├── Screenshots ├── img1.png ├── img2.png ├── img3.png └── Samples_68510.png ├── .editorconfig ├── OpenTK-PathTracer ├── res │ ├── textures │ │ └── EnvironmentMap │ │ │ ├── negX.png │ │ │ ├── negY.png │ │ │ ├── negZ.png │ │ │ ├── posX.png │ │ │ ├── posY.png │ │ │ └── posZ.png │ ├── imgui.ini │ └── shaders │ │ ├── final.glsl │ │ ├── screenQuad.glsl │ │ ├── PostProcessing │ │ └── fragment.glsl │ │ ├── AtmosphericScattering │ │ ├── computeMy.glsl │ │ └── compute.glsl │ │ └── PathTracing │ │ ├── fragCompute.glsl │ │ └── compute.glsl ├── Properties │ └── launchSettings.json ├── src │ ├── GameObjects │ │ ├── BaseGameObject.cs │ │ ├── Sphere.cs │ │ └── Cuboid.cs │ ├── BaseSTD140Compatible.cs │ ├── Ray.cs │ ├── Program.cs │ ├── KeyboardManager.cs │ ├── Render │ │ ├── ScreenEffect.cs │ │ ├── Objects │ │ │ ├── VAO.cs │ │ │ ├── TimerQuery.cs │ │ │ ├── Framebuffer.cs │ │ │ ├── BufferObject.cs │ │ │ ├── ShaderProgram.cs │ │ │ └── Texture.cs │ │ ├── PathTracer.cs │ │ ├── AtmosphericScatterer.cs │ │ └── Gui.cs │ ├── MouseManager.cs │ ├── Material.cs │ ├── Camera.cs │ ├── Helper.cs │ ├── ImGui │ │ └── ImGuiController.cs │ └── MainWindow.cs └── OpenTK-PathTracer.csproj ├── OpenTK-PathTracer.sln ├── README.md ├── .gitattributes └── .gitignore /Screenshots/img1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BoyBaykiller/OpenTK-PathTracer/HEAD/Screenshots/img1.png -------------------------------------------------------------------------------- /Screenshots/img2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BoyBaykiller/OpenTK-PathTracer/HEAD/Screenshots/img2.png -------------------------------------------------------------------------------- /Screenshots/img3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BoyBaykiller/OpenTK-PathTracer/HEAD/Screenshots/img3.png -------------------------------------------------------------------------------- /Screenshots/Samples_68510.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BoyBaykiller/OpenTK-PathTracer/HEAD/Screenshots/Samples_68510.png -------------------------------------------------------------------------------- /.editorconfig: -------------------------------------------------------------------------------- 1 | [*.cs] 2 | 3 | # IDE0090: Use 'new(...)' 4 | csharp_style_implicit_object_creation_when_type_is_apparent = false 5 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/textures/EnvironmentMap/negX.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BoyBaykiller/OpenTK-PathTracer/HEAD/OpenTK-PathTracer/res/textures/EnvironmentMap/negX.png -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/textures/EnvironmentMap/negY.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BoyBaykiller/OpenTK-PathTracer/HEAD/OpenTK-PathTracer/res/textures/EnvironmentMap/negY.png -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/textures/EnvironmentMap/negZ.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BoyBaykiller/OpenTK-PathTracer/HEAD/OpenTK-PathTracer/res/textures/EnvironmentMap/negZ.png -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/textures/EnvironmentMap/posX.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BoyBaykiller/OpenTK-PathTracer/HEAD/OpenTK-PathTracer/res/textures/EnvironmentMap/posX.png -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/textures/EnvironmentMap/posY.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BoyBaykiller/OpenTK-PathTracer/HEAD/OpenTK-PathTracer/res/textures/EnvironmentMap/posY.png -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/textures/EnvironmentMap/posZ.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/BoyBaykiller/OpenTK-PathTracer/HEAD/OpenTK-PathTracer/res/textures/EnvironmentMap/posZ.png -------------------------------------------------------------------------------- /OpenTK-PathTracer/Properties/launchSettings.json: -------------------------------------------------------------------------------- 1 | { 2 | "profiles": { 3 | "OpenTK-PathTracer": { 4 | "commandName": "Project", 5 | "workingDirectory": "$(ProjectDir)" 6 | } 7 | } 8 | } -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/imgui.ini: -------------------------------------------------------------------------------- 1 | [Window][Debug##Default] 2 | Pos=411,77 3 | Size=400,400 4 | Collapsed=0 5 | 6 | [Window][Overview] 7 | Pos=0,-1 8 | Size=389,330 9 | Collapsed=0 10 | 11 | [Window][GameObjectProperties] 12 | Pos=494,21 13 | Size=354,255 14 | Collapsed=1 15 | 16 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/shaders/final.glsl: -------------------------------------------------------------------------------- 1 | #version 450 core 2 | layout(location = 0) out vec4 FragColor; 3 | 4 | layout(binding = 0) uniform sampler2D SamplerTexture; 5 | 6 | in InOutVars 7 | { 8 | vec2 TexCoord; 9 | } inData; 10 | 11 | void main() 12 | { 13 | FragColor = texture(SamplerTexture, inData.TexCoord); 14 | } -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/GameObjects/BaseGameObject.cs: -------------------------------------------------------------------------------- 1 | using OpenTK; 2 | 3 | namespace OpenTK_PathTracer.GameObjects 4 | { 5 | abstract class BaseGameObject : BaseSTD140Compatible 6 | { 7 | public Material Material; 8 | public Vector3 Position; 9 | 10 | public abstract bool IntersectsRay(Ray ray, out float t1, out float t2); 11 | } 12 | } 13 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/BaseSTD140Compatible.cs: -------------------------------------------------------------------------------- 1 | using OpenTK; 2 | using OpenTK_PathTracer.Render.Objects; 3 | 4 | namespace OpenTK_PathTracer 5 | { 6 | abstract class BaseSTD140Compatible 7 | { 8 | public abstract int BufferOffset { get; } 9 | 10 | public abstract Vector4[] GetGPUFriendlyData(); 11 | 12 | public void Upload(BufferObject buffer) 13 | { 14 | Vector4[] data = GetGPUFriendlyData(); 15 | buffer.SubData(BufferOffset, Vector4.SizeInBytes * data.Length, data); 16 | } 17 | } 18 | } 19 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/shaders/screenQuad.glsl: -------------------------------------------------------------------------------- 1 | #version 450 core 2 | 3 | const vec4 data[6] = vec4[] 4 | ( 5 | vec4( -1.0, 1.0, 0.0, 1.0 ), 6 | vec4( -1.0, -1.0, 0.0, 0.0 ), 7 | vec4( 1.0, -1.0, 1.0, 0.0 ), 8 | vec4( -1.0, 1.0, 0.0, 1.0 ), 9 | vec4( 1.0, -1.0, 1.0, 0.0 ), 10 | vec4( 1.0, 1.0, 1.0, 1.0 ) 11 | ); 12 | 13 | out InOutVars 14 | { 15 | vec2 TexCoord; 16 | } outData; 17 | 18 | void main() 19 | { 20 | vec4 vertex = data[gl_VertexID]; 21 | 22 | gl_Position = vec4(vertex.xy, 0.0, 1.0); 23 | outData.TexCoord = vertex.zw; 24 | } -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Ray.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using OpenTK; 3 | 4 | namespace OpenTK_PathTracer 5 | { 6 | struct Ray 7 | { 8 | public Vector3 Origin, Direction; 9 | 10 | public Vector3 GetPoint(float deltaTime) 11 | { 12 | return Origin + Direction * deltaTime; 13 | } 14 | 15 | public static Ray GetWorldSpaceRay(Matrix4 inverseProjection, Matrix4 inverseView, Vector3 worldPosition, Vector2 normalizedDeviceCoords) 16 | { 17 | Vector4 rayEye = new Vector4(normalizedDeviceCoords.X, normalizedDeviceCoords.Y, -1.0f, 1.0f) * inverseProjection; rayEye.Z = -1.0f; rayEye.W = 0.0f; // vector * matrix, because OpenTK... 18 | return new Ray { Origin = worldPosition, Direction = (rayEye * inverseView).Xyz.Normalized() }; 19 | } 20 | } 21 | } 22 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Program.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using System.Diagnostics; 3 | 4 | namespace OpenTK_PathTracer 5 | { 6 | class Program 7 | { 8 | static void Main() 9 | { 10 | try 11 | { 12 | using MainWindow mainWindow = new MainWindow(); 13 | mainWindow.Run(Math.Min(OpenTK.DisplayDevice.Default.RefreshRate, 144)); 14 | } 15 | catch (Exception ex) 16 | { 17 | StackFrame frame = new StackTrace(ex, true).GetFrame(0); 18 | Console.WriteLine("\n====== Exception ======"); 19 | Console.WriteLine($"Type: {ex.GetType().Name}"); 20 | Console.WriteLine($"Filename: {System.IO.Path.GetFileName(frame.GetFileName())}"); 21 | Console.WriteLine($"Line: {frame.GetFileLineNumber()}"); 22 | Console.WriteLine($"Message: {ex.Message}"); 23 | Console.WriteLine("===== Enter to exit ====="); 24 | Console.ReadLine(); 25 | } 26 | } 27 | } 28 | } 29 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/KeyboardManager.cs: -------------------------------------------------------------------------------- 1 | using OpenTK.Input; 2 | 3 | namespace OpenTK_PathTracer 4 | { 5 | static class KeyboardManager 6 | { 7 | private static KeyboardState lastKeyboardState; 8 | private static KeyboardState thisKeyboardState; 9 | public static void Update() 10 | { 11 | lastKeyboardState = thisKeyboardState; 12 | thisKeyboardState = Keyboard.GetState(); 13 | } 14 | 15 | /// 16 | /// 17 | /// 18 | /// True if key is down this update but not last one 19 | public static bool IsKeyTouched(Key key) => thisKeyboardState.IsKeyDown(key) && lastKeyboardState.IsKeyUp(key); 20 | 21 | /// 22 | /// 23 | /// 24 | /// True if key is down 25 | public static bool IsKeyDown(Key key) => thisKeyboardState.IsKeyDown(key); 26 | 27 | /// 28 | /// 29 | /// 30 | /// True if key is up this update but not last one 31 | public static bool IsKeyUp(Key key) => thisKeyboardState.IsKeyUp(key) && lastKeyboardState.IsKeyDown(key); 32 | } 33 | } 34 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/shaders/PostProcessing/fragment.glsl: -------------------------------------------------------------------------------- 1 | #version 450 core 2 | layout(location = 0) out vec4 FragColor; 3 | 4 | layout(binding = 0) uniform sampler2D Sampler0; 5 | layout(binding = 1) uniform sampler2D Sampler1; 6 | layout(binding = 2) uniform sampler2D Sampler2; 7 | 8 | vec3 LinearToInverseGamma(vec3 rgb, float gamma); 9 | vec3 ACESFilm(vec3 x); 10 | 11 | 12 | in InOutVars 13 | { 14 | vec2 TexCoord; 15 | } inData; 16 | 17 | void main() 18 | { 19 | vec3 color = texture(Sampler0, inData.TexCoord).rgb; 20 | color += texture(Sampler1, inData.TexCoord).rgb; 21 | //color += texture(Sampler2, inData.TexCoord).rgb; 22 | 23 | color = ACESFilm(color); 24 | color = LinearToInverseGamma(color, 2.4); 25 | FragColor = vec4(color, 1.0); 26 | } 27 | 28 | vec3 LinearToInverseGamma(vec3 rgb, float gamma) 29 | { 30 | //rgb = clamp(rgb, 0.0, 1.0); 31 | return mix(pow(rgb, vec3(1.0 / gamma)) * 1.055 - 0.055, rgb * 12.92, vec3(lessThan(rgb, 0.0031308.xxx))); 32 | } 33 | 34 | // ACES tone mapping curve fit to go from HDR to LDR 35 | // https://knarkowicz.wordpress.com/2016/01/06/aces-filmic-tone-mapping-curve/ 36 | vec3 ACESFilm(vec3 x) 37 | { 38 | float a = 2.51; 39 | float b = 0.03; 40 | float c = 2.43; 41 | float d = 0.59; 42 | float e = 0.14; 43 | return clamp((x * (a * x + b)) / (x * (c * x + d) + e), 0.0, 1.0); 44 | } -------------------------------------------------------------------------------- /OpenTK-PathTracer.sln: -------------------------------------------------------------------------------- 1 | 2 | Microsoft Visual Studio Solution File, Format Version 12.00 3 | # Visual Studio Version 17 4 | VisualStudioVersion = 17.0.32014.148 5 | MinimumVisualStudioVersion = 10.0.40219.1 6 | Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "OpenTK-PathTracer", "OpenTK-PathTracer\OpenTK-PathTracer.csproj", "{A84EF8C7-EA68-4C27-A669-CF765BA3A6C0}" 7 | EndProject 8 | Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Solution Items", "Solution Items", "{7EC3E980-F7A8-4276-92BE-5A4A9E71E3AD}" 9 | ProjectSection(SolutionItems) = preProject 10 | .editorconfig = .editorconfig 11 | EndProjectSection 12 | EndProject 13 | Global 14 | GlobalSection(SolutionConfigurationPlatforms) = preSolution 15 | Debug|x64 = Debug|x64 16 | Release|x64 = Release|x64 17 | EndGlobalSection 18 | GlobalSection(ProjectConfigurationPlatforms) = postSolution 19 | {A84EF8C7-EA68-4C27-A669-CF765BA3A6C0}.Debug|x64.ActiveCfg = Debug|x64 20 | {A84EF8C7-EA68-4C27-A669-CF765BA3A6C0}.Debug|x64.Build.0 = Debug|x64 21 | {A84EF8C7-EA68-4C27-A669-CF765BA3A6C0}.Release|x64.ActiveCfg = Release|x64 22 | {A84EF8C7-EA68-4C27-A669-CF765BA3A6C0}.Release|x64.Build.0 = Release|x64 23 | EndGlobalSection 24 | GlobalSection(SolutionProperties) = preSolution 25 | HideSolutionNode = FALSE 26 | EndGlobalSection 27 | GlobalSection(ExtensibilityGlobals) = postSolution 28 | SolutionGuid = {A29A2783-CEA4-4196-B5F5-95BC170097CA} 29 | EndGlobalSection 30 | EndGlobal 31 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/OpenTK-PathTracer.csproj: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | Exe 5 | net5.0 6 | OpenTK_PathTracer 7 | AnyCPU;x64 8 | Always 9 | OpenTK-PathTracer 10 | 11 | 12 | 13 | 14 | 15 | true 16 | 17 | 18 | 19 | true 20 | 21 | 22 | 23 | true 24 | 25 | 26 | 27 | true 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Render/ScreenEffect.cs: -------------------------------------------------------------------------------- 1 | using System.IO; 2 | using OpenTK.Graphics.OpenGL4; 3 | using OpenTK_PathTracer.Render.Objects; 4 | 5 | namespace OpenTK_PathTracer.Render 6 | { 7 | class ScreenEffect 8 | { 9 | private readonly Framebuffer framebuffer; 10 | public readonly Texture Result; 11 | private readonly ShaderProgram shaderProgram; 12 | private static readonly Shader vertexShader = new Shader(ShaderType.VertexShader, File.ReadAllText("res/shaders/screenQuad.glsl")); 13 | public ScreenEffect(Shader fragmentShader, int width, int height) 14 | { 15 | if (fragmentShader.ShaderType != ShaderType.FragmentShader) 16 | throw new System.ArgumentException($"Only pass in shaders of type {ShaderType.FragmentShader}"); 17 | 18 | framebuffer = new Framebuffer(); 19 | 20 | Result = new Texture(TextureTarget2d.Texture2D); 21 | Result.SetFilter(TextureMinFilter.Nearest, TextureMagFilter.Nearest); 22 | Result.MutableAllocate(width, height, 1, PixelInternalFormat.Rgba8); 23 | 24 | framebuffer.AddRenderTarget(FramebufferAttachment.ColorAttachment0, Result); 25 | 26 | shaderProgram = new ShaderProgram(vertexShader, fragmentShader); 27 | } 28 | 29 | public void Render(params Texture[] textures) 30 | { 31 | framebuffer.Bind(); 32 | shaderProgram.Use(); 33 | 34 | for (int i = 0; i < textures.Length; i++) 35 | textures[i].AttachSampler(i); 36 | GL.DrawArrays(PrimitiveType.Triangles, 0, 6); 37 | } 38 | 39 | public void SetSize(int width, int height) 40 | { 41 | Result.MutableAllocate(width, height, 1, Result.PixelInternalFormat); 42 | } 43 | } 44 | } 45 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/GameObjects/Sphere.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using OpenTK; 3 | 4 | namespace OpenTK_PathTracer.GameObjects 5 | { 6 | class Sphere : BaseGameObject 7 | { 8 | public const int GPU_INSTANCE_SIZE = 16 + Material.GPU_INSTANCE_SIZE; 9 | 10 | public int Instance; 11 | public float Radius; 12 | public Sphere(Vector3 position, float radius, int instance, Material material) 13 | { 14 | Position = position; 15 | Radius = radius; 16 | Material = material; 17 | Instance = instance; 18 | } 19 | 20 | public override int BufferOffset => 0 + Instance * GPU_INSTANCE_SIZE; 21 | 22 | private readonly Vector4[] gpuData = new Vector4[GPU_INSTANCE_SIZE / Vector4.SizeInBytes]; 23 | public override Vector4[] GetGPUFriendlyData() 24 | { 25 | gpuData[0].Xyz = Position; 26 | gpuData[0].W = Radius; 27 | 28 | Array.Copy(Material.GetGPUFriendlyData(), 0, gpuData, 1, gpuData.Length - 1); 29 | 30 | return gpuData; 31 | } 32 | 33 | // Source: https://antongerdelan.net/opengl/raycasting.html 34 | public override bool IntersectsRay(Ray ray, out float t1, out float t2) 35 | { 36 | t1 = t2 = 0; 37 | 38 | Vector3 sphereToRay = ray.Origin - this.Position; 39 | float b = Vector3.Dot(ray.Direction, sphereToRay); 40 | float c = Vector3.Dot(sphereToRay, sphereToRay) - this.Radius * this.Radius; 41 | float discriminant = b * b - c; 42 | if (discriminant < 0) 43 | return false; // only imaginary collision 44 | 45 | float squareRoot = MathF.Sqrt(discriminant); 46 | t1 = -b - squareRoot; 47 | t2 = -b + squareRoot; 48 | 49 | return true; 50 | } 51 | } 52 | } 53 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # C# OpenGL OpenTK Path Tracer 2 | 3 | I am presenting a noisy, yet fully [Path Traced](https://de.wikipedia.org/wiki/Path_Tracing) renderer written in C#. 4 | 5 | The calculations and rendering are done in real time using OpenGL. 6 | I upload the whole Scene to a UBO which is then accessed in a Compute Shader where all the Path Tracing happens. 7 | Due to the realistic nature of Path Tracers various effects like Soft Shadows, Reflections or Ambient Occlusion emerge automatically without explicitly adding code for any of these effects like you would have to do in a traditional rasterizer. 8 | 9 | The renderer also features [Depth of Field](https://en.wikipedia.org/wiki/Depth_of_field), which can be controlled with two variables at runtime through [ImGui](https://github.com/mellinoe/ImGui.NET). 10 | `FocalLength` is the distance an object appears in focus. 11 | `ApertureDiameter` controlls how strongly objects out of focus are blured. 12 | 13 | If a ray does not hit any object the color is retrieved from a cubemap which can either be 6 images inside the `Res` folder or a precomputed skybox. 14 | The atmospheric scattering in this skybox gets calculated in yet an other Compute Shader at startup. 15 | 16 | Screenshots taken via the screenshot feature are saved in the local execution folder `Screenshots`. 17 | 18 | Also see https://youtu.be/XcIToi0fh5c. 19 | 20 | --- 21 | 22 | ## **Controls** 23 | 24 | ### **KeyBoard:** 25 | * W, A, S, D => Movment 26 | * E => Toggle cursor visibility 27 | * R => Reset scene 28 | * V => Toggle VSync 29 | * F11 => Toggle fullscreen 30 | * LShift => Faster movment speed 31 | * LControl => Slower movment speed 32 | * Esc => Close 33 | 34 | ### **Mouse:** 35 | * LButton => Select object if cursor is visible 36 | 37 | --- 38 | 39 | ## **Render Samples** 40 | 41 | ![img1](Screenshots/img1.png?raw=true) 42 | 43 | ![img2](Screenshots/img2.png?raw=true) 44 | 45 | ![img3](Screenshots/img3.png?raw=true) -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Render/Objects/VAO.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using OpenTK.Graphics.OpenGL4; 3 | 4 | namespace OpenTK_PathTracer.Render.Objects 5 | { 6 | class VAO : IDisposable 7 | { 8 | private static int lastBindedID = -1; 9 | 10 | public readonly int ID; 11 | public VAO() 12 | { 13 | GL.CreateVertexArrays(1, out ID); 14 | } 15 | 16 | public VAO(BufferObject elementArrayBuffer) 17 | { 18 | GL.CreateVertexArrays(1, out ID); 19 | GL.VertexArrayElementBuffer(ID, elementArrayBuffer.ID); 20 | } 21 | 22 | public void AddSourceBuffer(BufferObject sourceBuffer, int bindingIndex, int vertexSize, int bufferOffset = 0) 23 | { 24 | GL.VertexArrayVertexBuffer(ID, bindingIndex, sourceBuffer.ID, (IntPtr)bufferOffset, vertexSize); 25 | } 26 | 27 | public void SetAttribFormat(int bindingIndex, int index, int attribTypeElements, VertexAttribType vertexAttribType, int offset, bool normalize = false, int divisor = 0) 28 | { 29 | GL.EnableVertexArrayAttrib(ID, index); 30 | GL.VertexArrayAttribFormat(ID, index, attribTypeElements, vertexAttribType, normalize, offset); 31 | GL.VertexArrayAttribBinding(ID, index, bindingIndex); 32 | GL.VertexArrayBindingDivisor(ID, bindingIndex, divisor); 33 | } 34 | 35 | public void Bind() 36 | { 37 | if (lastBindedID != ID) 38 | { 39 | GL.BindVertexArray(ID); 40 | lastBindedID = ID; 41 | } 42 | } 43 | 44 | public static void Bind(int id) 45 | { 46 | if (lastBindedID != id) 47 | { 48 | GL.BindVertexArray(id); 49 | lastBindedID = id; 50 | } 51 | } 52 | 53 | public void Dispose() 54 | { 55 | GL.DeleteVertexArray(ID); 56 | } 57 | } 58 | } 59 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Render/Objects/TimerQuery.