├── py-faster-rcnn
├── lib
│ ├── nms
│ │ ├── __init__.py
│ │ ├── .gitignore
│ │ └── gpu_nms.hpp
│ ├── transform
│ │ └── __init__.py
│ ├── utils
│ │ ├── .gitignore
│ │ └── __init__.py
│ ├── pycocotools
│ │ ├── __init__.py
│ │ └── UPSTREAM_REV
│ ├── Makefile
│ ├── datasets
│ │ ├── __init__.py
│ │ └── VOCdevkit-matlab-wrapper
│ │ │ ├── get_voc_opts.m
│ │ │ └── xVOCap.m
│ ├── fast_rcnn
│ │ ├── __init__.py
│ │ └── nms_wrapper.py
│ ├── roi_data_layer
│ │ └── __init__.py
│ └── rpn
│ │ ├── __init__.py
│ │ └── README.md
├── caffe-fast-rcnn
│ ├── __init__.py
│ ├── docs
│ │ ├── tutorial
│ │ │ ├── fig
│ │ │ │ ├── .gitignore
│ │ │ │ ├── layer.jpg
│ │ │ │ ├── backward.jpg
│ │ │ │ ├── forward.jpg
│ │ │ │ ├── logreg.jpg
│ │ │ │ └── forward_backward.png
│ │ │ ├── layers
│ │ │ │ ├── filter.md
│ │ │ │ ├── silence.md
│ │ │ │ ├── batchreindex.md
│ │ │ │ ├── rnn.md
│ │ │ │ ├── input.md
│ │ │ │ ├── argmax.md
│ │ │ │ ├── im2col.md
│ │ │ │ ├── tanh.md
│ │ │ │ ├── spp.md
│ │ │ │ ├── windowdata.md
│ │ │ │ ├── dummydata.md
│ │ │ │ ├── hingeloss.md
│ │ │ │ ├── threshold.md
│ │ │ │ ├── split.md
│ │ │ │ ├── sigmoidcrossentropyloss.md
│ │ │ │ ├── log.md
│ │ │ │ ├── absval.md
│ │ │ │ ├── bias.md
│ │ │ │ ├── crop.md
│ │ │ │ ├── tile.md
│ │ │ │ ├── embed.md
│ │ │ │ ├── parameter.md
│ │ │ │ ├── prelu.md
│ │ │ │ ├── scale.md
│ │ │ │ ├── bnll.md
│ │ │ │ ├── euclideanloss.md
│ │ │ │ ├── flatten.md
│ │ │ │ ├── multinomiallogisticloss.md
│ │ │ │ ├── sigmoid.md
│ │ │ │ ├── dropout.md
│ │ │ │ └── eltwise.md
│ │ │ └── convolution.md
│ │ ├── CNAME
│ │ ├── images
│ │ │ ├── caffeine-icon.png
│ │ │ └── GitHub-Mark-64px.png
│ │ ├── _config.yml
│ │ ├── README.md
│ │ └── stylesheets
│ │ │ └── reset.css
│ ├── python
│ │ ├── caffe
│ │ │ ├── proto
│ │ │ │ └── __init__.py
│ │ │ ├── imagenet
│ │ │ │ └── ilsvrc_2012_mean.npy
│ │ │ ├── test
│ │ │ │ └── test_layer_type_list.py
│ │ │ └── __init__.py
│ │ └── requirements.txt
│ ├── matlab
│ │ ├── hdf5creation
│ │ │ └── .gitignore
│ │ └── +caffe
│ │ │ ├── private
│ │ │ ├── CHECK.m
│ │ │ └── CHECK_FILE_EXIST.m
│ │ │ ├── set_mode_cpu.m
│ │ │ ├── set_mode_gpu.m
│ │ │ ├── version.m
│ │ │ ├── imagenet
│ │ │ └── ilsvrc_2012_mean.mat
│ │ │ ├── reset_all.m
│ │ │ ├── set_device.m
│ │ │ ├── get_solver.m
│ │ │ ├── run_tests.m
│ │ │ └── +test
│ │ │ └── test_io.m
│ ├── src
│ │ ├── caffe
│ │ │ ├── test
│ │ │ │ └── test_data
│ │ │ │ │ ├── solver_data_list.txt
│ │ │ │ │ ├── sample_data_list.txt
│ │ │ │ │ ├── sample_data.h5
│ │ │ │ │ ├── solver_data.h5
│ │ │ │ │ └── sample_data_2_gzip.h5
│ │ │ ├── layer.cpp
│ │ │ ├── layers
│ │ │ │ ├── parameter_layer.cpp
│ │ │ │ ├── neuron_layer.cpp
│ │ │ │ ├── silence_layer.cpp
│ │ │ │ ├── silence_layer.cu
│ │ │ │ ├── loss_layer.cpp
│ │ │ │ └── base_data_layer.cu
│ │ │ ├── util
│ │ │ │ ├── cudnn.cpp
│ │ │ │ └── db_leveldb.cpp
│ │ │ └── solvers
│ │ │ │ ├── sgd_solver.cu
│ │ │ │ └── adagrad_solver.cu
│ │ └── gtest
│ │ │ └── CMakeLists.txt
│ ├── examples
│ │ ├── web_demo
│ │ │ └── requirements.txt
│ │ ├── images
│ │ │ ├── cat.jpg
│ │ │ ├── cat gray.jpg
│ │ │ ├── cat_gray.jpg
│ │ │ └── fish-bike.jpg
│ │ ├── mnist
│ │ │ ├── train_lenet.sh
│ │ │ ├── train_lenet_adam.sh
│ │ │ ├── train_lenet_rmsprop.sh
│ │ │ ├── train_lenet_consolidated.sh
│ │ │ ├── train_mnist_autoencoder.sh
│ │ │ ├── train_mnist_autoencoder_adadelta.sh
│ │ │ ├── train_mnist_autoencoder_adagrad.sh
│ │ │ ├── train_mnist_autoencoder_nesterov.sh
│ │ │ ├── mnist_autoencoder_solver_adagrad.prototxt
│ │ │ ├── mnist_autoencoder_solver.prototxt
│ │ │ ├── mnist_autoencoder_solver_adadelta.prototxt
│ │ │ ├── mnist_autoencoder_solver_nesterov.prototxt
│ │ │ ├── create_mnist.sh
│ │ │ ├── lenet_auto_solver.prototxt
│ │ │ ├── lenet_adadelta_solver.prototxt
│ │ │ └── lenet_solver.prototxt
│ │ ├── imagenet
│ │ │ ├── train_caffenet.sh
│ │ │ ├── resume_training.sh
│ │ │ └── make_imagenet_mean.sh
│ │ ├── siamese
│ │ │ ├── train_mnist_siamese.sh
│ │ │ ├── create_mnist_siamese.sh
│ │ │ └── mnist_siamese_solver.prototxt
│ │ ├── finetune_flickr_style
│ │ │ ├── flickr_style.csv.gz
│ │ │ └── style_names.txt
│ │ ├── cifar10
│ │ │ ├── train_full_sigmoid.sh
│ │ │ ├── train_full_sigmoid_bn.sh
│ │ │ ├── train_quick.sh
│ │ │ ├── create_cifar10.sh
│ │ │ └── train_full.sh
│ │ ├── finetune_pascal_detection
│ │ │ └── pascal_finetune_solver.prototxt
│ │ └── net_surgery
│ │ │ └── conv.prototxt
│ ├── cmake
│ │ ├── CMakeFiles
│ │ │ ├── cmake.check_cache
│ │ │ ├── a.out
│ │ │ └── 2.8.12.2
│ │ │ │ ├── CompilerIdC
│ │ │ │ └── a.out
│ │ │ │ ├── CompilerIdCXX
│ │ │ │ └── a.out
│ │ │ │ └── CMakeSystem.cmake
│ │ ├── detect_cuda_archs.cu
│ │ ├── Templates
│ │ │ └── CaffeConfigVersion.cmake.in
│ │ └── Modules
│ │ │ └── FindNCCL.cmake
│ ├── tools
│ │ ├── test_net.cpp
│ │ ├── device_query.cpp
│ │ ├── finetune_net.cpp
│ │ ├── train_net.cpp
│ │ ├── net_speed_benchmark.cpp
│ │ └── CMakeLists.txt
│ ├── INSTALL.md
│ ├── scripts
│ │ ├── travis
│ │ │ ├── configure.sh
│ │ │ ├── defaults.sh
│ │ │ ├── build.sh
│ │ │ ├── install-python-deps.sh
│ │ │ ├── test.sh
│ │ │ ├── setup-venv.sh
│ │ │ └── configure-cmake.sh
│ │ ├── build_docs.sh
│ │ └── download_model_from_gist.sh
│ ├── detect_cuda_archs.cu
│ ├── data
│ │ ├── mnist
│ │ │ └── get_mnist.sh
│ │ ├── cifar10
│ │ │ └── get_cifar10.sh
│ │ └── ilsvrc12
│ │ │ └── get_ilsvrc_aux.sh
│ ├── include
│ │ └── caffe
│ │ │ ├── util
│ │ │ ├── format.hpp
│ │ │ ├── signal_handler.h
│ │ │ └── nccl.hpp
│ │ │ └── caffe.hpp
│ └── CONTRIBUTORS.md
├── tools
│ ├── README.md
│ └── _init_paths.py
└── cfgs
│ ├── faster_rcnn_alt_opt.yml
│ ├── faster_rcnn_end2end.yml
│ ├── faster_rcnn_endmod.yml
│ ├── faster_rcnn_oneh.yml
│ ├── faster_rcnn_coco.yml
│ └── faster_rcnn_posenet.yml
├── ros
├── sptam
│ ├── plotters
│ │ ├── parsers
│ │ │ ├── __init__.py
│ │ │ ├── mit_gt.py
│ │ │ └── ground_truth_loader.py
│ │ └── utils
│ │ │ ├── __init__.py
│ │ │ └── colors.py
│ ├── src
│ │ ├── standAlone
│ │ │ ├── .gitignore
│ │ │ └── Test
│ │ │ │ ├── opencv3_feature_extraction
│ │ │ │ └── parameters.yaml
│ │ │ │ └── ReadImagesFromDir
│ │ │ │ ├── CMakeLists.txt
│ │ │ │ └── ReadImagesFromDir.cpp
│ │ ├── ros
│ │ │ ├── stereo_driver.cpp
│ │ │ └── sptam_nodelet.cpp
│ │ └── sptam
│ │ │ ├── ObjectEdge.cpp
│ │ │ ├── match_to_points.hpp
│ │ │ ├── loopclosing
│ │ │ └── LCDetector.hpp
│ │ │ └── utils
│ │ │ ├── timer.h
│ │ │ ├── timer.cpp
│ │ │ └── projection_derivatives.hpp
│ ├── msg
│ │ └── StereoKFwithPose.msg
│ ├── configurationFiles
│ │ ├── tsukuba_cam.yaml
│ │ ├── fantasy_cam.yaml
│ │ ├── kitti_cam_03.yaml
│ │ ├── kitti_cam_04_to_12.yaml
│ │ ├── kitti_cam_00_to_02_13_to_21.yaml
│ │ ├── KITTI00_left.yaml
│ │ ├── KITTI00_right.yaml
│ │ ├── kitti_sift.yaml
│ │ ├── mit.yaml
│ │ ├── sfu.yaml
│ │ ├── newCollege.yaml
│ │ ├── kitti_fast_brief.yaml
│ │ ├── kitti_agast_latch.yaml
│ │ ├── kitti_fast_latch.yaml
│ │ ├── kitti_agast_brief.yaml
│ │ ├── tsukuba.yaml
│ │ ├── kitti_star_brief.yaml
│ │ ├── kitti_surf.yaml
│ │ ├── mobius.yaml
│ │ ├── zed_vga.yaml
│ │ ├── firefly.yaml
│ │ ├── kitti_star_latch.yaml
│ │ ├── bumblebee.yaml
│ │ ├── kitti_orb.yaml
│ │ ├── euroc_fast_brief.yaml
│ │ ├── kitti_gftt_latch.yaml
│ │ ├── level7.yaml
│ │ ├── vrep_quad.yaml
│ │ ├── euroc_odroid_fast_brief.yaml
│ │ ├── euroc_star_brief.yaml
│ │ ├── euroc_odroid_star_brief.yaml
│ │ ├── kitti_gftt_lucid.yaml
│ │ ├── euroc_orb_brief.yaml
│ │ ├── euroc_odroid_orb_brief.yaml
│ │ ├── kitti_surf_freak.yaml
│ │ ├── euroc_gftt_brief.yaml
│ │ ├── euroc_odroid_gftt_brief.yaml
│ │ ├── kitti.yaml
│ │ ├── kitti_agast_brisk.yaml
│ │ ├── kitti_fast_brisk.yaml
│ │ ├── euroc_orb.yaml
│ │ ├── euroc_odroid_orb.yaml
│ │ ├── kitti_gftt_brisk.yaml
│ │ ├── kitti_star_brisk.yaml
│ │ ├── kitti_akaze.yaml
│ │ └── calibrations
│ │ │ └── 00b09d0100626e63_left.yaml
│ ├── sptam_plugin.xml
│ ├── Doxyfile
│ ├── LICENSE.txt
│ ├── launch
│ │ └── msf.launch
│ ├── cmake-modules
│ │ └── FindOpenGV.cmake
│ └── README.md
├── dl_node
│ ├── msg
│ │ ├── Ints.msg
│ │ ├── Detection.msg
│ │ ├── DetectionList.msg
│ │ ├── DetectionWithPoseList.msg
│ │ └── DetectionWithPose.msg
│ └── src
│ │ ├── _init_paths.py
│ │ └── _init_paths_softnms.py
└── ros-utils
│ └── package.xml
├── dependencies
├── pugixml
│ ├── tests
│ │ ├── data
│ │ │ ├── empty.xml
│ │ │ ├── small.xml
│ │ │ ├── тест.xml
│ │ │ ├── multiline.xml
│ │ │ ├── latintest_latin1.xml
│ │ │ ├── utftest_utf16_be.xml
│ │ │ ├── utftest_utf16_le.xml
│ │ │ ├── utftest_utf32_be.xml
│ │ │ ├── utftest_utf32_le.xml
│ │ │ ├── utftest_utf16_be_bom.xml
│ │ │ ├── utftest_utf16_le_bom.xml
│ │ │ ├── utftest_utf32_be_bom.xml
│ │ │ ├── utftest_utf32_le_bom.xml
│ │ │ ├── utftest_utf16_be_clean.xml
│ │ │ ├── utftest_utf16_le_clean.xml
│ │ │ ├── utftest_utf32_be_clean.xml
│ │ │ ├── utftest_utf32_le_clean.xml
│ │ │ ├── utftest_utf16_be_nodecl.xml
│ │ │ ├── utftest_utf16_le_nodecl.xml
│ │ │ ├── utftest_utf32_be_nodecl.xml
│ │ │ ├── utftest_utf32_le_nodecl.xml
│ │ │ ├── truncation.xml
│ │ │ └── latintest_utf8.xml
│ │ ├── data_fuzz_xpath
│ │ │ ├── basic.xpath
│ │ │ ├── math.xpath
│ │ │ ├── path.xpath
│ │ │ ├── predicate.xpath
│ │ │ └── functions.xpath
│ │ ├── data_fuzz_parse
│ │ │ ├── basic.xml
│ │ │ ├── utf16.xml
│ │ │ ├── utf32.xml
│ │ │ ├── types.xml
│ │ │ ├── refs.xml
│ │ │ └── doctype.xml
│ │ ├── test_header_guard.cpp
│ │ ├── test_header_iosfwd_1.cpp
│ │ ├── test_header_iosfwd_2.cpp
│ │ ├── test_header_string_1.cpp
│ │ ├── test_header_string_2.cpp
│ │ ├── test_header_iostream_1.cpp
│ │ ├── test_header_iostream_2.cpp
│ │ ├── test_version.cpp
│ │ ├── common.hpp
│ │ ├── test_header_string_iostream.cpp
│ │ ├── allocator.hpp
│ │ ├── fuzz_parse.cpp
│ │ ├── fuzz_setup.sh
│ │ ├── test_header_only_1.cpp
│ │ ├── test_header_only_2.cpp
│ │ └── fuzz_xpath.cpp
│ ├── .codecov.yml
│ ├── docs
│ │ ├── images
│ │ │ ├── dom_tree.png
│ │ │ ├── vs2005_pch1.png
│ │ │ ├── vs2005_pch2.png
│ │ │ ├── vs2005_pch3.png
│ │ │ ├── vs2005_pch4.png
│ │ │ ├── vs2005_link1.png
│ │ │ ├── vs2005_link2.png
│ │ │ ├── vs2010_link1.png
│ │ │ └── vs2010_link2.png
│ │ ├── samples
│ │ │ ├── weekly-utf-16.xml
│ │ │ ├── weekly-shift_jis.xml
│ │ │ ├── character.xml
│ │ │ ├── transitions.xml
│ │ │ ├── tree.xml
│ │ │ ├── load_file.cpp
│ │ │ ├── save_file.cpp
│ │ │ ├── save_stream.cpp
│ │ │ ├── custom_memory_management.cpp
│ │ │ ├── traverse_iter.cpp
│ │ │ ├── xgconsole.xml
│ │ │ ├── save_declaration.cpp
│ │ │ ├── modify_remove.cpp
│ │ │ ├── traverse_rangefor.cpp
│ │ │ ├── modify_add.cpp
│ │ │ ├── save_subtree.cpp
│ │ │ ├── xpath_select.cpp
│ │ │ └── traverse_walker.cpp
│ │ └── config.adoc
│ ├── scripts
│ │ ├── cocoapods_push.sh
│ │ ├── pugixml_airplay.mkf
│ │ └── pugixml.pc.in
│ ├── .travis.yml
│ └── appveyor.yml
└── meta
│ ├── test
│ └── CMakeLists.txt
│ ├── example
│ ├── examples.hpp
│ └── CMakeLists.txt
│ ├── install_libcxx.sh
│ └── readme.md
├── _config.yml
├── data
└── caffeModels
│ └── getCaffeModel.sh
├── .gitmodules
├── models_trained
├── coco
│ ├── VGG16
│ │ ├── fast_rcnn
│ │ │ └── solver.prototxt
│ │ └── faster_rcnn_end2end
│ │ │ └── solver.prototxt
│ └── VGG_CNN_M_1024
│ │ ├── faster_rcnn_end2end
│ │ └── solver.prototxt
│ │ └── fast_rcnn
│ │ └── solver.prototxt
├── pascal_voc
│ ├── ZF
│ │ ├── faster_rcnn_alt_opt
│ │ │ ├── stage1_rpn_solver60k80k.pt
│ │ │ ├── stage2_rpn_solver60k80k.pt
│ │ │ ├── stage1_fast_rcnn_solver30k40k.pt
│ │ │ └── stage2_fast_rcnn_solver30k40k.pt
│ │ ├── fast_rcnn
│ │ │ └── solver.prototxt
│ │ └── faster_rcnn_end2end
│ │ │ └── solver.prototxt
│ ├── VGG16
│ │ ├── fast_rcnn
│ │ │ └── solver.prototxt
│ │ ├── faster_rcnn_alt_opt
│ │ │ ├── stage1_rpn_solver60k80k.pt
│ │ │ ├── stage2_rpn_solver60k80k.pt
│ │ │ ├── stage1_fast_rcnn_solver30k40k.pt
│ │ │ └── stage2_fast_rcnn_solver30k40k.pt
│ │ └── faster_rcnn_end2end
│ │ │ └── solver.prototxt
│ └── VGG_CNN_M_1024
│ │ ├── fast_rcnn
│ │ └── solver.prototxt
│ │ ├── faster_rcnn_end2end
│ │ └── solver.prototxt
│ │ └── faster_rcnn_alt_opt
│ │ ├── stage1_rpn_solver60k80k.pt
│ │ ├── stage2_rpn_solver60k80k.pt
│ │ ├── stage1_fast_rcnn_solver30k40k.pt
│ │ └── stage2_fast_rcnn_solver30k40k.pt
├── modelnet
│ └── VGG16
│ │ └── faster_rcnn_end2end
│ │ ├── solver.working.prototxt
│ │ └── solver.prototxt
├── modeloneh
│ └── VGG16
│ │ └── faster_rcnn_end2end
│ │ ├── solver.working.prototxt
│ │ └── solver.prototxt
└── modelpose
│ └── VGG16
│ └── faster_rcnn_end2end
│ ├── solver.working.prototxt
│ └── solver.prototxt
└── FromMaxwellToOther.dockerfile
/py-faster-rcnn/lib/nms/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/ros/sptam/plotters/parsers/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/ros/sptam/plotters/utils/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/empty.xml:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/transform/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/ros/dl_node/msg/Ints.msg:
--------------------------------------------------------------------------------
1 | int32[] data
2 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/small.xml:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/тест.xml:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/ros/sptam/src/standAlone/.gitignore:
--------------------------------------------------------------------------------
1 | build
2 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/utils/.gitignore:
--------------------------------------------------------------------------------
1 | *.c
2 | *.so
3 |
--------------------------------------------------------------------------------
/dependencies/pugixml/.codecov.yml:
--------------------------------------------------------------------------------
1 | comment: false
2 |
3 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data_fuzz_xpath/basic.xpath:
--------------------------------------------------------------------------------
1 | a/b/c
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/fig/.gitignore:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/python/caffe/proto/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/nms/.gitignore:
--------------------------------------------------------------------------------
1 | *.c
2 | *.cpp
3 | *.so
4 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/pycocotools/__init__.py:
--------------------------------------------------------------------------------
1 | __author__ = 'tylin'
2 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data_fuzz_xpath/math.xpath:
--------------------------------------------------------------------------------
1 | 1+2*3 div 4 mod 5-6
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/CNAME:
--------------------------------------------------------------------------------
1 | caffe.berkeleyvision.org
2 |
--------------------------------------------------------------------------------
/_config.yml:
--------------------------------------------------------------------------------
1 | theme: jekyll-theme-slate
2 | exclude:
3 | - py-faster-rcnn
4 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data_fuzz_parse/basic.xml:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/matlab/hdf5creation/.gitignore:
--------------------------------------------------------------------------------
1 | *.h5
2 | list.txt
3 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/multiline.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/Makefile:
--------------------------------------------------------------------------------
1 | all:
2 | python setup.py build_ext --inplace
3 | rm -rf build
4 |
--------------------------------------------------------------------------------
/dependencies/meta/test/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | add_executable(meta meta.cpp)
2 | add_test(test.meta, meta)
3 |
--------------------------------------------------------------------------------
/py-faster-rcnn/tools/README.md:
--------------------------------------------------------------------------------
1 | Tools for training, testing, and compressing Fast R-CNN networks.
