2.0)
147 | jekyll-sass-converter (1.5.0)
148 | sass (~> 3.4)
149 | jekyll-seo-tag (2.3.0)
150 | jekyll (~> 3.3)
151 | jekyll-sitemap (1.1.1)
152 | jekyll (~> 3.3)
153 | jekyll-swiss (0.4.0)
154 | jekyll-theme-architect (0.1.0)
155 | jekyll (~> 3.5)
156 | jekyll-seo-tag (~> 2.0)
157 | jekyll-theme-cayman (0.1.0)
158 | jekyll (~> 3.5)
159 | jekyll-seo-tag (~> 2.0)
160 | jekyll-theme-dinky (0.1.0)
161 | jekyll (~> 3.5)
162 | jekyll-seo-tag (~> 2.0)
163 | jekyll-theme-hacker (0.1.0)
164 | jekyll (~> 3.5)
165 | jekyll-seo-tag (~> 2.0)
166 | jekyll-theme-leap-day (0.1.0)
167 | jekyll (~> 3.5)
168 | jekyll-seo-tag (~> 2.0)
169 | jekyll-theme-merlot (0.1.0)
170 | jekyll (~> 3.5)
171 | jekyll-seo-tag (~> 2.0)
172 | jekyll-theme-midnight (0.1.0)
173 | jekyll (~> 3.5)
174 | jekyll-seo-tag (~> 2.0)
175 | jekyll-theme-minimal (0.1.0)
176 | jekyll (~> 3.5)
177 | jekyll-seo-tag (~> 2.0)
178 | jekyll-theme-modernist (0.1.0)
179 | jekyll (~> 3.5)
180 | jekyll-seo-tag (~> 2.0)
181 | jekyll-theme-primer (0.5.2)
182 | jekyll (~> 3.5)
183 | jekyll-github-metadata (~> 2.9)
184 | jekyll-seo-tag (~> 2.2)
185 | jekyll-theme-slate (0.1.0)
186 | jekyll (~> 3.5)
187 | jekyll-seo-tag (~> 2.0)
188 | jekyll-theme-tactile (0.1.0)
189 | jekyll (~> 3.5)
190 | jekyll-seo-tag (~> 2.0)
191 | jekyll-theme-time-machine (0.1.0)
192 | jekyll (~> 3.5)
193 | jekyll-seo-tag (~> 2.0)
194 | jekyll-titles-from-headings (0.5.0)
195 | jekyll (~> 3.3)
196 | jekyll-watch (1.5.1)
197 | listen (~> 3.0)
198 | jemoji (0.8.1)
199 | activesupport (~> 4.0, >= 4.2.9)
200 | gemoji (~> 3.0)
201 | html-pipeline (~> 2.2)
202 | jekyll (>= 3.0)
203 | kramdown (1.14.0)
204 | liquid (4.0.0)
205 | listen (3.0.6)
206 | rb-fsevent (>= 0.9.3)
207 | rb-inotify (>= 0.9.7)
208 | loofah (2.1.1)
209 | crass (~> 1.0.2)
210 | nokogiri (>= 1.5.9)
211 | mercenary (0.3.6)
212 | mini_portile2 (2.3.0)
213 | minima (2.1.1)
214 | jekyll (~> 3.3)
215 | minimal (0.0.26)
216 | actionpack (>= 3.0.0)
217 | activesupport (>= 3.0.0)
218 | minitest (5.11.1)
219 | multipart-post (2.0.0)
220 | net-dns (0.8.0)
221 | nokogiri (1.8.1)
222 | mini_portile2 (~> 2.3.0)
223 | octokit (4.8.0)
224 | sawyer (~> 0.8.0, >= 0.5.3)
225 | pathutil (0.16.1)
226 | forwardable-extended (~> 2.6)
227 | public_suffix (2.0.5)
228 | rack (1.6.8)
229 | rack-test (0.6.3)
230 | rack (>= 1.0)
231 | rails-deprecated_sanitizer (1.0.3)
232 | activesupport (>= 4.2.0.alpha)
233 | rails-dom-testing (1.0.9)
234 | activesupport (>= 4.2.0, < 5.0)
235 | nokogiri (~> 1.6)
236 | rails-deprecated_sanitizer (>= 1.0.1)
237 | rails-html-sanitizer (1.0.3)
238 | loofah (~> 2.0)
239 | rb-fsevent (0.10.2)
240 | rb-inotify (0.9.10)
241 | ffi (>= 0.5.0, < 2)
242 | rouge (2.2.1)
243 | ruby-enum (0.7.1)
244 | i18n
245 | rubyzip (1.2.1)
246 | safe_yaml (1.0.4)
247 | sass (3.5.5)
248 | sass-listen (~> 4.0.0)
249 | sass-listen (4.0.0)
250 | rb-fsevent (~> 0.9, >= 0.9.4)
251 | rb-inotify (~> 0.9, >= 0.9.7)
252 | sawyer (0.8.1)
253 | addressable (>= 2.3.5, < 2.6)
254 | faraday (~> 0.8, < 1.0)
255 | terminal-table (1.8.0)
256 | unicode-display_width (~> 1.1, >= 1.1.1)
257 | thread_safe (0.3.6)
258 | typhoeus (0.8.0)
259 | ethon (>= 0.8.0)
260 | tzinfo (1.2.4)
261 | thread_safe (~> 0.1)
262 | unicode-display_width (1.3.0)
263 |
264 | PLATFORMS
265 | ruby
266 |
267 | DEPENDENCIES
268 | github-pages
269 | minimal
270 |
271 | BUNDLED WITH
272 | 1.16.1
273 |
--------------------------------------------------------------------------------
/docs/schedule.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day) 26 and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | ## Schedule
14 |
15 | * [Developer Day](schedule-developer-day): Wednesday, July 25.
16 | * [Day 1](#day-1-thursday-july-26): Thursday July 26.
17 | * [Day 2](#day-2-friday-july-27): Friday July 27.
18 |
19 | [1]: http://sites.utoronto.ca/andrewslab/
20 | [2]: https://www.pmgenomics.ca/bhklab/
21 | [3]: https://www.rits.onc.jhmi.edu/DBB/members/?members=Faculty&member=efertig1
22 | [4]: https://csoneson.github.io/
23 | [5]: https://hoffmanlab.org/
24 | [6]: http://hugheslab.med.utoronto.ca/
25 |
26 | ### Developer Day: Wednesday July 25
27 |
28 | See the [Developer Day](schedule-developer-day) schedule.
29 |
30 | ### Day 1: Thursday July 26
31 |
32 | Logistics:
33 |
34 | - Start your [course AMI][]
35 | - Join the [bioc-community slack][]
36 |
37 | [course AMI]: https://courses.bioconductor.org
38 | [bioc-community slack]: https://bioc-community.herokuapp.com/
39 |
40 | 8:00 - 8:45 -- Registration and breakfast, VC second floor foyer
41 | :
42 |
43 | 8:45 - 9:00 -- Welcoming remarks -- [slides][1.0] (Martin Morgan)
44 | : VC 213 Chapel
45 |
46 | 9:00 - 9:30 -- [Michael Hoffman][5] University of Toronto.
47 | : Virtual ChIP-seq: predicting transcription factor binding by
48 | learning from the transcriptome -- VC 213 Chapel
49 |
50 | 9:30 - 10:00 -- [Elana Fertig][3] John Hopkins University.
51 | : Enter the Matrix: Interpreting omics through matrix factorization -- VC 213 Chapel
52 |
53 | 10:00 - 10:30 -- Break
54 | :
55 |
56 | 10:30 - 11:00 [Brenda Andrews][1] University of Toronto.
57 | : Analysis of high content microscopy data generated through automated
58 | yeast genetics -- VC 213 Chapel
59 |
60 | 11:00 - 12:00 -- Contributed talks -- VC 213 Chapel
61 | : + Innes BT\* and Bader GD. scClustViz - Single-cell RNAseq Cluster
62 | Assessment and Interactive Visualisation.
63 | + Righelli D\*, Koberstein J, Gomes B, Zhang N, Angelini C,
64 | Peixoto L, Risso D. Differential Enriched Scan 2 (DEScan2): a
65 | fast pipeline for broad peak analysis.
66 | + Adithya M, Bhargava A, Wright E\*. Improving the accuracy of
67 | taxonomic classification for identifying taxa in microbiome
68 | samples.
69 | + Zhun Miao\*, Ke Deng, Xiaowo Wang, Xuegong Zhang. DEsingle for
70 | detecting three types of differential expression in single-cell
71 | RNA-seq data.
