├── README.md
├── algorithm
└── kg_qa
│ ├── KG
│ ├── KgAnswer.py
│ ├── KgEval.py
│ ├── KgPredict.py
│ ├── __init__.py
│ └── es.py
│ ├── NER
│ ├── DataMaking.py
│ ├── EntityExtract.py
│ ├── Eval.py
│ ├── Predict.py
│ ├── TrainAndValid.py
│ └── __init__.py
│ ├── NER_BERT_LSTM_CRF
│ ├── EntityExtract.py
│ ├── Eval.py
│ ├── Predict.py
│ ├── TrainAndValid.py
│ ├── __init__.py
│ └── lstm_crf_layer.py
│ ├── SIM
│ ├── DataMaking.py
│ ├── Eval.py
│ ├── Predict.py
│ ├── TrainAndValid.py
│ └── __init__.py
│ ├── __init__.py
│ ├── config.py
│ └── 不同预训练模型的实验与评估.docx
├── bert
├── .gitignore
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── __init__.py
├── create_pretraining_data.py
├── extract_features.py
├── modeling.py
├── modeling_test.py
├── multilingual.md
├── optimization.py
├── optimization_test.py
├── predicting_movie_reviews_with_bert_on_tf_hub.ipynb
├── requirements.txt
├── run_classifier.py
├── run_classifier_with_tfhub.py
├── run_pretraining.py
├── run_squad.py
├── sample_text.txt
├── tokenization.py
└── tokenization_test.py
├── config.py
├── pretraining_model
└── readme.txt
├── raw_data
└── kgClue
│ ├── kgClue.yaml
│ └── knowledge
│ └── README.md
├── requirements.txt
└── utils
├── DrawTrain.py
├── EvalReport.py
├── IdAndLabel.py
├── ListAndList.py
└── __init__.py
/README.md:
--------------------------------------------------------------------------------
1 | [toc]
2 |
3 | # KgClue_Bench
4 |
5 | 尽最大能力解耦代码,为NLP新手提供(BERT)学习平台
6 |
7 | ## 目录结构
8 |
9 | ├─algorithm # 算法
10 | │ └─kg_qa # 算法开发示例
11 | │ │ config.py
12 | │ ├─KG 每个模块对应一个package
13 | │ │ │ es.py # 将知识库导入es的脚本
14 | │ │ │ KgAnswer.py # 回答问题类
15 | │ │ │ KgEval.py# 回答问题的准确度评估方法
16 | │ │ │ KgPredict.py# 针对test.json文件生成预测结果,手动压缩之后可以提交到官网进行评估
17 | │ ├─NER
18 | │ │ │ DataMaking.py# NER训练数据集的制作脚本
19 | │ │ │ EntityExtract.py# 将序列标注标签转化为实体
20 | │ │ │ Eval.py# 评估代码(输出f1)
21 | │ │ │ Predict.py# 预测类
22 | │ │ │ TrainAndValid.py# 训练代码
23 | ├─bert 谷歌官方Bert代码存放
24 | │ │ .gitignore
25 | ├─pretraining_model # 存放bert的预训练模型
26 | │ ├─chinese_rbt3_L-3_H-768_A-12 #存放示例
27 | ├─raw_data # 数据集推荐添加方式,直接解压
28 | │ ├─kgClue # kg_qa项目中适配的数据集
29 | │ │ │ xxx.json
30 | │ │ └─knowledge # 知识库
31 | │ │ Knowledge.txt
32 | └─utils
33 |
34 |
35 | ## 算法排行
36 |
37 | ### **kg_qa任务** 以kgClue为训练数据集,旨在回答知识库中的问题
38 |
39 | > #### 不同算法结构性能比较(以chinese_rbtl3_L-3_H-1024_A-16为预训练模型)
40 | > 这里的评估是以问题回答准确度作为标准
41 | >
42 | >Model | F1 | EM |
43 | >:----:| :----: |:----: |
44 | >bert-crf | 70.7 | 70.7 |
45 | >bert-lstm-crf | 63.9 | 63.6 |
46 |
47 | #### 不同预训练模型性能比较(不代表每个模型的最佳性能)
48 | NER (bert+crf) seq_lan=32 epoch=5
49 |
50 | | pretraining_model | batch | micro-f1| macro-f1| f1(##WordPiece) |f1(B-NP/I-NP)|
51 | | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
52 | | chinese_rbt3_L-3_H-768_A-12 | 40 | 93.1| 88.0 | 61.0 | 79.0 |
53 | | chinese_rbt4_L-4_H-768_A-12 | 40 | 92.0 | 87.0 | 62.0 | 75.0 |
54 | | chinese_rbt6_L-6_H-768_A-12 | 40 | 93.0 | 88.0 | 61.0 | 77.0 |
55 | | chinese_rbtl3_L-3_H-1024_A-16 | 40 | 93.0 | 89.0 | 66.0 | 77.0 |
56 | | chinese_wwm_ext_L-12_H-768_A-12 | 40 | 93.0 | 88.0 | 63.0 | 77.0 |
57 |
58 | SIM (bert) seq_lan=64 epoch=5
59 |
60 | | pretraining_model | batch | accuracy| precision| recall |macro-f1|
61 | | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
62 | | chinese_rbt3_L-3_H-768_A-12 | 40 | 86.0| 44.3 | 2.0 | 49.0 |
63 | | chinese_rbt4_L-4_H-768_A-12 | 40 | 93.5 | 78.3 | 73.1 | 85.9 |
64 | | chinese_rbt6_L-6_H-768_A-12 | 40 | 93.8 | 79.2 | 74.9 | 86.7 |
65 | | chinese_rbtl3_L-3_H-1024_A-16 | 40 |96.5 |86.4| 89.1| 92.9 |
66 | | chinese_wwm_ext_L-12_H-768_A-12 | 40 | 95.5| 82.1| 86.6 | 90.9 |
67 |
68 | ## 使用示例
69 |
70 | ### 以 **kg_qa** 算法为例
71 |
72 | > 该项目下有三个文件夹KG\NER\SIM
73 |
74 | #### NER
75 |
76 | 1. python DataMaking.py **注意**: 1. 文件路径 2.脚本work路径,应该以整个KgCLUEBench为项目根目录运行
77 | 2. python TrainAndValid.py **注意** :训练之前设置好kg_qa目录下的config配置,其他注意点同上
78 | 3. python Precit.py 验证是否正常运行
79 | 4. python Eval.py 得出模型的评估结果,可以在训练时间段Eval模型,查看训练效果
80 | 5. python EntityExtract.py 将序列标注结果(Predict结果)转化为句子中的实体
81 |
82 | #### SIM 同理
83 |
84 | 1. python DataMaking.py **注意**: 1. 文件路径 2.脚本work路径,应该以整个KgCLUEBench为项目根目录运行
85 | 2. python TrainAndValid.py **注意** :训练之前设置好kg_qa目录下的config配置,其他注意点同上
86 | 3. python Precit.py 验证是否正常运行
87 | 4. python Eval.py 得出模型的评估结果,可以在训练时间段Eval模型,查看训练效果
88 |
89 | #### KG
90 | 1. es.py是将知识库(这里是Knowledge.txt)导入es系统的脚本文件,只需要执行一次
91 | 2. KgAnswer.py是回答问题的类,只需要输入一个句子,即可给出结果
92 | 3. KgEval是评估问题回答能力的代码,修改文件路径即可使用
93 | 4. KgPredict是回答test.json的代码,运行完成可以生成kgclue_predict.txt,用户压缩成zip文件之后可以直接提交至clue官网。
94 |
95 | ## algorithm 贡献方法
96 |
97 | > 在此目录下直接命名一个新的python包包含init和config文件
98 | > 不同算法可能有多个stage,不同stage建议使用独立的python包,多个stage共享一个config
99 |
100 | ## UPDATE
101 |
102 | ******* 2021-12-3,新项目开荒
103 | ******* 2021-12-12,完整流程测试通过
104 |
105 | ## 有问题联系1194370384@qq.com
106 |
107 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/KG/KgAnswer.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/28 20:25
4 | # @Author : 刘鑫
5 | # @FileName: KgAnswer.py
6 | # @Software: PyCharm
7 | import json
8 | import os
9 |
10 | from elasticsearch import Elasticsearch
11 |
12 | from algorithm.kg_qa.NER.EntityExtract import EntityExtract
13 | from algorithm.kg_qa.SIM.Predict import Predict as SimPredict
14 | from algorithm.kg_qa.config import NerConfig, SimConfig
15 |
16 |
17 | class KgAnswer(object):
18 | def __init__(self, NER_MODEL_PATH, SIM_MODEL_PATH, es_host, es_port):
19 | # init the model we need to use
20 | self.ee = EntityExtract(NER_MODEL_PATH)
21 | self.sim = SimPredict(SIM_MODEL_PATH)
22 | self.es = Elasticsearch([":".join((es_host, es_port))])
23 |
24 | def answer(self, sentence):
25 |
26 | entitys = "".join(self.ee.extract(sentence))
27 | # to_do 需要添加适配,多个实体的情况
28 | # print(entitys)
29 | body = {
30 | "query": {
31 | "term": {
32 | "entity.keyword": entitys
33 | }
34 | }
35 | }
36 |
37 | es_results = self.es.search(index="kbqa-data", doc_type="kbList", body=body, size=1000)
38 |
39 | attribute_list, answer_list = list(), list()
40 | for i in range(len(es_results['hits']['hits'])):
41 | relation = es_results['hits']['hits'][i]['_source']['relation']
42 | value = es_results['hits']['hits'][i]['_source']['value']
43 | attribute_list.append(relation)
44 | answer_list.append(value)
45 | best_answer = ""
46 | best_attribute = ""
47 | probs_init = 0
48 | for attribute, answer in zip(attribute_list, answer_list):
49 | if attribute:
50 | isAttribute, probs = self.sim.predict_one(sentence, attribute, TEST_MODE=True)
51 | # if isAttribute:
52 | # # print("问题:%s,属性:%s,回答:%s" % (sentence, attribute, answer))
53 | if probs[0][1] > probs_init:
54 | best_answer = answer
55 | best_attribute = attribute
56 | probs_init = probs[0][1]
57 | return best_answer, best_attribute, entitys
58 |
59 |
60 | if __name__ == '__main__':
61 | os.environ["CUDA_VISIBLE_DEVICES"] = "0"
62 | NER_MODEL_PATH = NerConfig.model_out
63 | SIM_MODEL_PATH = SimConfig.model_out
64 | es_host = "127.0.0.1"
65 | es_port = "9200"
66 | kg = KgAnswer(NER_MODEL_PATH, SIM_MODEL_PATH, es_host, es_port)
67 | # print(kg.answer("NBA姚明学校在哪个地方啊?"))
68 | # print(kg.answer("NBA姚明学校所属地区是?"))
69 | # print(kg.answer("任宪韶的毕业院校是?"))
70 | # sentence = "巫山县疾病预防控制中心的机构职能是什么?"
71 | # print(kg.answer(sentence))
72 | # kg_out_f = open("./kg_out.txt", "w", encoding='utf-8')
73 | with open(r"C:\Users\11943\Documents\GitHub\KgClue_Bench\raw_data\kgClue\test_public.json", 'r',
74 | encoding='utf-8') as f:
75 | count_number = 0
76 | true_answer = 0
77 | while True:
78 |
79 | line = f.readline()
80 | if line:
81 | count_number += 1
82 | line = json.loads(line)
83 | sentence = line["question"]
84 | answer = line["answer"].split("|||")[2].strip()
85 | p_answers = kg.answer(sentence)
86 | # kg_out_f.write(sentence + "\t" + answer + "\t" + "predict: \t" + p_answers + "\n")
87 | # break
88 | else:
89 | break
90 | # kg_out_f.close()
91 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/KG/KgEval.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/28 21:00
4 | # @Author : 刘鑫
5 | # @FileName: KgEval.py
6 | # @Software: PyCharm
7 | import json
8 | import os
9 |
10 | from KgAnswer import KgAnswer
11 | from algorithm.kg_qa.config import NerConfig, SimConfig
12 |
13 | def normalize_text(s):
14 | """Removing articles and punctuation, and standardizing whitespace are all typical text processing steps."""
15 | import string, re
16 |
17 | def remove_articles(text):
18 | regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
19 | return re.sub(regex, " ", text)
20 |
21 | def white_space_fix(text):
22 | return " ".join(text.split())
23 |
24 | def remove_punc(text):
25 | exclude = set(string.punctuation)
26 | return "".join(ch for ch in text if ch not in exclude)
27 |
28 | def lower(text):
29 | return text.lower()
30 |
31 | return white_space_fix(remove_articles(remove_punc(lower(s))))
32 |
33 | def compute_exact_match(prediction, truth):
34 | return int(normalize_text(prediction) == normalize_text(truth))
35 |
36 |
37 | def compute_f1(prediction, truth):
38 | pred_tokens = normalize_text(prediction).split()
39 | truth_tokens = normalize_text(truth).split()
40 |
41 | # if either the prediction or the truth is no-answer then f1 = 1 if they agree, 0 otherwise
42 | if len(pred_tokens) == 0 or len(truth_tokens) == 0:
43 | return int(pred_tokens == truth_tokens)
44 |
45 | common_tokens = set(pred_tokens) & set(truth_tokens)
46 |
47 | # if there are no common tokens then f1 = 0
48 | if len(common_tokens) == 0:
49 | return 0
50 |
51 | prec = len(common_tokens) / len(pred_tokens)
52 | rec = len(common_tokens) / len(truth_tokens)
53 |
54 | return 2 * (prec * rec) / (prec + rec)
55 |
56 |
57 | if __name__ == '__main__':
58 | os.environ["CUDA_VISIBLE_DEVICES"] = "1"
59 | NER_MODEL_PATH = NerConfig.model_out
60 | SIM_MODEL_PATH = SimConfig.model_out
61 | es_host = "127.0.0.1"
62 | es_port = "9200"
63 | kg = KgAnswer(NER_MODEL_PATH, SIM_MODEL_PATH, es_host, es_port)
64 | em_score = 0
65 | f1_score = 0
66 | with open(r"C:\Users\11943\Documents\GitHub\KgCLUEbench\raw_data\kgClue\test_public.json", 'r', encoding='utf-8') as f:
67 | count_number = 0
68 | while True:
69 |
70 | line = f.readline()
71 | if line:
72 | count_number += 1
73 | line = json.loads(line)
74 | sentence = line["question"]
75 | answer = line["answer"].split("|||")[2].strip()
76 | p_answers,_,_ = kg.answer(sentence)
77 | # print(answer,p_answers)
78 |
79 | em_score += compute_exact_match(p_answers, answer)
80 | f1_score += compute_f1(p_answers, answer)
81 |
82 | else:
83 | break
84 |
85 | em = em_score/count_number
86 | f1 = f1_score/count_number
87 | print(em)
88 | print(f1)
--------------------------------------------------------------------------------
/algorithm/kg_qa/KG/KgPredict.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/12/10 13:11
4 | # @Author : 刘鑫
5 | # @FileName: KgPredict.py
6 | # @Software: PyCharm
7 |
8 | import json
9 | import os
10 |
11 | from KgAnswer import KgAnswer
12 | from algorithm.kg_qa.config import NerConfig, SimConfig
13 |
14 | if __name__ == '__main__':
15 | os.environ["CUDA_VISIBLE_DEVICES"] = "0"
16 | NER_MODEL_PATH = NerConfig.model_out
17 | SIM_MODEL_PATH = SimConfig.model_out
18 | es_host = "127.0.0.1"
19 | es_port = "9200"
20 | kg = KgAnswer(NER_MODEL_PATH, SIM_MODEL_PATH, es_host, es_port)
21 | out_f = open("./kgclue_predict.txt", "w", encoding='utf-8')
22 | with open(r"C:\Users\11943\Documents\GitHub\KgCLUEbench\raw_data\kgClue\test.json", 'r', encoding='utf-8') as f:
23 | count_number = 0
24 | while True:
25 |
26 | line = f.readline()
27 | if line:
28 |
29 | line = json.loads(line)
30 | sentence = line["question"]
31 | best_answer, best_attribute, entitys = kg.answer(sentence)
32 | tmp = dict()
33 | tmp["id"] = count_number
34 | tmp["answer"] = str(entitys) + " ||| " + str(best_attribute) + " ||| " + str(best_answer)
35 | x = json.dumps(tmp, ensure_ascii=False)
36 | out_f.write(x+"\n")
37 | # print(x)
38 | count_number += 1
39 | # break
40 | # {"id": 0, "answer": "刘质平 ||| 师从 ||| 李叔同"}
41 |
42 | else:
43 | break
44 | out_f.close()
45 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/KG/__init__.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/12/1 12:08
4 | # @Author : 刘鑫
5 | # @FileName: __init__.py.py
6 | # @Software: PyCharm
7 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/KG/es.py:
--------------------------------------------------------------------------------
1 | # -*- coding:utf-8 -*-
2 | '''
3 | -------------------------------------------------
4 | Description : deploy es
5 | Author : nijinxin
6 | Date : 2021-11-24
7 | -------------------------------------------------
8 |
9 | '''
10 |
11 | from elasticsearch import Elasticsearch
12 | from elasticsearch.helpers import bulk
13 |
14 | def deployES(input_file, host, port):
15 | """ put triples into es
16 | input: input_file, host, port
17 | output: None
18 | """
19 | es_dir = ":".join((host, port))
20 | print("es_dir:",es_dir)
21 | es = Elasticsearch([es_dir])
22 | es.indices.create(index='kbqa-data',ignore=[400, 404])
23 | f = open(input_file, 'r', encoding='utf-8')
24 |
25 | id_num = 0
26 | lines = []
27 | while True:
28 | line = f.readline()
29 | id_num += 1
30 | if line == "":
31 | break
32 | line = line.split("\t")
33 | if len(line[0].split("(")) == 2 and line[0][-1] == ")":
34 | entity = line[0].split("(")[0]
35 | ambiguity = line[0].split("(")[1].strip(")")
36 |
37 | else:
38 | entity = line[0]
39 | ambiguity = "None"
40 |
41 | action = {
42 | "_index": "kbqa-data",
43 | "_type": "kbList",
44 | "_id": id_num, #_id 也可以默认生成,不赋值
45 | "_source": {
46 | "entity": entity,
47 | "relation": line[1],
48 | "value": line[2].strip(),
49 | "ambiguity": ambiguity}}
50 | lines.append(action)
51 | if id_num % 5000 == 0:
52 |
53 | bulk(es, lines, index="kbqa-data", raise_on_error=True)
54 | lines = []
55 | if id_num % 50000 == 0:
56 | print(id_num, " triples has been deployed")
57 | f.close()
58 |
59 |
60 | if __name__ == "__main__":
61 | input_file = "../knowledge/Knowledge.txt"
62 | host = "127.0.0.1"
63 | port = "9200"
64 | deployES(input_file, host, port)
--------------------------------------------------------------------------------
/algorithm/kg_qa/NER/DataMaking.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/23 14:33
4 | # @Author : 刘鑫
5 | # @FileName: ner_data_making.py
6 | # @Software: PyCharm
7 | import collections
8 | import json
9 | import os
10 | import tensorflow as tf
11 |
12 | from bert import tokenization
13 | from algorithm.kg_qa.config import Properties,NerConfig as config
14 | from utils.ListAndList import _index_q_list_in_k_list
15 |
16 |
17 | class DataMaking(object):
18 | def __init__(self, do_lower_case=True, max_seq_length=128):
19 | self.task_name = "NER"
20 | # 初始化 bert_token 工具
21 | self.bert_tokenizer = tokenization.FullTokenizer(vocab_file=Properties.vocab_file, do_lower_case=do_lower_case)
22 | self.max_seq_length = max_seq_length
23 |
24 | def makdir(self, OUTPUT_DIR, DIR_NAME):
25 | if not os.path.exists(os.path.join(os.path.dirname(__file__), OUTPUT_DIR)):
26 | os.makedirs(os.path.join(os.path.dirname(__file__), OUTPUT_DIR))
27 | if not os.path.exists(os.path.join(os.path.dirname(__file__), OUTPUT_DIR, DIR_NAME)):
28 | os.makedirs(os.path.join(os.path.dirname(__file__), OUTPUT_DIR, DIR_NAME))
29 |
30 | def text2label(self, text, entity):
31 | text_token = self.bert_tokenizer.tokenize(text)
32 | entity_token = self.bert_tokenizer.tokenize(entity)
33 | entity_lenth = len(entity_token)
34 | idx_start = _index_q_list_in_k_list(entity_token, text_token)
35 | labeling_list = ["O"] * len(text_token) # 先用全O覆盖
36 | if idx_start is None:
37 | tokener_error_flag = True
38 | # self.bert_tokener_error_log_f.write(subject_object + " @@ " + text + "\n")
39 | else:
40 | labeling_list[idx_start] = "B-NP"
41 | if entity_lenth == 2:
42 | labeling_list[idx_start + 1] = "I-NP"
43 | elif entity_lenth >= 3:
44 | labeling_list[idx_start + 1: idx_start + entity_lenth] = ["I-NP"] * (entity_lenth - 1)
45 |
46 | for idx, token in enumerate(text_token):
47 | if token.startswith("##"):
48 | labeling_list[idx] = "[##WordPiece]"
49 |
50 | return labeling_list
51 |
52 | def convert_single_example(self, text, labeling_list=[], TEST_MODE=False):
53 |
54 | token_label_list = config.label_list
55 |
56 | token_label_map = {}
57 | for (i, label) in enumerate(token_label_list):
58 | token_label_map[label] = i
59 |
60 | text_token = self.bert_tokenizer.tokenize(text)
61 |
62 | # Account for [CLS] and [SEP] with "- 2"
63 | if len(text_token) > self.max_seq_length - 2:
64 | text_token = text_token[0:(self.max_seq_length - 2)]
65 |
66 | tokens = []
67 | token_label_ids = []
68 | segment_ids = []
69 | # 添加起始位置
70 | tokens.append("[CLS]")
71 | segment_ids.append(0)
72 | token_label_ids.append(token_label_map["[CLS]"])
73 |
74 | if TEST_MODE:
75 | labeling_list = ["O"] * len(text_token)
76 |
77 | for token, label in zip(text_token, labeling_list):
78 | tokens.append(token)
79 | segment_ids.append(0)
80 | token_label_ids.append(token_label_map[label])
81 |
82 | tokens.append("[SEP]")
83 | segment_ids.append(0)
84 | token_label_ids.append(token_label_map["[SEP]"]) # 第一句话结束
85 |
86 | input_ids = self.bert_tokenizer.convert_tokens_to_ids(tokens)
87 |
88 | input_mask = [1] * len(input_ids)
89 |
90 | # Zero-pad up to the sequence length.