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using System.Diagnostics; 3 | using OpenTK.Graphics.OpenGL4; 4 | 5 | namespace OpenTK_PathTracer.Render.Objects 6 | { 7 | class TimerQuery : IDisposable 8 | { 9 | public float ElapsedMilliseconds { get; private set; } 10 | 11 | private readonly Stopwatch timer = new Stopwatch(); 12 | private bool doStopAndReset = false; 13 | 14 | public readonly int ID; 15 | public int UpdateRate; 16 | public TimerQuery(int updatePeriodInMs) 17 | { 18 | GL.CreateQueries(QueryTarget.TimeElapsed, 1, out ID); 19 | UpdateRate = updatePeriodInMs; 20 | } 21 | 22 | 23 | /// 24 | /// If milliseconds are elapsed since the last , a new one on will be issued, which measures all render commands from now until . 25 | /// 26 | public void Start() 27 | { 28 | if (!timer.IsRunning || timer.ElapsedMilliseconds >= UpdateRate) 29 | { 30 | GL.BeginQuery(QueryTarget.TimeElapsed, ID); 31 | doStopAndReset = true; 32 | timer.Restart(); 33 | } 34 | } 35 | 36 | /// 37 | /// Resets the and stores the result in 38 | /// 39 | public void StopAndReset() 40 | { 41 | if (doStopAndReset) 42 | { 43 | GL.EndQuery(QueryTarget.TimeElapsed); 44 | GL.GetQueryObject(ID, GetQueryObjectParam.QueryResult, out int elapsedTime); 45 | ElapsedMilliseconds = elapsedTime / 1000000f; 46 | doStopAndReset = false; 47 | } 48 | } 49 | 50 | public void Dispose() 51 | { 52 | GL.DeleteQuery(ID); 53 | } 54 | } 55 | } 56 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/GameObjects/Cuboid.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using OpenTK; 3 | 4 | namespace OpenTK_PathTracer.GameObjects 5 | { 6 | class Cuboid : BaseGameObject 7 | { 8 | public const int GPU_INSTANCE_SIZE = 16 * 2 + Material.GPU_INSTANCE_SIZE; 9 | 10 | public int Instance; 11 | public Vector3 Dimensions; 12 | public Cuboid(Vector3 position, Vector3 dimensions, int instance, Material material) 13 | { 14 | Position = position; 15 | Dimensions = dimensions; 16 | Material = material; 17 | Instance = instance; 18 | } 19 | 20 | 21 | public override int BufferOffset => Sphere.GPU_INSTANCE_SIZE * MainWindow.MAX_GAMEOBJECTS_SPHERES + Instance * GPU_INSTANCE_SIZE; 22 | 23 | public Vector3 Min => Position - Dimensions * 0.5f; 24 | public Vector3 Max => Position + Dimensions * 0.5f; 25 | 26 | private readonly Vector4[] gpuData = new Vector4[GPU_INSTANCE_SIZE / Vector4.SizeInBytes]; 27 | public override Vector4[] GetGPUFriendlyData() 28 | { 29 | gpuData[0].Xyz = Min; 30 | gpuData[1].Xyz = Max; 31 | 32 | Array.Copy(Material.GetGPUFriendlyData(), 0, gpuData, 2, gpuData.Length - 2); 33 | 34 | return gpuData; 35 | } 36 | 37 | // Source: https://medium.com/@bromanz/another-view-on-the-classic-ray-aabb-intersection-algorithm-for-bvh-traversal-41125138b525 38 | public override bool IntersectsRay(Ray ray, out float t1, out float t2) 39 | { 40 | t1 = float.MinValue; 41 | t2 = float.MaxValue; 42 | 43 | Vector3 t0s = Vector3.Divide((this.Min - ray.Origin), ray.Direction); 44 | Vector3 t1s = Vector3.Divide((this.Max - ray.Origin), ray.Direction); 45 | 46 | Vector3 tsmaller = Vector3.ComponentMin(t0s, t1s); 47 | Vector3 tbigger = Vector3.ComponentMax(t0s, t1s); 48 | 49 | t1 = Math.Max(t1, Math.Max(tsmaller.X, Math.Max(tsmaller.Y, tsmaller.Z))); 50 | t2 = Math.Min(t2, Math.Min(tbigger.X, Math.Min(tbigger.Y, tbigger.Z))); 51 | return t1 <= t2; 52 | } 53 | } 54 | } 55 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/MouseManager.cs: -------------------------------------------------------------------------------- 1 | using OpenTK; 2 | using OpenTK.Input; 3 | 4 | namespace OpenTK_PathTracer 5 | { 6 | public static class MouseManager 7 | { 8 | private static MouseState lastMouseState; 9 | private static MouseState thisMouseState; 10 | private static MouseState thisMouseCursorState; 11 | public static void Update() 12 | { 13 | lastMouseState = thisMouseState; 14 | thisMouseState = Mouse.GetState(); 15 | thisMouseCursorState = Mouse.GetCursorState(); 16 | } 17 | 18 | 19 | public static int WindowPositionX => thisMouseCursorState.X; 20 | public static int WindowPositionY => thisMouseCursorState.Y; 21 | public static int PositionX => thisMouseState.X; 22 | public static int PositionY => thisMouseState.Y; 23 | public static Vector2 DeltaPosition => new Vector2(thisMouseState.X - lastMouseState.X, thisMouseState.Y - lastMouseState.Y); 24 | public static float DeltaScrollX => thisMouseState.Scroll.X - lastMouseState.Scroll.X; 25 | public static float DeltaScrollY => thisMouseState.Scroll.Y - lastMouseState.Scroll.Y; 26 | 27 | public static ButtonState LeftButton => thisMouseState.LeftButton; 28 | public static ButtonState RightButton => thisMouseState.RightButton; 29 | public static ButtonState MiddleButton => thisMouseState.MiddleButton; 30 | 31 | /// 32 | /// 33 | /// 34 | /// True if mouseButton is down this update but not last one 35 | public static bool IsButtonTouched(MouseButton mouseButton) => thisMouseState.IsButtonDown(mouseButton) && lastMouseState.IsButtonUp(mouseButton); 36 | 37 | /// 38 | /// 39 | /// 40 | /// True if mouseButton is down 41 | public static bool IsButtonDown(MouseButton mouseButton) => thisMouseState.IsButtonDown(mouseButton); 42 | 43 | /// 44 | /// 45 | /// 46 | /// True if mouseButton is up this update but not last one 47 | public static bool IsButtonUp(MouseButton mouseButton) => thisMouseState.IsButtonUp(mouseButton) && lastMouseState.IsButtonDown(mouseButton); 48 | } 49 | } 50 | -------------------------------------------------------------------------------- /.gitattributes: -------------------------------------------------------------------------------- 1 | ############################################################################### 2 | # Set default behavior to automatically normalize line endings. 3 | ############################################################################### 4 | * text=auto 5 | 6 | ############################################################################### 7 | # Set default behavior for command prompt diff. 8 | # 9 | # This is need for earlier builds of msysgit that does not have it on by 10 | # default for csharp files. 11 | # Note: This is only used by command line 12 | ############################################################################### 13 | #*.cs diff=csharp 14 | 15 | ############################################################################### 16 | # Set the merge driver for project and solution files 17 | # 18 | # Merging from the command prompt will add diff markers to the files if there 19 | # are conflicts (Merging from VS is not affected by the settings below, in VS 20 | # the diff markers are never inserted). Diff markers may cause the following 21 | # file extensions to fail to load in VS. An alternative would be to treat 22 | # these files as binary and thus will always conflict and require user 23 | # intervention with every merge. To do so, just uncomment the entries below 24 | ############################################################################### 25 | #*.sln merge=binary 26 | #*.csproj merge=binary 27 | #*.vbproj merge=binary 28 | #*.vcxproj merge=binary 29 | #*.vcproj merge=binary 30 | #*.dbproj merge=binary 31 | #*.fsproj merge=binary 32 | #*.lsproj merge=binary 33 | #*.wixproj merge=binary 34 | #*.modelproj merge=binary 35 | #*.sqlproj merge=binary 36 | #*.wwaproj merge=binary 37 | 38 | ############################################################################### 39 | # behavior for image files 40 | # 41 | # image files are treated as binary by default. 42 | ############################################################################### 43 | #*.jpg binary 44 | #*.png binary 45 | #*.gif binary 46 | 47 | ############################################################################### 48 | # diff behavior for common document formats 49 | # 50 | # Convert binary document formats to text before diffing them. This feature 51 | # is only available from the command line. Turn it on by uncommenting the 52 | # entries below. 53 | ############################################################################### 54 | #*.doc diff=astextplain 55 | #*.DOC diff=astextplain 56 | #*.docx diff=astextplain 57 | #*.DOCX diff=astextplain 58 | #*.dot diff=astextplain 59 | #*.DOT diff=astextplain 60 | #*.pdf diff=astextplain 61 | #*.PDF diff=astextplain 62 | #*.rtf diff=astextplain 63 | #*.RTF diff=astextplain 64 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Material.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using OpenTK; 3 | 4 | namespace OpenTK_PathTracer 5 | { 6 | class Material : BaseSTD140Compatible 7 | { 8 | public static Material Zero => new Material(albedo: Vector3.One, emissiv: Vector3.Zero, refractionColor: Vector3.Zero, specularChance: 0.0f, specularRoughness: 0.0f, indexOfRefraction: 1.0f, refractionChance: 0.0f, refractionRoughnes: 0.0f); 9 | public const int GPU_INSTANCE_SIZE = 16 * 4; 10 | 11 | public Vector3 Albedo; 12 | public Vector3 Emissiv; 13 | public Vector3 AbsorbanceColor; 14 | public float SpecularChance; 15 | public float SpecularRoughness; 16 | public float IOR; 17 | public float RefractionChance; 18 | public float RefractionRoughnes; 19 | public Material(Vector3 albedo, Vector3 emissiv, Vector3 refractionColor, float specularChance, float specularRoughness, float indexOfRefraction, float refractionChance, float refractionRoughnes) 20 | { 21 | // Note: diffuse chance is 1.0f - (SpecularChance + RefractionChance). So must add up to 1.0 22 | 23 | Albedo = albedo; 24 | Emissiv = emissiv; 25 | AbsorbanceColor = refractionColor; 26 | SpecularChance = Math.Clamp(specularChance, 0.0f, 1.0f); 27 | SpecularRoughness = specularRoughness; 28 | IOR = Math.Max(indexOfRefraction, 1.0f); 29 | RefractionChance = Math.Clamp(refractionChance, 0.0f, 1.0f - SpecularChance); 30 | RefractionRoughnes = refractionRoughnes; 31 | } 32 | 33 | public override int BufferOffset => throw new NotSupportedException("Material is not meant to be directly uploaded to the GPU"); 34 | 35 | private readonly Vector4[] gpuData = new Vector4[GPU_INSTANCE_SIZE / Vector4.SizeInBytes]; 36 | public override Vector4[] GetGPUFriendlyData() 37 | { 38 | gpuData[0].Xyz = Albedo; 39 | gpuData[0].W = SpecularChance; 40 | 41 | gpuData[1].Xyz = Emissiv; 42 | gpuData[1].W = SpecularRoughness; 43 | 44 | gpuData[2].Xyz = AbsorbanceColor; 45 | gpuData[2].W = RefractionChance; 46 | 47 | gpuData[3].X = RefractionRoughnes; 48 | gpuData[3].Y = IOR; 49 | 50 | return gpuData; 51 | } 52 | 53 | private readonly static Random rnd = new Random(); 54 | public static Material GetRndMaterial() 55 | { 56 | bool isEmissiv = rnd.NextDouble() < 0.2; 57 | return new Material(albedo: RndVector3(), emissiv: isEmissiv ? RndVector3() : Vector3.Zero, refractionColor: RndVector3() * 2.0f, specularChance: (float)rnd.NextDouble() * 0.5f, specularRoughness: (float)rnd.NextDouble(), indexOfRefraction: (float)rnd.NextDouble() + 1, refractionChance: (float)rnd.NextDouble() * 0.5f, refractionRoughnes: (float)rnd.NextDouble()); 58 | } 59 | 60 | private static Vector3 RndVector3() => new Vector3((float)rnd.NextDouble(), (float)rnd.NextDouble(), (float)rnd.NextDouble()); 61 | } 62 | } -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Render/Objects/Framebuffer.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using SixLabors.ImageSharp; 3 | using SixLabors.ImageSharp.Processing; 4 | using SixLabors.ImageSharp.PixelFormats; 5 | using OpenTK.Graphics.OpenGL4; 6 | 7 | namespace OpenTK_PathTracer.Render.Objects 8 | { 9 | class Framebuffer : IDisposable 10 | { 11 | private static int lastBindedID = -1; 12 | 13 | public readonly int ID; 14 | public Framebuffer() 15 | { 16 | GL.CreateFramebuffers(1, out ID); 17 | } 18 | 19 | public void Clear(ClearBufferMask clearBufferMask) 20 | { 21 | Bind(); 22 | GL.Clear(clearBufferMask); 23 | } 24 | 25 | public void AddRenderTarget(FramebufferAttachment framebufferAttachment, Texture texture) 26 | { 27 | GL.NamedFramebufferTexture(ID, framebufferAttachment, texture.ID, 0); 28 | } 29 | public void SetRenderTarget(params DrawBuffersEnum[] drawBuffersEnums) 30 | { 31 | GL.NamedFramebufferDrawBuffers(ID, drawBuffersEnums.Length, drawBuffersEnums); 32 | } 33 | public void SetReadTarget(ReadBufferMode readBufferMode) 34 | { 35 | GL.NamedFramebufferReadBuffer(ID, readBufferMode); 36 | } 37 | 38 | public void Bind(FramebufferTarget framebufferTarget = FramebufferTarget.Framebuffer) 39 | { 40 | if (lastBindedID != ID) 41 | { 42 | GL.BindFramebuffer(framebufferTarget, ID); 43 | lastBindedID = ID; 44 | } 45 | } 46 | 47 | public FramebufferStatus GetFBOStatus() 48 | { 49 | return GL.CheckNamedFramebufferStatus(ID, FramebufferTarget.Framebuffer); 50 | } 51 | 52 | public static void Bind(int id, FramebufferTarget framebufferTarget = FramebufferTarget.Framebuffer) 53 | { 54 | if (lastBindedID != id) 55 | { 56 | GL.BindFramebuffer(framebufferTarget, id); 57 | lastBindedID = id; 58 | } 59 | } 60 | 61 | public static void Clear(int id, ClearBufferMask clearBufferMask) 62 | { 63 | Framebuffer.Bind(id); 64 | GL.Clear(clearBufferMask); 65 | } 66 | 67 | public static unsafe Image GetBitmapFramebufferAttachment(int id, FramebufferAttachment framebufferAttachment, int width, int height, int x = 0, int y = 0) 68 | { 69 | Image image = new Image(width, height); 70 | GL.NamedFramebufferReadBuffer(id, id == 0 ? ReadBufferMode.Front : (ReadBufferMode)framebufferAttachment); 71 | 72 | Bind(id, FramebufferTarget.ReadFramebuffer); 73 | fixed (void* ptr = image.GetPixelRowSpan(0)) 74 | { 75 | GL.ReadPixels(x, y, width, height, PixelFormat.Rgba, PixelType.UnsignedByte, (IntPtr)ptr); 76 | } 77 | GL.Finish(); 78 | 79 | image.Mutate(p => p.Flip(FlipMode.Vertical)); 80 | 81 | return image; 82 | } 83 | 84 | public void Dispose() 85 | { 86 | GL.DeleteFramebuffer(ID); 87 | } 88 | } 89 | } 90 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Camera.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using OpenTK; 3 | using OpenTK.Input; 4 | 5 | namespace OpenTK_PathTracer 6 | { 7 | class Camera 8 | { 9 | public Vector3 Position; 10 | public Vector3 ViewDir; 11 | public Vector3 Up; 12 | public Vector3 Velocity; 13 | public float MovmentSpeed; 14 | public float MouseSensitivity; 15 | public Matrix4 View { get; private set; } 16 | public Camera(Vector3 position, Vector3 up, float lookX = -90.0f, float lookY = 0.0f, float mouseSensitivity = 0.1f, float speed = 10) 17 | { 18 | LookX = lookX; 19 | LookY = lookY; 20 | 21 | ViewDir.X = MathF.Cos(MathHelper.DegreesToRadians(LookX)) * MathF.Cos(MathHelper.DegreesToRadians(LookY)); 22 | ViewDir.Y = MathF.Sin(MathHelper.DegreesToRadians(LookY)); 23 | ViewDir.Z = MathF.Sin(MathHelper.DegreesToRadians(LookX)) * MathF.Cos(MathHelper.DegreesToRadians(LookY)); 24 | 25 | View = GenerateMatrix(position, ViewDir, up); 26 | Position = position; 27 | Up = up; 28 | MovmentSpeed = speed; 29 | MouseSensitivity = mouseSensitivity; 30 | } 31 | 32 | 33 | public float LookX { get; private set; } 34 | public float LookY { get; private set; } 35 | public void ProcessInputs(float dT, out bool frameChanged) 36 | { 37 | frameChanged = false; 38 | 39 | Vector2 mouseDelta = MouseManager.DeltaPosition; 40 | if (mouseDelta.X != 0 || mouseDelta.Y != 0) 41 | frameChanged = true; 42 | 43 | LookX += mouseDelta.X * MouseSensitivity; 44 | LookY -= mouseDelta.Y * MouseSensitivity; 45 | 46 | if (LookY >= 90) LookY = 89.999f; 47 | if (LookY <= -90) LookY = -89.999f; 48 | 49 | ViewDir.X = MathF.Cos(MathHelper.DegreesToRadians(LookX)) * MathF.Cos(MathHelper.DegreesToRadians(LookY)); 50 | ViewDir.Y = MathF.Sin(MathHelper.DegreesToRadians(LookY)); 51 | ViewDir.Z = MathF.Sin(MathHelper.DegreesToRadians(LookX)) * MathF.Cos(MathHelper.DegreesToRadians(LookY)); 52 | 53 | Vector3 acceleration = Vector3.Zero; 54 | if (KeyboardManager.IsKeyDown(Key.W)) 55 | acceleration += ViewDir; 56 | 57 | if (KeyboardManager.IsKeyDown(Key.S)) 58 | acceleration -= ViewDir; 59 | 60 | if (KeyboardManager.IsKeyDown(Key.D)) 61 | acceleration += Vector3.Cross(ViewDir, Up).Normalized(); 62 | 63 | if (KeyboardManager.IsKeyDown(Key.A)) 64 | acceleration -= Vector3.Cross(ViewDir, Up).Normalized(); 65 | 66 | Velocity += KeyboardManager.IsKeyDown(Key.LShift) ? acceleration * 5.0f : (KeyboardManager.IsKeyDown(Key.LControl) ? acceleration * 0.35f : acceleration); 67 | if (acceleration != Vector3.Zero || Velocity != Vector3.Zero) 68 | frameChanged = true; 69 | 70 | if (Vector3.Dot(Velocity, Velocity) < 0.01f) 71 | Velocity = Vector3.Zero; 72 | 73 | Velocity *= 0.95f; 74 | Velocity += acceleration * dT; 75 | Position += Velocity * dT; 76 | View = GenerateMatrix(Position, ViewDir, Up); 77 | } 78 | 79 | public static Matrix4 GenerateMatrix(Vector3 position, Vector3 viewDir, Vector3 up) 80 | { 81 | return Matrix4.LookAt(position, position + viewDir, up); 82 | } 83 | } 84 | } 85 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Helper.