72 | + Ludwig Geistlinger\*, Gergely Csaba, Mara Santarelli, Lucas
73 | Schiffer, Marcel Ramos, Ralf Zimmer, and Levi Waldron. Towards a
74 | gold standard for benchmarking gene set enrichment analysis.
75 |
76 | 12:00 - 1:00 -- Lunch / Birds-of-a-feather -- VC Foyer and Alumni Hall
77 | :
78 | + Organizing and coordinating R / Bioconductor meetups -- VC 211
79 |
80 | 1:00 - 2:45 -- Workshop Session 1a
81 | : + Martin Morgan\*. [Bioconductor for Everyone][100] -- VC 212
82 | + Ludwig Geistlinger\* and Levi Waldron. [Functional enrichment
83 | analysis of high-throughput omics data][210] -- VC 215
84 |
85 | 1:45 - 2:45 -- Workshops Session 1b
86 | : + Zhaleh Safikhani\*, Petr Smirnov, Benjamin
87 | Haibe-Kains. [Biomarker discovery from large pharmacogenomics
88 | datasets][260] -- VC 206
89 |
90 | 2:45 - 3:15 -- Break
91 | :
92 |
93 | 3:15 - 5:00 -- Workshops Session 2a
94 | : + MacDonald J, Shepherd L. [Introduction to Bioconductor annotation
95 | resources][101] -- VC 206
96 | + Love MI. [RNA-seq data analysis with DESeq2][201] -- VC 215
97 |
98 | 4:00 - 5:00 -- Workshops Session 2b
99 | : + Coetzee SG\* and Hazelett DJ. Variant Functional Annotation
100 | using StatePaintR, FunciVar and MotifBreakR
101 | + Isserlin R\*, Innes B, Bader
102 | GD. [Cytoscape Automation in R using Rcy3][230] -- **SET UP** your
103 | laptop for this workshop by arriving at 3:30. For the workshop
104 | [download and install cytoscape 3.6.1][cyto] and [workshop files][cytowork] -- VC 212
105 |
106 | 5:30 - 7:30 -- Contributed posters -- VC Foyer and Alumni Hall
107 | :
108 |
109 | [1.0]: https://docs.google.com/presentation/d/1W0tzadEgIKSq6J5Bcq7iBgcEIgRlSlbdtMRpDaRQ9m8/edit?usp=sharing
110 | [cyto]: http://cytoscape.org/download.php
111 | [cytowork]: http://download.baderlab.org/Bioc2018/
112 |
113 | ### Day 2: Friday July 27
114 |
115 | 8:00 - 8:30 -- Breakfast, VC Second floor foyer
116 |
117 | 8:30 - 9:00 -- [Tim Hughes][6], University of Toronto.
118 | : Binding motifs for DNA and RNA binding proteins -- VC 213 Chapel
119 |
120 | 9:00 - 9:30 -- [Benjamin Haibe-Kains][2], Princesss Margaret Cancer
121 | Center, Toronto.
122 | : Cancer Biomarker Discovery: Building a Bridge Between Preclinical
123 | and Clinical Research -- VC 213 Chapel
124 |
125 | 9:30 - 10:00 -- Contributed talks -- VC 213 Chapel
126 | : + Lee S\*, Cook D, Lawrence M. plyranges: a fluent interface to
127 | Bioconductor's Ranges infrastructure
128 | + Love MI\*, Hickey P, Soneson, C, and Patro R. Automatic metadata
129 | propagation for RNA-seq
130 |
131 |
132 | 10:00 - 10:30 -- Break
133 | :
134 |
135 | 10:30 - 11:00 -- [Charlotte Soneson][4], University of Zurich, Switzerland.
136 | : A junction coverage compatibility score to quantify the reliability
137 | of transcript abundance estimates and annotation catalogs -- VC 213 Chapel
138 |
139 | 11:00 - 12:00 -- Contributed talks -- VC 213 Chapel
140 | : + Albert Y Zhang, Shian Su, Matthew E Ritchie, and Charity W
141 | Law\*. Unpacking signal from RNA-seq intron reads using Rsubread
142 | and limma packages.
143 | + Steinbaugh MJ\*, Kirchner RD, Ho Sui S. bcbioSingleCell: R
144 | package for bcbio single-cell analysis.
145 | + Abbas Rizvi\*, Ezgi Karaesmen\*, Leah Preus, Michael Sovic,
146 | Junke Wang, Lara Sucheston-Campbell. gwasurvivr: an R package to
147 | perform survival association testing on imputed genetic data.
148 | + Nima Hejazi\*, Alan Hubbard, Mark van der Laan. Data-Adaptive
149 | Estimation and Inference for Differential Methylation Analysis.
150 | + Rachael V Phillips\*, Alan Hubbard. Data Adaptive Evaluation of
151 | Preprocessing Methods using Ensemble Machine Learning.
152 |
153 | 12:00 - 1:00 -- Lunch / Birds-of-a-feather -- VC Foyer and Alumni Hall
154 | :
155 |
156 | 1:00 - 2:45 -- Workshops Session 3a
157 | : + Michael Lawrence\*, Martin Morgan. [Solving common bioinformatic
158 | challenges using GenomicRanges][102] -- VC 215
159 | + Ramos M, Geistlinger L, Waldron L\*. [Workflow for Multi-omics
160 | Analysis with MultiAssayExperiment][220] -- VC 212
161 |
162 | 1:45 - 2:45 -- Workshops Session 3b
163 | : + Charity Law\* , Monther Alhamdoosh, Shian Su, Gordon Smyth and
164 | Matthew Ritchie. [RNA-seq analysis is easy as 1-2-3 with limma,
165 | Glimma and edgeR][200] -- VC 206
166 |
167 | 2:45 - 3:15 -- Break
168 | :
169 |
170 | 3:15 - 5:00 -- Workshops Session 4a
171 | : + Das D\*, Street K\*, Risso D\*. [Analysis of single-cell RNA-seq
172 | data: Dimensionality reduction, clustering, and lineage
173 | inference][202] -- VC 215
174 | + Nicholas Cooley\*, Erik Wright. [Working with Genomic Data in R
175 | with the DECIPHER package][250] -- VC 212
176 | + Levi Waldron, Benjamin Haibe-Kains, Sean Davis. [Public Data
177 | Resources and Bioconductor][103] -- VC 211
178 |
179 | 4:00 - 5:00 -- Workshops Session 4b
180 | : + Lee S\*, Lawrence M. [Fluent genomic data analysis with plyranges][240]
181 | -- VC 206
182 |
183 | 5:30 - 7:30 -- Contributed posters -- VC Foyer and Alumni Hall
184 | :
185 |
186 |
187 | [100]: http://bioconductor.github.io/BiocWorkshops/r-and-bioconductor-for-everyone-an-introduction.html
188 | [101]: http://bioconductor.github.io/BiocWorkshops/introduction-to-bioconductor-annotation-resources.html
189 | [102]: http://bioconductor.github.io/BiocWorkshops/solving-common-bioinformatic-challenges-using-genomicranges.html
190 | [103]: http://bioconductor.github.io/BiocWorkshops/public-data-resources-and-bioconductor.html
191 |
192 | [200]: http://bioconductor.github.io/BiocWorkshops/rna-seq-analysis-is-easy-as-1-2-3-with-limma-glimma-and-edger.html
193 | [201]: http://bioconductor.github.io/BiocWorkshops/rna-seq-data-analysis-with-deseq2.html
194 | [202]: http://bioconductor.github.io/BiocWorkshops/analysis-of-single-cell-rna-seq-data-dimensionality-reduction-clustering-and-lineage-inference.html
195 | [210]: http://bioconductor.github.io/BiocWorkshops/functional-enrichment-analysis-of-high-throughput-omics-data.html
196 | [220]: http://bioconductor.github.io/BiocWorkshops/workflow-for-multi-omics-analysis-with-multiassayexperiment.html
197 | [230]: http://bioconductor.github.io/BiocWorkshops/cytoscape-automation-in-r-using-rcy3.html
198 | [240]: http://bioconductor.github.io/BiocWorkshops/fluent-genomic-data-analysis-with-plyranges.html
199 | [250]: http://bioconductor.github.io/BiocWorkshops/working-with-genomic-data-in-r-with-the-decipher-package.html
200 | [260]: http://bioconductor.github.io/BiocWorkshops/biomarker-discovery-from-large-pharmacogenomics-datasets.html
201 |
--------------------------------------------------------------------------------
/docs/assets/css/style.css:
--------------------------------------------------------------------------------
