├── __init__.py
├── README.md
├── nodes.py
├── seecoder_utils.py
├── seecoder.py
├── seet_tdecoder.py
├── swin.py
└── LICENSE
/__init__.py:
--------------------------------------------------------------------------------
1 | from .nodes import NODE_CLASS_MAPPINGS
2 |
3 | __all__ = ['NODE_CLASS_MAPPINGS']
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ComfyUI SeeCoder nodes
2 |
3 | This repo contains 2 experimental WIP nodes for [ComfyUI](https://github.com/comfyanonymous/ComfyUI) that let's you use [SeeCoders](https://github.com/SHI-Labs/Prompt-Free-Diffusion).
4 |
5 | ## getting SeeCoders
6 | You can find the seecoders [here](https://huggingface.co/shi-labs/prompt-free-diffusion). They have to be placed at `models/seecoders`
7 |
8 | ## nodes:
9 |
10 | ### SEECoderImageEncode
11 |
12 | this node can be used to create an embedding from an image
13 |
14 | - **image**: the image to encode
15 | - **seecoder_name**: the name of the seecoder
16 |
17 | ### ConcatConditioning
18 |
19 | this node can be used to concat different embeddings together, so you can e.g. create both a text and a visual embedding and concat them together.
20 |
21 | - **conditioning_to**: a set of embeddings to concat something to
22 | - **conditioning_from**: the embedding to concat behind those in **conditioning_to**
23 |
24 | ## TODO:
25 |
26 | - [ ] support for non safetensor formats
27 | - [ ] bring attention layers in line with ones used in comfy
--------------------------------------------------------------------------------
/nodes.py:
--------------------------------------------------------------------------------
1 |
2 | import folder_paths
3 | import torch
4 | from .seecoder import SemanticExtractionEncoder, QueryTransformer, Decoder
5 | from .swin import SwinTransformer
6 | import safetensors.torch
7 | import os
8 | import sys
9 |
10 | sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
11 |
12 | import comfy.model_management
13 |
14 | folder_paths.folder_names_and_paths["seecoder"] = ([os.path.join(folder_paths.models_dir, "seecoders")], folder_paths.supported_pt_extensions)
15 |
16 | _swine_config = {
17 | "embed_dim" : 192,
18 | "depths" : [ 2, 2, 18, 2 ],
19 | "num_heads" : [ 6, 12, 24, 48 ],
20 | "window_size" : 12,
21 | "ape" : False,
22 | "drop_path_rate" : 0.3,
23 | "patch_norm" : True,
24 | }
25 |
26 | _decoder_config = {
27 | "inchannels" : {'res3' : 384, 'res4' : 768, 'res5' : 1536},
28 | "trans_input_tags" : ['res3', 'res4', 'res5'],
29 | "trans_dim" : 768,
30 | "trans_dropout" : 0.1,
31 | "trans_nheads" : 8,
32 | "trans_feedforward_dim" : 1024,
33 | "trans_num_layers" : 6,
34 | }
35 |
36 | _qt_config = {
37 | "in_channels":768,
38 | "hidden_dim":768,
39 | "num_queries":[4, 144],
40 | "nheads":8,
41 | "num_layers":9,
42 | "feedforward_dim":2048,
43 | "pre_norm":False,
44 | "num_feature_levels":3,
45 | "enforce_input_project":False,
46 | "with_fea2d_pos":False
47 | }
48 |
49 | class SEECoderImageEncode:
50 | @classmethod
51 | def INPUT_TYPES(s):
52 | return {"required": {
53 | "seecoder_name": (folder_paths.get_filename_list("seecoder"), ),
54 | "image": ("IMAGE",),
55 | }}
56 | RETURN_TYPES = ("CONDITIONING",)
57 | FUNCTION = "SEECoderEncode"
58 |
59 | CATEGORY = "conditioning"
60 |
61 | def SEECoderEncode(self, seecoder_name, image):
62 | device = comfy.model_management.get_torch_device()
63 | path = folder_paths.get_full_path("seecoder", seecoder_name)
64 | sd = safetensors.torch.load_file(path, device="cpu")
65 | sd = {k[10:] if k.startswith('ctx.image.') else k: v for k,v in sd.items()}
66 | is_pa = any([x.startswith("qtransformer.pe_layer") for x in sd.keys()])
67 |
68 | swine_config = _swine_config.copy()
69 | decoder_config = _decoder_config.copy()
70 | qt_config = _qt_config.copy()
71 | if is_pa:
72 | qt_config['with_fea2d_pos'] = True
73 |
74 | swine = SwinTransformer(**swine_config)
75 | decoder = Decoder(**decoder_config)
76 | queryTransformer = QueryTransformer(**qt_config)
77 |
78 | SEE_encoder = SemanticExtractionEncoder(swine, decoder, queryTransformer)
79 | SEE_encoder.load_state_dict(sd)
80 | SEE_encoder = SEE_encoder.to(device)
81 | SEE_encoder.eval()
82 | encoding = SEE_encoder(image.movedim(-1,1).to(device)).cpu()
83 |
84 | return ([[encoding, {}]], )
85 |
86 | class ConcatConditioning:
87 | @classmethod
88 | def INPUT_TYPES(s):
89 | return {"required": {
90 | "conditioning_to": ("CONDITIONING",),
91 | "conditioning_from": ("CONDITIONING",),
92 | }}
93 | RETURN_TYPES = ("CONDITIONING",)
94 | FUNCTION = "SEECoderEncode"
95 |
96 | CATEGORY = "_for_testing"
97 |
98 | def SEECoderEncode(self, conditioning_to, conditioning_from):
99 | out = []
100 |
101 | if len(conditioning_from) > 1:
102 | print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
103 |
104 | cond_from = conditioning_from[0][0]
105 |
106 | for i in range(len(conditioning_to)):
107 | t1 = conditioning_to[i][0]
108 | tw = torch.cat((t1, cond_from),1)
109 | n = [tw, conditioning_to[i][1].copy()]
110 | out.append(n)
111 |
112 | return (out, )
113 |
114 | NODE_CLASS_MAPPINGS = {
115 | "SEECoderImageEncode": SEECoderImageEncode,
116 | "ConcatConditioning": ConcatConditioning,
117 | }
--------------------------------------------------------------------------------
/seecoder_utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
5 | import math
6 | import copy
7 |
8 | def _get_clones(module, N):
9 | return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
10 |
11 | def _get_activation_fn(activation):
12 | """Return an activation function given a string"""
13 | if activation == "relu":
14 | return F.relu
15 | if activation == "gelu":
16 | return F.gelu
17 | if activation == "glu":
18 | return F.glu
19 | raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
20 |
21 | def _is_power_of_2(n):
22 | if (not isinstance(n, int)) or (n < 0):
23 | raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
24 | return (n & (n-1) == 0) and n != 0
25 |
26 | def c2_xavier_fill(module):
27 | # Caffe2 implementation of XavierFill in fact
28 | nn.init.kaiming_uniform_(module.weight, a=1)
29 | if module.bias is not None:
30 | nn.init.constant_(module.bias, 0)
31 |
32 | def with_pos_embed(x, pos):
33 | return x if pos is None else x + pos
34 |
35 | class PositionEmbeddingSine(nn.Module):
36 | def __init__(self, num_pos_feats=64, temperature=256, normalize=False, scale=None):
37 | super().__init__()
38 | self.num_pos_feats = num_pos_feats
39 | self.temperature = temperature
40 | self.normalize = normalize
41 | if scale is not None and normalize is False:
42 | raise ValueError("normalize should be True if scale is passed")
43 | if scale is None:
44 | scale = 2 * math.pi
45 | self.scale = scale
46 |
47 | def forward(self, x, mask=None):
48 | if mask is None:
49 | mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
50 | not_mask = ~mask
51 | h, w = not_mask.shape[-2:]
52 | minlen = min(h, w)
53 | h_embed = not_mask.cumsum(1, dtype=torch.float32)
54 | w_embed = not_mask.cumsum(2, dtype=torch.float32)
55 | if self.normalize:
56 | eps = 1e-6
57 | h_embed = (h_embed - h/2) / (minlen + eps) * self.scale
58 | w_embed = (w_embed - w/2) / (minlen + eps) * self.scale
59 |
60 | dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
61 | dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
62 |
63 | pos_w = w_embed[:, :, :, None] / dim_t
64 | pos_h = h_embed[:, :, :, None] / dim_t
65 | pos_w = torch.stack(
66 | (pos_w[:, :, :, 0::2].sin(), pos_w[:, :, :, 1::2].cos()), dim=4
67 | ).flatten(3)
68 | pos_h = torch.stack(
69 | (pos_h[:, :, :, 0::2].sin(), pos_h[:, :, :, 1::2].cos()), dim=4
70 | ).flatten(3)
71 | pos = torch.cat((pos_h, pos_w), dim=3).permute(0, 3, 1, 2)
72 | return pos
73 |
74 | def __repr__(self, _repr_indent=4):
75 | head = "Positional encoding " + self.__class__.__name__
76 | body = [
77 | "num_pos_feats: {}".format(self.num_pos_feats),
78 | "temperature: {}".format(self.temperature),
79 | "normalize: {}".format(self.normalize),
80 | "scale: {}".format(self.scale),
81 | ]
82 | # _repr_indent = 4
83 | lines = [head] + [" " * _repr_indent + line for line in body]
84 | return "\n".join(lines)
85 |
86 | class Conv2d_Convenience(nn.Conv2d):
87 | def __init__(self, *args, **kwargs):
88 | norm = kwargs.pop("norm", None)
89 | activation = kwargs.pop("activation", None)
90 | super().__init__(*args, **kwargs)
91 | self.norm = norm
92 | self.activation = activation
93 |
94 | def forward(self, x):
95 | if not torch.jit.is_scripting():
96 | if x.numel() == 0 and self.training:
97 | assert not isinstance(
98 | self.norm, torch.nn.SyncBatchNorm
99 | ), "SyncBatchNorm does not support empty inputs!"