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using System.IO; 3 | using System.Linq; 4 | using System.Threading.Tasks; 5 | using System.Collections.Generic; 6 | using SixLabors.ImageSharp; 7 | using SixLabors.ImageSharp.PixelFormats; 8 | using OpenTK.Graphics.OpenGL4; 9 | using OpenTK_PathTracer.Render.Objects; 10 | 11 | namespace OpenTK_PathTracer 12 | { 13 | static class Helper 14 | { 15 | public const string SHADER_DIRECTORY_PATH = "res/shaders/"; 16 | public static readonly double APIVersion = Convert.ToDouble($"{GL.GetInteger(GetPName.MajorVersion)}{GL.GetInteger(GetPName.MinorVersion)}") / 10.0; 17 | 18 | public static unsafe void ParallelLoadCubemapImages(Texture texture, string[] paths, SizedInternalFormat sizedInternalFormat) 19 | { 20 | if (texture.Target != TextureTarget.TextureCubeMap) 21 | throw new ArgumentException($"texture must be {TextureTarget.TextureCubeMap}"); 22 | 23 | if (paths.Length != 6) 24 | throw new ArgumentException($"Number of images must be equal to six"); 25 | 26 | if (!paths.All(p => File.Exists(p))) 27 | throw new FileNotFoundException($"At least on of the specified paths is invalid"); 28 | 29 | Image[] images = new Image[6]; 30 | Task.Run(() => 31 | { 32 | Parallel.For(0, 6, i => 33 | { 34 | images[i] = Image.Load(paths[i]); 35 | }); 36 | }).Wait(); 37 | if (!images.All(i => i.Width == i.Height && i.Width == images[0].Width)) 38 | throw new ArgumentException($"Individual cubemap textures must be squares and every texture must be of the same size"); 39 | 40 | int size = images[0].Width; 41 | texture.ImmutableAllocate(size, size, 1, sizedInternalFormat); 42 | for (int i = 0; i < 6; i++) 43 | { 44 | fixed (void* ptr = images[i].GetPixelRowSpan(0)) 45 | { 46 | texture.SubTexture3D(size, size, 1, PixelFormat.Rgba, PixelType.UnsignedByte, (IntPtr)ptr, 0, 0, 0, i); 47 | images[i].Dispose(); 48 | } 49 | } 50 | } 51 | 52 | private static HashSet GetExtensions() 53 | { 54 | HashSet hashSet = new HashSet(); 55 | for (int i = 0; i < GL.GetInteger(GetPName.NumExtensions); i++) 56 | hashSet.Add(GL.GetString(StringNameIndexed.Extensions, i)); 57 | 58 | return hashSet; 59 | } 60 | 61 | private static readonly HashSet glExtensions = new HashSet(GetExtensions()); 62 | 63 | 64 | /// 65 | /// 66 | /// The extension to check against. Examples: GL_ARB_bindless_texture or WGL_EXT_swap_control 67 | /// True if the extension is available 68 | public static bool IsExtensionsAvailable(string extension) 69 | { 70 | return glExtensions.Contains(extension); 71 | } 72 | 73 | /// 74 | /// 75 | /// Extension to check against. Examples: GL_ARB_direct_state_access or GL_ARB_compute_shader 76 | /// API version the extension became part of the core profile 77 | /// True if this GL version >= or the extension is otherwise available 78 | public static bool IsCoreExtensionAvailable(string extension, double first) 79 | { 80 | return (APIVersion >= first) || IsExtensionsAvailable(extension); 81 | } 82 | } 83 | } -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Render/Objects/BufferObject.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using System.Runtime.InteropServices; 3 | using OpenTK.Graphics.OpenGL4; 4 | 5 | namespace OpenTK_PathTracer.Render.Objects 6 | { 7 | public class BufferObject : IDisposable 8 | { 9 | public readonly int ID; 10 | public int Size { get; private set; } 11 | 12 | public BufferObject() 13 | { 14 | GL.CreateBuffers(1, out ID); 15 | } 16 | 17 | public void BindRange(BufferRangeTarget bufferRangeTarget, int index, int offset, int size) 18 | { 19 | GL.BindBufferRange(bufferRangeTarget, index, ID, (IntPtr)offset, size); 20 | } 21 | 22 | public void Bind(BufferTarget bufferTarget) 23 | { 24 | GL.BindBuffer(bufferTarget, ID); 25 | } 26 | 27 | /// 28 | /// Sets the content of this buffer to 0 29 | /// 30 | public void Reset() 31 | { 32 | IntPtr intPtr = Marshal.AllocHGlobal(Size); 33 | GL.NamedBufferSubData(ID, IntPtr.Zero, Size, intPtr); 34 | Marshal.FreeHGlobal(intPtr); 35 | } 36 | 37 | public void SubData(int offset, int size, T data) where T : struct 38 | { 39 | GL.NamedBufferSubData(ID, (IntPtr)offset, size, ref data); 40 | } 41 | public void SubData(int offset, int size, T[] data) where T : struct 42 | { 43 | GL.NamedBufferSubData(ID, (IntPtr)offset, size, data); 44 | } 45 | public void SubData(int offset, int size, IntPtr data) 46 | { 47 | GL.NamedBufferSubData(ID, (IntPtr)offset, size, data); 48 | } 49 | 50 | public void MutableAllocate(int size, T data, BufferUsageHint bufferUsageHint) where T : struct 51 | { 52 | GL.NamedBufferData(ID, size, ref data, bufferUsageHint); 53 | Size = size; 54 | } 55 | public void MutableAllocate(int size, T[] data, BufferUsageHint bufferUsageHint) where T : struct 56 | { 57 | GL.NamedBufferData(ID, size, data, bufferUsageHint); 58 | Size = size; 59 | } 60 | public void MutableAllocate(int size, IntPtr data, BufferUsageHint bufferUsageHint) 61 | { 62 | GL.NamedBufferData(ID, size, data, bufferUsageHint); 63 | Size = size; 64 | } 65 | 66 | public void ImmutableAllocate(int size, T data, BufferStorageFlags bufferStorageFlags) where T : struct 67 | { 68 | GL.NamedBufferStorage(ID, size, ref data, bufferStorageFlags); 69 | Size = size; 70 | } 71 | public void ImmutableAllocate(int size, T[] data, BufferStorageFlags bufferStorageFlags) where T : struct 72 | { 73 | GL.NamedBufferStorage(ID, size, data, bufferStorageFlags); 74 | Size = size; 75 | } 76 | public void ImmutableAllocate(int size, IntPtr data, BufferStorageFlags bufferStorageFlags) 77 | { 78 | GL.NamedBufferStorage(ID, size, data, bufferStorageFlags); 79 | Size = size; 80 | } 81 | 82 | public void GetSubData(int offset, int size, out T data) where T : struct 83 | { 84 | data = new T(); 85 | GL.GetNamedBufferSubData(ID, (IntPtr)offset, size, ref data); 86 | } 87 | public void GetSubData(int offset, int size, T[] data) where T : struct 88 | { 89 | GL.GetNamedBufferSubData(ID, (IntPtr)offset, size, data); 90 | } 91 | public void GetSubData(int offset, int size, out IntPtr data) 92 | { 93 | data = Marshal.AllocHGlobal(size); 94 | GL.GetNamedBufferSubData(ID, (IntPtr)offset, size, data); 95 | } 96 | 97 | public void Dispose() 98 | { 99 | GL.DeleteBuffer(ID); 100 | } 101 | } 102 | } 103 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Render/PathTracer.cs: -------------------------------------------------------------------------------- 1 | #define _USE_COMPUTE 2 | using System.IO; 3 | using OpenTK; 4 | using OpenTK.Graphics.OpenGL4; 5 | using OpenTK_PathTracer.Render.Objects; 6 | 7 | namespace OpenTK_PathTracer 8 | { 9 | class PathTracer 10 | { 11 | private int _numSpheres; 12 | public int NumSpheres 13 | { 14 | get => _numSpheres; 15 | 16 | set 17 | { 18 | _numSpheres = value; 19 | shaderProgram.Upload("uboGameObjectsSize", new Vector2(value, NumCuboids)); 20 | } 21 | } 22 | 23 | 24 | private int _numCuboids; 25 | public int NumCuboids 26 | { 27 | get => _numCuboids; 28 | 29 | set 30 | { 31 | _numCuboids = value; 32 | shaderProgram.Upload("uboGameObjectsSize", new Vector2(NumSpheres, value)); 33 | } 34 | } 35 | 36 | 37 | private int _rayDepth; 38 | public int RayDepth 39 | { 40 | get => _rayDepth; 41 | 42 | set 43 | { 44 | _rayDepth = value; 45 | shaderProgram.Upload("rayDepth", value); 46 | } 47 | } 48 | 49 | private int _spp; 50 | public int SPP 51 | { 52 | get => _spp; 53 | 54 | set 55 | { 56 | _spp = value; 57 | shaderProgram.Upload("SPP", value); 58 | } 59 | } 60 | 61 | private float _focalLength; 62 | public float FocalLength 63 | { 64 | get => _focalLength; 65 | 66 | set 67 | { 68 | _focalLength = value; 69 | shaderProgram.Upload("focalLength", value); 70 | } 71 | } 72 | 73 | private float _apertureDiameter; 74 | public float ApertureDiameter 75 | { 76 | get => _apertureDiameter; 77 | 78 | set 79 | { 80 | _apertureDiameter = value; 81 | shaderProgram.Upload("apertureDiameter", value); 82 | } 83 | } 84 | 85 | public Texture EnvironmentMap; 86 | public readonly Texture Result; 87 | #if USE_COMPUTE 88 | private static readonly ShaderProgram shaderProgram = new ShaderProgram(new Shader(ShaderType.ComputeShader, File.ReadAllText("res/shaders/PathTracing/compute.glsl"))); 89 | #else 90 | private readonly Framebuffer framebuffer; 91 | private static readonly ShaderProgram shaderProgram = new ShaderProgram( 92 | new Shader(ShaderType.VertexShader, File.ReadAllText("res/shaders/screenQuad.glsl")), 93 | new Shader(ShaderType.FragmentShader, File.ReadAllText("res/shaders/PathTracing/fragCompute.glsl"))); 94 | #endif 95 | public PathTracer(Texture environmentMap, int width, int height, int rayDepth, int spp, float focalLength, float apertureDiamater) 96 | { 97 | Result = new Texture(TextureTarget2d.Texture2D); 98 | Result.SetFilter(TextureMinFilter.Linear, TextureMagFilter.Linear); 99 | Result.MutableAllocate(width, height, 1, PixelInternalFormat.Rgba32f); 100 | #if !USE_COMPUTE 101 | framebuffer = new Framebuffer(); 102 | framebuffer.AddRenderTarget(FramebufferAttachment.ColorAttachment0, Result); 103 | #endif 104 | 105 | RayDepth = rayDepth; 106 | SPP = spp; 107 | FocalLength = focalLength; 108 | ApertureDiameter = apertureDiamater; 109 | EnvironmentMap = environmentMap; 110 | } 111 | 112 | public int Samples => thisRenderNumFrame * SPP; 113 | private int thisRenderNumFrame; 114 | public void Render() 115 | { 116 | shaderProgram.Use(); 117 | shaderProgram.Upload(0, thisRenderNumFrame++); 118 | EnvironmentMap.AttachSampler(1); 119 | #if USE_COMPUTE 120 | Result.AttachImage(0, 0, false, 0, TextureAccess.ReadWrite, SizedInternalFormat.Rgba32f); 121 | GL.DispatchCompute((Result.Width + 8 - 1) / 8, (Result.Height + 8 - 1) / 8, 1); 122 | 123 | GL.MemoryBarrier(MemoryBarrierFlags.TextureFetchBarrierBit); 124 | #else 125 | framebuffer.Bind(); 126 | Result.AttachSampler(0); 127 | GL.DrawArrays(PrimitiveType.Triangles, 0, 6); 128 | #endif 129 | } 130 | 131 | public void SetSize(int width, int height) 132 | { 133 | thisRenderNumFrame = 0; 134 | Result.MutableAllocate(width, height, 1, Result.PixelInternalFormat); 135 | } 136 | 137 | public void ResetRenderer() 138 | { 139 | thisRenderNumFrame = 0; 140 | } 141 | } 142 | } -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Render/AtmosphericScatterer.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using System.IO; 3 | using OpenTK; 4 | using OpenTK.Graphics.OpenGL4; 5 | using OpenTK_PathTracer.Render.Objects; 6 | 7 | namespace OpenTK_PathTracer.Render 8 | { 9 | class AtmosphericScatterer 10 | { 11 | private int _iSteps; 12 | public int ISteps 13 | { 14 | set 15 | { 16 | _iSteps = value; 17 | shaderProgram.Upload("iSteps", _iSteps); 18 | } 19 | 20 | get => _iSteps; 21 | } 22 | 23 | private int _jSteps; 24 | public int JSteps 25 | { 26 | set 27 | { 28 | _jSteps = value; 29 | shaderProgram.Upload("jSteps", _jSteps); 30 | } 31 | 32 | get => _jSteps; 33 | } 34 | 35 | private float _time; 36 | public float Time 37 | { 38 | set 39 | { 40 | _time = value; 41 | shaderProgram.Upload("lightPos", new Vector3(0.0f, MathF.Sin(MathHelper.DegreesToRadians(_time * 360.0f)), MathF.Cos(MathHelper.DegreesToRadians(_time * 360.0f))) * 149600000e3f); 42 | } 43 | 44 | get => _time; 45 | } 46 | 47 | private float _lightIntensity; 48 | public float LightIntensity 49 | { 50 | set 51 | { 52 | _lightIntensity = Math.Max(value, 0.0f); 53 | shaderProgram.Upload("lightIntensity", _lightIntensity); 54 | } 55 | 56 | get => _lightIntensity; 57 | } 58 | 59 | public readonly TimerQuery Timer; 60 | public readonly Texture Result; 61 | private static readonly ShaderProgram shaderProgram = new ShaderProgram(new Shader(ShaderType.ComputeShader, File.ReadAllText("res/shaders/AtmosphericScattering/compute.glsl"))); 62 | private readonly BufferObject bufferObject; 63 | public AtmosphericScatterer(int size) 64 | { 65 | Timer = new TimerQuery(600); 66 | 67 | Result = new Texture(TextureTarget2d.TextureCubeMap); 68 | Result.SetFilter(TextureMinFilter.Nearest, TextureMagFilter.Linear); 69 | Result.MutableAllocate(size, size, 1, PixelInternalFormat.Rgba32f); 70 | 71 | bufferObject = new BufferObject(); 72 | bufferObject.ImmutableAllocate(Vector4.SizeInBytes * 4 * 7 + Vector4.SizeInBytes, IntPtr.Zero, BufferStorageFlags.DynamicStorageBit); 73 | bufferObject.BindRange(BufferRangeTarget.UniformBuffer, 2, 0, bufferObject.Size); 74 | 75 | Matrix4 invProjection = Matrix4.CreatePerspectiveFieldOfView(MathHelper.DegreesToRadians(90.0f), 1, 0.1f, 10f).Inverted(); 76 | Matrix4[] invViews = new Matrix4[] 77 | { 78 | Camera.GenerateMatrix(Vector3.Zero, new Vector3(1.0f, 0.0f, 0.0f), new Vector3(0.0f, -1.0f, 0.0f)).Inverted(), // PositiveX 79 | Camera.GenerateMatrix(Vector3.Zero, new Vector3(-1.0f, 0.0f, 0.0f), new Vector3(0.0f, -1.0f, 0.0f)).Inverted(), // NegativeX 80 | 81 | Camera.GenerateMatrix(Vector3.Zero, new Vector3(0.0f, 1.0f, 0.0f), new Vector3(0.0f, 0.0f, 1.0f)).Inverted(), // PositiveY 82 | Camera.GenerateMatrix(Vector3.Zero, new Vector3(0.0f, -1.0f, 0.0f), new Vector3(0.0f, 0.0f, -1.0f)).Inverted(), // NegativeY 83 | 84 | Camera.GenerateMatrix(Vector3.Zero, new Vector3(0.0f, 0.0f, 1.0f), new Vector3(0.0f, -1.0f, 0.0f)).Inverted(), // PositiveZ 85 | Camera.GenerateMatrix(Vector3.Zero, new Vector3(0.0f, 0.0f, -1.0f), new Vector3(0.0f, -1.0f, 0.0f)).Inverted(), // NegativeZ 86 | }; 87 | 88 | bufferObject.SubData(0, Vector4.SizeInBytes * 4, invProjection); 89 | bufferObject.SubData(Vector4.SizeInBytes * 4, Vector4.SizeInBytes * 4 * invViews.Length, invViews); 90 | 91 | Time = 0.5f; 92 | ISteps = 50; 93 | JSteps = 15; 94 | LightIntensity = 15.0f; 95 | } 96 | 97 | 98 | /// 99 | /// This method computes a whole cubemap rather than just whats visible. It is meant for precomputation and should not be called frequently for performance reasons 100 | /// 101 | /// 102 | public void Render() 103 | { 104 | Timer.Start(); 105 | 106 | Result.AttachImage(0, 0, true, 0, TextureAccess.WriteOnly, SizedInternalFormat.Rgba32f); 107 | shaderProgram.Use(); 108 | 109 | GL.DispatchCompute((Result.Width + 8 - 1) / 8, (Result.Width + 8 - 1) / 8, 6); 110 | GL.MemoryBarrier(MemoryBarrierFlags.TextureFetchBarrierBit); 111 | 112 | Timer.StopAndReset(); 113 | } 114 | 115 | public void SetSize(int size) 116 | { 117 | Result.MutableAllocate(size, size, 1, Result.PixelInternalFormat); 118 | } 119 | } 120 | } 121 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/shaders/AtmosphericScattering/computeMy.glsl: -------------------------------------------------------------------------------- 1 | #version 450 core 2 | #define FLOAT_MAX 3.4028235e+38 3 | #define FLOAT_MIN -3.4028235e+38 4 | #define EPSILON 0.0001 5 | #define PI 3.14159265 6 | 7 | layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; 8 | 9 | layout(binding = 0, rgba32f) uniform writeonly restrict imageCube ImgResult; 10 | 11 | struct Ray 12 | { 13 | vec3 Origin; 14 | vec3 Direction; 15 | }; 16 | 17 | layout (std140, binding = 2) uniform AtmosphericDataUBO 18 | { 19 | mat4 InvProjection; 20 | mat4[6] InvView; 21 | } atmoDataUBO; 22 | 23 | vec3 CalculateScattering(Ray ray, int samples); 24 | float AvgDensityOver(vec3 start, vec3 end, int samples); 25 | float DensityAtPoint(vec3 point); 26 | bool RaySphereIntersect(Ray ray, vec3 position, float radius, out float t1, out float t2); 27 | Ray GetWorldSpaceRay(mat4 inverseProj, mat4 inverseView, vec3 viewPos, vec2 normalizedDeviceCoors); 28 | bool IsInside(vec2 pos, vec2 size); 29 | 30 | 31 | const vec3 PlanetPos = vec3(0, 0, 0); 32 | const float PlanetRad = 600; 33 | 34 | const vec3 LightPos = vec3(0.0, 500.0 + 800.0, 0.0); 35 | const vec3 ViewPos = vec3(20.43, -201.99 + 800.0, -20.67); 36 | const vec3 WaveLengths = vec3(680.0, 550.0, 440.0); 37 | 38 | const float AtmosphereRad = 0.01; 39 | const float DensityFallOff = 35.0; 40 | const float ScatteringStrength = 2.1; 41 | 42 | const int ISteps = 100; 43 | const int JSteps = 8; 44 | 45 | void main() 46 | { 47 | ivec2 imgResultSize = imageSize(ImgResult); 48 | ivec3 imgCoord = ivec3(gl_GlobalInvocationID); 49 | if (!IsInside(imgCoord.xy, imgResultSize)) 50 | return; 51 | 52 | vec2 ndc = vec2(imgCoord.xy) / imgResultSize * 2.0 - 1.0; 53 | 54 | Ray rayEyeToWorld = GetWorldSpaceRay(atmoDataUBO.InvProjection, atmoDataUBO.InvView[imgCoord.z], ViewPos, ndc); 55 | vec3 scattered = CalculateScattering(rayEyeToWorld, ISteps); 56 | 57 | imageStore(ImgResult, imgCoord, vec4(scattered, 1.0)); 58 | } 59 | 60 | 61 | vec3 CalculateScattering(Ray ray, int samples) 62 | { 63 | vec3 ScatteringCoefficients = vec3(pow(400 / max(WaveLengths.x, EPSILON), 4), pow(400 / max(WaveLengths.y, EPSILON), 4), pow(400 / max(WaveLengths.z, EPSILON), 4)) * ScatteringStrength; 64 | vec3 color = vec3(0); 65 | float t1, t2; 66 | if (!(RaySphereIntersect(ray, PlanetPos, PlanetRad + AtmosphereRad, t1, t2) && t2 > 0)) 67 | return color; 68 | 69 | float planetT1, planetT2; 70 | RaySphereIntersect(ray, PlanetPos, PlanetRad, planetT1, planetT2); 71 | 72 | t2 = min(planetT1, t2); // if also hit planet set t2 to planetT1 73 | 74 | 75 | vec3 ViewPos = t1 < 0 ? ray.Origin : (ray.Origin + ray.Direction * t1); 76 | ray.Origin = ViewPos + EPSILON; 77 | 78 | vec3 deltaStep = ((ray.Origin + ray.Direction * t2) - ray.Origin) / samples; 79 | 80 | vec3 scatteredLight = vec3(0); 81 | for (int i = 0; i < samples; i++) 82 | { 83 | ray.Direction = normalize(LightPos - ray.Origin); 84 | RaySphereIntersect(ray, PlanetPos, PlanetRad + AtmosphereRad, t1, t2); 85 | 86 | float avgDensityAlongRay = AvgDensityOver(ray.Origin, ray.Origin + ray.Direction * t2, JSteps); 87 | float avgDensityAlongViewRay = AvgDensityOver(ViewPos, ray.Origin, JSteps); 88 | vec3 transmitted = exp((-avgDensityAlongRay - avgDensityAlongViewRay) * ScatteringCoefficients); // combines transmittance from Densityray and ViewRay 89 | 90 | float localDensity = DensityAtPoint(ray.Origin); 91 | 92 | scatteredLight += localDensity * transmitted * ScatteringCoefficients; 93 | 94 | ray.Origin += deltaStep; 95 | } 96 | return scatteredLight / samples; 97 | } 98 | 99 | float AvgDensityOver(vec3 start, vec3 end, int samples) // Physics terminology: "Optical Depth" 100 | { 101 | // Take integral over DensityAtPoint() from start to end. I dont think there exists a closed-form solution so we are simply going to make an approxiamtion using riemann sum 102 | 103 | vec3 rayPos = start; 104 | vec3 deltaStep = (end - start) / samples; 105 | float density = 0.0; 106 | 107 | for (int i = 0; i < samples; i++) 108 | { 109 | density += DensityAtPoint(rayPos); 110 | rayPos += deltaStep; 111 | } 112 | 113 | return density / samples; 114 | } 115 | 116 | float DensityAtPoint(vec3 point) 117 | { 118 | float height = length(point - PlanetPos) - PlanetRad; 119 | float height01 = height / (AtmosphereRad - PlanetRad); // 0 at Planetshell, 1 at outer atmosphere 120 | 121 | return exp(-height01 * DensityFallOff) * (1 - height01); // 1 at Planetshell, 0 at outer atmosphere 122 | } 123 | 124 | // Source: https://antongerdelan.net/opengl/raycasting.html 125 | bool RaySphereIntersect(Ray ray, vec3 position, float radius, out float t1, out float t2) 126 | { 127 | t1 = t2 = FLOAT_MAX; 128 | 129 | vec3 sphereToRay = ray.Origin - position; 130 | float b = dot(ray.Direction, sphereToRay); 131 | float c = dot(sphereToRay, sphereToRay) - radius * radius; 132 | float discriminant = b * b - c; 133 | if (discriminant < 0) 134 | return false; 135 | 136 | float squareRoot = sqrt(discriminant); 137 | t1 = -b - squareRoot; 138 | t2 = -b + squareRoot; 139 | 140 | return true; 141 | } 142 | 143 | bool IsInside(vec2 pos, vec2 size) 144 | { 145 | return pos.x < size.x && pos.y < size.y; 146 | } 147 | 148 | Ray GetWorldSpaceRay(mat4 inverseProj, mat4 inverseView, vec3 viewPos, vec2 normalizedDeviceCoords) 149 | { 150 | vec4 rayEye = inverseProj * vec4(normalizedDeviceCoords.xy, -1.0, 0.0); 151 | rayEye.zw = vec2(-1.0, 0.0); 152 | return Ray(viewPos, normalize((inverseView * rayEye).xyz)); 153 | } 154 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/shaders/AtmosphericScattering/compute.glsl: -------------------------------------------------------------------------------- 1 | // I only adapted his code to a compute shader. 