1 | @font-face {
2 | font-family: 'Noto Sans';
3 | font-weight: 400;
4 | font-style: normal;
5 | src: url("../fonts/Noto-Sans-regular/Noto-Sans-regular.eot");
6 | src: url("../fonts/Noto-Sans-regular/Noto-Sans-regular.eot?#iefix") format("embedded-opentype"), local("Noto Sans"), local("Noto-Sans-regular"), url("../fonts/Noto-Sans-regular/Noto-Sans-regular.woff2") format("woff2"), url("../fonts/Noto-Sans-regular/Noto-Sans-regular.woff") format("woff"), url("../fonts/Noto-Sans-regular/Noto-Sans-regular.ttf") format("truetype"), url("../fonts/Noto-Sans-regular/Noto-Sans-regular.svg#NotoSans") format("svg"); }
7 | @font-face {
8 | font-family: 'Noto Sans';
9 | font-weight: 700;
10 | font-style: normal;
11 | src: url("../fonts/Noto-Sans-700/Noto-Sans-700.eot");
12 | src: url("../fonts/Noto-Sans-700/Noto-Sans-700.eot?#iefix") format("embedded-opentype"), local("Noto Sans Bold"), local("Noto-Sans-700"), url("../fonts/Noto-Sans-700/Noto-Sans-700.woff2") format("woff2"), url("../fonts/Noto-Sans-700/Noto-Sans-700.woff") format("woff"), url("../fonts/Noto-Sans-700/Noto-Sans-700.ttf") format("truetype"), url("../fonts/Noto-Sans-700/Noto-Sans-700.svg#NotoSans") format("svg"); }
13 | @font-face {
14 | font-family: 'Noto Sans';
15 | font-weight: 400;
16 | font-style: italic;
17 | src: url("../fonts/Noto-Sans-italic/Noto-Sans-italic.eot");
18 | src: url("../fonts/Noto-Sans-italic/Noto-Sans-italic.eot?#iefix") format("embedded-opentype"), local("Noto Sans Italic"), local("Noto-Sans-italic"), url("../fonts/Noto-Sans-italic/Noto-Sans-italic.woff2") format("woff2"), url("../fonts/Noto-Sans-italic/Noto-Sans-italic.woff") format("woff"), url("../fonts/Noto-Sans-italic/Noto-Sans-italic.ttf") format("truetype"), url("../fonts/Noto-Sans-italic/Noto-Sans-italic.svg#NotoSans") format("svg"); }
19 | @font-face {
20 | font-family: 'Noto Sans';
21 | font-weight: 700;
22 | font-style: italic;
23 | src: url("../fonts/Noto-Sans-700italic/Noto-Sans-700italic.eot");
24 | src: url("../fonts/Noto-Sans-700italic/Noto-Sans-700italic.eot?#iefix") format("embedded-opentype"), local("Noto Sans Bold Italic"), local("Noto-Sans-700italic"), url("../fonts/Noto-Sans-700italic/Noto-Sans-700italic.woff2") format("woff2"), url("../fonts/Noto-Sans-700italic/Noto-Sans-700italic.woff") format("woff"), url("../fonts/Noto-Sans-700italic/Noto-Sans-700italic.ttf") format("truetype"), url("../fonts/Noto-Sans-700italic/Noto-Sans-700italic.svg#NotoSans") format("svg"); }
25 | .highlight table td {
26 | padding: 5px; }
27 |
28 | .highlight table pre {
29 | margin: 0; }
30 |
31 | .highlight .cm {
32 | color: #999988;
33 | font-style: italic; }
34 |
35 | .highlight .cp {
36 | color: #999999;
37 | font-weight: bold; }
38 |
39 | .highlight .c1 {
40 | color: #999988;
41 | font-style: italic; }
42 |
43 | .highlight .cs {
44 | color: #999999;
45 | font-weight: bold;
46 | font-style: italic; }
47 |
48 | .highlight .c, .highlight .cd {
49 | color: #999988;
50 | font-style: italic; }
51 |
52 | .highlight .err {
53 | color: #a61717;
54 | background-color: #e3d2d2; }
55 |
56 | .highlight .gd {
57 | color: #000000;
58 | background-color: #ffdddd; }
59 |
60 | .highlight .ge {
61 | color: #000000;
62 | font-style: italic; }
63 |
64 | .highlight .gr {
65 | color: #aa0000; }
66 |
67 | .highlight .gh {
68 | color: #999999; }
69 |
70 | .highlight .gi {
71 | color: #000000;
72 | background-color: #ddffdd; }
73 |
74 | .highlight .go {
75 | color: #888888; }
76 |
77 | .highlight .gp {
78 | color: #555555; }
79 |
80 | .highlight .gs {
81 | font-weight: bold; }
82 |
83 | .highlight .gu {
84 | color: #aaaaaa; }
85 |
86 | .highlight .gt {
87 | color: #aa0000; }
88 |
89 | .highlight .kc {
90 | color: #000000;
91 | font-weight: bold; }
92 |
93 | .highlight .kd {
94 | color: #000000;
95 | font-weight: bold; }
96 |
97 | .highlight .kn {
98 | color: #000000;
99 | font-weight: bold; }
100 |
101 | .highlight .kp {
102 | color: #000000;
103 | font-weight: bold; }
104 |
105 | .highlight .kr {
106 | color: #000000;
107 | font-weight: bold; }
108 |
109 | .highlight .kt {
110 | color: #445588;
111 | font-weight: bold; }
112 |
113 | .highlight .k, .highlight .kv {
114 | color: #000000;
115 | font-weight: bold; }
116 |
117 | .highlight .mf {
118 | color: #009999; }
119 |
120 | .highlight .mh {
121 | color: #009999; }
122 |
123 | .highlight .il {
124 | color: #009999; }
125 |
126 | .highlight .mi {
127 | color: #009999; }
128 |
129 | .highlight .mo {
130 | color: #009999; }
131 |
132 | .highlight .m, .highlight .mb, .highlight .mx {
133 | color: #009999; }
134 |
135 | .highlight .sb {
136 | color: #d14; }
137 |
138 | .highlight .sc {
139 | color: #d14; }
140 |
141 | .highlight .sd {
142 | color: #d14; }
143 |
144 | .highlight .s2 {
145 | color: #d14; }
146 |
147 | .highlight .se {
148 | color: #d14; }
149 |
150 | .highlight .sh {
151 | color: #d14; }
152 |
153 | .highlight .si {
154 | color: #d14; }
155 |
156 | .highlight .sx {
157 | color: #d14; }
158 |
159 | .highlight .sr {
160 | color: #009926; }
161 |
162 | .highlight .s1 {
163 | color: #d14; }
164 |
165 | .highlight .ss {
166 | color: #990073; }
167 |
168 | .highlight .s {
169 | color: #d14; }
170 |
171 | .highlight .na {
172 | color: #008080; }
173 |
174 | .highlight .bp {
175 | color: #999999; }
176 |
177 | .highlight .nb {
178 | color: #0086B3; }
179 |
180 | .highlight .nc {
181 | color: #445588;
182 | font-weight: bold; }
183 |
184 | .highlight .no {
185 | color: #008080; }
186 |
187 | .highlight .nd {
188 | color: #3c5d5d;
189 | font-weight: bold; }
190 |
191 | .highlight .ni {
192 | color: #800080; }
193 |
194 | .highlight .ne {
195 | color: #990000;
196 | font-weight: bold; }
197 |
198 | .highlight .nf {
199 | color: #990000;
200 | font-weight: bold; }
201 |
202 | .highlight .nl {
203 | color: #990000;
204 | font-weight: bold; }
205 |
206 | .highlight .nn {
207 | color: #555555; }
208 |
209 | .highlight .nt {
210 | color: #000080; }
211 |
212 | .highlight .vc {
213 | color: #008080; }
214 |
215 | .highlight .vg {
216 | color: #008080; }
217 |
218 | .highlight .vi {
219 | color: #008080; }
220 |
221 | .highlight .nv {
222 | color: #008080; }
223 |
224 | .highlight .ow {
225 | color: #000000;
226 | font-weight: bold; }
227 |
228 | .highlight .o {
229 | color: #000000;
230 | font-weight: bold; }
231 |
232 | .highlight .w {
233 | color: #bbbbbb; }
234 |
235 | .highlight {
236 | background-color: #f8f8f8; }
237 |
238 | body {
239 | background-color: #fff;
240 | padding: 50px;
241 | font: 14px/1.5 "Noto Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
242 | color: #727272;
243 | font-weight: 400; }
244 |
245 | h1, h2, h3, h4, h5, h6 {
246 | color: #222;
247 | margin: 0 0 20px; }
248 |
249 | p, ul, ol, table, pre, dl {
250 | margin: 0 0 20px; }
251 |
