├── .idea
├── .gitignore
├── inspectionProfiles
│ ├── Project_Default.xml
│ └── profiles_settings.xml
├── misc.xml
├── modules.xml
└── yolov5-master.iml
├── Dockerfile
├── LICENSE
├── README.md
├── __pycache__
└── test.cpython-38.pyc
├── add_edge.py
├── convertor
└── fold0
│ ├── images
│ ├── train2017.shapes
│ └── val2017.shapes
│ └── labels
│ └── train2017.npy
├── data
├── coco.yaml
├── coco128.yaml
├── hyp.finetune.yaml
├── hyp.scratch.yaml
├── scripts
│ ├── get_coco.sh
│ └── get_voc.sh
├── voc.yaml
└── wheat0.yaml
├── detect.py
├── hubconf.py
├── inference
└── images
│ └── 1.tif
├── label_format.png
├── models
├── __init__.py
├── __pycache__
│ ├── __init__.cpython-38.pyc
│ ├── common.cpython-38.pyc
│ ├── experimental.cpython-38.pyc
│ └── yolo.cpython-38.pyc
├── common.py
├── experimental.py
├── export.py
├── hub
│ ├── yolov3-spp.yaml
│ ├── yolov5-fpn.yaml
│ └── yolov5-panet.yaml
├── yolo.py
├── yolov5l.yaml
├── yolov5m.yaml
├── yolov5s.yaml
└── yolov5x.yaml
├── rbox.png
├── requirements.txt
├── result.png
├── retanglelabel2mylabel.py
├── sotabench.py
├── test.py
├── test2.jpg
├── train.py
├── tutorial.ipynb
├── utils
├── __init__.py
├── __pycache__
│ ├── __init__.cpython-38.pyc
│ ├── datasets.cpython-38.pyc
│ ├── general.cpython-38.pyc
│ ├── google_utils.cpython-38.pyc
│ └── torch_utils.cpython-38.pyc
├── activations.py
├── datasets.py
├── evolve.sh
├── general.py
├── google_app_engine
│ ├── Dockerfile
│ ├── additional_requirements.txt
│ └── app.yaml
├── google_utils.py
├── kmeans_for_anchors.py
├── torch_utils.py
└── yolo_anchors.txt
└── weights
└── download_weights.sh
/.idea/.gitignore:
--------------------------------------------------------------------------------
1 | # Default ignored files
2 | /shelf/
3 | /workspace.xml
4 | # Datasource local storage ignored files
5 | /dataSources/
6 | /dataSources.local.xml
7 | # Editor-based HTTP Client requests
8 | /httpRequests/
9 |
--------------------------------------------------------------------------------
/.idea/inspectionProfiles/Project_Default.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
--------------------------------------------------------------------------------
/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/.idea/yolov5-master.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/Dockerfile:
--------------------------------------------------------------------------------
1 | # Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
2 | FROM nvcr.io/nvidia/pytorch:20.09-py3
3 |
4 | # Install dependencies
5 | RUN pip install --upgrade pip
6 | # COPY requirements.txt .
7 | # RUN pip install -r requirements.txt
8 | RUN pip install gsutil
9 |
10 | # Create working directory
11 | RUN mkdir -p /usr/src/app
12 | WORKDIR /usr/src/app
13 |
14 | # Copy contents
15 | COPY . /usr/src/app
16 |
17 | # Copy weights
18 | #RUN python3 -c "from models import *; \
19 | #attempt_download('weights/yolov5s.pt'); \
20 | #attempt_download('weights/yolov5m.pt'); \
21 | #attempt_download('weights/yolov5l.pt')"
22 |
23 |
24 | # --------------------------------------------------- Extras Below ---------------------------------------------------
25 |
26 | # Build and Push
27 | # t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
28 | # for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done
29 |
30 | # Pull and Run
31 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host $t
32 |
33 | # Pull and Run with local directory access
34 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t
35 |
36 | # Kill all
37 | # sudo docker kill $(sudo docker ps -q)
38 |
39 | # Kill all image-based
40 | # sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest)
41 |
42 | # Bash into running container
43 | # sudo docker container exec -it ba65811811ab bash
44 |
45 | # Bash into stopped container
46 | # sudo docker commit 092b16b25c5b usr/resume && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh usr/resume
47 |
48 | # Send weights to GCP
49 | # python -c "from utils.general import *; strip_optimizer('runs/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
50 |
51 | # Clean up
52 | # docker system prune -a --volumes
53 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | the rotation detection
2 | # Requirement
3 | ```bash
4 | torch==1.6
5 | shapely==1.7.1
6 | opencv==4.2.0.34
7 | ```
8 | # inference
9 | you can download the weights [BaiduYun](https://pan.baidu.com/s/1l7AwoT78tQEQ-K_vOJobQQ)(password is 4ud5) or [GoogleDrive](https://drive.google.com/drive/folders/1McWvzy_UAUCOBFmzjzawVqC0KroSLmEy?usp=sharing) for ship detection by my dataset(not DOTA) to test the demo.
10 | ```bash
11 | $ python detect.py
12 | ```
13 | 
14 | # train
15 | ## what format my model need
16 | Not much different from yolo dataset,just add an __angle__ and we define the box attribute w is always __longer__ than h!
17 |
18 | So wo define the box label is (cls, c_x, c_y, Longest side,short side, angle)
19 |
20 | Attention!we define angle is a classify question,so we define 180 classes for angle.
21 |
22 | For Example:
23 | 
24 | Range for angle is [-90,90), so wo should __add__ __90__ in angle while make your dataset label and then your label's Range should be [0,179)
25 | 
26 | ## modify yaml
27 | models/yolov5m.yaml: set nc to your dataset class num;
28 | data/wheat0.yaml:set nc to your dataset class num, and set names to your dataset class name;
29 |
30 | ```bash
31 | $ python train.py
32 | ```
33 | # update
34 | 2021.1.4---correct some BUG for training
35 |
36 |
37 | # details
38 | If you have any question,welcome discuss with me by [This](https://zhuanlan.zhihu.com/p/270388743) or email to prozacliang@qq.com
39 |
--------------------------------------------------------------------------------
/__pycache__/test.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/__pycache__/test.cpython-38.pyc
--------------------------------------------------------------------------------
/add_edge.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import os
3 | # from keras.application.vgg import VGG16
4 | import matplotlib.pyplot as plt
5 | if __name__ == '__main__':
6 | label_path = r'convertor\fold0\labels\train2017/'
7 | img_path = r'inference\test2'
8 | edge_size = 100
9 |
10 | for file in os.listdir(img_path):
11 |
12 | # print(os.path.join(img_path, (file.split('.')[0] + '.tif')))
13 | img = cv2.imread(os.path.join(img_path, (file.split('.')[0] + '.tif')))
14 |
15 |
16 |
17 | img = cv2.copyMakeBorder(img,edge_size,edge_size,edge_size,edge_size, cv2.BORDER_CONSTANT,value=[144,144,144])
18 | cv2.imwrite(r'G:\hjj\yolov5\yolov5-ship\inference\edge_pic/{}'.format(file), img)
19 |
20 | # plt.imshow(img)
21 | # plt.show()
22 | # print(img)
--------------------------------------------------------------------------------
/convertor/fold0/images/train2017.shapes:
--------------------------------------------------------------------------------
1 | 1024 1024
2 | 1024 1024
3 | 1024 1024
4 | 1024 1024
5 | 1024 1024
6 | 1024 1024
7 | 1024 1024
8 | 1024 1024
9 | 1024 1024
10 | 1024 1024
11 | 1024 1024
12 | 1024 1024
13 | 1024 1024
14 | 1024 1024
15 | 1024 1024
16 | 1024 1024
17 | 1024 1024
18 | 1024 1024
19 | 1024 1024
20 | 1024 1024
21 | 1024 1024
22 | 1024 1024
23 | 1024 1024
24 | 1024 1024
25 | 1024 1024
26 | 1024 1024
27 | 1024 1024
28 | 1024 1024
29 | 1024 1024
30 | 1024 1024
31 | 1024 1024
32 | 1024 1024
33 | 1024 1024
34 | 1024 1024
35 | 1024 1024
36 | 1024 1024
37 | 1024 1024
38 | 1024 1024
39 | 1024 1024
40 | 1024 1024
41 | 1024 1024
42 | 1024 1024
43 | 1024 1024
44 | 1024 1024
45 | 1024 1024
46 | 1024 1024
47 | 1024 1024
48 | 1024 1024
49 | 1024 1024
50 | 1024 1024
51 | 1024 1024
52 | 1024 1024
53 | 1024 1024
54 | 1024 1024
55 | 1024 1024
56 | 1024 1024
57 | 1024 1024
58 | 1024 1024
59 | 1024 1024
60 | 1024 1024
61 | 1024 1024
62 | 1024 1024
63 | 1024 1024
64 | 1024 1024
65 | 1024 1024
66 | 1024 1024
67 | 1024 1024
68 | 1024 1024
69 | 1024 1024
70 | 1024 1024
71 | 1024 1024
72 | 1024 1024
73 | 1024 1024
74 | 1024 1024
75 | 1024 1024
76 | 1024 1024
77 | 1024 1024
78 | 1024 1024
79 | 1024 1024
80 | 1024 1024
81 | 1024 1024
82 | 1024 1024
83 | 1024 1024
84 | 1024 1024
85 | 1024 1024
86 | 1024 1024
87 | 1024 1024
88 | 1024 1024
89 | 1024 1024
90 | 1024 1024
91 | 1024 1024
92 | 1024 1024
93 | 1024 1024
94 | 1024 1024
95 | 1024 1024
96 | 1024 1024
97 | 1024 1024
98 | 1024 1024
99 | 1024 1024
100 | 1024 1024
101 | 1024 1024
102 | 1024 1024
103 | 1024 1024
104 | 1024 1024
105 | 1024 1024
106 | 1024 1024
107 | 1024 1024
108 | 1024 1024
109 | 1024 1024
110 | 1024 1024
111 | 1024 1024
112 | 1024 1024
113 | 1024 1024
114 | 1024 1024
115 | 1024 1024
116 | 1024 1024
117 | 1024 1024
118 | 1024 1024
119 | 1024 1024
120 | 1024 1024
121 | 1024 1024
122 | 1024 1024
123 | 1024 1024
124 | 1024 1024
125 | 1024 1024
126 | 1024 1024
127 | 1024 1024
128 | 1024 1024
129 | 1024 1024
130 | 1024 1024
131 | 1024 1024
132 | 1024 1024
133 | 1024 1024
134 | 1024 1024
135 | 1024 1024
136 | 1024 1024
137 | 1024 1024
138 | 1024 1024
139 | 1024 1024
140 | 1024 1024
141 | 1024 1024
142 | 1024 1024
143 | 1024 1024
144 | 1024 1024
145 | 1024 1024
146 | 1024 1024
147 | 1024 1024
148 | 1024 1024
149 | 1024 1024
150 | 1024 1024
151 | 1024 1024
152 | 1024 1024
153 | 1024 1024
154 | 1024 1024
155 | 1024 1024
156 | 1024 1024
157 | 1024 1024
158 | 1024 1024
159 | 1024 1024
160 | 1024 1024
161 | 1024 1024
162 | 1024 1024
163 | 1024 1024
164 | 1024 1024
165 | 1024 1024
166 | 1024 1024
167 | 1024 1024
168 | 1024 1024
169 | 1024 1024
170 | 1024 1024
171 | 1024 1024
172 | 1024 1024
173 | 1024 1024
174 | 1024 1024
175 | 1024 1024
176 | 1024 1024
177 | 1024 1024
178 | 1024 1024
179 | 1024 1024
180 | 1024 1024
181 | 1024 1024
182 | 1024 1024
183 | 1024 1024
184 | 1024 1024
185 | 1024 1024
186 | 1024 1024
187 | 1024 1024
188 | 1024 1024
189 | 1024 1024
190 | 1024 1024
191 | 1024 1024
192 | 1024 1024
193 | 1024 1024
194 | 1024 1024
195 | 1024 1024
196 | 1024 1024
197 | 1024 1024
198 | 1024 1024
199 | 1024 1024
200 | 1024 1024
201 | 1024 1024
202 | 1024 1024
203 | 1024 1024
204 | 1024 1024
205 | 1024 1024
206 | 1024 1024
207 | 1024 1024
208 | 1024 1024
209 | 1024 1024
210 | 1024 1024
211 | 1024 1024
212 | 1024 1024
213 | 1024 1024
214 | 1024 1024
215 | 1024 1024
216 | 1024 1024
217 | 1024 1024
218 | 1024 1024
219 | 1024 1024
220 | 1024 1024
221 | 1024 1024
222 | 1024 1024
223 | 1024 1024
224 | 1024 1024
225 | 1024 1024
226 | 1024 1024
227 | 1024 1024
228 | 1024 1024
229 | 1024 1024
230 | 1024 1024
231 | 1024 1024
232 | 1024 1024
233 | 1024 1024
234 | 1024 1024
235 | 1024 1024
236 | 1024 1024
237 | 1024 1024
238 | 1024 1024
239 | 1024 1024
240 | 1024 1024
241 | 1024 1024
242 | 1024 1024
243 | 1024 1024
244 | 1024 1024
245 | 1024 1024
246 | 1024 1024
247 | 1024 1024
248 | 1024 1024
249 | 1024 1024
250 | 1024 1024
251 | 1024 1024
252 | 1024 1024
253 | 1024 1024
254 | 1024 1024
255 | 1024 1024
256 | 1024 1024
257 | 1024 1024
258 | 1024 1024
259 | 1024 1024
260 | 1024 1024
261 | 1024 1024
262 | 1024 1024
263 | 1024 1024
264 | 1024 1024
265 | 1024 1024
266 | 1024 1024
267 | 1024 1024
268 | 1024 1024
269 | 1024 1024
270 | 1024 1024
271 | 1024 1024
272 | 1024 1024
273 | 1024 1024
274 | 1024 1024
275 | 1024 1024
276 | 1024 1024
277 | 1024 1024
278 | 1024 1024
279 | 1024 1024
280 | 1024 1024
281 | 1024 1024
282 | 1024 1024
283 | 1024 1024
284 | 1024 1024
285 | 1024 1024
286 | 1024 1024
287 | 1024 1024
288 | 1024 1024
289 | 1024 1024
290 | 1024 1024
291 | 1024 1024
292 | 1024 1024
293 | 1024 1024
294 | 1024 1024
295 | 1024 1024
296 | 1024 1024
297 | 1024 1024
298 | 1024 1024
299 | 1024 1024
300 | 1024 1024
301 | 1024 1024
302 | 1024 1024
303 | 1024 1024
304 | 1024 1024
305 | 1024 1024
306 | 1024 1024
307 | 1024 1024
308 | 1024 1024
309 | 1024 1024
310 | 1024 1024
311 | 1024 1024
312 | 1024 1024
313 | 1024 1024
314 | 1024 1024
315 | 1024 1024
316 | 1024 1024
317 | 1024 1024
318 | 1024 1024
319 | 1024 1024
320 | 1024 1024
321 | 1024 1024
322 | 1024 1024
323 | 1024 1024
324 | 1024 1024
325 | 1024 1024
326 | 1024 1024
327 | 1024 1024
328 | 1024 1024
329 | 1024 1024
330 | 1024 1024
331 | 1024 1024
332 | 1024 1024
333 | 1024 1024
334 | 1024 1024
335 | 1024 1024
336 | 1024 1024
337 | 1024 1024
338 | 1024 1024
339 | 1024 1024
340 | 1024 1024
341 | 1024 1024
342 | 1024 1024
343 | 1024 1024
344 | 1024 1024
345 | 1024 1024
346 | 1024 1024
347 | 1024 1024
348 | 1024 1024
349 | 1024 1024
350 | 1024 1024
351 | 1024 1024
352 | 1024 1024
353 | 1024 1024
354 | 1024 1024
355 | 1024 1024
356 | 1024 1024
357 | 1024 1024
358 | 1024 1024
359 | 1024 1024
360 | 1024 1024
361 | 1024 1024
362 | 1024 1024
363 | 1024 1024
364 | 1024 1024
365 | 1024 1024
366 | 1024 1024
367 | 1024 1024
368 | 1024 1024
369 | 1024 1024
370 | 1024 1024
371 | 1024 1024
372 | 1024 1024
373 | 1024 1024
374 | 1024 1024
375 | 1024 1024
376 | 1024 1024
377 | 1024 1024
378 | 1024 1024
379 | 1024 1024
380 | 1024 1024
381 | 1024 1024
382 | 1024 1024
383 | 1024 1024
384 | 1024 1024
385 | 1024 1024
386 | 1024 1024
387 | 1024 1024
388 | 1024 1024
389 | 1024 1024
390 | 1024 1024
391 | 1024 1024
392 | 1024 1024
393 | 1024 1024
394 | 1024 1024
395 | 1024 1024
396 | 1024 1024
397 | 1024 1024
398 | 1024 1024
399 | 1024 1024
400 | 1024 1024
401 | 1024 1024
402 | 1024 1024
403 | 1024 1024
404 | 1024 1024
405 | 1024 1024
406 | 1024 1024
407 | 1024 1024
408 | 1024 1024
409 | 1024 1024
410 | 1024 1024
411 | 1024 1024
412 | 1024 1024
413 | 1024 1024
414 | 1024 1024
415 | 1024 1024
416 | 1024 1024
417 | 1024 1024
418 | 1024 1024
419 | 1024 1024
420 | 1024 1024
421 | 1024 1024
422 | 1024 1024
423 | 1024 1024
424 | 1024 1024
425 | 1024 1024
426 | 1024 1024
427 | 1024 1024
428 | 1024 1024
429 | 1024 1024
430 | 1024 1024