100 | x = F.conv2d(
101 | x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups
102 | )
103 | if self.norm is not None:
104 | x = self.norm(x)
105 | if self.activation is not None:
106 | x = self.activation(x)
107 | return x
108 |
109 |
--------------------------------------------------------------------------------
/seecoder.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | import copy
5 |
6 | from .seecoder_utils import with_pos_embed
7 |
8 | ###########
9 | # helpers #
10 | ###########
11 |
12 | def _get_clones(module, N):
13 | return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
14 |
15 | def _get_activation_fn(activation):
16 | """Return an activation function given a string"""
17 | if activation == "relu":
18 | return F.relu
19 | if activation == "gelu":
20 | return F.gelu
21 | if activation == "glu":
22 | return F.glu
23 | raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
24 |
25 | def c2_xavier_fill(module):
26 | # Caffe2 implementation of XavierFill in fact
27 | nn.init.kaiming_uniform_(module.weight, a=1)
28 | if module.bias is not None:
29 | nn.init.constant_(module.bias, 0)
30 |
31 | def with_pos_embed(x, pos):
32 | return x if pos is None else x + pos
33 |
34 | ###########
35 | # Modules #
36 | ###########
37 |
38 | class Conv2d_Convenience(nn.Conv2d):
39 | def __init__(self, *args, **kwargs):
40 | norm = kwargs.pop("norm", None)
41 | activation = kwargs.pop("activation", None)
42 | super().__init__(*args, **kwargs)
43 | self.norm = norm
44 | self.activation = activation
45 |
46 | def forward(self, x):
47 | x = F.conv2d(
48 | x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
49 | if self.norm is not None:
50 | x = self.norm(x)
51 | if self.activation is not None:
52 | x = self.activation(x)
53 | return x
54 |
55 | class DecoderLayer(nn.Module):
56 | def __init__(self,
57 | dim=256,
58 | feedforward_dim=1024,
59 | dropout=0.1,
60 | activation="relu",
61 | n_heads=8,):
62 |
63 | super().__init__()
64 |
65 | self.self_attn = nn.MultiheadAttention(dim, n_heads, dropout=dropout)
66 | self.dropout1 = nn.Dropout(dropout)
67 | self.norm1 = nn.LayerNorm(dim)
68 |
69 | self.linear1 = nn.Linear(dim, feedforward_dim)
70 | self.activation = _get_activation_fn(activation)
71 | self.dropout2 = nn.Dropout(dropout)
72 | self.linear2 = nn.Linear(feedforward_dim, dim)
73 | self.dropout3 = nn.Dropout(dropout)
74 | self.norm2 = nn.LayerNorm(dim)
75 |
76 | def forward(self, x):
77 | h = x
78 | h1 = self.self_attn(x, x, x, attn_mask=None)[0]
79 | h = h + self.dropout1(h1)
80 | h = self.norm1(h)
81 |
82 | h2 = self.linear2(self.dropout2(self.activation(self.linear1(h))))
83 | h = h + self.dropout3(h2)
84 | h = self.norm2(h)
85 | return h
86 |
87 | class DecoderLayerStacked(nn.Module):
88 | def __init__(self, layer, num_layers, norm=None):
89 | super().__init__()
90 | self.layers = _get_clones(layer, num_layers)
91 | self.num_layers = num_layers
92 | self.norm = norm
93 |
94 | def forward(self, x):
95 | h = x
96 | for _, layer in enumerate(self.layers):
97 | h = layer(h)
98 | if self.norm is not None:
99 | h = self.norm(h)
100 | return h
101 |
102 | class SelfAttentionLayer(nn.Module):
103 | def __init__(self, channels, nhead, dropout=0.0,
104 | activation="relu", normalize_before=False):
105 | super().__init__()
106 | self.self_attn = nn.MultiheadAttention(channels, nhead, dropout=dropout)
107 |
108 | self.norm = nn.LayerNorm(channels)
109 | self.dropout = nn.Dropout(dropout)
110 |
111 | self.activation = _get_activation_fn(activation)
112 | self.normalize_before = normalize_before
113 |
114 | self._reset_parameters()
115 |
116 | def _reset_parameters(self):
117 | for p in self.parameters():
118 | if p.dim() > 1:
119 | nn.init.xavier_uniform_(p)
120 |
121 | def forward_post(self,
122 | qkv,
123 | qk_pos = None,
124 | mask = None,):
125 | h = qkv
126 | qk = with_pos_embed(qkv, qk_pos).transpose(0, 1)
127 | v = qkv.transpose(0, 1)
128 | h1 = self.self_attn(qk, qk, v, attn_mask=mask)[0]
129 | h1 = h1.transpose(0, 1)
130 | h = h + self.dropout(h1)
131 | h = self.norm(h)
132 | return h
133 |
134 | def forward_pre(self, tgt,
135 | tgt_mask = None,
136 | tgt_key_padding_mask = None,
137 | query_pos = None):
138 | # deprecated
139 | assert False
140 | tgt2 = self.norm(tgt)
141 | q = k = self.with_pos_embed(tgt2, query_pos)
142 | tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
143 | key_padding_mask=tgt_key_padding_mask)[0]
144 | tgt = tgt + self.dropout(tgt2)
145 | return tgt
146 |
147 | def forward(self, *args, **kwargs):
148 | if self.normalize_before:
149 | return self.forward_pre(*args, **kwargs)
150 | return self.forward_post(*args, **kwargs)
151 |
152 | class CrossAttentionLayer(nn.Module):
153 | def __init__(self, channels, nhead, dropout=0.0,
154 | activation="relu", normalize_before=False):
155 | super().__init__()
156 | self.multihead_attn = nn.MultiheadAttention(channels, nhead, dropout=dropout)
157 |
158 | self.norm = nn.LayerNorm(channels)
159 | self.dropout = nn.Dropout(dropout)
160 |
161 | self.activation = _get_activation_fn(activation)
162 | self.normalize_before = normalize_before
163 |
164 | self._reset_parameters()
165 |
166 | def _reset_parameters(self):
167 | for p in self.parameters():
168 | if p.dim() > 1:
169 | nn.init.xavier_uniform_(p)
170 |
171 | def forward_post(self,
172 | q,
173 | kv,
174 | q_pos = None,
175 | k_pos = None,
176 | mask = None,):
177 | h = q
178 | q = with_pos_embed(q, q_pos).transpose(0, 1)
179 | k = with_pos_embed(kv, k_pos).transpose(0, 1)
180 | v = kv.transpose(0, 1)
181 | h1 = self.multihead_attn(q, k, v, attn_mask=mask)[0]
182 | h1 = h1.transpose(0, 1)
183 | h = h + self.dropout(h1)
184 | h = self.norm(h)
185 | return h
186 |
187 | def forward_pre(self, tgt, memory,
188 | memory_mask = None,
189 | memory_key_padding_mask = None,
190 | pos = None,
191 | query_pos = None):
192 | # Deprecated
193 | assert False
194 | tgt2 = self.norm(tgt)
195 | tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
196 | key=self.with_pos_embed(memory, pos),
197 | value=memory, attn_mask=memory_mask,
198 | key_padding_mask=memory_key_padding_mask)[0]
199 | tgt = tgt + self.dropout(tgt2)
200 | return tgt
201 |
202 | def forward(self, *args, **kwargs):
203 | if self.normalize_before:
204 | return self.forward_pre(*args, **kwargs)
205 | return self.forward_post(*args, **kwargs)
206 |
207 | class FeedForwardLayer(nn.Module):
208 | def __init__(self, channels, hidden_channels=2048, dropout=0.0,
209 | activation="relu", normalize_before=False):
210 | super().__init__()
211 | self.linear1 = nn.Linear(channels, hidden_channels)
212 | self.dropout = nn.Dropout(dropout)
213 | self.linear2 = nn.Linear(hidden_channels, channels)
214 | self.norm = nn.LayerNorm(channels)
215 | self.activation = _get_activation_fn(activation)
216 | self.normalize_before = normalize_before
217 | self._reset_parameters()
218 |
219 | def _reset_parameters(self):
220 | for p in self.parameters():
221 | if p.dim() > 1:
222 | nn.init.xavier_uniform_(p)
223 |
224 | def forward_post(self, x):
225 | h = x
226 | h1 = self.linear2(self.dropout(self.activation(self.linear1(h))))
227 | h = h + self.dropout(h1)
228 | h = self.norm(h)
229 | return h
230 |
231 | def forward_pre(self, x):
232 | xn = self.norm(x)
233 | h = x
234 | h1 = self.linear2(self.dropout(self.activation(self.linear1(xn))))
235 | h = h + self.dropout(h1)
236 | return h
237 |
238 | def forward(self, *args, **kwargs):
239 | if self.normalize_before:
240 | return self.forward_pre(*args, **kwargs)
241 | return self.forward_post(*args, **kwargs)
242 |
243 | class MLP(nn.Module):
244 | def __init__(self, in_channels, channels, out_channels, num_layers):
245 | super().__init__()
246 | self.num_layers = num_layers
247 | h = [channels] * (num_layers - 1)
248 | self.layers = nn.ModuleList(
249 | nn.Linear(n, k)
250 | for n, k in zip([in_channels]+h, h+[out_channels]))
251 |
252 | def forward(self, x):
253 | for i, layer in enumerate(self.layers):
254 | x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
255 | return x
256 |
257 | class PPE_MLP(nn.Module):
258 | def __init__(self, freq_num=20, freq_max=None, out_channel=768, mlp_layer=3):
259 | import math
260 | super().__init__()
261 | self.freq_num = freq_num
262 | self.freq_max = freq_max
263 | self.out_channel = out_channel
264 | self.mlp_layer = mlp_layer
265 | self.twopi = 2 * math.pi
