├── S2D.rar ├── Motion3DGAN.rar └── README.md /S2D.rar: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CRISTAL-3DSAM/Sparse2Dense/HEAD/S2D.rar -------------------------------------------------------------------------------- /Motion3DGAN.rar: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CRISTAL-3DSAM/Sparse2Dense/HEAD/Motion3DGAN.rar -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Sparse2dense: Sparse to Dense Dynamic 3D Facial Expression Generation 2 | 3 | This is an official repository of the paper Sparse to Dense Dynamic 3D Facial Expression Generation. https://arxiv.org/abs/2105.07463 4 | 5 | 6 | # Results 7 | 8 | - 4D Facial expression generation 9 | 10 | ![tst_githubvideo_4](https://user-images.githubusercontent.com/19242829/158143735-a38fece3-75ed-4d4e-b873-bb167624c846.gif) 11 | 12 | 13 | - Interpolation between 4D facial expressions 14 | 15 | ![tst_githubvideo_2](https://user-images.githubusercontent.com/19242829/158142211-174651ec-0f46-4ebd-8a3d-0564f24b77a4.gif) 16 | ![tst_githubvideo_3](https://user-images.githubusercontent.com/19242829/158142959-7887841e-8a48-43d1-9f07-9371af8cbb09.gif) 17 | 18 | - Speech transfer 19 | 20 | ![tst_githubvideo](https://user-images.githubusercontent.com/19242829/158222004-abf2e76b-362e-48e8-b859-aa5fb4070234.gif) 21 | 22 | 23 | # Usage 24 | The code is divided into two folders: 25 | 26 | Motion3DGAN: used to train a GAN generator of 3D landmarks motion; 27 | 28 | S2D: used to train and test the decoder that deforms the 3D mesh according to a given landmarks configuration; 29 | 30 | You will find a Readme file inside each one of these folders with the installation and the usage instructions. 31 | 32 | # Models 33 | Please download models from the link below and include them in S2D\Models folder. 34 | 35 | https://drive.google.com/drive/folders/1-RdBhUfP7JcxihVCT4AdLRYfSBOD9Rmq?usp=sharing 36 | 37 | # Acknowledgments 38 | This work was supported by the French State, managed 39 | by National Agency for Research (ANR) National Agency 40 | for Research (ANR) under the Investments for the future 41 | program with reference ANR-16-IDEX-0004 ULNE and 42 | by the ANR project Human4D ANR-19-CE23-0020. This 43 | paper was also partially supported by European Union’s 44 | Horizon 2020 research and innovation program under grant 45 | number 951911 - AI4Media. 46 | 47 | # Reference 48 | Please cite the following paper if you use the code directly or indirectly in your research/projects. 49 | 50 |
@inproceedings{otberdout2022sparse,
57 | title = {Sparse to Dense Dynamic 3D Facial Expression Generation},
58 | author = {Otberdout, Naima and Ferrari, Claudio and Daoudi, Mohamed and Berritti, Stefano and Del Bimbo, Alberto},
59 | booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
60 | month = jun,
61 | year = {2022},
62 | }
63 | 


--------------------------------------------------------------------------------