431 | 1024 1024
432 | 1024 1024
433 | 1024 1024
434 | 1024 1024
435 | 1024 1024
436 | 1024 1024
437 | 1024 1024
438 | 1024 1024
439 | 1024 1024
440 | 1024 1024
441 | 1024 1024
442 | 1024 1024
443 | 1024 1024
444 | 1024 1024
445 | 1024 1024
446 | 1024 1024
447 | 1024 1024
448 | 1024 1024
449 | 1024 1024
450 | 1024 1024
451 | 1024 1024
452 | 1024 1024
453 | 1024 1024
454 | 1024 1024
455 | 1024 1024
456 | 1024 1024
457 | 1024 1024
458 | 1024 1024
459 | 1024 1024
460 | 1024 1024
461 | 1024 1024
462 | 1024 1024
463 | 1024 1024
464 | 1024 1024
465 | 1024 1024
466 | 1024 1024
467 | 1024 1024
468 | 1024 1024
469 | 1024 1024
470 | 1024 1024
471 | 1024 1024
472 | 1024 1024
473 | 1024 1024
474 | 1024 1024
475 | 1024 1024
476 | 1024 1024
477 | 1024 1024
478 | 1024 1024
479 | 1024 1024
480 | 1024 1024
481 | 1024 1024
482 | 1024 1024
483 | 1024 1024
484 | 1024 1024
485 | 1024 1024
486 | 1024 1024
487 | 1024 1024
488 | 1024 1024
489 | 1024 1024
490 | 1024 1024
491 | 1024 1024
492 | 1024 1024
493 | 1024 1024
494 | 1024 1024
495 | 1024 1024
496 | 1024 1024
497 | 1024 1024
498 | 1024 1024
499 | 1024 1024
500 | 1024 1024
501 | 1024 1024
502 | 1024 1024
503 | 1024 1024
504 | 1024 1024
505 | 1024 1024
506 | 1024 1024
507 | 1024 1024
508 | 1024 1024
509 | 1024 1024
510 | 1024 1024
511 | 1024 1024
512 | 1024 1024
513 | 1024 1024
514 | 1024 1024
515 | 1024 1024
516 | 1024 1024
517 | 1024 1024
518 | 1024 1024
519 | 1024 1024
520 | 1024 1024
521 | 1024 1024
522 | 1024 1024
523 | 1024 1024
524 | 1024 1024
525 | 1024 1024
526 | 1024 1024
527 | 1024 1024
528 | 1024 1024
529 | 1024 1024
530 | 1024 1024
531 | 1024 1024
532 | 1024 1024
533 | 1024 1024
534 | 1024 1024
535 | 1024 1024
536 | 1024 1024
537 | 1024 1024
538 | 1024 1024
539 | 1024 1024
540 | 1024 1024
541 | 1024 1024
542 | 1024 1024
543 | 1024 1024
544 | 1024 1024
545 | 1024 1024
546 | 1024 1024
547 | 1024 1024
548 | 1024 1024
549 | 1024 1024
550 | 1024 1024
551 | 1024 1024
552 | 1024 1024
553 | 1024 1024
554 | 1024 1024
555 | 1024 1024
556 | 1024 1024
557 | 1024 1024
558 | 1024 1024
559 | 1024 1024
560 | 1024 1024
561 | 1024 1024
562 | 1024 1024
563 | 1024 1024
564 | 1024 1024
565 | 1024 1024
566 | 1024 1024
567 | 1024 1024
568 | 1024 1024
569 | 1024 1024
570 | 1024 1024
571 | 1024 1024
572 | 1024 1024
573 | 1024 1024
574 | 1024 1024
575 | 1024 1024
576 | 1024 1024
577 | 1024 1024
578 | 1024 1024
579 | 1024 1024
580 | 1024 1024
581 | 1024 1024
582 | 1024 1024
583 | 1024 1024
584 | 1024 1024
585 | 1024 1024
586 | 1024 1024
587 | 1024 1024
588 | 1024 1024
589 | 1024 1024
590 | 1024 1024
591 | 1024 1024
592 | 1024 1024
593 | 1024 1024
594 | 1024 1024
595 | 1024 1024
596 | 1024 1024
597 | 1024 1024
598 | 1024 1024
599 | 1024 1024
600 | 1024 1024
601 | 1024 1024
602 | 1024 1024
603 | 1024 1024
604 | 1024 1024
605 | 1024 1024
606 | 1024 1024
607 | 1024 1024
608 | 1024 1024
609 | 1024 1024
610 | 1024 1024
611 | 1024 1024
612 | 1024 1024
613 | 1024 1024
614 | 1024 1024
615 | 1024 1024
616 | 1024 1024
617 | 1024 1024
618 | 1024 1024
619 | 1024 1024
620 | 1024 1024
621 | 1024 1024
622 | 1024 1024
623 | 1024 1024
624 | 1024 1024
625 | 1024 1024
626 | 1024 1024
627 | 1024 1024
628 | 1024 1024
629 | 1024 1024
630 | 1024 1024
631 | 1024 1024
632 | 1024 1024
633 | 1024 1024
634 | 1024 1024
635 | 1024 1024
636 | 1024 1024
637 | 1024 1024
638 | 1024 1024
639 | 1024 1024
640 | 1024 1024
641 | 1024 1024
642 | 1024 1024
643 | 1024 1024
644 | 1024 1024
645 | 1024 1024
646 | 1024 1024
647 | 1024 1024
648 | 1024 1024
649 | 1024 1024
650 | 1024 1024
651 | 1024 1024
652 | 1024 1024
653 | 1024 1024
654 | 1024 1024
655 | 1024 1024
656 | 1024 1024
657 | 1024 1024
658 | 1024 1024
659 | 1024 1024
660 | 1024 1024
661 | 1024 1024
662 | 1024 1024
663 | 1024 1024
664 | 1024 1024
665 | 1024 1024
666 | 1024 1024
667 | 1024 1024
668 | 1024 1024
669 | 1024 1024
670 | 1024 1024
671 | 1024 1024
672 | 1024 1024
673 | 1024 1024
674 | 1024 1024
675 | 1024 1024
676 | 1024 1024
677 | 1024 1024
678 | 1024 1024
679 | 1024 1024
680 | 1024 1024
681 | 1024 1024
682 | 1024 1024
683 | 1024 1024
684 | 1024 1024
685 | 1024 1024
686 | 1024 1024
687 | 1024 1024
688 | 1024 1024
689 | 1024 1024
690 | 1024 1024
691 | 1024 1024
692 | 1024 1024
693 | 1024 1024
694 | 1024 1024
695 | 1024 1024
696 | 1024 1024
697 | 1024 1024
698 | 1024 1024
699 | 1024 1024
700 | 1024 1024
701 |
--------------------------------------------------------------------------------
/convertor/fold0/images/val2017.shapes:
--------------------------------------------------------------------------------
1 | 1024 1024
2 | 1024 1024
3 | 1024 1024
4 | 1024 1024
5 | 1024 1024
6 | 1024 1024
7 | 1024 1024
8 | 1024 1024
9 | 1024 1024
10 | 1024 1024
11 | 1024 1024
12 | 1024 1024
13 | 1024 1024
14 | 1024 1024
15 | 1024 1024
16 | 1024 1024
17 | 1024 1024
18 | 1024 1024
19 | 1024 1024
20 | 1024 1024
21 |
--------------------------------------------------------------------------------
/convertor/fold0/labels/train2017.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/convertor/fold0/labels/train2017.npy
--------------------------------------------------------------------------------
/data/coco.yaml:
--------------------------------------------------------------------------------
1 | # COCO 2017 dataset http://cocodataset.org
2 | # Train command: python train.py --data coco.yaml
3 | # Default dataset location is next to /yolov5:
4 | # /parent_folder
5 | # /coco
6 | # /yolov5
7 |
8 |
9 | # download command/URL (optional)
10 | download: bash data/scripts/get_coco.sh
11 |
12 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
13 | train: ../coco/train2017.txt # 118287 images
14 | val: ../coco/val2017.txt # 5000 images
15 | test: ../coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
16 |
17 | # number of classes
18 | nc: 80
19 |
20 | # class names
21 | names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
22 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
23 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
24 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
25 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
26 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
27 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
28 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
29 | 'hair drier', 'toothbrush']
30 |
31 | # Print classes
32 | # with open('data/coco.yaml') as f:
33 | # d = yaml.load(f, Loader=yaml.FullLoader) # dict
34 | # for i, x in enumerate(d['names']):
35 | # print(i, x)
36 |
--------------------------------------------------------------------------------
/data/coco128.yaml:
--------------------------------------------------------------------------------
1 | # COCO 2017 dataset http://cocodataset.org - first 128 training images
2 | # Train command: python train.py --data coco128.yaml
3 | # Default dataset location is next to /yolov5:
4 | # /parent_folder
5 | # /coco128
6 | # /yolov5
7 |
8 |
9 | # download command/URL (optional)
10 | download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
11 |
12 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
13 | train: ../coco128/images/train2017/ # 128 images
14 | val: ../coco128/images/train2017/ # 128 images
15 |
16 | # number of classes
17 | nc: 80
18 |
19 | # class names
20 | names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
21 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
22 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
23 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
24 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
25 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
26 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
27 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
28 | 'hair drier', 'toothbrush']
29 |
--------------------------------------------------------------------------------
/data/hyp.finetune.yaml:
--------------------------------------------------------------------------------
1 | # Hyperparameters for VOC finetuning
2 | # python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
3 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
4 |
5 |
6 | # Hyperparameter Evolution Results
7 | # Generations: 306
8 | # P R mAP.5 mAP.5:.95 box obj cls
9 | # Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146
10 |
11 | lr0: 0.0032
12 | lrf: 0.12
13 | momentum: 0.843
14 | weight_decay: 0.00036
15 | warmup_epochs: 2.0
16 | warmup_momentum: 0.5
17 | warmup_bias_lr: 0.05
18 | box: 0.0296
19 | cls: 0.243
20 | cls_pw: 0.631
21 | obj: 0.301
22 | obj_pw: 0.911
23 | iou_t: 0.2
24 | anchor_t: 2.91
25 | # anchors: 3.63
26 | fl_gamma: 0.0
27 | hsv_h: 0.0138
28 | hsv_s: 0.664
29 | hsv_v: 0.464
30 | degrees: 0.373
31 | translate: 0.245
32 | scale: 0.898
33 | shear: 0.602
34 | perspective: 0.0
35 | flipud: 0.00856
36 | fliplr: 0.5
37 | mosaic: 1.0
38 | mixup: 0.243
39 |
--------------------------------------------------------------------------------
/data/hyp.scratch.yaml:
--------------------------------------------------------------------------------
1 | # Hyperparameters for COCO training from scratch
2 | # python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
3 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
4 |
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain
14 | cls: 0.5 # cls loss gain
15 | cls_pw: 1.0 # cls BCELoss positive_weight
16 | obj: 1.0 # obj loss gain (scale with pixels)
17 | obj_pw: 1.0 # obj BCELoss positive_weight
18 | angle_pw: 0.5
19 | angle: 0.5
20 | iou_t: 0.20 # IoU training threshold
21 | anchor_t: 4.0 # anchor-multiple threshold
22 | # anchors: 0 # anchors per output grid (0 to ignore)
23 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
24 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
25 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
26 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
27 | degrees: 0.0 # image rotation (+/- deg)
28 | translate: 0.1 # image translation (+/- fraction)
29 | scale: 0.5 # image scale (+/- gain)
30 | shear: 0.0 # image shear (+/- deg)
31 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
32 | flipud: 0.0 # image flip up-down (probability)
33 | fliplr: 0.5 # image flip left-right (probability)
34 | mosaic: 1.0 # image mosaic (probability)
35 | mixup: 0.0 # image mixup (probability)
36 |
--------------------------------------------------------------------------------
/data/scripts/get_coco.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # COCO 2017 dataset http://cocodataset.org
3 | # Download command: bash data/scripts/get_coco.sh
4 | # Train command: python train.py --data coco.yaml
5 | # Default dataset location is next to /yolov5:
6 | # /parent_folder
7 | # /coco
8 | # /yolov5
9 |
10 | # Download/unzip labels
11 | echo 'Downloading COCO 2017 labels ...'
12 | d='../' # unzip directory
13 | f='coco2017labels.zip' && curl -L https://github.com/ultralytics/yolov5/releases/download/v1.0/$f -o $f
14 | unzip -q $f -d $d && rm $f
15 |
16 | # Download/unzip images
17 | echo 'Downloading COCO 2017 images ...'
18 | d='../coco/images' # unzip directory
19 | f='train2017.zip' && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f -d $d && rm $f # 19G, 118k images
20 | f='val2017.zip' && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f -d $d && rm $f # 1G, 5k images
21 | # f='test2017.zip' && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f -d $d && rm $f # 7G, 41k images
22 |
--------------------------------------------------------------------------------
/data/scripts/get_voc.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
3 | # Download command: bash data/scripts/get_voc.sh
4 | # Train command: python train.py --data voc.yaml
5 | # Default dataset location is next to /yolov5:
6 | # /parent_folder
7 | # /VOC
8 | # /yolov5
9 |
10 | start=$(date +%s)
11 |
12 | # handle optional download dir
13 | if [ -z "$1" ]; then
14 | # navigate to ~/tmp
15 | echo "navigating to ../tmp/ ..."
16 | mkdir -p ../tmp
17 | cd ../tmp/
18 | else
19 | # check if is valid directory
20 | if [ ! -d $1 ]; then
21 | echo $1 "is not a valid directory"
22 | exit 0
23 | fi
24 | echo "navigating to" $1 "..."
25 | cd $1
26 | fi
27 |
28 | echo "Downloading VOC2007 trainval ..."
29 | # Download data
30 | curl -LO http://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
31 | echo "Downloading VOC2007 test data ..."
32 | curl -LO http://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
33 | echo "Done downloading."
34 |
35 | # Extract data
36 | echo "Extracting trainval ..."
37 | tar -xf VOCtrainval_06-Nov-2007.tar
38 | echo "Extracting test ..."
39 | tar -xf VOCtest_06-Nov-2007.tar
40 | echo "removing tars ..."
41 | rm VOCtrainval_06-Nov-2007.tar
42 | rm VOCtest_06-Nov-2007.tar
43 |
44 | end=$(date +%s)
45 | runtime=$((end - start))
46 |
47 | echo "Completed in" $runtime "seconds"
48 |
49 | start=$(date +%s)
50 |
51 | # handle optional download dir
52 | if [ -z "$1" ]; then
53 | # navigate to ~/tmp
54 | echo "navigating to ../tmp/ ..."
55 | mkdir -p ../tmp
56 | cd ../tmp/
57 | else
58 | # check if is valid directory
59 | if [ ! -d $1 ]; then
60 | echo $1 "is not a valid directory"
61 | exit 0
62 | fi
63 | echo "navigating to" $1 "..."
64 | cd $1
65 | fi
66 |
67 | echo "Downloading VOC2012 trainval ..."
68 | # Download data
69 | curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
70 | echo "Done downloading."
71 |
72 | # Extract data
73 | echo "Extracting trainval ..."
74 | tar -xf VOCtrainval_11-May-2012.tar
75 | echo "removing tar ..."
76 | rm VOCtrainval_11-May-2012.tar
77 |
78 | end=$(date +%s)
79 | runtime=$((end - start))
80 |
81 | echo "Completed in" $runtime "seconds"
82 |
83 | cd ../tmp
84 | echo "Spliting dataset..."