2 |
--------------------------------------------------------------------------------
/ros/dl_node/msg/Detection.msg:
--------------------------------------------------------------------------------
1 | int32 cls
2 | int32 x1
3 | int32 y1
4 | int32 x2
5 | int32 y2
6 |
7 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data_fuzz_xpath/path.xpath:
--------------------------------------------------------------------------------
1 | @*/ancestor::*/near-north/*[4]/@*/preceding::text()
--------------------------------------------------------------------------------
/ros/dl_node/msg/DetectionList.msg:
--------------------------------------------------------------------------------
1 | Header header
2 | Detection[] data
3 | geometry_msgs/Pose pose
4 |
5 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data_fuzz_xpath/predicate.xpath:
--------------------------------------------------------------------------------
1 | library/nodes[@id=12]/element[@type='translate'][1]
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/test/test_data/solver_data_list.txt:
--------------------------------------------------------------------------------
1 | src/caffe/test/test_data/solver_data.h5
2 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data_fuzz_xpath/functions.xpath:
--------------------------------------------------------------------------------
1 | sum(nodes) + round(concat(//a[translate(@id, 'abc', '012')]))
2 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/pycocotools/UPSTREAM_REV:
--------------------------------------------------------------------------------
1 | https://github.com/pdollar/coco/commit/3ac47c77ebd5a1ed4254a98b7fbf2ef4765a3574
2 |
--------------------------------------------------------------------------------
/ros/sptam/msg/StereoKFwithPose.msg:
--------------------------------------------------------------------------------
1 | Header header
2 | ##geometry_msgs/Pose pose
3 | sensor_msgs/Image img_l
4 | uint64 kf_id
5 |
--------------------------------------------------------------------------------
/ros/dl_node/msg/DetectionWithPoseList.msg:
--------------------------------------------------------------------------------
1 | Header header
2 | DetectionWithPose[] data
3 | ##geometry_msgs/Pose pose
4 | uint64 kf_id
5 |
--------------------------------------------------------------------------------
/ros/sptam/src/ros/stereo_driver.cpp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/ros/sptam/src/ros/stereo_driver.cpp
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/test_header_guard.cpp:
--------------------------------------------------------------------------------
1 | // Tests header guards
2 | #include "../src/pugixml.hpp"
3 | #include "../src/pugixml.hpp"
4 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/web_demo/requirements.txt:
--------------------------------------------------------------------------------
1 | werkzeug
2 | flask
3 | tornado
4 | numpy
5 | pandas
6 | pillow
7 | pyyaml
8 |
--------------------------------------------------------------------------------
/py-faster-rcnn/cfgs/faster_rcnn_alt_opt.yml:
--------------------------------------------------------------------------------
1 | EXP_DIR: faster_rcnn_alt_opt
2 | TRAIN:
3 | BG_THRESH_LO: 0.0
4 | TEST:
5 | HAS_RPN: True
6 |
--------------------------------------------------------------------------------
/data/caffeModels/getCaffeModel.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | wget https://cifasis-conicet.gov.ar/~erica/caffeModels/pose_coco_Allconst_iter16000.caffemodel
3 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/test_header_iosfwd_1.cpp:
--------------------------------------------------------------------------------
1 | // Tests compatibility with iosfwd
2 | #include "../src/pugixml.hpp"
3 | #include
4 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/test_header_iosfwd_2.cpp:
--------------------------------------------------------------------------------
1 | // Tests compatibility with iosfwd
2 | #include
3 | #include "../src/pugixml.hpp"
4 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/test_header_string_1.cpp:
--------------------------------------------------------------------------------
1 | // Tests compatibility with string
2 | #include "../src/pugixml.hpp"
3 | #include
4 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/test_header_string_2.cpp:
--------------------------------------------------------------------------------
1 | // Tests compatibility with string
2 | #include
3 | #include "../src/pugixml.hpp"
4 |
--------------------------------------------------------------------------------
/dependencies/meta/example/examples.hpp:
--------------------------------------------------------------------------------
1 | /// \file examples.hpp List of all examples
2 |
3 | /// \example tuple_cat.cpp Tuple concatenation example:
4 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/test_header_iostream_1.cpp:
--------------------------------------------------------------------------------
1 | // Tests compatibility with iostream
2 | #include "../src/pugixml.hpp"
3 | #include
4 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/test_header_iostream_2.cpp:
--------------------------------------------------------------------------------
1 | // Tests compatibility with iostream
2 | #include
3 | #include "../src/pugixml.hpp"
4 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/images/dom_tree.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/docs/images/dom_tree.png
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/cmake/CMakeFiles/cmake.check_cache:
--------------------------------------------------------------------------------
1 | # This file is generated by cmake for dependency checking of the CMakeCache.txt file
2 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/images/vs2005_pch1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/docs/images/vs2005_pch1.png
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/images/vs2005_pch2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/docs/images/vs2005_pch2.png
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/images/vs2005_pch3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/docs/images/vs2005_pch3.png
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/images/vs2005_pch4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/docs/images/vs2005_pch4.png
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/test_version.cpp:
--------------------------------------------------------------------------------
1 | #include "../src/pugixml.hpp"
2 |
3 | #if PUGIXML_VERSION != 180
4 | #error Unexpected pugixml version
5 | #endif
6 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/matlab/+caffe/private/CHECK.m:
--------------------------------------------------------------------------------
1 | function CHECK(expr, error_msg)
2 |
3 | if ~expr
4 | error(error_msg);
5 | end
6 |
7 | end
8 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/images/vs2005_link1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/docs/images/vs2005_link1.png
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/images/vs2005_link2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/docs/images/vs2005_link2.png
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/images/vs2010_link1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/docs/images/vs2010_link1.png
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/images/vs2010_link2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/docs/images/vs2010_link2.png
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/weekly-utf-16.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/docs/samples/weekly-utf-16.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/scripts/cocoapods_push.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | #Push to igagis repo for now
4 | pod repo push igagis pugixml.podspec --use-libraries --verbose
5 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/latintest_latin1.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/latintest_latin1.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf16_be.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf16_be.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf16_le.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf16_le.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf32_be.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf32_be.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf32_le.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf32_le.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data_fuzz_parse/utf16.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data_fuzz_parse/utf16.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data_fuzz_parse/utf32.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data_fuzz_parse/utf32.xml
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/cmake/CMakeFiles/a.out:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/cmake/CMakeFiles/a.out
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/test/test_data/sample_data_list.txt:
--------------------------------------------------------------------------------
1 | src/caffe/test/test_data/sample_data.h5
2 | src/caffe/test/test_data/sample_data_2_gzip.h5
3 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/weekly-shift_jis.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/docs/samples/weekly-shift_jis.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf16_be_bom.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf16_be_bom.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf16_le_bom.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf16_le_bom.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf32_be_bom.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf32_be_bom.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf32_le_bom.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf32_le_bom.xml
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/images/cat.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/examples/images/cat.jpg
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/train_lenet.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | set -e
3 |
4 | ./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt $@
5 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/layer.cpp:
--------------------------------------------------------------------------------
1 | #include "caffe/layer.hpp"
2 |
3 | namespace caffe {
4 |
5 | INSTANTIATE_CLASS(Layer);
6 |
7 | } // namespace caffe
8 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/common.hpp:
--------------------------------------------------------------------------------
1 | #ifndef HEADER_TEST_COMMON_HPP
2 | #define HEADER_TEST_COMMON_HPP
3 |
4 | #include "test.hpp"
5 |
6 | using namespace pugi;
7 |
8 | #endif
9 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf16_be_clean.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf16_be_clean.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf16_le_clean.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf16_le_clean.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf32_be_clean.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf32_be_clean.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf32_le_clean.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf32_le_clean.xml
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/fig/layer.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/fig/layer.jpg
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf16_be_nodecl.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf16_be_nodecl.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf16_le_nodecl.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf16_le_nodecl.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf32_be_nodecl.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf32_be_nodecl.xml
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/utftest_utf32_le_nodecl.xml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/dependencies/pugixml/tests/data/utftest_utf32_le_nodecl.xml
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/images/caffeine-icon.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/docs/images/caffeine-icon.png
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/fig/backward.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/fig/backward.jpg
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/fig/forward.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/fig/forward.jpg
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/fig/logreg.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/fig/logreg.jpg
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/images/cat gray.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/examples/images/cat gray.jpg
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/images/cat_gray.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/examples/images/cat_gray.jpg
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/images/fish-bike.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/examples/images/fish-bike.jpg
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/train_lenet_adam.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | set -e
3 |
4 | ./build/tools/caffe train --solver=examples/mnist/lenet_solver_adam.prototxt $@
5 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/matlab/+caffe/set_mode_cpu.m:
--------------------------------------------------------------------------------
1 | function set_mode_cpu()
2 | % set_mode_cpu()
3 | % set Caffe to CPU mode
4 |
5 | caffe_('set_mode_cpu');
6 |
7 | end
8 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/matlab/+caffe/set_mode_gpu.m:
--------------------------------------------------------------------------------
1 | function set_mode_gpu()
2 | % set_mode_gpu()
3 | % set Caffe to GPU mode
4 |
5 | caffe_('set_mode_gpu');
6 |
7 | end
8 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/nms/gpu_nms.hpp:
--------------------------------------------------------------------------------
1 | void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num,
2 | int boxes_dim, float nms_overlap_thresh, int device_id);
3 |
--------------------------------------------------------------------------------
/ros/dl_node/msg/DetectionWithPose.msg:
--------------------------------------------------------------------------------
1 | int32 cls
2 | int32 x1
3 | int32 y1
4 | int32 x2
5 | int32 y2
6 | float32 yaw
7 | float32 dimX
8 | float32 dimY
9 | float32 dimZ
10 |
11 |
--------------------------------------------------------------------------------
/ros/sptam/src/standAlone/Test/opencv3_feature_extraction/parameters.yaml:
--------------------------------------------------------------------------------
1 | %YAML:1.0
2 |
3 | FeatureDetector:
4 | Name: 'SURF'
5 | hessianThreshold: 1000
6 | nOctaves: 1
7 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data_fuzz_parse/types.xml:
--------------------------------------------------------------------------------
1 |
pcdata
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/images/GitHub-Mark-64px.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/docs/images/GitHub-Mark-64px.png
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/matlab/+caffe/version.m:
--------------------------------------------------------------------------------
1 | function version_str = version()
2 | % version()
3 | % show Caffe's version.
4 |
5 | version_str = caffe_('version');
6 |
7 | end
8 |
--------------------------------------------------------------------------------
/.gitmodules:
--------------------------------------------------------------------------------
1 | [submodule "g2o"]
2 | path = g2o
3 | url = https://github.com/CIFASIS/g2o.git
4 | [submodule "ApproxMVBB"]
5 | path = ApproxMVBB
6 | url = https://github.com/CIFASIS/ApproxMVBB.git
7 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/imagenet/train_caffenet.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | set -e
3 |
4 | ./build/tools/caffe train \
5 | --solver=models/bvlc_reference_caffenet/solver.prototxt $@
6 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/train_lenet_rmsprop.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | set -e
3 |
4 | ./build/tools/caffe train \
5 | --solver=examples/mnist/lenet_solver_rmsprop.prototxt $@
6 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data_fuzz_parse/refs.xml:
--------------------------------------------------------------------------------
1 |
pcdata < > & " ' «
&unknown; %entity;
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/test_header_string_iostream.cpp:
--------------------------------------------------------------------------------
1 | // Tests compatibility with string/iostream
2 | #include
3 | #include "../src/pugixml.hpp"
4 | #include
5 | #include
6 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/_config.yml:
--------------------------------------------------------------------------------
1 | defaults:
2 | -
3 | scope:
4 | path: "" # an empty string here means all files in the project
5 | values:
6 | layout: "default"
7 |
8 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/fig/forward_backward.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/fig/forward_backward.png
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/test/test_data/sample_data.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/src/caffe/test/test_data/sample_data.h5
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/test/test_data/solver_data.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/src/caffe/test/test_data/solver_data.h5
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/train_lenet_consolidated.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | set -e
3 |
4 | ./build/tools/caffe train \
5 | --solver=examples/mnist/lenet_consolidated_solver.prototxt $@
6 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/train_mnist_autoencoder.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | set -e
3 |
4 | ./build/tools/caffe train \
5 | --solver=examples/mnist/mnist_autoencoder_solver.prototxt $@
6 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/python/caffe/imagenet/ilsvrc_2012_mean.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/python/caffe/imagenet/ilsvrc_2012_mean.npy
--------------------------------------------------------------------------------
/dependencies/pugixml/scripts/pugixml_airplay.mkf:
--------------------------------------------------------------------------------
1 | includepaths
2 | {
3 | "../src"
4 | }
5 |
6 | files
7 | {
8 | ("../src")
9 | pugiconfig.hpp
10 | pugixml.cpp
11 | pugixml.hpp
12 | }
13 |
14 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/cmake/CMakeFiles/2.8.12.2/CompilerIdC/a.out:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/cmake/CMakeFiles/2.8.12.2/CompilerIdC/a.out
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/cmake/CMakeFiles/2.8.12.2/CompilerIdCXX/a.out:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/cmake/CMakeFiles/2.8.12.2/CompilerIdCXX/a.out
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/matlab/+caffe/private/CHECK_FILE_EXIST.m:
--------------------------------------------------------------------------------
1 | function CHECK_FILE_EXIST(filename)
2 |
3 | if exist(filename, 'file') == 0
4 | error('%s does not exist', filename);
5 | end
6 |
7 | end
8 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/train_mnist_autoencoder_adadelta.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -e
3 |
4 | ./build/tools/caffe train \
5 | --solver=examples/mnist/mnist_autoencoder_solver_adadelta.prototxt $@
6 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/train_mnist_autoencoder_adagrad.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -e
3 |
4 | ./build/tools/caffe train \
5 | --solver=examples/mnist/mnist_autoencoder_solver_adagrad.prototxt $@
6 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/train_mnist_autoencoder_nesterov.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -e
3 |
4 | ./build/tools/caffe train \
5 | --solver=examples/mnist/mnist_autoencoder_solver_nesterov.prototxt $@
6 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/siamese/train_mnist_siamese.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | set -e
3 |
4 | TOOLS=./build/tools
5 |
6 | $TOOLS/caffe train --solver=examples/siamese/mnist_siamese_solver.prototxt $@
7 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/test/test_data/sample_data_2_gzip.h5:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/src/caffe/test/test_data/sample_data_2_gzip.h5
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/finetune_flickr_style/flickr_style.csv.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CIFASIS/object-detection-sptam/HEAD/py-faster-rcnn/caffe-fast-rcnn/examples/finetune_flickr_style/flickr_style.csv.gz
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/config.adoc:
--------------------------------------------------------------------------------
1 | website ; repository
2 | :toc: right
3 | :source-highlighter: pygments
4 | :source-language: c++
5 | :sectanchors:
6 | :sectlinks:
7 | :imagesdir: images
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/cifar10/train_full_sigmoid.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | set -e
3 |
4 | TOOLS=./build/tools
5 |
6 | $TOOLS/caffe train \
7 | --solver=examples/cifar10/cifar10_full_sigmoid_solver.prototxt $@
8 |
9 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/tools/test_net.cpp:
--------------------------------------------------------------------------------
1 | #include "caffe/caffe.hpp"
2 |
3 | int main(int argc, char** argv) {
4 | LOG(FATAL) << "Deprecated. Use caffe test --model=... "
5 | "--weights=... instead.";
6 | return 0;
7 | }
8 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/cifar10/train_full_sigmoid_bn.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | set -e
3 |
4 | TOOLS=./build/tools
5 |
6 | $TOOLS/caffe train \
7 | --solver=examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt $@
8 |
9 |
--------------------------------------------------------------------------------
/dependencies/meta/example/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | add_executable(tutorial_snippets tutorial_snippets.cpp)
2 | add_test(example.tutorial_snippets, tutorial_snippets)
3 |
4 | add_executable(tuple_cat tuple_cat.cpp)
5 | add_test(example.tuple_cat, tuple_cat)
6 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/gtest/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | add_library(gtest STATIC EXCLUDE_FROM_ALL gtest.h gtest-all.cpp)
2 | caffe_default_properties(gtest)
3 |
4 | #add_library(gtest_main gtest_main.cc)
5 | #target_link_libraries(gtest_main gtest)
6 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/layers/parameter_layer.cpp:
--------------------------------------------------------------------------------
1 | #include "caffe/layers/parameter_layer.hpp"
2 |
3 | namespace caffe {
4 |
5 | INSTANTIATE_CLASS(ParameterLayer);
6 | REGISTER_LAYER_CLASS(Parameter);
7 |
8 | } // namespace caffe
9 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/tools/device_query.cpp:
--------------------------------------------------------------------------------
1 | #include "caffe/common.hpp"
2 |
3 | int main(int argc, char** argv) {
4 | LOG(FATAL) << "Deprecated. Use caffe device_query "
5 | "[--device_id=0] instead.";
6 | return 0;
7 | }
8 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/character.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/matlab/+caffe/reset_all.m:
--------------------------------------------------------------------------------
1 | function reset_all()
2 | % reset_all()
3 | % clear all solvers and stand-alone nets and reset Caffe to initial status
4 |
5 | caffe_('reset');
6 | is_valid_handle('get_new_init_key');
7 |
8 | end
9 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/tools/finetune_net.cpp:
--------------------------------------------------------------------------------
1 | #include "caffe/caffe.hpp"
2 |
3 | int main(int argc, char** argv) {
4 | LOG(FATAL) << "Deprecated. Use caffe train --solver=... "
5 | "[--weights=...] instead.";
6 | return 0;
7 | }
8 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/tools/train_net.cpp:
--------------------------------------------------------------------------------
1 | #include "caffe/caffe.hpp"
2 |
3 | int main(int argc, char** argv) {
4 | LOG(FATAL) << "Deprecated. Use caffe train --solver=... "
5 | "[--snapshot=...] instead.";
6 | return 0;
7 | }
8 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/tsukuba_cam.yaml:
--------------------------------------------------------------------------------
1 | %YAML:1.0
2 |
3 | image_width: 640
4 | image_height: 480
5 |
6 | camera_matrix: !!opencv-matrix
7 | rows: 3
8 | cols: 3
9 | dt: d
10 | data: [ 615, 0, 320, 0, 615, 240, 0, 0, 1]
11 |
12 | baseline: 0.1
13 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/fantasy_cam.yaml:
--------------------------------------------------------------------------------
1 | %YAML:1.0
2 |
3 | image_width: 1000
4 | image_height: 1000
5 |
6 | camera_matrix: !!opencv-matrix
7 | rows: 3
8 | cols: 3
9 | dt: d
10 | data: [ 1000, 0, 500, 0, 1000, 500, 0, 0, 1 ]
11 |
12 | baseline: 1
13 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/INSTALL.md:
--------------------------------------------------------------------------------
1 | # Installation
2 |
3 | See http://caffe.berkeleyvision.org/installation.html for the latest
4 | installation instructions.
5 |
6 | Check the users group in case you need help:
7 | https://groups.google.com/forum/#!forum/caffe-users
8 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/tools/net_speed_benchmark.cpp:
--------------------------------------------------------------------------------
1 | #include "caffe/caffe.hpp"
2 |
3 | int main(int argc, char** argv) {
4 | LOG(FATAL) << "Deprecated. Use caffe time --model=... "
5 | "[--iterations=50] [--gpu] [--device_id=0]";
6 | return 0;
7 | }
8 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/transitions.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/ros/sptam/sptam_plugin.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | S-PTAM nodelet.
6 |
7 |
8 |
9 |
10 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/allocator.hpp:
--------------------------------------------------------------------------------
1 | #ifndef HEADER_TEST_ALLOCATOR_HPP
2 | #define HEADER_TEST_ALLOCATOR_HPP
3 |
4 | #include
5 |
6 | void* memory_allocate(size_t size);
7 | size_t memory_size(void* ptr);
8 | void memory_deallocate(void* ptr);
9 |
10 | #endif
11 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/imagenet/resume_training.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | set -e
3 |
4 | ./build/tools/caffe train \
5 | --solver=models/bvlc_reference_caffenet/solver.prototxt \
6 | --snapshot=models/bvlc_reference_caffenet/caffenet_train_10000.solverstate.h5 \
7 | $@
8 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/README.md:
--------------------------------------------------------------------------------
1 | # Caffe Documentation
2 |
3 | To generate the documentation, run `$CAFFE_ROOT/scripts/build_docs.sh`.
4 |
5 | To push your changes to the documentation to the gh-pages branch of your or the BVLC repo, run `$CAFFE_ROOT/scripts/deploy_docs.sh `.
6 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/scripts/travis/configure.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # configure the project
3 |
4 | BASEDIR=$(dirname $0)
5 | source $BASEDIR/defaults.sh
6 |
7 | if ! $WITH_CMAKE ; then
8 | source $BASEDIR/configure-make.sh
9 | else
10 | source $BASEDIR/configure-cmake.sh
11 | fi
12 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/utils/__init__.py:
--------------------------------------------------------------------------------
1 | # --------------------------------------------------------
2 | # Fast R-CNN
3 | # Copyright (c) 2015 Microsoft
4 | # Licensed under The MIT License [see LICENSE for details]
5 | # Written by Ross Girshick
6 | # --------------------------------------------------------
7 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/datasets/__init__.py:
--------------------------------------------------------------------------------
1 | # --------------------------------------------------------
2 | # Fast R-CNN
3 | # Copyright (c) 2015 Microsoft
4 | # Licensed under The MIT License [see LICENSE for details]
5 | # Written by Ross Girshick
6 | # --------------------------------------------------------
7 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/fast_rcnn/__init__.py:
--------------------------------------------------------------------------------
1 | # --------------------------------------------------------
2 | # Fast R-CNN
3 | # Copyright (c) 2015 Microsoft
4 | # Licensed under The MIT License [see LICENSE for details]
5 | # Written by Ross Girshick
6 | # --------------------------------------------------------
7 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/roi_data_layer/__init__.py:
--------------------------------------------------------------------------------
1 | # --------------------------------------------------------
2 | # Fast R-CNN
3 | # Copyright (c) 2015 Microsoft
4 | # Licensed under The MIT License [see LICENSE for details]
5 | # Written by Ross Girshick
6 | # --------------------------------------------------------
7 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/scripts/travis/defaults.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # set default environment variables
3 |
4 | set -e
5 |
6 | WITH_CMAKE=${WITH_CMAKE:-false}
7 | WITH_PYTHON3=${WITH_PYTHON3:-false}
8 | WITH_IO=${WITH_IO:-true}
9 | WITH_CUDA=${WITH_CUDA:-false}
10 | WITH_CUDNN=${WITH_CUDNN:-false}
11 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/rpn/__init__.py:
--------------------------------------------------------------------------------
1 | # --------------------------------------------------------
2 | # Fast R-CNN
3 | # Copyright (c) 2015 Microsoft
4 | # Licensed under The MIT License [see LICENSE for details]
5 | # Written by Ross Girshick and Sean Bell
6 | # --------------------------------------------------------
7 |
--------------------------------------------------------------------------------
/py-faster-rcnn/cfgs/faster_rcnn_end2end.yml:
--------------------------------------------------------------------------------
1 | EXP_DIR: faster_rcnn_end2end
2 | TRAIN:
3 | HAS_RPN: True
4 | IMS_PER_BATCH: 1
5 | BBOX_NORMALIZE_TARGETS_PRECOMPUTED: True
6 | RPN_POSITIVE_OVERLAP: 0.7
7 | RPN_BATCHSIZE: 256
8 | PROPOSAL_METHOD: gt
9 | BG_THRESH_LO: 0.0
10 | TEST:
11 | HAS_RPN: True
12 |
--------------------------------------------------------------------------------
/py-faster-rcnn/cfgs/faster_rcnn_endmod.yml:
--------------------------------------------------------------------------------
1 | EXP_DIR: faster_rcnn_end2end
2 | TRAIN:
3 | HAS_RPN: True
4 | IMS_PER_BATCH: 1
5 | BBOX_NORMALIZE_TARGETS_PRECOMPUTED: True
6 | RPN_POSITIVE_OVERLAP: 0.7
7 | RPN_BATCHSIZE: 256
8 | PROPOSAL_METHOD: gt
9 | BG_THRESH_LO: 0.0
10 | TEST:
11 | HAS_RPN: True
12 |
--------------------------------------------------------------------------------
/ros/sptam/Doxyfile:
--------------------------------------------------------------------------------
1 | PROJECT_NAME="SPTAM"
2 | OUTPUT_DIRECTORY=doc
3 | EXTRACT_ALL=YES
4 | EXTRACT_PRIVATE=YES
5 | INPUT=src README.md
6 | RECURSIVE=YES
7 | GENERATE_LATEX=NO
8 | USE_MDFILE_AS_MAINPAGE=README.md
9 | HAVE_DOT=YES
10 | CALL_GRAPH=YES
11 | INLINE_SOURCES=YES
12 | REFERENCED_BY_RELATION=YES
13 | REFERENCES_RELATION=YES
14 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_cam_03.yaml:
--------------------------------------------------------------------------------
1 | %YAML:1.0
2 |
3 | image_width: 1242
4 | image_height: 375
5 |
6 | camera_matrix: !!opencv-matrix
7 | rows: 3
8 | cols: 3
9 | dt: d
10 | data: [ 7.215377000000e+02, 0, 6.095593000000e+02, 0, 7.215377000000e+02, 1.728540000000e+02, 0, 0, 1 ]
11 |
12 | baseline: 5.3715058825e-01
13 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/tree.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | some text
5 |
6 | some more text
7 |
8 |
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/finetune_flickr_style/style_names.txt:
--------------------------------------------------------------------------------
1 | Detailed
2 | Pastel
3 | Melancholy
4 | Noir
5 | HDR
6 | Vintage
7 | Long Exposure
8 | Horror
9 | Sunny
10 | Bright
11 | Hazy
12 | Bokeh
13 | Serene
14 | Texture
15 | Ethereal
16 | Macro
17 | Depth of Field
18 | Geometric Composition
19 | Minimal
20 | Romantic
21 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/scripts/travis/build.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # build the project
3 |
4 | BASEDIR=$(dirname $0)
5 | source $BASEDIR/defaults.sh
6 |
7 | if ! $WITH_CMAKE ; then
8 | make --jobs $NUM_THREADS all test pycaffe warn
9 | else
10 | cd build
11 | make --jobs $NUM_THREADS all test.testbin
12 | fi
13 | make lint
14 |
--------------------------------------------------------------------------------
/py-faster-rcnn/cfgs/faster_rcnn_oneh.yml:
--------------------------------------------------------------------------------
1 | EXP_DIR: faster_rcnn_end2end
2 | TRAIN:
3 | HAS_RPN: True
4 | IMS_PER_BATCH: 1
5 | BBOX_NORMALIZE_TARGETS_PRECOMPUTED: True
6 | RPN_POSITIVE_OVERLAP: 0.7
7 | RPN_BATCHSIZE: 256
8 | PROPOSAL_METHOD: gt
9 | BG_THRESH_LO: 0.0
10 | USE_FLIPPED: False
11 | TEST:
12 | HAS_RPN: True
13 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_cam_04_to_12.yaml:
--------------------------------------------------------------------------------
1 | %YAML:1.0
2 |
3 | image_width: 1226
4 | image_height: 370
5 |
6 | camera_matrix: !!opencv-matrix
7 | rows: 3
8 | cols: 3
9 | dt: d
10 | data: [ 7.070912000000e+02, 0, 6.018873000000e+02, 0, 7.070912000000e+02, 1.831104000000e+02, 0, 0, 1 ]
11 |
12 | baseline: 5.3715065326e-01
13 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/matlab/+caffe/set_device.m:
--------------------------------------------------------------------------------
1 | function set_device(device_id)
2 | % set_device(device_id)
3 | % set Caffe's GPU device ID
4 |
5 | CHECK(isscalar(device_id) && device_id >= 0, ...