91 | while len(input_ids) < self.max_seq_length:
92 | input_ids.append(0)
93 | input_mask.append(0)
94 | segment_ids.append(0)
95 | token_label_ids.append(0)
96 | tokens.append("[Padding]")
97 |
98 | assert len(input_ids) == self.max_seq_length
99 | assert len(input_mask) == self.max_seq_length
100 | assert len(segment_ids) == self.max_seq_length
101 | assert len(token_label_ids) == self.max_seq_length
102 |
103 | if TEST_MODE:
104 | feature = (input_ids, input_mask, segment_ids)
105 | else:
106 | feature = config.InputFeatures(
107 | input_ids=input_ids,
108 | input_mask=input_mask,
109 | segment_ids=segment_ids,
110 | label_ids=token_label_ids,
111 | is_real_example=True)
112 | return feature
113 |
114 | def input2output(self, INPUT_DATA_PATHS, OUTPUT_DIR):
115 | for data_path in INPUT_DATA_PATHS:
116 | file_name = data_path.split('/')[-1]
117 | file_type = file_name.split('.')[0]
118 | self.makdir(OUTPUT_DIR, file_type) # 生成文件名对应的文件夹
119 | OUT_PATH = os.path.join(os.path.dirname(__file__), OUTPUT_DIR, file_type)
120 | # 创建需要写入的文件
121 | text_f = open(os.path.join(OUT_PATH, "text.txt"), "w", encoding='utf-8')
122 | token_in_f = open(os.path.join(OUT_PATH, "token_in.txt"), "w", encoding='utf-8')
123 | token_label_f = open(os.path.join(OUT_PATH, "token_label.txt"), "w", encoding='utf-8')
124 | tf_writer = tf.python_io.TFRecordWriter(os.path.join(OUT_PATH, file_type + ".tf_record"))
125 | with open(data_path, "r", encoding='utf-8') as f:
126 | count_numbers = 0
127 | while True:
128 | line = f.readline()
129 | if line:
130 | line = json.loads(line)
131 | text = line["question"]
132 | answer = line["answer"]
133 | entity = answer.split("|||")[0].split("(")[0]
134 | token_label = self.text2label(text, entity)
135 |
136 | # 写入txt文件
137 | text_f.write(text + "\n")
138 | token_in_f.write(" ".join(self.bert_tokenizer.tokenize(text)) + "\n")
139 | token_label_f.write(" ".join(token_label) + "\n")
140 |
141 | # 写入tf_record
142 | feature = self.convert_single_example(text, token_label)
143 |
144 | def create_int_feature(values):
145 | f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
146 | return f
147 |
148 | features = collections.OrderedDict()
149 | features["input_ids"] = create_int_feature(feature.input_ids)
150 | features["input_mask"] = create_int_feature(feature.input_mask)
151 | features["segment_ids"] = create_int_feature(feature.segment_ids)
152 | features["label_ids"] = create_int_feature(feature.label_ids)
153 | features["is_real_example"] = create_int_feature([int(feature.is_real_example)])
154 |
155 | tf_example = tf.train.Example(features=tf.train.Features(feature=features))
156 | tf_writer.write(tf_example.SerializeToString())
157 | count_numbers += 1
158 | if count_numbers % 10000 == 0:
159 | print("Writing example %d " % (count_numbers))
160 | # break
161 | else:
162 | break
163 | print("all numbers", count_numbers)
164 | text_f.close()
165 | token_in_f.close()
166 | token_label_f.close()
167 | tf_writer.close()
168 |
169 |
170 | if __name__ == '__main__':
171 | INPUT_DATA_PATHS = ["raw_data/kgClue/train.json", "raw_data/kgClue/eval.json", "raw_data/kgClue/test_public.json"]
172 | OUTPUT_DIR = "./data"
173 |
174 | data_make = DataMaking(do_lower_case=True, max_seq_length=config.max_seq_length)
175 | data_make.input2output(INPUT_DATA_PATHS, OUTPUT_DIR)
176 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/NER/EntityExtract.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/27 14:56
4 | # @Author : 刘鑫
5 | # @FileName: entity_extract.py
6 | # @Software: PyCharm
7 | import json
8 | import os
9 |
10 | from bert import tokenization
11 | from algorithm.kg_qa.config import Properties, NerConfig as config
12 | from algorithm.kg_qa.NER.Predict import Predict
13 |
14 |
15 | def isEntityInText(text, entity):
16 | text_list = list(text)
17 | entity_list = list(entity)
18 | M = len(text_list)
19 | N = len(entity_list)
20 |
21 | i = 0
22 | while i <= M - N:
23 | j = 0
24 | space_nums = 0
25 | match = []
26 | while j < N:
27 | tt = text_list[i + j].lower()
28 | ee = entity_list[j].lower()
29 | if tt == ee:
30 | j += 1
31 | match.append(ee)
32 | continue
33 | elif j > 0 and tt == " ":
34 | i += 1
35 | space_nums += 1
36 | else:
37 | j += 1
38 | break
39 | if j == N and entity_list == match:
40 | return i - space_nums, space_nums
41 | i += 1
42 | return -1, -1
43 |
44 |
45 | class EntityExtract(object):
46 | def __init__(self, MODEL_PATH):
47 | self.predict = Predict(MODEL_PATH)
48 | self.tokenizer_ = tokenization.FullTokenizer(vocab_file=Properties.vocab_file)
49 |
50 | def extract(self, sentence):
51 | '''
52 | 将预测的token_label对应到句子中的字,抽取出中文实体,可能存在问题:空格缺失、大小写不一致,不过这里采用的策略是原样输出。在计算f1和em时这两点问题可以忽略
53 | :param sentence:
54 | :return: entitys
55 | '''
56 |
57 | def _merge_WordPiece_and_single_word(entity_sort_list):
58 | entity_sort_tuple_list = []
59 | for a_entity_list in entity_sort_list:
60 | entity_content = ""
61 | entity_type = None
62 | for idx, entity_part in enumerate(a_entity_list):
63 | if idx == 0:
64 | entity_type = entity_part
65 | if entity_type[:2] not in ["B-", "I-"]:
66 | break
67 | else:
68 | if entity_part.startswith("##"):
69 | entity_content += entity_part.replace("##", "")
70 | else:
71 | entity_content += entity_part
72 | if entity_content != "":
73 | entity_sort_tuple_list.append((entity_type[2:], entity_content))
74 | return entity_sort_tuple_list
75 |
76 | ner_out = self.predict.predict_one(sentence, TEST_MODE=True)
77 |
78 | def preprocessing_model_token_lable(predicate_token_label_list, token_in_list_lenth):
79 | if predicate_token_label_list[0] == "[CLS]":
80 | predicate_token_label_list = predicate_token_label_list[1:] # y_predict.remove('[CLS]')
81 | if len(predicate_token_label_list) > token_in_list_lenth: # 只取输入序列长度即可
82 | predicate_token_label_list = predicate_token_label_list[:token_in_list_lenth]
83 | return predicate_token_label_list
84 |
85 | predicate_token_label_list = preprocessing_model_token_lable(ner_out, len(ner_out))
86 |
87 | entity_sort_list = []
88 | entity_part_list = []
89 |
90 | token_in_not_UNK = self.tokenizer_.tokenize_not_UNK(sentence)
91 | for idx, token_label in enumerate(predicate_token_label_list):
92 | if token_label == "O":
93 | if len(entity_part_list) > 0:
94 | entity_sort_list.append(entity_part_list)
95 | entity_part_list = []
96 | if token_label.startswith("B-"):
97 | if len(entity_part_list) > 0: # 适用于 B- B- *****的情况
98 | entity_sort_list.append(entity_part_list)
99 | entity_part_list = []
100 | entity_part_list.append(token_label)
101 | entity_part_list.append(token_in_not_UNK[idx])
102 | if idx == len(predicate_token_label_list) - 1:
103 | entity_sort_list.append(entity_part_list)
104 | if token_label.startswith("I-") or token_label == "[##WordPiece]":
105 | if len(entity_part_list) > 0:
106 | entity_part_list.append(token_in_not_UNK[idx])
107 | if idx == len(predicate_token_label_list) - 1:
108 | entity_sort_list.append(entity_part_list)
109 | if token_label == "[SEP]":
110 | break
111 |
112 | entity_sort_tuple_list = _merge_WordPiece_and_single_word(entity_sort_list)
113 | entitys = []
114 | for entity in entity_sort_tuple_list:
115 | if entity[0] == "NP":
116 | start, space_nums = isEntityInText(sentence, entity[1])
117 | if start != -1:
118 | end = len(entity[1]) + space_nums + start
119 | entitys.append(sentence[start:end])
120 | return entitys
121 |
122 |
123 | if __name__ == '__main__':
124 | os.environ["CUDA_VISIBLE_DEVICES"] = "0"
125 | MODEL_PATH = config.model_out
126 | ee = EntityExtract(MODEL_PATH)
127 | # ff = open("./out.txt", 'w', encoding='utf-8')
128 | true_count=0
129 | with open(r"C:\Users\11943\Documents\GitHub\KgClue_Bench\raw_data\kgClue\test_public.json", "r",
130 | encoding='utf-8') as f:
131 | while True:
132 | line = f.readline()
133 | if line:
134 | line = json.loads(line)
135 | text = line["question"]
136 | answer = line["answer"]
137 | entity = answer.split("|||")[0].split("(")[0]
138 | p_entity = ee.extract(text)
139 | print(entity,"".join(p_entity))
140 | if entity == "".join(p_entity):
141 | true_count+=1
142 | # ff.write(text + "\t" + entity + "\t" + "".join(p_entity) + "\n")
143 | else:
144 | break
145 | # ff.close()
146 | print(true_count/2000)
147 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/NER/Eval.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/20 10:54
4 | # @Author : 刘鑫
5 | # @FileName: seq_eval.py
6 | # @Software: PyCharm
7 | import json
8 | import os
9 |
10 | from algorithm.kg_qa.NER.Predict import Predict
11 | from algorithm.kg_qa.NER.DataMaking import DataMaking
12 | from algorithm.kg_qa.config import NerConfig as config
13 | from utils.EvalReport import report
14 |
15 |
16 | class Eval(object):
17 | def __init__(self, MODEL_PATH):
18 | self.data_make = DataMaking(do_lower_case=True, max_seq_length=config.max_seq_length)
19 | self.predict = Predict(MODEL_PATH)
20 | self.seq_id2label = self.predict.seq_id2label
21 |
22 | def id2label_f(self, id_list):
23 | predictions = []
24 | for id in id_list:
25 | predictions.append(self.seq_id2label[id])
26 | return predictions
27 |
28 | def do_eval(self, data_files=["../raw_data/test.json"]):
29 |
30 | for data_file in data_files:
31 | y_true = []
32 | y_pred = []
33 | with open(data_file, 'r', encoding='utf-8') as f:
34 | while True:
35 | line = f.readline()
36 | if line:
37 | line = json.loads(line)
38 | text = line["question"]
39 | answer = line["answer"]
40 | entity = answer.split("|||")[0].split("(")[0]
41 |
42 | token_label = self.data_make.text2label(text, entity)
43 | feature = self.data_make.convert_single_example(text, token_label)
44 | label = self.id2label_f(feature.label_ids)
45 | predict_label = self.predict.predict_one(text, TEST_MODE=True)
46 |
47 | y_true.append(label)
48 | y_pred.append(predict_label)
49 |
50 | else:
51 | break
52 | report(y_true, y_pred)
53 |
54 |
55 | if __name__ == '__main__':
56 | os.environ["CUDA_VISIBLE_DEVICES"] = "1"
57 | MODEL_PATH = config.model_out
58 | ner_eval = Eval(MODEL_PATH)
59 | ner_eval.do_eval(data_files=["raw_data/kgClue/test_public.json"])
60 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/NER/Predict.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/16 10:42
4 | # @Author : 刘鑫
5 | # @FileName: seq_predict.py
6 | # @Software: PyCharm
7 |
8 | import os
9 | import tensorflow as tf
10 |
11 | os.environ["CUDA_VISIBLE_DEVICES"] = "1"
12 |
13 | from bert import tokenization
14 | from algorithm.kg_qa.NER.DataMaking import DataMaking
15 | from utils.IdAndLabel import id2label
16 | from algorithm.kg_qa.config import Properties, NerConfig as config
17 | # 预测类
18 | class Predict(object):
19 |
20 | def __init__(self, MODEL_PATH):
21 | self.model_path = MODEL_PATH
22 |
23 | self.seq_id2label = id2label(config.label_list)
24 |
25 | # 准备token
26 | self.tokenizer_ = tokenization.FullTokenizer(vocab_file=Properties.vocab_file)
27 | self.data_making = DataMaking(do_lower_case=True, max_seq_length=config.max_seq_length)
28 | self.sess = self.load_model()
29 |
30 | self.input_ids = self.sess.graph.get_tensor_by_name("input_ids:0")
31 | self.input_mask = self.sess.graph.get_tensor_by_name("input_mask:0")
32 | self.segment_ids = self.sess.graph.get_tensor_by_name("segment_ids:0")
33 | self.keep_prob = self.sess.graph.get_tensor_by_name("keep_prob:0")
34 | # 预测的结果
35 | self.p = self.sess.graph.get_tensor_by_name("loss/ReverseSequence_1:0")
36 | # x = [n.name for n in tf.get_default_graph().as_graph_def().node]
37 | # print(x)
38 |
39 | def load_model(self):
40 | try:
41 | checkpoint = tf.train.get_checkpoint_state(self.model_path)
42 | input_checkpoint = checkpoint.model_checkpoint_path
43 | print("[INFO] input_checkpoint:", input_checkpoint)
44 | except Exception as e:
45 | input_checkpoint = self.model_path
46 | print("[INFO] Model folder", self.model_path, repr(e))
47 |
48 | # We clear devices to allow TensorFlow to control on which device it will load operations
49 | clear_devices = True
50 | tf.reset_default_graph()
51 | # We import the meta graph and retrieve a Saver
52 | saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
53 |
54 | # We start a session and restore the graph weights
55 | sess_ = tf.Session()
56 | saver.restore(sess_, input_checkpoint)
57 |
58 | return sess_
59 |
60 | def predict_one(self, PREDICT_TXT, TEST_MODE=False):
61 |
62 | feature = self.data_making.convert_single_example(PREDICT_TXT, TEST_MODE=TEST_MODE)
63 |
64 | def id2label_f(id_list):
65 | predictions = []
66 | if TEST_MODE:
67 | for id in id_list:
68 | predictions.append(self.seq_id2label[id])
69 | else:
70 | for id in id_list:
71 | predictions.append(self.seq_id2label[id])
72 | if id == 4:
73 | break
74 | return predictions
75 |
76 | feed = {self.input_ids: [feature[0]],
77 | self.input_mask: [feature[1]],
78 | self.segment_ids: [feature[2]],
79 | self.keep_prob: 1.0}
80 |
81 | probs = self.sess.run(self.p, feed)
82 |
83 | out = id2label_f(probs[0])
84 |
85 | if TEST_MODE:
86 | return out
87 | else:
88 | return out[1:-1]
89 |
90 |
91 | if __name__ == '__main__':
92 | MODEL_PATH = config.model_out
93 | PREDICT_TXT = "5·13土耳其索玛矿难的坐标是什么?"
94 |
95 | ner = Predict(MODEL_PATH)
96 | print("test predict: ", ner.predict_one(PREDICT_TXT, TEST_MODE=True))
97 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/NER/TrainAndValid.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/12 11:13
4 | # @Author : 刘鑫
5 | # @FileName: sequnce_labeling_train.py
6 | # @Software: PyCharm
7 |
8 | # 假定已经带着正确的分类label去训练实体识别
9 | import tensorflow as tf
10 | import os, math
11 |
12 | from bert import modeling
13 | from bert import optimization
14 | from algorithm.kg_qa.config import Properties, NerConfig as config
15 | from utils.IdAndLabel import id2label
16 | from utils.EvalReport import report
17 |
18 |
19 | def load_bert_config(path):
20 | """
21 | bert 模型配置文件
22 | """
23 | return modeling.BertConfig.from_json_file(path)
24 |
25 |
26 | def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, labels, keep_prob, num_labels,
27 | use_one_hot_embeddings):
28 | """Creates a classification model."""
29 | model = modeling.BertModel(
30 | config=bert_config,
31 | is_training=is_training,
32 | input_ids=input_ids,
33 | input_mask=input_mask,
34 | token_type_ids=segment_ids,
35 | use_one_hot_embeddings=use_one_hot_embeddings,
36 | scope='bert'
37 | )
38 | output_layer = model.get_sequence_output()
39 | hidden_size = output_layer.shape[-1].value
40 | seq_length = output_layer.shape[-2].value
41 |
42 | output_weight = tf.get_variable(
43 | "output_weights", [num_labels, hidden_size],
44 | initializer=tf.truncated_normal_initializer(stddev=0.02)
45 | )
46 | output_bias = tf.get_variable(
47 | "output_bias", [num_labels], initializer=tf.zeros_initializer()
48 | )
49 | with tf.variable_scope("loss"):
50 | if is_training:
51 | output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
52 |
53 | output_layer = tf.reshape(output_layer, [-1, hidden_size])
54 | logits = tf.matmul(output_layer, output_weight, transpose_b=True)
55 | logits = tf.reshape(logits, [-1, seq_length, num_labels])
56 |
57 | logits = tf.nn.bias_add(logits, output_bias)
58 | logits = tf.reshape(logits, shape=(-1, seq_length, num_labels))
59 |
60 | input_m = tf.count_nonzero(input_mask, -1)
61 |
62 | log_likelihood, transition_matrix = tf.contrib.crf.crf_log_likelihood(logits, labels, input_m)
63 | loss = tf.reduce_mean(-log_likelihood)
64 | # inference
65 | viterbi_sequence, viterbi_score = tf.contrib.crf.crf_decode(logits, transition_matrix, input_m)
66 | # 不计算 padding 的 acc
67 | equals = tf.reduce_sum(
68 | tf.cast(tf.equal(tf.cast(viterbi_sequence, tf.int64), labels), tf.float32) * tf.cast(input_mask,
69 | tf.float32))
70 | acc = equals / tf.cast(tf.reduce_sum(input_mask), tf.float32)
71 | return (loss, acc, logits, viterbi_sequence)
72 |
73 |
74 | def get_input_data(input_file, seq_length, batch_size, is_training=True):
75 | def parser(record):
76 | name_to_features = {
77 | "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
78 | "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
79 | "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
80 | "label_ids": tf.FixedLenFeature([seq_length], tf.int64),
81 | }
82 |
83 | example = tf.parse_single_example(record, features=name_to_features)
84 | input_ids = example["input_ids"]
85 | input_mask = example["input_mask"]
86 | segment_ids = example["segment_ids"]
87 | labels = example["label_ids"]
88 | return input_ids, input_mask, segment_ids, labels
89 |
90 | dataset = tf.data.TFRecordDataset(input_file)
91 | # 数据类别集中,需要较大的buffer_size,才能有效打乱,或者再 数据处理的过程中进行打乱
92 | if is_training:
93 | dataset = dataset.map(parser).batch(batch_size).shuffle(buffer_size=2000)
94 | else:
95 | dataset = dataset.map(parser).batch(batch_size)
96 | iterator = dataset.make_one_shot_iterator()
97 | input_ids, input_mask, segment_ids, labels = iterator.get_next()
98 | return input_ids, input_mask, segment_ids, labels
99 |
100 |
101 | def id2label_f(id_list):
102 | seq_id2label = id2label(config.label_list)
103 | predictions = []
104 | for id in id_list:
105 | predictions.append(seq_id2label[id])
106 | return predictions
107 |
108 |
109 | def pre2out(predicts):
110 | '''
111 | 可以考虑移动到utils里面
112 | :param predicts:
113 | :return:
114 | '''
115 | outs = []
116 | for tmp in predicts:
117 | tmp_out = id2label_f(tmp.tolist())
118 | outs.append(tmp_out)
119 | return outs
120 |
121 |
122 | def main():
123 | print("print start load the params...")
124 |
125 | tf.gfile.MakeDirs(config.model_out)
126 |
127 | # 配置超参数
128 | train_examples_len = config.train_examples_len
129 | valid_examples_len = config.valid_examples_len
130 | learning_rate = config.learning_rate
131 | eval_per_step = config.eval_per_step
132 | num_labels = config.num_labels
133 |
134 | num_train_steps = math.ceil(train_examples_len / config.train_batch_size)
135 | num_valid_steps = math.ceil(valid_examples_len / config.valid_batch_size)
136 | num_warmup_steps = math.ceil(num_train_steps * config.num_train_epochs * config.warmup_proportion)
137 | print("num_train_steps:{}, num_valid_steps:{}, num_warmup_steps:{}".format(num_train_steps, num_valid_steps,
138 | num_warmup_steps))
139 |
140 | use_one_hot_embeddings = False
141 | is_training = True
142 | seq_len = config.max_seq_length
143 |
144 | init_checkpoint = Properties.init_checkpoint
145 | print("print start compile the bert model...")
146 |
147 | # 定义输入输出
148 | input_ids = tf.placeholder(tf.int64, shape=[None, seq_len], name='input_ids')
149 | input_mask = tf.placeholder(tf.int64, shape=[None, seq_len], name='input_mask')
150 | segment_ids = tf.placeholder(tf.int64, shape=[None, seq_len], name='segment_ids')
151 | token_labels = tf.placeholder(tf.int64, shape=[None, seq_len], name='token_labels')
152 | keep_prob = tf.placeholder(tf.float32, name='keep_prob') # , name='is_training'
153 | bert_config_ = load_bert_config(Properties.bert_config)
154 | (total_loss, acc, logits, probabilities) = create_model(bert_config_, is_training, input_ids,
155 | input_mask, segment_ids, token_labels,
156 | keep_prob,
157 | num_labels, use_one_hot_embeddings)
158 | train_op = optimization.create_optimizer(total_loss, learning_rate, num_train_steps * config.num_train_epochs,
159 | num_warmup_steps, False)
160 |
161 | print("print start train the bert model...")