85 | python3 - "$@" <train.txt
145 | cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt >train.all.txt
146 |
147 | python3 - "$@" <= 1
89 | p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
90 | else:
91 | p, s, im0 = path, '', im0s
92 |
93 | save_path = str(Path(out) / Path(p).name)
94 | txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
95 | s += '%gx%g ' % img.shape[2:] # print string
96 | gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
97 | if det is not None and len(det):
98 | # Rescale boxes from img_size to im0 size
99 | det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
100 |
101 | # Print results
102 | for c in det[:, 6].unique():
103 | n = (det[:, 6] == c).sum() # detections per class
104 | s += '%g %ss, ' % (n, names[int(c)]) # add to string
105 |
106 | # Write results
107 | for *xywh, conf, cls in reversed(det):
108 | # if save_txt: # Write to file
109 | # xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
110 | # with open(txt_path + '.txt', 'a') as f:
111 | # f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
112 |
113 | if save_img or view_img: # Add bbox to image
114 | label = '%s %.2f' % (names[int(cls)], conf)
115 | plot_one_box(xywh, im0, label=label, color=colors[int(cls)], line_thickness=3, path=path)
116 |
117 | # Print time (inference + NMS)
118 | print('%sDone. (%.3fs)' % (s, t2 - t1))
119 |
120 | # Stream results
121 | if view_img:
122 | cv2.imshow(p, im0)
123 | if cv2.waitKey(1) == ord('q'): # q to quit
124 | raise StopIteration
125 |
126 | # Save results (image with detections)
127 | if save_img:
128 | if dataset.mode == 'images':
129 | cv2.imwrite(save_path, im0)
130 | else:
131 | if vid_path != save_path: # new video
132 | vid_path = save_path
133 | if isinstance(vid_writer, cv2.VideoWriter):
134 | vid_writer.release() # release previous video writer
135 |
136 | fourcc = 'mp4v' # output video codec
137 | fps = vid_cap.get(cv2.CAP_PROP_FPS)
138 | w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
139 | h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
140 | vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
141 | vid_writer.write(im0)
142 |
143 | if save_txt or save_img:
144 | print('Results saved to %s' % Path(out))
145 |
146 | print('Done. (%.3fs)' % (time.time() - t0))
147 |
148 |
149 | if __name__ == '__main__':
150 |
151 | parser = argparse.ArgumentParser()
152 | parser.add_argument('--weights', nargs='+', type=str, default='weights/m-70.pt', help='model.pt path(s)')
153 | parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
154 | parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
155 | parser.add_argument('--img-size', type=int, default=1024, help='inference size (pixels)')
156 | parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
157 | parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
158 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
159 | parser.add_argument('--view-img', action='store_true', help='display results')
160 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
161 | parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
162 | parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
163 | parser.add_argument('--augment', action='store_true', help='augmented inference')
164 | parser.add_argument('--update', action='store_true', help='update all models')
165 | opt = parser.parse_args()
166 | print(opt)
167 |
168 | with torch.no_grad():
169 | if opt.update: # update all models (to fix SourceChangeWarning)
170 | for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
171 | detect()
172 | strip_optimizer(opt.weights)
173 | else:
174 | detect()
--------------------------------------------------------------------------------
/hubconf.py:
--------------------------------------------------------------------------------
1 | """File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
2 |
3 | Usage:
4 | import torch
5 | model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
6 | """
7 |
8 | dependencies = ['torch', 'yaml']
9 | import os
10 |
11 | import torch
12 |
13 | from models.common import NMS
14 | from models.yolo import Model
15 | from utils.google_utils import attempt_download
16 |
17 |
18 | def create(name, pretrained, channels, classes):
19 | """Creates a specified YOLOv5 model
20 |
21 | Arguments:
22 | name (str): name of model, i.e. 'yolov5s'
23 | pretrained (bool): load pretrained weights into the model
24 | channels (int): number of input channels
25 | classes (int): number of model classes
26 |
27 | Returns:
28 | pytorch model
29 | """
30 | config = os.path.join(os.path.dirname(__file__), 'models', '%s.yaml' % name) # model.yaml path
31 | try:
32 | model = Model(config, channels, classes)
33 | if pretrained:
34 | ckpt = '%s.pt' % name # checkpoint filename
35 | attempt_download(ckpt) # download if not found locally
36 | state_dict = torch.load(ckpt, map_location=torch.device('cpu'))['model'].float().state_dict() # to FP32
37 | state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
38 | model.load_state_dict(state_dict, strict=False) # load
39 |
40 | model.add_nms() # add NMS module
41 | model.eval()
42 | return model
43 |
44 | except Exception as e:
45 | help_url = 'https://github.com/ultralytics/yolov5/issues/36'
46 | s = 'Cache maybe be out of date, deleting cache and retrying may solve this. See %s for help.' % help_url
47 | raise Exception(s) from e
48 |
49 |
50 | def yolov5s(pretrained=False, channels=3, classes=80):
51 | """YOLOv5-small model from https://github.com/ultralytics/yolov5
52 |
53 | Arguments:
54 | pretrained (bool): load pretrained weights into the model, default=False
55 | channels (int): number of input channels, default=3
56 | classes (int): number of model classes, default=80
57 |
58 | Returns:
59 | pytorch model
60 | """
61 | return create('yolov5s', pretrained, channels, classes)
62 |
63 |
64 | def yolov5m(pretrained=False, channels=3, classes=80):
65 | """YOLOv5-medium model from https://github.com/ultralytics/yolov5
66 |
67 | Arguments:
68 | pretrained (bool): load pretrained weights into the model, default=False
69 | channels (int): number of input channels, default=3
70 | classes (int): number of model classes, default=80
71 |
72 | Returns:
73 | pytorch model
74 | """
75 | return create('yolov5m', pretrained, channels, classes)
76 |
77 |
78 | def yolov5l(pretrained=False, channels=3, classes=80):
79 | """YOLOv5-large model from https://github.com/ultralytics/yolov5
80 |
81 | Arguments:
82 | pretrained (bool): load pretrained weights into the model, default=False
83 | channels (int): number of input channels, default=3
84 | classes (int): number of model classes, default=80
85 |
86 | Returns:
87 | pytorch model
88 | """
89 | return create('yolov5l', pretrained, channels, classes)
90 |
91 |
92 | def yolov5x(pretrained=False, channels=3, classes=80):
93 | """YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
94 |
95 | Arguments:
96 | pretrained (bool): load pretrained weights into the model, default=False
97 | channels (int): number of input channels, default=3
98 | classes (int): number of model classes, default=80
99 |
100 | Returns:
101 | pytorch model
102 | """
103 | return create('yolov5x', pretrained, channels, classes)
104 |
--------------------------------------------------------------------------------
/inference/images/1.tif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/inference/images/1.tif
--------------------------------------------------------------------------------
/label_format.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/label_format.png
--------------------------------------------------------------------------------
/models/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/models/__init__.py
--------------------------------------------------------------------------------
/models/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/models/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/models/__pycache__/common.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/models/__pycache__/common.cpython-38.pyc
--------------------------------------------------------------------------------
/models/__pycache__/experimental.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/models/__pycache__/experimental.cpython-38.pyc
--------------------------------------------------------------------------------
/models/__pycache__/yolo.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/models/__pycache__/yolo.cpython-38.pyc
--------------------------------------------------------------------------------
/models/common.py:
--------------------------------------------------------------------------------
1 | # This file contains modules common to various models
2 | import math
3 |
4 | import torch
5 | import torch.nn as nn
6 | from utils.general import non_max_suppression
7 |
8 |
9 | def autopad(k, p=None): # kernel, padding
10 | # Pad to 'same'
11 | if p is None:
12 | p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
13 | return p
14 |
15 |
16 | def DWConv(c1, c2, k=1, s=1, act=True):
17 | # Depthwise convolution
18 | return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
19 |
20 |
21 | class Conv(nn.Module):
22 | # Standard convolution
23 | def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
24 | super(Conv, self).__init__()
25 | self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
26 | self.bn = nn.BatchNorm2d(c2)
27 | self.act = nn.Hardswish() if act else nn.Identity()
28 |
29 | def forward(self, x):
30 | return self.act(self.bn(self.conv(x)))
31 |
32 | def fuseforward(self, x):
33 | return self.act(self.conv(x))
34 |
35 |
36 | class Bottleneck(nn.Module):
37 | # Standard bottleneck
38 | def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
39 | super(Bottleneck, self).__init__()
40 | c_ = int(c2 * e) # hidden channels
41 | self.cv1 = Conv(c1, c_, 1, 1)
42 | self.cv2 = Conv(c_, c2, 3, 1, g=g)
43 | self.add = shortcut and c1 == c2
44 |
45 | def forward(self, x):
46 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
47 |
48 |
49 | class BottleneckCSP(nn.Module):
50 | # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
51 | def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
52 | super(BottleneckCSP, self).__init__()
53 | c_ = int(c2 * e) # hidden channels
54 | self.cv1 = Conv(c1, c_, 1, 1)
55 | self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
56 | self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
57 | self.cv4 = Conv(2 * c_, c2, 1, 1)
58 | self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
59 | self.act = nn.LeakyReLU(0.1, inplace=True)
60 | self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
61 |
62 | def forward(self, x):
63 | y1 = self.cv3(self.m(self.cv1(x)))
64 | y2 = self.cv2(x)
65 | return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
66 |
67 |
68 | class SPP(nn.Module):
69 | # Spatial pyramid pooling layer used in YOLOv3-SPP
70 | def __init__(self, c1, c2, k=(5, 9, 13)):
71 | super(SPP, self).__init__()
72 | c_ = c1 // 2 # hidden channels
73 | self.cv1 = Conv(c1, c_, 1, 1)
74 | self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
75 | self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
76 |
77 | def forward(self, x):
78 | x = self.cv1(x)
79 | return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
80 |
81 |
82 | class Focus(nn.Module):
83 | # Focus wh information into c-space
84 | def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
85 | super(Focus, self).__init__()
86 | self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
87 |
88 | def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
89 | return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
90 |
91 |
92 | class Concat(nn.Module):
93 | # Concatenate a list of tensors along dimension
94 | def __init__(self, dimension=1):
95 | super(Concat, self).__init__()
96 | self.d = dimension
97 |
98 | def forward(self, x):
99 | return torch.cat(x, self.d)
100 |
101 |
102 | class NMS(nn.Module):
103 | # Non-Maximum Suppression (NMS) module
104 | conf = 0.3 # confidence threshold
105 | iou = 0.6 # IoU threshold
106 | classes = None # (optional list) filter by class
107 |
108 | def __init__(self, dimension=1):
109 | super(NMS, self).__init__()
110 |
111 | def forward(self, x):
112 | return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
113 |
114 |
115 | class Flatten(nn.Module):
116 | # Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
117 | @staticmethod
118 | def forward(x):
119 | return x.view(x.size(0), -1)
120 |
121 |
122 | class Classify(nn.Module):
123 | # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
124 | def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
125 | super(Classify, self).__init__()
126 | self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
127 | self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) # to x(b,c2,1,1)
128 | self.flat = Flatten()
129 |
130 | def forward(self, x):
131 | z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
132 | return self.flat(self.conv(z)) # flatten to x(b,c2)
133 |
--------------------------------------------------------------------------------
/models/experimental.py:
--------------------------------------------------------------------------------
1 | # This file contains experimental modules
2 |
3 | import numpy as np
4 | import torch
5 | import torch.nn as nn
6 |
7 | from models.common import Conv, DWConv
8 | from utils.google_utils import attempt_download
9 |
10 |
11 | class CrossConv(nn.Module):
12 | # Cross Convolution Downsample
13 | def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
14 | # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
15 | super(CrossConv, self).__init__()
16 | c_ = int(c2 * e) # hidden channels
17 | self.cv1 = Conv(c1, c_, (1, k), (1, s))
18 | self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
19 | self.add = shortcut and c1 == c2
20 |
21 | def forward(self, x):
22 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
23 |
24 |
25 | class C3(nn.Module):
26 | # Cross Convolution CSP
27 | def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
28 | super(C3, self).__init__()
29 | c_ = int(c2 * e) # hidden channels
30 | self.cv1 = Conv(c1, c_, 1, 1)
31 | self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
32 | self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
33 | self.cv4 = Conv(2 * c_, c2, 1, 1)
34 | self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
35 | self.act = nn.LeakyReLU(0.1, inplace=True)
36 | self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
37 |
38 | def forward(self, x):
39 | y1 = self.cv3(self.m(self.cv1(x)))
40 | y2 = self.cv2(x)
41 | return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
42 |
43 |
44 | class Sum(nn.Module):
45 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
46 | def __init__(self, n, weight=False): # n: number of inputs
47 | super(Sum, self).__init__()
48 | self.weight = weight # apply weights boolean
49 | self.iter = range(n - 1) # iter object
50 | if weight:
51 | self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
52 |
53 | def forward(self, x):
54 | y = x[0] # no weight
55 | if self.weight:
56 | w = torch.sigmoid(self.w) * 2
57 | for i in self.iter:
58 | y = y + x[i + 1] * w[i]
59 | else:
60 | for i in self.iter:
61 | y = y + x[i + 1]
62 | return y
63 |
64 |
65 | class GhostConv(nn.Module):
66 | # Ghost Convolution https://github.com/huawei-noah/ghostnet
67 | def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
68 | super(GhostConv, self).__init__()
69 | c_ = c2 // 2 # hidden channels
70 | self.cv1 = Conv(c1, c_, k, s, g, act)
71 | self.cv2 = Conv(c_, c_, 5, 1, c_, act)
72 |
73 | def forward(self, x):
74 | y = self.cv1(x)
75 | return torch.cat([y, self.cv2(y)], 1)
76 |
77 |
78 | class GhostBottleneck(nn.Module):
79 | # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
80 | def __init__(self, c1, c2, k, s):
81 | super(GhostBottleneck, self).__init__()
82 | c_ = c2 // 2
83 | self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
84 | DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
85 | GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
86 | self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
87 | Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
88 |
89 | def forward(self, x):
90 | return self.conv(x) + self.shortcut(x)
91 |
92 |
93 | class MixConv2d(nn.Module):
94 | # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
95 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
96 | super(MixConv2d, self).__init__()
97 | groups = len(k)
98 | if equal_ch: # equal c_ per group
99 | i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
100 | c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
101 | else: # equal weight.numel() per group
102 | b = [c2] + [0] * groups
103 | a = np.eye(groups + 1, groups, k=-1)
104 | a -= np.roll(a, 1, axis=1)
105 | a *= np.array(k) ** 2
106 | a[0] = 1
107 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
108 |
109 | self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
110 | self.bn = nn.BatchNorm2d(c2)
111 | self.act = nn.LeakyReLU(0.1, inplace=True)
112 |
113 | def forward(self, x):
114 | return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
115 |
116 |
117 | class Ensemble(nn.ModuleList):
118 | # Ensemble of models
119 | def __init__(self):
120 | super(Ensemble, self).__init__()
121 |
122 | def forward(self, x, augment=False):
123 | y = []
124 | for module in self:
125 | y.append(module(x, augment)[0])
126 | # y = torch.stack(y).max(0)[0] # max ensemble
127 | # y = torch.cat(y, 1) # nms ensemble
128 | y = torch.stack(y).mean(0) # mean ensemble
129 | return y, None # inference, train output
130 |
131 |
132 | def attempt_load(weights, map_location=None):
133 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
134 | model = Ensemble()
135 | for w in weights if isinstance(weights, list) else [weights]:
136 | attempt_download(w)
137 | model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
138 |
139 | if len(model) == 1:
140 | return model[-1] # return model
141 | else:
142 | print('Ensemble created with %s\n' % weights)
143 | for k in ['names', 'stride']:
144 | setattr(model, k, getattr(model[-1], k))
145 | return model # return ensemble
146 |
--------------------------------------------------------------------------------
/models/export.py:
--------------------------------------------------------------------------------
1 | """Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
2 |
3 | Usage:
4 | $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
5 | """
6 |
7 | import argparse
8 | import sys
9 | import time
10 |
11 | sys.path.append('./') # to run '$ python *.py' files in subdirectories
12 |
13 | import torch
14 | import torch.nn as nn
15 |
16 | import models
17 | from models.experimental import attempt_load
18 | from utils.activations import Hardswish
19 | from utils.general import set_logging, check_img_size
20 |
21 | if __name__ == '__main__':
22 | parser = argparse.ArgumentParser()
23 | parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
24 | parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
25 | parser.add_argument('--batch-size', type=int, default=1, help='batch size')
26 | opt = parser.parse_args()
27 | opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
28 | print(opt)
29 | set_logging()
30 | t = time.time()
31 |
32 | # Load PyTorch model
33 | model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
34 | labels = model.names