6 | 'device_id must be non-negative integer');
7 | device_id = double(device_id);
8 |
9 | caffe_('set_device', device_id);
10 |
11 | end
12 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_cam_00_to_02_13_to_21.yaml:
--------------------------------------------------------------------------------
1 | %YAML:1.0
2 |
3 | image_width: 1241
4 | image_height: 376
5 |
6 | camera_matrix: !!opencv-matrix
7 | rows: 3
8 | cols: 3
9 | dt: d
10 | data: [ 7.188560000000e+02, 0, 6.071928000000e+02, 0, 7.188560000000e+02, 1.852157000000e+02, 0, 0, 1 ]
11 |
12 | baseline: 5.3716571886e-01
13 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/scripts/travis/install-python-deps.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # install extra Python dependencies
3 | # (must come after setup-venv)
4 |
5 | BASEDIR=$(dirname $0)
6 | source $BASEDIR/defaults.sh
7 |
8 | if ! $WITH_PYTHON3 ; then
9 | # Python2
10 | :
11 | else
12 | # Python3
13 | pip install --pre protobuf==3.0.0b3
14 | fi
15 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/datasets/VOCdevkit-matlab-wrapper/get_voc_opts.m:
--------------------------------------------------------------------------------
1 | function VOCopts = get_voc_opts(path)
2 |
3 | tmp = pwd;
4 | cd(path);
5 | try
6 | addpath('VOCcode');
7 | VOCinit;
8 | catch
9 | rmpath('VOCcode');
10 | cd(tmp);
11 | error(sprintf('VOCcode directory not found under %s', path));
12 | end
13 | rmpath('VOCcode');
14 | cd(tmp);
15 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/datasets/VOCdevkit-matlab-wrapper/xVOCap.m:
--------------------------------------------------------------------------------
1 | function ap = xVOCap(rec,prec)
2 | % From the PASCAL VOC 2011 devkit
3 |
4 | mrec=[0 ; rec ; 1];
5 | mpre=[0 ; prec ; 0];
6 | for i=numel(mpre)-1:-1:1
7 | mpre(i)=max(mpre(i),mpre(i+1));
8 | end
9 | i=find(mrec(2:end)~=mrec(1:end-1))+1;
10 | ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
11 |
--------------------------------------------------------------------------------
/ros/sptam/src/sptam/ObjectEdge.cpp:
--------------------------------------------------------------------------------
1 | #include "ObjectEdge.hpp"
2 |
3 | ObjectEdge::ObjectEdge(const sptam::Map::SharedKeyFrame& kf, const Eigen::Vector3d& T, const Eigen::Matrix3d& R, const Eigen::Vector3d& D,const Eigen::Vector3d& world_normal) : kf_(kf),
4 | T_(T),
5 | R_(R),
6 | D_(D),
7 | world_normal_(world_normal)
8 | {
9 | }
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/ros/sptam/LICENSE.txt:
--------------------------------------------------------------------------------
1 | S-PTAM is released under a GPLv3 license (see COPYING.txt).
2 |
3 | For a closed-source version of S-PTAM for commercial purposes, please contact the authors.
4 |
5 | If you use S-PTAM in an academic work, please cite the most relevant publication associated by visiting:
6 | http://robotica.dc.uba.ar/index.php/publicaciones/?lang=en
7 |
8 |
9 |
10 |
11 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/python/requirements.txt:
--------------------------------------------------------------------------------
1 | Cython>=0.19.2
2 | numpy>=1.7.1
3 | scipy>=0.13.2
4 | scikit-image>=0.9.3
5 | matplotlib>=1.3.1
6 | ipython>=3.0.0
7 | h5py>=2.2.0
8 | leveldb>=0.191
9 | networkx>=1.8.1
10 | nose>=1.3.0
11 | pandas>=0.12.0
12 | python-dateutil>=1.4,<2
13 | protobuf>=2.5.0
14 | python-gflags>=2.0
15 | pyyaml>=3.10
16 | Pillow>=2.3.0
17 | six>=1.1.0
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/matlab/+caffe/get_solver.m:
--------------------------------------------------------------------------------
1 | function solver = get_solver(solver_file)
2 | % solver = get_solver(solver_file)
3 | % Construct a Solver object from solver_file
4 |
5 | CHECK(ischar(solver_file), 'solver_file must be a string');
6 | CHECK_FILE_EXIST(solver_file);
7 | pSolver = caffe_('get_solver', solver_file);
8 | solver = caffe.Solver(pSolver);
9 |
10 | end
11 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/scripts/travis/test.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # test the project
3 |
4 | BASEDIR=$(dirname $0)
5 | source $BASEDIR/defaults.sh
6 |
7 | if $WITH_CUDA ; then
8 | echo "Skipping tests for CUDA build"
9 | exit 0
10 | fi
11 |
12 | if ! $WITH_CMAKE ; then
13 | make runtest
14 | make pytest
15 | else
16 | cd build
17 | make runtest
18 | make pytest
19 | fi
20 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/fuzz_parse.cpp:
--------------------------------------------------------------------------------
1 | #include "../src/pugixml.hpp"
2 |
3 | #include
4 |
5 | extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size)
6 | {
7 | pugi::xml_document doc;
8 |
9 | doc.load_buffer(Data, Size);
10 | doc.load_buffer(Data, Size, pugi::parse_minimal);
11 | doc.load_buffer(Data, Size, pugi::parse_full);
12 |
13 | return 0;
14 | }
15 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/imagenet/make_imagenet_mean.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | # Compute the mean image from the imagenet training lmdb
3 | # N.B. this is available in data/ilsvrc12
4 |
5 | EXAMPLE=examples/imagenet
6 | DATA=data/ilsvrc12
7 | TOOLS=build/tools
8 |
9 | $TOOLS/compute_image_mean $EXAMPLE/ilsvrc12_train_lmdb \
10 | $DATA/imagenet_mean.binaryproto
11 |
12 | echo "Done."
13 |
--------------------------------------------------------------------------------
/py-faster-rcnn/cfgs/faster_rcnn_coco.yml:
--------------------------------------------------------------------------------
1 | EXP_DIR: faster_rcnn_end2end
2 | TRAIN:
3 | HAS_RPN: True
4 | IMS_PER_BATCH: 1
5 | BBOX_NORMALIZE_TARGETS_PRECOMPUTED: True
6 | RPN_POSITIVE_OVERLAP: 0.7
7 | RPN_BATCHSIZE: 256
8 | PROPOSAL_METHOD: gt
9 | BG_THRESH_LO: 0.0
10 | HAS_POSE: True
11 | USE_FLIPPED: False
12 | ASPECT_GROUPING: False
13 | SNAPSHOT_ITERS: 500
14 | TEST:
15 | HAS_RPN: True
16 |
--------------------------------------------------------------------------------
/py-faster-rcnn/cfgs/faster_rcnn_posenet.yml:
--------------------------------------------------------------------------------
1 | EXP_DIR: faster_rcnn_end2end
2 | TRAIN:
3 | HAS_RPN: True
4 | IMS_PER_BATCH: 1
5 | BBOX_NORMALIZE_TARGETS_PRECOMPUTED: True
6 | RPN_POSITIVE_OVERLAP: 0.7
7 | RPN_BATCHSIZE: 256
8 | PROPOSAL_METHOD: gt
9 | BG_THRESH_LO: 0.0
10 | HAS_POSE: True
11 | USE_FLIPPED: False
12 | SNAPSHOT_ITERS: 10000
13 |
14 | TEST:
15 | HAS_RPN: True
16 | HAS_POSE: True
17 |
18 |
19 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/layers/neuron_layer.cpp:
--------------------------------------------------------------------------------
1 | #include
2 |
3 | #include "caffe/layers/neuron_layer.hpp"
4 |
5 | namespace caffe {
6 |
7 | template
8 | void NeuronLayer::Reshape(const vector*>& bottom,
9 | const vector*>& top) {
10 | top[0]->ReshapeLike(*bottom[0]);
11 | }
12 |
13 | INSTANTIATE_CLASS(NeuronLayer);
14 |
15 | } // namespace caffe
16 |
--------------------------------------------------------------------------------
/ros/sptam/src/sptam/match_to_points.hpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include "Match.hpp"
3 |
4 | // Used in MapMaker.cpp
5 | std::list matchToPoints(
6 | const StereoFrame& frame,
7 | Iterable&& mapPoints,
8 | const cv::Ptr descriptorMatcher,
9 | const size_t matchingNeighborhoodThreshold,
10 | const double matchingDistanceThreshold,
11 | const Measurement::Source source
12 | );
13 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/load_file.cpp:
--------------------------------------------------------------------------------
1 | #include "pugixml.hpp"
2 |
3 | #include
4 |
5 | int main()
6 | {
7 | // tag::code[]
8 | pugi::xml_document doc;
9 |
10 | pugi::xml_parse_result result = doc.load_file("tree.xml");
11 |
12 | std::cout << "Load result: " << result.description() << ", mesh name: " << doc.child("mesh").attribute("name").value() << std::endl;
13 | // end::code[]
14 | }
15 |
16 | // vim:et
17 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data_fuzz_parse/doctype.xml:
--------------------------------------------------------------------------------
1 |
]>
]]> ]>
]>
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/save_file.cpp:
--------------------------------------------------------------------------------
1 | #include "pugixml.hpp"
2 |
3 | #include
4 |
5 | int main()
6 | {
7 | // get a test document
8 | pugi::xml_document doc;
9 | doc.load_string("hey");
10 |
11 | // tag::code[]
12 | // save document to file
13 | std::cout << "Saving result: " << doc.save_file("save_file_output.xml") << std::endl;
14 | // end::code[]
15 | }
16 |
17 | // vim:et
18 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/save_stream.cpp:
--------------------------------------------------------------------------------
1 | #include "pugixml.hpp"
2 |
3 | #include
4 |
5 | int main()
6 | {
7 | // get a test document
8 | pugi::xml_document doc;
9 | doc.load_string("hey");
10 |
11 | // tag::code[]
12 | // save document to standard output
13 | std::cout << "Document:\n";
14 | doc.save(std::cout);
15 | // end::code[]
16 | }
17 |
18 | // vim:et
19 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/cifar10/train_quick.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | set -e
3 |
4 | TOOLS=./build/tools
5 |
6 | $TOOLS/caffe train \
7 | --solver=examples/cifar10/cifar10_quick_solver.prototxt $@
8 |
9 | # reduce learning rate by factor of 10 after 8 epochs
10 | $TOOLS/caffe train \
11 | --solver=examples/cifar10/cifar10_quick_solver_lr1.prototxt \
12 | --snapshot=examples/cifar10/cifar10_quick_iter_4000.solverstate.h5 $@
13 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/python/caffe/test/test_layer_type_list.py:
--------------------------------------------------------------------------------
1 | import unittest
2 |
3 | import caffe
4 |
5 | class TestLayerTypeList(unittest.TestCase):
6 |
7 | def test_standard_types(self):
8 | #removing 'Data' from list
9 | for type_name in ['Data', 'Convolution', 'InnerProduct']:
10 | self.assertIn(type_name, caffe.layer_type_list(),
11 | '%s not in layer_type_list()' % type_name)
12 |
--------------------------------------------------------------------------------
/dependencies/pugixml/scripts/pugixml.pc.in:
--------------------------------------------------------------------------------
1 | prefix=@CMAKE_INSTALL_PREFIX@
2 | exec_prefix=${prefix}
3 | includedir=${prefix}/include/pugixml-@PUGIXML_VERSION_STRING@
4 | libdir=${exec_prefix}/lib/pugixml-@PUGIXML_VERSION_STRING@
5 |
6 | Name: pugixml
7 | Description: Light-weight, simple and fast XML parser for C++ with XPath support.
8 | URL: http://pugixml.org/
9 | Version: @PUGIXML_VERSION_STRING@
10 | Cflags: -I${includedir}
11 | Libs: -L${libdir} -lpugixml
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/detect_cuda_archs.cu:
--------------------------------------------------------------------------------
1 | #include
2 | int main()
3 | {
4 | int count = 0;
5 | if (cudaSuccess != cudaGetDeviceCount(&count)) return -1;
6 | if (count == 0) return -1;
7 | for (int device = 0; device < count; ++device)
8 | {
9 | cudaDeviceProp prop;
10 | if (cudaSuccess == cudaGetDeviceProperties(&prop, device))
11 | std::printf("%d.%d ", prop.major, prop.minor);
12 | }
13 | return 0;
14 | }
15 |
--------------------------------------------------------------------------------
/ros/sptam/launch/msf.launch:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/cmake/detect_cuda_archs.cu:
--------------------------------------------------------------------------------
1 | #include
2 | int main()
3 | {
4 | int count = 0;
5 | if (cudaSuccess != cudaGetDeviceCount(&count)) return -1;
6 | if (count == 0) return -1;
7 | for (int device = 0; device < count; ++device)
8 | {
9 | cudaDeviceProp prop;
10 | if (cudaSuccess == cudaGetDeviceProperties(&prop, device))
11 | std::printf("%d.%d ", prop.major, prop.minor);
12 | }
13 | return 0;
14 | }
15 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/finetune_pascal_detection/pascal_finetune_solver.prototxt:
--------------------------------------------------------------------------------
1 | net: "examples/finetune_pascal_detection/pascal_finetune_trainval_test.prototxt"
2 | test_iter: 100
3 | test_interval: 1000
4 | base_lr: 0.001
5 | lr_policy: "step"
6 | gamma: 0.1
7 | stepsize: 20000
8 | display: 20
9 | max_iter: 100000
10 | momentum: 0.9
11 | weight_decay: 0.0005
12 | snapshot: 10000
13 | snapshot_prefix: "examples/finetune_pascal_detection/pascal_det_finetune"
14 |
--------------------------------------------------------------------------------
/ros/sptam/plotters/utils/colors.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | """
4 | Colores facheros para usar en los plots
5 | """
6 |
7 | colors = [
8 | (0, 0.4470, 0.7410),
9 | (0.8500, 0.3250, 0.0980),
10 | (0.9290, 0.6940, 0.1250),
11 | (0.4940, 0.1840, 0.5560),
12 | (0.4660, 0.6740, 0.1880),
13 | (0.3010, 0.7450, 0.9330),
14 | (0.6350, 0.0780, 0.1840),
15 | (0.6290, 0.4940, 0.1250),
16 | (0.4660, 0.6740, 0.5880)
17 | ]
18 |
19 | ground_truth_color = (1, 0, 0)
20 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/cmake/Templates/CaffeConfigVersion.cmake.in:
--------------------------------------------------------------------------------
1 | set(PACKAGE_VERSION "@Caffe_VERSION@")
2 |
3 | # Check whether the requested PACKAGE_FIND_VERSION is compatible
4 | if("${PACKAGE_VERSION}" VERSION_LESS "${PACKAGE_FIND_VERSION}")
5 | set(PACKAGE_VERSION_COMPATIBLE FALSE)
6 | else()
7 | set(PACKAGE_VERSION_COMPATIBLE TRUE)
8 | if ("${PACKAGE_VERSION}" VERSION_EQUAL "${PACKAGE_FIND_VERSION}")
9 | set(PACKAGE_VERSION_EXACT TRUE)
10 | endif()
11 | endif()
12 |
--------------------------------------------------------------------------------
/ros/sptam/plotters/parsers/mit_gt.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import numpy as np
3 | import tf.transformations
4 |
5 | from utils import mathHelpers as mh
6 |
7 | class MIT_GT:
8 |
9 | def __init__(self, filename):
10 |
11 | raise RuntimeError("not implemented...")
12 |
13 | def align(self, sptam_frame_ids, sptam_timestamps, sptam_poses, interpolate=False):
14 |
15 | raise RuntimeError("not implemented...")
16 |
17 | def load( filename ):
18 | return MIT_GT( filename )
19 |
--------------------------------------------------------------------------------
/models_trained/coco/VGG16/fast_rcnn/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/coco/VGG16/fast_rcnn/train.prototxt"
2 | base_lr: 0.001
3 | lr_policy: "step"
4 | gamma: 0.1
5 | stepsize: 200000
6 | display: 20
7 | average_loss: 100
8 | # iter_size: 1
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 | # We disable standard caffe solver snapshotting and implement our own snapshot
12 | # function
13 | snapshot: 0
14 | # We still use the snapshot prefix, though
15 | snapshot_prefix: "vgg16_fast_rcnn"
16 | #debug_info: true
17 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_solver60k80k.pt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_train.pt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 60000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "zf_rpn"
17 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/ZF/faster_rcnn_alt_opt/stage2_rpn_solver60k80k.pt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/ZF/faster_rcnn_alt_opt/stage2_rpn_train.pt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 60000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "zf_rpn"
17 |
--------------------------------------------------------------------------------
/models_trained/coco/VGG16/faster_rcnn_end2end/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/coco/VGG16/faster_rcnn_end2end/train.onlycls.prototxt"
2 | base_lr: 0.001
3 | lr_policy: "step"
4 | gamma: 0.1
5 | stepsize: 350000
6 | display: 20
7 | average_loss: 100
8 | momentum: 0.9
9 | weight_decay: 0.0005
10 | # We disable standard caffe solver snapshotting and implement our own snapshot
11 | # function
12 | snapshot: 0
13 | # We still use the snapshot prefix, though
14 | snapshot_prefix: "coco_15kr_250ks_"
15 | iter_size: 2
16 |
--------------------------------------------------------------------------------
/models_trained/coco/VGG_CNN_M_1024/faster_rcnn_end2end/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/coco/VGG_CNN_M_1024/faster_rcnn_end2end/train.prototxt"
2 | base_lr: 0.001
3 | lr_policy: "step"
4 | gamma: 0.1
5 | stepsize: 350000
6 | display: 20
7 | average_loss: 100
8 | momentum: 0.9
9 | weight_decay: 0.0005
10 | # We disable standard caffe solver snapshotting and implement our own snapshot
11 | # function
12 | snapshot: 0
13 | # We still use the snapshot prefix, though
14 | snapshot_prefix: "vgg_cnn_m_1024_faster_rcnn"
15 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/fuzz_setup.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | sudo apt-get --yes install subversion screen gcc g++ cmake ninja-build golang autoconf libtool apache2 python-dev pkg-config zlib1g-dev libgcrypt11-dev
4 |
5 | mkdir -p clang
6 | cd clang
7 | git clone https://chromium.googlesource.com/chromium/src/tools/clang
8 | cd ..
9 | clang/clang/scripts/update.py
10 | sudo cp -rf third_party/llvm-build/Release+Asserts/lib/* /usr/local/lib/
11 | sudo cp -rf third_party/llvm-build/Release+Asserts/bin/* /usr/local/bin
12 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/test_header_only_1.cpp:
--------------------------------------------------------------------------------
1 | #define PUGIXML_HEADER_ONLY
2 | #define pugi pugih
3 |
4 | #include "common.hpp"
5 |
6 | // Check header guards
7 | #include "../src/pugixml.hpp"
8 | #include "../src/pugixml.hpp"
9 |
10 | TEST(header_only_1)
11 | {
12 | xml_document doc;
13 | CHECK(doc.load_string(STR("")));
14 | CHECK_STRING(doc.first_child().name(), STR("node"));
15 |
16 | #ifndef PUGIXML_NO_XPATH
17 | CHECK(doc.first_child() == doc.select_node(STR("//*")).node());
18 | #endif
19 | }
20 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/test_header_only_2.cpp:
--------------------------------------------------------------------------------
1 | #define PUGIXML_HEADER_ONLY
2 | #define pugi pugih
3 |
4 | #include "common.hpp"
5 |
6 | // Check header guards
7 | #include "../src/pugixml.hpp"
8 | #include "../src/pugixml.hpp"
9 |
10 | TEST(header_only_2)
11 | {
12 | xml_document doc;
13 | CHECK(doc.load_string(STR("")));
14 | CHECK_STRING(doc.first_child().name(), STR("node"));
15 |
16 | #ifndef PUGIXML_NO_XPATH
17 | CHECK(doc.first_child() == doc.select_node(STR("//*")).node());
18 | #endif
19 | }
20 |
--------------------------------------------------------------------------------
/models_trained/coco/VGG_CNN_M_1024/fast_rcnn/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/coco/VGG_CNN_M_1024/fast_rcnn/train.prototxt"
2 | base_lr: 0.001
3 | lr_policy: "step"
4 | gamma: 0.1
5 | stepsize: 200000
6 | display: 20
7 | average_loss: 100
8 | momentum: 0.9
9 | weight_decay: 0.0005
10 | # We disable standard caffe solver snapshotting and implement our own snapshot
11 | # function
12 | snapshot: 0
13 | # We still use the snapshot prefix, though
14 | snapshot_prefix: "vgg_cnn_m_1024_fast_rcnn"
15 | #debug_info: true
16 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/VGG16/fast_rcnn/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/VGG16/fast_rcnn/train.prototxt"
2 | base_lr: 0.001
3 | lr_policy: "step"
4 | gamma: 0.1
5 | stepsize: 30000
6 | display: 20
7 | average_loss: 100
8 | # iter_size: 1
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 | # We disable standard caffe solver snapshotting and implement our own snapshot
12 | # function
13 | snapshot: 0
14 | # We still use the snapshot prefix, though
15 | snapshot_prefix: "vgg16_fast_rcnn"
16 | #debug_info: true
17 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/VGG16/faster_rcnn_alt_opt/stage1_rpn_solver60k80k.pt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage1_rpn_train.pt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 60000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "vgg16_rpn"
17 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/VGG16/faster_rcnn_alt_opt/stage2_rpn_solver60k80k.pt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage2_rpn_train.pt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 60000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "vgg16_rpn"
17 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/data/mnist/get_mnist.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | # This scripts downloads the mnist data and unzips it.
3 |
4 | DIR="$( cd "$(dirname "$0")" ; pwd -P )"
5 | cd "$DIR"
6 |
7 | echo "Downloading..."
8 |
9 | for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte
10 | do
11 | if [ ! -e $fname ]; then
12 | wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz
13 | gunzip ${fname}.gz
14 | fi
15 | done
16 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/truncation.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 | some text
7 |
8 | some more text
9 |
10 |
11 | <汉语 名字="name" 价值="value">世界有很多语言𤭢汉语>
12 |
13 |
14 | <氏名>
15 | <氏>山田氏>
16 | <名>太郎名>
17 | 氏名>
18 |
19 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/ZF/fast_rcnn/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/ZF/fast_rcnn/train.prototxt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 30000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "zf_fast_rcnn"
17 | #debug_info: true
18 | #iter_size: 2
19 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/VGG_CNN_M_1024/fast_rcnn/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/VGG_CNN_M_1024/fast_rcnn/train.prototxt"
2 | base_lr: 0.001
3 | lr_policy: "step"
4 | gamma: 0.1
5 | stepsize: 30000
6 | display: 20
7 | average_loss: 100
8 | momentum: 0.9
9 | weight_decay: 0.0005
10 | # We disable standard caffe solver snapshotting and implement our own snapshot
11 | # function
12 | snapshot: 0
13 | # We still use the snapshot prefix, though
14 | snapshot_prefix: "vgg_cnn_m_1024_fast_rcnn"
15 | #debug_info: true
16 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/VGG_CNN_M_1024/faster_rcnn_end2end/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_end2end/train.prototxt"
2 | base_lr: 0.001
3 | lr_policy: "step"
4 | gamma: 0.1
5 | stepsize: 50000
6 | display: 20
7 | average_loss: 100
8 | momentum: 0.9
9 | weight_decay: 0.0005
10 | # We disable standard caffe solver snapshotting and implement our own snapshot
11 | # function
12 | snapshot: 0
13 | # We still use the snapshot prefix, though
14 | snapshot_prefix: "vgg_cnn_m_1024_faster_rcnn"
15 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_fast_rcnn_solver30k40k.pt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_fast_rcnn_train.pt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 30000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "zf_fast_rcnn"
17 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/ZF/faster_rcnn_alt_opt/stage2_fast_rcnn_solver30k40k.pt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/ZF/faster_rcnn_alt_opt/stage2_fast_rcnn_train.pt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 30000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "zf_fast_rcnn"
17 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/matlab/+caffe/run_tests.m:
--------------------------------------------------------------------------------
1 | function results = run_tests()
2 | % results = run_tests()
3 | % run all tests in this caffe matlab wrapper package
4 |
5 | % use CPU for testing
6 | caffe.set_mode_cpu();
7 |
8 | % reset caffe before testing
9 | caffe.reset_all();
10 |
11 | % put all test cases here
12 | results = [...