266 |
267 | mlp = []
268 | in_channel = freq_num*4
269 | for idx in range(mlp_layer):
270 | linear = nn.Linear(in_channel, out_channel, bias=True)
271 | nn.init.xavier_normal_(linear.weight)
272 | nn.init.constant_(linear.bias, 0)
273 | mlp.append(linear)
274 | if idx != mlp_layer-1:
275 | mlp.append(nn.SiLU())
276 | in_channel = out_channel
277 | self.mlp = nn.Sequential(*mlp)
278 | nn.init.constant_(self.mlp[-1].weight, 0)
279 |
280 | def forward(self, x, mask=None):
281 | assert mask is None, "Mask not implemented"
282 | h, w = x.shape[-2:]
283 | minlen = min(h, w)
284 |
285 | h_embed, w_embed = torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij')
286 | if self.training:
287 | import numpy.random as npr
288 | pertube_h, pertube_w = npr.uniform(-0.5, 0.5), npr.uniform(-0.5, 0.5)
289 | else:
290 | pertube_h, pertube_w = 0, 0
291 |
292 | h_embed = (h_embed+0.5 - h/2 + pertube_h) / (minlen) * self.twopi
293 | w_embed = (w_embed+0.5 - w/2 + pertube_w) / (minlen) * self.twopi
294 | h_embed, w_embed = h_embed.to(x.device).to(x.dtype), w_embed.to(x.device).to(x.dtype)
295 |
296 | dim_t = torch.linspace(0, 1, self.freq_num, dtype=torch.float32, device=x.device)
297 | freq_max = self.freq_max if self.freq_max is not None else minlen/2
298 | dim_t = freq_max ** dim_t.to(x.dtype)
299 |
300 | pos_h = h_embed[:, :, None] * dim_t
301 | pos_w = w_embed[:, :, None] * dim_t
302 | pos = torch.cat((pos_h.sin(), pos_h.cos(), pos_w.sin(), pos_w.cos()), dim=-1)
303 | pos = self.mlp(pos)
304 | pos = pos.permute(2, 0, 1)[None]
305 | return pos
306 |
307 | def __repr__(self, _repr_indent=4):
308 | head = "Positional encoding " + self.__class__.__name__
309 | body = [
310 | "num_pos_feats: {}".format(self.num_pos_feats),
311 | "temperature: {}".format(self.temperature),
312 | "normalize: {}".format(self.normalize),
313 | "scale: {}".format(self.scale),
314 | ]
315 | # _repr_indent = 4
316 | lines = [head] + [" " * _repr_indent + line for line in body]
317 | return "\n".join(lines)
318 |
319 | ###########
320 | # Decoder #
321 | ###########
322 |
323 | class Decoder(nn.Module):
324 | def __init__(
325 | self,
326 | inchannels,
327 | trans_input_tags,
328 | trans_num_layers,
329 | trans_dim,
330 | trans_nheads,
331 | trans_dropout,
332 | trans_feedforward_dim,):
333 |
334 | super().__init__()
335 | trans_inchannels = {
336 | k: v for k, v in inchannels.items() if k in trans_input_tags}
337 | fpn_inchannels = {
338 | k: v for k, v in inchannels.items() if k not in trans_input_tags}
339 |
340 | self.trans_tags = sorted(list(trans_inchannels.keys()))
341 | self.fpn_tags = sorted(list(fpn_inchannels.keys()))
342 | self.all_tags = sorted(list(inchannels.keys()))
343 |
344 | if len(self.trans_tags)==0:
345 | assert False # Not allowed
346 |
347 | self.num_trans_lvls = len(self.trans_tags)
348 |
349 | self.inproj_layers = nn.ModuleDict()
350 | for tagi in self.trans_tags:
351 | layeri = nn.Sequential(
352 | nn.Conv2d(trans_inchannels[tagi], trans_dim, kernel_size=1),
353 | nn.GroupNorm(32, trans_dim),)
354 | nn.init.xavier_uniform_(layeri[0].weight, gain=1)
355 | nn.init.constant_(layeri[0].bias, 0)
356 | self.inproj_layers[tagi] = layeri
357 |
358 | tlayer = DecoderLayer(
359 | dim = trans_dim,
360 | n_heads = trans_nheads,
361 | dropout = trans_dropout,
362 | feedforward_dim = trans_feedforward_dim,
363 | activation = 'relu',)
364 |
365 | self.transformer = DecoderLayerStacked(tlayer, trans_num_layers)
366 | for p in self.transformer.parameters():
367 | if p.dim() > 1:
368 | nn.init.xavier_uniform_(p)
369 | self.level_embed = nn.Parameter(torch.Tensor(len(self.trans_tags), trans_dim))
370 | nn.init.normal_(self.level_embed)
371 |
372 | self.lateral_layers = nn.ModuleDict()
373 | self.output_layers = nn.ModuleDict()
374 | for tagi in self.all_tags:
375 | lateral_conv = Conv2d_Convenience(
376 | inchannels[tagi], trans_dim, kernel_size=1,
377 | bias=False, norm=nn.GroupNorm(32, trans_dim))
378 | c2_xavier_fill(lateral_conv)
379 | self.lateral_layers[tagi] = lateral_conv
380 |
381 | for tagi in self.fpn_tags:
382 | output_conv = Conv2d_Convenience(
383 | trans_dim, trans_dim, kernel_size=3, stride=1, padding=1,
384 | bias=False, norm=nn.GroupNorm(32, trans_dim), activation=F.relu,)
385 | c2_xavier_fill(output_conv)
386 | self.output_layers[tagi] = output_conv
387 |
388 | def forward(self, features):
389 | x = []
390 | spatial_shapes = {}
391 | for idx, tagi in enumerate(self.trans_tags[::-1]):
392 | xi = features[tagi]
393 | xi = self.inproj_layers[tagi](xi)
394 | bs, _, h, w = xi.shape
395 | spatial_shapes[tagi] = (h, w)
396 | xi = xi.flatten(2).transpose(1, 2) + self.level_embed[idx].view(1, 1, -1)
397 | x.append(xi)
398 |
399 | x_length = [xi.shape[1] for xi in x]
400 | x_concat = torch.cat(x, 1)
401 | y_concat = self.transformer(x_concat)
402 | y = torch.split(y_concat, x_length, dim=1)
403 |
404 | out = {}
405 | for idx, tagi in enumerate(self.trans_tags[::-1]):
406 | h, w = spatial_shapes[tagi]
407 | yi = y[idx].transpose(1, 2).view(bs, -1, h, w)
408 | out[tagi] = yi
409 |
410 | for idx, tagi in enumerate(self.all_tags[::-1]):
411 | lconv = self.lateral_layers[tagi]
412 | if tagi in self.trans_tags:
413 | out[tagi] = out[tagi] + lconv(features[tagi])
414 | tag_save = tagi
415 | else:
416 | oconv = self.output_layers[tagi]
417 | h = lconv(features[tagi])
418 | oprev = out[tag_save]
419 | h = h + F.interpolate(oconv(oprev), size=h.shape[-2:], mode="bilinear", align_corners=False)
420 | out[tagi] = h
421 |
422 | return out
423 |
424 | #####################
425 | # Query Transformer #
426 | #####################
427 |
428 | class QueryTransformer(nn.Module):
429 | def __init__(self,
430 | in_channels,
431 | hidden_dim,
432 | num_queries = [8, 144],
433 | nheads = 8,
434 | num_layers = 9,
435 | feedforward_dim = 2048,
436 | mask_dim = 256,
437 | pre_norm = False,
438 | num_feature_levels = 3,
439 | enforce_input_project = False,
440 | with_fea2d_pos = True):
441 |
442 | super().__init__()
443 |
444 | if with_fea2d_pos:
445 | self.pe_layer = PPE_MLP(freq_num=20, freq_max=None, out_channel=hidden_dim, mlp_layer=3)
446 | else:
447 | self.pe_layer = None
448 |
449 | if in_channels!=hidden_dim or enforce_input_project:
450 | self.input_proj = nn.ModuleList()
451 | for _ in range(num_feature_levels):
452 | self.input_proj.append(nn.Conv2d(in_channels, hidden_dim, kernel_size=1))
453 | c2_xavier_fill(self.input_proj[-1])
454 | else:
455 | self.input_proj = None
456 |
457 | self.num_heads = nheads
458 | self.num_layers = num_layers
459 | self.transformer_selfatt_layers = nn.ModuleList()
460 | self.transformer_crossatt_layers = nn.ModuleList()
461 | self.transformer_feedforward_layers = nn.ModuleList()
462 |
463 | for _ in range(self.num_layers):
464 | self.transformer_selfatt_layers.append(
465 | SelfAttentionLayer(
466 | channels=hidden_dim,
467 | nhead=nheads,
468 | dropout=0.0,
469 | normalize_before=pre_norm, ))
470 |
471 | self.transformer_crossatt_layers.append(
472 | CrossAttentionLayer(
473 | channels=hidden_dim,
474 | nhead=nheads,
475 | dropout=0.0,
476 | normalize_before=pre_norm, ))
477 |
478 | self.transformer_feedforward_layers.append(
479 | FeedForwardLayer(
480 | channels=hidden_dim,
481 | hidden_channels=feedforward_dim,
482 | dropout=0.0,
483 | normalize_before=pre_norm, ))
484 |
485 | self.num_queries = num_queries
486 | num_gq, num_lq = self.num_queries
487 | self.init_query = nn.Embedding(num_gq+num_lq, hidden_dim)
488 | self.query_pos_embedding = nn.Embedding(num_gq+num_lq, hidden_dim)
489 |
490 | self.num_feature_levels = num_feature_levels
491 | self.level_embed = nn.Embedding(num_feature_levels, hidden_dim)
492 |
493 | def forward(self, x):
494 | # x is a list of multi-scale feature
495 | assert len(x) == self.num_feature_levels
496 | fea2d = []
497 | fea2d_pos = []
498 | size_list = []
499 |
500 | for i in range(self.num_feature_levels):
501 | size_list.append(x[i].shape[-2:])
502 | if self.pe_layer is not None:
503 | pi = self.pe_layer(x[i], None).flatten(2)
504 | pi = pi.transpose(1, 2)
505 | else:
506 | pi = None
507 | xi = self.input_proj[i](x[i]) if self.input_proj is not None else x[i]
508 | xi = xi.flatten(2) + self.level_embed.weight[i][None, :, None]
509 | xi = xi.transpose(1, 2)
510 | fea2d.append(xi)
511 | fea2d_pos.append(pi)
512 |
513 | bs, _, _ = fea2d[0].shape
