├── scripts
├── 05_EASEL
│ ├── .nextflow
│ │ ├── cache
│ │ │ ├── 6e2b4859-4b6c-42c8-835a-ed9985ddf7ae
│ │ │ │ ├── db
│ │ │ │ │ ├── LOCK
│ │ │ │ │ ├── CURRENT
│ │ │ │ │ ├── 000003.log
│ │ │ │ │ └── MANIFEST-000002
│ │ │ │ └── index.adoring_ekeblad
│ │ │ └── b8ee6227-e332-4451-9670-dc4bc642c95a
│ │ │ │ ├── db
│ │ │ │ ├── LOCK
│ │ │ │ ├── CURRENT
│ │ │ │ ├── 000003.log
│ │ │ │ └── MANIFEST-000002
│ │ │ │ └── index.dreamy_leavitt
│ │ └── history
│ ├── easel.sh
│ └── params.yaml
├── 03_helixer
│ ├── entap_config.txt
│ ├── 01_helixer.sh
│ ├── 05_EnTAP.sh
│ ├── 03_agat_codingsequences.sh
│ ├── 04_busco.sh
│ └── 02_agat_stats.sh
├── 04_braker_proteins
│ ├── entap_config.txt
│ ├── 01_getproteins.sh
│ ├── 06_EnTAP.sh
│ ├── 04_agat_codingsequences.sh
│ ├── 05_busco.sh
│ ├── 02_braker_proteins.sh
│ ├── 03_agat_stats.sh
│ └── busco_downloads
│ │ └── file_versions.tsv
├── 02_mask_repeats
│ ├── 01_create_db.sh
│ ├── 02_repeatmodeler.sh
│ ├── 03_repeatmasker.sh
│ └── 04_busco.sh
├── alignment_exercise
│ ├── 01_hisat2index.sh
│ ├── 02_align.sh
│ ├── 04_braker_qualimap.sh
│ ├── 03_helixer_qualimap.sh
│ └── Arabidopsis_thaliana.agat.log
├── 06_gffcompare
│ └── 01_gffcompare.sh
├── 01_raw_data
│ ├── get_genome.sh
│ ├── sra_download.sh
│ └── symlink_data.sh
└── runall.sh
├── .DS_Store
├── .gitignore
├── images
├── busco_gfacts.png
├── gc_content.png
├── 15_braker_busco.png
├── busco_marker_rounds.png
├── fastqc_basic_stats.png
├── per_base_seq_content.png
├── per_seq_quality_score.png
├── busco_08a_gfacs_general.png
├── 16_gfacts_mono_multi_busco.png
├── Per_base_sequence_quality.png
├── maker2_gfacs_mono-vs-multi.png
├── 16_gfacts_general_mono_multi_busco.png
└── 11_gfacs_2_round_general_mono_multi.png
├── FASTQC.md
├── LICENSE
└── README.md
/scripts/05_EASEL/.nextflow/cache/6e2b4859-4b6c-42c8-835a-ed9985ddf7ae/db/LOCK:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/scripts/05_EASEL/.nextflow/cache/b8ee6227-e332-4451-9670-dc4bc642c95a/db/LOCK:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/.DS_Store
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | .DS_Store
2 | *.Rproj
3 | *.out
4 | *.err
5 | *.fastq
6 | *.gz
7 | **/data
8 | **/results
--------------------------------------------------------------------------------
/scripts/05_EASEL/.nextflow/cache/6e2b4859-4b6c-42c8-835a-ed9985ddf7ae/db/CURRENT:
--------------------------------------------------------------------------------
1 | MANIFEST-000002
2 |
--------------------------------------------------------------------------------
/scripts/05_EASEL/.nextflow/cache/b8ee6227-e332-4451-9670-dc4bc642c95a/db/CURRENT:
--------------------------------------------------------------------------------
1 | MANIFEST-000002
2 |
--------------------------------------------------------------------------------
/images/busco_gfacts.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/busco_gfacts.png
--------------------------------------------------------------------------------
/images/gc_content.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/gc_content.png
--------------------------------------------------------------------------------
/images/15_braker_busco.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/15_braker_busco.png
--------------------------------------------------------------------------------
/images/busco_marker_rounds.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/busco_marker_rounds.png
--------------------------------------------------------------------------------
/images/fastqc_basic_stats.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/fastqc_basic_stats.png
--------------------------------------------------------------------------------
/images/per_base_seq_content.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/per_base_seq_content.png
--------------------------------------------------------------------------------
/images/per_seq_quality_score.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/per_seq_quality_score.png
--------------------------------------------------------------------------------
/images/busco_08a_gfacs_general.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/busco_08a_gfacs_general.png
--------------------------------------------------------------------------------
/images/16_gfacts_mono_multi_busco.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/16_gfacts_mono_multi_busco.png
--------------------------------------------------------------------------------
/images/Per_base_sequence_quality.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/Per_base_sequence_quality.png
--------------------------------------------------------------------------------
/images/maker2_gfacs_mono-vs-multi.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/maker2_gfacs_mono-vs-multi.png
--------------------------------------------------------------------------------
/images/16_gfacts_general_mono_multi_busco.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/16_gfacts_general_mono_multi_busco.png
--------------------------------------------------------------------------------
/images/11_gfacs_2_round_general_mono_multi.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/images/11_gfacs_2_round_general_mono_multi.png
--------------------------------------------------------------------------------
/scripts/05_EASEL/.nextflow/cache/6e2b4859-4b6c-42c8-835a-ed9985ddf7ae/db/000003.log:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/scripts/05_EASEL/.nextflow/cache/6e2b4859-4b6c-42c8-835a-ed9985ddf7ae/db/000003.log
--------------------------------------------------------------------------------
/scripts/05_EASEL/.nextflow/cache/b8ee6227-e332-4451-9670-dc4bc642c95a/db/000003.log:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/scripts/05_EASEL/.nextflow/cache/b8ee6227-e332-4451-9670-dc4bc642c95a/db/000003.log
--------------------------------------------------------------------------------
/scripts/05_EASEL/.nextflow/cache/6e2b4859-4b6c-42c8-835a-ed9985ddf7ae/db/MANIFEST-000002:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/scripts/05_EASEL/.nextflow/cache/6e2b4859-4b6c-42c8-835a-ed9985ddf7ae/db/MANIFEST-000002
--------------------------------------------------------------------------------
/scripts/05_EASEL/.nextflow/cache/b8ee6227-e332-4451-9670-dc4bc642c95a/db/MANIFEST-000002:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/scripts/05_EASEL/.nextflow/cache/b8ee6227-e332-4451-9670-dc4bc642c95a/db/MANIFEST-000002
--------------------------------------------------------------------------------
/scripts/05_EASEL/.nextflow/cache/b8ee6227-e332-4451-9670-dc4bc642c95a/index.dreamy_leavitt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/scripts/05_EASEL/.nextflow/cache/b8ee6227-e332-4451-9670-dc4bc642c95a/index.dreamy_leavitt
--------------------------------------------------------------------------------
/scripts/05_EASEL/.nextflow/cache/6e2b4859-4b6c-42c8-835a-ed9985ddf7ae/index.adoring_ekeblad:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CBC-UCONN/Structural-Annotation/HEAD/scripts/05_EASEL/.nextflow/cache/6e2b4859-4b6c-42c8-835a-ed9985ddf7ae/index.adoring_ekeblad
--------------------------------------------------------------------------------
/scripts/05_EASEL/easel.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=EASEL
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 4
6 | #SBATCH --partition=general
7 | #SBATCH --qos=general
8 | #SBATCH --mem=10G
9 | #SBATCH --mail-user=
10 |
11 | module load nextflow
12 |
13 | SINGULARITY_TMPDIR=$PWD
14 | export SINGULARITY_TMPDIR
15 |
16 | nextflow run -hub gitlab PlantGenomicsLab/easel -profile singularity,xanadu -params-file params.yaml
17 |
18 |
19 |
--------------------------------------------------------------------------------
/scripts/05_EASEL/.nextflow/history:
--------------------------------------------------------------------------------
1 | 2023-05-26 13:45:11 - adoring_ekeblad - c15db1324a4a5e7cbd5b753a457f4d3c4600f6c9 6e2b4859-4b6c-42c8-835a-ed9985ddf7ae nextflow run -hub gitlab PlantGenomicsLab/easel -profile singularity,xanadu -params-file params.yaml
2 | 2023-05-29 05:53:38 - dreamy_leavitt - c15db1324a4a5e7cbd5b753a457f4d3c4600f6c9 b8ee6227-e332-4451-9670-dc4bc642c95a nextflow run -hub gitlab PlantGenomicsLab/easel -profile singularity,xanadu -params-file params.yaml
3 |
--------------------------------------------------------------------------------
/FASTQC.md:
--------------------------------------------------------------------------------
1 | ## FASTQC SRR6852085_1.fastq
2 |
3 | ### basic statistics
4 | 
5 |
6 | ### Per base sequence quality
7 | 
8 |
9 | ### Per sequence quality score
10 | 
11 |
12 |
13 | ### Per base sequence content
14 | 
15 |
16 | ### Per sequence GC content
17 | 
18 |
19 |
20 |
21 |
--------------------------------------------------------------------------------
/scripts/03_helixer/entap_config.txt:
--------------------------------------------------------------------------------
1 | diamond_exe_path=diamond
2 | rsem_exe_path=/isg/shared/apps/EnTAP/0.9.0-beta/libs/RSEM-1.3.0
3 | genemarkst_exe_path=perl /isg/shared/apps/EnTAP/0.9.0-beta/libs/gmst_linux_64/gmst.pl
4 | eggnog_sql_database=/isg/shared/apps/EnTAP/0.9.0-beta/databases/databases/eggnog.db
5 | eggnog_dmnd_database=/isg/shared/apps/EnTAP/0.9.0-beta/databases/bin/eggnog_proteins.dmnd
6 | interpro_exe_path=interproscan.sh
7 | entap_database_sql_path=
8 | entap_database_bin_path=/isg/shared/apps/EnTAP/0.9.0-beta/databases/bin/entap_database.bin
9 | entap_graphing_script=
10 |
--------------------------------------------------------------------------------
/scripts/04_braker_proteins/entap_config.txt:
--------------------------------------------------------------------------------
1 | diamond_exe_path=diamond
2 | rsem_exe_path=/isg/shared/apps/EnTAP/0.9.0-beta/libs/RSEM-1.3.0
3 | genemarkst_exe_path=perl /isg/shared/apps/EnTAP/0.9.0-beta/libs/gmst_linux_64/gmst.pl
4 | eggnog_sql_database=/isg/shared/apps/EnTAP/0.9.0-beta/databases/databases/eggnog.db
5 | eggnog_dmnd_database=/isg/shared/apps/EnTAP/0.9.0-beta/databases/bin/eggnog_proteins.dmnd
6 | interpro_exe_path=interproscan.sh
7 | entap_database_sql_path=
8 | entap_database_bin_path=/isg/shared/apps/EnTAP/0.9.0-beta/databases/bin/entap_database.bin
9 | entap_graphing_script=
10 |
--------------------------------------------------------------------------------
/scripts/05_EASEL/params.yaml:
--------------------------------------------------------------------------------
1 | outdir : "arabidopsis"
2 | genome : "/core/cbc/tutorials/workshopdirs/Structural-Annotation-Version3/results/02_mask_repeats/repeatmasker/repeatmasker_out/GCF_000001735.4_TAIR10.1_genomic.fna.masked"
3 | user_reads : "/core/cbc/tutorials/workshopdirs/Structural-Annotation-Version3/data/rnaseq/*{1,2}.fastq"
4 | busco_lineage : "embryophyta"
5 | order : "Brassicales"
6 | prefix : "arabidopsis"
7 | reference_db : "/isg/shared/databases/Diamond/RefSeq/plant.protein.faa.208.dmnd"
8 | taxon : "arabidopsis"
9 | external_protein : "true"
10 |
--------------------------------------------------------------------------------
/scripts/02_mask_repeats/01_create_db.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=repeatmodeler_db
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 1
6 | #SBATCH --partition=general
7 | #SBATCH --qos=general
8 | #SBATCH --mail-type=END
9 | #SBATCH --mail-user=your.email@uconn.edu
10 | #SBATCH --mem=10G
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | # load software
18 | module load RepeatModeler/2.0.4
19 |
20 | # set variables
21 | REPDIR=../../results/02_mask_repeats
22 | mkdir -p ${REPDIR}
23 |
24 | # genome
25 | GENOME=../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna
26 |
27 | BuildDatabase -name "${REPDIR}/athaliana_db" ${GENOME}
28 |
--------------------------------------------------------------------------------
/scripts/02_mask_repeats/02_repeatmodeler.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=repeatmodeler_model
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 30
6 | #SBATCH --partition=general
7 | #SBATCH --qos=general
8 | #SBATCH --mail-type=ALL
9 | #SBATCH --mail-user=your.email@uconn.edu
10 | #SBATCH --mem=50G
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | # load software
18 | module load RepeatModeler/2.0.4
19 | module load ninja/0.95
20 |
21 | # go to repeat directory
22 | REPDIR=../../results/02_mask_repeats
23 |
24 | cd ${REPDIR}
25 |
26 | # set repdb and run repeatmodeler
27 | REPDB=athaliana_db
28 |
29 | RepeatModeler -threads 30 -database ${REPDB} -LTRStruct
30 |
31 | date
32 |
33 |
--------------------------------------------------------------------------------
/scripts/02_mask_repeats/03_repeatmasker.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=repeatmasker
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 8
6 | #SBATCH --partition=xeon
7 | #SBATCH --qos=general
8 | #SBATCH --mail-type=ALL
9 | #SBATCH --mail-user=first.last@uconn.edu
10 | #SBATCH --mem=30G
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | # load software
18 | module load RepeatMasker/4.1.2
19 |
20 | # set variables
21 | REPLIB=../../results/02_mask_repeats/athaliana_db-families.fa
22 | OUTDIR=../../results/02_mask_repeats/repeatmasker