35 |
36 | # Checks
37 | gs = int(max(model.stride)) # grid size (max stride)
38 | opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
39 |
40 | # Input
41 | img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection
42 |
43 | # Update model
44 | for k, m in model.named_modules():
45 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
46 | if isinstance(m, models.common.Conv) and isinstance(m.act, nn.Hardswish):
47 | m.act = Hardswish() # assign activation
48 | # if isinstance(m, models.yolo.Detect):
49 | # m.forward = m.forward_export # assign forward (optional)
50 | model.model[-1].export = True # set Detect() layer export=True
51 | y = model(img) # dry run
52 |
53 | # TorchScript export
54 | try:
55 | print('\nStarting TorchScript export with torch %s...' % torch.__version__)
56 | f = opt.weights.replace('.pt', '.torchscript.pt') # filename
57 | ts = torch.jit.trace(model, img)
58 | ts.save(f)
59 | print('TorchScript export success, saved as %s' % f)
60 | except Exception as e:
61 | print('TorchScript export failure: %s' % e)
62 |
63 | # ONNX export
64 | try:
65 | import onnx
66 |
67 | print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
68 | f = opt.weights.replace('.pt', '.onnx') # filename
69 | torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
70 | output_names=['classes', 'boxes'] if y is None else ['output'])
71 |
72 | # Checks
73 | onnx_model = onnx.load(f) # load onnx model
74 | onnx.checker.check_model(onnx_model) # check onnx model
75 | # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
76 | print('ONNX export success, saved as %s' % f)
77 | except Exception as e:
78 | print('ONNX export failure: %s' % e)
79 |
80 | # CoreML export
81 | try:
82 | import coremltools as ct
83 |
84 | print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
85 | # convert model from torchscript and apply pixel scaling as per detect.py
86 | model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
87 | f = opt.weights.replace('.pt', '.mlmodel') # filename
88 | model.save(f)
89 | print('CoreML export success, saved as %s' % f)
90 | except Exception as e:
91 | print('CoreML export failure: %s' % e)
92 |
93 | # Finish
94 | print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
95 |
--------------------------------------------------------------------------------
/models/hub/yolov3-spp.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # darknet53 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, Bottleneck, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, Bottleneck, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, Bottleneck, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, Bottleneck, [1024]], # 10
26 | ]
27 |
28 | # YOLOv3-SPP head
29 | head:
30 | [[-1, 1, Bottleneck, [1024, False]],
31 | [-1, 1, SPP, [512, [5, 9, 13]]],
32 | [-1, 1, Conv, [1024, 3, 1]],
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35 |
36 | [-2, 1, Conv, [256, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
39 | [-1, 1, Bottleneck, [512, False]],
40 | [-1, 1, Bottleneck, [512, False]],
41 | [-1, 1, Conv, [256, 1, 1]],
42 | [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43 |
44 | [-2, 1, Conv, [128, 1, 1]],
45 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46 | [[-1, 6], 1, Concat, [1]], # cat backbone P3
47 | [-1, 1, Bottleneck, [256, False]],
48 | [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49 |
50 | [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51 | ]
52 |
--------------------------------------------------------------------------------
/models/hub/yolov5-fpn.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, Bottleneck, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 6, BottleneckCSP, [1024]], # 9
25 | ]
26 |
27 | # YOLOv5 FPN head
28 | head:
29 | [[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
30 |
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
35 |
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
38 | [-1, 1, Conv, [256, 1, 1]],
39 | [-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
40 |
41 | [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
42 | ]
43 |
--------------------------------------------------------------------------------
/models/hub/yolov5-panet.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [116,90, 156,198, 373,326] # P5/32
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [10,13, 16,30, 33,23] # P3/8
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, BottleneckCSP, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, BottleneckCSP, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 PANet head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, BottleneckCSP, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolo.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import logging
3 | import math
4 | import sys
5 | from copy import deepcopy
6 | from pathlib import Path
7 |
8 | sys.path.append('./') # to run '$ python *.py' files in subdirectories
9 | logger = logging.getLogger(__name__)
10 |
11 | import torch
12 | import torch.nn as nn
13 |
14 | from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat, NMS
15 | from models.experimental import MixConv2d, CrossConv, C3
16 | from utils.general import check_anchor_order, make_divisible, check_file, set_logging
17 | from utils.torch_utils import (
18 | time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, select_device)
19 |
20 |
21 | class Detect(nn.Module):
22 | stride = None # strides computed during build
23 | export = False # onnx export
24 |
25 | def __init__(self, nc=80, anchors=(), ch=()): # detection layer
26 | super(Detect, self).__init__()
27 | self.nc = nc # number of classes
28 | self.angle = 180
29 | self.no = nc + 5 + self.angle # number of outputs per anchor
30 | self.nl = len(anchors) # number of detection layers
31 | self.na = len(anchors[0]) // 2 # number of anchors
32 | self.grid = [torch.zeros(1)] * self.nl # init grid
33 | a = torch.tensor(anchors).float().view(self.nl, -1, 2)
34 | self.register_buffer('anchors', a) # shape(nl,na,2)
35 | self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
36 | self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
37 |
38 | def forward(self, x):
39 | # x = x.copy() # for profiling
40 | z = [] # inference output
41 | self.training |= self.export
42 | for i in range(self.nl):
43 | x[i] = self.m[i](x[i]) # conv
44 | bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
45 | x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
46 |
47 | if not self.training: # inference
48 | if self.grid[i].shape[2:4] != x[i].shape[2:4]:
49 | self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
50 |
51 | y = x[i].sigmoid()
52 | y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
53 | y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
54 | z.append(y.view(bs, -1, self.no))
55 |
56 | return x if self.training else (torch.cat(z, 1), x)
57 |
58 | @staticmethod
59 | def _make_grid(nx=20, ny=20):
60 | yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
61 | return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
62 |
63 |
64 | class Model(nn.Module):
65 | def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
66 | super(Model, self).__init__()
67 | if isinstance(cfg, dict):
68 | self.yaml = cfg # model dict
69 | else: # is *.yaml
70 | import yaml # for torch hub
71 | self.yaml_file = Path(cfg).name
72 | with open(cfg) as f:
73 | self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
74 |
75 | # Define model
76 | if nc and nc != self.yaml['nc']:
77 | print('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
78 | self.yaml['nc'] = nc # override yaml value
79 | self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist, ch_out
80 | # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
81 |
82 | # Build strides, anchors
83 | m = self.model[-1] # Detect()
84 | if isinstance(m, Detect):
85 | s = 128 # 2x min stride
86 | m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
87 | m.anchors /= m.stride.view(-1, 1, 1)
88 | check_anchor_order(m)
89 | self.stride = m.stride
90 | self._initialize_biases() # only run once
91 | # print('Strides: %s' % m.stride.tolist())
92 |
93 | # Init weights, biases
94 | initialize_weights(self)
95 | self.info()
96 | print('')
97 |
98 | def forward(self, x, augment=False, profile=False):
99 | if augment:
100 | img_size = x.shape[-2:] # height, width
101 | s = [1, 0.83, 0.67] # scales
102 | f = [None, 3, None] # flips (2-ud, 3-lr)
103 | y = [] # outputs
104 | for si, fi in zip(s, f):
105 | xi = scale_img(x.flip(fi) if fi else x, si)
106 | yi = self.forward_once(xi)[0] # forward
107 | # cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
108 | yi[..., :4] /= si # de-scale
109 | if fi == 2:
110 | yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
111 | elif fi == 3:
112 | yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
113 | y.append(yi)
114 | return torch.cat(y, 1), None # augmented inference, train
115 | else:
116 | return self.forward_once(x, profile) # single-scale inference, train
117 |
118 | def forward_once(self, x, profile=False):
119 | y, dt = [], [] # outputs
120 | for m in self.model:
121 | if m.f != -1: # if not from previous layer
122 | x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
123 |
124 | if profile:
125 | try:
126 | import thop
127 | o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # FLOPS
128 | except:
129 | o = 0
130 | t = time_synchronized()
131 | for _ in range(10):
132 | _ = m(x)
133 | dt.append((time_synchronized() - t) * 100)
134 | print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
135 |
136 | x = m(x) # run
137 | y.append(x if m.i in self.save else None) # save output
138 |
139 | if profile:
140 | print('%.1fms total' % sum(dt))
141 | return x
142 |
143 | def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
144 | # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
145 | m = self.model[-1] # Detect() module
146 | for mi, s in zip(m.m, m.stride): # from
147 | b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
148 | b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
149 | b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
150 | mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
151 |
152 | def _print_biases(self):
153 | m = self.model[-1] # Detect() module
154 | for mi in m.m: # from
155 | b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
156 | print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
157 |
158 | # def _print_weights(self):
159 | # for m in self.model.modules():
160 | # if type(m) is Bottleneck:
161 | # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
162 |
163 | def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
164 | print('Fusing layers... ')
165 | for m in self.model.modules():
166 | if type(m) is Conv and hasattr(m, 'bn'):
167 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
168 | m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
169 | delattr(m, 'bn') # remove batchnorm
170 | m.forward = m.fuseforward # update forward
171 | self.info()
172 | return self
173 |
174 | def add_nms(self): # fuse model Conv2d() + BatchNorm2d() layers
175 | if type(self.model[-1]) is not NMS: # if missing NMS
176 | print('Adding NMS module... ')
177 | m = NMS() # module
178 | m.f = -1 # from
179 | m.i = self.model[-1].i + 1 # index
180 | self.model.add_module(name='%s' % m.i, module=m) # add
181 | return self
182 |
183 | def info(self, verbose=False): # print model information
184 | model_info(self, verbose)
185 |
186 |
187 | def parse_model(d, ch): # model_dict, input_channels(3)
188 | logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
189 | anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
190 | na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
191 | no = na * (nc + 5 + 180) # number of outputs = anchors * (classes + 5)
192 |
193 | layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
194 | for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
195 | m = eval(m) if isinstance(m, str) else m # eval strings
196 | for j, a in enumerate(args):
197 | try:
198 | args[j] = eval(a) if isinstance(a, str) else a # eval strings
199 | except:
200 | pass
201 |
202 | n = max(round(n * gd), 1) if n > 1 else n # depth gain
203 | if m in [Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
204 | c1, c2 = ch[f], args[0]
205 |
206 | # Normal
207 | # if i > 0 and args[0] != no: # channel expansion factor
208 | # ex = 1.75 # exponential (default 2.0)
209 | # e = math.log(c2 / ch[1]) / math.log(2)
210 | # c2 = int(ch[1] * ex ** e)
211 | # if m != Focus:
212 |
213 | c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
214 |
215 | # Experimental
216 | # if i > 0 and args[0] != no: # channel expansion factor
217 | # ex = 1 + gw # exponential (default 2.0)
218 | # ch1 = 32 # ch[1]
219 | # e = math.log(c2 / ch1) / math.log(2) # level 1-n
220 | # c2 = int(ch1 * ex ** e)
221 | # if m != Focus:
222 | # c2 = make_divisible(c2, 8) if c2 != no else c2
223 |
224 | args = [c1, c2, *args[1:]]
225 | if m in [BottleneckCSP, C3]:
226 | args.insert(2, n)
227 | n = 1
228 | elif m is nn.BatchNorm2d:
229 | args = [ch[f]]
230 | elif m is Concat:
231 | c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
232 | elif m is Detect:
233 | args.append([ch[x + 1] for x in f])
234 | if isinstance(args[1], int): # number of anchors
235 | args[1] = [list(range(args[1] * 2))] * len(f)
236 | else:
237 | c2 = ch[f]
238 |
239 | m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
240 | t = str(m)[8:-2].replace('__main__.', '') # module type
241 | np = sum([x.numel() for x in m_.parameters()]) # number params
242 | m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
243 | logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
244 | save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
245 | layers.append(m_)
246 | ch.append(c2)
247 | return nn.Sequential(*layers), sorted(save)
248 |
249 |
250 | if __name__ == '__main__':
251 | parser = argparse.ArgumentParser()
252 | parser.add_argument('--cfg', type=str, default='yolov5m.yaml', help='model.yaml')
253 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
254 | opt = parser.parse_args()
255 | opt.cfg = check_file(opt.cfg) # check file
256 | set_logging()
257 | device = select_device(opt.device)
258 | img = torch.FloatTensor(torch.ones((1,3,640,640))).cuda()
259 |
260 | # Create model
261 | model = Model(opt.cfg).to(device)
262 | model.train()
263 | pre = model(img)
264 | # print(pre)
265 |
266 | # Profile
267 | # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
268 | # y = model(img, profile=True)
269 |
270 | # ONNX export
271 | # model.model[-1].export = True
272 | # torch.onnx.export(model, img, opt.cfg.replace('.yaml', '.onnx'), verbose=True, opset_version=11)
273 |
274 | # Tensorboard
275 | # from torch.utils.tensorboard import SummaryWriter
276 | # tb_writer = SummaryWriter()
277 | # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
278 | # tb_writer.add_graph(model.model, img) # add model to tensorboard
279 | # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
280 |
--------------------------------------------------------------------------------
/models/yolov5l.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 5 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [24,9, 37,12, 52,15] # P3/8
9 | - [64,23, 81,19, 98,29] # P4/16
10 | - [137,27, 199,41, 342,65] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, BottleneckCSP, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, BottleneckCSP, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, BottleneckCSP, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolov5m.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 5 # number of classes
3 | depth_multiple: 0.67 # model depth multiple
4 | width_multiple: 0.75 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [24,9, 37,12, 52,15] # P3/8
9 | - [64,23, 81,19, 98,29] # P4/16
10 | - [137,27, 199,41, 342,65] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, BottleneckCSP, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, BottleneckCSP, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, BottleneckCSP, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolov5s.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 5 # number of classes
3 | depth_multiple: 0.33 # model depth multiple
4 | width_multiple: 0.50 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, BottleneckCSP, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, BottleneckCSP, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 |
30 | [[-1, 1, Conv, [512, 1, 1]],
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
33 | [-1, 3, BottleneckCSP, [512, False]], # 13
34 |
35 | [-1, 1, Conv, [256, 1, 1]],
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
38 | [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
39 |
40 | [-1, 1, Conv, [256, 3, 2]],
41 | [[-1, 14], 1, Concat, [1]], # cat head P4
42 | [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
43 |
44 | [-1, 1, Conv, [512, 3, 2]],
45 | [[-1, 10], 1, Concat, [1]], # cat head P5
46 | [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
47 |
48 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
49 | ]
50 |
--------------------------------------------------------------------------------
/models/yolov5x.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 5 # number of classes
3 | depth_multiple: 1.33 # model depth multiple
4 | width_multiple: 1.25 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [24,9, 37,12, 52,15] # P3/8
9 | - [64,23, 81,19, 98,29] # P4/16
10 | - [137,27, 199,41, 342,65] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, BottleneckCSP, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, BottleneckCSP, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, BottleneckCSP, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/rbox.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/rbox.png
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | # pip install -r requirements.txt
2 |
3 | # base ----------------------------------------
4 | Cython
5 | matplotlib>=3.2.2
6 | numpy>=1.18.5
7 | opencv-python>=4.1.2
8 | pillow
9 | PyYAML>=5.3
10 | scipy>=1.4.1
11 | tensorboard>=2.2
12 | tqdm>=4.41.0
13 | shapely
14 | # coco ----------------------------------------
15 | # pycocotools>=2.0
16 |
17 | # export --------------------------------------
18 | # packaging # for coremltools
19 | # coremltools==4.0
20 | # onnx>=1.7.0
21 | # scikit-learn==0.19.2 # for coreml quantization
22 |
23 | # extras --------------------------------------
24 | # thop # FLOPS computation
25 | # seaborn # plotting
26 |
--------------------------------------------------------------------------------
/result.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/result.png
--------------------------------------------------------------------------------
/retanglelabel2mylabel.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import os
3 | import numpy as np
4 | from shapely.geometry import Polygon, MultiPoint # 多边形
5 | import time
6 | import cv2
7 | import argparse
8 |
9 | from time import sleep
10 | def trans(file, line_, wh_list):
11 | # file = '1001.txt'
12 | path = label_path + '/' + file
13 |
14 | # line = '' + img_path + '/' + os.path.splitext(file)[0] + '.tif'
15 | line = ''
16 | # print(line)
17 | # print(path)
18 | f = open(path)
19 | label = f.read().split()
20 | # print(label)
21 | clss = []
22 | xsets = []
