├── Chapter 02 ├── eulerzyx2rotm.m ├── main.mlx ├── main.pdf ├── rotationx.m ├── rotationy.m ├── rotationz.m ├── rotm2eulerzyx.m ├── translation.m ├── trotationx.m ├── trotationy.m ├── trotationz.m ├── 齐次变换逆矩阵.nb └── 齐次变换逆矩阵.pdf ├── Chapter 03 ├── main.mlx ├── mylink.m ├── 作业说明.txt ├── 正运动学解.nb ├── 正运动学解.pdf ├── 第四周任务一:课本MATLAB练习.pdf ├── 第四周任务二:3.26齐次变换矩阵.nb └── 第四周任务二:3.26齐次变换矩阵.pdf ├── Chapter 04 ├── invkine.mlx ├── main.mlx ├── theta2to1.mlx └── 实验报告-19374128-白梓彤.pdf ├── Chapter 05 ├── main.mlx ├── myjacobian.mlx ├── 作业5-12.nb ├── 作业5-12.pdf └── 作业5-22.nb ├── Chapter 06 └── 作业6-3.nb ├── Chapter 07 ├── 作业7-13 │ ├── hw7_13.docx │ ├── hw7_13.mlx │ └── hw7_13.pdf └── 作业7_4 │ ├── hw7_4.docx │ ├── hw7_4.mlx │ └── hw7_4.pdf └── README.md /Chapter 02/eulerzyx2rotm.m: -------------------------------------------------------------------------------- 1 | function R = eulerzyx2rotm(alpha, beta, gamma, deg) 2 | %eulerzyx2rotm 通过Z-Y-X欧拉角,得到旋转矩阵 3 | 4 | Rz = rotationz(alpha, deg); 5 | Ry = rotationy(beta, deg); 6 | Rx = rotationx(gamma, deg); 7 | 8 | R = Rz * Ry * Rx; 9 | end 10 | 11 | -------------------------------------------------------------------------------- /Chapter 02/main.mlx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 02/main.mlx -------------------------------------------------------------------------------- /Chapter 02/main.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 02/main.pdf -------------------------------------------------------------------------------- /Chapter 02/rotationx.m: -------------------------------------------------------------------------------- 1 | function R = rotationx(t,deg) 2 | %rotationx 绕着x轴旋转的旋转矩阵 3 | % t 为旋转角度 4 | % deg 为是否使用角度,若为'deg',则gamma应为角度 5 | % 否则为弧度 6 | 7 | % 检查输入格式 8 | assert((isreal(t) & isscalar(t)) | isa(t, 'sym'), ... 9 | 'SMTB:rotx:badarg', 'theta must be a real scalar'); 10 | 11 | % 检查输入是弧度值还是角度值 12 | if nargin > 1 && strcmp(deg, 'deg') 13 | t = t * pi/ 180; 14 | end 15 | 16 | ct = cos(t); 17 | st = sin(t); 18 | 19 | % 对于那些很小的值,直接算作0 20 | if ~isa(t,'sym') 21 | if abs(st) 1 && strcmp(deg, 'deg') 13 | t = t * pi/ 180; 14 | end 15 | 16 | ct = cos(t); 17 | st = sin(t); 18 | 19 | % 对于那些很小的值,直接算作0 20 | if ~isa(t,'sym') 21 | if abs(st) 1 && strcmp(deg, 'deg') 13 | t = t * pi/ 180; 14 | end 15 | 16 | ct = cos(t); 17 | st = sin(t); 18 | 19 | % 对于那些很小的值,直接算作0 20 | if ~isa(t,'sym') 21 | if abs(st)Normal*) 18 | 19 | (* Beginning of Notebook Content *) 20 | Notebook[{ 21 | 22 | Cell[CellGroupData[{ 23 | Cell["\:7b26\:53f7\:8fd0\:7b97\:9a8c\:8bc1", "Subsubsection", 24 | CellChangeTimes->{{3.841560930023341*^9, 3.841560947831264*^9}, { 25 | 3.8415609783623114`*^9, 3.8415609899430623`*^9}, {3.841561471019199*^9, 26 | 3.8415614885789585`*^9}},ExpressionUUID->"62537120-6abf-471c-a750-\ 27 | efe7fec16add"], 28 | 29 | Cell["\:901a\:8fc7Mathematica\:7684\:7b26\:53f7\:8fd0\:7b97\:ff0c\:6c42\:51fa\ 30 | \:9f50\:6b21\:53d8\:6362\:77e9\:9635\:7684\:9006\:77e9\:9635\:ff0c\:5e76\:5c06\ 31 | \:4e8c\:8005\:76f8\:4e58\:ff0c\:53ef\:4ee5\:5f97\:5230\:5355\:4f4d\:9635\:3002\ 32 | ", "Text", 33 | CellChangeTimes->{{3.8415614933757915`*^9, 34 | 3.8415615345215235`*^9}},ExpressionUUID->"99fcabd5-8153-4eee-9db2-\ 35 | 8b58bff3c60d"], 36 | 37 | Cell[CellGroupData[{ 38 | 39 | Cell[BoxData[{ 40 | RowBox[{"ABT", " ", "=", " ", 41 | RowBox[{"(", GridBox[{ 42 | {"r11", "r12", "r13", "p1"}, 43 | {"r21", "r22", "r23", "p2"}, 44 | {"r31", "r32", "r33", "p3"}, 45 | {"0", "0", "0", "1"} 46 | }], ")"}]}], "\[IndentingNewLine]", 47 | RowBox[{"ABTinv", " ", "=", " ", 48 | RowBox[{"Inverse", "[", "ABT", "]"}]}], "\[IndentingNewLine]", 49 | RowBox[{ 50 | RowBox[{"ABT", " ", ".", " ", "ABTinv"}], " ", "//", " ", 51 | "Simplify"}]}], "Input", 52 | CellChangeTimes->{{3.8415598697143416`*^9, 3.841559956420405*^9}, { 53 | 3.8415608032170453`*^9, 3.8415608105679693`*^9}}, 54 | CellLabel->"In[49]:=",ExpressionUUID->"323632fa-5b43-4264-a53c-0adb24864a42"], 55 | 56 | Cell[BoxData[ 57 | FormBox[ 58 | RowBox[{"(", "\[NoBreak]", GridBox[{ 59 | {"r11", "r12", "r13", "p1"}, 60 | {"r21", "r22", "r23", "p2"}, 61 | {"r31", "r32", "r33", "p3"}, 62 | {"0", "0", "0", "1"} 63 | }, 64 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 65 | GridBoxSpacings->{"Columns" -> { 66 | Offset[0.27999999999999997`], { 67 | Offset[0.7]}, 68 | Offset[0.27999999999999997`]}, "Rows" -> { 69 | Offset[0.2], { 70 | Offset[0.4]}, 71 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 72 | CellChangeTimes->{ 73 | 3.841559957062174*^9, 3.8415600455364027`*^9, {3.8415608043722525`*^9, 74 | 3.841560811083661*^9}, 3.8415609920286655`*^9}, 75 | CellLabel->"Out[49]=",ExpressionUUID->"714648b0-fd03-430d-8816-313e8a87a459"], 76 | 77 | Cell[BoxData[ 78 | FormBox[ 79 | RowBox[{"(", "\[NoBreak]", GridBox[{ 80 | { 81 | FractionBox[ 82 | RowBox[{ 83 | RowBox[{"r22", " ", "r33"}], "-", 84 | RowBox[{"r23", " ", "r32"}]}], 85 | RowBox[{ 86 | RowBox[{"r11", " ", "r22", " ", "r33"}], "-", 87 | RowBox[{"r11", " ", "r23", " ", "r32"}], "-", 88 | RowBox[{"r12", " ", "r21", " ", "r33"}], "+", 89 | RowBox[{"r12", " ", "r23", " ", "r31"}], "+", 90 | RowBox[{"r13", " ", "r21", " ", "r32"}], "-", 91 | RowBox[{"r13", " ", "r22", " ", "r31"}]}]], 92 | FractionBox[ 93 | RowBox[{ 94 | RowBox[{"r13", " ", "r32"}], "-", 95 | RowBox[{"r12", " ", "r33"}]}], 96 | RowBox[{ 97 | RowBox[{"r11", " ", "r22", " ", "r33"}], "-", 98 | RowBox[{"r11", " ", "r23", " ", "r32"}], "-", 99 | RowBox[{"r12", " ", "r21", " ", "r33"}], "+", 100 | RowBox[{"r12", " ", "r23", " ", "r31"}], "+", 101 | RowBox[{"r13", " ", "r21", " ", "r32"}], "-", 102 | RowBox[{"r13", " ", "r22", " ", "r31"}]}]], 103 | FractionBox[ 104 | RowBox[{ 105 | RowBox[{"r12", " ", "r23"}], "-", 106 | RowBox[{"r13", " ", "r22"}]}], 107 | RowBox[{ 108 | RowBox[{"r11", " ", "r22", " ", "r33"}], "-", 109 | RowBox[{"r11", " ", "r23", " ", "r32"}], "-", 110 | RowBox[{"r12", " ", "r21", " ", "r33"}], "+", 111 | RowBox[{"r12", " ", "r23", " ", "r31"}], "+", 112 | RowBox[{"r13", " ", "r21", " ", "r32"}], "-", 113 | RowBox[{"r13", " ", "r22", " ", "r31"}]}]], 114 | FractionBox[ 115 | RowBox[{ 116 | RowBox[{"-", 117 | RowBox[{"p1", " ", "r22", " ", "r33"}]}], "+", 118 | RowBox[{"p1", " ", "r23", " ", "r32"}], "+", 119 | RowBox[{"p2", " ", "r12", " ", "r33"}], "-", 120 | RowBox[{"p2", " ", "r13", " ", "r32"}], "-", 121 | RowBox[{"p3", " ", "r12", " ", "r23"}], "+", 122 | RowBox[{"p3", " ", "r13", " ", "r22"}]}], 123 | RowBox[{ 124 | RowBox[{"r11", " ", "r22", " ", "r33"}], "-", 125 | RowBox[{"r11", " ", "r23", " ", "r32"}], "-", 126 | RowBox[{"r12", " ", "r21", " ", "r33"}], "+", 127 | RowBox[{"r12", " ", "r23", " ", "r31"}], "+", 128 | RowBox[{"r13", " ", "r21", " ", "r32"}], "-", 129 | RowBox[{"r13", " ", "r22", " ", "r31"}]}]]}, 130 | { 131 | FractionBox[ 132 | RowBox[{ 133 | RowBox[{"r23", " ", "r31"}], "-", 134 | RowBox[{"r21", " ", "r33"}]}], 135 | RowBox[{ 136 | RowBox[{"r11", " ", "r22", " ", "r33"}], "-", 137 | RowBox[{"r11", " ", "r23", " ", "r32"}], "-", 138 | RowBox[{"r12", " ", "r21", " ", "r33"}], "+", 139 | RowBox[{"r12", " ", "r23", " ", "r31"}], "+", 140 | RowBox[{"r13", " ", "r21", " ", "r32"}], "-", 141 | RowBox[{"r13", " ", "r22", " ", "r31"}]}]], 142 | FractionBox[ 143 | RowBox[{ 144 | RowBox[{"r11", " ", "r33"}], "-", 145 | RowBox[{"r13", " ", "r31"}]}], 146 | RowBox[{ 147 | RowBox[{"r11", " ", "r22", " ", "r33"}], "-", 148 | RowBox[{"r11", " ", "r23", " ", "r32"}], "-", 149 | RowBox[{"r12", " ", "r21", " ", "r33"}], "+", 150 | RowBox[{"r12", " ", "r23", " ", "r31"}], "+", 151 | RowBox[{"r13", " ", "r21", " ", "r32"}], "-", 152 | RowBox[{"r13", " ", "r22", " ", "r31"}]}]], 153 | FractionBox[ 154 | RowBox[{ 155 | RowBox[{"r13", " ", "r21"}], "-", 156 | RowBox[{"r11", " ", "r23"}]}], 157 | RowBox[{ 158 | RowBox[{"r11", " ", "r22", " ", "r33"}], "-", 159 | RowBox[{"r11", " ", "r23", " ", "r32"}], "-", 160 | RowBox[{"r12", " ", "r21", " ", "r33"}], "+", 161 | RowBox[{"r12", " ", "r23", " ", "r31"}], "+", 162 | RowBox[{"r13", " ", "r21", " ", "r32"}], "-", 163 | RowBox[{"r13", " ", "r22", " ", "r31"}]}]], 164 | FractionBox[ 165 | RowBox[{ 166 | RowBox[{"p1", " ", "r21", " ", "r33"}], "-", 167 | RowBox[{"p1", " ", "r23", " ", "r31"}], "-", 168 | RowBox[{"p2", " ", "r11", " ", "r33"}], "+", 169 | RowBox[{"p2", " ", "r13", " ", "r31"}], "+", 170 | RowBox[{"p3", " ", "r11", " ", "r23"}], "-", 171 | RowBox[{"p3", " ", "r13", " ", "r21"}]}], 172 | RowBox[{ 173 | RowBox[{"r11", " ", "r22", " ", "r33"}], "-", 174 | RowBox[{"r11", " ", "r23", " ", "r32"}], "-", 175 | RowBox[{"r12", " ", "r21", " ", "r33"}], "+", 176 | RowBox[{"r12", " ", "r23", " ", "r31"}], "+", 177 | RowBox[{"r13", " ", "r21", " ", "r32"}], "-", 178 | RowBox[{"r13", " ", "r22", " ", "r31"}]}]]}, 179 | { 180 | FractionBox[ 181 | RowBox[{ 182 | RowBox[{"r21", " ", "r32"}], "-", 183 | RowBox[{"r22", " ", "r31"}]}], 184 | RowBox[{ 185 | RowBox[{"r11", " ", "r22", " ", "r33"}], "-", 186 | RowBox[{"r11", " ", "r23", " ", "r32"}], "-", 187 | RowBox[{"r12", " ", "r21", " ", "r33"}], "+", 188 | RowBox[{"r12", " ", "r23", " ", "r31"}], "+", 189 | RowBox[{"r13", " ", "r21", " ", "r32"}], "-", 190 | RowBox[{"r13", " ", "r22", " ", "r31"}]}]], 191 | FractionBox[ 192 | RowBox[{ 193 | RowBox[{"r12", " ", "r31"}], "-", 194 | RowBox[{"r11", " ", "r32"}]}], 195 | RowBox[{ 196 | RowBox[{"r11", " ", "r22", " ", "r33"}], "-", 197 | RowBox[{"r11", " ", "r23", " ", "r32"}], "-", 198 | RowBox[{"r12", " ", "r21", " ", "r33"}], "+", 199 | RowBox[{"r12", " ", "r23", " ", "r31"}], "+", 200 | RowBox[{"r13", " ", "r21", " ", "r32"}], "-", 201 | RowBox[{"r13", " ", "r22", " ", "r31"}]}]], 202 | FractionBox[ 203 | RowBox[{ 204 | RowBox[{"r11", " ", "r22"}], "-", 205 | RowBox[{"r12", " ", "r21"}]}], 206 | RowBox[{ 207 | RowBox[{"r11", " ", "r22", " ", "r33"}], "-", 208 | RowBox[{"r11", " ", "r23", " ", "r32"}], "-", 209 | RowBox[{"r12", " ", "r21", " ", "r33"}], "+", 210 | RowBox[{"r12", " ", "r23", " ", "r31"}], "+", 211 | RowBox[{"r13", " ", "r21", " ", "r32"}], "-", 212 | RowBox[{"r13", " ", "r22", " ", "r31"}]}]], 213 | FractionBox[ 214 | RowBox[{ 215 | RowBox[{"-", 216 | RowBox[{"p1", " ", "r21", " ", "r32"}]}], "+", 217 | RowBox[{"p1", " ", "r22", " ", "r31"}], "+", 218 | RowBox[{"p2", " ", "r11", " ", "r32"}], "-", 219 | RowBox[{"p2", " ", "r12", " ", "r31"}], "-", 220 | RowBox[{"p3", " ", "r11", " ", "r22"}], "+", 221 | RowBox[{"p3", " ", "r12", " ", "r21"}]}], 222 | RowBox[{ 223 | RowBox[{"r11", " ", "r22", " ", "r33"}], "-", 224 | RowBox[{"r11", " ", "r23", " ", "r32"}], "-", 225 | RowBox[{"r12", " ", "r21", " ", "r33"}], "+", 226 | RowBox[{"r12", " ", "r23", " ", "r31"}], "+", 227 | RowBox[{"r13", " ", "r21", " ", "r32"}], "-", 228 | RowBox[{"r13", " ", "r22", " ", "r31"}]}]]}, 229 | {"0", "0", "0", "1"} 230 | }, 231 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 232 | GridBoxSpacings->{"Columns" -> { 233 | Offset[0.27999999999999997`], { 234 | Offset[0.7]}, 235 | Offset[0.27999999999999997`]}, "Rows" -> { 236 | Offset[0.2], { 237 | Offset[0.4]}, 238 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 239 | CellChangeTimes->{ 240 | 3.841559957062174*^9, 3.8415600455364027`*^9, {3.8415608043722525`*^9, 241 | 3.841560811083661*^9}, 3.8415609921207504`*^9}, 242 | CellLabel->"Out[50]=",ExpressionUUID->"8ee50fc0-2839-4409-95c7-ad311df62087"], 243 | 244 | Cell[BoxData[ 245 | FormBox[ 246 | RowBox[{"(", "\[NoBreak]", GridBox[{ 247 | {"1", "0", "0", "0"}, 248 | {"0", "1", "0", "0"}, 249 | {"0", "0", "1", "0"}, 250 | {"0", "0", "0", "1"} 251 | }, 252 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 253 | GridBoxSpacings->{"Columns" -> { 254 | Offset[0.27999999999999997`], { 255 | Offset[0.7]}, 256 | Offset[0.27999999999999997`]}, "Rows" -> { 257 | Offset[0.2], { 258 | Offset[0.4]}, 259 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 260 | CellChangeTimes->{ 261 | 3.841559957062174*^9, 3.8415600455364027`*^9, {3.8415608043722525`*^9, 262 | 3.841560811083661*^9}, 3.8415609921486464`*^9}, 263 | CellLabel->"Out[51]=",ExpressionUUID->"69e6fd41-cb14-4c98-b06c-7961636d1c42"] 264 | }, Open ]] 265 | }, Open ]], 266 | 267 | Cell[CellGroupData[{ 268 | 269 | Cell["\:6570\:503c\:9a8c\:8bc1", "Subsubsection", 270 | CellChangeTimes->{{3.8415609161156845`*^9, 271 | 3.8415609220013194`*^9}},ExpressionUUID->"298a5403-d789-4a55-9252-\ 272 | d0594d4373b7"], 273 | 274 | Cell["\:901a\:8fc7\:6b27\:62c9\:89d2\:548c\:5e73\:79fb\:5411\:91cf\:ff0c\:53ef\ 275 | \:4ee5\:5f97\:51fa\:9f50\:6b21\:53d8\:6362\:77e9\:9635", "Text", 276 | CellChangeTimes->{{3.8415611190733876`*^9, 277 | 3.8415611356139126`*^9}},ExpressionUUID->"f98d01ab-289a-4ea8-a997-\ 278 | 9721da6129d2"], 279 | 280 | Cell[CellGroupData[{ 281 | 282 | Cell[BoxData[{ 283 | RowBox[{"R", " ", "=", " ", 284 | RowBox[{ 285 | RowBox[{"EulerMatrix", "[", 286 | RowBox[{ 287 | RowBox[{"{", 288 | RowBox[{ 289 | RowBox[{"10", " ", "Degree"}], ",", " ", 290 | RowBox[{"20", " ", "Degree"}], ",", " ", 291 | RowBox[{"30", " ", "Degree"}]}], "}"}], ",", 292 | RowBox[{"{", 293 | RowBox[{"3", ",", "2", ",", "1"}], "}"}]}], "]"}], "//", 294 | "N"}]}], "\[IndentingNewLine]", 295 | RowBox[{ 296 | RowBox[{"p", " ", "=", " ", 297 | RowBox[{"{", 298 | RowBox[{ 299 | RowBox[{"{", "1", "}"}], ",", 300 | RowBox[{"{", "2", "}"}], ",", 301 | RowBox[{"{", "3", "}"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", 302 | RowBox[{ 303 | RowBox[{"Tn", " ", "=", 304 | RowBox[{ 305 | RowBox[{"Join", "[", 306 | RowBox[{"R", ",", " ", "p", ",", " ", "2"}], "]"}], "~", "Join", "~", 307 | RowBox[{"{", 308 | RowBox[{"{", 309 | RowBox[{"0", ",", "0", ",", "0", ",", "1"}], "}"}], "}"}]}]}], 310 | ";"}], "\[IndentingNewLine]", 311 | RowBox[{"Tn", "//", "MatrixForm"}]}], "Input", 312 | CellChangeTimes->{{3.841560294472642*^9, 3.841560299711644*^9}, { 313 | 3.841560332925336*^9, 3.841560343965908*^9}, {3.841560393696286*^9, 314 | 3.8415604463954325`*^9}, {3.8415608483841076`*^9, 3.8415608755253506`*^9}, { 315 | 3.8415610127733755`*^9, 3.8415610181286955`*^9}, {3.8415610775352635`*^9, 316 | 3.8415610992759933`*^9}}, 317 | CellLabel->"In[69]:=",ExpressionUUID->"4cf3e117-58e3-4f14-bd22-a64f9db6cd35"], 318 | 319 | Cell[BoxData[ 320 | FormBox[ 321 | RowBox[{"(", "\[NoBreak]", GridBox[{ 322 | {"0.9254165783983234`", "0.018028311236297306`", "0.37852230636979245`"}, 323 | {"0.16317591116653482`", "0.8825641192593855`", 324 | RowBox[{"-", "0.4409696105298824`"}]}, 325 | { 326 | RowBox[{"-", "0.3420201433256687`"}], "0.4698463103929542`", 327 | "0.8137976813493737`"} 328 | }, 329 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 330 | GridBoxSpacings->{"Columns" -> { 331 | Offset[0.27999999999999997`], { 332 | Offset[0.7]}, 333 | Offset[0.27999999999999997`]}, "Rows" -> { 334 | Offset[0.2], { 335 | Offset[0.4]}, 336 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 337 | CellChangeTimes->{ 338 | 3.8415603013309608`*^9, {3.841560435315178*^9, 3.8415604473706207`*^9}, { 339 | 3.841560850736444*^9, 3.8415608760390444`*^9}, 3.8415610189818106`*^9, { 340 | 3.8415610799776077`*^9, 3.8415610999594193`*^9}}, 341 | CellLabel->"Out[69]=",ExpressionUUID->"7f2cca58-1068-42c5-9bff-7af640cbeba6"], 342 | 343 | Cell[BoxData[ 344 | FormBox[ 345 | TagBox[ 346 | RowBox[{"(", "\[NoBreak]", GridBox[{ 347 | {"0.9254165783983234`", "0.018028311236297306`", "0.37852230636979245`", 348 | "1"}, 349 | {"0.16317591116653482`", "0.8825641192593855`", 350 | RowBox[{"-", "0.4409696105298824`"}], "2"}, 351 | { 352 | RowBox[{"-", "0.3420201433256687`"}], "0.4698463103929542`", 353 | "0.8137976813493737`", "3"}, 354 | {"0", "0", "0", "1"} 355 | }, 356 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 357 | GridBoxSpacings->{"Columns" -> { 358 | Offset[0.27999999999999997`], { 359 | Offset[0.7]}, 360 | Offset[0.27999999999999997`]}, "Rows" -> { 361 | Offset[0.2], { 362 | Offset[0.4]}, 363 | Offset[0.2]}}], "\[NoBreak]", ")"}], 364 | Function[BoxForm`e$, 365 | MatrixForm[BoxForm`e$]]], TraditionalForm]], "Output", 366 | CellChangeTimes->{ 367 | 3.8415603013309608`*^9, {3.841560435315178*^9, 3.8415604473706207`*^9}, { 368 | 3.841560850736444*^9, 3.8415608760390444`*^9}, 3.8415610189818106`*^9, { 369 | 3.8415610799776077`*^9, 3.8415610999632373`*^9}}, 370 | CellLabel-> 371 | "Out[72]//MatrixForm=",ExpressionUUID->"893fdeb2-6454-48da-b9d9-\ 372 | 70784bb9aff1"] 373 | }, Open ]], 374 | 375 | Cell["\:5bf9\:9f50\:6b21\:53d8\:6362\:77e9\:9635\:6c42\:9006", "Text", 376 | CellChangeTimes->{{3.8415611407117653`*^9, 377 | 3.8415611492575493`*^9}},ExpressionUUID->"d916eff5-3ddd-4dff-ae5d-\ 378 | 8f1a80efb7df"], 379 | 380 | Cell[CellGroupData[{ 381 | 382 | Cell[BoxData[ 383 | RowBox[{"TnInv", " ", "=", " ", 384 | RowBox[{"Inverse", "[", "Tn", "]"}]}]], "Input", 385 | CellChangeTimes->{{3.841561025112524*^9, 3.8415610629343615`*^9}}, 386 | CellLabel->"In[62]:=",ExpressionUUID->"b3aa408e-daf2-4113-8e7b-368c802e025c"], 387 | 388 | Cell[BoxData[ 389 | FormBox[ 390 | RowBox[{"(", "\[NoBreak]", GridBox[{ 391 | {"0.9254165783983233`", "0.16317591116653485`", 392 | RowBox[{"-", "0.34202014332566877`"}], 393 | RowBox[{"-", "0.2257079707543866`"}]}, 394 | {"0.018028311236297268`", "0.8825641192593856`", "0.4698463103929542`", 395 | RowBox[{"-", "3.192695480933931`"}]}, 396 | {"0.3785223063697925`", 397 | RowBox[{"-", "0.44096961052988254`"}], "0.8137976813493738`", 398 | RowBox[{"-", "1.937976129358149`"}]}, 399 | {"0.`", "0.`", "0.`", "1.`"} 400 | }, 401 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 402 | GridBoxSpacings->{"Columns" -> { 403 | Offset[0.27999999999999997`], { 404 | Offset[0.7]}, 405 | Offset[0.27999999999999997`]}, "Rows" -> { 406 | Offset[0.2], { 407 | Offset[0.4]}, 408 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 409 | CellChangeTimes->{{3.84156103951058*^9, 3.8415610824591846`*^9}}, 410 | CellLabel->"Out[62]=",ExpressionUUID->"58be18c8-26b1-4ebe-9db0-873075eb860b"] 411 | }, Open ]], 412 | 413 | Cell["\:5c06\:4e8c\:8005\:76f8\:4e58\:ff0c\:5e76\:5c06\:90a3\:4e9b\:975e\:5e38\ 414 | \:5c0f\:7684\:91cf\:89c6\:4e3a0\:ff0c\:53ef\:4ee5\:5f97\:5230\:5355\:4f4d\ 415 | \:9635", "Text", 416 | CellChangeTimes->{{3.8415611585661516`*^9, 3.841561162204344*^9}, { 417 | 3.841561383089265*^9, 418 | 3.8415613995702753`*^9}},ExpressionUUID->"22e84a33-4b4f-43d9-b391-\ 419 | a60fce4ad564"], 420 | 421 | Cell[CellGroupData[{ 422 | 423 | Cell[BoxData[{ 424 | RowBox[{"Tn", ".", "TnInv"}], "\[IndentingNewLine]", 425 | RowBox[{"Map", "[", 426 | RowBox[{ 427 | RowBox[{ 428 | RowBox[{"If", "[", 429 | RowBox[{ 430 | RowBox[{"#", "<", "0.001"}], ",", " ", "0", ",", "#"}], "]"}], "&"}], 431 | ",", " ", 432 | RowBox[{"Tn", ".", "TnInv"}], ",", " ", 433 | RowBox[{"{", "2", "}"}]}], "]"}]}], "Input", 434 | CellChangeTimes->{{3.84156116984239*^9, 3.8415611759408016`*^9}, { 435 | 3.841561374319131*^9, 3.841561374541696*^9}}, 436 | CellLabel->"In[79]:=",ExpressionUUID->"04bf817b-f011-4644-8a9f-1ff4f59cd3e0"], 437 | 438 | Cell[BoxData[ 439 | FormBox[ 440 | RowBox[{"(", "\[NoBreak]", GridBox[{ 441 | {"1.`", "0.`", "0.`", "2.220446049250313`*^-16"}, 442 | { 443 | RowBox[{"-", "5.551115123125783`*^-17"}], "1.`", 444 | RowBox[{"-", "5.551115123125783`*^-17"}], "6.661338147750939`*^-16"}, 445 | {"5.551115123125783`*^-17", 446 | RowBox[{"-", "5.551115123125783`*^-17"}], "1.`", 447 | RowBox[{"-", "4.440892098500626`*^-16"}]}, 448 | {"0.`", "0.`", "0.`", "1.`"} 449 | }, 450 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 451 | GridBoxSpacings->{"Columns" -> { 452 | Offset[0.27999999999999997`], { 453 | Offset[0.7]}, 454 | Offset[0.27999999999999997`]}, "Rows" -> { 455 | Offset[0.2], { 456 | Offset[0.4]}, 457 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 458 | CellChangeTimes->{ 459 | 3.841561176486888*^9, {3.841561376512678*^9, 3.8415614016574354`*^9}}, 460 | CellLabel->"Out[79]=",ExpressionUUID->"f2fd2d60-0431-4235-a738-c36d8a977c00"], 461 | 462 | Cell[BoxData[ 463 | FormBox[ 464 | RowBox[{"(", "\[NoBreak]", GridBox[{ 465 | {"1.`", "0", "0", "0"}, 466 | {"0", "1.`", "0", "0"}, 467 | {"0", "0", "1.`", "0"}, 468 | {"0", "0", "0", "1.`"} 469 | }, 470 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 471 | GridBoxSpacings->{"Columns" -> { 472 | Offset[0.27999999999999997`], { 473 | Offset[0.7]}, 474 | Offset[0.27999999999999997`]}, "Rows" -> { 475 | Offset[0.2], { 476 | Offset[0.4]}, 477 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 478 | CellChangeTimes->{ 479 | 3.841561176486888*^9, {3.841561376512678*^9, 3.841561401661085*^9}}, 480 | CellLabel->"Out[80]=",ExpressionUUID->"f38c34d5-47d5-40a0-99c6-784aae2cf17c"] 481 | }, Open ]] 482 | }, Open ]] 483 | }, 484 | WindowSize->{1462, 821}, 485 | WindowMargins->{{-8, Automatic}, {Automatic, -8}}, 486 | Magnification:>1.3 Inherited, 487 | FrontEndVersion->"12.0 for Microsoft Windows (64-bit) (2019\:5e745\:670818\ 488 | \:65e5)", 489 | StyleDefinitions->"Default.nb" 490 | ] 491 | (* End of Notebook Content *) 492 | 493 | (* Internal cache information *) 494 | (*CellTagsOutline 495 | CellTagsIndex->{} 496 | *) 497 | (*CellTagsIndex 498 | CellTagsIndex->{} 499 | *) 500 | (*NotebookFileOutline 501 | Notebook[{ 502 | Cell[CellGroupData[{ 503 | Cell[580, 22, 288, 4, 58, "Subsubsection",ExpressionUUID->"62537120-6abf-471c-a750-efe7fec16add"], 504 | Cell[871, 28, 379, 6, 44, "Text",ExpressionUUID->"99fcabd5-8153-4eee-9db2-8b58bff3c60d"], 505 | Cell[CellGroupData[{ 506 | Cell[1275, 38, 639, 15, 195, "Input",ExpressionUUID->"323632fa-5b43-4264-a53c-0adb24864a42"], 507 | Cell[1917, 55, 767, 19, 118, "Output",ExpressionUUID->"714648b0-fd03-430d-8816-313e8a87a459"], 508 | Cell[2687, 76, 6994, 165, 154, "Output",ExpressionUUID->"8ee50fc0-2839-4409-95c7-ad311df62087"], 509 | Cell[9684, 243, 746, 19, 118, "Output",ExpressionUUID->"69e6fd41-cb14-4c98-b06c-7961636d1c42"] 510 | }, Open ]] 511 | }, Open ]], 512 | Cell[CellGroupData[{ 513 | Cell[10479, 268, 179, 3, 58, "Subsubsection",ExpressionUUID->"298a5403-d789-4a55-9252-d0594d4373b7"], 514 | Cell[10661, 273, 274, 4, 44, "Text",ExpressionUUID->"f98d01ab-289a-4ea8-a997-9721da6129d2"], 515 | Cell[CellGroupData[{ 516 | Cell[10960, 281, 1359, 35, 176, "Input",ExpressionUUID->"4cf3e117-58e3-4f14-bd22-a64f9db6cd35"], 517 | Cell[12322, 318, 1001, 22, 93, "Output",ExpressionUUID->"7f2cca58-1068-42c5-9bff-7af640cbeba6"], 518 | Cell[13326, 342, 1150, 29, 136, "Output",ExpressionUUID->"893fdeb2-6454-48da-b9d9-70784bb9aff1"] 519 | }, Open ]], 520 | Cell[14491, 374, 200, 3, 44, "Text",ExpressionUUID->"d916eff5-3ddd-4dff-ae5d-8f1a80efb7df"], 521 | Cell[CellGroupData[{ 522 | Cell[14716, 381, 245, 4, 57, "Input",ExpressionUUID->"b3aa408e-daf2-4113-8e7b-368c802e025c"], 523 | Cell[14964, 387, 1005, 22, 118, "Output",ExpressionUUID->"58be18c8-26b1-4ebe-9db0-873075eb860b"] 524 | }, Open ]], 525 | Cell[15984, 412, 350, 6, 44, "Text",ExpressionUUID->"22e84a33-4b4f-43d9-b391-a60fce4ad564"], 526 | Cell[CellGroupData[{ 527 | Cell[16359, 422, 530, 13, 82, "Input",ExpressionUUID->"04bf817b-f011-4644-8a9f-1ff4f59cd3e0"], 528 | Cell[16892, 437, 954, 22, 127, "Output",ExpressionUUID->"f2fd2d60-0431-4235-a738-c36d8a977c00"], 529 | Cell[17849, 461, 700, 18, 118, "Output",ExpressionUUID->"f38c34d5-47d5-40a0-99c6-784aae2cf17c"] 530 | }, Open ]] 531 | }, Open ]] 532 | } 533 | ] 534 | *) 535 | 536 | -------------------------------------------------------------------------------- /Chapter 02/齐次变换逆矩阵.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 02/齐次变换逆矩阵.pdf -------------------------------------------------------------------------------- /Chapter 03/main.mlx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 03/main.mlx -------------------------------------------------------------------------------- /Chapter 03/mylink.m: -------------------------------------------------------------------------------- 1 | classdef mylink 2 | %mylink 自定义的一个连杆类,用来存放D-H参数 3 | % 此处显示详细说明 4 | 5 | properties 6 | alpha % 连杆扭转角 7 | a % 连杆长度 8 | d % 连杆偏距 9 | theta % 关节角 10 | isrevolute % 是转动关节还是移动关节 11 | end 12 | 13 | methods 14 | function obj = mylink(alpha_,a_, d_, theta_, isrevolute_) 15 | % 构造函数 16 | % 利用此函数初始化类对象 17 | obj.alpha = alpha_; 18 | obj.a = a_; 19 | obj.d = d_; 20 | obj.theta = theta_; 21 | if isrevolute_ == 1 || isrevolute == 0 22 | obj.isrevolute = isrevolute_; 23 | else 24 | error('Arg isrevolute of mylink constructor must be 0 or 1'); 25 | end 26 | end 27 | 28 | function T = transMatrix(self,value) 29 | %transMatrix 计算此连杆的齐次变换矩阵 30 | sa = sin(self.alpha); 31 | ca = cos(self.alpha); 32 | if self.isrevolute == 1 33 | st = sin(value); ct = cos(value); 34 | dd = self.d; 35 | else 36 | st = sin(self.theta); ct = cos(self.theta); 37 | dd = value; 38 | end % 判断是否是转动关节 39 | % 计算齐次变换矩阵 40 | T = [ ct -st 0 self.a 41 | st*ca ct*ca -sa -sa*dd 42 | st*sa ct*sa ca ca*dd 43 | 0 0 0 1 ]; 44 | end % function transMatrix 45 | end 46 | end 47 | 48 | -------------------------------------------------------------------------------- /Chapter 03/作业说明.txt: -------------------------------------------------------------------------------- 1 | 本次作业报告分成了两份,分别为: 2 | 第四周任务一:课本MATLAB练习.pdf(建议不要看这个pdf,而是直接看main.mlx文件,效果更好) 3 | 第四周任务二:3.26齐次变换矩阵.pdf 4 | 其余的为MATLAB或mathematica代码文件。 -------------------------------------------------------------------------------- /Chapter 03/正运动学解.nb: -------------------------------------------------------------------------------- 1 | (* Content-type: application/vnd.wolfram.mathematica *) 2 | 3 | (*** Wolfram Notebook File ***) 4 | (* http://www.wolfram.com/nb *) 5 | 6 | (* CreatedBy='Mathematica 12.0' *) 7 | 8 | (*CacheID: 234*) 9 | (* Internal cache information: 10 | NotebookFileLineBreakTest 11 | NotebookFileLineBreakTest 12 | NotebookDataPosition[ 158, 7] 13 | NotebookDataLength[ 26740, 728] 14 | NotebookOptionsPosition[ 22708, 651] 15 | NotebookOutlinePosition[ 23096, 668] 16 | CellTagsIndexPosition[ 23053, 665] 17 | WindowFrame->Normal*) 18 | 19 | (* Beginning of Notebook Content *) 20 | Notebook[{ 21 | 22 | Cell[CellGroupData[{ 23 | Cell["\:6b63\:8fd0\:52a8\:5b66\:89e3", "Subsection", 24 | CellChangeTimes->{{3.8427724652860475`*^9, 3.842772466146413*^9}, { 25 | 3.842773265624833*^9, 26 | 3.8427732666030188`*^9}},ExpressionUUID->"085bfd30-5a01-41d9-996d-\ 27 | 0c9f9297ea4f"], 28 | 29 | Cell["\<\ 30 | \:8fde\:6746\:4e0a\:7684\:9f50\:6b21\:53d8\:6362\:77e9\:9635\:516c\:5f0f\:5982\ 31 | \:4e0b\:ff1a\ 32 | \>", "Text", 33 | CellChangeTimes->{{3.8427732867654276`*^9, 34 | 3.8427732959658155`*^9}},ExpressionUUID->"783a0ee5-8e20-456e-a12b-\ 35 | 51334fde28c0"], 36 | 37 | Cell[BoxData[{ 38 | RowBox[{ 39 | RowBox[{"homoT", " ", "=", " ", 40 | RowBox[{"(", GridBox[{ 41 | { 42 | RowBox[{"Cos", "[", "theta", "]"}], 43 | RowBox[{"-", 44 | RowBox[{"Sin", "[", "theta", "]"}]}], "0", "a"}, 45 | { 46 | RowBox[{ 47 | RowBox[{"Sin", "[", "theta", "]"}], "*", 48 | RowBox[{"Cos", "[", "alpha", "]"}]}], 49 | RowBox[{ 50 | RowBox[{"Cos", "[", "theta", "]"}], "*", 51 | RowBox[{"Cos", "[", "alpha", "]"}]}], 52 | RowBox[{"-", 53 | RowBox[{"Sin", "[", "alpha", "]"}]}], 54 | RowBox[{ 55 | RowBox[{"-", 56 | RowBox[{"Sin", "[", "alpha", "]"}]}], "*", "d"}]}, 57 | { 58 | RowBox[{ 59 | RowBox[{"Sin", "[", "theta", "]"}], "*", 60 | RowBox[{"Sin", "[", "alpha", "]"}]}], 61 | RowBox[{ 62 | RowBox[{"Cos", "[", "theta", "]"}], "*", 63 | RowBox[{"Sin", "[", "alpha", "]"}]}], 64 | RowBox[{"Cos", "[", "alpha", "]"}], 65 | RowBox[{ 66 | RowBox[{"Cos", "[", "alpha", "]"}], "*", "d"}]}, 67 | {"0", "0", "0", "1"} 68 | }], ")"}]}], ";"}], "\[IndentingNewLine]", 69 | RowBox[{ 70 | RowBox[{ 71 | RowBox[{"T", "[", 72 | RowBox[{ 73 | "\[Alpha]_", ",", " ", "aa_", ",", " ", "dd_", ",", " ", "\[Theta]_"}], 74 | "]"}], ":=", 75 | RowBox[{"homoT", "/.", 76 | RowBox[{"{", 77 | RowBox[{ 78 | RowBox[{"theta", "\[Rule]", " ", "\[Theta]"}], ",", " ", 79 | RowBox[{"alpha", "\[Rule]", " ", "\[Alpha]"}], ",", " ", 80 | RowBox[{"a", "\[Rule]", "aa"}], ",", " ", 81 | RowBox[{"d", "\[Rule]", "dd"}]}], "}"}]}]}], ";"}]}], "Input", 82 | CellChangeTimes->{{3.8427725666368647`*^9, 3.842772616780002*^9}, { 83 | 3.842772653423252*^9, 3.842772750800788*^9}, {3.842772936467227*^9, 84 | 3.842772947600684*^9}, {3.8427730093510942`*^9, 3.842773052716772*^9}, { 85 | 3.842773093527507*^9, 3.842773153904647*^9}, {3.842773185322283*^9, 86 | 3.8427732121157045`*^9}}, 87 | CellLabel->"In[2]:=",ExpressionUUID->"0a72f506-bc50-4b3c-9679-acddb45919fa"], 88 | 89 | Cell[CellGroupData[{ 90 | 91 | Cell[BoxData[ 92 | RowBox[{ 93 | RowBox[{"T", "[", 94 | RowBox[{"0", ",", " ", "4", ",", " ", "0", ",", " ", 95 | RowBox[{"60", "Degree"}]}], "]"}], "//", "N"}]], "Input", 96 | CellChangeTimes->{{3.8427732216889095`*^9, 3.842773242358371*^9}}, 97 | CellLabel->"In[5]:=",ExpressionUUID->"ca131d13-b4a9-46f0-a72f-1beb07e215e2"], 98 | 99 | Cell[BoxData[ 100 | FormBox[ 101 | RowBox[{"(", "\[NoBreak]", GridBox[{ 102 | {"0.5`", 103 | RowBox[{"-", "0.8660254037844386`"}], "0.