23 | mkdir -p ${OUTDIR}
24 |
25 | GENOME=../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna
26 |
27 | RepeatMasker -dir ${OUTDIR}/repeatmasker_out -pa 8 -lib ${REPLIB} -gff -a -noisy -xsmall ${GENOME}
28 |
29 | date
30 |
--------------------------------------------------------------------------------
/scripts/alignment_exercise/01_hisat2index.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=hisat2_index
3 | #SBATCH -n 1
4 | #SBATCH -N 1
5 | #SBATCH -c 4
6 | #SBATCH --mem=10G
7 | #SBATCH --partition=general
8 | #SBATCH --qos=general
9 | #SBATCH --mail-type=ALL
10 | #SBATCH --mail-user=first.last@uconn.edu
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | echo `hostname`
15 | date
16 |
17 | #################################################################
18 | # Index the Genome
19 | #################################################################
20 |
21 | # load software
22 | module load hisat2/2.2.0
23 |
24 | # input/output directories
25 | OUTDIR=../../results/alignment_exercise/hisat2_index
26 | mkdir -p $OUTDIR
27 |
28 | GENOME=../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna
29 |
30 | hisat2-build -p 16 $GENOME $OUTDIR/Athaliana
31 |
--------------------------------------------------------------------------------
/scripts/03_helixer/01_helixer.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=helixer
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 12
6 | #SBATCH --partition=gpu
7 | #SBATCH --qos=general
8 | #SBATCH --constraint="AVX2&FMA3"
9 | #SBATCH --mail-type=ALL
10 | #SBATCH --mem=20G
11 | #SBATCH --mail-user=
12 | #SBATCH -o %x_%j.out
13 | #SBATCH -e %x_%j.err
14 |
15 | hostname
16 | date
17 |
18 | module load singularity/3.9.2
19 | mkdir tmp
20 |
21 | export TMPDIR=$PWD/tmp
22 | OUTDIR=../../results/03_helixer/
23 | mkdir -p ${OUTDIR}
24 |
25 | GENOME=../../results/02_mask_repeats/repeatmasker/repeatmasker_out/GCF_000001735.4_TAIR10.1_genomic.fna.masked
26 |
27 | singularity exec /isg/shared/databases/nfx_singularity_cache/helixer-docker_helixer_v0.3.0a0_cuda_11.2.0-cudnn8.sif Helixer.py --lineage land_plant --fasta-path ${GENOME} --gff-output-path ${OUTDIR}/Arabidopsis_thaliana.gff3
28 |
--------------------------------------------------------------------------------
/scripts/04_braker_proteins/01_getproteins.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=get_proteins
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 2
6 | #SBATCH --partition=general
7 | #SBATCH --qos=general
8 | #SBATCH --mail-type=END
9 | #SBATCH --mail-user=first.last@uconn.edu
10 | #SBATCH --mem=10G
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | OUTDIR=../../results/04_braker/proteins
18 | mkdir -p ${OUTDIR}
19 | cd ${OUTDIR}
20 |
21 | # per the braker documentation, a protein database can be obtained as below
22 | # this code downloads protein sequences in fasta format for all genes in orthoDB for the Viridiplantae
23 | # then it concatenates them into a single fasta file
24 | # https://github.com/gatech-genemark/ProtHint#protein-database-preparation
25 | wget --no-check-certificate https://v100.orthodb.org/download/odb10_plants_fasta.tar.gz
26 | tar -xvzf odb10_plants_fasta.tar.gz
27 | cat plants/Rawdata/*fs >proteins.fa
28 |
--------------------------------------------------------------------------------
/scripts/03_helixer/05_EnTAP.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=entap_helixer
3 | #SBATCH -n 1
4 | #SBATCH -N 1
5 | #SBATCH -c 16
6 | #SBATCH --mem=50G
7 | #SBATCH --partition=general
8 | #SBATCH --qos=general
9 | #SBATCH --mail-type=ALL
10 | #SBATCH --mail-user=
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | ##########################################
18 | ## EnTap ##
19 | ##########################################
20 | module load EnTAP/0.9.0-beta
21 | module load diamond/0.9.36
22 |
23 | OUTDIR=../../results/03_helixer/EnTAP
24 | mkdir -p ${OUTDIR}
25 |
26 | cp entap_config.txt ${OUTDIR}
27 | cd ${OUTDIR}
28 |
29 | PROTEINS=../agat/codingsequences/helixer_proteins.fasta.faa
30 |
31 | EnTAP --runP \
32 | -i ${PROTEINS} \
33 | -d /isg/shared/databases/Diamond/RefSeq/complete.protein.faa.216.dmnd \
34 | -d /isg/shared/databases/Diamond/Uniprot/uniprot_sprot.dmnd \
35 | --ontology 0 \
36 | --threads 16
37 |
38 | date
39 |
--------------------------------------------------------------------------------
/scripts/04_braker_proteins/06_EnTAP.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=entap_braker
3 | #SBATCH -n 1
4 | #SBATCH -N 1
5 | #SBATCH -c 16
6 | #SBATCH --mem=50G
7 | #SBATCH --partition=general
8 | #SBATCH --qos=general
9 | #SBATCH --mail-type=ALL
10 | #SBATCH --mail-user=
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | ##########################################
18 | ## EnTap ##
19 | ##########################################
20 | module load EnTAP/0.9.0-beta
21 | module load diamond/0.9.36
22 |
23 | OUTDIR=../../results/04_braker/EnTAP
24 | mkdir -p ${OUTDIR}
25 |
26 | cp entap_config.txt ${OUTDIR}
27 | cd ${OUTDIR}
28 |
29 | PROTEINS=../agat/codingsequences/braker_proteins.fasta.faa
30 |
31 | EnTAP --runP \
32 | -i ${PROTEINS} \
33 | -d /isg/shared/databases/Diamond/RefSeq/complete.protein.faa.216.dmnd \
34 | -d /isg/shared/databases/Diamond/Uniprot/uniprot_sprot.dmnd \
35 | --ontology 0 \
36 | --threads 16
37 |
38 | date
39 |
--------------------------------------------------------------------------------
/scripts/06_gffcompare/01_gffcompare.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=gffcmp
3 | #SBATCH -n 1
4 | #SBATCH -N 1
5 | #SBATCH -c 1
6 | #SBATCH --mem=50G
7 | #SBATCH --partition=general
8 | #SBATCH --qos=general
9 | #SBATCH --mail-type=ALL
10 | #SBATCH --mail-user=
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | module load gffcompare/0.10.4
18 |
19 | # output directory
20 | OUTDIR=../../results/06_gffcompare_2
21 | mkdir -p ${OUTDIR}
22 |
23 | # files
24 | NCBIANNO=../../data/genome/GCF_000001735.4_TAIR10.1_genomic.gff
25 | HELIXER=../../results/03_helixer/Arabidopsis_thaliana.gff3
26 | BRAKERPROTEIN=../../results/04_braker/proteins/braker/augustus.hints.gtf
27 | EASEL=../../results/05_EASEL/arabidopsis/final_predictions/arabidopsis_filtered.gtf
28 |
29 | # run gffcompare
30 | gffcompare -R -r <(awk '$7 !~ /?/' ${NCBIANNO}) -o ${OUTDIR}/helixer ${HELIXER}
31 |
32 | gffcompare -R -r <(awk '$7 !~ /?/' ${NCBIANNO}) -o ${OUTDIR}/braker ${BRAKERPROTEIN}
33 |
34 | gffcompare -R -r <(awk '$7 !~ /?/' ${NCBIANNO}) -o ${OUTDIR}/easel ${EASEL}
35 |
36 |
--------------------------------------------------------------------------------
/scripts/03_helixer/03_agat_codingsequences.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=agat_codingsequences_helixer
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 1
6 | #SBATCH --partition=general
7 | #SBATCH --qos=general
8 | #SBATCH --mail-type=ALL
9 | #SBATCH --mem=50G
10 | #SBATCH --mail-user=your.name@uconn.edu
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | module load singularity
18 |
19 | OUTDIR="../../results/03_helixer/agat/codingsequences"
20 | mkdir -p ${OUTDIR}
21 |
22 | cd ${OUTDIR}
23 |
24 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sp_keep_longest_isoform.pl \
25 | --gff ../../Arabidopsis_thaliana.gff3 \
26 | -o helixer_longest_isoform.gtf
27 |
28 |
29 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sp_extract_sequences.pl \
30 | -g helixer_longest_isoform.gtf \
31 | -f ../../../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna \
32 | -p \
33 | -o helixer_proteins.fasta.faa
34 |
--------------------------------------------------------------------------------
/scripts/04_braker_proteins/04_agat_codingsequences.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=agat_codingsequences_braker
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 1
6 | #SBATCH --partition=general
7 | #SBATCH --qos=general
8 | #SBATCH --mail-type=ALL
9 | #SBATCH --mem=50G
10 | #SBATCH --mail-user=your.email@uconn.edu
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | module load singularity
18 |
19 | OUTDIR="../../results/04_braker/agat/codingsequences"
20 | mkdir -p ${OUTDIR}
21 |
22 | cd ${OUTDIR}
23 |
24 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sp_keep_longest_isoform.pl \
25 | --gff ../../proteins/braker/augustus.hints.gtf \
26 | -o braker_longest_isoform.gtf
27 |
28 |
29 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sp_extract_sequences.pl \
30 | -g braker_longest_isoform.gtf \
31 | -f ../../../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna \
32 | -p \
33 | -o braker_proteins.fasta.faa
34 |
--------------------------------------------------------------------------------
/scripts/04_braker_proteins/05_busco.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=busco_braker
3 | #SBATCH -n 1
4 | #SBATCH -N 1
5 | #SBATCH -c 8
6 | #SBATCH --mem=10G
7 | #SBATCH --partition=general
8 | #SBATCH --qos=general
9 | #SBATCH --mail-type=ALL
10 | #SBATCH --mail-user=your.email@uconn.edu
11 | #SBATCH -o %x_%A.out
12 | #SBATCH -e %x_%A.err
13 |
14 | hostname
15 | date
16 |
17 | ##########################################################
18 | ## BUSCO ##
19 | ##########################################################
20 |
21 | module load busco/5.4.5
22 |
23 | # green plant busco database. already on the xanadu cluster. see documentation for how to obtain
24 | BUSCODB=/isg/shared/databases/BUSCO/odb10/lineages/viridiplantae_odb10
25 |
26 | #Output directory
27 | OUTDIR=../../results/04_braker/busco
28 | mkdir -p ${OUTDIR}
29 |
30 |
31 | # predicted proteins
32 | PROTEINS=../../results/04_braker/agat/codingsequences/braker_proteins.fasta.faa
33 |
34 |
35 | # run busco
36 | busco -i ${PROTEINS} \
37 | -o ${OUTDIR} \
38 | -c 8 \
39 | -l ${BUSCODB} \
40 | -m prot \
41 | -f
42 |
--------------------------------------------------------------------------------
/scripts/03_helixer/04_busco.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=busco_helixer
3 | #SBATCH -n 1
4 | #SBATCH -N 1
5 | #SBATCH -c 8
6 | #SBATCH --mem=10G
7 | #SBATCH --partition=general
8 | #SBATCH --qos=general
9 | #SBATCH --mail-type=ALL
10 | #SBATCH --mail-user=your.email@uconn.edu
11 | #SBATCH -o %x_%A.out
12 | #SBATCH -e %x_%A.err
13 |
14 | hostname
15 | date
16 |
17 | ##########################################################
18 | ## BUSCO ##
19 | ##########################################################
20 |
21 | module load busco/5.4.5
22 |
23 | # green plant busco database. already on the xanadu cluster. see documentation for how to obtain
24 | BUSCODB=/isg/shared/databases/BUSCO/odb10/lineages/viridiplantae_odb10
25 |
26 | #Output directory
27 | OUTDIR=../../results/03_helixer/busco
28 | mkdir -p ${OUTDIR}
29 |
30 |
31 |
32 | # predicted proteins
33 | PROTEINS=../../results/03_helixer/agat/codingsequences/helixer_proteins.fasta.faa
34 |
35 |
36 | # run busco
37 | busco -i ${PROTEINS} \
38 | -o ${OUTDIR} \
39 | -c 8 \
40 | -l ${BUSCODB} \
41 | -m prot \
42 | -f
43 |
44 |
--------------------------------------------------------------------------------
/scripts/04_braker_proteins/02_braker_proteins.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=braker_proteins
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 16
6 | #SBATCH --partition=general
7 | #SBATCH --qos=general
8 | #SBATCH --mail-type=END
9 | #SBATCH --mail-user=first.last@uconn.edu
10 | #SBATCH --mem=20G
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | # load software
18 | module load BRAKER/2.1.6
19 | module load ProtHint/2.6.0
20 |
21 | # for testing new perl version:
22 | module unload perl
23 | module load perl/5.36.0
24 |
25 | # set braker output directory and cd there
26 | OUTDIR=../../results/04_braker/proteins
27 | mkdir -p ${OUTDIR}
28 | cd ${OUTDIR}
29 |
30 | # copy augustus config, set variable
31 | export AUGUSTUS_CONFIG_PATH=$(pwd)/config
32 | cp -r /isg/shared/apps/augustus/3.6.0/config/ config
33 |
34 | # create a temp directory for braker temp files
35 | export TMPDIR=$(pwd)/braker_tmp
36 | mkdir -p ${TMPDIR}
37 |
38 | # set variables for input/output files
39 | GENOME="../../02_mask_repeats/repeatmasker/repeatmasker_out/GCF_000001735.4_TAIR10.1_genomic.fna.masked"
40 | PROTEINDB=proteins.fa
41 |
42 | # run braker
43 | braker.pl \
44 | --genome=${GENOME} \
45 | --prot_seq=${PROTEINDB} \
46 | --softmasking \
47 | --cores 16 \
48 | --gff3
49 |
--------------------------------------------------------------------------------
/scripts/01_raw_data/get_genome.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=getgenome
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 1
6 | #SBATCH --partition=general
7 | #SBATCH --qos=general
8 | #SBATCH --mail-type=END
9 | #SBATCH --mail-user=your.email@uconn.edu
10 | #SBATCH --mem=10G
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | OUTDIR=../../data/genome
18 | mkdir -p ${OUTDIR}
19 |
20 | cd ${OUTDIR}
21 |
22 | # Data: Arabidopsis thaliana TAIR10.1 assembly.
23 | # NCBI Accession: GCF_000001735.4
24 |
25 | # download genome
26 | wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/735/GCF_000001735.4_TAIR10.1/GCF_000001735.4_TAIR10.1_genomic.fna.gz
27 |
28 | # decompress
29 | gunzip GCF_000001735.4_TAIR10.1_genomic.fna.gz
30 |
31 | # strip off extra sequence name info after the space, e.g.