162 |
163 | batch_size = config.train_batch_size
164 | valid_batch_size = config.valid_batch_size
165 |
166 | init_global = tf.global_variables_initializer()
167 |
168 | saver = tf.train.Saver([v for v in tf.global_variables() if 'adam_v' not in v.name and 'adam_m' not in v.name],
169 | max_to_keep=3) # 保存最后top3模型
170 |
171 | with tf.Session() as sess:
172 |
173 | print("start load the pre train model")
174 |
175 | if init_checkpoint:
176 | tvars = tf.trainable_variables()
177 | print("trainable_variables", len(tvars))
178 | (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars,
179 | init_checkpoint)
180 | print("initialized_variable_names:", len(initialized_variable_names))
181 |
182 | saver_ = tf.train.Saver([v for v in tvars if v.name in initialized_variable_names])
183 | saver_.restore(sess, init_checkpoint)
184 | sess.run(init_global)
185 | else:
186 | sess.run(tf.global_variables_initializer())
187 | print("********* train start *********")
188 |
189 | def train_step(ids, mask, segment, y, step, train_out_f):
190 | feed = {input_ids: ids,
191 | input_mask: mask,
192 | segment_ids: segment,
193 | token_labels: y,
194 | keep_prob: 0.9}
195 | _, out_loss, acc_, p_ = sess.run([train_op, total_loss, acc, probabilities], feed_dict=feed)
196 | print("step :{},loss :{}, acc :{}".format(step, out_loss, acc_))
197 | train_out_f.write("step :{}, loss :{}, acc :{} \n".format(step, out_loss, acc_))
198 | return out_loss, p_, y
199 |
200 | def valid_step(ids, mask, segment, y):
201 | # 验证训练效果
202 | feed = {input_ids: ids,
203 | input_mask: mask,
204 | segment_ids: segment,
205 | token_labels: y,
206 | keep_prob: 1.0
207 | }
208 | out_loss, acc_, p_ = sess.run([total_loss, acc, probabilities], feed_dict=feed)
209 | print("loss :{}, acc :{}".format(out_loss, acc_))
210 | return out_loss, p_, y
211 |
212 | min_total_loss_dev = 999999
213 | step = 0
214 | if not os.path.exists(config.training_log):
215 | os.makedirs(config.training_log)
216 | for epoch in range(config.num_train_epochs):
217 | _ = "{:*^100s}".format(("epoch-" + str(epoch)).center(20))
218 | print(_)
219 | # 读取训练数据
220 | total_loss_train = 0
221 |
222 | input_ids2, input_mask2, segment_ids2, labels2 = get_input_data(config.train_data, seq_len, batch_size)
223 |
224 | train_out_f = open(os.path.join(config.training_log, "epoch-" + str(epoch) + ".txt"), 'w', encoding='utf-8')
225 |
226 | for i in range(num_train_steps):
227 | step += 1
228 | ids_train, mask_train, segment_train, y_train = sess.run(
229 | [input_ids2, input_mask2, segment_ids2, labels2])
230 | out_loss, pre, y = train_step(ids_train, mask_train, segment_train, y_train, step, train_out_f)
231 | total_loss_train += out_loss
232 |
233 | if step % eval_per_step == 0 and step >= config.eval_start_step:
234 | total_loss_dev = 0
235 | dev_input_ids2, dev_input_mask2, dev_segment_ids2, dev_labels2 = get_input_data(config.valid_data,
236 | seq_len,
237 | valid_batch_size,
238 | False)
239 |
240 | for j in range(num_valid_steps): # 一个 epoch 的 轮数
241 | ids_dev, mask_dev, segment_dev, y_dev = sess.run(
242 | [dev_input_ids2, dev_input_mask2, dev_segment_ids2, dev_labels2])
243 | out_loss, pre, y = valid_step(ids_dev, mask_dev, segment_dev, y_dev)
244 | total_loss_dev += out_loss
245 | # report a batch data in valid_data
246 | report(pre2out(y), pre2out(pre))
247 | print("total_loss_dev:{}".format(total_loss_dev))
248 | # print(classification_report(total_true_dev, total_pre_dev, digits=4))
249 |
250 | if total_loss_dev < min_total_loss_dev:
251 | print("save model:\t%f\t>%f" % (min_total_loss_dev, total_loss_dev))
252 | min_total_loss_dev = total_loss_dev
253 | saver.save(sess, config.model_out + 'bert.ckpt', global_step=step)
254 | elif step < config.eval_start_step and step % config.auto_save == 0:
255 | saver.save(sess, config.model_out + 'bert.ckpt', global_step=step)
256 | train_out_f.close()
257 | _ = "{:*^100s}".format(("epoch-" + str(epoch) + " report:").center(20))
258 | print("total_loss_train:{}".format(total_loss_train))
259 | # print(classification_report(total_true_train, total_pre_train, digits=4))
260 |
261 |
262 | if __name__ == "__main__":
263 | print("********* ner start *********")
264 | tf.logging.set_verbosity(tf.logging.INFO)
265 | main()
266 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/NER/__init__.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/29 22:25
4 | # @Author : 刘鑫
5 | # @FileName: __init__.py.py
6 | # @Software: PyCharm
7 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/NER_BERT_LSTM_CRF/EntityExtract.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/27 14:56
4 | # @Author : 刘鑫
5 | # @FileName: entity_extract.py
6 | # @Software: PyCharm
7 | import json
8 | import os
9 |
10 | from bert import tokenization
11 | from algorithm.kg_qa.config import Properties, LstmCRFConfig as config
12 | from algorithm.kg_qa.NER_BERT_LSTM_CRF.Predict import Predict
13 |
14 |
15 | def isEntityInText(text, entity):
16 | text_list = list(text)
17 | entity_list = list(entity)
18 | M = len(text_list)
19 | N = len(entity_list)
20 |
21 | i = 0
22 | while i <= M - N:
23 | j = 0
24 | space_nums = 0
25 | match = []
26 | while j < N:
27 | tt = text_list[i + j].lower()
28 | ee = entity_list[j].lower()
29 | if tt == ee:
30 | j += 1
31 | match.append(ee)
32 | continue
33 | elif j > 0 and tt == " ":
34 | i += 1
35 | space_nums += 1
36 | else:
37 | j += 1
38 | break
39 | if j == N and entity_list == match:
40 | return i - space_nums, space_nums
41 | i += 1
42 | return -1, -1
43 |
44 |
45 | class EntityExtract(object):
46 | def __init__(self, MODEL_PATH):
47 | self.predict = Predict(MODEL_PATH)
48 | self.tokenizer_ = tokenization.FullTokenizer(vocab_file=Properties.vocab_file)
49 |
50 | def extract(self, sentence):
51 | '''
52 | 将预测的token_label对应到句子中的字,抽取出中文实体,可能存在问题:空格缺失、大小写不一致,不过这里采用的策略是原样输出。在计算f1和em时这两点问题可以忽略
53 | :param sentence:
54 | :return: entitys
55 | '''
56 |
57 | def _merge_WordPiece_and_single_word(entity_sort_list):
58 | entity_sort_tuple_list = []
59 | for a_entity_list in entity_sort_list:
60 | entity_content = ""
61 | entity_type = None
62 | for idx, entity_part in enumerate(a_entity_list):
63 | if idx == 0:
64 | entity_type = entity_part
65 | if entity_type[:2] not in ["B-", "I-"]:
66 | break
67 | else:
68 | if entity_part.startswith("##"):
69 | entity_content += entity_part.replace("##", "")
70 | else:
71 | entity_content += entity_part
72 | if entity_content != "":
73 | entity_sort_tuple_list.append((entity_type[2:], entity_content))
74 | return entity_sort_tuple_list
75 |
76 | ner_out = self.predict.predict_one(sentence, TEST_MODE=True)
77 |
78 | def preprocessing_model_token_lable(predicate_token_label_list, token_in_list_lenth):
79 | if predicate_token_label_list[0] == "[CLS]":
80 | predicate_token_label_list = predicate_token_label_list[1:] # y_predict.remove('[CLS]')
81 | if len(predicate_token_label_list) > token_in_list_lenth: # 只取输入序列长度即可
82 | predicate_token_label_list = predicate_token_label_list[:token_in_list_lenth]
83 | return predicate_token_label_list
84 |
85 | predicate_token_label_list = preprocessing_model_token_lable(ner_out, len(ner_out))
86 |
87 | entity_sort_list = []
88 | entity_part_list = []
89 |
90 | token_in_not_UNK = self.tokenizer_.tokenize_not_UNK(sentence)
91 | for idx, token_label in enumerate(predicate_token_label_list):
92 | if token_label == "O":
93 | if len(entity_part_list) > 0:
94 | entity_sort_list.append(entity_part_list)
95 | entity_part_list = []
96 | if token_label.startswith("B-"):
97 | if len(entity_part_list) > 0: # 适用于 B- B- *****的情况
98 | entity_sort_list.append(entity_part_list)
99 | entity_part_list = []
100 | entity_part_list.append(token_label)
101 | entity_part_list.append(token_in_not_UNK[idx])
102 | if idx == len(predicate_token_label_list) - 1:
103 | entity_sort_list.append(entity_part_list)
104 | if token_label.startswith("I-") or token_label == "[##WordPiece]":
105 | if len(entity_part_list) > 0:
106 | entity_part_list.append(token_in_not_UNK[idx])
107 | if idx == len(predicate_token_label_list) - 1:
108 | entity_sort_list.append(entity_part_list)
109 | if token_label == "[SEP]":
110 | break
111 |
112 | entity_sort_tuple_list = _merge_WordPiece_and_single_word(entity_sort_list)
113 | entitys = []
114 | for entity in entity_sort_tuple_list:
115 | if entity[0] == "NP":
116 | start, space_nums = isEntityInText(sentence, entity[1])
117 | if start != -1:
118 | end = len(entity[1]) + space_nums + start
119 | entitys.append(sentence[start:end])
120 | return entitys
121 |
122 |
123 | if __name__ == '__main__':
124 | os.environ["CUDA_VISIBLE_DEVICES"] = "0"
125 | MODEL_PATH = config.model_out
126 | ee = EntityExtract(MODEL_PATH)
127 | ff = open("./out.txt", 'w', encoding='utf-8')
128 | true_count=0
129 | with open(r"C:\Users\11943\Documents\GitHub\KgClue_Bench\raw_data\kgClue\test_public.json", "r",
130 | encoding='utf-8') as f:
131 | while True:
132 | line = f.readline()
133 | if line:
134 | line = json.loads(line)
135 | text = line["question"]
136 | answer = line["answer"]
137 | entity = answer.split("|||")[0].split("(")[0]
138 | p_entity = ee.extract(text)
139 | print(entity,"".join(p_entity))
140 | if entity == "".join(p_entity):
141 | true_count+=1
142 | ff.write(text + "\t" + entity + "\t" + "".join(p_entity) + "\n")
143 | else:
144 | break
145 | ff.close()
146 | print(true_count/2000)
147 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/NER_BERT_LSTM_CRF/Eval.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/20 10:54
4 | # @Author : 刘鑫
5 | # @FileName: seq_eval.py
6 | # @Software: PyCharm
7 | import json
8 | import os
9 |
10 | from algorithm.kg_qa.NER_BERT_LSTM_CRF.Predict import Predict
11 | from algorithm.kg_qa.NER.DataMaking import DataMaking
12 | from algorithm.kg_qa.config import LstmCRFConfig as config
13 | from utils.EvalReport import report
14 |
15 |
16 | class Eval(object):
17 | def __init__(self, MODEL_PATH):
18 | self.data_make = DataMaking(do_lower_case=True, max_seq_length=config.max_seq_length)
19 | self.predict = Predict(MODEL_PATH)
20 | self.seq_id2label = self.predict.seq_id2label
21 |
22 | def id2label_f(self, id_list):
23 | predictions = []
24 | for id in id_list:
25 | predictions.append(self.seq_id2label[id])
26 | return predictions
27 |
28 | def do_eval(self, data_files=["../raw_data/test.json"]):
29 |
30 | for data_file in data_files:
31 | y_true = []
32 | y_pred = []
33 | with open(data_file, 'r', encoding='utf-8') as f:
34 | while True:
35 | line = f.readline()
36 | if line:
37 | line = json.loads(line)
38 | text = line["question"]
39 | answer = line["answer"]
40 | entity = answer.split("|||")[0].split("(")[0]
41 |
42 | token_label = self.data_make.text2label(text, entity)
43 | feature = self.data_make.convert_single_example(text, token_label)
44 | label = self.id2label_f(feature.label_ids)
45 | predict_label = self.predict.predict_one(text, TEST_MODE=True)
46 |
47 | y_true.append(label)
48 | y_pred.append(predict_label)
49 |
50 | else:
51 | break
52 | report(y_true, y_pred)
53 |
54 |
55 | if __name__ == '__main__':
56 | os.environ["CUDA_VISIBLE_DEVICES"] = "1"
57 | MODEL_PATH = config.model_out
58 | ner_eval = Eval(MODEL_PATH)
59 | ner_eval.do_eval(data_files=["raw_data/kgClue/test_public.json"])
60 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/NER_BERT_LSTM_CRF/Predict.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/16 10:42
4 | # @Author : 刘鑫
5 | # @FileName: seq_predict.py
6 | # @Software: PyCharm
7 |
8 | import os
9 | import sys
10 |
11 | import tensorflow as tf
12 |
13 | os.environ["CUDA_VISIBLE_DEVICES"] = "1"
14 |
15 | from bert import tokenization
16 | from algorithm.kg_qa.NER.DataMaking import DataMaking
17 | from utils.IdAndLabel import id2label
18 | from algorithm.kg_qa.config import Properties, LstmCRFConfig as config
19 |
20 |
21 | # 预测类
22 | class Predict(object):
23 |
24 | def __init__(self, MODEL_PATH):
25 | self.model_path = MODEL_PATH
26 |
27 | self.seq_id2label = id2label(config.label_list)
28 |
29 | # 准备token
30 | self.tokenizer_ = tokenization.FullTokenizer(vocab_file=Properties.vocab_file)
31 | self.data_making = DataMaking(do_lower_case=True, max_seq_length=config.max_seq_length)
32 | self.sess = self.load_model()
33 |
34 | self.input_ids = self.sess.graph.get_tensor_by_name("input_ids:0")
35 | self.input_mask = self.sess.graph.get_tensor_by_name("input_mask:0")
36 | self.segment_ids = self.sess.graph.get_tensor_by_name("segment_ids:0")
37 | self.keep_prob = self.sess.graph.get_tensor_by_name("keep_prob:0")
38 | # 预测的结果
39 | self.p = self.sess.graph.get_tensor_by_name("ReverseSequence_1:0")
40 |
41 | # x =[n.name for n in tf.get_default_graph().as_graph_def().node]
42 | # print(x)
43 |
44 | def load_model(self):
45 | try:
46 | checkpoint = tf.train.get_checkpoint_state(self.model_path)
47 | input_checkpoint = checkpoint.model_checkpoint_path
48 | print("[INFO] input_checkpoint:", input_checkpoint)
49 | except Exception as e:
50 | input_checkpoint = self.model_path
51 | print("[INFO] Model folder", self.model_path, repr(e))
52 |
53 | # We clear devices to allow TensorFlow to control on which device it will load operations
54 | clear_devices = True
55 | tf.reset_default_graph()
56 | # We import the meta graph and retrieve a Saver
57 | saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
58 |
59 | # We start a session and restore the graph weights
60 | sess_ = tf.Session()
61 | saver.restore(sess_, input_checkpoint)
62 |
63 | return sess_
64 |
65 | def predict_one(self, PREDICT_TXT, TEST_MODE=False):
66 |
67 | feature = self.data_making.convert_single_example(PREDICT_TXT, TEST_MODE=TEST_MODE)
68 |
69 | def id2label_f(id_list):
70 | predictions = []
71 | if TEST_MODE:
72 | for id in id_list:
73 | predictions.append(self.seq_id2label[id])
74 | else:
75 | for id in id_list:
76 | predictions.append(self.seq_id2label[id])
77 | if id == 4:
78 | break
79 | return predictions
80 |
81 | feed = {self.input_ids: [feature[0]],
82 | self.input_mask: [feature[1]],
83 | self.segment_ids: [feature[2]],
84 | self.keep_prob: 1.0}
85 |
86 | probs = self.sess.run(self.p, feed)
87 |
88 | out = id2label_f(probs[0])
89 |
90 | if TEST_MODE:
91 | return out
92 | else:
93 | return out[1:-1]
94 |
95 |
96 | if __name__ == '__main__':
97 | MODEL_PATH = config.model_out
98 | PREDICT_TXT = "5·13土耳其索玛矿难的坐标是什么?"
99 |
100 | ner = Predict(MODEL_PATH)
101 | print("test predict: ", ner.predict_one(PREDICT_TXT, TEST_MODE=True))
102 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/NER_BERT_LSTM_CRF/TrainAndValid.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/12 11:13
4 | # @Author : 刘鑫
5 | # @FileName: sequnce_labeling_train.py
6 | # @Software: PyCharm
7 |
8 | # 假定已经带着正确的分类label去训练实体识别
9 | import sys
10 |
11 | import tensorflow as tf
12 | import os, math
13 | from seqeval.metrics import accuracy_score, f1_score
14 | from bert import modeling
15 | from bert import optimization
16 | from tensorflow.contrib.layers.python.layers import initializers
17 | from algorithm.kg_qa.config import Properties, LstmCRFConfig as config
18 | from algorithm.kg_qa.NER_BERT_LSTM_CRF.lstm_crf_layer import BLSTM_CRF
19 | from utils.IdAndLabel import id2label
20 | from utils.EvalReport import report
21 |
22 |
23 | def load_bert_config(path):
24 | """
25 | bert 模型配置文件
26 | """
27 | return modeling.BertConfig.from_json_file(path)
28 |
29 |
30 | def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, labels, keep_prob, num_labels,
31 | use_one_hot_embeddings):
32 | """Creates a classification model."""
33 | model = modeling.BertModel(
34 | config=bert_config,
35 | is_training=is_training,
36 | input_ids=input_ids,
37 | input_mask=input_mask,
38 | token_type_ids=segment_ids,
39 | use_one_hot_embeddings=use_one_hot_embeddings,
40 | scope='bert'
41 | )
42 | embedding = model.get_sequence_output()
43 | max_seq_length = embedding.shape[1].value
44 |
45 | used = tf.sign(tf.abs(input_ids))
46 | lengths = tf.reduce_sum(used, reduction_indices=1) # [batch_size] 大小的向量,包含了当前batch中的序列长度
47 |
48 | blstm_crf = BLSTM_CRF(embedded_chars=embedding, hidden_unit=config.lstm_size, cell_type=config.cell,
49 | num_layers=config.num_layers,
50 | dropout_rate=config.droupout_rate, initializers=initializers, num_labels=num_labels,
51 | seq_length=max_seq_length, labels=labels, lengths=lengths, is_training=is_training)
52 | (total_loss, logits, trans, pred_ids) = blstm_crf.add_blstm_crf_layer(crf_only=False)
53 |
54 | return (total_loss, logits, trans, pred_ids)
55 |
56 |
57 | def get_input_data(input_file, seq_length, batch_size, is_training=True):
58 | def parser(record):
59 | name_to_features = {
60 | "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
61 | "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
62 | "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
63 | "label_ids": tf.FixedLenFeature([seq_length], tf.int64),
64 | }
65 |
66 | example = tf.parse_single_example(record, features=name_to_features)
67 | input_ids = example["input_ids"]
68 | input_mask = example["input_mask"]
69 | segment_ids = example["segment_ids"]
70 | labels = example["label_ids"]
71 | return input_ids, input_mask, segment_ids, labels
72 |
73 | dataset = tf.data.TFRecordDataset(input_file)
74 | # 数据类别集中,需要较大的buffer_size,才能有效打乱,或者再 数据处理的过程中进行打乱
75 | if is_training:
76 | dataset = dataset.map(parser).batch(batch_size).shuffle(buffer_size=2000)
77 | else:
78 | dataset = dataset.map(parser).batch(batch_size)
79 | iterator = dataset.make_one_shot_iterator()
80 | input_ids, input_mask, segment_ids, labels = iterator.get_next()
81 | return input_ids, input_mask, segment_ids, labels
82 |
83 |
84 | def id2label_f(id_list):
85 | seq_id2label = id2label(config.label_list)
86 | predictions = []
87 | for id in id_list:
88 | predictions.append(seq_id2label[id])
89 | return predictions
90 |
91 |
92 | def pre2out(predicts):
93 | '''
94 | 可以考虑移动到utils里面
95 | :param predicts:
96 | :return:
97 | '''
98 | outs = []
99 | for tmp in predicts:
100 | tmp_out = id2label_f(tmp.tolist())
101 | outs.append(tmp_out)
102 | return outs
103 |
104 |
105 | def main():
106 | print("print start load the params...")
107 |
108 | tf.gfile.MakeDirs(config.model_out)
109 |
110 | # 配置超参数
111 | train_examples_len = config.train_examples_len
112 | valid_examples_len = config.valid_examples_len
113 | learning_rate = config.learning_rate
114 | eval_per_step = config.eval_per_step
115 | num_labels = config.num_labels
116 |
117 | num_train_steps = math.ceil(train_examples_len / config.train_batch_size)
118 | num_valid_steps = math.ceil(valid_examples_len / config.valid_batch_size)
119 | num_warmup_steps = math.ceil(num_train_steps * config.num_train_epochs * config.warmup_proportion)
120 | print("num_train_steps:{}, num_valid_steps:{}, num_warmup_steps:{}".format(num_train_steps, num_valid_steps,
121 | num_warmup_steps))
122 |
123 | use_one_hot_embeddings = False
124 | is_training = True
125 | seq_len = config.max_seq_length
126 |
127 | init_checkpoint = Properties.init_checkpoint
128 | print("print start compile the bert model...")
129 |
130 | # 定义输入输出
131 | input_ids = tf.placeholder(tf.int64, shape=[None, seq_len], name='input_ids')
132 | input_mask = tf.placeholder(tf.int64, shape=[None, seq_len], name='input_mask')
133 | segment_ids = tf.placeholder(tf.int64, shape=[None, seq_len], name='segment_ids')
134 | token_labels = tf.placeholder(tf.int64, shape=[None, seq_len], name='token_labels')
135 | keep_prob = tf.placeholder(tf.float32, name='keep_prob') # , name='is_training'
136 | bert_config_ = load_bert_config(Properties.bert_config)
137 | # total_loss, logits, trans, pred_ids
138 | (total_loss, logits, trans, pred_ids) = create_model(bert_config_, is_training, input_ids,
139 | input_mask, segment_ids, token_labels,
140 | keep_prob,
141 | num_labels, use_one_hot_embeddings)
142 |
143 | train_op = optimization.create_optimizer(total_loss, learning_rate, num_train_steps * config.num_train_epochs,
144 | num_warmup_steps, False)
145 |
146 | print("print start train the bert model...")
147 |
148 | batch_size = config.train_batch_size
149 | valid_batch_size = config.valid_batch_size
150 |
151 | init_global = tf.global_variables_initializer()
152 |
153 | saver = tf.train.Saver([v for v in tf.global_variables() if 'adam_v' not in v.name and 'adam_m' not in v.name],
154 | max_to_keep=3) # 保存最后top3模型
155 |
156 | with tf.Session() as sess:
157 |
158 | print("start load the pre train model")
159 |
160 | if init_checkpoint:
161 | tvars = tf.trainable_variables()
162 | print("trainable_variables", len(tvars))
163 | (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars,
164 | init_checkpoint)
165 | print("initialized_variable_names:", len(initialized_variable_names))
166 |
167 | saver_ = tf.train.Saver([v for v in tvars if v.name in initialized_variable_names])
168 | saver_.restore(sess, init_checkpoint)
169 | sess.run(init_global)
170 | else:
171 | sess.run(tf.global_variables_initializer())
172 | print("********* train start *********")
173 |
174 | def train_step(ids, mask, segment, y, step, train_out_f):
175 | feed = {input_ids: ids,
176 | input_mask: mask,
177 | segment_ids: segment,
178 | token_labels: y,
179 | keep_prob: 0.9}
180 | _, out_loss, pred_ids_ = sess.run([train_op, total_loss, pred_ids], feed_dict=feed)
181 | acc = accuracy_score(pre2out(y), pre2out(pred_ids_))
182 | f1 = f1_score(pre2out(y), pre2out(pred_ids_))
183 | print("step :{},loss :{}, acc :{}, f1 :{}".format(step, out_loss, acc, f1))
184 | train_out_f.write("step :{}, loss :{}, acc :{} , f1 :{} \n".format(step, out_loss, acc, f1))
185 | return out_loss, pred_ids_, y
186 |
187 | def valid_step(ids, mask, segment, y):
188 | # 验证训练效果
189 | feed = {input_ids: ids,
190 | input_mask: mask,
191 | segment_ids: segment,
192 | token_labels: y,
193 | keep_prob: 1.0
194 | }
195 |
196 | out_loss, p_ = sess.run([total_loss, pred_ids], feed_dict=feed)
197 | # f1 = f1_score(pre2out(y), pre2out(p_))
198 | # acc = accuracy_score(pre2out(y), pre2out(p_))
199 | # print("loss :{}, acc :{}, f1:{}".format(out_loss, acc, f1)) 没有必要一个批次算一次
200 | return out_loss, p_, y
201 |
202 | min_total_loss_dev = 999999
203 | step = 0
204 | if not os.path.exists(config.training_log):
205 | os.makedirs(config.training_log)
206 | for epoch in range(config.num_train_epochs):
207 | _ = "{:*^100s}".format(("epoch-" + str(epoch)).center(20))
208 | print(_)
209 | # 读取训练数据
210 | total_loss_train = 0
211 |
212 | input_ids2, input_mask2, segment_ids2, labels2 = get_input_data(config.train_data, seq_len, batch_size)
213 | train_out_f = open(os.path.join(config.training_log, "epoch-" + str(epoch) + ".txt"), 'w', encoding='utf-8')
214 |
215 | for i in range(num_train_steps):
216 | step += 1
217 | ids_train, mask_train, segment_train, y_train = sess.run(
218 | [input_ids2, input_mask2, segment_ids2, labels2])
219 | out_loss, pre, y = train_step(ids_train, mask_train, segment_train, y_train, step, train_out_f)
220 | total_loss_train += out_loss
221 |
222 | if step % eval_per_step == 0 and step >= config.eval_start_step:
223 | total_loss_dev = 0
224 | dev_input_ids2, dev_input_mask2, dev_segment_ids2, dev_labels2 = get_input_data(config.valid_data,
225 | seq_len,
226 | valid_batch_size,
227 | False)
228 | pre_list = []
229 | y_list = []
230 | for j in range(num_valid_steps): # 一个 epoch 的 轮数
231 | ids_dev, mask_dev, segment_dev, y_dev = sess.run(
232 | [dev_input_ids2, dev_input_mask2, dev_segment_ids2, dev_labels2])
233 | out_loss, pre, y = valid_step(ids_dev, mask_dev, segment_dev, y_dev)
234 | total_loss_dev += out_loss
235 | pre_list.extend(pre)
236 | y_list.extend(y)
237 | print("total_loss_dev:{}".format(total_loss_dev))
238 | report(pre2out(y_list), pre2out(pre_list))
239 |
240 | if total_loss_dev < min_total_loss_dev:
241 | print("save model:\t%f\t>%f" % (min_total_loss_dev, total_loss_dev))
242 | min_total_loss_dev = total_loss_dev
243 | saver.save(sess, config.model_out + 'bert.ckpt', global_step=step)
244 | elif step < config.eval_start_step and step % config.auto_save == 0:
245 | saver.save(sess, config.model_out + 'bert.ckpt', global_step=step)
246 | train_out_f.close()
247 | _ = "{:*^100s}".format(("epoch-" + str(epoch) + " report:").center(20))
248 | print("total_loss_train:{}".format(total_loss_train))
249 | # print(classification_report(total_true_train, total_pre_train, digits=4))
250 |
251 |
252 | if __name__ == "__main__":
253 | print("********* ner start *********")
254 | tf.logging.set_verbosity(tf.logging.INFO)
255 | main()
256 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/NER_BERT_LSTM_CRF/__init__.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/29 22:25
4 | # @Author : 刘鑫
5 | # @FileName: __init__.py.py
6 | # @Software: PyCharm
7 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/NER_BERT_LSTM_CRF/lstm_crf_layer.py:
--------------------------------------------------------------------------------
1 | # encoding=utf-8
2 |
3 | """
4 | bert-blstm-crf layer
5 | @Author:Macan
6 | """
7 |
8 | import tensorflow as tf
9 | from tensorflow.contrib import rnn
10 | from tensorflow.contrib import crf
11 |
12 |
13 | class BLSTM_CRF(object):
14 | def __init__(self, embedded_chars, hidden_unit, cell_type, num_layers, dropout_rate,
15 | initializers, num_labels, seq_length, labels, lengths, is_training):
16 | """
17 | BLSTM-CRF 网络
18 | :param embedded_chars: Fine-tuning embedding input
19 | :param hidden_unit: LSTM的隐含单元个数
20 | :param cell_type: RNN类型(LSTM OR GRU DICNN will be add in feature)
21 | :param num_layers: RNN的层数
22 | :param droupout_rate: droupout rate
23 | :param initializers: variable init class
24 | :param num_labels: 标签数量
25 | :param seq_length: 序列最大长度
26 | :param labels: 真实标签
27 | :param lengths: [batch_size] 每个batch下序列的真实长度
28 | :param is_training: 是否是训练过程
29 | """
30 | self.hidden_unit = hidden_unit
31 | self.dropout_rate = dropout_rate
32 | self.cell_type = cell_type
33 | self.num_layers = num_layers
34 | self.embedded_chars = embedded_chars
35 | self.initializers = initializers
36 | self.seq_length = seq_length
37 | self.num_labels = num_labels
38 | self.labels = labels
39 | self.lengths = lengths
40 | self.embedding_dims = embedded_chars.shape[-1].value
41 | self.is_training = is_training
42 |
43 | def add_blstm_crf_layer(self, crf_only):
44 | """
45 | blstm-crf网络
46 | :return:
47 | """
48 | if self.is_training:
49 | # lstm input dropout rate i set 0.9 will get best score
50 | self.embedded_chars = tf.nn.dropout(self.embedded_chars, self.dropout_rate)
51 |
52 | if crf_only:
53 | logits = self.project_crf_layer(self.embedded_chars)
54 | else:
55 | # blstm
56 | lstm_output = self.blstm_layer(self.embedded_chars)
57 | # project
58 | logits = self.project_bilstm_layer(lstm_output)
59 | # crf
60 | loss, trans = self.crf_layer(logits)
61 | # CRF decode, pred_ids 是一条最大概率的标注路径
62 | pred_ids, _ = crf.crf_decode(potentials=logits, transition_params=trans, sequence_length=self.lengths)
63 |
64 | return ((loss, logits, trans, pred_ids))
65 |
66 | def _witch_cell(self):
67 | """
68 | RNN 类型
69 | :return:
70 | """
71 | cell_tmp = None
72 | if self.cell_type == 'lstm':
73 | cell_tmp = rnn.BasicLSTMCell(self.hidden_unit)
74 | elif self.cell_type == 'gru':
75 | cell_tmp = rnn.GRUCell(self.hidden_unit)
76 | # 是否需要进行dropout
77 | if self.dropout_rate is not None:
78 | cell_tmp = rnn.DropoutWrapper(cell_tmp, output_keep_prob=self.dropout_rate)
79 | return cell_tmp
80 |
81 | def _bi_dir_rnn(self):
82 | """
83 | 双向RNN
84 | :return:
85 | """
86 | cell_fw = self._witch_cell()
87 | cell_bw = self._witch_cell()
88 | return cell_fw, cell_bw
89 |
90 | def blstm_layer(self, embedding_chars):
91 | """
92 |
93 | :return:
94 | """
95 | with tf.variable_scope('rnn_layer'):
96 | cell_fw, cell_bw = self._bi_dir_rnn()
97 | if self.num_layers > 1:
98 | cell_fw = rnn.MultiRNNCell([cell_fw] * self.num_layers, state_is_tuple=True)
99 | cell_bw = rnn.MultiRNNCell([cell_bw] * self.num_layers, state_is_tuple=True)
100 |
101 | outputs, _ = tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, embedding_chars,
102 | dtype=tf.float32)
103 | outputs = tf.concat(outputs, axis=2)
104 | return outputs
105 |
106 | def project_bilstm_layer(self, lstm_outputs, name=None):
107 | """
108 | hidden layer between lstm layer and logits
109 | :param lstm_outputs: [batch_size, num_steps, emb_size]
110 | :return: [batch_size, num_steps, num_tags]
111 | """
112 | with tf.variable_scope("project" if not name else name):
113 | with tf.variable_scope("hidden"):
114 | W = tf.get_variable("W", shape=[self.hidden_unit * 2, self.hidden_unit],
115 | dtype=tf.float32, initializer=self.initializers.xavier_initializer())
116 |
117 | b = tf.get_variable("b", shape=[self.hidden_unit], dtype=tf.float32,
118 | initializer=tf.zeros_initializer())
119 | output = tf.reshape(lstm_outputs, shape=[-1, self.hidden_unit * 2])
120 | hidden = tf.tanh(tf.nn.xw_plus_b(output, W, b))
121 |
122 | # project to score of tags
123 | with tf.variable_scope("logits"):
124 | W = tf.get_variable("W", shape=[self.hidden_unit, self.num_labels],
125 | dtype=tf.float32, initializer=self.initializers.xavier_initializer())
126 |
127 | b = tf.get_variable("b", shape=[self.num_labels], dtype=tf.float32,
128 | initializer=tf.zeros_initializer())
129 |
130 | pred = tf.nn.xw_plus_b(hidden, W, b)
131 | return tf.reshape(pred, [-1, self.seq_length, self.num_labels])
132 |
133 | def project_crf_layer(self, embedding_chars, name=None):
134 | """
135 | hidden layer between input layer and logits
136 | :param lstm_outputs: [batch_size, num_steps, emb_size]
137 | :return: [batch_size, num_steps, num_tags]
138 | """
139 | with tf.variable_scope("project" if not name else name):
140 | with tf.variable_scope("logits"):
141 | W = tf.get_variable("W", shape=[self.embedding_dims, self.num_labels],
142 | dtype=tf.float32, initializer=self.initializers.xavier_initializer())
143 |
144 | b = tf.get_variable("b", shape=[self.num_labels], dtype=tf.float32,
145 | initializer=tf.zeros_initializer())
146 | output = tf.reshape(self.embedded_chars,
147 | shape=[-1, self.embedding_dims]) # [batch_size, embedding_dims]
148 | pred = tf.tanh(tf.nn.xw_plus_b(output, W, b))
149 | return tf.reshape(pred, [-1, self.seq_length, self.num_labels])
150 |
151 | def crf_layer(self, logits):
152 | """
153 | calculate crf loss
154 | :param project_logits: [1, num_steps, num_tags]
155 | :return: scalar loss
156 | """
157 | with tf.variable_scope("crf_loss"):
158 | trans = tf.get_variable(
159 | "transitions",
160 | shape=[self.num_labels, self.num_labels],
161 | initializer=self.initializers.xavier_initializer())
162 | log_likelihood, trans = tf.contrib.crf.crf_log_likelihood(
163 | inputs=logits,
164 | tag_indices=self.labels,
165 | transition_params=trans,
166 | sequence_lengths=self.lengths)
167 | return tf.reduce_mean(-log_likelihood), trans
--------------------------------------------------------------------------------
/algorithm/kg_qa/SIM/DataMaking.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/23 14:33
4 | # @Author : 刘鑫
5 | # @FileName: ner_data_making.py
6 | # @Software: PyCharm
7 | import collections
8 | import json
9 | import os
10 | import tensorflow as tf
11 | from elasticsearch import Elasticsearch
12 | import random
13 |
14 | random.seed(1024)
15 |
16 | from bert import tokenization
17 | from algorithm.kg_qa.config import Properties, SimConfig as config
18 |
19 |
20 | def getAttribute(Attributes, attribute):
21 | index = len(Attributes) - 2
22 | flag = False
23 | if attribute in Attributes:
24 | Attributes.remove(attribute)
25 | flag = True
26 |
27 | x = random.randint(0, index)
28 | out = Attributes[x]
29 |
30 | if flag:
31 | Attributes.append(attribute)
32 |
33 | return out
34 |
35 |
36 | class DataMaking(object):
37 | def __init__(self, fake_example_nums=5, es_host="127.0.0.1", es_port="9200", do_lower_case=True,
38 | max_seq_length=128):
39 | self.task_name = "SIM"
40 | self.bert_tokenizer = tokenization.FullTokenizer(vocab_file=Properties.vocab_file,
41 | do_lower_case=do_lower_case) # 初始化 bert_token 工具
42 | self.fake_example_nums = fake_example_nums
43 | self.max_seq_length = max_seq_length
44 |
45 | self.es = Elasticsearch([":".join((es_host, es_port))])
46 | # self.Attributes = list(set(self.getAttribute())) # 更换数据集时重新运行打印出来之后放到config里面
47 |
48 | def makdir(self, OUTPUT_DIR, DIR_NAME):
49 | if not os.path.exists(os.path.join(os.path.dirname(__file__), OUTPUT_DIR)):
50 | os.makedirs(os.path.join(os.path.dirname(__file__), OUTPUT_DIR))
51 | if not os.path.exists(os.path.join(os.path.dirname(__file__), OUTPUT_DIR, DIR_NAME)):
52 | os.makedirs(os.path.join(os.path.dirname(__file__), OUTPUT_DIR, DIR_NAME))
53 |
54 | def convert_single_example(self, text, attribute, label=0, test_mode=False):
55 |
56 | def _truncate_seq_pair(tokens_a, tokens_b, max_length):
57 | """Truncates a sequence pair in place to the maximum length."""