252 | h1, h2, h3 {
253 | line-height: 1.1; }
254 |
255 | h1 {
256 | font-size: 28px; }
257 |
258 | h2 {
259 | color: #393939; }
260 |
261 | h3, h4, h5, h6 {
262 | color: #494949; }
263 |
264 | a {
265 | color: #267CB9;
266 | text-decoration: none; }
267 |
268 | a:hover, a:focus {
269 | color: #069;
270 | font-weight: bold; }
271 |
272 | a small {
273 | font-size: 11px;
274 | color: #777;
275 | margin-top: -0.3em;
276 | display: block; }
277 |
278 | a:hover small {
279 | color: #777; }
280 |
281 | .wrapper {
282 | width: 860px;
283 | margin: 0 auto; }
284 |
285 | blockquote {
286 | border-left: 1px solid #e5e5e5;
287 | margin: 0;
288 | padding: 0 0 0 20px;
289 | font-style: italic; }
290 |
291 | code, pre {
292 | font-family: Monaco, Bitstream Vera Sans Mono, Lucida Console, Terminal, Consolas, Liberation Mono, DejaVu Sans Mono, Courier New, monospace;
293 | color: #333;
294 | font-size: 12px; }
295 |
296 | pre {
297 | padding: 8px 15px;
298 | background: #f8f8f8;
299 | border-radius: 5px;
300 | border: 1px solid #e5e5e5;
301 | overflow-x: auto; }
302 |
303 | table {
304 | width: 100%;
305 | border-collapse: collapse; }
306 |
307 | th, td {
308 | text-align: left;
309 | padding: 5px 10px;
310 | border-bottom: 1px solid #e5e5e5; }
311 |
312 | dt {
313 | color: #444; }
314 |
315 | th {
316 | color: #444; }
317 |
318 | img {
319 | max-width: 100%; }
320 |
321 | header {
322 | width: 270px;
323 | float: left;
324 | -webkit-font-smoothing: subpixel-antialiased; }
325 |
326 | header ul {
327 | list-style: none;
328 | height: 40px;
329 | padding: 0;
330 | background: #f4f4f4;
331 | border-radius: 5px;
332 | border: 1px solid #e0e0e0;
333 | width: 270px; }
334 |
335 | header li {
336 | width: 89px;
337 | float: left;
338 | border-right: 1px solid #e0e0e0;
339 | height: 40px; }
340 |
341 | header li:first-child a {
342 | border-radius: 5px 0 0 5px; }
343 |
344 | header li:last-child a {
345 | border-radius: 0 5px 5px 0; }
346 |
347 | header ul a {
348 | line-height: 1;
349 | font-size: 11px;
350 | color: #676767;
351 | display: block;
352 | text-align: center;
353 | padding-top: 6px;
354 | height: 34px; }
355 |
356 | header ul a:hover, header ul a:focus {
357 | color: #675C5C;
358 | font-weight: bold; }
359 |
360 | header ul a:active {
361 | background-color: #f0f0f0; }
362 |
363 | strong {
364 | color: #222;
365 | font-weight: 700; }
366 |
367 | header ul li + li + li {
368 | border-right: none;
369 | width: 89px; }
370 |
371 | header ul a strong {
372 | font-size: 14px;
373 | display: block;
374 | color: #222; }
375 |
376 | section {
377 | width: 500px;
378 | float: right;
379 | padding-bottom: 50px; }
380 |
381 | small {
382 | font-size: 11px; }
383 |
384 | hr {
385 | border: 0;
386 | background: #e5e5e5;
387 | height: 1px;
388 | margin: 0 0 20px; }
389 |
390 | footer {
391 | width: 270px;
392 | float: left;
393 | position: fixed;
394 | bottom: 50px;
395 | -webkit-font-smoothing: subpixel-antialiased; }
396 |
397 | @media print, screen and (max-width: 960px) {
398 | div.wrapper {
399 | width: auto;
400 | margin: 0; }
401 |
402 | header, section, footer {
403 | float: none;
404 | position: static;
405 | width: auto; }
406 |
407 | header {
408 | padding-right: 320px; }
409 |
410 | section {
411 | border: 1px solid #e5e5e5;
412 | border-width: 1px 0;
413 | padding: 20px 0;
414 | margin: 0 0 20px; }
415 |
416 | header a small {
417 | display: inline; }
418 |
419 | header ul {
420 | position: absolute;
421 | right: 50px;
422 | top: 52px; } }
423 | @media print, screen and (max-width: 720px) {
424 | body {
425 | word-wrap: break-word; }
426 |
427 | header {
428 | padding: 0; }
429 |
430 | header ul, header p.view {
431 | position: static; }
432 |
433 | pre, code {
434 | word-wrap: normal; } }
435 | @media print, screen and (max-width: 480px) {
436 | body {
437 | padding: 15px; }
438 |
439 | header ul {
440 | width: 99%; }
441 |
442 | header li, header ul li + li + li {
443 | width: 33%; } }
444 | @media print {
445 | body {
446 | padding: 0.4in;
447 | font-size: 12pt;
448 | color: #444; } }
449 |
--------------------------------------------------------------------------------
/docs/workshops.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day) 26 and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | ## Workshops
14 |
15 | Join the _[Bioconductor][]_ Community Slack and #bioc2018-workshops
16 | channel for up-to-date information.
17 |
18 | - [Main Conference](#main-conference)
19 | - [Developer Day](#developer-day)
20 |
21 | ### Main Conference
22 |
23 | - Lee S*, Lawrence M. _Fluent genomic data analysis with
24 | [plyranges][]_. [Syllabus & Materials][Lee_Plyranges].
25 |
26 | In this workshop, we will give an overview of how to
27 | perform low-level analyses of genomic data using the grammar of
28 | genomic data transformation defined in the plyranges package. We
29 | will cover:
30 |
31 | - introduction to GRanges
32 | - overview of the core verbs for arithmetic, restriction, and
33 | aggregation of GRanges objects
34 | - performing joins between GRanges objects
35 | - designing pipelines to quickly explore data from AnnotationHub
36 | - reading BAM and other file types as GRanges objects
37 |
38 | The workshop will be a computer lab, in which the participants will
39 | be able to ask questions and interact with the instructors."
40 |
41 | - MacDonald J, Shepherd L. _Introduction to [Bioconductor][]
42 | annotation resources_. [Syllabus & Materials][MacDonald_Annotation].
43 |
44 | There are various annotation packages provided by the
45 | _[Bioconductor][]_ project that can be used to incorporate
46 | additional information to results from high-throughput
47 | experiments. This can be as simple as mapping Ensembl IDs to
48 | corresponding HUGO gene symbols, to much more complex queries
49 | involving multiple data sources. In this workshop we will cover the
50 | various classes of annotation packages, what they contain, and how
51 | to use them efficiently.
52 |
53 | - Levi Waldron, Benjamin Haibe-Kains, Sean Davis. _Public Data
54 | Resources and [Bioconductor][]_. [Syllabus & Materials][Waldron_PublicData].
55 |
56 | The goal of this workshop is to introduce _[Bioconductor][]_
57 | packages for finding, accessing, and using large-scale public data
58 | resources including the Gene Expression Omnibus
59 | [GEO](https://www.ncbi.nlm.nih.gov/geo), Sequence Read Archive
60 | [SRA](https://www.ncbi.nlm.nih.gov/sra), the Genomic Data Commons
61 | [GDC](https://portal.gdc.cancer.gov/), and _[Bioconductor][]_-hosted
62 | curated data resources for metagenomics, pharmacogenomics, and The
63 | Cancer Genome Atlas.
64 |
65 | - Love MI. _RNA-seq data analysis with [DESeq2][]_. [Syllabus & Materials][Love_DESeq2].