32 | # this: >NC_003070.9 Arabidopsis thaliana chromosome 1 sequence
33 | # becomes this: >NC_003070.9
34 | sed 's/ .*//' GCF_000001735.4_TAIR10.1_genomic.fna >tmp.fna
35 | mv tmp.fna GCF_000001735.4_TAIR10.1_genomic.fna
36 |
37 | # download the annotation (for comparison)
38 | wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/735/GCF_000001735.4_TAIR10.1/GCF_000001735.4_TAIR10.1_genomic.gff.gz
39 |
40 | # decompress
41 | gunzip GCF_000001735.4_TAIR10.1_genomic.gff.gz
42 |
--------------------------------------------------------------------------------
/scripts/02_mask_repeats/04_busco.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=busco
3 | #SBATCH -n 1
4 | #SBATCH -N 1
5 | #SBATCH -c 8
6 | #SBATCH --mem=10G
7 | #SBATCH --partition=xeon
8 | #SBATCH --qos=general
9 | #SBATCH --mail-type=ALL
10 | #SBATCH --mail-user=first.last@uconn.edu
11 | #SBATCH -o %x_%A.out
12 | #SBATCH -e %x_%A.err
13 |
14 | hostname
15 | date
16 |
17 | ##########################################################
18 | ## BUSCO ##
19 | ##########################################################
20 |
21 | module load busco/5.4.5
22 |
23 | # AUG_HOME=$HOME/Augustus
24 | # export AUGUSTUS_CONFIG_PATH=${AUG_HOME}/config
25 |
26 | # set output directory for busco, cd into parent directory
27 | BUSCODIR=../../results/02_mask_repeats/busco/
28 | mkdir -p ${BUSCODIR}
29 | cd ${BUSCODIR}
30 |
31 | OUTDIR=masked_genome
32 |
33 | # input masked genome
34 | MASKED_GENOME=../../02_mask_repeats/repeatmasker/repeatmasker_out/GCF_000001735.4_TAIR10.1_genomic.fna.masked
35 |
36 | # green plant busco database, already downloaded on xanadu. see busco documentation for how to obtain
37 | BUSCODB=/isg/shared/databases/BUSCO/odb10/lineages/viridiplantae_odb10
38 |
39 | # run busco
40 | busco -i ${MASKED_GENOME} \
41 | -o ${OUTDIR} \
42 | -c 8 \
43 | -f \
44 | -l ${BUSCODB} \
45 | -m genome
46 |
47 |
48 |
--------------------------------------------------------------------------------
/scripts/alignment_exercise/02_align.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=hisat2_align
3 | #SBATCH -n 1
4 | #SBATCH -N 1
5 | #SBATCH -c 4
6 | #SBATCH --mem=20G
7 | #SBATCH --partition=xeon
8 | #SBATCH --qos=general
9 | #SBATCH --mail-type=ALL
10 | #SBATCH --mail-user=first.last@uconn.edu
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | echo `hostname`
15 |
16 | #################################################################
17 | # Align reads to genome
18 | #################################################################
19 | module load hisat2/2.2.1
20 | module load samtools/1.12
21 |
22 | INDIR=../../data/rnaseq/
23 | OUTDIR=../../results/alignment_exercise/alignments
24 | mkdir -p $OUTDIR
25 |
26 | INDEX=../../results/alignment_exercise/hisat2_index/Athaliana
27 |
28 |
29 | # run hisat2
30 | hisat2 \
31 | -p 2 \
32 | -x $INDEX \
33 | -1 $INDIR/SRR6852085_1.fastq \
34 | -2 $INDIR/SRR6852085_2.fastq | \
35 | samtools view -@ 1 -S -h -u - | \
36 | samtools sort -@ 1 -T SRR6852085 - >$OUTDIR/SRR6852085.bam
37 |
38 | # index bam files
39 | samtools index $OUTDIR/SRR6852085.bam
40 |
41 | # run hisat2 on second sample
42 | hisat2 \
43 | -p 2 \
44 | -x $INDEX \
45 | -1 $INDIR/SRR6852086_1.fastq \
46 | -2 $INDIR/SRR6852086_2.fastq | \
47 | samtools view -@ 1 -S -h -u - | \
48 | samtools sort -@ 1 -T SRR6852086 - >$OUTDIR/SRR6852086.bam
49 |
50 | # index bam files
51 | samtools index $OUTDIR/SRR6852086.bam
52 |
--------------------------------------------------------------------------------
/scripts/03_helixer/02_agat_stats.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=agat_stats_helixer
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 1
6 | #SBATCH --partition=general
7 | #SBATCH --qos=general
8 | #SBATCH --mail-type=ALL
9 | #SBATCH --mem=50G
10 | #SBATCH --mail-user=your.email@uconn.edu
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | module load singularity
18 |
19 | OUTDIR="../../results/03_helixer/agat/statistics"
20 | mkdir -p ${OUTDIR}
21 |
22 | cd ${OUTDIR}
23 |
24 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sp_statistics.pl \
25 | --gff ../../Arabidopsis_thaliana.gff3 \
26 | -g ../../../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna \
27 | -o stats.txt
28 |
29 |
30 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sq_stat_basic.pl \
31 | --gff ../../Arabidopsis_thaliana.gff3 \
32 | -g ../../../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna \
33 | -o basic_stats.txt
34 |
35 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sp_functional_statistics.pl \
36 | --gff ../../Arabidopsis_thaliana.gff3 \
37 | -g ../../../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna \
38 | -o functional_statistics
39 |
40 |
41 |
--------------------------------------------------------------------------------
/scripts/04_braker_proteins/03_agat_stats.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=agat_stats_braker
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 1
6 | #SBATCH --partition=general
7 | #SBATCH --qos=general
8 | #SBATCH --mail-type=ALL
9 | #SBATCH --mem=50G
10 | #SBATCH --mail-user=your.email@uconn.edu
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | module load singularity
18 |
19 | OUTDIR="../../results/04_braker/agat/statistics"
20 | mkdir -p ${OUTDIR}
21 |
22 | cd ${OUTDIR}
23 |
24 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sp_statistics.pl \
25 | --gff ../../proteins/braker/augustus.hints.gtf \
26 | -g ../../../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna \
27 | -o stats.txt
28 |
29 |
30 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sq_stat_basic.pl \
31 | --gff ../../proteins/braker/augustus.hints.gtf \
32 | -g ../../../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna \
33 | -o basic_stats.txt
34 |
35 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sp_functional_statistics.pl \
36 | --gff ../../proteins/braker/augustus.hints.gtf \
37 | -g ../../../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna \
38 | -o functional_statistics
39 |
40 |
41 |
--------------------------------------------------------------------------------
/scripts/01_raw_data/sra_download.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=sra_download
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 4
6 | #SBATCH --partition=general
7 | #SBATCH --qos=general
8 | #SBATCH --mail-type=END
9 | #SBATCH --mail-user=your.email@uconn.edu
10 | #SBATCH --mem=8G
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | # run this script to download the data from the SRA
18 | # if you're on xanadu and want to save time, run the other
19 | # script in this directory to symlink the data instead
20 |
21 | # data
22 | # Illumina paired-end RNA-seq from Arabidopsis leaf tissue
23 | # bioproject: PRJNA438701
24 | # biosample: SAMN08724106
25 | # SRA runs:
26 | # SRR6852085
27 | # SRR6852086
28 |
29 | # Oxford nanopore long read cDNA
30 | # bioproject: PRJNA594286
31 | # biosamples: SAMN13510394,SAMN13510392,SAMN13510391
32 | # SRA runs:
33 | # SRR10611193
34 | # SRR10611194
35 | # SRR10611195
36 |
37 | # load software
38 | module load sratoolkit/2.11.3
39 |
40 | # output directory, create if it doesn't exist
41 | OUTDIR=../../data/rnaseq
42 | mkdir -p ${OUTDIR}
43 |
44 | cd ${OUTDIR}
45 |
46 | fasterq-dump SRR6852085
47 | fasterq-dump SRR6852086
48 |
49 | # nanopore outdir
50 | NANODIR=../nanopore
51 | mkdir -p ${NANODIR}
52 |
53 | cd ${NANODIR}
54 |
55 | fasterq-dump SRR10611193
56 | fasterq-dump SRR10611194
57 | fasterq-dump SRR10611195
58 |
59 | date
60 |
--------------------------------------------------------------------------------
/scripts/alignment_exercise/04_braker_qualimap.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=braker_qualimap
3 | #SBATCH --mail-user=
4 | #SBATCH --mail-type=ALL
5 | #SBATCH -o %x_%j.out
6 | #SBATCH -e %x_%j.err
7 | #SBATCH --ntasks=1
8 | #SBATCH --cpus-per-task=1
9 | #SBATCH --mem=10G
10 | #SBATCH --qos=general
11 | #SBATCH --partition=general
12 |
13 | hostname
14 | date
15 |
16 | ##################################
17 | # calculate stats on alignments
18 | ##################################
19 | # this time we'll use qualimap
20 |
21 | # load software--------------------------------------------------------------------------
22 | module load qualimap/2.2.1
23 |
24 |
25 | # input, output directories--------------------------------------------------------------
26 |
27 | INDIR=../../results/alignment_exercise/alignments
28 | OUTDIR=../../results/alignment_exercise/qualimap_reports/braker
29 | mkdir -p $OUTDIR
30 |
31 | # gtf annotation is required here
32 | GFF=../../results/04_braker/proteins/braker/augustus.hints.gtf
33 |
34 | qualimap \
35 | rnaseq \
36 | -bam $INDIR/SRR6852085.bam \
37 | -gtf $GFF \
38 | -outdir $OUTDIR/SRR6852085 \
39 | --java-mem-size=10G
40 |
41 | qualimap \
42 | rnaseq \
43 | -bam $INDIR/SRR6852086.bam \
44 | -gtf $GFF \
45 | -outdir $OUTDIR/SRR6852086 \
46 | --java-mem-size=10G
47 |
48 | ##aggregate qualimap results
49 | module load MultiQC/1.9
50 |
51 | MultiQC_OUT=../../results/alignment_exercise/qualimap_reports/braker/multiqc
52 | multiqc -f -o $MultiQC_OUT $OUTDIR
53 |
--------------------------------------------------------------------------------
/scripts/runall.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # get the data
4 | cd 01_raw_data/
5 | jid1=$( sbatch --parsable get_genome.sh )
6 | jid2=$( sbatch --parsable sra_download.sh )
7 |
8 | # repeat modeling/masking start when genome is downloaded
9 | cd ../02_mask_repeats
10 | jid3=$( sbatch --parsable --dependency=afterok:$jid1 01_create_db.sh )
11 | jid4=$( sbatch --parsable --dependency=afterok:$jid3 02_repeatmodeler.sh )
12 | jid5=$( sbatch --parsable --dependency=afterok:$jid4 03_repeatmasker.sh )
13 | jid6=$( sbatch --parsable --dependency=afterok:$jid5 04_busco.sh )
14 |
15 | #helixer
16 | cd ../03_helixer
17 | jid7=$( sbatch --parsable --dependency=afterok:$jid6 01_helixer.sh )
18 | jid8=$( sbatch --parsable --dependency=afterok:$jid7 02_agat_stats.sh )
19 | jid9=$( sbatch --parsable --dependency=afterok:$jid8 03_agat_codingsequences.sh )
20 | jid10=$( sbatch --parsable --dependency=afterok:$jid9 04_busco.sh )
21 | jid11=$( sbatch --parsable --dependency=afterok:$jid10 05_EnTAP.sh )
22 |
23 | # braker
24 | cd ../04_braker_proteins
25 | jid12=$( sbatch --parsable --dependency=afterok:$jid6 01_getproteins.sh )
26 | jid13=$( sbatch --parsable --dependency=afterok:$jid12 02_braker_proteins.sh )
27 | jid14=$( sbatch --parsable --dependency=afterok:$jid13 03_agat_stats.sh )
28 | jid15=$( sbatch --parsable --dependency=afterok:$jid14 04_agat_codingsequences.sh )
29 | jid16=$( sbatch --parsable --dependency=afterok:$jid15 05_busco.sh )
30 | jid17=$( sbatch --parsable --dependency=afterok:$jid16 06_EnTAP.sh )
31 |
32 | # EASEL
33 | cd ../05_EASEL
34 | jid18=$( sbatch --parsable --dependency=afterok:$jid1,$jid2 easel.sh )
35 |
36 | # compare
37 | cd ../06_gffcompare
38 | jid19=$( sbatch --parsable --dependency=afterok:$jid7,$jid13,$jid18 01_gffcompare.sh )
39 |
--------------------------------------------------------------------------------
/scripts/01_raw_data/symlink_data.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=symlink_fastqs
3 | #SBATCH -N 1
4 | #SBATCH -n 1
5 | #SBATCH -c 4
6 | #SBATCH --partition=general
7 | #SBATCH --qos=general
8 | #SBATCH --mail-type=END
9 | #SBATCH --mail-user=your.email@uconn.edu
10 | #SBATCH --mem=8G
11 | #SBATCH -o %x_%j.out
12 | #SBATCH -e %x_%j.err
13 |
14 | hostname
15 | date
16 |
17 | # run this script to symlink the data instead of downloading from the SRA
18 | # if you want to download the data instead, run the other script
19 |
20 | # data
21 | # RNA-seq from Arabidopsis leaf tissue
22 | # bioproject: PRJNA438701
23 | # biosample: SAMN08724106
24 | # SRA runs:
25 | # SRR6852085
26 | # SRR6852086
27 |
28 | # output directory, create if it doesn't exist
29 | OUTDIR=../../data/rnaseq
30 | mkdir -p $OUTDIR
31 |
32 | cd ${OUTDIR}
33 |
34 | # symlink data from fpath
35 | fpath="/core/cbc/tutorials/rawdata/Structural_Annotation/v1/arabidopsis_leaf/"
36 |
37 | for f in ${fpath}*; do
38 | echo $f
39 | echo `basename ${f}`
40 | ln -s ${f} `basename ${f}`
41 | done
42 |
43 |
44 |
45 | # Oxford nanopore long read cDNA
46 | # bioproject: PRJNA594286
47 | # biosamples: SAMN13510394,SAMN13510392,SAMN13510391
48 | # SRA runs:
49 | # SRR10611193
50 | # SRR10611194
51 | # SRR10611195
52 |
53 | # output directory, create if it doesn't exist
54 | OUTDIR=../../data/nanopore
55 | mkdir -p $OUTDIR
56 |
57 | cd ${OUTDIR}
58 |
59 | # symlink data from fpath
60 | fpath="/core/cbc/tutorials/rawdata/Structural_Annotation/v1/nanopore/"
61 |
62 | for f in ${fpath}*; do
63 | echo $f
64 | echo `basename ${f}`
65 | ln -s ${f} `basename ${f}`
66 | done
67 |
--------------------------------------------------------------------------------
/scripts/alignment_exercise/03_helixer_qualimap.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=helixer_qualimap
3 | #SBATCH --mail-user=
4 | #SBATCH --mail-type=ALL
5 | #SBATCH -o %x_%j.out
6 | #SBATCH -e %x_%j.err
7 | #SBATCH --ntasks=1
8 | #SBATCH --cpus-per-task=1
9 | #SBATCH --mem=10G
10 | #SBATCH --qos=general
11 | #SBATCH --partition=general
12 |
13 | hostname
14 | date
15 |
16 | ##################################
17 | # calculate stats on alignments
18 | ##################################
19 | # this time we'll use qualimap
20 |
21 |
22 |
23 | # input, output directories--------------------------------------------------------------
24 |
25 | INDIR=../../results/alignment_exercise/alignments
26 | OUTDIR=../../results/alignment_exercise/qualimap_reports/helixer
27 | mkdir -p $OUTDIR
28 |
29 | #get gff3 in gtf format
30 | #module load singularity
31 | #GFF=../../results/03_helixer/Arabidopsis_thaliana.gff3
32 |
33 |
34 | #singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_convert_sp_gff2gtf.pl --gff $GFF -o ../../results/03_helixer/Arabidopsis_thaliana.gtf
35 |
36 | # gtf annotation is required here
37 | GTF=../../results/03_helixer/Arabidopsis_thaliana.gtf
38 |
39 | # load software--------------------------------------------------------------------------
40 | module load qualimap/2.2.1
41 |
42 | qualimap \
43 | rnaseq \
44 | -bam $INDIR/SRR6852085.bam \
45 | -gtf $GTF \
46 | -outdir $OUTDIR/SRR6852085 \
47 | --java-mem-size=10G
48 |
49 | qualimap \
50 | rnaseq \
51 | -bam $INDIR/SRR6852086.bam \
52 | -gtf $GTF \
53 | -outdir $OUTDIR/SRR6852086 \
54 | --java-mem-size=10G
55 |
56 | ##aggregate qualimap results
57 | module load MultiQC/1.9
58 |
59 | MultiQC_OUT=../../results/alignment_exercise/qualimap_reports/helixer/multiqc
60 | multiqc -f -o $MultiQC_OUT $OUTDIR
61 |
--------------------------------------------------------------------------------
/scripts/alignment_exercise/Arabidopsis_thaliana.agat.log:
--------------------------------------------------------------------------------
1 |
2 | ------------------------------------------------------------------------------
3 | | Another GFF Analysis Toolkit (AGAT) - Version: v1.0.0 |
4 | | https://github.com/NBISweden/AGAT |
5 | | National Bioinformatics Infrastructure Sweden (NBIS) - www.nbis.se |
6 | ------------------------------------------------------------------------------
7 | 06/09/2023 at 17h52m56s
8 |
9 | ********************************************************************************
10 | * - Start parsing - *
11 | ********************************************************************************
12 | -------------------------- parse options and metadata --------------------------
13 | => Accessing the feature_levels YAML file
14 | Using standard /usr/local/lib/perl5/site_perl/auto/share/dist/AGAT/feature_levels.yaml file
15 | => Attribute used to group features when no Parent/ID relationship exists (i.e common tag):
16 | * locus_tag
17 | * gene_id
18 | => merge_loci option deactivated
19 | => Machine information:
20 | This script is being run by perl v5.32.1
21 | Bioperl location being used: /usr/local/lib/perl5/site_perl/Bio/
22 | Operating system being used: linux
23 | => Accessing Ontology
24 | No ontology accessible from the gff file header!
25 | We use the SOFA ontology distributed with AGAT:
26 | /usr/local/lib/perl5/site_perl/auto/share/dist/AGAT/so.obo
27 | Read ontology /usr/local/lib/perl5/site_perl/auto/share/dist/AGAT/so.obo:
28 | 4 root terms, and 2596 total terms, and 1516 leaf terms
29 | Filtering ontology:
30 | The feature type (3rd column) is constrained to be either a term from the Sequence Ontology or an SO accession number. The latter alternative is distinguished using the syntax SO:000000. In either case, it must be sequence_feature (SO:0000110) or an is_a child of it.
31 | We filter the ontology to apply this rule. We found 1861 terms that are sequence_feature or is_a child of it.
32 | --------------------------------- parsing file ---------------------------------
33 | => Number of line in file: 408528
34 | => Number of comment lines: 0
35 | => Fasta included: No
36 | => Number of features lines: 408528
37 | => Number of feature type (3rd column): 6
38 | * Level1: 1 => gene
39 | * level2: 1 => mRNA
40 | * level3: 4 => CDS three_prime_UTR five_prime_UTR exon
41 | * unknown: 0 =>
42 | => Version of the Bioperl GFF parser selected by AGAT: 3
43 | ********************************************************************************
44 | * - End parsing - *
45 | * done in 35 seconds *
46 | ********************************************************************************
47 |
48 | ********************************************************************************
49 | * - Start checks - *
50 | ********************************************************************************
51 | ---------------------------- Check1: feature types -----------------------------
52 | ----------------------------------- ontology -----------------------------------
53 | All feature types in agreement with the Ontology.
54 | ------------------------------------- agat -------------------------------------
55 | AGAT can deal with all the encountered feature types (3rd column)
56 | ------------------------------ done in 0 seconds -------------------------------
57 |
58 | ------------------------------ Check2: duplicates ------------------------------
59 | None found
60 | ------------------------------ done in 0 seconds -------------------------------
61 |
62 | -------------------------- Check3: sequential bucket ---------------------------
63 | Nothing to check as sequential bucket!