58 | while True:
59 | total_length = len(tokens_a) + len(tokens_b)
60 | if total_length <= max_length:
61 | break
62 | if len(tokens_a) > len(tokens_b):
63 | tokens_a.pop()
64 | else:
65 | tokens_b.pop()
66 |
67 | text_token = self.bert_tokenizer.tokenize(text)
68 | attribute_tokens = self.bert_tokenizer.tokenize(attribute)
69 | # print("att", len(attribute), attribute) 调试
70 | tokens_b = self.bert_tokenizer.convert_tokens_to_ids(attribute_tokens) * (len(text_token) // len(attribute))
71 | if int(label) == 1:
72 | label_ids = [0, 1]
73 | else:
74 | label_ids = [1, 0]
75 |
76 | _truncate_seq_pair(text_token, tokens_b, self.max_seq_length - 3) # 很重要
77 | #
78 | tokens = []
79 | segment_ids = []
80 | # 添加起始位置
81 | tokens.append("[CLS]")
82 | segment_ids.append(0)
83 |
84 | for token in text_token:
85 | tokens.append(token)
86 | segment_ids.append(0)
87 |
88 | tokens.append("[SEP]")
89 | segment_ids.append(0)
90 |
91 | input_ids = self.bert_tokenizer.convert_tokens_to_ids(tokens)
92 |
93 | for token in tokens_b:
94 | input_ids.append(token)
95 | segment_ids.append(1)
96 |
97 | input_ids.append(self.bert_tokenizer.convert_tokens_to_ids(["[SEP]"])[0]) # 102
98 | segment_ids.append(1)
99 | input_mask = [1] * len(input_ids)
100 | # Zero-pad up to the sequence length.
101 | while len(input_ids) < self.max_seq_length:
102 | input_ids.append(0)
103 | input_mask.append(0)
104 | segment_ids.append(0)
105 | tokens.append("[Padding]")
106 |
107 | assert len(input_ids) == self.max_seq_length
108 | assert len(input_mask) == self.max_seq_length
109 | assert len(segment_ids) == self.max_seq_length
110 |
111 | if test_mode:
112 | feature = (input_ids, input_mask, segment_ids)
113 | else:
114 | feature = config.InputFeatures(
115 | input_ids=input_ids,
116 | input_mask=input_mask,
117 | segment_ids=segment_ids,
118 | label_ids=label_ids,
119 | is_real_example=True)
120 | return feature
121 |
122 | def write2txt(self, text, attribute, label, token_label_f, tf_writer):
123 | # 写入txt
124 | example = text + "\t" + str(attribute) + "\t" + str(label)
125 | token_label_f.write(example + "\n")
126 |
127 | # 写人tf_record
128 | feature = self.convert_single_example(text, attribute, label)
129 |
130 | def create_int_feature(values):
131 | f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
132 | return f
133 |
134 | features = collections.OrderedDict()
135 | features["input_ids"] = create_int_feature(feature.input_ids)
136 | features["input_mask"] = create_int_feature(feature.input_mask)
137 | features["segment_ids"] = create_int_feature(feature.segment_ids)
138 | features["label_ids"] = create_int_feature(feature.label_ids)
139 | features["is_real_example"] = create_int_feature([int(feature.is_real_example)])
140 |
141 | tf_example = tf.train.Example(features=tf.train.Features(feature=features))
142 | tf_writer.write(tf_example.SerializeToString())
143 |
144 | def input2output(self, INPUT_DATA_PATHS, OUTPUT_DIR, is_init_attribute=False):
145 | if is_init_attribute:
146 | Attributes = []
147 | for data_path in INPUT_DATA_PATHS:
148 | with open(data_path, "r", encoding='utf-8') as f:
149 | for line in f.readlines():
150 | line = json.loads(line)
151 | attribute = line["answer"].split("|||")[1].strip()
152 | Attributes.append(attribute)
153 | Attributes = list(set(Attributes))
154 | else:
155 | Attributes = config.Attributes
156 |
157 | for data_path in INPUT_DATA_PATHS:
158 | file_name = data_path.split('/')[-1]
159 | file_type = file_name.split('.')[0]
160 | self.makdir(OUTPUT_DIR, file_type) # 生成文件名对应的文件夹
161 | OUT_PATH = os.path.join(os.path.dirname(__file__), OUTPUT_DIR, file_type)
162 | # 创建需要写入的文件
163 | token_label_f = open(os.path.join(OUT_PATH, "token_label.txt"), "w", encoding='utf-8')
164 | tf_writer = tf.python_io.TFRecordWriter(os.path.join(OUT_PATH, file_type + ".tf_record"))
165 | with open(data_path, "r", encoding='utf-8') as f:
166 | count_numbers = 0
167 | while True:
168 | line = f.readline()
169 | if line:
170 | line = json.loads(line)
171 | text = line["question"]
172 | answer = line["answer"]
173 | attribute = answer.split("|||")[1].strip()
174 | entity = answer.split("|||")[0].split("(")[0]
175 | self.write2txt(text, attribute, 1, token_label_f, tf_writer)
176 |
177 | # 使用es获取相关属性的负类
178 | body = {
179 | "query": {
180 | "term": {
181 | "entity.keyword": entity
182 | }
183 | }
184 | }
185 | es_results = self.es.search(index="kbqa-data", doc_type="kbList", body=body,
186 | size=self.fake_example_nums)
187 |
188 | attribute_list = list()
189 | for i in range(len(es_results['hits']['hits'])):
190 | relation = es_results['hits']['hits'][i]['_source']['relation']
191 | attribute_list.append(relation)
192 |
193 | # 去重复
194 | attribute_list = list(set(attribute_list))
195 | for fake_attribute in attribute_list:
196 | # 1代表true
197 | # 0代表true
198 | if len(fake_attribute) == 0:
199 | continue
200 | self.write2txt(text, fake_attribute, 0, token_label_f, tf_writer)
201 |
202 | # 随机获得不相关负类
203 | for i in range(self.fake_example_nums):
204 | # 1代表true
205 | # 0代表true
206 | fake_attribute = getAttribute(Attributes, attribute)
207 | if len(fake_attribute) == 0:
208 | continue
209 | self.write2txt(text, fake_attribute, 0, token_label_f, tf_writer)
210 |
211 | count_numbers += 1
212 | if count_numbers % 10000 == 0:
213 | print("Writing example %d " % (count_numbers))
214 | else:
215 | break
216 | print("all numbers", count_numbers)
217 | token_label_f.close()
218 | tf_writer.close()
219 |
220 |
221 | if __name__ == '__main__':
222 | INPUT_DATA_PATHS = ["raw_data/kgClue/train.json", "raw_data/kgClue/eval.json", "raw_data/kgClue/test_public.json"]
223 | OUTPUT_DIR = "./data"
224 | fake_example_nums = 2 # 会影响sim模型数据集的个数需要及时更新config里面的值
225 | es_host = "127.0.0.1"
226 | es_port = "9200"
227 | sim_data_make = DataMaking(fake_example_nums, es_host, es_port, do_lower_case=True,
228 | max_seq_length=config.max_seq_length)
229 | is_init_attribute = False
230 | sim_data_make.input2output(INPUT_DATA_PATHS, OUTPUT_DIR, is_init_attribute=is_init_attribute)
231 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/SIM/Eval.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/20 10:54
4 | # @Author : 刘鑫
5 | # @FileName: Eval.py
6 | # @Software: PyCharm
7 | import json
8 | import os
9 |
10 | from sklearn.metrics import f1_score, accuracy_score,recall_score,precision_score
11 |
12 | from algorithm.kg_qa.config import Properties, SimConfig as config
13 | from algorithm.kg_qa.SIM.Predict import Predict
14 |
15 |
16 | # 评估说明:既然是关注序列标注模型的分类效果,文本分类结果应该给予正确的
17 |
18 | class Eval(object):
19 | def __init__(self, MODEL_PATH):
20 | self.sim = Predict(MODEL_PATH)
21 |
22 | def do_eval(self, data_files=["../raw_data/test.json"]):
23 |
24 | for data_file in data_files:
25 | y_true = []
26 | y_pred = []
27 | with open(data_file, 'r', encoding='utf-8') as f:
28 | while True:
29 | line = f.readline()
30 | if line:
31 | text = line.split("\t")[0]
32 | attribute = line.split("\t")[1]
33 | t_label = line.split("\t")[2]
34 |
35 | if int(t_label) == 1:
36 | t_label = True
37 | else:
38 | t_label = False
39 |
40 | predict_label ,_= self.sim.predict_one(text, attribute, TEST_MODE=True)
41 |
42 | y_true.append(t_label)
43 | y_pred.append(predict_label)
44 |
45 | else:
46 | break
47 |
48 | macro = f1_score(y_true, y_pred, average='macro', zero_division=1)
49 | accuracy = accuracy_score(y_true, y_pred)
50 | recall = recall_score(y_true, y_pred)
51 | precision = precision_score(y_true, y_pred)
52 |
53 | print(f'\t\t准确率为: {accuracy}')
54 | print(f'\t\tf1值为: {macro}')
55 | print(f'\t\trecall值为: {recall}')
56 | print(f'\t\tprecision值为: {precision}')
57 |
58 |
59 | if __name__ == '__main__':
60 | os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 使用不存在的显卡预测即用cpu
61 | MODEL_PATH = config.model_out
62 | sim_eval = Eval(MODEL_PATH)
63 | sim_eval.do_eval(data_files=[r"C:\Users\11943\Documents\GitHub\KgCLUEbench\algorithm\kg_qa\SIM\data\test_public\token_label.txt"])
64 | # y = [True,False,False,True,False]
65 | # p = [False,False,False,True,True]
66 | # macro =f1_score(y, p, average='macro', zero_division=1)
67 | # accuracy = accuracy_score(y, p)
68 | # recall = recall_score(y, p)
69 | # precision = precision_score(y, p)
70 | # print(macro)
71 | # print(accuracy)
72 | # print(recall)
73 | # print(precision)
74 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/SIM/Predict.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/16 10:42
4 | # @Author : 刘鑫
5 | # @FileName: Predict.py
6 | # @Software: PyCharm
7 |
8 | import os
9 | import tensorflow as tf
10 |
11 | os.environ["CUDA_VISIBLE_DEVICES"] = "1"
12 |
13 | from bert import tokenization
14 | from algorithm.kg_qa.SIM.DataMaking import DataMaking
15 | from algorithm.kg_qa.config import Properties, SimConfig as config
16 |
17 |
18 | # 属性相似度
19 | class Predict(object):
20 |
21 | def __init__(self, MODEL_PATH):
22 | self.model_path = MODEL_PATH
23 |
24 | # 准备token
25 | self.tokenizer_ = tokenization.FullTokenizer(vocab_file=Properties.vocab_file)
26 | self.data_making = DataMaking(do_lower_case=True, max_seq_length=config.max_seq_length)
27 | self.sess = self.load_model()
28 |
29 | self.input_ids = self.sess.graph.get_tensor_by_name("input_ids:0")
30 | self.input_mask = self.sess.graph.get_tensor_by_name("input_mask:0")
31 | self.segment_ids = self.sess.graph.get_tensor_by_name("segment_ids:0")
32 | self.keep_prob = self.sess.graph.get_tensor_by_name("keep_prob:0")
33 | # 预测的结果
34 | self.p1 = self.sess.graph.get_tensor_by_name("loss/Cast_1:0")
35 | self.p2 = self.sess.graph.get_tensor_by_name("loss/Sigmoid:0")
36 |
37 | # tensor_name_list = [tensor.name for tensor in tf.get_default_graph().as_graph_def().node]
38 | # print(tensor_name_list)
39 |
40 | def load_model(self):
41 | try:
42 | checkpoint = tf.train.get_checkpoint_state(self.model_path)
43 | input_checkpoint = checkpoint.model_checkpoint_path
44 | print("[INFO] input_checkpoint:", input_checkpoint)
45 | except Exception as e:
46 | input_checkpoint = self.model_path
47 | print("[INFO] Model folder", self.model_path, repr(e))
48 |
49 | # We clear devices to allow TensorFlow to control on which device it will load operations
50 | clear_devices = True
51 | tf.reset_default_graph()
52 | # We import the meta graph and retrieve a Saver
53 | saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
54 |
55 | # We start a session and restore the graph weights
56 | sess_ = tf.Session()
57 | saver.restore(sess_, input_checkpoint)
58 |
59 | return sess_
60 |
61 | def predict_one(self, PREDICT_TXT, attribute, TEST_MODE=False):
62 | feature = self.data_making.convert_single_example(PREDICT_TXT, attribute, test_mode=TEST_MODE)
63 | feed = {self.input_ids: [feature[0]],
64 | self.input_mask: [feature[1]],
65 | self.segment_ids: [feature[2]],
66 | self.keep_prob: 1.0}
67 |
68 | probs, p2_ = self.sess.run([self.p1, self.p2], feed)
69 |
70 | for tmp in probs:
71 | tmp = list(tmp)
72 | if tmp[1] == 1:
73 | out = True
74 | else:
75 | out = False
76 | return out, p2_
77 |
78 |
79 | if __name__ == '__main__':
80 | MODEL_PATH = config.model_out
81 |
82 | PREDICT_TXT = "东瓯王发生的主要事件是什么?"
83 |
84 | attributes = ["东瓯王后", "中文名", "主要事件", "代表人物", "姓氏", "所属地", "中文名", "位置"]
85 | label = [False, False, True, False, False, False, False, False]
86 | sim = Predict(MODEL_PATH)
87 | outs = []
88 | for attribute in attributes:
89 | out = sim.predict_one(PREDICT_TXT, attribute, TEST_MODE=True)
90 | outs.append(out)
91 | print(outs)
92 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/SIM/TrainAndValid.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/12 11:13
4 | # @Author : 刘鑫
5 | # @FileName: sequnce_labeling_train.py
6 | # @Software: PyCharm
7 |
8 | # 假定已经带着正确的分类label去训练实体识别
9 | import tensorflow as tf
10 | import os, math
11 |
12 | from bert import modeling
13 | from bert import optimization
14 | from algorithm.kg_qa.config import Properties, SimConfig as config
15 | from utils.EvalReport import report
16 |
17 |
18 | def load_bert_config(path):
19 | """
20 | bert 模型配置文件
21 | """
22 | return modeling.BertConfig.from_json_file(path)
23 |
24 |
25 | def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, labels, keep_prob, num_labels,
26 | use_one_hot_embeddings):
27 | """Creates a classification model."""
28 | model = modeling.BertModel(
29 | config=bert_config,
30 | is_training=is_training,
31 | input_ids=input_ids,
32 | input_mask=input_mask,
33 | token_type_ids=segment_ids,
34 | use_one_hot_embeddings=use_one_hot_embeddings,
35 | scope='bert'
36 | )
37 | output_layer = model.get_pooled_output()
38 |
39 | hidden_size = output_layer.shape[-1].value
40 |
41 |
42 | output_weights = tf.get_variable(
43 | "output_weights", [num_labels, hidden_size],
44 | initializer=tf.truncated_normal_initializer(stddev=0.02))
45 |
46 | output_bias = tf.get_variable(
47 | "output_bias", [num_labels], initializer=tf.zeros_initializer())
48 |
49 | with tf.variable_scope("loss"):
50 | if is_training:
51 | # I.e., 0.1 dropout
52 | output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
53 |
54 | logits_wx = tf.matmul(output_layer, output_weights, transpose_b=True)
55 | logits = tf.nn.bias_add(logits_wx, output_bias)
56 |
57 | probabilities = tf.sigmoid(logits)
58 | label_ids = tf.cast(labels, tf.float32)
59 | per_example_loss = tf.reduce_sum(
60 | tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=label_ids), axis=-1)
61 | loss = tf.reduce_mean(per_example_loss)
62 |
63 | predict_ids = tf.cast(probabilities > 0.5, tf.int32)
64 | label_ids = tf.cast(label_ids, tf.int32)
65 | elements_equal = tf.cast(tf.equal(predict_ids, label_ids), tf.int32)
66 | row_predict_ids = tf.reduce_sum(elements_equal, -1)
67 | row_label_ids = tf.reduce_sum(tf.ones_like(label_ids), -1)
68 | _, accuracy = tf.metrics.accuracy(labels=row_label_ids, predictions=row_predict_ids)
69 |
70 | return (loss, accuracy, logits, probabilities)
71 |
72 |
73 | def get_input_data(input_file, seq_length, batch_size, is_training=True):
74 | def parser(record):
75 | name_to_features = {
76 | "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
77 | "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
78 | "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
79 | "label_ids": tf.FixedLenFeature([config.num_labels], tf.int64),
80 | }
81 |
82 | example = tf.parse_single_example(record, features=name_to_features)
83 | input_ids = example["input_ids"]
84 | input_mask = example["input_mask"]
85 | segment_ids = example["segment_ids"]
86 | labels = example["label_ids"]
87 | return input_ids, input_mask, segment_ids, labels
88 |
89 | dataset = tf.data.TFRecordDataset(input_file)
90 | # 数据类别集中,需要较大的buffer_size,才能有效打乱,或者再 数据处理的过程中进行打乱
91 | if is_training:
92 | dataset = dataset.map(parser).batch(batch_size).shuffle(buffer_size=2000)
93 | else:
94 | dataset = dataset.map(parser).batch(batch_size)
95 | iterator = dataset.make_one_shot_iterator()
96 | input_ids, input_mask, segment_ids, labels = iterator.get_next()
97 | return input_ids, input_mask, segment_ids, labels
98 |
99 | def main():
100 | print("print start load the params...")
101 |
102 | tf.gfile.MakeDirs(config.model_out)
103 |
104 | # 配置超参数
105 | train_examples_len = config.train_examples_len
106 | valid_examples_len = config.valid_examples_len
107 | learning_rate = config.learning_rate
108 | eval_per_step = config.eval_per_step
109 | num_labels = config.num_labels
110 |
111 | num_train_steps = math.ceil(train_examples_len / config.train_batch_size)
112 | num_valid_steps = math.ceil(valid_examples_len / config.valid_batch_size)
113 | num_warmup_steps = math.ceil(num_train_steps * config.num_train_epochs * config.warmup_proportion)
114 | print("num_train_steps:{}, num_valid_steps:{}, num_warmup_steps:{}".format(num_train_steps, num_valid_steps,
115 | num_warmup_steps))
116 |
117 | use_one_hot_embeddings = False
118 | is_training = True
119 | seq_len = config.max_seq_length
120 |
121 | init_checkpoint = Properties.init_checkpoint
122 | print("print start compile the bert model...")
123 |
124 | # 定义输入输出
125 | input_ids = tf.placeholder(tf.int64, shape=[None, seq_len], name='input_ids')
126 | input_mask = tf.placeholder(tf.int64, shape=[None, seq_len], name='input_mask')
127 | segment_ids = tf.placeholder(tf.int64, shape=[None, seq_len], name='segment_ids')
128 | token_labels = tf.placeholder(tf.int64, shape=[None, num_labels], name='token_labels')
129 | keep_prob = tf.placeholder(tf.float32, name='keep_prob') # , name='is_training'
130 | bert_config_ = load_bert_config(Properties.bert_config)
131 | (total_loss, acc, logits, probabilities) = create_model(bert_config_, is_training, input_ids,
132 | input_mask, segment_ids, token_labels,
133 | keep_prob,
134 | num_labels, use_one_hot_embeddings)
135 | train_op = optimization.create_optimizer(total_loss, learning_rate, num_train_steps * config.num_train_epochs,
136 | num_warmup_steps, False)
137 |
138 | print("print start train the bert model...")