`", "4.`"}, 104 | {"0.8660254037844386`", "0.5`", "0.`", "0.`"}, 105 | {"0.`", "0.`", "1.`", "0.`"}, 106 | {"0.`", "0.`", "0.`", "1.`"} 107 | }, 108 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 109 | GridBoxSpacings->{"Columns" -> { 110 | Offset[0.27999999999999997`], { 111 | Offset[0.7]}, 112 | Offset[0.27999999999999997`]}, "Rows" -> { 113 | Offset[0.2], { 114 | Offset[0.4]}, 115 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 116 | CellChangeTimes->{{3.842773238170967*^9, 3.842773243490846*^9}}, 117 | CellLabel->"Out[5]=",ExpressionUUID->"9f33aa68-0057-4f9c-9498-be555c082093"] 118 | }, Open ]], 119 | 120 | Cell["\:5df2\:77e5\:53c2\:6570\:5982\:4e0b\:ff1a", "Text", 121 | CellChangeTimes->{{3.8427734243197317`*^9, 122 | 3.842773436205495*^9}},ExpressionUUID->"60f73b60-795a-4121-89e8-\ 123 | f44dcc265a76"], 124 | 125 | Cell[BoxData[ 126 | RowBox[{ 127 | RowBox[{"l1", " ", "=", " ", "4"}], ";", " ", 128 | RowBox[{"l2", " ", "=", " ", "3"}], ";", " ", 129 | RowBox[{"l3", " ", "=", " ", "2"}], ";"}]], "Input", 130 | CellChangeTimes->{{3.8427734391145563`*^9, 3.8427734537218046`*^9}}, 131 | CellLabel->"In[7]:=",ExpressionUUID->"174d826c-da1a-499c-8985-c142d5e28090"], 132 | 133 | Cell["\<\ 134 | \:6bcf\:4e00\:4e2a\:8fde\:6746\:4e0a\:7684\:5176\:6b21\:53d8\:6362\:77e9\:9635\ 135 | \:5206\:522b\:4e3a\:ff1a\ 136 | \>", "Text", 137 | CellChangeTimes->{{3.8427733273197255`*^9, 138 | 3.8427733719661417`*^9}},ExpressionUUID->"564a4e0b-aebe-4d37-b6b8-\ 139 | f2a71e6eaaa7"], 140 | 141 | Cell[CellGroupData[{ 142 | 143 | Cell[BoxData[ 144 | RowBox[{"T0to1", " ", "=", " ", 145 | RowBox[{"T", "[", 146 | RowBox[{"0", ",", " ", "0", ",", " ", "0", ",", " ", "theta1"}], 147 | "]"}]}]], "Input", 148 | CellChangeTimes->{{3.84277337385201*^9, 3.8427734043220124`*^9}, { 149 | 3.842773525603571*^9, 3.8427735329211807`*^9}}, 150 | CellLabel->"In[10]:=",ExpressionUUID->"0ab9f609-bb57-4909-bc5e-44a4a1a95186"], 151 | 152 | Cell[BoxData[ 153 | FormBox[ 154 | RowBox[{"(", "\[NoBreak]", GridBox[{ 155 | { 156 | RowBox[{"cos", "(", "theta1", ")"}], 157 | RowBox[{"-", 158 | RowBox[{"sin", "(", "theta1", ")"}]}], "0", "0"}, 159 | { 160 | RowBox[{"sin", "(", "theta1", ")"}], 161 | RowBox[{"cos", "(", "theta1", ")"}], "0", "0"}, 162 | {"0", "0", "1", "0"}, 163 | {"0", "0", "0", "1"} 164 | }, 165 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 166 | GridBoxSpacings->{"Columns" -> { 167 | Offset[0.27999999999999997`], { 168 | Offset[0.7]}, 169 | Offset[0.27999999999999997`]}, "Rows" -> { 170 | Offset[0.2], { 171 | Offset[0.4]}, 172 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 173 | CellChangeTimes->{3.842773404921193*^9, 3.8427735502897434`*^9}, 174 | CellLabel->"Out[10]=",ExpressionUUID->"c669e4c9-9e9d-47a0-adf7-5cbd9bce06aa"] 175 | }, Open ]], 176 | 177 | Cell[CellGroupData[{ 178 | 179 | Cell[BoxData[ 180 | RowBox[{"T1to2", " ", "=", " ", 181 | RowBox[{"T", "[", 182 | RowBox[{"0", ",", " ", "l1", ",", " ", "0", ",", " ", "theta2"}], 183 | "]"}]}]], "Input", 184 | CellChangeTimes->{{3.842773407130234*^9, 3.8427734139714146`*^9}, { 185 | 3.8427734614861894`*^9, 3.8427734699771748`*^9}, {3.842773538843238*^9, 186 | 3.8427735419126873`*^9}}, 187 | CellLabel->"In[11]:=",ExpressionUUID->"a5c423e1-18bd-42b4-b83e-c90df1a8c608"], 188 | 189 | Cell[BoxData[ 190 | FormBox[ 191 | RowBox[{"(", "\[NoBreak]", GridBox[{ 192 | { 193 | RowBox[{"cos", "(", "theta2", ")"}], 194 | RowBox[{"-", 195 | RowBox[{"sin", "(", "theta2", ")"}]}], "0", "4"}, 196 | { 197 | RowBox[{"sin", "(", "theta2", ")"}], 198 | RowBox[{"cos", "(", "theta2", ")"}], "0", "0"}, 199 | {"0", "0", "1", "0"}, 200 | {"0", "0", "0", "1"} 201 | }, 202 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 203 | GridBoxSpacings->{"Columns" -> { 204 | Offset[0.27999999999999997`], { 205 | Offset[0.7]}, 206 | Offset[0.27999999999999997`]}, "Rows" -> { 207 | Offset[0.2], { 208 | Offset[0.4]}, 209 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 210 | CellChangeTimes->{3.8427734712751007`*^9, 3.8427735521714883`*^9}, 211 | CellLabel->"Out[11]=",ExpressionUUID->"ca84b591-fe4d-42a9-81b6-7a9f70849133"] 212 | }, Open ]], 213 | 214 | Cell[CellGroupData[{ 215 | 216 | Cell[BoxData[ 217 | RowBox[{"T2to3", " ", "=", " ", 218 | RowBox[{"T", "[", 219 | RowBox[{"0", ",", " ", "l2", ",", " ", "0", ",", " ", "theta3"}], 220 | "]"}]}]], "Input", 221 | CellChangeTimes->{{3.8427734734862394`*^9, 3.8427734916778183`*^9}, { 222 | 3.8427735443370814`*^9, 3.8427735467661858`*^9}}, 223 | CellLabel->"In[12]:=",ExpressionUUID->"ca72ad22-695f-40be-a0fb-eadb6bc8e136"], 224 | 225 | Cell[BoxData[ 226 | FormBox[ 227 | RowBox[{"(", "\[NoBreak]", GridBox[{ 228 | { 229 | RowBox[{"cos", "(", "theta3", ")"}], 230 | RowBox[{"-", 231 | RowBox[{"sin", "(", "theta3", ")"}]}], "0", "3"}, 232 | { 233 | RowBox[{"sin", "(", "theta3", ")"}], 234 | RowBox[{"cos", "(", "theta3", ")"}], "0", "0"}, 235 | {"0", "0", "1", "0"}, 236 | {"0", "0", "0", "1"} 237 | }, 238 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 239 | GridBoxSpacings->{"Columns" -> { 240 | Offset[0.27999999999999997`], { 241 | Offset[0.7]}, 242 | Offset[0.27999999999999997`]}, "Rows" -> { 243 | Offset[0.2], { 244 | Offset[0.4]}, 245 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 246 | CellChangeTimes->{3.8427734933343735`*^9, 3.8427735552529297`*^9}, 247 | CellLabel->"Out[12]=",ExpressionUUID->"3eec4d41-21d6-4924-8f7e-ce1c25b725bf"] 248 | }, Open ]], 249 | 250 | Cell["\:672b\:7aef\:7684\:5e38\:91cf\:77e9\:9635\:4e3a", "Text", 251 | CellChangeTimes->{{3.842773513538768*^9, 3.842773519889559*^9}, { 252 | 3.842773558722188*^9, 253 | 3.8427735695850916`*^9}},ExpressionUUID->"f8bc81c4-0fa5-4276-a31e-\ 254 | b8a1780d0878"], 255 | 256 | Cell[CellGroupData[{ 257 | 258 | Cell[BoxData[ 259 | RowBox[{"T3toH", " ", "=", " ", 260 | RowBox[{"T", "[", 261 | RowBox[{"0", ",", " ", "l3", ",", " ", "0", ",", " ", "0"}], 262 | "]"}]}]], "Input", 263 | CellChangeTimes->{{3.8427735725837955`*^9, 3.842773591253785*^9}}, 264 | CellLabel->"In[13]:=",ExpressionUUID->"fd6d66c2-b63d-456a-b586-60a230fd90f5"], 265 | 266 | Cell[BoxData[ 267 | FormBox[ 268 | RowBox[{"(", "\[NoBreak]", GridBox[{ 269 | {"1", "0", "0", "2"}, 270 | {"0", "1", "0", "0"}, 271 | {"0", "0", "1", "0"}, 272 | {"0", "0", "0", "1"} 273 | }, 274 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 275 | GridBoxSpacings->{"Columns" -> { 276 | Offset[0.27999999999999997`], { 277 | Offset[0.7]}, 278 | Offset[0.27999999999999997`]}, "Rows" -> { 279 | Offset[0.2], { 280 | Offset[0.4]}, 281 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 282 | CellChangeTimes->{3.84277359230342*^9}, 283 | CellLabel->"Out[13]=",ExpressionUUID->"013f67bd-06d9-4fab-be6d-2ef9d458b032"] 284 | }, Open ]], 285 | 286 | Cell["\:56e0\:6b64\:ff0c0\:52303\:7684\:6b63\:8fd0\:52a8\:5b66\:89e3\:4e3a\ 287 | \:ff1a", "Text", 288 | CellChangeTimes->{{3.842773650430339*^9, 3.8427736513408604`*^9}, { 289 | 3.8427736945882735`*^9, 290 | 3.84277370349599*^9}},ExpressionUUID->"0b376ba6-8f50-4fb8-9577-\ 291 | e742db5bbf75"], 292 | 293 | Cell[CellGroupData[{ 294 | 295 | Cell[BoxData[ 296 | RowBox[{"T0to3", " ", "=", " ", 297 | RowBox[{ 298 | RowBox[{"(", 299 | RowBox[{"T0to1", " ", ".", " ", "T1to2", " ", ".", " ", "T2to3"}], ")"}], 300 | "//", "Simplify"}]}]], "Input", 301 | CellChangeTimes->{{3.8427737057745233`*^9, 3.8427737663379803`*^9}}, 302 | CellLabel->"In[15]:=",ExpressionUUID->"41855866-ec54-4c70-a823-f0fa71858a37"], 303 | 304 | Cell[BoxData[ 305 | FormBox[ 306 | RowBox[{"(", "\[NoBreak]", GridBox[{ 307 | { 308 | RowBox[{"cos", "(", 309 | RowBox[{"theta1", "+", "theta2", "+", "theta3"}], ")"}], 310 | RowBox[{"-", 311 | RowBox[{"sin", "(", 312 | RowBox[{"theta1", "+", "theta2", "+", "theta3"}], ")"}]}], "0", 313 | RowBox[{ 314 | RowBox[{"3", " ", 315 | RowBox[{"cos", "(", 316 | RowBox[{"theta1", "+", "theta2"}], ")"}]}], "+", 317 | RowBox[{"4", " ", 318 | RowBox[{"cos", "(", "theta1", ")"}]}]}]}, 319 | { 320 | RowBox[{"sin", "(", 321 | RowBox[{"theta1", "+", "theta2", "+", "theta3"}], ")"}], 322 | RowBox[{"cos", "(", 323 | RowBox[{"theta1", "+", "theta2", "+", "theta3"}], ")"}], "0", 324 | RowBox[{ 325 | RowBox[{"3", " ", 326 | RowBox[{"sin", "(", 327 | RowBox[{"theta1", "+", "theta2"}], ")"}]}], "+", 328 | RowBox[{"4", " ", 329 | RowBox[{"sin", "(", "theta1", ")"}]}]}]}, 330 | {"0", "0", "1", "0"}, 331 | {"0", "0", "0", "1"} 332 | }, 333 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 334 | GridBoxSpacings->{"Columns" -> { 335 | Offset[0.27999999999999997`], { 336 | Offset[0.7]}, 337 | Offset[0.27999999999999997`]}, "Rows" -> { 338 | Offset[0.2], { 339 | Offset[0.4]}, 340 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 341 | CellChangeTimes->{{3.842773738609192*^9, 3.8427737674574428`*^9}}, 342 | CellLabel->"Out[15]=",ExpressionUUID->"2ccbeedb-6065-4482-b18e-5ed463d54c11"] 343 | }, Open ]], 344 | 345 | Cell["0\:5230H\:7684\:6b63\:8fd0\:52a8\:5b66\:89e3\:4e3a\:ff1a", "Text", 346 | CellChangeTimes->{{3.8427737814214892`*^9, 347 | 3.842773790238968*^9}},ExpressionUUID->"ba801399-23d4-4052-9964-\ 348 | 7e8e1b336db6"], 349 | 350 | Cell[CellGroupData[{ 351 | 352 | Cell[BoxData[ 353 | RowBox[{"T0toH", " ", "=", " ", 354 | RowBox[{ 355 | RowBox[{"(", 356 | RowBox[{ 357 | "T0to1", " ", ".", " ", "T1to2", " ", ".", " ", "T2to3", ".", "T3toH"}], 358 | ")"}], "//", "Simplify"}]}]], "Input", 359 | CellChangeTimes->{{3.8427737945935054`*^9, 3.8427738147802043`*^9}}, 360 | CellLabel->"In[16]:=",ExpressionUUID->"79816618-3784-4dac-b638-32ab248adb3d"], 361 | 362 | Cell[BoxData[ 363 | FormBox[ 364 | RowBox[{"(", "\[NoBreak]", GridBox[{ 365 | { 366 | RowBox[{"cos", "(", 367 | RowBox[{"theta1", "+", "theta2", "+", "theta3"}], ")"}], 368 | RowBox[{"-", 369 | RowBox[{"sin", "(", 370 | RowBox[{"theta1", "+", "theta2", "+", "theta3"}], ")"}]}], "0", 371 | RowBox[{ 372 | RowBox[{"2", " ", 373 | RowBox[{"cos", "(", 374 | RowBox[{"theta1", "+", "theta2", "+", "theta3"}], ")"}]}], "+", 375 | RowBox[{"3", " ", 376 | RowBox[{"cos", "(", 377 | RowBox[{"theta1", "+", "theta2"}], ")"}]}], "+", 378 | RowBox[{"4", " ", 379 | RowBox[{"cos", "(", "theta1", ")"}]}]}]}, 380 | { 381 | RowBox[{"sin", "(", 382 | RowBox[{"theta1", "+", "theta2", "+", "theta3"}], ")"}], 383 | RowBox[{"cos", "(", 384 | RowBox[{"theta1", "+", "theta2", "+", "theta3"}], ")"}], "0", 385 | RowBox[{ 386 | RowBox[{"2", " ", 387 | RowBox[{"sin", "(", 388 | RowBox[{"theta1", "+", "theta2", "+", "theta3"}], ")"}]}], "+", 389 | RowBox[{"3", " ", 390 | RowBox[{"sin", "(", 391 | RowBox[{"theta1", "+", "theta2"}], ")"}]}], "+", 392 | RowBox[{"4", " ", 393 | RowBox[{"sin", "(", "theta1", ")"}]}]}]}, 394 | {"0", "0", "1", "0"}, 395 | {"0", "0", "0", "1"} 396 | }, 397 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 398 | GridBoxSpacings->{"Columns" -> { 399 | Offset[0.27999999999999997`], { 400 | Offset[0.7]}, 401 | Offset[0.27999999999999997`]}, "Rows" -> { 402 | Offset[0.2], { 403 | Offset[0.4]}, 404 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 405 | CellChangeTimes->{3.8427738155310974`*^9}, 406 | CellLabel->"Out[16]=",ExpressionUUID->"d472397b-1a59-47df-abba-b51e119694a0"] 407 | }, Open ]], 408 | 409 | Cell[CellGroupData[{ 410 | 411 | Cell["\:82e5\:662f\[Theta]1=0\[Degree], \[Theta]2=0\[Degree], \[Theta]3=0\ 412 | \[Degree] ", "Subsubsection", 413 | CellChangeTimes->{{3.8427738431417527`*^9, 3.8427738744943304`*^9}, { 414 | 3.8427740041565385`*^9, 415 | 3.842774007985832*^9}},ExpressionUUID->"fae50812-66be-49f6-b152-\ 416 | af6c12c76f14"], 417 | 418 | Cell[CellGroupData[{ 419 | 420 | Cell[BoxData[{ 421 | RowBox[{"T0to3", "/.", 422 | RowBox[{"{", 423 | RowBox[{ 424 | RowBox[{"theta1", "\[Rule]", 425 | RowBox[{"0", "Degree"}]}], ",", " ", 426 | RowBox[{"theta2", "\[Rule]", 427 | RowBox[{"0", "Degree"}]}], ",", " ", 428 | RowBox[{"theta3", "\[Rule]", " ", 429 | RowBox[{"0", "Degree"}]}]}], "}"}]}], "\[IndentingNewLine]", 430 | RowBox[{"T0toH", "/.", 431 | RowBox[{"{", 432 | RowBox[{ 433 | RowBox[{"theta1", "\[Rule]", 434 | RowBox[{"0", "Degree"}]}], ",", " ", 435 | RowBox[{"theta2", "\[Rule]", 436 | RowBox[{"0", "Degree"}]}], ",", " ", 437 | RowBox[{"theta3", "\[Rule]", " ", 438 | RowBox[{"0", "Degree"}]}]}], "}"}]}]}], "Input", 439 | CellChangeTimes->{{3.842773882366825*^9, 3.842773933039573*^9}, { 440 | 3.842775507015952*^9, 3.8427755101245017`*^9}}, 441 | CellLabel->"In[23]:=",ExpressionUUID->"56c0b344-5a5c-4a0b-b9f5-266d9616e52c"], 442 | 443 | Cell[BoxData[ 444 | FormBox[ 445 | RowBox[{"(", "\[NoBreak]", GridBox[{ 446 | {"1", "0", "0", "7"}, 447 | {"0", "1", "0", "0"}, 448 | {"0", "0", "1", "0"}, 449 | {"0", "0", "0", "1"} 450 | }, 451 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 452 | GridBoxSpacings->{"Columns" -> { 453 | Offset[0.27999999999999997`], { 454 | Offset[0.7]}, 455 | Offset[0.27999999999999997`]}, "Rows" -> { 456 | Offset[0.2], { 457 | Offset[0.4]}, 458 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 459 | CellChangeTimes->{3.842773907920684*^9, 3.8427739597570295`*^9, 460 | 3.8427755111763453`*^9}, 461 | CellLabel->"Out[23]=",ExpressionUUID->"48ab9831-9245-4696-aca0-4e34065b6eed"], 462 | 463 | Cell[BoxData[ 464 | FormBox[ 465 | RowBox[{"(", "\[NoBreak]", GridBox[{ 466 | {"1", "0", "0", "9"}, 467 | {"0", "1", "0", "0"}, 468 | {"0", "0", "1", "0"}, 469 | {"0", "0", "0", "1"} 470 | }, 471 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 472 | GridBoxSpacings->{"Columns" -> { 473 | Offset[0.27999999999999997`], { 474 | Offset[0.7]}, 475 | Offset[0.27999999999999997`]}, "Rows" -> { 476 | Offset[0.2], { 477 | Offset[0.4]}, 478 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 479 | CellChangeTimes->{3.842773907920684*^9, 3.8427739597570295`*^9, 480 | 3.8427755111883574`*^9}, 481 | CellLabel->"Out[24]=",ExpressionUUID->"d7c5328f-701f-4bb0-9ba2-268a0b355db2"] 482 | }, Open ]] 483 | }, Open ]], 484 | 485 | Cell[CellGroupData[{ 486 | 487 | Cell["\:82e5\:662f\[Theta]1=10\[Degree], \[Theta]2=20\[Degree], \[Theta]3=30\ 488 | \[Degree] ", "Subsubsection", 489 | CellChangeTimes->{{3.8427738431417527`*^9, 3.8427738744943304`*^9}, { 490 | 3.8427739185082145`*^9, 3.842773947033696*^9}, {3.8427740103795013`*^9, 491 | 3.8427740143711805`*^9}},ExpressionUUID->"de25224b-69b2-4f98-9a4d-\ 492 | 95778a1534c2"], 493 | 494 | Cell[CellGroupData[{ 495 | 496 | Cell[BoxData[{ 497 | RowBox[{ 498 | RowBox[{"T0to3", "/.", 499 | RowBox[{"{", 500 | RowBox[{ 501 | RowBox[{"theta1", "\[Rule]", 502 | RowBox[{"10", "Degree"}]}], ",", " ", 503 | RowBox[{"theta2", "\[Rule]", 504 | RowBox[{"20", "Degree"}]}], ",", " ", 505 | RowBox[{"theta3", "\[Rule]", " ", 506 | RowBox[{"30", "Degree"}]}]}], "}"}]}], "//", 507 | "N"}], "\[IndentingNewLine]", 508 | RowBox[{ 509 | RowBox[{"T0toH", "/.", 510 | RowBox[{"{", 511 | RowBox[{ 512 | RowBox[{"theta1", "\[Rule]", 513 | RowBox[{"10", "Degree"}]}], ",", " ", 514 | RowBox[{"theta2", "\[Rule]", 515 | RowBox[{"20", "Degree"}]}], ",", " ", 516 | RowBox[{"theta3", "\[Rule]", " ", 517 | RowBox[{"30", "Degree"}]}]}], "}"}]}], "//", "N"}]}], "Input", 518 | CellChangeTimes->{{3.842773882366825*^9, 3.8427739068800473`*^9}, { 519 | 3.8427739382129226`*^9, 3.842773979467631*^9}, {3.8427755240827*^9, 520 | 3.8427755273828506`*^9}}, 521 | CellLabel->"In[25]:=",ExpressionUUID->"53b169ab-8b20-45a0-b23a-16d85d2abca0"], 522 | 523 | Cell[BoxData[ 524 | FormBox[ 525 | RowBox[{"(", "\[NoBreak]", GridBox[{ 526 | {"0.5`", 527 | RowBox[{"-", "0.8660254037844386`"}], "0.`", "6.5373072234021485`"}, 528 | {"0.8660254037844386`", "0.5`", "0.`", "2.194592710667721`"}, 529 | {"0.`", "0.`", "1.`", "0.`"}, 530 | {"0.`", "0.`", "0.`", "1.`"} 531 | }, 532 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 533 | GridBoxSpacings->{"Columns" -> { 534 | Offset[0.27999999999999997`], { 535 | Offset[0.7]}, 536 | Offset[0.27999999999999997`]}, "Rows" -> { 537 | Offset[0.2], { 538 | Offset[0.4]}, 539 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 540 | CellChangeTimes->{ 541 | 3.842773907920684*^9, {3.842773968464662*^9, 3.842773980640529*^9}, 542 | 3.8427755283860617`*^9}, 543 | CellLabel->"Out[25]=",ExpressionUUID->"43324e23-630a-4938-9926-3512b911cda7"], 544 | 545 | Cell[BoxData[ 546 | FormBox[ 547 | RowBox[{"(", "\[NoBreak]", GridBox[{ 548 | {"0.5`", 549 | RowBox[{"-", "0.8660254037844386`"}], "0.`", "7.5373072234021485`"}, 550 | {"0.8660254037844386`", "0.5`", "0.`", "3.9266435182365984`"}, 551 | {"0.`", "0.`", "1.`", "0.`"}, 552 | {"0.`", "0.`", "0.`", "1.`"} 553 | }, 554 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 555 | GridBoxSpacings->{"Columns" -> { 556 | Offset[0.27999999999999997`], { 557 | Offset[0.7]}, 558 | Offset[0.27999999999999997`]}, "Rows" -> { 559 | Offset[0.2], { 560 | Offset[0.4]}, 561 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 562 | CellChangeTimes->{ 563 | 3.842773907920684*^9, {3.842773968464662*^9, 3.842773980640529*^9}, 564 | 3.8427755283860617`*^9}, 565 | CellLabel->"Out[26]=",ExpressionUUID->"386981af-b90b-4ea8-9533-ae64ec99fe71"] 566 | }, Open ]] 567 | }, Open ]], 568 | 569 | Cell[CellGroupData[{ 570 | 571 | Cell["\:82e5\:662f\[Theta]1=90\[Degree], \[Theta]2=90\[Degree], \[Theta]3=90 \ 572 | \[Degree]", "Subsubsection", 573 | CellChangeTimes->{{3.8427738431417527`*^9, 3.8427738744943304`*^9}, { 574 | 3.8427739489704103`*^9, 3.842773955364504*^9}, {3.842774016678161*^9, 575 | 3.8427740193132334`*^9}},ExpressionUUID->"bd3163e8-d6a1-4bdb-9093-\ 576 | 3a92260bd7c2"], 577 | 578 | Cell[CellGroupData[{ 579 | 580 | Cell[BoxData[{ 581 | RowBox[{"T0to3", "/.", 582 | RowBox[{"{", 583 | RowBox[{ 584 | RowBox[{"theta1", "\[Rule]", 585 | RowBox[{"90", "Degree"}]}], ",", " ", 586 | RowBox[{"theta2", "\[Rule]", 587 | RowBox[{"90", "Degree"}]}], ",", " ", 588 | RowBox[{"theta3", "\[Rule]", " ", 589 | RowBox[{"90", "Degree"}]}]}], "}"}]}], "\[IndentingNewLine]", 590 | RowBox[{"T0toH", "/.", 591 | RowBox[{"{", 592 | RowBox[{ 593 | RowBox[{"theta1", "\[Rule]", 594 | RowBox[{"90", "Degree"}]}], ",", " ", 595 | RowBox[{"theta2", "\[Rule]", 596 | RowBox[{"90", "Degree"}]}], ",", " ", 597 | RowBox[{"theta3", "\[Rule]", " ", 598 | RowBox[{"90", "Degree"}]}]}], "}"}]}]}], "Input", 599 | CellChangeTimes->{{3.842773882366825*^9, 3.8427739068800473`*^9}, 600 | 3.8427739403672867`*^9, {3.842773987411313*^9, 3.8427739929053864`*^9}, { 601 | 3.842775544600831*^9, 3.8427755452806406`*^9}, {3.8427755998434134`*^9, 602 | 3.842775603503234*^9}}, 603 | CellLabel->"In[27]:=",ExpressionUUID->"9b0f023d-52b0-4164-9fe1-3d3f497a8e12"], 604 | 605 | Cell[BoxData[ 606 | FormBox[ 607 | RowBox[{"(", "\[NoBreak]", GridBox[{ 608 | {"0", "1", "0", 609 | RowBox[{"-", "3"}]}, 610 | { 611 | RowBox[{"-", "1"}], "0", "0", "4"}, 612 | {"0", "0", "1", "0"}, 613 | {"0", "0", "0", "1"} 614 | }, 615 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 616 | GridBoxSpacings->{"Columns" -> { 617 | Offset[0.27999999999999997`], { 618 | Offset[0.7]}, 619 | Offset[0.27999999999999997`]}, "Rows" -> { 620 | Offset[0.2], { 621 | Offset[0.4]}, 622 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 623 | CellChangeTimes->{3.842773907920684*^9, 3.8427739972439213`*^9, 624 | 3.8427756044160795`*^9}, 625 | CellLabel->"Out[27]=",ExpressionUUID->"f668410c-b159-4ea2-a89e-c080d1358e45"], 626 | 627 | Cell[BoxData[ 628 | FormBox[ 629 | RowBox[{"(", "\[NoBreak]", GridBox[{ 630 | {"0", "1", "0", 631 | RowBox[{"-", "3"}]}, 632 | { 633 | RowBox[{"-", "1"}], "0", "0", "2"}, 634 | {"0", "0", "1", "0"}, 635 | {"0", "0", "0", "1"} 636 | }, 637 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 638 | GridBoxSpacings->{"Columns" -> { 639 | Offset[0.27999999999999997`], { 640 | Offset[0.7]}, 641 | Offset[0.27999999999999997`]}, "Rows" -> { 642 | Offset[0.2], { 643 | Offset[0.4]}, 644 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 645 | CellChangeTimes->{3.842773907920684*^9, 3.8427739972439213`*^9, 646 | 3.8427756044160795`*^9}, 647 | CellLabel->"Out[28]=",ExpressionUUID->"36283f6f-d774-4897-bb83-8760f1a2f60f"] 648 | }, Open ]] 649 | }, Open ]] 650 | }, Open ]] 651 | }, 652 | WindowSize->{1462, 806}, 653 | WindowMargins->{{674, Automatic}, {Automatic, 29}}, 654 | Magnification:>1.1 Inherited, 655 | FrontEndVersion->"12.0 for Microsoft Windows (64-bit) (2019\:5e745\:670818\ 656 | \:65e5)", 657 | StyleDefinitions->"Default.nb" 658 | ] 659 | (* End of Notebook Content *) 660 | 661 | (* Internal cache information *) 662 | (*CellTagsOutline 663 | CellTagsIndex->{} 664 | *) 665 | (*CellTagsIndex 666 | CellTagsIndex->{} 667 | *) 668 | (*NotebookFileOutline 669 | Notebook[{ 670 | Cell[CellGroupData[{ 671 | Cell[580, 22, 231, 4, 59, "Subsection",ExpressionUUID->"085bfd30-5a01-41d9-996d-0c9f9297ea4f"], 672 | Cell[814, 28, 246, 6, 39, "Text",ExpressionUUID->"783a0ee5-8e20-456e-a12b-51334fde28c0"], 673 | Cell[1063, 36, 1890, 50, 115, "Input",ExpressionUUID->"0a72f506-bc50-4b3c-9679-acddb45919fa"], 674 | Cell[CellGroupData[{ 675 | Cell[2978, 90, 309, 6, 51, "Input",ExpressionUUID->"ca131d13-b4a9-46f0-a72f-1beb07e215e2"], 676 | Cell[3290, 98, 754, 18, 95, "Output",ExpressionUUID->"9f33aa68-0057-4f9c-9498-be555c082093"] 677 | }, Open ]], 678 | Cell[4059, 119, 186, 3, 39, "Text",ExpressionUUID->"60f73b60-795a-4121-89e8-f44dcc265a76"], 679 | Cell[4248, 124, 324, 6, 32, "Input",ExpressionUUID->"174d826c-da1a-499c-8985-c142d5e28090"], 680 | Cell[4575, 132, 258, 6, 39, "Text",ExpressionUUID->"564a4e0b-aebe-4d37-b6b8-f2a71e6eaaa7"], 681 | Cell[CellGroupData[{ 682 | Cell[4858, 142, 356, 7, 32, "Input",ExpressionUUID->"0ab9f609-bb57-4909-bc5e-44a4a1a95186"], 683 | Cell[5217, 151, 846, 22, 97, "Output",ExpressionUUID->"c669e4c9-9e9d-47a0-adf7-5cbd9bce06aa"] 684 | }, Open ]], 685 | Cell[CellGroupData[{ 686 | Cell[6100, 178, 411, 8, 32, "Input",ExpressionUUID->"a5c423e1-18bd-42b4-b83e-c90df1a8c608"], 687 | Cell[6514, 188, 848, 22, 97, "Output",ExpressionUUID->"ca84b591-fe4d-42a9-81b6-7a9f70849133"] 688 | }, Open ]], 689 | Cell[CellGroupData[{ 690 | Cell[7399, 215, 362, 7, 32, "Input",ExpressionUUID->"ca72ad22-695f-40be-a0fb-eadb6bc8e136"], 691 | Cell[7764, 224, 848, 22, 97, "Output",ExpressionUUID->"3eec4d41-21d6-4924-8f7e-ce1c25b725bf"] 692 | }, Open ]], 693 | Cell[8627, 249, 241, 4, 39, "Text",ExpressionUUID->"f8bc81c4-0fa5-4276-a31e-b8a1780d0878"], 694 | Cell[CellGroupData[{ 695 | Cell[8893, 257, 302, 6, 32, "Input",ExpressionUUID->"fd6d66c2-b63d-456a-b586-60a230fd90f5"], 696 | Cell[9198, 265, 642, 17, 95, "Output",ExpressionUUID->"013f67bd-06d9-4fab-be6d-2ef9d458b032"] 697 | }, Open ]], 698 | Cell[9855, 285, 270, 5, 39, "Text",ExpressionUUID->"0b376ba6-8f50-4fb8-9577-e742db5bbf75"], 699 | Cell[CellGroupData[{ 700 | Cell[10150, 294, 338, 7, 51, "Input",ExpressionUUID->"41855866-ec54-4c70-a823-f0fa71858a37"], 701 | Cell[10491, 303, 1441, 38, 97, "Output",ExpressionUUID->"2ccbeedb-6065-4482-b18e-5ed463d54c11"] 702 | }, Open ]], 703 | Cell[11947, 344, 200, 3, 39, "Text",ExpressionUUID->"ba801399-23d4-4052-9964-7e8e1b336db6"], 704 | Cell[CellGroupData[{ 705 | Cell[12172, 351, 358, 8, 51, "Input",ExpressionUUID->"79816618-3784-4dac-b638-32ab248adb3d"], 706 | Cell[12533, 361, 1675, 44, 97, "Output",ExpressionUUID->"d472397b-1a59-47df-abba-b51e119694a0"] 707 | }, Open ]], 708 | Cell[CellGroupData[{ 709 | Cell[14245, 410, 285, 5, 49, "Subsubsection",ExpressionUUID->"fae50812-66be-49f6-b152-af6c12c76f14"], 710 | Cell[CellGroupData[{ 711 | Cell[14555, 419, 823, 21, 92, "Input",ExpressionUUID->"56c0b344-5a5c-4a0b-b9f5-266d9616e52c"], 712 | Cell[15381, 442, 694, 18, 95, "Output",ExpressionUUID->"48ab9831-9245-4696-aca0-4e34065b6eed"], 713 | Cell[16078, 462, 694, 18, 95, "Output",ExpressionUUID->"d7c5328f-701f-4bb0-9ba2-268a0b355db2"] 714 | }, Open ]] 715 | }, Open ]], 716 | Cell[CellGroupData[{ 717 | Cell[16821, 486, 338, 5, 49, "Subsubsection",ExpressionUUID->"de25224b-69b2-4f98-9a4d-95778a1534c2"], 718 | Cell[CellGroupData[{ 719 | Cell[17184, 495, 947, 25, 92, "Input",ExpressionUUID->"53b169ab-8b20-45a0-b23a-16d85d2abca0"], 720 | Cell[18134, 522, 839, 20, 95, "Output",ExpressionUUID->"43324e23-630a-4938-9926-3512b911cda7"], 721 | Cell[18976, 544, 840, 20, 95, "Output",ExpressionUUID->"386981af-b90b-4ea8-9533-ae64ec99fe71"] 722 | }, Open ]] 723 | }, Open ]], 724 | Cell[CellGroupData[{ 725 | Cell[19865, 570, 336, 5, 49, "Subsubsection",ExpressionUUID->"bd3163e8-d6a1-4bdb-9093-3a92260bd7c2"], 726 | Cell[CellGroupData[{ 727 | Cell[20226, 579, 960, 23, 92, "Input",ExpressionUUID->"9b0f023d-52b0-4164-9fe1-3d3f497a8e12"], 728 | Cell[21189, 604, 738, 20, 95, "Output",ExpressionUUID->"f668410c-b159-4ea2-a89e-c080d1358e45"], 729 | Cell[21930, 626, 738, 20, 151, "Output",ExpressionUUID->"36283f6f-d774-4897-bb83-8760f1a2f60f"] 730 | }, Open ]] 731 | }, Open ]] 732 | }, Open ]] 733 | } 734 | ] 735 | *) 736 | 737 | -------------------------------------------------------------------------------- /Chapter 03/正运动学解.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 03/正运动学解.pdf -------------------------------------------------------------------------------- /Chapter 03/第四周任务一:课本MATLAB练习.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 03/第四周任务一:课本MATLAB练习.pdf -------------------------------------------------------------------------------- /Chapter 03/第四周任务二:3.26齐次变换矩阵.