64 | ------------------------------ done in 0 seconds -------------------------------
65 |
66 | --------------------------- Check4: l2 linked to l3 ----------------------------
67 | No problem found
68 | ------------------------------ done in 0 seconds -------------------------------
69 |
70 | --------------------------- Check5: l1 linked to l2 ----------------------------
71 | No problem found
72 | ------------------------------ done in 0 seconds -------------------------------
73 |
74 | --------------------------- Check6: remove orphan l1 ---------------------------
75 | We remove only those not supposed to be orphan
76 | None found
77 | ------------------------------ done in 0 seconds -------------------------------
78 |
79 | ------------------------- Check7: all level3 locations -------------------------
80 | ------------------------------ done in 4 seconds -------------------------------
81 |
82 | ------------------------------ Check8: check cds -------------------------------
83 | No problem found
84 | ------------------------------ done in 0 seconds -------------------------------
85 |
86 | ----------------------------- Check9: check exons ------------------------------
87 | No exons created
88 | No exons locations modified
89 | No supernumerary exons removed
90 | No level2 locations modified
91 | ------------------------------ done in 4 seconds -------------------------------
92 |
93 | ----------------------------- Check10: check utrs ------------------------------
94 | No UTRs created
95 | No UTRs locations modified
96 | No supernumerary UTRs removed
97 | ------------------------------ done in 2 seconds -------------------------------
98 |
99 | ------------------------ Check11: all level2 locations -------------------------
100 | No problem found
101 | ------------------------------ done in 5 seconds -------------------------------
102 |
103 | ------------------------ Check12: all level1 locations -------------------------
104 | No problem found
105 | ------------------------------ done in 0 seconds -------------------------------
106 |
107 | ---------------------- Check13: remove identical isoforms ----------------------
108 | None found
109 | ------------------------------ done in 0 seconds -------------------------------
110 | ********************************************************************************
111 | * - End checks - *
112 | * done in 15 seconds *
113 | ********************************************************************************
114 |
115 | => OmniscientI total time: 50 seconds
116 |
--------------------------------------------------------------------------------
/scripts/04_braker_proteins/busco_downloads/file_versions.tsv:
--------------------------------------------------------------------------------
1 | acidobacteria_odb10 2020-03-06 2d141e67a5fcd237c1db7cf2ac418d0f Prokaryota lineages
2 | aconoidasida_odb10 2020-08-05 adf61fbf84c7f222bb7ce6b1781f2926 Eukaryota lineages
3 | actinobacteria_class_odb10 2021-02-23 38032291926fdaf510c9c48036148644 Prokaryota lineages
4 | actinobacteria_phylum_odb10 2021-02-23 5f73378fb872cb94b698a6cd8c776dda Prokaryota lineages
5 | actinopterygii_odb10 2021-02-19 b3a29afc90e82dad596cb3b29102dffe Eukaryota lineages
6 | agaricales_odb10 2020-08-05 affd427a56e545b88bb7fff00bfdad3d Eukaryota lineages
7 | agaricomycetes_odb10 2020-08-05 c2880cb5ae1719890a7d493bc8d00254 Eukaryota lineages
8 | alphaproteobacteria_odb10 2021-02-23 c58d65ae5c7d518db5ef63c4c70800bc Prokaryota lineages
9 | alteromonadales_odb10 2021-02-23 285152f93caaade94f8fedf9ff41140c Prokaryota lineages
10 | alveolata_odb10 2020-09-10 b4295c597c6b79c20d31a5c792882b33 Eukaryota lineages
11 | apicomplexa_odb10 2020-09-10 d3d363c81a3143a3cd943e4859819981 Eukaryota lineages
12 | aquificae_odb10 2021-02-23 24d4d93ec4d4710d92463ce21b860d44 Prokaryota lineages
13 | arachnida_odb10 2020-08-05 bc082278b8c4bf154138029d06274818 Eukaryota lineages
14 | archaea_odb10 2021-02-23 e9d5d92c92ef6c7c5b2737ece2a18ce0 Prokaryota lineages
15 | arthropoda_odb10 2020-09-10 120880f396b589a52dd523fba555b29f Eukaryota lineages
16 | ascomycota_odb10 2020-09-10 fb9ff09632c714e87e9813f3e0f7a282 Eukaryota lineages
17 | aves_odb10 2021-02-19 31c62d84d069449d464c4710bc0f7aca Eukaryota lineages
18 | bacillales_odb10 2021-02-23 079e0586cd45d7bb3610ec3afa8c9c11 Prokaryota lineages
19 | bacilli_odb10 2021-02-23 bfe452ba1cb520a6a922e78d6845131c Prokaryota lineages
20 | bacteria_odb10 2020-03-06 938c9fa3b6326112334fec79c4a54b57 Prokaryota lineages
21 | bacteroidales_odb10 2021-02-23 bb5a179da3a4c337380487b826a10b83 Prokaryota lineages
22 | bacteroidetes-chlorobi_group_odb10 2021-02-23 eaed067069f2e6041a4b5228175b5753 Prokaryota lineages
23 | bacteroidetes_odb10 2021-02-23 226870db6fa453ec2a245a7644b2b047 Prokaryota lineages
24 | bacteroidia_odb10 2021-02-23 c8c3a1694b7e2a45dc4bb1806cb46976 Prokaryota lineages
25 | basidiomycota_odb10 2020-09-10 902b52e48eeeeafaa4d5bd8a9a58c3a8 Eukaryota lineages
26 | betaproteobacteria_odb10 2021-02-23 3bcfd10bb4b822b946c97b66b92cf277 Prokaryota lineages
27 | boletales_odb10 2020-08-05 949e92ee737f5192981856dddf1842b4 Eukaryota lineages
28 | brassicales_odb10 2020-08-05 cbbadbf123b9848edf4c5f832a624ef1 Eukaryota lineages
29 | burkholderiales_odb10 2021-02-23 f59e27ec2378e59abd122bfe82c1d105 Prokaryota lineages
30 | campylobacterales_odb10 2020-03-06 577592ec5383a570cd8be9beec560525 Prokaryota lineages
31 | capnodiales_odb10 2020-08-05 307cff52681697718e796ecbeef108b6 Eukaryota lineages
32 | carnivora_odb10 2021-02-19 b3f12f32f04545c13c72de45cbbb2c7f Eukaryota lineages
33 | cellvibrionales_odb10 2020-03-06 a26de678af35ed6d0f887fb2270d1729 Prokaryota lineages
34 | cetartiodactyla_odb10 2021-02-19 e96dfc6299c567768085ee9569b6ab15 Eukaryota lineages
35 | chaetothyriales_odb10 2020-08-05 1f5ae267023a7440f191a25955c71b3d Eukaryota lineages
36 | chlamydiae_odb10 2020-03-06 2173f9d1deb8536fd533c70219b674bd Prokaryota lineages
37 | chlorobi_odb10 2020-03-06 206c59743579333d82a63ac34eed7b91 Prokaryota lineages
38 | chloroflexi_odb10 2020-03-06 a50e7763a1d545724b4747043afaf1d2 Prokaryota lineages
39 | chlorophyta_odb10 2020-08-05 1e7eb8376e0d6b08451b8bdb33f58776 Eukaryota lineages
40 | chromatiales_odb10 2020-03-06 f6a8e3bf1b2bd52b4cad4827228c1831 Prokaryota lineages
41 | chroococcales_odb10 2020-03-06 c4e9cf5f1f7cf71071025f496f0c1348 Prokaryota lineages
42 | clostridiales_odb10 2020-03-06 b2be6299fc011ffd1e8516c1f06240eb Prokaryota lineages
43 | clostridia_odb10 2020-03-06 eaefff5206a835262cd8f51baa02fdf4 Prokaryota lineages
44 | coccidia_odb10 2020-08-05 c8ed309d74b8ae78fa2401458d1612b9 Eukaryota lineages
45 | coriobacteriales_odb10 2020-03-06 2b10fbf070ee0922617fcfe49aa80c29 Prokaryota lineages
46 | coriobacteriia_odb10 2020-03-06 94aea07bcda4b9f1d39ac2a65ed4e688 Prokaryota lineages
47 | corynebacteriales_odb10 2020-03-06 9a30bd54e30eaecf8637fd063916ed4f Prokaryota lineages
48 | cyanobacteria_odb10 2021-02-23 323d5fa15bc65cd0f16cccbcaa7a2f9f Prokaryota lineages
49 | cyprinodontiformes_odb10 2021-02-19 9a2490309802e45fe7476d4d9d46101f Eukaryota lineages
50 | cytophagales_odb10 2021-02-23 5e6376e82a5e19ca3016a341f43d049f Prokaryota lineages
51 | cytophagia_odb10 2021-02-23 2a7ad77bcd010f012c0ba74968253d20 Prokaryota lineages
52 | delta-epsilon-subdivisions_odb10 2021-02-23 1b1ea2795fe21f7987eaea59d81630ed Prokaryota lineages
53 | deltaproteobacteria_odb10 2021-02-23 fa17f4e1ba4b58846a3e0ec1cc31da2c Prokaryota lineages
54 | desulfobacterales_odb10 2020-03-06 9ab123e5a7c62f7afe5801838fb7c86c Prokaryota lineages
55 | desulfovibrionales_odb10 2021-02-23 75744e405f350155945a5f54c1ddacf2 Prokaryota lineages
56 | desulfurococcales_odb10 2021-02-23 1104b2ddf4175dce4209900e10557b24 Prokaryota lineages
57 | desulfuromonadales_odb10 2020-03-06 e17404d24b53f441d17f2de26a167be3 Prokaryota lineages
58 | diptera_odb10 2020-08-05 dbcbc5c66fd3ccb74dac42aba2ef9f54 Eukaryota lineages
59 | dothideomycetes_odb10 2020-08-05 8dd584d1a04eb730a9a36f6ded62f316 Eukaryota lineages
60 | embryophyta_odb10 2020-09-10 60ab0ab9ae5983dad157628cdb66aea4 Eukaryota lineages
61 | endopterygota_odb10 2020-09-10 4edcf89c3d56d11d3217ac78a55a9c8a Eukaryota lineages
62 | enterobacterales_odb10 2021-02-23 e3e79a8343682813068add13b9e42001 Prokaryota lineages
63 | entomoplasmatales_odb10 2020-03-06 275a32b658851b2fcb8ec0aaaf3dd456 Prokaryota lineages
64 | epsilonproteobacteria_odb10 2020-03-06 27dfe74e001490f54872182d2d3e0fc9 Prokaryota lineages
65 | euarchontoglires_odb10 2021-02-19 53ae07cb11ad8fbb7b6adcb60a21eb87 Eukaryota lineages
66 | eudicots_odb10 2020-09-10 08752dd1cbed6ae1dbcde78b49c8ea2f Eukaryota lineages
67 | euglenozoa_odb10 2020-08-05 e2bdaeda273ff3cf2befad32fd964834 Eukaryota lineages
68 | eukaryota_odb10 2020-09-10 01c475de80f458fc662595f7c52f2c7c Eukaryota lineages
69 | eurotiales_odb10 2020-08-05 1b8638d3f11083a05c13ac85d8d1c6cc Eukaryota lineages
70 | eurotiomycetes_odb10 2020-08-05 c8f5f61ec75edaa4f90cbc806b0a62fb Eukaryota lineages
71 | euryarchaeota_odb10 2021-02-23 dd5618970967837356ec01a26e345698 Prokaryota lineages
72 | eutheria_odb10 2021-02-19 1e06f18bb86ee888de68edc5b2488566 Eukaryota lineages
73 | fabales_odb10 2020-08-05 a6b23c521fa40bff31e01b92848414f9 Eukaryota lineages
74 | firmicutes_odb10 2021-02-23 95f62a68964c2ff85a3af0a8b8618b20 Prokaryota lineages
75 | flavobacteriales_odb10 2021-02-23 1b9e8a447d7d4ea997423c7e7f1d7907 Prokaryota lineages
76 | flavobacteriia_odb10 2021-02-23 134a9d7ba4a4b750785665ba6ba818ca Prokaryota lineages
77 | fungi_odb10 2021-06-28 343cfbc68df867970c1e3251b8c3886c Eukaryota lineages
78 | fusobacteriales_odb10 2020-03-06 7ef0baae4b567ffb9f19c5b1a42f8169 Prokaryota lineages
79 | fusobacteria_odb10 2020-03-06 2c4a243016fcf267f9e4fd7e2bc71500 Prokaryota lineages
80 | gammaproteobacteria_odb10 2021-02-23 5bb66bbbcc05168aaf28a2e02f4582d2 Prokaryota lineages
81 | glires_odb10 2021-02-19 39633c8425b2badc140da2504fc87cc6 Eukaryota lineages
82 | glomerellales_odb10 2020-08-05 4b30a551d675fcda7387c11578da7505 Eukaryota lineages
83 | halobacteriales_odb10 2021-02-23 7d595108e1e3e8a5a4dc3c71a853a933 Prokaryota lineages
84 | halobacteria_odb10 2021-02-23 67b9d5b545b50dd3e10ed41e2fbaf8e1 Prokaryota lineages
85 | haloferacales_odb10 2021-02-23 94480d89ec94075514bccd0805f71be4 Prokaryota lineages
86 | helotiales_odb10 2020-08-05 7b37f15f53446fb27799ca7bf57a255a Eukaryota lineages
87 | hemiptera_odb10 2020-08-05 5605964c582ff35a465bf2629f7f5bcb Eukaryota lineages
88 | hymenoptera_odb10 2020-08-05 d1fb8b5eab6222908188702c791f7e30 Eukaryota lineages
89 | hypocreales_odb10 2020-08-05 b3f1e90d1994e95930038951e8614a4e Eukaryota lineages
90 | insecta_odb10 2020-09-10 37811ebbdac556a9afa5b7b73ba80568 Eukaryota lineages
91 | lactobacillales_odb10 2020-03-06 750d7268082765b50f07ef3d14d3bff8 Prokaryota lineages
92 | laurasiatheria_odb10 2021-02-19 1af2473b8484afef051c6bd22599f6f4 Eukaryota lineages
93 | legionellales_odb10 2020-03-06 d4cf996e02d3386e752c2b5ab78990bc Prokaryota lineages
94 | leotiomycetes_odb10 2020-08-05 6c24724da1caf5200ab6fb09a1fa899c Eukaryota lineages
95 | lepidoptera_odb10 2020-08-05 50cd95f78717f7c9cb628b4c2cfdcf8c Eukaryota lineages
96 | liliopsida_odb10 2020-09-10 04fe88de47726ab0304a0d5d39b3a7c0 Eukaryota lineages
97 | lineages_list.txt 2021-12-14 ebe3d982a830281588e287cf72f3b5e1 NaN information
98 | list_of_reference_markers.archaea_odb10.txt 2019-12-16 0143477e3666a5bcdec26a826eb01ab4 Prokaryota placement_files
99 | list_of_reference_markers.bacteria_odb10.txt 2019-12-16 e82a39f3060123f4322057c632d7691c Prokaryota placement_files
100 | list_of_reference_markers.eukaryota_odb10.txt 2019-12-16 95a02d2bbe1659778bda594d59c90ee1 Eukaryota placement_files
101 | mammalia_odb10 2021-02-19 2ecac1cc6306e23aedc5554d21aa8cb9 Eukaryota lineages
102 | mapping_taxid-lineage.archaea_odb10.txt 2019-12-16 5a05ab8eb491f6d4ae9f7774fd778f7e Prokaryota placement_files
103 | mapping_taxid-lineage.bacteria_odb10.txt 2019-12-16 b25a5a807f4ff70f4343ef7500d26975 Prokaryota placement_files
104 | mapping_taxid-lineage.eukaryota_odb10.txt 2019-12-16 e5b047a09cee36f1116f7de1453276b4 Eukaryota placement_files
105 | mapping_taxids-busco_dataset_name.archaea_odb10.txt 2019-12-16 d8cc75b75e052e475e07d84cb4d8cd06 Prokaryota placement_files
106 | mapping_taxids-busco_dataset_name.bacteria_odb10.txt 2019-12-16 79514724345b6cae32bb05ecacc11386 Prokaryota placement_files
107 | mapping_taxids-busco_dataset_name.eukaryota_odb10.txt 2019-12-16 435492f974732bb2d562d5abe54bd494 Eukaryota placement_files
108 | metazoa_odb10 2021-02-24 908ac6e4843180b0da78008d8d13ad64 Eukaryota lineages
109 | methanobacteria_odb10 2021-02-23 ae5f8e89824ac8ce4cdce39def33075c Prokaryota lineages
110 | methanococcales_odb10 2021-02-23 63b2307d5bf99281d54a911ddae98c06 Prokaryota lineages
111 | methanomicrobiales_odb10 2021-02-23 e672048d3ce1482a2d5c9fb021939f16 Prokaryota lineages
112 | methanomicrobia_odb10 2021-02-23 342fb683a40299e1cf99c2e2a0d824e7 Prokaryota lineages