514 | num_gq, num_lq = self.num_queries
515 | gquery = self.init_query.weight[:num_gq].unsqueeze(0).repeat(bs, 1, 1)
516 | lquery = self.init_query.weight[num_gq:].unsqueeze(0).repeat(bs, 1, 1)
517 |
518 | gquery_pos = self.query_pos_embedding.weight[:num_gq].unsqueeze(0).repeat(bs, 1, 1)
519 | lquery_pos = self.query_pos_embedding.weight[num_gq:].unsqueeze(0).repeat(bs, 1, 1)
520 |
521 | for i in range(self.num_layers):
522 | level_index = i % self.num_feature_levels
523 |
524 | qout = self.transformer_crossatt_layers[i](
525 | q = lquery,
526 | kv = fea2d[level_index],
527 | q_pos = lquery_pos,
528 | k_pos = fea2d_pos[level_index],
529 | mask = None,)
530 | lquery = qout
531 |
532 | qout = self.transformer_selfatt_layers[i](
533 | qkv = torch.cat([gquery, lquery], dim=1),
534 | qk_pos = torch.cat([gquery_pos, lquery_pos], dim=1),)
535 |
536 | qout = self.transformer_feedforward_layers[i](qout)
537 |
538 | gquery = qout[:, :num_gq]
539 | lquery = qout[:, num_gq:]
540 |
541 | output = torch.cat([gquery, lquery], dim=1)
542 |
543 | return output
544 |
545 | ##################
546 | # Main structure #
547 | ##################
548 |
549 | class SemanticExtractionEncoder(nn.Module):
550 | def __init__(self,
551 | imencoder_cfg,
552 | imdecoder_cfg,
553 | qtransformer_cfg):
554 | super().__init__()
555 | self.imencoder = imencoder_cfg
556 | self.imdecoder = imdecoder_cfg
557 | self.qtransformer = qtransformer_cfg
558 |
559 | def forward(self, x):
560 | fea = self.imencoder(x)
561 | hs = {'res3' : fea['res3'],
562 | 'res4' : fea['res4'],
563 | 'res5' : fea['res5'], }
564 | hs = self.imdecoder(hs)
565 | hs = [hs['res3'], hs['res4'], hs['res5']]
566 | q = self.qtransformer(hs)
567 | return q
568 |
569 | def encode(self, x):
570 | return self(x)
571 |
--------------------------------------------------------------------------------
/seet_tdecoder.py:
--------------------------------------------------------------------------------
1 | #import fvcore.nn.weight_init as weight_init #dependency only needed for training?
2 | from typing import Optional
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 |
7 | from .seecoder_utils import PositionEmbeddingSine, _get_clones, _get_activation_fn
8 |
9 | ##########
10 | # helper #
11 | ##########
12 |
13 | def with_pos_embed(x, pos):
14 | return x if pos is None else x + pos
15 |
16 | ##############
17 | # One Former #
18 | ##############
19 |
20 | class Transformer(nn.Module):
21 | def __init__(self,
22 | d_model=512,
23 | nhead=8,
24 | num_encoder_layers=6,
25 | num_decoder_layers=6,
26 | dim_feedforward=2048,
27 | dropout=0.1,
28 | activation="relu",
29 | normalize_before=False,
30 | return_intermediate_dec=False,):
31 |
32 | super().__init__()
33 | encoder_layer = TransformerEncoderLayer(
34 | d_model, nhead, dim_feedforward, dropout, activation, normalize_before)
35 | encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
36 | self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
37 |
38 | decoder_layer = TransformerDecoderLayer(
39 | d_model, nhead, dim_feedforward, dropout, activation, normalize_before)
40 | decoder_norm = nn.LayerNorm(d_model)
41 | self.decoder = TransformerDecoder(
42 | decoder_layer,
43 | num_decoder_layers,
44 | decoder_norm,
45 | return_intermediate=return_intermediate_dec,)
46 |
47 | self._reset_parameters()
48 |
49 | self.d_model = d_model
50 | self.nhead = nhead
51 |
52 | def _reset_parameters(self):
53 | for p in self.parameters():
54 | if p.dim() > 1:
55 | nn.init.xavier_uniform_(p)
56 |
57 | def forward(self, src, mask, query_embed, pos_embed, task_token=None):
58 | # flatten NxCxHxW to HWxNxC
59 | bs, c, h, w = src.shape
60 | src = src.flatten(2).permute(2, 0, 1)
61 | pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
62 | query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
63 | if mask is not None:
64 | mask = mask.flatten(1)
65 |
66 | if task_token is None:
67 | tgt = torch.zeros_like(query_embed)
68 | else:
69 | tgt = task_token.repeat(query_embed.shape[0], 1, 1)
70 |
71 | memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) # src = memory
72 | hs = self.decoder(
73 | tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed
74 | )
75 | return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w)
76 |
77 | class TransformerEncoder(nn.Module):
78 | def __init__(self, encoder_layer, num_layers, norm=None):
79 | super().__init__()
80 | self.layers = _get_clones(encoder_layer, num_layers)
81 | self.num_layers = num_layers
82 | self.norm = norm
83 |
84 | def forward(self, src, mask=None, src_key_padding_mask=None, pos=None,):
85 | output = src
86 | for layer in self.layers:
87 | output = layer(
88 | output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos
89 | )
90 | if self.norm is not None:
91 | output = self.norm(output)
92 | return output
93 |
94 | class TransformerDecoder(nn.Module):
95 | def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
96 | super().__init__()
97 | self.layers = _get_clones(decoder_layer, num_layers)
98 | self.num_layers = num_layers
99 | self.norm = norm
100 | self.return_intermediate = return_intermediate
101 |
102 | def forward(
103 | self,
104 | tgt,
105 | memory,
106 | tgt_mask=None,
107 | memory_mask=None,
108 | tgt_key_padding_mask=None,
109 | memory_key_padding_mask=None,
110 | pos=None,
111 | query_pos=None,):
112 |
113 | output = tgt
114 | intermediate = []
115 | for layer in self.layers:
116 | output = layer(
117 | output,
118 | memory,
119 | tgt_mask=tgt_mask,
120 | memory_mask=memory_mask,
121 | tgt_key_padding_mask=tgt_key_padding_mask,
122 | memory_key_padding_mask=memory_key_padding_mask,
123 | pos=pos,
124 | query_pos=query_pos,
125 | )
126 | if self.return_intermediate:
127 | intermediate.append(self.norm(output))
128 |
129 | if self.norm is not None:
130 | output = self.norm(output)
131 | if self.return_intermediate:
132 | intermediate.pop()
133 | intermediate.append(output)
134 |
135 | if self.return_intermediate:
136 | return torch.stack(intermediate)
137 |
138 | return output.unsqueeze(0)
139 |
140 | class TransformerEncoderLayer(nn.Module):
141 | def __init__(
142 | self,
143 | d_model,
144 | nhead,
145 | dim_feedforward=2048,
146 | dropout=0.1,
147 | activation="relu",
148 | normalize_before=False, ):
149 |
150 | super().__init__()
151 | self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
152 | # Implementation of Feedforward model
153 | self.linear1 = nn.Linear(d_model, dim_feedforward)
154 | self.dropout = nn.Dropout(dropout)
155 | self.linear2 = nn.Linear(dim_feedforward, d_model)
156 |
157 | self.norm1 = nn.LayerNorm(d_model)
158 | self.norm2 = nn.LayerNorm(d_model)
159 | self.dropout1 = nn.Dropout(dropout)
160 | self.dropout2 = nn.Dropout(dropout)
161 |
162 | self.activation = _get_activation_fn(activation)
163 | self.normalize_before = normalize_before
164 |
165 | def with_pos_embed(self, x, pos):
166 | return x if pos is None else x + pos
167 |
168 | def forward_post(
169 | self,
170 | src,
171 | src_mask = None,
172 | src_key_padding_mask = None,
173 | pos = None,):
174 |
175 | q = k = self.with_pos_embed(src, pos)
176 | src2 = self.self_attn(
177 | q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
178 | )[0]
179 | src = src + self.dropout1(src2)
180 | src = self.norm1(src)
181 | src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
182 | src = src + self.dropout2(src2)
183 | src = self.norm2(src)
184 | return src
185 |
186 | def forward_pre(
187 | self,
188 | src,
189 | src_mask = None,
190 | src_key_padding_mask = None,
191 | pos = None,):
192 |
193 | src2 = self.norm1(src)
194 | q = k = self.with_pos_embed(src2, pos)
195 | src2 = self.self_attn(
196 | q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
197 | )[0]
198 | src = src + self.dropout1(src2)
199 | src2 = self.norm2(src)
200 | src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
201 | src = src + self.dropout2(src2)
202 | return src
203 |
204 | def forward(
205 | self,
206 | src,
207 | src_mask = None,
208 | src_key_padding_mask = None,
209 | pos = None,):
210 | if self.normalize_before:
211 | return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
212 | return self.forward_post(src, src_mask, src_key_padding_mask, pos)
213 |
214 | class TransformerDecoderLayer(nn.Module):
215 | def __init__(
216 | self,
217 | d_model,
218 | nhead,
219 | dim_feedforward=2048,