139 |
140 | batch_size = config.train_batch_size
141 | valid_batch_size = config.valid_batch_size
142 |
143 | init_global = tf.global_variables_initializer()
144 |
145 | saver = tf.train.Saver([v for v in tf.global_variables() if 'adam_v' not in v.name and 'adam_m' not in v.name],
146 | max_to_keep=3) # 保存最后top3模型
147 |
148 | with tf.Session() as sess:
149 | sess.run(tf.local_variables_initializer())
150 | print("start load the pre train model")
151 |
152 | if init_checkpoint:
153 | tvars = tf.trainable_variables()
154 | print("trainable_variables", len(tvars))
155 | (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars,
156 | init_checkpoint)
157 | print("initialized_variable_names:", len(initialized_variable_names))
158 |
159 | saver_ = tf.train.Saver([v for v in tvars if v.name in initialized_variable_names])
160 | saver_.restore(sess, init_checkpoint)
161 | sess.run(init_global)
162 | else:
163 | sess.run(tf.global_variables_initializer())
164 | print("********* train start *********")
165 |
166 | def train_step(ids, mask, segment, y, step, train_out_f):
167 | feed = {input_ids: ids,
168 | input_mask: mask,
169 | segment_ids: segment,
170 | token_labels: y,
171 | keep_prob: 0.9}
172 | _, out_loss, acc_, p_ = sess.run([train_op, total_loss, acc, probabilities], feed_dict=feed)
173 | print("step :{},loss :{}, acc :{}".format(step, out_loss, acc_))
174 | train_out_f.write("step :{}, loss :{}, acc :{} \n".format(step, out_loss, acc_))
175 | return out_loss, p_, y
176 |
177 | def valid_step(ids, mask, segment, y):
178 | # 验证训练效果
179 | feed = {input_ids: ids,
180 | input_mask: mask,
181 | segment_ids: segment,
182 | token_labels: y,
183 | keep_prob: 1.0
184 | }
185 | out_loss, acc_, p_ = sess.run([total_loss, acc, probabilities], feed_dict=feed)
186 | print("loss :{}, acc :{}".format(out_loss, acc_))
187 | return out_loss, p_, y
188 |
189 | min_total_loss_dev = 999999
190 | step = 0
191 | if not os.path.exists(config.training_log):
192 | os.makedirs(config.training_log)
193 | for epoch in range(config.num_train_epochs):
194 | _ = "{:*^100s}".format(("epoch-" + str(epoch)).center(20))
195 | print(_)
196 | # 读取训练数据
197 | total_loss_train = 0
198 |
199 | input_ids2, input_mask2, segment_ids2, labels2 = get_input_data(config.train_data, seq_len, batch_size)
200 |
201 | train_out_f = open(os.path.join(config.training_log, "epoch-" + str(epoch) + ".txt"), 'w', encoding='utf-8')
202 |
203 | for i in range(num_train_steps):
204 | step += 1
205 | ids_train, mask_train, segment_train, y_train = sess.run(
206 | [input_ids2, input_mask2, segment_ids2, labels2])
207 | out_loss, pre, y = train_step(ids_train, mask_train, segment_train, y_train, step, train_out_f)
208 | total_loss_train += out_loss
209 |
210 | if step % eval_per_step == 0 and step >= config.eval_start_step:
211 | total_loss_dev = 0
212 | dev_input_ids2, dev_input_mask2, dev_segment_ids2, dev_labels2 = get_input_data(config.valid_data,
213 | seq_len,
214 | valid_batch_size,
215 | False)
216 |
217 | for j in range(num_valid_steps): # 一个 epoch 的 轮数
218 | ids_dev, mask_dev, segment_dev, y_dev = sess.run(
219 | [dev_input_ids2, dev_input_mask2, dev_segment_ids2, dev_labels2])
220 | out_loss, pre, y = valid_step(ids_dev, mask_dev, segment_dev, y_dev)
221 | total_loss_dev += out_loss
222 | # report a batch data in valid_data
223 | # report(pre2out(y), pre2out(pre))
224 | print("total_loss_dev:{}".format(total_loss_dev))
225 | # print(classification_report(total_true_dev, total_pre_dev, digits=4))
226 |
227 | if total_loss_dev < min_total_loss_dev:
228 | print("save model:\t%f\t>%f" % (min_total_loss_dev, total_loss_dev))
229 | min_total_loss_dev = total_loss_dev
230 | saver.save(sess, config.model_out + 'bert.ckpt', global_step=step)
231 | elif step < config.eval_start_step and step % config.auto_save == 0:
232 | saver.save(sess, config.model_out + 'bert.ckpt', global_step=step)
233 | train_out_f.close()
234 | _ = "{:*^100s}".format(("epoch-" + str(epoch) + " report:").center(20))
235 | print("total_loss_train:{}".format(total_loss_train))
236 | # print(classification_report(total_true_train, total_pre_train, digits=4))
237 |
238 |
239 | if __name__ == "__main__":
240 | print("********* sim start *********")
241 | tf.logging.set_verbosity(tf.logging.INFO)
242 | main()
243 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/SIM/__init__.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/29 22:25
4 | # @Author : 刘鑫
5 | # @FileName: __init__.py.py
6 | # @Software: PyCharm
7 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/__init__.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/29 22:24
4 | # @Author : 刘鑫
5 | # @FileName: __init__.py.py
6 | # @Software: PyCharm
7 |
--------------------------------------------------------------------------------
/algorithm/kg_qa/不同预训练模型的实验与评估.docx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CLUEbenchmark/KgCLUEbench/bece79c8bd7cb338d707cf71c03a98963cac1a24/algorithm/kg_qa/不同预训练模型的实验与评估.docx
--------------------------------------------------------------------------------
/bert/.gitignore:
--------------------------------------------------------------------------------
1 | # Initially taken from Github's Python gitignore file
2 |
3 | # Byte-compiled / optimized / DLL files
4 | __pycache__/
5 | *.py[cod]
6 | *$py.class
7 |
8 | # C extensions
9 | *.so
10 |
11 | # Distribution / packaging
12 | .Python
13 | build/
14 | develop-eggs/
15 | dist/
16 | downloads/
17 | eggs/
18 | .eggs/
19 | lib/
20 | lib64/
21 | parts/
22 | sdist/
23 | var/
24 | wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | .hypothesis/
51 | .pytest_cache/
52 |
53 | # Translations
54 | *.mo
55 | *.pot
56 |
57 | # Django stuff:
58 | *.log
59 | local_settings.py
60 | db.sqlite3
61 |
62 | # Flask stuff:
63 | instance/
64 | .webassets-cache
65 |
66 | # Scrapy stuff:
67 | .scrapy
68 |
69 | # Sphinx documentation
70 | docs/_build/
71 |
72 | # PyBuilder
73 | target/
74 |
75 | # Jupyter Notebook
76 | .ipynb_checkpoints
77 |
78 | # IPython
79 | profile_default/
80 | ipython_config.py
81 |
82 | # pyenv
83 | .python-version
84 |
85 | # celery beat schedule file
86 | celerybeat-schedule
87 |
88 | # SageMath parsed files
89 | *.sage.py
90 |
91 | # Environments
92 | .env
93 | .venv
94 | env/
95 | venv/
96 | ENV/
97 | env.bak/
98 | venv.bak/
99 |
100 | # Spyder project settings
101 | .spyderproject
102 | .spyproject
103 |
104 | # Rope project settings
105 | .ropeproject
106 |
107 | # mkdocs documentation
108 | /site
109 |
110 | # mypy
111 | .mypy_cache/
112 | .dmypy.json
113 | dmypy.json
114 |
115 | # Pyre type checker
116 | .pyre/
117 |
--------------------------------------------------------------------------------
/bert/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # How to Contribute
2 |
3 | BERT needs to maintain permanent compatibility with the pre-trained model files,
4 | so we do not plan to make any major changes to this library (other than what was
5 | promised in the README). However, we can accept small patches related to
6 | re-factoring and documentation. To submit contributes, there are just a few
7 | small guidelines you need to follow.
8 |
9 | ## Contributor License Agreement
10 |
11 | Contributions to this project must be accompanied by a Contributor License
12 | Agreement. You (or your employer) retain the copyright to your contribution;
13 | this simply gives us permission to use and redistribute your contributions as
14 | part of the project. Head over to to see
15 | your current agreements on file or to sign a new one.
16 |
17 | You generally only need to submit a CLA once, so if you've already submitted one
18 | (even if it was for a different project), you probably don't need to do it
19 | again.
20 |
21 | ## Code reviews
22 |
23 | All submissions, including submissions by project members, require review. We
24 | use GitHub pull requests for this purpose. Consult
25 | [GitHub Help](https://help.github.com/articles/about-pull-requests/) for more
26 | information on using pull requests.
27 |
28 | ## Community Guidelines
29 |
30 | This project follows
31 | [Google's Open Source Community Guidelines](https://opensource.google.com/conduct/).
32 |
--------------------------------------------------------------------------------
/bert/LICENSE:
--------------------------------------------------------------------------------
1 |
2 | Apache License
3 | Version 2.0, January 2004
4 | http://www.apache.org/licenses/
5 |
6 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7 |
8 | 1. Definitions.
9 |
10 | "License" shall mean the terms and conditions for use, reproduction,
11 | and distribution as defined by Sections 1 through 9 of this document.
12 |
13 | "Licensor" shall mean the copyright owner or entity authorized by
14 | the copyright owner that is granting the License.
15 |
16 | "Legal Entity" shall mean the union of the acting entity and all
17 | other entities that control, are controlled by, or are under common
18 | control with that entity. For the purposes of this definition,
19 | "control" means (i) the power, direct or indirect, to cause the
20 | direction or management of such entity, whether by contract or
21 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
22 | outstanding shares, or (iii) beneficial ownership of such entity.
23 |
24 | "You" (or "Your") shall mean an individual or Legal Entity
25 | exercising permissions granted by this License.
26 |
27 | "Source" form shall mean the preferred form for making modifications,
28 | including but not limited to software source code, documentation
29 | source, and configuration files.
30 |
31 | "Object" form shall mean any form resulting from mechanical
32 | transformation or translation of a Source form, including but
33 | not limited to compiled object code, generated documentation,
34 | and conversions to other media types.
35 |
36 | "Work" shall mean the work of authorship, whether in Source or
37 | Object form, made available under the License, as indicated by a
38 | copyright notice that is included in or attached to the work
39 | (an example is provided in the Appendix below).
40 |
41 | "Derivative Works" shall mean any work, whether in Source or Object
42 | form, that is based on (or derived from) the Work and for which the
43 | editorial revisions, annotations, elaborations, or other modifications
44 | represent, as a whole, an original work of authorship. For the purposes
45 | of this License, Derivative Works shall not include works that remain
46 | separable from, or merely link (or bind by name) to the interfaces of,
47 | the Work and Derivative Works thereof.
48 |
49 | "Contribution" shall mean any work of authorship, including
50 | the original version of the Work and any modifications or additions
51 | to that Work or Derivative Works thereof, that is intentionally
52 | submitted to Licensor for inclusion in the Work by the copyright owner
53 | or by an individual or Legal Entity authorized to submit on behalf of
54 | the copyright owner. For the purposes of this definition, "submitted"
55 | means any form of electronic, verbal, or written communication sent
56 | to the Licensor or its representatives, including but not limited to
57 | communication on electronic mailing lists, source code control systems,
58 | and issue tracking systems that are managed by, or on behalf of, the
59 | Licensor for the purpose of discussing and improving the Work, but
60 | excluding communication that is conspicuously marked or otherwise
61 | designated in writing by the copyright owner as "Not a Contribution."
62 |
63 | "Contributor" shall mean Licensor and any individual or Legal Entity
64 | on behalf of whom a Contribution has been received by Licensor and
65 | subsequently incorporated within the Work.
66 |
67 | 2. Grant of Copyright License. Subject to the terms and conditions of
68 | this License, each Contributor hereby grants to You a perpetual,
69 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70 | copyright license to reproduce, prepare Derivative Works of,
71 | publicly display, publicly perform, sublicense, and distribute the
72 | Work and such Derivative Works in Source or Object form.
73 |
74 | 3. Grant of Patent License. Subject to the terms and conditions of
75 | this License, each Contributor hereby grants to You a perpetual,
76 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77 | (except as stated in this section) patent license to make, have made,
78 | use, offer to sell, sell, import, and otherwise transfer the Work,
79 | where such license applies only to those patent claims licensable
80 | by such Contributor that are necessarily infringed by their
81 | Contribution(s) alone or by combination of their Contribution(s)
82 | with the Work to which such Contribution(s) was submitted. If You
83 | institute patent litigation against any entity (including a
84 | cross-claim or counterclaim in a lawsuit) alleging that the Work
85 | or a Contribution incorporated within the Work constitutes direct
86 | or contributory patent infringement, then any patent licenses
87 | granted to You under this License for that Work shall terminate
88 | as of the date such litigation is filed.
89 |
90 | 4. Redistribution. You may reproduce and distribute copies of the
91 | Work or Derivative Works thereof in any medium, with or without
92 | modifications, and in Source or Object form, provided that You
93 | meet the following conditions:
94 |
95 | (a) You must give any other recipients of the Work or
96 | Derivative Works a copy of this License; and
97 |
98 | (b) You must cause any modified files to carry prominent notices
99 | stating that You changed the files; and
100 |
101 | (c) You must retain, in the Source form of any Derivative Works
102 | that You distribute, all copyright, patent, trademark, and
103 | attribution notices from the Source form of the Work,
104 | excluding those notices that do not pertain to any part of
105 | the Derivative Works; and
106 |
107 | (d) If the Work includes a "NOTICE" text file as part of its
108 | distribution, then any Derivative Works that You distribute must
109 | include a readable copy of the attribution notices contained
110 | within such NOTICE file, excluding those notices that do not
111 | pertain to any part of the Derivative Works, in at least one
112 | of the following places: within a NOTICE text file distributed
113 | as part of the Derivative Works; within the Source form or
114 | documentation, if provided along with the Derivative Works; or,
115 | within a display generated by the Derivative Works, if and
116 | wherever such third-party notices normally appear. The contents
117 | of the NOTICE file are for informational purposes only and
118 | do not modify the License. You may add Your own attribution
119 | notices within Derivative Works that You distribute, alongside
120 | or as an addendum to the NOTICE text from the Work, provided
121 | that such additional attribution notices cannot be construed
122 | as modifying the License.
123 |
124 | You may add Your own copyright statement to Your modifications and
125 | may provide additional or different license terms and conditions
126 | for use, reproduction, or distribution of Your modifications, or
127 | for any such Derivative Works as a whole, provided Your use,
128 | reproduction, and distribution of the Work otherwise complies with
129 | the conditions stated in this License.
130 |
131 | 5. Submission of Contributions. Unless You explicitly state otherwise,
132 | any Contribution intentionally submitted for inclusion in the Work
133 | by You to the Licensor shall be under the terms and conditions of
134 | this License, without any additional terms or conditions.
135 | Notwithstanding the above, nothing herein shall supersede or modify
136 | the terms of any separate license agreement you may have executed
137 | with Licensor regarding such Contributions.
138 |
139 | 6. Trademarks. This License does not grant permission to use the trade
140 | names, trademarks, service marks, or product names of the Licensor,
141 | except as required for reasonable and customary use in describing the
142 | origin of the Work and reproducing the content of the NOTICE file.
143 |
144 | 7. Disclaimer of Warranty. Unless required by applicable law or
145 | agreed to in writing, Licensor provides the Work (and each
146 | Contributor provides its Contributions) on an "AS IS" BASIS,
147 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148 | implied, including, without limitation, any warranties or conditions
149 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150 | PARTICULAR PURPOSE. You are solely responsible for determining the
151 | appropriateness of using or redistributing the Work and assume any
152 | risks associated with Your exercise of permissions under this License.
153 |
154 | 8. Limitation of Liability. In no event and under no legal theory,
155 | whether in tort (including negligence), contract, or otherwise,
156 | unless required by applicable law (such as deliberate and grossly
157 | negligent acts) or agreed to in writing, shall any Contributor be
158 | liable to You for damages, including any direct, indirect, special,
159 | incidental, or consequential damages of any character arising as a
160 | result of this License or out of the use or inability to use the
161 | Work (including but not limited to damages for loss of goodwill,
162 | work stoppage, computer failure or malfunction, or any and all
163 | other commercial damages or losses), even if such Contributor
164 | has been advised of the possibility of such damages.
165 |
166 | 9. Accepting Warranty or Additional Liability. While redistributing
167 | the Work or Derivative Works thereof, You may choose to offer,
168 | and charge a fee for, acceptance of support, warranty, indemnity,
169 | or other liability obligations and/or rights consistent with this
170 | License. However, in accepting such obligations, You may act only
171 | on Your own behalf and on Your sole responsibility, not on behalf
172 | of any other Contributor, and only if You agree to indemnify,
173 | defend, and hold each Contributor harmless for any liability
174 | incurred by, or claims asserted against, such Contributor by reason
175 | of your accepting any such warranty or additional liability.
176 |
177 | END OF TERMS AND CONDITIONS
178 |
179 | APPENDIX: How to apply the Apache License to your work.
180 |
181 | To apply the Apache License to your work, attach the following
182 | boilerplate notice, with the fields enclosed by brackets "[]"
183 | replaced with your own identifying information. (Don't include
184 | the brackets!) The text should be enclosed in the appropriate
185 | comment syntax for the file format. We also recommend that a
186 | file or class name and description of purpose be included on the
187 | same "printed page" as the copyright notice for easier
188 | identification within third-party archives.
189 |
190 | Copyright [yyyy] [name of copyright owner]
191 |
192 | Licensed under the Apache License, Version 2.0 (the "License");
193 | you may not use this file except in compliance with the License.
194 | You may obtain a copy of the License at
195 |
196 | http://www.apache.org/licenses/LICENSE-2.0
197 |
198 | Unless required by applicable law or agreed to in writing, software
199 | distributed under the License is distributed on an "AS IS" BASIS,
200 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201 | See the License for the specific language governing permissions and
202 | limitations under the License.
203 |
--------------------------------------------------------------------------------
/bert/__init__.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 |
16 |
--------------------------------------------------------------------------------
/bert/extract_features.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Extract pre-computed feature vectors from BERT."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import codecs
22 | import collections
23 | import json
24 | import re
25 |
26 | import modeling
27 | import tokenization
28 | import tensorflow as tf
29 |
30 | flags = tf.flags
31 |
32 | FLAGS = flags.FLAGS
33 |
34 | flags.DEFINE_string("input_file", None, "")
35 |
36 | flags.DEFINE_string("output_file", None, "")
37 |
38 | flags.DEFINE_string("layers", "-1,-2,-3,-4", "")
39 |
40 | flags.DEFINE_string(
41 | "bert_config_file", None,
42 | "The config json file corresponding to the pre-trained BERT model. "
43 | "This specifies the model architecture.")
44 |
45 | flags.DEFINE_integer(
46 | "max_seq_length", 128,
47 | "The maximum total input sequence length after WordPiece tokenization. "
48 | "Sequences longer than this will be truncated, and sequences shorter "
49 | "than this will be padded.")
50 |
51 | flags.DEFINE_string(
52 | "init_checkpoint", None,
53 | "Initial checkpoint (usually from a pre-trained BERT model).")
54 |
55 | flags.DEFINE_string("vocab_file", None,
56 | "The vocabulary file that the BERT model was trained on.")
57 |
58 | flags.DEFINE_bool(
59 | "do_lower_case", True,
60 | "Whether to lower case the input text. Should be True for uncased "
61 | "models and False for cased models.")
62 |
63 | flags.DEFINE_integer("batch_size", 32, "Batch size for predictions.")
64 |
65 | flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
66 |
67 | flags.DEFINE_string("master", None,
68 | "If using a TPU, the address of the master.")
69 |
70 | flags.DEFINE_integer(
71 | "num_tpu_cores", 8,
72 | "Only used if `use_tpu` is True. Total number of TPU cores to use.")
73 |
74 | flags.DEFINE_bool(
75 | "use_one_hot_embeddings", False,
76 | "If True, tf.one_hot will be used for embedding lookups, otherwise "
77 | "tf.nn.embedding_lookup will be used. On TPUs, this should be True "
78 | "since it is much faster.")
79 |
80 |
81 | class InputExample(object):
82 |
83 | def __init__(self, unique_id, text_a, text_b):
84 | self.unique_id = unique_id
85 | self.text_a = text_a
86 | self.text_b = text_b
87 |
88 |
89 | class InputFeatures(object):
90 | """A single set of features of data."""
91 |
92 | def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
93 | self.unique_id = unique_id
94 | self.tokens = tokens
95 | self.input_ids = input_ids
96 | self.input_mask = input_mask
97 | self.input_type_ids = input_type_ids
98 |
99 |
100 | def input_fn_builder(features, seq_length):
101 | """Creates an `input_fn` closure to be passed to TPUEstimator."""
102 |
103 | all_unique_ids = []
104 | all_input_ids = []
105 | all_input_mask = []
106 | all_input_type_ids = []
107 |
108 | for feature in features:
109 | all_unique_ids.append(feature.unique_id)
110 | all_input_ids.append(feature.input_ids)
111 | all_input_mask.append(feature.input_mask)
112 | all_input_type_ids.append(feature.input_type_ids)
113 |
114 | def input_fn(params):
115 | """The actual input function."""
116 | batch_size = params["batch_size"]
117 |
118 | num_examples = len(features)
119 |
120 | # This is for demo purposes and does NOT scale to large data sets. We do
121 | # not use Dataset.from_generator() because that uses tf.py_func which is
122 | # not TPU compatible. The right way to load data is with TFRecordReader.
123 | d = tf.data.Dataset.from_tensor_slices({
124 | "unique_ids":
125 | tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32),
126 | "input_ids":
127 | tf.constant(
128 | all_input_ids, shape=[num_examples, seq_length],
129 | dtype=tf.int32),
130 | "input_mask":
131 | tf.constant(
132 | all_input_mask,
133 | shape=[num_examples, seq_length],
134 | dtype=tf.int32),
135 | "input_type_ids":
136 | tf.constant(
137 | all_input_type_ids,
138 | shape=[num_examples, seq_length],
139 | dtype=tf.int32),
140 | })
141 |
142 | d = d.batch(batch_size=batch_size, drop_remainder=False)
143 | return d
144 |
145 | return input_fn
146 |
147 |
148 | def model_fn_builder(bert_config, init_checkpoint, layer_indexes, use_tpu,
149 | use_one_hot_embeddings):
150 | """Returns `model_fn` closure for TPUEstimator."""
151 |
152 | def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
153 | """The `model_fn` for TPUEstimator."""
154 |
155 | unique_ids = features["unique_ids"]
156 | input_ids = features["input_ids"]
157 | input_mask = features["input_mask"]
158 | input_type_ids = features["input_type_ids"]
159 |
160 | model = modeling.BertModel(
161 | config=bert_config,
162 | is_training=False,
163 | input_ids=input_ids,
164 | input_mask=input_mask,
165 | token_type_ids=input_type_ids,
166 | use_one_hot_embeddings=use_one_hot_embeddings)
167 |
168 | if mode != tf.estimator.ModeKeys.PREDICT:
169 | raise ValueError("Only PREDICT modes are supported: %s" % (mode))
170 |
171 | tvars = tf.trainable_variables()
172 | scaffold_fn = None
173 | (assignment_map,
174 | initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(
175 | tvars, init_checkpoint)
176 | if use_tpu:
177 |
178 | def tpu_scaffold():
179 | tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
180 | return tf.train.Scaffold()
181 |
182 | scaffold_fn = tpu_scaffold
183 | else:
184 | tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
185 |
186 | tf.logging.info("**** Trainable Variables ****")
187 | for var in tvars:
188 | init_string = ""
189 | if var.name in initialized_variable_names:
190 | init_string = ", *INIT_FROM_CKPT*"
191 | tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
192 | init_string)
193 |
194 | all_layers = model.get_all_encoder_layers()
195 |
196 | predictions = {
197 | "unique_id": unique_ids,
198 | }
199 |
200 | for (i, layer_index) in enumerate(layer_indexes):
201 | predictions["layer_output_%d" % i] = all_layers[layer_index]
202 |
203 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
204 | mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)
205 | return output_spec
206 |
207 | return model_fn
208 |
209 |
210 | def convert_examples_to_features(examples, seq_length, tokenizer):
211 | """Loads a data file into a list of `InputBatch`s."""
212 |
213 | features = []
214 | for (ex_index, example) in enumerate(examples):
215 | tokens_a = tokenizer.tokenize(example.text_a)
216 |
217 | tokens_b = None
218 | if example.text_b:
219 | tokens_b = tokenizer.tokenize(example.text_b)
220 |
221 | if tokens_b:
222 | # Modifies `tokens_a` and `tokens_b` in place so that the total
223 | # length is less than the specified length.
224 | # Account for [CLS], [SEP], [SEP] with "- 3"
225 | _truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
226 | else:
227 | # Account for [CLS] and [SEP] with "- 2"
228 | if len(tokens_a) > seq_length - 2:
229 | tokens_a = tokens_a[0:(seq_length - 2)]
230 |
231 | # The convention in BERT is:
232 | # (a) For sequence pairs:
233 | # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
234 | # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
235 | # (b) For single sequences:
236 | # tokens: [CLS] the dog is hairy . [SEP]
237 | # type_ids: 0 0 0 0 0 0 0
238 | #
239 | # Where "type_ids" are used to indicate whether this is the first
240 | # sequence or the second sequence. The embedding vectors for `type=0` and
241 | # `type=1` were learned during pre-training and are added to the wordpiece
242 | # embedding vector (and position vector). This is not *strictly* necessary
243 | # since the [SEP] token unambiguously separates the sequences, but it makes
244 | # it easier for the model to learn the concept of sequences.
245 | #
246 | # For classification tasks, the first vector (corresponding to [CLS]) is
247 | # used as as the "sentence vector". Note that this only makes sense because
248 | # the entire model is fine-tuned.