113 | micrococcales_odb10 2021-02-23 cc25897fe0037744d5c08611caf67f58 Prokaryota lineages
114 | microsporidia_odb10 2020-08-05 d4494748201b68681be04251797e2a29 Eukaryota lineages
115 | mollicutes_odb10 2020-03-06 da5b755e2e78520935d9497170dc722f Prokaryota lineages
116 | mollusca_odb10 2020-08-05 870b7d6ebc045f17b7701edd6c700283 Eukaryota lineages
117 | mucorales_odb10 2020-08-05 b5d8ca40517c336e97bd203ceb0285be Eukaryota lineages
118 | mucoromycota_odb10 2020-08-05 c8daca800b3c3beaa90984d043123bba Eukaryota lineages
119 | mycoplasmatales_odb10 2020-03-06 efb525bcfca4cd466a54d23c313e8cb5 Prokaryota lineages
120 | natrialbales_odb10 2021-02-23 b2e28169386b3867f8925eab47819901 Prokaryota lineages
121 | neisseriales_odb10 2021-02-23 6c6471483c294289c18e315f5c498a79 Prokaryota lineages
122 | nematoda_odb10 2020-08-05 837c874e300dacdaac1ea1c568f0a500 Eukaryota lineages
123 | nitrosomonadales_odb10 2020-03-06 b3faf24a30603b005d9fdd1b38b7a1ed Prokaryota lineages
124 | nostocales_odb10 2020-03-06 9169e406cbaf8e1979fdaaf82d9376c8 Prokaryota lineages
125 | oceanospirillales_odb10 2020-03-06 b86602828ec38ac083f6f021b3e2025f Prokaryota lineages
126 | onygenales_odb10 2020-08-05 5b737b0f6e4fdfd2c2bb8eef16312395 Eukaryota lineages
127 | oscillatoriales_odb10 2021-02-23 04ff36824a0333ecff06c19d3f696a78 Prokaryota lineages
128 | passeriformes_odb10 2021-02-19 0824ddc607ac23b81aba3b130c0ce3df Eukaryota lineages
129 | pasteurellales_odb10 2021-02-23 a58779d0fe992329b9c0dc1c1458f888 Prokaryota lineages
130 | planctomycetes_odb10 2020-03-06 0118b81b7df79cb1403b67f8183df555 Prokaryota lineages
131 | plasmodium_odb10 2020-08-05 c1b9af272f9d70cd87f2495ca02685f3 Eukaryota lineages
132 | pleosporales_odb10 2020-08-05 24b74bee7aba5bb7162e14cba16b4ae8 Eukaryota lineages
133 | poales_odb10 2020-08-05 f1370a401e061fbc481efc8d56a61299 Eukaryota lineages
134 | polyporales_odb10 2020-08-05 a8d1e8649af6305a646fa9560b8303a7 Eukaryota lineages
135 | primates_odb10 2021-02-19 70d4c8b9e252240c3361a8e9a36d7a63 Eukaryota lineages
136 | propionibacteriales_odb10 2020-03-06 abeabfab016e6dd8e174b8ff1f8cc3a6 Prokaryota lineages
137 | proteobacteria_odb10 2021-02-23 dfa99ad6fc3370619e36e0943f87e0ed Prokaryota lineages
138 | pseudomonadales_odb10 2020-03-06 2e75cacc10577e9ada225656b1d69698 Prokaryota lineages
139 | rhizobiales_odb10 2020-03-06 9d26dd132ea103cf12858572c1ccc30e Prokaryota lineages
140 | rhizobium-agrobacterium_group_odb10 2020-03-06 079b0f90df6ebcd4af5974e0f343751a Prokaryota lineages
141 | rhodobacterales_odb10 2021-02-23 1b5a9124171c07833f0e183112d0b797 Prokaryota lineages
142 | rhodospirillales_odb10 2020-03-06 15c0f83895891445119139d50e78a886 Prokaryota lineages
143 | rickettsiales_odb10 2020-03-06 786ed0abd6b46310e3801b23d5cb9ba5 Prokaryota lineages
144 | saccharomycetes_odb10 2020-08-05 9a6f694b70cb4371dafa07cbfefca21c Eukaryota lineages
145 | sauropsida_odb10 2021-02-19 0e96bcd14a25cd9f5a777dca8c486247 Eukaryota lineages
146 | selenomonadales_odb10 2020-03-06 182874011e09a85e223afcd10042dbfa Prokaryota lineages
147 | solanales_odb10 2020-08-05 372f8c2be80b3caeaedb53269d828452 Eukaryota lineages
148 | sordariomycetes_odb10 2020-08-05 7bb1a10b6e41280fa64c6662a63cee5e Eukaryota lineages
149 | sphingobacteriia_odb10 2020-03-06 d01c990601be499724e545e0154fa005 Prokaryota lineages
150 | sphingomonadales_odb10 2021-02-23 40f4f725e3348cab730a03b2fc02a3ba Prokaryota lineages
151 | spirochaetales_odb10 2020-03-06 42e9a4a32a4e9c61df42e8164c8a5a5a Prokaryota lineages
152 | spirochaetes_odb10 2021-02-23 967d4681c40a92556466a3d7e7ff8f4a Prokaryota lineages
153 | spirochaetia_odb10 2021-02-23 3bdc4751f645f9d86cd4adcec5c8a760 Prokaryota lineages
154 | stramenopiles_odb10 2020-08-05 dc910d58211329a234212d2c66789a79 Eukaryota lineages
155 | streptomycetales_odb10 2020-03-06 6f8019faf605c81e4d395c22cca0f20b Prokaryota lineages
156 | streptosporangiales_odb10 2020-03-06 1c91c03f877d928d14ff91efd683d5b4 Prokaryota lineages
157 | sulfolobales_odb10 2021-02-23 4007f40f3d0ed35185696d46697c8063 Prokaryota lineages
158 | supermatrix.aln.archaea_odb10.faa 2019-12-16 e9d2c8065a7779f9447b154b9030bcf8 Prokaryota placement_files
159 | supermatrix.aln.bacteria_odb10.faa 2019-12-16 eba6a090cbe21abe1db69d841e8231bc Prokaryota placement_files
160 | supermatrix.aln.eukaryota_odb10.faa 2019-12-16 3584e9fb12211b8c8c3ad63666444be1 Eukaryota placement_files
161 | synechococcales_odb10 2020-03-06 5ecdb97dc990e41102cab2684e69bb29 Prokaryota lineages
162 | synergistetes_odb10 2020-03-06 8f7dfc139094256c3db8072889a7f1d3 Prokaryota lineages
163 | tenericutes_odb10 2020-03-06 89c06a7b611cc7f62d8f19b5f3bc0dcd Prokaryota lineages
164 | tetrapoda_odb10 2021-02-19 694b8126182196ee9ae818aa481b02fa Eukaryota lineages
165 | thaumarchaeota_odb10 2021-02-23 4ab99951258ded64872c0190b71233de Prokaryota lineages
166 | thermoanaerobacterales_odb10 2020-03-06 0dc67d585bb9fcce1c02709336a04a76 Prokaryota lineages
167 | thermoplasmata_odb10 2021-02-23 a9296e8c5eb7a93593bdcb22e7b55744 Prokaryota lineages
168 | thermoproteales_odb10 2021-02-23 3ef9fe8a82657c27e72bb497dd1d8368 Prokaryota lineages
169 | thermoprotei_odb10 2021-02-23 77ec52b85096249d1c95c396a86e4ee9 Prokaryota lineages
170 | thermotogae_odb10 2020-03-06 fcf3316fda42cc5838095c3ef499f609 Prokaryota lineages
171 | thiotrichales_odb10 2020-03-06 d263640af89b51fa9dceac4cb37a2fdf Prokaryota lineages
172 | tissierellales_odb10 2020-03-06 0141ae72086d9f6e852a8e631bec2aea Prokaryota lineages
173 | tissierellia_odb10 2020-03-06 31903c27aaa16fc5c874985d572827d0 Prokaryota lineages
174 | tree.archaea_odb10.nwk 2019-12-16 23a9602460ca3ba12a4382964c40add4 Prokaryota placement_files
175 | tree.bacteria_odb10.nwk 2019-12-16 3cbe2d6292e02ee78b92b42ec7c13bf5 Prokaryota placement_files
176 | tree.eukaryota_odb10.nwk 2019-12-16 cb0d434ee9d87f5d6babd1832a3fa419 Eukaryota placement_files
177 | tree_metadata.archaea_odb10.txt 2019-12-16 1cc8a1284c883d9a5a8e33e70a81a743 Prokaryota placement_files
178 | tree_metadata.bacteria_odb10.txt 2019-12-16 04a34d1dbcc0814bd0f5acee1d2a9c3f Prokaryota placement_files
179 | tree_metadata.eukaryota_odb10.txt 2019-12-16 589ac2a41cb79863d4b0b061e472afea Eukaryota placement_files
180 | tremellomycetes_odb10 2020-08-05 349aef56d9ce5dc706e3be6d5d8df64c Eukaryota lineages
181 | verrucomicrobia_odb10 2020-03-06 d4fa7ba13a11fc30615d2c4b0e2c3c8a Prokaryota lineages
182 | vertebrata_odb10 2021-02-19 39319c8dbd4dde04dfdf3df8fde4e929 Eukaryota lineages
183 | vibrionales_odb10 2020-03-06 283699e0f1eb883e1eb98192327c6224 Prokaryota lineages
184 | viridiplantae_odb10 2020-09-10 6248976a39dc28727fcf7e91d4d7dca5 Eukaryota lineages
185 | xanthomonadales_odb10 2020-03-06 011a3a83c95bb2e065b7f9ba6d2174ef Prokaryota lineages
186 | alphaherpesvirinae_odb10 2020-11-26 30e2421312c2b2cad546e2c6bf06163c Virus lineages
187 | baculoviridae_odb10 2020-11-26 6db6c2f1f94bb760d216c1a837302323 Virus lineages
188 | rudiviridae_odb10 2020-11-26 3c6ac24c6cf4ea6a0b2a56e3cc7cb754 Virus lineages
189 | betaherpesvirinae_odb10 2020-11-26 b1ae785f353b911a6f6278ac159b4a4d Virus lineages
190 | herpesviridae_odb10 2020-11-26 9c2dd3ce19e1b0f90b21332fa7e7709b Virus lineages
191 | poxviridae_odb10 2020-11-26 4f79e3bb1c27bffb540bc9b5d8acbbcb Virus lineages
192 | tevenvirinae_odb10 2021-02-23 e839d5423faffc89f77612f3ebe54b7b Virus lineages
193 | aviadenovirus_odb10 2020-11-26 d24de19699c4030017035632b8ba0b01 Virus lineages
194 | enquatrovirus_odb10 2021-05-05 5e2425ba29d3bf1a0ed9db7aee4d2421 Virus lineages
195 | teseptimavirus_odb10 2020-11-26 7bb7dc9886e11502dde6fcb01a5376fa Virus lineages
196 | bclasvirinae_odb10 2020-11-26 01a6b43c49c9ca6fad86dc0405d7abc0 Virus lineages
197 | fromanvirus_odb10 2020-11-26 ea48d816aceabaa50b17e82aab9e19f9 Virus lineages
198 | skunavirus_odb10 2020-11-26 c977dd93312f7e31aaf13ba13597b8ad Virus lineages
199 | betabaculovirus_odb10 2020-11-26 ffb9d466040e6ed54f105d8a8a3193dd Virus lineages
200 | pahexavirus_odb10 2020-11-26 abd6e473974b5f74c2ee553eeeb81f6e Virus lineages
201 | alphabaculovirus_odb10 2020-11-26 e180f2b7ff5aebeac9f94dac74513bd0 Virus lineages
202 | tunavirinae_odb10 2020-11-26 08dc4693553f06940e7d4f6d4f73ba0d Virus lineages
203 | simplexvirus_odb10 2020-11-26 1f380eabeec787edc1617d5913b42d61 Virus lineages
204 | gammaherpesvirinae_odb10 2020-11-26 8abf118f3ba5554f621af737f9e4e053 Virus lineages
205 | varicellovirus_odb10 2020-11-26 0f8277c95dcd1cb472d632c4310fe34e Virus lineages
206 | cheoctovirus_odb10 2020-11-26 ff2403efea77d38716bca26d5591270d Virus lineages
207 | guernseyvirinae_odb10 2020-11-26 48d58eb0e99aea04a5506d5357c1bfbf Virus lineages
208 | tequatrovirus_odb10 2020-11-26 9f4c8e14aab52a505109bc460d4c1289 Virus lineages
209 | chordopoxvirinae_odb10 2020-11-26 e84a912c4fed4bdddacb12f36e1b3575 Virus lineages
210 | peduovirus_odb10 2021-02-23 372b89a33e2db3e090baacee2b14c6e5 Virus lineages
211 | iridoviridae_odb10 2020-11-26 2a1803e6b999005a2063f98b2ae8bc94 Virus lineages
212 | spounavirinae_odb10 2020-11-26 d549991c93c2271fbd5dcb734d5f5591 Virus lineages
213 | virus_datasets.txt 2020-11-26 a7d1e4d4bb6327d01efde3bcc8658cb3 NaN information
214 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | This repository is a tutorial for genome annotation. The scripts are set up to run on UConn's Xanadu cluster, including Xanadu-specific SLURM headers and software modules. To run it on Xanadu, simply clone this repository and start submitting the scripts by following along with this readme. If you are interested in running it elsewhere, you'll need to install the relevant software and alter or remove the SLURM headers, but otherwise, the tutorial is self-contained and pulls the necessary data from public databases.
2 |
3 | Commands should never be executed on the submit nodes of any HPC machine. If working on the Xanadu cluster, you should use `sbatch scriptname` after modifying the script for each stage. Basic editing of all scripts can be performed on the server with tools such as `nano`, `vim`, or `emacs`. If you are new to Linux, please use [this](https://bioinformatics.uconn.edu/unix-basics) handy guide for the operating system commands. The tutorial assumes basic familiarity with Linux. In this guide, you will be working with common bioinformatic file formats, such as [FASTA](https://en.wikipedia.org/wiki/FASTA_format), [FASTQ](https://en.wikipedia.org/wiki/FASTQ_format), [SAM/BAM](https://en.wikipedia.org/wiki/SAM_(file_format)), and [GFF3/GTF](https://en.wikipedia.org/wiki/General_feature_format). You can learn more about each file format [here](https://bioinformatics.uconn.edu/resources-and-events/tutorials/file-formats-tutorial/). If you do not have a Xanadu account and are an affiliate of UConn/UCHC, please apply for one **[here](https://bioinformatics.uconn.edu/contact-us/)**.
4 |
5 | Contents
6 | 1. [Overview](#1-overview)
7 | 2. [Downloading Data](#2-downloading-the-data)
8 | 3. [Identifying and Masking Repetitive Elements](#3-identifying-and-masking-repetitive-elements)
9 | 4. [Helixer](#4-helixer-annotation)
10 | 5. [Helixer Evaluation](#5-helixer-evaluation)
11 | 6. [Braker Annotation with Protein Evidence](#6-braker-annotation-with-protein-evidence)
12 | 7. [Braker Evaluation](#7-braker-evaluation)
13 | 8. [EASEL Pipeline](#8-easel-pipeline)
14 | 9. [Compare Evaluations with gffcompare](#9-compare-evaluations)
15 |
16 | ## 1. Overview
17 | In this tutorial, we'll annotate an *Arabidopsis thaliana* genome using a variety of methods. We'll use both RNA-seq data from leaf tissue and a database of green plant proteins as evidence in the annotation process. To get started, you can clone the tutorial repository to obtain all the scripts we're going to run. If you're working on UConn's Xanadu cluster, you can submit each script without modification. If you're working elsewhere, you will have to make sure the software is installed and modify or remove the SLURM headers, as appropriate to your system. To clone the repository:
18 |
19 | ```
20 | git clone git@github.com:CBC-UCONN/Structural-Annotation.git
21 | ```
22 |
23 | You'll notice the structure of the directory is initially pretty spare. Each script will create, as necessary, directories to hold data and results as you move along.
24 |
25 | ### `SLURM`
26 | UConn's Xanadu cluster uses `SLURM` to manage resources. Scripts to accomplish some task or requests for resources for interactive analysis, are routed through it. If you're working through the tutorial on Xanadu, you can submit each script using the command `sbatch` (e.g. `sbatch get_genome.sh`). `SLURM` will then queue your job, and when resources become available, run your code. Any output from your code that is written to the *standard output* or *standard error* channels is captured for later review. When submitting scripts via `sbatch`, we usually specify the resource request in a *header*. We'll review an example header here so we don't have to for every script going forward.