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 03/第四周任务二:3.26齐次变换矩阵.pdf -------------------------------------------------------------------------------- /Chapter 04/invkine.mlx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 04/invkine.mlx -------------------------------------------------------------------------------- /Chapter 04/main.mlx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 04/main.mlx -------------------------------------------------------------------------------- /Chapter 04/theta2to1.mlx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 04/theta2to1.mlx -------------------------------------------------------------------------------- /Chapter 04/实验报告-19374128-白梓彤.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 04/实验报告-19374128-白梓彤.pdf -------------------------------------------------------------------------------- /Chapter 05/main.mlx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 05/main.mlx -------------------------------------------------------------------------------- /Chapter 05/myjacobian.mlx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 05/myjacobian.mlx -------------------------------------------------------------------------------- /Chapter 05/作业5-12.nb: -------------------------------------------------------------------------------- 1 | (* Content-type: application/vnd.wolfram.mathematica *) 2 | 3 | (*** Wolfram Notebook File ***) 4 | (* http://www.wolfram.com/nb *) 5 | 6 | (* CreatedBy='Mathematica 12.0' *) 7 | 8 | (*CacheID: 234*) 9 | (* Internal cache information: 10 | NotebookFileLineBreakTest 11 | NotebookFileLineBreakTest 12 | NotebookDataPosition[ 158, 7] 13 | NotebookDataLength[ 22328, 605] 14 | NotebookOptionsPosition[ 20743, 572] 15 | NotebookOutlinePosition[ 21130, 589] 16 | CellTagsIndexPosition[ 21087, 586] 17 | WindowFrame->Normal*) 18 | 19 | (* Beginning of Notebook Content *) 20 | Notebook[{ 21 | Cell[BoxData[{ 22 | RowBox[{ 23 | RowBox[{"homoT", " ", "=", " ", 24 | RowBox[{"(", GridBox[{ 25 | { 26 | RowBox[{"Cos", "[", "theta", "]"}], 27 | RowBox[{"-", 28 | RowBox[{"Sin", "[", "theta", "]"}]}], "0", "a"}, 29 | { 30 | RowBox[{ 31 | RowBox[{"Sin", "[", "theta", "]"}], "*", 32 | RowBox[{"Cos", "[", "alpha", "]"}]}], 33 | RowBox[{ 34 | RowBox[{"Cos", "[", "theta", "]"}], "*", 35 | RowBox[{"Cos", "[", "alpha", "]"}]}], 36 | RowBox[{"-", 37 | RowBox[{"Sin", "[", "alpha", "]"}]}], 38 | RowBox[{ 39 | RowBox[{"-", 40 | RowBox[{"Sin", "[", "alpha", "]"}]}], "*", "d"}]}, 41 | { 42 | RowBox[{ 43 | RowBox[{"Sin", "[", "theta", "]"}], "*", 44 | RowBox[{"Sin", "[", "alpha", "]"}]}], 45 | RowBox[{ 46 | RowBox[{"Cos", "[", "theta", "]"}], "*", 47 | RowBox[{"Sin", "[", "alpha", "]"}]}], 48 | RowBox[{"Cos", "[", "alpha", "]"}], 49 | RowBox[{ 50 | RowBox[{"Cos", "[", "alpha", "]"}], "*", "d"}]}, 51 | {"0", "0", "0", "1"} 52 | }], ")"}]}], ";"}], "\[IndentingNewLine]", 53 | RowBox[{ 54 | RowBox[{ 55 | RowBox[{"T", "[", 56 | RowBox[{ 57 | "\[Alpha]_", ",", " ", "aa_", ",", " ", "dd_", ",", " ", "\[Theta]_"}], 58 | "]"}], ":=", 59 | RowBox[{"homoT", "/.", 60 | RowBox[{"{", 61 | RowBox[{ 62 | RowBox[{"theta", "\[Rule]", " ", "\[Theta]"}], ",", " ", 63 | RowBox[{"alpha", "\[Rule]", " ", "\[Alpha]"}], ",", " ", 64 | RowBox[{"a", "\[Rule]", "aa"}], ",", " ", 65 | RowBox[{"d", "\[Rule]", "dd"}]}], "}"}]}]}], ";"}]}], "Input", 66 | CellLabel-> 67 | "In[158]:=",ExpressionUUID->"477a455a-3586-46eb-ac65-b6d37cd8cc27"], 68 | 69 | Cell[BoxData[{ 70 | RowBox[{ 71 | RowBox[{"T0to1", "=", " ", 72 | RowBox[{"T", "[", 73 | RowBox[{"0", ",", " ", "0", ",", " ", "0", ",", " ", "\[Theta]1"}], 74 | "]"}]}], ";"}], "\[IndentingNewLine]", 75 | RowBox[{ 76 | RowBox[{"T1to2", " ", "=", " ", 77 | RowBox[{"T", "[", 78 | RowBox[{ 79 | RowBox[{"90", "Degree"}], ",", " ", "L1", ",", " ", "0", ",", " ", 80 | "\[Theta]2"}], "]"}]}], ";"}], "\[IndentingNewLine]", 81 | RowBox[{ 82 | RowBox[{"T2to3", " ", "=", " ", 83 | RowBox[{"T", "[", 84 | RowBox[{"0", ",", " ", "L2", ",", " ", "0", ",", " ", "\[Theta]3"}], 85 | "]"}]}], ";"}], "\[IndentingNewLine]", 86 | RowBox[{ 87 | RowBox[{"T3toE", " ", "=", " ", 88 | RowBox[{"T", "[", 89 | RowBox[{"0", ",", "L3", ",", "0", ",", " ", "0"}], "]"}]}], 90 | ";"}]}], "Input", 91 | CellChangeTimes->{{3.844855735191945*^9, 3.844855799632185*^9}, { 92 | 3.844855936682555*^9, 3.8448559527422795`*^9}, {3.8448570018217216`*^9, 93 | 3.84485701605184*^9}, {3.844857101351686*^9, 3.844857114600963*^9}, { 94 | 3.8448579152405205`*^9, 3.8448579207103367`*^9}}, 95 | CellLabel-> 96 | "In[235]:=",ExpressionUUID->"ab166db1-6752-4fcf-afe7-7a99db4c135c"], 97 | 98 | Cell[BoxData[{ 99 | RowBox[{ 100 | RowBox[{"T0to2", " ", "=", " ", 101 | RowBox[{"T0to1", ".", "T1to2"}]}], ";"}], "\[IndentingNewLine]", 102 | RowBox[{ 103 | RowBox[{"T0to3", " ", "=", " ", 104 | RowBox[{"T0to2", ".", "T2to3"}]}], ";"}], "\[IndentingNewLine]", 105 | RowBox[{ 106 | RowBox[{"T0toE", " ", "=", " ", 107 | RowBox[{"T0to3", ".", "T3toE"}]}], ";"}], "\[IndentingNewLine]", 108 | RowBox[{ 109 | RowBox[{"T2toE", " ", "=", " ", 110 | RowBox[{"T2to3", ".", "T3toE"}]}], ";"}], "\[IndentingNewLine]", 111 | RowBox[{ 112 | RowBox[{"T1toE", " ", "=", " ", 113 | RowBox[{"T1to2", ".", "T2toE"}]}], ";"}]}], "Input", 114 | CellChangeTimes->{{3.8448559303076286`*^9, 3.8448559730919952`*^9}, { 115 | 3.8448561353326597`*^9, 3.8448561708369274`*^9}, {3.844857130731724*^9, 116 | 3.844857146941475*^9}, {3.8448572286915092`*^9, 3.844857240230378*^9}, { 117 | 3.844857315361295*^9, 3.8448573469210167`*^9}, {3.8448579271106358`*^9, 118 | 3.844857931440158*^9}}, 119 | CellLabel-> 120 | "In[239]:=",ExpressionUUID->"6f437cfe-a266-455f-90dd-9f975323121f"], 121 | 122 | Cell[BoxData[{ 123 | RowBox[{ 124 | RowBox[{"z1", " ", "=", " ", 125 | RowBox[{"T0to1", "[", 126 | RowBox[{"[", 127 | RowBox[{ 128 | RowBox[{";;", "3"}], ",", "3"}], "]"}], "]"}]}], 129 | ";"}], "\[IndentingNewLine]", 130 | RowBox[{ 131 | RowBox[{"z2", " ", "=", " ", 132 | RowBox[{"T0to2", "[", 133 | RowBox[{"[", 134 | RowBox[{ 135 | RowBox[{";;", "3"}], ",", " ", "3"}], "]"}], "]"}]}], 136 | ";"}], "\[IndentingNewLine]", 137 | RowBox[{ 138 | RowBox[{"z3", " ", "=", " ", 139 | RowBox[{"T0to3", "[", 140 | RowBox[{"[", 141 | RowBox[{ 142 | RowBox[{";;", "3"}], ",", "3"}], "]"}], "]"}]}], ";"}]}], "Input", 143 | CellChangeTimes->{{3.844856632102931*^9, 3.8448566714617786`*^9}, { 144 | 3.8448567048918767`*^9, 3.8448567064912677`*^9}, {3.8448579352706146`*^9, 145 | 3.8448579379203463`*^9}}, 146 | CellLabel-> 147 | "In[244]:=",ExpressionUUID->"a53e36a0-bfae-471b-a866-071a468a5552"], 148 | 149 | Cell[CellGroupData[{ 150 | 151 | Cell[BoxData[{ 152 | RowBox[{ 153 | RowBox[{"p1E", " ", "=", " ", 154 | RowBox[{"T0to1", ".", 155 | RowBox[{"T1toE", "[", 156 | RowBox[{"[", 157 | RowBox[{";;", ",", "4"}], "]"}], "]"}]}]}], 158 | ";"}], "\[IndentingNewLine]", 159 | RowBox[{"p1E", " ", "=", " ", 160 | RowBox[{"p1E", "[", 161 | RowBox[{"[", 162 | RowBox[{";;", "3"}], "]"}], "]"}]}], "\[IndentingNewLine]", 163 | RowBox[{ 164 | RowBox[{"p2E", "=", " ", 165 | RowBox[{"T0to2", ".", 166 | RowBox[{"T2toE", "[", 167 | RowBox[{"[", 168 | RowBox[{";;", ",", " ", "4"}], "]"}], "]"}]}]}], 169 | ";"}], "\[IndentingNewLine]", 170 | RowBox[{"p2E", " ", "=", " ", 171 | RowBox[{"p2E", "[", 172 | RowBox[{"[", 173 | RowBox[{";;", "3"}], "]"}], "]"}]}], "\[IndentingNewLine]", 174 | RowBox[{ 175 | RowBox[{"p3E", " ", "=", " ", 176 | RowBox[{"T0to3", ".", 177 | RowBox[{"T3toE", "[", 178 | RowBox[{"[", 179 | RowBox[{";;", ",", "4"}], "]"}], "]"}]}]}], 180 | ";"}], "\[IndentingNewLine]", 181 | RowBox[{"p3E", " ", "=", " ", 182 | RowBox[{"p3E", "[", 183 | RowBox[{"[", 184 | RowBox[{";;", "3"}], "]"}], "]"}]}]}], "Input", 185 | CellChangeTimes->{{3.8448567671013637`*^9, 3.8448567984816675`*^9}, { 186 | 3.8448568324114666`*^9, 3.8448569030415497`*^9}, {3.844857195531625*^9, 187 | 3.844857207151683*^9}, {3.8448573073804736`*^9, 3.844857307791853*^9}, { 188 | 3.8448573851505346`*^9, 3.8448574530011296`*^9}}, 189 | CellLabel-> 190 | "In[220]:=",ExpressionUUID->"946c0546-2cae-4212-8126-1e8c16dfc979"], 191 | 192 | Cell[BoxData[ 193 | FormBox[ 194 | RowBox[{"{", 195 | RowBox[{ 196 | RowBox[{ 197 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 198 | RowBox[{"(", 199 | RowBox[{"L1", "+", 200 | RowBox[{ 201 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 202 | RowBox[{"(", 203 | RowBox[{"L2", "+", 204 | RowBox[{"L3", " ", 205 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}]}], ")"}]}], "-", 206 | RowBox[{"L3", " ", 207 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 208 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}], ")"}]}], ",", 209 | RowBox[{ 210 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 211 | RowBox[{"(", 212 | RowBox[{"L1", "+", 213 | RowBox[{ 214 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 215 | RowBox[{"(", 216 | RowBox[{"L2", "+", 217 | RowBox[{"L3", " ", 218 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}]}], ")"}]}], "-", 219 | RowBox[{"L3", " ", 220 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 221 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}], ")"}]}], ",", 222 | RowBox[{ 223 | RowBox[{ 224 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 225 | RowBox[{"(", 226 | RowBox[{"L2", "+", 227 | RowBox[{"L3", " ", 228 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}]}], ")"}]}], "+", 229 | RowBox[{"L3", " ", 230 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 231 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}]}], "}"}], 232 | TraditionalForm]], "Output", 233 | CellChangeTimes->{ 234 | 3.844856799221154*^9, {3.8448568436610374`*^9, 3.844856866430828*^9}, { 235 | 3.8448568981610336`*^9, 3.8448569033912067`*^9}, {3.844857400940445*^9, 236 | 3.8448574539306293`*^9}}, 237 | CellLabel-> 238 | "Out[221]=",ExpressionUUID->"bad121e4-18ea-426e-84aa-44381071ef11"], 239 | 240 | Cell[BoxData[ 241 | FormBox[ 242 | RowBox[{"{", 243 | RowBox[{ 244 | RowBox[{ 245 | RowBox[{"L1", " ", 246 | RowBox[{"cos", "(", "\[Theta]1", ")"}]}], "+", 247 | RowBox[{ 248 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 249 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 250 | RowBox[{"(", 251 | RowBox[{"L2", "+", 252 | RowBox[{"L3", " ", 253 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}]}], ")"}]}], "-", 254 | RowBox[{"L3", " ", 255 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 256 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 257 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}], ",", 258 | RowBox[{ 259 | RowBox[{"L1", " ", 260 | RowBox[{"sin", "(", "\[Theta]1", ")"}]}], "+", 261 | RowBox[{ 262 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 263 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 264 | RowBox[{"(", 265 | RowBox[{"L2", "+", 266 | RowBox[{"L3", " ", 267 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}]}], ")"}]}], "-", 268 | RowBox[{"L3", " ", 269 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 270 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 271 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}], ",", 272 | RowBox[{ 273 | RowBox[{ 274 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 275 | RowBox[{"(", 276 | RowBox[{"L2", "+", 277 | RowBox[{"L3", " ", 278 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}]}], ")"}]}], "+", 279 | RowBox[{"L3", " ", 280 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 281 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}]}], "}"}], 282 | TraditionalForm]], "Output", 283 | CellChangeTimes->{ 284 | 3.844856799221154*^9, {3.8448568436610374`*^9, 3.844856866430828*^9}, { 285 | 3.8448568981610336`*^9, 3.8448569033912067`*^9}, {3.844857400940445*^9, 286 | 3.844857453950279*^9}}, 287 | CellLabel-> 288 | "Out[223]=",ExpressionUUID->"c7f934fc-ad79-4dc3-8cdd-d95f1edb9392"], 289 | 290 | Cell[BoxData[ 291 | FormBox[ 292 | RowBox[{"{", 293 | RowBox[{ 294 | RowBox[{ 295 | RowBox[{"L1", " ", 296 | RowBox[{"cos", "(", "\[Theta]1", ")"}]}], "+", 297 | RowBox[{"L2", " ", 298 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 299 | RowBox[{"cos", "(", "\[Theta]2", ")"}]}], "+", 300 | RowBox[{"L3", " ", 301 | RowBox[{"(", 302 | RowBox[{ 303 | RowBox[{ 304 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 305 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 306 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}], "-", 307 | RowBox[{ 308 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 309 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 310 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}], ")"}]}]}], ",", 311 | RowBox[{ 312 | RowBox[{"L1", " ", 313 | RowBox[{"sin", "(", "\[Theta]1", ")"}]}], "+", 314 | RowBox[{"L2", " ", 315 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 316 | RowBox[{"cos", "(", "\[Theta]2", ")"}]}], "+", 317 | RowBox[{"L3", " ", 318 | RowBox[{"(", 319 | RowBox[{ 320 | RowBox[{ 321 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 322 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 323 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}], "-", 324 | RowBox[{ 325 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 326 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 327 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}], ")"}]}]}], ",", 328 | RowBox[{ 329 | RowBox[{"L2", " ", 330 | RowBox[{"sin", "(", "\[Theta]2", ")"}]}], "+", 331 | RowBox[{"L3", " ", 332 | RowBox[{"(", 333 | RowBox[{ 334 | RowBox[{ 335 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 336 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}], "+", 337 | RowBox[{ 338 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 