249 | tokens = []
250 | input_type_ids = []
251 | tokens.append("[CLS]")
252 | input_type_ids.append(0)
253 | for token in tokens_a:
254 | tokens.append(token)
255 | input_type_ids.append(0)
256 | tokens.append("[SEP]")
257 | input_type_ids.append(0)
258 |
259 | if tokens_b:
260 | for token in tokens_b:
261 | tokens.append(token)
262 | input_type_ids.append(1)
263 | tokens.append("[SEP]")
264 | input_type_ids.append(1)
265 |
266 | input_ids = tokenizer.convert_tokens_to_ids(tokens)
267 |
268 | # The mask has 1 for real tokens and 0 for padding tokens. Only real
269 | # tokens are attended to.
270 | input_mask = [1] * len(input_ids)
271 |
272 | # Zero-pad up to the sequence length.
273 | while len(input_ids) < seq_length:
274 | input_ids.append(0)
275 | input_mask.append(0)
276 | input_type_ids.append(0)
277 |
278 | assert len(input_ids) == seq_length
279 | assert len(input_mask) == seq_length
280 | assert len(input_type_ids) == seq_length
281 |
282 | if ex_index < 5:
283 | tf.logging.info("*** Example ***")
284 | tf.logging.info("unique_id: %s" % (example.unique_id))
285 | tf.logging.info("tokens: %s" % " ".join(
286 | [tokenization.printable_text(x) for x in tokens]))
287 | tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
288 | tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
289 | tf.logging.info(
290 | "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))
291 |
292 | features.append(
293 | InputFeatures(
294 | unique_id=example.unique_id,
295 | tokens=tokens,
296 | input_ids=input_ids,
297 | input_mask=input_mask,
298 | input_type_ids=input_type_ids))
299 | return features
300 |
301 |
302 | def _truncate_seq_pair(tokens_a, tokens_b, max_length):
303 | """Truncates a sequence pair in place to the maximum length."""
304 |
305 | # This is a simple heuristic which will always truncate the longer sequence
306 | # one token at a time. This makes more sense than truncating an equal percent
307 | # of tokens from each, since if one sequence is very short then each token
308 | # that's truncated likely contains more information than a longer sequence.
309 | while True:
310 | total_length = len(tokens_a) + len(tokens_b)
311 | if total_length <= max_length:
312 | break
313 | if len(tokens_a) > len(tokens_b):
314 | tokens_a.pop()
315 | else:
316 | tokens_b.pop()
317 |
318 |
319 | def read_examples(input_file):
320 | """Read a list of `InputExample`s from an input file."""
321 | examples = []
322 | unique_id = 0
323 | with tf.gfile.GFile(input_file, "r") as reader:
324 | while True:
325 | line = tokenization.convert_to_unicode(reader.readline())
326 | if not line:
327 | break
328 | line = line.strip()
329 | text_a = None
330 | text_b = None
331 | m = re.match(r"^(.*) \|\|\| (.*)$", line)
332 | if m is None:
333 | text_a = line
334 | else:
335 | text_a = m.group(1)
336 | text_b = m.group(2)
337 | examples.append(
338 | InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
339 | unique_id += 1
340 | return examples
341 |
342 |
343 | def main(_):
344 | tf.logging.set_verbosity(tf.logging.INFO)
345 |
346 | layer_indexes = [int(x) for x in FLAGS.layers.split(",")]
347 |
348 | bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
349 |
350 | tokenizer = tokenization.FullTokenizer(
351 | vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
352 |
353 | is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
354 | run_config = tf.contrib.tpu.RunConfig(
355 | master=FLAGS.master,
356 | tpu_config=tf.contrib.tpu.TPUConfig(
357 | num_shards=FLAGS.num_tpu_cores,
358 | per_host_input_for_training=is_per_host))
359 |
360 | examples = read_examples(FLAGS.input_file)
361 |
362 | features = convert_examples_to_features(
363 | examples=examples, seq_length=FLAGS.max_seq_length, tokenizer=tokenizer)
364 |
365 | unique_id_to_feature = {}
366 | for feature in features:
367 | unique_id_to_feature[feature.unique_id] = feature
368 |
369 | model_fn = model_fn_builder(
370 | bert_config=bert_config,
371 | init_checkpoint=FLAGS.init_checkpoint,
372 | layer_indexes=layer_indexes,
373 | use_tpu=FLAGS.use_tpu,
374 | use_one_hot_embeddings=FLAGS.use_one_hot_embeddings)
375 |
376 | # If TPU is not available, this will fall back to normal Estimator on CPU
377 | # or GPU.
378 | estimator = tf.contrib.tpu.TPUEstimator(
379 | use_tpu=FLAGS.use_tpu,
380 | model_fn=model_fn,
381 | config=run_config,
382 | predict_batch_size=FLAGS.batch_size)
383 |
384 | input_fn = input_fn_builder(
385 | features=features, seq_length=FLAGS.max_seq_length)
386 |
387 | with codecs.getwriter("utf-8")(tf.gfile.Open(FLAGS.output_file,
388 | "w")) as writer:
389 | for result in estimator.predict(input_fn, yield_single_examples=True):
390 | unique_id = int(result["unique_id"])
391 | feature = unique_id_to_feature[unique_id]
392 | output_json = collections.OrderedDict()
393 | output_json["linex_index"] = unique_id
394 | all_features = []
395 | for (i, token) in enumerate(feature.tokens):
396 | all_layers = []
397 | for (j, layer_index) in enumerate(layer_indexes):
398 | layer_output = result["layer_output_%d" % j]
399 | layers = collections.OrderedDict()
400 | layers["index"] = layer_index
401 | layers["values"] = [
402 | round(float(x), 6) for x in layer_output[i:(i + 1)].flat
403 | ]
404 | all_layers.append(layers)
405 | features = collections.OrderedDict()
406 | features["token"] = token
407 | features["layers"] = all_layers
408 | all_features.append(features)
409 | output_json["features"] = all_features
410 | writer.write(json.dumps(output_json) + "\n")
411 |
412 |
413 | if __name__ == "__main__":
414 | flags.mark_flag_as_required("input_file")
415 | flags.mark_flag_as_required("vocab_file")
416 | flags.mark_flag_as_required("bert_config_file")
417 | flags.mark_flag_as_required("init_checkpoint")
418 | flags.mark_flag_as_required("output_file")
419 | tf.app.run()
420 |
--------------------------------------------------------------------------------
/bert/modeling_test.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | from __future__ import absolute_import
16 | from __future__ import division
17 | from __future__ import print_function
18 |
19 | import collections
20 | import json
21 | import random
22 | import re
23 |
24 | import modeling
25 | import six
26 | import tensorflow as tf
27 |
28 |
29 | class BertModelTest(tf.test.TestCase):
30 |
31 | class BertModelTester(object):
32 |
33 | def __init__(self,
34 | parent,
35 | batch_size=13,
36 | seq_length=7,
37 | is_training=True,
38 | use_input_mask=True,
39 | use_token_type_ids=True,
40 | vocab_size=99,
41 | hidden_size=32,
42 | num_hidden_layers=5,
43 | num_attention_heads=4,
44 | intermediate_size=37,
45 | hidden_act="gelu",
46 | hidden_dropout_prob=0.1,
47 | attention_probs_dropout_prob=0.1,
48 | max_position_embeddings=512,
49 | type_vocab_size=16,
50 | initializer_range=0.02,
51 | scope=None):
52 | self.parent = parent
53 | self.batch_size = batch_size
54 | self.seq_length = seq_length
55 | self.is_training = is_training
56 | self.use_input_mask = use_input_mask
57 | self.use_token_type_ids = use_token_type_ids
58 | self.vocab_size = vocab_size
59 | self.hidden_size = hidden_size
60 | self.num_hidden_layers = num_hidden_layers
61 | self.num_attention_heads = num_attention_heads
62 | self.intermediate_size = intermediate_size
63 | self.hidden_act = hidden_act
64 | self.hidden_dropout_prob = hidden_dropout_prob
65 | self.attention_probs_dropout_prob = attention_probs_dropout_prob
66 | self.max_position_embeddings = max_position_embeddings
67 | self.type_vocab_size = type_vocab_size
68 | self.initializer_range = initializer_range
69 | self.scope = scope
70 |
71 | def create_model(self):
72 | input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length],
73 | self.vocab_size)
74 |
75 | input_mask = None
76 | if self.use_input_mask:
77 | input_mask = BertModelTest.ids_tensor(
78 | [self.batch_size, self.seq_length], vocab_size=2)
79 |
80 | token_type_ids = None
81 | if self.use_token_type_ids:
82 | token_type_ids = BertModelTest.ids_tensor(
83 | [self.batch_size, self.seq_length], self.type_vocab_size)
84 |
85 | config = modeling.BertConfig(
86 | vocab_size=self.vocab_size,
87 | hidden_size=self.hidden_size,
88 | num_hidden_layers=self.num_hidden_layers,
89 | num_attention_heads=self.num_attention_heads,
90 | intermediate_size=self.intermediate_size,
91 | hidden_act=self.hidden_act,
92 | hidden_dropout_prob=self.hidden_dropout_prob,
93 | attention_probs_dropout_prob=self.attention_probs_dropout_prob,
94 | max_position_embeddings=self.max_position_embeddings,
95 | type_vocab_size=self.type_vocab_size,
96 | initializer_range=self.initializer_range)
97 |
98 | model = modeling.BertModel(
99 | config=config,
100 | is_training=self.is_training,
101 | input_ids=input_ids,
102 | input_mask=input_mask,
103 | token_type_ids=token_type_ids,
104 | scope=self.scope)
105 |
106 | outputs = {
107 | "embedding_output": model.get_embedding_output(),
108 | "sequence_output": model.get_sequence_output(),
109 | "pooled_output": model.get_pooled_output(),
110 | "all_encoder_layers": model.get_all_encoder_layers(),
111 | }
112 | return outputs
113 |
114 | def check_output(self, result):
115 | self.parent.assertAllEqual(
116 | result["embedding_output"].shape,
117 | [self.batch_size, self.seq_length, self.hidden_size])
118 |
119 | self.parent.assertAllEqual(
120 | result["sequence_output"].shape,
121 | [self.batch_size, self.seq_length, self.hidden_size])
122 |
123 | self.parent.assertAllEqual(result["pooled_output"].shape,
124 | [self.batch_size, self.hidden_size])
125 |
126 | def test_default(self):
127 | self.run_tester(BertModelTest.BertModelTester(self))
128 |
129 | def test_config_to_json_string(self):
130 | config = modeling.BertConfig(vocab_size=99, hidden_size=37)
131 | obj = json.loads(config.to_json_string())
132 | self.assertEqual(obj["vocab_size"], 99)
133 | self.assertEqual(obj["hidden_size"], 37)
134 |
135 | def run_tester(self, tester):
136 | with self.test_session() as sess:
137 | ops = tester.create_model()
138 | init_op = tf.group(tf.global_variables_initializer(),
139 | tf.local_variables_initializer())
140 | sess.run(init_op)
141 | output_result = sess.run(ops)
142 | tester.check_output(output_result)
143 |
144 | self.assert_all_tensors_reachable(sess, [init_op, ops])
145 |
146 | @classmethod
147 | def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
148 | """Creates a random int32 tensor of the shape within the vocab size."""
149 | if rng is None:
150 | rng = random.Random()
151 |
152 | total_dims = 1
153 | for dim in shape:
154 | total_dims *= dim
155 |
156 | values = []
157 | for _ in range(total_dims):
158 | values.append(rng.randint(0, vocab_size - 1))
159 |
160 | return tf.constant(value=values, dtype=tf.int32, shape=shape, name=name)
161 |
162 | def assert_all_tensors_reachable(self, sess, outputs):
163 | """Checks that all the tensors in the graph are reachable from outputs."""
164 | graph = sess.graph
165 |
166 | ignore_strings = [
167 | "^.*/assert_less_equal/.*$",
168 | "^.*/dilation_rate$",
169 | "^.*/Tensordot/concat$",
170 | "^.*/Tensordot/concat/axis$",
171 | "^testing/.*$",
172 | ]
173 |
174 | ignore_regexes = [re.compile(x) for x in ignore_strings]
175 |
176 | unreachable = self.get_unreachable_ops(graph, outputs)
177 | filtered_unreachable = []
178 | for x in unreachable:
179 | do_ignore = False
180 | for r in ignore_regexes:
181 | m = r.match(x.name)
182 | if m is not None:
183 | do_ignore = True
184 | if do_ignore:
185 | continue
186 | filtered_unreachable.append(x)
187 | unreachable = filtered_unreachable
188 |
189 | self.assertEqual(
190 | len(unreachable), 0, "The following ops are unreachable: %s" %
191 | (" ".join([x.name for x in unreachable])))
192 |
193 | @classmethod
194 | def get_unreachable_ops(cls, graph, outputs):
195 | """Finds all of the tensors in graph that are unreachable from outputs."""
196 | outputs = cls.flatten_recursive(outputs)
197 | output_to_op = collections.defaultdict(list)
198 | op_to_all = collections.defaultdict(list)
199 | assign_out_to_in = collections.defaultdict(list)
200 |
201 | for op in graph.get_operations():
202 | for x in op.inputs:
203 | op_to_all[op.name].append(x.name)
204 | for y in op.outputs:
205 | output_to_op[y.name].append(op.name)
206 | op_to_all[op.name].append(y.name)
207 | if str(op.type) == "Assign":
208 | for y in op.outputs:
209 | for x in op.inputs:
210 | assign_out_to_in[y.name].append(x.name)
211 |
212 | assign_groups = collections.defaultdict(list)
213 | for out_name in assign_out_to_in.keys():
214 | name_group = assign_out_to_in[out_name]
215 | for n1 in name_group:
216 | assign_groups[n1].append(out_name)
217 | for n2 in name_group:
218 | if n1 != n2:
219 | assign_groups[n1].append(n2)
220 |
221 | seen_tensors = {}
222 | stack = [x.name for x in outputs]
223 | while stack:
224 | name = stack.pop()
225 | if name in seen_tensors:
226 | continue
227 | seen_tensors[name] = True
228 |
229 | if name in output_to_op:
230 | for op_name in output_to_op[name]:
231 | if op_name in op_to_all:
232 | for input_name in op_to_all[op_name]:
233 | if input_name not in stack:
234 | stack.append(input_name)
235 |
236 | expanded_names = []
237 | if name in assign_groups:
238 | for assign_name in assign_groups[name]:
239 | expanded_names.append(assign_name)
240 |
241 | for expanded_name in expanded_names:
242 | if expanded_name not in stack:
243 | stack.append(expanded_name)
244 |
245 | unreachable_ops = []
246 | for op in graph.get_operations():
247 | is_unreachable = False
248 | all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs]
249 | for name in all_names:
250 | if name not in seen_tensors:
251 | is_unreachable = True
252 | if is_unreachable:
253 | unreachable_ops.append(op)
254 | return unreachable_ops
255 |
256 | @classmethod
257 | def flatten_recursive(cls, item):
258 | """Flattens (potentially nested) a tuple/dictionary/list to a list."""
259 | output = []
260 | if isinstance(item, list):
261 | output.extend(item)
262 | elif isinstance(item, tuple):
263 | output.extend(list(item))
264 | elif isinstance(item, dict):
265 | for (_, v) in six.iteritems(item):
266 | output.append(v)
267 | else:
268 | return [item]
269 |
270 | flat_output = []
271 | for x in output:
272 | flat_output.extend(cls.flatten_recursive(x))
273 | return flat_output
274 |
275 |
276 | if __name__ == "__main__":
277 | tf.test.main()
278 |
--------------------------------------------------------------------------------
/bert/multilingual.md:
--------------------------------------------------------------------------------
1 | ## Models
2 |
3 | There are two multilingual models currently available. We do not plan to release
4 | more single-language models, but we may release `BERT-Large` versions of these
5 | two in the future:
6 |
7 | * **[`BERT-Base, Multilingual Cased (New, recommended)`](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip)**:
8 | 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
9 | * **[`BERT-Base, Multilingual Uncased (Orig, not recommended)`](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip)**:
10 | 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
11 | * **[`BERT-Base, Chinese`](https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip)**:
12 | Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M
13 | parameters
14 |
15 | **The `Multilingual Cased (New)` model also fixes normalization issues in many
16 | languages, so it is recommended in languages with non-Latin alphabets (and is
17 | often better for most languages with Latin alphabets). When using this model,
18 | make sure to pass `--do_lower_case=false` to `run_pretraining.py` and other
19 | scripts.**
20 |
21 | See the [list of languages](#list-of-languages) that the Multilingual model
22 | supports. The Multilingual model does include Chinese (and English), but if your
23 | fine-tuning data is Chinese-only, then the Chinese model will likely produce
24 | better results.
25 |
26 | ## Results
27 |
28 | To evaluate these systems, we use the
29 | [XNLI dataset](https://github.com/facebookresearch/XNLI) dataset, which is a
30 | version of [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) where the
31 | dev and test sets have been translated (by humans) into 15 languages. Note that
32 | the training set was *machine* translated (we used the translations provided by
33 | XNLI, not Google NMT). For clarity, we only report on 6 languages below:
34 |
35 |
36 |
37 | | System | English | Chinese | Spanish | German | Arabic | Urdu |
38 | | --------------------------------- | -------- | -------- | -------- | -------- | -------- | -------- |
39 | | XNLI Baseline - Translate Train | 73.7 | 67.0 | 68.8 | 66.5 | 65.8 | 56.6 |
40 | | XNLI Baseline - Translate Test | 73.7 | 68.3 | 70.7 | 68.7 | 66.8 | 59.3 |
41 | | BERT - Translate Train Cased | **81.9** | **76.6** | **77.8** | **75.9** | **70.7** | 61.6 |
42 | | BERT - Translate Train Uncased | 81.4 | 74.2 | 77.3 | 75.2 | 70.5 | 61.7 |
43 | | BERT - Translate Test Uncased | 81.4 | 70.1 | 74.9 | 74.4 | 70.4 | **62.1** |
44 | | BERT - Zero Shot Uncased | 81.4 | 63.8 | 74.3 | 70.5 | 62.1 | 58.3 |
45 |
46 |
47 |
48 | The first two rows are baselines from the XNLI paper and the last three rows are
49 | our results with BERT.
50 |
51 | **Translate Train** means that the MultiNLI training set was machine translated
52 | from English into the foreign language. So training and evaluation were both
53 | done in the foreign language. Unfortunately, training was done on
54 | machine-translated data, so it is impossible to quantify how much of the lower
55 | accuracy (compared to English) is due to the quality of the machine translation
56 | vs. the quality of the pre-trained model.
57 |
58 | **Translate Test** means that the XNLI test set was machine translated from the
59 | foreign language into English. So training and evaluation were both done on
60 | English. However, test evaluation was done on machine-translated English, so the
61 | accuracy depends on the quality of the machine translation system.
62 |
63 | **Zero Shot** means that the Multilingual BERT system was fine-tuned on English
64 | MultiNLI, and then evaluated on the foreign language XNLI test. In this case,
65 | machine translation was not involved at all in either the pre-training or
66 | fine-tuning.
67 |
68 | Note that the English result is worse than the 84.2 MultiNLI baseline because
69 | this training used Multilingual BERT rather than English-only BERT. This implies
70 | that for high-resource languages, the Multilingual model is somewhat worse than
71 | a single-language model. However, it is not feasible for us to train and
72 | maintain dozens of single-language models. Therefore, if your goal is to maximize
73 | performance with a language other than English or Chinese, you might find it
74 | beneficial to run pre-training for additional steps starting from our
75 | Multilingual model on data from your language of interest.
76 |
77 | Here is a comparison of training Chinese models with the Multilingual
78 | `BERT-Base` and Chinese-only `BERT-Base`:
79 |
80 | System | Chinese
81 | ----------------------- | -------
82 | XNLI Baseline | 67.0
83 | BERT Multilingual Model | 74.2
84 | BERT Chinese-only Model | 77.2
85 |
86 | Similar to English, the single-language model does 3% better than the
87 | Multilingual model.
88 |
89 | ## Fine-tuning Example
90 |
91 | The multilingual model does **not** require any special consideration or API
92 | changes. We did update the implementation of `BasicTokenizer` in
93 | `tokenization.py` to support Chinese character tokenization, so please update if
94 | you forked it. However, we did not change the tokenization API.
95 |
96 | To test the new models, we did modify `run_classifier.py` to add support for the
97 | [XNLI dataset](https://github.com/facebookresearch/XNLI). This is a 15-language
98 | version of MultiNLI where the dev/test sets have been human-translated, and the
99 | training set has been machine-translated.
100 |
101 | To run the fine-tuning code, please download the
102 | [XNLI dev/test set](https://www.nyu.edu/projects/bowman/xnli/XNLI-1.0.zip) and the
103 | [XNLI machine-translated training set](https://www.nyu.edu/projects/bowman/xnli/XNLI-MT-1.0.zip)
104 | and then unpack both .zip files into some directory `$XNLI_DIR`.
105 |
106 | To run fine-tuning on XNLI. The language is hard-coded into `run_classifier.py`
107 | (Chinese by default), so please modify `XnliProcessor` if you want to run on
108 | another language.
109 |
110 | This is a large dataset, so this will training will take a few hours on a GPU
111 | (or about 30 minutes on a Cloud TPU). To run an experiment quickly for
112 | debugging, just set `num_train_epochs` to a small value like `0.1`.
113 |
114 | ```shell
115 | export BERT_BASE_DIR=/path/to/bert/chinese_L-12_H-768_A-12 # or multilingual_L-12_H-768_A-12
116 | export XNLI_DIR=/path/to/xnli
117 |
118 | python run_classifier.py \
119 | --task_name=XNLI \
120 | --do_train=true \
121 | --do_eval=true \
122 | --data_dir=$XNLI_DIR \
123 | --vocab_file=$BERT_BASE_DIR/vocab.txt \
124 | --bert_config_file=$BERT_BASE_DIR/bert_config.json \
125 | --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
126 | --max_seq_length=128 \
127 | --train_batch_size=32 \
128 | --learning_rate=5e-5 \
129 | --num_train_epochs=2.0 \
130 | --output_dir=/tmp/xnli_output/
131 | ```
132 |
133 | With the Chinese-only model, the results should look something like this:
134 |
135 | ```
136 | ***** Eval results *****
137 | eval_accuracy = 0.774116
138 | eval_loss = 0.83554
139 | global_step = 24543
140 | loss = 0.74603
141 | ```
142 |
143 | ## Details
144 |
145 | ### Data Source and Sampling
146 |
147 | The languages chosen were the
148 | [top 100 languages with the largest Wikipedias](https://meta.wikimedia.org/wiki/List_of_Wikipedias).
149 | The entire Wikipedia dump for each language (excluding user and talk pages) was
150 | taken as the training data for each language
151 |
152 | However, the size of the Wikipedia for a given language varies greatly, and
153 | therefore low-resource languages may be "under-represented" in terms of the
154 | neural network model (under the assumption that languages are "competing" for
155 | limited model capacity to some extent). At the same time, we also don't want
156 | to overfit the model by performing thousands of epochs over a tiny Wikipedia
157 | for a particular language.
158 |
159 | To balance these two factors, we performed exponentially smoothed weighting of
160 | the data during pre-training data creation (and WordPiece vocab creation). In
161 | other words, let's say that the probability of a language is *P(L)*, e.g.,
162 | *P(English) = 0.21* means that after concatenating all of the Wikipedias
163 | together, 21% of our data is English. We exponentiate each probability by some
164 | factor *S* and then re-normalize, and sample from that distribution. In our case
165 | we use *S=0.7*. So, high-resource languages like English will be under-sampled,
166 | and low-resource languages like Icelandic will be over-sampled. E.g., in the
167 | original distribution English would be sampled 1000x more than Icelandic, but
168 | after smoothing it's only sampled 100x more.
169 |
170 | ### Tokenization
171 |
172 | For tokenization, we use a 110k shared WordPiece vocabulary. The word counts are
173 | weighted the same way as the data, so low-resource languages are upweighted by
174 | some factor. We intentionally do *not* use any marker to denote the input
175 | language (so that zero-shot training can work).
176 |
177 | Because Chinese (and Japanese Kanji and Korean Hanja) does not have whitespace
178 | characters, we add spaces around every character in the
179 | [CJK Unicode range](https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_\(Unicode_block\))
180 | before applying WordPiece. This means that Chinese is effectively
181 | character-tokenized. Note that the CJK Unicode block only includes
182 | Chinese-origin characters and does *not* include Hangul Korean or
183 | Katakana/Hiragana Japanese, which are tokenized with whitespace+WordPiece like
184 | all other languages.
185 |
186 | For all other languages, we apply the
187 | [same recipe as English](https://github.com/google-research/bert#tokenization):
188 | (a) lower casing+accent removal, (b) punctuation splitting, (c) whitespace
189 | tokenization. We understand that accent markers have substantial meaning in some
190 | languages, but felt that the benefits of reducing the effective vocabulary make
191 | up for this. Generally the strong contextual models of BERT should make up for
192 | any ambiguity introduced by stripping accent markers.
