├── Books
└── temp
└── README.md
/Books/temp:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Deep-Learning-in-Bioinformatics-Papers-Reading-Roadmap
2 | >If you are a newcomer to apply the the Deep Learning in bioinformatics area, the first question you may have is "What is the profile of deep learning in bioinformatics at present?"
3 |
4 | >Here is a reading roadmap of papers applying Deep Learning in bioinformatics!
5 |
6 | Those papers are mainly published in _Nature_, _Nature Methods_, _Nature protocols_, _NAR_, _Briefings in Bioinformatics_, _Bioinformatics_, _Drug Discovery Today_, _Genome Research_, _Genome Biology_, _PLoS computational biology_, _JCIM_, _JPR_, _Distill Pub_, _CACM_, _JACM_, _JMLR_, and _NIPS_.
7 |
8 | The recently added journals are _AC_, _Nature Chemistry_, _Nature Reviews Chemistry_, and _Nature structural & molecular biology_.
9 |
10 | I would continue adding papers to this roadmap.
11 |
12 |
13 |
14 | ---------------------------------------
15 | ## -2. LCMS-based proteomics
16 | **[0]** Zhifei Zhang. "**pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning.**" AC. (November 10, 2017).
17 |
18 | **[0]** Naohiro Kobayashi. "**Noise peak filtering in multi-dimensional NMR spectra using convolutional neural networks.**" Bioinformatics. (09 July 2018).
19 |
20 | **[1]** Ming Li. "**De novo peptide sequencing by deep learning.**" PNAS. (July 18, 2017).
21 |
22 | ## -1. GCMS-based metabolomics
23 | **[0]** SKARYSZ, A. ... et al, . "**Convolutional neural networks for automated targeted analysis of raw gas chromatography–mass spectrometry data.**" IJCNN 2018. (2018).
24 |
25 | ## 0. Drug discovery
26 | **[0]** Hongmei Lu. "**Deep-Learning-Based Drug–Target Interaction Prediction.**" JPR. (March 6, 2017)
27 |
28 | **[1]** Jianyang Zeng. "**NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions.**" Bioinformatics. (02 July 2018)
29 |
30 | **[0]** Pierre Baldi. "**Deep Learning in Biomedical Data Science.**" Annual Review of Biomedical Data Science. (2018).
31 |
32 | ## 1. Biomacromolecular structure prediction
33 |
34 | **[0]** Yaoqi Zhou. "**Accurate Prediction of Protein Contact Maps by Coupling Residual Two-Dimensional Bidirectional Long Short-Term Memory with Convolutional Neural Networks.**" Bioinformatics. (19 June 2018).
35 |
36 | **[1]** Jinbo Xu. "**ComplexContact: a web server for inter-protein contact prediction using deep learning.**" NAR. (22 May 2018).
37 |
38 | **[2]** Jinbo Xu. "**Protein threading using residue co-variation and deep learning.**" Bioinformatics. (1 July 2018).
39 |
40 |
41 | ## 2. Cell
42 |
43 | **[0]** Jianzhu Ma. "**Using deep learning to model the hierarchical structure and function of a cell.**" Nature Methods. (2018-04). **(ps)** :star::star::star::star::star:
44 |
45 | ## 3. Transcription factor-DNA binding
46 |
47 | **[0]** Abdullah M Khamis. "**DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants.**" NAR. (02 April 2018). **(ps)** :star::star::star::star::star:
48 |
49 |
50 | ## 4. lncRNAs related
51 |
52 | **[0]** Sungroh Yoon. "**lncRNAnet: Long Non-coding RNA Identification using Deep Learning.**" Bioinformatics. (29 May 2018).
53 |
54 | **[1]** Huaiqiu Zhu. "**LncADeep: An ab initio lncRNA identification and functional annotation tool based on deep learning.**" Bioinformatics. (29 May 2018).
55 |
56 | [^_^]:
57 | **[0]** authors. "**template.**" journal. (date).
58 |
59 |
60 | ## 5. Gene expression related
61 |
62 | **[0]** Tianwei Yu. "**A graph-embedded deep feedforward network for disease outcome classification and feature selection using gene expression data.**" Bioinformatics. (29 May 2018).
63 |
64 | **[1]** Wesley De Neve. "**SpliceRover: Interpretable Convolutional Neural: Networks for Improved Splice Site Prediction.**" Bioinformatics. (21 June 2018).
65 |
66 | **[2]** David A Hendrix. "**A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential.**" NAR. (09 July 2018)
67 |
68 |
69 | ### ^Before September 2017 (only a few widely influential papers were selected)
70 |
71 | **[0]** LuZhang, JianjunTan, DanHan, HaoZhu. "**From machine learning to deep learning: progress in machine intelligence for rational drug discovery.**" Drug Discovery Today.
72 |
73 | **[1]** Dapeng Xiong, Jianyang Zeng, and Haipeng Gong. "**A deep learning framework for improving long-range residue–residue contact prediction using a hierarchical strategy.**" Bioinformatics.
74 |
75 | **[2]** Yeeleng S. Vang, Xiaohui Xie. "**HLA class I binding prediction via convolutional neural networks.**" Bioinformatics.
76 |
77 | **[3]** Baoji He, S. M. Mortuza, Yanting Wang, Hong-Bin Shen, Yang Zhang."**NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers.**" Bioinformatics.
78 |
79 | **[4]** Nansu Zong, Hyeoneui Kim, Victoria Ngo, Olivier Harismendy. "**Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations.**" Bioinformatics.
80 |
81 | **[5]** José Juan Almagro Armenteros et al. "**DeepLoc: Prediction of protein subcellular localization using deep learning.**" Bioinformatics.
82 |
83 | **[6]** Bite Yang et al. "**BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone.**" Bioinformatics.
84 |
85 | **[7]** William J. Godinez et al. "**A multi-scale convolutional neural network for phenotyping high-content cellular images.**" Bioinformatics.
86 |
87 | **[8]** Xiuquan Du, Yanping Zhang et al. "**DeepPPI: Boosting Prediction of Protein–Protein Interactions with Deep Neural Networks.**" JCIM.
88 |
89 | **[9]** Moritz Hess et al. "**Partitioned learning of deep Boltzmann machines for SNP data.**" Bioinformatics.
90 |
91 | **[10]** Travers Ching et al. "**Opportunities and obstacles for deep learning in biology and medicine.**" bioRxiv.
92 |
93 | **[11]** A Esteva et al. "**Dermatologist-level classification of skin cancer with deep neural networks.**" Nature. (FEB 2 2017).
94 |
95 | **[12]** Seonwoo Min et al. "**Deep learning in bioinformatics.**" Briefings in bioinformatics. (16 June 2016).
96 |
97 |
98 |
99 |
100 |
--------------------------------------------------------------------------------