27 |
28 | ```bash
29 | #!/bin/bash
30 | #SBATCH --job-name=getgenome
31 | #SBATCH -o %x_%j.out
32 | #SBATCH -e %x_%j.err
33 | #SBATCH -N 1
34 | #SBATCH -n 1
35 | #SBATCH -c 1
36 | #SBATCH --mem=10G
37 | #SBATCH --partition=general
38 | #SBATCH --qos=general
39 | #SBATCH --mail-type=END
40 | #SBATCH --mail-user=your.email@uconn.edu
41 | ```
42 |
43 | The first line is the *shebang*, indicating the script is `bash` code. The following lines, beginning with `#SBATCH`, pertain to `SLURM`. We specify a job name with `--job-name`, and the format of the names of the files that capture the standard output (`-o`) and the standard error (`-e`). In this case for `-o`, the format will be `JOBNAME_JOBID.out`. You should always check the `.out` and `.err` files after a job completes. These will usually contain any error messages produced by your code.
44 |
45 | The next six lines specify the resources requested. `-N 1` asks that the job be run on 1 node. `-n 1` tells SLURM we're only going to launch 1 task. `-c 1` requests 1 CPU for this task. `--mem=10G` requests 10 gigabytes of memory for this task. `--partition` asks that this job be run on the general partition (we also have high memory and GPU partitions) and `--qos=general` specifies the "general" quality of service. For most applications, we only vary `-c`, `--mem`, `--partition`, and `--qos=general`.
46 |
47 | It's important that you request adequate, but not excessive resources for each task. Also, generally you must tell the software you are running how many CPUs it can use (and sometimes how much memory) or it may not use all that you have requested. You can read more about resource allocations on Xanadu [here](https://github.com/CBC-UCONN/CBC_Docs/wiki/Requesting-resource-allocations-in-SLURM) and at the link above.
48 |
49 | After the SLURM header, we have the code to be run, as you will see in the sections below.
50 |
51 | ### Software modules
52 |
53 | You will note that in most of these scripts right after the SLURM header there is a `module load` command (e.g. `module load sratoolkit/2.11.3`). On Xanadu, we use a module system that allows us to have lots of software installed, often with conflicting dependencies, and to maintain functional older versions of software. In order to use one of these pieces of software, however, it must first be loaded. If you are working through this code on another system, you may need to install the software yourself, or modify the way it is made available (e.g. the version numbers).
54 |
55 | ##2 Downloading the Data
56 |
57 | The first step in the tutorial is to obtain the data we need. There are three main pieces of data: a reference genome, RNA-seq data, and protein data from green plants. We'll get the genome and RNA-seq data now, and download the protein data when we use it later.
58 |
59 | Scripts to obtain the data can be found in the directory [`scripts/01_raw_data`](). There are three. One downloads our reference genome, the other two are approaches for getting the RNA-seq data.
60 |
61 | ### Downloading the genome
62 |
63 | To get the genome, enter that directory and run the script `get_genome.sh`. By typing `sbatch get_genome.sh` on the command line. The body of the script (after the SLURM header) looks like this:
64 |
65 | ```bash
66 | OUTDIR=../../data/genome
67 | mkdir -p ${OUTDIR}
68 |
69 | cd ${OUTDIR}
70 |
71 | # Data: Arabidopsis thaliana TAIR10.1 assembly.
72 | # NCBI Accession: GCF_000001735.4
73 |
74 | # download genome
75 | wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/735/GCF_000001735.4_TAIR10.1/GCF_000001735.4_TAIR10.1_genomic.fna.gz
76 |
77 | # decompress
78 | gunzip GCF_000001735.4_TAIR10.1_genomic.fna.gz
79 |
80 | # strip off extra sequence name info after the space, e.g.
81 | # this: >NC_003070.9 Arabidopsis thaliana chromosome 1 sequence
82 | # becomes this: >NC_003070.9
83 | sed 's/ .*//' GCF_000001735.4_TAIR10.1_genomic.fna >tmp.fna
84 | mv tmp.fna GCF_000001735.4_TAIR10.1_genomic.fna
85 | ```
86 |
87 | We first create a variable and assign it the name of our desired output directory. We then create that directory and `cd` into it. Most scripts in this tutorial will begin by specifying variables for input and output directories (and sometimes other relevant files and directories). Not all will move into the output directory for the analysis, but direct output there instead.
88 |
89 | The next steps are to download the genome from NCBI, decompress it and edit the sequence names, which have extraneous information (everything after the first space) that can trip up some software. You will note after this script completes, that there is now a new directory `data/genome` in the root of the tutorial repository containing our genome file (in this case with the suffix `.fna`).
90 |
91 | The reference genome is in *FASTA* format. This format is plain text. Each sequence in the file begins with a header line, followed by the sequence:
92 |
93 | ```
94 | >NC_003070.9
95 | ccctaaaccctaaaccctaaaccctaaacctctGAATCCTTAATCCCTAAATCCCTAAATCTTTAAATCCTACATCCATG
96 | AATCCCTAAATACCTAAttccctaaacccgaaaccggTTTCTCTGGTTGAAAATCATTGTGtatataatgataattttat
97 | CGTTTTTATGTAATTGCTTATTGTTGTGtgtagattttttaaaaatatcatttgagGTCAATACAAATCCTATTTCTTGT
98 | GGTTTTCTTTCCTTCACTTAGCTATGGATGGTTTATCTTCATTTGTTATATTGGATACAAGCTTTGCTACGATCTACATT
99 | ...
100 | ```
101 |
102 | ### The RNA-seq data
103 |
104 | There are two scripts that can be used to obtain the RNA-seq data. If you are working on Xanadu, you can use `symlink_data.sh`. That script will create a new directory, `data/rnaseq` and create *symlinks*, or pointers that point to copies of the data already residing on the cluster. If you would rather download the data from NCBI, you can run `sra_download.sh`. The body of the script looks like this:
105 |
106 | ```bash
107 | # RNA-seq from Arabidopsis leaf tissue
108 | # bioproject: PRJNA438701
109 | # biosample: SAMN08724106
110 | # SRA runs:
111 | # SRR6852085
112 | # SRR6852086
113 |
114 | # load software
115 | module load sratoolkit/2.11.3
116 |
117 | # output directory, create if it doesn't exist
118 | OUTDIR=../../data/rnaseq
119 | mkdir -p $OUTDIR
120 |
121 | cd ${OUTDIR}
122 |
123 | fasterq-dump SRR6852085
124 | fasterq-dump SRR6852086
125 | ```
126 |
127 | Here we are using `sratoolkit` and the command `fasterq-dump` to download two different sets of RNA-seq data derived from Arabidopsis leaf tissue.
128 |
129 | The resulting data will be found in the newly created `data/rnaseq` directory. There will be four files of sequence data, each in *fastq* format:
130 |
131 | ```
132 | SRR6852085_1.fastq
133 | SRR6852085_2.fastq
134 | SRR6852086_1.fastq
135 | SRR6852086_2.fastq
136 | ```
137 |
138 | Our data are *paired-end*, which means that each molecule of cDNA in the sequence library is sequenced twice, once from each end. So our sequence data comes in pairs of files (`_1.fastq` and `_2.fastq`). The mate-pairs are kept in order, so if you do anything to disrupt the sequence ordering of these files that information will be scrambled.
139 |
140 | *fastq* format is a bit like *fasta*, except that it contains more information. Each sequence record has four lines: a header line giving the sequence name (beginning with `@`), a nucleotide sequence, a comment line beginning with `+`, and a line containing ASCII encoded, phred-scaled base qualities. For more on base qualities see [here](https://www.drive5.com/usearch/manual/quality_score.html).
141 |
142 | ```
143 | @SRR6852085.1 1 length=150
144 | NGGCATGCAGACTTGTGAGGGGACGGAGACAATTCCGCTCANNGCNAGGTCACACACGTGTCTATTGTNAGGTGTGTACATNGGCAACGTGAAAGCGATAGTGAGGGNACAGTTTGGAATGTACAGCTGAACGGACATCACACGAAACCT
145 | +SRR6852085.1 1 length=150
146 | # CTGNNNNNNNNNNNGTTA `
184 |
185 | (2) **Soft-masking** , this involves converting the sequence from Uppercase to lowercase as an examle the same repeat sequence is soft masked below
186 |
187 | `CTGTGCAAATCGCAGTTA -> CTGtgcaaatcgcagTTA `
188 |
189 | For our downstream software, softmasking is preferable. It will let annotators know that a given sequence is repetitive, so that it will be ignored in initial gene-finding, but retaining the sequence allows nearby genic sequence to be extended into it if necessary.
190 |
191 | Getting good annotations of repetitive elements requires a fair bit of manual curation of repeat element models.
192 |
193 | Software used in identification of repeats can be categorised as extrensic and intrinsic tools.
194 |
195 | **Extrinsic tools**, e.g. [RepeatMasker](https://www.repeatmasker.org/), uses the repeat sequence (from a closely related species) listed in Repbase (a repeat database) and annotate there presence in our assembled genome.
196 |
197 | **Intrinsic tool**, e.g. [RepeatModeler](http://www.repeatmasker.org/RepeatModeler/), perform a de novo identification and modelling of TE families.
198 |
199 | ### RepeatModeler
200 | It relies on three de-novo repeat finding programs ( RECON, RepeatScout and LTRHarvest/LTR_retriever ) which employ complementary computational methods for identifying repeat element boundaries and family relationships from sequence data. A brief description each of the programme is given below
201 |
202 | **RECON** can carry out denovo identification and classification of repeat sequence families. In order to achieve that it first perform pairwise alignment between the genomic sequences and then it cluster the sequences using single linkage cluster (agglomerative clustering) approach. It then uses the multiple alignment information to define boundaries of repeats and also to distinguish homologous but distinct repeat element families.
203 |
204 | **RepeatScout** first create a frequency table of l-mers (l=ceil(log_4(L)+1), where L length of input sequence) then it creates a fasta file of all the repetitive elements. It then run 2 rounds of filtering on the repeat elements ("filter-stage-1.prl" and "filter-stage-2.prl"), in the first round it removes low complexity tandem repeats from the fasta file following that the frequency of repeats in fasta fasta file is estimated in the genome using RepeatMasker. In second round of filtering, repeats appearing less than certain number of times (default 10) are removed.
205 |
206 | **LTRHarvest/LTR_retriever** perform de novo detection of full length LTR retrotransposons in large sequence sets. LTRharvest efficiently delivers high quality annotations based on known LTR transposon features like length, distance, and sequence motifs. LTR_retriever carry out accurate identification of LTR retrotransposons (LTR-RTs) from output of LTRharvest and generates non-redundant LTR-RT library for genome annotations.
207 |
208 | Typically both Intrinsic and Extrinsic tools are used to annotate and mask the repaets of a genome and thats what we will be doing here. We will perform Repeatmodeller first to identify novel motifs and then using RepeatMasker we will softmask repeats in the genome using sequences of novel repeats and reference repeats (from Repbase). Before we identify our repeat regions, we must first compile our database using the "BuildDatabase" command of RepeatModeler. This will format the FASTA files for use with RepeatModeler.
209 | ```
210 | module load RepeatModeler/2.0.4
211 | BuildDatabase -name "athaliana_db" Athaliana_167_TAIR9.fa
212 | ```
213 | Command options:
214 | ```
215 | BuildDatabase [-options] -name "mydb"
216 | -name The name of the database to create.
217 | ```
218 | The complete slurm script called 01_create_db.sh can be found in `02_mask_repeats/` directory.
219 | This will create the following database files:
220 | ```
221 | ├── athaliana_db.nhr
222 | ├── athaliana_db.nin
223 | ├── athaliana_db.nnd
224 | ├── athaliana_db.nni
225 | ├── athaliana_db.nog
226 | ├── athaliana_db.nsq
227 | ├── athaliana_db.translation
228 | ```
229 | It is not important that you understand what each file represents. However, if you are interested in verifying that all of your chromosomes were compiled, you may view the .translation file. It should look like:
230 | ```
231 | NC_003070.9 1
232 | NC_003071.7 2
233 | NC_003074.8 3
234 | NC_003075.7 4
235 | NC_003076.8 5
236 | NC_037304.1 6
237 | NC_000932.1 7
238 | ```
239 | We see that all seven chromosomes were succesffuly compiled! We are now ready to run the RepeatModeler with the script `02_repeatmodeler.sh`.
240 | ```
241 | module load RepeatModeler/2.0.4
242 | module load ninja/0.95
243 |
244 | # go to repeat directory
245 | REPDIR=../../results/02_mask_repeats
246 |
247 | cd ${REPDIR}
248 |
249 | # set repdb and run repeatmodeler
250 | REPDB=athaliana_db
251 |
252 | RepeatModeler -threads 30 -database ${REPDB} -LTRStruct
253 | ```
254 | This process may run for over a day, so be patient and do not submit the job more than once! After completion of the run, there should be a directory called RM*. Let's have a look at its contents:
255 | ```
256 | RM_150489.*/
257 | ├── consensi.fa
258 | ├── consensi.fa.classified
259 | ├── round-1
260 | ├── round-2
261 | ├── round-3
262 | ├── round-4
263 | ├── round-5
264 | ```
265 | Per the RepeatModeler [webpage](http://www.repeatmasker.org/RepeatModeler/), we see each file as:
266 | ```
267 | round-1/
268 | sampleDB-#.fa : The genomic sample used in this round
269 | sampleDB-#.fa.lfreq : The RepeatScout lmer table
270 | sampleDB-#.fa.rscons: The RepeatScout generated consensi
271 | sampleDB-#.fa.rscons.filtered : The simple repeat/low
272 | complexity filtered
273 | version of *.rscons
274 | consensi.fa : The final consensi db for this round
275 | family-#-cons.html : A visualization of the model
276 | refinement process. This can be opened
277 | in web browsers that support zooming.
278 | ( such as firefox ).
279 | This is used to track down problems
280 | with the Refiner.pl
281 | index.html : A HTML index to all the family-#-cons.html
282 | files.
283 | round-2/
284 | sampleDB-#.fa : The genomic sample used in this round
285 | msps.out : The output of the sample all-vs-all
286 | comparison
287 | summary/ : The RECON output directory
288 | eles : The RECON family output
289 | consensi.fa : Same as above
290 | family-#-cons.html : Same as above
291 | index.html : Same as above
292 | round-3/
293 | Same as round-2
294 | ..
295 | round-n/
296 | ```
297 | We see that we have information about the genomic sample used in each round, a consensus seqeuence frequency matrix for the genomic sample, the generated predicted consensus sequences, and visualizations. This format is repeated for various rounds with summaries of all rounds compiled in the summary directories. Our complete, predicted consensus sequences may be found in the various "consensi" fastas. Now that we have generated our consensus sequences, we are ready to mask our genome using the RepeatMasker.
298 |
299 |
300 | ### Masking Regions of Genomic Repetition with RepeatMasker
301 | Now that we have identified our consensus sequences, we are ready to mask them using the RepeatMasker. RepeatMasker requires two arguments, a library of repetitive regions for your organism and the genome fasta for your organism. RepeatMasker will align the repetitive regions to your genome followed by masking those repetitive regions within your genome appropriately. Let's have a look at the RepeatMasker options:
302 | ```
303 | RepeatMasker
304 | ::small preview of options::
305 | -lib
306 | Rather than use a database, use your own RepeatModeler consensus fasta to ammend your genome
307 | -small
308 | Returns complete .masked sequence in lower case
309 | -xsmall
310 | Returns repetitive regions in lowercase (rest capitals) rather than
311 | masked
312 | -x Returns repetitive regions masked with Xs rather than Ns
313 | ```
314 | We want to softmask only repetitive regions, so we will be using the option "xsmall". The complete slurm script is called `03_repeatmasker.sh`:
315 |
316 | ```bash
317 | # load software
318 | module load RepeatMasker/4.1.2
319 |
320 | # set variables
321 | REPLIB=../../results/02_mask_repeats/athaliana_db-families.fa
322 | OUTDIR=../../results/02_mask_repeats/repeatmasker
323 | mkdir -p ${OUTDIR}
324 |
325 | GENOME=../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna
326 |
327 | RepeatMasker -dir repeatmasker_out -pa 8 -lib ${REPLIB} -gff -a -noisy -xsmall ${GENOME}
328 | ```
329 |
330 | This will produce the following files:
331 | ```
332 | /results/02_mask_repeats/repeatmasker/repeatmasker_out
333 | ├── GCF_000001735.4_TAIR10.1_genomic.fna.align
334 | ├── GCF_000001735.4_TAIR10.1_genomic.fna.cat.gz
335 | ├── GCF_000001735.4_TAIR10.1_genomic.fna.masked
336 | ├── GCF_000001735.4_TAIR10.1_genomic.fna.out
337 | ├── GCF_000001735.4_TAIR10.1_genomic.fna.out.gff
338 | └── GCF_000001735.4_TAIR10.1_genomic.fna.tbl
339 | ```
340 | We are mainly interested in the masked fasta, let's give it a quick look on `GCF_000001735.4_TAIR10.1_genomic.fna.masked`, which shows the genome is soft-masked.