13 | run(caffe.test.test_net) ...
14 | run(caffe.test.test_solver) ...
15 | run(caffe.test.test_io) ];
16 |
17 | % reset caffe after testing
18 | caffe.reset_all();
19 |
20 | end
21 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/scripts/travis/setup-venv.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # setup a Python virtualenv
3 | # (must come after install-deps)
4 |
5 | BASEDIR=$(dirname $0)
6 | source $BASEDIR/defaults.sh
7 |
8 | VENV_DIR=${1:-~/venv}
9 |
10 | # setup our own virtualenv
11 | if $WITH_PYTHON3; then
12 | PYTHON_EXE='/usr/bin/python3'
13 | else
14 | PYTHON_EXE='/usr/bin/python2'
15 | fi
16 |
17 | # use --system-site-packages so that Python will use deb packages
18 | virtualenv $VENV_DIR -p $PYTHON_EXE --system-site-packages
19 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/VGG16/faster_rcnn_alt_opt/stage1_fast_rcnn_solver30k40k.pt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage1_fast_rcnn_train.pt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 30000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "vgg16_fast_rcnn"
17 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/VGG16/faster_rcnn_alt_opt/stage2_fast_rcnn_solver30k40k.pt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage2_fast_rcnn_train.pt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 30000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "vgg16_fast_rcnn"
17 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/VGG16/faster_rcnn_end2end/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/VGG16/faster_rcnn_end2end/train.prototxt"
2 | base_lr: 0.001
3 | lr_policy: "step"
4 | gamma: 0.1
5 | stepsize: 50000
6 | display: 20
7 | average_loss: 100
8 | # iter_size: 1
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 | # We disable standard caffe solver snapshotting and implement our own snapshot
12 | # function
13 | snapshot: 0
14 | # We still use the snapshot prefix, though
15 | snapshot_prefix: "vgg16_faster_rcnn"
16 | iter_size: 2
17 |
--------------------------------------------------------------------------------
/models_trained/modelnet/VGG16/faster_rcnn_end2end/solver.working.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/modelnet/VGG16/faster_rcnn_end2end/train.prototxt"
2 | base_lr: 0.001
3 | lr_policy: "step"
4 | gamma: 0.1
5 | stepsize: 50000
6 | display: 20
7 | average_loss: 100
8 | # iter_size: 1
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 | # We disable standard caffe solver snapshotting and implement our own snapshot
12 | # function
13 | snapshot: 0
14 | # We still use the snapshot prefix, though
15 | snapshot_prefix: "vgg16_faster_rcnn"
16 | iter_size: 2
17 |
--------------------------------------------------------------------------------
/models_trained/modeloneh/VGG16/faster_rcnn_end2end/solver.working.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/modelnet/VGG16/faster_rcnn_end2end/train.prototxt"
2 | base_lr: 0.001
3 | lr_policy: "step"
4 | gamma: 0.1
5 | stepsize: 50000
6 | display: 20
7 | average_loss: 100
8 | # iter_size: 1
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 | # We disable standard caffe solver snapshotting and implement our own snapshot
12 | # function
13 | snapshot: 0
14 | # We still use the snapshot prefix, though
15 | snapshot_prefix: "vgg16_faster_rcnn"
16 | iter_size: 2
17 |
--------------------------------------------------------------------------------
/models_trained/modelpose/VGG16/faster_rcnn_end2end/solver.working.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/modelnet/VGG16/faster_rcnn_end2end/train.prototxt"
2 | base_lr: 0.001
3 | lr_policy: "step"
4 | gamma: 0.1
5 | stepsize: 50000
6 | display: 20
7 | average_loss: 100
8 | # iter_size: 1
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 | # We disable standard caffe solver snapshotting and implement our own snapshot
12 | # function
13 | snapshot: 0
14 | # We still use the snapshot prefix, though
15 | snapshot_prefix: "vgg16_faster_rcnn"
16 | iter_size: 2
17 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage1_rpn_solver60k80k.pt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage1_rpn_train.pt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 60000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "vgg_cnn_m_1024_rpn"
17 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage2_rpn_solver60k80k.pt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage2_rpn_train.pt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 60000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "vgg_cnn_m_1024_rpn"
17 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/include/caffe/util/format.hpp:
--------------------------------------------------------------------------------
1 | #ifndef CAFFE_UTIL_FORMAT_H_
2 | #define CAFFE_UTIL_FORMAT_H_
3 |
4 | #include // NOLINT(readability/streams)
5 | #include // NOLINT(readability/streams)
6 | #include
7 |
8 | namespace caffe {
9 |
10 | inline std::string format_int(int n, int numberOfLeadingZeros = 0 ) {
11 | std::ostringstream s;
12 | s << std::setw(numberOfLeadingZeros) << std::setfill('0') << n;
13 | return s.str();
14 | }
15 |
16 | }
17 |
18 | #endif // CAFFE_UTIL_FORMAT_H_
19 |
--------------------------------------------------------------------------------
/dependencies/pugixml/.travis.yml:
--------------------------------------------------------------------------------
1 | language: cpp
2 | sudo: required
3 | dist: trusty
4 | os:
5 | - linux
6 | - osx
7 | env:
8 | - DEFINES=standard
9 | - DEFINES=PUGIXML_WCHAR_MODE
10 | - DEFINES=PUGIXML_COMPACT
11 | - DEFINES=PUGIXML_NO_EXCEPTIONS
12 | script:
13 | - make test cxxstd=c++11 defines=$DEFINES config=coverage -j2
14 | - make test cxxstd=c++11 defines=$DEFINES config=release -j2
15 | - make test cxxstd=c++98 defines=$DEFINES config=debug -j2
16 |
17 | after_success: bash <(curl -s https://codecov.io/bash) -f pugixml.cpp.gcov
18 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/fuzz_xpath.cpp:
--------------------------------------------------------------------------------
1 | #include "../src/pugixml.hpp"
2 |
3 | #include
4 | #include
5 |
6 | extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size)
7 | {
8 | char* text = new char[Size + 1];
9 | memcpy(text, Data, Size);
10 | text[Size] = 0;
11 |
12 | #ifdef PUGIXML_NO_EXCEPTIONS
13 | pugi::xpath_query q(text);
14 | #else
15 | try
16 | {
17 | pugi::xpath_query q(text);
18 | }
19 | catch (pugi::xpath_exception&)
20 | {
21 | }
22 | #endif
23 |
24 | delete[] text;
25 | return 0;
26 | }
27 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage1_fast_rcnn_solver30k40k.pt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage1_fast_rcnn_train.pt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 30000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "vgg_cnn_m_1024_fast_rcnn"
17 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage2_fast_rcnn_solver30k40k.pt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage2_fast_rcnn_train.pt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 30000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | # We disable standard caffe solver snapshotting and implement our own snapshot
13 | # function
14 | snapshot: 0
15 | # We still use the snapshot prefix, though
16 | snapshot_prefix: "vgg_cnn_m_1024_fast_rcnn"
17 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/cmake/CMakeFiles/2.8.12.2/CMakeSystem.cmake:
--------------------------------------------------------------------------------
1 | set(CMAKE_HOST_SYSTEM "Linux-2.6.32-431.11.2.el6.x86_64")
2 | set(CMAKE_HOST_SYSTEM_NAME "Linux")
3 | set(CMAKE_HOST_SYSTEM_VERSION "2.6.32-431.11.2.el6.x86_64")
4 | set(CMAKE_HOST_SYSTEM_PROCESSOR "x86_64")
5 |
6 |
7 |
8 | set(CMAKE_SYSTEM "Linux-2.6.32-431.11.2.el6.x86_64")
9 | set(CMAKE_SYSTEM_NAME "Linux")
10 | set(CMAKE_SYSTEM_VERSION "2.6.32-431.11.2.el6.x86_64")
11 | set(CMAKE_SYSTEM_PROCESSOR "x86_64")
12 |
13 | set(CMAKE_CROSSCOMPILING "FALSE")
14 |
15 | set(CMAKE_SYSTEM_LOADED 1)
16 |
--------------------------------------------------------------------------------
/dependencies/pugixml/tests/data/latintest_utf8.xml:
--------------------------------------------------------------------------------
1 | <Test>10<Test 2>20
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/mnist_autoencoder_solver_adagrad.prototxt:
--------------------------------------------------------------------------------
1 | net: "examples/mnist/mnist_autoencoder.prototxt"
2 | test_state: { stage: 'test-on-train' }
3 | test_iter: 500
4 | test_state: { stage: 'test-on-test' }
5 | test_iter: 100
6 | test_interval: 500
7 | test_compute_loss: true
8 | base_lr: 0.01
9 | lr_policy: "fixed"
10 | display: 100
11 | max_iter: 65000
12 | weight_decay: 0.0005
13 | snapshot: 10000
14 | snapshot_prefix: "examples/mnist/mnist_autoencoder_adagrad_train"
15 | # solver mode: CPU or GPU
16 | solver_mode: GPU
17 | type: "AdaGrad"
18 |
--------------------------------------------------------------------------------
/models_trained/modelnet/VGG16/faster_rcnn_end2end/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/modelnet/VGG16/faster_rcnn_end2end/train.prototxt"
2 | ##test_iter: 100
3 | ##test_interval: 100
4 | base_lr: 0.001
5 | lr_policy: "step"
6 | gamma: 0.1
7 | stepsize: 50000
8 | display: 20
9 | average_loss: 100
10 | # iter_size: 1
11 | momentum: 0.9
12 | weight_decay: 0.0005
13 | # We disable standard caffe solver snapshotting and implement our own snapshot
14 | # function
15 | snapshot: 0
16 | # We still use the snapshot prefix, though
17 | snapshot_prefix: "vgg16_faster_rcnn"
18 | iter_size: 2
19 |
--------------------------------------------------------------------------------
/models_trained/modeloneh/VGG16/faster_rcnn_end2end/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/modeloneh/VGG16/faster_rcnn_end2end/train.prototxt"
2 | ##test_iter: 100
3 | ##test_interval: 100
4 | base_lr: 0.001
5 | lr_policy: "step"
6 | gamma: 0.1
7 | stepsize: 50000
8 | display: 20
9 | average_loss: 100
10 | # iter_size: 1
11 | momentum: 0.9
12 | weight_decay: 0.0005
13 | # We disable standard caffe solver snapshotting and implement our own snapshot
14 | # function
15 | snapshot: 0
16 | # We still use the snapshot prefix, though
17 | snapshot_prefix: "vggimnet_onehot"
18 | iter_size: 2
19 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/mnist_autoencoder_solver.prototxt:
--------------------------------------------------------------------------------
1 | net: "examples/mnist/mnist_autoencoder.prototxt"
2 | test_state: { stage: 'test-on-train' }
3 | test_iter: 500
4 | test_state: { stage: 'test-on-test' }
5 | test_iter: 100
6 | test_interval: 500
7 | test_compute_loss: true
8 | base_lr: 0.01
9 | lr_policy: "step"
10 | gamma: 0.1
11 | stepsize: 10000
12 | display: 100
13 | max_iter: 65000
14 | weight_decay: 0.0005
15 | snapshot: 10000
16 | snapshot_prefix: "examples/mnist/mnist_autoencoder"
17 | momentum: 0.9
18 | # solver mode: CPU or GPU
19 | solver_mode: GPU
20 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/custom_memory_management.cpp:
--------------------------------------------------------------------------------
1 | #include "pugixml.hpp"
2 |
3 | #include
4 |
5 | // tag::decl[]
6 | void* custom_allocate(size_t size)
7 | {
8 | return new (std::nothrow) char[size];
9 | }
10 |
11 | void custom_deallocate(void* ptr)
12 | {
13 | delete[] static_cast(ptr);
14 | }
15 | // end::decl[]
16 |
17 | int main()
18 | {
19 | // tag::call[]
20 | pugi::set_memory_management_functions(custom_allocate, custom_deallocate);
21 | // end::call[]
22 |
23 | pugi::xml_document doc;
24 | doc.load_string("");
25 | }
26 |
27 | // vim:et
28 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/cifar10/create_cifar10.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | # This script converts the cifar data into leveldb format.
3 | set -e
4 |
5 | EXAMPLE=examples/cifar10
6 | DATA=data/cifar10
7 | DBTYPE=lmdb
8 |
9 | echo "Creating $DBTYPE..."
10 |
11 | rm -rf $EXAMPLE/cifar10_train_$DBTYPE $EXAMPLE/cifar10_test_$DBTYPE
12 |
13 | ./build/examples/cifar10/convert_cifar_data.bin $DATA $EXAMPLE $DBTYPE
14 |
15 | echo "Computing image mean..."
16 |
17 | ./build/tools/compute_image_mean -backend=$DBTYPE \
18 | $EXAMPLE/cifar10_train_$DBTYPE $EXAMPLE/mean.binaryproto
19 |
20 | echo "Done."
21 |
--------------------------------------------------------------------------------
/ros/sptam/src/standAlone/Test/ReadImagesFromDir/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | cmake_minimum_required (VERSION 2.6)
2 |
3 | # nombre del proyecto
4 | project (ReadImagesFromDir)
5 |
6 | # defininos algunas opciones de compilación
7 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -Wall -std=c++11")
8 |
9 | # Encontrar los componentes necesarios de la librería OpenCV
10 | FIND_PACKAGE(OpenCV REQUIRED)
11 |
12 | # agregar un ejecutable al proyecto
13 | add_executable(ReadImagesFromDir ReadImagesFromDir.cpp)
14 |
15 | # linkear las librerías necesarias al ejecutable
16 | target_link_libraries(ReadImagesFromDir ${OpenCV_LIBS})
17 |
--------------------------------------------------------------------------------
/models_trained/modelpose/VGG16/faster_rcnn_end2end/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/modelpose/VGG16/faster_rcnn_end2end/train.onlyCLSandPose.prototxt"
2 | ##test_iter: 100
3 | ##test_interval: 100
4 | base_lr: 0.001 ##o 0.0001
5 | lr_policy: "step"
6 | gamma: 0.1
7 | stepsize: 200000
8 | display: 20
9 | average_loss: 100
10 | # iter_size: 1
11 | momentum: 0.9
12 | weight_decay: 0.0005
13 | # We disable standard caffe solver snapshotting and implement our own snapshot
14 | # function
15 | snapshot: 0
16 | # We still use the snapshot prefix, though
17 | snapshot_prefix: "pose_cls_15k250k5k_dyp_20+"
18 | iter_size: 2
19 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/mnist_autoencoder_solver_adadelta.prototxt:
--------------------------------------------------------------------------------
1 | net: "examples/mnist/mnist_autoencoder.prototxt"
2 | test_state: { stage: 'test-on-train' }
3 | test_iter: 500
4 | test_state: { stage: 'test-on-test' }
5 | test_iter: 100
6 | test_interval: 500
7 | test_compute_loss: true
8 | base_lr: 1.0
9 | lr_policy: "fixed"
10 | momentum: 0.95
11 | delta: 1e-8
12 | display: 100
13 | max_iter: 65000
14 | weight_decay: 0.0005
15 | snapshot: 10000
16 | snapshot_prefix: "examples/mnist/mnist_autoencoder_adadelta_train"
17 | # solver mode: CPU or GPU
18 | solver_mode: GPU
19 | type: "AdaDelta"
20 |
--------------------------------------------------------------------------------
/FromMaxwellToOther.dockerfile:
--------------------------------------------------------------------------------
1 | FROM eevidal/object-detection-sptam-kinetic:ros-base-xenial-sptam-kinetic-maxwell
2 |
3 | LABEL maintainer="Erica Vidal ericavidal@gmail.com"
4 |
5 | RUN cd $HOME/object-detection-sptam && git pull \
6 | && cd $HOME/object-detection-sptam/py-faster-rcnn \
7 | && rm -Rf lib \
8 | && git checkout lib
9 |
10 | # the rigth arch have to be set on setup.py file (line 135)
11 | COPY ./py-faster-rcnn/lib/setup.py /root/object-detection-sptam/py-faster-rcnn/lib/
12 |
13 | RUN cd $HOME/object-detection-sptam/py-faster-rcnn/lib && make
14 |
15 | CMD ["bash"]
16 |
17 | WORKDIR catkin_ws
--------------------------------------------------------------------------------
/dependencies/pugixml/appveyor.yml:
--------------------------------------------------------------------------------
1 | version: "{branch}-{build}"
2 |
3 | install:
4 | - ps: (new-object net.webclient).DownloadFile('http://coapp.org/files/CoApp.Tools.Powershell.msi', 'C:\CoApp.Tools.Powershell.msi')
5 | - ps: Start-Process -FilePath msiexec -ArgumentList /i, 'C:\CoApp.Tools.Powershell.msi', /quiet -Wait
6 | - ps: $env:PSModulePath = $env:PSModulePath + ';C:\Program Files (x86)\Outercurve Foundation\Modules'
7 | - ps: Import-Module CoApp
8 |
9 | build_script:
10 | - ps: .\scripts\nuget_build.bat
11 |
12 | test_script:
13 | - ps: .\tests\autotest-appveyor.ps1
14 |
15 | artifacts:
16 | - path: .\scripts\*.nupkg
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/mnist_autoencoder_solver_nesterov.prototxt:
--------------------------------------------------------------------------------
1 | net: "examples/mnist/mnist_autoencoder.prototxt"
2 | test_state: { stage: 'test-on-train' }
3 | test_iter: 500
4 | test_state: { stage: 'test-on-test' }
5 | test_iter: 100
6 | test_interval: 500
7 | test_compute_loss: true
8 | base_lr: 0.01
9 | lr_policy: "step"
10 | gamma: 0.1
11 | stepsize: 10000
12 | display: 100
13 | max_iter: 65000
14 | weight_decay: 0.0005
15 | snapshot: 10000
16 | snapshot_prefix: "examples/mnist/mnist_autoencoder_nesterov_train"
17 | momentum: 0.95
18 | # solver mode: CPU or GPU
19 | solver_mode: GPU
20 | type: "Nesterov"
21 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/scripts/build_docs.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Build documentation for display in web browser.
3 |
4 | PORT=${1:-4000}
5 |
6 | echo "usage: build_docs.sh [port]"
7 |
8 | # Find the docs dir, no matter where the script is called
9 | ROOT_DIR="$( cd "$(dirname "$0")"/.. ; pwd -P )"
10 | cd $ROOT_DIR
11 |
12 | # Gather docs.
13 | scripts/gather_examples.sh
14 |
15 | # Split caffe.proto for inclusion by layer catalogue.
16 | scripts/split_caffe_proto.py
17 |
18 | # Generate developer docs.
19 | make docs
20 |
21 | # Display docs using web server.
22 | cd docs
23 | jekyll serve -w -s . -d _site --port=$PORT
24 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/data/cifar10/get_cifar10.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | # This scripts downloads the CIFAR10 (binary version) data and unzips it.
3 |
4 | DIR="$( cd "$(dirname "$0")" ; pwd -P )"
5 | cd "$DIR"
6 |
7 | echo "Downloading..."
8 |
9 | wget --no-check-certificate http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz
10 |
11 | echo "Unzipping..."
12 |
13 | tar -xf cifar-10-binary.tar.gz && rm -f cifar-10-binary.tar.gz
14 | mv cifar-10-batches-bin/* . && rm -rf cifar-10-batches-bin
15 |
16 | # Creation is split out because leveldb sometimes causes segfault
17 | # and needs to be re-created.
18 |
19 | echo "Done."
20 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/cifar10/train_full.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | set -e
3 |
4 | TOOLS=./build/tools
5 |
6 | $TOOLS/caffe train \
7 | --solver=examples/cifar10/cifar10_full_solver.prototxt $@
8 |
9 | # reduce learning rate by factor of 10
10 | $TOOLS/caffe train \
11 | --solver=examples/cifar10/cifar10_full_solver_lr1.prototxt \
12 | --snapshot=examples/cifar10/cifar10_full_iter_60000.solverstate.h5 $@
13 |
14 | # reduce learning rate by factor of 10
15 | $TOOLS/caffe train \
16 | --solver=examples/cifar10/cifar10_full_solver_lr2.prototxt \
17 | --snapshot=examples/cifar10/cifar10_full_iter_65000.solverstate.h5 $@
18 |
--------------------------------------------------------------------------------
/ros/sptam/src/ros/sptam_nodelet.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include "stereo_driver.hpp"
4 |
5 | namespace sptam
6 | {
7 | class sptam_nodelet : public nodelet::Nodelet
8 | {
9 | public:
10 |
11 | void onInit()
12 | {
13 | NODELET_DEBUG("Initializing sptam nodelet...");
14 | sptam_interface_.reset( new sptam::stereo_driver( getNodeHandle(), getPrivateNodeHandle() ) );
15 | }
16 |
17 | private:
18 |
19 | std::unique_ptr sptam_interface_;
20 | };
21 | }
22 |
23 | PLUGINLIB_EXPORT_CLASS(sptam::sptam_nodelet, nodelet::Nodelet)
24 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/net_surgery/conv.prototxt:
--------------------------------------------------------------------------------
1 | # Simple single-layer network to showcase editing model parameters.
2 | name: "convolution"
3 | layer {
4 | name: "data"
5 | type: "Input"
6 | top: "data"
7 | input_param { shape: { dim: 1 dim: 1 dim: 100 dim: 100 } }
8 | }
9 | layer {
10 | name: "conv"
11 | type: "Convolution"
12 | bottom: "data"
13 | top: "conv"
14 | convolution_param {
15 | num_output: 3
16 | kernel_size: 5
17 | stride: 1
18 | weight_filler {
19 | type: "gaussian"
20 | std: 0.01
21 | }
22 | bias_filler {
23 | type: "constant"
24 | value: 0
25 | }
26 | }
27 | }
28 |
--------------------------------------------------------------------------------
/ros/sptam/cmake-modules/FindOpenGV.cmake:
--------------------------------------------------------------------------------
1 | FIND_PATH(OPENGV_INCLUDE_DIR opengv/types.hpp
2 | ${OPENGV_ROOT}/include
3 | $ENV{OPENGV_ROOT}/include
4 | /usr/include
5 | /opt/local/include
6 | /usr/local/include
7 | /sw/include
8 | )
9 |
10 | FIND_LIBRARY(OPENGV_LIBRARY opengv
11 | ${OPENGV_ROOT}/lib
12 | $ENV{OPENGV_ROOT}/lib
13 | /usr/lib
14 | /usr/local/lib
15 | /opt/local/lib
16 | /sw/lib
17 | )
18 |
19 | IF(OPENGV_INCLUDE_DIR AND OPENGV_LIBRARY)
20 | SET(OPENGV_FOUND TRUE)
21 | ELSE(OPENGV_INCLUDE_DIR AND OPENGV_LIBRARY)
22 | SET(OPENGV_FOUND FALSE)
23 | ENDIF(OPENGV_INCLUDE_DIR AND OPENGV_LIBRARY)
24 |
--------------------------------------------------------------------------------
/ros/sptam/src/sptam/loopclosing/LCDetector.hpp:
--------------------------------------------------------------------------------
1 | #pragma once
2 |
3 | #include "../Map.hpp"
4 |
5 | /// Result of a detection
6 | struct DetectionMatch
7 | {
8 | /// Detection status.