66 |
67 | In this workshop, we will give a quick overview of the most useful
68 | functions in the [DESeq2][] package, and a basic RNA-seq
69 | analysis. We will cover: how to quantify transcript expression from
70 | FASTQ files using Salmon, import quantification from Salmon with
71 | [tximport][] and [tximeta][], generate plots for quality control and
72 | exploratory data analysis EDA (also using [MultiQC][]), perform
73 | differential expression (DE) (also using [apeglm][]), overlap with
74 | other experimental data (using [AnnotationHub][]), and build reports
75 | (using [ReportingTools][] and [Glimma][]). We will give a short
76 | example of integration of [DESeq2][] with the zinbwave package for
77 | single-cell RNA-seq differential expression. The workshop is
78 | designed to be a lab with plenty of time for questions throughout
79 | the lab.
80 |
81 | - Charity Law , Monther Alhamdoosh, Shian Su, Gordon Smyth and Matthew
82 | Ritchie. _RNA-seq analysis is easy as 1-2-3 with [limma][],
83 | [Glimma][] and [edgeR][]_. [Syllabus & Materials][Law_RNAseq123].
84 |
85 | In this workshop, we analyse RNA-sequencing data from the mouse
86 | mammary gland, demonstrating use of the popular edgeR package to
87 | import, organise, filter and normalise the data, followed by the
88 | [limma][] package with its voom method, linear modelling and
89 | empirical Bayes moderation to assess differential expression. This
90 | pipeline is further enhanced by the [Glimma][] package which enables
91 | interactive exploration of the results so that individual samples
92 | and genes can be examined by the user. The complete analysis offered
93 | by these three packages highlights the ease with which researchers
94 | can turn the raw counts from an RNA-sequencing experiment into
95 | biological insights using _[Bioconductor][]_.
96 |
97 |
98 | - Michael Lawrence, Martin Morgan. _Solving common bioinformatic
99 | challenges using [GenomicRanges][]_. [Syllabus & Materials][Lawrence_GenomicRanges].
100 |
101 | We will introduce the fundamental concepts underlying the
102 | [GenomicRanges][] package and related infrastructure. After a
103 | structured introduction, we will follow a realistic workflow, along
104 | the way exploring the central data structures, including `GRanges`
105 | and `SummarizedExperiment`, and useful operations in the ranges
106 | algebra. Topics will include data import/export, computing and
107 | summarizing data on genomic features, overlap detection, integration
108 | with reference annotations, scaling strategies, and
109 | visualization. Students can follow along, and there will be plenty
110 | of time for students to ask questions about how to apply the
111 | infrastructure to their particular use case.
112 |
113 | - Zhaleh Safikhani, Petr Smirnov, Benjamin Haibe-Kains. _Biomarker
114 | discovery from large pharmacogenomics datasets_. [Syllabus & Materials][Safikhani_Pharmacogenomics].
115 |
116 | This workshop will focus on the challenges encountered when applying
117 | machine learning techniques in complex, high dimensional biological
118 | data. In particular, we will focus on biomarker discovery from
119 | pharmacogenomic data, which consists of developing predictors of
120 | response of cancer cell lines to chemical compounds based on their
121 | genomic features. From a methodological viewpoint, biomarker
122 | discovery is strongly linked to variable selection, through methods
123 | such as Supervised Learning with sparsity inducing norms (e.g.,
124 | ElasticNet) or techniques accounting for the complex correlation
125 | structure of biological features (e.g., mRMR). Yet, the main focus
126 | of this talk will be on sound use of such methods in a
127 | pharmacogenomics context, their validation and correct
128 | interpretation of the produced results. We will discuss how to
129 | assess the quality of both the input and output data. We will
130 | illustrate the importance of unified analytical platforms, data and
131 | code sharing in bioinformatics and biomedical research, as the data
132 | generation process becomes increasingly complex and requires high
133 | level of replication to achieve robust results. This is particularly
134 | relevant as our portfolio of machine learning techniques is ever
135 | enlarging, with its set of hyperparameters that can be tuning in a
136 | multitude of ways, increasing the risk of overfitting when
137 | developing multivariate predictors of drug response.
138 |
139 | - Ludwig Geistlinger and Levi Waldron. _Functional enrichment analysis
140 | of high-throughput omics
141 | data_. [Syllabus & Materials][Geistlinger_Omics].
142 |
143 | This workshop gives an in-depth overview of existing methods for
144 | enrichment analysis of gene expression data with regard to
145 | functional gene sets, pathways, and networks.
146 |
147 | The workshop will help participants understand the distinctions
148 | between assumptions and hypotheses of existing methods as well as
149 | the differences in objectives and interpretation of results. It will
150 | provide code and hands-on practice of all necessary steps for
151 | differential expression analysis, gene set- and network-based
152 | enrichment analysis, and identification of enriched genomic regions
153 | and regulatory elements, along with visualization and exploration of
154 | results.
155 |
156 |
157 | - Ramos M, Geistlinger L, Waldron L. _Workflow for Multi-omics
158 | Analysis with [MultiAssayExperiment][]_. [Syllabus & Materials][Ramos_MultiAssayExperiment].
159 |
160 | This workshop demonstrates data management and analyses of multiple
161 | assays associated with a single set of biological specimens, using
162 | the `MultiAssayExperiment` data class and methods. It introduces the
163 | `RaggedExperiment` data class, which provides efficient and powerful
164 | operations for representation of copy number and mutation and
165 | variant data that are represented by different genomic ranges for
166 | each specimen. "
167 |
168 | - Das D*, Street K*, Risso D. _Analysis of single-cell RNA-seq data:
169 | Dimensionality reduction, clustering, and lineage inference_.
170 | [Workshop Syllabus & Materials][Das_SingleCellRNAseq].
171 |
172 | This workshop will be presented as a lab session (brief introduction
173 | followed by hands-on coding) that instructs participants in a
174 | _[Bioconductor][]_ workflow for the analysis of single-cell
175 | RNA-sequencing data, in three parts:
176 |
177 | 1. dimensionality reduction that accounts for zero inflation,
178 | over-dispersion, and batch effects
179 | 2. cell clustering that employs a resampling-based approach
180 | resulting in robust and stable clusters
181 | 3. lineage trajectory analysis that uncovers continuous, branching
182 | developmental processes
183 |
184 | We will provide worked examples for lab sessions, and a set of
185 | stand-alone notes in this repository.
186 |
187 | - Isserlin R,Innes B, Bader GD. _[Cytoscape][] Automation in R using
188 | [Rcy3][]_. [Workshop Syllabus & Materials][Isserlin_Rcy3].
189 |
190 | [Cytoscape][] is one of the most popular applications for
191 | network analysis and visualization. In this workshop, we will
192 | demonstrate new capabilities to integrate Cytoscape into
193 | programmatic workflows and pipelines using R. We will begin with an
194 | overview of network biology themes and concepts, and then we will
195 | translate these into Cytoscape terms for practical applications. The
196 | bulk of the workshop will be a hands-on demonstration of accessing
197 | and controlling Cytoscape from R to perform a network analysis of
198 | tumor expression data.
199 |
200 | - Coetzee SG and Hazelett DJ. _Variant Functional Annotation using
201 | [StatePaintR][], [FunciVar][] and
202 | [MotifBreakR][]_
203 |
204 | - Cooley N and Wright E. _Working with Genomic Data in R with the
205 | DECIPHER package_. [Syllabus & Materials][Cooley_DECIPHER].
206 |
207 | [DECIPHER][] is a multifaceted package that includes many tools for
208 | working with genome-scale sequence data. Genomic sequences undergo a
209 | variety of large-scale mutational processes, including
210 | rearrangements, inversions, duplications, insertions, and
211 | deletions. Since genomes are often not collinear, it is often useful
212 | to map syntenic regions between genomes to facilitate
213 | analyses. DECIPHER contains a synteny mapping function that locates
214 | syntenic regions among genomes and can be used to identify
215 | orthologous genes. Additional functions allow for alignment and
216 | downstream analyses of these syntenic regions. This workshop will
217 | walk through a complete workflow for analyzing a set of genomes
218 | using DECIPHER, starting with importing genomes from local files or
219 | external repositories. Synteny will be mapped among multiple genomes
220 | and used as the basis for ortholog prediction. We will show how to
221 | use these sets of orthologous genes to construct phylogenetic trees
222 | representing the evolutionary history of the core-genome and
223 | pan-genome.
224 |
225 | ### Developer Day
226 |
227 | - Hickey P.F.* _Effectively using the [DelayedArray][] framework to
228 | support the analysis of large
229 | datasets_. [Syllabus & Materials][Hickey_DelayedArray].