341 | ```
342 | >less GCF_000001735.4_TAIR10.1_genomic.fna.masked
343 | >Chr1
344 | ccctaaaccctaaaccctaaaccctaaacctctgaatccttaatccctaa
345 | atccctaaatctttaaatcctacatccatgaatccctaaatacctaattc
346 | cctaaacccgaaaccGGTTTCTCTGGTTGAAAATCATTGTGTATATAATG
347 | ATAATTTTATCGTTTTTATGTAATTGCTTATTGTTGTGTGTAGATTTTTT
348 | AAAAATATCATTTGAGGTCAATACAAATCCTATTTCTTGTGGTTTTCTTT
349 | CCTTCACTTAGCTATGGATGGTTTATCTTCATTTGTTATATTGGATACAA
350 | GCTTTGCTACGATCTACATTTGGGAATGTGAGTCTCTTATTGTAACCTTA
351 | GGGTTGGTTTATCTCAAGAATCTTATTAATTGTTTGGACTGTTTATGTTT
352 | GGACATTTATTGTCATTCTTACTCCTTTGTGGAAATGTTTGTTCTATCAA
353 | ```
354 | RepeatMasker produces masking stats and other relevant output files, lets have a look at few of them.
355 |
356 | **GCF_000001735.4_TAIR10.1_genomic.fna.tbl** have summary stats showing % of genome masked and the repeat elements that were used in the masking and there individual contribution in masking.
357 | ```
358 | >head -12 GCF_000001735.4_TAIR10.1_genomic.fna.tbl
359 | ==================================================
360 | file name: GCF_000001735.4_TAIR10.1_genomic.fna
361 | sequences: 7
362 | total length: 119668634 bp (119483030 bp excl N/X-runs)
363 | GC level: 36.06 %
364 | bases masked: 20608830 bp ( 17.22 %)
365 | ==================================================
366 | number of length percentage
367 | elements* occupied of sequence
368 | --------------------------------------------------
369 | Retroelements 9948 8538996 bp 7.14 %
370 | SINEs: 181 23261 bp 0.02 %
371 |
372 | ```
373 | **GCF_000001735.4_TAIR10.1_genomic.fna.out** This file provide some details on each individual masking by providing SW (Smith-Waterman) scores, percent divergence, deletion, insertion, genomic location and repeat type. SW and divergence score cutoff can bet set while running RepeatMasker.
374 | ```
375 | SW perc perc perc query position in query matching repeat position in repeat
376 | score div. del. ins. sequence begin end (left) repeat class/family begin end (left) ID
377 | 349 13.6 5.2 4.3 Chr1 1 115 (30427556) C rnd-1_family-2 Unspecified (1084) 286 171 1
378 | 21 2.9 5.7 0.0 Chr1 1064 1098 (30426573) + (CACCCCC)n Simple_repeat 1 37 (0) 2 *
379 | 22 10.0 0.0 0.0 Chr1 1066 1097 (30426574) + (C)n Simple_repeat 1 32 (0) 3
380 | 15 17.1 0.0 0.0 Chr1 1155 1187 (30426484) + (TTTCTT)n Simple_repeat 1 33 (0) 4
381 | 28 8.4 0.0 0.0 Chr1 4291 4328 (30423343) + (AT)n Simple_repeat 1 38 (0) 5
382 | 16 9.3 0.0 0.0 Chr1 5680 5702 (30421969) + (T)n Simple_repeat 1 23 (0) 6
383 | 36 0.0 0.0 0.0 Chr1 8669 8699 (30418972) + (CT)n Simple_repeat 1 31 (0) 7
384 | ```
385 | ***GCF_000001735.4_TAIR10.1_genomic.fna.out.gff** provides the masking information in a gff format. The columns are , chromosome, software used to annotate the feature (here RepeatMaasker), Feature type, Start and End of feature, Score, Strand and last column shows additional attributes assosiated with the feature.
386 | ```
387 | ##gff-version 2
388 | ##date 2021-07-27
389 | ##sequence-region Athaliana_167_TAIR9.fa
390 | Chr1 RepeatMasker similarity 1 115 13.6 - . Target "Motif:rnd-1_family-2" 171 286
391 | Chr1 RepeatMasker similarity 1064 1098 2.9 + . Target "Motif:(CACCCCC)n" 1 37
392 | Chr1 RepeatMasker similarity 1066 1097 10.0 + . Target "Motif:(C)n" 1 32
393 | Chr1 RepeatMasker similarity 1155 1187 17.1 + . Target "Motif:(TTTCTT)n" 1 33
394 | Chr1 RepeatMasker similarity 4291 4328 8.4 + . Target "Motif:(AT)n" 1 38
395 | Chr1 RepeatMasker similarity 5680 5702 9.3 + . Target "Motif:(T)n" 1 23
396 | Chr1 RepeatMasker similarity 8669 8699 0.0 + . Target "Motif:(CT)n" 1 31
397 | ```
398 | **GCF_000001735.4_TAIR10.1_genomic.fna.align** shows the alignment of repeat to the genomic sequence.
399 | ```
400 | 349 13.63 5.17 4.35 Chr1 1 115 (30427556) C rnd-1_family-2#Unspecified (1084) 286 171 m_b1s001i0 1
401 | Chr1 1 CCCTAAACCCTAAACCCTAAACCCTAAACCTCTGAATCCTTAATCCCTAA 50
402 | - i ii -
403 | C rnd-1_family- 286 CCCTAAACCCTAAACCCTAAACCCTAAACC-CTAAACTCTTAA-CCCTAA 239
404 | Chr1 51 ATCCCTAAATC-TTTAAATCCTACATCCATGAATCCCTAAAT-----ACC 94
405 | - i -ii i v i - i - ?-----
406 | C rnd-1_family- 238 A-CCCTAAACCGCCTAAACCCTAAACCC-TAAA-CCCTAAANCCTAAACC 192
407 | Chr1 95 TAATTCCCTAAACCCGAAACC 115
408 | i vv v
409 | C rnd-1_family- 191 CAAAACCCTAAACCCTAAACC 171
410 | Matrix = 20p35g.matrix
411 | Kimura (with divCpGMod) = 14.34
412 | Transitions / transversions = 2.50 (10/4)
413 | Gap_init rate = 0.06 (7 / 114), avg. gap size = 1.57 (11 / 7)
414 | 21 2.94 5.71 0.00 Chr1 1064 1098 (30426573) (CACCCCC)n#Simple_repeat 1 37 (0) m_b1s252i0 2
415 | Chr1 1064 CACCCCCCACCTCCC-CCCCCC-CCCCCCACCCCCCA 1098
416 | i - -
417 | (CACCCCC)n#Si 1 CACCCCCCACCCCCCACCCCCCACCCCCCACCCCCCA 37
418 | Matrix = Unknown
419 | Transitions / transversions = 1.00 (1/0)
420 | Gap_init rate = 0.06 (2 / 34), avg. gap size = 1.00 (2 / 2)
421 | ```
422 |
423 | ### Evaluating using BUSCO
424 | In here we will evalute the assemblies using BUSCO.
425 | ```bash
426 | module load busco/5.4.5
427 |
428 | # set output directory for busco, cd into parent directory
429 | BUSCODIR=../../results/02_mask_repeats/busco/
430 | mkdir -p ${BUSCODIR}
431 | cd ${BUSCODIR}
432 |
433 | OUTDIR=masked_genome
434 |
435 | # input masked genome
436 | MASKED_GENOME=../../02_mask_repeats/repeatmasker/repeatmasker_out/GCF_000001735.4_TAIR10.1_genomic.fna.masked
437 |
438 | # green plant busco database, already downloaded on xanadu. see busco documentation for how to obtain
439 | BUSCODB=/isg/shared/databases/BUSCO/odb10/lineages/viridiplantae_odb10
440 |
441 | # run busco
442 | busco -i ${MASKED_GENOME} \
443 | -o ${OUTDIR} \
444 | -c 8 \
445 | -f \
446 | -l ${BUSCODB} \
447 | -m genome
448 | ```
449 |
450 | General useage of the command:
451 | ```
452 | usage: busco -i [SEQUENCE_FILE] -l [LINEAGE] -o [OUTPUT_NAME] -m [MODE] [OTHER OPTIONS]
453 | ```
454 |
455 | The command options we will be using:
456 | ```
457 | -i FASTA FILE Input sequence file in FASTA format
458 | -l LINEAGE Specify the name of the BUSCO lineage
459 | -o OUTPUT Output folders and files will be labelled with this name
460 | -m MODE BUSCO analysis mode
461 | - geno or genome, for genome assemblies (DNA)
462 | - tran or transcriptome, for transcriptome assemblies (DNA)
463 | - prot or proteins, for annotated gene sets (protein)
464 | ```
465 | The complete BUSCO scrip is called 04_busco.sh
466 |
467 | In here the busco metrics proposed to describe genome/gene-set/transcriptome completeness used the the following notation:
468 | Where recovered genes are marked as complete (C), and complete genes found with more than one copy is depected as duplicate (D), and complete single copy genes as single-copy (S) genes. The partial recovered genes are named as fragmented (F) and the genes which could not be found is named as missing (M) genes.
469 | So the following notation is used in busco notation:
470 | C: Complete, D: duplicated, F: fragmented, M: missing, n: number of genes used.
471 |
472 | Summary (found at `/results/02_mask_repeats/busco/masked_genome/short_summary.specific.viridiplantae_odb10.masked_genome.txt`) of the inital assembly assesment using BUSCO:
473 | ```
474 | --------------------------------------------------
475 | |Results from dataset viridiplantae_odb10 |
476 | --------------------------------------------------
477 | |C:99.3%[S:98.6%,D:0.7%],F:0.0%,M:0.7%,n:425 |
478 | |422 Complete BUSCOs (C) |
479 | |419 Complete and single-copy BUSCOs (S) |
480 | |3 Complete and duplicated BUSCOs (D) |
481 | |0 Fragmented BUSCOs (F) |
482 | |3 Missing BUSCOs (M) |
483 | |425 Total BUSCO groups searched |
484 | --------------------------------------------------
485 | ```
486 |
487 | ## 4. Helixer
488 |
489 | ### Annotation Method 1 (no evidence): Helixer
490 | In this section we will annotate our genome with [Helixer](https://github.com/weberlab-hhu/Helixer), a program that takes only a genome as input and then performs gene calling with Deep Neural Networks.
491 |
492 | We have pulled helixer in a container on our Xanadu, which lives in a public directory. If you are working on a different cluster you will want to pull the image yourself from docker. On Xanadu we have this container in a global location: `/isg/shared/databases/nfx_singularity_cache/helixer-docker_helixer_v0.3.0a0_cuda_11.2.0-cudnn8.sif`
493 |
494 | Navigate the the 03_helixer directory in `/scripts`. Helixer can be run with the following script `01_helixer.sh`
495 |
496 | ```bash
497 | #!/bin/bash
498 | #SBATCH --job-name=helixer
499 | #SBATCH -N 1
500 | #SBATCH -n 1
501 | #SBATCH -c 12
502 | #SBATCH --partition=gpu
503 | #SBATCH --qos=general
504 | #SBATCH --constraint="AVX2&FMA3"
505 | #SBATCH --mail-type=ALL
506 | #SBATCH --mem=20G
507 | #SBATCH --mail-user=
508 | #SBATCH -o %x_%j.out
509 | #SBATCH -e %x_%j.err
510 |
511 | hostname
512 | date
513 |
514 | module load singularity/3.9.2
515 | mkdir tmp
516 |
517 | export TMPDIR=$PWD/tmp
518 | OUTDIR=../../results/03_helixer/
519 | mkdir -p ${OUTDIR}
520 |
521 | GENOME=../../results/02_mask_repeats/repeatmasker/repeatmasker_out/GCF_000001735.4_TAIR10.1_genomic.fna.masked
522 |
523 | singularity exec /isg/shared/databases/nfx_singularity_cache/helixer-docker_helixer_v0.3.0a0_cuda_11.2.0-cudnn8.sif Helixer.py --lineage land_plant --fasta-path ${GENOME} --gff-output-path ${OUTDIR}/Arabidopsis_thaliana.gff3
524 | ```
525 | In this script we execute the container with `singularity exec`, run Helixer with command `Helixer.py`, specify the taxonomic lineage with `--lineage land_plant`, the genome with `--fasta-path`, and the output path/file with `--gff-output-path`
526 |
527 |
528 | ## 5. Helixer Evaluation
529 |
530 | Next we moved on to evaluating the annotation with AGAT, BUSCO, and EnTAP.
531 |
532 | [AGAT](https://agat.readthedocs.io/en/latest/) is a toolkit that has scripts to check, fix, and evaluate GFF/GTF files. On Xanadu we have agat as a container in a global location: `/isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img`, however if you are working on a different cluster you will need to download the software or pull the container.
533 |
534 | Still in the 03_helixer directory, the first evaluation script is `02_agat_stats.sh`:
535 |
536 | ```bash
537 | module load singularity
538 |
539 | OUTDIR="../../results/03_helixer/agat/statistics"
540 | mkdir -p ${OUTDIR}
541 |
542 | cd ${OUTDIR}
543 |
544 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sp_statistics.pl \
545 | --gff ../../Arabidopsis_thaliana.gff3 \
546 | -g ../../../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna \
547 | -o stats.txt
548 |
549 |
550 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sq_stat_basic.pl \
551 | --gff ../../Arabidopsis_thaliana.gff3 \
552 | -g ../../../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna \
553 | -o basic_stats.txt
554 |
555 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sp_functional_statistics.pl \
556 | --gff ../../Arabidopsis_thaliana.gff3 \
557 | -g ../../../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna \
558 | -o functional_statistics
559 | ```
560 | We utilize three of AGAT's evaluation scripts here: `agat_sp_statistics.pl`, `agat_sq_stat_basic.pl`, `agat_sp_functional_statistics.pl`
561 |
562 | Results from these runs can be found in the directory `/results/03_helixer/agat/statisticsls`.
563 |
564 | Let's look at the `stats.txt` (`less stats.txt`)
565 |
566 | Here we can look at the mono/multi exonic gene ratio:
567 |
568 | "Number of single exon gene" / "Number of genes"
569 |
570 | 5067/27082=0.187
571 |
572 |
573 | Next we extract a single transcript per gene model and then extract the coding sequences in the script `03_agat_codingsequences.sh` in order to evaluate them with BUSCO and EnTAP. This can be done with `agat_sp_keep_longest_isoform.pl` and `agat_sp_extract_sequences.pl`.