193 |
194 | ### List of Languages
195 |
196 | The multilingual model supports the following languages. These languages were
197 | chosen because they are the top 100 languages with the largest Wikipedias:
198 |
199 | * Afrikaans
200 | * Albanian
201 | * Arabic
202 | * Aragonese
203 | * Armenian
204 | * Asturian
205 | * Azerbaijani
206 | * Bashkir
207 | * Basque
208 | * Bavarian
209 | * Belarusian
210 | * Bengali
211 | * Bishnupriya Manipuri
212 | * Bosnian
213 | * Breton
214 | * Bulgarian
215 | * Burmese
216 | * Catalan
217 | * Cebuano
218 | * Chechen
219 | * Chinese (Simplified)
220 | * Chinese (Traditional)
221 | * Chuvash
222 | * Croatian
223 | * Czech
224 | * Danish
225 | * Dutch
226 | * English
227 | * Estonian
228 | * Finnish
229 | * French
230 | * Galician
231 | * Georgian
232 | * German
233 | * Greek
234 | * Gujarati
235 | * Haitian
236 | * Hebrew
237 | * Hindi
238 | * Hungarian
239 | * Icelandic
240 | * Ido
241 | * Indonesian
242 | * Irish
243 | * Italian
244 | * Japanese
245 | * Javanese
246 | * Kannada
247 | * Kazakh
248 | * Kirghiz
249 | * Korean
250 | * Latin
251 | * Latvian
252 | * Lithuanian
253 | * Lombard
254 | * Low Saxon
255 | * Luxembourgish
256 | * Macedonian
257 | * Malagasy
258 | * Malay
259 | * Malayalam
260 | * Marathi
261 | * Minangkabau
262 | * Nepali
263 | * Newar
264 | * Norwegian (Bokmal)
265 | * Norwegian (Nynorsk)
266 | * Occitan
267 | * Persian (Farsi)
268 | * Piedmontese
269 | * Polish
270 | * Portuguese
271 | * Punjabi
272 | * Romanian
273 | * Russian
274 | * Scots
275 | * Serbian
276 | * Serbo-Croatian
277 | * Sicilian
278 | * Slovak
279 | * Slovenian
280 | * South Azerbaijani
281 | * Spanish
282 | * Sundanese
283 | * Swahili
284 | * Swedish
285 | * Tagalog
286 | * Tajik
287 | * Tamil
288 | * Tatar
289 | * Telugu
290 | * Turkish
291 | * Ukrainian
292 | * Urdu
293 | * Uzbek
294 | * Vietnamese
295 | * Volapük
296 | * Waray-Waray
297 | * Welsh
298 | * West Frisian
299 | * Western Punjabi
300 | * Yoruba
301 |
302 | The **Multilingual Cased (New)** release contains additionally **Thai** and
303 | **Mongolian**, which were not included in the original release.
304 |
--------------------------------------------------------------------------------
/bert/optimization.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Functions and classes related to optimization (weight updates)."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import re
22 | import tensorflow as tf
23 |
24 |
25 | def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu):
26 | """Creates an optimizer training op."""
27 | global_step = tf.train.get_or_create_global_step()
28 |
29 | learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)
30 |
31 | # Implements linear decay of the learning rate.
32 | learning_rate = tf.train.polynomial_decay(
33 | learning_rate,
34 | global_step,
35 | num_train_steps,
36 | end_learning_rate=0.0,
37 | power=1.0,
38 | cycle=False)
39 |
40 | # Implements linear warmup. I.e., if global_step < num_warmup_steps, the
41 | # learning rate will be `global_step/num_warmup_steps * init_lr`.
42 | if num_warmup_steps:
43 | global_steps_int = tf.cast(global_step, tf.int32)
44 | warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32)
45 |
46 | global_steps_float = tf.cast(global_steps_int, tf.float32)
47 | warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)
48 |
49 | warmup_percent_done = global_steps_float / warmup_steps_float
50 | warmup_learning_rate = init_lr * warmup_percent_done
51 |
52 | is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
53 | learning_rate = (
54 | (1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate)
55 |
56 | # It is recommended that you use this optimizer for fine tuning, since this
57 | # is how the model was trained (note that the Adam m/v variables are NOT
58 | # loaded from init_checkpoint.)
59 | optimizer = AdamWeightDecayOptimizer(
60 | learning_rate=learning_rate,
61 | weight_decay_rate=0.01,
62 | beta_1=0.9,
63 | beta_2=0.999,
64 | epsilon=1e-6,
65 | exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
66 |
67 | if use_tpu:
68 | optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
69 |
70 | tvars = tf.trainable_variables()
71 | grads = tf.gradients(loss, tvars)
72 |
73 | # This is how the model was pre-trained.
74 | (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
75 |
76 | train_op = optimizer.apply_gradients(
77 | zip(grads, tvars), global_step=global_step)
78 |
79 | # Normally the global step update is done inside of `apply_gradients`.
80 | # However, `AdamWeightDecayOptimizer` doesn't do this. But if you use
81 | # a different optimizer, you should probably take this line out.
82 | new_global_step = global_step + 1
83 | train_op = tf.group(train_op, [global_step.assign(new_global_step)])
84 | return train_op
85 |
86 |
87 | class AdamWeightDecayOptimizer(tf.train.Optimizer):
88 | """A basic Adam optimizer that includes "correct" L2 weight decay."""
89 |
90 | def __init__(self,
91 | learning_rate,
92 | weight_decay_rate=0.0,
93 | beta_1=0.9,
94 | beta_2=0.999,
95 | epsilon=1e-6,
96 | exclude_from_weight_decay=None,
97 | name="AdamWeightDecayOptimizer"):
98 | """Constructs a AdamWeightDecayOptimizer."""
99 | super(AdamWeightDecayOptimizer, self).__init__(False, name)
100 |
101 | self.learning_rate = learning_rate
102 | self.weight_decay_rate = weight_decay_rate
103 | self.beta_1 = beta_1
104 | self.beta_2 = beta_2
105 | self.epsilon = epsilon
106 | self.exclude_from_weight_decay = exclude_from_weight_decay
107 |
108 | def apply_gradients(self, grads_and_vars, global_step=None, name=None):
109 | """See base class."""
110 | assignments = []
111 | for (grad, param) in grads_and_vars:
112 | if grad is None or param is None:
113 | continue
114 |
115 | param_name = self._get_variable_name(param.name)
116 |
117 | m = tf.get_variable(
118 | name=param_name + "/adam_m",
119 | shape=param.shape.as_list(),
120 | dtype=tf.float32,
121 | trainable=False,
122 | initializer=tf.zeros_initializer())
123 | v = tf.get_variable(
124 | name=param_name + "/adam_v",
125 | shape=param.shape.as_list(),
126 | dtype=tf.float32,
127 | trainable=False,
128 | initializer=tf.zeros_initializer())
129 |
130 | # Standard Adam update.
131 | next_m = (
132 | tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
133 | next_v = (
134 | tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
135 | tf.square(grad)))
136 |
137 | update = next_m / (tf.sqrt(next_v) + self.epsilon)
138 |
139 | # Just adding the square of the weights to the loss function is *not*
140 | # the correct way of using L2 regularization/weight decay with Adam,
141 | # since that will interact with the m and v parameters in strange ways.
142 | #
143 | # Instead we want ot decay the weights in a manner that doesn't interact
144 | # with the m/v parameters. This is equivalent to adding the square
145 | # of the weights to the loss with plain (non-momentum) SGD.
146 | if self._do_use_weight_decay(param_name):
147 | update += self.weight_decay_rate * param
148 |
149 | update_with_lr = self.learning_rate * update
150 |
151 | next_param = param - update_with_lr
152 |
153 | assignments.extend(
154 | [param.assign(next_param),
155 | m.assign(next_m),
156 | v.assign(next_v)])
157 | return tf.group(*assignments, name=name)
158 |
159 | def _do_use_weight_decay(self, param_name):
160 | """Whether to use L2 weight decay for `param_name`."""
161 | if not self.weight_decay_rate:
162 | return False
163 | if self.exclude_from_weight_decay:
164 | for r in self.exclude_from_weight_decay:
165 | if re.search(r, param_name) is not None:
166 | return False
167 | return True
168 |
169 | def _get_variable_name(self, param_name):
170 | """Get the variable name from the tensor name."""
171 | m = re.match("^(.*):\\d+$", param_name)
172 | if m is not None:
173 | param_name = m.group(1)
174 | return param_name
175 |
--------------------------------------------------------------------------------
/bert/optimization_test.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | from __future__ import absolute_import
16 | from __future__ import division
17 | from __future__ import print_function
18 |
19 | import optimization
20 | import tensorflow as tf
21 |
22 |
23 | class OptimizationTest(tf.test.TestCase):
24 |
25 | def test_adam(self):
26 | with self.test_session() as sess:
27 | w = tf.get_variable(
28 | "w",
29 | shape=[3],
30 | initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
31 | x = tf.constant([0.4, 0.2, -0.5])
32 | loss = tf.reduce_mean(tf.square(x - w))
33 | tvars = tf.trainable_variables()
34 | grads = tf.gradients(loss, tvars)
35 | global_step = tf.train.get_or_create_global_step()
36 | optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
37 | train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
38 | init_op = tf.group(tf.global_variables_initializer(),
39 | tf.local_variables_initializer())
40 | sess.run(init_op)
41 | for _ in range(100):
42 | sess.run(train_op)
43 | w_np = sess.run(w)
44 | self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)
45 |
46 |
47 | if __name__ == "__main__":
48 | tf.test.main()
49 |
--------------------------------------------------------------------------------
/bert/requirements.txt:
--------------------------------------------------------------------------------
1 | tensorflow >= 1.11.0 # CPU Version of TensorFlow.
2 | # tensorflow-gpu >= 1.11.0 # GPU version of TensorFlow.
3 |
--------------------------------------------------------------------------------
/bert/run_classifier_with_tfhub.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """BERT finetuning runner with TF-Hub."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import os
22 | import optimization
23 | import run_classifier
24 | import tokenization
25 | import tensorflow as tf
26 | import tensorflow_hub as hub
27 |
28 | flags = tf.flags
29 |
30 | FLAGS = flags.FLAGS
31 |
32 | flags.DEFINE_string(
33 | "bert_hub_module_handle", None,
34 | "Handle for the BERT TF-Hub module.")
35 |
36 |
37 | def create_model(is_training, input_ids, input_mask, segment_ids, labels,
38 | num_labels, bert_hub_module_handle):
39 | """Creates a classification model."""
40 | tags = set()
41 | if is_training:
42 | tags.add("train")
43 | bert_module = hub.Module(bert_hub_module_handle, tags=tags, trainable=True)
44 | bert_inputs = dict(
45 | input_ids=input_ids,
46 | input_mask=input_mask,
47 | segment_ids=segment_ids)
48 | bert_outputs = bert_module(
49 | inputs=bert_inputs,
50 | signature="tokens",
51 | as_dict=True)
52 |
53 | # In the demo, we are doing a simple classification task on the entire
54 | # segment.
55 | #
56 | # If you want to use the token-level output, use
57 | # bert_outputs["sequence_output"] instead.
58 | output_layer = bert_outputs["pooled_output"]
59 |
60 | hidden_size = output_layer.shape[-1].value
61 |
62 | output_weights = tf.get_variable(
63 | "output_weights", [num_labels, hidden_size],
64 | initializer=tf.truncated_normal_initializer(stddev=0.02))
65 |
66 | output_bias = tf.get_variable(
67 | "output_bias", [num_labels], initializer=tf.zeros_initializer())
68 |
69 | with tf.variable_scope("loss"):
70 | if is_training:
71 | # I.e., 0.1 dropout
72 | output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
73 |
74 | logits = tf.matmul(output_layer, output_weights, transpose_b=True)
75 | logits = tf.nn.bias_add(logits, output_bias)
76 | probabilities = tf.nn.softmax(logits, axis=-1)
77 | log_probs = tf.nn.log_softmax(logits, axis=-1)
78 |
79 | one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
80 |
81 | per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
82 | loss = tf.reduce_mean(per_example_loss)
83 |
84 | return (loss, per_example_loss, logits, probabilities)
85 |
86 |
87 | def model_fn_builder(num_labels, learning_rate, num_train_steps,
88 | num_warmup_steps, use_tpu, bert_hub_module_handle):
89 | """Returns `model_fn` closure for TPUEstimator."""
90 |
91 | def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
92 | """The `model_fn` for TPUEstimator."""
93 |
94 | tf.logging.info("*** Features ***")
95 | for name in sorted(features.keys()):
96 | tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
97 |
98 | input_ids = features["input_ids"]
99 | input_mask = features["input_mask"]
100 | segment_ids = features["segment_ids"]
101 | label_ids = features["label_ids"]
102 |
103 | is_training = (mode == tf.estimator.ModeKeys.TRAIN)
104 |
105 | (total_loss, per_example_loss, logits, probabilities) = create_model(
106 | is_training, input_ids, input_mask, segment_ids, label_ids, num_labels,
107 | bert_hub_module_handle)
108 |
109 | output_spec = None
110 | if mode == tf.estimator.ModeKeys.TRAIN:
111 | train_op = optimization.create_optimizer(
112 | total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
113 |
114 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
115 | mode=mode,
116 | loss=total_loss,
117 | train_op=train_op)
118 | elif mode == tf.estimator.ModeKeys.EVAL:
119 |
120 | def metric_fn(per_example_loss, label_ids, logits):
121 | predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
122 | accuracy = tf.metrics.accuracy(label_ids, predictions)
123 | loss = tf.metrics.mean(per_example_loss)
124 | return {
125 | "eval_accuracy": accuracy,
126 | "eval_loss": loss,
127 | }
128 |
129 | eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
130 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
131 | mode=mode,
132 | loss=total_loss,
133 | eval_metrics=eval_metrics)
134 | elif mode == tf.estimator.ModeKeys.PREDICT:
135 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
136 | mode=mode, predictions={"probabilities": probabilities})
137 | else:
138 | raise ValueError(
139 | "Only TRAIN, EVAL and PREDICT modes are supported: %s" % (mode))
140 |
141 | return output_spec
142 |
143 | return model_fn
144 |
145 |
146 | def create_tokenizer_from_hub_module(bert_hub_module_handle):
147 | """Get the vocab file and casing info from the Hub module."""
148 | with tf.Graph().as_default():
149 | bert_module = hub.Module(bert_hub_module_handle)
150 | tokenization_info = bert_module(signature="tokenization_info", as_dict=True)
151 | with tf.Session() as sess:
152 | vocab_file, do_lower_case = sess.run([tokenization_info["vocab_file"],
153 | tokenization_info["do_lower_case"]])
154 | return tokenization.FullTokenizer(
155 | vocab_file=vocab_file, do_lower_case=do_lower_case)
156 |
157 |
158 | def main(_):
159 | tf.logging.set_verbosity(tf.logging.INFO)
160 |
161 | processors = {
162 | "cola": run_classifier.ColaProcessor,
163 | "mnli": run_classifier.MnliProcessor,
164 | "mrpc": run_classifier.MrpcProcessor,
165 | }
166 |
167 | if not FLAGS.do_train and not FLAGS.do_eval:
168 | raise ValueError("At least one of `do_train` or `do_eval` must be True.")
169 |
170 | tf.gfile.MakeDirs(FLAGS.output_dir)
171 |
172 | task_name = FLAGS.task_name.lower()
173 |
174 | if task_name not in processors:
175 | raise ValueError("Task not found: %s" % (task_name))
176 |
177 | processor = processors[task_name]()
178 |
179 | label_list = processor.get_labels()
180 |
181 | tokenizer = create_tokenizer_from_hub_module(FLAGS.bert_hub_module_handle)
182 |
183 | tpu_cluster_resolver = None
184 | if FLAGS.use_tpu and FLAGS.tpu_name:
185 | tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
186 | FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
187 |
188 | is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
189 | run_config = tf.contrib.tpu.RunConfig(
190 | cluster=tpu_cluster_resolver,
191 | master=FLAGS.master,
192 | model_dir=FLAGS.output_dir,
193 | save_checkpoints_steps=FLAGS.save_checkpoints_steps,
194 | tpu_config=tf.contrib.tpu.TPUConfig(
195 | iterations_per_loop=FLAGS.iterations_per_loop,
196 | num_shards=FLAGS.num_tpu_cores,
197 | per_host_input_for_training=is_per_host))
198 |
199 | train_examples = None
200 | num_train_steps = None
201 | num_warmup_steps = None
202 | if FLAGS.do_train:
203 | train_examples = processor.get_train_examples(FLAGS.data_dir)
204 | num_train_steps = int(
205 | len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
206 | num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
207 |
208 | model_fn = model_fn_builder(
209 | num_labels=len(label_list),
210 | learning_rate=FLAGS.learning_rate,
211 | num_train_steps=num_train_steps,
212 | num_warmup_steps=num_warmup_steps,
213 | use_tpu=FLAGS.use_tpu,
214 | bert_hub_module_handle=FLAGS.bert_hub_module_handle)
215 |
216 | # If TPU is not available, this will fall back to normal Estimator on CPU
217 | # or GPU.
218 | estimator = tf.contrib.tpu.TPUEstimator(
219 | use_tpu=FLAGS.use_tpu,
220 | model_fn=model_fn,
221 | config=run_config,
222 | train_batch_size=FLAGS.train_batch_size,
223 | eval_batch_size=FLAGS.eval_batch_size,
224 | predict_batch_size=FLAGS.predict_batch_size)
225 |
226 | if FLAGS.do_train:
227 | train_features = run_classifier.convert_examples_to_features(
228 | train_examples, label_list, FLAGS.max_seq_length, tokenizer)
229 | tf.logging.info("***** Running training *****")
230 | tf.logging.info(" Num examples = %d", len(train_examples))
231 | tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
232 | tf.logging.info(" Num steps = %d", num_train_steps)
233 | train_input_fn = run_classifier.input_fn_builder(
234 | features=train_features,
235 | seq_length=FLAGS.max_seq_length,
236 | is_training=True,
237 | drop_remainder=True)
238 | estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
239 |
240 | if FLAGS.do_eval:
241 | eval_examples = processor.get_dev_examples(FLAGS.data_dir)
242 | eval_features = run_classifier.convert_examples_to_features(
243 | eval_examples, label_list, FLAGS.max_seq_length, tokenizer)
244 |
245 | tf.logging.info("***** Running evaluation *****")
246 | tf.logging.info(" Num examples = %d", len(eval_examples))
247 | tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
248 |
249 | # This tells the estimator to run through the entire set.
250 | eval_steps = None
251 | # However, if running eval on the TPU, you will need to specify the
252 | # number of steps.
253 | if FLAGS.use_tpu:
254 | # Eval will be slightly WRONG on the TPU because it will truncate
255 | # the last batch.
256 | eval_steps = int(len(eval_examples) / FLAGS.eval_batch_size)
257 |
258 | eval_drop_remainder = True if FLAGS.use_tpu else False
259 | eval_input_fn = run_classifier.input_fn_builder(
260 | features=eval_features,
261 | seq_length=FLAGS.max_seq_length,
262 | is_training=False,
263 | drop_remainder=eval_drop_remainder)
264 |
265 | result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)
266 |
267 | output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
268 | with tf.gfile.GFile(output_eval_file, "w") as writer:
269 | tf.logging.info("***** Eval results *****")
270 | for key in sorted(result.keys()):
271 | tf.logging.info(" %s = %s", key, str(result[key]))
272 | writer.write("%s = %s\n" % (key, str(result[key])))
273 |
274 | if FLAGS.do_predict:
275 | predict_examples = processor.get_test_examples(FLAGS.data_dir)
276 | if FLAGS.use_tpu:
277 | # Discard batch remainder if running on TPU
278 | n = len(predict_examples)
279 | predict_examples = predict_examples[:(n - n % FLAGS.predict_batch_size)]
280 |
281 | predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
282 | run_classifier.file_based_convert_examples_to_features(
283 | predict_examples, label_list, FLAGS.max_seq_length, tokenizer,
284 | predict_file)
285 |
286 | tf.logging.info("***** Running prediction*****")
287 | tf.logging.info(" Num examples = %d", len(predict_examples))
288 | tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
289 |
290 | predict_input_fn = run_classifier.file_based_input_fn_builder(
291 | input_file=predict_file,
292 | seq_length=FLAGS.max_seq_length,
293 | is_training=False,
294 | drop_remainder=FLAGS.use_tpu)
295 |
296 | result = estimator.predict(input_fn=predict_input_fn)
297 |
298 | output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
299 | with tf.gfile.GFile(output_predict_file, "w") as writer:
300 | tf.logging.info("***** Predict results *****")
301 | for prediction in result:
302 | probabilities = prediction["probabilities"]
303 | output_line = "\t".join(
304 | str(class_probability)
305 | for class_probability in probabilities) + "\n"
306 | writer.write(output_line)
307 |
308 |
309 | if __name__ == "__main__":
310 | flags.mark_flag_as_required("data_dir")
311 | flags.mark_flag_as_required("task_name")
312 | flags.mark_flag_as_required("bert_hub_module_handle")
313 | flags.mark_flag_as_required("output_dir")
314 | tf.app.run()
315 |
--------------------------------------------------------------------------------
/bert/sample_text.txt:
--------------------------------------------------------------------------------
1 | This text is included to make sure Unicode is handled properly: 力加勝北区ᴵᴺᵀᵃছজটডণত
2 | Text should be one-sentence-per-line, with empty lines between documents.
3 | This sample text is public domain and was randomly selected from Project Guttenberg.
4 |
5 | The rain had only ceased with the gray streaks of morning at Blazing Star, and the settlement awoke to a moral sense of cleanliness, and the finding of forgotten knives, tin cups, and smaller camp utensils, where the heavy showers had washed away the debris and dust heaps before the cabin doors.
6 | Indeed, it was recorded in Blazing Star that a fortunate early riser had once picked up on the highway a solid chunk of gold quartz which the rain had freed from its incumbering soil, and washed into immediate and glittering popularity.
7 | Possibly this may have been the reason why early risers in that locality, during the rainy season, adopted a thoughtful habit of body, and seldom lifted their eyes to the rifted or india-ink washed skies above them.
8 | "Cass" Beard had risen early that morning, but not with a view to discovery.
9 | A leak in his cabin roof,--quite consistent with his careless, improvident habits,--had roused him at 4 A. M., with a flooded "bunk" and wet blankets.
10 | The chips from his wood pile refused to kindle a fire to dry his bed-clothes, and he had recourse to a more provident neighbor's to supply the deficiency.
11 | This was nearly opposite.
12 | Mr. Cassius crossed the highway, and stopped suddenly.
13 | Something glittered in the nearest red pool before him.
14 | Gold, surely!
15 | But, wonderful to relate, not an irregular, shapeless fragment of crude ore, fresh from Nature's crucible, but a bit of jeweler's handicraft in the form of a plain gold ring.
16 | Looking at it more attentively, he saw that it bore the inscription, "May to Cass."
17 | Like most of his fellow gold-seekers, Cass was superstitious.
18 |
19 | The fountain of classic wisdom, Hypatia herself.
20 | As the ancient sage--the name is unimportant to a monk--pumped water nightly that he might study by day, so I, the guardian of cloaks and parasols, at the sacred doors of her lecture-room, imbibe celestial knowledge.
21 | From my youth I felt in me a soul above the matter-entangled herd.
22 | She revealed to me the glorious fact, that I am a spark of Divinity itself.
23 | A fallen star, I am, sir!' continued he, pensively, stroking his lean stomach--'a fallen star!--fallen, if the dignity of philosophy will allow of the simile, among the hogs of the lower world--indeed, even into the hog-bucket itself. Well, after all, I will show you the way to the Archbishop's.
24 | There is a philosophic pleasure in opening one's treasures to the modest young.
25 | Perhaps you will assist me by carrying this basket of fruit?' And the little man jumped up, put his basket on Philammon's head, and trotted off up a neighbouring street.
26 | Philammon followed, half contemptuous, half wondering at what this philosophy might be, which could feed the self-conceit of anything so abject as his ragged little apish guide;
27 | but the novel roar and whirl of the street, the perpetual stream of busy faces, the line of curricles, palanquins, laden asses, camels, elephants, which met and passed him, and squeezed him up steps and into doorways, as they threaded their way through the great Moon-gate into the ample street beyond, drove everything from his mind but wondering curiosity, and a vague, helpless dread of that great living wilderness, more terrible than any dead wilderness of sand which he had left behind.
28 | Already he longed for the repose, the silence of the Laura--for faces which knew him and smiled upon him; but it was too late to turn back now.
29 | His guide held on for more than a mile up the great main street, crossed in the centre of the city, at right angles, by one equally magnificent, at each end of which, miles away, appeared, dim and distant over the heads of the living stream of passengers, the yellow sand-hills of the desert;
30 | while at the end of the vista in front of them gleamed the blue harbour, through a network of countless masts.
31 | At last they reached the quay at the opposite end of the street;
32 | and there burst on Philammon's astonished eyes a vast semicircle of blue sea, ringed with palaces and towers.
33 | He stopped involuntarily; and his little guide stopped also, and looked askance at the young monk, to watch the effect which that grand panorama should produce on him.
34 |
--------------------------------------------------------------------------------
/bert/tokenization.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Tokenization classes."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import collections
22 | import re
23 | import unicodedata
24 | import six
25 | import tensorflow as tf
26 |
27 |
28 | def validate_case_matches_checkpoint(do_lower_case, init_checkpoint):
29 | """Checks whether the casing config is consistent with the checkpoint name."""
30 |
31 | # The casing has to be passed in by the user and there is no explicit check
32 | # as to whether it matches the checkpoint. The casing information probably
33 | # should have been stored in the bert_config.json file, but it's not, so
34 | # we have to heuristically detect it to validate.