2 | // The actual atmospheric scattering code is copied from the given source 3 | // Source: https://github.com/wwwtyro/glsl-atmosphere 4 | 5 | #version 450 core 6 | #define PI 3.14159265 7 | 8 | layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; 9 | 10 | layout(binding = 0, rgba32f) uniform writeonly restrict imageCube ImgResult; 11 | 12 | layout (std140, binding = 2) uniform AtmosphericDataUBO 13 | { 14 | mat4 InvProjection; 15 | mat4[6] InvView; 16 | } atmoDataUBO; 17 | 18 | vec2 Rsi(vec3 r0, vec3 rd, float sr); 19 | vec3 Atmosphere(vec3 r, vec3 r0, vec3 pSun, float iSun, float rPlanet, float rAtmos, vec3 kRlh, float kMie, float shRlh, float shMie, float g); 20 | bool IsInside(vec2 pos, vec2 size); 21 | vec3 GetWorldSpaceRay(mat4 inverseProj, mat4 inverseView, vec2 normalizedDeviceCoords); 22 | 23 | uniform vec3 lightPos; 24 | 25 | uniform float lightIntensity; 26 | 27 | uniform int iSteps; 28 | uniform int jSteps; 29 | 30 | void main() 31 | { 32 | ivec2 imgResultSize = imageSize(ImgResult); 33 | ivec3 imgCoord = ivec3(gl_GlobalInvocationID); 34 | if (!IsInside(imgCoord.xy, imgResultSize)) 35 | return; 36 | 37 | vec2 ndc = vec2(imgCoord.xy) / imgResultSize * 2.0 - 1.0; 38 | 39 | vec3 eyeToWorld = GetWorldSpaceRay(atmoDataUBO.InvProjection, atmoDataUBO.InvView[imgCoord.z], ndc); 40 | 41 | vec3 color = Atmosphere( 42 | eyeToWorld, // normalized ray direction 43 | vec3(0, 6376e3, 0), // ray origin 44 | lightPos, // position of the sun 45 | lightIntensity, // intensity of the sun 46 | 6371e3, // radius of the planet in meters 47 | 6471e3, // radius of the atmosphere in meters 48 | vec3(5.5e-6, 13.0e-6, 22.4e-6), // Rayleigh scattering coefficient 49 | 21e-6, // Mie scattering coefficient 50 | 8e3, // Rayleigh scale height 51 | 1.2e3, // Mie scale height 52 | 0.758 // Mie preferred scattering direction 53 | ); 54 | 55 | imageStore(ImgResult, imgCoord, vec4(color, 1.0)); 56 | } 57 | 58 | vec2 Rsi(vec3 r0, vec3 rd, float sr) { 59 | // ray-sphere intersection that assumes 60 | // the sphere is centered at the origin. 61 | // No intersection when result.x > result.y 62 | float a = dot(rd, rd); 63 | float b = 2.0 * dot(rd, r0); 64 | float c = dot(r0, r0) - (sr * sr); 65 | float d = (b*b) - 4.0*a*c; 66 | if (d < 0.0) return vec2(1e5,-1e5); 67 | return vec2( 68 | (-b - sqrt(d))/(2.0*a), 69 | (-b + sqrt(d))/(2.0*a) 70 | ); 71 | } 72 | 73 | vec3 Atmosphere(vec3 r, vec3 r0, vec3 pSun, float iSun, float rPlanet, float rAtmos, vec3 kRlh, float kMie, float shRlh, float shMie, float g) { 74 | // Normalize the sun and view directions. 75 | pSun = normalize(pSun); 76 | r = normalize(r); 77 | 78 | // Calculate the step size of the primary ray. 79 | vec2 p = Rsi(r0, r, rAtmos); 80 | if (p.x > p.y) return vec3(0,0,0); 81 | p.y = min(p.y, Rsi(r0, r, rPlanet).x); 82 | float iStepSize = (p.y - p.x) / float(iSteps); 83 | 84 | // Initialize the primary ray time. 85 | float iTime = 0.0; 86 | 87 | // Initialize accumulators for Rayleigh and Mie scattering. 88 | vec3 totalRlh = vec3(0,0,0); 89 | vec3 totalMie = vec3(0,0,0); 90 | 91 | // Initialize optical depth accumulators for the primary ray. 92 | float iOdRlh = 0.0; 93 | float iOdMie = 0.0; 94 | 95 | // Calculate the Rayleigh and Mie phases. 96 | float mu = dot(r, pSun); 97 | float mumu = mu * mu; 98 | float gg = g * g; 99 | float pRlh = 3.0 / (16.0 * PI) * (1.0 + mumu); 100 | float pMie = 3.0 / (8.0 * PI) * ((1.0 - gg) * (mumu + 1.0)) / (pow(1.0 + gg - 2.0 * mu * g, 1.5) * (2.0 + gg)); 101 | 102 | // Sample the primary ray. 103 | for (int i = 0; i < iSteps; i++) { 104 | 105 | // Calculate the primary ray sample position. 106 | vec3 iPos = r0 + r * (iTime + iStepSize * 0.5); 107 | 108 | // Calculate the height of the sample. 109 | float iHeight = length(iPos) - rPlanet; 110 | 111 | // Calculate the optical depth of the Rayleigh and Mie scattering for this step. 112 | float odStepRlh = exp(-iHeight / shRlh) * iStepSize; 113 | float odStepMie = exp(-iHeight / shMie) * iStepSize; 114 | 115 | // Accumulate optical depth. 116 | iOdRlh += odStepRlh; 117 | iOdMie += odStepMie; 118 | 119 | // Calculate the step size of the secondary ray. 120 | float jStepSize = Rsi(iPos, pSun, rAtmos).y / float(jSteps); 121 | 122 | // Initialize the secondary ray time. 123 | float jTime = 0.0; 124 | 125 | // Initialize optical depth accumulators for the secondary ray. 126 | float jOdRlh = 0.0; 127 | float jOdMie = 0.0; 128 | 129 | // Sample the secondary ray. 130 | for (int j = 0; j < jSteps; j++) { 131 | 132 | // Calculate the secondary ray sample position. 133 | vec3 jPos = iPos + pSun * (jTime + jStepSize * 0.5); 134 | 135 | // Calculate the height of the sample. 136 | float jHeight = length(jPos) - rPlanet; 137 | 138 | // Accumulate the optical depth. 139 | jOdRlh += exp(-jHeight / shRlh) * jStepSize; 140 | jOdMie += exp(-jHeight / shMie) * jStepSize; 141 | 142 | // Increment the secondary ray time. 143 | jTime += jStepSize; 144 | } 145 | 146 | // Calculate attenuation. 147 | vec3 attn = exp(-(kMie * (iOdMie + jOdMie) + kRlh * (iOdRlh + jOdRlh))); 148 | 149 | // Accumulate scattering. 150 | totalRlh += odStepRlh * attn; 151 | totalMie += odStepMie * attn; 152 | 153 | // Increment the primary ray time. 154 | iTime += iStepSize; 155 | } 156 | 157 | // Calculate and return the final color. 158 | return iSun * (pRlh * kRlh * totalRlh + pMie * kMie * totalMie); 159 | } 160 | 161 | bool IsInside(vec2 pos, vec2 size) 162 | { 163 | return pos.x < size.x && pos.y < size.y; 164 | } 165 | 166 | vec3 GetWorldSpaceRay(mat4 inverseProj, mat4 inverseView, vec2 normalizedDeviceCoords) 167 | { 168 | vec4 rayEye = inverseProj * vec4(normalizedDeviceCoords.xy, -1.0, 0.0); 169 | rayEye.zw = vec2(-1.0, 0.0); 170 | return normalize((inverseView * rayEye).xyz); 171 | } 172 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | ## Ignore Visual Studio temporary files, build results, and 2 | ## files generated by popular Visual Studio add-ons. 3 | ## 4 | ## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore 5 | 6 | # User-specific files 7 | *.rsuser 8 | *.suo 9 | *.user 10 | *.userosscache 11 | *.sln.docstates 12 | 13 | # User-specific files (MonoDevelop/Xamarin Studio) 14 | *.userprefs 15 | 16 | # Build results 17 | [Dd]ebug/ 18 | [Dd]ebugPublic/ 19 | [Rr]elease/ 20 | [Rr]eleases/ 21 | x64/ 22 | x86/ 23 | [Aa][Rr][Mm]/ 24 | [Aa][Rr][Mm]64/ 25 | bld/ 26 | [Bb]in/ 27 | [Oo]bj/ 28 | [Ll]og/ 29 | 30 | # Visual Studio 2015/2017 cache/options directory 31 | .vs/ 32 | # Uncomment if you have tasks that create the project's static files in wwwroot 33 | #wwwroot/ 34 | 35 | # Visual Studio 2017 auto generated files 36 | Generated\ Files/ 37 | 38 | # MSTest test Results 39 | [Tt]est[Rr]esult*/ 40 | [Bb]uild[Ll]og.* 41 | 42 | # NUNIT 43 | *.VisualState.xml 44 | TestResult.xml 45 | 46 | # Build Results of an ATL Project 47 | [Dd]ebugPS/ 48 | [Rr]eleasePS/ 49 | dlldata.c 50 | 51 | # Benchmark Results 52 | BenchmarkDotNet.Artifacts/ 53 | 54 | # .NET Core 55 | project.lock.json 56 | project.fragment.lock.json 57 | artifacts/ 58 | 59 | # StyleCop 60 | StyleCopReport.xml 61 | 62 | # Files built by Visual Studio 63 | *_i.c 64 | *_p.c 65 | *_h.h 66 | *.ilk 67 | *.meta 68 | *.obj 69 | *.iobj 70 | *.pch 71 | *.pdb 72 | *.ipdb 73 | *.pgc 74 | *.pgd 75 | *.rsp 76 | *.sbr 77 | *.tlb 78 | *.tli 79 | *.tlh 80 | *.tmp 81 | *.tmp_proj 82 | *_wpftmp.csproj 83 | *.log 84 | *.vspscc 85 | *.vssscc 86 | .builds 87 | *.pidb 88 | *.svclog 89 | *.scc 90 | 91 | # Chutzpah Test files 92 | _Chutzpah* 93 | 94 | # Visual C++ cache files 95 | ipch/ 96 | *.aps 97 | *.ncb 98 | *.opendb 99 | *.opensdf 100 | *.sdf 101 | *.cachefile 102 | *.VC.db 103 | *.VC.VC.opendb 104 | 105 | # Visual Studio profiler 106 | *.psess 107 | *.vsp 108 | *.vspx 109 | *.sap 110 | 111 | # Visual Studio Trace Files 112 | *.e2e 113 | 114 | # TFS 2012 Local Workspace 115 | $tf/ 116 | 117 | # Guidance Automation Toolkit 118 | *.gpState 119 | 120 | # ReSharper is a .NET coding add-in 121 | _ReSharper*/ 122 | *.[Rr]e[Ss]harper 123 | *.DotSettings.user 124 | 125 | # JustCode is a .NET coding add-in 126 | .JustCode 127 | 128 | # TeamCity is a build add-in 129 | _TeamCity* 130 | 131 | # DotCover is a Code Coverage Tool 132 | *.dotCover 133 | 134 | # AxoCover is a Code Coverage Tool 135 | .axoCover/* 136 | !.axoCover/settings.json 137 | 138 | # Visual Studio code coverage results 139 | *.coverage 140 | *.coveragexml 141 | 142 | # NCrunch 143 | _NCrunch_* 144 | .*crunch*.local.xml 145 | nCrunchTemp_* 146 | 147 | # MightyMoose 148 | *.mm.* 149 | AutoTest.Net/ 150 | 151 | # Web workbench (sass) 152 | .sass-cache/ 153 | 154 | # Installshield output folder 155 | [Ee]xpress/ 156 | 157 | # DocProject is a documentation generator add-in 158 | DocProject/buildhelp/ 159 | DocProject/Help/*.HxT 160 | DocProject/Help/*.HxC 161 | DocProject/Help/*.hhc 162 | DocProject/Help/*.hhk 163 | DocProject/Help/*.hhp 164 | DocProject/Help/Html2 165 | DocProject/Help/html 166 | 167 | # Click-Once directory 168 | publish/ 169 | 170 | # Publish Web Output 171 | *.[Pp]ublish.xml 172 | *.azurePubxml 173 | # Note: Comment the next line if you want to checkin your web deploy settings, 174 | # but database connection strings (with potential passwords) will be unencrypted 175 | *.pubxml 176 | *.publishproj 177 | 178 | # Microsoft Azure Web App publish settings. Comment the next line if you want to 179 | # checkin your Azure Web App publish settings, but sensitive information contained 180 | # in these scripts will be unencrypted 181 | PublishScripts/ 182 | 183 | # NuGet Packages 184 | *.nupkg 185 | # The packages folder can be ignored because of Package Restore 186 | **/[Pp]ackages/* 187 | # except build/, which is used as an MSBuild target. 188 | !**/[Pp]ackages/build/ 189 | # Uncomment if necessary however generally it will be regenerated when needed 190 | #!**/[Pp]ackages/repositories.config 191 | # NuGet v3's project.json files produces more ignorable files 192 | *.nuget.props 193 | *.nuget.targets 194 | 195 | # Microsoft Azure Build Output 196 | csx/ 197 | *.build.csdef 198 | 199 | # Microsoft Azure Emulator 200 | ecf/ 201 | rcf/ 202 | 203 | # Windows Store app package directories and files 204 | AppPackages/ 205 | BundleArtifacts/ 206 | Package.StoreAssociation.xml 207 | _pkginfo.txt 208 | *.appx 209 | 210 | # Visual Studio cache files 211 | # files ending in .cache can be ignored 212 | *.[Cc]ache 213 | # but keep track of directories ending in .cache 214 | !?*.[Cc]ache/ 215 | 216 | # Others 217 | ClientBin/ 218 | ~$* 219 | *~ 220 | *.dbmdl 221 | *.dbproj.schemaview 222 | *.jfm 223 | *.pfx 224 | *.publishsettings 225 | orleans.codegen.cs 226 | 227 | # Including strong name files can present a security risk 228 | # (https://github.com/github/gitignore/pull/2483#issue-259490424) 229 | #*.snk 230 | 231 | # Since there are multiple workflows, uncomment next line to ignore bower_components 232 | # (https://github.com/github/gitignore/pull/1529#issuecomment-104372622) 233 | #bower_components/ 234 | 235 | # RIA/Silverlight projects 236 | Generated_Code/ 237 | 238 | # Backup & report files from converting an old project file 239 | # to a newer Visual Studio version. Backup files are not needed, 240 | # because we have git ;-) 241 | _UpgradeReport_Files/ 242 | Backup*/ 243 | UpgradeLog*.XML 244 | UpgradeLog*.htm 245 | ServiceFabricBackup/ 246 | *.rptproj.bak 247 | 248 | # SQL Server files 249 | *.mdf 250 | *.ldf 251 | *.ndf 252 | 253 | # Business Intelligence projects 254 | *.rdl.data 255 | *.bim.layout 256 | *.bim_*.settings 257 | *.rptproj.rsuser 258 | *- Backup*.rdl 259 | 260 | # Microsoft Fakes 261 | FakesAssemblies/ 262 | 263 | # GhostDoc plugin setting file 264 | *.GhostDoc.xml 265 | 266 | # Node.js Tools for Visual Studio 267 | .ntvs_analysis.dat 268 | node_modules/ 269 | 270 | # Visual Studio 6 build log 271 | *.plg 272 | 273 | # Visual Studio 6 workspace options file 274 | *.opt 275 | 276 | # Visual Studio 6 auto-generated workspace file (contains which files were open etc.) 277 | *.vbw 278 | 279 | # Visual Studio LightSwitch build output 280 | **/*.HTMLClient/GeneratedArtifacts 281 | **/*.DesktopClient/GeneratedArtifacts 282 | **/*.DesktopClient/ModelManifest.xml 283 | **/*.Server/GeneratedArtifacts 284 | **/*.Server/ModelManifest.xml 285 | _Pvt_Extensions 286 | 287 | # Paket dependency manager 288 | .paket/paket.exe 289 | paket-files/ 290 | 291 | # FAKE - F# Make 292 | .fake/ 293 | 294 | # JetBrains Rider 295 | .idea/ 296 | *.sln.iml 297 | 298 | # CodeRush personal settings 299 | .cr/personal 300 | 301 | # Python Tools for Visual Studio (PTVS) 302 | __pycache__/ 303 | *.pyc 304 | 305 | # Cake - Uncomment if you are using it 306 | # tools/** 307 | # !tools/packages.config 308 | 309 | # Tabs Studio 310 | *.tss 311 | 312 | # Telerik's JustMock configuration file 313 | *.jmconfig 314 | 315 | # BizTalk build output 316 | *.btp.cs 317 | *.btm.cs 318 | *.odx.cs 319 | *.xsd.cs 320 | 321 | # OpenCover UI analysis results 322 | OpenCover/ 323 | 324 | # Azure Stream Analytics local run output 325 | ASALocalRun/ 326 | 327 | # MSBuild Binary and Structured Log 328 | *.binlog 329 | 330 | # NVidia Nsight GPU debugger configuration file 331 | *.nvuser 332 | 333 | # MFractors (Xamarin productivity tool) working folder 334 | .mfractor/ 335 | 336 | # Local History for Visual Studio 337 | .localhistory/ 338 | 339 | # BeatPulse healthcheck temp database 340 | healthchecksdb 341 | 342 | imgui.ini 343 | OpenTK-PathTracer/res/imgui.ini 344 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Render/Objects/ShaderProgram.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using System.IO; 3 | using System.Linq; 4 | using System.Text; 5 | using OpenTK; 6 | using OpenTK.Graphics.OpenGL4; 7 | 8 | namespace OpenTK_PathTracer.Render.Objects 9 | { 10 | struct Shader : IDisposable 11 | { 12 | public readonly int ID; 13 | public readonly ShaderType ShaderType; 14 | 15 | public Shader(ShaderType shaderType, string sourceCode) 16 | { 17 | ShaderType = shaderType; 18 | 19 | ID = GL.CreateShader(shaderType); 20 | 21 | sourceCode = PreProcessIncludes(sourceCode); 22 | GL.ShaderSource(ID, sourceCode); 23 | GL.CompileShader(ID); 24 | 25 | string compileInfo = GL.GetShaderInfoLog(ID); 26 | if (compileInfo != string.Empty) 27 | Console.WriteLine(compileInfo); 28 | } 29 | 30 | /// 31 | /// Searches the string for #include and includes the specified Path. Example: #include PathTracing/fragCompute 32 | /// 33 | /// 34 | /// 35 | private static string PreProcessIncludes(string s) 36 | { 37 | StringBuilder includedContent = new StringBuilder(s.Length + 2000); 38 | using StringReader stringReader = new StringReader(s); 39 | 40 | string line; 41 | while ((line = stringReader.ReadLine()) is not null) // dont use != because it could be overriden 42 | { 43 | string trimmed = line.Trim(); 44 | if (trimmed.Length > 9 && trimmed.Substring(0, 9) == "#include ") 45 | { 46 | string filePath = $"{Helper.SHADER_DIRECTORY_PATH}{trimmed.Substring(9, trimmed.Length - 9)}.glsl"; 47 | includedContent.Append(PreProcessIncludes(File.ReadAllText(filePath))); 48 | } 49 | else 50 | { 51 | includedContent.AppendLine(line); 52 | } 53 | } 54 | return includedContent.ToString(); 55 | } 56 | 57 | public void Dispose() 58 | { 59 | GL.DeleteShader(ID); 60 | } 61 | } 62 | 63 | class ShaderProgram : IDisposable 64 | { 65 | private static int lastBindedID = -1; 66 | 67 | public readonly int ID; 68 | public ShaderProgram(params Shader[] shaders) 69 | { 70 | if (shaders is null || shaders.Length == 0 || !shaders.All(s => s.ID != 0)) 71 | throw new IndexOutOfRangeException($"Shader array is empty or null. Or at least one shader has ID 0"); 72 | 73 | if(!shaders.All(s => shaders.All(s1 => s.ID == s1.ID || s1.ShaderType != s.ShaderType))) 74 | throw new Exception($"A ShaderProgram can only hold one instance of every ShaderType. Validate the shader array."); 75 | 76 | ID = GL.CreateProgram(); 77 | 78 | for (int i = 0; i < shaders.Length; i++) 79 | GL.AttachShader(ID, shaders[i].ID); 80 | 81 | GL.LinkProgram(ID); 82 | for (int i = 0; i < shaders.Length; i++) 83 | { 84 | GL.DetachShader(ID, shaders[i].ID); 85 | shaders[i].Dispose(); 86 | } 87 | } 88 | 89 | public void Use() 90 | { 91 | if (lastBindedID != ID) 92 | { 93 | GL.UseProgram(ID); 94 | lastBindedID = ID; 95 | } 96 | } 97 | 98 | public static void Use(int id) 99 | { 100 | if (lastBindedID != id) 101 | { 102 | GL.UseProgram(id); 103 | lastBindedID = id; 104 | } 105 | } 106 | 107 | public static void UploadToProgram(int id, int location, Matrix4 matrix4, bool transpose = false) 108 | { 109 | GL.ProgramUniformMatrix4(id, location, transpose, ref matrix4); 110 | } 111 | public void Upload(int location, Matrix4 matrix4, bool transpose = false) 112 | { 113 | GL.ProgramUniformMatrix4(ID, location, transpose, ref matrix4); 114 | } 115 | public void Upload(string name, Matrix4 matrix4, bool transpose = false) 116 | { 117 | GL.ProgramUniformMatrix4(ID, GetUniformLocation(name), transpose, ref matrix4); 118 | } 119 | 120 | public static void UploadToProgram(int id, int location, Vector4 vector4) 121 | { 122 | GL.ProgramUniform4(id, location, vector4); 123 | } 124 | public void Upload(int location, Vector4 vector4) 125 | { 126 | GL.ProgramUniform4(ID, location, vector4); 127 | } 128 | public void Upload(string name, Vector4 vector4) 129 | { 130 | GL.ProgramUniform4(ID, GetUniformLocation(name), vector4); 131 | } 132 | 133 | public static void UploadToProgram(int id, int location, Vector3 vector3) 134 | { 135 | GL.ProgramUniform3(id, location, vector3); 136 | } 137 | public void Upload(int location, Vector3 vector3) 138 | { 139 | GL.ProgramUniform3(ID, location, vector3); 140 | } 141 | public void Upload(string name, Vector3 vector3) 142 | { 143 | GL.ProgramUniform3(ID, GetUniformLocation(name), vector3); 144 | } 145 | 146 | public static void UploadToProgram(int id, int location, Vector2 vector2) 147 | { 148 | GL.ProgramUniform2(id, location, vector2); 149 | } 150 | public void Upload(int location, Vector2 vector2) 151 | { 152 | GL.ProgramUniform2(ID, location, vector2); 153 | } 154 | public void Upload(string name, Vector2 vector2) 155 | { 156 | GL.ProgramUniform2(ID, GetUniformLocation(name), vector2); 157 | } 158 | 159 | public static void UploadToProgram(int id, int location, float x) 160 | { 161 | GL.ProgramUniform1(id, location, x); 162 | } 163 | public void Upload(int location, float x) 164 | { 165 | GL.ProgramUniform1(ID, location, x); 166 | } 167 | public void Upload(string name, float x) 168 | { 169 | GL.ProgramUniform1(ID, GetUniformLocation(name), x); 170 | } 171 | 172 | public static void UploadToProgram(int id, int location, int x) 173 | { 174 | GL.ProgramUniform1(id, location, x); 175 | } 176 | public void Upload(int location, int x) 177 | { 178 | GL.ProgramUniform1(ID, location, x); 179 | } 180 | public void Upload(string name, int x) 181 | { 182 | GL.ProgramUniform1(ID, GetUniformLocation(name), x); 183 | } 184 | 185 | public static void UploadToProgram(int id, int location, uint x) 186 | { 187 | GL.ProgramUniform1(id, location, x); 188 | } 189 | public void Upload(int location, uint x) 190 | { 191 | GL.ProgramUniform1(ID, location, x); 192 | } 193 | public void Upload(string name, uint x) 194 | { 195 | GL.ProgramUniform1(ID, GetUniformLocation(name), x); 196 | } 197 | 198 | public static void UploadToProgram(int id, int location, bool x) 199 | { 200 | GL.ProgramUniform1(id, location, x ? 