└── FinalProject_chitra66.ipynb
/FinalProject_chitra66.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# COGS 108 - Final Project "
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "# Overview"
15 | ]
16 | },
17 | {
18 | "cell_type": "markdown",
19 | "metadata": {},
20 | "source": [
21 | "One important of interacting with people, especially in a society where interacting with people over food is important for personal and professional relationships, takes many forms, including eating at restaurants. When we go out with our friends, families, and colleagues it is crucial that we go to restaurants that are safe and healthy. One way to ensure that our restaurants are inspected are through random health inspections that are unique to each county; in these random health inspections, many things- such as temperature, hygiene, meat/food processing- are checked to make sure that they follow CDC and FDA guidelines. Customer ratings and health inspections are two of the ways that restaurants are kept accountable; this is why I wanted to know if publicizing the health inspection scores on a platform, like Yelp, would improve health in restaurants. After conducting an analysis on this topic, the data does not suggest that publicizing ratings makes restaurants healthier in the future. "
22 | ]
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "# Name & GitHub\n",
29 | "\n",
30 | "- Name: Chitra Kulkarni\n",
31 | "- GitHub Username: chitra66"
32 | ]
33 | },
34 | {
35 | "cell_type": "markdown",
36 | "metadata": {},
37 | "source": [
38 | "# Research Question"
39 | ]
40 | },
41 | {
42 | "cell_type": "markdown",
43 | "metadata": {},
44 | "source": [
45 | "Does publicizing the health inspection score on platforms, like Yelp, improve the restaurant's overall health (as seen in future inspections) in popular cities such as Raleigh, North Carolina?"
46 | ]
47 | },
48 | {
49 | "cell_type": "markdown",
50 | "metadata": {},
51 | "source": [
52 | "## Background and Prior Work"
53 | ]
54 | },
55 | {
56 | "cell_type": "markdown",
57 | "metadata": {},
58 | "source": [
59 | "To begin this process, the first thing to research is to look at the restaurant health inspection processes in Raleigh, North Carolina, located in Wake County. In Wake County, restaurants are inspected one to four times a year, depending on what they serve and their food processing [1]. In NC, the grading of food establishments is based on a system of scoring, in which a score of 90 or higher will receive a grade of A, between 80-90 will receive a B, between 70-80 will receive a C; if an establishment receives a score of less than 70, their permit is immediately revoked [2]. In NC, there are 4 risk categories which determine the frequency of the inspections: risk category 1 is for establishments with no potentially hazardous foods, risk category 2 is for establishments with no more than 2 potentially hazardous foods, risk category 3 is for establishments with no more than 3 potentially hazardous foods, and risk category 4 is for establishments with unlimited number of potentially hazardous foods [3]. Risk factors, according to the definitions put forth by the CDC and FDA, are \"food preparation practices and employee behaviors most commonly reported to the CDC as contributing factors in foodborne illness outbreaks. [3]\"\n",
60 | "\n",
61 | "In an attempt to provide more information to help their customers, Yelp started adding health inspection scores onto their website and apps. This move was based on prior research done on restaurants in LA where restaurants would have to post grade cards in their window. This new rule resulted in a decrease in foodborne illnesses for over two years in the LA area [4]. Since Raleigh, NC is a busy city because of tourism, Yelp started adding restaurant health sanitation scores from March of 2015 [5].\n",
62 | "\n",
63 | "One example of someone who has tried to use scores to test a value of an item is a research project done on if there is a correlation between the price of wine and its corresponding WineEnthusiast score? This project relates to my research question because it is comparing if an item is better or worse based on its score; similarly, I am interested in seeing if the Yelp ratings and health inspection scores posted on Yelp make a restaurant more or less health-conscious [6].\n",
64 | "\n",
65 | "References (include links):\n",
66 | "\n",
67 | "1)http://www.wakegov.com/food/healthinspections/facilities/Pages/restaurants.aspx\n",
68 | "\n",
69 | "2)https://public.cdpehs.com/NCENVPBL/ESTABLISHMENT/ShowRestaurantRules.aspx\n",
70 | "\n",
71 | "3)https://ehs.ncpublichealth.com/faf/docs/foodprot/NC-MarkingInstructionsFinal-110419.pdf\n",
72 | "\n",
73 | "4)https://www.washingtonpost.com/news/voraciously/wp/2018/07/24/yelp-adds-health-inspection-scores-for-restaurants-and-restaurateurs-are-not-happy/\n",
74 | "\n",
75 | "5)https://gcn.com/articles/2015/03/02/yelp-city-restaurant-inspections.aspx\n",
76 | "\n",
77 | "6)FinalProject_group085.ipynb"
78 | ]
79 | },
80 | {
81 | "cell_type": "markdown",
82 | "metadata": {},
83 | "source": [
84 | "# Hypothesis\n"
85 | ]
86 | },
87 | {
88 | "cell_type": "markdown",
89 | "metadata": {},
90 | "source": [
91 | "Since restaurants depend on customers' ratings and reviews for their businesses, I believe that publicizing health inspection scores on Yelp will improve overall restaurant health. Especially when customers write reviews regarding any problems that could reflect a restaurant’s health, other customers will be discouraged to go there; additionally, to improve their ratings, restaurants would be more willing to improve their health standards to pass the next inspection.\n",
92 | "\n"
93 | ]
94 | },
95 | {
96 | "cell_type": "markdown",
97 | "metadata": {},
98 | "source": [
99 | "# Dataset(s)"
100 | ]
101 | },
102 | {
103 | "cell_type": "markdown",
104 | "metadata": {},
105 | "source": [
106 | "I used three datasets for this analysis. The first dataset was inspections.csv, which captures all sanitation/health inspections from September 2012 to present. For my analysis, I specifically used the hsisid (state code identifying the restaurant), the facility type (to narrow my analysis to only restaurants), the city (to keep my analysis to just Raleigh, NC), and the zipcode for the restaurants. This dataset had 18466 rows x 36 columns. The second dataset I used was the violations.csv, which has 189802 rows x 18 columns, and describes all violations (and reports which code was violated) at active restaurants in Wake County, from September 2012 to present. In this dataset, I specifically used the hsisid (which is how I merged inspections.csv with violations.csv), violation type, and health inspection scores. There are three violation types described in this dataset: CDI, which is corrected during inspection; VR, which indicates that verification is required within 10 days; and lastly, R, which indicates a repeat offense [1]. The third dataset I used was the yelp.csv (which had 3688 rows x 31 columns), which had information about the restaurants's yelp ratings. From this database, I used the zipcode and ratings information. I used the zipcodes to merge this dataset with violations.csv. \n",
107 | "\n",
108 | "1) https://ehs.ncpublichealth.com/faf/docs/foodprot/NC-MarkingInstructionsFinal-110419.pdf"
109 | ]
110 | },
111 | {
112 | "cell_type": "markdown",
113 | "metadata": {},
114 | "source": [
115 | "# Setup"
116 | ]
117 | },
118 | {
119 | "cell_type": "code",
120 | "execution_count": 10,
121 | "metadata": {},
122 | "outputs": [],
123 | "source": [
124 | "#imports\n",
125 | "import numpy as np\n",
126 | "import pandas as pd\n",
127 | "import matplotlib.pyplot as plt\n",
128 | " \n",
129 | "import seaborn as sns\n",
130 | "sns.set()\n",
131 | "sns.set_context('talk')"
132 | ]
133 | },
134 | {
135 | "cell_type": "code",
136 | "execution_count": 11,
137 | "metadata": {},
138 | "outputs": [],
139 | "source": [
140 | "#read data\n",
141 | "df_insp = pd.read_csv(\"/home/cnkulkar/Project/Data/inspections.csv\")\n",
142 | "df_viol = pd.read_csv(\"/home/cnkulkar/Project/Data/violations.csv\")\n",
143 | "df_yelp = pd.read_csv(\"/home/cnkulkar/Project/Data/yelp.csv\")"
144 | ]
145 | },
146 | {
147 | "cell_type": "markdown",
148 | "metadata": {},
149 | "source": [
150 | "# Data Cleaning"
151 | ]
152 | },
153 | {
154 | "cell_type": "code",
155 | "execution_count": 12,
156 | "metadata": {},
157 | "outputs": [],
158 | "source": [
159 | "#clean df_insp\n",
160 | "df_insp = df_insp.drop(columns = ['date', 'phonenumber', 'top_match', 'second_match', 'days_from_open_date', 'x', 'y', 'geocodestatus', 'type', 'inspectedby', 'inspector_id', 'previous_inspection_by_same_inspector'])\n",
161 | "\n",
162 | "#clean df_viol\n",
163 | "df_viol = df_viol.drop(columns = ['inspectedby'])\n",
164 | "\n",
165 | "#clean df_yelp\n",
166 | "df_yelp = df_yelp.drop(columns = ['latitude', 'longitude', 'phone', 'hotdogs', 'sandwiches', 'pizza', 'tradamerican', 'burgers', 'mexican', 'grocery', 'breakfast_brunch', 'coffee', 'chinese', 'italian', 'newamerican', 'chicken_wings', 'delis', 'bars', 'salad', 'seafood', 'bbq', 'bakeries', 'sushi'])\n",
167 | "df_yelp = df_yelp.rename(columns={'zip_code': 'zip'})"
168 | ]
169 | },
170 | {
171 | "cell_type": "code",
172 | "execution_count": 13,
173 | "metadata": {},
174 | "outputs": [
175 | {
176 | "data": {
177 | "text/html": [
178 | "
\n",
179 | "\n",
192 | "
\n",
193 | " \n",
194 | "
\n",
195 | "
\n",
196 | "
hsisid
\n",
197 | "
name
\n",
198 | "
address1
\n",
199 | "
address2
\n",
200 | "
city
\n",
201 | "
state
\n",
202 | "
postalcode
\n",
203 | "
restaurantopendate
\n",
204 | "
facilitytype
\n",
205 | "
zip
\n",
206 | "
...
\n",
207 | "
violationcode
\n",
208 | "
severity
\n",
209 | "
shortdesc
\n",
210 | "
comments
\n",
211 | "
pointvalue
\n",
212 | "
observationtype
\n",
213 | "
violationtype
\n",
214 | "
count
\n",
215 | "
cdcriskfactor
\n",
216 | "
cdcdataitem
\n",
217 | "
\n",
218 | " \n",
219 | " \n",
220 | "
\n",
221 | "
0
\n",
222 | "
4092013748
\n",
223 | "
Cafe 3000 At Wake Med
\n",
224 | "
3000 New Bern Ave
\n",
225 | "
NaN
\n",
226 | "
raleigh
\n",
227 | "
NC
\n",
228 | "
27610
\n",
229 | "
2002-12-21T00:00:00Z
\n",
230 | "
Restaurant
\n",
231 | "
27610
\n",
232 | "
...
\n",
233 | "
3-603.11
\n",
234 | "
Priority Foundation
\n",
235 | "
Consumer advisory provided for raw or undercoo...
\n",
236 | "
3-603.11; Priority Foundation; Establishment f...
\n",
237 | "
0
\n",
238 | "
Out
\n",
239 | "
CDI
\n",
240 | "
NaN
\n",
241 | "
NaN
\n",
242 | "
NaN
\n",
243 | "
\n",
244 | "
\n",
245 | "
1
\n",
246 | "
4092013748
\n",
247 | "
Cafe 3000 At Wake Med
\n",
248 | "
3000 New Bern Ave
\n",
249 | "
NaN
\n",
250 | "
raleigh
\n",
251 | "
NC
\n",
252 | "
27610
\n",
253 | "
2002-12-21T00:00:00Z
\n",
254 | "
Restaurant
\n",
255 | "
27610
\n",
256 | "
...
\n",
257 | "
3-502.11
\n",
258 | "
Priority Foundation
\n",
259 | "
Compliance with variance, specialized process,...
\n",
260 | "
Pf - 3-502.11 Variance Requirement - Establish...
\n",
261 | "
0
\n",
262 | "
Out
\n",
263 | "
CDI
\n",
264 | "
NaN
\n",
265 | "
NaN
\n",
266 | "
NaN
\n",
267 | "
\n",
268 | "
\n",
269 | "
2
\n",
270 | "
4092013748
\n",
271 | "
Cafe 3000 At Wake Med
\n",
272 | "
3000 New Bern Ave
\n",
273 | "
NaN
\n",
274 | "
raleigh
\n",
275 | "
NC
\n",
276 | "
27610
\n",
277 | "
2002-12-21T00:00:00Z
\n",
278 | "
Restaurant
\n",
279 | "
27610
\n",
280 | "
...
\n",
281 | "
3-603.11
\n",
282 | "
Priority Foundation
\n",
283 | "
Consumer advisory provided for raw or undercoo...
\n",
284 | "
Pf - 3-603.11 Consumption of Animal Foods that...
\n",
285 | "
0
\n",
286 | "
Out
\n",
287 | "
R
\n",
288 | "
NaN
\n",
289 | "
NaN
\n",
290 | "
NaN
\n",
291 | "
\n",
292 | "
\n",
293 | "
3
\n",
294 | "
4092013748
\n",
295 | "
Cafe 3000 At Wake Med
\n",
296 | "
3000 New Bern Ave
\n",
297 | "
NaN
\n",
298 | "
raleigh
\n",
299 | "
NC
\n",
300 | "
27610
\n",
301 | "
2002-12-21T00:00:00Z
\n",
302 | "
Restaurant
\n",
303 | "
27610
\n",
304 | "
...
\n",
305 | "
3-603.11
\n",
306 | "
Priority Foundation
\n",
307 | "
Consumer advisory provided for raw or undercoo...
\n",
308 | "
Pf - 3-603.11 Consumption of Animal Foods that...
\n",
309 | "
0
\n",
310 | "
Out
\n",
311 | "
VR
\n",
312 | "
NaN
\n",
313 | "
NaN
\n",
314 | "
NaN
\n",
315 | "
\n",
316 | "
\n",
317 | "
4
\n",
318 | "
4092013748
\n",
319 | "
Cafe 3000 At Wake Med
\n",
320 | "
3000 New Bern Ave
\n",
321 | "
NaN
\n",
322 | "
raleigh
\n",
323 | "
NC
\n",
324 | "
27610
\n",
325 | "
2002-12-21T00:00:00Z
\n",
326 | "
Restaurant
\n",
327 | "
27610
\n",
328 | "
...
\n",
329 | "
8-201.13
\n",
330 | "
Core
\n",
331 | "
Compliance with variance, specialized process,...
\n",
332 | "
Raw fish is used for sushi (sushi chef not pre...
\n",
333 | "
0
\n",
334 | "
Out
\n",
335 | "
NaN
\n",
336 | "
NaN
\n",
337 | "
NaN
\n",
338 | "
NaN
\n",
339 | "
\n",
340 | " \n",
341 | "
\n",
342 | "
5 rows × 40 columns
\n",
343 | "
"
344 | ],
345 | "text/plain": [
346 | " hsisid name address1 address2 city \\\n",
347 | "0 4092013748 Cafe 3000 At Wake Med 3000 New Bern Ave NaN raleigh \n",
348 | "1 4092013748 Cafe 3000 At Wake Med 3000 New Bern Ave NaN raleigh \n",
349 | "2 4092013748 Cafe 3000 At Wake Med 3000 New Bern Ave NaN raleigh \n",
350 | "3 4092013748 Cafe 3000 At Wake Med 3000 New Bern Ave NaN raleigh \n",
351 | "4 4092013748 Cafe 3000 At Wake Med 3000 New Bern Ave NaN raleigh \n",
352 | "\n",
353 | " state postalcode restaurantopendate facilitytype zip ... \\\n",
354 | "0 NC 27610 2002-12-21T00:00:00Z Restaurant 27610 ... \n",
355 | "1 NC 27610 2002-12-21T00:00:00Z Restaurant 27610 ... \n",
356 | "2 NC 27610 2002-12-21T00:00:00Z Restaurant 27610 ... \n",
357 | "3 NC 27610 2002-12-21T00:00:00Z Restaurant 27610 ... \n",
358 | "4 NC 27610 2002-12-21T00:00:00Z Restaurant 27610 ... \n",
359 | "\n",
360 | " violationcode severity \\\n",
361 | "0 3-603.11 Priority Foundation \n",
362 | "1 3-502.11 Priority Foundation \n",
363 | "2 3-603.11 Priority Foundation \n",
364 | "3 3-603.11 Priority Foundation \n",
365 | "4 8-201.13 Core \n",
366 | "\n",
367 | " shortdesc \\\n",
368 | "0 Consumer advisory provided for raw or undercoo... \n",
369 | "1 Compliance with variance, specialized process,... \n",
370 | "2 Consumer advisory provided for raw or undercoo... \n",
371 | "3 Consumer advisory provided for raw or undercoo... \n",
372 | "4 Compliance with variance, specialized process,... \n",
373 | "\n",
374 | " comments pointvalue \\\n",
375 | "0 3-603.11; Priority Foundation; Establishment f... 0 \n",
376 | "1 Pf - 3-502.11 Variance Requirement - Establish... 0 \n",
377 | "2 Pf - 3-603.11 Consumption of Animal Foods that... 0 \n",
378 | "3 Pf - 3-603.11 Consumption of Animal Foods that... 0 \n",
379 | "4 Raw fish is used for sushi (sushi chef not pre... 0 \n",
380 | "\n",
381 | " observationtype violationtype count cdcriskfactor cdcdataitem \n",
382 | "0 Out CDI NaN NaN NaN \n",
383 | "1 Out CDI NaN NaN NaN \n",
384 | "2 Out R NaN NaN NaN \n",
385 | "3 Out VR NaN NaN NaN \n",
386 | "4 Out NaN NaN NaN NaN \n",
387 | "\n",
388 | "[5 rows x 40 columns]"
389 | ]
390 | },
391 | "execution_count": 13,
392 | "metadata": {},
393 | "output_type": "execute_result"
394 | }
395 | ],
396 | "source": [
397 | "#merge the inspections.csv with violations.csv, using the hsisid\n",
398 | "df = pd.merge(df_insp, df_viol, on = 'hsisid')\n",
399 | "df.head()"
400 | ]
401 | },
402 | {
403 | "cell_type": "code",
404 | "execution_count": 15,
405 | "metadata": {},
406 | "outputs": [
407 | {
408 | "data": {
409 | "text/html": [
410 | "
\n",
411 | "\n",
424 | "
\n",
425 | " \n",
426 | "
\n",
427 | "
\n",
428 | "
hsisid
\n",
429 | "
name_x
\n",
430 | "
address1_x
\n",
431 | "
address2
\n",
432 | "
city
\n",
433 | "
state
\n",
434 | "
postalcode
\n",
435 | "
restaurantopendate
\n",
436 | "
facilitytype
\n",
437 | "
zip
\n",
438 | "
...
\n",
439 | "
avg_neighbor_num_critical
\n",
440 | "
avg_neighbor_num_non_critical
\n",
441 | "
critical
\n",
442 | "
id
\n",
443 | "
name_y
\n",
444 | "
is_closed
\n",
445 | "
rating
\n",
446 | "
review_count
\n",
447 | "
address1_y
\n",
448 | "
price
\n",
449 | "
\n",
450 | " \n",
451 | " \n",
452 | "
\n",
453 | "
0
\n",
454 | "
4092013748
\n",
455 | "
Cafe 3000 At Wake Med
\n",
456 | "
3000 New Bern Ave
\n",
457 | "
NaN
\n",
458 | "
raleigh
\n",
459 | "
NC
\n",
460 | "
27610
\n",
461 | "
2002-12-21T00:00:00Z
\n",
462 | "
Restaurant
\n",
463 | "
27610
\n",
464 | "
...
\n",
465 | "
NaN
\n",
466 | "
NaN
\n",
467 | "
1
\n",
468 | "
best-western-raleigh-inn-and-suites-raleigh
\n",
469 | "
holiday inn express & suites raleigh ne - medi...
\n",
470 | "
False
\n",
471 | "
3.0
\n",
472 | "
7
\n",
473 | "
3618 New Bern Ave
\n",
474 | "
$$
\n",
475 | "
\n",
476 | "
\n",
477 | "
1
\n",
478 | "
4092013748
\n",
479 | "
Cafe 3000 At Wake Med
\n",
480 | "
3000 New Bern Ave
\n",
481 | "
NaN
\n",
482 | "
raleigh
\n",
483 | "
NC
\n",
484 | "
27610
\n",
485 | "
2002-12-21T00:00:00Z
\n",
486 | "
Restaurant
\n",
487 | "
27610
\n",
488 | "
...
\n",
489 | "
NaN
\n",
490 | "
NaN
\n",
491 | "
1
\n",
492 | "
walnut-creek-ampitheatre-raleigh
\n",
493 | "
walnut creek ampitheatre
\n",
494 | "
False
\n",
495 | "
3.0
\n",
496 | "
44
\n",
497 | "
3801 Rock Quarry Rd
\n",
498 | "
$$
\n",
499 | "
\n",
500 | "
\n",
501 | "
2
\n",
502 | "
4092013748
\n",
503 | "
Cafe 3000 At Wake Med
\n",
504 | "
3000 New Bern Ave
\n",
505 | "
NaN
\n",
506 | "
raleigh
\n",
507 | "
NC
\n",
508 | "
27610
\n",
509 | "
2002-12-21T00:00:00Z
\n",
510 | "
Restaurant
\n",
511 | "
27610
\n",
512 | "
...
\n",
513 | "
NaN
\n",
514 | "
NaN
\n",
515 | "
1
\n",
516 | "
kfc-raleigh-7
\n",
517 | "
kfc
\n",
518 | "
False
\n",
519 | "
2.0
\n",
520 | "
5
\n",
521 | "
3408 Poole Road
\n",
522 | "
$
\n",
523 | "
\n",
524 | "
\n",
525 | "
3
\n",
526 | "
4092013748
\n",
527 | "
Cafe 3000 At Wake Med
\n",
528 | "
3000 New Bern Ave
\n",
529 | "
NaN
\n",
530 | "
raleigh
\n",
531 | "
NC
\n",
532 | "
27610
\n",
533 | "
2002-12-21T00:00:00Z
\n",
534 | "
Restaurant
\n",
535 | "
27610
\n",
536 | "
...
\n",
537 | "
NaN
\n",
538 | "
NaN
\n",
539 | "
1
\n",
540 | "
sheetz-raleigh
\n",
541 | "
sheetz
\n",
542 | "
False
\n",
543 | "
3.5
\n",
544 | "
6
\n",
545 | "
5200 New Bern Ave
\n",
546 | "
$
\n",
547 | "
\n",
548 | "
\n",
549 | "
4
\n",
550 | "
4092013748
\n",
551 | "
Cafe 3000 At Wake Med
\n",
552 | "
3000 New Bern Ave
\n",
553 | "
NaN
\n",
554 | "
raleigh
\n",
555 | "
NC
\n",
556 | "
27610
\n",
557 | "
2002-12-21T00:00:00Z
\n",
558 | "
Restaurant
\n",
559 | "
27610
\n",
560 | "
...
\n",
561 | "
NaN
\n",
562 | "
NaN
\n",
563 | "
1
\n",
564 | "
walmart-raleigh-3
\n",
565 | "
walmart
\n",
566 | "
False
\n",
567 | "
2.0
\n",
568 | "
12
\n",
569 | "
4431 New Bern Ave
\n",
570 | "
$
\n",
571 | "
\n",
572 | " \n",
573 | "
\n",
574 | "
5 rows × 31 columns
\n",
575 | "
"
576 | ],
577 | "text/plain": [