339 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}], ")"}]}]}]}], "}"}], 340 | TraditionalForm]], "Output", 341 | CellChangeTimes->{ 342 | 3.844856799221154*^9, {3.8448568436610374`*^9, 3.844856866430828*^9}, { 343 | 3.8448568981610336`*^9, 3.8448569033912067`*^9}, {3.844857400940445*^9, 344 | 3.844857453960549*^9}}, 345 | CellLabel-> 346 | "Out[225]=",ExpressionUUID->"abb7677b-c547-41cf-9f83-e087d0b29ec2"] 347 | }, Open ]], 348 | 349 | Cell[BoxData[{ 350 | RowBox[{ 351 | RowBox[{"J", " ", "=", " ", 352 | RowBox[{"{", 353 | RowBox[{ 354 | RowBox[{"Cross", "[", 355 | RowBox[{"z1", ",", "p1E"}], "]"}], ",", "\[IndentingNewLine]", 356 | RowBox[{"Cross", "[", 357 | RowBox[{"z2", ",", "p2E"}], "]"}], ",", "\[IndentingNewLine]", 358 | RowBox[{"Cross", "[", 359 | RowBox[{"z3", ",", "p3E"}], "]"}]}], "}"}]}], 360 | ";"}], "\[IndentingNewLine]", 361 | RowBox[{ 362 | RowBox[{"J", " ", "=", " ", 363 | RowBox[{"Transpose", "[", "J", "]"}]}], ";"}]}], "Input", 364 | CellChangeTimes->{{3.8448575188509874`*^9, 3.844857596871189*^9}, 365 | 3.844857910920579*^9, 3.8448579805796537`*^9}, 366 | CellLabel-> 367 | "In[251]:=",ExpressionUUID->"ff166b6c-28f9-4d90-a041-ab89afead6eb"], 368 | 369 | Cell[CellGroupData[{ 370 | 371 | Cell[BoxData[ 372 | RowBox[{"Insert", "[", 373 | RowBox[{ 374 | RowBox[{"Grid", "[", "J", "]"}], ",", 375 | RowBox[{"{", 376 | RowBox[{ 377 | RowBox[{"Dividers", "\[Rule]", "All"}], ",", 378 | RowBox[{"Spacings", "\[Rule]", 379 | RowBox[{"1.5`", " ", 380 | RowBox[{"{", 381 | RowBox[{"1", ",", "1"}], "}"}]}]}]}], "}"}], ",", "2"}], 382 | "]"}]], "Input", 383 | CellChangeTimes->{{3.8448579726606526`*^9, 3.844857973120443*^9}}, 384 | NumberMarks->False, 385 | CellLabel-> 386 | "In[250]:=",ExpressionUUID->"85838ddb-9043-42de-b37f-30dff5e8cc4b"], 387 | 388 | Cell[BoxData[ 389 | FormBox[ 390 | TagBox[GridBox[{ 391 | { 392 | RowBox[{ 393 | RowBox[{"-", 394 | RowBox[{"L1", " ", 395 | RowBox[{"sin", "(", "\[Theta]1", ")"}]}]}], "-", 396 | RowBox[{"L2", " ", 397 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 398 | RowBox[{"cos", "(", "\[Theta]2", ")"}]}], "+", 399 | RowBox[{"L3", " ", 400 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 401 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 402 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}], "-", 403 | RowBox[{"L3", " ", 404 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 405 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 406 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}]}], 407 | RowBox[{ 408 | RowBox[{"-", 409 | RowBox[{"L2", " ", 410 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 411 | RowBox[{"sin", "(", "\[Theta]2", ")"}]}]}], "-", 412 | RowBox[{"L3", " ", 413 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 414 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 415 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}], "-", 416 | RowBox[{"L3", " ", 417 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 418 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 419 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}], 420 | RowBox[{ 421 | RowBox[{"-", 422 | RowBox[{"L2", " ", 423 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 424 | RowBox[{"sin", "(", "\[Theta]2", ")"}]}]}], "-", 425 | RowBox[{"L3", " ", 426 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 427 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 428 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}], "-", 429 | RowBox[{"L3", " ", 430 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 431 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 432 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}]}, 433 | { 434 | RowBox[{ 435 | RowBox[{"L1", " ", 436 | RowBox[{"cos", "(", "\[Theta]1", ")"}]}], "+", 437 | RowBox[{"L2", " ", 438 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 439 | RowBox[{"cos", "(", "\[Theta]2", ")"}]}], "+", 440 | RowBox[{"L3", " ", 441 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 442 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 443 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}], "-", 444 | RowBox[{"L3", " ", 445 | RowBox[{"cos", "(", "\[Theta]1", ")"}], " ", 446 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 447 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}], 448 | RowBox[{ 449 | RowBox[{"-", 450 | RowBox[{"L2", " ", 451 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 452 | RowBox[{"sin", "(", "\[Theta]2", ")"}]}]}], "-", 453 | RowBox[{"L3", " ", 454 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 455 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 456 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}], "-", 457 | RowBox[{"L3", " ", 458 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 459 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 460 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}], 461 | RowBox[{ 462 | RowBox[{"-", 463 | RowBox[{"L2", " ", 464 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 465 | RowBox[{"sin", "(", "\[Theta]2", ")"}]}]}], "-", 466 | RowBox[{"L3", " ", 467 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 468 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 469 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}], "-", 470 | RowBox[{"L3", " ", 471 | RowBox[{"sin", "(", "\[Theta]1", ")"}], " ", 472 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 473 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}]}]}, 474 | {"0", 475 | RowBox[{ 476 | RowBox[{"L1", " ", 477 | RowBox[{ 478 | SuperscriptBox["sin", "2"], "(", "\[Theta]1", ")"}]}], "+", 479 | RowBox[{"L1", " ", 480 | RowBox[{ 481 | SuperscriptBox["cos", "2"], "(", "\[Theta]1", ")"}]}], "+", 482 | RowBox[{"L2", " ", 483 | RowBox[{ 484 | SuperscriptBox["cos", "2"], "(", "\[Theta]1", ")"}], " ", 485 | RowBox[{"cos", "(", "\[Theta]2", ")"}]}], "+", 486 | RowBox[{"L2", " ", 487 | RowBox[{ 488 | SuperscriptBox["sin", "2"], "(", "\[Theta]1", ")"}], " ", 489 | RowBox[{"cos", "(", "\[Theta]2", ")"}]}], "-", 490 | RowBox[{"L3", " ", 491 | RowBox[{ 492 | SuperscriptBox["sin", "2"], "(", "\[Theta]1", ")"}], " ", 493 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 494 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}], "+", 495 | RowBox[{"L3", " ", 496 | RowBox[{ 497 | SuperscriptBox["cos", "2"], "(", "\[Theta]1", ")"}], " ", 498 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 499 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}], "-", 500 | RowBox[{"L3", " ", 501 | RowBox[{ 502 | SuperscriptBox["cos", "2"], "(", "\[Theta]1", ")"}], " ", 503 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 504 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}], "+", 505 | RowBox[{"L3", " ", 506 | RowBox[{ 507 | SuperscriptBox["sin", "2"], "(", "\[Theta]1", ")"}], " ", 508 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 509 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}]}], 510 | RowBox[{ 511 | RowBox[{"L1", " ", 512 | RowBox[{ 513 | SuperscriptBox["sin", "2"], "(", "\[Theta]1", ")"}]}], "+", 514 | RowBox[{"L1", " ", 515 | RowBox[{ 516 | SuperscriptBox["cos", "2"], "(", "\[Theta]1", ")"}]}], "+", 517 | RowBox[{"L2", " ", 518 | RowBox[{ 519 | SuperscriptBox["cos", "2"], "(", "\[Theta]1", ")"}], " ", 520 | RowBox[{"cos", "(", "\[Theta]2", ")"}]}], "+", 521 | RowBox[{"L2", " ", 522 | RowBox[{ 523 | SuperscriptBox["sin", "2"], "(", "\[Theta]1", ")"}], " ", 524 | RowBox[{"cos", "(", "\[Theta]2", ")"}]}], "-", 525 | RowBox[{"L3", " ", 526 | RowBox[{ 527 | SuperscriptBox["sin", "2"], "(", "\[Theta]1", ")"}], " ", 528 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 529 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}], "+", 530 | RowBox[{"L3", " ", 531 | RowBox[{ 532 | SuperscriptBox["cos", "2"], "(", "\[Theta]1", ")"}], " ", 533 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 534 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}], "-", 535 | RowBox[{"L3", " ", 536 | RowBox[{ 537 | SuperscriptBox["cos", "2"], "(", "\[Theta]1", ")"}], " ", 538 | RowBox[{"sin", "(", "\[Theta]2", ")"}], " ", 539 | RowBox[{"sin", "(", "\[Theta]3", ")"}]}], "+", 540 | RowBox[{"L3", " ", 541 | RowBox[{ 542 | SuperscriptBox["sin", "2"], "(", "\[Theta]1", ")"}], " ", 543 | RowBox[{"cos", "(", "\[Theta]2", ")"}], " ", 544 | RowBox[{"cos", "(", "\[Theta]3", ")"}]}]}]} 545 | }, 546 | AutoDelete->False, 547 | GridBoxDividers->{"Columns" -> {{True}}, "Rows" -> {{True}}}, 548 | GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, 549 | GridBoxSpacings->{"Columns" -> {{1.5}}, "Rows" -> {{1.5}}}], 550 | "Grid"], TraditionalForm]], "Output", 551 | CellChangeTimes->{{3.8448579645799294`*^9, 3.8448579781799245`*^9}}, 552 | CellLabel-> 553 | "Out[250]=",ExpressionUUID->"88c877fe-61f6-49f6-b67b-b1611104bffc"] 554 | }, Open ]], 555 | 556 | Cell[CellGroupData[{ 557 | 558 | Cell[BoxData[ 559 | RowBox[{"Det", "[", "J", "]"}]], "Input", 560 | CellChangeTimes->{{3.8448578423998365`*^9, 3.844857842520632*^9}, { 561 | 3.844857949599986*^9, 3.8448579498002677`*^9}}, 562 | NumberMarks->False, 563 | CellLabel-> 564 | "In[247]:=",ExpressionUUID->"122f0bd9-f71e-47ba-bd21-026b10acdbb0"], 565 | 566 | Cell[BoxData[ 567 | FormBox["0", TraditionalForm]], "Output", 568 | CellChangeTimes->{3.8448576002803793`*^9, 3.8448579504397707`*^9}, 569 | CellLabel-> 570 | "Out[247]=",ExpressionUUID->"327170db-4f26-430b-a9be-d4951add4d08"] 571 | }, Open ]] 572 | }, 573 | WindowSize->{1462, 821}, 574 | WindowMargins->{{-8, Automatic}, {Automatic, -8}}, 575 | Magnification:>1.1 Inherited, 576 | FrontEndVersion->"12.0 for Microsoft Windows (64-bit) (2019\:5e745\:670818\ 577 | \:65e5)", 578 | StyleDefinitions->"Default.nb" 579 | ] 580 | (* End of Notebook Content *) 581 | 582 | (* Internal cache information *) 583 | (*CellTagsOutline 584 | CellTagsIndex->{} 585 | *) 586 | (*CellTagsIndex 587 | CellTagsIndex->{} 588 | *) 589 | (*NotebookFileOutline 590 | Notebook[{ 591 | Cell[558, 20, 1581, 46, 115, "Input",ExpressionUUID->"477a455a-3586-46eb-ac65-b6d37cd8cc27"], 592 | Cell[2142, 68, 1092, 27, 118, "Input",ExpressionUUID->"ab166db1-6752-4fcf-afe7-7a99db4c135c"], 593 | Cell[3237, 97, 976, 22, 121, "Input",ExpressionUUID->"6f437cfe-a266-455f-90dd-9f975323121f"], 594 | Cell[4216, 121, 827, 25, 77, "Input",ExpressionUUID->"a53e36a0-bfae-471b-a866-071a468a5552"], 595 | Cell[CellGroupData[{ 596 | Cell[5068, 150, 1365, 39, 143, "Input",ExpressionUUID->"946c0546-2cae-4212-8126-1e8c16dfc979"], 597 | Cell[6436, 191, 1679, 46, 39, "Output",ExpressionUUID->"bad121e4-18ea-426e-84aa-44381071ef11"], 598 | Cell[8118, 239, 1797, 48, 39, "Output",ExpressionUUID->"c7f934fc-ad79-4dc3-8cdd-d95f1edb9392"], 599 | Cell[9918, 289, 2120, 56, 65, "Output",ExpressionUUID->"abb7677b-c547-41cf-9f83-e087d0b29ec2"] 600 | }, Open ]], 601 | Cell[12053, 348, 698, 18, 230, "Input",ExpressionUUID->"ff166b6c-28f9-4d90-a041-ab89afead6eb"], 602 | Cell[CellGroupData[{ 603 | Cell[12776, 370, 515, 15, 51, "Input",ExpressionUUID->"85838ddb-9043-42de-b37f-30dff5e8cc4b"], 604 | Cell[13294, 387, 6907, 165, 272, "Output",ExpressionUUID->"88c877fe-61f6-49f6-b67b-b1611104bffc"] 605 | }, Open ]], 606 | Cell[CellGroupData[{ 607 | Cell[20238, 557, 279, 6, 51, "Input",ExpressionUUID->"122f0bd9-f71e-47ba-bd21-026b10acdbb0"], 608 | Cell[20520, 565, 207, 4, 39, "Output",ExpressionUUID->"327170db-4f26-430b-a9be-d4951add4d08"] 609 | }, Open ]] 610 | } 611 | ] 612 | *) 613 | 614 | -------------------------------------------------------------------------------- /Chapter 05/作业5-12.