1 : 0); 201 | } 202 | public void Upload(int location, bool x) 203 | { 204 | GL.ProgramUniform1(ID, location, x ? 1 : 0); 205 | } 206 | public void Upload(string name, bool x) 207 | { 208 | GL.ProgramUniform1(ID, GetUniformLocation(name), x ? 1 : 0); 209 | } 210 | 211 | public int GetUniformLocation(string name) 212 | { 213 | return GL.GetUniformLocation(ID, name); 214 | } 215 | 216 | 217 | public void Dispose() 218 | { 219 | GL.DeleteProgram(ID); 220 | } 221 | } 222 | } -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/ImGui/ImGuiController.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using System.Collections.Generic; 3 | using System.Runtime.CompilerServices; 4 | using OpenTK; 5 | using OpenTK.Graphics.OpenGL4; 6 | using OpenTK.Input; 7 | using OpenTK_PathTracer.Render.Objects; 8 | using ImGuiNET; 9 | 10 | namespace OpenTK_PathTracer.GUI 11 | { 12 | /// 13 | /// This ImGui wrapper is from here. 14 | /// I modified it to make it work tighter with my project 15 | /// 16 | public class ImGuiController : IDisposable 17 | { 18 | private bool frameBegun; 19 | 20 | private VAO vao; 21 | private ShaderProgram shaderProgram; 22 | private Texture fontTexture; 23 | private BufferObject vbo; 24 | private BufferObject ebo; 25 | 26 | private int Width; 27 | private int Height; 28 | 29 | private System.Numerics.Vector2 scaleFactor = System.Numerics.Vector2.One; 30 | public ImGuiController(int width, int height) 31 | { 32 | Width = width; 33 | Height = height; 34 | 35 | IntPtr context = ImGui.CreateContext(); 36 | ImGui.SetCurrentContext(context); 37 | 38 | ImGuiIOPtr io = ImGui.GetIO(); 39 | io.Fonts.AddFontDefault(); 40 | io.BackendFlags |= ImGuiBackendFlags.RendererHasVtxOffset; 41 | 42 | CreateDeviceResources(); 43 | SetKeyMappings(); 44 | 45 | SetPerFrameImGuiData(1f / 60f); 46 | 47 | ImGui.NewFrame(); 48 | frameBegun = true; 49 | } 50 | 51 | public void WindowResized(int width, int height) 52 | { 53 | Width = width; 54 | Height = height; 55 | } 56 | 57 | private void CreateDeviceResources() 58 | { 59 | vbo = new BufferObject(); 60 | vbo.MutableAllocate(10000, IntPtr.Zero, BufferUsageHint.DynamicDraw); 61 | ebo = new BufferObject(); 62 | ebo.MutableAllocate(2000, IntPtr.Zero, BufferUsageHint.DynamicDraw); 63 | 64 | CreateFontDeviceTexture(); 65 | 66 | string vertexSource = @"#version 330 core 67 | 68 | uniform mat4 projection_matrix; 69 | 70 | layout(location = 0) in vec2 in_position; 71 | layout(location = 1) in vec2 in_texCoord; 72 | layout(location = 2) in vec4 in_color; 73 | 74 | out vec4 color; 75 | out vec2 texCoord; 76 | 77 | void main() 78 | { 79 | gl_Position = projection_matrix * vec4(in_position, 0, 1); 80 | color = in_color; 81 | texCoord = in_texCoord; 82 | }"; 83 | string fragmentSource = @"#version 330 core 84 | 85 | uniform sampler2D in_fontTexture; 86 | 87 | in vec4 color; 88 | in vec2 texCoord; 89 | 90 | out vec4 outputColor; 91 | 92 | void main() 93 | { 94 | outputColor = color * texture(in_fontTexture, texCoord); 95 | }"; 96 | 97 | shaderProgram = new ShaderProgram(new Shader(ShaderType.VertexShader, vertexSource), new Shader(ShaderType.FragmentShader, fragmentSource)); 98 | 99 | vao = new VAO(ebo); 100 | vao.AddSourceBuffer(vbo, 0, Unsafe.SizeOf()); 101 | vao.SetAttribFormat(0, 0, 2, VertexAttribType.Float, 0 * sizeof(float)); 102 | vao.SetAttribFormat(0, 1, 2, VertexAttribType.Float, 2 * sizeof(float)); 103 | vao.SetAttribFormat(0, 2, 4, VertexAttribType.UnsignedByte, 4 * sizeof(float), true); 104 | } 105 | 106 | private void CreateFontDeviceTexture() 107 | { 108 | ImGuiIOPtr io = ImGui.GetIO(); 109 | io.Fonts.GetTexDataAsRGBA32(out IntPtr pixels, out int width, out int height, out _); 110 | 111 | fontTexture = new Texture(TextureTarget2d.Texture2D); 112 | fontTexture.SetFilter(TextureMinFilter.Nearest, TextureMagFilter.Nearest); 113 | fontTexture.ImmutableAllocate(width, height, 1, SizedInternalFormat.Rgba8); 114 | fontTexture.SubTexture2D(width, height, PixelFormat.Bgra, PixelType.UnsignedByte, pixels); 115 | 116 | 117 | io.Fonts.SetTexID((IntPtr)fontTexture.ID); 118 | io.Fonts.ClearTexData(); 119 | } 120 | 121 | /// 122 | /// Renders the ImGui draw list data. 123 | /// This method requires a because it may create new DeviceBuffers if the size of vertex 124 | /// or index data has increased beyond the capacity of the existing buffers. 125 | /// A is needed to submit drawing and resource update commands. 126 | /// 127 | public void Render() 128 | { 129 | if (frameBegun) 130 | { 131 | frameBegun = false; 132 | ImGui.Render(); 133 | RenderImDrawData(ImGui.GetDrawData()); 134 | } 135 | } 136 | 137 | /// 138 | /// Updates ImGui input and IO configuration state. 139 | /// 140 | public void Update(GameWindow wnd, float deltaSeconds) 141 | { 142 | if (frameBegun) 143 | ImGui.Render(); 144 | 145 | SetPerFrameImGuiData(deltaSeconds); 146 | UpdateImGuiInput(wnd); 147 | 148 | frameBegun = true; 149 | ImGui.NewFrame(); 150 | } 151 | 152 | /// 153 | /// Sets per-frame data based on the associated window. 154 | /// This is called by Update(float). 155 | /// 156 | private void SetPerFrameImGuiData(float deltaSeconds) 157 | { 158 | ImGuiIOPtr io = ImGui.GetIO(); 159 | io.DisplaySize = new System.Numerics.Vector2(Width / scaleFactor.X, Height / scaleFactor.Y); 160 | io.DisplayFramebufferScale = scaleFactor; 161 | io.DeltaTime = deltaSeconds; 162 | } 163 | 164 | private readonly List pressedChars = new List(); 165 | private void UpdateImGuiInput(GameWindow wnd) 166 | { 167 | ImGuiIOPtr io = ImGui.GetIO(); 168 | 169 | io.MouseDown[0] = MouseManager.IsButtonDown(MouseButton.Left); 170 | io.MouseDown[1] = MouseManager.IsButtonDown(MouseButton.Right); 171 | io.MouseDown[2] = MouseManager.IsButtonDown(MouseButton.Middle); 172 | 173 | System.Drawing.Point screenPoint = new System.Drawing.Point(MouseManager.WindowPositionX, MouseManager.WindowPositionY); 174 | System.Drawing.Point point = wnd.PointToClient(screenPoint); 175 | io.MousePos = new System.Numerics.Vector2(point.X, point.Y); 176 | 177 | io.MouseWheel = MouseManager.DeltaScrollY; 178 | io.MouseWheelH = MouseManager.DeltaScrollX; 179 | 180 | foreach (Key key in Enum.GetValues(typeof(Key))) 181 | io.KeysDown[(int)key] = KeyboardManager.IsKeyDown(key); 182 | 183 | for (int i = 0; i < pressedChars.Count; i++) 184 | io.AddInputCharacter(pressedChars[i]); 185 | 186 | pressedChars.Clear(); 187 | 188 | io.KeyCtrl = KeyboardManager.IsKeyDown(Key.ControlLeft) || KeyboardManager.IsKeyDown(Key.ControlRight); 189 | io.KeyAlt = KeyboardManager.IsKeyDown(Key.AltLeft) || KeyboardManager.IsKeyDown(Key.AltRight); 190 | io.KeyShift = KeyboardManager.IsKeyDown(Key.ShiftLeft) || KeyboardManager.IsKeyDown(Key.ShiftRight); 191 | io.KeySuper = KeyboardManager.IsKeyDown(Key.WinLeft) || KeyboardManager.IsKeyDown(Key.WinRight); 192 | } 193 | 194 | public void PressChar(char keyChar) 195 | { 196 | pressedChars.Add(keyChar); 197 | } 198 | 199 | private static void SetKeyMappings() 200 | { 201 | ImGuiIOPtr io = ImGui.GetIO(); 202 | io.KeyMap[(int)ImGuiKey.Tab] = (int)Key.Tab; 203 | io.KeyMap[(int)ImGuiKey.LeftArrow] = (int)Key.Left; 204 | io.KeyMap[(int)ImGuiKey.RightArrow] = (int)Key.Right; 205 | io.KeyMap[(int)ImGuiKey.UpArrow] = (int)Key.Up; 206 | io.KeyMap[(int)ImGuiKey.DownArrow] = (int)Key.Down; 207 | io.KeyMap[(int)ImGuiKey.PageUp] = (int)Key.PageUp; 208 | io.KeyMap[(int)ImGuiKey.PageDown] = (int)Key.PageDown; 209 | io.KeyMap[(int)ImGuiKey.Home] = (int)Key.Home; 210 | io.KeyMap[(int)ImGuiKey.End] = (int)Key.End; 211 | io.KeyMap[(int)ImGuiKey.Delete] = (int)Key.Delete; 212 | io.KeyMap[(int)ImGuiKey.Backspace] = (int)Key.BackSpace; 213 | io.KeyMap[(int)ImGuiKey.Enter] = (int)Key.Enter; 214 | io.KeyMap[(int)ImGuiKey.Escape] = (int)Key.Escape; 215 | io.KeyMap[(int)ImGuiKey.A] = (int)Key.A; 216 | io.KeyMap[(int)ImGuiKey.C] = (int)Key.C; 217 | io.KeyMap[(int)ImGuiKey.V] = (int)Key.V; 218 | io.KeyMap[(int)ImGuiKey.X] = (int)Key.X; 219 | io.KeyMap[(int)ImGuiKey.Y] = (int)Key.Y; 220 | io.KeyMap[(int)ImGuiKey.Z] = (int)Key.Z; 221 | } 222 | 223 | private void RenderImDrawData(ImDrawDataPtr drawData) 224 | { 225 | if (drawData.CmdListsCount == 0) 226 | return; 227 | 228 | for (int i = 0; i < drawData.CmdListsCount; i++) 229 | { 230 | ImDrawListPtr cmdList = drawData.CmdListsRange[i]; 231 | int vertexSize = cmdList.VtxBuffer.Size * Unsafe.SizeOf(); 232 | if (vertexSize > vbo.Size) 233 | { 234 | int newSize = (int)Math.Max(vbo.Size * 1.5f, vertexSize); 235 | vbo.MutableAllocate(newSize, IntPtr.Zero, BufferUsageHint.DynamicDraw); 236 | } 237 | 238 | int indexSize = cmdList.IdxBuffer.Size * sizeof(ushort); 239 | if (indexSize > ebo.Size) 240 | { 241 | int newSize = (int)Math.Max(ebo.Size * 1.5f, indexSize); 242 | ebo.MutableAllocate(newSize, IntPtr.Zero, BufferUsageHint.DynamicDraw); 243 | } 244 | } 245 | 246 | ImGuiIOPtr io = ImGui.GetIO(); 247 | Matrix4 mvp = Matrix4.CreateOrthographicOffCenter(0.0f, io.DisplaySize.X, io.DisplaySize.Y, 0.0f, -1.0f, 1.0f); 248 | 249 | shaderProgram.Use(); 250 | shaderProgram.Upload("projection_matrix", mvp); 251 | shaderProgram.Upload("in_fontTexture", 0); 252 | 253 | vao.Bind(); 254 | 255 | drawData.ScaleClipRects(io.DisplayFramebufferScale); 256 | 257 | GL.Enable(EnableCap.Blend); 258 | GL.Enable(EnableCap.ScissorTest); 259 | GL.BlendEquation(BlendEquationMode.FuncAdd); 260 | GL.BlendFunc(BlendingFactor.SrcAlpha, BlendingFactor.OneMinusSrcAlpha); 261 | //GL.BlendFuncSeparate(BlendingFactorSrc.SrcAlpha, BlendingFactorDest.OneMinusSrcAlpha, BlendingFactorSrc.One, BlendingFactorDest.One); 262 | 263 | for (int i = 0; i < drawData.CmdListsCount; i++) 264 | { 265 | ImDrawListPtr cmd_list = drawData.CmdListsRange[i]; 266 | 267 | vbo.SubData(0, cmd_list.VtxBuffer.Size * Unsafe.SizeOf(), cmd_list.VtxBuffer.Data); 268 | ebo.SubData(0, cmd_list.IdxBuffer.Size * sizeof(ushort), cmd_list.IdxBuffer.Data); 269 | 270 | int idx_offset = 0; 271 | 272 | for (int cmd_i = 0; cmd_i < cmd_list.CmdBuffer.Size; cmd_i++) 273 | { 274 | ImDrawCmdPtr pcmd = cmd_list.CmdBuffer[cmd_i]; 275 | if (pcmd.UserCallback != IntPtr.Zero) 276 | { 277 | throw new NotImplementedException(); 278 | } 279 | else 280 | { 281 | GL.BindTextureUnit(0, (int)pcmd.TextureId); 282 | 283 | // We do _windowHeight - (int)clip.W instead of (int)clip.Y because gl has flipped Y when it comes to these coordinates 284 | var clip = pcmd.ClipRect; 285 | GL.Scissor((int)clip.X, Height - (int)clip.W, (int)(clip.Z - clip.X), (int)(clip.W - clip.Y)); 286 | 287 | if ((io.BackendFlags & ImGuiBackendFlags.RendererHasVtxOffset) != 0) 288 | GL.DrawElementsBaseVertex(PrimitiveType.Triangles, (int)pcmd.ElemCount, DrawElementsType.UnsignedShort, (IntPtr)(idx_offset * sizeof(ushort)), 0); 289 | else 290 | GL.DrawElements(BeginMode.Triangles, (int)pcmd.ElemCount, DrawElementsType.UnsignedShort, (int)pcmd.IdxOffset * sizeof(ushort)); 291 | } 292 | 293 | idx_offset += (int)pcmd.ElemCount; 294 | } 295 | } 296 | GL.Disable(EnableCap.Blend); 297 | GL.Disable(EnableCap.ScissorTest); 298 | } 299 | 300 | /// 301 | /// Frees all graphics resources used by the renderer. 302 | /// 303 | public void Dispose() 304 | { 305 | fontTexture.Dispose(); 306 | shaderProgram.Dispose(); 307 | vao.Dispose(); 308 | } 309 | } 310 | } -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/shaders/PathTracing/fragCompute.glsl: -------------------------------------------------------------------------------- 1 | #version 450 core 2 | #define FLOAT_MAX 3.4028235e+38 3 | #define FLOAT_MIN -3.4028235e+38 4 | #define EPSILON 0.001 5 | #define PI 3.14159265 6 | // Example shader include: #include PathTracing/fragCompute 7 | 8 | layout(location = 0) out vec4 FragColor; 9 | 10 | layout(binding = 0) uniform sampler2D SamplerLastFrame; 11 | layout(binding = 1) uniform samplerCube SamplerEnvironment; 12 | 13 | struct Material 14 | { 15 | vec3 Albedo; // Base color 16 | float SpecularChance; // How reflective 17 | 18 | vec3 Emissiv; // How much light is emitted 19 | float SpecularRoughness; // How rough reflections are 20 | 21 | vec3 Absorbance; // How strongly light is absorbed 22 | float RefractionChance; // How transparent 23 | 24 | float RefractionRoughness; // How rough refractions are 25 | float IOR; // How strongly light gets refracted and the amout of light that is reflected 26 | }; 27 | 28 | struct Cuboid 29 | { 30 | vec3 Min; 31 | vec3 Max; 32 | 33 | Material Material; 34 | }; 35 | 36 | struct Sphere 37 | { 38 | vec3 Position; 39 | float Radius; 40 | 41 | Material Material; 42 | }; 43 | 44 | struct HitInfo 45 | { 46 | float T; 47 | bool FromInside; 48 | vec3 NearHitPos; 49 | vec3 Normal; 50 | Material Material; 51 | }; 52 | 53 | struct Ray 54 | { 55 | vec3 Origin; 56 | vec3 Direction; 57 | }; 58 | 59 | layout(std140, binding = 0) uniform BasicDataUBO 60 | { 61 | mat4 InvProjection; 62 | mat4 InvView; 63 | vec3 ViewPos; 64 | } basicDataUBO; 65 | 66 | layout(std140, binding = 1) uniform GameObjectsUBO 67 | { 68 | Sphere Spheres[256]; 69 | Cuboid Cuboids[64]; 70 | } gameObjectsUBO; 71 | 72 | in InOutVars 73 | { 74 | vec2 TexCoord; 75 | } inData; 76 | 77 | vec3 Radiance(Ray ray); 78 | float BSDF(inout Ray ray, HitInfo hitInfo, out bool isRefractive); 79 | bool RayTrace(Ray ray, out HitInfo hitInfo); 80 | bool RaySphereIntersect(Ray ray, Sphere sphere, out float t1, out float t2); 81 | bool RayCuboidIntersect(Ray ray, Cuboid cuboid, out float t1, out float t2); 82 | vec3 CosineSampleHemisphere(vec3 normal); 83 | vec2 UniformSampleUnitCircle(); 84 | vec3 GetNormal(Sphere sphere, vec3 surfacePosition); 85 | vec3 GetNormal(Cuboid cuboid, vec3 surfacePosition); 86 | uint GetPCGHash(inout uint seed); 87 | float GetRandomFloat01(); 88 | float GetSmallestPositive(float t1, float t2); 89 | Ray GetWorldSpaceRay(mat4 inverseProj, mat4 inverseView, vec3 viewPos, vec2 normalizedDeviceCoords); 90 | float FresnelSchlick(float cosTheta, float n1, float n2); 91 | vec3 InverseGammaToLinear(vec3 rgb); 92 | 93 | uniform vec2 uboGameObjectsSize; 94 | 95 | uniform int rayDepth; 96 | uniform int SPP; 97 | 98 | uniform float focalLength; 99 | uniform float apertureDiameter; 100 | 101 | layout(location = 0) uniform int thisRendererFrame; 102 | 103 | uint rndSeed; 104 | void main() 105 | { 106 | vec2 txtResultSize = vec2(textureSize(SamplerLastFrame, 0)); 107 | 108 | rndSeed = uint(gl_FragCoord.x) * 1973 + uint(gl_FragCoord.y) * 9277 + thisRendererFrame * 2699 | 1; 109 | //rndSeed = thisRendererFrame; 110 | 111 | vec3 irradiance = vec3(0.0); 112 | for (int i = 0; i < SPP; i++) 113 | { 114 | // add random offset to lower left corner of pixel to effectively integrate over whole pixel and eliminate aliasing 115 | vec2 subPixelOffset = (vec2(GetRandomFloat01(), GetRandomFloat01()) - 0.5) / txtResultSize; 116 | vec2 ndc = (inData.TexCoord + subPixelOffset) * 2.0 - 1.0; 117 | Ray rayEyeToWorld = GetWorldSpaceRay(basicDataUBO.InvProjection, basicDataUBO.InvView, basicDataUBO.ViewPos, ndc); 118 | 119 | vec3 focalPoint = rayEyeToWorld.Origin + rayEyeToWorld.Direction * focalLength; 120 | vec2 offset = apertureDiameter * 0.5 * UniformSampleUnitCircle(); 121 | 122 | rayEyeToWorld.Origin = (basicDataUBO.InvView * vec4(offset, 0.0, 1.0)).xyz; 123 | rayEyeToWorld.Direction = normalize(focalPoint - rayEyeToWorld.Origin); 124 | 125 | irradiance += Radiance(rayEyeToWorld); 126 | } 127 | irradiance /= SPP; 128 | vec3 lastFrameColor = texture(SamplerLastFrame, inData.TexCoord).rgb; 129 | 130 | irradiance = mix(lastFrameColor, irradiance, 1.0 / (thisRendererFrame + 1)); 131 | FragColor = vec4(irradiance, 1.0); 132 | } 133 | 134 | vec3 Radiance(Ray ray) 135 | { 136 | vec3 throughput = vec3(1.0); 137 | vec3 radiance = vec3(0.0); 138 | 139 | HitInfo hitInfo; 140 | bool isRefractive; 141 | float rayProbability; 142 | for (int i = 0; i < rayDepth; i++) 143 | { 144 | if (RayTrace(ray, hitInfo)) 145 | { 146 | // If ray did just pass through medium apply Beer's law 147 | if (hitInfo.FromInside) 148 | { 149 | hitInfo.Normal *= -1.0; 150 | throughput *= exp(-hitInfo.Material.Absorbance * hitInfo.T); 151 | } 152 | 153 | // Evaluating BSDF gives a new ray based on the hitPoints properties and the incomming ray, 154 | // the probability this ray would take its path 155 | // and a bool indicating wheter the ray penetrates into the medium 156 | rayProbability = BSDF(ray, hitInfo, isRefractive); 157 | 158 | radiance += hitInfo.Material.Emissiv * throughput; 159 | if (!isRefractive) 160 | { 161 | // The cosine term is already taken into account by the CosineSampleHemisphere function. Its weighting the random rays to a cosine distibution 162 | // throughput *= hitInfo.Material.Albedo * dot(ray.Direction, hitInfo.Normal); 163 | 164 | throughput *= hitInfo.Material.Albedo; 165 | } 166 | throughput /= rayProbability; 167 | 168 | // Russian Roulette, unbiased method to terminate rays and therefore lower render times (also reduces fireflies) 169 | { 170 | float p = max(throughput.x, max(throughput.y, throughput.z)); 171 | if (GetRandomFloat01() > p) 172 | break; 173 | 174 | throughput /= p; 175 | } 176 | } 177 | else 178 | { 179 | radiance += texture(SamplerEnvironment, ray.Direction).rgb * throughput; 180 | break; 181 | } 182 | } 183 | return radiance; 184 | } 185 | 186 | float BSDF(inout Ray ray, HitInfo hitInfo, out bool isRefractive) 187 | { 188 | isRefractive = false; 189 | 190 | float specularChance = hitInfo.Material.SpecularChance; 191 | float refractionChance = hitInfo.Material.RefractionChance; 192 | if (specularChance > 0.0) 193 | { 194 | specularChance = mix(specularChance, 1.0, FresnelSchlick(dot(-ray.Direction, hitInfo.Normal), hitInfo.FromInside ? hitInfo.Material.IOR : 1.0, !hitInfo.FromInside ? hitInfo.Material.IOR : 1.0)); 195 | float diffuseChance = 1.0 - specularChance - refractionChance; 196 | refractionChance = 1.0 - specularChance - diffuseChance; 197 | } 198 | 199 | vec3 diffuseRay = CosineSampleHemisphere(hitInfo.Normal); 200 | float rayProbability = 1.0; 201 | 202 | float raySelectRoll = GetRandomFloat01(); 203 | if (specularChance > raySelectRoll) 204 | { 205 | vec3 reflectionRayDir = reflect(ray.Direction, hitInfo.Normal); 206 | reflectionRayDir = normalize(mix(reflectionRayDir, diffuseRay, hitInfo.Material.SpecularRoughness * hitInfo.Material.SpecularRoughness)); 207 | ray.Direction = reflectionRayDir; 208 | rayProbability = specularChance; 209 | } 210 | else if (specularChance + refractionChance > raySelectRoll) 211 | { 212 | vec3 refractionRayDir = refract(ray.Direction, hitInfo.Normal, hitInfo.FromInside ? (hitInfo.Material.IOR / 1.0) : (1.0 / hitInfo.Material.IOR)); 213 | refractionRayDir = normalize(mix(refractionRayDir, CosineSampleHemisphere(-hitInfo.Normal), hitInfo.Material.RefractionRoughness * hitInfo.Material.RefractionRoughness)); 214 | ray.Direction = refractionRayDir; 215 | rayProbability = refractionChance; 216 | isRefractive = true; 217 | } 218 | else 219 | { 220 | ray.Direction = diffuseRay; 221 | rayProbability = 1.0 - specularChance - refractionChance; 222 | } 223 | 224 | ray.Origin = hitInfo.NearHitPos + ray.Direction * EPSILON; 225 | return max(rayProbability, EPSILON); 226 | } 227 | 228 | bool RayTrace(Ray ray, out HitInfo hitInfo) 229 | { 230 | hitInfo.T = FLOAT_MAX; 231 | float t1, t2; 232 | 233 | for (int i = 0; i < uboGameObjectsSize.x; i++) 234 | { 235 | Sphere sphere = gameObjectsUBO.Spheres[i]; 236 | if (RaySphereIntersect(ray, sphere, t1, t2) && t2 > 0.0 && t1 < hitInfo.T) 237 | { 238 | hitInfo.T = GetSmallestPositive(t1, t2); 239 | hitInfo.FromInside = hitInfo.T == t2; 240 | hitInfo.Material = gameObjectsUBO.Spheres[i].Material; 241 | hitInfo.NearHitPos = ray.Origin + ray.Direction * hitInfo.T; 242 | hitInfo.Normal = GetNormal(sphere, hitInfo.NearHitPos); 243 | } 244 | } 245 | 246 | for (int i = 0; i < uboGameObjectsSize.y; i++) 247 | { 248 | Cuboid cuboid = gameObjectsUBO.Cuboids[i]; 249 | if (RayCuboidIntersect(ray, cuboid, t1, t2) && t2 > 0.0 && t1 < hitInfo.T) 250 | { 251 | hitInfo.T = GetSmallestPositive(t1, t2); 252 | hitInfo.FromInside = hitInfo.T == t2; 253 | hitInfo.Material = gameObjectsUBO.Cuboids[i].Material; 254 | hitInfo.NearHitPos = ray.Origin + ray.Direction * hitInfo.T; 255 | hitInfo.Normal = GetNormal(cuboid, hitInfo.NearHitPos); 256 | } 257 | } 258 | 259 | return hitInfo.T != FLOAT_MAX; 260 | } 261 | 262 | // Source: https://antongerdelan.net/opengl/raycasting.html 263 | bool RaySphereIntersect(Ray ray, Sphere sphere, out float t1, out float t2) 264 | { 265 | t1 = t2 = FLOAT_MAX; 266 | 267 | vec3 sphereToRay = ray.Origin - sphere.Position; 268 | float b = dot(ray.Direction, sphereToRay); 269 | float c = dot(sphereToRay, sphereToRay) - sphere.Radius * sphere.Radius; 270 | float discriminant = b * b - c; 271 | if (discriminant < 0.0) 272 | return false; 273 | 274 | float squareRoot = sqrt(discriminant); 275 | t1 = -b - squareRoot; 276 | t2 = -b + squareRoot; 277 | 278 | return t1 <= t2; 279 | } 280 | 281 | // Source: https://medium.com/@bromanz/another-view-on-the-classic-ray-aabb-intersection-algorithm-for-bvh-traversal-41125138b525 282 | bool RayCuboidIntersect(Ray ray, Cuboid cuboid, out float t1, out float t2) 283 | { 284 | t1 = FLOAT_MIN; 285 | t2 = FLOAT_MAX; 286 | 287 | vec3 t0s = (cuboid.Min - ray.Origin) / ray.Direction; 288 | vec3 t1s = (cuboid.Max - ray.Origin) / ray.Direction; 289 | 290 | vec3 tsmaller = min(t0s, t1s); 291 | vec3 tbigger = max(t0s, t1s); 292 | 293 | t1 = max(t1, max(tsmaller.x, max(tsmaller.y, tsmaller.z))); 294 | t2 = min(t2, min(tbigger.x, min(tbigger.y, tbigger.z))); 295 | return t1 <= t2; 296 | } 297 | 298 | // Source: https://blog.demofox.org/2020/05/25/casual-shadertoy-path-tracing-1-basic-camera-diffuse-emissive/ 299 | vec3 CosineSampleHemisphere(vec3 normal) 300 | { 301 | 302 | float z = GetRandomFloat01() * 2.0 - 1.0; 303 | float a = GetRandomFloat01() * 2.0 * PI; 304 | float r = sqrt(1.0 - z * z); 305 | float x = r * cos(a); 306 | float y = r * sin(a); 307 | 308 | // Convert unit vector in sphere to a cosine weighted vector in hemisphere 309 | return normalize(normal + vec3(x, y, z)); 310 | } 311 | 312 | vec2 UniformSampleUnitCircle() 313 | { 314 | float angle = GetRandomFloat01() * 2.0 * PI; 315 | float r = sqrt(GetRandomFloat01()); 316 | return vec2(cos(angle), sin(angle)) * r; 317 | } 318 | 319 | vec3 GetNormal(Sphere sphere, vec3 surfacePosition) 320 | { 321 | return (surfacePosition - sphere.Position) / sphere.Radius; 322 | } 323 | 324 | // Source: https://gist.github.com/Shtille/1f98c649abeeb7a18c5a56696546d3cf 325 | vec3 GetNormal(Cuboid cuboid, vec3 surfacePosition) 326 | { 327 | vec3 halfSize = (cuboid.Max - cuboid.Min) * 0.5; 328 | vec3 centerSurface = surfacePosition - (cuboid.Max + cuboid.Min) * 0.5; 329 | 330 | vec3 normal = vec3(0.0); 331 | normal += vec3(sign(centerSurface.x), 0.0, 0.0) * step(abs(abs(centerSurface.x) - halfSize.x), EPSILON); 332 | normal += vec3(0.0, sign(centerSurface.y), 0.0) * step(abs(abs(centerSurface.y) - halfSize.y), EPSILON); 333 | normal += vec3(0.0, 0.0, sign(centerSurface.z)) * step(abs(abs(centerSurface.z) - halfSize.z), EPSILON); 334 | return normalize(normal); 335 | } 336 | 337 | uint GetPCGHash(inout uint seed) 338 | { 339 | seed = seed * 747796405u + 2891336453u; 340 | uint word = ((seed >> ((seed >> 28u) + 4u)) ^ seed) * 277803737u; 341 | return (word >> 22u) ^ word; 342 | } 343 | 344 | float GetRandomFloat01() 345 | { 346 | return float(GetPCGHash(rndSeed)) / 4294967296.0; 347 | } 348 | 349 | // Assumes t2 > t1 && t2 > 0.0 350 | float GetSmallestPositive(float t1, float t2) 351 | { 352 | return t1 < 0 ? t2 : t1; 353 | } 354 | 355 | Ray GetWorldSpaceRay(mat4 inverseProj, mat4 inverseView, vec3 viewPos, vec2 normalizedDeviceCoords) 356 | { 357 | vec4 rayEye = inverseProj * vec4(normalizedDeviceCoords, -1.0, 0.0); 358 | rayEye.zw = vec2(-1.0, 0.0); 359 | return Ray(viewPos, normalize((inverseView * rayEye).xyz)); 360 | } 361 | 362 | float FresnelSchlick(float cosTheta, float n1, float n2) 363 | { 364 | float r0 = (n1 - n2) / (n1 + n2); 365 | r0 *= r0; 366 | return r0 + (1.0 - r0) * pow(1.0 - cosTheta, 5.0); 367 | } 368 | 369 | vec3 InverseGammaToLinear(vec3 rgb) 370 | { 371 | return mix(pow(((rgb + 0.055) / 1.055), vec3(2.4)), rgb / 12.92, vec3(lessThan(rgb, vec3(0.04045)))); 372 | } 373 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/res/shaders/PathTracing/compute.glsl: -------------------------------------------------------------------------------- 1 | #version 450 core 2 | #define FLOAT_MAX 3.4028235e+38 3 | #define FLOAT_MIN -3.4028235e+38 4 | #define EPSILON 0.001 5 | #define PI 3.14159265 6 | // Example shader include: #include PathTracing/fragCompute 7 | 8 | layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; 9 | 10 | layout(binding = 0, rgba32f) restrict uniform image2D ImgResult; 11 | layout(binding = 1) uniform samplerCube SamplerEnvironment; 12 | 13 | struct Material 14 | { 15 | vec3 Albedo; // Base color 16 | float SpecularChance; // How reflective 17 | 18 | vec3 Emissiv; // How much light is emitted 19 | float SpecularRoughness; // How rough reflections are 20 | 21 | vec3 Absorbance; // How strongly light is absorbed 22 | float RefractionChance; // How transparent 23 | 24 | float RefractionRoughness; // How rough refractions are 25 | float IOR; // How strongly light gets refracted and the amout of light that is reflected 26 | }; 27 | 28 | struct Cuboid 29 | { 30 | vec3 Min; 31 | vec3 Max; 32 | 33 | Material Material; 34 | }; 35 | 36 | struct Sphere 37 | { 38 | vec3 Position; 39 | float Radius; 40 | 41 | Material Material; 42 | }; 43 | 44 | struct HitInfo 45 | { 46 | float T; 47 | bool FromInside; 48 | vec3 NearHitPos; 49 | vec3 Normal; 50 | Material Material; 51 | }; 52 | 53 | struct Ray 54 | { 55 | vec3 Origin; 56 | vec3 Direction; 57 | }; 58 | 59 | layout(std140, binding = 0) uniform BasicDataUBO 60 | { 61 | mat4 InvProjection; 62 | mat4 InvView; 63 | vec3 ViewPos; 64 | } basicDataUBO; 65 | 66 | layout(std140, binding = 1) uniform GameObjectsUBO 67 | { 68 | Sphere Spheres[256]; 69 | Cuboid Cuboids[64]; 70 | } gameObjectsUBO; 71 | 72 | vec3 Radiance(Ray ray); 73 | float BSDF(inout Ray ray, HitInfo hitInfo, out bool isRefractive); 74 | bool RayTrace(Ray ray, out HitInfo hitInfo); 75 | bool RaySphereIntersect(Ray ray, Sphere sphere, out float t1, out float t2); 76 | bool RayCuboidIntersect(Ray ray, Cuboid cuboid, out float t1, out float t2); 77 | vec3 CosineSampleHemisphere(vec3 normal); 78 | vec2 UniformSampleUnitCircle(); 79 | vec3 GetNormal(Sphere sphere, vec3 surfacePosition); 80 | vec3 GetNormal(Cuboid cuboid, vec3 surfacePosition); 81 | uint GetPCGHash(inout uint seed); 82 | float GetRandomFloat01(); 83 | float GetSmallestPositive(float t1, float t2); 84 | Ray GetWorldSpaceRay(mat4 inverseProj, mat4 inverseView, vec3 viewPos, vec2 normalizedDeviceCoords); 85 | float FresnelSchlick(float cosTheta, float n1, float n2); 86 | vec3 InverseGammaToLinear(vec3 rgb); 87 | 88 | uniform vec2 uboGameObjectsSize; 89 | 90 | uniform int rayDepth; 91 | uniform int SPP; 92 | 93 | uniform float focalLength; 94 | uniform float apertureDiameter; 95 | 96 | layout(location = 0) uniform int thisRendererFrame; 97 | 98 | uint rndSeed; 99 | 100 | 101 | void main() 102 | { 103 | ivec2 imgResultSize = imageSize(ImgResult); 104 | ivec2 imgCoord = ivec2(gl_GlobalInvocationID.xy); 105 | 106 | rndSeed = gl_GlobalInvocationID.x * 1973 + gl_GlobalInvocationID.y * 9277 + thisRendererFrame * 2699 | 1; 107 | //rndSeed = thisRendererFrame; 108 | 109 | vec3 irradiance = vec3(0.0); 110 | for (int i = 0; i < SPP; i++) 111 | { 112 | // add random offset to lower left corner of pixel to effectively integrate over whole pixel and eliminate aliasing 113 | vec2 subPixelOffset = vec2(GetRandomFloat01(), GetRandomFloat01()); 114 | vec2 ndc = (imgCoord + subPixelOffset) / imgResultSize * 2.0 - 1.0; 115 | Ray rayEyeToWorld = GetWorldSpaceRay(basicDataUBO.InvProjection, basicDataUBO.InvView, basicDataUBO.ViewPos, ndc); 116 | 117 | vec3 focalPoint = rayEyeToWorld.Origin + rayEyeToWorld.Direction * focalLength; 118 | vec2 offset = apertureDiameter * 0.5 * UniformSampleUnitCircle(); 119 | 120 | rayEyeToWorld.Origin = (basicDataUBO.InvView * vec4(offset, 0.0, 1.0)).xyz; 121 | rayEyeToWorld.Direction = normalize(focalPoint - rayEyeToWorld.Origin); 122 | 123 | irradiance += Radiance(rayEyeToWorld); 124 | } 125 | irradiance /= SPP; 126 | vec3 lastFrameColor = imageLoad(ImgResult, imgCoord).rgb; 127 | 128 | irradiance = mix(lastFrameColor, irradiance, 1.0 / (thisRendererFrame + 1)); 129 | imageStore(ImgResult, imgCoord, vec4(irradiance, 1.0)); 130 | } 131 | 132 | vec3 Radiance(Ray ray) 133 | { 134 | vec3 throughput = vec3(1.0); 135 | vec3 radiance = vec3(0.0); 136 | 137 | HitInfo hitInfo; 138 | bool isRefractive; 139 | float rayProbability; 140 | for (int i = 0; i < rayDepth; i++) 141 | { 142 | if (RayTrace(ray, hitInfo)) 143 | { 144 | // If ray did just pass through medium apply Beer's law 145 | if (hitInfo.FromInside) 146 | { 147 | hitInfo.Normal *= -1.0; 148 | throughput *= exp(-hitInfo.Material.Absorbance * hitInfo.T); 149 | } 150 | 151 | // Evaluating BSDF gives a new ray based on the hitPoints properties and the incomming ray, 152 | // the probability this ray would take its path 153 | // and a bool indicating wheter the ray penetrates into the medium 154 | rayProbability = BSDF(ray, hitInfo, isRefractive); 155 | 156 | radiance += hitInfo.Material.Emissiv * throughput; 157 | if (!isRefractive) 158 | { 159 | // The cosine term is already taken into account by the CosineSampleHemisphere function. Its weighting the random rays to a cosine distibution 160 | // throughput *= hitInfo.Material.Albedo * dot(ray.Direction, hitInfo.Normal); 161 | 162 | throughput *= hitInfo.Material.Albedo; 163 | } 164 | throughput /= rayProbability; 165 | 166 | // Russian Roulette, unbiased method to terminate rays and therefore lower render times (also reduces fireflies) 167 | { 168 | float p = max(throughput.x, max(throughput.y, throughput.z)); 169 | if (GetRandomFloat01() > p) 170 | break; 171 | 172 | throughput /= p; 173 | } 174 | } 175 | else 176 | { 177 | radiance += texture(SamplerEnvironment, ray.Direction).rgb * throughput; 178 | break; 179 | } 180 | } 181 | return radiance; 182 | } 183 | 184 | float BSDF(inout Ray ray, HitInfo hitInfo, out bool isRefractive) 185 | { 186 | isRefractive = false; 187 | 188 | float specularChance = hitInfo.Material.SpecularChance; 189 | float refractionChance = hitInfo.Material.RefractionChance; 190 | if (specularChance > 0.0) 191 | { 192 | specularChance = mix(specularChance, 1.0, FresnelSchlick(dot(-ray.Direction, hitInfo.Normal), hitInfo.FromInside ? hitInfo.Material.IOR : 1.0, !hitInfo.FromInside ? hitInfo.Material.IOR : 1.0)); 193 | float diffuseChance = 1.0 - specularChance - refractionChance; 194 | refractionChance = 1.0 - specularChance - diffuseChance; 195 | } 196 | 197 | vec3 diffuseRay = CosineSampleHemisphere(hitInfo.Normal); 198 | float rayProbability = 1.0; 199 | 200 | float raySelectRoll = GetRandomFloat01(); 201 | if (specularChance > raySelectRoll) 202 | { 203 | vec3 reflectionRayDir = reflect(ray.Direction, hitInfo.Normal); 204 | reflectionRayDir = normalize(mix(reflectionRayDir, diffuseRay, hitInfo.Material.SpecularRoughness * hitInfo.Material.SpecularRoughness)); 205 | ray.Direction = reflectionRayDir; 206 | rayProbability = specularChance; 207 | } 208 | else if (specularChance + refractionChance > raySelectRoll) 209 | { 210 | vec3 refractionRayDir = refract(ray.Direction, hitInfo.Normal, hitInfo.FromInside ? (hitInfo.Material.IOR / 1.0) : (1.0 / hitInfo.Material.IOR)); 211 | refractionRayDir = normalize(mix(refractionRayDir, CosineSampleHemisphere(-hitInfo.Normal), hitInfo.Material.RefractionRoughness * hitInfo.Material.RefractionRoughness)); 212 | ray.Direction = refractionRayDir; 213 | rayProbability = refractionChance; 214 | isRefractive = true; 215 | } 216 | else 217 | { 218 | ray.Direction = diffuseRay; 219 | rayProbability = 1.0 - specularChance - refractionChance; 220 | } 221 | 222 | ray.Origin = hitInfo.NearHitPos + ray.Direction * EPSILON; 223 | return max(rayProbability, EPSILON); 224 | } 225 | 226 | bool RayTrace(Ray ray, out HitInfo hitInfo) 227 | { 228 | hitInfo.T = FLOAT_MAX; 229 | float t1, t2; 230 | 231 | for (int i = 0; i < uboGameObjectsSize.x; i++) 232 | { 233 | Sphere sphere = gameObjectsUBO.Spheres[i]; 234 | if (RaySphereIntersect(ray, sphere, t1, t2) && t2 > 0.0 && t1 < hitInfo.T) 235 | { 236 | hitInfo.T = GetSmallestPositive(t1, t2); 237 | hitInfo.FromInside = hitInfo.T == t2; 238 | hitInfo.Material = gameObjectsUBO.Spheres[i].Material; 239 | hitInfo.NearHitPos = ray.Origin + ray.Direction * hitInfo.T; 240 | hitInfo.Normal = GetNormal(sphere, hitInfo.NearHitPos); 241 | } 242 | } 243 | 244 | for (int i = 0; i < uboGameObjectsSize.y; i++) 245 | { 246 | Cuboid cuboid = gameObjectsUBO.Cuboids[i]; 247 | if (RayCuboidIntersect(ray, cuboid, t1, t2) && t2 > 0.0 && t1 < hitInfo.T) 248 | { 249 | hitInfo.T = GetSmallestPositive(t1, t2); 250 | hitInfo.FromInside = hitInfo.T == t2; 251 | hitInfo.Material = gameObjectsUBO.Cuboids[i].Material; 252 | hitInfo.NearHitPos = ray.Origin + ray.Direction * hitInfo.T; 253 | hitInfo.Normal = GetNormal(cuboid, hitInfo.NearHitPos); 254 | } 255 | } 256 | 257 | return hitInfo.T != FLOAT_MAX; 258 | } 259 | 260 | // Source: https://antongerdelan.net/opengl/raycasting.html 261 | bool RaySphereIntersect(Ray ray, Sphere sphere, out float t1, out float t2) 262 | { 263 | t1 = t2 = FLOAT_MAX; 264 | 265 | vec3 sphereToRay = ray.Origin - sphere.Position; 266 | float b = dot(ray.Direction, sphereToRay); 267 | float c = dot(sphereToRay, sphereToRay) - sphere.Radius * sphere.Radius; 268 | float discriminant = b * b - c; 269 | if (discriminant < 0.0) 270 | return false; 271 | 272 | float squareRoot = sqrt(discriminant); 273 | t1 = -b - squareRoot; 274 | t2 = -b + squareRoot; 275 | 276 | return t1 <= t2; 277 | } 278 | 279 | // Source: https://medium.com/@bromanz/another-view-on-the-classic-ray-aabb-intersection-algorithm-for-bvh-traversal-41125138b525 280 | bool RayCuboidIntersect(Ray ray, Cuboid cuboid, out float t1, out float t2) 281 | { 282 | t1 = FLOAT_MIN; 283 | t2 = FLOAT_MAX; 284 | 285 | vec3 t0s = (cuboid.Min - ray.Origin) / ray.Direction; 286 | vec3 t1s = (cuboid.Max - ray.Origin) / ray.Direction; 287 | 288 | vec3 tsmaller = min(t0s, t1s); 289 | vec3 tbigger = max(t0s, t1s); 290 | 291 | t1 = max(t1, max(tsmaller.x, max(tsmaller.y, tsmaller.z))); 292 | t2 = min(t2, min(tbigger.x, min(tbigger.y, tbigger.z))); 293 | return t1 <= t2; 294 | } 295 | 296 | // Source: https://blog.demofox.org/2020/05/25/casual-shadertoy-path-tracing-1-basic-camera-diffuse-emissive/ 297 | vec3 CosineSampleHemisphere(vec3 normal) 298 | { 299 | float z = GetRandomFloat01() * 2.0 - 1.0; 300 | float a = GetRandomFloat01() * 2.0 * PI; 301 | float r = sqrt(1.0 - z * z); 302 | float x = r * cos(a); 303 | float y = r * sin(a); 304 | 305 | // Convert unit vector in sphere to a cosine weighted vector in hemisphere 306 | return normalize(normal + vec3(x, y, z)); 307 | } 308 | 309 | vec2 UniformSampleUnitCircle() 310 | { 311 | float angle = GetRandomFloat01() * 2.0 * PI; 312 | float r = sqrt(GetRandomFloat01()); 313 | return vec2(cos(angle), sin(angle)) * r; 314 | } 315 | 316 | vec3 GetNormal(Sphere sphere, vec3 surfacePosition) 317 | { 318 | return (surfacePosition - sphere.Position) / sphere.Radius; 319 | } 320 | 321 | // Source: https://gist.github.com/Shtille/1f98c649abeeb7a18c5a56696546d3cf 322 | vec3 GetNormal(Cuboid cuboid, vec3 surfacePosition) 323 | { 324 | vec3 halfSize = (cuboid.Max - cuboid.Min) * 0.5; 325 | vec3 centerSurface = surfacePosition - (cuboid.Max + cuboid.Min) * 0.5; 326 | 327 | vec3 normal = vec3(0.0); 328 | normal += vec3(sign(centerSurface.x), 0.0, 0.0) * step(abs(abs(centerSurface.x) - halfSize.x), EPSILON); 329 | normal += vec3(0.0, sign(centerSurface.y), 0.0) * step(abs(abs(centerSurface.y) - halfSize.y), EPSILON); 330 | normal += vec3(0.0, 0.0, sign(centerSurface.z)) * step(abs(abs(centerSurface.z) - halfSize.z), EPSILON); 331 | return normalize(normal); 332 | } 333 | 334 | uint GetPCGHash(inout uint seed) 335 | { 336 | seed = seed * 747796405u + 2891336453u; 337 | uint word = ((seed >> ((seed >> 28u) + 4u)) ^ seed) * 277803737u; 338 | return (word >> 22u) ^ word; 339 | } 340 | 341 | float GetRandomFloat01() 342 | { 343 | return float(GetPCGHash(rndSeed)) / 4294967296.0; 344 | } 345 | 346 | // Assumes t2 > t1 && t2 > 0.0 347 | float GetSmallestPositive(float t1, float t2) 348 | { 349 | return t1 < 0 ? t2 : t1; 350 | } 351 | 352 | Ray GetWorldSpaceRay(mat4 inverseProj, mat4 inverseView, vec3 viewPos, vec2 normalizedDeviceCoords) 353 | { 354 | vec4 rayEye = inverseProj * vec4(normalizedDeviceCoords, -1.0, 0.0); 355 | rayEye.zw = vec2(-1.0, 0.0); 356 | return Ray(viewPos, normalize((inverseView * rayEye).xyz)); 357 | } 358 | 359 | float FresnelSchlick(float cosTheta, float n1, float n2) 360 | { 361 | float r0 = (n1 - n2) / (n1 + n2); 362 | r0 *= r0; 363 | return r0 + (1.0 - r0) * pow(1.0 - cosTheta, 5.0); 364 | } 365 | 366 | vec3 InverseGammaToLinear(vec3 rgb) 367 | { 368 | return mix(pow(((rgb + 0.055) / 1.055), vec3(2.4)), rgb / 12.92, vec3(lessThan(rgb, vec3(0.04045)))); 369 | } 370 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Render/Gui.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using ImGuiNET; 3 | using SixLabors.ImageSharp; 4 | using OpenTK; 5 | using OpenTK.Input; 6 | using OpenTK_PathTracer.GUI; 7 | using OpenTK_PathTracer.GameObjects; 8 | using OpenTK_PathTracer.Render.Objects; 9 | 10 | namespace OpenTK_PathTracer.Render 11 | { 12 | static class Gui 13 | { 14 | public static ImGuiController ImGuiController = new ImGuiController(0, 0); 15 | private static BaseGameObject pickedObject; 16 | 17 | public static bool IsEnvironmentAtmosphere; 18 | 19 | public static void Render(MainWindow mainWindow, float frameTime, out bool frameChanged) 20 | { 21 | ImGuiController.Update(mainWindow, frameTime); 22 | 23 | float windowAlpha = mainWindow.CursorVisible ? 