578 | " hsisid name_x address1_x address2 city \\\n",
579 | "0 4092013748 Cafe 3000 At Wake Med 3000 New Bern Ave NaN raleigh \n",
580 | "1 4092013748 Cafe 3000 At Wake Med 3000 New Bern Ave NaN raleigh \n",
581 | "2 4092013748 Cafe 3000 At Wake Med 3000 New Bern Ave NaN raleigh \n",
582 | "3 4092013748 Cafe 3000 At Wake Med 3000 New Bern Ave NaN raleigh \n",
583 | "4 4092013748 Cafe 3000 At Wake Med 3000 New Bern Ave NaN raleigh \n",
584 | "\n",
585 | " state postalcode restaurantopendate facilitytype zip ... \\\n",
586 | "0 NC 27610 2002-12-21T00:00:00Z Restaurant 27610 ... \n",
587 | "1 NC 27610 2002-12-21T00:00:00Z Restaurant 27610 ... \n",
588 | "2 NC 27610 2002-12-21T00:00:00Z Restaurant 27610 ... \n",
589 | "3 NC 27610 2002-12-21T00:00:00Z Restaurant 27610 ... \n",
590 | "4 NC 27610 2002-12-21T00:00:00Z Restaurant 27610 ... \n",
591 | "\n",
592 | " avg_neighbor_num_critical avg_neighbor_num_non_critical critical \\\n",
593 | "0 NaN NaN 1 \n",
594 | "1 NaN NaN 1 \n",
595 | "2 NaN NaN 1 \n",
596 | "3 NaN NaN 1 \n",
597 | "4 NaN NaN 1 \n",
598 | "\n",
599 | " id \\\n",
600 | "0 best-western-raleigh-inn-and-suites-raleigh \n",
601 | "1 walnut-creek-ampitheatre-raleigh \n",
602 | "2 kfc-raleigh-7 \n",
603 | "3 sheetz-raleigh \n",
604 | "4 walmart-raleigh-3 \n",
605 | "\n",
606 | " name_y is_closed rating \\\n",
607 | "0 holiday inn express & suites raleigh ne - medi... False 3.0 \n",
608 | "1 walnut creek ampitheatre False 3.0 \n",
609 | "2 kfc False 2.0 \n",
610 | "3 sheetz False 3.5 \n",
611 | "4 walmart False 2.0 \n",
612 | "\n",
613 | " review_count address1_y price \n",
614 | "0 7 3618 New Bern Ave $$ \n",
615 | "1 44 3801 Rock Quarry Rd $$ \n",
616 | "2 5 3408 Poole Road $ \n",
617 | "3 6 5200 New Bern Ave $ \n",
618 | "4 12 4431 New Bern Ave $ \n",
619 | "\n",
620 | "[5 rows x 31 columns]"
621 | ]
622 | },
623 | "execution_count": 15,
624 | "metadata": {},
625 | "output_type": "execute_result"
626 | }
627 | ],
628 | "source": [
629 | "#merge the inspections.csv and yelp.csv dataframes with the zipcodes\n",
630 | "df2 = pd.merge(df_insp, df_yelp, on = 'zip')\n",
631 | "\n",
632 | "#make sure that the data includes only restaurants that are in the Raleigh\n",
633 | "df2 = df2.drop(df2[df2['facilitytype'] != 'Restaurant'].index)\n",
634 | "df2 = df2.drop(df2[df2['city'] != 'raleigh'].index)\n",
635 | "df2.head()"
636 | ]
637 | },
638 | {
639 | "cell_type": "code",
640 | "execution_count": 16,
641 | "metadata": {},
642 | "outputs": [
643 | {
644 | "data": {
645 | "text/plain": [
646 | ""
647 | ]
648 | },
649 | "execution_count": 16,
650 | "metadata": {},
651 | "output_type": "execute_result"
652 | },
653 | {
654 | "data": {
655 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAEZCAYAAAAkDXpUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeVxV1fr/P/tMwGEURAQEZzRDpRzC7KtXcQpREesWJSpZapnl/TmmlcPVyrlQb4pDN+veW2YoVyAH0OxeFdGupGYq4izgAMjsGffvj+PenMOZ8Rxg4/N+vXx5WHvttdbDOeznrPWs57MYlmVZEARBEIQAEDX2AAiCIAjCVshpEQRBEIKBnBZBEAQhGMhpEQRBEIKBnBZBEAQhGMhpEQRBEIJB0tgDEAIsy0IIiQEMo/tfCGOtD2SfsCH7hI299jEMwHA3ORByWjbAskBxcWVjD8Mq3t5uAICysppGHolzIPuEDdknbOy1z8/PA07wWbQ8SBAEQQgHcloEQRCEYGhUp1VUVIRly5YhPj4ezzzzDLp06YITJ06YrLt3716MHj0a3bt3x4ABA7B69WooFAqjevfv38e8efPw3HPPISIiAq+99hr+97//OdsUgiAIogFo1JjW9evXkZ6ejm7duiEyMhKHDh0yWS81NRVz585FfHw8FixYgPz8fKxevRq3b9/GunXr+HoKhQKTJk1CdXU1PvroI/j4+ODrr7/GpEmT8N1336Fbt24NZRoAwNdXDoZhwMk7cq9LSqrNXgdgtg5XVrd97h6NhoVYzMDPz91oLKbud4RdjmqTIAjCFhrVafXp0wfHjx8HAGRmZpp0WhqNBqtWrcLgwYOxePFiAEBkZCSkUik++ugjTJo0CT179gQA7Nq1C3l5eUhJScHTTz8NAOjbty9efPFFrF27Flu3bm0Qu6QuEijVLNKOXsPAiCAo1SyOnyvEjaJyhLb2Qr/wQMgkjOXrem3UvQ+A0TWuHZmEMduf1EX3dqsU6se2q27b9W2TIAjCHhrVaYlE1lcnc3Nzce/ePYwdO9agfNSoUVi6dCn279/PO63MzEyEhYXxDgsAZDIZYmJisGXLFlRWVsLDw8OxRtRB6iJBfkE5ln+Vg+0Lh/CvVWotX+fr9PNYmNgXAyOCLF7vGOSFrannDMpNtfnNomHILyhHxyAvq+1xY7TXyejbZa5tclwEQTibJr8RIy8vDwDQuXNng3I3NzeEhITw17m6YWFhRm106dIFGo0GV65cce5goZsBLf8qB/G9tfxr/Yc8AKjUWiz/KgdKNYsTZy1fnxBZW26qzQmRuj6vnM2xqT/uX33tstQ2QRCEs2nyeVoPHjwAAHh7extd8/b25q9zdc3VA4DS0tJ6jYFhanMULCEW65b8VGot4uJi+NccEyKBuLgYPh6UfvQapsZFI+d8GrZ+GAMRw0DLsnhzWRqKy7XIPleIuLgYjBtXG/fi2tRv60GlAnFx0VCqtfjhk2iTCX237z1A9rlCjOzfji/TaGxzNPp2mUKl1vJt29pmfZBIxABsey+ECNknbMg+Q5yRowUIwGlxmMusrltuKQPbGdnZddu/UVRu9BrQLeGZigdV1KiwcsZQpOuVr5wxlI9N1a0/MCKIj1+lHb2GPk8FQCIWoaJKCQCoqDIdz/J0c0NkuCsqa1TwlMsejco2B1PXFlPcuFPx6PdLMy6CIJxHk3daPj4+AHSzqBYtWhhcKysrQ5s2bQzq6s+89Ovpt2UvLGtbFrivrxyhrb0e3cPyr7mYU93ltYERQci/VWZXTIsrn7YiC2ve/z8UFlfxsSprMSeZhMHlW2Xo2MYbnm5SmzPb9e0yR2iAJ1iWdaoaACkOCBuyT9iQIoaNdOrUCQAMYlcAUFNTg5s3bxrEujp16oRLly4ZtXHx4kWIxWJ06NDBqWMtKalGv/BASCUipKSkoV94ICZEikzGg/y8bIsT+XmZLm/hqYW7qwzfHKyNVdkSz9r4Yw6USq1dW9X17TKFVCJCZHggbX8nCMLpNHmnFRERAX9/f6SmphqUp6WlQaVSYdiwYXzZ0KFDcenSJfzxxx98mVKpRHp6Ovr16+f0nYO+vnLIJAwWJvZFXFwMZBIGcXHROH6u0MiZbP0wxmQ5Bxcn2rowxmR58ge6+9e8Ew1vD5lNbXl7yJA8LxrZ5wrh6yu3yzbOrgmRIuxZGYPUVaOwZ2UMJkSKsDCxL78VnyAIwpk0+vLgvn37AABnz54FAJw8eRKlpaVwc3PDwIEDIZFIMGvWLMyfPx9Lly7F8OHD+eTi4cOHIyIigm/rpZdewj/+8Q+8++67mDVrFry9vbFjxw7cvXsXn3/+udNtYRgG3+y7gIQRXfnX01/qaTIeJLIxTiQSGTsDLn50o6gcDMNAIratLYlYBIbRjz/ZjkqhRscgL4S0ijLMD4uKojwtgiAajEZ3Wu+//77Bz+vXrwcABAcH88nGY8eOhUgkwtatW7Fz5060aNECr776Kt577z2De11cXPD1119j5cqVWLx4MRQKBbp164bt27cjPDzc6bawLIuEEV2RX1COiM4tkTCiq0FsSx+tmXJ9QgM8odUab2zg4kehrb3AsizUGtvaUmu0EIsY/n57oDwtgiCaAgxr79PrCUSrZW0+moQVizFtRRbie2sxMGoojmRlYWBUFKatyDKKaa2cMdSonEMqEWHTvCjMXX8QxeXG5R/87SA+fWcoPvlHFha8HgUAVtsCgPlfZuGzt6PAaDT2/Ap4uyy1b2+b9kKBbmFD9gmb+mzEMLVS9Lg0+ZiWkPD1lfOxpbg4XcxpR7aWjwfpb2QoLofJckDnBLg4UV2HxZWXVohQ9VCJhKG6n21pSyZhMH1cX7jIRAYxLV9fOfz83M3GufTt6hgKg5hWx9DamJm9cTKCIJo21p4NjQHNtGzA1pmWn587Nu76DQdO3EDqqlHYuOs3JIzoaqAJmH2uEDfuVCA0wBORj3KojMq7B0ImtlwfALLPFaL3ozwtXpNQwyL7rPE93DWZmIGXhwsAoLxSYVanUH+pj7OLs8VU/W/3X8Q743qguLjK0b9+HvomK2zIPuHA6Ywa/a3LRFDVqGxqw1kzLXJaNmCr0/L1lSPt6DVsTT2HPStjUFGlNNAEPHg2B3PionlFjBU703D8lG6pcOvCGIhEuvKKGhXyb5Vh/Q852LZAV1+t1uLN5ekofTQMDzcRkhcMh9xVAq2GxUOVBgqlBi08ZQabLFiWRWmFAvcfPETVQ5Uup0vEwNNNity8+0YxKm5mph+j8vWV87ZYqu/pLnPqtvfm9FAwBdknbJqLfebi16aeDZYgp9WIPE5M62/pWXhnpC6mJYYWG+dZj2MBuvhUuzZazH/d9votfbRYNtW2+tw9tsaoKKblfMg+YdNc7HPU3zrFtARA3Tyt4+cK8dFrtXlacyc+Z1M+lZ+3C1RqLVa9Y1suF1f/y7m21+fusVSPW8fWj2nZUp8gCGEihL91cloOhMvN6hjkZZBHxeVQBfjKbdbw+2bRMDs1/+zTCLSWp1XfdgmCEC5C+Fsnp+VA9PO09POouByqOyXVNmv46bdhS32uf1vrW1sVrm+7BEEIFyH8rZPTciAlJdW8BuCSHTrtwb/+M4PX7Vv59QmbNPz+kZKG5V/loLhMYVP94jIFpBIR3l6ZZnN97h5L9bhNFaQ9SBBPBkL4W6eNGDZQ392DAPidgvqvc/PuI6JzS/7nhVvTcOnKo505bbyRsGg/AOCtMeEY2b8dX2/aijQUFev6cncVYdP8ofBy1x0zwrIsdqRk4PXYaEjExlN3rl9ulx+3Q5F2DzYdyD5h01zso92DzQB787TM5TOJRAyOnilAv/BAAMD3mRcNcp0AwMvDBWPm7OXP3zKVE1Wt0EAiFpm8pp8TZuo61wdQm6dlKhfMUp6WqfqUp/X4kH3CpjnZx+VpGeWPSilPSxDYM9OyNiNp08oDb684hIWJfeHr5YL31hwxmq1Ya6NDkBcmL880+y3I2rckLk+LmxX5+sr52ZypmZK+Xf/IysGqabW5ZnM2ZeD1KJppOQKyT9g0R/v0nw3cqeQk49SM0I9pmTvXigEDF7HutburDHKp4ZlXKSlpVttQqVm4iI2vbUvPse1crTrnaZWUVKO4uMqsw9G3K++KFrFz0zBmzl7Ezk1D3pXadimmRRDNC2vPhsaAnJYDsTXH4fPZUfzrdbMGo3cXf7w9tjtaeLlg3LhRNrdRl/UzTZ/dVfdeP2+XemsPWmqX8rQIgnA25LQciK05Dl5yF/61p9wFk0aFo2dYK2Qcu6Yrt6ON+vTP5WlJXSRgxWKkHb2Gjbt+Q9rRa2DFYkhdDE+ssaddU/cTBEE4Cnq6OBBbcxzKqxX8a5Zlcb+shl/SGx4Zalcb9emfC2Paej6WPe1OW5FF52sRBOE0aKblQGzNcZi5Oot//VCpMXAcby3LsLmNusz43LZ7uTwta7Eve+1KSUkzeT9BEISjIKflQPS1B82da8WChUKjew0AvnU0AB9UWT9nSyphoNAYX5s8sq9t52rJRHZrD9rSblxcjMn7CYIgHAUtDzoQTnswYURXbJofZXSulUjE4NiZAmyaF4Wqh0rszLqEd8b1MGonYckBfLNoGDbNizKZE1VWpTJ7Talm0THIy+x1APCSy6zaUld7kLfLTLtcnpap+wmCIBwFOS0HwsV+EpYcwJ6VMRjcJwRihkFFjQLFZTXw93FD51AfzFh5ENUqneKF1kyaXMKSA/BxB7Z/HAOxiIFSpcHZ/GKEBHggN+8evk0/h9kT+iLmhfaoUaiRefImglq6o+B+FcJCfdDKx01PTQNQKNWY8slP+PNQncqGNepqD3Kail/9lIMv3qvN03o/KQOJL/bF+OFdDPTIGlufjCCI5gk5LQfCxX6+Tj+PlJQ0DIyyfLZVZHggSh5pAJqqU6UQobRcgfdWHUSVEnCVABvnDeX7WLY9Bz7uwJqZurL31mQhaVaU1T6LyxT8z0N6azE1LoZ3QptT0pB5ylh7kBWLsfyrHMT3Nmx3YBtdDGvTfN0W/AmRwL9ONb4+GUEQzRNSxLABexUxAPByStbUKc5fK4WLTGy2Tms/OaZ9dogv4w5xvHm3gr/nm0XDUKPUoOB+FdxkYtTU2dxRt09OEaOiSmlR7klfezDt6DUMjAgyW/+X3AKM7N8OxWUKo/sdRXNUHNCH7BM2ZJ8hJOPUiNijPVheqeAd1faFQwDAtIaXmMHRs0W4VlCGmBc6wM1FYrLOL7kFJuNSddsdP7wLWAAqNQu1RguJWGQ6piVi4CWXobxaabNgbl27zNX38nDBSx+kO23LOz0UhA3ZJ2zIaQkIe2ZaxWUKTFuRBU83LVa9p1sejO+tRZzeEhz3f3m1CiKGQdL3/0Pfbq0x4Nk2EDMMCkuqMO+Ln+HiJsL2hbr4kVKlwVvLM1Cl0M22srIO4s+P2gSA20V34dfCD64uYpNjUyjVmLpiP1a/FwU/Lxd+nLYcqa1vl6X6ft4uiJ2bZteR3PZADwVhQ/YJm6bitCim5WA4uaOtH8Yg49g1qNRa7MgGdmSnGdXljh7JOX8XOefvYsOuMwbXq5RapB+9hpH92+HlBRmPSnXbyf8cF4PyaiW85DKkHb2GmP7tcOF6KS7fLMPWf58zO77ss4UY2b+dTbJMI/u34+NSttafEAnsyDa+nyAIwhFQnpYD0Zc7Eoscc2y1qTpc2S+nC/g+GYaBlmVx445tfdozNnvqD4waim8WDaMt7wRBOAVyWg5EX+5Io3XMsdWm6nBlW1PP8dvRWZaFiGEQGmC9T4VKY9fY7JVxyi8oN9oCTxAE4QjIaTkQfbmjN5el2SypZK3OrA1pRmXvrNKVrfxBd5TJil0Z8PeR47nw1hbbey68NSqqVHYdqV1fGSdaGiQIwtEIZiPGr7/+ii+++AJnzpyBSCRCr169MHv2bHTp0sWg3uDBg3H79m2j+9966y3Mnj27Xn3X9xDI7QuHIL+gHBt/zEHy/GiI6mzE4BJ/K6qVuFJQhpbebrhTUo2VX5+ABrpdeRGdW/L1N6ZkoH933c68d1cdQPLCF+Eqk0CtYcEwAKtlIZaIwEA3O/rfxXuQScUovF+Fr/aexdwJfXGjsBxisQgj+7dDbt59i7sBuUMdbTnckqsfO1fnTLl4nSMdFwW6hQ3ZJ2yaykYMQTit3NxcjB8/Hj179kRiYiK0Wi2Sk5Nx/fp17Nq1C23btuXrDh48GEFBQUYOKiAgAIGBgfXq354t73WPpR/wKLeJk1ji/udyncYN6gyJWGQy98lcThS3tV2/DbmL2Gz9CzceoEOQN6oeKvHemiMYHtkW08b2QGW1wng7fh1ZpuLiKpN2mas/Zs5eAMDwyLb8/Y6CHgrChuwTNk3FaQli92BSUhJ8fHywbds2uLq6AgAiIyMxZMgQJCUlYc2aNQb1vby8EBER0eDj1Jdx6t4VmBs/HPm3ytAxyAv5BeX8/9xs5bPp/VFYXGU0exkQEWT12BBu+/ln0/tD7iK2WL9rqA+2/Pt3DO4dgg8m9sH9BzVQaTRIWHIAL0bCSBHjp2zdTKluTCthyQFMiITB9v2UlDTsqFMfIBkngiCcgyBiWqdPn0ZkZCTvsACdY+rVqxeysrKgcXA+UH3Rj/0UFABKpRZJO3XxnW3pOfyR9Sq1Fq4SwN9HbuRovOW6WZS1Y0MG9K5tQ2lD/dH/1wGf/j0Hndr4IDI8EBVVKkglIvyUDcTOTcOYOXsRO1fnsCzFtHbUqb9Dr/7mFN3SYN37CYIgHIUgZloqlQoymbEyuUwmQ01NDW7evIl27drx5dnZ2XjmmWegUqnQvn17xMfHIz4+vt5bsBmmdmpsCbGYQUWVEgsT+6Jn55a4/6AGX304EndLq7F+pi5J+IdPasVmAWDXpyPBsix+v3IPPp5yBPm7I/2oLr/LWw4kL3wRLlIJFCo1piz/CWXVuhyoGXExmDJKA1eZBJU1Kni6abH6/SHwMzHOG3cq0LGNN7q080X2uUIMj2yLGqUaCxP7mo1RyWQiyB/9zvXtMltfwiB++DBknso0ut9RSCS6xGlb3gshQvYJG7LPEGdlvAgiphUbGwuVSoW0tDTe8ahUKgwfPhy3b9/Gd999h2eeeQYAsHTpUoSHhyMkJAQPHjzAv//9bxw4cAATJ07EggUL6tU/y7JQqazP5iQSkUHsp258qUahRm7ePQMNv4jO/nBzkdgc05JKGKgeHbBo6p4juQXoEtoCvl6uRtfvP6jGoV9v8UeIlFcroVRpDY9Q6R4ImVQEuUxi1i5zMa2343qguPyh0f2OgvujUaubxsza0ZB9wobsM0QqFTslV1MQTmvXrl1YuHAhxo8fjylTpkCr1SIpKQmpqanQaDTYuXMnevbsafb+WbNmISMjA5mZmQgODra7f3t2D94pqTEZp9LfZcfFn/46tZ/RycX6dd1kYszbeNSgPPmDIbheZH4XX/tAL1wtNH/dz8sVIQEeAMAv3/n6yvnZn6klPU4wd2vqOQyKBN7Xi2l9kZKGw9nO2S1YFwp0CxuyT9g0lY0YgohpvfTSS5g1axZSUlIwYMAA/OlPf8LVq1fxxhtvAABatWpl8f6xY8dCq9XizJkzFus9LiUl1ZCIRWbjS5/+vTauJYbWZEyLq7v8qxy09JHDVW/CImW00GrNx69W7siBWmM5viV3laK4TGHgXEpKqlFcXGXW4ejHtA7XiWkdNhEDIwiCcBaCcFoAMGXKFJw4cQJ79+7FoUOH8N1336GsrAzBwcFWt7JrtboHuEjkXHN9feUWNfq6tvPjr8+d+JxNen6zJ/Tly5a+/X8W70kc1d2mNv28XeDrK7fLLpmEwcLEvkYJxvoxLXvaJAiCqA+C2IjBIZPJEBYWBgC4desWMjIy8M4771i9LzU1FSKRCN27d3fq+Kxp9Pl6ufDXA3zlyD5XaLG9G3cq0LNzS/5nP2833Ci6brZ+YEt3/HL6ltU27V1nZhgG3+y7gIQRXbFpXpTFPC2CIAhnIgindeHCBWRmZiI8PBwymQx//PEHkpOT0aNHD0ycOJGvl5aWhqysLAwcOBCtW7dGWVkZ/v3vfyMzMxOTJ09GUFCQU8dpTaOvpFyBPt0CAAB3Sqpt0vMr0ltyKy6rsXhP4f0qm9pUqbWQiG13XJy+YX5BOa6czUFcXLRenlYGOnTvS1qDBEE0CILYiJGfn4+PP/4YeXl5qK6uRkhICGJjY5GYmGiwFT43Nxeff/45Ll++jAcPHkAqlaJLly545ZVXMHbs2Hr3b+tGDABgxWKz5065SEX429woTFuRBTG02DhvqNUzqqavOIiHj85SlEuB9XPN3yN3EWH97CirbQKw+6wrS3Y56/ysulCgW9iQfcKmqWzEEITTamya++5BW+zidg+ag3YPPj5kn7Ah+wwhp9WI2Ks9OLh3CPxbyA3znx7laf2Wd0+nR6hhkX22ED0f5WkZxIm6B0ImZvg6deNHai2gZVnj/Coxg19yCxD2KE+rbpuXbz7A/y7e5WNPtuoCcnYdOHHDbB1naA3WhR4KwobsEzZNxWkJIqYlFLiY1vyNR7FnZQz6dAtAz84tUVZZDT9vFzCMK9q0cufjQSP7t+Nftw2Uo2fnlnCRinG9oBwiMYOOQV58nYcKNaZ88hPKHk1kPOUibF04Aq4yMSqqVdCyWnjKZYh5oT0/Hu710TPX8fanB6HUGGsE2mOXJUhrkCCIhoCclgPh8pm+Tj+PvySl4cOJQ/GXzw/zy3SuEtgUx1q5Q3c0yaZ5USguU2DG6ixUKwzrV1RrMX7RPj5G9f++yMLa93WvLbXPneFlT/xJ3y5L7VKeFkEQzka8ePHixY09iKYOywI1NUqb6spkYoR3aolxf3oaYhEQ3qkljp4pgFbLQq0Fnu8RiOd7BPFlHFzMSanSYN+Jm9BqWQT4yvFUe194e7ni1Pk7Rn1ptSzGv9gVYFl0adcSLTxdIBUzBn3Wbd/f2xViEQMfb1fU1KgA6GJWcrkMbm5SvsycXaGyAix5byTih3XBq0PDIKu4jDHDde1qNabzwxyFq6sUAKBQqJ3aT2MhBPts+ayYQwj2PQ5knyFyucwpMk4003IwKoUaHYO84OUu4/X69HOb8m+VYUBEEDbNjzKKV917UI35ehsvbtypgFQsRpCfu9n+pGIxqlldn0o1C1YEdAzyMs6nehTzAsDnVEldJFCqWaQdvWakYaiq88Hk7AppFWVQf2BUlMn6RPPCns8KQTgTclpOQKVQg3WX8WdQBbYEvpxbq9f39so0rHh3GB/zKiqpNtjazhEa4AmVRoMCC5sbVBoNVGoN/vv7Hfx0/Bw2zo4xipkBurjUlE/TcLe0Nq5l7cwu/YeR1EViV32i+UDvPdGUoN2DNmBPnpY+lnKbvD1EWPu+bTlVpmJadesAulhWoL8Wi96wHjfj6tuad0V5Ws6nqdrnqPe+qdrnKMg+Q55owVwh4usrh9SCXt9f4vvapOcHAHMTzNSZ1Bfucgmkj+otTOyLwnsi6+3KRPDzdrGqUchpCVrTVKxbn2g+0HtPNDVoedAJSF0kYBgG31rS65OJ8E3GH4gf1sWsnp9EIsI3+86jjb8H/jZ3ME78XoSbdyoQEuCJ555ujeNnCvBMF39s//fviB/WhY9l/ZJboIubmYlrecmtH86or1FoTVOxbn2i+UDvPdHUIKflYLj1/4jOLXm9vnX/ysH6WUPg7ipF1UMVZqzJxNcfRyO0tRcS/3oQnq7AxnnD4OXuAo2WReapG9i2+wx2fhqD0NZe2Jp6DjsyziNmQEd0CPJGYUkV3v4sE2otMGpAB4N2tn04jM/PYlnW4PV769IwvK9OucIa+nlXlKf15ELvPdHUIKflYLjzsuJ7azEwaigfvJ6w5IBBvc0pGXgpKgpfp59HxUPj61KJCMVlCoP8qD0/5xvVKdGrU/FQiz9/aNzOpnlRmP3FQVQ+rM3T4q7ZkndFeVpPLvTeE00Nimk5EP31/7i4GP51gC+wZ2UMUleNwp6VMQjwBU7naeHn7YJdn47EnpUxaO1X2w4fe5LaEJ+SMHwdrg+unwlDO2Pz/Ch4uknwUFlb38/bxeZ4GmcXnaf15GLPZ4UgnA3tHrQBe7UHD5y4gdRVo/g8LaWaxfFzhUb5LUdyC4zKfskt4GNaXh4uBm2YO8dq/PAuAGCxn36P4mjf/nSB1wjkcm9Mtau/hZmzy9o4SHvw8WjK9tn6WbFEU7bPEZB9hpD2oADQX//XP4PKXH7LwIggJCw5Z1A24NlgfPvTfuzPBnZ+Es3neo2LBBLiYvTOsUpDXFyMThFDaznnamBEEN5YnomFiX0xuHcIH39QKdRgAAMNxJKSaqjq7F7m7EpYcgATIoG4OuPYkV0/TUNCONj6WSEIZ0PLgw6EW/+XSkRISUnj41t1YwEqtRbLv8qBUs0iwLdOmVKL3/J0Sy8VVSq+vR+zgZlfpOH+g4d4eUEGdmQDX6SkQanU2tTPc710r1t6u/ExLf1xFxdXmY1L6Nu1IxuInZuGMXP2InauzmFRXOPJwdpnhSCcDTktB8Ot/+vHtEzB5bdsnh9jVLZpXkxtvEom4uMJ124bxhfej4uBn7eLTf3MHhfDv/bzdrE7/kRxDYIgmgK0POhgOI2++ua3cGWcluDxcwX4v561OVdcDGvTvCj+Xnv6qW9ODWeXuZwykvEhCKIhIKflBPS1By1hKr+FK9OPUW1NPVeby+XhArAs5m9Ow2dTdbM0e/p5nJwaimsQBNHY0PKgk9CPA5mCiwNN/SzNqKy4TGEUo6p4CExYcgAvf5CO4jIFZDJdTIvL5bLWz+of0wzaf5yYBMU1CIJoLMhpOQlbc5vulNQpk4lsilEtTYzB4WwY5GlZ6ufEr4a6g5RTRRCEEKHlQSfBMAy+Mac9+EgD8JfcAgyPbGsQG/KSy2yOUb01JpyPcVmKN/2SW4Av50VBKq7VEiQIghAi5LSchH6e1ubUHHw5O5qPA039LA0MA2yaV5vvNG1FGka9oNMFtDVGxcWWyquVyL9VhojOLQ20BlP2X8DAfu0xtE8IXvv4JzAi3WyrYxtveLpJG+LXQBAE4VBIEcMGHHGeVmggbM+oSsAAACAASURBVDrnamfWQfw5ynq9I1kHcQ3AxKihAKyfjbUz6yD2Zzfc2VfOgBQHhA3ZJ2yaiiIGOS0bqI/T4mJG3ExK/3VKSgZSz2iRvPBFuEglUKo0UKg08JDLcPriXXRu4438gnLsOJCDtdNrZ2j/b2MGJgzTnRTr6S4zaPPDbWk4d1HXd2u/2lkcAL7/2Lm6TR9vjdHN6Oq7kcLDwwVisQgajRaVlQrrNzgIeigIG7JP2JDTEhD2Oi1Op82cDuDAiCDrOoESxmwdwLzOoLVrCUsOYHhk23rpBEpkEqg0xm1LxQzUSufnadFDQdiQfcKGnJaAsMdpcedp1d2yzu3k6xjkZfF6hyAvMIDVNt5Ynml0bfvCIVbvA4BfcgvsnmlJZBJcKbQw7kAvpzsueigIG7JP2DQVpyWYLe+//vorJkyYgIiICDz77LN46623cPHiRZN19+7di9GjR6N79+4YMGAAVq9eDYWiYZaxLOkAfvF9jlWdQJWatUlLMDjA8Jqft20ahEo1Wy+dQJXGyrg19N2HIAjnIwinlZubi4kTJ0Kj0WD16tX47LPPUFpaivHjx+P69esGdVNTUzF79mw8++yz2LJlC6ZOnYp//OMfmD9/vtPHqX+elik2zRtuUw6Wj6eL1Tqfvx9jUL5pnm1ah37eLkZ5Wr6+cvj5uZvN3fLwsE3f0MPDxeR1giAIRyGILe9JSUnw8fHBtm3b4OrqCgCIjIzEkCFDkJSUhDVr1gAANBoNVq1ahcGDB2Px4sV8PalUio8++giTJk1Cz549nTZOa3qDLlKJTTlYErHlKbUp/cD6aB1ysbe0o9eM4l/6WoJiscimtsViQXwHIghCwAjiKXP69GlERkbyDgsAvLy80KtXL2RlZUHzaPt2bm4u7t27h7FjxxrcP2rUKEilUuzfv9+p49Q/T8sUCpXaphwstZWlNlP6gdb61r+PZVldbldBOaatyMLW1HM4cOIGtqaew7QVWcgvKIfUpfb7jEajtaltjcb0TIwgCMJR2O20KisrsWHDBsTHx2PYsGE4ffo0AKCkpAQbNmxAfn6+wwepUqkgk8mMymUyGWpqanDz5k0AQF5eHgCgc+fOBvXc3NwQEhLCX3cW1vQGp63Yb5NO4IMKhdU6M79IMyiftiLNpraLyxQoLlNAqdRajX9xVFbapm/YkNvfCYJ4MrFrebCkpATx8fG4desWQkNDcfPmTTx8+BAA4Ovriz179qCiogIffPCBQwfZqVMn/Pbbb2BZll/eUqlUOHv2LACgtLQU7dq1w4MHDwAA3t7eRm14e3vz1+2FYWp3zlhCLGZQUaXEwsS+JnfZvf9KX14n0NwuPKmEAQNYrCOTMLh9RwSg9lpxmchq2zIJA4gYeLpJkXb0mtUY1cj+7aB5NOt7qFJbbNvVRQRXqfEXC0cikYgB2PZeCBGyT9iQfYY4Sy3OLqf1+eef4/79+9i5cycCAwPx/PPPG1yPiorC8ePHHTpAABg/fjwWLlyIZcuWYcqUKdBqtUhKSkJRUREAQCQynAGY09Zztuaegd7g/ChknzWtAzggIsji9cjugRa1BAGYvB+A7j4zbUOk0zYE7DmDS+e0XKUSdA7xNm67eyBcZSK4SgURHiUIQuDY9aQ5fPgwXnvtNTz99NMoLS01uh4SEoLdu3c7bHAcL730EkpKSvDll1/i22+/BQA888wzeOONN7Blyxa0atUKAODj4wMAePDgAVq0aGHQRllZGdq0aVOv/lnWttwEX185Qlt7IWHJAexZGWNw7hSgc2oj+7dDSkoaUs8AyQtehItMAoVSjbNXitHaV46+3QLg5+WC2LlpaBcMfP5+rT7hzC/ScO12raKFfvu2KGLov7Y1/lXXbgbA0D4hBooYCrUGCqhs/XXWG8qDETZkn7CpT56WM+YJdjmt0tJShIaGmr3OMIzT8qGmTJmCSZMm4dq1a3B3d0dwcDA++ugjBAcHIzBQN8vo1KkTAF1sq3379vy9XNxr0KBBThkbBxfT+jr9PFJS0jCwjobg832AycOG4l+nRFCptXjlw58M7ud0AYvLdDGta7e1vPSSfp3I8ECkpKThX6d09QHgYn7tcmFRca1kE9dmXbhxmtMrtJTLRbErgiAaC7s2Yvj7+/ObHkzxxx9/8A7EGchkMoSFhSE4OBi3bt1CRkYGXn/9df56REQE/P39kZqaanBfWloaVCoVhg0b5rSx8WN8FFf61ymR0TlXx07CprOvbKnzr1P21Tf1z9o9BEEQTQ27ZJwWLVqEgwcPYs+ePZBKpejXrx+++uor9OvXD7/99htef/11TJw4EXPmzHHoIC9cuIDMzEyEh4dDJpPhjz/+QHJyMrp164YtW7ZAIqmdMO7evRvz58/H66+/juHDhyM/Px+rV6/GCy+8gKSkpHr1X1/twexzhRjwSGdQPzY1ICIISg1rFBuSiWvzo/TbMBn3evSaO08LgHGbejEwfWzpQz9Pq6lAyy/ChuwTNk1Fxskup3Xv3j3ExcVBq9Vi8ODB2LVrF0aPHg2VSoUDBw6gVatWSElJ4WNLjiI/Px8ff/wx8vLyUF1djZCQEMTGxiIxMdHkVvjU1FRs3boVV69eRYsWLTBq1Ci89957Bnle9lDfo0l8feUmVd71/wd0cSZzS3Hm2igpqTZ5zRy29lFf5feGgB4KwobsEzaCdFoAUFhYiKVLl+LIkSPQanXxEIZhMHDgQCxevBitW7d2+CAbG0ecp1UXZ5xrRX80wobsEzZknyHOclp271MODAzEl19+icrKSly5cgUAEBoa6vDZldDx9ZXzuVATIoG4uBi987TSsCO7NhfKUbMbsZgBwzDw83Pny9RqbbP9IyII4snDZqdVVVWFZcuWYcCAAXjxxRfh4eGBHj16OHNsgobTAvxm0TAjfb+BUUMxdLguHuWI3DFLGoJKNQvZI0mmphinIgiCsAebnZa7uzsyMjLw7LPPOnM8zQaWZZEwoqvJ862+Tj+PhYl9MX54FyMNQXsxd34X1wd3flfHIC9IXSTkuAiCEDR2bXnv2LEjbt++7ayxNCtKSqptOt/qcZcGbelj057as7QIgiCEjF1O680338S//vUvXL161VnjaTZYO1uL0/czd4bV4/QxIRLYszIGuz4dCT9vF2yaE82fpdVcddEIgngysGsjxpUrVxAYGIhRo0Zh0KBBaNu2rdE2coZhMH36dIcOUojYc74VKxbXKzfKVB+mYmj9wgMxICIIDMNAbOWsLoIgiKaMXU5rw4YN/OuDBw+arENOS4c951tNW5HFx5/scVx1+/hm0TDL8a023nB3kdpvDEEQRBPBLqeVlZXlrHE0O/R1CC3p+6WkpEGlBpZ/laPL26pnH/G9tVbjW5vmRUGpVNjVB0EQRFPCLqcVHBzsrHE0O3x95RbP1uL0/eLiYrAjO83gDCt7NmfIZLq2Ijq3tDkvDECTVr4gCIIwR70PQSotLcWtW7cAAG3atDE6CuRJx+BsLTPnYn27/yLeGVeb61Z7hpXteMll6NjGu0HzwgiCIBoLu53WhQsXsGzZMvz6668G5b1798bChQvRtWtXhw1OyHDxpoQlB8zMfHTnYunnaXExLnv78XSTNlheGEEQRGNil/bgpUuX8Morr0CpVOJPf/oTOnfuDAC4fPkyDh8+DFdXV3z33Xd8eXPBmdqDR7IOYkf242kRsmIx/9pafwAcqnfYkJC2m7Ah+4SNILUHk5KSIJVK8d1336FLly4G1y5duoTx48cjKSkJ69evd+gghQp3ZpWlmBbnsLifPb3ldseb/LxdAICPaZmivjEzgiCIpoRdTuvkyZN47bXXjBwWAISFhSE+Ph7fffedwwYndFQKNToGeVmMab01JtxsjMtWKmpU8JLLbM4LIwiCECp2Oa2amhr4+/ubvd6qVSvU1DTPqXF94HQBr5zNQVxctF5MKwNxcdF4Z1wPizEum/u4VYaIzi1tzgsjCIIQKnbJOIWEhODw4cNmrx8+fBghISGPPajmApc3BdRdstPi5QUZuP/gITanpAHQyS7FvNAeDMPYJe3E9ZGSkoZ+4YGQSky/pVxeWHGZop7WEARBND52zbTGjBmDtWvXYtasWZg2bRo6dOgAQHey8ObNm3H06FHMmjXLKQMVGtx5WtsXDjG7Bf2X3AK89uJwKJVa42NFbDhORP/MrqHDhwGA1Riap7vupGeKaxEEIUTs2j2o0Wgwa9Ys7Nu3DwzDQCTSfavXarVgWRYvvvgi1qxZw5c3F+qze9DPzx3llQqTW9A5J8IdG2LpOmDecfn5uWPjrt8MtrpzTtIghtY9EDIxAxaAt4du00ZxcZWdv4XGh3ZnCRuyT9gIcvegWCzG559/jqNHjyIzMxO3bt3S5SOFhmLIkCF4/vnnHT5AocKyrEVZpStncxDSKsqq7BIAs7JLXC6Yfj+m8sKKyxQ4uD8TA6OiKKZFEISgqZciRv/+/dG/f39Hj6XZwR0bYiq5OC4u2uYt6oDp5bySkmrE9G9n1M6ObGBHdhr/81tjwhEXF430o9doyztBEILGLqf14MEDFBUVmVW9uHDhAgIDA+Ht7e2QwQkZa7JKFTUqh2xRt+cIFO54EoIgCKFil9NatWoVzp8/j927d5u8vmDBAoSHh2Pp0qUOGZyQsUVWKWFEVxw4ccNsG7ZsUbfnCJT8gnJ0bENfKAiCEC527Zg4ceIEBg0aZPb64MGDcfz48cceVHOgpKTa6lEhSjWLCZHWt6hbWs7jjiexttU9JSVN16fS9HIkQRCEELDLad29exeBgYFmrwcEBODu3buPPajmgK+vnI9pmYKLWcXFRRs5HP0t6jKJ9eU87ngSS+3syK7t0548MIIgiKaEXcuDbm5uKCgoMHu9oKAAMpnssQfVHLAn1rRpfhSyzxrLPAGW87Q4vOQynVyUmXYSlhww6pMgCEKI2OW0evbsiT179mDy5Mnw8PAwuFZZWYnU1FT06GG/dl5zxJ5YE6PWYGT/drwzYVnWrh1+LMviSG4BYvq349vRl4cy1SdBEIQQsWt58I033kBRURHi4+Oxb98+XL9+HTdu3MC+ffsQHx+PoqIiTJ482VljFRS2xpo451RSUo3i4ioUF1fZvSWd6yslJQPFZQq89EE6YucaO6y6fRIEQQgNuxQxAOC7777D8uXLoVbXLluxLAupVIoFCxYgPj7e4YMEgPPnz2PDhg04c+YMKisrERQUhNjYWEyaNIlfkkxISEBOTo7RvdHR0Vi3bl29+67veVqcYK4lxQtblv+s4esrR0WNCvm3yqyrbLTxhqpG9dh9NgakOCBsyD5h01QUMex2WgBw584d/PTTT7h+/TpYlkX79u0xYsQIBAQEOHyAgE7bcOzYsWjfvj2mTp2KFi1aIDs7G8nJyRg1ahRWrlwJQOe07t69ixUrVhjc36JFC7Rt27be/dfXaQE6x2Ukq/Qo1qRUs5BJmMd2XH5+7gCA8koF36a5Pr08XAQp4QTQQ0HokH3Cpqk4rXopYgQEBGDSpEkAAJVKhUOHDuHIkSMYNGiQxaNL6ktGRgYUCgXWr1+P0NBQAEC/fv1QUFCA9PR0LF++HFKpFADg6uqKiIgIh4+hvqgUashcJCZjTY6acXHfO47kFkB55xyvvlG3T5eAcF5hgyAIQojY5bRWrlyJEydO4McffwSge1i+8cYbOHXqFFiWhY+PD3bu3Mk7FocNUqIbZt3NH56enpBIJBDrHTffFFGqWby8IMOixuDjfB8pKakGKxajX3ggpqWfN5Bw4pBKRNg0j+JZBEEIG7uc1n/+8x8DUdxDhw7h5MmTePPNN/HUU0/hr3/9K5KTk7Fs2TKHDnLMmDH4+9//jsWLF2POnDn88uDu3buRmJhooCp/9epV9OnTB1VVVWjTpg1iY2Px1ltv8TOx+sAwtVNjexGLGZs1BjUa45VasZjhZ0umrnNUK9WAluWPJhncW4u39fQOc/PuQyYTQS7glASJRPflpL7vRVOH7BM2ZJ8hzsqssctpFRUVGcSGDh8+jDZt2mD27NkAgLy8POzdu9exIwQQFBSE77//HtOnT8eQIUP48mnTpmHmzJn8z7169UJ0dDQ6dOiA6upqZGZmIikpCb///js2btzo8HHZgj35WkCtU6pWqqFUanH8XKHhOVsyEeQy02+bUs2iY5CXyTO8+oWbTwonCIIQCnY5LZVKZbAUd+LECYOZV0hICO7du+e40T3i9u3bmDZtGvz9/bFx40Z4enri5MmT2Lx5MxiG4R2XvgMDgEGDBqFly5bYtGkTTp06hd69e9erf5atf3DV11duc74W14e5XYecZmHdGJh+/e0Lh9h1r5CgQLewIfuETX02YjhjtmVXnlbr1q2Rm5sLQDerunnzJvr06cNfLy4uhlzueImgNWvWoKqqClu2bMGQIUPw3HPP4d1338XUqVOxefNm3Lp1y+y9sbGxAMCPu6GxN18LgE2ahfpw9Qf31tp9L0EQhJCwy2mNHDkSe/bswdSpUzF16lR4eHhg4MCB/PU//vjD4ZswAF2OVqdOneDq6mpQHh4eDq1WiytXrpi9V6vVPbwb8zRlmYSxqg3IYatmIacfqF//7bgYu+4lCIIQGnYtD06dOhWFhYXIysqCh4cHVqxYAS8v3dJXRUUFDh06xG+FdyStWrVCXl4eampq4OZWGwQ8ffo0AFjMD0tNTQWgk6BqLFQKtU4bcF6Uydwp/eU6+2JghvXtvZcgCEJo2OW0ZDIZPvnkE5PX3N3d8d///tdoNuQIJkyYgOnTp2Py5MmYOHEiPD09ceLECWzbtg3PP/88unTpglOnTiE5ORnDhg1DcHAwqqurkZWVhZSUFIwYMQK9evVy+LjsQaVQgwEMcqdKSqqh0hjWs0ezsG59e+8lCIIQGvVSxGgMjh07huTkZFy6dAnV1dUIDg5GdHQ0EhMTIZfLcf36dSxfvhwXLlxAaWkpRCIR2rdvj9jYWCQkJDxWLtfjKGLUB1YsxrQVWSaX+XT5VlFgNBqj+oN7a/HnqKF23SskKNAtbMg+YdNUFDEE47Qak4Z2WvZoFvr6ylFRpbS6e9DReoeNAT0UhA3ZJ2zIaQmIhnZagGXNQn2n4+fnjo27fkPCiK58/QERQcb3dg+ETPz4OoeNCT0UhA3ZJ2yaitOql/Yg4XzsjYElLDmA7l2Bv75Rq4Khfy8AknAiCELwkNNq4lhzNFwe2Nfp53H2ghaxcw11B4UexyIIgtCHnFYj4usrN5hF1RcuD2z5VzmI763lVd55zUEJYzRDIwiCECLktBoBLl5VVxuwvmdrcXlgpDlIEERzh5xWA2OvrqA9NFfNQYIgCI7G0zZ6QnGWNiBpDhIE8SRATqsBsVdXsLHbJQiCaGqQ02pAnKUNSJqDBEE8KZDTakCcpQ1ImoMEQTwpkNNqQOpztlZjtksQBNHUIKfVwNhztlZTaJcgCKIpQdqDNuBo7UFbdQXtbtdNCqVKi+yzjm23qUDabsKG7BM2pD34BGOrrqC9yGUSyGWOb5cgCKKpQE6rEXFWjIliVwRBNFfIaTVx7NUnFIsZ+Pm5P7aeIUEQRFOEnFYTxV59QqmLBA8qlTh+rtAheoYEQRBNEXJaTRB79QmdqWdIEATRlKAt700Qe3UESXeQIIgnBXJaDYSvrxx+fu5W9f/s1REk3UGCIJ4kaHnQydgbm7JXR5B0BwmCeJIgp+VE6hNrsldHkHQHCYJ4kqDlQSdSn1iTvTqCpDtIEMSTBDktJ/E4sSZ7dQRJd5AgiCcFWh50Eo8Ta1Ip1OgY5IVN86Js0ifk68+Para6gwRBEAA5LafxuLEme/UJVQo1fLzdSHeQIIhmjWCWB8+fP4933nkHL7zwAiIiIhAdHY3k5GQolUqDekePHsWf//xn9OjRA/369cPHH3+M8nLLMx5n4KhYU0lJNYqLq2yOSWk0rF31CYIghIQgnFZ+fj5effVV3L59GwsWLMCXX36JoUOHYt26dfjwww/5eidOnMCUKVPQunVrbNq0CfPmzcOhQ4cwZcoUaLWmY0vOhGJNBEEQjkUQy4MZGRlQKBRYv349QkNDAQD9+vVDQUEB0tPTsXz5ckilUqxatQqdO3fG559/DpFI5yj8/f3xxhtvYN++fYiOjm7QcdsbmyIIgiAsIwinJZHohunh4WFQ7unpCYlEArFYjDt37uDs2bOYP38+77AAoH///ggICMD+/fsb3GkBzjs7iyAI4klEEMuDY8aMgY+PDxYvXoybN2+isrISmZmZ2L17NxITEyESiXDp0iUAQOfOnY3uDwsLQ15eXkMP2wB7Y1MEQRCEMYKYaQUFBeH777/H9OnTMWTIEL582rRpmDlzJgDgwYMHAABvb2+j+729vXH+/Pl6988wtUdNN2UkEjEAYYy1PpB9wobsEzb22ucs5ThBOK3bt29j2rRp8Pf3x8aNG+Hp6YmTJ09i8+bNYBiGd1wAzGrskfYeQRCE8BGE01qzZg2qqqqwZ88euLq6AgCee+45AMDGjRvx0ksvwcfHB0DtjEufsrIykzMwW2FZoKyspt73NxTcNyAhjLU+kH3ChuwTNvba5+fn4ZTZliBiWufPn0enTp14h8URHh4OrVaLK1eu8LEsU7GrS5cumYx1EQRBEMJCEE6rVatWyMvLQ02NoYc/ffo0ACAgIACtW7dGeHg49u7da5CTdfz4cdy5cwfDhg1r0DE3FmIxY9O5XQRBEEJEvHjx4sWNPQhreHp64ocffsDJkyfh4eGBu3fvYteuXdi2bRsiIyMxefJkAEBoaCi2b9+Oy5cvw9vbG7/++iuWLFmCzp07G22FtweWBWpqlNYrNiJSFwmqHmpw6NdbyMy5gTulNWjT2gsymRhaTcMnVjsDV1cpAEDRTPPbyD5hQ/YZIpfLnLKXgGEFctDSsWPHkJycjEuXLqG6uhrBwcGIjo5GYmIi5PLaWcUvv/yC9evX48KFC3B3d8eQIUMwZ86cx4ppabUsiosrHWGGUzB3bhenvGHq3C4hQjEDYUP2CZv6xLREoifYaTUmTd1psWIxpq3IMnkMilQiwqZ5UWA0ws9mpoeCsCH7hE1TcVqC2D0oVHx95QYqGM7qI+3oNajUWkyIBOLiYvg+U1LSsCNbd27XyP7tKLGZIAjBQ07LCUhdJFCqWaQdvYYbReUIbe2Ffk7SG+TO7fpm0TCjPgdGDcXQ4Qy+3X+R8tQIgmgW0PKgDdizPNjQ8SVfXzkqqpRW+/R0lwl+pkXLL8KG7BM2TWV5UBBb3oWEUs0aOQ8AUKm1WP5VDpRqx35HKCmptqlPoTssgiAIgJyWQ/H1leP4uUKTGyIAnRPJPlfo0ByqxuiTIAiisSCn5UC4+JIlbtypcGh8qTH6JAiCaCzIaTkQlmUR2trLYp3QAE84MozYGH0SBEE0FuS0HEhJSTX6hQdCKjH9a5VKRIgMD3RofKkx+iQIgmgsyGk5GJmEwcLEvkZOhNvJJ5M4fpmuMfokCIJoDGjLuw3Yq4jB5WllnyvEjTsVCA3wRKST8rQM+tSwyD7bcH02NLSlWNiQfcKmqWx5p+RiJ6BSqMEAGNm/nYEihsqJSkoqhRo+3m4N2idBEERDQ07LiTRGHEmjYVFWRvErgiCaJxTTIgiCIAQDOS2CIAhCMJDTIgiCIAQDOS2CIAhCMJDTIgiCIAQDOS2CIAhCMJDTIgiCIAQDOS2CIAhCMJDTIgiCIAQDOS2CIAhCMJDTIgiCIAQDOS2CIAhCMJDTIgiCIAQDOS2CIAhCMJDTIgiCIASDIM7Tmj9/Pnbv3m32+n//+1/4+/sjISEBOTk5Rtejo6Oxbt06Zw7Rafj6yg0OdSQIgniSEYTTeuedd/Dqq68alKnVakyePBldunSBv78/X96uXTusWLHCoG6LFi0aZJyOROoigVLNIu3oNdwoKkdoay/0Cw+ETMJApVA39vAIgiAaBUE4rdDQUISGhhqUHThwAA8fPsRLL71kUO7q6oqIiIiGHJ7DkbpIkF9QjuVf5UCl1vLlX6efx8LEvugY5EWOiyCIJxLBxrR+/PFHuLm5ITo6urGH4nCUatbIYQGASq3F8q9yoFSzjTQygiCIxkUQM6263L17F//5z38watQoeHh4GFy7evUq+vTpg6qqKrRp0waxsbF46623IJVK690fwwDe3m6PO2ybEIsZpB29ZuSwOFRqLbLPFWJk/3bQaAydl0QiBtBwY21oyD5hQ/YJG3vtYxgnjcM5zTqXPXv2QKPRGC0N9urVC9HR0ejQoQOqq6uRmZmJpKQk/P7779i4cWMjjdY+GIbBjaJyi3Vu3KkAwzAAaMZFEMSThSCdVkpKCtq2bYs+ffoYlM+cOdPg50GDBqFly5bYtGkTTp06hd69e9erP5YFyspq6j1ee/D1lSO0tZfFOqEBnmBZ1mhM3DeghhprQ0P2CRuyT9jYa5+fn4dTZluCi2mdOnUKV69eRVxcnE31Y2NjAQC5ubnOHJbDKCmpRr/wQEglpt8aqUSEyPBA2v5OEMQTieCc1o8//gixWIyxY8faVF+r1cWGRCLhmCqTMFiY2NfIcUklIixM7AuZxEmLxQRBEE0cQS0PVldXY9++fXjhhRcQEBBg0z2pqakAgJ49ezpzaA5FpVCjY5AXNs2LQva5Qty4U4HQAE9EUp4WQRBPOIJyWhkZGaiursa4ceOMrp06dQrJyckYNmwYgoODUV1djaysLKSkpGDEiBHo1atXI4y4/qgUajAARvZvZ6CIodI09sgIgiAaD0E5rZSUFLRo0QKDBw82usapYiQlJaG0tBQikQjt27fH/PnzkZCQ0NBDdRgUuyIIgqiFYVmW9k1bQatlUVxc2djDsArtXhI2ZJ+wIfsM8fPzgEjk+Pi7cHYnEARBEE88NNOyAZZlIYTfEpcTIYSx1geyT9iQfcLGXvsYBo9EEBw8DnJaBEEQwiKO+AAADjtJREFUhFCg5UGCIAhCMJDTIgiCIAQDOS2CIAhCMJDTIgiCIAQDOS2CIAhCMJDTIgiCIAQDOS2CIAhCMJDTIgiCIAQDOS2CIAhCMJDTIgiCIAQDOS2CIAhCMJDTIgiCIASDoA6BFDrHjx9HamoqTp8+jaKiInh7e6NHjx6YMWMGunTpAgC4desWoqKizLbxyiuvYOnSpQZlJ06cwObNm3HmzBmoVCoEBwdj4sSJeOWVVwzq7d27F1u2bMHVq1fRokULjB49GjNmzICLi4tBvfv372PVqlX4+eefoVAo0K1bN8yePRvPPvtsg9t3/vx5bNiwAWfOnEFlZSWCgoIQGxuLSZMmQSaTGdx79OhRfPHFF7hw4QLc3d0xdOhQzJ49G15eXgb1qqqqsG7dOuzbtw/l5eXo1KkTpk+fbnFcttoHAEqlEl9//TX27NmD27dvw8PDA+Hh4Zg+fTq6d+9e77EIzT5b2xOqfXVZv349NmzYgK5duyI1NbXZ2NdUni88LNFgzJgxg01ISGD/+c9/sidOnGDT09PZsWPHsuHh4ezp06dZlmVZhULBnj592ujfxx9/zIaFhbFHjhwxaDMlJYV96qmn2I8//pg9cuQIe+zYMfbbb79lv/nmG4N6e/bsYcPCwthFixaxx48fZ7/99ls2IiKCnTlzpkG9hw8fsiNHjmQHDRrE7t27l/3Pf/7Dvvnmm2z37t3Z33//vUHtu3z5Mtu9e3d29OjRbHp6Onvs2DF27dq1bNeuXdk5c+YY9J2dnc1269aNnTFjBnv06FF29+7dbP/+/dlXXnmF1Wg0BnUnTZrE9u3bl925cyd77Ngxds6cOWzXrl3Zn3/++bHtY1mWnT9/Ptu1a1d27dq17LFjx9j09HR29OjRbHh4OJuXl1evsQjRPlvbE6p9+ly6dInt3r07+/zzz7OjR482ui5U+5rS84WDnFYDcv/+faOysrIytnfv3uy7775r8d5Ro0axAwYMMPiAFxQUsD169GCTk5Mt3qtWq9n+/fuz06ZNMyj//vvv2bCwMDY3N5cv+/bbb9mwsDD23LlzfJlCoWAHDx7MTp48uUHtS0pKYsPCwtjr168b1J09ezbbrVs3VqlU8mXjxo1jx4wZY3D/f//7XzYsLIxNT0/ny37++Wc2LCyMPXDgAF+m1WrZV199lR0xYsRj26dUKtmnn36anT17tkG969evs2FhYWxSUlK9xiJE++z5PAjRPg6NRsO+/PLL7NKlS9nx48ebdFpCtK+pPV84KKbVgPj5+RmVeXl5oW3btigqKjJ739mzZ3Hx4kWMHTsWIlHtW7Zr1y4AQEJCgsV+c3Nzce/ePYwdO9agfNSoUZBKpdi/fz9flpmZibCwMDz99NN8mUwmQ0xMDI4dO4bKysoGs08i0a1ee3h4GNT39PSERCKBWCwGANy5cwdnz57FmDFjDO7v378/AgICDOw7ePAgPD09DZZaGIbB2LFjceXKFVy+fPmx7BOJRGAYBp6engb1OBv0lzRtHYtQ7bP18yBU+zj+/ve/o6ioCH/5y19M9itU+5ra84WDnFYjU1JSgry8PHTu3NlsnR9//BEMw2DcuHEG5SdPnkTHjh1x4MABDB8+HE899RQGDBiA1atXQ6lU8vXy8vIAwKgPNzc3hISE8Ne5umFhYUZj6NKlCzQaDa5cudJg9o0ZMwY+Pj5YvHgxbt68icrKSmRmZmL37t1ITEzkHwCXLl0yaR8AhIWFGdnXqVMng4cHZ59+W/W1TywWY/z48di9ezcyMzNRWVmJmzdvYvHixWjZsiViY2PtHotQ7bOlPaHbd/PmTSQlJeHjjz82+nIldPua6vOFNmI0IizL4qOPPoJWq8XkyZNN1lEoFEhPT0ffvn0REhJicO3u3bu4e/culi1bhvfffx+dOnVCdnY2kpOTUVhYiDVr1gAAHjx4AADw9vY2at/b25u/ztU1Vw8ASktLG8y+oKAgfP/995g+fTqGDBnCl0+bNg0zZ840GLMl+86fP29Qt127dmbt0/9d1Ne+efPmwcPDAzNmzIBWqwUAhIaGYseOHQgICLB7LEK1z9b2hGofy7L48MMP8cILLxh8PusiVPua6vOFnFYjsnLlSmRmZuLTTz9Fx44dTdY5cOAAysvLjWYhgO5DWVVVhbVr12LkyJEAgOeeew4PHz7E9u3b8d5776Ft27Z8fYZhTPZRt9xcPWvX6vK49t2+fRvTpk2Dv78/Nm7cCE9PT5w8eRKbN28GwzAGjsvS2Bravs2bN2Pr1q34y1/+goiICJSWlmLbtm1488038c0336BNmzb1GosQ7bOlPWtja6r27dy5E+fOnUNGRoZN/QnNvqb6fKHlwUZi3bp12L59OxYuXIi4uDiz9X788Ud4enpi+PDhRtd8fHwAAC+88IJB+YABAwAAv//+u0E9U9/SysrKDL75+Pj4mK2n35Y1HGHfmjVrUFVVhS1btmDIkCF47rnn8O6772Lq1KnYvHkzbt265XD7TH0LtMe+/Px8rFu3DjNnzsSUKVPQt29fDB8+HNu2bUNFRQU2btxo91iEap8t7QnVvpKSEqxatQpTp06Fm5sbysvLUV5eDrVaDa1Wi/LycigUCsHapz/upvZ8IafVCHzxxRfYtGkT5syZgwkTJpitd/v2bWRnZ2PkyJFwdXU1um5qbVgfbl28U6dOAGCwtgwANTU1uHnzpsFadKdOnUyum1+8eBFisRgdOnSw2CfgOPvOnz+PTp06GV0LDw+HVqvl17+58de1D9DFAOral5+fzy+L6NcDrP9Ordl34cIFsCyL8PBwg3JPT0+0bdsW+fn5do9FqPbZ0p5Q7btz5w4qKiqwZs0a9OnTh//3v//9D5cuXUKfPn2wfv16wdpnS1+N9Xwhp9XAbNiwAX/729/w/vvv480337RYNyUlBSzLmlw6A4ChQ4cCAI4cOWJQfuTIETAMwycKRkREwN/f3yjhMS0tDSqVCsOGDTNo89KlS/jjjz/4MqVSifT0dPTr189ssNkZ9rVq1Qp5eXmoqakxKD99+jQA8OvvrVu3Rnh4OPbu3Wvwx378+HHcuXPHyL7y8nIcOnTIoM09e/agffv2/B9gfe1r1aoVAN2OSH0ePHiAa9euGcQMbB2LUO2zpT2h2sfFgOr+69q1K3+NS74Von3cWICm9XwBAPHixYsXW61FOITt27dj7dq1GDRoEMaOHYuioiL+X0lJCfz9/fm6LMvigw8+QGBgoNmttG3btsWZM2fw/fffw8XFBdXV1fjhhx/w1Vdf4ZVXXsHo0aMB6L4RtWjRAsnJySgtLYWrqyt++eUXrFy5EoMHD0ZiYiLfZpcuXXDgwAHs3bsX/v7+uHv3Lj777DNcvHgRq1ev5j/0DWGfp6cnfvjhB5w8eRIeHh64e/cudu3ahW3btiEyMtIguBwaGort27fj8uXL8Pb2xq+//oolS5agc+fOmD9/Pv+tsG3btjh58iR27tyJFi1aoLy8HBs2bMDhw4fxySefoH379o9lX+vWrfHzzz/jp59+glarhVqtxtmzZ7Fo0SIUFRVh0aJFCA4OtnssQrTPns+D0OyTyWRo06aN0b+MjAxotVrMnj3bYFlMaPZxY2lKzxcOhmVZ1motwiEkJCQgJyfH5LXg4GCDb1fHjx/HpEmT8MEHH2DSpElm26yursb69euRlpaG0tJSBAYG4uWXX8abb75ptG02NTUVW7du5WVWRo0ahffee89o+e3evXtYuXIljhw5wsuszJo1C717925w+44dO4bk5GRcunQJ1dXVCA4ORnR0NBITEyGXyw3q/vLLL1i/fj0vkzNkyBDMmTPHKA5QWVmJtWvXYv/+/QYyOZZ2gNljX3l5OZKTk5GZmYnCwkJ4enriqaeewjvvvINnnnmm3mMRmn32fB6EaJ+5PsrLy03KOAnRvqb0fOEgp0UQBEEIBoppEQRBEIKBnBZBEAQhGMhpEQRBEIKBnBZBEAQhGMhpEQRBEIKBnBZBEAQhGMhpEYQAGTx4sNVzjgiiOUJOiyAIghAMlFz8/9u7Y5b0ojCO478GlcIpCYK4DoGTS76ABhtqinB1iCZtElq0IWgKu04tCk0FklMODU5N9RZSB2vSwKDB5YIgGE0Gov9y+Hu5R76fzefcA8/2495zPAcw0OgSvmk36QKLjNACABiDSyABjxldrT5NIpHQ5eWldnZ2tLGxoXK5/DM2qp2ensq2bb28vMjn8ykejyubzSoUCrnRPjBXhBbgMYVCYaL29PSkWq32Z/B8fHzo6OhIu7u72tvbU7PZVLVaVb1e1/39vZaXl+fVNuAKQgvwmIODg7Hf9Xpd5+fn2traUiaT+XVuu92eODk/Eokon8+rXC4rlUrNo2XANeweBDys2+3q+PhYq6urKpVKCgQCvz4fDAaVTCbHaslkUsFgUI+Pj/NsFXAFb1qARzmOo3Q6rX6/r5ubm5nWpCzLmthR6Pf7ZVmWOp3OvFoFXENoAR40HA51cnKit7c3XV9fKxKJzDRvaWlpap1NwlgUfB4EPOji4kLPz886OzvT9vb2zPPa7fbPf7hGBoOB3t/fZVnW/24TcB2hBXjM7e2t7u7udHh4OLE+9RfHcVSpVMZqlUpFjuP8eV07YAI+DwIe0mq1ZNu21tbWFI1G9fDwMDYeDocVi8X+OT8cDqtYLOr19VXRaFSNRkPValWbm5ucVYiFQGgBHtLr9fT19aXPz0/lcrmJ8UQi8Wtora+v6+rqSrZtq1aryefzaX9/X7lcTisrK/NsHXAFxzgBC2LaKRnAomFNCwBgDEILAGAMQgsAYAzWtAAAxuBNCwBgDEILAGAMQgsAYAxCCwBgDEILAGAMQgsAYIxvbI/jzwD38ikAAAAASUVORK5CYII=\n",
656 | "text/plain": [
657 | ""
658 | ]
659 | },
660 | "metadata": {},
661 | "output_type": "display_data"
662 | }
663 | ],
664 | "source": [
665 | "#graph zip and score, grouping by the zip code \n",
666 | "z = df.groupby(df['zip'])\n",
667 | "sns.scatterplot(x = df['zip'], y = df2['score'])"
668 | ]
669 | },
670 | {
671 | "cell_type": "code",
672 | "execution_count": 17,
673 | "metadata": {},
674 | "outputs": [
675 | {
676 | "data": {
677 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAEDCAYAAABXp1/ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dfVRUdf4H8PcAPgU4Q0pYoEgOgw/40B4VfDiwIuNTKWKb9KutSDzo7yemFfy0TDPXU64giJD5FLXZbusDCj/EBTUUWyHXUEsz5cEycpdBw2GEFMK5vz88TF4H9N4BnLn6fp3D2cO93/udz4e1ec+d78y9KkEQBBAREdFdOdm7ACIiIqVgaBIREUnE0CQiIpKIoUlERCQRQ5OIiEgihiYREZFELvYugO5OEAQo4YtBKtXN/1VCrbZgf8rG/pRNbn8qFaBqPqgdMTQVQBCAn3+us3cZd6VWdwMA1NZes3MlHYP9KRv7Uza5/fXo4YYOyEy+PUtERCQVQ5OIiEgihiYREZFEDE0iIiKJGJpEREQSMTSJiIgkYmgSERFJxO9pUotcXbvAxUXeayoXF2cAN79P1dRkRn19Q0eURkRkNwxNapGLixMabwj4/mKt7GP9vNXoLDNwiYiUgKFJrfr+Yi3e/OCI7OPe/e8xCOij6YCKiIjsi6cDREREEjE0iYiIJGJoEhERScTQJCIikoihSUREJBFDk4iISCKGJhERkUQMTSIiIokYmkRERBIxNImIiCRiaBIREUnE0CQiIpKIoUlERCQRQ5OIiEgihiYREZFEDE0iIiKJHCo009LSEBAQgIiICKt9R44cwcyZMzFkyBCMGjUKy5Ytg8lkshpXX1+PlStXYuzYsRgyZAhmzJiBzz//vMXHs+ecRESkPA4TmmVlZdi8eTN69uxpte/o0aOIjY1Fr169sGHDBixatAgFBQWIjY2F2WwWjY2Li0NOTg4WLFiAjRs3QqvVIi4uDoWFhQ41JxERKY+LvQsAALPZjCVLluCZZ55BaWmp1ZlZYmIi/P39sXbtWjg53cx5T09PzJo1C3l5eZgyZQoAoLCwEEVFRUhPT4derwcABAcHo7KyEqtWrUJoaKhDzElERMrkEGeaH3/8MaqqqvDqq69a7TMYDDh16hQiIiIsQQQAY8aMgZeXF/Lz8y3b9u/fD3d3d4wfP96yTaVSITIyEufPn0d5eblDzElERMpk99CsrKzEunXrsGzZMri5uVntLy0tBQD4+/tb7dPpdCgrK7P8XlZWBq1WKwotAAgICBDNZe85iYhImez69qwgCHjrrbcwduxYhIeHtzjGaDQCANRqtdU+tVqNM2fOiMb27du3xXG3zmXvOeVSqQC1upvNx9vCxcW5zcff65o7WvPf5H7rqxn7Uzb2J6ZSdVAdHTOtNNu3b8fp06exd+/eu45VtfIXuH17a+PkjL0XcxIRkfLYLTRramqQmJiIOXPmoFu3bpYP/zQ1NcFsNsNkMqFLly7QaDQAfjuTu1Vtba3ozE6j0bQ6DvjtLNDec8olCEBt7TWbj7dFW1+tNjXduOc1d7Tmv8n91lcz9qds7E+sRw+3DjnbtNuapsFgwNWrV7FmzRqMGDHC8nP8+HGUlpZixIgRSEtLs6wRtrQmWFpaKlpD1Gq1qKiosPp6R/N6o06nAwC7z0lERMpkt9Ds06cPPvnkE6uf/v37W/ZFRUWhV69eCAwMRE5Ojii4iouLYTAYMGHCBMs2vV4Pk8mEgoIC0WNlZWXBz88PWq0WAOw+JxERKZPd3p51dXVFUFCQ1fbu3bsDgGhffHw8YmJi8NprryEqKgoGgwFJSUkYOnQoJk2aZBkXGhqKoKAgLFmyBEajET4+PsjKykJJSQnWr18vehx7zklERMqkEgRBsHcRt3rhhRdgMpmQnZ0t2n748GGkpaXh7NmzcHV1RXh4OBISEqzWCuvq6pCcnIz8/HyYTCZotVrMmzevxU/n2nNOOcxmAT//XGfz8bZQq7vh3I9GvPnBEdnHvvvfYxDQR3Pfra1wzUjZ2J+y2bKm6eTU/ouaDheaZI2h6Rj4pKRs7E/ZHCU07X5xAyIiIqVwiGvPUsdwde0CFxfbXhe19eIGRET3I4bmfczFxQmNNwR8f7FW9rED/R7ugIqIiJSNoXmf+/5irU3rkp+t5B1ZiIhuxzVNIiIiiRiaREREEjE0iYiIJGJoEhERScTQJCIikoihSUREJBFDk4iISCKGJhERkUQMTSIiIokYmkRERBIxNImIiCRiaBIREUnE0CQiIpKIoUlERCQRQ5OIiEgihiYREZFEDE0iIiKJGJpEREQSMTSJiIgkYmgSERFJJDs0J0+ejIyMDNTU1HREPURERA5LdmiazWasXr0aISEheOWVV3D48GEIgtARtRERETkUF7kH5Ofn46uvvkJmZiby8vKwf/9+eHl5YcaMGXj66afh7e3dEXUSERHZnU1rmsOHD8d7772Hf/7zn3jnnXfwyCOPYP369dDr9Zg1axb27t2LX3/9tb1rJSIisivZZ5q3cnV1xcyZMzFz5kyUl5fjgw8+QG5uLoqLi6FWqxEZGYno6Gh4eXm1V71ERER20+ZPz5rNZhQUFCA5ORl5eXkAbp6JDho0CB9//DEmTZqEgwcPtrlQIiIie7P5TPOHH35AZmYmdu/ejcuXL8PDwwMvvvgiZs6cCT8/PwDA+fPn8eqrr+LPf/4zxo0b125FExER2YPs0MzKysLOnTtRUlICABg5ciTefPNN6PV6dOrUSTT28ccfx0svvYSlS5e2T7VERER2JDs0Fy9ejB49emDWrFmYOXMmfH197zi+X79+mDJlis0FEhEROQrZoZmSkgK9Xg8XF2mHDh06FEOHDrXafvz4cbz//vsoLS2F0WiEq6srdDodYmJiEBoaKhp75MgRpKam4uzZs3B1dYVer0d8fDy6d+8uGldfX4+UlBTk5eXBZDJBq9Vi3rx5GD9+vNXj23NOIiJSJpuuCCQ1MO/EZDLBz88PixcvxpYtW/CnP/0JnTt3RmxsLHJzcy3jjh49itjYWPTq1QsbNmzAokWLUFBQgNjYWJjNZtGccXFxyMnJwYIFC7Bx40ZotVrExcWhsLBQNM7ecxIRkTLJTr/09HTs378f2dnZLe6fPn06Jk+ejDlz5txxnt///vf4/e9/L9o2btw4jB8/Htu2bcOTTz4JAEhMTIS/vz/Wrl0LJ6ebGe/p6YlZs2YhLy/P8tZvYWEhioqKkJ6eDr1eDwAIDg5GZWUlVq1aJTp7teecRESkXLLPNPft24eRI0e2uj8oKAj/+Mc/bCrGxcUF7u7ulg8UGQwGnDp1ChEREZYgAoAxY8bAy8sL+fn5lm379++Hu7u76G1TlUqFyMhInD9/HuXl5Q4xJxERKZfs0Pzpp5/Qr1+/Vvf7+fmhsrJS8nxmsxlNTU0wGAxYt24dfvjhB7z00ksAgNLSUgCAv7+/1XE6nQ5lZWWW38vKyqDVakWhBQABAQGiuew9JxERKZfst2cFQYDJZGp1/9WrV2Wt4S1cuNByJubm5oa1a9ciJCQEAGA0GgEAarXa6ji1Wo0zZ85Yfjcajejbt2+L426dy95z2kKlAtTqbrKPc3FxbtPjtoWLi7NNNTuy5r/n/dZXM/anbOxPTKXqmDpkn2lqtdo7XuHn4MGDlosbSJGQkIAdO3bggw8+QGhoKBYuXIg9e/aIxqha6f727a2NkzP2XsxJRETKJPtM8+mnn8by5cvx5ptv4n//93+h0WgA3DzbSkxMxIkTJ/DWW29Jnq93797o3bs3ACAsLAxz587FihUrMGXKFNHct6utrRWd2Wk0mlbHAb+dBdp7TlsIAlBbe032cfZ8xdnUdMOmmh1Z89/zfuurGftTNvYn1qOHW4ecbco+03z22WcxefJk7Nq1C6NHj0ZYWBjCwsIwevRoZGZmYsKECXj++edtLmjw4MGora1FTU2NZY2wpTXB0tJS0RqiVqtFRUWF1VvDzeuNOp0OAOw+JxERKZdNF2xPSUlBYmIixo4di06dOqFTp04ICQnBmjVrkJqaanMxgiDgX//6F7p37w6NRoNevXohMDAQOTk5ouAqLi6GwWDAhAkTLNv0ej1MJhMKCgpEc2ZlZcHPzw9arRYA7D4nEREpl81XKZg6dSqmTp1q8wO//vrr8Pb2xqBBg+Dh4YFLly5h9+7d+PLLL7F06VLLBRTi4+MRExOD1157DVFRUTAYDEhKSsLQoUMxadIky3yhoaEICgrCkiVLYDQa4ePjg6ysLJSUlGD9+vWix7bnnEREpFwqQRAEezzwp59+ipycHPzwww+4evUq3N3dERgYiOeffx5hYWGisYcPH0ZaWprl8nTh4eFISEiwWiusq6tDcnIy8vPzRZe8Cw8Pt3p8e84pl9ks4Oef62Qfp1Z3w7kfjXjzgyOyj/1s5RR8f7HWpmPf/e8xCOijue/WVrhmpGzsT9lsWdN0cmr/RU2bQvPatWvYu3cvLly4AKPRiNunUKlUWLFiRbsV+aBjaDoGPikpG/tTNkcJTdlvz546dQpz585FTU2NVVg2Y2gSEdH9SHZovvfee7h+/TqSkpIQHBxs+boFERHR/U52aJ4+fRqxsbGWC6oTERE9KGR/5cTV1RUPP/xwR9RCRETk0GSHpl6vx5Ej8j8cQkREpHSyQzMhIQEGgwHvvvsuLl682BE1EREROSTZa5rBwcEAgG+//RZbt26Fk5NTixckP336dNurIyIiciCyQ3Py5Mm8awcRET2QZIdmUlJSR9RBRETk8Gy+9ixRax7t6drmm1A3NZlRX9/QjlUREbWdTaFpNpuRm5uLI0eO4PLly4iPj0f//v1hMplQWFiIkSNHwsvLq71rJYXo2sUFvzQ04fuLtTYd7+etRmcXm27AQ0TUoWSH5vXr1zF79mx89dVX6NKlCxobGxETEwMAeOihh7Bq1SrMnDkTCxYsaPdiSTlsvW4t8Nu1a4mIHI3sl/NpaWk4efIkUlNTUVBQILr+rIuLC/R6Pb744ot2LZKIiMgRyA7NvLw8REVFYeLEiXBysj68b9++/P4mERHdl2SHpsFgQP/+/Vvd361bN9TVyb+NFRERkaOTHZoajQbV1dWt7i8vL4enp2ebiiIiInJEskMzKCgIu3btwvXr1632Xbx4EZmZmRg7dmy7FEdERORIZIdmXFwcjEYjnnnmGWzfvh0qlQpFRUVYu3YtZsyYgU6dOmHu3LkdUSsREZFdyQ5NPz8/fPTRRxAEASkpKRAEAZs3b8aGDRvQs2dPZGRk4LHHHuuIWomIiOzKposbDBkyBHv27MF3332HiooKCIIAX19fDB48mNelJSKi+1abLqM3YMAADBgwoL1qISIicmi8VhkREZFEss80Bw0aJOktWN5Pk4iI7jftcj/NGzdu4Mcff8S3334LnU4HnU7XbgUSERE5ina9n+ZXX32FefPm4U9/+lObiiIiInJE7bqmOXz4cMyYMQOJiYntOS0REZFDaPcPAvXt25frmUREdF9q99D86quv0Llz5/aeloiIyO5kr2nm5OS0uL22thZFRUU4ePAgZsyY0ebCiIiIHI3s0ExISIBKpRLdfLqZs7Mzpk+fjjfeeKNdiiMiInIkskPzo48+anG7RqNB79694ebm1uaiiIiIHJHs0Bw1alRH1EFEROTweBk9IiIiiWSfaS5dulT2g6hUKqxYsUK0rbi4GNnZ2Thx4gSqqqqgVqsxZMgQzJ8/HwEBAaKxR44cQWpqKs6ePQtXV1fo9XrEx8eje/fuonH19fVISUlBXl4eTCYTtFot5s2bh/Hjx1vVZM85iYhImWSH5o4dOyyX0bv9w0B32n57aH722WcwGo2Ijo5Gv379cPnyZWzZsgV/+MMfsHXrVgwbNgwAcPToUcTGxmL8+PFYuHAhqqurkZSUhNLSUvztb3+Dk9NvJ8txcXE4c+YM4uPj4ePjg927dyMuLg4bNmxAaGioZZy95yQiImWSHZpffPEF5syZAy8vL8TExECr1UIQBFRUVGDLli2orq7Gpk2b4OHhccd53n77bfTo0UO0bezYsRg/fjw+/PBDpKWlAQASExPh7++PtWvXWoLH09MTs2bNQl5eHqZMmQIAKCwsRFFREdLT06HX6wEAwcHBqKysxKpVq0QBZ885iYhIuWSf/qxZswYeHh744IMPMHz4cGg0Gnh4eGD48OHYsGEDNBoNkpKS4OzsLPq53e2BCQDdu3eHr68vqqqqAAAGgwGnTp1CRESE6ExtzJgx8PLyQn5+vmXb/v374e7uLnrbVKVSITIyEufPn0d5eblDzElERMolOzQPHjyIsLCwVvePHz8eBw8etKmYmpoalJWVwd/fHwBQWloKAJbfb6XT6VBWVmb5vaysDFqt1upt0Ob10ea57D0nEREpl+y3ZxsbG1FdXd3qfoPBgMbGRtmFCIKApUuXwmw2IyYmBgBgNBoBAGq12mq8Wq3GmTNnLL8bjUb07du3xXG3zmXvOW2hUgFqdTfZx7m4WJ/hK4WLi7NNPXek5r+no9XVXtifsrE/MQm3fbaJ7DPNJ554Alu3bsXx48et9pWUlGDr1q144oknZBeyevVqHDhwAO+88w769esn2tfaTa9v336nm2NLHXsv5iQiImWSfaa5ePFiPP/883j++ecxdOhQPP7441CpVKioqMDXX38NV1dXLFq0SNacKSkpyMjIwJIlS0TXrdVoNAB+O5O7VW1trejMTqPRtDoO+O0s0N5z2kIQgNraa7KPU/IrzqamGzb13JGa/56OVld7YX/Kxv7EevRw65CzTdlnmjqdDpmZmZgwYQLOnj2LXbt2ITMzE2fPnsWECROQmZlp9T3LO0lNTcWGDRuQkJCAF198UbSveY2wpTXB0tJS0RqiVqtFRUUFzGaz1bjmuh1hTiIiUi6bvjzYp08fpKamoqSkBIWFhTh06BBKSkqQmpoKX19fyfOkp6dj/fr1WLBgAWbPnm21v1evXggMDEROTo4ouIqLi2EwGDBhwgTLNr1eD5PJhIKCAtEcWVlZ8PPzg1ardYg5iYhIuWS/PXsrZ2dneHl52XRsRkYG0tLSMG7cOIwePRonT5607OvcuTMGDhwIAIiPj0dMTAxee+01REVFwWAwICkpCUOHDsWkSZMsx4SGhiIoKAhLliyB0WiEj48PsrKyUFJSgvXr14se255zEhGRctkUmvX19di6dSuOHDmCy5cv47333sOwYcNQU1OD7du3Y+LEifDz87vjHM1fSzl48KDVV1S8vb0tZ3ejRo3Chg0bkJaWhtjYWLi6uiI8PBwJCQmi73+qVCqsX78eycnJSElJsVzyLj093eorMvack4iIlEt2aF65cgXPPfccLly4AB8fH1RWVuLatZsLsw8//DB27NiB2trau34YaOvWrZIfMyQkBCEhIXcd5+bmhmXLlmHZsmUOPScRESmT7NBcu3YtDAYD/v73v8PHxwejR48W7Q8PD0dRUVG7FUhEROQobLoi0HPPPYchQ4a0+P1DHx8fy2XwiIiI7ieyQ7OmpuaOn5B1dna2vF1LRER0P5Edmj179sRPP/3U6v7vvvsOjz76aJuKIiIickSyQzMkJAQ7d+7E5cuXrfadOnUKWVlZd7ygOxERkVLJ/iDQvHnzUFBQgOnTpyM8PBwqlQr/93//h127diEvLw89e/ZEbGxsR9RKRERkV7LPNL28vPDZZ59h4MCB2LZtGwRBwO7du7Fnzx4EBQXhr3/9611vQE1ERKRENl3coHfv3ti0aRNqa2tx/vx5CIIAX1/fFm8sTUREdL+QFZr19fVYtWoVxowZg0mTJkGtVtt0GzAiIiIlkvX2rKurK7Kzs3H16tWOqoeIiMhhyV7T1Gq1+Pe//90RtRARETk02aEZExODzz77DD/++GNH1ENEROSwZH8QqLKyEr169cJTTz2FsLAw+Pr6olu3bqIxKpUKc+bMabciiYiIHIFNF2xvlpeX1+IYhiYREd2PZIfmvn37OqIOIiIihycpNL/55hv06dMHGo0Gffr06eiaiIiIHJKkDwJFRUXhiy++sPxeX1+P119/HeXl5R1WGBERkaORFJqCIIh+b2xsRG5uLi5dutQhRRERETki2V85ISIielAxNImIiCRiaBIREUkk+SsnhYWFlhtPX7t2DSqVCnl5eTh79qzVWJVKhejo6HYrkoiIyBFIDs09e/Zgz549om3btm1rcSxDk4iI7keSQvOTTz7p6DqIiIgcnqTQHDlyZEfXQURE5PD4QSAiIiKJGJpEREQSMTSJiIgkYmgSERFJxNAkIiKSiKFJREQkEUOTiIhIIoYmERGRRHYNzaqqKqxcuRL/9V//hSeeeAIBAQE4evRoi2NzcnIwbdo0DB48GCEhIUhKSkJDQ4PVuMuXL2PRokUICgrCsGHD8Nxzz+H48eMONycRESmPXUPzwoULyM3NxUMPPYTg4OBWx2VnZyM+Ph6/+93vsHnzZsyZMwd//etfsXjxYtG4hoYGREdH49ixY1i6dCnS09Ph6uqK6OhonDlzxmHmJCIiZZJ8wfaOMGLECBQXFwMADhw4gIKCAqsxN27cQGJiIsLCwrB8+XIAQHBwMDp16oSlS5ciOjoaQ4cOBQDs3LkTZWVl2LVrFwYNGgTg5iUAJ0+ejOTkZGzZssUh5iQiImWy65mmk9PdH/7kyZO4dOkSIiMjRdunTp2KTp06IT8/37LtwIED0Ol0lnADgM6dO+Opp55CUVER6urqHGJOIiJSJof/IFBZWRkAwN/fX7S9W7du6N27t2V/81idTmc1R0BAAG7cuIHz5887xJxERKRMdn17Vgqj0QgAUKvVVvvUarVlf/PY1sYBwJUrVxxiTrlUKkCt7ib7OBcXZ5sf095cXJxt6rkjNf89Ha2u9sL+lI39ialUHVOHw59pNlO18he4fXtr4+SMvRdzEhGR8jj8maZGowFw80zOw8NDtK+2thY+Pj6isS2d0dXW1ormsveccgkCUFt7TfZxSn7F2dR0w6aeO1Lz39PR6mov7E/Z2J9Yjx5uHXK26fBnmlqtFgCs1gSvXbuGyspK0RqiVqtFaWmp1Rznzp2Ds7MzHn/8cYeYk4iIlMnhQ3PYsGHw9PREdna2aPuePXvw66+/YsKECZZter0epaWl+O677yzbGhsbkZubi1GjRsHNzc0h5iQiImVyXt78pUI7ycvLQ3l5Ob7++mscP34cPj4+qKmpwcWLF9G3b184OTnBw8MDmzZtwpUrV9C1a1ccPnwYq1evRlhYGF5++WXLXAEBAdi3bx9ycnLg6emJ6upqrFq1CufOnUNSUhIeeeQRALD7nHIJAnDtWqPs47p27YSfa6/j868qZR/7hzB/GK823PNjAWD8iD7oqe6KhoYmm47vKF27dgIAh6urvbA/ZWN/Yg891LlDPkti9zXNBQsWiH5PS0sDAHh7e1sudhAZGQknJyds2bIF27dvh4eHB5599lm88soromO7dOmCv/zlL1i9ejWWL1+OhoYGDBw4EBkZGQgMDBSNteecRESkTHYPzXPnzkkaFxERgYiIiLuO8/T0RGJiosPPSUREyuPwa5pERESOgqFJREQkEUOTiIhIIoYmERGRRAxNIiIiiRiaREREEjE0iYiIJGJoEhERScTQJCIikoihSUREJBFDk4iISCKGJhERkUQMTSIiIokYmkRERBIxNImIiCRiaBIREUnE0CQiIpKIoUlERCQRQ5OIiEgihiYREZFEDE0iIiKJGJpEREQSMTSJiIgkYmgSERFJxNAkIiKSiKFJREQkEUOTiIhIIoYmERGRRAxNIiIiiRiaREREEjE0iYiIJGJoEhERScTQJCIikoih2c7q6+uxcuVKjB07FkOGDMGMGTPw+eef27ssIiJqBwzNdhYXF4ecnBwsWLAAGzduhFarRVxcHAoLC+1dGhERtZGLvQu4nxQWFqKoqAjp6enQ6/UAgODgYFRWVmLVqlUIDQ21c4XK8GhPV7i4OEOt7mbT8U1NZtTXN7RzVUREDM12tX//fri7u2P8+PGWbSqVCpGRkVi6dCnKy8uh1WrtWKEydO3igl8amvD9xVrZx/p5q9HZhW+gEFHHUAmCINi7iPtFVFQUVCoV/v73v4u2f/3115g5cyZSUlIwZcoU2fO29f8is1n+8U5OKrsc216PTUSkUrX/8wHPNNuR0WhE3759rbar1WrLflu09f94Z2fbj7fXse1xPBFRe+P7WO3sTgHXEa96iIjo3mFotiONRtPi2WRt7c21ueYzTiIiUiaGZjvSarWoqKiA2WwWbS8tLQUA6HQ6e5RFRETthKHZjvR6PUwmEwoKCkTbs7Ky4Ofnx0/OEhEpHD8I1I5CQ0MRFBSEJUuWwGg0wsfHB1lZWSgpKcH69evtXR4REbURv3LSzurq6pCcnIz8/HyYTCZotVrMmzcP4eHh9i6NiIjaiKFJREQkEdc0iYiIJGJoEhERScTQJCIikoihSUREJBFDk4iISCJ+T/MBUlxcjOzsbJw4cQJVVVVQq9UYMmQI5s+fj4CAAADATz/9JLq12e2ioqKwYsUK0bajR49i48aN+Oabb/Drr7/C29sbL730EqKiokTjcnJysHnzZnz//ffw8PDAtGnTMH/+fHTp0kU07vLly0hMTMShQ4fQ0NCAgQMHIj4+Hr/73e/ueX9nzpxBeno6vvnmG9TV1eGxxx7D9OnTER0djc6dO4uOPXLkCFJTU3H27Fm4urpCr9cjPj4e3bt3F42rr69HSkoK8vLyRF9LulNdUvsDgMbGRvzlL39BVlYWLl68CDc3NwQGBmLevHkYPHiwzbUorT+p8ym1v9ulpaUhPT0d/fv3R3Z29n3Tn6M8v1gI9MCYP3++8MILLwh/+9vfhKNHjwq5ublCZGSkEBgYKJw4cUIQBEFoaGgQTpw4YfWzbNkyQafTCYWFhaI5d+3aJQwYMEBYtmyZUFhYKBQVFQmffvqpsHXrVtG4rKwsQafTCW+//bZQXFwsfPrpp8KwYcOEhQsXisZdv35dePLJJ4Vx48YJOTk5whdffCHMnj1bGDx4sPDtt9/e0/7Ky8uFwYMHC9OmTUnE9lgAAAmZSURBVBNyc3OFoqIiITk5Wejfv7+QkJAgeuwvv/xSGDhwoDB//nzhyJEjwu7du4UxY8YIUVFRwo0bN0Rjo6OjhZEjRwrbt28XioqKhISEBKF///7CoUOH2tyfIAjC4sWLhf79+wvJyclCUVGRkJubK0ybNk0IDAwUysrKbKpFif1JnU+p/d2qtLRUGDx4sDB69Ghh2rRpVvuV2p8jPb80Y2g+QC5fvmy1rba2Vhg+fLgQFxd3x2OnTp0qhISEiP4D+/e//y0MGTJE2LRp0x2PbWpqEsaMGSPMnTtXtH3btm2CTqcTTp48adn26aefCjqdTjh9+rRlW0NDgxAWFibExMTc0/7WrVsn6HQ64cKFC6Kx8fHxwsCBA4XGxkbLtqefflqIiIgQHf/Pf/5T0Ol0Qm5urmXboUOHBJ1OJ+zbt8+yzWw2C88++6wwadKkNvfX2NgoDBo0SIiPjxeNu3DhgqDT6YR169bZVIsS+5Pz70GJ/TW7ceOG8MwzzwgrVqwQ/vjHP7YYmkrsz9GeX5pxTfMB0qNHD6tt3bt3h6+vL6qqqlo97tSpUzh37hwiIyPh5PTbP5mdO3cCAF544YU7Pu7Jkydx6dIlREZGirZPnToVnTp1Qn5+vmXbgQMHoNPpMGjQIMu2zp0746mnnkJRURHq6uruWX8uLjdXL9zc3ETj3d3d4eLiAmdnZwCAwWDAqVOnEBERITp+zJgx8PLyEvW3f/9+uLu7i97qUqlUiIyMxPnz51FeXt6m/pycnKBSqeDu7i4a19zDrW8pS61Fqf1J/feg1P6affzxx6iqqsKrr77a4uMqtT9He35pxtB8wNXU1KCsrAz+/v6tjsnMzIRKpcLTTz8t2n7s2DH069cP+/btw8SJEzFgwACEhIQgKSkJjY2NlnFlZWUAYPUY3bp1Q+/evS37m8e2dDeYgIAA3LhxA+fPn79n/UVERECj0WD58uWorKxEXV0dDhw4gN27d+Pll1+2PAE138WmpcfQ6XRW/Wm1WtGTV3N/t85la3/Ozs744x//iN27d+PAgQOoq6tDZWUlli9fjp49e2L69Omya1Fqf1LmU3p/lZWVWLduHZYtW2b14k7p/Tnq8ws/CPQAEwQBS5cuhdlsRkxMTItjGhoakJubi5EjR6J3796ifdXV1aiursbKlSuxYMECaLVafPnll9i0aRP+85//YM2aNQBgucdoS/cTVavVonuQGo3GVscBwJUrV+5Zf4899hi2bdtmde3guXPnYuHChaKa79TfmTNnRGP79u3ban8t3Y9Vbn+LFi2Cm5sb5s+fb7lNXZ8+ffDJJ5/Ay8tLdi1K7U/qfErtTxAEvPXWWxg7duwdr22t1P4c9fmFofkAW716NQ4cOID33nsP/fr1a3HMvn37YDKZrM7CgJv/UdTX1yM5ORlPPvkkACAoKAjXr19HRkYGXnnlFfj6+lrGq1SqFh/j9u2tjbvbvtu1tb+LFy9i7ty58PT0xPvvvw93d3ccO3YMGzduhEqlEgXnnWq71/1t3LgRW7Zswauvvophw4bhypUr+PDDDzF79mxs3boVPj4+NtWixP6kzHe32hy1v+3bt+P06dPYu3evpMdTWn+O+vzCt2cfUCkpKcjIyMCSJUswY8aMVsdlZmbC3d0dEydOtNqn0WgAAGPHjhVtDwkJAQB8++23onEtvUqtra0VvfLTaDStjrt1rrtpj/7WrFmD+vp6bN68GeHh4QgKCkJcXBzmzJmDjRs34qeffmr3/lp6FSynv4qKCqSkpGDhwoWIjY3FyJEjMXHiRHz44Ye4evUq3n//fdm1KLU/KfMptb+amhokJiZizpw56NatG0wmE0wmE5qammA2m2EymdDQ0KDY/m6t29GeXxiaD6DU1FRs2LABCQkJePHFF1sdd/HiRXz55Zd48skn0bVrV6v9La0N3Kp5XaT55tu3ri0AwLVr11BZWSlai9BqtS2um5w7dw7Ozs54/PHH7/iYQPv1d+bMGWi1Wqt9gYGBMJvNlvWP5vpv7w+4uQZ0e38VFRWWt6VuHQfc/W96t/7Onj0LQRAQGBgo2u7u7g5fX19UVFTIrkWp/UmZT6n9GQwGXL16FWvWrMGIESMsP8ePH0dpaSlGjBiBtLQ0xfYn5bHs9fzC0HzApKenY/369ViwYAFmz559x7G7du2CIAgtvnUJAHq9HgBQWFgo2l5YWAiVSmX5ovKwYcPg6elp9YXrPXv24Ndff8WECRNEc5aWluK7776zbGtsbERubi5GjRrV6ocdOqK/Rx55BGVlZbh27Zpo+4kTJwDAsv7Sq1cvBAYGIicnR/RkU1xcDIPBYNWfyWRCQUGBaM6srCz4+flZngBs7e+RRx4BcPMTwbcyGo344YcfRGtGUmtRan9S5lNqf81rgLf/9O/f37Kv+cv/SuyvuRbAsZ5fAMB5+fLly+86iu4LGRkZSE5Oxrhx4xAZGYmqqirLT01NDTw9PS1jBUHAG2+8gUcffbTVj7L7+vrim2++wbZt29ClSxf88ssv2LFjBz766CNERUVh2rRpAG6+IvTw8MCmTZtw5coVdO3aFYcPH8bq1asRFhaGl19+2TJnQEAA9u3bh5ycHHh6eqK6uhqrVq3CuXPnkJSUZPmP7l705+7ujh07duDYsWNwc3NDdXU1du7ciQ8//BDBwcGiDzf06dMHGRkZKC8vh1qtRklJCd555x34+/tj8eLFllfFvr6+OHbsGLZv3w4PDw+YTCakp6fj4MGDePfdd+Hn59em/nr16oVDhw7hH//4B8xmM5qamnDq1Cm8/fbbqKqqwttvvw1vb2/ZtSixPzn/HpTWX+fOneHj42P1s3fvXpjNZsTHx4vellRaf821ONLzSzPehPoB8sILL+Bf//pXi/u8vb1Fry6Li4sRHR2NN954A9HR0a3O+csvvyAtLQ179uzBlStX8Oijj+KZZ57B7NmzrT62np2djS1btlguczV16lS88sorVm9/Xrp0CatXr0ZhYaHlMlevv/46hg8ffs/7KyoqwqZNm1BaWopffvkF3t7emDJlCl5++WU89NBDorGHDx9GWlqa5TJl4eHhSEhIsFoHqqurQ3JyMvLz80WXKbvTJyDl9GcymbBp0yYcOHAA//nPf+Du7o4BAwbgf/7nf/DEE0/YXIvS+pPz70GJ/bX2GCaTqcXL6CmxP0d6fmnG0CQiIpKIa5pEREQSMTSJiIgkYmgSERFJxNAkIiKSiKFJREQkEUOTiIhIIoYmERGRRAxNIiIiiRiaREREEv0/Wn4f+SEY9ikAAAAASUVORK5CYII=\n",
678 | "text/plain": [
679 | ""
680 | ]
681 | },
682 | "metadata": {},
683 | "output_type": "display_data"
684 | }
685 | ],
686 | "source": [
687 | "#check the spread of zipcodes, grouping by the zip codes\n",
688 | "df.groupby(df['zip'])\n",
689 | "zip_plot = df['zip'].plot.hist(bins = 20)"
690 | ]
691 | },
692 | {
693 | "cell_type": "markdown",
694 | "metadata": {},
695 | "source": [
696 | "# Data Analysis & Results"
697 | ]
698 | },
699 | {
700 | "cell_type": "code",
701 | "execution_count": 19,
702 | "metadata": {},
703 | "outputs": [
704 | {
705 | "data": {
706 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAEDCAYAAAClGwp8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1hU9b4/8PcwA4qoM4ikBYjYAGcjKe5E8ODRBPG2JcHMW7VF3YfsZNYJLA8++KDbUx4l0XSrKce91Y6heYGAAjPMDMydlpe8cTMj9iN4YYYEBIH1+8Mfsx0BnTXMsBjW+/U8PXuz1vf7nc+XVfNm3RWCIAggIiKSETupCyAiIupoDD8iIpIdhh8REckOw4+IiGSH4UdERLLD8CMiItlRSV0APZ4gCDDnhhSForm/ZevpzDhneZDbnOU2X6D9c1YoAEXzIK1g+NkAQQBu3bojup9a7QgA0OtrLV1Sp8U5y4Pc5iy3+QLtn7OLS088Ivt42JOIiOSH4UdERLLD8CMiItlh+BERkeww/IiISHYYfkREJDuShd+JEyewdOlSTJgwAUOHDsXo0aOxaNEiXLlypUXbvLw8zJgxA0OGDMHIkSOxfPlyVFVVtWhXXV2NVatWYdSoURgyZAimTZuGr776qtXPl3JMIiKSlkKq9/ktXrwYOp0OkyZNwtNPP42bN28iJSUFhYWF2L17NwICAgAAJ0+exPz58xEWFoZZs2ahoqICSUlJcHd3x549e2Bn98/8njdvHi5evIi4uDi4u7vj0KFDyMjIwNatWzFmzBhDO6nHFKupSeB9fibinOVBbnPu08cJCoUCDQ2NZo/R0NCE6uo6C1ZlXZa4z8/Oru0b/SQLv1u3bsHFxcVoWVVVFcLCwhAcHIyNGzcCAKZPn46GhgYcPHjQECB5eXmYP38+kpOTMXnyZADAsWPHEBMTg02bNiE8PBzA/SejzJkzBzqdDl988YXhc6Qc0xwMP9NxzvIgtzm7uPRETV0Drpbpzerv5aaGg1JhU78va4efZE94eTj4AKB3797w9PTE9evXAQDl5eU4f/48li5darTnFBISgn79+iEnJ8cQKl9++SV69eqFsLAwQzuFQoGoqCgkJCSgqKgIWq1W8jGJiMxxtUyP+C15ZvV977UQ+A7QWLgi29apHm92+/ZtFBYW4g9/+AMAoKCgAADg7e3doq2Pjw8KCwsNPxcWFkKr1bY4vOjr62sYS6vVSj6mORSKf/4VJIZKpQRgXl9bxTnLg9zm/KjHdJlKpVLa1O+rvdv4cb+zTnO1pyAISEhIQFNTExYsWAAA0Ol0AAC1Wt2ivVqtNqxvbttWuwfHknpMIiKSXqfZ81uzZg2OHDmC999/H08//bTRuraezP3w8kc9wdvUth0xpliCYN5xb7mdFwE4Z7mQ25xdXHq2e4yGhkab+n3J4sHWycnJ2LFjB5YtW4Zp06YZlms0949Rt7bnpNfrjfa0NBpNm+2Af+6VST0mERFJT/Lw27BhA7Zu3YolS5bgj3/8o9G65nNorZ0zKygoMDrHptVqUVxcjKamphbtgPvn3jrDmEREJD1Jw2/Tpk3YvHkz3nzzTfzpT39qsb5///7w9/dHRkaGUQCdOHEC5eXlGD9+vGFZeHg4qqqqkJubazRGWloavLy8oNVqO8WYREQkPWViYmKiFB+8Y8cOrFu3DmPHjkVUVBSuX79u+Of27dtwdXUFAAwYMAA7duxAUVER1Go1Tp8+jRUrVsDb29vo1gJPT098//332LdvH5ydnVFVVYVNmzbh6NGjeO+99+Dl5WX4bCnHNIcgALW19aL7de9uDwCoq2sw+7NtDecsD3Kbc48eDrhRWYuvTpWa1T8scAD6qrvb1O+rvdu4Rw+HR1+zIdVN7q+88gr+/ve/t7rOzc3NaG/rm2++wcaNG3H58mU4OTlh3LhxWLJkSYtzaXfu3MG6deuQk5ODqqoqaLVavP766xg3blyLz5ByTLF4k7vpOGd5kNucXVx64kLJrXbf52dLv68u+4QXMh3Dz3ScszzIbc5Shp+TUzeoVOYfuTL3sWpd9gkvRETU+alUdqhvFMx6tJqXmxoO7QhOa2L4ERHRI5n7aLXO/Fi1zhnJREREVsTwIyIi2WH4ERGR7DD8iIhIdhh+REQkOww/IiKSHYYfERHJDsOPiIhkh+FHRESyw/AjIiLZYfgREZHsMPyIiEh2GH5ERCQ7DD8iIpIdhh8REckOw4+IiGSH4UdERLLD8CMiItlh+BERkeww/IiISHYYfkREJDsMPyIikh2GHxERyQ7Dj4iIZIfhR0REssPwIyIi2WH4ERGR7DD8iIhIdhh+REQkOww/IiKSHYYfERHJDsOPiIhkh+FHRESyw/AjIiLZYfgREZHsMPyIiEh2JA2/69evY9WqVZg9ezaGDRsGX19fnDx5skW70NBQ+Pr6tvgnKSmpRdubN2/i3XffRVBQEAICAjBnzhz88MMPrX5+RkYGnn/+eTzzzDMYPXo0kpKSUFdX1yFjEhGRdFRSfvi1a9eQlZUFPz8/BAcHIzc3t822gYGBiIuLM1rWr18/o5/r6uoQHR2NmpoaJCQkQKPRYOfOnYiOjkZqair8/PwMbdPT0/HOO+9g9uzZiI+PR3FxMZKSklBWVobk5GSrjklERNKSNPwCAwNx4sQJAMCRI0ceGX69e/dGQEDAI8fbv38/CgsLcfDgQQwePBgAMGLECEyaNAnr1q1DSkoKAKCxsRFr165FaGgoEhMTAQDBwcGwt7dHQkICoqOjMXToUKuNSURE0pL0sKednWU//siRI/Dx8TGEFAA4ODhgypQpyM/Px507dwAAZ86cwY0bNxAVFWXUPyIiAvb29sjJybHqmEREJC1J9/zE+O677zBs2DDcu3cPXl5emD17NmbPng2FQmFoU1hYiKCgoBZ9fX190djYiJKSEgwZMgSFhYUAAG9vb6N2jo6O8PDwMKy31phiKRSAWu0oup9KpQRgXl9bxTnLg9zm/MDXnNlUKmW7vkek+lxzt/Hjfmc2EX7PPfcc/P394eHhAZ1Oh88++wwrVqzAzz//jPj4eEM7nU4HtVrdon/zssrKSkO7B5c/3LZ5vbXGJCLqSE/2dYJCYV6QWSJ4OyPR4Tdp0iS8+OKLiIyMRJ8+faxRUwvLly83+jk8PByxsbHYvXs35s6dCzc3N8M6xSO21MPr2mprarv2jCmGIAB6fa3ofs1/MZnT11ZxzvIgtzm7uPRsV//u3VSovtuAq2V60X39vNr3Pd/Q0CjJ95eLS89HBrfo8GtqasKaNWuwbt06hIaGYvr06fi3f/u3dn25myMqKgqZmZk4d+6cIfw0Gk2re1h6vd6w/sH/1el0cHZ2btHW3d3d8LM1xiQi6mhXy/SI35Inut8nqyZboRrpib7iJCcnBx9//DEiIiJw/PhxvPrqqxg7diw+/PBDlJWVWaPGVjU1NQEwvmhGq9WioKCgRdsrV65AqVRi0KBBhnYAWpyHq62tRWlpqdF5O2uMSURE0jLrcsvhw4fj/fffx7fffosVK1bgiSeewObNmxEeHo758+fj888/x7179yxdq5H09HTY2dnhmWeeMSwLDw9HQUEBLl26ZFhWX1+PrKwsjBw5Ej173j90EBAQAFdXV6SnpxuNmZmZiXv37mH8+PFWHZOIiKSlTGy+Kc0MDg4OGDx4MF588UVMnDgROp0Oubm5OHz4MPbs2YNbt27B29vbEBCtyc7ORlFREc6ePYsffvgB7u7uuH37NsrKyjBw4EBkZmZiy5YtuHv3LnQ6HS5cuIDk5GRkZ2dj/vz5mDhxomEsX19fHD58GBkZGXB1dUVFRQVWr16NK1euICkpCU888QSA+3uLzs7O2LZtGyorK9G9e3d88803WLNmDUJDQzFv3jyrjimWIAC1tfWi+3Xvbg8AqKtrMPuzbQ3nLA9ym3OPHg64UVmLr06VmtV/eqg3dL/VmdW/PX3DAgegr7q7Wdupvdu4Rw+HR56Oa/fVnk1NTfj666+xf/9+HDt2DMD9PUMHBwf87W9/Q2pqKtatW4exY8e22v/NN980+nnjxo0AADc3N+Tm5sLd3R2VlZVISkqCTqeDvb09fH19sXr16hb31HXr1g07d+7EmjVrkJiYiLq6Ovj5+WHHjh3w9/c3ahsVFQU7OzukpKRg3759cHZ2xqxZs7B48WKrj0lERNJSCIIgmNPx559/xoEDB3Do0CHcvHkTzs7OiIyMxIwZM+Dl5QUAKCkpwX/+53+irq4O2dnZFi1cTpqaBNy6dUd0P7ldEQdwznIhtzm7uPTEhZJbZl2wAty/aKU9F7yY2/e910LgO0Aj2dWednYW3PNLS0vD/v37cfr0aQD3H/UVHx+P8PBw2NvbG7UdNGgQ5s6di4SEBLEfQ0REZDWiw2/p0qVwcXHB/PnzMWPGDHh6ej6y/dNPP43Jk7vmpbJERGSbRIdfcnIywsPDoVKZ1nXo0KF8oDMREXUqZj3hhYiIyJaJvs9v06ZNmDp1apvrIyMj8dFHH7WrKCIiImsSHX6HDx/GiBEj2lwfFBSEL774ol1FERERWZPo8Pv111/x9NNPt7ney8sLpaXm3YhJRETUEUSHnyAIqKqqanP9b7/9ZnjuJhERUWckOvy0Wi2OHj3a5vqjR48abnInIiLqjESH3wsvvIAff/wR8fHxLV76umzZMvz444944YUXLFokERGRJYm+1WHWrFk4efIkDh48iLS0NPTv3x8AcP36dTQ1NWHChAl46aWXLF4oERGRpZj1YOvk5GSEhoYiIyMD165dAwCMHj0aERER+MMf/mDRAomIiCzN7Lc6REREICIiwpK1EBERdQizXmZLRERky8za86utrcXnn3+Oa9euQafT4eG3IikUCqxcudIiBRIREVma6PA7f/48Fi5ciNu3b7cIvWYMPyIi6sxEh9/777+Pu3fvIikpCcHBwdBoNNaoi4iIyGpEh99PP/2EmJgYXtVJREQ2S/QFL05OTujTp481aiEiIuoQosMvPDwceXl51qiFiIioQ4gOvyVLlqC8vBzvvfceysrKrFETERGRVYk+5xccHAwAuHDhAnbv3g07OzsoFIoW7X766af2V0dERGQFosNv0qRJrYYdERGRrRAdfklJSdaog4iIqMPw8WZERCQ7ZoVfU1MTMjIysHTpUvzpT3/C5cuXAQBVVVXIyMhAeXm5RYskIiKyJNHhd/fuXfzxj3/EkiVL8MUXXyAvLw+VlZUAgB49emD16tVITU21eKFERESWIjr8Nm7ciDNnzmDDhg3Izc01er6nSqVCeHg4jh8/btEiiYiILEl0+GVnZ2PmzJmYMGEC7Oxadh84cCDv/yMiok5NdPiVl5fjX/7lX9pc7+joiDt37rSrKCIiImsSHX4ajQYVFRVtri8qKoKrq2u7iiIiIrIm0eEXFBSEgwcP4u7duy3WlZWV4cCBAxg1apRFiiMiIrIG0eG3aNEi6HQ6vPjii9i3bx8UCgXy8/Oxfv16TJs2Dfb29li4cKE1aiUiIrII0eHn5eWFv/71rxAEAcnJyRAEAdu3b8fWrVvRt29f7NixA0899ZQ1aiUiIrII0Y83A4AhQ4YgMzMTly5dQnFxMQRBgKenJ5555hk+95OIiDo9s8Kv2e9+9zv87ne/s1QtREREHYLP9iQiItkRvec3ePBgkw5t8n1+RETUWVnkfX6NjY345ZdfcOHCBfj4+MDHx8eksa5fv46UlBRcuHABly9fRk1NDXbt2oWgoKAWbTMyMrB9+3ZcvXoVzs7OeP755/HGG2+gW7duRu1u3ryJtWvX4uuvv0ZdXR38/PwQFxeH3//+951qTCIiko5F3+d36tQpvP766/jzn/9s0ljXrl1DVlYW/Pz8EBwcjNzc3Fbbpaen45133sHs2bMRHx+P4uJiJCUloaysDMnJyYZ2dXV1iI6ORk1NDRISEqDRaLBz505ER0cjNTUVfn5+nWJMIiKSVrsueHnY8OHDMW3aNKxduxa7d+9+bPvAwECcOHECAHDkyJFWw6+xsRFr165FaGgoEhMTAQDBwcGwt7dHQkICoqOjMXToUADA/v37UVhYiIMHD2Lw4MEAgBEjRmDSpElYt24dUlJSOsWYREQkLYtf8DJw4ECTz/e19mDsh505cwY3btxAVFSU0fKIiAjY29sjJyfHsOzIkSPw8fExhBQAODg4YMqUKcjPzzc8c1TqMYmISFoW3fMD7h/6dHBwsNh4hYWFAABvb2+j5Y6OjvDw8DCsb27b2vlCX19fNDY2oqSkBEOGDJF8TLEUCkCtdhTdT6VSAjCvr63inOVBbnO25dunVSqlJN9fj/udiQ6/jIyMVpfr9Xrk5+fj6NGjmDZtmthh26TT6QAAarW6xTq1Wm1Y39y2rXYADC/dlXpMIiKSlujwW7JkCRQKhdFLbJsplUpERkbiv/7rvyxS3IPaur3i4eWPug3D1LYdMaYYggDo9bWi+zX/xWROX1vFOcuD3Obs4tJT6hLM1tDQKMn3l4tLz0fu/YkOv7/+9a+tLtdoNPDw8EDPnpbdSBqNBsD9PStnZ2ejdXq9Hu7u7kZtW9vD0uv1RmNJPSYREUlLdPiNHDnSGnW0SavVArh/7s3Ly8uwvLa2FqWlpRg7dqxR24KCghZjXLlyBUqlEoMGDeoUYxIRkbQ6/ePNAgIC4OrqivT0dKPlmZmZuHfvHsaPH29YFh4ejoKCAly6dMmwrL6+HllZWRg5cqRhr1TqMYmISFqi9/wSEhJEf4hCocDKlStbXZednQ0AOH/+PADg+++/R2VlJRwdHTFmzBioVCrExsZi6dKlWLlyJSZMmGC4eXzChAkICAgwjDV9+nT83//9HxYtWoTY2Fio1Wrs2rULFRUVWL9+vaGd1GMSEZG0RIffp59+arh44+GLXh61vK3we/PNN41+3rhxIwDAzc3NcNN7VFQU7OzskJKSgn379sHZ2RmzZs3C4sWLjfp269YNO3fuxJo1a5CYmGh4FNmOHTvg7+9v1FbKMYmISFqiw+/48eN49dVX0a9fPyxYsABarRaCIKC4uBgpKSmoqKjAtm3bWlz00ZYrV66Y1G7q1KmYOnXqY9u5urpi7dq1nX5MIiKSjuhzfh988AGcnZ2xZcsWDB8+HBqNBs7Ozhg+fDi2bt0KjUaDpKQkKJVKo3+IiIg6C9Hhd/ToUYSGhra5PiwsDEePHm1XUURERNYkOvzq6+tRUVHR5vry8nLU19e3qygiIiJrEh1+w4YNw+7du/HDDz+0WHf69Gns3r0bw4YNs0hxRERE1iD6gpelS5fipZdewksvvYShQ4di0KBBUCgUKC4uxtmzZ+Hk5IR3333XGrUSERFZhOjw8/HxwYEDB/DBBx/g2LFjOHPmDACge/fuGD9+PN5++214enpavFAiIiJLMeuVRgMGDMCGDRvQ2NiImzdvQhAEuLq68qpOIqI2ODl1g0pl3kO1bPmVRp1Vu97np1Qq0a9fP0vVQkTUZalUdqhvFHC1TC+6r59XHytUJG9mhV91dTV2796NvLw83Lx5E++//z4CAgJw+/Zt7Nu3DxMmTDB6uDMREQFXy/SI35Inut8nqyZboRp5Ex1+lZWVmDNnDq5duwZ3d3eUlpaitvb++5b69OmDTz/9FHq9nhe9EBFRpyU6/NavX4/y8nKkpqbC3d0d//qv/2q0fty4ccjPz7dYgURERJZm1hNe5syZgyFDhrT6dnJ3d3dcv37dIsURERFZg+jwu3379iNvZVAqlYbDoERERJ2R6PDr27cvfv311zbXX7p0CU8++WS7iiIiIrIm0eE3evRo7N+/Hzdv3myx7vz580hLS3vkg6+JiIikJvqCl9dffx25ubmIjIzEuHHjoFAo8Nlnn+HgwYPIzs5G3759ERMTY41aiYiILEJ0+PXr1w+ffPIJ/vznP2Pv3r0QBAGHDh2CQqFASEgIVq5cafKLbImIbEl7ntKiUvEJWJ2JWTe5e3h4YNu2bdDr9SgpKYEgCPD09ISLi4ul6yMi6jT4lJauQ1T4VVdXY/Xq1QgJCcHEiROhVqv5+iIikhU+paVrELX/7uTkhPT0dPz222/WqoeIiMjqRB+81mq1+Mc//mGNWoiIiDqE6PBbsGABPvnkE/zyyy/WqIeIiMjqRF/wUlpaiv79+2PKlCkIDQ2Fp6cnHB0djdooFAq8+uqrFiuSiIjIksx6sHWz7OzsVtsw/IiIqDMTHX6HDx+2Rh1EREQdxqTwO3fuHAYMGACNRoMBAwZYuyYiIiKrMumCl5kzZ+L48eOGn6urqxEbG4uioiKrFUZERLbtyb5OUKmUUKsdRf+jUimhVJr3NB1TmLTnJwiC0c/19fXIysrC9OnTodVqrVIYERHZtu7dVKipazDriThebmr06GbWQ8hMYr2RiYhI9sx9Is57r4Vg8CDrPTLTevuUREREnRTDj4iIZMfkw57Hjh0zvMC2trYWCoUC2dnZuHz5cou2CoUC0dHRFiuSiIjIkkwOv8zMTGRmZhot27t3b6ttGX5ERNSZmRR+u3btsnYdREREHcak8BsxYoS16yAiIuowvOCFiIhkh+FHRESyw/AjIiLZsYnwO3nyJHx9fVv9p7i42KhtXl4eZsyYgSFDhmDkyJFYvnw5qqqqWoxZXV2NVatWYdSoURgyZAimTZuGr776qtXPt8aYREQkHZt6vFlcXBwCAwONlrm7uxv+/8mTJxETE4OwsDC89dZbqKioQFJSEgoKCrBnzx7Y2f0z6xctWoSLFy8iLi4O7u7uOHToEBYtWoStW7dizJgxVh2TiIikZVPh5+XlhYCAgDbXr127Ft7e3li/fr0hlFxdXTF//nxkZ2dj8uTJAO7fsJ+fn49NmzYhPDwcABAcHIzS0lKsXr3aKKisMSYREUnLJg57mqK8vBznz5/H1KlTjfbGQkJC0K9fP+Tk5BiWffnll+jVqxfCwsIMyxQKBaKiolBSUmJ4VZM1xiQiIunZ1J7f8uXLsXjxYjg6OmL48OF444034O/vDwAoKCgAAHh7e7fo5+Pjg8LCQsPPhYWF0Gq1RoEGAL6+voaxtFqtVcY0h0IBqNWOovupVEoA5vW1VZyzPEg15+bPpY5h7ndfc99HsYk9v169emHu3LlYuXIldu3ahXfeeQdFRUWYPXs2zp49CwDQ6XQAALVa3aK/Wq02rG9u21a7B8eyxphERCQ9m9jz8/Pzg5+fn+Hn4cOHIzQ0FFOmTEFycjL+9re/GdYp2oj7h5e31U5M2/aMKYYgAHp9reh+zX8xmdPXVnHO8iDVnOW0d90ZmPvdBwAuLj0fufdnE3t+rXF1dcWoUaMMe34ajQZA63tYer3eaK9Mo9G02Q74596aNcYkIiLp2Wz4AUBTU5Ph/zefl3vwPFyzgoICo/N2Wq0WxcXFRv2b2wH3z+dZa0wiIpKezYbfjRs3kJ+fb7j1oX///vD390dGRoZRAJ04cQLl5eUYP368YVl4eDiqqqqQm5trNGZaWhq8vLwMF6ZYY0wiIpKeTZzzi42NhYeHBwYPHozevXujpKQE27dvx927d/H2228b2sXFxWHBggV4++23MXPmTJSXlyMpKQlDhw7FxIkTDe3GjBmDoKAgLFu2DDqdDu7u7khLS8Pp06exefNmo8+2xphERCQtmwg/X19fZGVl4eOPP0ZtbS00Gg1GjBiB1157zehw4siRI7F161Zs3LgRMTExcHJywrhx47BkyRIolf+8RFmhUGDz5s1Yt24dkpOTUVVVBa1Wi02bNiE0NNTos60xJhERScsmwi8mJgYxMTEmtR09ejRGjx792HY9e/bE8uXLsXz5cknGJCIi6djsOT8iIiJz2cSeHxHRg5RKOygUCrPvu2toaEJ1dZ2FqyJbwvAjIpujUChQU9eAq2V60X293NRwUPGgl9wx/IjIJl0t0yN+S57ofu+9FgLfARorVES2hH/+EBGR7DD8iIhIdhh+REQkOww/IiKSHYYfERHJDsOPiIhkh+FHRESyw/AjIiLZYfgREZHs8AkvRCQrT/Z1gkqlNOu5oCqV8vGNyCYw/IhIVrp3U5n9XFA/rz5WqIikwPAjItkx97mgn6yabIVqSAo850dERLLD8CMiItlh+BERkeww/IiISHYYfkREJDsMPyIikh2GHxERyQ7Dj4iIZIfhR0REssPwIyIi2WH4ERGR7DD8iIhIdhh+REQkOww/IiKSHYYfERHJDsOPiIhkh+FHRESyw/AjIiLZYfgREZHsMPyIiEh2GH5ERCQ7DD8iIpIdldQFdDXV1dVITk5GdnY2qqqqoNVq8frrryMsLEzq0ogsysmpG1Qq8/9+bmhoQnV1nQUrIjIdw8/CFi1ahIsXLyIuLg7u7u44dOgQFi1ahK1bt2LMmDFSl0dkMSqVHeobBVwt04vu6+WmhkM7gpOovRh+FnTs2DHk5+dj06ZNCA8PBwAEBwejtLQUq1evZviRVSiVdlAoFFCrHc3qCwCNjU2i+6pUSlz55Rbit+SJ7vveayHwHaAR3Y/IUhh+FvTll1+iV69eRoc4FQoFoqKikJCQgKKiImi1WgkrJGtpzyHA9gQQANjZKVB9t8GsPTA/rz6orW80uy+RrVIIgiBIXURXMXPmTCgUCqSmphotP3v2LGbMmIHk5GRMnjxZ9LjcRLZBoVBI9tmCIKCpSfy/J3Z292uWqm972eKcO7qvlJ8t9b8jj/pvknt+FqTT6TBw4MAWy9VqtWG9OaT8UiXboFAooFSa/++JVH3byxbnLOXv2lbrtgaecbawRwUVQ4yIqHNg+FmQRqNpde9Or79/PqV5D5CIiKTF8LMgrVaL4uJiNDUZX7hQUFAAAPDx8ZGiLCIiegjDz4LCw8NRVVWF3Nxco+VpaWnw8vLilZ5ERJ0EL3ixoDFjxiAoKAjLli2DTqeDu7s70tLScPr0aWzevFnq8oiI6P/jrQ4WdufOHaxbtw45OTlGjzcbN26c1KUREdH/x/AjIiLZ4Tk/IiKSHYYfERHJDsOPiIhkh+FHRESyw/AjIiLZ4X1+Nmzp0qU4dOhQm+u//fZbuLq64pVXXsHf//73FusnT56M5ORka2/xaCAAAAmDSURBVJZocRcvXsSmTZtw7tw53LlzB0899RQiIyMRHR0NBwcHQ7u8vDxs2LABly9fhpOTE8LDwxEXF4fevXtLWL15TJlzV9rGAHD69Gls2LAB586dg52dHZ599lnExcXB19e3RduMjAxs374dV69ehbOzM55//nm88cYb6NatmwSVm8/UOYeGhqKsrKxF/3//939HXFxcR5UryvXr15GSkoILFy7g8uXLqKmpwa5duxAUFNSiranb8+bNm1i7di2+/vpr1NXVwc/PD3Fxcfj9739vUk0MPxv2H//xH5g1a5bRsoaGBixYsAC+vr5wdXU1LB84cCD+53/+x6its7Nzh9RpKcXFxZg1axa8vLwQHx8PZ2dnfPfdd0hOTkZRURHWrFkDADh58iRiYmIQFhaGt956CxUVFUhKSkJBQQH27NkDOzvbOeBh6pyBrrGNAeDMmTOYO3cuhg4diqSkJDQ1NWHbtm14+eWXsX//fnh6ehrapqen45133sHs2bMRHx+P4uJiJCUloayszKZCX8ycASAwMLBF0PXr168jSxbl2rVryMrKgp+fH4KDg1s8BauZqduzrq4O0dHRqKmpQUJCAjQaDXbu3Ino6GikpqbCz8/v8UUJ1KXk5OQIPj4+wt69ew3LXn75ZeH555+XsCrL+PDDDwUfHx/h2rVrRsvj4uIEPz8/ob6+XhAEQXjhhReEqVOnCo2NjYY23377reDj4yNkZWV1aM3tZeqcu8o2FgRBmDdvnhASEiLU1tYalun1eiEwMFB4++23DcsaGhqEkJAQYeHChUb99+7dK/j4+AhnzpzpsJrby9Q5C4IgjB07Vnjttdc6usR2efC/xS+//FLw8fERvvvuO6M2Yrbnxx9/LPj4+Ag//fSTYVldXZ0QGhoqLFiwwKSabOdPYDLJgQMH4OjoaNZLczs7ler+gYqePXsaLe/VqxdUKhWUSiXKy8tx/vx5TJ061WgPLyQkBP369UNOTk6H1txepsy5q/nxxx8RHByM7t27G5b17t0bzz77LL766is0NjYCuL+3dOPGDURFRRn1j4iIgL29vU1ta1PnbKtMOdoiZnseOXIEPj4+GDx4sGGZg4MDpkyZgvz8fNy5c+fxNYmonzq5iooKHD9+HBMmTGjxZXn16lUEBgbCz88P48ePx+bNm3Hv3j2JKjXP1KlTodFokJiYiNLSUty5cwdHjhzBoUOHMG/ePNjZ2RneoOHt7d2iv4+PDwoLCzu67HYxZc7NusI2BoB79+4Znb9t5uDggNraWpSWlgKAYVs+vK0dHR3h4eFhU9va1Dk3++677zBs2DD4+/sjIiICe/bsgWDjD+sSsz0LCwtbfUuOr68vGhsbUVJS8tjP4zm/LiQtLQ2NjY2YPn260fJnn30WkydPxqBBg1BTU4MjR47gww8/xIULF/CXv/xFomrFe+qpp7B3794Wz0pduHAh3nrrLQAwvE+xtXcnqtVqXLx4sWOKtRBT5gx0nW0M3H812NmzZyEIguEF0Pfu3cP58+cBAJWVlRg4cOBjt3Vr79bsrEydMwA899xz8Pf3h4eHB3Q6HT777DOsWLECP//8M+Lj46WaQruJ2Z46na7NdsD939fjMPy6kIMHD8LT0xOBgYFGyx/8kgSAsWPHom/fvti6dStOnTqF4cOHd2SZZisrK8PChQvh6uqKv/zlL+jVqxe+//57fPTRR1AoFEbzbP4CeVhbyzsrU+fcVbYxALz88stYtmwZVq1ahZiYGDQ1NeHDDz/E9evXAbQ8hNYVtrWYOS9fvtyob3h4OGJjY7F7927MnTsXbm5uHVq7pZm6PR+1fU3Z9jzs2UWcOnUKV69exbRp00xqHxkZCeD+cXZb8cEHH6C6uhrbt2/HuHHjEBQUhEWLFuHVV1/FRx99hF9//RUajQYAWv2rX6/Xt/rXYmdmypzbYovbGACmT5+O2NhYHDx4EKNHj8Zzzz2Hq1evYv78+QCAJ554AgC61LY2dc5tiYqKQlNTE86dO9cR5VqFmO2p0WjabPfgWI/C8OsiDhw4AKVS2eJkcVua3zZvS5f9X7x4EVqt1uiiAADw9/dHU1MTSkpKDOcLWjvfU1BQ0Oq5wM7MlDm3xRa3cbOYmBicPHkSGRkZyM3NRWpqKvR6Pdzc3PDkk08CgOHl0A9v6+ZzZLa2rU2Zc1tseVs3E7M9tVqt4fz+g65cuQKlUolBgwY99vNs9zdFBjU1NcjOzsaoUaNMvtcnPT0dADB06FBrlmZRTzzxBAoLC1FbW2u0/McffwRw/z6n/v37w9/fHxkZGYYvBAA4ceIEysvLMX78+A6tub1MmXNbbHEbP8jBwQE+Pj5wc3PDr7/+is8//xwvvfSSYX1AQABcXV0N82yWmZmJe/fu2dy2Bh4/57akp6fDzs4OzzzzTAdUaR1itmd4eDgKCgpw6dIlw7L6+npkZWVh5MiRLS74a40yMTEx0WLVkyTS09ORk5OD2NhYw19PzU6dOoXExETU1dVBr9ejoKAAKSkp+PjjjzFx4kTDYRVb0KtXL3z66af4/vvv0bNnT1RUVGD//v343//9XwQHB2PBggUAgAEDBmDHjh0oKiqCWq3G6dOnsWLFCnh7e2Pp0qU29dexKXPuStsYAC5fvozU1FTU1NTgH//4Bw4fPox3330X/v7+SEhIMGw/Ozs7ODs7Y9u2baisrET37t3xzTffYM2aNQgNDcW8efMknonpTJ1zZmYmtmzZgrt370Kn0+HChQtITk5GdnY25s+fj4kTJ0o8k7ZlZ2ejqKgIZ8+exQ8//AB3d3fcvn0bZWVlGDhwoKjt6evri8OHDyMjIwOurq6oqKjA6tWrceXKFSQlJT32MDHAl9l2CXPmzEFJSQmOHz8Oe3t7o3XXrl3Df//3f+Py5cuorKyEnZ0dvLy8EBkZiVdeecXm7hPLz8/Htm3bUFBQgJqaGri5uWHy5MmYN28eevToYWj3zTffYOPGjYbHm40bNw5LliyxqfNAzR435662jYuLi7F8+XIUFhaipqYGHh4eiIyMxLx581q9HSA9PR0pKSmGx2FFRERg8eLFLQ4Vd2amzvnMmTNYv349ioqKoNPpYG9vD19fX8ycOdPkUx5Sae3RdADg5uZm9MQXU7fnjRs3sGbNGhw7dszweLPY2FiTL+5i+BERkezYzvEfIiIiC2H4ERGR7DD8iIhIdhh+REQkOww/IiKSHYYfERHJDsOPiIhkh+FHRESyw/AjIiLZ+X80Sl7p1oT59QAAAABJRU5ErkJggg==\n",