9 | bool status;
10 | /// Query id
11 | size_t query;
12 | /// Matched id if loop detected, otherwise, best candidate
13 | size_t match;
14 | /// Matched score
15 | double score;
16 |
17 | /** Checks if the loop was detected */
18 | inline bool detection() const
19 | { return status; }
20 | };
21 |
22 | class LCDetector
23 | {
24 | public:
25 | virtual ~LCDetector(){}
26 | virtual DetectionMatch detectloop(const sptam::Map::SharedKeyFrame& stereo_frame) = 0;
27 | };
28 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/KITTI00_left.yaml:
--------------------------------------------------------------------------------
1 | %YAML:1.0
2 |
3 | image_width: 1241
4 | image_height: 376
5 | camera_name: left_camera
6 | frame_id: stereo
7 | camera_matrix:
8 | rows: 3
9 | cols: 3
10 | data: [ 7.188560000000e+02, 0, 6.071928000000e+02, 0, 7.188560000000e+02, 1.852157000000e+02, 0, 0, 1]
11 | distortion_model: plumb_bob
12 | distortion_coefficients:
13 | rows: 1
14 | cols: 5
15 | data: [ 0, 0, 0, 0, 0 ]
16 | rectification_matrix:
17 | rows: 3
18 | cols: 3
19 | data: [1, 0, 0, 0, 1, 0, 0, 0, 1]
20 | projection_matrix:
21 | rows: 3
22 | cols: 4
23 | data: [7.188560000000e+02, 0, 6.071928000000e+02, 0, 0, 7.188560000000e+02, 1.852157000000e+02, 0, 0, 0, 1, 0]
24 |
--------------------------------------------------------------------------------
/models_trained/pascal_voc/ZF/faster_rcnn_end2end/solver.prototxt:
--------------------------------------------------------------------------------
1 | train_net: "models/pascal_voc/ZF/faster_rcnn_end2end/train.prototxt"
2 |
3 | base_lr: 0.001
4 | lr_policy: "step"
5 | gamma: 0.1
6 | stepsize: 50000
7 | display: 20
8 | average_loss: 100
9 | momentum: 0.9
10 | weight_decay: 0.0005
11 |
12 | #base_lr: 0.001
13 | #lr_policy: "exp"
14 | #gamma: 0.999539589 # (0.00001/0.001)^(1/10000)
15 | #display: 1
16 | #average_loss: 100
17 | #momentum: 0.9
18 | #weight_decay: 0.0005
19 |
20 | # We disable standard caffe solver snapshotting and implement our own snapshot
21 | # function
22 | snapshot: 0
23 | # We still use the snapshot prefix, though
24 | snapshot_prefix: "zf_faster_rcnn"
25 | iter_size: 2
26 |
--------------------------------------------------------------------------------
/ros/sptam/src/sptam/utils/timer.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 |
3 | #include
4 |
5 | namespace sptam
6 | {
7 | class Timer
8 | {
9 | public:
10 | Timer(void);
11 |
12 | void start(void); /* measures initial time */
13 | void stop(void); /* measures elapsed time */
14 | double elapsed(void) const; /* returns elapsed time in seconds */
15 |
16 | static double now(void); /* returns seconds since epoch */
17 |
18 | private:
19 | typedef std::chrono::high_resolution_clock clock_t;
20 | std::chrono::time_point t;
21 | double elapsed_seconds;
22 | };
23 | }
24 |
25 | std::ostream& operator<< (std::ostream& stream, const sptam::Timer& t);
26 |
27 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/KITTI00_right.yaml:
--------------------------------------------------------------------------------
1 | %YAML:1.0
2 |
3 | image_width: 1241
4 | image_height: 376
5 | camera_name: right_camera
6 | frame_id: stereo
7 | camera_matrix:
8 | rows: 3
9 | cols: 3
10 | data: [ 7.188560000000e+02, 0, 6.071928000000e+02, 0, 7.188560000000e+02, 1.852157000000e+02, 0, 0, 1]
11 | distortion_model: plumb_bob
12 | distortion_coefficients:
13 | rows: 1
14 | cols: 5
15 | data: [ 0, 0, 0, 0, 0 ]
16 | rectification_matrix:
17 | rows: 3
18 | cols: 3
19 | data: [1, 0, 0, 0, 1, 0, 0, 0, 1]
20 | projection_matrix:
21 | rows: 3
22 | cols: 4
23 | data: [7.188560000000e+02, 0, 6.071928000000e+02, -386.1448, 0, 7.188560000000e+02, 1.852157000000e+02, 0, 0, 0, 1, 0]
24 |
25 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/data/ilsvrc12/get_ilsvrc_aux.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | #
3 | # N.B. This does not download the ilsvrcC12 data set, as it is gargantuan.
4 | # This script downloads the imagenet example auxiliary files including:
5 | # - the ilsvrc12 image mean, binaryproto
6 | # - synset ids and words
7 | # - Python pickle-format data of ImageNet graph structure and relative infogain
8 | # - the training splits with labels
9 |
10 | DIR="$( cd "$(dirname "$0")" ; pwd -P )"
11 | cd "$DIR"
12 |
13 | echo "Downloading..."
14 |
15 | wget -c http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz
16 |
17 | echo "Unzipping..."
18 |
19 | tar -xf caffe_ilsvrc12.tar.gz && rm -f caffe_ilsvrc12.tar.gz
20 |
21 | echo "Done."
22 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/CONTRIBUTORS.md:
--------------------------------------------------------------------------------
1 | # Contributors
2 |
3 | Caffe is developed by a core set of BVLC members and the open-source community.
4 |
5 | We thank all of our [contributors](https://github.com/BVLC/caffe/graphs/contributors)!
6 |
7 | **For the detailed history of contributions** of a given file, try
8 |
9 | git blame file
10 |
11 | to see line-by-line credits and
12 |
13 | git log --follow file
14 |
15 | to see the change log even across renames and rewrites.
16 |
17 | Please refer to the [acknowledgements](http://caffe.berkeleyvision.org/#acknowledgements) on the Caffe site for further details.
18 |
19 | **Copyright** is held by the original contributor according to the versioning history; see LICENSE.
20 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/scripts/download_model_from_gist.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 |
3 | GIST=$1
4 | DIRNAME=${2:-./models}
5 |
6 | if [ -z $GIST ]; then
7 | echo "usage: download_model_from_gist.sh "
8 | exit
9 | fi
10 |
11 | GIST_DIR=$(echo $GIST | tr '/' '-')
12 | MODEL_DIR="$DIRNAME/$GIST_DIR"
13 |
14 | if [ -d $MODEL_DIR ]; then
15 | echo "$MODEL_DIR already exists! Please make sure you're not overwriting anything important!"
16 | exit
17 | fi
18 |
19 | echo "Downloading Caffe model info to $MODEL_DIR ..."
20 | mkdir -p $MODEL_DIR
21 | wget https://gist.github.com/$GIST/download -O $MODEL_DIR/gist.zip
22 | unzip -j $MODEL_DIR/gist.zip -d $MODEL_DIR
23 | rm $MODEL_DIR/gist.zip
24 | echo "Done"
25 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/stylesheets/reset.css:
--------------------------------------------------------------------------------
1 | /* MeyerWeb Reset */
2 |
3 | html, body, div, span, applet, object, iframe,
4 | h1, h2, h3, h4, h5, h6, p, blockquote, pre,
5 | a, abbr, acronym, address, big, cite, code,
6 | del, dfn, em, img, ins, kbd, q, s, samp,
7 | small, strike, strong, sub, sup, tt, var,
8 | b, u, i, center,
9 | dl, dt, dd, ol, ul, li,
10 | fieldset, form, label, legend,
11 | table, caption, tbody, tfoot, thead, tr, th, td,
12 | article, aside, canvas, details, embed,
13 | figure, figcaption, footer, header, hgroup,
14 | menu, nav, output, ruby, section, summary,
15 | time, mark, audio, video {
16 | margin: 0;
17 | padding: 0;
18 | border: 0;
19 | font: inherit;
20 | vertical-align: baseline;
21 | }
22 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/filter.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Filter Layer
3 | ---
4 |
5 | # Filter Layer
6 |
7 | * Layer type: `Filter`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1FilterLayer.html)
9 | * Header: [`./include/caffe/layers/filter_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/filter_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/filter_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/filter_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/filter_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/filter_layer.cu)
12 |
13 | ## Parameters
14 |
15 | Does not take any parameters.
16 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_sift.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 | Name: 'SIFT'
3 | nOctaveLayers: 1
4 |
5 | DescriptorExtractor:
6 | Name: 'SIFT'
7 | nOctaveLayers: 1
8 |
9 | DescriptorMatcher:
10 | # normType: use
11 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
12 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
13 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
14 | # use L2 norm type as default when it is not especified
15 | Name: 'BruteForce'
16 | crossCheck: false
17 |
18 | MatchingCellSize: 15
19 | MatchingNeighborhood: 1
20 | MatchingDistance: 100
21 | EpipolarDistance: 1
22 | FrustumNearPlaneDist: 0.1
23 | FrustumFarPlaneDist: 10000.0
24 | BundleAdjustmentActiveKeyframes: 10
25 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/mit.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 1000
6 | minDistance: 15.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | DescriptorMatcher:
15 | # normType: use
16 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
17 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
18 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
19 | Name: 'BruteForce-Hamming'
20 | crossCheck: false
21 |
22 | MatchingCellSize: 30
23 | MatchingNeighborhood: 1
24 | MatchingDistance: 25
25 | EpipolarDistance: 0
26 | FrustumNearPlaneDist: 0.1
27 | FrustumFarPlaneDist: 10000.0
28 | BundleAdjustmentActiveKeyframes: 10
29 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/sfu.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 10000
6 | minDistance: 5.0
7 | qualityLevel: 0.001
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | DescriptorMatcher:
15 | # normType: use
16 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
17 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
18 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
19 | Name: 'BruteForce-Hamming'
20 | crossCheck: false
21 |
22 | MatchingCellSize: 15
23 | MatchingNeighborhood: 1
24 | MatchingDistance: 25
25 | EpipolarDistance: 1
26 | FrustumNearPlaneDist: 0.1
27 | FrustumFarPlaneDist: 10000.0
28 | BundleAdjustmentActiveKeyframes: 10
29 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/fast_rcnn/nms_wrapper.py:
--------------------------------------------------------------------------------
1 | # --------------------------------------------------------
2 | # Fast R-CNN
3 | # Copyright (c) 2015 Microsoft
4 | # Licensed under The MIT License [see LICENSE for details]
5 | # Written by Ross Girshick
6 | # --------------------------------------------------------
7 |
8 | from fast_rcnn.config import cfg
9 | from nms.gpu_nms import gpu_nms
10 | from nms.cpu_nms import cpu_nms
11 |
12 | def nms(dets, thresh, force_cpu=False):
13 | """Dispatch to either CPU or GPU NMS implementations."""
14 |
15 | if dets.shape[0] == 0:
16 | return []
17 | if cfg.USE_GPU_NMS and not force_cpu:
18 | return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
19 | else:
20 | return cpu_nms(dets, thresh)
21 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/newCollege.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 2000
6 | minDistance: 15.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | DescriptorMatcher:
15 | # normType: use
16 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
17 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
18 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
19 | Name: 'BruteForce-Hamming'
20 | crossCheck: false
21 |
22 | MatchingCellSize: 15
23 | MatchingNeighborhood: 1
24 | MatchingDistance: 25
25 | EpipolarDistance: 0
26 | FrustumNearPlaneDist: 0.1
27 | FrustumFarPlaneDist: 10000.0
28 | BundleAdjustmentActiveKeyframes: 10
29 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/traverse_iter.cpp:
--------------------------------------------------------------------------------
1 | #include "pugixml.hpp"
2 |
3 | #include
4 |
5 | int main()
6 | {
7 | pugi::xml_document doc;
8 | if (!doc.load_file("xgconsole.xml")) return -1;
9 |
10 | pugi::xml_node tools = doc.child("Profile").child("Tools");
11 |
12 | // tag::code[]
13 | for (pugi::xml_node_iterator it = tools.begin(); it != tools.end(); ++it)
14 | {
15 | std::cout << "Tool:";
16 |
17 | for (pugi::xml_attribute_iterator ait = it->attributes_begin(); ait != it->attributes_end(); ++ait)
18 | {
19 | std::cout << " " << ait->name() << "=" << ait->value();
20 | }
21 |
22 | std::cout << std::endl;
23 | }
24 | // end::code[]
25 | }
26 |
27 | // vim:et
28 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_fast_brief.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'FAST'
4 |
5 | threshold: 60
6 | nonmaxSuppression: true
7 |
8 | DescriptorExtractor:
9 | Name: 'BRIEF'
10 | bytes: 32
11 |
12 | # OpenCV3
13 | # use_orientation: false
14 |
15 | DescriptorMatcher:
16 | # normType: use
17 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
18 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
19 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
20 | Name: 'BruteForce-Hamming'
21 | crossCheck: false
22 |
23 | MatchingCellSize: 15
24 | MatchingNeighborhood: 1
25 | MatchingDistance: 25
26 | EpipolarDistance: 0
27 | FrustumNearPlaneDist: 0.1
28 | FrustumFarPlaneDist: 10000.0
29 | BundleAdjustmentActiveKeyframes: 10
30 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/include/caffe/caffe.hpp:
--------------------------------------------------------------------------------
1 | // caffe.hpp is the header file that you need to include in your code. It wraps
2 | // all the internal caffe header files into one for simpler inclusion.
3 |
4 | #ifndef CAFFE_CAFFE_HPP_
5 | #define CAFFE_CAFFE_HPP_
6 |
7 | #include "caffe/blob.hpp"
8 | #include "caffe/common.hpp"
9 | #include "caffe/filler.hpp"
10 | #include "caffe/layer.hpp"
11 | #include "caffe/layer_factory.hpp"
12 | #include "caffe/net.hpp"
13 | #include "caffe/parallel.hpp"
14 | #include "caffe/proto/caffe.pb.h"
15 | #include "caffe/solver.hpp"
16 | #include "caffe/solver_factory.hpp"
17 | #include "caffe/util/benchmark.hpp"
18 | #include "caffe/util/io.hpp"
19 | #include "caffe/util/upgrade_proto.hpp"
20 |
21 | #endif // CAFFE_CAFFE_HPP_
22 |
--------------------------------------------------------------------------------
/py-faster-rcnn/tools/_init_paths.py:
--------------------------------------------------------------------------------
1 | # --------------------------------------------------------
2 | # Fast R-CNN
3 | # Copyright (c) 2015 Microsoft
4 | # Licensed under The MIT License [see LICENSE for details]
5 | # Written by Ross Girshick
6 | # --------------------------------------------------------
7 |
8 | """Set up paths for Fast R-CNN."""
9 |
10 | import os.path as osp
11 | import sys
12 |
13 | def add_path(path):
14 | if path not in sys.path:
15 | sys.path.insert(0, path)
16 |
17 | this_dir = osp.dirname(__file__)
18 |
19 | # Add caffe to PYTHONPATH
20 | caffe_path = osp.join(this_dir, '..', 'caffe-fast-rcnn', 'python')
21 | add_path(caffe_path)
22 |
23 | # Add lib to PYTHONPATH
24 | lib_path = osp.join(this_dir, '..', 'lib')
25 | add_path(lib_path)
26 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_agast_latch.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'AGAST'
4 |
5 | threshold: 60
6 | nonmaxSuppression: true
7 |
8 | DescriptorExtractor:
9 | Name: 'LATCH'
10 | bytes: 32
11 | rotationInvariance: false
12 | half_ssd_size: 3
13 |
14 | DescriptorMatcher:
15 | # normType: use
16 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
17 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
18 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
19 | Name: 'BruteForce-Hamming'
20 | crossCheck: false
21 |
22 | MatchingCellSize: 15
23 | MatchingNeighborhood: 1
24 | MatchingDistance: 45
25 | EpipolarDistance: 0
26 | FrustumNearPlaneDist: 0.1
27 | FrustumFarPlaneDist: 10000.0
28 | BundleAdjustmentActiveKeyframes: 10
29 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_fast_latch.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'FAST'
4 |
5 | threshold: 60
6 | nonmaxSuppression: true
7 |
8 | DescriptorExtractor:
9 | Name: 'LATCH'
10 | bytes: 32
11 | rotationInvariance: false
12 | half_ssd_size: 3
13 |
14 | DescriptorMatcher:
15 | # normType: use
16 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
17 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
18 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
19 | Name: 'BruteForce-Hamming'
20 | crossCheck: false
21 |
22 | MatchingCellSize: 15
23 | MatchingNeighborhood: 1
24 | MatchingDistance: 45
25 | EpipolarDistance: 0
26 | FrustumNearPlaneDist: 0.1
27 | FrustumFarPlaneDist: 10000.0
28 | BundleAdjustmentActiveKeyframes: 10
29 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/siamese/create_mnist_siamese.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | # This script converts the mnist data into leveldb format.
3 | set -e
4 |
5 | EXAMPLES=./build/examples/siamese
6 | DATA=./data/mnist
7 |
8 | echo "Creating leveldb..."
9 |
10 | rm -rf ./examples/siamese/mnist_siamese_train_leveldb
11 | rm -rf ./examples/siamese/mnist_siamese_test_leveldb
12 |
13 | $EXAMPLES/convert_mnist_siamese_data.bin \
14 | $DATA/train-images-idx3-ubyte \
15 | $DATA/train-labels-idx1-ubyte \
16 | ./examples/siamese/mnist_siamese_train_leveldb
17 | $EXAMPLES/convert_mnist_siamese_data.bin \
18 | $DATA/t10k-images-idx3-ubyte \
19 | $DATA/t10k-labels-idx1-ubyte \
20 | ./examples/siamese/mnist_siamese_test_leveldb
21 |
22 | echo "Done."
23 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/matlab/+caffe/+test/test_io.m:
--------------------------------------------------------------------------------
1 | classdef test_io < matlab.unittest.TestCase
2 | methods (Test)
3 | function test_read_write_mean(self)
4 | % randomly generate mean data
5 | width = 200;
6 | height = 300;
7 | channels = 3;
8 | mean_data_write = 255 * rand(width, height, channels, 'single');
9 | % write mean data to binary proto
10 | mean_proto_file = tempname();
11 | caffe.io.write_mean(mean_data_write, mean_proto_file);
12 | % read mean data from saved binary proto and test whether they are equal
13 | mean_data_read = caffe.io.read_mean(mean_proto_file);
14 | self.verifyEqual(mean_data_write, mean_data_read)
15 | delete(mean_proto_file);
16 | end
17 | end
18 | end
19 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_agast_brief.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'AGAST'
4 |
5 | threshold: 60
6 | nonmaxSuppression: true
7 |
8 | DescriptorExtractor:
9 | Name: 'BRIEF'
10 | bytes: 32
11 |
12 | # OpenCV3
13 | # use_orientation: false
14 |
15 | DescriptorMatcher:
16 | # normType: use
17 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
18 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
19 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
20 | Name: 'BruteForce-Hamming'
21 | crossCheck: false
22 |
23 | MatchingCellSize: 15
24 | MatchingNeighborhood: 1
25 | MatchingDistance: 25
26 | EpipolarDistance: 0
27 | FrustumNearPlaneDist: 0.1
28 | FrustumFarPlaneDist: 10000.0
29 | BundleAdjustmentActiveKeyframes: 10
30 |
31 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/convolution.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Convolution
3 | ---
4 | # Caffeinated Convolution
5 |
6 | The Caffe strategy for convolution is to reduce the problem to matrix-matrix multiplication.
7 | This linear algebra computation is highly-tuned in BLAS libraries and efficiently computed on GPU devices.
8 |
9 | For more details read Yangqing's [Convolution in Caffe: a memo](https://github.com/Yangqing/caffe/wiki/Convolution-in-Caffe:-a-memo).
10 |
11 | As it turns out, this same reduction was independently explored in the context of conv. nets by
12 |
13 | > K. Chellapilla, S. Puri, P. Simard, et al. High performance convolutional neural networks for document processing. In Tenth International Workshop on Frontiers in Handwriting Recognition, 2006.
14 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/create_mnist.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env sh
2 | # This script converts the mnist data into lmdb/leveldb format,
3 | # depending on the value assigned to $BACKEND.
4 | set -e
5 |
6 | EXAMPLE=examples/mnist
7 | DATA=data/mnist
8 | BUILD=build/examples/mnist
9 |
10 | BACKEND="lmdb"
11 |
12 | echo "Creating ${BACKEND}..."
13 |
14 | rm -rf $EXAMPLE/mnist_train_${BACKEND}
15 | rm -rf $EXAMPLE/mnist_test_${BACKEND}
16 |
17 | $BUILD/convert_mnist_data.bin $DATA/train-images-idx3-ubyte \
18 | $DATA/train-labels-idx1-ubyte $EXAMPLE/mnist_train_${BACKEND} --backend=${BACKEND}
19 | $BUILD/convert_mnist_data.bin $DATA/t10k-images-idx3-ubyte \
20 | $DATA/t10k-labels-idx1-ubyte $EXAMPLE/mnist_test_${BACKEND} --backend=${BACKEND}
21 |
22 | echo "Done."
23 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/tsukuba.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 2000
6 | minDistance: 5.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | DescriptorMatcher:
15 | # normType: use
16 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
17 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
18 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
19 | Name: 'BruteForce-Hamming'
20 | crossCheck: false
21 |
22 | MatchingCellSize: 30
23 | MatchingNeighborhood: 1
24 | MatchingDistance: 25
25 | EpipolarDistance: 0
26 | FrustumNearPlaneDist: 0.1
27 | FrustumFarPlaneDist: 20
28 | BundleAdjustmentActiveKeyframes: 10
29 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/layers/silence_layer.cpp:
--------------------------------------------------------------------------------
1 | #include
2 |
3 | #include "caffe/layers/silence_layer.hpp"
4 | #include "caffe/util/math_functions.hpp"
5 |
6 | namespace caffe {
7 |
8 | template
9 | void SilenceLayer::Backward_cpu(const vector*>& top,
10 | const vector& propagate_down, const vector*>& bottom) {
11 | for (int i = 0; i < bottom.size(); ++i) {
12 | if (propagate_down[i]) {
13 | caffe_set(bottom[i]->count(), Dtype(0),
14 | bottom[i]->mutable_cpu_diff());
15 | }
16 | }
17 | }
18 |
19 | #ifdef CPU_ONLY
20 | STUB_GPU(SilenceLayer);
21 | #endif
22 |
23 | INSTANTIATE_CLASS(SilenceLayer);
24 | REGISTER_LAYER_CLASS(Silence);
25 |
26 | } // namespace caffe
27 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/silence.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Silence Layer
3 | ---
4 |
5 | # Silence Layer
6 |
7 | * Layer type: `Silence`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SilenceLayer.html)
9 | * Header: [`./include/caffe/layers/silence_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/silence_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/silence_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/silence_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/silence_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/silence_layer.cu)
12 |
13 | Silences a blob, so that it is not printed.
14 |
15 | ## Parameters
16 |
17 | No parameters.
18 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/util/cudnn.cpp:
--------------------------------------------------------------------------------
1 | #ifdef USE_CUDNN
2 | #include "caffe/util/cudnn.hpp"
3 |
4 | namespace caffe {
5 | namespace cudnn {
6 |
7 | float dataType::oneval = 1.0;
8 | float dataType::zeroval = 0.0;
9 | const void* dataType::one =
10 | static_cast(&dataType::oneval);
11 | const void* dataType::zero =
12 | static_cast(&dataType::zeroval);
13 |
14 | double dataType::oneval = 1.0;
15 | double dataType::zeroval = 0.0;
16 | const void* dataType::one =
17 | static_cast(&dataType::oneval);
18 | const void* dataType::zero =
19 | static_cast(&dataType::zeroval);
20 |
21 | } // namespace cudnn
22 | } // namespace caffe
23 | #endif
24 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/scripts/travis/configure-cmake.sh:
--------------------------------------------------------------------------------
1 | # CMake configuration
2 |
3 | mkdir -p build
4 | cd build
5 |
6 | ARGS="-DCMAKE_BUILD_TYPE=Release -DBLAS=Open"
7 |
8 | if $WITH_PYTHON3 ; then
9 | ARGS="$ARGS -Dpython_version=3"
10 | fi
11 |
12 | if $WITH_IO ; then
13 | ARGS="$ARGS -DUSE_OPENCV=On -DUSE_LMDB=On -DUSE_LEVELDB=On"
14 | else
15 | ARGS="$ARGS -DUSE_OPENCV=Off -DUSE_LMDB=Off -DUSE_LEVELDB=Off"
16 | fi
17 |
18 | if $WITH_CUDA ; then
19 | # Only build SM50
20 | ARGS="$ARGS -DCPU_ONLY=Off -DCUDA_ARCH_NAME=Manual -DCUDA_ARCH_BIN=\"50\" -DCUDA_ARCH_PTX=\"\""
21 | else
22 | ARGS="$ARGS -DCPU_ONLY=On"
23 | fi
24 |
25 | if $WITH_CUDNN ; then
26 | ARGS="$ARGS -DUSE_CUDNN=On"
27 | else
28 | ARGS="$ARGS -DUSE_CUDNN=Off"
29 | fi
30 |
31 | cmake .. $ARGS
32 |
33 |
--------------------------------------------------------------------------------
/ros/ros-utils/package.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ros_utils
5 | 0.0.1
6 | Some useful nodes to work with ROS
7 |
8 | Thomas Fischer
9 |
10 | GPLv3
11 |
12 | catkin
13 |
14 | roscpp
15 | geometry_msgs
16 | nav_msgs
17 | cmake_modules
18 |
19 | roscpp
20 | geometry_msgs
21 | nav_msgs
22 | cmake_modules
23 |
24 |
25 |
26 |
27 |
28 |
29 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_star_brief.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'STAR'
4 |
5 | maxSize: 16
6 | responseThreshold: 20
7 | suppressNonmaxSize: 5
8 |
9 | DescriptorExtractor:
10 | Name: 'BRIEF'
11 | bytes: 32
12 |
13 | # OpenCV3
14 | # use_orientation: false
15 |
16 | DescriptorMatcher:
17 | # normType: use
18 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
19 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
20 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
21 | Name: 'BruteForce-Hamming'
22 | crossCheck: 'false'
23 |
24 | MatchingCellSize: 15
25 | MatchingNeighborhood: 1
26 | MatchingDistance: 25
27 | EpipolarDistance: 0
28 | FrustumNearPlaneDist: 0.1
29 | FrustumFarPlaneDist: 10000.0
30 | BundleAdjustmentActiveKeyframes: 10
31 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/include/caffe/util/signal_handler.h:
--------------------------------------------------------------------------------
1 | #ifndef INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_
2 | #define INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_
3 |
4 | #include "caffe/proto/caffe.pb.h"
5 | #include "caffe/solver.hpp"
6 |
7 | namespace caffe {
8 |
9 | class SignalHandler {
10 | public:
11 | // Contructor. Specify what action to take when a signal is received.