220 | dropout=0.1,
221 | activation="relu",
222 | normalize_before=False,):
223 |
224 | super().__init__()
225 | self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
226 | self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
227 | # Implementation of Feedforward model
228 | self.linear1 = nn.Linear(d_model, dim_feedforward)
229 | self.dropout = nn.Dropout(dropout)
230 | self.linear2 = nn.Linear(dim_feedforward, d_model)
231 |
232 | self.norm1 = nn.LayerNorm(d_model)
233 | self.norm2 = nn.LayerNorm(d_model)
234 | self.norm3 = nn.LayerNorm(d_model)
235 | self.dropout1 = nn.Dropout(dropout)
236 | self.dropout2 = nn.Dropout(dropout)
237 | self.dropout3 = nn.Dropout(dropout)
238 |
239 | self.activation = _get_activation_fn(activation)
240 | self.normalize_before = normalize_before
241 |
242 | def with_pos_embed(self, x, pos):
243 | return x if pos is None else x + pos
244 |
245 | def forward_post(
246 | self,
247 | tgt,
248 | memory,
249 | tgt_mask = None,
250 | memory_mask = None,
251 | tgt_key_padding_mask = None,
252 | memory_key_padding_mask = None,
253 | pos = None,
254 | query_pos = None,):
255 |
256 | q = k = self.with_pos_embed(tgt, query_pos)
257 | tgt2 = self.self_attn(
258 | q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
259 | tgt = tgt + self.dropout1(tgt2)
260 | tgt = self.norm1(tgt)
261 | tgt2 = self.multihead_attn(
262 | query=self.with_pos_embed(tgt, query_pos),
263 | key=self.with_pos_embed(memory, pos),
264 | value=memory,
265 | attn_mask=memory_mask,
266 | key_padding_mask=memory_key_padding_mask,)[0]
267 | tgt = tgt + self.dropout2(tgt2)
268 | tgt = self.norm2(tgt)
269 | tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
270 | tgt = tgt + self.dropout3(tgt2)
271 | tgt = self.norm3(tgt)
272 | return tgt
273 |
274 | def forward_pre(
275 | self,
276 | tgt,
277 | memory,
278 | tgt_mask = None,
279 | memory_mask = None,
280 | tgt_key_padding_mask = None,
281 | memory_key_padding_mask = None,
282 | pos = None,
283 | query_pos = None,):
284 |
285 | tgt2 = self.norm1(tgt)
286 | q = k = self.with_pos_embed(tgt2, query_pos)
287 | tgt2 = self.self_attn(
288 | q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
289 | )[0]
290 | tgt = tgt + self.dropout1(tgt2)
291 | tgt2 = self.norm2(tgt)
292 | tgt2 = self.multihead_attn(
293 | query=self.with_pos_embed(tgt2, query_pos),
294 | key=self.with_pos_embed(memory, pos),
295 | value=memory,
296 | attn_mask=memory_mask,
297 | key_padding_mask=memory_key_padding_mask,
298 | )[0]
299 | tgt = tgt + self.dropout2(tgt2)
300 | tgt2 = self.norm3(tgt)
301 | tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
302 | tgt = tgt + self.dropout3(tgt2)
303 | return tgt
304 |
305 | def forward(
306 | self,
307 | tgt,
308 | memory,
309 | tgt_mask = None,
310 | memory_mask = None,
311 | tgt_key_padding_mask = None,
312 | memory_key_padding_mask = None,
313 | pos = None,
314 | query_pos = None, ):
315 |
316 | if self.normalize_before:
317 | return self.forward_pre(
318 | tgt,
319 | memory,
320 | tgt_mask,
321 | memory_mask,
322 | tgt_key_padding_mask,
323 | memory_key_padding_mask,
324 | pos,
325 | query_pos,)
326 | return self.forward_post(
327 | tgt,
328 | memory,
329 | tgt_mask,
330 | memory_mask,
331 | tgt_key_padding_mask,
332 | memory_key_padding_mask,
333 | pos,
334 | query_pos,)
335 |
336 | class SelfAttentionLayer(nn.Module):
337 |
338 | def __init__(self, d_model, nhead, dropout=0.0,
339 | activation="relu", normalize_before=False):
340 | super().__init__()
341 | self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
342 |
343 | self.norm = nn.LayerNorm(d_model)
344 | self.dropout = nn.Dropout(dropout)
345 |
346 | self.activation = _get_activation_fn(activation)
347 | self.normalize_before = normalize_before
348 |
349 | self._reset_parameters()
350 |
351 | def _reset_parameters(self):
352 | for p in self.parameters():
353 | if p.dim() > 1:
354 | nn.init.xavier_uniform_(p)
355 |
356 | def with_pos_embed(self, tensor, pos):
357 | return tensor if pos is None else tensor + pos
358 |
359 | def forward_post(self, tgt,
360 | tgt_mask = None,
361 | tgt_key_padding_mask = None,
362 | query_pos = None):
363 | q = k = self.with_pos_embed(tgt, query_pos).transpose(0 ,1)
364 | tgt2 = self.self_attn(q, k, value=tgt.transpose(0 ,1), attn_mask=tgt_mask,
365 | key_padding_mask=tgt_key_padding_mask)[0]
366 | tgt = tgt + self.dropout(tgt2.transpose(0 ,1))
367 | tgt = self.norm(tgt)
368 |
369 | return tgt
370 |
371 | def forward_pre(self, tgt,
372 | tgt_mask = None,
373 | tgt_key_padding_mask = None,
374 | query_pos = None):
375 | tgt2 = self.norm(tgt)
376 | q = k = self.with_pos_embed(tgt2, query_pos)
377 | tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
378 | key_padding_mask=tgt_key_padding_mask)[0]
379 | tgt = tgt + self.dropout(tgt2)
380 |
381 | return tgt
382 |
383 | def forward(self, tgt,
384 | tgt_mask = None,
385 | tgt_key_padding_mask = None,
386 | query_pos = None):
387 | if self.normalize_before:
388 | return self.forward_pre(tgt, tgt_mask,
389 | tgt_key_padding_mask, query_pos)
390 | return self.forward_post(tgt, tgt_mask,
391 | tgt_key_padding_mask, query_pos)
392 |
393 | class CrossAttentionLayer(nn.Module):
394 |
395 | def __init__(self, d_model, nhead, dropout=0.0,
396 | activation="relu", normalize_before=False):
397 | super().__init__()
398 | self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
399 |
400 | self.norm = nn.LayerNorm(d_model)
401 | self.dropout = nn.Dropout(dropout)
402 |
403 | self.activation = _get_activation_fn(activation)
404 | self.normalize_before = normalize_before
405 |
406 | self._reset_parameters()
407 |
408 | def _reset_parameters(self):
409 | for p in self.parameters():
410 | if p.dim() > 1:
411 | nn.init.xavier_uniform_(p)
412 |
413 | def with_pos_embed(self, tensor, pos):
414 | return tensor if pos is None else tensor + pos
415 |
416 | def forward_post(self, tgt, memory,
417 | memory_mask = None,
418 | memory_key_padding_mask = None,
419 | pos = None,
420 | query_pos = None):
421 | tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos).transpose(0, 1),
422 | key=self.with_pos_embed(memory, pos).transpose(0, 1),
423 | value=memory.transpose(0, 1), attn_mask=memory_mask,
424 | key_padding_mask=memory_key_padding_mask)[0]
425 | tgt = tgt + self.dropout(tgt2.transpose(0, 1))
426 | tgt = self.norm(tgt)
427 |
428 | return tgt
429 |
430 | def forward_pre(self, tgt, memory,
431 | memory_mask = None,
432 | memory_key_padding_mask = None,
433 | pos = None,
434 | query_pos = None):
435 | tgt2 = self.norm(tgt)
436 | tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
437 | key=self.with_pos_embed(memory, pos),
438 | value=memory, attn_mask=memory_mask,
439 | key_padding_mask=memory_key_padding_mask)[0]
440 | tgt = tgt + self.dropout(tgt2)
441 |
442 | return tgt
443 |
444 | def forward(self, tgt, memory,
445 | memory_mask = None,
446 | memory_key_padding_mask = None,
447 | pos = None,
448 | query_pos = None):
449 | if self.normalize_before:
450 | return self.forward_pre(tgt, memory, memory_mask,
451 | memory_key_padding_mask, pos, query_pos)
452 | return self.forward_post(tgt, memory, memory_mask,
453 | memory_key_padding_mask, pos, query_pos)
454 |
455 | class FFNLayer(nn.Module):
456 |
457 | def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
458 | activation="relu", normalize_before=False):
459 | super().__init__()
460 | # Implementation of Feedforward model
461 | self.linear1 = nn.Linear(d_model, dim_feedforward)
462 | self.dropout = nn.Dropout(dropout)
463 | self.linear2 = nn.Linear(dim_feedforward, d_model)
464 |
465 | self.norm = nn.LayerNorm(d_model)
466 |
467 | self.activation = _get_activation_fn(activation)
468 | self.normalize_before = normalize_before
469 |
470 | self._reset_parameters()
471 |
472 | def _reset_parameters(self):
473 | for p in self.parameters():
474 | if p.dim() > 1:
475 | nn.init.xavier_uniform_(p)
476 |
477 | def with_pos_embed(self, tensor, pos):
478 | return tensor if pos is None else tensor + pos
479 |
480 | def forward_post(self, tgt):
481 | tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
482 | tgt = tgt + self.dropout(tgt2)
483 | tgt = self.norm(tgt)
484 | return tgt
485 |
486 | def forward_pre(self, tgt):
487 | tgt2 = self.norm(tgt)
488 | tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
489 | tgt = tgt + self.dropout(tgt2)
490 | return tgt
491 |