574 |
575 |
576 | ```bash
577 | module load singularity
578 |
579 | OUTDIR="../../results/03_helixer/agat/codingsequences"
580 | mkdir -p ${OUTDIR}
581 |
582 | cd ${OUTDIR}
583 |
584 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sp_keep_longest_isoform.pl \
585 | --gff ../../Arabidopsis_thaliana.gff3 \
586 | -o helixer_longest_isoform.gtf
587 |
588 |
589 | singularity exec /isg/shared/databases/nfx_singularity_cache/depot.galaxyproject.org-singularity-agat-1.0.0--pl5321hdfd78af_0.img agat_sp_extract_sequences.pl \
590 | -g helixer_longest_isoform.gtf \
591 | -f ../../../../data/genome/GCF_000001735.4_TAIR10.1_genomic.fna \
592 | -p \
593 | -o helixer_proteins.fasta.faa
594 | ```
595 | The protein file (`helixer_proteins.fasta.faa`) can then be used in further evaluations. Next we'll run the script `04_busco.sh`:
596 |
597 | ```bash
598 | module load busco/5.4.5
599 |
600 | # green plant busco database. already on the xanadu cluster. see documentation for how to obtain
601 | BUSCODB=/isg/shared/databases/BUSCO/odb10/lineages/viridiplantae_odb10
602 |
603 | #Output directory
604 | OUTDIR=../../results/03_helixer/busco
605 | mkdir -p ${OUTDIR}
606 |
607 |
608 |
609 | # predicted proteins
610 | PROTEINS=../../results/03_helixer/agat/codingsequences/helixer_proteins.fasta.faa
611 |
612 |
613 | # run busco
614 | busco -i ${PROTEINS} \
615 | -o ${OUTDIR} \
616 | -c 8 \
617 | -l ${BUSCODB} \
618 | -m prot \
619 | -f
620 | ```
621 | Let's take a look at the output (`/results/03_helixer/busco/short_summary.specific.viridiplantae_odb10.busco.txt`):
622 |
623 | ```bash
624 | ***** Results: *****
625 |
626 | C:99.1%[S:98.4%,D:0.7%],F:0.2%,M:0.7%,n:425
627 | 421 Complete BUSCOs (C)
628 | 418 Complete and single-copy BUSCOs (S)
629 | 3 Complete and duplicated BUSCOs (D)
630 | 1 Fragmented BUSCOs (F)
631 | 3 Missing BUSCOs (M)
632 | 425 Total BUSCO groups searched
633 |
634 |
635 | ```
636 |
637 | Finally, we will run `05_EnTAP.sh` to generate a funtional annotation:
638 |
639 | ```bash
640 | module load EnTAP/0.9.0-beta
641 | module load diamond/0.9.36
642 |
643 | OUTDIR=../../results/03_helixer/EnTAP
644 | mkdir -p ${OUTDIR}
645 |
646 | cp entap_config.txt ${OUTDIR}
647 | cd ${OUTDIR}
648 |
649 | PROTEINS=../agat/codingsequences/helixer_proteins.fasta.faa
650 |
651 | EnTAP --runP \
652 | -i ${PROTEINS} \
653 | -d /isg/shared/databases/Diamond/RefSeq/complete.protein.faa.216.dmnd \
654 | -d /isg/shared/databases/Diamond/Uniprot/uniprot_sprot.dmnd \
655 | --ontology 0 \
656 | --threads 16
657 |
658 | date
659 | ```
660 | The output will be writen in the the entap_outfiles/ folder.
661 |
662 | ```bash
663 | entap_outfiles
664 | ├── final_results
665 | ├── ontology
666 | ├── similarity_search
667 | └── transcriptomes
668 | ```
669 |
670 | Similarity search directory will contain the results from the [diamond](https://github.com/bbuchfink/diamond) database(s) you included in your search. Inside the processed/ folder you will find the information based on the hits returned from similarity searching against each database. This information contains the best hits (discussed previously) from each database based on e-value, coverage, informativeness, phylogenetic closeness, and contaminant status.
671 |
672 | - In the database you selected under the processed directory it will contain best_hits.faa and .fnn and .tsv files:
673 | - best_hits_contam.faa/.fnn/.tsv will contain contaminants (protein/nucleotide) separated from the best hits file.
674 | - best_hits_no_contam.faa/.fnn/.tsv will contain sequences (protein/nucleotide) that were selected as best hits and not flagged as contaminants
675 | - no_hits.faa/.fnn/.tsv contain sequences (protein/nucleotide) from the transcriptome that did not hit against this particular database
676 | - unselected.tsv will contain result in several hits for each query sequence. With only one best hit being selected, the rest are unselected and end up here
677 |
678 | In the Ontology search folder we will find the ortholog groups / ontolgoy results agains EggNOG pipeline. Inside the processed folder it will contain the annotations.
679 |
680 | In the final_results folder, it will contain the final EnTAP annotations. These files are the summation of each stage of the pipeline and contain the combined information. So these can be considered the most important files! Gene ontology terms are normalized to levels based on the input flag from the user (or the default of 0,3,4). A level of 0 within the filename indicates that ALL GO terms will be printed to the annotation file. Normalization of GO terms to levels is generally done before enrichment analysis and is based upon the hierarchical setup of the Gene Ontology database.
681 |
682 | - final_annotations_lvlX.tsv : X represents the normalized GO terms for the annotation
683 | - final_annotated.faa / .fnn : Nucleotide and protein fasta files containing all sequences that either hit databases through similarity searching or through the ontology stage
684 | - final_unannotated.aa / .fnn : Nucleotide and protein fasta files containing all sequences that did not hit either through similarity searching nor through the ontology stage
685 |
686 | In the following example it shows the results agains the complete diamond database we selected, and EggNOG pipeline and the final results.
687 |
688 | More information on EnTAP can be found in [EnTAP](https://entap.readthedocs.io/) documentation, which has a very comprehensive description.
689 |
690 | Let's take a look at some results (`/results/03_helixer/EnTAP/entap_outfiles/log_file_2023Y6M6D-13h14m4s.txt`)
691 |
692 | ```bash
693 | Final Annotation Statistics
694 | ------------------------------------------------------
695 | Total Sequences: 27082
696 | Similarity Search
697 | Total unique sequences with an alignment: 25555
698 | Total unique sequences without an alignment: 1527
699 | Gene Families
700 | Total unique sequences with family assignment: 25834
701 | Total unique sequences without family assignment: 1248
702 | Total unique sequences with at least one GO term: 20969
703 | Total unique sequences with at least one pathway (KEGG) assignment: 6038
704 | Totals
705 | Total unique sequences annotated (similarity search alignments only): 411
706 | Total unique sequences annotated (gene family assignment only): 690
707 | Total unique sequences annotated (gene family and/or similarity search): 26245
708 | Total unique sequences unannotated (gene family and/or similarity search): 837
709 | ```
710 |
711 | ## 6. Braker Annotation with Protein Evidence
712 |
713 | Our second method of annotation in this tutorial is using protein evidence as input with Braker. First we must obtain the protein data and concatenate it into a single fasta file. Navigate to the `scripts/04_braker` directory, and run the `/01_get_proteins.sh` script:
714 |
715 | ```bash
716 | OUTDIR=../../results/04_braker/proteins
717 | mkdir -p ${OUTDIR}
718 | cd ${OUTDIR}
719 |
720 | # per the braker documentation, a protein database can be obtained as below
721 | # this code downloads protein sequences in fasta format for all genes in orthoDB for the Viridiplantae
722 | # then it concatenates them into a single fasta file
723 | # https://github.com/gatech-genemark/ProtHint#protein-database-preparation
724 | wget --no-check-certificate https://v100.orthodb.org/download/odb10_plants_fasta.tar.gz
725 | tar -xvzf odb10_plants_fasta.tar.gz
726 | cat plants/Rawdata/*fs >proteins.fa
727 | ```
728 | Now we can run Braker with the proteins and masked genome as input (`02_braker_proteins.sh`):
729 |
730 | ```bash
731 | # load software
732 | module load BRAKER/2.1.6
733 | module load ProtHint/2.6.0
734 |
735 | # for testing new perl version:
736 | module unload perl
737 | module load perl/5.36.0
738 |
739 | # set braker output directory and cd there
740 | OUTDIR=../../results/04_braker/proteins
741 | mkdir -p ${OUTDIR}
742 | cd ${OUTDIR}
743 |
744 | # copy augustus config, set variable
745 | export AUGUSTUS_CONFIG_PATH=$(pwd)/config
746 | cp -r /isg/shared/apps/augustus/3.6.0/config/ config
747 |
748 | # create a temp directory for braker temp files
749 | export TMPDIR=$(pwd)/braker_tmp
750 | mkdir -p ${TMPDIR}
751 |
752 | # set variables for input/output files
753 | GENOME="../../02_mask_repeats/repeatmasker/repeatmasker_out/GCF_000001735.4_TAIR10.1_genomic.fna.masked"
754 | PROTEINDB=proteins.fa
755 |
756 | # run braker
757 | braker.pl \
758 | --genome=${GENOME} \
759 | --prot_seq=${PROTEINDB} \
760 | --softmasking \
761 | --cores 16 \
762 | --gff3
763 | ```
764 | To evaluate this genome we will follow the same steps we did with Helixer (agat, busco, and EnTAP). Let's have a look at some of the results:
765 |
766 | AGAT:
767 |
768 | Mono/Multi Ratio
769 | "Number of single exon gene" / "Number of genes"
770 | 7132/30246=0.236
771 |
772 | Busco:
773 | ```bash
774 | ***** Results: *****
775 |
776 | C:99.5%[S:98.8%,D:0.7%],F:0.2%,M:0.3%,n:425
777 | 423 Complete BUSCOs (C)
778 | 420 Complete and single-copy BUSCOs (S)
779 | 3 Complete and duplicated BUSCOs (D)
780 | 1 Fragmented BUSCOs (F)
781 | 1 Missing BUSCOs (M)
782 | 425 Total BUSCO groups searched
783 |
784 | ```
785 |
786 | EnTAP:
787 | ```bash
788 | Final Annotation Statistics
789 | ------------------------------------------------------
790 | Total Sequences: 30246
791 | Similarity Search
792 | Total unique sequences with an alignment: 27785
793 | Total unique sequences without an alignment: 2461
794 | Gene Families
795 | Total unique sequences with family assignment: 28008
796 | Total unique sequences without family assignment: 2238
797 | Total unique sequences with at least one GO term: 22365
798 | Total unique sequences with at least one pathway (KEGG) assignment: 6223
799 | Totals
800 | Total unique sequences annotated (similarity search alignments only): 925
801 | Total unique sequences annotated (gene family assignment only): 1148
802 | Total unique sequences annotated (gene family and/or similarity search): 28933
803 | Total unique sequences unannotated (gene family and/or similarity search): 1313
804 |
805 | ```
806 |
807 | ## 8. EASEL Pipeline
808 |
809 | EASEL (Efficient, Accurate, Scalable Eukaryotic modeLs) is a genome annotation pipeline that utilizes machine learning, RNA folding, and functional annotations to enhance gene prediction accuracy. is a nextflow pipeline that annotates a genome with RNA-seq reads as evidence.
810 |
811 | More about methods and the workflows may be found on the EASEL website[https://gitlab.com/PlantGenomicsLab/easel].
812 |
813 | To run EASEL on xanadu we must first pull the container, and then provide it with a set of paramaters. The params.yaml file:
814 |
815 | Then we ran the following script:
816 |
817 |
818 | ## 9. Compare Evaluations
819 | GFFCompare can be used to compare, merge, annotate and estimate accuracy of one or more GFF files when compared with a reference annotation. Here we run GFFCompare with the three annotation files we generated through this tutorial, and the "truth" that we pulled in the beginning in the 01_raw_data directory.
820 |
821 | Navigate to `06_gffcompare` and `sbatch 01_gffcompare.sh`:
822 |
823 | ```bash
824 | module load gffcompare/0.10.4
825 |
826 | # output directory
827 | OUTDIR=../../results/06_gffcompare_2
828 | mkdir -p ${OUTDIR}
829 |
830 | # files
831 | NCBIANNO=../../data/genome/GCF_000001735.4_TAIR10.1_genomic.gff
832 | HELIXER=../../results/03_helixer/Arabidopsis_thaliana.gff3
833 | BRAKERPROTEIN=../../results/04_braker/proteins/braker/augustus.hints.gtf
834 | EASEL=../../results/05_EASEL/arabidopsis/final_predictions/arabidopsis_filtered.gtf
835 |
836 | # run gffcompare
837 | gffcompare -R -r <(awk '$7 !~ /?/' ${NCBIANNO}) -o ${OUTDIR}/helixer ${HELIXER}
838 |
839 | gffcompare -R -r <(awk '$7 !~ /?/' ${NCBIANNO}) -o ${OUTDIR}/braker ${BRAKERPROTEIN}
840 |
841 | gffcompare -R -r <(awk '$7 !~ /?/' ${NCBIANNO}) -o ${OUTDIR}/easel ${EASEL}
842 | ```
843 |
844 | Let's take a look at the results:
845 |
846 | EASEL:
847 | ```bash
848 | #= Summary for dataset: ../../results/05_EASEL/arabidopsis/final_predictions/arabidopsis_filtered.gtf
849 | # Query mRNAs : 29381 in 19324 loci (25053 multi-exon transcripts)
850 | # (6209 multi-transcript loci, ~1.5 transcripts per locus)
851 | # Reference mRNAs : 38462 in 20342 loci (34229 multi-exon)
852 | # Super-loci w/ reference transcripts: 18924
853 | #-----------------| Sensitivity | Precision |
854 | Base level: 68.0 | 99.2 |
855 | Exon level: 52.9 | 65.9 |
856 | Intron level: 77.9 | 83.3 |
857 | Intron chain level: 29.9 | 40.8 |
858 | Transcript level: 29.6 | 38.7 |
859 | Locus level: 54.6 | 57.1 |
860 |
861 | Matching intron chains: 10225
862 | Matching transcripts: 11366
863 | Matching loci: 11112
864 |
865 | Missed exons: 18649/159922 ( 11.7%)
866 | Novel exons: 942/126977 ( 0.7%)
867 | Missed introns: 11149/115825 ( 9.6%)
868 | Novel introns: 1786/108273 ( 1.6%)
869 | Missed loci: 0/20342 ( 0.0%)
870 | Novel loci: 15/19324 ( 0.1%)
871 |
872 | Total union super-loci across all input datasets: 18946
873 | 29381 out of 29381 consensus transcripts written in ../../results/06_gffcompare_2/easel.annotated.gtf (0 discarded as redundant)
874 | ```
875 | BRAKER:
876 | ```bash
877 | #= Summary for dataset: ../../results/04_braker/proteins/braker/augustus.hints.gtf
878 | # Query mRNAs : 32230 in 30204 loci (24877 multi-exon transcripts)
879 | # (1655 multi-transcript loci, ~1.1 transcripts per locus)
880 | # Reference mRNAs : 48521 in 27544 loci (41185 multi-exon)
881 | # Super-loci w/ reference transcripts: 27253
882 | #-----------------| Sensitivity | Precision |
883 | Base level: 68.8 | 98.0 |
884 | Exon level: 56.1 | 68.0 |
885 | Intron level: 84.7 | 92.3 |
886 | Intron chain level: 39.8 | 65.9 |
887 | Transcript level: 37.8 | 56.9 |
888 | Locus level: 64.8 | 59.7 |
889 |
890 | Matching intron chains: 16405
891 | Matching transcripts: 18327
892 | Matching loci: 17838
893 |
894 | Missed exons: 15214/186166 ( 8.2%)
895 | Novel exons: 3582/151634 ( 2.4%)
896 | Missed introns: 12310/131340 ( 9.4%)
897 | Novel introns: 6505/120548 ( 5.4%)
898 | Missed loci: 0/27544 ( 0.0%)
899 | Novel loci: 926/30204 ( 3.1%)
900 |
901 | Total union super-loci across all input datasets: 28276
902 | 32230 out of 32230 consensus transcripts written in ../../results/06_gffcompare_2/braker.annotated.gtf (0 discarded as redundant)
903 | ```
904 | HELIXER:
905 | ```bash
906 | #= Summary for dataset: ../../results/03_helixer/Arabidopsis_thaliana.gff3
907 | # Query mRNAs : 27082 in 27082 loci (22015 multi-exon transcripts)
908 | # (0 multi-transcript loci, ~1.0 transcripts per locus)
909 | # Reference mRNAs : 46994 in 26068 loci (40657 multi-exon)
910 | # Super-loci w/ reference transcripts: 24454
911 | #-----------------| Sensitivity | Precision |
912 | Base level: 86.7 | 95.7 |
913 | Exon level: 70.4 | 80.3 |
914 | Intron level: 84.5 | 89.0 |
915 | Intron chain level: 34.4 | 63.6 |
916 | Transcript level: 36.5 | 63.3 |
917 | Locus level: 65.1 | 63.3 |
918 |
919 | Matching intron chains: 13999
920 | Matching transcripts: 17147
921 | Matching loci: 16981
922 |
923 | Missed exons: 5266/183080 ( 2.9%)
924 | Novel exons: 5195/150243 ( 3.5%)
925 | Missed introns: 5319/129769 ( 4.1%)
926 | Novel introns: 5691/123161 ( 4.6%)
927 | Missed loci: 0/26068 ( 0.0%)
928 | Novel loci: 514/27082 ( 1.9%)
929 |
930 | Total union super-loci across all input datasets: 25087
931 | 27082 out of 27082 consensus transcripts written in ../../results/06_gffcompare_2/helixer.annotated.gtf (0 discarded as redundant)
932 | ```
933 |
934 |
935 |
--------------------------------------------------------------------------------