12 | SignalHandler(SolverAction::Enum SIGINT_action,
13 | SolverAction::Enum SIGHUP_action);
14 | ~SignalHandler();
15 | ActionCallback GetActionFunction();
16 | private:
17 | SolverAction::Enum CheckForSignals() const;
18 | SolverAction::Enum SIGINT_action_;
19 | SolverAction::Enum SIGHUP_action_;
20 | };
21 |
22 | } // namespace caffe
23 |
24 | #endif // INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_
25 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/xgconsole.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Jamplus build system
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/batchreindex.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Batch Reindex Layer
3 | ---
4 |
5 | # Batch Reindex Layer
6 |
7 | * Layer type: `BatchReindex`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BatchReindexLayer.html)
9 | * Header: [`./include/caffe/layers/batch_reindex_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/batch_reindex_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/batch_reindex_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_reindex_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/batch_reindex_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_reindex_layer.cu)
12 |
13 |
14 | ## Parameters
15 |
16 | No parameters.
17 |
--------------------------------------------------------------------------------
/dependencies/meta/install_libcxx.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | set -e
4 |
5 | # Checkout LLVM sources
6 | git clone --depth=1 https://github.com/llvm-mirror/llvm.git llvm-source
7 | git clone --depth=1 https://github.com/llvm-mirror/libcxx.git llvm-source/projects/libcxx
8 | git clone --depth=1 https://github.com/llvm-mirror/libcxxabi.git llvm-source/projects/libcxxabi
9 |
10 | # Build and install libc++ (Use unstable ABI for better sanitizer coverage)
11 | mkdir llvm-build && cd llvm-build
12 | cmake -DCMAKE_C_COMPILER=${C_COMPILER} -DCMAKE_CXX_COMPILER=${COMPILER} \
13 | -DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_INSTALL_PREFIX=/usr \
14 | -DLIBCXX_ABI_UNSTABLE=ON \
15 | -DLLVM_USE_SANITIZER=${SANITIZER} \
16 | ../llvm-source
17 | make cxx -j2
18 | sudo make install-cxxabi install-cxx
19 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_surf.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 | Name: 'SURF'
3 | hessianThreshold: 1000
4 | nOctaves: 1
5 |
6 | DescriptorExtractor:
7 | Name: 'SURF'
8 | hessianThreshold: 1000
9 | nOctaves: 1
10 |
11 |
12 | DescriptorMatcher:
13 | # normType: use
14 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
15 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
16 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
17 | # use L2 norm type as default when it is not especified
18 | Name: 'BruteForce'
19 | crossCheck: false
20 |
21 | MatchingCellSize: 15
22 | MatchingNeighborhood: 1
23 | MatchingDistance: 0.2
24 | EpipolarDistance: 1
25 | FrustumNearPlaneDist: 0.1
26 | FrustumFarPlaneDist: 10000.0
27 | BundleAdjustmentActiveKeyframes: 10
28 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/mobius.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 2000
6 | minDistance: 15.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | # OpenCV3
15 | # use_orientation: false
16 |
17 | DescriptorMatcher:
18 | # normType: use
19 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
20 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
21 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
22 | Name: 'BruteForce-Hamming'
23 | crossCheck: false
24 |
25 | MatchingCellSize: 15
26 | MatchingNeighborhood: 1
27 | MatchingDistance: 30
28 | EpipolarDistance: 2
29 | FrustumNearPlaneDist: 0.1
30 | FrustumFarPlaneDist: 100.0
31 | BundleAdjustmentActiveKeyframes: 10
32 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/zed_vga.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 1000
6 | minDistance: 5.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | # OpenCV3
15 | # use_orientation: false
16 |
17 | DescriptorMatcher:
18 | # normType: use
19 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
20 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
21 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
22 | Name: 'BruteForce-Hamming'
23 | crossCheck: false
24 |
25 | MatchingCellSize: 30
26 | MatchingNeighborhood: 2
27 | MatchingDistance: 20
28 | EpipolarDistance: 0
29 | FrustumNearPlaneDist: 0.1
30 | FrustumFarPlaneDist: 1000.0
31 | BundleAdjustmentActiveKeyframes: 10
32 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/rnn.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: RNN Layer
3 | ---
4 |
5 | # RNN Layer
6 |
7 | * Layer type: `RNN`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1RNNLayer.html)
9 | * Header: [`./include/caffe/layers/rnn_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/rnn_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/rnn_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/rnn_layer.cpp)
11 |
12 | ## Parameters
13 |
14 | * Parameters (`RecurrentParameter recurrent_param`)
15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
16 |
17 | {% highlight Protobuf %}
18 | {% include proto/RecurrentParameter.txt %}
19 | {% endhighlight %}
20 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/firefly.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 2000
6 | minDistance: 15.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | # OpenCV3
15 | # use_orientation: false
16 |
17 | DescriptorMatcher:
18 | # normType: use
19 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
20 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
21 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
22 | Name: 'BruteForce-Hamming'
23 | crossCheck: false
24 |
25 | MatchingCellSize: 30
26 | MatchingNeighborhood: 1
27 | MatchingDistance: 25
28 | EpipolarDistance: 4
29 | FrustumNearPlaneDist: 0.1
30 | FrustumFarPlaneDist: 1000.0
31 | BundleAdjustmentActiveKeyframes: 10
32 |
33 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_star_latch.yaml:
--------------------------------------------------------------------------------
1 | %YAML:1.0
2 |
3 | FeatureDetector:
4 |
5 | Name: 'STAR'
6 |
7 | maxSize: 16
8 | responseThreshold: 20
9 | suppressNonmaxSize: 5
10 |
11 | DescriptorExtractor:
12 | Name: 'LATCH'
13 | bytes: 32
14 | rotationInvariance: false
15 | half_ssd_size: 3
16 |
17 | DescriptorMatcher:
18 | # normType: use
19 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
20 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
21 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
22 | Name: 'BruteForce-Hamming'
23 | crossCheck: false
24 |
25 | MatchingCellSize: 15
26 | MatchingNeighborhood: 1
27 | MatchingDistance: 45
28 | EpipolarDistance: 0
29 | FrustumNearPlaneDist: 0.1
30 | FrustumFarPlaneDist: 10000.0
31 | BundleAdjustmentActiveKeyframes: 10
32 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/cmake/Modules/FindNCCL.cmake:
--------------------------------------------------------------------------------
1 | set(NCCL_INC_PATHS
2 | /usr/include
3 | /usr/local/include
4 | $ENV{NCCL_DIR}/include
5 | )
6 |
7 | set(NCCL_LIB_PATHS
8 | /lib
9 | /lib64
10 | /usr/lib
11 | /usr/lib64
12 | /usr/local/lib
13 | /usr/local/lib64
14 | $ENV{NCCL_DIR}/lib
15 | )
16 |
17 | find_path(NCCL_INCLUDE_DIR NAMES nccl.h PATHS ${NCCL_INC_PATHS})
18 | find_library(NCCL_LIBRARIES NAMES nccl PATHS ${NCCL_LIB_PATHS})
19 |
20 | include(FindPackageHandleStandardArgs)
21 | find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIR NCCL_LIBRARIES)
22 |
23 | if (NCCL_FOUND)
24 | message(STATUS "Found NCCL (include: ${NCCL_INCLUDE_DIR}, library: ${NCCL_LIBRARIES})")
25 | mark_as_advanced(NCCL_INCLUDE_DIR NCCL_LIBRARIES)
26 | endif ()
27 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/input.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Input Layer
3 | ---
4 |
5 | # Input Layer
6 |
7 | * Layer type: `Input`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1InputLayer.html)
9 | * Header: [`./include/caffe/layers/input_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/input_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/input_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/input_layer.cpp)
11 |
12 | ## Parameters
13 |
14 | * Parameters (`InputParameter input_param`)
15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)):
16 |
17 | {% highlight Protobuf %}
18 | {% include proto/InputParameter.txt %}
19 | {% endhighlight %}
20 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/bumblebee.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 2000
6 | minDistance: 15.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | # OpenCV3
15 | # use_orientation: false
16 |
17 | DescriptorMatcher:
18 | # normType: use
19 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
20 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
21 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
22 | Name: 'BruteForce-Hamming'
23 | crossCheck: false
24 |
25 | MatchingCellSize: 15
26 | MatchingNeighborhood: 1
27 | MatchingDistance: 25
28 | EpipolarDistance: 0
29 | FrustumNearPlaneDist: 0.1
30 | FrustumFarPlaneDist: 100.0
31 | BundleAdjustmentActiveKeyframes: 10
32 |
33 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_orb.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'ORB'
4 |
5 | nFeatures: 2000
6 | scaleFactor: 1.2
7 | nLevels: 1
8 | edgeThreshold: 31
9 |
10 | DescriptorExtractor:
11 | Name: 'ORB'
12 |
13 | nFeatures: 2000
14 | scaleFactor: 1.2
15 | nLevels: 1
16 | edgeThreshold: 31
17 |
18 | DescriptorMatcher:
19 | # normType: use
20 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
21 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
22 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
23 | Name: 'BruteForce-Hamming'
24 | crossCheck: false
25 |
26 | MatchingCellSize: 15
27 | MatchingNeighborhood: 1
28 | MatchingDistance: 50
29 | EpipolarDistance: 0
30 | FrustumNearPlaneDist: 0.1
31 | FrustumFarPlaneDist: 10000.0
32 | BundleAdjustmentActiveKeyframes: 10
33 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/save_declaration.cpp:
--------------------------------------------------------------------------------
1 | #include "pugixml.hpp"
2 |
3 | #include
4 |
5 | int main()
6 | {
7 | // tag::code[]
8 | // get a test document
9 | pugi::xml_document doc;
10 | doc.load_string("hey");
11 |
12 | // add a custom declaration node
13 | pugi::xml_node decl = doc.prepend_child(pugi::node_declaration);
14 | decl.append_attribute("version") = "1.0";
15 | decl.append_attribute("encoding") = "UTF-8";
16 | decl.append_attribute("standalone") = "no";
17 |
18 | //
19 | //
20 | // hey
21 | //
22 | doc.save(std::cout);
23 | std::cout << std::endl;
24 | // end::code[]
25 | }
26 |
27 | // vim:et
28 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/argmax.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: ArgMax Layer
3 | ---
4 |
5 | # ArgMax Layer
6 |
7 | * Layer type: `ArgMax`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ArgMaxLayer.html)
9 | * Header: [`./include/caffe/layers/argmax_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/argmax_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/argmax_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/argmax_layer.cpp)
11 |
12 | ## Parameters
13 | * Parameters (`ArgMaxParameter argmax_param`)
14 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)):
15 |
16 | {% highlight Protobuf %}
17 | {% include proto/ArgMaxParameter.txt %}
18 | {% endhighlight %}
19 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/im2col.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Im2col Layer
3 | ---
4 |
5 | # im2col
6 |
7 | * File type: `Im2col`
8 | * Header: [`./include/caffe/layers/im2col_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/im2col_layer.hpp)
9 | * CPU implementation: [`./src/caffe/layers/im2col_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/im2col_layer.cpp)
10 | * CUDA GPU implementation: [`./src/caffe/layers/im2col_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/im2col_layer.cu)
11 |
12 | `Im2col` is a helper for doing the image-to-column transformation that you most
13 | likely do not need to know about. This is used in Caffe's original convolution
14 | to do matrix multiplication by laying out all patches into a matrix.
15 |
16 |
17 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/tanh.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: TanH Layer
3 | ---
4 |
5 | # TanH Layer
6 |
7 | * Header: [`./include/caffe/layers/tanh_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/tanh_layer.hpp)
8 | * CPU implementation: [`./src/caffe/layers/tanh_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tanh_layer.cpp)
9 | * CUDA GPU implementation: [`./src/caffe/layers/tanh_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tanh_layer.cu)
10 |
11 | ## Parameters
12 |
13 | * Parameters (`TanHParameter tanh_param`)
14 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
15 |
16 | {% highlight Protobuf %}
17 | {% include proto/TanHParameter.txt %}
18 | {% endhighlight %}
19 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/util/db_leveldb.cpp:
--------------------------------------------------------------------------------
1 | #ifdef USE_LEVELDB
2 | #include "caffe/util/db_leveldb.hpp"
3 |
4 | #include
5 |
6 | namespace caffe { namespace db {
7 |
8 | void LevelDB::Open(const string& source, Mode mode) {
9 | leveldb::Options options;
10 | options.block_size = 65536;
11 | options.write_buffer_size = 268435456;
12 | options.max_open_files = 100;
13 | options.error_if_exists = mode == NEW;
14 | options.create_if_missing = mode != READ;
15 | leveldb::Status status = leveldb::DB::Open(options, source, &db_);
16 | CHECK(status.ok()) << "Failed to open leveldb " << source
17 | << std::endl << status.ToString();
18 | LOG(INFO) << "Opened leveldb " << source;
19 | }
20 |
21 | } // namespace db
22 | } // namespace caffe
23 | #endif // USE_LEVELDB
24 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/euroc_fast_brief.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'FAST'
4 |
5 | threshold: 60
6 | nonmaxSuppression: true
7 |
8 | DescriptorExtractor:
9 | Name: 'BRIEF'
10 | bytes: 32
11 |
12 | DescriptorMatcher:
13 | # normType: use
14 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
15 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
16 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
17 | Name: 'BruteForce-Hamming'
18 | crossCheck: false
19 |
20 | MatchingCellSize: 30
21 | MatchingNeighborhood: 1
22 | MatchingDistance: 25
23 | EpipolarDistance: 1
24 | FrustumNearPlaneDist: 0.1
25 | FrustumFarPlaneDist: 50.0
26 | BundleAdjustmentActiveKeyframes: 10
27 | minimumTrackedPointsRatio: 0.7
28 |
29 |
30 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
31 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_gftt_latch.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 2000
6 | minDistance: 15.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'LATCH'
12 | bytes: 32
13 | rotationInvariance: false
14 | half_ssd_size: 3
15 |
16 |
17 | DescriptorMatcher:
18 | # normType: use
19 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
20 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
21 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
22 | Name: 'BruteForce-Hamming'
23 | crossCheck: false
24 |
25 | MatchingCellSize: 15
26 | MatchingNeighborhood: 1
27 | MatchingDistance: 45
28 | EpipolarDistance: 0
29 | FrustumNearPlaneDist: 0.1
30 | FrustumFarPlaneDist: 10000.0
31 | BundleAdjustmentActiveKeyframes: 10
32 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/level7.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 1000
6 | minDistance: 15.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | DescriptorMatcher:
15 | # normType: use
16 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
17 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
18 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
19 | Name: 'BruteForce-Hamming'
20 | crossCheck: false
21 |
22 | MatchingCellSize: 30
23 | MatchingNeighborhood: 1
24 | MatchingDistance: 25
25 | EpipolarDistance: 0
26 | FrustumNearPlaneDist: 0.1
27 | FrustumFarPlaneDist: 10000.0
28 | BundleAdjustmentActiveKeyframes: 10
29 |
30 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
31 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/vrep_quad.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 200
6 | minDistance: 15.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | DescriptorMatcher:
15 | # normType: use
16 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
17 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
18 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
19 | Name: 'BruteForce-Hamming'
20 | crossCheck: false
21 |
22 | MatchingCellSize: 20
23 | MatchingNeighborhood: 1
24 | MatchingDistance: 30
25 | EpipolarDistance: 3
26 | FrustumNearPlaneDist: 0.1
27 | FrustumFarPlaneDist: 1000.0
28 | BundleAdjustmentActiveKeyframes: 10
29 |
30 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
31 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/modify_remove.cpp:
--------------------------------------------------------------------------------
1 | #include "pugixml.hpp"
2 |
3 | #include
4 |
5 | int main()
6 | {
7 | pugi::xml_document doc;
8 | if (!doc.load_string("Simple node")) return -1;
9 |
10 | // tag::code[]
11 | // remove description node with the whole subtree
12 | pugi::xml_node node = doc.child("node");
13 | node.remove_child("description");
14 |
15 | // remove id attribute
16 | pugi::xml_node param = node.child("param");
17 | param.remove_attribute("value");
18 |
19 | // we can also remove nodes/attributes by handles
20 | pugi::xml_attribute id = param.attribute("name");
21 | param.remove_attribute(id);
22 | // end::code[]
23 |
24 | doc.print(std::cout);
25 | }
26 |
27 | // vim:et
28 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/spp.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Spatial Pyramid Pooling Layer
3 | ---
4 |
5 | # Spatial Pyramid Pooling Layer
6 |
7 | * Layer type: `SPP`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SPPLayer.html)
9 | * Header: [`./include/caffe/layers/spp_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/spp_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/spp_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/spp_layer.cpp)
11 |
12 |
13 | ## Parameters
14 |
15 | * Parameters (`SPPParameter spp_param`)
16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
17 |
18 | {% highlight Protobuf %}
19 | {% include proto/SPPParameter.txt %}
20 | {% endhighlight %}
21 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/euroc_odroid_fast_brief.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'FAST'
4 |
5 | threshold: 60
6 | nonmaxSuppression: true
7 |
8 | DescriptorExtractor:
9 | Name: 'BRIEF'
10 | bytes: 32
11 |
12 | DescriptorMatcher:
13 | # normType: use
14 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
15 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
16 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
17 | Name: 'BruteForce-Hamming'
18 | crossCheck: false
19 |
20 | MatchingCellSize: 30
21 | MatchingNeighborhood: 1
22 | MatchingDistance: 25
23 | EpipolarDistance: 1
24 | FrustumNearPlaneDist: 0.1
25 | FrustumFarPlaneDist: 50.0
26 | BundleAdjustmentActiveKeyframes: 10
27 | minimumTrackedPointsRatio: 0.7
28 |
29 |
30 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
31 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/traverse_rangefor.cpp:
--------------------------------------------------------------------------------
1 | #include "pugixml.hpp"
2 |
3 | #include
4 |
5 | int main()
6 | {
7 | pugi::xml_document doc;
8 | if (!doc.load_file("xgconsole.xml")) return -1;
9 |
10 | pugi::xml_node tools = doc.child("Profile").child("Tools");
11 |
12 | // tag::code[]
13 | for (pugi::xml_node tool: tools.children("Tool"))
14 | {
15 | std::cout << "Tool:";
16 |
17 | for (pugi::xml_attribute attr: tool.attributes())
18 | {
19 | std::cout << " " << attr.name() << "=" << attr.value();
20 | }
21 |
22 | for (pugi::xml_node child: tool.children())
23 | {
24 | std::cout << ", child " << child.name();
25 | }
26 |
27 | std::cout << std::endl;
28 | }
29 | // end::code[]
30 | }
31 |
32 | // vim:et
33 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/euroc_star_brief.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'STAR'
4 |
5 | maxSize: 16
6 | responseThreshold: 30
7 | suppressNonmaxSize: 5
8 |
9 | DescriptorExtractor:
10 | Name: 'BRIEF'
11 | bytes: 32
12 |
13 | DescriptorMatcher:
14 | # normType: use
15 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
16 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
17 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
18 | Name: 'BruteForce-Hamming'
19 | crossCheck: false
20 |
21 | MatchingCellSize: 30
22 | MatchingNeighborhood: 1
23 | MatchingDistance: 25
24 | EpipolarDistance: 1
25 | FrustumNearPlaneDist: 0.1
26 | FrustumFarPlaneDist: 50.0
27 | BundleAdjustmentActiveKeyframes: 10
28 | minimumTrackedPointsRatio: 0.7
29 |
30 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
31 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/euroc_odroid_star_brief.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'STAR'
4 |
5 | maxSize: 16
6 | responseThreshold: 40
7 | suppressNonmaxSize: 5
8 |
9 | DescriptorExtractor:
10 | Name: 'BRIEF'
11 | bytes: 32
12 |
13 | DescriptorMatcher:
14 | # normType: use
15 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
16 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
17 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
18 | Name: 'BruteForce-Hamming'
19 | crossCheck: false
20 |
21 | MatchingCellSize: 30
22 | MatchingNeighborhood: 1
23 | MatchingDistance: 25
24 | EpipolarDistance: 1
25 | FrustumNearPlaneDist: 0.1
26 | FrustumFarPlaneDist: 50.0
27 | BundleAdjustmentActiveKeyframes: 10
28 | minimumTrackedPointsRatio: 0.7
29 |
30 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
31 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_gftt_lucid.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 2000
6 | minDistance: 15.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'LUCID'
12 |
13 | lucid_kernel: 3
14 | blur_kernel: 3
15 |
16 | # OpenCV3
17 | # use_orientation: false
18 |
19 | DescriptorMatcher:
20 | # normType: use
21 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
22 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
23 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
24 | Name: 'BruteForce-Hamming'
25 | crossCheck: false
26 |
27 | MatchingCellSize: 15
28 | MatchingNeighborhood: 1
29 | MatchingDistance: 300
30 | EpipolarDistance: 1
31 | FrustumNearPlaneDist: 0.1
32 | FrustumFarPlaneDist: 10000.0
33 | BundleAdjustmentActiveKeyframes: 10
34 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/euroc_orb_brief.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'ORB'
4 |
5 | nFeatures: 200
6 | scaleFactor: 1.2
7 | nLevels: 1
8 | edgeThreshold: 31
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | DescriptorMatcher:
15 | # normType: use
16 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
17 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
18 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
19 | Name: 'BruteForce-Hamming'
20 | crossCheck: false
21 |
22 | MatchingCellSize: 15
23 | MatchingNeighborhood: 1
24 | MatchingDistance: 25
25 | EpipolarDistance: 1
26 | FrustumNearPlaneDist: 0.1
27 | FrustumFarPlaneDist: 50.0
28 | BundleAdjustmentActiveKeyframes: 10
29 | minimumTrackedPointsRatio: 0.7
30 |
31 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
32 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/windowdata.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: WindowData Layer
3 | ---
4 |
5 | # WindowData Layer
6 |
7 | * Layer type: `WindowData`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1WindowDataLayer.html)
9 | * Header: [`./include/caffe/layers/window_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/window_data_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/window_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/window_data_layer.cpp)
11 |
12 | ## Parameters
13 |
14 | * Parameters (`WindowDataParameter`)
15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
16 |
17 | {% highlight Protobuf %}
18 | {% include proto/WindowDataParameter.txt %}
19 | {% endhighlight %}
20 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/include/caffe/util/nccl.hpp:
--------------------------------------------------------------------------------
1 | #ifndef CAFFE_UTIL_NCCL_H_
2 | #define CAFFE_UTIL_NCCL_H_
3 | #ifdef USE_NCCL
4 |
5 | #include
6 |
7 | #include "caffe/common.hpp"
8 |
9 | #define NCCL_CHECK(condition) \
10 | { \
11 | ncclResult_t result = condition; \
12 | CHECK_EQ(result, ncclSuccess) << " " \
13 | << ncclGetErrorString(result); \
14 | }
15 |
16 | namespace caffe {
17 |
18 | namespace nccl {
19 |
20 | template class dataType;
21 |
22 | template<> class dataType {
23 | public:
24 | static const ncclDataType_t type = ncclFloat;
25 | };
26 | template<> class dataType {
27 | public:
28 | static const ncclDataType_t type = ncclDouble;
29 | };
30 |
31 | } // namespace nccl
32 |
33 | } // namespace caffe
34 |
35 | #endif // end USE_NCCL
36 |
37 | #endif // CAFFE_UTIL_NCCL_H_
38 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/euroc_odroid_orb_brief.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'ORB'
4 |
5 | nFeatures: 200
6 | scaleFactor: 1.2
7 | nLevels: 1
8 | edgeThreshold: 31
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | DescriptorMatcher:
15 | # normType: use
16 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
17 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
18 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
19 | Name: 'BruteForce-Hamming'
20 | crossCheck: false
21 |
22 | MatchingCellSize: 15
23 | MatchingNeighborhood: 1
24 | MatchingDistance: 25
25 | EpipolarDistance: 1
26 | FrustumNearPlaneDist: 0.1
27 | FrustumFarPlaneDist: 50.0
28 | BundleAdjustmentActiveKeyframes: 5
29 | minimumTrackedPointsRatio: 0.7
30 |
31 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
32 |
--------------------------------------------------------------------------------
/ros/sptam/src/sptam/utils/timer.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include "timer.h"
4 |
5 | sptam::Timer::Timer(void) :
6 | elapsed_seconds(0)
7 | {
8 |
9 | }
10 |
11 | void sptam::Timer::start(void)
12 | {
13 | t = clock_t::now();
14 | }
15 |
16 | void sptam::Timer::stop(void)
17 | {
18 | elapsed_seconds = std::chrono::duration(clock_t::now() - t).count() * 1e-3;
19 | }
20 |
21 | double sptam::Timer::elapsed(void) const
22 | {
23 | return elapsed_seconds;
24 | }
25 |
26 | double sptam::Timer::now()
27 | {
28 | return std::chrono::duration_cast(clock_t::now().time_since_epoch()).count() * 1e-6;
29 | }
30 |
31 |
32 | std::ostream& operator<< (std::ostream& stream, const sptam::Timer& t)
33 | {
34 | stream << std::setprecision(16) << std::fixed << t.elapsed();
35 | return stream;
36 | }
37 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_surf_freak.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'SURF'
4 | hessianThreshold: 100
5 | nOctaves: 8
6 | nOctaveLayers: 7
7 | extended: false
8 | upright: false
9 |
10 |
11 | DescriptorExtractor:
12 | Name: 'FREAK'
13 | patternScale: 42.0
14 | orientationNormalized: true
15 | scaleNormalized: true
16 | nOctaves: 8
17 |
18 | DescriptorMatcher:
19 | # normType: use
20 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
21 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
22 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
23 | Name: 'BruteForce-Hamming'
24 | crossCheck: false
25 |
26 | MatchingCellSize: 15
27 | MatchingNeighborhood: 1
28 | MatchingDistance: 125
29 | EpipolarDistance: 1
30 | FrustumNearPlaneDist: 0.1
31 | FrustumFarPlaneDist: 10000.0
32 | BundleAdjustmentActiveKeyframes: 10
33 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/dummydata.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Dummy Data Layer
3 | ---
4 |
5 | # Dummy Data Layer
6 |
7 | * Layer type: `DummyData`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DummyDataLayer.html)
9 | * Header: [`./include/caffe/layers/dummy_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/dummy_data_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/dummy_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dummy_data_layer.cpp)
11 |
12 |
13 | ## Parameters
14 |
15 | * Parameters (`DummyDataParameter dummy_data_param`)
16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)):
17 |
18 | {% highlight Protobuf %}
19 | {% include proto/DummyDataParameter.txt %}
20 | {% endhighlight %}
21 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/euroc_gftt_brief.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 2000
6 | minDistance: 15.0
7 | qualityLevel: 0.001
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | DescriptorMatcher:
15 | # normType: use
16 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
17 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
18 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
19 | Name: 'BruteForce-Hamming'
20 | crossCheck: false
21 |
22 | MatchingCellSize: 15
23 | MatchingNeighborhood: 2
24 | MatchingDistance: 25
25 | EpipolarDistance: 1
26 | FrustumNearPlaneDist: 0.1
27 | FrustumFarPlaneDist: 50.0
28 | BundleAdjustmentActiveKeyframes: 10
29 | minimumTrackedPointsRatio: 0.7
30 |
31 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
32 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/hingeloss.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Hinge Loss Layer
3 | ---
4 |
5 | # Hinge (L1, L2) Loss Layer
6 |
7 | * Layer type: `HingeLoss`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HingeLossLayer.html)
9 | * Header: [`./include/caffe/layers/hinge_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hinge_loss_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/hinge_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hinge_loss_layer.cpp)
11 |
12 | ## Parameters
13 |
14 | * Parameters (`HingeLossParameter hinge_loss_param`)
15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
16 |
17 | {% highlight Protobuf %}
18 | {% include proto/HingeLossParameter.txt %}
19 | {% endhighlight %}
20 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/threshold.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Threshold Layer
3 | ---
4 |
5 | # Threshold Layer
6 |
7 | * Header: [`./include/caffe/layers/threshold_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/threshold_layer.hpp)
8 | * CPU implementation: [`./src/caffe/layers/threshold_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/threshold_layer.cpp)
9 | * CUDA GPU implementation: [`./src/caffe/layers/threshold_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/threshold_layer.cu)
10 |
11 | ## Parameters
12 |
13 | * Parameters (`ThresholdParameter threshold_param`)
14 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
15 |
16 | {% highlight Protobuf %}
17 | {% include proto/ThresholdParameter.txt %}
18 | {% endhighlight %}
19 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/euroc_odroid_gftt_brief.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 200
6 | minDistance: 32.0
7 | qualityLevel: 0.001
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | DescriptorMatcher:
15 | # normType: use
16 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
17 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
18 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
19 | Name: 'BruteForce-Hamming'
20 | crossCheck: false
21 |
22 | MatchingCellSize: 15
23 | MatchingNeighborhood: 1
24 | MatchingDistance: 25
25 | EpipolarDistance: 1
26 | FrustumNearPlaneDist: 0.1
27 | FrustumFarPlaneDist: 50.0
28 | BundleAdjustmentActiveKeyframes: 5
29 | minimumTrackedPointsRatio: 0.7
30 |
31 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
32 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/split.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Split Layer
3 | ---
4 |
5 | # Split Layer
6 |
7 | * Layer type: `Split`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SplitLayer.html)
9 | * Header: [`./include/caffe/layers/split_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/split_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/split_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/split_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/split_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/split_layer.cu)
12 |
13 | The `Split` layer is a utility layer that splits an input blob to multiple output blobs. This is used when a blob is fed into multiple output layers.