230 |
231 | This workshop will teach the fundamental concepts underlying the
232 | DelayedArray framework and related infrastructure. It is intended
233 | for package developers who want to learn how to use the
234 | [DelayedArray][] framework to support the analysis of large
235 | datasets, particularly through the use of on-disk data storage. The
236 | first part of the workshop will provide an overview of the
237 | [DelayedArray][] infrastructure and introduce computing on
238 | DelayedArray objects using delayed operations and
239 | block-processing. The second part of the workshop will present
240 | strategies for adding support for [DelayedArray][] to an existing
241 | package and extending the [DelayedArray][] framework. Students can
242 | expect a mixture of lecture and question-and-answer session to teach
243 | the fundamental concepts. There will be plenty of examples to
244 | illustrate common design patterns for writing performant code,
245 | although we will not be writing much code during the workshop.
246 |
247 | - Nitesh Turaga. Roswell Park Comprehensive Cancer
248 | Center. _Maintaining your [Bioconductor][]
249 | package_. [Syllabus & Materials][Turaga_MaintainBioc].
250 |
251 | Once an R package is accepted into _[Bioconductor][]_, maintaining
252 | it is an active responsibility undertaken by the package developers
253 | and maintainers. In this short workshop, we will cover how to
254 | maintain a _[Bioconductor][]_ package using existing
255 | infrastructure. _[Bioconductor][]_ hosts a range of tools which
256 | maintainers can use such as daily build reports, landing page
257 | badges, RSS feeds, download stats, support site questions, and the
258 | bioc-devel mailing list. Some packages have their own continuous
259 | integration hook setup on their github pages which would be an
260 | additional tool maintainers can use to monitor their package. We
261 | will also highlight one particular git practice which need to be
262 | done while updating and maintaining your package on out git system.
263 |
264 | [AnnotationHub]: https://bioconductor.org/packages/AnnotationHub
265 | [Bioconductor]: https://bioconductor.org/developers
266 | [DESeq2]: https://bioconductor.org/packages/DESeq2
267 | [DECIPHER]: https://bioconductor.org/packages/DECIPHER
268 | [DelayedArray]: https://bioconductor.org/packages/DelayedArray
269 | [FunciVar]: https://bioconductor.org/packages/FunciVar
270 | [GenomicRanges]: https://bioconductor.org/packages/GenomicRanges
271 | [Glimma]: https://bioconductor.org/packages/Glimma
272 | [MotifBreakR]: https://bioconductor.org/packages/MotifBreakR
273 | [MultiAssayExperiment]: https://bioconductor.org/packages/MultiAssayExperiment
274 | [MultiQC]: https://bioconductor.org/packages/MultiQC
275 | [Rcy3]: https://bioconductor.org/packages/Rcy3
276 | [ReportingTools]: https://bioconductor.org/packages/ReportingTools
277 | [StatePaintR]: https://bioconductor.org/packages/StatePaintR
278 | [apeglm]: https://bioconductor.org/packages/apeglm
279 | [edgeR]: https://bioconductor.org/packages/edgeR
280 | [limma]: https://bioconductor.org/packages/limma
281 | [plyranges]: https://bioconductor.org/packages/plyranges
282 | [tximport]: https://bioconductor.org/packages/tximport
283 | [txmeta]: https://bioconductor.org/packages/txmetta
284 |
285 | [Cytoscape]: http://www.cytoscape.org/
286 |
287 | [Coetzee_StatePaintR]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Coetzee_StatePaintR.Rmd
288 | [Cooley_DECIPHER]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Cooley_DECIPHER.Rmd
289 | [Das_SingleCellRNAseq]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Das_SingleCellRNAseq.Rmd
290 | [Geistlinger_Omics]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Geistlinger_Omics.Rmd
291 | [Hickey_DelayedArray]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Hickey_DelayedArray.Rmd
292 | [Isserlin_Rcy3]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Isserlin_Rcy3.Rmd
293 | [Law_RNAseq123]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Law_RNAseq123.Rmd
294 | [Lawrence_GenomicRanges]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Lawrence_GenomicRanges.Rmd
295 | [Lee_Plyranges]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Lee_Plyranges.Rmd
296 | [Love_DESeq2]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Love_DESeq2.Rmd
297 | [MacDonald_Annotation]: https://github.com/Bioconductor/BiocWorkshops/blob/master/MacDonald_Annotation.Rmd
298 | [Ramos_MultiAssayExperiment]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Ramos_MultiAssayExperiment.Rmd
299 | [Safikhani_Pharmacogenomics]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Safikhani_Pharmacogenomics.Rmd
300 | [Turaga_MaintainBioc]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Turaga_MaintainBioc.Rmd
301 | [Waldron_PublicData]: https://github.com/Bioconductor/BiocWorkshops/blob/master/Waldron_PublicData.Rmd
302 |
--------------------------------------------------------------------------------
/docs/talks-community.md:
--------------------------------------------------------------------------------
1 | ---
2 | layout: default
3 | ---
4 | # BioC 2018: Where Software and Biology Connect
5 |
6 | When: July 25 (Developer Day) 26 and 27, 2018
7 | Where: [Victoria University][venue], University of Toronto, Toronto, Canada
8 | Twitter: [#bioc2018][tweet]
9 |
10 | [tweet]: https://twitter.com/hashtag/bioc2018?f=tweets
11 | [venue]: ./travel-accommodations
12 |
13 | ## Community-Contributed Talks (Tentative)
14 |
15 | - See the Conference [Schedule](schedule.md) for invited talks.
16 |
17 | - Lee S\*, Cook D, Lawrence M. _[plyranges][]: a fluent interface to
18 | Bioconductor's Ranges infrastructure_. The Bioconductor project has
19 | created many powerful S4 classes for reasoning about genomics data,
20 | such as the SummarizedExperiment class for representing experimental
21 | assays and the Ranges family of classes for representing genomic
22 | intervals. For new users of Bioconductor who are unfamiliar with
23 | object oriented programming or genomic data analysis, the learning
24 | curve for these classes is steep. New users often find themselves
25 | asking: how do I get my data into an appropriate class for my
26 | analysis? What are accessors and why do I have to use them? Why does
27 | this function return an object of class that I have not seen before?
28 | This results in analysts trying to solve problems that have been
29 | efficiently dealt with in other Bioconductor packages or writing
30 | code they may not fully understand.
31 |
32 | The goal of a fluent interface is to enable users to write
33 | human-readable code via method chaining and consistent function
34 | returns. Fluent interfaces fit naturally in the context of
35 | Bioinformatics workflows because they enable writing succinct
36 | pipelines. We have developed plyranges a package that attempts to
37 | construct a fluent interface to the Ranges classes defined in the
38 | IRanges and [GenomicRanges][] packages. This package is inspired by
39 | [dplyr][] and implements and extends its grammar of data
40 | manipulation to Ranges. We have defined methods for constructing,
41 | grouping, mutating, filtering, and summarising Ranges. We have also
42 | defined an algebra for reasoning about actions on Ranges and
43 | relationships between Ranges. By having an expansive grammar, we
44 | hope to cover the majority of analysis tasks a new user may face and
45 | thereby enable users to write clearer and more reproducible code.
46 |
47 | - Zhun Miao\*, Ke Deng, Xiaowo Wang, Xuegong Zhang. _[DEsingle][] for
48 | detecting three types of differential expression in single-cell
49 | RNA-seq data_. The excessive amount of zeros in single-cell RNA-seq
50 | (scRNA-seq) data includes ‘real’ zeros due to the on-off nature of
51 | gene transcription in single cells and ‘dropout’ zeros due to
52 | technical reasons. Existing differential expression (DE) analysis
53 | methods cannot distinguish these two types of zeros.
54 |
55 | We developed an R package [DEsingle][] which employed Zero-Inflated
56 | Negative Binomial model to estimate the proportion of real and
57 | dropout zeros and to define and detect three types of DE genes in
58 | scRNA-seq data, with regard to different expression status (DEs),
59 | differential expression abundance (DEa), and general differential
60 | expression (DEg).
61 |
62 | Results showed that [DEsingle][] outperforms existing methods for
63 | scRNA-seq DE analysis, and can reveal different types of DE genes
64 | that are enriched in different biological functions.
65 |
66 | - Abbas Rizvi\*, Ezgi Karaesmen\*, Leah Preus, Michael Sovic, Junke
67 | Wang, Lara Sucheston-Campbell. _[gwasurvivr][]: an R package to
68 | perform survival association testing on imputed genetic data_.