492 | def forward(self, tgt):
493 | if self.normalize_before:
494 | return self.forward_pre(tgt)
495 | return self.forward_post(tgt)
496 |
497 | class MLP(nn.Module):
498 | """ Very simple multi-layer perceptron (also called FFN)"""
499 | def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
500 | super().__init__()
501 | self.num_layers = num_layers
502 | h = [hidden_dim] * (num_layers - 1)
503 | self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
504 |
505 | def forward(self, x):
506 | for i, layer in enumerate(self.layers):
507 | x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
508 | return x
509 |
510 | class Seet_OneFormer_TDecoder(nn.Module):
511 | def __init__(
512 | self,
513 | in_channels,
514 | mask_classification,
515 | num_classes,
516 | hidden_dim,
517 | num_queries,
518 | nheads,
519 | dropout,
520 | dim_feedforward,
521 | enc_layers,
522 | is_train,
523 | dec_layers,
524 | class_dec_layers,
525 | pre_norm,
526 | mask_dim,
527 | enforce_input_project,
528 | use_task_norm,):
529 |
530 | super().__init__()
531 |
532 | assert mask_classification, "Only support mask classification model"
533 | self.mask_classification = mask_classification
534 | self.is_train = is_train
535 | self.use_task_norm = use_task_norm
536 |
537 | # positional encoding
538 | N_steps = hidden_dim // 2
539 | self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
540 |
541 | self.class_transformer = Transformer(
542 | d_model=hidden_dim,
543 | dropout=dropout,
544 | nhead=nheads,
545 | dim_feedforward=dim_feedforward,
546 | num_encoder_layers=enc_layers,
547 | num_decoder_layers=class_dec_layers,
548 | normalize_before=pre_norm,
549 | return_intermediate_dec=False,
550 | )
551 |
552 | # define Transformer decoder here
553 | self.num_heads = nheads
554 | self.num_layers = dec_layers
555 | self.transformer_self_attention_layers = nn.ModuleList()
556 | self.transformer_cross_attention_layers = nn.ModuleList()
557 | self.transformer_ffn_layers = nn.ModuleList()
558 |
559 | for _ in range(self.num_layers):
560 | self.transformer_self_attention_layers.append(
561 | SelfAttentionLayer(
562 | d_model=hidden_dim,
563 | nhead=nheads,
564 | dropout=0.0,
565 | normalize_before=pre_norm,
566 | )
567 | )
568 |
569 | self.transformer_cross_attention_layers.append(
570 | CrossAttentionLayer(
571 | d_model=hidden_dim,
572 | nhead=nheads,
573 | dropout=0.0,
574 | normalize_before=pre_norm,
575 | )
576 | )
577 |
578 | self.transformer_ffn_layers.append(
579 | FFNLayer(
580 | d_model=hidden_dim,
581 | dim_feedforward=dim_feedforward,
582 | dropout=0.0,
583 | normalize_before=pre_norm,
584 | )
585 | )
586 |
587 | self.decoder_norm = nn.LayerNorm(hidden_dim)
588 |
589 | self.num_queries = num_queries
590 | # learnable query p.e.
591 | self.query_embed = nn.Embedding(num_queries, hidden_dim)
592 |
593 | # level embedding (we always use 3 scales)
594 | self.num_feature_levels = 3
595 | self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
596 | self.input_proj = nn.ModuleList()
597 | for _ in range(self.num_feature_levels):
598 | if in_channels != hidden_dim or enforce_input_project:
599 | self.input_proj.append(nn.Conv2d(in_channels, hidden_dim, kernel_size=1))
600 | #weight_init.c2_xavier_fill(self.input_proj[-1])
601 | else:
602 | self.input_proj.append(nn.Sequential())
603 |
604 | self.class_input_proj = nn.Conv2d(in_channels, hidden_dim, kernel_size=1)
605 | #weight_init.c2_xavier_fill(self.class_input_proj)
606 |
607 | # output FFNs
608 | if self.mask_classification:
609 | self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
610 | self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
611 |
612 | def forward(self, x, mask_features, tasks):
613 | # x is a list of multi-scale feature
614 | assert len(x) == self.num_feature_levels
615 | src = []
616 | pos = []
617 | size_list = []
618 |
619 | for i in range(self.num_feature_levels):
620 | size_list.append(x[i].shape[-2:])
621 | pos.append(self.pe_layer(x[i], None).flatten(2))
622 | src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
623 | pos[-1] = pos[-1].transpose(1, 2)
624 | src[-1] = src[-1].transpose(1, 2)
625 |
626 | bs, _, _ = src[0].shape
627 |
628 | query_embed = self.query_embed.weight.unsqueeze(0).repeat(bs, 1, 1)
629 |
630 | tasks = tasks.unsqueeze(0)
631 | if self.use_task_norm:
632 | tasks = self.decoder_norm(tasks)
633 |
634 | feats = self.pe_layer(mask_features, None)
635 |
636 | out_t, _ = self.class_transformer(
637 | feats, None,
638 | self.query_embed.weight[:-1],
639 | self.class_input_proj(mask_features),
640 | tasks if self.use_task_norm else None)
641 | out_t = out_t[0]
642 |
643 | out = torch.cat([out_t, tasks], dim=1)
644 |
645 | output = out.clone()
646 |
647 | predictions_class = []
648 | predictions_mask = []
649 |
650 | # prediction heads on learnable query features
651 | outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(
652 | output, mask_features, attn_mask_target_size=size_list[0])
653 | predictions_class.append(outputs_class)
654 | predictions_mask.append(outputs_mask)
655 |
656 | for i in range(self.num_layers):
657 | level_index = i % self.num_feature_levels
658 | attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
659 |
660 | output = self.transformer_cross_attention_layers[i](
661 | output, src[level_index],
662 | memory_mask=attn_mask,
663 | memory_key_padding_mask=None,
664 | pos=pos[level_index], query_pos=query_embed, )
665 |
666 | output = self.transformer_self_attention_layers[i](
667 | output, tgt_mask=None,
668 | tgt_key_padding_mask=None,
669 | query_pos=query_embed, )
670 |
671 | # FFN
672 | output = self.transformer_ffn_layers[i](output)
673 |
674 | outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(
675 | output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels])
676 | predictions_class.append(outputs_class)
677 | predictions_mask.append(outputs_mask)
678 |
679 | assert len(predictions_class) == self.num_layers + 1
680 |
681 | out = {
682 | 'pred_logits': predictions_class[-1],
683 | 'pred_masks': predictions_mask[-1],}
684 |
685 | return out
686 |
687 | def forward_prediction_heads(self, output, mask_features, attn_mask_target_size):
688 | decoder_output = self.decoder_norm(output)
689 | outputs_class = self.class_embed(decoder_output)
690 | mask_embed = self.mask_embed(decoder_output)
691 | outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
692 |
693 | attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
694 | attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
695 | attn_mask = attn_mask.detach()
696 |
697 | return outputs_class, outputs_mask, attn_mask
698 |
--------------------------------------------------------------------------------
/swin.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | import torch.utils.checkpoint as checkpoint
5 | import numpy as np
6 |
7 |
8 | ##############################
9 | # timm.models.layers helpers #
10 | ##############################
11 |
12 | def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
13 | if drop_prob == 0. or not training:
14 | return x
15 | keep_prob = 1 - drop_prob
16 | shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
17 | random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
18 | if keep_prob > 0.0 and scale_by_keep:
19 | random_tensor.div_(keep_prob)
20 | return x * random_tensor
21 |
22 | class DropPath(nn.Module):
23 | """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
24 | """
25 | def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
26 | super(DropPath, self).__init__()
27 | self.drop_prob = drop_prob
28 | self.scale_by_keep = scale_by_keep
29 |
30 | def forward(self, x):
31 | return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
32 |
33 | def extra_repr(self):
34 | return f'drop_prob={round(self.drop_prob,3):0.3f}'
35 |
36 | def _ntuple(n):
37 | def parse(x):
38 | from itertools import repeat
39 | import collections.abc
40 | if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
41 | return tuple(x)
42 | return tuple(repeat(x, n))
43 | return parse
44 |
45 | to_1tuple = _ntuple(1)
46 | to_2tuple = _ntuple(2)
47 | to_3tuple = _ntuple(3)
48 | to_4tuple = _ntuple(4)
49 | to_ntuple = _ntuple
50 |
51 | def _trunc_normal_(tensor, mean, std, a, b):
52 | import warnings
53 | import math
54 |
55 | def norm_cdf(x):
56 | return (1. + math.erf(x / math.sqrt(2.))) / 2.