14 |
15 | ## Parameters
16 |
17 | Does not take any parameters.
18 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/layers/silence_layer.cu:
--------------------------------------------------------------------------------
1 | #include
2 |
3 | #include "caffe/layers/silence_layer.hpp"
4 | #include "caffe/util/math_functions.hpp"
5 |
6 | namespace caffe {
7 |
8 | template
9 | void SilenceLayer::Forward_gpu(const vector*>& bottom,
10 | const vector*>& top) {
11 | // Do nothing.
12 | }
13 |
14 | template
15 | void SilenceLayer::Backward_gpu(const vector*>& top,
16 | const vector& propagate_down, const vector*>& bottom) {
17 | for (int i = 0; i < bottom.size(); ++i) {
18 | if (propagate_down[i]) {
19 | caffe_gpu_set(bottom[i]->count(), Dtype(0),
20 | bottom[i]->mutable_gpu_diff());
21 | }
22 | }
23 | }
24 |
25 | INSTANTIATE_LAYER_GPU_FUNCS(SilenceLayer);
26 |
27 | } // namespace caffe
28 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/solvers/sgd_solver.cu:
--------------------------------------------------------------------------------
1 | #include "caffe/util/math_functions.hpp"
2 |
3 |
4 | namespace caffe {
5 |
6 | template
7 | __global__ void SGDUpdate(int N, Dtype* g, Dtype* h,
8 | Dtype momentum, Dtype local_rate) {
9 | CUDA_KERNEL_LOOP(i, N) {
10 | g[i] = h[i] = momentum*h[i] + local_rate*g[i];
11 | }
12 | }
13 | template
14 | void sgd_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum,
15 | Dtype local_rate) {
16 | SGDUpdate // NOLINT_NEXT_LINE(whitespace/operators)
17 | <<>>(
18 | N, g, h, momentum, local_rate);
19 | CUDA_POST_KERNEL_CHECK;
20 | }
21 | template void sgd_update_gpu(int, float*, float*, float, float);
22 | template void sgd_update_gpu(int, double*, double*, double, double);
23 |
24 | } // namespace caffe
25 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 2000
6 | minDistance: 15.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRIEF'
12 | bytes: 32
13 |
14 | # OpenCV3
15 | # use_orientation: false
16 |
17 | DescriptorMatcher:
18 | # normType: use
19 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
20 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
21 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
22 | Name: 'BruteForce-Hamming'
23 | crossCheck: false
24 |
25 | MatchingCellSize: 15
26 | MatchingNeighborhood: 1
27 | MatchingDistance: 25
28 | EpipolarDistance: 0
29 | FrustumNearPlaneDist: 0.1
30 | FrustumFarPlaneDist: 10000.0
31 | BundleAdjustmentActiveKeyframes: 10
32 |
33 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
34 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/sigmoidcrossentropyloss.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Sigmoid Cross-Entropy Loss Layer
3 | ---
4 |
5 | # Sigmoid Cross-Entropy Loss Layer
6 |
7 | * Layer type: `SigmoidCrossEntropyLoss`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SigmoidCrossEntropyLossLayer.html)
9 | * Header: [`./include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu)
12 |
13 | To-do.
14 |
--------------------------------------------------------------------------------
/py-faster-rcnn/lib/rpn/README.md:
--------------------------------------------------------------------------------
1 | ### `rpn` module overview
2 |
3 | ##### `generate_anchors.py`
4 |
5 | Generates a regular grid of multi-scale, multi-aspect anchor boxes.
6 |
7 | ##### `proposal_layer.py`
8 |
9 | Converts RPN outputs (per-anchor scores and bbox regression estimates) into object proposals.
10 |
11 | ##### `anchor_target_layer.py`
12 |
13 | Generates training targets/labels for each anchor. Classification labels are 1 (object), 0 (not object) or -1 (ignore).
14 | Bbox regression targets are specified when the classification label is > 0.
15 |
16 | ##### `proposal_target_layer.py`
17 |
18 | Generates training targets/labels for each object proposal: classification labels 0 - K (bg or object class 1, ... , K)
19 | and bbox regression targets in that case that the label is > 0.
20 |
21 | ##### `generate.py`
22 |
23 | Generate object detection proposals from an imdb using an RPN.
24 |
--------------------------------------------------------------------------------
/ros/sptam/src/sptam/utils/projection_derivatives.hpp:
--------------------------------------------------------------------------------
1 | ////////////////////////////////////////////////////////////////////////////////
2 | // Jacobian computation functions. functions with a '2' suffix are the versions
3 | // using my own calculations for what should be the projection derivatives.
4 | // The other functions are the versions given and used by by g2o for BA.
5 |
6 | #include
7 |
8 | namespace Eigen
9 | {
10 | typedef Matrix Matrix9d;
11 | }
12 |
13 | Eigen::Matrix jacobianXj(const Eigen::Matrix& camera_transform, const Eigen::Matrix3d& Kcam, const Eigen::Vector3d& point_world);
14 |
15 | Eigen::Matrix jacobianXi(const Eigen::Matrix& camera_transform, const Eigen::Matrix3d& Kcam, const Eigen::Vector3d& point_world);
16 |
17 | ////////////////////////////////////////////////////////////////////////////////
18 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/modify_add.cpp:
--------------------------------------------------------------------------------
1 | #include "pugixml.hpp"
2 |
3 | #include
4 |
5 | int main()
6 | {
7 | pugi::xml_document doc;
8 |
9 | // tag::code[]
10 | // add node with some name
11 | pugi::xml_node node = doc.append_child("node");
12 |
13 | // add description node with text child
14 | pugi::xml_node descr = node.append_child("description");
15 | descr.append_child(pugi::node_pcdata).set_value("Simple node");
16 |
17 | // add param node before the description
18 | pugi::xml_node param = node.insert_child_before("param", descr);
19 |
20 | // add attributes to param node
21 | param.append_attribute("name") = "version";
22 | param.append_attribute("value") = 1.1;
23 | param.insert_attribute_after("type", param.attribute("name")) = "float";
24 | // end::code[]
25 |
26 | doc.print(std::cout);
27 | }
28 |
29 | // vim:et
30 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/save_subtree.cpp:
--------------------------------------------------------------------------------
1 | #include "pugixml.hpp"
2 |
3 | #include
4 |
5 | int main()
6 | {
7 | // tag::code[]
8 | // get a test document
9 | pugi::xml_document doc;
10 | doc.load_string("hey");
11 |
12 | // print document to standard output (prints hey)
13 | doc.save(std::cout, "", pugi::format_raw);
14 | std::cout << std::endl;
15 |
16 | // print document to standard output as a regular node (prints hey)
17 | doc.print(std::cout, "", pugi::format_raw);
18 | std::cout << std::endl;
19 |
20 | // print a subtree to standard output (prints hey)
21 | doc.child("foo").child("call").print(std::cout, "", pugi::format_raw);
22 | std::cout << std::endl;
23 | // end::code[]
24 | }
25 |
26 | // vim:et
27 |
--------------------------------------------------------------------------------
/ros/dl_node/src/_init_paths.py:
--------------------------------------------------------------------------------
1 | # --------------------------------------------------------
2 | # Fast R-CNN
3 | # Copyright (c) 2015 Microsoft
4 | # Licensed under The MIT License [see LICENSE for details]
5 | # Written by Ross Girshick
6 | # --------------------------------------------------------
7 |
8 | """Set up paths for Fast R-CNN."""
9 |
10 | import os.path as osp
11 | import sys
12 |
13 | def add_path(path):
14 | if path not in sys.path:
15 | sys.path.insert(0, path)
16 |
17 | ##this_dir = osp.dirname(__file__)
18 |
19 | # Add caffe to PYTHONPATH
20 | ## Hardcoded
21 | caffe_path = osp.join('/','usr','local','python', 'caffe')
22 | add_path(caffe_path)
23 |
24 | # Add lib to PYTHONPATH
25 | ## Hardcoded
26 | lib_path = osp.join('/','usr','local','lib')
27 | add_path(lib_path)
28 |
29 | #tools_path = osp.join('/','home','javier','rcnn','py-faster-rcnn' ,'tools')
30 | #add_path(tools_path)
31 |
32 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_agast_brisk.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'AGAST'
4 |
5 | threshold: 60
6 | nonmaxSuppression: true
7 |
8 | DescriptorExtractor:
9 | Name: 'BRISK'
10 |
11 | # OpenCV2
12 | # orientationNormalized: 'true'
13 | # scaleNormalized: 'true'
14 | # patternScale: '22.0'
15 |
16 | # OpenCV3
17 | # thresh: '30'
18 | # octaves: '3'
19 | # patternScale: '1.0'
20 |
21 | DescriptorMatcher:
22 | # normType: use
23 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
24 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
25 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
26 | Name: 'BruteForce-Hamming'
27 | crossCheck: false
28 |
29 | MatchingCellSize: 15
30 | MatchingNeighborhood: 1
31 | MatchingDistance: 100
32 | EpipolarDistance: 0
33 | FrustumNearPlaneDist: 0.1
34 | FrustumFarPlaneDist: 10000.0
35 | BundleAdjustmentActiveKeyframes: 10
36 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_fast_brisk.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'FAST'
4 |
5 | threshold: 60
6 | nonmaxSuppression: true
7 |
8 | DescriptorExtractor:
9 | Name: 'BRISK'
10 |
11 | # OpenCV2
12 | # orientationNormalized: 'true'
13 | # scaleNormalized: 'true'
14 | # patternScale: '22.0'
15 |
16 | # OpenCV3
17 | # thresh: '30'
18 | # octaves: '3'
19 | # patternScale: '1.0'
20 |
21 | DescriptorMatcher:
22 | # normType: use
23 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
24 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
25 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
26 | Name: 'BruteForce-Hamming'
27 | crossCheck: false
28 |
29 | MatchingCellSize: 15
30 | MatchingNeighborhood: 1
31 | MatchingDistance: 100
32 | EpipolarDistance: 0
33 | FrustumNearPlaneDist: 0.1
34 | FrustumFarPlaneDist: 10000.0
35 | BundleAdjustmentActiveKeyframes: 10
36 |
37 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/python/caffe/__init__.py:
--------------------------------------------------------------------------------
1 | ##<<<<<<< HEAD
2 | from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver
3 | from ._caffe import set_mode_cpu, set_mode_gpu, set_device, Layer, get_solver, layer_type_list, set_random_seed
4 | ##=======
5 | ##from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver, NCCL, Timer
6 | ##from ._caffe import init_log, log, set_mode_cpu, set_mode_gpu, set_device, Layer, get_solver, layer_type_list, set_random_seed, solver_count, set_solver_count, solver_rank, set_solver_rank, set_multiprocess, Layer, get_solver
7 | ##>>>>>>> caffe/master
8 | from ._caffe import __version__
9 | from .proto.caffe_pb2 import TRAIN, TEST
10 | from .classifier import Classifier
11 | from .detector import Detector
12 | from . import io
13 | from .net_spec import layers, params, NetSpec, to_proto
14 |
--------------------------------------------------------------------------------
/ros/sptam/README.md:
--------------------------------------------------------------------------------
1 | S-PTAM is a Stereo SLAM system able to compute the camera trajectory in real-time. It heavily exploits the parallel nature of the SLAM problem, separating the time-constrained pose estimation from less pressing matters such as map building and refinement tasks. On the other hand, the stereo setting allows to reconstruct a metric 3D map for each frame of stereo images, improving the accuracy of the mapping process with respect to monocular SLAM and avoiding the well-known bootstrapping problem. Also, the real scale of the environment is an essential feature for robots which have to interact with their surrounding workspace.
2 |
3 | You should have received this sptam version along with object-detection-sptam (https://github.com/CIFASIS/object-detection-sptam).
4 | See the original sptam library at: https://github.com/CIFASIS/sptam/tree/s-ptam-iros2015.
5 | All files included in this sptam version are GPLv3 license.
6 |
7 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/euroc_orb.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'ORB'
4 |
5 | nFeatures: 200
6 | scaleFactor: 1.2
7 | nLevels: 1
8 | edgeThreshold: 31
9 |
10 | DescriptorExtractor:
11 | Name: 'ORB'
12 |
13 | nFeatures: 200
14 | scaleFactor: 1.2
15 | nLevels: 1
16 | edgeThreshold: 31
17 |
18 | DescriptorMatcher:
19 | # normType: use
20 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
21 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
22 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
23 | Name: 'BruteForce-Hamming'
24 | crossCheck: false
25 |
26 | MatchingCellSize: 15
27 | MatchingNeighborhood: 1
28 | MatchingDistance: 50
29 | EpipolarDistance: 1
30 | FrustumNearPlaneDist: 0.1
31 | FrustumFarPlaneDist: 50.0
32 | BundleAdjustmentActiveKeyframes: 10
33 | minimumTrackedPointsRatio: 0.7
34 |
35 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
36 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/log.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Log Layer
3 | ---
4 |
5 | # Log Layer
6 |
7 | * Layer type: `Log`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1LogLayer.html)
9 | * Header: [`./include/caffe/layers/log_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/log_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/log_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/log_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/log_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/log_layer.cu)
12 |
13 | ## Parameters
14 |
15 | * Parameters (`Parameter log_param`)
16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
17 |
18 | {% highlight Protobuf %}
19 | {% include proto/LogParameter.txt %}
20 | {% endhighlight %}
21 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/euroc_odroid_orb.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'ORB'
4 |
5 | nFeatures: 200
6 | scaleFactor: 1.2
7 | nLevels: 1
8 | edgeThreshold: 31
9 |
10 | DescriptorExtractor:
11 | Name: 'ORB'
12 |
13 | nFeatures: 200
14 | scaleFactor: 1.2
15 | nLevels: 1
16 | edgeThreshold: 31
17 |
18 | DescriptorMatcher:
19 | # normType: use
20 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
21 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
22 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
23 | Name: 'BruteForce-Hamming'
24 | crossCheck: false
25 |
26 | MatchingCellSize: 15
27 | MatchingNeighborhood: 1
28 | MatchingDistance: 50
29 | EpipolarDistance: 1
30 | FrustumNearPlaneDist: 0.1
31 | FrustumFarPlaneDist: 50.0
32 | BundleAdjustmentActiveKeyframes: 5
33 | minimumTrackedPointsRatio: 0.7
34 |
35 | LoopDetectorVocabulary: '/home/gcastro/mit_malaga_vocabulary.yml.gz'
36 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/xpath_select.cpp:
--------------------------------------------------------------------------------
1 | #include "pugixml.hpp"
2 |
3 | #include
4 |
5 | int main()
6 | {
7 | pugi::xml_document doc;
8 | if (!doc.load_file("xgconsole.xml")) return -1;
9 |
10 | // tag::code[]
11 | pugi::xpath_node_set tools = doc.select_nodes("/Profile/Tools/Tool[@AllowRemote='true' and @DeriveCaptionFrom='lastparam']");
12 |
13 | std::cout << "Tools:\n";
14 |
15 | for (pugi::xpath_node_set::const_iterator it = tools.begin(); it != tools.end(); ++it)
16 | {
17 | pugi::xpath_node node = *it;
18 | std::cout << node.node().attribute("Filename").value() << "\n";
19 | }
20 |
21 | pugi::xpath_node build_tool = doc.select_node("//Tool[contains(Description, 'build system')]");
22 |
23 | if (build_tool)
24 | std::cout << "Build tool: " << build_tool.node().attribute("Filename").value() << "\n";
25 | // end::code[]
26 | }
27 |
28 | // vim:et
29 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/absval.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Absolute Value Layer
3 | ---
4 |
5 | # Absolute Value Layer
6 |
7 | * Layer type: `AbsVal`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1AbsValLayer.html)
9 | * Header: [`./include/caffe/layers/absval_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/absval_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/absval_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/absval_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/absval_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/absval_layer.cu)
12 |
13 | * Sample
14 |
15 | layer {
16 | name: "layer"
17 | bottom: "in"
18 | top: "out"
19 | type: "AbsVal"
20 | }
21 |
22 | The `AbsVal` layer computes the output as abs(x) for each input element x.
23 |
--------------------------------------------------------------------------------
/dependencies/pugixml/docs/samples/traverse_walker.cpp:
--------------------------------------------------------------------------------
1 | #include "pugixml.hpp"
2 |
3 | #include
4 |
5 | const char* node_types[] =
6 | {
7 | "null", "document", "element", "pcdata", "cdata", "comment", "pi", "declaration"
8 | };
9 |
10 | // tag::impl[]
11 | struct simple_walker: pugi::xml_tree_walker
12 | {
13 | virtual bool for_each(pugi::xml_node& node)
14 | {
15 | for (int i = 0; i < depth(); ++i) std::cout << " "; // indentation
16 |
17 | std::cout << node_types[node.type()] << ": name='" << node.name() << "', value='" << node.value() << "'\n";
18 |
19 | return true; // continue traversal
20 | }
21 | };
22 | // end::impl[]
23 |
24 | int main()
25 | {
26 | pugi::xml_document doc;
27 | if (!doc.load_file("tree.xml")) return -1;
28 |
29 | // tag::traverse[]
30 | simple_walker walker;
31 | doc.traverse(walker);
32 | // end::traverse[]
33 | }
34 |
35 | // vim:et
36 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/bias.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Bias Layer
3 | ---
4 |
5 | # Bias Layer
6 |
7 | * Layer type: `Bias`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BiasLayer.html)
9 | * Header: [`./include/caffe/layers/bias_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/bias_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/bias_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bias_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/bias_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bias_layer.cu)
12 |
13 | ## Parameters
14 | * Parameters (`BiasParameter bias_param`)
15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)):
16 |
17 | {% highlight Protobuf %}
18 | {% include proto/BiasParameter.txt %}
19 | {% endhighlight %}
20 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/lenet_auto_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The train/test net protocol buffer definition
2 | train_net: "mnist/lenet_auto_train.prototxt"
3 | test_net: "mnist/lenet_auto_test.prototxt"
4 | # test_iter specifies how many forward passes the test should carry out.
5 | # In the case of MNIST, we have test batch size 100 and 100 test iterations,
6 | # covering the full 10,000 testing images.
7 | test_iter: 100
8 | # Carry out testing every 500 training iterations.
9 | test_interval: 500
10 | # The base learning rate, momentum and the weight decay of the network.