69 | Increasingly researchers have become interested in time-to-event
70 | outcomes in the context of genetic variation. Existing software for
71 | performing survival analyses across millions of SNPs are
72 | limited. Recently, comprehensive stand-alone software packages,
73 | genipe and SurvivalGWAS_SV, were developed, however, they require
74 | user interaction with the raw output after imputation opening room
75 | for error during analysis. GWASTools, while available in R and can
76 | implement survival, is primarily for storing large SNP datasets and
77 | rigorous QC/QA. To address this unmet need, we developed an
78 | R/Bioconductor package to conduct fast and efficient genome wide
79 | survival analyses for on imputed genetic data generated using
80 | IMPUTE2 and VCF data generated from Michigan or Sanger imputation
81 | servers.
82 |
83 | [gwasurvivr][] implements Cox proportional hazards models to test
84 | SNP association with outcome; the package allows for covariates and
85 | SNP-covariate interaction. To potentially decrease the number of
86 | iterations needed for convergence when optimizing the parameters
87 | estimates in the Cox model, we modified survival::coxph.fit, to fit
88 | covariates without the SNP and use those parameter estimates as
89 | initial starting points. For models without covariates the parameter
90 | estimation optimization begins with null initial value. Users can
91 | internally subset the data by providing sample IDs and pre-filter
92 | SNPs by info score and MAF. Output for each SNP includes parameter
93 | estimates, p-values, MAFs, INFO scores, number of events and total
94 | sample N. [gwasurvivr][] is well-suited for multi-core processors
95 | and users can specify node preferences used during computation. To
96 | overcome R memory limitations [gwasurvivr][] iteratively performs
97 | survival on subsets of the entire data.
98 |
99 | We benchmarked our package with genipe, SurvivalGWAS_SV, and
100 | GWASTools using IMPUTE2 data for varying sample sizes (n=100,
101 | n=1000, n=5000) and SNPs (p=1000, p=10000, p=100000) including two
102 | non-genetic covariates. All packages showed excellent agreement
103 | across MAF estimates, coefficient estimates, and p-values, with
104 | [gwasurvivr][] outperforming the other packages in time to
105 | completion for all simulations.
106 |
107 | - Ludwig Geistlinger, Gergely Csaba, Mara Santarelli, Lucas Schiffer,
108 | Marcel Ramos, Ralf Zimmer, and Levi Waldron. _Towards a gold
109 | standard for benchmarking gene set enrichment analysis._ Although
110 | gene set enrichment analysis has become an integral part of
111 | high-throughput gene expression data analysis, the assessment of
112 | enrichment methods remains rudimentary and ad hoc. In the absence of
113 | suitable gold standards, the evaluation is commonly restricted to
114 | selected data sets and biological reasoning on the relevance of
115 | resulting enriched gene sets. However, this is typically incomplete
116 | and biased towards the individual investigation goals. In this
117 | article, we present a curated compendium of 50 expression data sets
118 | investigating 34 different human diseases. The compendium features
119 | microarray and RNA-seq measurements, and each data set is associated
120 | with a precompiled GO/KEGG relevance ranking for the corresponding
121 | disease under investigation. We perform a comprehensive assessment
122 | of 20 major enrichment methods based on the benchmark set, thereby
123 | identifying methods that accurately recover the a priori defined
124 | relevance rankings. The compendium is embedded in a directly
125 | executable benchmark system, the _R / Bioconductor_
126 | [GSEABenchmarkeR][] package, allowing straightforward execution on
127 | additional enrichment methods.
128 |
129 | - Nima Hejazi\*, Alan Hubbard, Mark van der Laan. _Data-Adaptive
130 | Estimation and Inference for Differential Methylation Analysis_. DNA
131 | methylation is amongst the best studied of epigenetic mechanisms
132 | impacting gene expression. While much attention has been paid to the
133 | proper normalization of bioinformatical data produced by DNA
134 | methylation assays, linear models remain the current standard for
135 | analyzing post-processed methylation data, for the ease they afford
136 | for both statistical inference and scientific interpretation. We
137 | present a new, general statistical algorithm for the model-free
138 | estimation of the differential methylation of DNA CpG sites,
139 | complete with straightforward and interpretable statistical
140 | inference for such estimates. The new approach leverages variable
141 | importance measures, a class of parameters arising in causal
142 | inference, in a manner that facilitates their use in obtaining
143 | targeted estimates of the importance of each CpG site. The proposed
144 | procedure is computationally efficient and self-contained,
145 | incorporating techniques to isolate a subset of candidate CpG sites
146 | based on cursory evidence of differential methylation and providing
147 | a multiple testing correction that appropriately controls the False
148 | Discovery Rate in such multi-stage analysis settings. The
149 | effectiveness of the new methodology is demonstrated by way of data
150 | analysis with real DNA methylation data, and a recently developed R
151 | package (methyvim; available via Bioconductor) that provides support
152 | for data analysis with this methodology is introduced.
153 |
154 | - Albert Y Zhang, Shian Su, Matthew E Ritchie, and Charity W
155 | Law\*. _Unpacking signal from RNA-seq intron reads using Rsubread and
156 | limma packages_. RNA-seq datasets contain up to millions of intron
157 | reads per library. These reads are typically removed from downstream
158 | analysis without even considering the proportion at which they
159 | contribute to total reads. By default only reads overlapping
160 | annotated exons are thought to be informative since mature mRNA is
161 | assumed to be the major component sequenced, especially when
162 | examining poly(A) RNA samples. Using Bioconductor packages, Rsubread
163 | and limma, we show that intron reads contain signal that is
164 | biologically relevant. Multi-dimensional scaling plots show that
165 | samples separate into biological and experimental groups using
166 | conservative intron counts, where the degree of separation is
167 | similar to that of exon counts despite there being far fewer intron
168 | reads in comparison to exon reads. The coverage of exon and intron
169 | regions are assessed for thousands of genes, showing a tendency for
170 | an increase in read coverage from 3' to 5' in poly(A) RNA
171 | samples. Coverage in Total RNA samples tend to be more uniform in
172 | appearance. We show that intron signal is prevalent across multiple
173 | datasets and discuss the possibility of its origin from pre-mRNA and
174 | intron retention. Results presented here can be used in the
175 | development of future Bioconductor packages to interrogate different
176 | biological aspects relating to intron signal, and inspire
177 | modifications to existing methods for RNA-seq analysis.
178 |
179 | - Rachael V Phillips\*, Alan Hubbard. _Data Adaptive Evaluation of
180 | Preprocessing Methods using Ensemble Machine Learning_. For many
181 | types of biological data generated by high-throughput technologies,
182 | there is no single gold-standard for converting the raw data into a
183 | form that can be analyzed for relationships of the relevant
184 | biomarkers to exposures and disease. For example, much of the
185 | variation in the raw data generated by Illumina HumanMethylationEPIC
186 | and 450K arrays is due to the technicalities of the experimental
187 | design (comprising two different assay methods, two different color
188 | channels, and batch effects) and potentially less so due to the
189 | biological factor(s) of interest. Accordingly, several preprocessing
190 | methods have been developed, however it is unclear which combination
191 | should be retained in downstream analysis. To address this issue, we
192 | have developed a data adaptive methodology that incorporates
193 | ensemble machine learning to assess which preprocessing streams
194 | generate better signal-to-noise ratio, according to the prediction
195 | of positive and negative control variables. We employ this method to
196 | select normalizations for EPIC and 450K arrays in a principled
197 | way. The results suggest 1) differences in the relative performance
198 | of the possible preprocessing choices and 2) that such machine
199 | learning approaches can be practically applied to complex omics data
200 | to choose among the growing number of choices for preprocessing.
201 |
202 | - Steinbaugh MJ\*, Kirchner RD, Ho Sui S. _bcbioSingleCell: R package
203 | for bcbio single-cell analysis_. Single-cell RNA sequencing
204 | (scRNA-seq) has ushered in a new era of genomics research, enabling
205 | researchers to visualize dynamic changes in cell populations, and
206 | quantify changes in gene expression at an unprecedented new level of
207 | resolution. While this new technology is extremely exciting and
208 | empowering, it remains overly challenging for the vast majority of
209 | biologists to import and analyze their results with confidence. The
210 | bcbio toolkit addresses this problem, offering native best-practice
211 | support for quantification of multiple barcoded droplet platforms,
212 | including inDrops, Drop-seq, 10X Genomics Chromium, and Illumina
213 | SureCell. The corresponding R package, _bcbioSingleCell_, provides
214 | support for easy loading of results into the SingleCellExperiment
215 | container class. Using the standardized SingleCellExperiment
216 | container enables researchers to efficiently pass their data to
217 | other single-cell packages available on Bioconductor. Additionally,
218 | the package offers a suite of quality control functions optimized
219 | for low quality cellular barcode removal, along with clustering and
220 | visualization functions that integrate with the Seurat
221 | toolkit. Differential expression analysis is supported and utilizes
222 | the zero-inflated negative binomial model provided by zinbwave, thus
223 | unlocking downstream testing with the robust DESeq2 or edgeR RNA-seq
224 | packages.