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 05/作业5-12.pdf -------------------------------------------------------------------------------- /Chapter 05/作业5-22.nb: -------------------------------------------------------------------------------- 1 | (* Content-type: application/vnd.wolfram.mathematica *) 2 | 3 | (*** Wolfram Notebook File ***) 4 | (* http://www.wolfram.com/nb *) 5 | 6 | (* CreatedBy='Mathematica 12.0' *) 7 | 8 | (*CacheID: 234*) 9 | (* Internal cache information: 10 | NotebookFileLineBreakTest 11 | NotebookFileLineBreakTest 12 | NotebookDataPosition[ 158, 7] 13 | NotebookDataLength[ 27051, 747] 14 | NotebookOptionsPosition[ 24278, 695] 15 | NotebookOutlinePosition[ 24665, 712] 16 | CellTagsIndexPosition[ 24622, 709] 17 | WindowFrame->Normal*) 18 | 19 | (* Beginning of Notebook Content *) 20 | Notebook[{ 21 | Cell[BoxData[{ 22 | RowBox[{ 23 | RowBox[{"homoT", " ", "=", " ", 24 | RowBox[{"(", GridBox[{ 25 | { 26 | RowBox[{"Cos", "[", "theta", "]"}], 27 | RowBox[{"-", 28 | RowBox[{"Sin", "[", "theta", "]"}]}], "0", "a"}, 29 | { 30 | RowBox[{ 31 | RowBox[{"Sin", "[", "theta", "]"}], "*", 32 | RowBox[{"Cos", "[", "alpha", "]"}]}], 33 | RowBox[{ 34 | RowBox[{"Cos", "[", "theta", "]"}], "*", 35 | RowBox[{"Cos", "[", "alpha", "]"}]}], 36 | RowBox[{"-", 37 | RowBox[{"Sin", "[", "alpha", "]"}]}], 38 | RowBox[{ 39 | RowBox[{"-", 40 | RowBox[{"Sin", "[", "alpha", "]"}]}], "*", "d"}]}, 41 | { 42 | RowBox[{ 43 | RowBox[{"Sin", "[", "theta", "]"}], "*", 44 | RowBox[{"Sin", "[", "alpha", "]"}]}], 45 | RowBox[{ 46 | RowBox[{"Cos", "[", "theta", "]"}], "*", 47 | RowBox[{"Sin", "[", "alpha", "]"}]}], 48 | RowBox[{"Cos", "[", "alpha", "]"}], 49 | RowBox[{ 50 | RowBox[{"Cos", "[", "alpha", "]"}], "*", "d"}]}, 51 | {"0", "0", "0", "1"} 52 | }], ")"}]}], ";"}], "\[IndentingNewLine]", 53 | RowBox[{ 54 | RowBox[{ 55 | RowBox[{"T", "[", 56 | RowBox[{ 57 | "\[Alpha]_", ",", " ", "aa_", ",", " ", "dd_", ",", " ", "\[Theta]_"}], 58 | "]"}], ":=", 59 | RowBox[{"homoT", "/.", 60 | RowBox[{"{", 61 | RowBox[{ 62 | RowBox[{"theta", "\[Rule]", " ", "\[Theta]"}], ",", " ", 63 | RowBox[{"alpha", "\[Rule]", " ", "\[Alpha]"}], ",", " ", 64 | RowBox[{"a", "\[Rule]", "aa"}], ",", " ", 65 | RowBox[{"d", "\[Rule]", "dd"}]}], "}"}]}]}], ";"}]}], "Input", 66 | CellLabel->"In[1]:=",ExpressionUUID->"bb4e8eb8-1a93-40ac-80df-864df6d0f2a1"], 67 | 68 | Cell[CellGroupData[{ 69 | 70 | Cell[BoxData[{ 71 | RowBox[{"T0to1", " ", "=", " ", 72 | RowBox[{"T", "[", 73 | RowBox[{"0", ",", "0", ",", "0", ",", "\[Theta]hip"}], 74 | "]"}]}], "\[IndentingNewLine]", 75 | RowBox[{"T1to2", " ", "=", " ", 76 | RowBox[{"T", "[", 77 | RowBox[{"0", ",", " ", "500", ",", " ", "0", ",", " ", "\[Theta]knee"}], 78 | "]"}]}], "\[IndentingNewLine]", 79 | RowBox[{"T2to3", " ", "=", " ", 80 | RowBox[{"T", "[", 81 | RowBox[{"0", ",", " ", "400", ",", " ", "0", ",", " ", 82 | RowBox[{"\[Theta]heel", "+", 83 | RowBox[{"90", "Degree"}]}]}], "]"}]}], "\[IndentingNewLine]", 84 | RowBox[{"T3toH", " ", "=", " ", 85 | RowBox[{"T", "[", 86 | RowBox[{"0", ",", " ", "150", ",", " ", "0", ",", " ", "0"}], 87 | "]"}]}]}], "Input", 88 | CellChangeTimes->{{3.8454335189584103`*^9, 3.8454336415282545`*^9}}, 89 | CellLabel->"In[13]:=",ExpressionUUID->"9eaec44b-0c53-4dbc-b6fe-693bbec8ec19"], 90 | 91 | Cell[BoxData[ 92 | FormBox[ 93 | RowBox[{"(", "\[NoBreak]", GridBox[{ 94 | { 95 | RowBox[{"cos", "(", "\[Theta]hip", ")"}], 96 | RowBox[{"-", 97 | RowBox[{"sin", "(", "\[Theta]hip", ")"}]}], "0", "0"}, 98 | { 99 | RowBox[{"sin", "(", "\[Theta]hip", ")"}], 100 | RowBox[{"cos", "(", "\[Theta]hip", ")"}], "0", "0"}, 101 | {"0", "0", "1", "0"}, 102 | {"0", "0", "0", "1"} 103 | }, 104 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 105 | GridBoxSpacings->{"Columns" -> { 106 | Offset[0.27999999999999997`], { 107 | Offset[0.7]}, 108 | Offset[0.27999999999999997`]}, "Rows" -> { 109 | Offset[0.2], { 110 | Offset[0.4]}, 111 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 112 | CellChangeTimes->{{3.845433550607212*^9, 3.845433571697624*^9}, 113 | 3.845433603877623*^9, {3.845433636197241*^9, 3.8454336426302156`*^9}}, 114 | CellLabel->"Out[13]=",ExpressionUUID->"a67231ec-a230-4e5d-8b2b-fa6923614d8f"], 115 | 116 | Cell[BoxData[ 117 | FormBox[ 118 | RowBox[{"(", "\[NoBreak]", GridBox[{ 119 | { 120 | RowBox[{"cos", "(", "\[Theta]knee", ")"}], 121 | RowBox[{"-", 122 | RowBox[{"sin", "(", "\[Theta]knee", ")"}]}], "0", "500"}, 123 | { 124 | RowBox[{"sin", "(", "\[Theta]knee", ")"}], 125 | RowBox[{"cos", "(", "\[Theta]knee", ")"}], "0", "0"}, 126 | {"0", "0", "1", "0"}, 127 | {"0", "0", "0", "1"} 128 | }, 129 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 130 | GridBoxSpacings->{"Columns" -> { 131 | Offset[0.27999999999999997`], { 132 | Offset[0.7]}, 133 | Offset[0.27999999999999997`]}, "Rows" -> { 134 | Offset[0.2], { 135 | Offset[0.4]}, 136 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 137 | CellChangeTimes->{{3.845433550607212*^9, 3.845433571697624*^9}, 138 | 3.845433603877623*^9, {3.845433636197241*^9, 3.8454336426379714`*^9}}, 139 | CellLabel->"Out[14]=",ExpressionUUID->"1aec2460-06e0-42a9-ab25-3f7a2f999221"], 140 | 141 | Cell[BoxData[ 142 | FormBox[ 143 | RowBox[{"(", "\[NoBreak]", GridBox[{ 144 | { 145 | RowBox[{"-", 146 | RowBox[{"sin", "(", "\[Theta]heel", ")"}]}], 147 | RowBox[{"-", 148 | RowBox[{"cos", "(", "\[Theta]heel", ")"}]}], "0", "400"}, 149 | { 150 | RowBox[{"cos", "(", "\[Theta]heel", ")"}], 151 | RowBox[{"-", 152 | RowBox[{"sin", "(", "\[Theta]heel", ")"}]}], "0", "0"}, 153 | {"0", "0", "1", "0"}, 154 | {"0", "0", "0", "1"} 155 | }, 156 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 157 | GridBoxSpacings->{"Columns" -> { 158 | Offset[0.27999999999999997`], { 159 | Offset[0.7]}, 160 | Offset[0.27999999999999997`]}, "Rows" -> { 161 | Offset[0.2], { 162 | Offset[0.4]}, 163 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 164 | CellChangeTimes->{{3.845433550607212*^9, 3.845433571697624*^9}, 165 | 3.845433603877623*^9, {3.845433636197241*^9, 3.8454336426407237`*^9}}, 166 | CellLabel->"Out[15]=",ExpressionUUID->"b9c4edb6-b81a-4c08-9842-be791986fb0c"], 167 | 168 | Cell[BoxData[ 169 | FormBox[ 170 | RowBox[{"(", "\[NoBreak]", GridBox[{ 171 | {"1", "0", "0", "150"}, 172 | {"0", "1", "0", "0"}, 173 | {"0", "0", "1", "0"}, 174 | {"0", "0", "0", "1"} 175 | }, 176 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 177 | GridBoxSpacings->{"Columns" -> { 178 | Offset[0.27999999999999997`], { 179 | Offset[0.7]}, 180 | Offset[0.27999999999999997`]}, "Rows" -> { 181 | Offset[0.2], { 182 | Offset[0.4]}, 183 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 184 | CellChangeTimes->{{3.845433550607212*^9, 3.845433571697624*^9}, 185 | 3.845433603877623*^9, {3.845433636197241*^9, 3.8454336426443415`*^9}}, 186 | CellLabel->"Out[16]=",ExpressionUUID->"c5ec33b3-b13d-470a-bfbf-bc5cad145cbb"] 187 | }, Open ]], 188 | 189 | Cell[BoxData[{ 190 | RowBox[{ 191 | RowBox[{"T0to2", " ", "=", " ", 192 | RowBox[{"T0to1", ".", "T1to2"}]}], ";"}], "\[IndentingNewLine]", 193 | RowBox[{ 194 | RowBox[{"T0to3", " ", "=", " ", 195 | RowBox[{"T0to2", ".", "T2to3"}]}], ";"}], "\[IndentingNewLine]", 196 | RowBox[{ 197 | RowBox[{"T0toH", " ", "=", " ", 198 | RowBox[{"T0to3", ".", "T3toH"}]}], ";"}]}], "Input", 199 | CellChangeTimes->{{3.8454336500676813`*^9, 3.8454336537680616`*^9}, { 200 | 3.8454337350576715`*^9, 3.84543379264808*^9}}, 201 | CellLabel->"In[23]:=",ExpressionUUID->"f9adcafb-5b75-402c-b5d9-cd30deab75fa"], 202 | 203 | Cell[CellGroupData[{ 204 | 205 | Cell[BoxData["T0to2"], "Input", 206 | CellChangeTimes->{{3.8454342177771983`*^9, 3.8454342197777348`*^9}}, 207 | CellLabel->"In[28]:=",ExpressionUUID->"aa4d2430-f870-488b-a444-0bc6f56e7dc5"], 208 | 209 | Cell[BoxData[ 210 | FormBox[ 211 | RowBox[{"(", "\[NoBreak]", GridBox[{ 212 | { 213 | RowBox[{ 214 | RowBox[{ 215 | RowBox[{"cos", "(", "\[Theta]hip", ")"}], " ", 216 | RowBox[{"cos", "(", "\[Theta]knee", ")"}]}], "-", 217 | RowBox[{ 218 | RowBox[{"sin", "(", "\[Theta]hip", ")"}], " ", 219 | RowBox[{"sin", "(", "\[Theta]knee", ")"}]}]}], 220 | RowBox[{ 221 | RowBox[{ 222 | RowBox[{"sin", "(", "\[Theta]hip", ")"}], " ", 223 | RowBox[{"(", 224 | RowBox[{"-", 225 | RowBox[{"cos", "(", "\[Theta]knee", ")"}]}], ")"}]}], "-", 226 | RowBox[{ 227 | RowBox[{"cos", "(", "\[Theta]hip", ")"}], " ", 228 | RowBox[{"sin", "(", "\[Theta]knee", ")"}]}]}], "0", 229 | RowBox[{"500", " ", 230 | RowBox[{"cos", "(", "\[Theta]hip", ")"}]}]}, 231 | { 232 | RowBox[{ 233 | RowBox[{ 234 | RowBox[{"sin", "(", "\[Theta]hip", ")"}], " ", 235 | RowBox[{"cos", "(", "\[Theta]knee", ")"}]}], "+", 236 | RowBox[{ 237 | RowBox[{"cos", "(", "\[Theta]hip", ")"}], " ", 238 | RowBox[{"sin", "(", "\[Theta]knee", ")"}]}]}], 239 | RowBox[{ 240 | RowBox[{ 241 | RowBox[{"cos", "(", "\[Theta]hip", ")"}], " ", 242 | RowBox[{"cos", "(", "\[Theta]knee", ")"}]}], "-", 243 | RowBox[{ 244 | RowBox[{"sin", "(", "\[Theta]hip", ")"}], " ", 245 | RowBox[{"sin", "(", "\[Theta]knee", ")"}]}]}], "0", 246 | RowBox[{"500", " ", 247 | RowBox[{"sin", "(", "\[Theta]hip", ")"}]}]}, 248 | {"0", "0", "1", "0"}, 249 | {"0", "0", "0", "1"} 250 | }, 251 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 252 | GridBoxSpacings->{"Columns" -> { 253 | Offset[0.27999999999999997`], { 254 | Offset[0.7]}, 255 | Offset[0.27999999999999997`]}, "Rows" -> { 256 | Offset[0.2], { 257 | Offset[0.4]}, 258 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 259 | CellChangeTimes->{3.8454342203172274`*^9}, 260 | CellLabel->"Out[28]=",ExpressionUUID->"470e0373-ee9c-4000-ad4b-a7a251825c2a"] 261 | }, Open ]], 262 | 263 | Cell[CellGroupData[{ 264 | 265 | Cell[BoxData[{ 266 | RowBox[{"P1H", " ", "=", " ", 267 | RowBox[{ 268 | RowBox[{"T0toH", " ", "[", 269 | RowBox[{"[", 270 | RowBox[{ 271 | RowBox[{"1", ";;", "3"}], ",", " ", "4"}], "]"}], "]"}], "//", 272 | "Simplify"}]}], "\[IndentingNewLine]", 273 | RowBox[{"P2H", " ", "=", " ", 274 | RowBox[{ 275 | RowBox[{"(", 276 | RowBox[{ 277 | RowBox[{"T0toH", " ", "[", 278 | RowBox[{"[", 279 | RowBox[{ 280 | RowBox[{"1", ";;", "3"}], ",", " ", "4"}], "]"}], "]"}], " ", "-", 281 | " ", 282 | RowBox[{"T0to2", " ", "[", 283 | RowBox[{"[", 284 | RowBox[{ 285 | RowBox[{"1", ";;", "3"}], ",", " ", "4"}], "]"}], "]"}]}], ")"}], "//", 286 | "Simplify"}]}], "\[IndentingNewLine]", 287 | RowBox[{"P3H", " ", "=", " ", 288 | RowBox[{ 289 | RowBox[{"(", 290 | RowBox[{ 291 | RowBox[{"T0toH", " ", "[", 292 | RowBox[{"[", 293 | RowBox[{ 294 | RowBox[{"1", ";;", "3"}], ",", " ", "4"}], "]"}], "]"}], " ", "-", 295 | " ", 296 | RowBox[{"T0to3", " ", "[", 297 | RowBox[{"[", 298 | RowBox[{ 299 | RowBox[{"1", ";;", "3"}], ",", " ", "4"}], "]"}], "]"}]}], ")"}], "//", 300 | "Simplify"}]}]}], "Input", 301 | CellChangeTimes->{{3.845434406617757*^9, 3.8454344622880383`*^9}, { 302 | 3.8454346139072027`*^9, 3.8454346532266665`*^9}, {3.84543488998764*^9, 303 | 3.845434915217554*^9}, {3.8454350585266542`*^9, 3.8454350785878973`*^9}}, 304 | CellLabel->"In[49]:=",ExpressionUUID->"71c0adb5-4dcf-4ce9-8e61-a1bd1939a450"], 305 | 306 | Cell[BoxData[ 307 | FormBox[ 308 | RowBox[{"{", 309 | RowBox[{ 310 | RowBox[{"50", " ", 311 | RowBox[{"(", 312 | RowBox[{ 313 | RowBox[{"-", 314 | RowBox[{"3", " ", 315 | RowBox[{"sin", "(", 316 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 317 | ")"}]}]}], "+", 318 | RowBox[{"8", " ", 319 | RowBox[{"cos", "(", 320 | RowBox[{"\[Theta]hip", "+", "\[Theta]knee"}], ")"}]}], "+", 321 | RowBox[{"10", " ", 322 | RowBox[{"cos", "(", "\[Theta]hip", ")"}]}]}], ")"}]}], ",", 323 | RowBox[{"50", " ", 324 | RowBox[{"(", 325 | RowBox[{ 326 | RowBox[{"3", " ", 327 | RowBox[{"cos", "(", 328 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 329 | ")"}]}], "+", 330 | RowBox[{"8", " ", 331 | RowBox[{"sin", "(", 332 | RowBox[{"\[Theta]hip", "+", "\[Theta]knee"}], ")"}]}], "+", 333 | RowBox[{"10", " ", 334 | RowBox[{"sin", "(", "\[Theta]hip", ")"}]}]}], ")"}]}], ",", "0"}], 335 | "}"}], TraditionalForm]], "Output", 336 | CellChangeTimes->{ 337 | 3.8454342439078455`*^9, {3.84543441521693*^9, 3.845434463006945*^9}, { 338 | 3.84543461964672*^9, 3.8454346560569763`*^9}, {3.8454348976816645`*^9, 339 | 3.8454349158076887`*^9}, {3.845435067871416*^9, 3.8454350796565866`*^9}}, 340 | CellLabel->"Out[49]=",ExpressionUUID->"24dac202-c5d3-485e-b4f3-20f731916d40"], 341 | 342 | Cell[BoxData[ 343 | FormBox[ 344 | RowBox[{"{", 345 | RowBox[{ 346 | RowBox[{"50", " ", 347 | RowBox[{"(", 348 | RowBox[{ 349 | RowBox[{"8", " ", 350 | RowBox[{"cos", "(", 351 | RowBox[{"\[Theta]hip", "+", "\[Theta]knee"}], ")"}]}], "-", 352 | RowBox[{"3", " ", 353 | RowBox[{"sin", "(", 354 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 355 | ")"}]}]}], ")"}]}], ",", 356 | RowBox[{"50", " ", 357 | RowBox[{"(", 358 | RowBox[{ 359 | RowBox[{"3", " ", 360 | RowBox[{"cos", "(", 361 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 362 | ")"}]}], "+", 363 | RowBox[{"8", " ", 364 | RowBox[{"sin", "(", 365 | RowBox[{"\[Theta]hip", "+", "\[Theta]knee"}], ")"}]}]}], ")"}]}], 366 | ",", "0"}], "}"}], TraditionalForm]], "Output", 367 | CellChangeTimes->{ 368 | 3.8454342439078455`*^9, {3.84543441521693*^9, 3.845434463006945*^9}, { 369 | 3.84543461964672*^9, 3.8454346560569763`*^9}, {3.8454348976816645`*^9, 370 | 3.8454349158076887`*^9}, {3.845435067871416*^9, 3.8454350796817827`*^9}}, 371 | CellLabel->"Out[50]=",ExpressionUUID->"d38df91a-61eb-4ca6-9834-e4ceb0e5f822"], 372 | 373 | Cell[BoxData[ 374 | FormBox[ 375 | RowBox[{"{", 376 | RowBox[{ 377 | RowBox[{ 378 | RowBox[{"-", "150"}], " ", 379 | RowBox[{"sin", "(", 380 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 381 | ")"}]}], ",", 382 | RowBox[{"150", " ", 383 | RowBox[{"cos", "(", 384 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 385 | ")"}]}], ",", "0"}], "}"}], TraditionalForm]], "Output", 386 | CellChangeTimes->{ 387 | 3.8454342439078455`*^9, {3.84543441521693*^9, 3.845434463006945*^9}, { 388 | 3.84543461964672*^9, 3.8454346560569763`*^9}, {3.8454348976816645`*^9, 389 | 3.8454349158076887`*^9}, {3.845435067871416*^9, 3.8454350796817827`*^9}}, 390 | CellLabel->"Out[51]=",ExpressionUUID->"3e81f678-8ceb-4a5c-94d4-9b9812101531"] 391 | }, Open ]], 392 | 393 | Cell[BoxData[""], "Input", 394 | CellChangeTimes->{{3.8454343958772116`*^9, 395 | 3.84543440456778*^9}},ExpressionUUID->"b10dc42f-ea0f-4a03-8493-\ 396 | 3bb8eab5e3af"], 397 | 398 | Cell[CellGroupData[{ 399 | 400 | Cell[BoxData[{ 401 | RowBox[{"J", " ", "=", " ", 402 | RowBox[{"{", 403 | RowBox[{ 404 | RowBox[{ 405 | RowBox[{"Cross", "[", 406 | RowBox[{ 407 | RowBox[{"{", 408 | RowBox[{"0", ",", "0", ",", "1"}], "}"}], ",", " ", "P1H"}], "]"}], 409 | "~", "Join", "~", 410 | RowBox[{"{", 411 | RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], ",", "\[IndentingNewLine]", 412 | RowBox[{ 413 | RowBox[{"Cross", "[", 414 | RowBox[{ 415 | RowBox[{"{", 416 | RowBox[{"0", ",", "0", ",", "1"}], "}"}], ",", " ", "P2H"}], "]"}], 417 | "~", "Join", "~", 418 | RowBox[{"{", 419 | RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], ",", "\[IndentingNewLine]", 420 | RowBox[{ 421 | RowBox[{"Cross", "[", 422 | RowBox[{ 423 | RowBox[{"{", 424 | RowBox[{"0", ",", "0", ",", "1"}], "}"}], ",", " ", "P3H"}], "]"}], 425 | "~", "Join", "~", 426 | RowBox[{"{", 427 | RowBox[{"0", ",", "0", ",", "1"}], "}"}]}]}], 428 | "}"}]}], "\[IndentingNewLine]", 429 | RowBox[{"J", " ", "=", " ", 430 | RowBox[{"Transpose", "[", "J", "]"}]}]}], "Input", 431 | CellChangeTimes->{{3.84543524629659*^9, 3.845435328837513*^9}, { 