11 | base_lr: 0.01
12 | momentum: 0.9
13 | weight_decay: 0.0005
14 | # The learning rate policy
15 | lr_policy: "inv"
16 | gamma: 0.0001
17 | power: 0.75
18 | # Display every 100 iterations
19 | display: 100
20 | # The maximum number of iterations
21 | max_iter: 10000
22 | # snapshot intermediate results
23 | snapshot: 5000
24 | snapshot_prefix: "mnist/lenet"
25 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/crop.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Crop Layer
3 | ---
4 |
5 | # Crop Layer
6 |
7 | * Layer type: `Crop`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1CropLayer.html)
9 | * Header: [`./include/caffe/layers/crop_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/crop_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/crop_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/crop_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/crop_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/crop_layer.cu)
12 |
13 | ## Parameters
14 |
15 | * Parameters (`CropParameter crop_param`)
16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)):
17 |
18 | {% highlight Protobuf %}
19 | {% include proto/CropParameter.txt %}
20 | {% endhighlight %}
21 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/tile.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Tile Layer
3 | ---
4 |
5 | # Tile Layer
6 |
7 | * Layer type: `Tile`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1TileLayer.html)
9 | * Header: [`./include/caffe/layers/tile_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/tile_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/tile_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tile_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/tile_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tile_layer.cu)
12 |
13 | ## Parameters
14 |
15 | * Parameters (`TileParameter tile_param`)
16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
17 |
18 | {% highlight Protobuf %}
19 | {% include proto/TileParameter.txt %}
20 | {% endhighlight %}
21 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/lenet_adadelta_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The train/test net protocol buffer definition
2 | net: "examples/mnist/lenet_train_test.prototxt"
3 | # test_iter specifies how many forward passes the test should carry out.
4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations,
5 | # covering the full 10,000 testing images.
6 | test_iter: 100
7 | # Carry out testing every 500 training iterations.
8 | test_interval: 500
9 | # The base learning rate, momentum and the weight decay of the network.
10 | base_lr: 1.0
11 | lr_policy: "fixed"
12 | momentum: 0.95
13 | weight_decay: 0.0005
14 | # Display every 100 iterations
15 | display: 100
16 | # The maximum number of iterations
17 | max_iter: 10000
18 | # snapshot intermediate results
19 | snapshot: 5000
20 | snapshot_prefix: "examples/mnist/lenet_adadelta"
21 | # solver mode: CPU or GPU
22 | solver_mode: GPU
23 | type: "AdaDelta"
24 | delta: 1e-6
25 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/lenet_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The train/test net protocol buffer definition
2 | net: "examples/mnist/lenet_train_test.prototxt"
3 | # test_iter specifies how many forward passes the test should carry out.
4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations,
5 | # covering the full 10,000 testing images.
6 | test_iter: 100
7 | # Carry out testing every 500 training iterations.
8 | test_interval: 500
9 | # The base learning rate, momentum and the weight decay of the network.
10 | base_lr: 0.01
11 | momentum: 0.9
12 | weight_decay: 0.0005
13 | # The learning rate policy
14 | lr_policy: "inv"
15 | gamma: 0.0001
16 | power: 0.75
17 | # Display every 100 iterations
18 | display: 100
19 | # The maximum number of iterations
20 | max_iter: 10000
21 | # snapshot intermediate results
22 | snapshot: 5000
23 | snapshot_prefix: "examples/mnist/lenet"
24 | # solver mode: CPU or GPU
25 | solver_mode: GPU
26 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/layers/loss_layer.cpp:
--------------------------------------------------------------------------------
1 | #include
2 |
3 | #include "caffe/layers/loss_layer.hpp"
4 |
5 | namespace caffe {
6 |
7 | template
8 | void LossLayer::LayerSetUp(
9 | const vector*>& bottom, const vector*>& top) {
10 | // LossLayers have a non-zero (1) loss by default.
11 | if (this->layer_param_.loss_weight_size() == 0) {
12 | this->layer_param_.add_loss_weight(Dtype(1));
13 | }
14 | }
15 |
16 | template
17 | void LossLayer::Reshape(
18 | const vector*>& bottom, const vector*>& top) {
19 | CHECK_EQ(bottom[0]->shape(0), bottom[1]->shape(0))
20 | << "The data and label should have the same first dimension.";
21 | vector loss_shape(0); // Loss layers output a scalar; 0 axes.
22 | top[0]->Reshape(loss_shape);
23 | }
24 |
25 | INSTANTIATE_CLASS(LossLayer);
26 |
27 | } // namespace caffe
28 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/tools/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | # Collect source files
2 | file(GLOB_RECURSE srcs ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp)
3 |
4 | # Build each source file independently
5 | foreach(source ${srcs})
6 | get_filename_component(name ${source} NAME_WE)
7 |
8 | # caffe target already exits
9 | if(name MATCHES "caffe")
10 | set(name ${name}.bin)
11 | endif()
12 |
13 | # target
14 | add_executable(${name} ${source})
15 | target_link_libraries(${name} ${Caffe_LINK})
16 | caffe_default_properties(${name})
17 |
18 | # set back RUNTIME_OUTPUT_DIRECTORY
19 | caffe_set_runtime_directory(${name} "${PROJECT_BINARY_DIR}/tools")
20 | caffe_set_solution_folder(${name} tools)
21 |
22 | # restore output name without suffix
23 | if(name MATCHES "caffe.bin")
24 | set_target_properties(${name} PROPERTIES OUTPUT_NAME caffe)
25 | endif()
26 |
27 | # Install
28 | install(TARGETS ${name} DESTINATION bin)
29 | endforeach(source)
30 |
--------------------------------------------------------------------------------
/ros/sptam/plotters/parsers/ground_truth_loader.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import mit_gt
3 | import kitti_gt
4 | import level7_gt
5 | import euroc_gt
6 |
7 | def addProgramOptions(parser, required=False):
8 |
9 | group = parser.add_mutually_exclusive_group(required=required)
10 |
11 | group.add_argument('--mit', help='Ground truth file for the MIT dataset.')
12 | group.add_argument('--kitti', help='Ground truth file for the KITTI dataset.')
13 | group.add_argument('--level7', help='Ground truth file for the level7 dataset.')
14 | group.add_argument('--euroc', help='Ground truth file for the euroc dataset.')
15 |
16 | def load( args ):
17 |
18 | if args.kitti:
19 | return kitti_gt.load( args.kitti )
20 |
21 | if args.level7:
22 | return level7_gt.load( args.level7 )
23 |
24 | if args.mit:
25 | return mit_gt.load( args.mit )
26 |
27 | if args.euroc:
28 | return euroc_gt.load( args.euroc )
29 |
30 | return None
31 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/embed.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Embed Layer
3 | ---
4 |
5 | # Embed Layer
6 |
7 | * Layer type: `Embed`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EmbedLayer.html)
9 | * Header: [`./include/caffe/layers/embed_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/embed_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/embed_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/embed_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/embed_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/embed_layer.cu)
12 |
13 | ## Parameters
14 |
15 | * Parameters (`EmbedParameter embed_param`)
16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
17 |
18 | {% highlight Protobuf %}
19 | {% include proto/EmbedParameter.txt %}
20 | {% endhighlight %}
21 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/parameter.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Parameter Layer
3 | ---
4 |
5 | # Parameter Layer
6 |
7 | * Layer type: `Parameter`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ParameterLayer.html)
9 | * Header: [`./include/caffe/layers/parameter_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/parameter_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/parameter_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/parameter_layer.cpp)
11 |
12 | See [https://github.com/BVLC/caffe/pull/2079](https://github.com/BVLC/caffe/pull/2079).
13 |
14 | ## Parameters
15 |
16 | * Parameters (`ParameterParameter parameter_param`)
17 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
18 |
19 | {% highlight Protobuf %}
20 | {% include proto/ParameterParameter.txt %}
21 | {% endhighlight %}
22 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/prelu.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: PReLU Layer
3 | ---
4 |
5 | # PReLU Layer
6 |
7 | * Layer type: `PReLU`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PReLULayer.html)
9 | * Header: [`./include/caffe/layers/prelu_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/prelu_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/prelu_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/prelu_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/prelu_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/prelu_layer.cu)
12 |
13 | ## Parameters
14 |
15 | * Parameters (`PReLUParameter prelu_param`)
16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
17 |
18 | {% highlight Protobuf %}
19 | {% include proto/PReLUParameter.txt %}
20 | {% endhighlight %}
21 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/scale.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Scale Layer
3 | ---
4 |
5 | # Scale Layer
6 |
7 | * Layer type: `Scale`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ScaleLayer.html)
9 | * Header: [`./include/caffe/layers/scale_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/scale_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/scale_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/scale_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/scale_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/scale_layer.cu)
12 |
13 | ## Parameters
14 |
15 | * Parameters (`ScaleParameter scale_param`)
16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
17 |
18 | {% highlight Protobuf %}
19 | {% include proto/ScaleParameter.txt %}
20 | {% endhighlight %}
21 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/layers/base_data_layer.cu:
--------------------------------------------------------------------------------
1 | #include
2 |
3 | #include "caffe/layers/base_data_layer.hpp"
4 |
5 | namespace caffe {
6 |
7 | template
8 | void BasePrefetchingDataLayer::Forward_gpu(
9 | const vector*>& bottom, const vector*>& top) {
10 | if (prefetch_current_) {
11 | prefetch_free_.push(prefetch_current_);
12 | }
13 | prefetch_current_ = prefetch_full_.pop("Waiting for data");
14 | // Reshape to loaded data.
15 | top[0]->ReshapeLike(prefetch_current_->data_);
16 | top[0]->set_gpu_data(prefetch_current_->data_.mutable_gpu_data());
17 | if (this->output_labels_) {
18 | // Reshape to loaded labels.
19 | top[1]->ReshapeLike(prefetch_current_->label_);
20 | top[1]->set_gpu_data(prefetch_current_->label_.mutable_gpu_data());
21 | }
22 | }
23 |
24 | INSTANTIATE_LAYER_GPU_FORWARD(BasePrefetchingDataLayer);
25 |
26 | } // namespace caffe
27 |
--------------------------------------------------------------------------------
/ros/sptam/src/standAlone/Test/ReadImagesFromDir/ReadImagesFromDir.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 | #include
5 | #include
6 | #include
7 |
8 | using namespace std;
9 | using namespace cv;
10 |
11 | int main()
12 | {
13 | vector filenames; // notice here that we are using the Opencv's embedded "String" class
14 | String folder = "/home/taihu/datasets/KITTI/00/image_0/"; // again we are using the Opencv's embedded "String" class
15 |
16 | glob(folder, filenames); // new function that does the job ;-)
17 |
18 | for(size_t i = 0; i < filenames.size(); ++i)
19 | {
20 | Mat src = imread(filenames[i]);
21 |
22 | if(!src.data)
23 | cerr << "Problem loading image!!!" << endl;
24 | else {
25 | imshow("output",src);
26 | waitKey(0);
27 | }
28 | }
29 | }
30 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/src/caffe/solvers/adagrad_solver.cu:
--------------------------------------------------------------------------------
1 | #include "caffe/util/math_functions.hpp"
2 |
3 |
4 | namespace caffe {
5 |
6 | template
7 | __global__ void AdaGradUpdate(int N, Dtype* g, Dtype* h, Dtype delta,
8 | Dtype local_rate) {
9 | CUDA_KERNEL_LOOP(i, N) {
10 | float gi = g[i];
11 | float hi = h[i] = h[i] + gi*gi;
12 | g[i] = local_rate * gi / (sqrt(hi) + delta);
13 | }
14 | }
15 | template
16 | void adagrad_update_gpu(int N, Dtype* g, Dtype* h, Dtype delta,
17 | Dtype local_rate) {
18 | AdaGradUpdate // NOLINT_NEXT_LINE(whitespace/operators)
19 | <<>>(
20 | N, g, h, delta, local_rate);
21 | CUDA_POST_KERNEL_CHECK;
22 | }
23 | template void adagrad_update_gpu(int, float*, float*, float, float);
24 | template void adagrad_update_gpu(int, double*, double*, double, double);
25 |
26 | } // namespace caffe
27 |
--------------------------------------------------------------------------------
/ros/dl_node/src/_init_paths_softnms.py:
--------------------------------------------------------------------------------
1 | # --------------------------------------------------------
2 | # Fast R-CNN
3 | # Copyright (c) 2015 Microsoft
4 | # Licensed under The MIT License [see LICENSE for details]
5 | # Written by Ross Girshick
6 | # --------------------------------------------------------
7 |
8 | """Set up paths for Fast R-CNN."""
9 |
10 | import os.path as osp
11 | import sys
12 |
13 | def add_path(path):
14 | if path not in sys.path:
15 | sys.path.insert(0, path)
16 |
17 | ##this_dir = osp.dirname(__file__)
18 |
19 | # Add caffe to PYTHONPATH
20 | ## Hardcoded
21 | caffe_path = osp.join('/','home','javier','rcnn','soft-nms' ,'caffe', 'python')
22 | add_path(caffe_path)
23 |
24 | # Add lib to PYTHONPATH
25 | ## Hardcoded
26 | lib_path = osp.join('/','home','javier','rcnn','soft-nms','lib')
27 | add_path(lib_path)
28 |
29 | #tools_path = osp.join('/','home','javier','rcnn','py-faster-rcnn' ,'tools')
30 | #add_path(tools_path)
31 |
32 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_gftt_brisk.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'GFTT'
4 |
5 | nfeatures: 2000
6 | minDistance: 15.0
7 | qualityLevel: 0.01
8 | useHarrisDetector: false
9 |
10 | DescriptorExtractor:
11 | Name: 'BRISK'
12 | # OpenCV2
13 | # orientationNormalized: 'true'
14 | # scaleNormalized: 'true'
15 | # patternScale: '22.0'
16 |
17 | # OpenCV3
18 | # thresh: '30'
19 | # octaves: '3'
20 | # patternScale: '1.0'
21 |
22 |
23 | DescriptorMatcher:
24 | # normType: use
25 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
26 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
27 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
28 | Name: 'BruteForce-Hamming'
29 | crossCheck: false
30 |
31 | MatchingCellSize: 15
32 | MatchingNeighborhood: 1
33 | MatchingDistance: 100
34 | EpipolarDistance: 0
35 | FrustumNearPlaneDist: 0.1
36 | FrustumFarPlaneDist: 10000.0
37 | BundleAdjustmentActiveKeyframes: 10
38 |
39 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_star_brisk.yaml:
--------------------------------------------------------------------------------
1 | %YAML:1.0
2 |
3 | FeatureDetector:
4 |
5 | Name: 'STAR'
6 |
7 | maxSize: 16
8 | responseThreshold: 20
9 | suppressNonmaxSize: 5
10 |
11 | DescriptorExtractor:
12 | Name: 'BRISK'
13 |
14 | # OpenCV2
15 | # orientationNormalized: 'true'
16 | # scaleNormalized: 'true'
17 | # patternScale: '22.0'
18 |
19 | # OpenCV3
20 | # thresh: '30'
21 | # octaves: '3'
22 | # patternScale: '1.0'
23 |
24 |
25 | DescriptorMatcher:
26 | # normType: use
27 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
28 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
29 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
30 | Name: 'BruteForce-Hamming'
31 | crossCheck: 'false'
32 |
33 | MatchingCellSize: 15
34 | MatchingNeighborhood: 1
35 | MatchingDistance: 100
36 | EpipolarDistance: 0
37 | FrustumNearPlaneDist: 0.1
38 | FrustumFarPlaneDist: 10000.0
39 | BundleAdjustmentActiveKeyframes: 10
40 |
41 |
--------------------------------------------------------------------------------
/dependencies/meta/readme.md:
--------------------------------------------------------------------------------
1 | # Meta: A tiny metaprogramming library
2 |
3 | [](https://travis-ci.org/ericniebler/meta)
4 |
5 | *Meta* is a tiny and header-only C++11 metaprogramming library released under the
6 | Boost Software License. Supported compilers are clang >= 3.4 and gcc >= 4.9. To compile with meta you just have to:
7 |
8 | ```.cpp
9 | #include
10 | ```
11 |
12 | You can find documentation online [here](https://ericniebler.github.io/meta/index.html).
13 |
14 | For a quick start see Eric Niebler's blog post:
15 | [A tiny metaprogramming library](http://ericniebler.com/2014/11/13/tiny-metaprogramming-library/). (Note: the names in Meta are different from those describe in the blog post, but the overall design remains the same.)
16 |
17 | To generate the up-to-date tutorial and documentation run `make doc` in the
18 | build directory (requires Doxygen, LaTeX, dvips, ghostscript).
19 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/bnll.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: BNLL Layer
3 | ---
4 |
5 | # BNLL Layer
6 |
7 | * Layer type: `BNLL`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BNLLLayer.html)
9 | * Header: [`./include/caffe/layers/bnll_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/bnll_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/bnll_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bnll_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/bnll_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bnll_layer.cu)
12 |
13 | The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x.
14 |
15 | ## Parameters
16 | No parameters.
17 |
18 | ## Sample
19 |
20 | layer {
21 | name: "layer"
22 | bottom: "in"
23 | top: "out"
24 | type: BNLL
25 | }
26 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/examples/siamese/mnist_siamese_solver.prototxt:
--------------------------------------------------------------------------------
1 | # The train/test net protocol buffer definition
2 | net: "examples/siamese/mnist_siamese_train_test.prototxt"
3 | # test_iter specifies how many forward passes the test should carry out.
4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations,
5 | # covering the full 10,000 testing images.
6 | test_iter: 100
7 | # Carry out testing every 500 training iterations.
8 | test_interval: 500
9 | # The base learning rate, momentum and the weight decay of the network.
10 | base_lr: 0.01
11 | momentum: 0.9
12 | weight_decay: 0.0000
13 | # The learning rate policy
14 | lr_policy: "inv"
15 | gamma: 0.0001
16 | power: 0.75
17 | # Display every 100 iterations
18 | display: 100
19 | # The maximum number of iterations
20 | max_iter: 50000
21 | # snapshot intermediate results
22 | snapshot: 5000
23 | snapshot_prefix: "examples/siamese/mnist_siamese"
24 | # solver mode: CPU or GPU
25 | solver_mode: GPU
26 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/kitti_akaze.yaml:
--------------------------------------------------------------------------------
1 | FeatureDetector:
2 |
3 | Name: 'AKAZE'
4 |
5 | descriptor_type: 5
6 | descriptor_size: 0
7 | descriptor_channels: 1
8 | threshold: 0.005
9 | nOctaves: 1
10 | nOctaveLayers: 1
11 | diffusivity: 1
12 |
13 | DescriptorExtractor:
14 | Name: 'AKAZE'
15 |
16 | descriptor_type: 5
17 | descriptor_size: 0
18 | descriptor_channels: 1
19 | threshold: 0.005
20 | nOctaves: 1
21 | nOctaveLayers: 1
22 | diffusivity: 1
23 |
24 | DescriptorMatcher:
25 | # normType: use
26 | # - NORM_L1 or NORM_L2 for SIFT and SURF descriptors
27 | # - NORM_HAMMING for ORB, BRISK, and BRIEF
28 | # - NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4
29 | Name: 'BruteForce-Hamming'
30 | crossCheck: false
31 |
32 | MatchingCellSize: 15
33 | MatchingNeighborhood: 1
34 | MatchingDistance: 15
35 | EpipolarDistance: 1
36 | FrustumNearPlaneDist: 0.1
37 | FrustumFarPlaneDist: 10000.0
38 | BundleAdjustmentActiveKeyframes: 10
39 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/euclideanloss.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Euclidean Loss Layer
3 | ---
4 | # Sum-of-Squares / Euclidean Loss Layer
5 |
6 | * Layer type: `EuclideanLoss`
7 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EuclideanLossLayer.html)
8 | * Header: [`./include/caffe/layers/euclidean_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/euclidean_loss_layer.hpp)
9 | * CPU implementation: [`./src/caffe/layers/euclidean_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/euclidean_loss_layer.cpp)
10 | * CUDA GPU implementation: [`./src/caffe/layers/euclidean_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/euclidean_loss_layer.cu)
11 |
12 | The Euclidean loss layer computes the sum of squares of differences of its two inputs, $$\frac 1 {2N} \sum_{i=1}^N \| x^1_i - x^2_i \|_2^2$$.
13 |
14 | ## Parameters
15 |
16 | Does not take any parameters.
17 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/flatten.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Flatten Layer
3 | ---
4 |
5 | # Flatten Layer
6 |
7 | * Layer type: `Flatten`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1FlattenLayer.html)
9 | * Header: [`./include/caffe/layers/flatten_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/flatten_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/flatten_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/flatten_layer.cpp)
11 |
12 | The `Flatten` layer is a utility layer that flattens an input of shape `n * c * h * w` to a simple vector output of shape `n * (c*h*w)`.
13 |
14 | ## Parameters
15 |
16 | * Parameters (`FlattenParameter flatten_param`)
17 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
18 |
19 | {% highlight Protobuf %}
20 | {% include proto/FlattenParameter.txt %}
21 | {% endhighlight %}
22 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/multinomiallogisticloss.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Multinomial Logistic Loss Layer
3 | ---
4 |
5 | # Multinomial Logistic Loss Layer
6 |
7 | * Layer type: `MultinomialLogisticLoss`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MultinomialLogisticLossLayer.html)
9 | * Header: [`./include/caffe/layers/multinomial_logistic_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/multinomial_logistic_loss_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/multinomial_logistic_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/multinomial_logistic_loss_layer.cpp)
11 |
12 | ## Parameters
13 |
14 | * Parameters (`LossParameter loss_param`)
15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
16 |
17 | {% highlight Protobuf %}
18 | {% include proto/LossParameter.txt %}
19 | {% endhighlight %}
20 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/sigmoid.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Sigmoid Layer
3 | ---
4 |
5 | # Sigmoid Layer
6 |
7 | * Layer type: `Sigmoid`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SigmoidLayer.html)
9 | * Header: [`./include/caffe/layers/sigmoid_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/sigmoid_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/sigmoid_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/sigmoid_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_layer.cu)
12 |
13 | ## Parameters
14 |
15 | * Parameters (`SigmoidParameter sigmoid_param`)
16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):
17 |
18 | {% highlight Protobuf %}
19 | {% include proto/SigmoidParameter.txt %}
20 | {% endhighlight %}
21 |
--------------------------------------------------------------------------------
/ros/sptam/configurationFiles/calibrations/00b09d0100626e63_left.yaml:
--------------------------------------------------------------------------------
1 | camera_matrix:
2 | cols: 3
3 | data: [524.1301433371835, 0.0, 315.4348325473679, 0.0, 523.5072606249538, 245.2304775179637,
4 | 0.0, 0.0, 1.0]
5 | rows: 3
6 | camera_name: 00b09d0100626e63_left
7 | distortion_coefficients:
8 | cols: 5
9 | data: [-0.3396282468279343, 0.1228228088191552, 0.00043662096897748227, 0.00022545714383195398,
10 | 0.0]
11 | rows: 1
12 | distortion_model: plumb_bob
13 | image_height: 480
14 | image_width: 640
15 | projection_matrix:
16 | cols: 4
17 | data: [419.1912564118346, 0.0, 324.0353889465332, 0.0, 0.0, 419.1912564118346, 249.37464714050293,
18 | 0.0, 0.0, 0.0, 1.0, 0.0]
19 | rows: 3
20 | rectification_matrix:
21 | cols: 3
22 | data: [0.9999661557612708, -0.0010506708961703429, -0.008159866585558536, 0.001029522374188195,
23 | 0.9999961016173224, -0.0025955411456627534, 0.008162561834817544, 0.002587052536328365,
24 | 0.9999633391997264]
25 | rows: 3
26 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/dropout.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Dropout Layer
3 | ---
4 |
5 | # Dropout Layer
6 |
7 | * Layer type: `Dropout`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DropoutLayer.html)
9 | * Header: [`./include/caffe/layers/dropout_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/dropout_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/dropout_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dropout_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/dropout_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dropout_layer.cu)
12 |
13 | ## Parameters
14 |
15 | * Parameters (`DropoutParameter dropout_param`)
16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)):
17 |
18 | {% highlight Protobuf %}
19 | {% include proto/DropoutParameter.txt %}
20 | {% endhighlight %}
21 |
--------------------------------------------------------------------------------
/py-faster-rcnn/caffe-fast-rcnn/docs/tutorial/layers/eltwise.md:
--------------------------------------------------------------------------------
1 | ---
2 | title: Eltwise Layer
3 | ---
4 |
5 | # Eltwise Layer
6 |
7 | * Layer type: `Eltwise`
8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EltwiseLayer.html)
9 | * Header: [`./include/caffe/layers/eltwise_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/eltwise_layer.hpp)
10 | * CPU implementation: [`./src/caffe/layers/eltwise_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/eltwise_layer.cpp)
11 | * CUDA GPU implementation: [`./src/caffe/layers/eltwise_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/eltwise_layer.cu)
12 |
13 | ## Parameters
14 |
15 | * Parameters (`EltwiseParameter eltwise_param`)
16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)):
17 |
18 | {% highlight Protobuf %}
19 | {% include proto/EltwiseParameter.txt %}
20 | {% endhighlight %}
21 |
--------------------------------------------------------------------------------