23 | ysets = []
24 | sets = []
25 |
26 |
27 | for i in range(0, len(label), 9):
28 | cls = float(label[i]) - 1
29 | if cls not in clss:
30 | clss.append(cls)
31 | data = np.array(label[i+1:i+9]).astype(int)
32 | data = data.reshape(4, 2)
33 |
34 | rect = cv2.minAreaRect(data) # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度)
35 | # print(rect)
36 | box = cv2.boxPoints(rect).astype(int)
37 |
38 | c_x = rect[0][0]
39 | c_y = rect[0][1]
40 | w = rect[1][0]
41 | h = rect[1][1]
42 | theta = rect[-1]
43 |
44 |
45 | if (theta < -90 or theta > 0) and h < w:
46 | print(w,h)
47 | print(file)
48 | print(theta)
49 | sleep(11111)
50 |
51 | if theta == 0 and w < h:
52 | theta = -90
53 | t = h
54 | h = w
55 | w = t
56 |
57 | if w > h:
58 | t = h
59 | h = w
60 | w = t
61 |
62 |
63 | else:
64 | if theta == 0:
65 | print('dfasd')
66 | theta = 0
67 | else:
68 | theta = 90 + theta
69 |
70 | if w > h :
71 | sleep(1111)
72 |
73 |
74 | # print(c_x, c_y, w, h, theta)
75 | # line = line + ' ' + str(c_x/1024) + ',' + str(c_y/1024) + ',' + str(h / 1024) + ',' + str(w / 1024) + ',' + str(int(theta)) + ',' + str(cls) + ' '
76 | # line = line + ' ' + str(c_x - h / 2) + ',' + str(c_y - w / 2) + ',' + str(c_x + h / 2) + ',' + str(c_y + w / 2) + ',' + str(cls) + ',' + str(int(theta)+90) + ' '
77 | line = line + str(cls) + ' ' + str(c_x / 1024) + ' ' + str(c_y / 1024) + ' ' + str(h / 1024) + ' ' + str(w / 1024) + ' ' + str(int(theta)+90) + '\n'
78 | # line = line + str(cls) + ' ' + str(c_x / 1024) + ' ' + str(c_y / 1024) + ' ' + str(h / 1024) + ' ' + str(
79 | # w / 1024) + ' ' + str(int(theta) + 90) + '\n'
80 | wh_list.append([h/1024, w/1024])
81 | with open(opt.output_path+'/{}'.format(str(int(os.path.splitext(file)[0])+2008) + '.txt'),
82 | 'w+') as f:
83 |
84 | f.write(line)
85 | f.close()
86 | # line_ = line_ + line + '\n'
87 |
88 | # # print(data[:,0].shape)
89 | # # poly = Polygon(data).convex_hull
90 | # d_index = np.argmax(data[:, 0])
91 | # c_index = np.argmax(data[:, 1])
92 | # c_x = (max(data[:, 0]) + min(data[:, 0])) / 2
93 | # c_y = (max(data[:, 1]) + min(data[:, 1])) / 2
94 | # print(data[d_index],data[c_index])
95 | # # print('len:',len(set(data[:,0])))
96 | # if len(set(data[:, 0])) not in xsets:
97 | # xsets.append(len(set(data[:, 0])))
98 | # if len(set(data[:, 1])) not in ysets:
99 | # ysets.append(len(set(data[:, 1])))
100 | # if (len(set(data[:, 1]))*len(set(data[:, 0]))) not in sets:
101 | # sets.append((len(set(data[:, 1]))*len(set(data[:, 0]))))
102 | # if len(set(data[:,0])) < 4 or len(set(data[:,1])) < 4:
103 | #
104 | # if len(set(data[:,0])) == 2 and len(set(data[:,1])) == 2:
105 | #
106 | # print('正规矩形:')
107 | # theta = - np.pi / 2
108 | # right = np.where(data[:, 0]==max(data[:, 0]))
109 | # top = np.where(data[:, 1]==max(data[:, 1]))
110 | # # print(top[0], right[0])
111 | # # h = np.abs(data[top[0][0]][0] - data[top[0][1]][0])
112 | # # w = np.abs(data[right[0][0]][1] - data[right[0][1]][1])
113 | # #
114 | # # print(w , h)
115 | # # if len(set(data[:,0])) == 3 or len(set(data[:,1])) == 3:
116 | #
117 | #
118 | #
119 | # else:
120 | # # print(1)
121 | # theta = - np.arctan((data[c_index][1] - data[d_index][1]) / (data[d_index][0] - data[c_index][0]))
122 | #
123 | # w = np.sqrt((data[c_index][1] - data[d_index][1])**2 + (data[d_index][0] - data[c_index][0])**2)
124 | # h = np.sqrt((data[d_index][0] - data[np.argmin(data[:, 1])][0])**2 +(data[d_index][1] - data[np.argmin(data[:, 1])][1])**2)
125 | # # print(theta)
126 | #
127 | # # print(c_x, c_y, w, h, theta)
128 |
129 | return path, rect, line_, int(theta) + 90, wh_list
130 |
131 |
132 |
133 | if __name__ == '__main__':
134 | parser = argparse.ArgumentParser()
135 | parser.add_argument('--label_path', type=str,
136 | help='label path')
137 | parser.add_argument('--img_path', type=str,
138 | help='images path')
139 | parser.add_argument('--output_path', type=str, default=r'convertor\fold0\labels_output/',
140 | help='label output path')
141 | opt = parser.parse_args()
142 | label_path = opt.label_path
143 | img_path = opt.img_path
144 | all_label = []
145 | cls = []
146 | xsets = []
147 | ysets = []
148 | sets = []
149 | line_ = ''
150 | thetas = []
151 | wh_list = []
152 | for file in os.listdir(label_path):
153 | path, ret, line_, theta, wh_list = trans(file, line_, wh_list)
154 | if theta not in thetas:
155 | thetas.append(theta)
156 | print(len(wh_list))
157 | print(wh_list)
158 | # print(len(thetas), max(thetas),min(thetas))
159 | # with open(r'D:\hjj\yolo4/2007_train_ship_angle_1.txt', 'w+') as f:
160 | #
161 | # f.write(line_)
162 | # f.close()
163 |
--------------------------------------------------------------------------------
/sotabench.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import glob
3 | import json
4 | import os
5 | import shutil
6 | from pathlib import Path
7 |
8 | import numpy as np
9 | import torch
10 | import yaml
11 | from tqdm import tqdm
12 |
13 | from models.experimental import attempt_load
14 | from utils.datasets import create_dataloader
15 | from utils.general import (
16 | coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression, scale_coords,
17 | xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class, set_logging)
18 | from utils.torch_utils import select_device, time_synchronized
19 |
20 |
21 | from sotabencheval.object_detection import COCOEvaluator
22 | from sotabencheval.utils import is_server
23 |
24 | DATA_ROOT = './.data/vision/coco' if is_server() else '../coco' # sotabench data dir
25 |
26 |
27 | def test(data,
28 | weights=None,
29 | batch_size=16,
30 | imgsz=640,
31 | conf_thres=0.001,
32 | iou_thres=0.6, # for NMS
33 | save_json=False,
34 | single_cls=False,
35 | augment=False,
36 | verbose=False,
37 | model=None,
38 | dataloader=None,
39 | save_dir='',
40 | merge=False,
41 | save_txt=False):
42 | # Initialize/load model and set device
43 | training = model is not None
44 | if training: # called by train.py
45 | device = next(model.parameters()).device # get model device
46 |
47 | else: # called directly
48 | set_logging()
49 | device = select_device(opt.device, batch_size=batch_size)
50 | merge, save_txt = opt.merge, opt.save_txt # use Merge NMS, save *.txt labels
51 | if save_txt:
52 | out = Path('inference/output')
53 | if os.path.exists(out):
54 | shutil.rmtree(out) # delete output folder
55 | os.makedirs(out) # make new output folder
56 |
57 | # Remove previous
58 | for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')):
59 | os.remove(f)
60 |
61 | # Load model
62 | model = attempt_load(weights, map_location=device) # load FP32 model
63 | imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
64 |
65 | # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
66 | # if device.type != 'cpu' and torch.cuda.device_count() > 1:
67 | # model = nn.DataParallel(model)
68 |
69 | # Half
70 | half = device.type != 'cpu' # half precision only supported on CUDA
71 | if half:
72 | model.half()
73 |
74 | # Configure
75 | model.eval()
76 | with open(data) as f:
77 | data = yaml.load(f, Loader=yaml.FullLoader) # model dict
78 | check_dataset(data) # check
79 | nc = 1 if single_cls else int(data['nc']) # number of classes
80 | iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
81 | niou = iouv.numel()
82 |
83 | # Dataloader
84 | if not training:
85 | img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
86 | _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
87 | path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
88 | dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
89 | hyp=None, augment=False, cache=True, pad=0.5, rect=True)[0]
90 |
91 | seen = 0
92 | names = model.names if hasattr(model, 'names') else model.module.names
93 | coco91class = coco80_to_coco91_class()
94 | s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
95 | p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
96 | loss = torch.zeros(3, device=device)
97 | jdict, stats, ap, ap_class = [], [], [], []
98 | evaluator = COCOEvaluator(root=DATA_ROOT, model_name=opt.weights.replace('.pt', ''))
99 | for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
100 | img = img.to(device, non_blocking=True)
101 | img = img.half() if half else img.float() # uint8 to fp16/32
102 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
103 | targets = targets.to(device)
104 | nb, _, height, width = img.shape # batch size, channels, height, width
105 | whwh = torch.Tensor([width, height, width, height]).to(device)
106 |
107 | # Disable gradients
108 | with torch.no_grad():
109 | # Run model
110 | t = time_synchronized()
111 | inf_out, train_out = model(img, augment=augment) # inference and training outputs
112 | t0 += time_synchronized() - t
113 |
114 | # Compute loss
115 | if training: # if model has loss hyperparameters
116 | loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
117 |
118 | # Run NMS
119 | t = time_synchronized()
120 | output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge)
121 | t1 += time_synchronized() - t
122 |
123 | # Statistics per image
124 | for si, pred in enumerate(output):
125 | labels = targets[targets[:, 0] == si, 1:]
126 | nl = len(labels)
127 | tcls = labels[:, 0].tolist() if nl else [] # target class
128 | seen += 1
129 |
130 | if pred is None:
131 | if nl:
132 | stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
133 | continue
134 |
135 | # Append to text file
136 | if save_txt:
137 | gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
138 | x = pred.clone()
139 | x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original
140 | for *xyxy, conf, cls in x:
141 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
142 | with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f:
143 | f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
144 |
145 | # Clip boxes to image bounds
146 | clip_coords(pred, (height, width))
147 |
148 | # Append to pycocotools JSON dictionary
149 | if save_json:
150 | # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
151 | image_id = Path(paths[si]).stem
152 | box = pred[:, :4].clone() # xyxy
153 | scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
154 | box = xyxy2xywh(box) # xywh
155 | box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
156 | for p, b in zip(pred.tolist(), box.tolist()):
157 | result = {'image_id': int(image_id) if image_id.isnumeric() else image_id,
158 | 'category_id': coco91class[int(p[5])],
159 | 'bbox': [round(x, 3) for x in b],
160 | 'score': round(p[4], 5)}
161 | jdict.append(result)
162 |
163 | #evaluator.add([result])
164 | #if evaluator.cache_exists:
165 | # break
166 |
167 | # # Assign all predictions as incorrect
168 | # correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
169 | # if nl:
170 | # detected = [] # target indices
171 | # tcls_tensor = labels[:, 0]
172 | #
173 | # # target boxes
174 | # tbox = xywh2xyxy(labels[:, 1:5]) * whwh
175 | #
176 | # # Per target class
177 | # for cls in torch.unique(tcls_tensor):
178 | # ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
179 | # pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
180 | #
181 | # # Search for detections
182 | # if pi.shape[0]:
183 | # # Prediction to target ious
184 | # ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
185 | #
186 | # # Append detections
187 | # detected_set = set()
188 | # for j in (ious > iouv[0]).nonzero(as_tuple=False):
189 | # d = ti[i[j]] # detected target
190 | # if d.item() not in detected_set:
191 | # detected_set.add(d.item())
192 | # detected.append(d)
193 | # correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
194 | # if len(detected) == nl: # all targets already located in image
195 | # break
196 | #
197 | # # Append statistics (correct, conf, pcls, tcls)
198 | # stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
199 |
200 | # # Plot images
201 | # if batch_i < 1:
202 | # f = Path(save_dir) / ('test_batch%g_gt.jpg' % batch_i) # filename
203 | # plot_images(img, targets, paths, str(f), names) # ground truth
204 | # f = Path(save_dir) / ('test_batch%g_pred.jpg' % batch_i)
205 | # plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions
206 |
207 | evaluator.add(jdict)
208 | evaluator.save()
209 |
210 | # # Compute statistics
211 | # stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
212 | # if len(stats) and stats[0].any():
213 | # p, r, ap, f1, ap_class = ap_per_class(*stats)
214 | # p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
215 | # mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
216 | # nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
217 | # else:
218 | # nt = torch.zeros(1)
219 | #
220 | # # Print results
221 | # pf = '%20s' + '%12.3g' * 6 # print format
222 | # print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
223 | #
224 | # # Print results per class
225 | # if verbose and nc > 1 and len(stats):
226 | # for i, c in enumerate(ap_class):
227 | # print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
228 | #
229 | # # Print speeds
230 | # t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
231 | # if not training:
232 | # print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
233 | #
234 | # # Save JSON
235 | # if save_json and len(jdict):
236 | # f = 'detections_val2017_%s_results.json' % \
237 | # (weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename
238 | # print('\nCOCO mAP with pycocotools... saving %s...' % f)
239 | # with open(f, 'w') as file:
240 | # json.dump(jdict, file)
241 | #
242 | # try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
243 | # from pycocotools.coco import COCO
244 | # from pycocotools.cocoeval import COCOeval
245 | #
246 | # imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]
247 | # cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
248 | # cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
249 | # cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
250 | # cocoEval.params.imgIds = imgIds # image IDs to evaluate
251 | # cocoEval.evaluate()
252 | # cocoEval.accumulate()
253 | # cocoEval.summarize()
254 | # map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
255 | # except Exception as e:
256 | # print('ERROR: pycocotools unable to run: %s' % e)
257 | #
258 | # # Return results
259 | # model.float() # for training
260 | # maps = np.zeros(nc) + map
261 | # for i, c in enumerate(ap_class):
262 | # maps[c] = ap[i]
263 | # return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
264 |
265 |
266 | if __name__ == '__main__':
267 | parser = argparse.ArgumentParser(prog='test.py')
268 | parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
269 | parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
270 | parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
271 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
272 | parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
273 | parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
274 | parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
275 | parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
276 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
277 | parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
278 | parser.add_argument('--augment', action='store_true', help='augmented inference')
279 | parser.add_argument('--merge', action='store_true', help='use Merge NMS')
280 | parser.add_argument('--verbose', action='store_true', help='report mAP by class')
281 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
282 | opt = parser.parse_args()
283 | opt.save_json |= opt.data.endswith('coco.yaml')
284 | opt.data = check_file(opt.data) # check file
285 | print(opt)
286 |
287 | if opt.task in ['val', 'test']: # run normally
288 | test(opt.data,
289 | opt.weights,
290 | opt.batch_size,
291 | opt.img_size,
292 | opt.conf_thres,
293 | opt.iou_thres,
294 | opt.save_json,
295 | opt.single_cls,
296 | opt.augment,
297 | opt.verbose)
298 |
299 | elif opt.task == 'study': # run over a range of settings and save/plot
300 | for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
301 | f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
302 | x = list(range(320, 800, 64)) # x axis
303 | y = [] # y axis
304 | for i in x: # img-size
305 | print('\nRunning %s point %s...' % (f, i))
306 | r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
307 | y.append(r + t) # results and times
308 | np.savetxt(f, y, fmt='%10.4g') # save
309 | os.system('zip -r study.zip study_*.txt')
310 | # utils.general.plot_study_txt(f, x) # plot
--------------------------------------------------------------------------------
/test.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import glob
3 | import json
4 | import os
5 | import shutil
6 | from pathlib import Path
7 |
8 | import numpy as np
9 | import torch
10 | import yaml
11 | from tqdm import tqdm
12 |
13 | from models.experimental import attempt_load
14 | from utils.datasets import create_dataloader
15 | from utils.general import (
16 | coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression, scale_coords,
17 | xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class, set_logging)
18 | from utils.torch_utils import select_device, time_synchronized
19 |
20 |
21 | def test(data,
22 | weights=None,
23 | batch_size=16,
24 | imgsz=640,
25 | conf_thres=0.001,
26 | iou_thres=0.6, # for NMS
27 | save_json=False,
28 | single_cls=False,
29 | augment=False,
30 | verbose=False,
31 | model=None,
32 | dataloader=None,
33 | save_dir=Path(''), # for saving images
34 | save_txt=False, # for auto-labelling
35 | plots=True):
36 | # Initialize/load model and set device
37 | training = model is not None
38 | if training: # called by train.py
39 | device = next(model.parameters()).device # get model device
40 |
41 | else: # called directly
42 | set_logging()
43 | device = select_device(opt.device, batch_size=batch_size)
44 | save_txt = opt.save_txt # save *.txt labels
45 | if save_txt:
46 | out = Path('inference/output')
47 | if os.path.exists(out):
48 | shutil.rmtree(out) # delete output folder
49 | os.makedirs(out) # make new output folder
50 |
51 | # Remove previous
52 | for f in glob.glob(str(save_dir / 'test_batch*.jpg')):
53 | os.remove(f)
54 |
55 | # Load model
56 | model = attempt_load(weights, map_location=device) # load FP32 model
57 | imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
58 |
59 | # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
60 | # if device.type != 'cpu' and torch.cuda.device_count() > 1:
61 | # model = nn.DataParallel(model)
62 |
63 | # Half
64 | half = device.type != 'cpu' # half precision only supported on CUDA
65 | if half:
66 | model.half()
67 |
68 | # Configure
69 | model.eval()
70 | with open(data) as f:
71 | data = yaml.load(f, Loader=yaml.FullLoader) # model dict
72 | check_dataset(data) # check
73 | nc = 1 if single_cls else int(data['nc']) # number of classes
74 | iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
75 | niou = iouv.numel()
76 |
77 | # Dataloader
78 | if not training:
79 | img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
80 | _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
81 | path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
82 | dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
83 | hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0]
84 |
85 | seen = 0
86 | names = model.names if hasattr(model, 'names') else model.module.names
87 | coco91class = coco80_to_coco91_class()
88 | s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