707 | "text/plain": [
708 | ""
709 | ]
710 | },
711 | "metadata": {},
712 | "output_type": "display_data"
713 | }
714 | ],
715 | "source": [
716 | "#plot the frequency of the health inspection scores, using yelp and inspections data\n",
717 | "score_plot = df2['score'].plot.hist(bins = 20)"
718 | ]
719 | },
720 | {
721 | "cell_type": "code",
722 | "execution_count": 20,
723 | "metadata": {},
724 | "outputs": [
725 | {
726 | "data": {
727 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEDCAYAAABK2WFCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dfVRUdf4H8PeFQUOUGUOObjyJDlCoiLsomC5sIJqmGeT6uCqrHsykbEWS1fBn5DFSBA0yUiNTW83MICAhCY/bETPzodQ0ENTIDviAMIqIwczvD5fJETDuPHgH7/t1jie59/v93k9flTffuU+CTqfTgYiISCZspC6AiIjoQWLwERGRrDD4iIhIVhh8REQkKww+IiKSFQYfERHJikLqAuiP6XQ6GHPTiSA09zdvPQ8rzpc4nC9xOF/imDpfggAIzYPcg8HXAeh0wNWrN0T3UyrtAQC1tfXmLumhxPkSh/MlDudLHFPny8mpK9rIPX7USURE8sLgIyIiWWHwERGRrDD4iIhIVhh8REQkKww+IiKSFQYfERHJCu/jIyJ6AGxtbSAIgv7+NLEaG7Woq2swc1XyxOAjInoABEHAzYZGnLtYK7qvp4sSnRT8gM5cJAu+gwcPIjs7G8eOHUNlZSWUSiX8/Pzw0ksvwcfHx6DtgQMHsG7dOpw5cwYODg4IDw/HokWL4OjoaNCurq4OqampyM/Ph0ajgVqtxvz58xEWFtbi+FKOSUTydO5iLZa8e0B0v5XzhsHHXWWBiuRJsh8htm/fjl9//RVRUVHYuHEj4uPj8euvv2LChAk4fvy4vt2hQ4cQHR2NXr16ISMjA4sXL0ZRURGio6Oh1WoNxoyJiUFOTg4WLFiA9957D2q1GjExMdi/f79BO6nHJCIi6Ui24vu///s/ODk5GWwbPnw4wsLC8P777yMtLQ0AsHr1anh5eWHt2rWwsbmT087Ozpg1axby8/MxZswYAMD+/ftRXFyM9PR0hIeHAwCCgoJQUVGBpKQkhISE6I8j5ZhERCQtyVZ894YeADg6OsLDwwOVlZUAgKqqKpw4cQLjx4/XhwkADBs2DD179kRBQYF+2969e9GtWzeDjyAFQUBERATKy8tx9uxZqxiTiIikZVVnS6urq1FaWgovLy8AQElJCQDov76bt7c3SktL9V+XlpZCrVYbBA8A/fnC5rGkHpOIiKRlNVd16nQ6JCQkQKvVYvbs2QCAmpoaAIBSqWzRXqlU4scff9R/XVNTg969e7fa7u6xpB7TGIIAoy6BVihs/1eDcZdPyw3nSxzOlzhtvSKnvRQKW1nNtal/v+4331YTfKtWrUJhYSHefPNN9O3b12BfWy8TvHd7W+3EtH0QYxIRkXSsIvhSU1ORmZmJpUuXIjIyUr9dpbpz+W7ziuputbW1BisslUrVZjvg99WY1GMaQ6cz7mWMfPGlOJwvcThf4jg5dTWpf2Njk6zm+qF+Ee26deuQkZGBuLg4zJgxw2Bf8zmz1s6RlZSUGJxTU6vVKCsra3HrQPP5N29vb6sYk4iIpCVp8KWnp2P9+vVYsGAB5syZ02J/r1690L9/f+Tk5BiEz8GDB1FVVYWRI0fqt4WHh0Oj0aCoqMhgjKysLHh6ekKtVlvFmEREJC3b5cuXL5fiwJmZmUhJScFTTz2FiIgIVFZW6n9VV1fD2dkZAODu7o7MzEycPXsWSqUSR44cweuvvw4vLy/Ex8frr7j08PDA4cOHsXPnTnTv3h0ajQbp6enYt28fVq5cCU9PT/2xpRzTGDodUF9/W3S/Rx6xAwA0NDQafWw54XyJw/kSp0uXTrh8rR5ffVchum/YYHf0UD4iq7k29e9Xly6d2r7uQqfT6YyuzATTp0/Ht99+2+o+FxcXg1XWf//7X6SlpekfBTZixAjExcW1OHd248YNpKSkoKCgwODxYiNGjGhxDCnHFEur1eHq1Rui+/EcjDicL3E4X+I4OXXFqfKrJj2yTE5zbY5zfDY2VhZ81H4MvgeD8yUO50scBp84lgw+yS9uISIiepAYfEREJCsMPiIikhWruIGdiEgMB4fOUJjwYla+zVzeGHxE1OEoFDa43aTj28zJKAw+IuqQ+DZzMhZ/7CEiIllh8BERkaww+IiISFYYfEREJCsMPiIikhUGHxERyQqDj4iIZIXBR0REssLgIyIiWWHwERGRrDD4iIhIVhh8REQkKww+IiKSFQYfERHJCoOPiIhkhcFHRESywuAjIiJZYfAREZGsMPiIiEhWGHxERCQrDD4iIpIVBh8REckKg4+IiGSFwUdERLLC4CMiIllh8BERkaww+IiISFYYfEREJCsMPiIikhUGHxERyQqDj4iIZIXBR0REsiJp8FVWVmLFihWYMmUKBg0aBB8fHxw6dKhFu9DQUPj4+LT4lZyc3KLtlStXsHjxYgQGBsLf3x9Tp07F0aNHWz1+Tk4Onn32WQwYMADBwcFITk5GQ0PDAxmTiIikoZDy4BcuXEBeXh58fX0RFBSEoqKiNtsOHjwYixYtMtjWs2dPg68bGhoQFRWFmzdvIiEhASqVCh9++CGioqKwY8cO+Pr66ttmZ2fj1VdfxZQpU7BkyRKUlZUhOTkZFy9eRGpqqkXHJCIi6UgafIMHD8bBgwcBAIWFhfcNPkdHR/j7+993vF27dqG0tBS7d+9Gv379AABDhgzB6NGjkZKSgk2bNgEAmpqasHr1aoSGhmL58uUAgKCgINjZ2SEhIQFRUVEYOHCgxcYkIiLpiP6oc/To0cjMzER1dbXpB7cx7yethYWF8Pb21gcUAHTq1Aljx45FcXExbty4AQA4fvw4Ll++jIiICIP+48aNg52dHQoKCiw6JhERSUf0ik+r1WLVqlVISUlBaGgoJkyYgL/+9a8QBMES9el98803GDRoEH777Td4enpiypQpmDJlisFxS0tLERgY2KKvj48PmpqaUF5eDj8/P5SWlgIAvLy8DNrZ29vDzc1Nv99SY4olCIBSaS+6n0JhC8C4vnLE+RJHyvlqPrYp/R903aZ+i5SiZimZ+vfrfvMtOvgKCgrw3Xff4dNPP0V+fj727t2Lnj17IjIyEs8//zxcXFyMKvJ+/va3v6F///5wc3NDTU0NPv/8c7z++us4f/48lixZom9XU1MDpVLZon/ztmvXrunb3b393rbN+y01JhERSceoc3wBAQEICAjAa6+9hry8POzatQvr169HRkYGgoKCMGHCBISHh8POzs4sRS5btszg6/DwcMTGxmLr1q2YOXOmQdjeb+V577622ra3nSljiqHTAbW19aL7Nf+kZExfOeJ8iSPlfJm68mlsbHrgdTs5dTWpvxQ1S8nUv19OTl3bXPWZdJLNwcEBEydOxM6dO5Gbm4vRo0ejuLgYsbGx+Otf/4q33noLVVVVphyiTREREdBqtfjhhx/021QqVasrq9raWv3+u//bVtu7V22WGJOIiKRj8tUlWq0WRUVFSElJQX5+PoA7K8J+/fph8+bNePrpp7Fv3z6TC23tuIDhBTJqtRolJSUt2v7000+wtbVFnz599O0AtDjvVl9fj4qKCoPzdJYYk4iIpGN08J0/fx5r1qxBcHAwXnzxRRw7dgwzZszAnj17sHXrVrz//vvIy8uDu7s73nrrLXPWDODOPXM2NjYYMGCAflt4eDhKSkpw+vRp/bbbt28jLy8PQ4cORdeudz5q8Pf3h7OzM7Kzsw3GzM3NxW+//YaRI0dadEwiIpKO6HN8WVlZ2LVrF44cOQLgzj1tS5YsafWcXp8+fTBz5kwkJCS0OV7zKvHEiRMAgMOHD+PatWuwt7dHSEgIcnNz8dVXXyEkJAS9evVCbW0tPv/8cxQWFmL27Nl47LHH9GNNmDABH330EWJiYhAbGwulUoktW7bg0qVLWLt27e//0woFYmNjER8fj8TERIwaNUp/s/moUaMM7he0xJhERCQd0cEXHx8PJycnzJo1CxMnToSHh8d92/ft2xdjxoxpc/+CBQsMvk5LSwMAuLi4oKioCK6urrh27RqSk5NRU1MDOzs7+Pj4ICkpqcU9c507d8aHH36IVatWYfny5WhoaICvry8yMzPRv39/g7YRERGwsbHBpk2bsHPnTnTv3h2TJ0/Gyy+/bPExiYhIOoJOp9OJ6bBnzx6Eh4dDoZD0oS+yotXqcPXqDdH9eJWiOJwvcaS+qvOnn2uw5N0DovuunDcMPu4qSa7qPFV+tUPVLCVzXNVpY9P6ZZ2i02v06NFGFUFERGQNRF/ckp6ejvHjx7e5/7nnnsN7771nUlFERESWIjr4vvzySwwZMqTN/YGBgdizZ49JRREREVmK6OD75Zdf0Ldv3zb3e3p6oqKiwqSiiIiILEV08Ol0Omg0mjb3X79+XX9zORERkbURHXxqtfq+T2LZt28fPD09TSqKiIjIUkQH3/PPP49jx45hyZIlLd5isHTpUhw7dgzPP/+8WYskIiIyF9G3M0yePBmHDh3C7t27kZWVhV69egEAKisrodVqMWrUKEybNs3shRIREZmDUXehp6amIjQ0FDk5Obhw4QIAIDg4GOPGjcMzzzxj1gKJiIjMyejHr4wbNw7jxo0zZy1EREQWZ/JriYiIiDoSo1Z89fX1+OKLL3DhwgXU1NTg3sd9CoKAxMREsxRIRERkTqKD78SJE3jhhRdQXV3dIvCaMfiIiMhaiQ6+N998E7du3UJycjKCgoKgUqksURcREZFFiA6+kydPIjo6mldvEhFRhyQ6+BwcHPDoo49aohYiIrIAB4fOUCiMv5axsVGLuroGM1YkLdHBFx4ejgMHDmDq1KmWqIeIiMxMobDB7SYdzl2sFd3X00WJTiaEpjUSHXxxcXH45z//iZUrV2LmzJlwcXGxRF1ERGRG5y7WmvT294eJ6OALCgoCAJw6dQpbt26FjY0NBKHl691PnjxpenVERERmJjr4Ro8e3WrQERERdQSigy85OdkSdRARET0QD9cZSyIioj9gVPBptVrk5OQgPj4ec+bMwZkzZwAAGo0GOTk5qKqqMmuRRERE5iI6+G7duoUZM2YgLi4Oe/bswYEDB3Dt2jUAQJcuXZCUlIQdO3aYvVAiIiJzEH2OLy0tDcePH8e6desQEBCAYcOG/T6YQoHw8HB8/fXXWLBggVkLJSLrYmt754pupdLeqP4P203R1HGIDr78/HxMmjQJo0aN0q/07ta7d28UFBSYpTgisl6CIOBmQyNviqYOR3TwVVVV4fHHH29zv729PW7cuGFSUUTUMfCmaOqIRP/IpVKpcOnSpTb3nz17Fs7OziYVRUREZCmigy8wMBC7d+/GrVu3Wuy7ePEiPv30UwwfPtwsxREREZmb6OCLiYlBTU0N/v73v2Pnzp0QBAHFxcVYu3YtIiMjYWdnhxdeeMEStRIREZlMdPB5enrigw8+gE6nQ2pqKnQ6HTZu3IiMjAz06NEDmZmZeOyxxyxRKxERkclEX9wCAH5+fsjNzcXp06dRVlYGnU4HDw8PDBgwgM/xJCIiq2ZU8DV74okn8MQTT5irFiIiIovjjTRERCQrold8/fr1a9fHmXwfHxERWSOzvI+vqakJP//8M06dOgVvb294e3ubrUAiIiJzMuv7+L777jvMnz8fb7zxhklFERERWYpZz/EFBAQgMjISq1evblf7yspKrFixAlOmTMGgQYPg4+ODQ4cOtdo2JycHzz77LAYMGIDg4GAkJyejoaHlA26vXLmCxYsXIzAwEP7+/pg6dSqOHj1qdWMSEZE0zH5xS+/evdt9fu/ChQvIy8tDly5dEBQU1Ga77OxsLFq0CH/+85+xceNGzJ07Fx999BHi4+MN2jU0NCAqKgqHDx9GQkIC0tPT4eDggKioKPz4449WMyYREUnHpNsZWvPdd9+hU6dO7Wo7ePBgHDx4EABQWFiIoqKiFm2ampqwevVqhIaGYvny5QCAoKAg2NnZISEhAVFRURg4cCAAYNeuXSgtLcXu3bvRr18/AMCQIUMwevRopKSkYNOmTVYxJhERSUf0ii8nJ6fVX9u2bcOLL76I3NxcjBgxon0Ht/njwx8/fhyXL19GRESEwfZx48bBzs7O4BVIhYWF8Pb21gcUAHTq1Aljx45FcXGx/q0RUo9JRETSEb3ii4uLgyAI0Ol0LfbZ2triueeew7///W+zFAcApaWlAAAvLy+D7fb29nBzc9Pvb24bGBjYYgwfHx80NTWhvLwcfn5+ko8pliDAqJd9KhS2AIzrK0ecL3FMfUiTQmFr9Fw3/1lJcWxjcb7EHxMw/t/j/eZbdPB98MEHrW5XqVRwc3ND165dxQ55XzU1NQAApVLZYp9SqdTvb27bVjsA+hfnSj0mERFJR3TwDR061BJ1/KG2bpq/d/v9bq5vb9sHMaYYOh1QW1svul/zT0rG9JUjzpc4Tk6m/ZDb2Nhk9Fybuvow5djG4nyJY+q/Ryenrm2u+qz+kWUq1Z23NLe2YqqtrTVYYalUqjbb3T2W1GMSEZF0RK/4EhISRB9EEAQkJiaK7gcAarUawJ1zbZ6envrt9fX1qKiowFNPPWXQtqSkpMUYP/30E2xtbdGnTx+rGJOIiKQjOvg++eQT/cd2917gcr/txgafv78/nJ2dkZ2djZEjR+q35+bm4rfffjPYFh4ejsTERJw+fVr/1ojbt28jLy8PQ4cO1Z9/lHpMIiKSjujg+/rrrzF37lz07NkTs2fPhlqthk6nQ1lZGTZt2oRLly5hw4YN6N69e7vGy8/PBwCcOHECAHD48GFcu3YN9vb2CAkJgUKhQGxsLOLj45GYmIhRo0ahrKwMycnJGDVqFPz9/fVjTZgwAR999BFiYmIQGxsLpVKJLVu24NKlS1i7du3v/9MSj0lERNIRHXxr1qxB9+7d8e677xpsDwgIQEBAAGbNmoXk5GQkJSW1a7wFCxYYfJ2WlgYAcHFx0d/QHhERARsbG2zatAk7d+5E9+7dMXnyZLz88ssGfTt37owPP/wQq1atwvLly9HQ0ABfX19kZmaif//+Bm2lHJOIiKQjOvj27dt332/kYWFhePvtt9s93k8//dSuduPHj8f48eP/sJ2zs3O7nxUq5ZhERCQN0Vd13r59G5cuXWpzf1VVFW7fvm1SUURERJYiOvgGDRqErVu3tvp2giNHjmDr1q0YNGiQWYojIiIyN9EfdcbHx2PatGmYNm0aBg4ciD59+kAQBJSVleH777+Hg4MDFi9ebIlaiYiITCY6+Ly9vfHpp59izZo12L9/P44fPw4AeOSRRzBy5EgsXLgQHh4eZi+UiIjIHIx6LZG7uzvWrVuHpqYmXLlyBTqdDs7OzrC1Ne1BqERERJZm0vv4bG1t0bNnT3PVQkREZHFGPauzrq4OGRkZmD59OkaPHq3/uLO6uhoZGRk4d+6cWYskIiIyF9ErvmvXrmHq1Km4cOECXF1dUVFRgfr6O0/PfvTRR/HJJ5+gtraWF7gQEZFVEh18a9euRVVVFXbs2AFXV1c8+eSTBvtHjBiB4uJisxVIRERkTqI/6ty3bx+mTp0KPz+/Vt8x5+rqisrKSrMUR0REZG6ig6+6uvq+tyvY2trqP/okIiKyNqKDr0ePHvjll1/a3H/69Gn86U9/MqkoIiIiSxF9ji84OBi7du3C9OnTW9y3d+LECWRlZeEf//iH2QokIqKOycGhMxQKo24egEJh2+LdruYiOvjmz5+PoqIiPPfccxgxYgQEQcDnn3+O3bt3Iz8/Hz169EB0dLQlaiUiog5EobDB7SYdzl2sFd3X00WJLp1NutW8TaJH7dmzJ7Zv34433ngDH3/8MXQ6HT777DMIgoBhw4YhMTGx3S+hJSKih9u5i7VY8u4B0f1WzhuGfn2cLFCRkU9ucXNzw4YNG1BbW4vy8nLodDp4eHjAyckyRRIREZmLqOCrq6tDUlIShg0bhqeffhpKpZKvICIiog5F1FlHBwcHZGdn4/r165aqh4iIyKJEX26jVqvx66+/WqIWIiIiixMdfLNnz8b27dvx888/W6IeIiIiixJ9cUtFRQV69eqFsWPHIjQ0FB4eHrC3tzdoIwgC5s6da7YiiYiIzMWoh1Q3y8/Pb7UNg4+IiKyV6OD78ssvLVEHERHRA9Gu4Pvhhx/g7u4OlUoFd3d3S9dERERkMe26uGXSpEn4+uuv9V/X1dUhNjYWZ8+etVhhREREltCu4Lv3QaG3b99GXl4eLl++bJGiiIiILMUyTwAlonYz5Qn2zRobtairazBTRUQPNwYfkcRMeYI9cOcp9p1MDE4iOWHwEVkBY59gD9x5ir2Pu8rMFRE9vNodfPv378eVK1cAAPX19RAEAfn5+Thz5kyLtoIgICoqymxFEhERmUu7gy83Nxe5ubkG2z7++ONW2zL4iIjIWrUr+LZs2WLpOoiIiB6IdgXfkCFDLF0HERHRA8FLwYiISFYYfEREJCsMPiIikhUGHxERyUqHCL5Dhw7Bx8en1V9lZWUGbQ8cOICJEyfCz88PQ4cOxbJly6DRaFqMWVdXhxUrVmD48OHw8/NDZGQkvvrqq1aPb4kxiYhIGh3qyS2LFi3C4MGDDba5urrqf3/o0CFER0cjLCwMr7zyCi5duoTk5GSUlJTgP//5D2xsfs/5mJgY/Pjjj1i0aBFcXV3x2WefISYmBhkZGQgJCbHomEREJJ0OFXyenp7w9/dvc//q1avh5eWFtWvX6gPJ2dkZs2bNQn5+PsaMGQPgzlNoiouLkZ6ejvDwcABAUFAQKioqkJSUZBBSlhiTiIik0yE+6myPqqoqnDhxAuPHjzdYhQ0bNgw9e/ZEQUGBftvevXvRrVs3hIWF6bcJgoCIiAiUl5fr3zNoiTGJiEhaHWrFt2zZMrz88suwt7dHQEAAXnrpJfTv3x8AUFJSAgDw8vJq0c/b2xulpaX6r0tLS6FWqw3CDAB8fHz0Y6nVaouMaQxBAJRKe9H9FApbAMb1lSOp5qv5uKaO8aDrFgTT+ptSs6lzxvl6MMc29bjGfu9r7tuWDrHi69atG2bOnInExERs2bIFr776Ks6ePYspU6bg+++/BwDU1NQAAJRKZYv+SqVSv7+5bVvt7h7LEmMSEZG0OsSKz9fXF76+vvqvAwICEBoairFjxyI1NRWbN2/W7xPaiPl7t7fVTkxbU8YUQ6cDamvrRfdr/knJmL5yJNV8mWPl0djY9MDrdnLqalJ/U2o2dc44Xw/m2KYe19jvfcCd+W7r226HWPG1xtnZGcOHD9ev+FSqO+8ja21lVVtba7AaU6lUbbYDfl+lWWJMIiKSVocNPgDQarX63zefh7v7vFuzkpISg/N0arUaZWVlBv2b2wF3zt9ZakwiIpJWhw2+y5cvo7i4WH97Q69evdC/f3/k5OQYhM/BgwdRVVWFkSNH6reFh4dDo9GgqKjIYMysrCx4enrqL0KxxJhERCStDnGOLzY2Fm5ubujXrx8cHR1RXl6OjRs34tatW1i4cKG+3aJFizB79mwsXLgQkyZNQlVVFZKTkzFw4EA8/fTT+nYhISEIDAzE0qVLUVNTA1dXV2RlZeHIkSNYv369wbEtMSYREUmnQwSfj48P8vLysG3bNtTX10OlUmHIkCGYN2+ewUeIQ4cORUZGBtLS0hAdHQ0HBweMGDECcXFxsLX9/bJaQRCwfv16pKSkIDU1FRqNBmq1Gunp6QgNDTU4tiXGJCIi6XSI4IuOjkZ0dHS72gYHByM4OPgP23Xt2hXLli3DsmXLJBmTiIik0WHP8RERERmDwUdERLLC4CMiIlnpEOf4iB4EW1sbCIJg9NMmGhu1qKtrMHNVRGRuDD6i/xEEATcbGnHuYq3ovp4uSnRS8AMUoo6AwUd0l3MXa7Hk3QOi+62cNww+7ioLVERE5sYfUYmISFYYfEREJCsMPiIikhUGHxERyQqDj4iIZIXBR0REssLgIyIiWWHwERGRrDD4iIhIVhh8REQkKww+IiKSFQYfERHJCoOPiIhkhcFHRESywuAjIiJZYfAREZGsMPiIiEhWGHxERCQrCqkLoIePg0NnKBSm/UzV2KhFXV2DmSoiIvodg+8hZmtrA0EQoFTaG9Xf2PBRKGxwu0mHcxdrjTqup4sSnUwMTiKitjD4HmKCIOBmQ6NRAWRq+Jy7WIsl7x4wqu/KecPg464y+thERPfD4HvIGRtADB8ieljx8yQiIpIVBh8REckKg4+IiGSFwUdERLLC4CMiIllh8BERkaww+IiISFYYfEREJCsMPiIikhUGn5nV1dVhxYoVGD58OPz8/BAZGYmvvvpK6rKIiOh/GHxmFhMTg5ycHCxYsADvvfce1Go1YmJisH//fqlLIyIi8FmdZrV//34UFxcjPT0d4eHhAICgoCBUVFQgKSkJISEhEldIRERc8ZnR3r170a1bN4SFhem3CYKAiIgIlJeX4+zZsxJWR0REACDodDqd1EU8LCZNmgRBELBjxw6D7d9//z0mTpyI1NRUjBkzRvS4pv4RabXi+9vYCCYd09jjmuvYpuB8iSPVfEl9bGPJcb6kOq4gtD4GP+o0o5qaGvTu3bvFdqVSqd9vjLb+8NrL1laaf+hSHddUnC9xpKy7I86ZHOfL2v6c+FGnmd0vpEwNMCIiMh2Dz4xUKlWrq7ra2jtvQG9e+RERkXQYfGakVqtRVlYGrVZrsL2kpAQA4O3tLUVZRER0FwafGYWHh0Oj0aCoqMhge1ZWFjw9PaFWqyWqjIiImvHiFjMKCQlBYGAgli5dipqaGri6uiIrKwtHjhzB+vXrpS6PiIjA2xnM7saNG0hJSUFBQQE0Gg3UajXmz5+PESNGSF0aERGBwUdERDLDc3xERCQrDD4iIpIVBh8REckKg4+IiGSFwUdERLLC+/geMpWVldi0aRNOnTqFM2fO4ObNm9iyZQsCAwOlLs0qHTx4ENnZ2Th27BgqKyuhVCrh5+eHl156CT4+PlKXZ3WOHj2Kd955ByUlJaipqYGDgwO8vb0xe/Zsvm+yndLS0pCeno7HH38c2dnZUpdjVQ4dOoQZM2a0uu+LL75A3759zXIcBt9D5sKFC8jLy4Ovry+CgoJaPEWGDG3fvh01NTWIiopC3759ceXKFWzatAkTJmXkW98AAAQaSURBVEzA1q1b4e/vL3WJVkWj0cDT0xORkZHo0aMHNBoNPv74Y0RHRyMlJQXPPPOM1CVatdLSUmzcuBE9evSQuhSrtmjRIgwePNhgm6urq9nG5318DxmtVgsbmzufYBcWFmL+/Plc8d3H1atX4eTkZLBNo9EgLCwMQUFBSEtLk6iyjqOxsRFhYWHw8PDAli1bpC7Hamm1WkyePBkDBgxASUkJNBoNV3z3aF7xvfPOOxZ96AfP8T1kmkOP2ufe0AMAR0dHeHh4oLKyUoKKOh6FQoFu3brBzs5O6lKs2ubNm1FZWYl//etfUpcie/wuSXSP6upqlJaWwsvLS+pSrJZWq0VjYyOqqqrw9ttv4/z585g5c6bUZVmtiooKvP3221i2bBm6du0qdTlWb9myZfD19cVf/vIXzJ07FydPnjTr+DzHR3QXnU6HhIQEaLVazJ49W+pyrNYrr7yCgoICAEDXrl2xdu1aBAcHS1yVddLpdHjttdcwfPhwPrP3D3Tr1g0zZ87EkCFDoFKpUFZWhg0bNmDKlCnYtm0bBg4caJbjMPiI7rJq1SoUFhbizTffNNsVZA+juLg4zJkzB1euXEFubi5eeeUVJCUlYezYsVKXZnV27tyJkydP4osvvpC6FKvn6+sLX19f/dcBAQEIDQ3F2LFjkZqais2bN5vlOAw+ov9JTU1FZmYmli5disjISKnLsWpubm5wc3MDAISGhuKFF15AYmIixowZw/PMd6mursbq1asxd+5c2NvbQ6PRALhzQZBWq4VGo0Hnzp3RuXNniSu1Xs7Ozhg+fLhZr1Dn31AiAOvWrUNGRgbi4uLavI+I2jZgwADU1taiurpa6lKsSlVVFa5fv441a9Zg8ODB+l9Hjx5FSUkJBg8ezCuH20Gr1Zp1PK74SPbS09Oxfv16LFiwAHPmzJG6nA5Hp9Ph22+/haOjI1QqldTlWBV3d/dWb/FYuXIlbt68iRUrVuCxxx6ToLKO4/LlyyguLjbrPbUMvodQfn4+AODEiRMAgMOHD+PatWuwt7fn0zXukZmZibS0NDz11FN48skncfz4cf2+Tp06GZxvICA2NhYuLi7o168funfvjsuXL+Ozzz7DN998g4SEBCgU/JZyNwcHh1bvoXV0dAQA3l97j9jYWLi5uaFfv35wdHREeXk5Nm7ciFu3bmHhwoVmOw5vYH8ItfWoLRcXFz7J5R7Tp0/Ht99+2+o+zldL27ZtQ05ODs6fP4/r16+jW7du6N+/P6ZNm4bQ0FCpy+swpk+fzhvYW7Fhwwbk5eXh4sWLqK+vh0qlwpAhQzBv3jx4e3ub7TgMPiIikhVe3EJERLLC4CMiIllh8BERkaww+IiISFYYfEREJCsMPiIikhUGHxERyQqDj4iIZIXBR0REsvL/oNQw1xL03lMAAAAASUVORK5CYII=\n",
728 | "text/plain": [
729 | ""
730 | ]
731 | },
732 | "metadata": {},
733 | "output_type": "display_data"
734 | }
735 | ],
736 | "source": [
737 | "#plot the frequency of the yelp rating, using yelp and inspections data\n",
738 | "rating_plot = df2['rating'].plot.hist(bins = 20)"
739 | ]
740 | },
741 | {
742 | "cell_type": "code",
743 | "execution_count": 21,
744 | "metadata": {},
745 | "outputs": [],
746 | "source": [
747 | "#transform to be able to see the absolute change instead of the relative change\n",
748 | "df2['score'] = np.log10(df2['score'])\n",
749 | "df2['rating'] = np.log10(df2['rating'])"
750 | ]
751 | },
752 | {
753 | "cell_type": "code",
754 | "execution_count": 26,
755 | "metadata": {},
756 | "outputs": [
757 | {
758 | "data": {
759 | "text/plain": [
760 | ""
761 | ]
762 | },
763 | "execution_count": 26,
764 | "metadata": {},
765 | "output_type": "execute_result"
766 | },
767 | {
768 | "data": {