57 |
58 | if (mean < a - 2 * std) or (mean > b + 2 * std):
59 | warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
60 | "The distribution of values may be incorrect.",
61 | stacklevel=2)
62 |
63 | l = norm_cdf((a - mean) / std)
64 | u = norm_cdf((b - mean) / std)
65 | tensor.uniform_(2 * l - 1, 2 * u - 1)
66 | tensor.erfinv_()
67 | tensor.mul_(std * math.sqrt(2.))
68 | tensor.add_(mean)
69 | tensor.clamp_(min=a, max=b)
70 | return tensor
71 |
72 | def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
73 | with torch.no_grad():
74 | return _trunc_normal_(tensor, mean, std, a, b)
75 |
76 | #############
77 | # main swin #
78 | #############
79 |
80 | class Mlp(nn.Module):
81 | """ Multilayer perceptron."""
82 |
83 | def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
84 | super().__init__()
85 | out_features = out_features or in_features
86 | hidden_features = hidden_features or in_features
87 | self.fc1 = nn.Linear(in_features, hidden_features)
88 | self.act = act_layer()
89 | self.fc2 = nn.Linear(hidden_features, out_features)
90 | self.drop = nn.Dropout(drop)
91 |
92 | def forward(self, x):
93 | x = self.fc1(x)
94 | x = self.act(x)
95 | x = self.drop(x)
96 | x = self.fc2(x)
97 | x = self.drop(x)
98 | return x
99 |
100 |
101 | def window_partition(x, window_size):
102 | """
103 | Args:
104 | x: (B, H, W, C)
105 | window_size (int): window size
106 | Returns:
107 | windows: (num_windows*B, window_size, window_size, C)
108 | """
109 | B, H, W, C = x.shape
110 | x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
111 | windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
112 | return windows
113 |
114 |
115 | def window_reverse(windows, window_size, H, W):
116 | """
117 | Args:
118 | windows: (num_windows*B, window_size, window_size, C)
119 | window_size (int): Window size
120 | H (int): Height of image
121 | W (int): Width of image
122 | Returns:
123 | x: (B, H, W, C)
124 | """
125 | B = int(windows.shape[0] / (H * W / window_size / window_size))
126 | x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
127 | x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
128 | return x
129 |
130 |
131 | class WindowAttention(nn.Module):
132 | """ Window based multi-head self attention (W-MSA) module with relative position bias.
133 | It supports both of shifted and non-shifted window.
134 | Args:
135 | dim (int): Number of input channels.
136 | window_size (tuple[int]): The height and width of the window.
137 | num_heads (int): Number of attention heads.
138 | qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
139 | qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
140 | attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
141 | proj_drop (float, optional): Dropout ratio of output. Default: 0.0
142 | """
143 |
144 | def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
145 |
146 | super().__init__()
147 | self.dim = dim
148 | self.window_size = window_size # Wh, Ww
149 | self.num_heads = num_heads
150 | head_dim = dim // num_heads
151 | self.scale = qk_scale or head_dim ** -0.5
152 |
153 | # define a parameter table of relative position bias
154 | self.relative_position_bias_table = nn.Parameter(
155 | torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
156 |
157 | # get pair-wise relative position index for each token inside the window
158 | coords_h = torch.arange(self.window_size[0])
159 | coords_w = torch.arange(self.window_size[1])
160 | coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
161 | coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
162 | relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
163 | relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
164 | relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
165 | relative_coords[:, :, 1] += self.window_size[1] - 1
166 | relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
167 | relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
168 | self.register_buffer("relative_position_index", relative_position_index)
169 |
170 | self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
171 | self.attn_drop = nn.Dropout(attn_drop)
172 | self.proj = nn.Linear(dim, dim)
173 | self.proj_drop = nn.Dropout(proj_drop)
174 |
175 | trunc_normal_(self.relative_position_bias_table, std=.02)
176 | self.softmax = nn.Softmax(dim=-1)
177 |
178 | def forward(self, x, mask=None):
179 | """ Forward function.
180 | Args:
181 | x: input features with shape of (num_windows*B, N, C)
182 | mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
183 | """
184 | B_, N, C = x.shape
185 | qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
186 | q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
187 |
188 | q = q * self.scale
189 | attn = (q @ k.transpose(-2, -1))
190 |
191 | relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
192 | self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
193 | relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
194 | attn = attn + relative_position_bias.unsqueeze(0)
195 |
196 | if mask is not None:
197 | nW = mask.shape[0]
198 | attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
199 | attn = attn.view(-1, self.num_heads, N, N)
200 | attn = self.softmax(attn)
201 | else:
202 | attn = self.softmax(attn)
203 |
204 | attn = self.attn_drop(attn)
205 |
206 | x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
207 | x = self.proj(x)
208 | x = self.proj_drop(x)
209 | return x
210 |
211 |
212 | class SwinTransformerBlock(nn.Module):
213 | """ Swin Transformer Block.
214 | Args:
215 | dim (int): Number of input channels.
216 | num_heads (int): Number of attention heads.
217 | window_size (int): Window size.
218 | shift_size (int): Shift size for SW-MSA.
219 | mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
220 | qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
221 | qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
222 | drop (float, optional): Dropout rate. Default: 0.0
223 | attn_drop (float, optional): Attention dropout rate. Default: 0.0
224 | drop_path (float, optional): Stochastic depth rate. Default: 0.0
225 | act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
226 | norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
227 | """
228 |
229 | def __init__(self, dim, num_heads, window_size=7, shift_size=0,
230 | mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
231 | act_layer=nn.GELU, norm_layer=nn.LayerNorm):
232 | super().__init__()
233 | self.dim = dim
234 | self.num_heads = num_heads
235 | self.window_size = window_size
236 | self.shift_size = shift_size
237 | self.mlp_ratio = mlp_ratio
238 | assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
239 |
240 | self.norm1 = norm_layer(dim)
241 | self.attn = WindowAttention(
242 | dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
243 | qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
244 |
245 | self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
246 | self.norm2 = norm_layer(dim)
247 | mlp_hidden_dim = int(dim * mlp_ratio)
248 | self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
249 |
250 | self.H = None
251 | self.W = None
252 |
253 | def forward(self, x, mask_matrix):
254 | """ Forward function.
255 | Args:
256 | x: Input feature, tensor size (B, H*W, C).
257 | H, W: Spatial resolution of the input feature.
258 | mask_matrix: Attention mask for cyclic shift.
259 | """
260 | B, L, C = x.shape
261 | H, W = self.H, self.W
262 | assert L == H * W, "input feature has wrong size"
263 |
264 | shortcut = x
265 | x = self.norm1(x)
266 | x = x.view(B, H, W, C)
267 |
268 | # pad feature maps to multiples of window size
269 | pad_l = pad_t = 0
270 | pad_r = (self.window_size - W % self.window_size) % self.window_size
271 | pad_b = (self.window_size - H % self.window_size) % self.window_size
272 | x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
273 | _, Hp, Wp, _ = x.shape
274 |
275 | # cyclic shift
276 | if self.shift_size > 0:
277 | shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
278 | attn_mask = mask_matrix
279 | else:
280 | shifted_x = x
281 | attn_mask = None
282 |
283 | # partition windows
284 | x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
285 | x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
286 |
287 | # W-MSA/SW-MSA
288 | attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
289 |
290 | # merge windows
291 | attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
292 | shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
293 |
294 | # reverse cyclic shift
295 | if self.shift_size > 0:
296 | x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
297 | else:
298 | x = shifted_x
299 |
300 | if pad_r > 0 or pad_b > 0:
301 | x = x[:, :H, :W, :].contiguous()
302 |
303 | x = x.view(B, H * W, C)
304 |
305 | # FFN
306 | x = shortcut + self.drop_path(x)
307 | x = x + self.drop_path(self.mlp(self.norm2(x)))
308 |
309 | return x
310 |
311 |
312 | class PatchMerging(nn.Module):
313 | """ Patch Merging Layer
314 | Args:
315 | dim (int): Number of input channels.
316 | norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
317 | """
318 | def __init__(self, dim, norm_layer=nn.LayerNorm):
319 | super().__init__()
320 | self.dim = dim
321 | self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
322 | self.norm = norm_layer(4 * dim)
323 |
324 | def forward(self, x, H, W):
325 | """ Forward function.
326 | Args:
327 | x: Input feature, tensor size (B, H*W, C).
328 | H, W: Spatial resolution of the input feature.
329 | """
330 | B, L, C = x.shape
331 | assert L == H * W, "input feature has wrong size"
332 |
333 | x = x.view(B, H, W, C)
334 |
335 | # padding
336 | pad_input = (H % 2 == 1) or (W % 2 == 1)
337 | if pad_input:
338 | x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
339 |
340 | x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
341 | x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
342 | x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
343 | x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
344 | x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
345 | x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
346 |
347 | x = self.norm(x)
348 | x = self.reduction(x)
349 |
350 | return x
351 |
352 |
353 | class BasicLayer(nn.Module):
354 | """ A basic Swin Transformer layer for one stage.
355 | Args:
356 | dim (int): Number of feature channels
357 | depth (int): Depths of this stage.
358 | num_heads (int): Number of attention head.
359 | window_size (int): Local window size. Default: 7.