89 | p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
90 | loss = torch.zeros(3, device=device)
91 | jdict, stats, ap, ap_class = [], [], [], []
92 | for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
93 | img = img.to(device, non_blocking=True)
94 | img = img.half() if half else img.float() # uint8 to fp16/32
95 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
96 | targets = targets.to(device)
97 | nb, _, height, width = img.shape # batch size, channels, height, width
98 | whwh = torch.Tensor([width, height, width, height]).to(device)
99 |
100 | # Disable gradients
101 | with torch.no_grad():
102 | # Run model
103 | t = time_synchronized()
104 | inf_out, train_out = model(img, augment=augment) # inference and training outputs
105 | t0 += time_synchronized() - t
106 |
107 | # Compute loss
108 | if training: # if model has loss hyperparameters
109 | loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls
110 |
111 | # Run NMS
112 | t = time_synchronized()
113 | output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres)
114 | t1 += time_synchronized() - t
115 |
116 | # Statistics per image
117 | for si, pred in enumerate(output):
118 | labels = targets[targets[:, 0] == si, 1:]
119 | nl = len(labels)
120 | tcls = labels[:, 0].tolist() if nl else [] # target class
121 | seen += 1
122 |
123 | if pred is None:
124 | if nl:
125 | stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
126 | continue
127 |
128 | # Append to text file
129 | if save_txt:
130 | gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
131 | x = pred.clone()
132 | x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original
133 | for *xyxy, conf, cls in x:
134 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
135 | with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f:
136 | f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
137 |
138 | # Clip boxes to image bounds
139 | clip_coords(pred, (height, width))
140 |
141 | # Append to pycocotools JSON dictionary
142 | if save_json:
143 | # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
144 | image_id = Path(paths[si]).stem
145 | box = pred[:, :4].clone() # xyxy
146 | scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
147 | box = xyxy2xywh(box) # xywh
148 | box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
149 | for p, b in zip(pred.tolist(), box.tolist()):
150 | jdict.append({'image_id': int(image_id) if image_id.isnumeric() else image_id,
151 | 'category_id': coco91class[int(p[5])],
152 | 'bbox': [round(x, 3) for x in b],
153 | 'score': round(p[4], 5)})
154 |
155 | # Assign all predictions as incorrect
156 | correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
157 | if nl:
158 | detected = [] # target indices
159 | tcls_tensor = labels[:, 0]
160 |
161 | # target boxes
162 | tbox = xywh2xyxy(labels[:, 1:5]) * whwh
163 |
164 | # Per target class
165 | for cls in torch.unique(tcls_tensor):
166 | ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
167 | pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
168 |
169 | # Search for detections
170 | if pi.shape[0]:
171 | # Prediction to target ious
172 | ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
173 |
174 | # Append detections
175 | detected_set = set()
176 | for j in (ious > iouv[0]).nonzero(as_tuple=False):
177 | d = ti[i[j]] # detected target
178 | if d.item() not in detected_set:
179 | detected_set.add(d.item())
180 | detected.append(d)
181 | correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
182 | if len(detected) == nl: # all targets already located in image
183 | break
184 |
185 | # Append statistics (correct, conf, pcls, tcls)
186 | stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
187 |
188 | # Plot images
189 | # if plots and batch_i < 1:
190 | # f = save_dir / ('test_batch%g_gt.jpg' % batch_i) # filename
191 | # plot_images(img, targets, paths, str(f), names) # ground truth
192 | # f = save_dir / ('test_batch%g_pred.jpg' % batch_i)
193 | # plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions
194 |
195 | # Compute statistics
196 | stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
197 | if len(stats) and stats[0].any():
198 | p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, fname=save_dir / 'precision-recall_curve.png')
199 | p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
200 | mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
201 | nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
202 | else:
203 | nt = torch.zeros(1)
204 |
205 | # Print results
206 | pf = '%20s' + '%12.3g' * 6 # print format
207 | print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
208 |
209 | # Print results per class
210 | if verbose and nc > 1 and len(stats):
211 | for i, c in enumerate(ap_class):
212 | print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
213 |
214 | # Print speeds
215 | t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
216 | if not training:
217 | print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
218 |
219 | # Save JSON
220 | if save_json and len(jdict):
221 | f = 'detections_val2017_%s_results.json' % \
222 | (weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename
223 | print('\nCOCO mAP with pycocotools... saving %s...' % f)
224 | with open(f, 'w') as file:
225 | json.dump(jdict, file)
226 |
227 | try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
228 | from pycocotools.coco import COCO
229 | from pycocotools.cocoeval import COCOeval
230 |
231 | imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]
232 | cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
233 | cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
234 | cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
235 | cocoEval.params.imgIds = imgIds # image IDs to evaluate
236 | cocoEval.evaluate()
237 | cocoEval.accumulate()
238 | cocoEval.summarize()
239 | map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
240 | except Exception as e:
241 | print('ERROR: pycocotools unable to run: %s' % e)
242 |
243 | # Return results
244 | model.float() # for training
245 | maps = np.zeros(nc) + map
246 | for i, c in enumerate(ap_class):
247 | maps[c] = ap[i]
248 | return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
249 |
250 |
251 | if __name__ == '__main__':
252 | parser = argparse.ArgumentParser(prog='test.py')
253 | parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
254 | parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
255 | parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
256 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
257 | parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
258 | parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
259 | parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
260 | parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
261 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
262 | parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
263 | parser.add_argument('--augment', action='store_true', help='augmented inference')
264 | parser.add_argument('--verbose', action='store_true', help='report mAP by class')
265 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
266 | opt = parser.parse_args()
267 | opt.save_json |= opt.data.endswith('coco.yaml')
268 | opt.data = check_file(opt.data) # check file
269 | print(opt)
270 |
271 | if opt.task in ['val', 'test']: # run normally
272 | test(opt.data,
273 | opt.weights,
274 | opt.batch_size,
275 | opt.img_size,
276 | opt.conf_thres,
277 | opt.iou_thres,
278 | opt.save_json,
279 | opt.single_cls,
280 | opt.augment,
281 | opt.verbose)
282 |
283 | elif opt.task == 'study': # run over a range of settings and save/plot
284 | for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
285 | f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
286 | x = list(range(320, 800, 64)) # x axis
287 | y = [] # y axis
288 | for i in x: # img-size
289 | print('\nRunning %s point %s...' % (f, i))
290 | r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
291 | y.append(r + t) # results and times
292 | np.savetxt(f, y, fmt='%10.4g') # save
293 | os.system('zip -r study.zip study_*.txt')
294 | # utils.general.plot_study_txt(f, x) # plot
295 |
--------------------------------------------------------------------------------
/test2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/test2.jpg
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import logging
3 | import math
4 | import os
5 | import random
6 | import shutil
7 | import time
8 | from pathlib import Path
9 |
10 | import numpy as np
11 | import torch.distributed as dist
12 | import torch.nn.functional as F
13 | import torch.optim as optim
14 | import torch.optim.lr_scheduler as lr_scheduler
15 | import torch.utils.data
16 | import yaml
17 | from torch.cuda import amp
18 | from torch.nn.parallel import DistributedDataParallel as DDP
19 | from torch.utils.tensorboard import SummaryWriter
20 | from tqdm import tqdm
21 |
22 | import test # import test.py to get mAP after each epoch
23 | from models.yolo import Model
24 | from utils.datasets import create_dataloader
25 | from utils.general import (
26 | torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors, labels_to_image_weights,
27 | compute_loss, plot_images, fitness, strip_optimizer, plot_results, get_latest_run, check_dataset, check_file,
28 | check_git_status, check_img_size, increment_dir, print_mutation, plot_evolution, set_logging, init_seeds)
29 | from utils.google_utils import attempt_download
30 | from utils.torch_utils import ModelEMA, select_device, intersect_dicts
31 |
32 | logger = logging.getLogger(__name__)
33 |
34 |
35 | def train(hyp, opt, device, tb_writer=None):
36 | logger.info(f'Hyperparameters {hyp}')
37 | log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory
38 | wdir = log_dir / 'weights' # weights directory
39 | os.makedirs(wdir, exist_ok=True)
40 | last = wdir / 'last.pt'
41 | best = wdir / 'best.pt'
42 | results_file = str(log_dir / 'results.txt')
43 | epochs, batch_size, total_batch_size, weights, rank = \
44 | opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
45 |
46 | # Save run settings
47 | with open(log_dir / 'hyp.yaml', 'w') as f:
48 | yaml.dump(hyp, f, sort_keys=False)
49 | with open(log_dir / 'opt.yaml', 'w') as f:
50 | yaml.dump(vars(opt), f, sort_keys=False)
51 |
52 | # Configure
53 | cuda = device.type != 'cpu'
54 | init_seeds(2 + rank)
55 | with open(opt.data) as f:
56 | data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dict
57 | with torch_distributed_zero_first(rank):
58 | check_dataset(data_dict) # check
59 | train_path = data_dict['train']
60 | test_path = data_dict['val']
61 | nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
62 | assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
63 |
64 | # Model
65 | pretrained = weights.endswith('.pt')
66 | if pretrained:
67 | with torch_distributed_zero_first(rank):
68 | attempt_download(weights) # download if not found locally
69 | ckpt = torch.load(weights, map_location=device) # load checkpoint
70 | if hyp.get('anchors'):
71 | ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchor
72 | model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
73 | exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [] # exclude keys
74 | state_dict = ckpt['model'].float().state_dict() # to FP32
75 | state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
76 | model.load_state_dict(state_dict, strict=False) # load
77 | logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
78 | else:
79 | model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
80 |
81 | # Freeze
82 | freeze = ['', ] # parameter names to freeze (full or partial)
83 | if any(freeze):
84 | for k, v in model.named_parameters():
85 | if any(x in k for x in freeze):
86 | print('freezing %s' % k)
87 | v.requires_grad = False
88 |
89 | # Optimizer
90 | nbs = 64 # nominal batch size
91 | accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
92 | hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
93 |
94 | pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
95 | for k, v in model.named_parameters():
96 | v.requires_grad = True
97 | if '.bias' in k:
98 | pg2.append(v) # biases
99 | elif '.weight' in k and '.bn' not in k:
100 | pg1.append(v) # apply weight decay
101 | else:
102 | pg0.append(v) # all else
103 |
104 | if opt.adam:
105 | optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
106 | else:
107 | optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
108 |
109 | optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
110 | optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
111 | logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
112 | del pg0, pg1, pg2
113 |
114 | # Scheduler https://arxiv.org/pdf/1812.01187.pdf
115 | # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
116 | lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf'] # cosine
117 | scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
118 | # plot_lr_scheduler(optimizer, scheduler, epochs)
119 |
120 | # Resume
121 | start_epoch, best_fitness = 0, 0.0
122 | if pretrained:
123 | # Optimizer
124 | if ckpt['optimizer'] is not None:
125 | optimizer.load_state_dict(ckpt['optimizer'])
126 | best_fitness = ckpt['best_fitness']
127 |
128 | # Results
129 | if ckpt.get('training_results') is not None:
130 | with open(results_file, 'w') as file:
131 | file.write(ckpt['training_results']) # write results.txt
132 |
133 | # Epochs
134 | start_epoch = ckpt['epoch'] + 1
135 | if opt.resume:
136 | assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
137 | shutil.copytree(wdir, wdir.parent / f'weights_backup_epoch{start_epoch - 1}') # save previous weights
138 | if epochs < start_epoch:
139 | logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
140 | (weights, ckpt['epoch'], epochs))
141 | epochs += ckpt['epoch'] # finetune additional epochs
142 |
143 | del ckpt, state_dict
144 |
145 | # Image sizes
146 | gs = int(max(model.stride)) # grid size (max stride)
147 | imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
148 |
149 | # DP mode
150 | if cuda and rank == -1 and torch.cuda.device_count() > 1:
151 | model = torch.nn.DataParallel(model)
152 |
153 | # SyncBatchNorm
154 | if opt.sync_bn and cuda and rank != -1:
155 | model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
156 | logger.info('Using SyncBatchNorm()')
157 |
158 | # Exponential moving average
159 | ema = ModelEMA(model) if rank in [-1, 0] else None
160 |
161 | # DDP mode
162 | if cuda and rank != -1:
163 | model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)
164 |
165 | # Trainloader
166 | print("train loader!")
167 | dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
168 | hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect,
169 | rank=rank, world_size=opt.world_size, workers=opt.workers)
170 | mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
171 | nb = len(dataloader) # number of batches
172 | assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
173 |
174 | # Process 0
175 | if rank in [-1, 0]:
176 | ema.updates = start_epoch * nb // accumulate # set EMA updates
177 | print("test loader!")
178 | testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,
179 | hyp=hyp, augment=False, cache=opt.cache_images and not opt.notest, rect=True,
180 | rank=-1, world_size=opt.world_size, workers=opt.workers)[0] # testloader
181 |
182 | if not opt.resume:
183 | labels = np.concatenate(dataset.labels, 0)
184 | c = torch.tensor(labels[:, 0]) # classes
185 | # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
186 | # model._initialize_biases(cf.to(device))
187 | plot_labels(labels, save_dir=log_dir)
188 | if tb_writer:
189 | # tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384
190 | tb_writer.add_histogram('classes', c, 0)
191 |
192 | # Anchors
193 | if not opt.noautoanchor:
194 | check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
195 |
196 | # Model parameters
197 | hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
198 | model.nc = nc # attach number of classes to model
199 | model.hyp = hyp # attach hyperparameters to model
200 | model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
201 | model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
202 | model.names = names
203 |
204 | # Start training
205 | t0 = time.time()
206 | nw = max(round(hyp['warmup_epochs'] * nb), 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
207 | # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
208 | maps = np.zeros(nc) # mAP per class
209 | results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
210 | scheduler.last_epoch = start_epoch - 1 # do not move
211 | scaler = amp.GradScaler(enabled=cuda)
212 | logger.info('Image sizes %g train, %g test\nUsing %g dataloader workers\nLogging results to %s\n'
213 | 'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))
214 | for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
215 | model.train()
216 |
217 | # Update image weights (optional)
218 | if opt.image_weights:
219 | # Generate indices
220 | if rank in [-1, 0]:
221 | cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
222 | iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
223 | dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
224 | # Broadcast if DDP
225 | if rank != -1:
226 | indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
227 | dist.broadcast(indices, 0)
228 | if rank != 0:
229 | dataset.indices = indices.cpu().numpy()
230 |
231 | # Update mosaic border
232 | # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
233 | # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
234 |
235 | mloss = torch.zeros(5, device=device) # mean losses
236 | if rank != -1:
237 | dataloader.sampler.set_epoch(epoch)
238 | pbar = enumerate(dataloader)
239 | logger.info(('\n' + '%10s' * 9) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'angle', 'total', 'targets', 'img_size'))
240 | if rank in [-1, 0]:
241 | pbar = tqdm(pbar, total=nb) # progress bar
242 | optimizer.zero_grad()
243 | for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
244 | ni = i + nb * epoch # number integrated batches (since train start)
245 | imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
246 |
247 | # Warmup
248 | if ni <= nw:
249 | xi = [0, nw] # x interp
250 | # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
251 | accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
252 | for j, x in enumerate(optimizer.param_groups):
253 | # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
254 | x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
255 | if 'momentum' in x:
256 | x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
257 |
258 | # Multi-scale
259 | if opt.multi_scale:
260 | sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
261 | sf = sz / max(imgs.shape[2:]) # scale factor
262 | if sf != 1:
263 | ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
264 | imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
265 |
266 | # Forward
267 | with amp.autocast(enabled=cuda):
268 | pred = model(imgs) # forward
269 | loss, loss_items = compute_loss(pred, targets.to(device), model) # loss scaled by batch_size
270 | if rank != -1:
271 | loss *= opt.world_size # gradient averaged between devices in DDP mode
272 |
273 | # Backward
274 | scaler.scale(loss).backward()
275 |
276 | # Optimize
277 | if ni % accumulate == 0:
278 | scaler.step(optimizer) # optimizer.step
279 | scaler.update()