0.8f : 0.3f; 24 | frameChanged = false; 25 | ImGui.SetNextWindowBgAlpha(windowAlpha); 26 | ImGui.Begin("Overview"); 27 | { 28 | if (ImGui.Button("Screenshot")) 29 | { 30 | System.IO.Directory.CreateDirectory("Screenshots"); 31 | using Image img = Framebuffer.GetBitmapFramebufferAttachment(0, OpenTK.Graphics.OpenGL4.FramebufferAttachment.ColorAttachment0, mainWindow.Width, mainWindow.Height); 32 | img.SaveAsPng($@"Screenshots\Samples_{mainWindow.PathTracer.Samples}.png"); 33 | } 34 | if (ImGui.CollapsingHeader("PathTracing")) 35 | { 36 | ImGui.Text($"VSync: {mainWindow.VSync}"); 37 | ImGui.Text($"FPS: {mainWindow.FPS}"); ImGui.SameLine(); ImGui.Text($"UPS: {mainWindow.UPS}"); ImGui.SameLine(); ImGui.Text($"Samples/Pixel/Second: {mainWindow.FPS * mainWindow.PathTracer.SPP}"); 38 | ImGui.Checkbox("RenderInBackground", ref mainWindow.IsRenderInBackground); 39 | int temp = mainWindow.PathTracer.SPP; 40 | if (ImGui.SliderInt("Samples/Pixel", ref temp, 1, 10)) 41 | { 42 | frameChanged = true; 43 | mainWindow.PathTracer.SPP = temp; 44 | } 45 | 46 | 47 | temp = mainWindow.PathTracer.RayDepth; 48 | if (ImGui.SliderInt("MaxRayDepth", ref temp, 1, 50)) 49 | { 50 | frameChanged = true; 51 | mainWindow.PathTracer.RayDepth = temp; 52 | } 53 | 54 | float floatTemp = mainWindow.PathTracer.FocalLength; 55 | if (ImGui.InputFloat("FocalLength", ref floatTemp, 0.1f)) 56 | { 57 | frameChanged = true; 58 | mainWindow.PathTracer.FocalLength = MathF.Max(floatTemp, 0); 59 | } 60 | 61 | floatTemp = mainWindow.PathTracer.ApertureDiameter; 62 | if (ImGui.InputFloat("ApertureDiameter", ref floatTemp, 0.002f)) 63 | { 64 | frameChanged = true; 65 | mainWindow.PathTracer.ApertureDiameter = MathF.Max(floatTemp, 0); 66 | } 67 | ImGui.Text($"f-number: f/{mainWindow.PathTracer.FocalLength / mainWindow.PathTracer.ApertureDiameter}"); 68 | 69 | if (ImGui.Button("SpheresRandomMaterial")) 70 | { 71 | frameChanged = true; 72 | mainWindow.SetGameObjectsRandomMaterial(36); 73 | } 74 | } 75 | if (ImGui.CollapsingHeader("EnvironmentMap")) 76 | { 77 | bool hadInput = false; 78 | 79 | IsEnvironmentAtmosphere = mainWindow.PathTracer.EnvironmentMap == mainWindow.AtmosphericScatterer.Result; 80 | if (ImGui.Checkbox("Atmosphere", ref IsEnvironmentAtmosphere)) 81 | { 82 | hadInput = true; 83 | if (!IsEnvironmentAtmosphere) 84 | mainWindow.PathTracer.EnvironmentMap = mainWindow.SkyBox; 85 | else 86 | mainWindow.PathTracer.EnvironmentMap = mainWindow.AtmosphericScatterer.Result; 87 | } 88 | 89 | if (IsEnvironmentAtmosphere) 90 | { 91 | ImGui.Text($"Computation time: {MathF.Round(mainWindow.AtmosphericScatterer.Timer.ElapsedMilliseconds, 2)} ms"); 92 | 93 | string[] resolutions = new string[] { "2048", "1024", "512", "256", "128", "64", "32" }; 94 | string current = mainWindow.AtmosphericScatterer.Result.Width.ToString(); 95 | if (ImGui.BeginCombo("##combo", current)) 96 | { 97 | for (int i = 0; i < resolutions.Length; i++) 98 | { 99 | bool isSelected = current == resolutions[i]; 100 | if (ImGui.Selectable(resolutions[i], isSelected)) 101 | { 102 | hadInput = true; 103 | current = resolutions[i]; 104 | mainWindow.AtmosphericScatterer.SetSize(Convert.ToInt32(current)); 105 | mainWindow.AtmosphericScatterer.Render(); 106 | } 107 | 108 | if (isSelected) 109 | ImGui.SetItemDefaultFocus(); 110 | } 111 | ImGui.EndCombo(); 112 | } 113 | 114 | int tempInt = mainWindow.AtmosphericScatterer.ISteps; 115 | if (ImGui.SliderInt("InScatteringSamples", ref tempInt, 1, 100)) 116 | { 117 | hadInput = true; 118 | mainWindow.AtmosphericScatterer.ISteps = tempInt; 119 | mainWindow.AtmosphericScatterer.Render(); 120 | } 121 | 122 | tempInt = mainWindow.AtmosphericScatterer.JSteps; 123 | if (ImGui.SliderInt("DensitySamples", ref tempInt, 1, 40)) 124 | { 125 | hadInput = true; 126 | mainWindow.AtmosphericScatterer.JSteps = tempInt; 127 | mainWindow.AtmosphericScatterer.Render(); 128 | } 129 | 130 | float tempFloat = mainWindow.AtmosphericScatterer.Time; 131 | if (ImGui.DragFloat("Time", ref tempFloat, 0.005f)) 132 | { 133 | hadInput = true; 134 | mainWindow.AtmosphericScatterer.Time = tempFloat; 135 | mainWindow.AtmosphericScatterer.Render(); 136 | } 137 | 138 | tempFloat = mainWindow.AtmosphericScatterer.LightIntensity; 139 | if (ImGui.DragFloat("Intensity", ref tempFloat, 0.2f)) 140 | { 141 | hadInput = true; 142 | mainWindow.AtmosphericScatterer.LightIntensity = tempFloat; 143 | mainWindow.AtmosphericScatterer.Render(); 144 | } 145 | } 146 | 147 | if (hadInput) 148 | frameChanged = hadInput; 149 | } 150 | 151 | ImGui.End(); 152 | } 153 | 154 | if (pickedObject != null) 155 | { 156 | ImGui.Begin("GameObjectProperties", ImGuiWindowFlags.AlwaysAutoResize); 157 | { 158 | bool hasInput = false; 159 | System.Numerics.Vector3 nVector3; 160 | 161 | ImGui.Text($"Distance {Vector3.Distance(pickedObject.Position, mainWindow.Camera.Position)}"); 162 | 163 | nVector3 = Vector3ToNVector3(pickedObject.Position); 164 | if (ImGui.DragFloat3("Position", ref nVector3)) 165 | { 166 | pickedObject.Position = NVector3ToVector3(nVector3); 167 | hasInput = true; 168 | } 169 | 170 | nVector3 = Vector3ToNVector3(pickedObject.Material.Albedo); 171 | if (ImGui.InputFloat3("Albedo", ref nVector3)) 172 | { 173 | pickedObject.Material.Albedo = NVector3ToVector3(nVector3); 174 | hasInput = true; 175 | } 176 | 177 | nVector3 = Vector3ToNVector3(pickedObject.Material.Emissiv); 178 | if (ImGui.InputFloat3("Emissiv", ref nVector3)) 179 | { 180 | pickedObject.Material.Emissiv = NVector3ToVector3(nVector3); 181 | hasInput = true; 182 | } 183 | 184 | nVector3 = Vector3ToNVector3(pickedObject.Material.AbsorbanceColor); 185 | if (ImGui.InputFloat3("AbsorbanceColor", ref nVector3)) 186 | { 187 | pickedObject.Material.AbsorbanceColor = NVector3ToVector3(nVector3); 188 | hasInput = true; 189 | } 190 | 191 | if (ImGui.SliderFloat("SpecularChance", ref pickedObject.Material.SpecularChance, 0, 1)) 192 | { 193 | pickedObject.Material.SpecularChance = Math.Clamp(pickedObject.Material.SpecularChance, 0, 1.0f - pickedObject.Material.RefractionChance); 194 | hasInput = true; 195 | } 196 | 197 | if (ImGui.SliderFloat("SpecularRoughness", ref pickedObject.Material.SpecularRoughness, 0, 1)) 198 | hasInput = true; 199 | 200 | if (ImGui.SliderFloat("IndexOfRefraction", ref pickedObject.Material.IOR, 1, 5)) 201 | hasInput = true; 202 | 203 | if (ImGui.SliderFloat("RefractionChance", ref pickedObject.Material.RefractionChance, 0, 1)) 204 | { 205 | pickedObject.Material.RefractionChance = Math.Clamp(pickedObject.Material.RefractionChance, 0, 1.0f - pickedObject.Material.SpecularChance); 206 | hasInput = true; 207 | } 208 | 209 | if (ImGui.SliderFloat("RefractionRoughnes", ref pickedObject.Material.RefractionRoughnes, 0, 1)) 210 | hasInput = true; 211 | 212 | if (hasInput) 213 | { 214 | pickedObject.Upload(mainWindow.GameObjectsUBO); 215 | frameChanged = true; 216 | } 217 | ImGui.End(); 218 | } 219 | } 220 | ImGuiController.Render(); 221 | } 222 | 223 | public static void Update(MainWindow mainWindow) 224 | { 225 | if (mainWindow.CursorVisible && !ImGui.GetIO().WantCaptureMouse) 226 | { 227 | if (MouseManager.IsButtonTouched(MouseButton.Left)) 228 | { 229 | System.Drawing.Point windowSpaceCoords = mainWindow.PointToClient(new System.Drawing.Point(MouseManager.WindowPositionX, MouseManager.WindowPositionY)); windowSpaceCoords.Y = mainWindow.Height - windowSpaceCoords.Y; // [0, Width][0, Height] 230 | Vector2 normalizedDeviceCoords = Vector2.Divide(new Vector2(windowSpaceCoords.X, windowSpaceCoords.Y), new Vector2(mainWindow.Width, mainWindow.Height)) * 2.0f - new Vector2(1.0f); // [-1.0, 1.0][-1.0, 1.0] 231 | Ray rayWorld = Ray.GetWorldSpaceRay(mainWindow.inverseProjection, mainWindow.Camera.View.Inverted(), mainWindow.Camera.Position, normalizedDeviceCoords); 232 | 233 | mainWindow.RayTrace(rayWorld, out pickedObject, out _, out _); 234 | 235 | /// Comment out to test object deletion (Spheres in this case) 236 | //if (pickedObject is Sphere sphere) 237 | //{ 238 | // /// Procedure to properly delete objects 239 | 240 | // /// Delete from GPU 241 | // int start = pickedObject.BufferOffset + Sphere.GPU_INSTANCE_SIZE; 242 | // int bufferSpheresEnd = Sphere.GPU_INSTANCE_SIZE * mainWindow.PathTracer.NumSpheres - start; 243 | 244 | // /// Shift following Spheres backwards to override the picked one (just using the last sphere to override the picked sphere should work as well !?) 245 | // mainWindow.GameObjectsUBO.GetSubData(start, bufferSpheresEnd, out IntPtr followingSphereData); 246 | // mainWindow.GameObjectsUBO.SubData(pickedObject.BufferOffset, bufferSpheresEnd, followingSphereData); // override selected sphere 247 | // System.Runtime.InteropServices.Marshal.FreeHGlobal(followingSphereData); 248 | 249 | // /// Delete from CPU 250 | // mainWindow.GameObjects.Remove(sphere); 251 | // mainWindow.PathTracer.NumSpheres--; 252 | 253 | // for (int i = 0; i < mainWindow.GameObjects.Count; i++) 254 | // if (mainWindow.GameObjects[i] is Sphere temp && temp is not null && temp.Instance > sphere.Instance) 255 | // temp.Instance--; 256 | 257 | // mainWindow.PathTracer.ThisRenderNumFrame = 0; 258 | // pickedObject = null; 259 | //} 260 | } 261 | } 262 | } 263 | 264 | private static Vector3 NVector3ToVector3(System.Numerics.Vector3 v) => new Vector3(v.X, v.Y, v.Z); 265 | private static System.Numerics.Vector3 Vector3ToNVector3(Vector3 v) => new System.Numerics.Vector3(v.X, v.Y, v.Z); 266 | 267 | public static void SetSize(int width, int height) 268 | { 269 | ImGuiController.WindowResized(width, height); 270 | } 271 | } 272 | } 273 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/Render/Objects/Texture.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using SixLabors.ImageSharp; 3 | using SixLabors.ImageSharp.PixelFormats; 4 | using SixLabors.ImageSharp.Processing; 5 | using OpenTK; 6 | using OpenTK.Graphics.OpenGL4; 7 | using PixelFormat = OpenTK.Graphics.OpenGL4.PixelFormat; 8 | 9 | namespace OpenTK_PathTracer.Render.Objects 10 | { 11 | class Texture : IDisposable 12 | { 13 | public enum PixelTypeSize 14 | { 15 | TextureRedSize = 32860, 16 | TextureGreenSize = 32861, 17 | TextureBlueSize = 32862, 18 | TextureAlphaSize = 32863, 19 | } 20 | 21 | public enum TextureDimension 22 | { 23 | Undefined = 0, 24 | One = 1, 25 | Two = 2, 26 | Three = 3, 27 | } 28 | 29 | public readonly int ID; 30 | public readonly TextureTarget Target; 31 | public readonly TextureDimension Dimension; 32 | public int Width { get; private set; } 33 | public int Height { get; private set; } 34 | public int Depth { get; private set; } 35 | public PixelInternalFormat PixelInternalFormat { get; private set; } 36 | 37 | public Texture(TextureTarget3d textureTarget3D) 38 | { 39 | Target = (TextureTarget)textureTarget3D; 40 | Dimension = TextureDimension.Three; 41 | 42 | GL.CreateTextures(Target, 1, out ID); 43 | } 44 | 45 | public Texture(TextureTarget2d textureTarget2D) 46 | { 47 | Target = (TextureTarget)textureTarget2D; 48 | Dimension = TextureDimension.Two; 49 | 50 | GL.CreateTextures(Target, 1, out ID); 51 | } 52 | 53 | public Texture(TextureTarget1d textureTarget1D) 54 | { 55 | Target = (TextureTarget)textureTarget1D; 56 | Dimension = TextureDimension.One; 57 | 58 | GL.CreateTextures(Target, 1, out ID); 59 | } 60 | 61 | public Texture(TextureBufferTarget textureBufferTarget, BufferObject bufferObject, SizedInternalFormat sizedInternalFormat = SizedInternalFormat.Rgba32f) 62 | { 63 | Target = (TextureTarget)textureBufferTarget; 64 | Dimension = TextureDimension.Undefined; 65 | 66 | GL.CreateTextures(Target, 1, out ID); 67 | GL.TextureBuffer(ID, sizedInternalFormat, bufferObject.ID); 68 | GL.TextureBufferRange(ID, sizedInternalFormat, bufferObject.ID, IntPtr.Zero, bufferObject.Size); 69 | } 70 | 71 | public void SetFilter(TextureMinFilter minFilter, TextureMagFilter magFilter) 72 | { 73 | /// Explanation for Mipmap filters from https://learnopengl.com/Getting-started/Textures: 74 | /// GL_NEAREST_MIPMAP_NEAREST: takes the nearest mipmap to match the pixel size and uses nearest neighbor interpolation for texture sampling. 75 | /// GL_LINEAR_MIPMAP_NEAREST: takes the nearest mipmap level and samples that level using linear interpolation. 76 | /// GL_NEAREST_MIPMAP_LINEAR: linearly interpolates between the two mipmaps that most closely match the size of a pixel and samples the interpolated level via nearest neighbor interpolation. 77 | /// GL_LINEAR_MIPMAP_LINEAR: linearly interpolates between the two closest mipmaps and samples the interpolated level via linear interpolation. 78 | 79 | GL.TextureParameter(ID, TextureParameterName.TextureMinFilter, (int)minFilter); 80 | GL.TextureParameter(ID, TextureParameterName.TextureMagFilter, (int)magFilter); 81 | } 82 | 83 | public void SetWrapMode(TextureWrapMode wrapS, TextureWrapMode wrapT) 84 | { 85 | GL.TextureParameter(ID, TextureParameterName.TextureWrapS, (int)wrapS); 86 | GL.TextureParameter(ID, TextureParameterName.TextureWrapT, (int)wrapT); 87 | } 88 | 89 | public void SetWrapMode(TextureWrapMode wrapS, TextureWrapMode wrapT, TextureWrapMode wrapR) 90 | { 91 | GL.TextureParameter(ID, TextureParameterName.TextureWrapS, (int)wrapS); 92 | GL.TextureParameter(ID, TextureParameterName.TextureWrapT, (int)wrapT); 93 | GL.TextureParameter(ID, TextureParameterName.TextureWrapR, (int)wrapR); 94 | } 95 | 96 | public void Bind() 97 | { 98 | GL.BindTexture(Target, ID); 99 | } 100 | 101 | public void AttachImage(int unit, int level, bool layered, int layer, TextureAccess textureAccess, SizedInternalFormat sizedInternalFormat) 102 | { 103 | GL.BindImageTexture(unit, ID, level, layered, layer, textureAccess, sizedInternalFormat); 104 | } 105 | public void AttachSampler(int unit) 106 | { 107 | GL.BindTextureUnit(unit, ID); 108 | } 109 | 110 | public void SubTexture3D(int width, int heigth, int depth, PixelFormat pixelFormat, PixelType pixelType, T[] pixels, int level = 0, int xOffset = 0, int yOffset = 0, int zOffset = 0) where T : struct 111 | { 112 | GL.TextureSubImage3D(ID, level, xOffset, yOffset, zOffset, width, heigth, depth, pixelFormat, pixelType, pixels); 113 | } 114 | public void SubTexture3D(int width, int heigth, int depth, PixelFormat pixelFormat, PixelType pixelType, IntPtr pixels, int level = 0, int xOffset = 0, int yOffset = 0, int zOffset = 0) 115 | { 116 | GL.TextureSubImage3D(ID, level, xOffset, yOffset, zOffset, width, heigth, depth, pixelFormat, pixelType, pixels); 117 | } 118 | public void SubTexture2D(int width, int heigth, PixelFormat pixelFormat, PixelType pixelType, T[] pixels, int level = 0, int xOffset = 0, int yOffset = 0) where T : struct 119 | { 120 | GL.TextureSubImage2D(ID, level, xOffset, yOffset, width, heigth, pixelFormat, pixelType, pixels); 121 | } 122 | public void SubTexture2D(int width, int heigth, PixelFormat pixelFormat, PixelType pixelType, IntPtr pixels, int level = 0, int xOffset = 0, int yOffset = 0) 123 | { 124 | GL.TextureSubImage2D(ID, level, xOffset, yOffset, width, heigth, pixelFormat, pixelType, pixels); 125 | } 126 | public void SubTexture1D(int width, PixelFormat pixelFormat, PixelType pixelType, T[] pixels, int level = 0, int xOffset = 0) where T : struct 127 | { 128 | GL.TextureSubImage1D(ID, level, xOffset, width, pixelFormat, pixelType, pixels); 129 | } 130 | public void SubTexture1D(int width, PixelFormat pixelFormat, PixelType pixelType, IntPtr pixels, int level = 0, int xOffset = 0) 131 | { 132 | GL.TextureSubImage1D(ID, level, xOffset, width, pixelFormat, pixelType, pixels); 133 | } 134 | 135 | 136 | /// 137 | /// To properly generate mipmaps must be set to one of the mipmap options 138 | /// and if immutable storage is used the level parameter should match the number of desired mipmap levels to generate (default: 1). 139 | /// 140 | public void GenerateMipmap() 141 | { 142 | GL.GenerateTextureMipmap(ID); 143 | } 144 | 145 | /// 146 | /// GL_ARB_seamless_cubemap_per_texture must be available 147 | /// 148 | /// 149 | public void SetSeamlessCubeMapPerTexture(bool param) 150 | { 151 | if (Target == TextureTarget.TextureCubeMap) 152 | GL.TextureParameter(ID, (TextureParameterName)All.TextureCubeMapSeamless, param ? 