35 |
36 | if not init_checkpoint:
37 | return
38 |
39 | m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint)
40 | if m is None:
41 | return
42 |
43 | model_name = m.group(1)
44 |
45 | lower_models = [
46 | "uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12",
47 | "multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12"
48 | ]
49 |
50 | cased_models = [
51 | "cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16",
52 | "multi_cased_L-12_H-768_A-12"
53 | ]
54 |
55 | is_bad_config = False
56 | if model_name in lower_models and not do_lower_case:
57 | is_bad_config = True
58 | actual_flag = "False"
59 | case_name = "lowercased"
60 | opposite_flag = "True"
61 |
62 | if model_name in cased_models and do_lower_case:
63 | is_bad_config = True
64 | actual_flag = "True"
65 | case_name = "cased"
66 | opposite_flag = "False"
67 |
68 | if is_bad_config:
69 | raise ValueError(
70 | "You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. "
71 | "However, `%s` seems to be a %s model, so you "
72 | "should pass in `--do_lower_case=%s` so that the fine-tuning matches "
73 | "how the model was pre-training. If this error is wrong, please "
74 | "just comment out this check." % (actual_flag, init_checkpoint,
75 | model_name, case_name, opposite_flag))
76 |
77 |
78 | def convert_to_unicode(text):
79 | """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
80 | if six.PY3:
81 | if isinstance(text, str):
82 | return text
83 | elif isinstance(text, bytes):
84 | return text.decode("utf-8", "ignore")
85 | else:
86 | raise ValueError("Unsupported string type: %s" % (type(text)))
87 | elif six.PY2:
88 | if isinstance(text, str):
89 | return text.decode("utf-8", "ignore")
90 | elif isinstance(text, unicode):
91 | return text
92 | else:
93 | raise ValueError("Unsupported string type: %s" % (type(text)))
94 | else:
95 | raise ValueError("Not running on Python2 or Python 3?")
96 |
97 |
98 | def printable_text(text):
99 | """Returns text encoded in a way suitable for print or `tf.logging`."""
100 |
101 | # These functions want `str` for both Python2 and Python3, but in one case
102 | # it's a Unicode string and in the other it's a byte string.
103 | if six.PY3:
104 | if isinstance(text, str):
105 | return text
106 | elif isinstance(text, bytes):
107 | return text.decode("utf-8", "ignore")
108 | else:
109 | raise ValueError("Unsupported string type: %s" % (type(text)))
110 | elif six.PY2:
111 | if isinstance(text, str):
112 | return text
113 | elif isinstance(text, unicode):
114 | return text.encode("utf-8")
115 | else:
116 | raise ValueError("Unsupported string type: %s" % (type(text)))
117 | else:
118 | raise ValueError("Not running on Python2 or Python 3?")
119 |
120 |
121 | def load_vocab(vocab_file):
122 | """Loads a vocabulary file into a dictionary."""
123 | vocab = collections.OrderedDict()
124 | index = 0
125 | with tf.gfile.GFile(vocab_file, "r") as reader:
126 | while True:
127 | token = convert_to_unicode(reader.readline())
128 | if not token:
129 | break
130 | token = token.strip()
131 | vocab[token] = index
132 | index += 1
133 | return vocab
134 |
135 |
136 | def convert_by_vocab(vocab, items):
137 | """Converts a sequence of [tokens|ids] using the vocab."""
138 | output = []
139 | for item in items:
140 | output.append(vocab[item])
141 | return output
142 |
143 |
144 | def convert_tokens_to_ids(vocab, tokens):
145 | return convert_by_vocab(vocab, tokens)
146 |
147 |
148 | def convert_ids_to_tokens(inv_vocab, ids):
149 | return convert_by_vocab(inv_vocab, ids)
150 |
151 |
152 | def whitespace_tokenize(text):
153 | """Runs basic whitespace cleaning and splitting on a piece of text."""
154 | text = text.strip()
155 | if not text:
156 | return []
157 | tokens = text.split()
158 | return tokens
159 |
160 |
161 | class FullTokenizer(object):
162 | """Runs end-to-end tokenziation."""
163 |
164 | def __init__(self, vocab_file, do_lower_case=True):
165 | self.vocab = load_vocab(vocab_file)
166 | self.inv_vocab = {v: k for k, v in self.vocab.items()}
167 | self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
168 | self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
169 | self.wordpiece_tokenizer_not_UNK = WordpieceTokenizer_not_UNK(vocab=self.vocab)
170 |
171 | def tokenize(self, text):
172 | split_tokens = []
173 | for token in self.basic_tokenizer.tokenize(text):
174 | for sub_token in self.wordpiece_tokenizer.tokenize(token):
175 | split_tokens.append(sub_token)
176 |
177 | return split_tokens
178 |
179 | def tokenize_not_UNK(self, text):
180 | split_tokens = []
181 | for token in self.basic_tokenizer.tokenize(text):
182 | for sub_token in self.wordpiece_tokenizer_not_UNK.tokenize(token):
183 | split_tokens.append(sub_token)
184 |
185 | return split_tokens
186 |
187 | def convert_tokens_to_ids(self, tokens):
188 | return convert_by_vocab(self.vocab, tokens)
189 |
190 | def convert_ids_to_tokens(self, ids):
191 | return convert_by_vocab(self.inv_vocab, ids)
192 |
193 |
194 | class BasicTokenizer(object):
195 | """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
196 |
197 | def __init__(self, do_lower_case=True):
198 | """Constructs a BasicTokenizer.
199 |
200 | Args:
201 | do_lower_case: Whether to lower case the input.
202 | """
203 | self.do_lower_case = do_lower_case
204 |
205 | def tokenize(self, text):
206 | """Tokenizes a piece of text."""
207 | text = convert_to_unicode(text)
208 | text = self._clean_text(text)
209 |
210 | # This was added on November 1st, 2018 for the multilingual and Chinese
211 | # models. This is also applied to the English models now, but it doesn't
212 | # matter since the English models were not trained on any Chinese data
213 | # and generally don't have any Chinese data in them (there are Chinese
214 | # characters in the vocabulary because Wikipedia does have some Chinese
215 | # words in the English Wikipedia.).
216 | text = self._tokenize_chinese_chars(text)
217 |
218 | orig_tokens = whitespace_tokenize(text)
219 | split_tokens = []
220 | for token in orig_tokens:
221 | if self.do_lower_case:
222 | token = token.lower()
223 | token = self._run_strip_accents(token)
224 | split_tokens.extend(self._run_split_on_punc(token))
225 |
226 | output_tokens = whitespace_tokenize(" ".join(split_tokens))
227 | return output_tokens
228 |
229 | def _run_strip_accents(self, text):
230 | """Strips accents from a piece of text."""
231 | text = unicodedata.normalize("NFD", text)
232 | output = []
233 | for char in text:
234 | cat = unicodedata.category(char)
235 | if cat == "Mn":
236 | continue
237 | output.append(char)
238 | return "".join(output)
239 |
240 | def _run_split_on_punc(self, text):
241 | """Splits punctuation on a piece of text."""
242 | chars = list(text)
243 | i = 0
244 | start_new_word = True
245 | output = []
246 | while i < len(chars):
247 | char = chars[i]
248 | if _is_punctuation(char):
249 | output.append([char])
250 | start_new_word = True
251 | else:
252 | if start_new_word:
253 | output.append([])
254 | start_new_word = False
255 | output[-1].append(char)
256 | i += 1
257 |
258 | return ["".join(x) for x in output]
259 |
260 | def _tokenize_chinese_chars(self, text):
261 | """Adds whitespace around any CJK character."""
262 | output = []
263 | for char in text:
264 | cp = ord(char)
265 | if self._is_chinese_char(cp):
266 | output.append(" ")
267 | output.append(char)
268 | output.append(" ")
269 | else:
270 | output.append(char)
271 | return "".join(output)
272 |
273 | def _is_chinese_char(self, cp):
274 | """Checks whether CP is the codepoint of a CJK character."""
275 | # This defines a "chinese character" as anything in the CJK Unicode block:
276 | # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
277 | #
278 | # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
279 | # despite its name. The modern Korean Hangul alphabet is a different block,
280 | # as is Japanese Hiragana and Katakana. Those alphabets are used to write
281 | # space-separated words, so they are not treated specially and handled
282 | # like the all of the other languages.
283 | if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
284 | (cp >= 0x3400 and cp <= 0x4DBF) or #
285 | (cp >= 0x20000 and cp <= 0x2A6DF) or #
286 | (cp >= 0x2A700 and cp <= 0x2B73F) or #
287 | (cp >= 0x2B740 and cp <= 0x2B81F) or #
288 | (cp >= 0x2B820 and cp <= 0x2CEAF) or
289 | (cp >= 0xF900 and cp <= 0xFAFF) or #
290 | (cp >= 0x2F800 and cp <= 0x2FA1F)): #
291 | return True
292 |
293 | return False
294 |
295 | def _clean_text(self, text):
296 | """Performs invalid character removal and whitespace cleanup on text."""
297 | output = []
298 | for char in text:
299 | cp = ord(char)
300 | if cp == 0 or cp == 0xfffd or _is_control(char):
301 | continue
302 | if _is_whitespace(char):
303 | output.append(" ")
304 | else:
305 | output.append(char)
306 | return "".join(output)
307 |
308 |
309 | class WordpieceTokenizer_not_UNK(object):
310 | """Runs WordPiece tokenziation."""
311 | def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200):
312 | self.vocab = vocab
313 | self.unk_token = unk_token
314 | self.max_input_chars_per_word = max_input_chars_per_word
315 |
316 | def tokenize(self, text):
317 | """Tokenizes a piece of text into its word pieces.
318 |
319 | This uses a greedy longest-match-first algorithm to perform tokenization
320 | using the given vocabulary.
321 |
322 | For example:
323 | input = "unaffable"
324 | output = ["un", "##aff", "##able"]
325 |
326 | Args:
327 | text: A single token or whitespace separated tokens. This should have
328 | already been passed through `BasicTokenizer.
329 |
330 | Returns:
331 | A list of wordpiece tokens.
332 | """
333 |
334 | text = convert_to_unicode(text)
335 |
336 | output_tokens = []
337 | for token in whitespace_tokenize(text):
338 | chars = list(token)
339 | if len(chars) > self.max_input_chars_per_word:
340 | output_tokens.append(self.unk_token)
341 | continue
342 |
343 | is_bad = False
344 | start = 0
345 | sub_tokens = []
346 | while start < len(chars):
347 | end = len(chars)
348 | cur_substr = None
349 | while start < end:
350 | substr = "".join(chars[start:end])
351 | if start > 0:
352 | substr = "##" + substr
353 | if substr in self.vocab:
354 | cur_substr = substr
355 | break
356 | end -= 1
357 | if cur_substr is None:
358 | is_bad = True
359 | break
360 | sub_tokens.append(cur_substr)
361 | start = end
362 |
363 | if is_bad:
364 | #output_tokens.append(self.unk_token)
365 | output_tokens.append(token)
366 | else:
367 | output_tokens.extend(sub_tokens)
368 | return output_tokens
369 |
370 |
371 | class WordpieceTokenizer(object):
372 | """Runs WordPiece tokenziation."""
373 |
374 | def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200):
375 | self.vocab = vocab
376 | self.unk_token = unk_token
377 | self.max_input_chars_per_word = max_input_chars_per_word
378 |
379 | def tokenize(self, text):
380 | """Tokenizes a piece of text into its word pieces.
381 |
382 | This uses a greedy longest-match-first algorithm to perform tokenization
383 | using the given vocabulary.
384 |
385 | For example:
386 | input = "unaffable"
387 | output = ["un", "##aff", "##able"]
388 |
389 | Args:
390 | text: A single token or whitespace separated tokens. This should have
391 | already been passed through `BasicTokenizer.
392 |
393 | Returns:
394 | A list of wordpiece tokens.
395 | """
396 |
397 | text = convert_to_unicode(text)
398 |
399 | output_tokens = []
400 | for token in whitespace_tokenize(text):
401 | chars = list(token)
402 | if len(chars) > self.max_input_chars_per_word:
403 | output_tokens.append(self.unk_token)
404 | continue
405 |
406 | is_bad = False
407 | start = 0
408 | sub_tokens = []
409 | while start < len(chars):
410 | end = len(chars)
411 | cur_substr = None
412 | while start < end:
413 | substr = "".join(chars[start:end])
414 | if start > 0:
415 | substr = "##" + substr
416 | if substr in self.vocab:
417 | cur_substr = substr
418 | break
419 | end -= 1
420 | if cur_substr is None:
421 | is_bad = True
422 | break
423 | sub_tokens.append(cur_substr)
424 | start = end
425 |
426 | if is_bad:
427 | output_tokens.append(self.unk_token)
428 | else:
429 | output_tokens.extend(sub_tokens)
430 | return output_tokens
431 |
432 |
433 | def _is_whitespace(char):
434 | """Checks whether `chars` is a whitespace character."""
435 | # \t, \n, and \r are technically contorl characters but we treat them
436 | # as whitespace since they are generally considered as such.
437 | if char == " " or char == "\t" or char == "\n" or char == "\r":
438 | return True
439 | cat = unicodedata.category(char)
440 | if cat == "Zs":
441 | return True
442 | return False
443 |
444 |
445 | def _is_control(char):
446 | """Checks whether `chars` is a control character."""
447 | # These are technically control characters but we count them as whitespace
448 | # characters.
449 | if char == "\t" or char == "\n" or char == "\r":
450 | return False
451 | cat = unicodedata.category(char)
452 | if cat.startswith("C"):
453 | return True
454 | return False
455 |
456 |
457 | def _is_punctuation(char):
458 | """Checks whether `chars` is a punctuation character."""
459 | cp = ord(char)
460 | # We treat all non-letter/number ASCII as punctuation.
461 | # Characters such as "^", "$", and "`" are not in the Unicode
462 | # Punctuation class but we treat them as punctuation anyways, for
463 | # consistency.
464 | if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
465 | (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
466 | return True
467 | cat = unicodedata.category(char)
468 | if cat.startswith("P"):
469 | return True
470 | return False
471 |
--------------------------------------------------------------------------------
/bert/tokenization_test.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | from __future__ import absolute_import
16 | from __future__ import division
17 | from __future__ import print_function
18 |
19 | import os
20 | import tempfile
21 | import tokenization
22 | import six
23 | import tensorflow as tf
24 |
25 |
26 | class TokenizationTest(tf.test.TestCase):
27 |
28 | def test_full_tokenizer(self):
29 | vocab_tokens = [
30 | "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
31 | "##ing", ","
32 | ]
33 | with tempfile.NamedTemporaryFile(delete=False) as vocab_writer:
34 | if six.PY2:
35 | vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
36 | else:
37 | vocab_writer.write("".join(
38 | [x + "\n" for x in vocab_tokens]).encode("utf-8"))
39 |
40 | vocab_file = vocab_writer.name
41 |
42 | tokenizer = tokenization.FullTokenizer(vocab_file)
43 | os.unlink(vocab_file)
44 |
45 | tokens = tokenizer.tokenize(u"UNwant\u00E9d,running")
46 | self.assertAllEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
47 |
48 | self.assertAllEqual(
49 | tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
50 |
51 | def test_chinese(self):
52 | tokenizer = tokenization.BasicTokenizer()
53 |
54 | self.assertAllEqual(
55 | tokenizer.tokenize(u"ah\u535A\u63A8zz"),
56 | [u"ah", u"\u535A", u"\u63A8", u"zz"])
57 |
58 | def test_basic_tokenizer_lower(self):
59 | tokenizer = tokenization.BasicTokenizer(do_lower_case=True)
60 |
61 | self.assertAllEqual(
62 | tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
63 | ["hello", "!", "how", "are", "you", "?"])
64 | self.assertAllEqual(tokenizer.tokenize(u"H\u00E9llo"), ["hello"])
65 |
66 | def test_basic_tokenizer_no_lower(self):
67 | tokenizer = tokenization.BasicTokenizer(do_lower_case=False)
68 |
69 | self.assertAllEqual(
70 | tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
71 | ["HeLLo", "!", "how", "Are", "yoU", "?"])
72 |
73 | def test_wordpiece_tokenizer(self):
74 | vocab_tokens = [
75 | "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
76 | "##ing"
77 | ]
78 |
79 | vocab = {}
80 | for (i, token) in enumerate(vocab_tokens):
81 | vocab[token] = i
82 | tokenizer = tokenization.WordpieceTokenizer(vocab=vocab)
83 |
84 | self.assertAllEqual(tokenizer.tokenize(""), [])
85 |
86 | self.assertAllEqual(
87 | tokenizer.tokenize("unwanted running"),
88 | ["un", "##want", "##ed", "runn", "##ing"])
89 |
90 | self.assertAllEqual(
91 | tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
92 |
93 | def test_convert_tokens_to_ids(self):
94 | vocab_tokens = [
95 | "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
96 | "##ing"
97 | ]
98 |
99 | vocab = {}
100 | for (i, token) in enumerate(vocab_tokens):
101 | vocab[token] = i
102 |
103 | self.assertAllEqual(
104 | tokenization.convert_tokens_to_ids(
105 | vocab, ["un", "##want", "##ed", "runn", "##ing"]), [7, 4, 5, 8, 9])
106 |
107 | def test_is_whitespace(self):
108 | self.assertTrue(tokenization._is_whitespace(u" "))
109 | self.assertTrue(tokenization._is_whitespace(u"\t"))
110 | self.assertTrue(tokenization._is_whitespace(u"\r"))
111 | self.assertTrue(tokenization._is_whitespace(u"\n"))
112 | self.assertTrue(tokenization._is_whitespace(u"\u00A0"))
113 |
114 | self.assertFalse(tokenization._is_whitespace(u"A"))
115 | self.assertFalse(tokenization._is_whitespace(u"-"))
116 |
117 | def test_is_control(self):
118 | self.assertTrue(tokenization._is_control(u"\u0005"))
119 |
120 | self.assertFalse(tokenization._is_control(u"A"))
121 | self.assertFalse(tokenization._is_control(u" "))
122 | self.assertFalse(tokenization._is_control(u"\t"))
123 | self.assertFalse(tokenization._is_control(u"\r"))
124 | self.assertFalse(tokenization._is_control(u"\U0001F4A9"))
125 |
126 | def test_is_punctuation(self):
127 | self.assertTrue(tokenization._is_punctuation(u"-"))
128 | self.assertTrue(tokenization._is_punctuation(u"$"))
129 | self.assertTrue(tokenization._is_punctuation(u"`"))
130 | self.assertTrue(tokenization._is_punctuation(u"."))
131 |
132 | self.assertFalse(tokenization._is_punctuation(u"A"))
133 | self.assertFalse(tokenization._is_punctuation(u" "))
134 |
135 |
136 | if __name__ == "__main__":
137 | tf.test.main()
138 |
--------------------------------------------------------------------------------
/config.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/30 16:02
4 | # @Author : 刘鑫
5 | # @FileName: config.py
6 | # @Software: PyCharm
7 | import os
8 |
9 |
10 | class config(object):
11 | PROJECT_DIR = os.path.dirname(__file__)
12 |
--------------------------------------------------------------------------------
/pretraining_model/readme.txt:
--------------------------------------------------------------------------------
1 | # 这里存放预训练模型
2 | # 直接将下载好的预训练模型解压放在这里即可
3 | # 尽可能的保持文件夹下内容名称定义一直,减少代码修改
--------------------------------------------------------------------------------
/raw_data/kgClue/kgClue.yaml:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CLUEbenchmark/KgCLUEbench/bece79c8bd7cb338d707cf71c03a98963cac1a24/raw_data/kgClue/kgClue.yaml
--------------------------------------------------------------------------------
/raw_data/kgClue/knowledge/README.md:
--------------------------------------------------------------------------------
1 | 请把knowledge.txt放在这里
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | tensorflow==1.15.4
2 | tensorflow-gpu==1.15.4
3 | requests==2.23.0
4 | python>=3.6
--------------------------------------------------------------------------------
/utils/DrawTrain.py:
--------------------------------------------------------------------------------
1 | # 读取out里面的epoch文件绘制训练过程
2 | # 通过选择实现: 每一个epoch画一张图或所有epoch都绘制在一张图内
3 |
4 | import os
5 | import shutil
6 | import matplotlib
7 | from decimal import Decimal
8 | matplotlib.use('TkAgg')
9 | from matplotlib import pyplot as plt
10 |
11 |
12 | def draw_one_pic(path, out_path):
13 | with open(path, 'r', encoding='utf-8') as f:
14 | steps = []
15 | loss_ = []
16 | acc_ = []
17 | while True:
18 | line = f.readline()
19 | if line:
20 | tmp = line.split(",")
21 | step = tmp[0].split(":")[1]
22 | loss = Decimal(tmp[1].split(":")[1]).quantize(Decimal('0.00'))
23 | acc = Decimal(float(tmp[2].split(":")[1])*100.0).quantize(Decimal('0.00'))
24 | steps.append(step)
25 | loss_.append(loss)
26 | acc_.append(acc)
27 | else:
28 | break
29 |
30 | x_axis_data = steps
31 | y_axis_data = loss_
32 | y_axis_data_ = acc_
33 | # plt.figure(figsize=(19.2,10.8))
34 | # plot中参数的含义分别是横轴值,纵轴值,线的形状,颜色,透明度,线的宽度和标签
35 | plt.plot(x_axis_data, y_axis_data, color='b', alpha=0.8, linewidth=1.5, label='loss')
36 | plt.plot(x_axis_data, y_axis_data_, color='r', alpha=0.8, linewidth=1.5, label='acc %')
37 |
38 | # 显示标签,如果不加这句,即使在plot中加了label='一些数字'的参数,最终还是不会显示标签
39 |
40 | plt.legend(loc="upper right")
41 | plt.xlabel('steps')
42 |
43 | from matplotlib.pyplot import MultipleLocator
44 | x_major_locator = MultipleLocator(3000)
45 |
46 | ax = plt.gca()
47 | # ax为两条坐标轴的实例
48 | ax.xaxis.set_major_locator(x_major_locator)
49 |
50 |
51 | plt.savefig(out_path) # 保存该图片
52 |
53 |
54 | def main(divided=False):
55 | filenames = os.listdir(train_out_dir)
56 | filenames = sorted(filenames)
57 |
58 | if divided:
59 | for idx, filename in enumerate(filenames):
60 | file_path = os.path.join(train_out_dir, filename)
61 | out_path = os.path.join(pic_out, './training_epoch_' + str(idx) + '.png')
62 | draw_one_pic(file_path, out_path)
63 | else:
64 | # 思路合并所有的文件
65 | all_in_f = open("./tmp.txt", 'w', encoding='utf-8')
66 | for idx, filename in enumerate(filenames):
67 | if filename.startswith("epoch"):
68 | x = open(os.path.join(train_out_dir, filename), "r", encoding='utf-8') # 打开列表中的文件,读取文件内容
69 | all_in_f.write(x.read()) # 写入新建的log文件中
70 | x.close()
71 | else:
72 | all_in_f.close()
73 | raise ValueError("the path is not pure!!!")
74 | all_in_f.close()
75 | draw_one_pic("./tmp.txt", os.path.join(pic_out, './training_out.png'))
76 | os.remove("./tmp.txt")
77 |
78 |
79 | if __name__ == '__main__':
80 | train_out_dir = r"C:\Users\11943\Documents\GitHub\KgClue_Bench\algorithm\kg_qa\SIM\log"
81 | pic_out = r"C:\Users\11943\Documents\GitHub\KgClue_Bench\algorithm\kg_qa\SIM\pic_out"
82 | if not os.path.exists(pic_out):
83 | os.makedirs(pic_out)
84 | else:
85 | # 清空文件夹
86 | shutil.rmtree(pic_out)
87 | os.makedirs(pic_out)
88 |
89 | divided = False
90 | main(divided)
91 |
--------------------------------------------------------------------------------
/utils/EvalReport.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/30 22:03
4 | # @Author : 刘鑫
5 | # @FileName: EvalReport.py
6 | # @Software: PyCharm
7 |
8 |
9 | def report(y_true, y_pred):
10 | '''
11 |
12 | :param y_true: [[]]
13 | :param y_pred: [[]]
14 | :return:
15 | '''
16 |
17 | from seqeval.metrics import accuracy_score, precision_score, recall_score, f1_score
18 | from seqeval.metrics import classification_report
19 |
20 | acc_s = accuracy_score(y_true, y_pred)
21 | precision_s = precision_score(y_true, y_pred)
22 | recall_s = recall_score(y_true, y_pred)
23 | f1_s = f1_score(y_true, y_pred)
24 | report = classification_report(y_true, y_pred)
25 |
26 | print(f'\t\t准确率为: {acc_s}')
27 | print(f'\t\t查准率为: {precision_s}')
28 | print(f'\t\t召回率为: {recall_s}')
29 | print(f'\t\tf1值为: {f1_s}')
30 | print(report)
31 |
--------------------------------------------------------------------------------
/utils/IdAndLabel.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/30 17:45
4 | # @Author : 刘鑫
5 | # @FileName: IdAndLabel.py
6 | # @Software: PyCharm
7 |
8 | def id2label(label_list):
9 | out = dict()
10 | for idx, label in enumerate(label_list):
11 | out[idx] = label
12 | return out
13 |
--------------------------------------------------------------------------------
/utils/ListAndList.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/29 22:54
4 | # @Author : 刘鑫
5 | # @FileName: ListAndList.py
6 | # @Software: PyCharm
7 | import random
8 |
9 |
10 | def _index_q_list_in_k_list(q_list, k_list):
11 | """Known q_list in k_list, find index(first time) of q_list in k_list"""
12 | q_list_length = len(q_list)
13 | k_list_length = len(k_list)
14 | for idx in range(k_list_length - q_list_length + 1):
15 | t = [q == k for q, k in zip(q_list, k_list[idx: idx + q_list_length])]
16 | if all(t):
17 | idx_start = idx
18 | return idx_start
19 |
20 |
21 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 | # -*- coding: utf-8 -*-
3 | # @Time : 2021/11/29 22:20
4 | # @Author : 刘鑫
5 | # @FileName: __init__.py.py
6 | # @Software: PyCharm
7 |
--------------------------------------------------------------------------------