280 | optimizer.zero_grad()
281 | if ema:
282 | ema.update(model)
283 |
284 | # Print
285 | if rank in [-1, 0]:
286 | mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
287 | mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
288 | s = ('%10s' * 2 + '%10.4g' * 7) % (
289 | '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
290 | pbar.set_description(s)
291 |
292 | # # Plot
293 | # if ni < 3:
294 | # f = str(log_dir / ('train_batch%g.jpg' % ni)) # filename
295 | # result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
296 | # if tb_writer and result is not None:
297 | # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
298 | # # tb_writer.add_graph(model, imgs) # add model to tensorboard
299 |
300 | # end batch ------------------------------------------------------------------------------------------------
301 |
302 | # Scheduler
303 | lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
304 | scheduler.step()
305 |
306 | # DDP process 0 or single-GPU
307 | if rank in [-1, 0]:
308 | # mAP
309 | if ema:
310 | ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
311 | final_epoch = epoch + 1 == epochs
312 | if not opt.notest or final_epoch: # Calculate mAP
313 | results, maps, times = test.test(opt.data,
314 | batch_size=total_batch_size,
315 | imgsz=imgsz_test,
316 | model=ema.ema,
317 | single_cls=opt.single_cls,
318 | dataloader=testloader,
319 | save_dir=log_dir,
320 | plots=epoch == 0 or final_epoch) # plot first and last
321 |
322 | # Write
323 | with open(results_file, 'a') as f:
324 | f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
325 | if len(opt.name) and opt.bucket:
326 | os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
327 |
328 | # Tensorboard
329 | if tb_writer:
330 | tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
331 | 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
332 | 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
333 | 'x/lr0', 'x/lr1', 'x/lr2'] # params
334 | for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
335 | tb_writer.add_scalar(tag, x, epoch)
336 |
337 | # Update best mAP
338 | fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
339 | if fi > best_fitness:
340 | best_fitness = fi
341 |
342 | # Save model
343 | save = (not opt.nosave) or (final_epoch and not opt.evolve)
344 | if save:
345 | with open(results_file, 'r') as f: # create checkpoint
346 | ckpt = {'epoch': epoch,
347 | 'best_fitness': best_fitness,
348 | 'training_results': f.read(),
349 | 'model': ema.ema,
350 | 'optimizer': None if final_epoch else optimizer.state_dict()}
351 |
352 | # Save last, best and delete
353 | torch.save(ckpt, last)
354 | if best_fitness == fi:
355 | torch.save(ckpt, best)
356 | del ckpt
357 | # end epoch ----------------------------------------------------------------------------------------------------
358 | # end training
359 |
360 | if rank in [-1, 0]:
361 | # Strip optimizers
362 | n = opt.name if opt.name.isnumeric() else ''
363 | fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
364 | for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]):
365 | if os.path.exists(f1):
366 | os.rename(f1, f2) # rename
367 | if str(f2).endswith('.pt'): # is *.pt
368 | strip_optimizer(f2) # strip optimizer
369 | os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None # upload
370 | # Finish
371 | if not opt.evolve:
372 | plot_results(save_dir=log_dir) # save as results.png
373 | logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
374 |
375 | dist.destroy_process_group() if rank not in [-1, 0] else None
376 | torch.cuda.empty_cache()
377 | return results
378 |
379 |
380 | if __name__ == '__main__':
381 | parser = argparse.ArgumentParser()
382 | parser.add_argument('--weights', type=str, default='weights/10.28-0.5angle.pt', help='initial weights path')
383 | parser.add_argument('--cfg', type=str, default='models/yolov5l.yaml', help='model.yaml path')
384 | parser.add_argument('--data', type=str, default='data/wheat0.yaml', help='data.yaml path')
385 | parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
386 | parser.add_argument('--epochs', type=int, default=60)
387 | parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
388 | parser.add_argument('--img-size', nargs='+', type=int, default=[1024, 1024], help='[train, test] image sizes')
389 | parser.add_argument('--rect', action='store_true', help='rectangular training')
390 | parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
391 | parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
392 | parser.add_argument('--notest', action='store_true', default=True, help='only test final epoch')
393 | parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
394 | parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
395 | parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
396 | parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
397 | parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
398 | parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
399 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
400 | parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
401 | parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
402 | parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
403 | parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
404 | parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
405 | parser.add_argument('--logdir', type=str, default='runs/', help='logging directory')
406 | parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
407 | opt = parser.parse_args()
408 |
409 | # Set DDP variables
410 | opt.total_batch_size = opt.batch_size
411 | opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
412 | opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
413 | set_logging(opt.global_rank)
414 | if opt.global_rank in [-1, 0]:
415 | check_git_status()
416 |
417 | # Resume
418 | if opt.resume: # resume an interrupted run
419 | ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
420 | log_dir = Path(ckpt).parent.parent # runs/exp0
421 | assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
422 | with open(log_dir / 'opt.yaml') as f:
423 | opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader)) # replace
424 | opt.cfg, opt.weights, opt.resume = '', ckpt, True
425 | logger.info('Resuming training from %s' % ckpt)
426 |
427 | else:
428 | # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
429 | opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
430 | assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
431 | opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
432 | log_dir = increment_dir(Path(opt.logdir) / 'exp', opt.name) # runs/exp1
433 |
434 | device = select_device(opt.device, batch_size=opt.batch_size)
435 |
436 | # DDP mode
437 | if opt.local_rank != -1:
438 | assert torch.cuda.device_count() > opt.local_rank
439 | torch.cuda.set_device(opt.local_rank)
440 | device = torch.device('cuda', opt.local_rank)
441 | dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
442 | assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
443 | opt.batch_size = opt.total_batch_size // opt.world_size
444 |
445 | logger.info(opt)
446 | with open(opt.hyp) as f:
447 | hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
448 |
449 | # Train
450 | if not opt.evolve:
451 | tb_writer = None
452 | if opt.global_rank in [-1, 0]:
453 | logger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)
454 | tb_writer = SummaryWriter(log_dir=log_dir) # runs/exp0
455 |
456 | train(hyp, opt, device, tb_writer)
457 |
458 | # Evolve hyperparameters (optional)
459 | else:
460 | # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
461 | meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
462 | 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
463 | 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
464 | 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
465 | 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
466 | 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
467 | 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
468 | 'box': (1, 0.02, 0.2), # box loss gain
469 | 'cls': (1, 0.2, 4.0), # cls loss gain
470 | 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
471 | 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
472 | 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
473 | 'iou_t': (0, 0.1, 0.7), # IoU training threshold
474 | 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
475 | 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
476 | 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
477 | 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
478 | 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
479 | 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
480 | 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
481 | 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
482 | 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
483 | 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
484 | 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
485 | 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
486 | 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
487 | 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
488 | 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
489 |
490 | assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
491 | opt.notest, opt.nosave = True, True # only test/save final epoch
492 | # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
493 | yaml_file = Path('runs/evolve/hyp_evolved.yaml') # save best result here
494 | if opt.bucket:
495 | os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
496 |
497 | for _ in range(300): # generations to evolve
498 | if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
499 | # Select parent(s)
500 | parent = 'single' # parent selection method: 'single' or 'weighted'
501 | x = np.loadtxt('evolve.txt', ndmin=2)
502 | n = min(5, len(x)) # number of previous results to consider
503 | x = x[np.argsort(-fitness(x))][:n] # top n mutations
504 | w = fitness(x) - fitness(x).min() # weights
505 | if parent == 'single' or len(x) == 1:
506 | # x = x[random.randint(0, n - 1)] # random selection
507 | x = x[random.choices(range(n), weights=w)[0]] # weighted selection
508 | elif parent == 'weighted':
509 | x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
510 |
511 | # Mutate
512 | mp, s = 0.8, 0.2 # mutation probability, sigma
513 | npr = np.random
514 | npr.seed(int(time.time()))
515 | g = np.array([x[0] for x in meta.values()]) # gains 0-1
516 | ng = len(meta)
517 | v = np.ones(ng)
518 | while all(v == 1): # mutate until a change occurs (prevent duplicates)
519 | v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
520 | for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
521 | hyp[k] = float(x[i + 7] * v[i]) # mutate
522 |
523 | # Constrain to limits
524 | for k, v in meta.items():
525 | hyp[k] = max(hyp[k], v[1]) # lower limit
526 | hyp[k] = min(hyp[k], v[2]) # upper limit
527 | hyp[k] = round(hyp[k], 5) # significant digits
528 |
529 | # Train mutation
530 | results = train(hyp.copy(), opt, device)
531 |
532 | # Write mutation results
533 | print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
534 |
535 | # Plot results
536 | plot_evolution(yaml_file)
537 | print('Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these '
538 | 'hyperparameters: $ python train.py --hyp %s' % (yaml_file, yaml_file))
539 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/utils/__init__.py
--------------------------------------------------------------------------------
/utils/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/utils/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/datasets.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/utils/__pycache__/datasets.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/general.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/utils/__pycache__/general.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/google_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/utils/__pycache__/google_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/torch_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/BossZard/rotation-yolov5/6d1303ef08c4fd1ee8e92b7ef88a9e1e3acdd2cc/utils/__pycache__/torch_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/activations.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 |
5 |
6 | # Swish https://arxiv.org/pdf/1905.02244.pdf ---------------------------------------------------------------------------
7 | class Swish(nn.Module): #
8 | @staticmethod
9 | def forward(x):
10 | return x * torch.sigmoid(x)
11 |
12 |
13 | class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
14 | @staticmethod
15 | def forward(x):
16 | # return x * F.hardsigmoid(x) # for torchscript and CoreML
17 | return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
18 |
19 |
20 | class MemoryEfficientSwish(nn.Module):
21 | class F(torch.autograd.Function):
22 | @staticmethod
23 | def forward(ctx, x):
24 | ctx.save_for_backward(x)
25 | return x * torch.sigmoid(x)
26 |
27 | @staticmethod
28 | def backward(ctx, grad_output):
29 | x = ctx.saved_tensors[0]
30 | sx = torch.sigmoid(x)
31 | return grad_output * (sx * (1 + x * (1 - sx)))
32 |
33 | def forward(self, x):
34 | return self.F.apply(x)
35 |
36 |
37 | # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
38 | class Mish(nn.Module):
39 | @staticmethod
40 | def forward(x):
41 | return x * F.softplus(x).tanh()
42 |
43 |
44 | class MemoryEfficientMish(nn.Module):
45 | class F(torch.autograd.Function):
46 | @staticmethod
47 | def forward(ctx, x):
48 | ctx.save_for_backward(x)
49 | return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
50 |
51 | @staticmethod
52 | def backward(ctx, grad_output):
53 | x = ctx.saved_tensors[0]
54 | sx = torch.sigmoid(x)
55 | fx = F.softplus(x).tanh()
56 | return grad_output * (fx + x * sx * (1 - fx * fx))
57 |
58 | def forward(self, x):
59 | return self.F.apply(x)
60 |
61 |
62 | # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
63 | class FReLU(nn.Module):
64 | def __init__(self, c1, k=3): # ch_in, kernel
65 | super().__init__()
66 | self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1)
67 | self.bn = nn.BatchNorm2d(c1)
68 |
69 | def forward(self, x):
70 | return torch.max(x, self.bn(self.conv(x)))
71 |
--------------------------------------------------------------------------------
/utils/evolve.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Hyperparameter evolution commands (avoids CUDA memory leakage issues)
3 | # Replaces train.py python generations 'for' loop with a bash 'for' loop
4 |
5 | # Start on 4-GPU machine
6 | #for i in 0 1 2 3; do
7 | # t=ultralytics/yolov5:evolve && sudo docker pull $t && sudo docker run -d --ipc=host --gpus all -v "$(pwd)"/VOC:/usr/src/VOC $t bash utils/evolve.sh $i
8 | # sleep 60 # avoid simultaneous evolve.txt read/write
9 | #done
10 |
11 | # Hyperparameter evolution commands
12 | while true; do
13 | # python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50 --evolve --bucket ult/evolve/voc --device $1
14 | python train.py --batch 40 --weights yolov5m.pt --data coco.yaml --img 640 --epochs 30 --evolve --bucket ult/evolve/coco --device $1
15 | done
16 |
--------------------------------------------------------------------------------
/utils/google_app_engine/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM gcr.io/google-appengine/python
2 |
3 | # Create a virtualenv for dependencies. This isolates these packages from
4 | # system-level packages.
5 | # Use -p python3 or -p python3.7 to select python version. Default is version 2.
6 | RUN virtualenv /env -p python3
7 |
8 | # Setting these environment variables are the same as running
9 | # source /env/bin/activate.
10 | ENV VIRTUAL_ENV /env
11 | ENV PATH /env/bin:$PATH
12 |
13 | RUN apt-get update && apt-get install -y python-opencv
14 |
15 | # Copy the application's requirements.txt and run pip to install all
16 | # dependencies into the virtualenv.
17 | ADD requirements.txt /app/requirements.txt
18 | RUN pip install -r /app/requirements.txt
19 |
20 | # Add the application source code.
21 | ADD . /app
22 |
23 | # Run a WSGI server to serve the application. gunicorn must be declared as
24 | # a dependency in requirements.txt.
25 | CMD gunicorn -b :$PORT main:app
26 |
--------------------------------------------------------------------------------
/utils/google_app_engine/additional_requirements.txt:
--------------------------------------------------------------------------------
1 | # add these requirements in your app on top of the existing ones
2 | pip==18.1
3 | Flask==1.0.2
4 | gunicorn==19.9.0
5 |
--------------------------------------------------------------------------------
/utils/google_app_engine/app.yaml:
--------------------------------------------------------------------------------
1 | runtime: custom
2 | env: flex
3 |
4 | service: yolov5app
5 |
6 | liveness_check:
7 | initial_delay_sec: 600
8 |
9 | manual_scaling:
10 | instances: 1
11 | resources:
12 | cpu: 1
13 | memory_gb: 4
14 | disk_size_gb: 20
--------------------------------------------------------------------------------
/utils/google_utils.py:
--------------------------------------------------------------------------------
1 | # This file contains google utils: https://cloud.google.com/storage/docs/reference/libraries
2 | # pip install --upgrade google-cloud-storage
3 | # from google.cloud import storage
4 |
5 | import os
6 | import platform
7 | import subprocess
8 | import time
9 | from pathlib import Path
10 |
11 | import torch
12 |
13 |
14 | def gsutil_getsize(url=''):
15 | # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
16 | s = subprocess.check_output('gsutil du %s' % url, shell=True).decode('utf-8')
17 | return eval(s.split(' ')[0]) if len(s) else 0 # bytes
18 |
19 |
20 | def attempt_download(weights):
21 | # Attempt to download pretrained weights if not found locally
22 | weights = weights.strip().replace("'", '')
23 | file = Path(weights).name
24 |
25 | msg = weights + ' missing, try downloading from https://github.com/ultralytics/yolov5/releases/'
26 | models = ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt'] # available models
27 |
28 | if file in models and not os.path.isfile(weights):
29 | # Google Drive
30 | # d = {'yolov5s.pt': '1R5T6rIyy3lLwgFXNms8whc-387H0tMQO',
31 | # 'yolov5m.pt': '1vobuEExpWQVpXExsJ2w-Mbf3HJjWkQJr',
32 | # 'yolov5l.pt': '1hrlqD1Wdei7UT4OgT785BEk1JwnSvNEV',
33 | # 'yolov5x.pt': '1mM8aZJlWTxOg7BZJvNUMrTnA2AbeCVzS'}
34 | # r = gdrive_download(id=d[file], name=weights) if file in d else 1
35 | # if r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6: # check
36 | # return
37 |
38 | try: # GitHub
39 | url = 'https://github.com/ultralytics/yolov5/releases/download/v3.0/' + file
40 | print('Downloading %s to %s...' % (url, weights))
41 | torch.hub.download_url_to_file(url, weights)
42 | assert os.path.exists(weights) and os.path.getsize(weights) > 1E6 # check
43 | except Exception as e: # GCP
44 | print('Download error: %s' % e)
45 | url = 'https://storage.googleapis.com/ultralytics/yolov5/ckpt/' + file
46 | print('Downloading %s to %s...' % (url, weights))
47 | r = os.system('curl -L %s -o %s' % (url, weights)) # torch.hub.download_url_to_file(url, weights)
48 | finally:
49 | if not (os.path.exists(weights) and os.path.getsize(weights) > 1E6): # check