360 | mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
361 | qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
362 | qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
363 | drop (float, optional): Dropout rate. Default: 0.0
364 | attn_drop (float, optional): Attention dropout rate. Default: 0.0
365 | drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
366 | norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
367 | downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
368 | use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
369 | """
370 |
371 | def __init__(self,
372 | dim,
373 | depth,
374 | num_heads,
375 | window_size=7,
376 | mlp_ratio=4.,
377 | qkv_bias=True,
378 | qk_scale=None,
379 | drop=0.,
380 | attn_drop=0.,
381 | drop_path=0.,
382 | norm_layer=nn.LayerNorm,
383 | downsample=None,
384 | use_checkpoint=False):
385 | super().__init__()
386 | self.window_size = window_size
387 | self.shift_size = window_size // 2
388 | self.depth = depth
389 | self.use_checkpoint = use_checkpoint
390 |
391 | # build blocks
392 | self.blocks = nn.ModuleList([
393 | SwinTransformerBlock(
394 | dim=dim,
395 | num_heads=num_heads,
396 | window_size=window_size,
397 | shift_size=0 if (i % 2 == 0) else window_size // 2,
398 | mlp_ratio=mlp_ratio,
399 | qkv_bias=qkv_bias,
400 | qk_scale=qk_scale,
401 | drop=drop,
402 | attn_drop=attn_drop,
403 | drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
404 | norm_layer=norm_layer)
405 | for i in range(depth)])
406 |
407 | # patch merging layer
408 | if downsample is not None:
409 | self.downsample = downsample(dim=dim, norm_layer=norm_layer)
410 | else:
411 | self.downsample = None
412 |
413 | def forward(self, x, H, W):
414 | """ Forward function.
415 | Args:
416 | x: Input feature, tensor size (B, H*W, C).
417 | H, W: Spatial resolution of the input feature.
418 | """
419 |
420 | # calculate attention mask for SW-MSA
421 | Hp = int(np.ceil(H / self.window_size)) * self.window_size
422 | Wp = int(np.ceil(W / self.window_size)) * self.window_size
423 | img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device, dtype=x.dtype) # 1 Hp Wp 1
424 | h_slices = (slice(0, -self.window_size),
425 | slice(-self.window_size, -self.shift_size),
426 | slice(-self.shift_size, None))
427 | w_slices = (slice(0, -self.window_size),
428 | slice(-self.window_size, -self.shift_size),
429 | slice(-self.shift_size, None))
430 | cnt = 0
431 | for h in h_slices:
432 | for w in w_slices:
433 | img_mask[:, h, w, :] = cnt
434 | cnt += 1
435 |
436 | mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
437 | mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
438 | attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
439 | attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
440 |
441 | for blk in self.blocks:
442 | blk.H, blk.W = H, W
443 | if self.use_checkpoint:
444 | x = checkpoint.checkpoint(blk, x, attn_mask)
445 | else:
446 | x = blk(x, attn_mask)
447 | if self.downsample is not None:
448 | x_down = self.downsample(x, H, W)
449 | Wh, Ww = (H + 1) // 2, (W + 1) // 2
450 | return x, H, W, x_down, Wh, Ww
451 | else:
452 | return x, H, W, x, H, W
453 |
454 |
455 | class PatchEmbed(nn.Module):
456 | """ Image to Patch Embedding
457 | Args:
458 | patch_size (int): Patch token size. Default: 4.
459 | in_chans (int): Number of input image channels. Default: 3.
460 | embed_dim (int): Number of linear projection output channels. Default: 96.
461 | norm_layer (nn.Module, optional): Normalization layer. Default: None
462 | """
463 |
464 | def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
465 | super().__init__()
466 | patch_size = to_2tuple(patch_size)
467 | self.patch_size = patch_size
468 |
469 | self.in_chans = in_chans
470 | self.embed_dim = embed_dim
471 |
472 | self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
473 | if norm_layer is not None:
474 | self.norm = norm_layer(embed_dim)
475 | else:
476 | self.norm = None
477 |
478 | def forward(self, x):
479 | """Forward function."""
480 | # padding
481 | _, _, H, W = x.size()
482 | if W % self.patch_size[1] != 0:
483 | x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
484 | if H % self.patch_size[0] != 0:
485 | x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
486 |
487 | x = self.proj(x) # B C Wh Ww
488 | if self.norm is not None:
489 | Wh, Ww = x.size(2), x.size(3)
490 | x = x.flatten(2).transpose(1, 2)
491 | x = self.norm(x)
492 | x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
493 |
494 | return x
495 |
496 |
497 | class SwinTransformer(nn.Module):
498 | """ Swin Transformer backbone.
499 | A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
500 | https://arxiv.org/pdf/2103.14030
501 | Args:
502 | pretrain_img_size (int): Input image size for training the pretrained model,
503 | used in absolute postion embedding. Default 224.
504 | patch_size (int | tuple(int)): Patch size. Default: 4.
505 | in_chans (int): Number of input image channels. Default: 3.
506 | embed_dim (int): Number of linear projection output channels. Default: 96.
507 | depths (tuple[int]): Depths of each Swin Transformer stage.
508 | num_heads (tuple[int]): Number of attention head of each stage.
509 | window_size (int): Window size. Default: 7.
510 | mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
511 | qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
512 | qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
513 | drop_rate (float): Dropout rate.
514 | attn_drop_rate (float): Attention dropout rate. Default: 0.
515 | drop_path_rate (float): Stochastic depth rate. Default: 0.2.
516 | norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
517 | ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
518 | patch_norm (bool): If True, add normalization after patch embedding. Default: True.
519 | out_indices (Sequence[int]): Output from which stages.
520 | frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
521 | -1 means not freezing any parameters.
522 | use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
523 | """
524 |
525 | def __init__(self,
526 | pretrain_img_size=224,
527 | patch_size=4,
528 | in_chans=3,
529 | embed_dim=96,
530 | depths=[2, 2, 6, 2],
531 | num_heads=[3, 6, 12, 24],
532 | window_size=7,
533 | mlp_ratio=4.,
534 | qkv_bias=True,
535 | qk_scale=None,
536 | drop_rate=0.,
537 | attn_drop_rate=0.,
538 | drop_path_rate=0.2,
539 | norm_layer=nn.LayerNorm,
540 | ape=False,
541 | patch_norm=True,
542 | out_indices=(0, 1, 2, 3),
543 | frozen_stages=-1,
544 | use_checkpoint=False):
545 | super().__init__()
546 |
547 | self.pretrain_img_size = pretrain_img_size
548 | self.num_layers = len(depths)
549 | self.embed_dim = embed_dim
550 | self.ape = ape
551 | self.patch_norm = patch_norm
552 | self.out_indices = out_indices
553 | self.frozen_stages = frozen_stages
554 |
555 | # split image into non-overlapping patches
556 | self.patch_embed = PatchEmbed(
557 | patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
558 | norm_layer=norm_layer if self.patch_norm else None)
559 |
560 | # absolute position embedding
561 | if self.ape:
562 | pretrain_img_size = to_2tuple(pretrain_img_size)
563 | patch_size = to_2tuple(patch_size)
564 | patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
565 |
566 | self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
567 | trunc_normal_(self.absolute_pos_embed, std=.02)
568 |
569 | self.pos_drop = nn.Dropout(p=drop_rate)
570 |
571 | # stochastic depth
572 | dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
573 |
574 | # build layers
575 | self.layers = nn.ModuleList()
576 | for i_layer in range(self.num_layers):
577 | layer = BasicLayer(
578 | dim=int(embed_dim * 2 ** i_layer),
579 | depth=depths[i_layer],
580 | num_heads=num_heads[i_layer],
581 | window_size=window_size,
582 | mlp_ratio=mlp_ratio,
583 | qkv_bias=qkv_bias,
584 | qk_scale=qk_scale,
585 | drop=drop_rate,
586 | attn_drop=attn_drop_rate,
587 | drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
588 | norm_layer=norm_layer,
589 | downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
590 | use_checkpoint=use_checkpoint)
591 | self.layers.append(layer)
592 |
593 | num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
594 | self.num_features = num_features
595 |
596 | # add a norm layer for each output
597 | for i_layer in out_indices:
598 | layer = norm_layer(num_features[i_layer])
599 | layer_name = f'norm{i_layer}'
600 | self.add_module(layer_name, layer)
601 |
602 | self._freeze_stages()
603 |
604 | def _freeze_stages(self):
605 | if self.frozen_stages >= 0:
606 | self.patch_embed.eval()
607 | for param in self.patch_embed.parameters():
608 | param.requires_grad = False
609 |
610 | if self.frozen_stages >= 1 and self.ape:
611 | self.absolute_pos_embed.requires_grad = False
612 |
613 | if self.frozen_stages >= 2:
614 | self.pos_drop.eval()
615 | for i in range(0, self.frozen_stages - 1):
616 | m = self.layers[i]
617 | m.eval()
618 | for param in m.parameters():
619 | param.requires_grad = False
620 |
621 | def forward(self, x):
622 | """Forward function."""
623 | x = self.patch_embed(x)
624 |
625 | Wh, Ww = x.size(2), x.size(3)
626 | if self.ape:
627 | # interpolate the position embedding to the corresponding size
628 | absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
629 | x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
630 | else:
631 | x = x.flatten(2).transpose(1, 2)
632 | x = self.pos_drop(x)
633 |
634 | outs = []
635 | for i in range(self.num_layers):
636 | layer = self.layers[i]
637 | x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
638 |
639 | if i in self.out_indices:
640 | norm_layer = getattr(self, f'norm{i}')
641 | x_out = norm_layer(x_out)
642 |
643 | out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
644 | outs.append(out)
645 |
646 | outputs = {
647 | 'res2' : outs[0],
648 | 'res3' : outs[1],
649 | 'res4' : outs[2],
650 | 'res5' : outs[3],}
651 | return outputs
652 |
653 | def train(self, mode=True):
654 | """Convert the model into training mode while keep layers freezed."""
655 | super(SwinTransformer, self).train(mode)
656 | self._freeze_stages()
657 | return self
658 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------