432 | 3.8454357026113696`*^9, 3.845435743448429*^9}}, 433 | CellLabel->"In[63]:=",ExpressionUUID->"a5c97398-bd23-41da-8a88-58bc7aaeec79"], 434 | 435 | Cell[BoxData[ 436 | FormBox[ 437 | RowBox[{"(", "\[NoBreak]", GridBox[{ 438 | { 439 | RowBox[{ 440 | RowBox[{"-", 441 | RowBox[{"150", " ", 442 | RowBox[{"cos", "(", 443 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 444 | ")"}]}]}], "-", 445 | RowBox[{"400", " ", 446 | RowBox[{"sin", "(", 447 | RowBox[{"\[Theta]hip", "+", "\[Theta]knee"}], ")"}]}], "-", 448 | RowBox[{"500", " ", 449 | RowBox[{"sin", "(", "\[Theta]hip", ")"}]}]}], 450 | RowBox[{ 451 | RowBox[{"-", 452 | RowBox[{"150", " ", 453 | RowBox[{"sin", "(", 454 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 455 | ")"}]}]}], "+", 456 | RowBox[{"400", " ", 457 | RowBox[{"cos", "(", 458 | RowBox[{"\[Theta]hip", "+", "\[Theta]knee"}], ")"}]}], "+", 459 | RowBox[{"500", " ", 460 | RowBox[{"cos", "(", "\[Theta]hip", ")"}]}]}], "0", "0", "0", "1"}, 461 | { 462 | RowBox[{ 463 | RowBox[{"-", 464 | RowBox[{"150", " ", 465 | RowBox[{"cos", "(", 466 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 467 | ")"}]}]}], "-", 468 | RowBox[{"400", " ", 469 | RowBox[{"sin", "(", 470 | RowBox[{"\[Theta]hip", "+", "\[Theta]knee"}], ")"}]}]}], 471 | RowBox[{ 472 | RowBox[{"400", " ", 473 | RowBox[{"cos", "(", 474 | RowBox[{"\[Theta]hip", "+", "\[Theta]knee"}], ")"}]}], "-", 475 | RowBox[{"150", " ", 476 | RowBox[{"sin", "(", 477 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 478 | ")"}]}]}], "0", "0", "0", "1"}, 479 | { 480 | RowBox[{ 481 | RowBox[{"-", "150"}], " ", 482 | RowBox[{"cos", "(", 483 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 484 | ")"}]}], 485 | RowBox[{ 486 | RowBox[{"-", "150"}], " ", 487 | RowBox[{"sin", "(", 488 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 489 | ")"}]}], "0", "0", "0", "1"} 490 | }, 491 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 492 | GridBoxSpacings->{"Columns" -> { 493 | Offset[0.27999999999999997`], { 494 | Offset[0.7]}, 495 | Offset[0.27999999999999997`]}, "Rows" -> { 496 | Offset[0.2], { 497 | Offset[0.4]}, 498 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 499 | CellChangeTimes->{{3.8454352871168213`*^9, 3.8454352997468505`*^9}, 500 | 3.8454353298715706`*^9, {3.845435710126425*^9, 3.8454357438963785`*^9}}, 501 | CellLabel->"Out[63]=",ExpressionUUID->"396a4d96-e820-450c-a526-08cf6be5a3ce"], 502 | 503 | Cell[BoxData[ 504 | FormBox[ 505 | RowBox[{"(", "\[NoBreak]", GridBox[{ 506 | { 507 | RowBox[{ 508 | RowBox[{"-", 509 | RowBox[{"150", " ", 510 | RowBox[{"cos", "(", 511 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 512 | ")"}]}]}], "-", 513 | RowBox[{"400", " ", 514 | RowBox[{"sin", "(", 515 | RowBox[{"\[Theta]hip", "+", "\[Theta]knee"}], ")"}]}], "-", 516 | RowBox[{"500", " ", 517 | RowBox[{"sin", "(", "\[Theta]hip", ")"}]}]}], 518 | RowBox[{ 519 | RowBox[{"-", 520 | RowBox[{"150", " ", 521 | RowBox[{"cos", "(", 522 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 523 | ")"}]}]}], "-", 524 | RowBox[{"400", " ", 525 | RowBox[{"sin", "(", 526 | RowBox[{"\[Theta]hip", "+", "\[Theta]knee"}], ")"}]}]}], 527 | RowBox[{ 528 | RowBox[{"-", "150"}], " ", 529 | RowBox[{"cos", "(", 530 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 531 | ")"}]}]}, 532 | { 533 | RowBox[{ 534 | RowBox[{"-", 535 | RowBox[{"150", " ", 536 | RowBox[{"sin", "(", 537 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 538 | ")"}]}]}], "+", 539 | RowBox[{"400", " ", 540 | RowBox[{"cos", "(", 541 | RowBox[{"\[Theta]hip", "+", "\[Theta]knee"}], ")"}]}], "+", 542 | RowBox[{"500", " ", 543 | RowBox[{"cos", "(", "\[Theta]hip", ")"}]}]}], 544 | RowBox[{ 545 | RowBox[{"400", " ", 546 | RowBox[{"cos", "(", 547 | RowBox[{"\[Theta]hip", "+", "\[Theta]knee"}], ")"}]}], "-", 548 | RowBox[{"150", " ", 549 | RowBox[{"sin", "(", 550 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 551 | ")"}]}]}], 552 | RowBox[{ 553 | RowBox[{"-", "150"}], " ", 554 | RowBox[{"sin", "(", 555 | RowBox[{"\[Theta]heel", "+", "\[Theta]hip", "+", "\[Theta]knee"}], 556 | ")"}]}]}, 557 | {"0", "0", "0"}, 558 | {"0", "0", "0"}, 559 | {"0", "0", "0"}, 560 | {"1", "1", "1"} 561 | }, 562 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 563 | GridBoxSpacings->{"Columns" -> { 564 | Offset[0.27999999999999997`], { 565 | Offset[0.7]}, 566 | Offset[0.27999999999999997`]}, "Rows" -> { 567 | Offset[0.2], { 568 | Offset[0.4]}, 569 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 570 | CellChangeTimes->{{3.8454352871168213`*^9, 3.8454352997468505`*^9}, 571 | 3.8454353298715706`*^9, {3.845435710126425*^9, 3.845435743927544*^9}}, 572 | CellLabel->"Out[64]=",ExpressionUUID->"da15503b-babd-4abd-b872-5f5d93c58f91"] 573 | }, Open ]], 574 | 575 | Cell[BoxData[""], "Input", 576 | CellChangeTimes->{{3.8454353172074685`*^9, 577 | 3.8454353206713443`*^9}},ExpressionUUID->"9e7dc199-1dfb-48ac-ae67-\ 578 | cea8279ee8cc"], 579 | 580 | Cell[CellGroupData[{ 581 | 582 | Cell[BoxData[ 583 | RowBox[{"J", " ", "=", " ", 584 | RowBox[{"J", "/.", 585 | RowBox[{"{", 586 | RowBox[{ 587 | RowBox[{"\[Theta]hip", "\[Rule]", 588 | RowBox[{"(", 589 | RowBox[{"10.5", "Degree"}], ")"}]}], ",", 590 | RowBox[{"\[Theta]heel", "\[Rule]", 591 | RowBox[{"(", 592 | RowBox[{"3.55", "Degree"}], ")"}]}], ",", 593 | RowBox[{"\[Theta]knee", "\[Rule]", 594 | RowBox[{"(", 595 | RowBox[{ 596 | RowBox[{"-", "44"}], "Degree"}], ")"}]}]}], "}"}]}]}]], "Input", 597 | CellChangeTimes->{ 598 | 3.8454359267163043`*^9, {3.845436065306147*^9, 3.8454360884576373`*^9}, { 599 | 3.8454361810369005`*^9, 3.8454362226464863`*^9}, {3.845436254526636*^9, 600 | 3.845436255396652*^9}}, 601 | CellLabel->"In[74]:=",ExpressionUUID->"c7150eb8-7142-4ba3-8e07-2d07986d27e7"], 602 | 603 | Cell[BoxData[ 604 | FormBox[ 605 | RowBox[{"(", "\[NoBreak]", GridBox[{ 606 | { 607 | RowBox[{"-", "0.31217956385756906`"}], "90.80558318221617`", 608 | RowBox[{"-", "129.96921094260708`"}]}, 609 | {"900.068391605087`", "408.4409378231097`", "74.88660899624246`"}, 610 | {"0", "0", "0"}, 611 | {"0", "0", "0"}, 612 | {"0", "0", "0"}, 613 | {"1", "1", "1"} 614 | }, 615 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 616 | GridBoxSpacings->{"Columns" -> { 617 | Offset[0.27999999999999997`], { 618 | Offset[0.7]}, 619 | Offset[0.27999999999999997`]}, "Rows" -> { 620 | Offset[0.2], { 621 | Offset[0.4]}, 622 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 623 | CellChangeTimes->{{3.845436173229212*^9, 3.845436223576415*^9}, 624 | 3.845436255886026*^9}, 625 | CellLabel->"Out[74]=",ExpressionUUID->"58b408d3-c630-4ac6-9445-7a289d8352fb"] 626 | }, Open ]], 627 | 628 | Cell[CellGroupData[{ 629 | 630 | Cell[BoxData[ 631 | RowBox[{ 632 | RowBox[{ 633 | RowBox[{"Transpose", "[", "J", "]"}], ".", 634 | RowBox[{"Transpose", "[", 635 | RowBox[{"{", 636 | RowBox[{"{", 637 | RowBox[{ 638 | RowBox[{"-", "95"}], ",", "0", ",", "0", ",", "0", ",", "0", ",", 639 | "0"}], "}"}], "}"}], "]"}]}], "/", "1000"}]], "Input", 640 | CellChangeTimes->{{3.8454363319965096`*^9, 3.845436358816393*^9}, { 641 | 3.8454363984763117`*^9, 3.845436398826605*^9}, {3.845436459466922*^9, 642 | 3.8454364610370007`*^9}}, 643 | CellLabel->"In[79]:=",ExpressionUUID->"187287b3-566f-488d-9dc3-7aefced4a702"], 644 | 645 | Cell[BoxData[ 646 | FormBox[ 647 | RowBox[{"(", "\[NoBreak]", GridBox[{ 648 | {"0.029657058566469063`"}, 649 | { 650 | RowBox[{"-", "8.626530402310536`"}]}, 651 | {"12.347075039547672`"} 652 | }, 653 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 654 | GridBoxSpacings->{"Columns" -> { 655 | Offset[0.27999999999999997`], { 656 | Offset[0.7]}, 657 | Offset[0.27999999999999997`]}, "Rows" -> { 658 | Offset[0.2], { 659 | Offset[0.4]}, 660 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 661 | CellChangeTimes->{3.845436341226033*^9, 3.845436399466055*^9, 662 | 3.8454364619623165`*^9}, 663 | CellLabel->"Out[79]=",ExpressionUUID->"c920f84f-9ee0-486d-ab71-857b0332a204"] 664 | }, Open ]], 665 | 666 | Cell[CellGroupData[{ 667 | 668 | Cell[BoxData[""], "Input", 669 | CellChangeTimes->{{3.845436361326104*^9, 670 | 3.8454363969499135`*^9}},ExpressionUUID->"5bdc7bdd-d521-478e-8634-\ 671 | 514e8417b06f"], 672 | 673 | Cell[BoxData[ 674 | FormBox[ 675 | RowBox[{"(", "\[NoBreak]", GridBox[{ 676 | { 677 | RowBox[{"-", "95"}]}, 678 | {"0"}, 679 | {"0"}, 680 | {"0"}, 681 | {"0"}, 682 | {"0"} 683 | }, 684 | GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}}, 685 | GridBoxSpacings->{"Columns" -> { 686 | Offset[0.27999999999999997`], { 687 | Offset[0.7]}, 688 | Offset[0.27999999999999997`]}, "Rows" -> { 689 | Offset[0.2], { 690 | Offset[0.4]}, 691 | Offset[0.2]}}], "\[NoBreak]", ")"}], TraditionalForm]], "Output", 692 | CellChangeTimes->{{3.8454363850961504`*^9, 3.8454363938076515`*^9}}, 693 | CellLabel->"Out[77]=",ExpressionUUID->"75f7d20e-4f00-44cf-9bcf-838e891e0ed9"] 694 | }, Open ]] 695 | }, 696 | WindowSize->{1462, 821}, 697 | WindowMargins->{{-8, Automatic}, {Automatic, -8}}, 698 | Magnification:>1.4 Inherited, 699 | FrontEndVersion->"12.0 for Microsoft Windows (64-bit) (2019\:5e745\:670818\ 700 | \:65e5)", 701 | StyleDefinitions->"Default.nb" 702 | ] 703 | (* End of Notebook Content *) 704 | 705 | (* Internal cache information *) 706 | (*CellTagsOutline 707 | CellTagsIndex->{} 708 | *) 709 | (*CellTagsIndex 710 | CellTagsIndex->{} 711 | *) 712 | (*NotebookFileOutline 713 | Notebook[{ 714 | Cell[558, 20, 1576, 45, 146, "Input",ExpressionUUID->"bb4e8eb8-1a93-40ac-80df-864df6d0f2a1"], 715 | Cell[CellGroupData[{ 716 | Cell[2159, 69, 841, 19, 148, "Input",ExpressionUUID->"9eaec44b-0c53-4dbc-b6fe-693bbec8ec19"], 717 | Cell[3003, 90, 940, 23, 119, "Output",ExpressionUUID->"a67231ec-a230-4e5d-8b2b-fa6923614d8f"], 718 | Cell[3946, 115, 946, 23, 119, "Output",ExpressionUUID->"1aec2460-06e0-42a9-ab25-3f7a2f999221"], 719 | Cell[4895, 140, 992, 25, 119, "Output",ExpressionUUID->"b9c4edb6-b81a-4c08-9842-be791986fb0c"], 720 | Cell[5890, 167, 743, 18, 119, "Output",ExpressionUUID->"c5ec33b3-b13d-470a-bfbf-bc5cad145cbb"] 721 | }, Open ]], 722 | Cell[6648, 188, 542, 12, 97, "Input",ExpressionUUID->"f9adcafb-5b75-402c-b5d9-cd30deab75fa"], 723 | Cell[CellGroupData[{ 724 | Cell[7215, 204, 180, 2, 40, "Input",ExpressionUUID->"aa4d2430-f870-488b-a444-0bc6f56e7dc5"], 725 | Cell[7398, 208, 1925, 51, 119, "Output",ExpressionUUID->"470e0373-ee9c-4000-ad4b-a7a251825c2a"] 726 | }, Open ]], 727 | Cell[CellGroupData[{ 728 | Cell[9360, 264, 1362, 39, 163, "Input",ExpressionUUID->"71c0adb5-4dcf-4ce9-8e61-a1bd1939a450"], 729 | Cell[10725, 305, 1318, 34, 48, "Output",ExpressionUUID->"24dac202-c5d3-485e-b4f3-20f731916d40"], 730 | Cell[12046, 341, 1122, 29, 48, "Output",ExpressionUUID->"d38df91a-61eb-4ca6-9834-e4ceb0e5f822"], 731 | Cell[13171, 372, 730, 17, 48, "Output",ExpressionUUID->"3e81f678-8ceb-4a5c-94d4-9b9812101531"] 732 | }, Open ]], 733 | Cell[13916, 392, 153, 3, 40, "Input",ExpressionUUID->"b10dc42f-ea0f-4a03-8493-3bb8eab5e3af"], 734 | Cell[CellGroupData[{ 735 | Cell[14094, 399, 1188, 33, 214, "Input",ExpressionUUID->"a5c97398-bd23-41da-8a88-58bc7aaeec79"], 736 | Cell[15285, 434, 2505, 66, 94, "Output",ExpressionUUID->"396a4d96-e820-450c-a526-08cf6be5a3ce"], 737 | Cell[17793, 502, 2524, 69, 169, "Output",ExpressionUUID->"da15503b-babd-4abd-b872-5f5d93c58f91"] 738 | }, Open ]], 739 | Cell[20332, 574, 156, 3, 40, "Input",ExpressionUUID->"9e7dc199-1dfb-48ac-ae67-cea8279ee8cc"], 740 | Cell[CellGroupData[{ 741 | Cell[20513, 581, 744, 19, 61, "Input",ExpressionUUID->"c7150eb8-7142-4ba3-8e07-2d07986d27e7"], 742 | Cell[21260, 602, 865, 22, 169, "Output",ExpressionUUID->"58b408d3-c630-4ac6-9445-7a289d8352fb"] 743 | }, Open ]], 744 | Cell[CellGroupData[{ 745 | Cell[22162, 629, 548, 13, 61, "Input",ExpressionUUID->"187287b3-566f-488d-9dc3-7aefced4a702"], 746 | Cell[22713, 644, 697, 18, 150, "Output",ExpressionUUID->"c920f84f-9ee0-486d-ab71-857b0332a204"] 747 | }, Open ]], 748 | Cell[CellGroupData[{ 749 | Cell[23447, 667, 154, 3, 40, "Input",ExpressionUUID->"5bdc7bdd-d521-478e-8634-514e8417b06f"], 750 | Cell[23604, 672, 658, 20, 169, "Output",ExpressionUUID->"75f7d20e-4f00-44cf-9bcf-838e891e0ed9"] 751 | }, Open ]] 752 | } 753 | ] 754 | *) 755 | 756 | -------------------------------------------------------------------------------- /Chapter 07/作业7-13/hw7_13.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 07/作业7-13/hw7_13.docx -------------------------------------------------------------------------------- /Chapter 07/作业7-13/hw7_13.mlx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 07/作业7-13/hw7_13.mlx -------------------------------------------------------------------------------- /Chapter 07/作业7-13/hw7_13.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 07/作业7-13/hw7_13.pdf -------------------------------------------------------------------------------- /Chapter 07/作业7_4/hw7_4.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 07/作业7_4/hw7_4.docx -------------------------------------------------------------------------------- /Chapter 07/作业7_4/hw7_4.mlx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 07/作业7_4/hw7_4.mlx -------------------------------------------------------------------------------- /Chapter 07/作业7_4/hw7_4.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Bozenton/Robotics_Matlab/bb9b8cbc7ea57e14ad3e585dffecc0bd17262705/Chapter 07/作业7_4/hw7_4.pdf -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Robotics_Matlab 2 | 《机器人学导论》课后MATLAB题 3 | --------------------------------------------------------------------------------