1 : 0); 153 | } 154 | 155 | public void SetBorderColor(Vector4 color) 156 | { 157 | unsafe 158 | { 159 | float* colors = stackalloc[] { color.X, color.Y, color.Z, color.W }; 160 | GL.TextureParameter(ID, TextureParameterName.TextureBorderColor, colors); 161 | } 162 | } 163 | 164 | public void SetMipmapLodBias(float bias) 165 | { 166 | GL.TextureParameter(ID, TextureParameterName.TextureLodBias, bias); 167 | } 168 | 169 | public void MutableAllocate(int width, int height, int depth, PixelInternalFormat pixelInternalFormat) 170 | { 171 | Bind(); 172 | switch (Dimension) 173 | { 174 | case TextureDimension.One: 175 | GL.TexImage1D(Target, 0, pixelInternalFormat, width, 0, PixelFormat.Rgba, PixelType.Float, IntPtr.Zero); 176 | Width = width; 177 | break; 178 | 179 | case TextureDimension.Two: 180 | if (Target == TextureTarget.TextureCubeMap) 181 | for (int i = 0; i < 6; i++) 182 | GL.TexImage2D(TextureTarget.TextureCubeMapPositiveX + i, 0, pixelInternalFormat, width, height, 0, PixelFormat.Rgba, PixelType.Float, IntPtr.Zero); 183 | else 184 | GL.TexImage2D(Target, 0, pixelInternalFormat, width, height, 0, PixelFormat.Rgba, PixelType.Float, IntPtr.Zero); 185 | Width = width; Height = height; 186 | break; 187 | 188 | case TextureDimension.Three: 189 | GL.TexImage3D(Target, 0, pixelInternalFormat, width, height, depth, 0, PixelFormat.Rgba, PixelType.Float, IntPtr.Zero); 190 | Width = width; Height = height; Depth = depth; 191 | break; 192 | 193 | default: 194 | return; 195 | } 196 | PixelInternalFormat = pixelInternalFormat; 197 | } 198 | 199 | public void MutableAllocate(int width, int height, int depth, PixelInternalFormat pixelInternalFormat, IntPtr intPtr, PixelFormat pixelFormat, PixelType pixelType) 200 | { 201 | Bind(); 202 | switch (Dimension) 203 | { 204 | case TextureDimension.One: 205 | GL.TexImage1D(Target, 0, pixelInternalFormat, width, 0, pixelFormat, pixelType, intPtr); 206 | Width = width; 207 | break; 208 | 209 | case TextureDimension.Two: 210 | if (Target == TextureTarget.TextureCubeMap) 211 | for (int i = 0; i < 6; i++) 212 | GL.TexImage2D(TextureTarget.TextureCubeMapPositiveX + i, 0, pixelInternalFormat, width, height, 0, pixelFormat, pixelType, intPtr); 213 | else 214 | GL.TexImage2D(Target, 0, pixelInternalFormat, width, height, 0, pixelFormat, pixelType, intPtr); 215 | Width = width; Height = height; 216 | break; 217 | 218 | case TextureDimension.Three: 219 | GL.TexImage3D(Target, 0, pixelInternalFormat, width, height, depth, 0, pixelFormat, pixelType, intPtr); 220 | Width = width; Height = height; Depth = depth; 221 | break; 222 | 223 | default: 224 | return; 225 | } 226 | PixelInternalFormat = pixelInternalFormat; 227 | } 228 | 229 | public void ImmutableAllocate(int width, int height, int depth, SizedInternalFormat sizedInternalFormat, int levels = 1) 230 | { 231 | switch (Dimension) 232 | { 233 | case TextureDimension.One: 234 | GL.TextureStorage1D(ID, levels, sizedInternalFormat, width); 235 | Width = width; 236 | break; 237 | 238 | case TextureDimension.Two: 239 | GL.TextureStorage2D(ID, levels, sizedInternalFormat, width, height); 240 | Width = width; Height = height; 241 | break; 242 | 243 | case TextureDimension.Three: 244 | GL.TextureStorage3D(ID, levels, sizedInternalFormat, width, height, depth); 245 | Width = width; Height = height; Depth = depth; 246 | break; 247 | 248 | default: 249 | return; 250 | } 251 | PixelInternalFormat = (PixelInternalFormat)sizedInternalFormat; 252 | } 253 | 254 | /// 255 | /// GL_ARB_bindless_texture must be available 256 | /// 257 | /// 258 | public long GetTextureBindlessHandle() 259 | { 260 | long textureHandle = GL.Arb.GetTextureHandle(ID); 261 | GL.Arb.MakeTextureHandleResident(textureHandle); 262 | return textureHandle; 263 | } 264 | 265 | /// 266 | /// GL_ARB_bindless_texture must be available 267 | /// 268 | /// 269 | public static bool UnmakeTextureBindless(long textureHandle) 270 | { 271 | if (GL.Arb.IsTextureHandleResident(textureHandle)) 272 | { 273 | GL.Arb.MakeTextureHandleNonResident(textureHandle); 274 | return true; 275 | } 276 | return false; 277 | } 278 | 279 | /// 280 | /// GL_ARB_bindless_texture must be available 281 | /// 282 | /// 283 | public long GetImageBindlessHandle(int level, bool layered, int layer, PixelFormat pixelFormat, TextureAccess textureAccess) 284 | { 285 | long imageHandle = GL.Arb.GetImageHandle(ID, level, layered, layer, pixelFormat); 286 | GL.Arb.MakeImageHandleResident(imageHandle, (All)textureAccess); 287 | return imageHandle; 288 | } 289 | 290 | /// 291 | /// GL_ARB_bindless_texture must be available 292 | /// 293 | /// 294 | public static bool UnmakeImageBindless(long imageHandle) 295 | { 296 | if (GL.Arb.IsImageHandleResident(imageHandle)) 297 | { 298 | GL.Arb.MakeImageHandleNonResident(imageHandle); 299 | return true; 300 | } 301 | return false; 302 | } 303 | 304 | public unsafe Image GetTextureContent(int mipmapLevel = 0) 305 | { 306 | GetSizeMipmap(out int width, out int height, mipmapLevel); 307 | 308 | Image image = new Image(width, height); 309 | fixed (void* ptr = image.GetPixelRowSpan(0)) 310 | { 311 | GL.GetTextureImage(ID, mipmapLevel, PixelFormat.Rgba, PixelType.UnsignedByte, GetPixelSize(mipmapLevel) * width * height, (IntPtr)ptr); 312 | } 313 | GL.Finish(); 314 | 315 | image.Mutate(p => p.Flip(FlipMode.Vertical)); 316 | 317 | return image; 318 | } 319 | 320 | public void GetSizeMipmap(out int width, out int height, int mipmapLevel = 0) 321 | { 322 | GL.GetTextureLevelParameter(ID, mipmapLevel, GetTextureParameter.TextureWidth, out width); 323 | GL.GetTextureLevelParameter(ID, mipmapLevel, GetTextureParameter.TextureHeight, out height); 324 | } 325 | 326 | public int GetPixelTypeComponentSize(PixelTypeSize pixelTypeSize, int mipmapLevel = 0) 327 | { 328 | GL.GetTextureLevelParameter(ID, mipmapLevel, (GetTextureParameter)pixelTypeSize, out int bitSize); 329 | return bitSize / 8; 330 | } 331 | 332 | public int GetPixelSize(int mipmapLevel = 0) 333 | { 334 | int r = GetPixelTypeComponentSize(PixelTypeSize.TextureRedSize, mipmapLevel); 335 | int g = GetPixelTypeComponentSize(PixelTypeSize.TextureGreenSize, mipmapLevel); 336 | int b = GetPixelTypeComponentSize(PixelTypeSize.TextureBlueSize, mipmapLevel); 337 | int a = GetPixelTypeComponentSize(PixelTypeSize.TextureAlphaSize, mipmapLevel); 338 | 339 | return r + g + b + a; 340 | } 341 | 342 | public void Dispose() 343 | { 344 | GL.DeleteTexture(ID); 345 | } 346 | } 347 | } 348 | -------------------------------------------------------------------------------- /OpenTK-PathTracer/src/MainWindow.cs: -------------------------------------------------------------------------------- 1 | using System; 2 | using System.IO; 3 | using System.Diagnostics; 4 | using System.Collections.Generic; 5 | using OpenTK; 6 | using OpenTK.Input; 7 | using OpenTK.Graphics; 8 | using OpenTK.Graphics.OpenGL4; 9 | using OpenTK_PathTracer.Render; 10 | using OpenTK_PathTracer.GameObjects; 11 | using OpenTK_PathTracer.Render.Objects; 12 | 13 | namespace OpenTK_PathTracer 14 | { 15 | class MainWindow : GameWindow 16 | { 17 | public const int MAX_GAMEOBJECTS_SPHERES = 256, MAX_GAMEOBJECTS_CUBOIDS = 64; 18 | public const float EPSILON = 0.005f, FOV = 103; 19 | 20 | public MainWindow() 21 | #if DEBUG 22 | : base(832, 832, new GraphicsMode(0, 0, 0, 0), string.Empty, GameWindowFlags.Default, DisplayDevice.Default, 4, 5, GraphicsContextFlags.Debug) 23 | #else 24 | : base(832, 832, new GraphicsMode(0, 0, 0, 0)) 25 | #endif 26 | { 27 | 28 | } 29 | 30 | 31 | public Matrix4 inverseProjection; 32 | private Vector2 nearFarPlane = new Vector2(EPSILON, 1000f); 33 | public int FPS, UPS; 34 | private int fps, ups; 35 | 36 | public readonly Camera Camera = new Camera(new Vector3(-17.14f, 3.53f, -8.62f), new Vector3(0, 1, 0), -32.2f, 0.8f); // new Vector3(-9, 12, 4) || new Vector3(-11, 9.3f, -9.7f) 37 | 38 | 39 | public bool IsRenderInBackground = true; 40 | protected override void OnRenderFrame(FrameEventArgs e) 41 | { 42 | if (Focused || IsRenderInBackground) 43 | { 44 | //if (Gui.IsEnvironmentAtmosphere) 45 | //{ 46 | // AtmosphericScatterer.Render(); 47 | //} 48 | 49 | PathTracer.Render(); 50 | 51 | PostProcesser.Render(PathTracer.Result); 52 | GL.Viewport(0, 0, Width, Height); 53 | Framebuffer.Bind(0); 54 | PostProcesser.Result.AttachSampler(0); 55 | finalProgram.Use(); 56 | GL.DrawArrays(PrimitiveType.Triangles, 0, 6); 57 | 58 | if (Focused) 59 | { 60 | Gui.Render(this, (float)e.Time, out bool frameChanged); 61 | if (frameChanged) 62 | PathTracer.ResetRenderer(); 63 | } 64 | SwapBuffers(); 65 | fps++; 66 | } 67 | 68 | base.OnRenderFrame(e); 69 | } 70 | 71 | private readonly Stopwatch fpsTimer = Stopwatch.StartNew(); 72 | protected override void OnUpdateFrame(FrameEventArgs e) 73 | { 74 | if (fpsTimer.ElapsedMilliseconds >= 1000) 75 | { 76 | Title = $"FPS: {fps}; RayDepth: {PathTracer.RayDepth}; UPS: {ups} Position {Camera.Position}"; 77 | FPS = fps; 78 | UPS = ups; 79 | fps = 0; 80 | ups = 0; 81 | fpsTimer.Restart(); 82 | } 83 | 84 | 85 | if (Focused) 86 | { 87 | KeyboardManager.Update(); 88 | MouseManager.Update(); 89 | 90 | if (ImGuiNET.ImGui.GetIO().WantCaptureMouse && !CursorVisible) 91 | { 92 | System.Drawing.Point point = PointToScreen(new System.Drawing.Point(Width / 2, Height / 2)); 93 | Mouse.SetPosition(point.X, point.Y); 94 | } 95 | 96 | Gui.Update(this); 97 | 98 | if (KeyboardManager.IsKeyDown(Key.Escape)) 99 | Close(); 100 | 101 | if (KeyboardManager.IsKeyTouched(Key.V) && !ImGuiNET.ImGui.GetIO().WantCaptureKeyboard) 102 | VSync = VSync == VSyncMode.Off ? VSyncMode.On : VSyncMode.Off; 103 | 104 | if (KeyboardManager.IsKeyTouched(Key.F11)) 105 | WindowState = WindowState == WindowState.Normal ? WindowState.Fullscreen : WindowState.Normal; 106 | 107 | if (KeyboardManager.IsKeyTouched(Key.E) && !ImGuiNET.ImGui.GetIO().WantCaptureKeyboard) 108 | { 109 | CursorVisible = !CursorVisible; 110 | CursorGrabbed = !CursorGrabbed; 111 | 112 | if (!CursorVisible) 113 | { 114 | MouseManager.Update(); 115 | Camera.Velocity = Vector3.Zero; 116 | } 117 | } 118 | 119 | if (KeyboardManager.IsKeyTouched(Key.R) && !ImGuiNET.ImGui.GetIO().WantCaptureKeyboard) 120 | { 121 | LoadScene(); 122 | PathTracer.ResetRenderer(); 123 | } 124 | 125 | if (!CursorVisible) 126 | { 127 | Camera.ProcessInputs((float)e.Time, out bool frameChanged); 128 | if (frameChanged) 129 | PathTracer.ResetRenderer(); 130 | } 131 | BasicDataUBO.SubData(Vector4.SizeInBytes * 4, Vector4.SizeInBytes * 4, Camera.View.Inverted()); 132 | BasicDataUBO.SubData(Vector4.SizeInBytes * 8, Vector4.SizeInBytes, Camera.Position); 133 | } 134 | 135 | ups++; 136 | base.OnUpdateFrame(e); 137 | } 138 | 139 | public readonly List GameObjects = new List(); 140 | private ShaderProgram finalProgram; 141 | public BufferObject BasicDataUBO, GameObjectsUBO; 142 | public PathTracer PathTracer; 143 | public ScreenEffect PostProcesser; 144 | public AtmosphericScatterer AtmosphericScatterer; 145 | public Texture SkyBox; 146 | protected override void OnLoad(EventArgs e) 147 | { 148 | Console.WriteLine($"OpenGL: {Helper.APIVersion}"); 149 | Console.WriteLine($"GLSL: {GL.GetString(StringName.ShadingLanguageVersion)}"); 150 | Console.WriteLine($"GPU: {GL.GetString(StringName.Renderer)}"); 151 | 152 | if (!Helper.IsCoreExtensionAvailable("GL_ARB_direct_state_access", 4.5)) 153 | throw new NotSupportedException("Your system does not support GL_ARB_direct_state_access"); 154 | 155 | if (!Helper.IsCoreExtensionAvailable("GL_ARB_buffer_storage", 4.4)) 156 | throw new NotSupportedException("Your system does not support GL_ARB_buffer_storage"); 157 | 158 | if (!Helper.IsCoreExtensionAvailable("GL_ARB_compute_shader", 4.3)) 159 | throw new NotSupportedException("Your system does not support GL_ARB_compute_shader"); 160 | 161 | if (!Helper.IsCoreExtensionAvailable("GL_ARB_texture_storage", 4.2)) 162 | throw new NotSupportedException("Your system does not support GL_ARB_texture_storage"); 163 | 164 | GL.DepthMask(false); 165 | GL.Disable(EnableCap.DepthTest); 166 | GL.Disable(EnableCap.CullFace); 167 | GL.Disable(EnableCap.Multisample); 168 | GL.Enable(EnableCap.TextureCubeMapSeamless); 169 | 170 | VSync = VSyncMode.Off; 171 | CursorVisible = false; 172 | CursorGrabbed = true; 173 | 174 | AtmosphericScatterer = new AtmosphericScatterer(256); 175 | AtmosphericScatterer.Render(); 176 | 177 | SkyBox = new Texture(TextureTarget2d.TextureCubeMap); 178 | SkyBox.SetFilter(TextureMinFilter.Nearest, TextureMagFilter.Linear); 179 | Helper.ParallelLoadCubemapImages(SkyBox, new string[] 180 | { 181 | "res/Textures/EnvironmentMap/posx.png", 182 | "res/Textures/EnvironmentMap/negx.png", 183 | "res/Textures/EnvironmentMap/posy.png", 184 | "res/Textures/EnvironmentMap/negy.png", 185 | "res/Textures/EnvironmentMap/posz.png", 186 | "res/Textures/EnvironmentMap/negz.png" 187 | }, (SizedInternalFormat)PixelInternalFormat.Srgb8Alpha8); 188 | 189 | PathTracer = new PathTracer(AtmosphericScatterer.Result, Width, Height, 13, 1, 20f, 0.14f); 190 | PostProcesser = new ScreenEffect(new Shader(ShaderType.FragmentShader, File.ReadAllText("res/shaders/PostProcessing/fragment.glsl")), Width, Height); 191 | finalProgram = new ShaderProgram( 192 | new Shader(ShaderType.VertexShader, File.ReadAllText("res/shaders/screenQuad.glsl")), 193 | new Shader(ShaderType.FragmentShader, File.ReadAllText("res/shaders/final.glsl"))); 194 | 195 | BasicDataUBO = new BufferObject(); 196 | BasicDataUBO.ImmutableAllocate(Vector4.SizeInBytes * 4 * 2 + Vector4.SizeInBytes, IntPtr.Zero, BufferStorageFlags.DynamicStorageBit); 197 | BasicDataUBO.BindRange(BufferRangeTarget.UniformBuffer, 0, 0, BasicDataUBO.Size); 198 | 199 | GameObjectsUBO = new BufferObject(); 200 | GameObjectsUBO.ImmutableAllocate(Sphere.GPU_INSTANCE_SIZE * MAX_GAMEOBJECTS_SPHERES + Cuboid.GPU_INSTANCE_SIZE * MAX_GAMEOBJECTS_CUBOIDS, IntPtr.Zero, BufferStorageFlags.DynamicStorageBit); 201 | GameObjectsUBO.BindRange(BufferRangeTarget.UniformBuffer, 1, 0, GameObjectsUBO.Size); 202 | 203 | LoadScene(); 204 | 205 | base.OnLoad(e); 206 | } 207 | 208 | public void LoadScene() 209 | { 210 | float width = 40.0f, height = 25.0f, depth = 25.0f; 211 | PathTracer.NumSpheres = 0; 212 | PathTracer.NumCuboids = 0; 213 | 214 | #region SetupSpheres 215 | int balls = 6; 216 | float radius = 1.3f; 217 | Vector3 dimensions = new Vector3(width * 0.6f, height, depth); 218 | for (float x = 0; x < balls; x++) 219 | for (float y = 0; y < balls; y++) 220 | GameObjects.Add(new Sphere(new Vector3(dimensions.X / balls * x * 1.1f - dimensions.X / 2, (dimensions.Y / balls) * y - dimensions.Y / 2 + radius, -5), radius, PathTracer.NumSpheres++, new Material(albedo: new Vector3(0.59f, 0.59f, 0.99f), emissiv: new Vector3(0), refractionColor: Vector3.Zero, specularChance: x / (balls - 1), specularRoughness: y / (balls - 1), indexOfRefraction: 1f, refractionChance: 0.0f, refractionRoughnes: 0.1f))); 221 | 222 | Vector3 delta = dimensions / balls; 223 | for (float x = 0; x < balls; x++) 224 | { 225 | Material material = Material.Zero; 226 | material.Albedo = new Vector3(0.9f, 0.25f, 0.25f); 227 | material.SpecularChance = 0.02f; 228 | material.IOR = 1.05f; 229 | material.RefractionChance = 0.98f; 230 | material.AbsorbanceColor = new Vector3(1, 2, 3) * (x / balls); 231 | Vector3 position = new Vector3(-dimensions.X / 2 + radius + delta.X * x, 3f, -20f); 232 | GameObjects.Add(new Sphere(position, radius, PathTracer.NumSpheres++, material)); 233 | 234 | 235 | Material material1 = Material.Zero; 236 | material1.SpecularChance = 0.02f; 237 | material1.SpecularRoughness = (x / balls); 238 | material1.IOR = 1.1f; 239 | material1.RefractionChance = 0.98f; 240 | material1.RefractionRoughnes = x / balls; 241 | material1.AbsorbanceColor = Vector3.Zero; 242 | position = new Vector3(-dimensions.X / 2 + radius + delta.X * x, -6f, -20f); 243 | GameObjects.Add(new Sphere(position, radius, PathTracer.NumSpheres++, material1)); 244 | } 245 | #endregion 246 | 247 | #region SetupCuboids 248 | 249 | Cuboid down = new Cuboid(new Vector3(0.0f, -height / 2.0f, -10.0f), new Vector3(width, EPSILON, depth), PathTracer.NumCuboids++, new Material(albedo: new Vector3(0.2f, 0.04f, 0.04f), emissiv: new Vector3(0.0f), refractionColor: Vector3.Zero, specularChance: 0.0f, specularRoughness: 0.051f, indexOfRefraction: 1.0f, refractionChance: 0.0f, refractionRoughnes: 0.0f)); 250 | 251 | //Cuboid up = new Cuboid(new Vector3(down.Position.X, down.Position.Y + height, down.Position.Z - down.Dimensions.Z / 4f), new Vector3(down.Dimensions.X, EPSILON, down.Dimensions.Z / 2), PathTracer.NumCuboids++, new Material(albedo: new Vector3(0.6f), emissiv: new Vector3(0.0f), refractionColor: Vector3.Zero, specularChance: 0.023f, specularRoughness: 0.051f, indexOfRefraction: 1.0f, refractionChance: 0.0f, refractionRoughnes: 0.0f)); 252 | Cuboid upLight = new Cuboid(new Vector3(0.0f, 18.495f - EPSILON, -4.0f), new Vector3(down.Dimensions.X * 0.3f, EPSILON, down.Dimensions.Z * 0.3f), PathTracer.NumCuboids++, new Material(albedo: new Vector3(0.04f), emissiv: new Vector3(0.917f, 0.945f, 0.513f) * 5f, refractionColor: Vector3.Zero, specularChance: 0.0f, specularRoughness: 0.0f, indexOfRefraction: 1.0f, refractionChance: 0.0f, refractionRoughnes: 0.0f)); 253 | 254 | Cuboid back = new Cuboid(new Vector3(down.Position.X, down.Position.Y + height / 2, down.Position.Z + depth / 2 - 5f), new Vector3(width, height, EPSILON), PathTracer.NumCuboids++, new Material(albedo: new Vector3(0.37109375f, 0.67578125f, 0.3359375f), emissiv: new Vector3(0.0f), refractionColor: Vector3.Zero, specularChance: 0.0f, specularRoughness: 0.0f, indexOfRefraction: 1.0f, refractionChance: 0.0f, refractionRoughnes: 0.0f)); 255 | Cuboid front = new Cuboid(new Vector3(down.Position.X, down.Position.Y + height / 2 + EPSILON, down.Position.Z - depth / 2), new Vector3(width, height - EPSILON * 2, 0.3f), PathTracer.NumCuboids++, new Material(albedo: new Vector3(1f), emissiv: Vector3.Zero, refractionColor: new Vector3(0.01f), specularChance: 0.04f, specularRoughness: 0.0f, indexOfRefraction: 1f, refractionChance: 0.954f, refractionRoughnes: 0.0f)); 256 | 257 | Cuboid right = new Cuboid(new Vector3(down.Position.X + width / 2, down.Position.Y + height / 2.0f, down.Position.Z), new Vector3(EPSILON, height, depth), PathTracer.NumCuboids++, new Material(albedo: new Vector3(0.9453125f, 0.75390625f, 0.3046875f), emissiv: new Vector3(0.0f), refractionColor: Vector3.Zero, specularChance: 1.0f, specularRoughness: 0.19f, indexOfRefraction: 1.0f, refractionChance: 0.0f, refractionRoughnes: 0.0f)); 258 | Cuboid left = new Cuboid(new Vector3(down.Position.X - width / 2, down.Position.Y + height / 2.0f, down.Position.Z), new Vector3(EPSILON, height, depth), PathTracer.NumCuboids++, new Material(albedo: new Vector3(0.074219f, 0.25f, 0.453125f), emissiv: new Vector3(0.0f), refractionColor: Vector3.Zero, specularChance: 0.0f, specularRoughness: 0.0f, indexOfRefraction: 1.0f, refractionChance: 0.0f, refractionRoughnes: 0.0f)); 259 | 260 | Cuboid middle = new Cuboid(new Vector3(-15.0f, -10.5f + EPSILON, -15.0f), new Vector3(3.0f, 6.0f, 3.0f), PathTracer.NumCuboids++, new Material(albedo: new Vector3(1.0f), emissiv: new Vector3(0.0f), refractionColor: Vector3.Zero, specularChance: 0.0f, specularRoughness: 0.0f, indexOfRefraction: 1.0f, refractionChance: 0.0f, refractionRoughnes: 0.0f)); 261 | 262 | GameObjects.AddRange(new Cuboid[] { down, upLight, back, front, right, left, middle }); 263 | #endregion 264 | 265 | for (int i = 0; i < GameObjects.Count; i++) 266 | GameObjects[i].Upload(GameObjectsUBO); 267 | } 268 | 269 | private int lastWidth = -1, lastHeight = -1; 270 | protected override void OnResize(EventArgs e) 271 | { 272 | if ((lastWidth != Width || lastHeight != Height) && Width != 0 && Height != 0) // dont resize when minimizing and maximizing 273 | { 274 | PathTracer.SetSize(Width, Height); 275 | PostProcesser.SetSize(Width, Height); 276 | Gui.SetSize(Width, Height); 277 | 278 | inverseProjection = Matrix4.CreatePerspectiveFieldOfView(MathHelper.DegreesToRadians(FOV), Width / (float)Height, nearFarPlane.X, nearFarPlane.Y).Inverted(); 279 | BasicDataUBO.SubData(0, Vector4.SizeInBytes * 4, inverseProjection); 280 | lastWidth = Width; lastHeight = Height; 281 | } 282 | base.OnResize(e); 283 | } 284 | 285 | protected override void OnKeyPress(KeyPressEventArgs e) 286 | { 287 | Gui.ImGuiController.PressChar(e.KeyChar); 288 | } 289 | 290 | protected override void OnFocusedChanged(EventArgs e) 291 | { 292 | if (Focused) 293 | MouseManager.Update(); 294 | } 295 | 296 | protected override void OnClosed(EventArgs e) 297 | { 298 | ImGuiNET.ImGui.SaveIniSettingsToDisk("res/imgui.ini"); 299 | base.OnClosed(e); 300 | } 301 | 302 | public bool RayTrace(Ray ray, out BaseGameObject gameObject, out float t1, out float t2) 303 | { 304 | t1 = t2 = 0; 305 | gameObject = null; 306 | float tMin = float.MaxValue; 307 | for (int i = 0; i < GameObjects.Count; i++) 308 | { 309 | if (GameObjects[i].IntersectsRay(ray, out float tempT1, out float tempT2) && tempT2 > 0 && tempT1 < tMin) 310 | { 311 | t1 = tempT1; t2 = tempT2; 312 | tMin = GetSmallestPositive(t1, t2); 313 | gameObject = GameObjects[i]; 314 | } 315 | } 316 | 317 | return tMin != float.MaxValue; 318 | } 319 | public static float GetSmallestPositive(float t1, float t2) 320 | { 321 | return t1 < 0 ? t2 : t1; 322 | } 323 | 324 | public void SetGameObjectsRandomMaterial(int maxNum) where T : BaseGameObject 325 | { 326 | int changed = 0; 327 | for (int i = 0; i < GameObjects.Count && changed < maxNum; i++) 328 | { 329 | if (GameObjects[i] is T) 330 | { 331 | GameObjects[i].Material = Material.GetRndMaterial(); 332 | GameObjects[i].Upload(GameObjectsUBO); 333 | changed++; 334 | } 335 | } 336 | } 337 | } 338 | } --------------------------------------------------------------------------------