50 | os.remove(weights) if os.path.exists(weights) else None # remove partial downloads
51 | print('ERROR: Download failure: %s' % msg)
52 | print('')
53 | return
54 |
55 |
56 | def gdrive_download(id='1n_oKgR81BJtqk75b00eAjdv03qVCQn2f', name='coco128.zip'):
57 | # Downloads a file from Google Drive. from utils.google_utils import *; gdrive_download()
58 | t = time.time()
59 |
60 | print('Downloading https://drive.google.com/uc?export=download&id=%s as %s... ' % (id, name), end='')
61 | os.remove(name) if os.path.exists(name) else None # remove existing
62 | os.remove('cookie') if os.path.exists('cookie') else None
63 |
64 | # Attempt file download
65 | out = "NUL" if platform.system() == "Windows" else "/dev/null"
66 | os.system('curl -c ./cookie -s -L "drive.google.com/uc?export=download&id=%s" > %s ' % (id, out))
67 | if os.path.exists('cookie'): # large file
68 | s = 'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm=%s&id=%s" -o %s' % (get_token(), id, name)
69 | else: # small file
70 | s = 'curl -s -L -o %s "drive.google.com/uc?export=download&id=%s"' % (name, id)
71 | r = os.system(s) # execute, capture return
72 | os.remove('cookie') if os.path.exists('cookie') else None
73 |
74 | # Error check
75 | if r != 0:
76 | os.remove(name) if os.path.exists(name) else None # remove partial
77 | print('Download error ') # raise Exception('Download error')
78 | return r
79 |
80 | # Unzip if archive
81 | if name.endswith('.zip'):
82 | print('unzipping... ', end='')
83 | os.system('unzip -q %s' % name) # unzip
84 | os.remove(name) # remove zip to free space
85 |
86 | print('Done (%.1fs)' % (time.time() - t))
87 | return r
88 |
89 |
90 | def get_token(cookie="./cookie"):
91 | with open(cookie) as f:
92 | for line in f:
93 | if "download" in line:
94 | return line.split()[-1]
95 | return ""
96 |
97 | # def upload_blob(bucket_name, source_file_name, destination_blob_name):
98 | # # Uploads a file to a bucket
99 | # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
100 | #
101 | # storage_client = storage.Client()
102 | # bucket = storage_client.get_bucket(bucket_name)
103 | # blob = bucket.blob(destination_blob_name)
104 | #
105 | # blob.upload_from_filename(source_file_name)
106 | #
107 | # print('File {} uploaded to {}.'.format(
108 | # source_file_name,
109 | # destination_blob_name))
110 | #
111 | #
112 | # def download_blob(bucket_name, source_blob_name, destination_file_name):
113 | # # Uploads a blob from a bucket
114 | # storage_client = storage.Client()
115 | # bucket = storage_client.get_bucket(bucket_name)
116 | # blob = bucket.blob(source_blob_name)
117 | #
118 | # blob.download_to_filename(destination_file_name)
119 | #
120 | # print('Blob {} downloaded to {}.'.format(
121 | # source_blob_name,
122 | # destination_file_name))
123 |
--------------------------------------------------------------------------------
/utils/kmeans_for_anchors.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import xml.etree.ElementTree as ET
3 | import glob
4 | import random
5 | import cv2
6 | import os
7 | import numpy as np
8 | from shapely.geometry import Polygon, MultiPoint # 多边形
9 | import time
10 | import cv2
11 | import argparse
12 |
13 | from time import sleep
14 | def trans(file, line_, wh_list):
15 | # file = '1001.txt'
16 | path = opt.label_path + '/' + file
17 |
18 | # line = '' + img_path + '/' + os.path.splitext(file)[0] + '.tif'
19 | line = ''
20 | # print(line)
21 | # print(path)
22 | f = open(path)
23 | label = f.read().split()
24 | # print(label)
25 | clss = []
26 | xsets = []
27 | ysets = []
28 | sets = []
29 |
30 |
31 | for i in range(0, len(label), 9):
32 | cls = float(label[i]) - 1
33 | if cls not in clss:
34 | clss.append(cls)
35 | data = np.array(label[i+1:i+9]).astype(int)
36 | data = data.reshape(4, 2)
37 |
38 | rect = cv2.minAreaRect(data) # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度)
39 | # print(rect)
40 | box = cv2.boxPoints(rect).astype(int)
41 |
42 | c_x = rect[0][0]
43 | c_y = rect[0][1]
44 | w = rect[1][0]
45 | h = rect[1][1]
46 | theta = rect[-1]
47 |
48 |
49 | if (theta < -90 or theta > 0) and h < w:
50 | print(w,h)
51 | print(file)
52 | print(theta)
53 | sleep(11111)
54 |
55 | if theta == 0 and w < h:
56 | theta = -90
57 | t = h
58 | h = w
59 | w = t
60 |
61 | if w > h:
62 | t = h
63 | h = w
64 | w = t
65 |
66 |
67 | else:
68 | if theta == 0:
69 | print('dfasd')
70 | theta = 0
71 | else:
72 | theta = 90 + theta
73 |
74 | if w > h :
75 | sleep(1111)
76 |
77 |
78 | # print(c_x, c_y, w, h, theta)
79 | # line = line + ' ' + str(c_x/1024) + ',' + str(c_y/1024) + ',' + str(h / 1024) + ',' + str(w / 1024) + ',' + str(int(theta)) + ',' + str(cls) + ' '
80 | # line = line + ' ' + str(c_x - h / 2) + ',' + str(c_y - w / 2) + ',' + str(c_x + h / 2) + ',' + str(c_y + w / 2) + ',' + str(cls) + ',' + str(int(theta)+90) + ' '
81 | line = line + str(cls) + ' ' + str(c_x / 1024) + ' ' + str(c_y / 1024) + ' ' + str(h / 1024) + ' ' + str(w / 1024) + ' ' + str(int(theta)+90) + '\n'
82 | # line = line + str(cls) + ' ' + str(c_x / 1024) + ' ' + str(c_y / 1024) + ' ' + str(h / 1024) + ' ' + str(
83 | # w / 1024) + ' ' + str(int(theta) + 90) + '\n'
84 | wh_list.append([h/1024, w/1024])
85 | # with open(r'D:\hjj\yolov5-master\convertor\fold0\labels\theta\{}'.format(os.path.splitext(file)[0] + '.txt'),
86 | # 'w+') as f:
87 | #
88 | # f.write(line)
89 | # f.close()
90 | line_ = line_ + line + '\n'
91 |
92 | # # print(data[:,0].shape)
93 | # # poly = Polygon(data).convex_hull
94 | # d_index = np.argmax(data[:, 0])
95 | # c_index = np.argmax(data[:, 1])
96 | # c_x = (max(data[:, 0]) + min(data[:, 0])) / 2
97 | # c_y = (max(data[:, 1]) + min(data[:, 1])) / 2
98 | # print(data[d_index],data[c_index])
99 | # # print('len:',len(set(data[:,0])))
100 | # if len(set(data[:, 0])) not in xsets:
101 | # xsets.append(len(set(data[:, 0])))
102 | # if len(set(data[:, 1])) not in ysets:
103 | # ysets.append(len(set(data[:, 1])))
104 | # if (len(set(data[:, 1]))*len(set(data[:, 0]))) not in sets:
105 | # sets.append((len(set(data[:, 1]))*len(set(data[:, 0]))))
106 | # if len(set(data[:,0])) < 4 or len(set(data[:,1])) < 4:
107 | #
108 | # if len(set(data[:,0])) == 2 and len(set(data[:,1])) == 2:
109 | #
110 | # print('正规矩形:')
111 | # theta = - np.pi / 2
112 | # right = np.where(data[:, 0]==max(data[:, 0]))
113 | # top = np.where(data[:, 1]==max(data[:, 1]))
114 | # # print(top[0], right[0])
115 | # # h = np.abs(data[top[0][0]][0] - data[top[0][1]][0])
116 | # # w = np.abs(data[right[0][0]][1] - data[right[0][1]][1])
117 | # #
118 | # # print(w , h)
119 | # # if len(set(data[:,0])) == 3 or len(set(data[:,1])) == 3:
120 | #
121 | #
122 | #
123 | # else:
124 | # # print(1)
125 | # theta = - np.arctan((data[c_index][1] - data[d_index][1]) / (data[d_index][0] - data[c_index][0]))
126 | #
127 | # w = np.sqrt((data[c_index][1] - data[d_index][1])**2 + (data[d_index][0] - data[c_index][0])**2)
128 | # h = np.sqrt((data[d_index][0] - data[np.argmin(data[:, 1])][0])**2 +(data[d_index][1] - data[np.argmin(data[:, 1])][1])**2)
129 | # # print(theta)
130 | #
131 | # # print(c_x, c_y, w, h, theta)
132 |
133 | return path, rect, line_, int(theta) + 90, wh_list
134 |
135 |
136 |
137 |
138 | def cas_iou(box,cluster):
139 | x = np.minimum(cluster[:,0],box[0])
140 | y = np.minimum(cluster[:,1],box[1])
141 |
142 | intersection = x * y
143 | area1 = box[0] * box[1]
144 |
145 | area2 = cluster[:,0] * cluster[:,1]
146 | iou = intersection / (area1 + area2 -intersection)
147 |
148 | return iou
149 |
150 | def avg_iou(box,cluster):
151 | return np.mean([np.max(cas_iou(box[i],cluster)) for i in range(box.shape[0])])
152 |
153 |
154 | def kmeans(box,k):
155 | # 取出一共有多少框
156 | row = box.shape[0]
157 |
158 | # 每个框各个点的位置
159 | distance = np.empty((row,k))
160 |
161 | # 最后的聚类位置
162 | last_clu = np.zeros((row,))
163 |
164 | np.random.seed()
165 |
166 | # 随机选5个当聚类中心
167 | cluster = box[np.random.choice(row,k,replace = False)]
168 | # cluster = random.sample(row, k)
169 | while True:
170 | # 计算每一行距离五个点的iou情况。
171 | for i in range(row):
172 | distance[i] = 1 - cas_iou(box[i],cluster)
173 |
174 | # 取出最小点
175 | near = np.argmin(distance,axis=1)
176 |
177 | if (last_clu == near).all():
178 | break
179 |
180 | # 求每一个类的中位点
181 | for j in range(k):
182 | cluster[j] = np.median(
183 | box[near == j],axis=0)
184 |
185 | last_clu = near
186 |
187 | return cluster
188 |
189 | def load_data(path):
190 | data = []
191 | # 对于每一个xml都寻找box
192 | for xml_file in glob.glob('{}/*xml'.format(path)):
193 | tree = ET.parse(xml_file)
194 | height = int(tree.findtext('./size/height'))
195 | width = int(tree.findtext('./size/width'))
196 | # 对于每一个目标都获得它的宽高
197 | for obj in tree.iter('object'):
198 | xmin = int(float(obj.findtext('bndbox/xmin'))) / width
199 | ymin = int(float(obj.findtext('bndbox/ymin'))) / height
200 | xmax = int(float(obj.findtext('bndbox/xmax'))) / width
201 | ymax = int(float(obj.findtext('bndbox/ymax'))) / height
202 |
203 | xmin = np.float64(xmin)
204 | ymin = np.float64(ymin)
205 | xmax = np.float64(xmax)
206 | ymax = np.float64(ymax)
207 | # 得到宽高
208 | data.append([xmax-xmin,ymax-ymin])
209 | return np.array(data)
210 |
211 |
212 | if __name__ == '__main__':
213 | parser = argparse.ArgumentParser()
214 | parser.add_argument('--label_path', type=str, default=r'D:\hjj\火箭军\科目四按图索骥\科目四初赛第一阶段\train\labels/', help='label path')
215 | opt = parser.parse_args()
216 | # label_path = r'D:\hjj\火箭军\科目四按图索骥\科目四初赛第一阶段\train\labels/'
217 |
218 | all_label = []
219 | cls = []
220 | xsets = []
221 | ysets = []
222 | sets = []
223 | line_ = ''
224 | thetas = []
225 | wh_list = []
226 | for file in os.listdir(opt.label_path):
227 | path, ret, line_, theta, wh_list = trans(file, line_, wh_list)
228 | if theta not in thetas:
229 | thetas.append(theta)
230 |
231 | # 运行该程序会计算'./VOCdevkit/VOC2007/Annotations'的xml
232 | # 会生成yolo_anchors.txt
233 | SIZE = 1024
234 | anchors_num = 9
235 | # 载入数据集,可以使用VOC的xml
236 | path = r'./VOCdevkit/VOC2007/Annotations'
237 |
238 | # 载入所有的xml
239 | # 存储格式为转化为比例后的width,height
240 | # data = load_data(path)
241 | data = np.array(wh_list)
242 |
243 | # 使用k聚类算法
244 | out = kmeans(data,anchors_num)
245 | out = out[np.argsort(out[:,0])]
246 | print('acc:{:.2f}%'.format(avg_iou(data,out) * 100))
247 | print(out*SIZE)
248 | data = out*SIZE
249 | f = open("yolo_anchors.txt", 'w')
250 | row = np.shape(data)[0]
251 | for i in range(row):
252 | if i == 0:
253 | x_y = "%d,%d" % (data[i][0], data[i][1])
254 | else:
255 | x_y = ", %d,%d" % (data[i][0], data[i][1])
256 | f.write(x_y)
257 | f.close()
--------------------------------------------------------------------------------
/utils/torch_utils.py:
--------------------------------------------------------------------------------
1 | import logging
2 | import math
3 | import os
4 | import time
5 | from copy import deepcopy
6 |
7 | import torch
8 | import torch.backends.cudnn as cudnn
9 | import torch.nn as nn
10 | import torch.nn.functional as F
11 | import torchvision
12 |
13 | logger = logging.getLogger(__name__)
14 |
15 |
16 | def init_torch_seeds(seed=0):
17 | torch.manual_seed(seed)
18 |
19 | # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
20 | if seed == 0: # slower, more reproducible
21 | cudnn.deterministic = True
22 | cudnn.benchmark = False
23 | else: # faster, less reproducible
24 | cudnn.deterministic = False
25 | cudnn.benchmark = True
26 |
27 |
28 | def select_device(device='', batch_size=None):
29 | # device = 'cpu' or '0' or '0,1,2,3'
30 | cpu_request = device.lower() == 'cpu'
31 | if device and not cpu_request: # if device requested other than 'cpu'
32 | os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
33 | assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
34 |
35 | cuda = False if cpu_request else torch.cuda.is_available()
36 | if cuda:
37 | c = 1024 ** 2 # bytes to MB
38 | ng = torch.cuda.device_count()
39 | if ng > 1 and batch_size: # check that batch_size is compatible with device_count
40 | assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
41 | x = [torch.cuda.get_device_properties(i) for i in range(ng)]
42 | s = 'Using CUDA '
43 | for i in range(0, ng):
44 | if i == 1:
45 | s = ' ' * len(s)
46 | logger.info("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
47 | (s, i, x[i].name, x[i].total_memory / c))
48 | else:
49 | logger.info('Using CPU')
50 |
51 | logger.info('') # skip a line
52 | return torch.device('cuda:0' if cuda else 'cpu')
53 |
54 |
55 | def time_synchronized():
56 | torch.cuda.synchronize() if torch.cuda.is_available() else None
57 | return time.time()
58 |
59 |
60 | def is_parallel(model):
61 | return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
62 |
63 |
64 | def intersect_dicts(da, db, exclude=()):
65 | # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
66 | return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
67 |
68 |
69 | def initialize_weights(model):
70 | for m in model.modules():
71 | t = type(m)
72 | if t is nn.Conv2d:
73 | pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
74 | elif t is nn.BatchNorm2d:
75 | m.eps = 1e-3
76 | m.momentum = 0.03
77 | elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
78 | m.inplace = True
79 |
80 |
81 | def find_modules(model, mclass=nn.Conv2d):
82 | # Finds layer indices matching module class 'mclass'
83 | return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
84 |
85 |
86 | def sparsity(model):
87 | # Return global model sparsity
88 | a, b = 0., 0.
89 | for p in model.parameters():
90 | a += p.numel()
91 | b += (p == 0).sum()
92 | return b / a
93 |
94 |
95 | def prune(model, amount=0.3):
96 | # Prune model to requested global sparsity
97 | import torch.nn.utils.prune as prune
98 | print('Pruning model... ', end='')
99 | for name, m in model.named_modules():
100 | if isinstance(m, nn.Conv2d):
101 | prune.l1_unstructured(m, name='weight', amount=amount) # prune
102 | prune.remove(m, 'weight') # make permanent
103 | print(' %.3g global sparsity' % sparsity(model))
104 |
105 |
106 | def fuse_conv_and_bn(conv, bn):
107 | # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
108 |
109 | # init
110 | fusedconv = nn.Conv2d(conv.in_channels,
111 | conv.out_channels,
112 | kernel_size=conv.kernel_size,
113 | stride=conv.stride,
114 | padding=conv.padding,
115 | groups=conv.groups,
116 | bias=True).requires_grad_(False).to(conv.weight.device)
117 |
118 | # prepare filters
119 | w_conv = conv.weight.clone().view(conv.out_channels, -1)
120 | w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
121 | fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
122 |
123 | # prepare spatial bias
124 | b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
125 | b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
126 | fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
127 |
128 | return fusedconv
129 |
130 |
131 | def model_info(model, verbose=False):
132 | # Plots a line-by-line description of a PyTorch model
133 | n_p = sum(x.numel() for x in model.parameters()) # number parameters
134 | n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
135 | if verbose:
136 | print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
137 | for i, (name, p) in enumerate(model.named_parameters()):
138 | name = name.replace('module_list.', '')
139 | print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
140 | (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
141 |
142 | try: # FLOPS
143 | from thop import profile
144 | flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, 64, 64),), verbose=False)[0] / 1E9 * 2
145 | fs = ', %.1f GFLOPS' % (flops * 100) # 640x640 FLOPS
146 | except:
147 | fs = ''
148 |
149 | logger.info(
150 | 'Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs))
151 |
152 |
153 | def load_classifier(name='resnet101', n=2):
154 | # Loads a pretrained model reshaped to n-class output
155 | model = torchvision.models.__dict__[name](pretrained=True)
156 |
157 | # ResNet model properties
158 | # input_size = [3, 224, 224]
159 | # input_space = 'RGB'
160 | # input_range = [0, 1]
161 | # mean = [0.485, 0.456, 0.406]
162 | # std = [0.229, 0.224, 0.225]
163 |
164 | # Reshape output to n classes
165 | filters = model.fc.weight.shape[1]
166 | model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
167 | model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
168 | model.fc.out_features = n
169 | return model
170 |
171 |
172 | def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
173 | # scales img(bs,3,y,x) by ratio
174 | if ratio == 1.0:
175 | return img
176 | else:
177 | h, w = img.shape[2:]
178 | s = (int(h * ratio), int(w * ratio)) # new size
179 | img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
180 | if not same_shape: # pad/crop img
181 | gs = 32 # (pixels) grid size
182 | h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
183 | return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
184 |
185 |
186 | def copy_attr(a, b, include=(), exclude=()):
187 | # Copy attributes from b to a, options to only include [...] and to exclude [...]
188 | for k, v in b.__dict__.items():
189 | if (len(include) and k not in include) or k.startswith('_') or k in exclude:
190 | continue
191 | else:
192 | setattr(a, k, v)
193 |
194 |
195 | class ModelEMA:
196 | """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
197 | Keep a moving average of everything in the model state_dict (parameters and buffers).
198 | This is intended to allow functionality like
199 | https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
200 | A smoothed version of the weights is necessary for some training schemes to perform well.
201 | This class is sensitive where it is initialized in the sequence of model init,
202 | GPU assignment and distributed training wrappers.
203 | """
204 |
205 | def __init__(self, model, decay=0.9999, updates=0):
206 | # Create EMA
207 | self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
208 | # if next(model.parameters()).device.type != 'cpu':
209 | # self.ema.half() # FP16 EMA
210 | self.updates = updates # number of EMA updates
211 | self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
212 | for p in self.ema.parameters():
213 | p.requires_grad_(False)
214 |
215 | def update(self, model):
216 | # Update EMA parameters
217 | with torch.no_grad():
218 | self.updates += 1
219 | d = self.decay(self.updates)
220 |
221 | msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
222 | for k, v in self.ema.state_dict().items():
223 | if v.dtype.is_floating_point:
224 | v *= d
225 | v += (1. - d) * msd[k].detach()
226 |
227 | def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
228 | # Update EMA attributes
229 | copy_attr(self.ema, model, include, exclude)
230 |
--------------------------------------------------------------------------------
/utils/yolo_anchors.txt:
--------------------------------------------------------------------------------
1 | 23,11, 28,8, 36,12, 52,14, 65,20, 86,24, 130,28, 203,41, 340,65
--------------------------------------------------------------------------------
/weights/download_weights.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Download common models
3 |
4 | python -c "
5 | from utils.google_utils import *;
6 | attempt_download('weights/yolov5s.pt');
7 | attempt_download('weights/yolov5m.pt');
8 | attempt_download('weights/yolov5l.pt');
9 | attempt_download('weights/yolov5x.pt')
10 | "
11 |
--------------------------------------------------------------------------------