769 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAEDCAYAAACvR6QuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1xTZ54G8CckoBQ0QaTYCiIag0UUWbl5GV1RvFWraMdbW2Wlq3ZLbUdxdHVxHWtbL4zo4iCrjq03tPUCClisqONYsWy12tpaC4K1lo54TRiRSyVn/+gkc2LA5oQEAjzfz8dPm3Pe857fywk8OTk3mSAIAoiIiAgA4NTUBRARETkSBiMREZEIg5GIiEiEwUhERCTCYCQiIhJhMBIREYkomroA+nWCIMCai2pkMsPytq3HkbW2Mbe28QIcc2vRkDHLZIDM0IEVGIzNgCAAd+8+kLycUukKANDpKm1dksNqbWNubeMFOObWoiFj9vR0RwNykV+lEhERiTEYiYiIRBiMREREIgxGIiIiEQYjERGRCIORiIhIhMFIREQkwusYiYgcnFzuBJlMZry2zxKPHulRUVFtx6paLgYjEZGDk8lkeFj9CNdKdRa19++shIuCXwhai8FIRNQMXCvVYcmmMxa1ffe1gQjoorJzRS0XP1IQERGJMBiJiIhEGIxEREQiDEYiIiIRBiMREZEIg5GIiEiEwUhERCTCYCQiIhJhMBIREYkwGImIiEQYjERERCIMRiIiIhEGIxERkQiDkYiISITBSEREJMJgJCIiEmnSYLx58yZWrlyJadOmISQkBAEBASgoKDBrFxUVhYCAALN/SUlJZm3v3LmDRYsWISIiAn379sX06dPxxRdf1Ln+rKwsvPDCC+jduzcGDx6MpKQkVFdXN0qfRETkmBRNufLr168jJycHgYGBiIyMxIkTJ+ptGxYWhoSEBJNp3t7eJq+rq6sRGxuLhw8fIjExESqVCtu3b0dsbCz27t2LwMBAY9tDhw7h97//PaZNm4YlS5aguLgYSUlJKC0tRXJysl37JCJyNG5ubaBQSNtXevRIj4qKlvfBv0mDMSwsDGfPngUA5OXlPTEY27dvj759+z6xv/3796OoqAgHDx5Er169AADh4eEYPXo01q1bh61btwIAamtrsXbtWkRFRWH58uUAgMjISDg7OyMxMRGxsbEIDg62W59ERI5GoXBCTa2Aa6U6i9r7d1bCRWKQNhdNGoxOTrb9oebl5UGj0RgDDABcXFwwduxYbNmyBQ8ePIC7uzsuXryI27dvIyYmxmT5cePGYcWKFTh69KgxxOzRJxGRI7pWqsOSTWcsavvuawMR0EVl54qaRrOJ+88++wwhISEICgrCuHHjkJ6eDkEQTNoUFRVBo9GYLRsQEIDa2lqUlJQY2wFAjx49TNq5urrC19fXON9efRIRkeNq0j1GS/3rv/4rgoKC4OvrC61Wi8OHD+MPf/gDvv/+eyxZssTYTqvVQqlUmi1vmHb//n1jO/H0x9sa5turT6lkMkCpdJW8nEIh/8f6pS/bXLW2Mbe28QKtc8wymfRlFAq5pJ+R4edqz3VI7Ruwbjtb8/MyWXfDFm8cy5YtM3kdHR2NBQsWYOfOnZg5cyY6d+5snCd7wk/k8Xn1tbW0XUP6JCIix9QsgrEuMTExyM7OxldffWUMRpVKVeeemU6nM84X/1er1cLDw8OsrY+Pj/G1PfqUShAAna5S8nKGT1rWLNtctbYxt7bxAq1zzJ6e7pKXefSoVtLPyJo9M6nrkKIh29nT071Be43N5hjj4/R6PQDTE3jUajUKCwvN2n733XeQy+Xo1q2bsR0As+N+lZWVuHHjhslxQnv0SUREjqvZBuOhQ4fg5OSE3r17G6dFR0ejsLAQ3377rXFaTU0NcnJy0L9/f7i7//Kpq2/fvvDy8sKhQ4dM+szOzsbPP/+MESNG2LVPIiJyXE3+VWpubi4A4NKlSwCAzz//HPfv34erqyuGDBmC7OxsHD9+HEOGDEGnTp2g0+lw+PBh5OXlIS4uDs8++6yxrxdffBG7d+9GfHw8FixYAKVSiR07duDWrVtYv369sZ1CocCCBQuwePFirFixAiNHjjRejD9y5EiT6yXt0ScRETmuJg/GN9980+R1SkoKAKBz5844ceIEfHx8cP/+fSQlJUGr1cLZ2RkBAQFYtWqV2TWDbdq0wfbt27FmzRosX74c1dXVCAwMxLZt2xAUFGTSNiYmBk5OTti6dSs++ugjeHh4YOrUqZg3b57d+yQiIsclEx6/GJAcjl4v4O7dB5KXa40nKbS2Mbe28QKtc8yenu74puSuxRffv584Ah3at8WjR7UWr0OhkEtah+ECf0c9+cbJyfqzb5p8j5GIiGyrbRsFHlY/svj2bgAQ6N/BjhU1LwxGIqIWSMrt3QBgz8oxdqymeWm2Z6USERHZA4ORiIhIhMFIREQkwmAkIiISYTASERGJMBiJiIhEGIxEREQiDEYiIiIRBiMREZEIg5GIiEiEwUhERCTCYCQiIhJhMBIREYkwGImIiEQYjERERCIMRiIiIhEGIxERkQiDkYiISITBSEREJMJgJCIiEmEwEhERiTAYiYiIRCQH4+jRo7Ft2zbcu3fPHvUQERE1KcnBqNfrsWbNGgwePBjz5s3DX//6VwiCYI/aiIiIGp1C6gJHjx7FuXPncODAAeTm5uLYsWPw9vbGxIkTMWnSJHTu3NkedRIRETUKq44xhoaG4r333sOnn36KP/zhD3j66aeRmpqK6OhozJo1C0eOHMHPP/9s61qJiIjsTvIeo5ibmxsmT56MyZMn4+rVq9i0aRNycnJw9uxZKJVKxMTEIDY2Ft7e3raql4iIHMAzHd2gUMihVLpavMyjR3pUVFTbsSrbaFAwAr8cc/zLX/6C/fv349SpUwB+2aN0cXHBBx98gL1792LdunUYOnRog4slIiLH0LaNAg+rH+Faqc6i9v6dlXBRNI8LIawOxu+//x4HDhxARkYG7ty5Aw8PD8yYMQOTJ0+Gv78/AKCkpAS/+93vsHr1agYjEVELc61UhyWbzljU9t3XBiKgi8rOFdmG5GDMzMzE/v37cf78eQBAeHg4lixZgujoaDg7O5u07datG2bOnInExETbVEtERGRnkoNx8eLF8PT0xKxZszB58mT4+fk9sX337t0xZswYqwskIiJqTJKDMTk5GdHR0VAoLFs0ODgYwcHBkgsjIiJqCpKDcfTo0faog4iIyCFIPkVo48aNGD9+fL3zJ0yYgP/93/9tUFFERERNRXIwfvLJJwgPD693fkREBD7++OMGFUVERNRUJAfjjz/+iO7du9c739/fHzdu3GhQUURERE1FcjAKgoDy8vJ65//973+HXq9vUFFERERNRXIwqtVqnDx5st75J0+eNF7gT0RE1NxIDsZJkybhwoULWLJkCbRarXG6VqvF0qVLceHCBUyaNMmmRRIRETUWyZdrTJ06FQUFBTh48CAyMzPRqVMnAMDNmzeh1+sxcuRIvPTSSzYvlIiIqDFYda/U5ORkREVFISsrC9evXwcADB48GOPGjcPzzz9v0wKJiIgak9U3ER83bhzGjRtny1qIiIiaXPN4BggREVEjsWqPsbKyEkeOHMH169eh1WohCILJfJlMhhUrVtikQCIiosYkORgvXbqEuXPn4t69e2aBaMBgJCKi5kpyML733nuoqqpCUlISIiMjoVI1jwdPEhERWULyMcavv/4a//Zv/4bnn38enp6ekMvldf6zxM2bN7Fy5UpMmzYNISEhCAgIQEFBQZ1ts7Ky8MILL6B3794YPHgwkpKSUF1dbdbuzp07WLRoESIiItC3b19Mnz4dX3zxhcP1SUREjklyMLq5uaFDhw42Wfn169eRk5ODp556CpGRkfW2O3ToEBISEvAv//Iv2LJlC+bMmYPdu3dj8eLFJu2qq6sRGxuLzz//HImJidi4cSPc3NwQGxuLy5cvO0yfRETkuCR/lRodHY0zZ85g+vTpDV55WFgYzp49CwDIy8vDiRMnzNrU1tZi7dq1iIqKwvLlywEAkZGRcHZ2RmJiImJjY40PQt6/fz+Kiopw8OBB9OrVCwAQHh6O0aNHY926ddi6datD9ElERI5L8h7jwoULUVZWhnfffRelpaUNW7nTr6/+4sWLuH37NmJiYkymjxs3Ds7Ozjh69KhxWl5eHjQajTHAAMDFxQVjx45Ffn4+Hjx44BB9EhGR45K8x2j4yvObb77Bzp074eTkBJlMZtbu66+/bnh1AIqKigAAPXr0MJnu6uoKX19f43xD24iICLM+AgICUFtbi5KSEvTp06fJ+yQiIsclORhHjx5dZxDai+FG5Uql0myeUqk0u5F5fe0A4P79+w7Rp1QyGaBUukpeTqGQ/2P90pdtrlrbmFvbeIHWOeZG/JNrVwqF3OLt1pDt3NCfl+RgTEpKatgarVRfGD8+/UmhbWnbxuiTiIgck9X3Sm0shusktVotPDw8TObpdDr4+PiYtK1rz0yn05n01dR9SiUIgE5XKXk5wycta5ZtrlrbmFvbeIHWOWZPT/emLsEmHj2qtXi7NWQ7e3q6N2iv0ap7per1emRlZWHx4sV49dVXceXKFQBAeXk5srKyUFZWZn1Fj1Gr1QBgdoyusrISN27cMDmmp1arUVhYaNbHd999B7lcjm7dujlEn0RE5LgkB2NVVRVmzJiBhQsX4uOPP8aZM2eMx9meeuoprFq1Cnv37rVZgX379oWXlxcOHTpkMj07Oxs///wzRowYYZwWHR2NwsJCfPvtt8ZpNTU1yMnJQf/+/eHu7u4QfRIRkeOSHIwpKSm4ePEiNmzYgBMnTpjcL1WhUCA6OhqnT5+2uL/c3Fzk5ubiwoULAIDPP/8cubm5OHXqlLHPBQsWIC8vDytWrEBBQQHS09Px3nvvYeTIkejbt6+xrxdffBHdu3dHfHw8jhw5gjNnzuCNN97ArVu38Lvf/c6kzqbsk4iIHJfkY4y5ubmYMmUKRo4cadxTFOvatauka/befPNNk9cpKSkAgM6dOxsv+I+JiYGTkxO2bt2Kjz76CB4eHpg6dSrmzZtnsmybNm2wfft2rFmzBsuXL0d1dTUCAwOxbds2BAUFmbRtyj6JiMhxSQ7GsrIy9OzZs975rq6uxoveLfHdd99Z1G78+PEYP378r7bz8vLC2rVrHb5PIiJyTJK/SlWpVLh161a9869evQovL68GFUVERNRUJAdjREQEDh48iKqqKrN5paWlOHDgAAYNGmST4oiIiBqb5GCMj4+HVqvFb3/7W3z00UeQyWTIz8/H+vXrMXHiRDg7O2Pu3Ln2qJWIiMjuJAejv78/3n//fQiCgOTkZAiCgC1btiAtLQ0dO3bEtm3b8Oyzz9qjViIiIruz6s43ffr0QXZ2Nr799lsUFxdDEAT4+fmhd+/evPUZERE1aw26Jdxzzz2H5557zla1EBERNTmrbglHRETUUkneY+zVq5dFX5fa6nmMREREjckmz2Osra3FDz/8gG+++QYajQYajcZmBRIRETUmmz6P8dy5c3j99dfx9ttvN6goIiKipmLTY4yhoaGYOHGixbdPIyIicjQ2P/mma9euPL5IRETNls2D8dy5c3BxcbF1t0RERI1C8jHGrKysOqfrdDrk5+fj5MmTmDhxYoMLIyIiagqSg3HhwoWQyWQmDyg2kMvlmDBhAv7zP//TJsURERE1NsnB+P7779c5XaVSwdfXF+7u7g0uioiIqKlIDsb+/fvbow4iIiKHwFvCERERiUjeY0xMTJS8EplMhhUrVkhejoiIqLFJDsZ9+/YZbwn3+Ak4T5rOYCQiouZAcjCePn0ac+bMgbe3N+Li4qBWqyEIAoqLi7F161bcunULmzdvhoeHhz3qJSIisivJxxj/+Mc/wsPDA5s2bUJoaChUKhU8PDwQGhqKtLQ0qFQqJCUlQS6Xm/wjIiJqDiQH48mTJxEVFVXv/GHDhuHkyZMNKoqIiKipSA7Gmpoa3Lp1q975ZWVlqKmpaVBRRERETUVyMIaEhGDnzp344osvzOadP38eO3fuREhIiE2KIyIiamyST75ZvHgxXnrpJbz00ksIDg5Gt27dIJPJUFxcjC+//BJubm5YtGiRPWolImoR3NzaQKGwfL/ksWfDk51JDkaNRoMDBw7gj3/8I06dOoWLFy8CANq2bYsRI0Zg/vz58PPzs3mhREQthULhhJpaAddKdRa1D/TvYOeKSExyMAJAly5dsGHDBtTW1uLOnTsQBAFeXl48+5SIyELXSnVYsumMRW33rBxj52pIzKpgNJDL5fD29rZVLURERE3OqnulVlRUIC0tDa+88gpGjx5t/Dr13r17SEtLw7Vr12xaJBERUWORvMd4//59TJ8+HdevX4ePjw9u3LiByspKAECHDh2wb98+6HQ6noBDRETNkuRgXL9+PcrKyrB37174+PhgwIABJvOHDx+O/Px8mxVIRETUmKy688306dPRp08f403DxXx8fHDz5k2bFEdERNTYJO8x3rt374mXY8jlcuNXq0RERADwTEc3KBRyKJWuFrVXKORmT2pqLJKDsWPHjvjxxx/rnf/tt9/imWeeaVBRRETUsrRto8DD6kcWX7vp31mJp9o06MIJq0le6+DBg7F//3688sorZtctXrp0CZmZmXj55ZdtViAREbUMUq7dfPe1gejVzdPOFdVNcjC+/vrrOHHiBCZMmIDhw4dDJpPh8OHDOHjwIHJzc9GxY0fMnj3bHrUSERHZneSTb7y9vbFnzx4EBgbiww8/hCAIyMjIQHZ2NiIiIrB7924+pJiIiJotq77A9fX1xebNm6HT6VBSUgJBEODn5wdPz6bZ7SUiIrIVScFYUVGBVatWYeDAgRg1ahSUSiUfMUVERC2KpK9S3dzccOjQIfz973+3Vz1ERERNSvIxRrVajZ9++sketRARETU5ycEYFxeHPXv24IcffrBHPURERE1K8sk3N27cQKdOnTB27FhERUXBz88Prq6mdzKQyWSYM2eOzYokIiJqLFbdRNwgNze3zjYMRiIiaq4kB+Mnn3xijzqIiIgcgkXB+NVXX6FLly5QqVTo0qWLvWsiIiJqMhadfDNlyhScPn3a+LqiogILFizA1atX7VYYERFRU7AoGB9/9EdNTQ1ycnJw+/ZtuxT1uIKCAgQEBNT5r7i42KTtmTNnMHnyZPTp0wf9+/fHsmXLUF5ebtZnRUUFVq5ciUGDBqFPnz6YOHEijh8/Xuf67dEnERE5pqZ5poeVEhISEBYWZjLNx8fH+P8FBQWYPXs2hg0bhrfeegu3bt1CUlISCgsLkZ6eDienf34OiI+Px+XLl5GQkAAfHx9kZGQgPj4eaWlpGDJkiF37JCIix9WsgtHf3x99+/atd/7atWvRo0cPrF+/3hhYXl5emDVrFnJzczFmzBgAwKlTp5Cfn4+NGzciOjoaABAZGYkbN25g1apVJiFmjz6JiMhxSb7A31GVlZXh0qVLGD9+vMle3MCBA+Ht7Y2jR48apx07dgzt2rXDsGHDjNNkMhliYmJQUlJiPHZqjz6JiMixWbzHeOrUKdy5cwcAUFlZCZlMhtzcXFy5csWsrUwmQ2xsrM2KNFi2bBnmzZsHV1dXhIaG4o033kBQUBAAoLCwEADQo0cPs+U0Gg2KioqMr4uKiqBWq03CDgACAgKMfanVarv0SUREjs3iYMzOzkZ2drbJtA8//LDOtrYOxnbt2mHmzJkIDw+HSqVCcXExNm/ejGnTpmHXrl0IDg6GVqsFACiVSrPllUolLl++bHyt1WrRtWvXOtsZ5ov/a8s+rSGTAUql6683fIxCIf9HDdKXba5a25hb23iBljFmwxjoyaz92yeTNWy9FgXjjh07GraWBgoMDERgYKDxdWhoKKKiojB27FgkJyfjgw8+MM6T1fMTeXx6fe2ktG1In0RE5JgsCsbw8HB71yGZl5cXBg0ahBMnTgAAVCoVgLr3zHQ6nclen0qlqrcd8M+9PHv0aQ1BAHS6SsnLGT5pWbNsc9Xaxtzaxgu0jDE3573dxmTt3z5PT/cG7TU265Nv9Hq98f8NxwHFx/0MCgsLTY4TqtVqFBcXmyxvaAf8cvzQXn0SEZFja7bBePv2beTn5xsv3+jUqROCgoKQlZVlEk5nz55FWVkZRowYYZwWHR2N8vJy496mQWZmJvz9/Y0nydijTyJqedzc2kCpdLX4H48xOrZmcR3jggUL4Ovri169eqF9+/YoKSnBli1bUFVVhfnz5xvbJSQkIC4uDvPnz8eUKVNQVlaGpKQkBAcHY9SoUcZ2Q4YMQUREBJYuXQqtVgsfHx9kZmbi/PnzSE1NNVm3PfokopZFoXBCTa2Aa6U6i9oH+newc0XUEM0iGAMCApCTk4Ndu3ahsrISKpUK4eHheO2110y+ouzfvz/S0tKQkpKC2bNnw83NDcOHD8fChQshl//zE5pMJkNqairWrVuH5ORklJeXQ61WY+PGjYiKijJZtz36JKKW51qpDks2nbGo7Z6VY+xcDTVEswjG2bNnY/bs2Ra1HTx4MAYPHvyr7dzd3bFs2TIsW7asSfokIiLH1GyPMRIREdkDg5GIiEiEwUhERCTCYCQiIhJhMBIREYkwGImIiEQYjERERCIMRiIiIhEGIxERkQiDkYiISITBSEREJMJgJCIiEmEwEhERiTAYiYiIRBiMREREIgxGIiIiEQYjERGRCIORiIhIRNHUBRARORo3tzZQKCzfb1Ao5Hashhobg5GI6DEKhRNqagVcK9VZ1D7Qv4OdK6LGxGAkIqrDtVIdlmw6Y1HbPSvH2Lkaakw8xkhERCTCYCQiIhJhMBIREYkwGImIiEQYjERERCI8K5WIWjxel0hSMBiJqMXjdYkkBYORiFoFXpdIluIxRiIiIhEGIxERkQi/SiWiZkUud4JMJoNS6WrxMjyZhqRgMBJRsyKTyfCw+pHFJ9IAPJmGpGEwElGzI+VEGoAn05A0PMZIREQkwmAkIiISYTASERGJMBiJiIhEGIxEREQiDEYiIiIRBiMREZEIg5GIiEiEwUhERCTCYCQiIhJhMBIREYkwGImIiEQYjERERCIMRiIiIhEGIxERkQiD0cYqKiqwcuVKDBo0CH369MHEiRNx/Pjxpi6LiIgsxAcV21h8fDwuX76MhIQE+Pj4ICMjA/Hx8UhLS8OQIUOaujwiu3NzawOFQtpn7keP9KioqLZTRUTSMBht6NSpU8jPz8fGjRsRHR0NAIiMjMSNGzewatUqBiM5BKnBJZf/0ra2Vm9Re4VCjofVj3CtVGdRe//OSrhIDFIie2Iw2tCxY8fQrl07DBs2zDhNJpMhJiYGiYmJuHr1KtRqdRNWSI2tMUJIJgM6dHCzW3AF+ndAZU2tpPbXSnVYsumMRe3fTxyBp9q3hVLpalF7mcyiZkRWkwmCIDR1ES3FlClTIJPJsHfvXpPpX375JSZPnozk5GSMGTNGcr/cRM2bzAH/kguCAL3esveVk9Mv9duzvdSfkZT6ra2pNbV3xJoM7a3VkN877jHakFarRdeuXc2mK5VK43xrOOIfVmreZDIZ5HJp7yt7t5fCmvoB+4+hubdvjHXY831hK/xi38aeFGIMOCIix8dgtCGVSlXnXqFO98uxGcOeIxEROS4Gow2p1WoUFxdDrzc9CaKwsBAAoNFomqIsIiKSgMFoQ9HR0SgvL8eJEydMpmdmZsLf359npBIRNQM8+caGhgwZgoiICCxduhRarRY+Pj7IzMzE+fPnkZqa2tTlERGRBXi5ho09ePAA69atw9GjR1FeXg61Wo3XX38dw4cPb+rSiIjIAgxGIiIiER5jJCIiEmEwEhERiTAYiYiIRBiMREREIgxGIiIiEV7H6CBu3ryJrVu34ptvvsGVK1fw8OFD7NixAxEREb+6rCAI2LdvH/bs2YPvv/8ebdq0gUajwdy5czFgwABju5SUFGzcuLHefj788EP07dsXALB48WJkZGSYtQkODsZHH31kxQjNNWTMer0e27Ztw759+1BaWgpPT088//zzeOONN+Dqavr4ooqKCiQnJyM3N9fkEhrx48EMzpw5gw0bNuDKlStwc3NDdHQ0EhIS0L59+2Yz5rNnz+LQoUO4cOECbt68CaVSiT59+uCNN95AQECASZ+vvPIK/u///s9sXWPGjEFycnLDB4zGGXNBQQFmzJhRZx9HjhxB9+7dTaa1hO1c3++owaeffgovLy8A9t/OUt5zdfnhhx+watUqFBQUQK/XIzQ0FIsWLarzpig7duzA7t27UVpaik6dOmHKlCmIi4uDk5OT1X0+jsHoIK5fv46cnBwEBgYiMjLS7O45T/KnP/0JKSkpmDp1KhISElBZWYnt27dj1qxZ2LZtmzEcf/vb3+I3v/mN2fJvvfUWamtr0bt3b5PpTz31FN5//32TaW5ublaMrm4NGfM777yD9PR0zJo1CwMGDEBRURE2bNiAkpISpKWlmbSNj4/H5cuXkZCQAB8fH2RkZCA+Ph5paWkmD48uKCjA7NmzMWzYMLz11lu4desWkpKSUFhYiPT0dLNfPEcd8549e6DVahEbG4vu3bvjzp072Lp1K1588UXs3LnT+OHHoGvXrli9erXJNA8Pj4YNVKSxtjMAJCQkICwszGSaj4+PyeuWsp3/4z/+A1OnTjVZ9tGjR4iLi0NAQIAxFA3suZ2lvufE7t69i+nTp8PT0xOrV6+GXC7Hpk2b8PLLLyMzMxOdOnUytk1NTUVKSgrmzp2LyMhIXLhwAevXr4dOp0NCQoJVfdZJIIdQW1tr/P9jx44JGo1G+OyzzyxadujQocK0adNMplVUVAhBQUHCokWLnrjs119/LWg0GmHdunUm0xctWiT069fPwuqtY+2Yf/rpJ6Fnz57CypUrTaYfPHhQ0Gg0wqeffmqc9pe//EXQaDTCJ598Ypym1+uFqVOnCqNGjTJZftKkScL48eNN6vr0008FjUYj5OTkSB5fXRpjzHfu3DFbXqfTCaGhoUJ8fLzJ9Jdffll44YUXpA5DksYY82effSZoNBrh2LFjv9pvS9nOdTl69Kig0WiEDz/80OJc3K4AAAm6SURBVGS6vbezlPfc41avXi307t1buHnzpnHavXv3hJCQEGHZsmUm03r37i28/fbbJsuvW7dOCAwMFP72t79J7rM+PMboIBryKVWhUKBdu3Ym09q2bQtnZ2e4uLg8cdkDBw4AACZOnGj1+q1l7Zi/+uor6PV6DB061GR6VFQUAODo0aPGaceOHUO7du1MvjaVyWSIiYlBSUkJrl69CgAoKyvDpUuXMH78eJO6Bg4cCG9vb5M+G6Ixxuzp6Wm2fPv27eHn54ebN29atf6GaIwxW6olbee6HDhwAK6urlY9EL0hGvKey8vLw4ABA+Dt7W2c5uHhgaFDh+LYsWPGaadPn0Z1dTViYmJMlo+JicGjR49w/PhxyX3Wh8HYAsyYMQOnT5/Gvn37UF5ejrKyMqxcuRKCIGD69On1LldTU4Ps7GyEhYXBz8/PbP7Dhw8xYMAAPPfccxg6dChWrVqFiooKew7FIj///DMAmIW+s7MzgH8+zQQAioqKoFarzf5QGY57GNoa/tujRw+z9Wk0GhQVFdmoeutIGXNd7t27h6KiojrHd+3aNYSFhSEwMBAjRoxAamqqcX1NyZoxL1u2DIGBgejXrx/mzJmDr7/+2mR+S97Ot27dwunTpzFy5Ei4u7ubzW/s7fyk95xBVVUVfvjhhzqfPBQQEIC7d+/i7t27AH75XZbJZGb9de3aFW3btjVuOyl91ofHGFuAl19+GW3atMGKFSvwX//1XwB++QT35z//GT179qx3uWPHjkGn0+HFF180m9ezZ0/07NkTGo0GtbW1yM/Px86dO3Hu3Dns2bPH+IvaFAwHz7/44guEhoYap1+4cAEAcP/+feM0rVaLrl27mvVheDam4fmZhv/W9cxMpVKJy5cv26Z4K0kZ8+MEQUBiYiL0ej3i4uJM5vXr1w9jxoxBt27d8PDhQ+Tl5eF//ud/8M033+BPf/qTHUZiOSljbteuHWbOnInw8HCoVCoUFxdj8+bNmDZtGnbt2oXg4GAALXs7Z2Zmora2ts7f58bezk96z4npdDoIglDn9lCpVAB+2Waenp7QarVwdXWt81uw9u3bG7etlD7rw2BsATIzM/HOO+8gNjYWAwcORGVlJXbv3o25c+fiz3/+s9lJNQYHDhyAu7s7Ro4caTYvNjbW5PVvfvMb+Pv7IzExEUeOHMH48ePtMRSL9OzZE2FhYdi8eTP8/PzQv39/FBUVYfny5ZDL5WZ7hzKZrN6+Hp9XX9sn9dEYpI5ZbM2aNcjLy8N7771ndnbmW2+9ZfJ66NCh6NixI9LS0nDu3DmTP86NTcqYAwMDERgYaHwdGhqKqKgojB07FsnJyfjggw9M+m6J2/ngwYPw8/MzO/kIaPzt/KT3XF1s8XO39HfZEvwqtZnT6XT47//+b0yePBkLFixAZGQkhg4dik2bNsHDwwNr166tc7m//e1vOHv2LMaMGWN2eUN9XnjhBTg5OeHixYu2HIJVNmzYgJCQEMybNw9hYWGYOXMmRo4ciZ49e+Lpp582tlOpVMZPkmI6nQ7AP/ccxJ8k62pb16fPxmbpmMWSk5Oxbds2LF261OLjyBMmTACAZrWd6+Ll5YVBgwbhyy+/NE5rqdv53LlzuHbtmqRzBey1naW855RKJWQyWZ3bwzDNsM1UKhUqKytRU1Nj1ra8vNy47aT0WR/uMTZz165dQ1VVFYKCgkymOzs7IyAgAOfPn69zuQMHDkCv19f5tUt9hH88iMUWp7M3lKenJ7Zs2YK7d+/i9u3b6Ny5M9q0aYPdu3dj1qxZxnZqtRqffPIJ9Hq9Sd2GYzWG4xCG4xZFRUUYNGiQyboKCwsREhJi7yH9KkvHbLBhwwakpaVh4cKF9V7jVxe9Xg+geW3n+hjGYtAStzPwy++zXC43OzHlSeyxnaW+59q2bQtfX986j50WFhaiQ4cOxq881Wo1BEFAUVERevXqZWx3/fp1VFVVGbetlD7r0/TvfGoQwyfIr776ymR6TU0NLl++bHJWloEgCMjIyIBarTYee7HE4cOHodfrJS1jb56enujZsyfatWuH9PR0s7CPjo5GeXm52XVkmZmZ8Pf3Nx7T6dSpE4KCgpCVlWXyx/Ts2bMoKyvDiBEjGmdAFvi1MQPAxo0bkZqaijfffBOvvvqqpP4PHToEAM1qO9fl9u3byM/PN7mGrqVtZ+CXk+Ryc3MxaNCgOn/f62Pr7Wzte2748OHIz8/H7du3jdO0Wi1OnjyJ6Oho47TBgwfDxcXFWLdBRkYGFAqF8cxdKX3Wh3uMDiQ3NxcAcOnSJQDA559/jvv378PV1dV4Ibph4xv+0D/77LMYPnw40tPT4eLiYjzGuGvXLty4cQNr1qwxW89nn32GH3/8EYsWLaqzjtLSUvz+97/H888/jy5duqC2thZnz57Frl27EBISYtNTwa0ZM/DLBcVyuRxdunSBTqfDqVOnkJGRgbfffhvPPPOMsd2QIUMQERGBpUuXQqvVwsfHB5mZmTh//jxSU1NNaklISEBcXBzmz5+PKVOmoKysDElJSQgODsaoUaOazZi3bduGlJQUDB06FAMGDDD5qszFxcV4LO7cuXPYvHkzRowYgc6dO+Phw4c4fvw4Dh48iFGjRqFfv37NZswLFiyAr68vevXqhfbt26OkpARbtmxBVVUV5s+fb1JLS9nOBkeOHMHDhw8xadKkOutojO1s6XvOcAee7777zjg/Li4Ohw8fxuzZs/H6669DoVBg06ZNUCgUmDt3rrGdh4cH5syZg9TUVLRr1w4RERG4ePEitm7dihkzZpj8bCztsz58ULEDqe/WSZ07dzb+4tT1i1RVVYUdO3YgKysLP/74I9q2bQu1Wo1XX33V5M4uBgsXLsTHH3+MU6dO1fmVgk6nw9KlS3H58mXcuXMHgiDA19cXo0aNwuzZs9G2bVtbDBeA9WNOT0/Hzp078dNPP0GhUCAoKAhz585F//79zfp68OAB1q1bh6NHj5rcEm748OFmbf/6178iJSXFeKuw4cOHY+HChTY99mTvMdd3+6/H13H9+nW88847uHLlCu7fvw8nJyf4+/tjwoQJeOWVVyCXyxs8VgN7j3nz5s3IyclBaWkpKisroVKpEB4ejtdee63O0/ZbwnY2mD59OkpKSnD69Ok6zxZvjO1s6XuurmAEgO+//x6rV69GQUEBBEFAv379sGjRIrNLMwRBwPbt25Geno6ffvoJTz/9NKZMmYJ///d/N/tK2NI+68JgJCIiEuExRiIiIhEGIxERkQiDkYiISITBSEREJMJgJCIiEmEwEhERiTAYiYiIRBiMREREIgxGIiIikf8HgQfDqPcmZdsAAAAASUVORK5CYII=\n",
770 | "text/plain": [
771 | ""
772 | ]
773 | },
774 | "metadata": {},
775 | "output_type": "display_data"
776 | }
777 | ],
778 | "source": [
779 | "#graph the log_transformation of health inspection scores\n",
780 | "df2['score'].plot(kind = 'hist', bins = 25)"
781 | ]
782 | },
783 | {
784 | "cell_type": "code",
785 | "execution_count": 25,
786 | "metadata": {},
787 | "outputs": [
788 | {
789 | "data": {
790 | "text/plain": [
791 | ""
792 | ]
793 | },
794 | "execution_count": 25,
795 | "metadata": {},
796 | "output_type": "execute_result"
797 | },
798 | {
799 | "data": {
800 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEDCAYAAABK2WFCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1hUdf4H8PfAeCG0QYkHSkCxkSkvqIWCl2BFRtQ0w1xvpbLakhfSXdFk9YeZWaESaLLmLSu1zcwLCiam4lorRt4oSxMEU7QHvCBDsggC5/eHy+QIKGdmDmfG8349D0/NOd/zPZ/54sN7zpzLVyUIggAiIiKFcJC7ACIiosbE4CMiIkVh8BERkaIw+IiISFEYfEREpCgMPiIiUhS13AXQgwmCAHNuOlGpara3bj3EsZUSx1Y6ShpblQpQ1bzhezD47IAgANev3xS9nUbjBAAwGMqsXZLicWylw7GVjpLG1tW1BerJPX7VSUREysLgIyIiRWHwERGRojD4iIhIURh8RESkKAw+IiJSFAYfEREpCu/jIyJ6CDk7N4NabXpso1Y7Avjjfr57VVZWo7S0XPLa5MbgIyJ6CKnVDqioEnD+sqFB7X3aaNBUrYwvAWULviNHjmDnzp04efIkCgoKoNFo4Ofnh9dffx06nc6k7eHDh7F8+XL88ssvcHZ2hl6vx6xZs/Doo4+atCstLUViYiLS0tJQUlICrVaLadOmoX///rX2L2efRESN4fxlA+Z+eLhBbd+d0gc6bxeJK7INssX7559/jt9++w0RERFYu3YtYmJi8Ntvv2HEiBHIysoytsvMzERkZCQ8PDywatUqzJkzB+np6YiMjER1dbVJn1FRUUhJScGMGTOwevVqaLVaREVF4dChQybt5O6TiIjkI9sR35tvvglXV1eTZX379kX//v3x0UcfYcWKFQCApUuXokOHDli2bBkcHO7ktJubGyZOnIi0tDQMHjwYAHDo0CFkZGQgKSkJer0eABAYGIj8/HzExcUhODjYuB85+yQiInnJdsR3b+gBwKOPPoq2bduioKAAAFBYWIhTp05h2LBhxjABgD59+sDd3R179+41Ltu3bx9atmxp8hWkSqVCeHg48vLycO7cOZvok4iI5GVTZzKLioqQk5ODDh06AACys7MBwPj6br6+vsjJyTG+zsnJgVarNQkeAMbzhTV9yd0nERHJy2au6hQEAbGxsaiursakSZMAAMXFxQAAjUZTq71Go8Hp06eNr4uLi9GuXbs6293dl9x9mkOlqv/y4/t50KXLZD6OrXQ4ttZRM45it3lYxr2+KYkAGwq+JUuWYP/+/Xjvvffw5JNPmqyrbzLBe5fX105M28bok4iI5GMTwZeYmIj169dj3rx5GD58uHG5i8udS2trjqjuZjAYTI6wXFxc6m0H/HE0Jnef5hAE8yaOVNKkk42NYysdjq11mHPkVllZ9dCMu01PRLt8+XKsWrUKs2fPxvjx403W1Zwzq+scWXZ2tsk5Na1Wi9zc3Fq3DtScf/P19bWJPomISF6yBl9SUhJWrlyJGTNm4NVXX6213sPDA507d0ZKSopJ+Bw5cgSFhYUYMGCAcZler0dJSQnS09NN+khOToaPjw+0Wq1N9ElERPJyXLBgwQI5drx+/XokJCSgX79+CA8PR0FBgfGnqKgIbm5uAABvb2+sX78e586dg0ajwfHjx/HWW2+hQ4cOiImJMV5x2bZtWxw9ehRbtmxBq1atUFJSgqSkJBw8eBDvvvsufHx8jPuWs09zCAJQVlYhervmzZsAAMrLK83eN9WNYysdjq11NG/eBNcNt3DgWH6D2vfv4Y3HNM0fmnF/5JGm9V93IQiC0Mj1AADGjRuH77//vs51bdq0MTnK+uabb7BixQrjo8BCQ0Mxe/bsWufObt68iYSEBOzdu9fk8WKhoaG19iFnn2JVVwu4fv2m6O14rkQ6HFvpcGytQ6NxwtmLxaIfWfawjLuraws4ONhY8FHDMfhsD8dWOhxb62Dw1R98sl/cQkRE1JgYfEREpCgMPiIiUhSbuIGdiEhJ6pod/UGUMjt6Y2DwERE1Ms6OLi8GHxGRDDg7unz4EYKIiBSFwUdERIrC4CMiIkVh8BERkaIw+IiISFEYfEREpCgMPiIiUhQGHxERKQqDj4iIFIXBR0REisLgIyIiRWHwERGRojD4iIhIURh8RESkKAw+IiJSFAYfEREpCoOPiIgUhcFHRESKwuAjIiJFYfAREZGiMPiIiEhRGHxERKQoDD4iIlIUBh8RESkKg4+IiBSFwUdERIrC4CMiIkVh8BERkaIw+IiISFEYfEREpCgMPiIiUhQGHxERKYqswVdQUIBFixZhzJgx6N69O3Q6HTIzM2u1CwkJgU6nq/UTHx9fq+21a9cwZ84cBAQEoFu3bhg7dixOnDhR5/5TUlLwwgsvoEuXLggKCkJ8fDzKy8sbpU8iIpKHWs6dX7hwAbt370bHjh0RGBiI9PT0etv26NEDs2bNMlnm7u5u8rq8vBwRERH473//i9jYWLi4uODTTz9FREQENm/ejI4dOxrb7ty5E2+88QbGjBmDuXPnIjc3F/Hx8bh8+TISExMl7ZOIiOQja/D16NEDR44cAQDs37//vsH36KOPolu3bvftb+vWrcjJycH27dvRqVMnAEDPnj0xaNAgJCQkYN26dQCAqqoqLF26FCEhIViwYAEAIDAwEE2aNEFsbCwiIiLQtWtXyfokIiL5iP6qc9CgQVi/fj2Kioos37mDdb9p3b9/P3x9fY0BBQBNmzbFkCFDkJGRgZs3bwIAsrKycPXqVYSHh5tsP3ToUDRp0gR79+6VtE8iIpKP6CO+6upqLFmyBAkJCQgJCcGIESPw3HPPQaVSSVGf0XfffYfu3bvj9u3b8PHxwZgxYzBmzBiT/ebk5CAgIKDWtjqdDlVVVcjLy4Ofnx9ycnIAAB06dDBp5+TkBC8vL+N6qfoUS6UCNBon0dup1Y4AzNuW7o9jKx0ljG3NexS7jZgxaYx92LL7RZLo4Nu7dy+OHTuGbdu2IS0tDfv27YO7uzuGDx+Ol156CW3atLGk1jr96U9/QufOneHl5YXi4mLs2rULb731Fn799VfMnTvX2K64uBgajabW9jXLbty4YWx39/J729asl6pPIiKSj1nn+Pz9/eHv74//+7//w+7du7F161asXLkSq1atQmBgIEaMGAG9Xo8mTZpYpcj58+ebvNbr9YiOjsbGjRsxYcIEk7C935Hnvevqa9vQdpb0KYYgAAZDmejtaj65mbMt3R/HVjpKGFtzjqoqK6tEjUlj7MOWubq2qPeoz6KTbM7Ozhg5ciS2bNmC1NRUDBo0CBkZGYiOjsZzzz2HxYsXo7Cw0JJd1Cs8PBzV1dX48ccfjctcXFzqPLIyGAzG9Xf/t762dx+1SdEnERHJx+KrS6qrq5Geno6EhASkpaUBuHNE2KlTJ3zyyScYOHAgDh48aHGhde0XML1ARqvVIjs7u1bbs2fPwtHREe3btze2A1DrvFtZWRny8/NNztNJ0ScREcnH7OD79ddf8f777yMoKAhTp07FyZMnMX78eOzZswcbN27ERx99hN27d8Pb2xuLFy+2Zs0A7twz5+DggC5duhiX6fV6ZGdn48yZM8ZlFRUV2L17N3r16oUWLVoAALp16wY3Nzfs3LnTpM/U1FTcvn0bAwYMkLRPIiKSj+hzfMnJydi6dSuOHz8O4M49bXPnzq3znF779u0xYcIExMbG1ttfzVHiqVOnAABHjx7FjRs34OTkhODgYKSmpuLAgQMIDg6Gh4cHDAYDdu3ahf3792PSpEl44oknjH2NGDECn332GaKiohAdHQ2NRoMNGzbgypUrWLZs2R9vWq1GdHQ0YmJisHDhQoSFhRlvNg8LCzO5X1CKPomISD6igy8mJgaurq6YOHEiRo4cibZt2963/ZNPPonBgwfXu37GjBkmr1esWAEAaNOmDdLT0+Hp6YkbN24gPj4excXFaNKkCXQ6HeLi4mrdM9esWTN8+umnWLJkCRYsWIDy8nJ07NgR69evR+fOnU3ahoeHw8HBAevWrcOWLVvQqlUrjB49GtOnT5e8TyIiko9KEARBzAZ79uyBXq+HWi3rQ18UpbpawPXrN0Vvp4Sr4+TCsZWOEsZWo3HC2YvFmPvh4Qa1f3dKH+i8XURf1Sn1PmyZq2sLODjUfVmn6PQaNGiQxQURERHJRfTFLUlJSRg2bFi961988UWsXr3aoqKIiIikIjr4vv76a/Ts2bPe9QEBAdizZ49FRREREUlFdPBdunQJTz75ZL3rfXx8kJ+fb1FRREREUhEdfIIgoKSkpN71v//+u/HmciIiIlsjOvi0Wu19n8Ry8OBB+Pj4WFQUERGRVEQH30svvYSTJ09i7ty5tWYxmDdvHk6ePImXXnrJqkUSERFZi+jbGUaPHo3MzExs374dycnJ8PDwAAAUFBSguroaYWFhePnll61eKBERkTWYdRd6YmIiQkJCkJKSggsXLgAAgoKCMHToUDz//PNWLZCIiMiazH78ytChQzF06FBr1kJERCQ5i6clIiIisidmHfGVlZXhq6++woULF1BcXIx7H/epUqmwcOFCqxRIRERkTaKD79SpU5g8eTKKiopqBV4NBh8REdkq0cH33nvv4datW4iPj0dgYCBcXFykqIuIiEgSooPvp59+QmRkJK/eJCIiuyQ6+JydndG6dWspaiEiIjvh7NwMarW46yMrK6tRWlouUUUNJzr49Ho9Dh8+jLFjx0pRDxER2QG12gEVVQLOXzY0qL1PGw2aigxKqYgOvtmzZ+Mvf/kL3n33XUyYMAFt2rSRoi4iIrJx5y8bRM/wbgtEB19gYCAA4Oeff8bGjRvh4OAAlar29O4//fST5dURERFZmejgGzRoUJ1BR0REZA9EB198fLwUdRARETUK2zjTSERE1EjMCr7q6mqkpKQgJiYGr776Kn755RcAQElJCVJSUlBYWGjVIomIiKxFdPDdunUL48ePx+zZs7Fnzx4cPnwYN27cAAA88sgjiIuLw+bNm61eKBERkTWIDr4VK1YgKysLy5cvR3p6usnzOtVqNfR6Pb799lurFklE1JicnZtBo3ES9ePs3EzusqmBRF/ckpaWhlGjRiEsLMx4pHe3du3aYe/evVYpjohIDvZ8czY9mOjgKywsxFNPPVXveicnJ9y8edOiooiI5GavN2fTg4n+iOLi4oIrV67Uu/7cuXNwc3OzqCgiIiKpiA6+gIAAbN++Hbdu3aq17vLly9i2bRv69u1rleKIiIisTXTwRUVFobi4GH/+85+xZcsWqFQqZGRkYNmyZRg+fDiaNGmCyZMnS1ErERGRxUQHn4+PDz7++GMIgoDExEQIgoC1a9di1apVeOyxx7B+/Xo88cQTUtRKRERkMdEXtwCAn58fUlNTcebMGeTm5kIQBLRt2xZdunThczyJiMimmRV8NZ5++mk8/fTT1qqFiIhIcrzxhIiIFEX0EV+nTp0a9HUm5+MjIiJbZJX5+KqqqnDx4kX8/PPP8PX1ha+vr9UKJCIisiarzsd37NgxTJs2DW+//bZFRREREUnFquf4/P39MXz4cCxdurRB7QsKCrBo0SKMGTMG3bt3h06nQ2ZmZp1tU1JS8MILL6BLly4ICgpCfHw8ysvLa7W7du0a5syZg4CAAHTr1g1jx47FiRMnbK5PIiKSh9UvbmnXrl2Dz+9duHABu3fvxiOPPILAwMB62+3cuROzZs3CM888g7Vr1+K1117DZ599hpiYGJN25eXliIiIwNGjRxEbG4ukpCQ4OzsjIiICp0+ftpk+iYhIPhbdzlCXY8eOoWnTpg1q26NHDxw5cgQAsH//fqSnp9dqU1VVhaVLlyIkJAQLFiwAAAQGBqJJkyaIjY1FREQEunbtCgDYunUrcnJysH37dnTq1AkA0LNnTwwaNAgJCQlYt26dTfRJRETyEX3El5KSUufPpk2bMHXqVKSmpiI0NLRhO3d48O6zsrJw9epVhIeHmywfOnQomjRpYjIF0v79++Hr62sMKABo2rQphgwZgoyMDOOsEXL3SURE8hF9xDd79myoVCqTCWhrODo64sUXX8Q//vEPqxQHADk5OQCADh06mCx3cnKCl5eXcX1N24CAgFp96HQ6VFVVIS8vD35+frL3KZZKBWg0TqK3U6sdAZi3Ld0fx1Y6tjC2NTWI3aahNUvdf2PsozHegyXud9ed6OD7+OOP61zu4uICLy8vtGjRQmyX91VcXAwA0Gg0tdZpNBrj+pq29bUDYJw4V+4+iYhIPqKDr1evXlLU8UD13TR/7/L73Vzf0LaN0acYggAYDGWit6v5ZGXOtnR/HFvp2MLYmnNUUllZ1eCape6/MfbRGO/BEq6uLeo96rP5R5a5uNyZ1biuIyaDwWByhOXi4lJvu7v7krtPIiKSj+gjvtjYWNE7UalUWLhwoejtAECr1QK4c67Nx8fHuLysrAz5+fno16+fSdvs7OxafZw9exaOjo5o3769TfRJRETyER18X375pfFru3svcLnfcnODr1u3bnBzc8POnTsxYMAA4/LU1FTcvn3bZJler8fChQtx5swZ46wRFRUV2L17N3r16mU8/yh3n0REJB/Rwfftt9/itddeg7u7OyZNmgStVgtBEJCbm4t169bhypUrWLNmDVq1atWg/tLS0gAAp06dAgAcPXoUN27cgJOTE4KDg6FWqxEdHY2YmBgsXLgQYWFhyM3NRXx8PMLCwtCtWzdjXyNGjMBnn32GqKgoREdHQ6PRYMOGDbhy5QqWLVv2x5uWuU8iIpKP6OB7//330apVK3z44Ycmy/39/eHv74+JEyciPj4ecXFxDepvxowZJq9XrFgBAGjTpo3xhvbw8HA4ODhg3bp12LJlC1q1aoXRo0dj+vTpJts2a9YMn376KZYsWYIFCxagvLwcHTt2xPr169G5c2eTtnL2SURE8hEdfAcPHrzvH/L+/fvjgw8+aHB/Z8+ebVC7YcOGYdiwYQ9s5+bm1uBnhcrZJxERyUP0VZ0VFRW4cuVKvesLCwtRUVFhUVFERERSER183bt3x8aNG+ucneD48ePYuHEjunfvbpXiiIiIrE30V50xMTF4+eWX8fLLL6Nr165o3749VCoVcnNz8cMPP8DZ2Rlz5syRolYiIiKLiQ4+X19fbNu2De+//z4OHTqErKwsAEDz5s0xYMAAzJw5E23btrV6oURERNZg1rRE3t7eWL58OaqqqnDt2jUIggA3Nzc4Oop/aCkREVFjsmg+PkdHR7i7u1urFiIiIsmZ9azO0tJSrFq1CuPGjcOgQYOMX3cWFRVh1apVOH/+vFWLJCIishbRR3w3btzA2LFjceHCBXh6eiI/Px9lZXeett26dWt8+eWXMBgMvMCFiIhskujgW7ZsGQoLC7F582Z4enqid+/eJutDQ0ORkZFhtQKJiIisSfRXnQcPHsTYsWPh5+dX5xxznp6eKCgosEpxRERE1iY6+IqKiu57u4Kjo6Pxq08iIiJbIzr4HnvsMVy6dKne9WfOnMHjjz9uUVFERERSEX2OLygoCFu3bsW4ceNq3bd36tQpJCcn45VXXrFagUREZP8ef8wZarUjNBqnBm9TWVmN0tJyq9ciOvimTZuG9PR0vPjiiwgNDYVKpcKuXbuwfft2pKWl4bHHHkNkZKTVCyUiIvvVvJka/y2vxPnLhga192mjQVO1WXfcPZDo4HN3d8fnn3+Ot99+G1988QUEQcCOHTugUqnQp08fLFy4sMGT0BIRkXKcv2zA3A8PN6jtu1P6QOftIkkdZj25xcvLC2vWrIHBYEBeXh4EQUDbtm3h6upq7fqIiIisSlTwlZaWIi4uDn369MHAgQOh0Wg4BREREdkVUV+gOjs7Y+fOnfj999+lqoeIiEhSos8carVa/Pbbb1LUQkREJDnRwTdp0iR8/vnnuHjxohT1EBERSUr0xS35+fnw8PDAkCFDEBISgrZt28LJyfS+DJVKhddee81qRRIREVmLWQ+prpGWllZnGwYfERHZKtHB9/XXX0tRBxERUaNoUPD9+OOP8Pb2houLC7y9vaWuiYiISDINurhl1KhR+Pbbb42vS0tLER0djXPnzklWGBERkRQaFHyCIJi8rqiowO7du3H16lVJiiIiIpKKWY8sIyKyFmfnZlDf9TBitfrOrC8Peoq/VE/up4cfg4+IZKVWO6CiSmjwU/sBaZ/cTw8/Bh8RyU7MU/sBaZ/cTw+/BgffoUOHcO3aNQBAWVkZVCoV0tLS8Msvv9Rqq1KpEBERYbUiiYiIrKXBwZeamorU1FSTZV988UWdbRl8RERkqxoUfBs2bJC6DiIiokbRoODr2bOn1HUQERE1Cl4WRUREisLgIyIiRWHwERGRojD4iIhIUewi+DIzM6HT6er8yc3NNWl7+PBhjBw5En5+fujVqxfmz5+PkpKSWn2WlpZi0aJF6Nu3L/z8/DB8+HAcOHCgzv1L0ScREcnDrp7cMmvWLPTo0cNkmaenp/H/MzMzERkZif79++Nvf/sbrly5gvj4eGRnZ+Nf//oXHBz+yPmoqCicPn0as2bNgqenJ3bs2IGoqCisWrUKwcHBkvZJRETysavg8/HxQbdu3epdv3TpUnTo0AHLli0zBpKbmxsmTpyItLQ0DB48GMCdp9BkZGQgKSkJer0eABAYGIj8/HzExcWZhJQUfRIRkXzs4qvOhigsLMSpU6cwbNgwk6OwPn36wN3dHXv37jUu27dvH1q2bIn+/fsbl6lUKoSHhyMvL884z6AUfRIRkbzs6ohv/vz5mD59OpycnODv74/XX38dnTt3BgBkZ2cDADp06FBrO19fX+Tk5Bhf5+TkQKvVmoQZAOh0OmNfWq1Wkj7NoVI9eIqWujR0ehcSj2NrPTVjac52Uo2/OTWJqUfq/htjH+b+3sSw5HesUtW/zi6O+Fq2bIkJEyZg4cKF2LBhA9544w2cO3cOY8aMwQ8//AAAKC4uBgBoNJpa22s0GuP6mrb1tbu7Lyn6JCIiednFEV/Hjh3RsWNH42t/f3+EhIRgyJAhSExMxCeffGJcp6on5u9dXl87MW0t6VMMQQAMhjLR29V8UjJnW7o/jq31mPuJvrKySrLxN6cmMfVI3X9j7KMxvu2w5Hfs6tqi3qM+uzjiq4ubmxv69u1rPOJzcbkzN1ddR1YGg8HkaMzFxaXedsAfR2lS9ElERPKy2+ADgOrqauP/15yHu/u8W43s7GyT83RarRa5ubkm29e0A+6cv5OqTyIikpfdBt/Vq1eRkZFhvL3Bw8MDnTt3RkpKikn4HDlyBIWFhRgwYIBxmV6vR0lJCdLT0036TE5Oho+Pj/EiFCn6JCIiednFOb7o6Gh4eXmhU6dOePTRR5GXl4e1a9fi1q1bmDlzprHdrFmzMGnSJMycOROjRo1CYWEh4uPj0bVrVwwcONDYLjg4GAEBAZg3bx6Ki4vh6emJ5ORkHD9+HCtXrjTZtxR9EhGRfOwi+HQ6HXbv3o1NmzahrKwMLi4u6NmzJ6ZMmWLyFWKvXr2watUqrFixApGRkXB2dkZoaChmz54NR8c/Lr1VqVRYuXIlEhISkJiYiJKSEmi1WiQlJSEkJMRk31L0SURE8rGL4IuMjERkZGSD2gYFBSEoKOiB7Vq0aIH58+dj/vz5svRJRETysNtzfEREROZg8BERkaIw+IiISFHs4hwfEdXP2bkZ1Gpxn2ErK6tRWlouUUVEto3BR2Tn1GoHVFQJOH/Z0KD2Pm00aCoyKIkeJgw+oofA+csGzP3wcIPavjulD3TeLhJXRGS7+LGPiIgUhcFHRESKwuAjIiJFYfAREZGiMPiIiEhRGHxERKQoDD4iIlIUBh8RESkKg4+IiBSFwUdERIrC4CMiIkVh8BERkaIw+IiISFEYfEREpCgMPiIiUhQGHxERKQqDj4iIFIXBR0REiqKWuwAiOTk7N4NaLe7zX2VltUTVEFFjYPA9xBwdHaBSqaDRODV4m8rKapSWlktYlW1Rqx1QUSXg/GVDg9r7tNGgqcigJCLbwuB7iKlUKvy3vJJ/1B/g/GUD5n54uEFt353SBzpvF4krIiIpMfgecvyjTkRkSnkf74mISNEYfEREpCgMPiIiUhQGHxERKQqDj4iIFIXBR0REisLgIyIiRWHwERGRojD4iIhIURh8VlZaWopFixahb9++8PPzw/Dhw3HgwAG5yyIiov9h8FlZVFQUUlJSMGPGDKxevRparRZRUVE4dOiQ3KURERH4rE6rOnToEDIyMpCUlAS9Xg8ACAwMRH5+PuLi4hAcHCxzhURExCM+K9q3bx9atmyJ/v37G5epVCqEh4cjLy8P586dk7E6IiICAJUgCILcRTwsRo0aBZVKhc2bN5ss/+GHHzBy5EgkJiZi8ODBovu19FdUXd2w7R0cVBbtx549DGNk7++hofUDjfcepB7Txvid2dp7aMx/pypV3X3wq04rKi4uRrt27Wot12g0xvXmqO+X11COjrb5h86WPAxjZO/vwRbrl7qmxnjPtvYebOH3zK86rex+IWVpgBERkeUYfFbk4uJS51GdwXBnBvSaIz8iIpIPg8+KtFotcnNzUV1dbbI8OzsbAODr6ytHWUREdBcGnxXp9XqUlJQgPT3dZHlycjJ8fHyg1WplqoyIiGrw4hYrCg4ORkBAAObNm4fi4mJ4enoiOTkZx48fx8qVK+Uuj4iIwNsZrO7mzZtISEjA3r17UVJSAq1Wi2nTpiE0NFTu0oiICAw+IiJSGJ7jIyIiRWHwERGRojD4iIhIURh8RESkKAw+IiJSFAafHbJklveLFy9i6tSpePbZZ9G9e3f89a9/5XRJdzF3bL/88ktMnjwZ/fr1g5+fHwYMGIBFixahqKioEaq2D5b8u60hCALGjx8PnU6Hd955R6JK7Y8lYysIAr744gsMHz4cXbt2hb+/P0aOHIkTJ05IXLV8GHx2yNxZ3q9fv46xY8fi8uXLWLx4MRISEmAwGPDKK6+goKCgkaq3beaO7QcffIAWLVpg5syZWLduHSIiIrBnzx6MGDECJSUljVS9bTN3bO+2ZXLu/AoAAATMSURBVMsW5OXlSVilfbJkbOfNm4elS5diwIABWLNmDeLj4xEUFISysrJGqFwmAtmVf//734Kvr6/w9ddfG5dVV1cLo0ePFgYOHHjfbRcvXix06dJFKCgoMC4rKioSunfvLsyfP1+ymu2FJWN77dq1WssyMzMFX19fYcOGDVav1d5YMrY1CgoKhGeffVZIS0sTfH19hUWLFklVrl2xZGzT0tKEp556Sjhx4oTUZdoUHvHZGUtmed+/fz969+4Nd3d347JWrVqhX79+2Ldvn6R12wNLxtbV1bXWsi5dugAAj6Zh2djWePPNN+Hv74+wsDApS7U7loztpk2b4O/vj+7duzdGqTaDwWdncnJyoNVq4eBg+qvT6XQA/pgJ4l63bt3CxYsX65whQqfT4fr167h+/br1C7Yj5o5tfb777jsAQIcOHaxToB2zdGxTU1ORmZmJN998U7Ia7ZW5Y3v79m1kZWVBp9MhISEBvXv3RseOHfH8889jx44dktctJwafnSkuLq5zXr8HzfJuMBggCEKd27q4uNx3W6Uwd2zr62vRokVo164dBg8ebLUa7ZUlY1tUVIR33nkHf//73/H4449LVqO9Mndsi4uLUVFRgR07duDAgQOIjY3F2rVr4evri5iYGGzZskXSuuXE2RnskCWzvHMW+PuzZGxrlJWVYdq0aTAYDNi0aROaNm1qrfLsmrlj+84778DT0xOvvPKKFGU9FMwZ25p5Q8vLy7FmzRq0adMGANC7d2/k5+fjn//8J0aOHGn9Ym0Aj/jsjLmzvGs0GqhUqjq3rVlWc+SnVOaO7d1u3bqFKVOm4PTp01izZg2eeuopq9dpj8wd28OHD+Orr77C7NmzcfPmTZSUlBivkq2oqEBJSQkqKyulK9wOWPo3oX379sbQA+4E5XPPPYeCgoKH9vQHg8/OmDvLe/PmzeHl5VXn9/3Z2dlo3bp1nRdoKIm5Y1ujvLwcU6dORVZWFlavXo1nnnlGslrtjbljm5OTg+rqaowbNw49evQw/gDA5s2b0aNHD2RkZEhbvI2z5G9C27Zt61wn/G/Snof1GyIGn52xZJb30NBQZGRk4OrVq8ZlxcXFOHjwIPR6vWQ12wtLxraiogJTp07FsWPHsHLlSvTs2VPqcu2KuWM7cOBAbNiwodYPAISFhWHDhg3w8/OTvH5bZsm/W71ej7y8PFy6dMm4TBAEfPPNN/Dy8kLr1q0lq1tOPMdnZxo6y/u4cePw/fff4+zZs8ZlkyZNwq5duxAZGYlp06ZBrVbjww8/hFqtxuTJk+V4OzbFkrGdPn06/vOf/2DatGl45JFHkJWVZVzXunVreHt7N+p7sTXmjq2Hhwc8PDzq7NPd3R0BAQGNUr8ts/RvQkpKCl599VVERUWhZcuW2LZtG37++WckJibK8XYaBSeitUMNmeW9rn/kAPDrr79i8eLFyMzMhCAIePbZZzFnzhxecv8/5o5tzaXjdQkPD0dcXJykddsDS/7d3kun02H8+PGYN2+e1GXbBUvG9tKlS1iyZAmOHDmCW7duwdfXF1OmTDHZ9mHD4CMiIkXhOT4iIlIUBh8RESkKg4+IiBSFwUdERIrC4CMiIkVh8BERkaIw+IiISFEYfEREpCgMPiIiUpT/ByN4N7CVNrVHAAAAAElFTkSuQmCC\n",
801 | "text/plain": [
802 | ""
803 | ]
804 | },
805 | "metadata": {},
806 | "output_type": "display_data"
807 | }
808 | ],
809 | "source": [
810 | "#graph the log_transformations of yelp rating\n",
811 | "df2['rating'].plot(kind = 'hist', bins = 25)"
812 | ]
813 | },
814 | {
815 | "cell_type": "code",
816 | "execution_count": 28,
817 | "metadata": {},
818 | "outputs": [
819 | {
820 | "data": {
821 | "text/plain": [
822 | ""
823 | ]
824 | },
825 | "execution_count": 28,
826 | "metadata": {},
827 | "output_type": "execute_result"
828 | },
829 | {
830 | "data": {
831 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEZCAYAAADYGFGeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2de3hM5/bHv3tmMrlfZEIuxKUiUeJWIUHLIVRbehQ9iqKUtogWVeVUqbbSn3BaTusuqhyqh56KCqWEUkRo3YqWiLomcck9kdvM3r8/0hmJSSaTyd6z35lZn+fxtPbsvd7vu97Imr33Wu/iBEEQQBAEQRAyo5BbAEEQBEEAFJAIgiAIRqCARBAEQTABBSSCIAiCCSggEQRBEExAAYkgCIJgApXcAmwVQRAgdsI8x+lti2vXESFfigv5U1wc1Z8cB3D6yVcDBSQLEQQgK6tQVJve3q4AgLy8YlHtOiLkS3Ehf4qLo/pTo/GAiXhEj+wIgiAINqCARBAEQTABBSSCIAiCCSggEQRBEExAAYkgCIJgAgpIBEEQBBNQQCIIgiCYgAISQRAEwQQUkAiCIAgmoIBEEARBMAEFJIIgCIIJKCARBEEQTEABiSAIgmACCkgEQRAEE1BAIgiCIJiAAhJBEATBBBSQCIIgCCaggEQQBEEwAQUkgiAIggkoIBEEQRBMQAGJIAiCYAIKSARBEAQTUEAiCIIgmIACEkEQBMEEFJAIgiAIJqCARBAEQTABBSSCIAiCCSggEQRBEEygkmvg5ORk7NixA6dPn0ZmZia8vb3Rvn17vPnmmwgLC6v1+hs3bmDhwoVISUkBz/OIiIjArFmzEBISYnTuxo0bsXnzZty+fRsBAQF46aWXMH78eCgUFI8JgiBYQbaAtGXLFuTm5mLs2LFo2bIl7t+/j/j4eLz44ov4z3/+g44dO9Z4bVZWFkaOHAmNRoO4uDgolUqsXLkSo0aNQkJCAgICAgznrlixAl988QUmTpyIqKgonD59GkuXLkVeXh7eeecda0zVbJRKDhzHwdfXDdnZD+SWwyS+vm7gOA6CINiNj1ifU2V9LGiwho+kHk+qf+ti6pbj55ITZPopy8rKgkajqXIsPz8f0dHRiIqKwhdffFHjtYsWLcKmTZuwb98++Pv7AwBycnIQHR2N559/Hh9++KHhWK9evTBs2DC8//77huuXLFmC+Ph4JCUlVQledYHnBWRlFVp07aM4OatQphWQfD4DNzLz0TTAC93CA6FWcSgv1Yoyhq1TVx95e7sCAPLyiq0t1WxYX3cW9Flbg9TjSWVfTLtS+kCj8YBCwdX4uWwBqSZefPFFcByHbdu21XjO008/jcceewyrVq2qcnzGjBlITk7GsWPHAADff/89Zs6cie+++w5t27Y1nHft2jX0798f8+bNw8svv2yRTrECkpOzCmnp+YhdfwLlWv7hcZUCc8Z1RcsgLyZ+OcmJJT5iPSCxvu4s6LO2BqnHk8q+mHal9kFtAYmplyjZ2dlITU1Fq1atajynpKQEN27cQGhoqNFnYWFhyMrKQlZWFgAgNTUVHMcZ2WvevDlcXFyQmpoq7gQsoEwrIHb9CSjBY974SCyf2RvzxkdCCR6x60+gTMvU9wVZsEcfsT4nvT4XFY+N85/G/xYOxMb5T8NFZT19eg0RHXkkLBqIHYufR8KigYjoKI0G/XjhrauOF95anPH09gdGVLU/MKJ+9vV2mwRUtdskoO529bYqByMAKNdaZ92ZuUMSBAFTpkzB4cOHkZCQgJYtW1Z73p07d9CzZ0+8++67GD9+fJXPtm7dirlz52L37t1o2bIl5s6di8TERJw+fdrIzlNPPYXOnTtj6dKlFustL9dZdK0epZJD4tFrCGnijYY+bka3yPdyHyDtVh4G9GgOnY6JZbI6lvpIpVICALTa+q2RFLC+7np9PdoHgudhpE+hAI6dy5BUn15Dr45BNT4+OnwmXTQNUo8nlX0x7eptxe84X+M5rw0Kr5fPnZyU4DgbuENatGgR9u/fjw8//LDGYFQZU5MyFzFs1Hf8jq0aoqRMh8mLknDy4h2Ua3mcvHgHkxcloaRMhw6tGsquU07s0Uesz4njODzVIQjXMwswZXESsvNKENLEB9l5JZiyOAnXMwvwZIcgSfVxHIdeHYOQlp6PWSuS8Fz35oh5sQOe694cs1YkIS09Hz07iqeh8ngzlyWhf1RTxLzYAf2jmmLmsvqPV9n+3PgkDOxRMZ+BPZpjbrzl9ivbnb40Cd3aBWDCoHbo1i4A05fWzS7HcbiRmW/ynBt3CiRdd9my7CqzZMkSfPnll5gzZw6GDBli8lxvb29wHIfc3Fyjz/THfHx8DP8tLi5GWVkZ1Gp1lXPz8/Ph7e1tsWZBqP/7CV9fN7g6q3Dgl5tYMKkHfrtyH5lZRejQyg+jnm2NnT9fxSvPtYEgCMy+C5EaS33E8jsk1tfd19cNWp2Am5kF+PydPkg5n4krt3LR1N8Ln7/TB8d/y0BwI09J9fn6uqFMK6BlkBfiJkdj97Frhm/+cZOjoVZxKNMKommoPN7iKdHYe/yGYbzFU+o/XmX7H0+IRuLRh/P5eILl9vV2gxt5YMm0aCT/9vAOacm0aACC2XZ9fd3QNMDL5DlN/eu37hqNB0zFM9kD0r///W+sWrUKM2fOxJgxY2o938XFBcHBwbh8+bLRZ5cvX4avr68hey8kJASCICA1NbVKUsP169dRUlJi8l2VtbiWkY9u7QLx3oqjRi8R3x75BK5l5kPj3VBGhfJjjz5ifU7384oR7O+JyYsOVNG3YfdFzBnbFffziqHxdpZUg1rFVfuCfcOui4YX7LY0nlT2VUoOf2YU1Gi3RaD5druFB2LDrotG75CAip/NqPBAizSai6yP7JYtW4YVK1Zg6tSpmDBhgtnX9e3bF8eOHcO9e/cMx3Jzc3Hw4EH069fPcKxnz55Qq9XYsWNHleu3b98OlUqFPn361H8S9YDjODTydcNnX5+CTsejQ6uG6N25CTq0agidjsdnX5+CfwM3m3ocJTb26CPW58RxHDTeLoj96gQEnseQv4Vg8tD2GPK3EAg8j9ivTkDj7SL5Izv9C3ZPVx7fxVW8rP8ubiA8XR++YBfzkZ2U41W2r/Gumnyg8bbcPsdx0Ooq7Doreax7vy+2fjIA697vC2dlhV2tzjy7HMdBreIwZ1xXuKoVVdbdVV2RZadWcdKuu1xJDV9++SXi4uLQu3dvTJw4scpnarUabdq0AQCMHj0aJ06cwKVLlwyf379/H4MGDUKjRo0QExMDlUqFlStX4tq1a9i+fTuCgoIM5+qD3qRJkxAZGYkzZ87g888/x+jRozFr1iyL9YuR9u3r64bEo9fwx7VsDOrV0vDoJkDjjnYhfthxKA2PN/fFgB7NmSyYtAaW+oj1R3Ysr7teH6/j0a19EFLOZ+LGnXw09fdCZHgAks+lQ6lUSKpPr8Gcl/ViaJB6PKns6+1GhQeAA2dkV4CAlPOZZtnV2zInmcVSnzNbh6QPNNXRuHFjHDhwoMp5lQMSUFFLFBcXh5SUFAiCgM6dO2PWrFlGj+EEQcCGDRvw9ddfIz09HY0aNcJLL72E1157rV5bB4kRkDQad/xw7Bq8PZ3x+Ten8Gz3xxCgcUNm1gP8cOwq3hr+BPIKS/Fst+bIyiqq11i2iqU+Yjkgsb7uGo07fvn9LpQKDos3ncCMl7vA39cNd7If4NPNJzFzVFfoBAERrRtJpk+jcUd+YSnS0vOxYe8JLJnynGHXgOnLduOV/hWPuLw8nEXRUHk8UzU4lo5X2f7/jp7Ax2MfzmfuV7sxtIdl9jUad2Tnl+J6Zj6W/+8E1sx+DgqOAy8IeH3hbsQM7YpmAV7w9ardrkbjjpt3CnE/r7hGH/h5uyLY38NinzMbkGwdse6QMrIe4JeLdxDVLtDom+jx3zIQ0cYfgRrH3UrIUh+xHJBYX3dfXzfczytBVm4x/KpJS7+f+wAaHzf4eTtLeoeUlVdqeNlf3R1FmVaARiQN+vEmxiXV+P5k1axoi8eTaj5i2pXaB0DtAUn2pAZHp/BBucmXx4UPygGNCQMOgD36iPU56XQCist0Rr+c9C/KdTrjX1hiY+2khuTzGdX+IgYqCkOPn694XGUpUs1HTLtS+6A2mKlDckQ4jkMDL2fEflVDZfRXJ9DAy9mmXtiLjT36iPU5cRwHlVJhsmJfpVRYLanB1K4BYiY1SFmDI9V8xLTLQh0SBSQZEQQBx89nmvxGknI+U9ZdluXGHn3E+pwEQTDrm7KU+qytQRAEs2twLLUvxXzEtCu1D8yBApKMVP5GouBQJf1X/5hV6m8krMPCtzaxYX1OLOiztgaO4xAVHgAnVfW/Ep1UCkSGB9TrDkmK+Yhpl+M4dAsPhJNKAZUCVdK+VYq/6pDaBdr/Tg2Oiv4byZMdgqqk/+or9nccSpP8GwnrsPCtTWxYnxML+qytQRAEZOWVYM7YrkaPUp1UCswZ2xVZeSXw83ax2L4U8xHTriAIUCk5LJ3eC2onZZUdOlbO7ouych1UCmn7YlFAkpke7YPg5+1SbcX+jJFPIKyZr4zq2EDu6nEpYH1OteprJ70+a2vw83bFsevpWPFuH6RcyMTNOwUI9vdEZNuKzMfuHYJqN2ICqeYjpt3M7AcoLtUaJ0jsrkiQKCwuh7eH2oSF+kGP7GSE+6te4NOvT1X7QvLTr0+BF8R7cWuLcBwHhYLDjJFPGD1O0QdthULa6nGxYX1OFUkNHOaM7Vqtvjlju0Ilsb7KuwZUq2FcV6iV4mnQjxcc4Im3/nUA9/OK8ViQN+7nFeOtfx1AcIBnvcaTaj5i2jXs0GEiQULqHTroDklGBEFA8m+1vJD8Tdo0S9YRBAFHz6Xjj2vZ+GRyD5xPy0LG/SIE+rkjvKUGOw6lISuvxKZ8xPqcBEHAz2fTwev4au8Wks+l4/a9Qkn1CYKAQ2fS0atjEFbNisbx8xm4cacATf09EfXIzgZij7dsZsV4V9Pz0NTfE8tmRtd7PKnmo7cbFR5QrV0Bgtl2zU22kXLdKSDJCAsvj1lH76MjZ9Nx7Fw6wkP84OvpgtOX7+I/uy+CFwB3Vyeb8hHrc9Lr+zHlBjbuvoiBPVvisSBvZGQXYdLC/dDyQP+oZlZJahj94Xn4egLxcwZCqeSg0wmYEJuI7AJxNVQez8cdWDvnOaidlCgr1+G12N3ILarfeJXtB2iAVbMGGnZqmBiXiMwsy+zr7cbvOA8PZ2DpO9Ho17Up8h+UYuq/9qGw1Hy7LPw+ooAkIyy8PGadyj7iBeBc6n2jc2zNR6zPqbI+LQ8k/JRmdI41kxqyC4AhsxMl1VB5vMJiYMuPlw3bORUW13+8yvYzs4AX3hVnPlV0lwITYpMstsvC7yN6hyQz+jTL6mDh5TYL2KOPWJ8TC/qsraFbeCDGP98WK2f3ha+XC67cyoWvlwtWzu6L8c+3rfd4Us1HTLu1p77bcfsJR6di63je5AtJrY63qcdRYsNxHIpLtZgzriucnRRVarWcnSp8VFyqtSkfsT4nQ1KDiTYEKhETCmrSoH9Z79dAUaUdhF8D8VshPJrUkJ3/V5fc/JKHSQ31GK/yfIL8FVXaTwT5Wz6fyna93BVV2k94udfNLsdxuJ5RYDKZ5Xpmvn22n7B1xNxc9WZmAVo28TF6IZl2KxfBAZ60uSptrmp1fY66ueqxc+k1rkn39kF2v7lqlbYj1SSz1LftCO32LRFiBaRfL91DWbkOS7ecQlhzX/h6uiC7oASXrmVj2ognoHZSonNYQ4cOSHofffZIery+u2p1PmI9IFkyJ2vqu3QjF8Ul2hqLRF1dVAhr6iNpQCooKqu1HYSnu1q0gCTlnKWaj6+vG/IKy/BnRs12WwR6wdujdruVd/sWeB4De7ZEoK87MrKLkHg4DZxCgVWzo6Hxkm63b3pkJyMcx6FRg4rOoaXlPM6l3sdPp27hXOp9lJZXdA5tZGPdUMWmso+qq42wRR+xPqfKHWNr2vzVmh1jrbW5qpRzlnJzVX3H2Jrs1qVjrL7+jFMokPBTGlZ+dw4JP1UEI2vUn1FAkhFBEHA29Z7JvP9zqfdsKoNMbOzRR6zPiYXNX+XYXFXKOdvK5qo/n03Hjcx8rHi3DyYMCkf/qGaYMCgcK97tYyhVoK2D7BSO43Azs8DkOVSHZH8+Yn1OLNSjyLG5qtTtJ2xhc1W5688oIMmIIAhoFmg6779ZoJdNffsXG3v0EetzYqEeRY7NVaVuP2ELm6vKXX9Gj+xkpmtbf5N5/13bBFhZEXvYo49Yn5Oj1iFJOZ4t1CHJve4UkGSE4zjk5JearEPKyS+xqcdRYmOPPmJ9TvpxTemrfJ5UGmrdNFSCOiSpxpPKvph2K9fH1WRL6vo4Svu2ENHqkO4/wC+//1WPUs2W9xGP+yPQz8HrkCzwEetp3yyv+6N1SI/Wx8lRh1TdZqRS1CFJNZ5U9sW0q69DCmnijYbVrPu93AdIu5UnaR0S3SHJTHpWEfwauGLK4gM4cTETpWU6nLiYiSmLD8CvgSvSs4rklig79ugj1ueUlVeC4lIdpixOwr2/WjHcyyvGlMVJKC7VIcsKgV6t4pCWno9ZK5LwbLfmmDy0PZ7t1hyzViQhLT0fapW439T141U3ZzHG09ufG5+EAT0q5jOgR3PMja+ffZWywu70pUmIDPfH+OfbIjLcH9OXVthVKc232y08EHNXJyMmbh/8NW54/skW8Ne4ISZuH+auTpb8kR3dIVmIGHdIGo07btwpxNtLD9XYXGvJtF4I9vdAlg3+0hUDS33E8h0S6+uu0bjjXm4xJsUdqFHfyll90NDHVTJ9Go077ueWYGJcUo0aVs2Khp+PiygapB5PKvti2tVo3JFfWFpr8a6Xh7PFPqc7JIYxpx7lrI3V2IiNPfqI9Tk5ah2SlOPZSh3SoTPpaBbgiVWzovHaX3VIrw0Kx6pZ0WgW4InDZ6gOyW5hvR6FBezRR6zPieqQxB/PluqQ4nech6cLsHzW03B3cUJRSTli4n5EQQnVIdk1rNejsIA9+oj1OVEdkvjj2VodUkEJMObDH0XRWBfokZ3MsF6PwgL26CPW5yR3PYocGqgOSf51p4AkIyz0H2Ede/QR63Nioh6F6pCsbpeJ+jPKsrMMseqQ9hy/jgaeLgipph/SlVu5yCkoxTNRTR26DskSH7GcZcf6uuvrUSIebwQnpdJIX7lOh19/v1uvehRzNfTqGFRjfc3hM+miaZB6PKnsi2lXb+upDkHQ6oxtqZQcjpytn89ry7JTzp8/f75Flh0cQQCKi8vqZcPV1Qne7i7Izi/B3NXHUFKug1qlxJXbudi46yKiwgPRtoUG7q4qFBeXi6TctrDURy4uTgCA0lKtXNJrhPV1d3V1gr+vG27dKcSclUcQ2MgDTRt54k7uA3zx31Po2KoROrTyg4taKZk+V1cnBGrckJaej082HMHbw7sgsm0AWjb2wdSlP6JVsB86tfKDs0gapB6vsv1/bTmC6S91Qdc2AWgV7IN3lv+Ix4Iss1/Z7vy1RzD+7+HoFh6Ihg1c8PbSA2jd3Hy7rq5OCNC44c+MfLy/8gieeNwfbVtoUFSqxf99lYK2Lf3QsZ4+d3NTm7zDojskCxGrDin9fhHe+vSnGmsIPp/xNwT5uTt0HZIlPmL5Don1da+oQyrBJCvVANWkodb6mtnR8PMWvw5J4Hn8vWcIAjRuyMx6gO8PXzE0p7N0PKnmI6Zda9R+UR0SwwiCgF//uGuyhuDUH3dtKoNMbOzRR6zPqaIOyXo1QDVpqLW+5jfx65BGP9MaK2f3ha+XC67cyoWvlwtWzu6L0c+0rtd4Us1HTLvWrv2qDkr7lhFz6lFu2liNjdjYo49Yn5Oj1iEFatyhVHCYvKjqDhUbdl/EnLFdoRMs71BrS3VIYmusC3SHJCOCIKBFkOkaguZBtlVjIzb26CPW5+SodUjNAj1NtjBvFmD5mthaHZKYGusCBSSZ6dImwGTef5fHba/GRmzs0Uesz0nuehQ5NNS+XVJGvexTHVLtUECSEWvXWtgi9ugj1ufEgj456pCk3jrIFuqQ5F53eockI4IgoEwr4GZmAVa826favjjBjaS9RWYde/QR63PS63NVK7FqVnS1/ZDKtILkj+zKtAJaBnlVq0Hf58eWtg6SYj5i2tXbCtS4VWtLq9NJvu4UkGQm+XwG1u28gA27LmBgz5Z4LMgbGdlFmLRwP7Q8oFBwGNCjudwyZcUefcT6nJLPZyB+x3m4qIB3xnRFh1Z+yMx+gJi4fSjRAq8NCpdcn15DsyDg39MGguM4CIKAqUsTcT1dfA1R4QHYsOtijSnPkfV8XKWfT9tQIHbCw/nMiU/EhcuWz0dvV+MFxM8ZCIWCA88LmBCbiKz8utnV23JXA3FT/4benZsgu6AEby3eh6Iy6dedHtnJyKOPCRTgwHEV/9VjaztZi409+oj1ORnp4yoe0yg46+mTI8tOv52Tq1qBIX8LweSh7THkbyFwVdd/OyerZdlxj/y3DnarW3fAyutOhbGWIdbWQYlHr4HX8ejWPggp5zNx404+mvp7ITI8AMnn0qFUKiTdooV1LPURy4WxrK/7o62sk89n4EZmPpoGeKGbSK2szdWg3xLnUQ1Sbx0k9nhS2RfT7qNbRj1qS4wto2orjKWAZCFiBaS8wjL8mZ5vlG6q32SzRZAXvD3UDh2QLPER6wGJ5XX39XVDQVFZrZ1DPd2l02dtDVKPJ5V9Me1aw+e0UwPDcBwHrU4wWfug1VlejGcPmOUj3rZ8xPqcOK7iRfijv5QM+tafQJnEP5fW1iD1eFLZF9MuC+tOAUlGWNiqg3WsvYWMNWB9Tizok2vrIKnGs5utgyRedwpIMsLCVh2sY48+Yn1OLOijFubWt8vCutc5IBUWFmLZsmUYMWIEnn76aZw+fRoAkJ2djWXLliEtLU10kfYKC1t1sI49+oj1ObGgj1qYW98uC+tep4CUnZ2NoUOHYuXKlcjNzcXNmzdRUlICAPD19UVCQgK2bt1qtr3MzEwsWLAAI0aMQKdOnRAWFoaUlBSzruV5HvHx8ejfvz/Cw8PRq1cvLFq0CMXFVV9ip6SkICwsrNo/LATPqHDTW8jUt/bBHrBHH7E+J7m3kJFDA7Uwl3/d6xSQli5divv372Pr1q3YvHmzUaSMjo5GcnKy2fauX7+OXbt2wc3NDVFRUXWRgtjYWHz66afo27cvVq9ejXHjxmHLli2YPn16tee/8847+O9//1vlT5MmTeo0ptiw3sqaBezRR6zPiVqYUwtzuVqY12mnhoMHD2LkyJFo27YtcnJyjD4PDg7G9u3bzbbXpUsXQwDbv38/Dhw4YNZ1GRkZ+PrrrzFq1CjMnDkTANCjRw94e3tj9uzZOHr0KHr06FHlmhYtWqBjx45ma7MGgiAgI6sIvI6vdgsZfT2KLT2OEht79BHrcxIEAWdS7yGkiXe1W8jcy32As6n30KSRu6QaDp1JR6+OQTVuiaOvr7GF8aSyL6ZdfVJDxOONqrVVrtPh+PkMSXdqqFNAysnJQdOmTWv8nOM4lJaWmm1PobAsp+LcuXPgeR69e/eucrxPnz4AgL179xoFJBbRanl0Cw/ExLgkbNx90WgLGU5R0aFRW0PWiyNQVqYzy0dlZTq5pdYJc+bEgj4leKOtg3Swjr5u4YF4NXY/ghrxRlsHpd8VX4N+vAA/Hl+8/XC8Nz9LROb9+o+ntx/6GG+0ddDlq5bb19v1cuONtg7Kf1A3u/p1Vyt4o62Dynjp171OAalhw4a4efNmjZ///vvvCAyU/tlyeXlFP3e1Wl3luJOTEwDg8uXLRtfMmzcPb731FlxdXREREYE333wT4eHhkms1hVKpMNxux64/gYSfHr7Tqny7rVQ6bjKkPfqo8mMWU3NiYbfv2PUnsODLE1bX96iGF95NlFSD1ONJZf9Ru4NnWW73UVtTFv8kisa6UKeA1LNnT3z77bcYNWqU4Ze/nrNnzyIhIQGvvPKKqAKrIyQkBABw6tQpREREGI7rM/4qP0709PTEK6+8gq5du8LHxwdpaWlYs2YNRowYgU2bNqFDhw4WaeC4h7sBWArHocpOvSoVB7VKiTKtDlqtYNipV4yxbBWlkqviI3dXFZxUSpRrdSgq1hp85KnkqvhIpVICYNNvj+7QXNOcBEGQRf+j+jTezoZv81l5pVbRZ20NUo8nlX0x7VrD57XFsjp9rZwyZQqUSiUGDx6Mzz77DBzHISEhAW+//TZefvllNGrUCK+99ppFQutC69at0aVLF6xZswZ79+5Ffn4+fv31V8yfPx9KpbLKo8A2bdrgvffeQ9++fREREYGXXnoJ33zzDdzc3LBkyRLJtdZG8vkM5BRWPOb8+Uw61idewM9n0gEAOYWlOF7PpmD2QPL5DJT+9dhy/8mbWL39HPafrLhTL/2reNjWYH1OyZXGTzx6Dcu/PYvEo9cMx6yhz9oapB5PKvti2pV73eu8l11GRgY++ugjHDp0CDxf8Q+K4zj06tUL8+fPR0CAZZ0u9+/fj5iYGGzcuBGRkZG1np+VlYXZs2fj8OHDACoe140dOxbHjh2Dp6cnNmzYYPL6GTNm4MCBA4a7qroixl52Go07MrMeICOrqMa9owI17gjQuCErq6heY9kqGo07svNLcT2z5v21mgV4wdfLuYqPWN7LztI5WVNffmFprXuaeXlIp8/aGqQeTyr7Ytq1hs9r28uuzv2QAgMDsXLlShQWFuLq1asAgKZNm8LHx8cigZai0Wiwdu1aZGVl4d69e2jcuDGcnZ2xefNmvPrqq7Verw+mcqLTCVApFYhdfwI6HY8OrRrC18sZ2fml+O3KPcSuP4FVs6Kh09lOBpnYCIIAnhdq9ZGtZdmxPCf9o5vY9Scg8DyG/C0EARo3ZGY9wPeHr1hFX2UNnq484t8fCKWCg44XMGFBougaKo/n7sxj7cfPGR6fv7Zgd73Hq2xf481j1ayHSQ0T4yyfT2W7zkoeq2b3haebMwoelGLq4v11slvZFifwiHmxAwL93JFxvwhrt5+1yrqbfYdUVFSEBQsWoGfPnnj22WdFF1LXO6Tq+KwQkKIAACAASURBVOqrr7BkyRLs2bPHZHLFvXv3MHDgQLRp0wbr16+3aCwx20/8cS0bg3q1xG9X7iMzqwgBGne0C/HDjkNpeLy5L7WfsMBHLN8hsb7uLLTHoPYTdbMbFR4ADpyRXQECUs5n1qn9REMfV4Q08TGydeVWLu7nFkvafsLsOyR3d3fs3r0bTzzxhEVCamLPnj0AgN9++w0AcPLkSeTk5MDV1RW9evUC8DCdu3Kd0pYtW6BUKtG0aVPk5eXh0KFD2L59Oz7++OMqwWjGjBkIDg5G27Zt4eXlhatXr2Lt2rUoKSnB22+/Lepc6grHcVApOPToEIT3Vhw1ukV+e+QTyCsstamiT7GxRx+xPieO4xCocYdSwWHyogNV9G3YfRFzxnaFTpB+t+9eHYOqfXy0YddFzBnXFT07BomaZSfleFLZ5zgOPdoHVfv4V2+3e3vz7HIch7CmDVBUUo6JcUnV2gpt2oCdBn1DhgxBz549MW3aNNEEhIWFVXu8cePGhgBUXUD6+uuv8Z///Afp6elQqVQIDw/HxIkT0a1btyp21qxZg127duH27dsoLi6Gj48PunbtikmTJiE0NNRi3WLdIWXcf4C3PvupxrbJn7/9NwT6uTn0HZIlPmL9Donldff1dcP9vBJMijtQo76Vs6Lh5+0s6R1SVl6p0S/Gyhr0mWBi3SFJOZ5U9sW0aw2fi/oOacKECfjwww8xaNAgtGjRwiJBj3Lp0qVaz6luB4eRI0di5MiRtV77+uuv4/XXX7dImzU4e+Weye3ez165j0C/mouRHQF79BHrczp+PtOkvhSJK/YBmNWaRUwNUo8nlX0x7Vrb549Sp4B09epVBAYG4vnnn0fv3r3RrFkzuLi4VDmH4zjExMSIKtJe4TgOf942vd37tfQ8m3ocJTb26CPW58RCGwJqP2F9uyyse50C0rJlywz/v2/fvmrPoYBkPoIgIDjA0+Q5wTbWWkFs7NFHrM+JhTYE1H7C+nZZWPc6FcYmJSXV+mf//v1SabU7OI4za7t3W/r2Lzb26CPW58SCPmtrkHo8qeyLaZeFdVfOnz9/vrkne3l5mfXHERAEoLi4rF42XF2dUFyqQ4fQhkj+LR3hLf3QpoUvvD2ckVtQgvfGdYW3uzNcnZUoLi4XSblt4erqhHItj3YhfjX6SOPlAmd1VR+5uFRsbVVaqpVLeo1YOidr6tPpeISH+CHlfDr+/lRL9O7cBMH+nriWnot/ju2Kht4uUDtJp6+yhvN/pmPThwMwsn8YhvUNRdKvV/DOy+JqqDzeubR0bJz/LEY90xpD+4Qg6Zc0zBxVv/Eq2798Ox3/+WAARjwdhuH9QnH43BVMH26Z/cp2T11Kx4pZ0Rj1zON4plsz/PTrNcwaY77dyrZOXEjH64PbY1DPlni8uS8upN0TZd3d3NQmA1qdd2rQk5OTg1u3bgEAmjRpggYNGlgk0FYRK8suK68UTioO5dXUJuiPi5VJZIvofaTfR6u6+o2yanzEepadJXNyJH3W1iD1eFLZF9OuNXxeW5ZdnQPSH3/8gQULFuDXX3+tcjwiIgJz5sxB69atLRJqa4i1dVBeYSmumtiq47EgL3hLuEUL61i6nQnLAYmFrXlY10dbB1nfLgtbB9XpHdLly5cxYsQInD59Gn369MEbb7yBN954A9HR0Th16hRefvllpKamWiTUEREEAeV/bdXxaKpluZb/67hgUy/sxabydiY1+ajMxnzE+pxY0GdtDVKPJ5V9Me2ysO51Ckiff/45nJyc8N1332H58uWYNm0apk2bhmXLlmH79u1QKpX4/PPPpdJql5iT9+/o2KOPWJ8TC/qsrUHq8aSyL6Zdude9TgHp5MmTGDlyZLW7K4SGhmLEiBE4ceJENVcS1cFC3j/r2KOPWJ8TC/qoDsn6dllY9zoFpOLiYjRs2LDGzxs1aoTiYvae2bMKC3n/rGOPPmJ9Tizoozok69tlYd3rFJCCg4Nx8ODBGj8/ePAggoOD6y3KkTAn79/RsUcfsT4nFvRZW4PU40llX0y7cq97nQLSoEGDcOTIEcyYMQOpqanQ6XTQ6XS4fPkyZsyYgaNHj2Lw4MFSabU79Le+c8Z1Nfoh0Ge1VD7PEeE4DiolZ9JHKiVnUz5ifU4cx0GtMq1PrZJWn7U1SD2eVPbFtMvEutcl7Vun02HGjBnYs2cPOI4ztArneR6CIODZZ5/Fp59+WqWFuL0i5m7fW/ZdwvNPPYbzaVnIuF+EQD93hLfUYOfPVzGiXxjt9m2Bj1hO+2Z93fW7fSefy0BUu0CkXMjEzTsFCPb3RGTbABz/LQPd2gdZZbdvfe3L8fMZuHGnAE39PRFlhToksceTyr7eLiAA4Izs6o/XpQ4p7VYuWjbxMbKlP87Mbt9KpRJLly7F0aNHsX//fty6daviuWPTpujbty+6d+9ukUhH5uyVezh8+jaOnLmN8BA/+Hq64PTlu/jP7ovgBaBNC43N7WQtNvboI9bndPx8JtbtvIANuy5gYM+WeCzIGxnZRZi0cD+0PKBQcFbZ7Tt+x3n4egLxcwZCqeSg0wmYEJuI7ALgtUHhou/2Hb/jPHzcgbVznoPaSYmych1ei92N3KL6j6e3H6CBUcfYzCzL7evtejgDS9+JRr+uTZH/oBRT/7UPhaV1s6u3pVYC4we3x5MdgpCeVYRJC/ehTCe+zx+lzi3MAaBHjx7o0aOH2Focjsq7PvMCcC71vtE5traTtdjYo49Yn1PlbCstDyT8lGZ0jjWz7LILgCGzEyXVUHm83CLgH+/tFnW8yvYzs4AX3hVnPpXtFpYCE2KTLLZb2VaZDlj57TlRNNaFOj1by83NxR9//FHj53/88Qfy8vLqLcpREAQBLRqbzmppHuRtUxlkYmOPPmJ9TixkW1GWnfXtsrDudQpIixcvxj//+c8aP3/vvffw6aef1luUI9EhpKHJrJYOIX5WVsQe9ugj1ucUFR5gUl8kZdkxY99hs+xSUlLQu3fvGj/v06cPkpOT6y3KUeA4DmdT7+HtkU9Um9Xy9sgncPbKPZt6HCU29ugj1ufEcRyuZxRgztgasq3GdsX1zHzKsmPAfkVymWm7CoX5WXbZ+SUmbWXnl7DToO/u3bsIDKw5Qvr7++Pu3bv1FuUoCIIALS/g6Nl0fDK5h1G21Y5DaXi8ua9NPY4SG3v0EetzEgQBGVlF4HU8VrzbxyjLLvlcOpRKheSP7A6dSUevjkFYNSu62qy0w2fSRXvBLvV4UtkXBAFHz6UjKjygWrsCBBw7Z55dQRBw6UYOGvq4Vmvryq1c3L5biFbB3hb5wBzqFJBcXV2Rnp5e4+fp6elQq9X1FuUoCELFLfKGXRdx7Fy6UbaVUqnAuIFtYUO/ayXBHB/ZGqzPqVt4ICbGJWHj7otGWXacQoFVs6KtouHV2P3wdOWNsuwKisXXoB/P3Zk3yrIrKq3/eHr7Gm/eKMsuK89y+/q1clbyRll2pbq62dXb4gTeKMtO4KRf9zrVIb3++utITU3Fzp074eHhUeWzwsJC/P3vf0eLFi2wbt060YWyhljtJ3ILSvFnRs3bvbcI9IKPJ7WfoPYTjqWP2k9Y3y4L7SfqFJCOHz+OcePGISQkBDExMXj88cfBcRwuXryI5cuXIy0tDfHx8Q5RjyRGQGrQwA3Z+aW4n/sAfj5uRrfI+uO+Xs7IyXHcwtisvFJodTqolEojH+mP22KDvrrOydr6rFWUyoIGWy+MFcOuNXwuamFsVFQUPvjgA8TGxmL69OmG44IgwMnJCXPnznWIYCQWHPewEM1FBbwzpis6tPJDZvYDxMTtQ4lW+kI0W0DvI3c1EDf1b+jduQmyC0rw1uJ9KCqzTR+xPidrF6Wa0tCoAbDmnw8fcb3+f4m4myNdYWxEB+D9lx+Ot2BzIn45K15hbJtWwCevPbT/3tpEXEytf2FssyDg39Me2p26NBHX0y0rjBW7eNdc6lwYO3z4cPTu3Rs//PADrl+/XlFT0aIFnnnmGfj7+0uh0W6pXIhWogUWfGncusPWWiuITWUfFZUBUxb/ZHSOrfmI9TlZuyi1Ng13c8QrJDVnvF/OAi+cFXe8yvYvpkpTGHs9vX52pSrerQsW7dTg7++PsWPHAgDKy8tx4MABHDp0CL179zbZnoKoCguFaKxjjz5ifU4s6KPCWOvbZWHd61SHtGjRIgwdOtTwd0EQ8Oqrr2LatGmYN28enn/+edy4cUN0kfZKWZnOrEK0sjKdlZWxg04nmOUjnc52AhIgfwFibbCgjwpjrW9X7nWvU0D6+eefERERYfj7gQMHcPLkSYwfP96wQ8OaNWvEVWjHKJUKFJdqTRaiFZdqoVTa/+7pNaFUKsxq1WBLPmK97QgTbQioMNbqdplY97pk2XXp0gXTp0/HyJEjAQDvv/8+jh8/jv379wMAli5dip07dyIpyXiDP3tDjCw7Dw9n/HjyJkKaeKOhjxt4gYdapUSZVgcFp8C93AdIu5WHfl2CUVhYKpJy28Lb2xU/HL+OHu0DwfOAi7PS4KOSUh0UCuDYuQw8E9WsSkYd61l2iUevIeLxRnBSKo3mVK7T4dff72JAj+ayZdklHr2GXh2DDFlV+pfb+iwsfRGnlFl21tQg9XhS2RfTrjV8LmqWXXl5OZRKpeHvKSkpVbLqgoODce/ePQtkOiZqtRLd/krvBoCUC3dwIzMfTQO80C08EBxQkW6pVpo2ZMcoFBy6hQeC5yv6uhz89VYVH/G8gKjwQJM/5CzS7a/0bgBGc9Kvu9z69CQevVZFH2AdfdbWIPV4UtkX067c616ngBQQEIAzZ87gpZdeQmpqKm7evIm33nrL8HlWVhbc3NxEF2mv6DuHFpfpMDEuqUoh2oZdF2XvHMoCCkXFY4S09AKjYj29j1oGedlUQNI/Grl594HJOcn9yK66Aklr6bO2BqnHk8q+mHZZWPc6PXgfMGAAEhIS8MYbb+CNN96Ah4cHevXqZfj8999/R9OmttUoTU4EQYBWJxgtPgCUa3nErj8BrU6wqQwyseF5AWVa0z4q0wp/3UHZBoJg3pzkzLKTW5+1NUg9nlT2xbTLwrrXKSC98cYbGDx4MM6cOQOO4xAXFwcvr4o0wYKCAhw4cADdunWTRKg9otMJSD6fYbT4esq1PI6fz7C5DDIx0RcP1+YjW7uJNGdOcsKCPmtrkHo8qeyLaVfuda/TIzu1Wo1PPvmk2s/c3d1x5MgRuLi4iCLMEVAqFYZCtJq4cafApjLIxKZysV5N2HJhbE2wUhhbE9YsjLWGBqnHk8q+mHZZWHeLCmOrQ6FQwNPTUyxzDoFOx5tViKbTVf+NxRFgoVhPbFifEwv6qDDW+nZZWHfH/erNAGVlWjMLY7VWVsYOWi1vlo+0NTxmYBW5CxBrgwV9VBhrfbtyrzsFJBlRKhXQ6niThWhaHe/Qj+zstTBW7gJE1vVRYaz17TKx7nUpjCUeIkZhrKurE5JO3Ub7EA3cXdRG270XlZThtytZ6PNEYxQXl4uk3Lbw8nLBnpQbhsLYR32kL4ztH9kU+fklhutsoTBWX4BoqnsoC4Wxcuiztgapx5PKvph2reFzUQtjCXFxcXFCVHgAJsUdgBPHY/7EJ9G9fSDu5RbjzUX7UC4osHJWNFxcnBw2ICmVCnQLD8Tr/5cEFxWP5bOehruLE4pKyhET9yNKtBVdLG3pDgl42D3Uy62iG6pCwYHnK9o75D+wTkdWc/S1COaxaNLDNgTvrkzEnzet2zG2Q1veqB3E2QvSdYwdEcFjyJCH4333XSK2/CJex9gXIni8XMn+5u8SkVAP+3q77R7nMW/0Q7sf/ScRv/1e946xr8buR1hLHgvGP7T1/rpEXEpjrGMs8RCxOsbezy3BzbvGRZ/6W+TgRp7w83Fx6I6x2fmluJ5ZcxfLZgFe8PWijrH2pI86xlrfrs11jCUeImbH2GPn0hHVLhApFzJx804Bgv09Edk2AMd/y0D39kEO3THW0q66LAckFjqysq6POsZa367NdYwlxEUQKgrR1u28gA27LmBgz5Z4LMgbGdlFmLRwP7R8xdY5z3ZrLrdUWTGnq+5z3ZvLLbNO6OfU0AdY+97DRyOvfZKIe7nUMbayhuaNgaVTH/po2r8Tce22dB1jWzUHFk9+ON7MFYlIvSZex1ixO9Lq7TbwAOLnDIBKpYBWy2NC7C7kFNp5x1hCPJTKh4VoWh5I+CnN6JyKwljbKfoUG4XCvK66traXnX5O93Ll6cxpCtY6xl67bd2OsanXxB9Pqo60le3mFAJD/7nLYrssdIy1rTfBdoZOZ14hmiNvHcTz5vnI1vayk7sA0RQs6KPCWOvbZWHdKSDJSG7uA7MK0XJzHfP9EQDk5Dz0kYIDOrRqiN6dm6BDq4ZQcA99ZEvv2LKzH87JRQXMGx+J5TN7Y974SLioHs5JjvdHj+rzcQe2/d9z2LH4eWz7v+fg424dfZU1aLyA7YsGYsfi57F90UBovMTXUHm84AAg4a/xEhYNRHBA/cerbL9ZUFX7zYIst1/Zrp93Vbt+3nWzW9mWlyvw9cfPYHvc8/j642fg5WqddaekBgsRI6kBAJycVbVmtZSXOu5ODUCFj+7mFkMQgHNX7iMzqwgBGne0D/EDxwGNfFyNfMRyUgNQMacybcU/veTzGUZ9Z9QqTtZ1d3KueJpfphWM9KlVFY9spNZnbQ1SjyeVfTHtSu0DprPsMjMzER8fjwsXLuCPP/7AgwcPsHHjRkRGRtZ6Lc/z+PLLL7Ft2zbcvn0bGo0GAwYMwJtvvglXV9cq5xYVFWHJkiXYs2cP8vPzERISgpiYGERHW55TL1ZAAh7+cqouq8XRgxEAKJQK3LhfhI/XpRgF7bnjI9HUzx38I/v92UJAYvmLCAv6rK1B6vGksi+mXal9UFtAkvWR3fXr17Fr1y64ubkhKiqqTtfGxsbi008/Rd++fbF69WqMGzcOW7ZswfTp043OnTJlCnbu3ImpU6di9erVCAkJwZQpU3Do0CGxplIvyku14HQ6DOjRHJOHtsez3ZqD0+koGP2FDjAKRkDFdvgfr0uBDraT0KDHnL4zcsKCPmtrkHo8qeyLaVfudZc1IHXp0gXJyclYt24dhg4davZ1GRkZ+PrrrzFq1CjMnDkTPXr0wNixYzFv3jwcPHgQR48eNZx76NAhHDt2DAsWLMA//vEPdOvWDXFxcejYsSMWLlwoxbQsRqcToNXyDv3O6FGcnJQ4efGOyR4tJ3/PhJOT7bR59/JyMavvjJeXPK1cfH3dzNLn6ytdd2hra5B6PKnsi2mXhXWXNSApFJYNf+7cOfA8j969e1c53qdPHwDA3r17Dcf27dsHT0/PKo/nOI7D4MGDcfXqVVy5csUiDYR1UCg4/JluukfLtfR8m0r7Zr0PFgt9cagfkvXtsrDuNpllV15esa+bWq2uctzJyQkAcPnyZcOx1NRUhISEGAW/sLAwo3PlRqGo2LXa1dVJbinMwPMCWgSZTkVtHuRlU2nfrPfBYiH9l9K+rW+XhXW3ycLYkJAQAMCpU6cQERFhOH769GkAQE5OjuFYbm4umjdvbmTD29vb8LklcNzDF+f1pUyrw4NSHXYdu/Ywq6VdINyclVCrbOdRlFREhgdi3c4L1T5KcFIpENk2EG5uVYO46i+/ibVGYtMtPBAbdl2scU5R7QLBcZws+nU6wSx9Op0gmT5ra5B6PKnsi2nXGj6v7ebKJu+QWrdujS5dumDNmjXYu3cv8vPz8euvv2L+/PlQKpVGd0OmbjHlbn1dptXh0o1cTFyYhPgd5/Fjyg3E7ziPiQuTcOlGLsq0Oln1sYBTLT1anFS287hOj1qtMN13xknef5os6LO2BqnHk8q+mHblXndm6pD279+PmJgYs9O+s7KyMHv2bBw+fBhAxeO6sWPH4tixY/D09MSGDRsAAC+99BI4jsM333xT5fqzZ89i2LBhWLJkCZ577rk66xUr7VtQKjExLglOHI+PJj0FjbcrsvKKMW/lzygXKrZ753SOHZQEpRIbdl/EoJ6P4crNPPyZnocWQd4ICfbGjsNX8cpzbYx8xHrat6BU1rphrJzrLiiVtW6yKbU+a2uQejyp7ItpV1AqoVJy0OqMbemP18cHdru5qkajwdq1a5GVlYV79+6hcePGcHZ2xubNm/Hqq68azgsJCcGPP/4Inuer3Dnp3x2FhoZaXbsefYO+T6c+BXcX9V+FaNfRNMALX7zbD0UlZTh+PsOhG/R5eDjjx5M3MW5gG/A84O1ZglbBPnB3U8PHwwXjBrbBsXMZ6NclGIWFpXLLNQt900F9I7QubfzRo32Q4W44yM8dh8+kGzUdtBaVG7UBwLPdm0Op4KDjBeTkV/j4+PkMqzXoA4ABPZobNvrMyhNfg9TjSWVfTLuP2uof1Qyqv7pa5xWWQcFJv+42G5D0aDQaaDQaAMBXX30Fnufx4osvGj7v168fvv32Wxw4cAB9+/Y1HE9ISECLFi0M76PkQKlUoMvj/sjIKsKMf/9c5bnthl0XMWdcV0Q87m9zzefERKlU4KkOQfgzo+ZivSc7BNmUj5RKBXp1DDJZgNizo3xz4jjOLH1SZ9lZU4PU40llX0y7LKy77P+K9+zZgz179hgSEk6ePIk9e/ZUKVrt06ePIaVbz5YtW7B161YcP34ce/fuxXvvvYe4uDjMnTsXgYGBhvN69eqFyMhIzJkzB99++y2OHz+O2bNn49dff8W7775rnUnWgE7HQ6VUmCxEUykVsmVbsYBOx0OrM12sp9UJNuUjnY43qwBRziw7c/RJnWVnTQ1SjyeVfTHtsrDust8hTZ06tcrfv/jiCwBA48aNceDAgRqvEwQB69evR3p6OlQqFcLDw/Hll1+iW7duVc7jOA4rVqzAZ599hiVLlhi2Dlq2bJlRkLM2arUKSaeu11qI9kxUM4d9ZKdWK5F88matPpKzd1BdUakUZhUgyt0PSW591tYg9XhS2RfTrtzrLntAunTpUq3nVBeYRo4ciZEjR5o1hoeHB+bNm4d58+bVWZ+UsF4gyQIsFOuJDetzYkEfFcZa3y4L6+64v+kYgPUCSRZgoVhPbFifEwv6qDDW+nZZWHcKSDKSl1dsVj8kVlOXrUHlHi3VIXfvIEtgfU4s6LO2BqnHk8q+mHZZWHcKSDKjrqXoU22DRZ9iY48+Yn1OLOiztgapx5PKvph25V53ZgpjbQ2xCmOVTkoUlmihdlIi5UImbt4pQLC/JyLbBqCsXAcPFxV05Y5dGFu5md2jxXpA9c3sWC+MrdwIrbpiRkD6Bnis67O2BqnHk8q+mHal9gHTDfpsGbF3ahB4HgN7tkSgrzsysouQeDgNnIJ2agAe+kgJHu+M6YoAXzdkZj/AvzaegA7V+4j1gKSfk48Hj7XvDTQUM772SSJyC+Vfd70+T1ce8XMGQqnkoNMJmBCbiIJi6+jTa2jsz2Pp1Ic+mvbvRNy+I74G/XjNm/BYPPnheDNXJOLarfqPp7ffoS2P919+aH/B5kScvWC5fb1dDxce8XMGQKVSQKvlMSF2FwpL6mZXb0vjzWPVrIcaJ8YlIiuv/j6w250a7AH9Tg36NMuEn9KqnsDzDr9Tg35Xg3Itj3IAC7488cgZFT6Sa1cDS9BXxJdredzLBV54N/GRM3jJK+LN1ZddAAyZbX19lTVcuy29jyqPl3pN/PEq2//lLPDCWXHsV7abUwgM/ecui+1WtpWZJc/PJb1DkhFK+64de/QRC+m1pmBBH6V9W98uC+tuO/+K7RBK+64de/QRC+m1pmBBH6V9W98uC+tOAUlGiovLzUqzdNTHdQCQn19ilo9s5XEdwEZ6rSlY0Edp39a3y8K6U0CSGZUCJtMsa/jZcCjkTkWVAtbnxII+Svu2vl25152y7CxErCw7oCL1W8sbpzSrFHD4lG89+tTv6lJRq0tDZT3LDqj7nBxRn7U1SD2eVPbFtCulDyjtWyLEDEh6GjRwA8dxKC4uc+jHdKbw8nKB8q8d0E09prOFgKTH19fNkF7L4o4TLOiztgapx5PKvph2pdBIAUkipAhItvRLlHXIl+JC/hQXR/VnbQGJ3lAQBEEQTEABiSAIgmACCkgEQRAEE1BAIgiCIJiA9rJjCKWSA8dx8PFxQ24ue9lWLNCggRsUCg48LyAnxz58xEIWmykq62NBgz1k2en/rfv6ujlUll1tUJadhYiZZafP+08+n4EbmfloGuCFbgzVo7BAXX1kC1lMrK87C/qsrUHq8aSyL6ZdKX1Aad8SIVZAcnJWIS09H7HrTxh2/QYeVka3DPJi4peTnFjiI9YDEuvrzoI+a2uQejyp7ItpV2ofUNo345RpBaPFB4ByLY/Y9ScMjekcGXv0EetzYkGftTVIPZ5U9sW0K/e6U0CSER8fNySfzzBafD3l2or+Iz4+blZWxg4NGpjnowYNbMdHvr7mzcnXV545saDP2hqkHk8q+2LaZWHdKSDJiFJpXv8RpdL2Ng8VC4XCPB+ZegzAGiz0nTEFC/qoH5L17bKw7hSQZESnM6//iE5ne4+kxILnzfMRz9uOj1joO2MKFvRRPyTr22Vh3SkgyUhurnn9Rxw5BTwnxzwf2VIKOAt9Z0zBgj7qh2R9uyysOwUkmZG7/4gtYI8+Yn1OLOijfkjWtyv3ulPat4VIUYfEal8cFqB+SI6pj/ohWd8u9UOyQaRoP6GvjNbpBId+TGcKc3dqsIWApMeWdmqgfkhs22d9pwYKSBJB/ZDYhnwpLuRPcXFUf1JhLEEQBGETUEAiCIIgmIACEkEQBMEEFJAIgiAIJqCARBAEQTABBSSCIAiCCSggEQRBEExAAYkgCIJgAgpIBEEQBBNQQCIIgiCYgAISQRAEwQQUkAiCIAgmoIBEEARBMAEFJIIgCIIJKCARBEEQTEABiSAIgmAClZyDZ2ZmIj4+HhcuXMAfBRpjXAAADsVJREFUf/yBBw8eYOPGjYiMjKz1WkEQsG3bNmzZsgXXrl2Ds7MzQkNDMXHiRHTv3t1w3q1btxAdHV2tjbVr16Jnz56izYcgCIKwHFkD0vXr17Fr1y60adMGUVFROHDggNnXLl++HF988QWGDx+Od955B8XFxdiwYQNeffVVfPnll1WCEgC88soreO6556oca9mypSjzIAiCIOqPrAGpS5cuSE5OBgDs37+/TgHpu+++Q+fOnfHhhx8ajnXv3h2RkZH4/vvvjQJSUFAQOnbsKI5wgiAIQnRkfYekUFg+vEqlgqenZ5VjLi4ucHJyglqtrq80giAIwsrYbFLDmDFj8PPPP2Pbtm3Iz8/HnTt3sGDBAgiCgJEjRxqdv2rVKoSHh6Njx44YPXq04c6MIAiCYANZH9nVh1GjRsHZ2RkfffQR3n//fQCARqPBunXr0Lp1a8N5arUaw4YNQ48ePeDn54dbt25h/fr1GDduHL744gv069fPovE5DvD2dhVlLnpUKiUA8e06IuRLcSF/iouj+pPjavlcEATBOlJMs3//fsTExJidZZeQkID58+dj9OjR6NGjB4qLi7F582acO3cO69atQ7t27Wq8tri4GC+88AJ4nse+ffss0isIAsrLdRZdWxP6H1KtVly7jgj5UlzIn+LiqP50clKCMxGVbPIOKS8vDx988AFeeuklzJgxw3D8ySefxMCBA7F48WJs3LixxutdXV3Rv39/rF69GtnZ2fD19a2zBkEA8vKKLdJfE/pvS2LbdUTIl+JC/hQXR/WnRuNh8i7JJt8h/fnnnygpKUF4eHiV405OTggLC0NaWlqtNnieBwCT0ZogCIKwHjYZkBo1agQAOHfuXJXjZWVluHjxIvz9/U1eX1xcjB9//BHNmjVDgwYNJNNJEARBmI/sj+z27NkDAPjtt98AACdPnkROTg5cXV3Rq1cvAECfPn0AwFCnFBQUhL59++Lrr7+GWq02vEPatGkTbt68iUWLFhnsL1y4EDzPo1OnTvD19cXt27fx1Vdf4ebNm1i+fLk1p0oQBEGYQPakhrCwsGqPN27c2BCAHg1IAFBSUoKNGzdi586duHXrFlxcXBASEoIJEyYYAhkAfPvtt/jvf/+L69evo6ioCB4eHujUqRNee+01dO7c2WLdPC8gK6vQ4uurw1GfK0sB+VJcyJ/i4qj+1Gg8oFDU/JpE9oBkqwiCALE9p3+dRStSf8iX4kL+FBdH9SfHmX5vTwGJIAiCYAKbTGogCIIg7A8KSARBEAQTUEAiCIIgmIACEkEQBMEEFJAIgiAIJqCARBAEQTABBSSCIAiCCSggEQRBEExAAYkgCIJgAgpIBEEQBBNQQCIIgiCYgAISQRAEwQQUkKxAUVERFixYgCeffBLt27fHkCFDkJSUZNa1N27cwOTJk9G5c2dD24wrV65IrJhdLPXltm3bMHHiRPTu3Rvt27fH008/jQULFiA7O9sKqtmlPj+begRBwJgxYxAWFobY2FiJlNoG9fGnIAj473//iyFDhqBDhw6IiIjAsGHDcOrUKYlVswMFJCswZcoU7Ny5E1OnTsXq1asREhKCKVOm4NChQyavy8rKwsiRI3H79m3ExcXhs88+Q15eHkaNGoXMzEwrqWcLS335+eefw8PDA2+//Tbi4+MxduxY/PDDD3jxxReRn59vJfXsYak/K7N161ZcvXpVQpW2Q338OWfOHCxevBhPP/001qxZg3/961/o2bMniosdqGeSQEjKTz/9JISGhgo//vij4RjP88Lw4cOFZ555xuS1cXFxQrt27YTMzEzDsezsbKFTp07CvHnzJNPMKvXx5f37942OpaSkCKGhocLGjRtF12oL1MefejIzM4XOnTsLe/bsEUJDQ4UFCxZIJZd56uPPPXv2CK1btxZOnToltUymoTskidm3bx88PT0RHR1tOMZxHAYPHoyrV6+afPy2f/9+dO/eHf7+/oZjDRo0QO/evbFv3z5JdbNIfXyp0WiMjrVr1w4AHPZusz7+1PPBBx8gIiIC/fv3l1KqTVAff27atAkRERHo1KmTNaQyCwUkiUlNTUVISAgUiqqu1rduv3z5crXXlZSU4MaNGwgNDTX6LCwsDFlZWcjKyhJfMMNY6suaOH78OACgVatW4gi0Merrz8TERKSkpOCDDz6QTKMtYak/y8vLcebMGYSFheGzzz5D9+7d0aZNGwwYMADbt2+XXDdLUECSmNzcXHh7exsd1x/Lzc2t9rq8vDwIglDttT4+PiavtVcs9WVNthYsWIDmzZvjueeeE02jLVEff2ZnZyM2NhbTp09HYGCgZBptCUv9mZubi7KyMmzfvh1JSUmYO3cu1q5di9DQUMyePRtbt26VVDdLqOQW4AiY7CFv4jNzPnc06uNLPcXFxYiJiUFeXh42bdoEtVotljybw1J/xsbGokmTJhg1apQUsmwWS/zJ8zwAoLS0FGvWrEHjxo0BAN27d8fNmzexfPlyDBs2THyxDEJ3SBLj4+NT7TejvLw8AKj2G5X+OMdx1V6rP6a/U3IULPVlZUpKSjBp0iRcvHgRa9asQevWrUXXaStY6s+jR49i9+7dmDlzJgoLC5Gfn2/IVCwrK0N+fj60Wq10whmlvv/WH3vsMUMwAioC2FNPPYXMzEyHeTxPAUliQkJCkJaWZvgWpEf/PLm6d0QA4OLiguDg4GqfO1++fBm+vr7Vvqi3Zyz1pZ7S0lJMnjwZZ86cwerVq/HEE09IptUWsNSfqamp4Hkeo0ePRpcuXQx/AOCbb75Bly5dcOzYMWnFM0h9/q03a9as2s8EQQDgOE9KKCBJTL9+/ZCfn48DBw5UOZ6QkIAWLVogJCSkxmv79u2LY8eO4d69e4Zjubm5OHjwIPr16yeZZlapjy/LysowefJk/PLLL1ixYgW6du0qtVzmsdSfzzzzDDZu3Gj0BwD69++PjRs3on379pLrZ436/Hz269cPV69exa1btwzHBEHA4cOHERwcDF9fX8l0swS9Q5KYXr16ITIyEnPmzEFubi6aNGmChIQE/Prrr1ixYoXhvNGjR+PEiRO4dOmS4dj48ePx/fff4/XXX0dMTAxUKhVWrlwJlUqFiRMnyjEdWamPL9966y0cOXIEMTExcHNzw5kzZwyf+fr6omnTpladCwtY6s+AgAAEBARUa9Pf3x+RkZFW0c8a9f23vnPnTkyYMAFTpkyBp6cn/ve//+HChQtYsmSJHNORBU7Q3xMSklFYWIjPPvsMe/fuRX5+PkJCQhATE4O+ffsazqnuhxQArl27hri4OKSkpEAQBHTu3BmzZs1y2FRlS32pT72tjsGDB2PhwoWS6maV+vxsPkpYWBjGjBmDOXPmSC2bWerjz1u3bmHRokVITk5GSUkJQkNDMWnSpCrX2jsUkAiCIAgmoHdIBEEQBBNQQCIIgiCYgAISQRAEwQQUkAiCIAgmoIBEEARBMAEFJIIgCIIJKCARhB0ye/Zsk7VXBMEiFJAIwkb57rvv8NVXX8ktgyBEgwpjCcJGGT16NG7fvm20dxpQ0fSN53k4OzvLoIwgLIP2siMIBtDpdCgrK4Orq6so9pycnESxQxDWhB7ZEYSV+e677xAWFoZjx45h+fLl6Nu3L9q3b48ffvgBR44cwbRp0xAdHY327dsjIiICr776Kk6cOFHFRp8+fXDixAncvn0bYWFhhj8pKSkAqn+HpD9WUFCADz74AN26dUO7du0wfPhwnD171khnTk4O/vnPfyIyMhKdOnXCmDFjcPHiRYwePRp9+vSRzkGEw0J3SAQhE3FxcdBqtRg2bBjc3d3RokULbNq0CXl5eXjhhRcQEBCAO3fuYNu2bRg7diw2btyIiIgIAMB7772HTz/91BA09LRs2bLWccePHw9fX1/ExMQgNzcX69evx+uvv46kpCR4eHgAqGjXMW7cOPz+++8YMmQI2rVrh0uXLmHcuHFmNUIkCEuggEQQMlFSUoKEhIQqj+nCwsLg5uZW5bzhw4djwIABWL16tSEg9e3bFxs2bEBpaSkGDRpUp3HbtGmD+fPnG/7esmVLTJs2DYmJiRg+fDgAYNu2bfj9998xbdo0TJo0yXBuaGgoPvrooyqdTQlCLOiRHUHIxIgRI4zeGVUORkVFRcjJyYFCoUCHDh1w7tw5UcYdO3Zslb9HRUUBAK5fv244dvDgQSiVSowZM6bKucOGDYOnp6coOgjiUegOiSBkokWLFkbHbty4gSVLluDIkSPIz8+v8plYbayDg4Or/L1BgwYAKroR67l16xYaNWoEd3f3Kuc6OTmhSZMmRtoIQgwoIBGETLi4uFT5e1FREV5++WUUFxfjlVdeQWhoKNzd3aFQKLB69WocP35clHGVSmW1xytXgFA1CCEHFJAIghGSk5Nx9+5dfPLJJxg6dGiVz5YuXWpVLU2aNEFycjKKioqq3CWVl5fj1q1b8PLysqoewjGgd0gEwQj6O5dH706OHDlSbVq2u7s78vLyJLmb6dOnD3Q6HTZu3Fjl+NatW1FQUCD6eAQB0B0SQTBD586d0bBhQ8TFxeH27dsICAjA77//jh07diA0NBSXL1+ucn6HDh1w8OBBfPTRR+jUqROUSiWioqKg0WjqreUf//gHvvnmGyxduhQ3btwwpH3v2bMHzZo1g1arrfcYBPEodIdEEIzg5eWF+Ph4tG/fHps2bcLChQuRlpaGtWvXom3btkbnv/LKKxg6dCj27t2LWbNm4e2338aVK1dE0aJWq7FhwwYMHjwYSUlJWLRoEf7880989dVX8PDwMHr/RRBiQHvZEQRhNjqdDlFRUWjfvj3WrVsntxzCzqA7JIIgqqWkpMTo2DfffIP8/Hz06NFDBkWEvUPvkAiCqJb3338fZWVl6NSpE9RqNU6fPo3ExEQ0a9YMw4YNk1seYYfQIzuCIKolISEBmzdvxrVr1/DgwQNoNBr06tULU6dOhZ+fn9zyCDuEAhJBEATBBPQOiSAIgmACCkgEQRAEE1BAIgiCIJiAAhJBEATBBBSQCIIgCCaggEQQBEEwwf8DC2KYRAjB1lkAAAAASUVORK5CYII=\n",
832 | "text/plain": [
833 | ""
834 | ]
835 | },
836 | "metadata": {},
837 | "output_type": "display_data"
838 | }
839 | ],
840 | "source": [
841 | "#graph the rating as the x-axis and score as the y-axis\n",
842 | "sns.scatterplot(x = df2['rating'], y = df2['score'], data = df2)"
843 | ]
844 | },
845 | {
846 | "cell_type": "markdown",
847 | "metadata": {},
848 | "source": [
849 | "# Ethics & Privacy"
850 | ]
851 | },
852 | {
853 | "cell_type": "markdown",
854 | "metadata": {},
855 | "source": [
856 | "Since health inspections and their reports are public record, it was crucial to remove the names of health inspectors, their ID's, and anything that would identify them for privacy reasons. Since privacy concerns are more related to individual people, rather than establishments, I did not remove any identifying information for the restaurants, including zipcodes, addresses, hsisid, and phone numbers. \n",
857 | "\n",
858 | "On the other hand, there are more considerations when it comes to ethics than privacy in this analysis. Firstly, I only conducted my analysis in one city in US; there is a danger that the results of this analysis could be used to describe restaurants all over the country, which would be wrong. One ethics concern from the start of this analysis, is the bias that comes from choosing only restaurants in only one area. One way to reduce this bias is using all restaurants in Raleigh, and not choosing certain restaurants, which is what I did. In addition, it is crucial in the discussion section to explain how the results are only applicable to Raleigh's restaurants and their connection to Yelp reviews. Lastly, the health inspection informtion is already public but connecting yelp reviews to those inspections could be used to argue against the importance of health inspections, which is not the goal of the analysis. "
859 | ]
860 | },
861 | {
862 | "cell_type": "markdown",
863 | "metadata": {},
864 | "source": [
865 | "# Conclusion & Discussion"
866 | ]
867 | },
868 | {
869 | "cell_type": "markdown",
870 | "metadata": {},
871 | "source": [
872 | "Based on this analysis, I can conclude that in Raleigh, NC, the ratings on yelp do not influence future health inspection scores; my hypothesis that the ratings would make restaurants healthier is wrong.\n",
873 | "\n",
874 | "One issue I encountered in my analysis was the fact that there were more retaurants from a specific zip code than other zip codes, which is illustrated in the first few graphs which show a skew when graphing the zip code with the scores. However, one I explored this data a bit more, I realized that this skew was not because of health inspection scores, but actually a result of the dataset having more restaurants in the 27600 zip. This is when I decided it would be better to answer the question I asked if I just directly compared the scores to the ratings.\n",
875 | "\n",
876 | "Another limitation of the data related to the health inspection process and reports. First, the reports contain mostly non-numerical items, which cannot be used in a numerical analysis. Second, even though this data went back to 2012, the fields that were considered in the analysis would not reflect changes in the process, if any."
877 | ]
878 | }
879 | ],
880 | "metadata": {
881 | "kernelspec": {
882 | "display_name": "Python 3",
883 | "language": "python",
884 | "name": "python3"
885 | },
886 | "language_info": {
887 | "codemirror_mode": {
888 | "name": "ipython",
889 | "version": 3
890 | },
891 | "file_extension": ".py",
892 | "mimetype": "text/x-python",
893 | "name": "python",
894 | "nbconvert_exporter": "python",
895 | "pygments_lexer": "ipython3",
896 | "version": "3.6.7"
897 | }
898 | },
899 | "nbformat": 4,
900 | "nbformat_minor": 2
901 | }
902 |
--------------------------------------------------------------------------------