225 |
226 | - Righelli D\*, Koberstein J, Gomes B, Zhang N, Angelini C, Peixoto L,
227 | Risso D. _Differential Enriched Scan 2 ([DEScan2][]): a fast
228 | pipeline for broad peak analysis_. We present DEScan2 a novel
229 | bioconductor package for the analysis of Sono-Seq/Atac-Seq data,
230 | with the aim to facilitate the investigation of broad peak regions
231 | data.
232 |
233 | The method consists of three main steps: 1) a peak caller, 2) a peak
234 | filtering and 3) a method to efficiently compute a count matrix of
235 | the filtered peaks.
236 |
237 | The peak caller in step 1) is a standard moving window scan that
238 | compares the counts within a sliding window to the counts in a
239 | larger region outside the window, using a simple Poisson likelihood,
240 | providing a final z-score for each peak. However, the package can
241 | work with any external peak caller returning results in terms of bed
242 | files, indeed the package provides additional functionalities to
243 | load bed files of peaks and handle them as [GenomicRanges][]
244 | structures.
245 |
246 | The filtering step 2 is aimed to determine if a peak is a “true
247 | peak” on the basis of its replicability in other samples. Basing on
248 | this idea, we developed the filtering step to filter out those peaks
249 | not present in at least a user given number of samples. A further
250 | threshold can be used over the peak score.
251 |
252 | Finally, the third step produces a count matrix where each column is
253 | a sample and each row a filtered peak computed in the filtering
254 | step. The value of the matrix cell is the number of reads for the
255 | peak in the sample.
256 |
257 | Furthermore, our package provides several functionalities for
258 | [GenomicRanges][] data structure handling. One over the others gives
259 | the possibility to split a [GenomicRanges][] over the chromosomes to
260 | speed-up the computations parallelizing them over the chromosomes.
261 |
262 | - Love MI\*, Hickey P, Soneson, C, and Patro R. _Automatic metadata
263 | propagation for RNA-seq_. tximeta performs numerous annotation and
264 | metadata gathering tasks on behalf of users during the import of
265 | transcript quantifications from Salmon into _R / Bioconductor_. The
266 | key idea within tximeta is to store a signature of the transcriptome
267 | sequence, computed and stored by the index and quant functions of
268 | Salmon. This signature acts as the identifying information for later
269 | building out rich annotations and metadata in the background, on
270 | behalf of the user. This should greatly facilitate genomic
271 | workflows, where the user can immediately begin overlapping their
272 | transcriptomic data with other genomic datasets, e.g. epigenetic
273 | tracks such as ChIP or methylation, as the data has been embedded
274 | within an organism and genome context, including the proper genome
275 | version. We seek to reduce wasted time of bioinformatic analysts,
276 | prevent costly bioinformatic mistakes, and promote computational
277 | reproducibility by avoiding situations of annotation and metadata
278 | ambiguity, when files are shared publicly or among collaborators but
279 | critical details go missing.
280 |
281 | - Adithya M, Bhargava A, Wright E\*. _Improving the accuracy of
282 | taxonomic classification for identifying taxa in microbiome
283 | samples_. It has become increasingly clear that the microbiome is an
284 | essential component of human and ecosystem health. Microbiome
285 | studies frequently involve sequencing a taxonomic marker, such as
286 | the 16S rRNA or ITS, to identify the microorganisms that are present
287 | in a sample of interest. Here I will describe a new method, named
288 | IDTAXA, for taxonomic classification of marker gene sequences that
289 | exhibits a substantially lower error rate than previous
290 | approaches. In particular, IDTAXA avoids misclassifying sequences
291 | belonging to novel taxonomic groups that are not represented in
292 | existing taxonomic databases, which is the predominant type of error
293 | made by current classifiers. For example, the popular RDP Classifier
294 | incorrectly assigns 26.0% of novel 16S rRNA sequences to an existing
295 | taxonomic group when the organism actually belongs to a novel
296 | taxonomic group. In contrast, IDTAXA only incorrectly classifies
297 | 13.6% of such sequences, while correspondingly improving on the
298 | fraction of sequences correctly classified to known taxonomic
299 | groups. This has a major impact on the interpretation of microbiome
300 | data because many microbial communities contain a large fraction of
301 | previously undescribed microorganisms that are not yet represented
302 | in taxonomic databases. Furthermore, we find that many taxonomic
303 | databases contain a considerable number of misclassified sequences
304 | that can corrupt the classification process. IDTAXA is able to
305 | automatically identify errors in the training taxonomy so that users
306 | are able to take corrective action. This enables us to
307 | systematically contrast existing taxonomic databases and make
308 | recommendations for their use. Collectively, these improvements
309 | often lead to substantially different classifications on real
310 | microbiome data, which may considerably alter its
311 | interpretation. IDTAXA is available as part of the [DECIPHER][]
312 | package in R (http://DECIPHER.codes).
313 |
314 | - Innes BT\* and Bader GD. _scClustViz - Single-cell RNAseq Cluster
315 | Assessment and Interactive Visualisation_. Single-cell RNA
316 | sequencing is becoming an increasingly popular technology, used both
317 | in large multi-centre projects, and for more directed biological
318 | experiments. A common purpose for applying this technology is the
319 | in silico classification of cell types in a tissue. This is
320 | generally done using one of a myriad of clustering algorithms, based
321 | on the assumption that cells within a cell type are share similar
322 | transcriptomes, which are distinct from other cell types in the
323 | tissue. However, nearly all clustering algorithms have tunable
324 | parameters which affect, either directly or indirectly, the number
325 | of clusters they will return from the data.
326 |
327 | The R Shiny software tool outlined here provides a simple
328 | interactive interface for assessing the biological relevance of
329 | clustering results. Given that cell types are expected to have
330 | distinct gene expression patterns, it uses differential gene
331 | expression between clusters as a metric for assessing overfitting of
332 | clustering (Yuzwa et al., Cell
333 | Reports 2017. DOI:10.1016/j.celrep.2017.12.017). Along with this,
334 | it also provides interactive visualisation of: cluster-specific
335 | distributions of technical factors and other metadata; cluster-wise
336 | gene expression statistics to simplify annotation of cell types and
337 | identification of marker genes; and gene expression distributions
338 | over all cells.
339 |
340 | Interactive user interfaces for single-cell RNAseq analysis already
341 | exist, but this tool fills a distinct niche, as it is explicitly
342 | designed to assist in the biological interpretation of clustering
343 | solutions. Since it is meant to be included in analysis workflows,
344 | it has intentionally been built to be easily customized by the
345 | bioinformatician, as well as used by the non-technical biologist.
346 |
347 | This tool provides an interactive interface for visualisation,
348 | assessment, and biological interpretation of cell-type
349 | classifications in single-cell RNAseq experiments that can be easily
350 | added to existing analysis pipelines, allowing non-technical
351 | biologists easier access to their data.
352 |
353 | [DECIPHER]: https://bioconductor.org/packages/DECIPHER
354 | [DEScan2]: https://bioconductor.org/packages/DEScan2
355 | [DEsingle]: https://bioconductor.org/packages/DEsingle
356 | [GSEABenchmarkeR]: https://bioconductor.org/packages/GSEABenchmarkeR
357 | [GenomicRanges]: https://bioconductor.org/packages/GenomicRanges
358 | [dplyr]: https://bioconductor.org/packages/dplyr
359 | [gwasurvivr]: https://bioconductor.org/packages/gwasurvivr
360 | [plyranges]: https://bioconductor.org/packages/plyranges
361 |
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-700/Noto-Sans-700.svg:
--------------------------------------------------------------------------------
1 |
2 |
3 |
337 |
--------------------------------------------------------------------------------
/docs/assets/fonts/Noto-Sans-700italic/Noto-Sans-700italic.svg:
--------------------------------------------------------------------------------
1 |
2 |
3 |
335 |
--------------------------------------------------------------------------------