├── .github └── workflows │ ├── ci.yml │ └── mdbook.yml ├── .gitignore ├── CCF_Recommended_List.pdf ├── HowtoReadPaper.pdf ├── README.md ├── book.toml ├── src ├── SUMMARY.md ├── ac │ ├── ac.md │ ├── academic.md │ ├── ap_phd.md │ ├── img │ │ ├── 0812.png │ │ ├── 0835.png │ │ ├── example1.png │ │ └── example2.png │ └── specialty_code.md ├── ai │ ├── ai.md │ ├── cuda.md │ ├── cv.md │ ├── dataset.md │ ├── huggingface.md │ ├── llm.md │ ├── nlp.md │ ├── prompt.md │ ├── pytorch.md │ ├── recsys.md │ ├── speech.md │ └── tutorials.md ├── cg │ └── cg.md ├── contrib.md ├── cs │ └── cs.md ├── develop │ └── front.md ├── file │ ├── CCF_Recommended_List.pdf │ ├── HowtoReadPaper.pdf │ ├── 如何设置代理.pdf │ └── 论文粗读攻略.md ├── misc │ └── misc.md ├── pl │ ├── pa.md │ ├── pl.md │ └── psar.md ├── prefix.md ├── programmer │ └── programmer.md ├── security │ └── security.md ├── sys │ ├── hpc.md │ ├── sys.md │ └── system.md ├── useful │ ├── conda.md │ ├── debug.md │ ├── docker.md │ ├── git.md │ ├── linux.md │ ├── shell.md │ ├── useful.md │ └── vim.md └── writing │ ├── latex&markdown.md │ ├── resume.md │ ├── symbols.pdf │ ├── typst.md │ └── writing.md ├── 如何设置代理.pdf └── 论文粗读攻略.md /.github/workflows/ci.yml: -------------------------------------------------------------------------------- 1 | name: CI Test of CSBasicKnowledge mdbook 2 | on: 3 | push: 4 | branches: 5 | - main 6 | pull_request: 7 | branches: 8 | - main 9 | 10 | jobs: 11 | test: 12 | name: Test 13 | runs-on: ubuntu-latest 14 | permissions: 15 | contents: write # To push a branch 16 | pull-requests: write # To create a PR from that branch 17 | steps: 18 | - uses: actions/checkout@master 19 | - name: Install Rust 20 | run: | 21 | rustup set profile minimal 22 | rustup toolchain install stable 23 | rustup default stable 24 | - name: Install latest mdbook 25 | run: | 26 | tag=$(curl 'https://api.github.com/repos/rust-lang/mdbook/releases/latest' | jq -r '.tag_name') 27 | url="https://github.com/rust-lang/mdbook/releases/download/${tag}/mdbook-${tag}-x86_64-unknown-linux-gnu.tar.gz" 28 | mkdir bin 29 | curl -sSL $url | tar -xz --directory=bin 30 | echo "$(pwd)/bin" >> $GITHUB_PATH 31 | - name: Run tests 32 | run: mdbook test -------------------------------------------------------------------------------- /.github/workflows/mdbook.yml: -------------------------------------------------------------------------------- 1 | # Sample workflow for building and deploying a mdBook site to GitHub Pages 2 | # 3 | # To get started with mdBook see: https://rust-lang.github.io/mdBook/index.html 4 | # 5 | name: Deploy CSBasicKnowledge to Pages 6 | 7 | on: 8 | # Runs on pushes targeting the default branch 9 | push: 10 | branches: 11 | - main 12 | 13 | # Allows you to run this workflow manually from the Actions tab 14 | workflow_dispatch: 15 | 16 | # Sets permissions of the GITHUB_TOKEN to allow deployment to GitHub Pages 17 | permissions: 18 | contents: read 19 | pages: write 20 | id-token: write 21 | 22 | # Allow only one concurrent deployment, skipping runs queued between the run in-progress and latest queued. 23 | # However, do NOT cancel in-progress runs as we want to allow these production deployments to complete. 24 | concurrency: 25 | group: "pages" 26 | cancel-in-progress: false 27 | 28 | jobs: 29 | # Build job 30 | build: 31 | runs-on: ubuntu-latest 32 | env: 33 | MDBOOK_VERSION: 0.4.36 34 | CACHE_KEY: mdbook-cache-0.4.36 35 | steps: 36 | - uses: actions/checkout@v4 37 | 38 | - name: Cache mdbook modules 39 | id: cache-mdbook 40 | uses: actions/cache@v3 41 | env: 42 | cache-name: cache-mdbook 43 | with: 44 | path: | 45 | ~/.cargo/bin/mdbook 46 | ~/.cargo/registry/index 47 | ~/.cargo/registry/cache 48 | key: ${{ runner.os }}-build-${{ env.cache-name }}-${{ env.MDBOOK_VERSION }} 49 | restore-keys: | 50 | ${{ runner.os }}-build-${{ env.cache-name }}- 51 | ${{ runner.os }}-build- 52 | ${{ runner.os }}- 53 | 54 | - name: Install mdBook 55 | run: | 56 | if ! command -v mdbook &> /dev/null 57 | then 58 | curl --proto '=https' --tlsv1.2 https://sh.rustup.rs -sSf -y | sh 59 | rustup update 60 | cargo install --version ${MDBOOK_VERSION} mdbook 61 | fi 62 | - name: Setup Pages 63 | id: pages 64 | uses: actions/configure-pages@v4 65 | - name: Build with mdBook 66 | run: mdbook build 67 | - name: Upload artifact 68 | uses: actions/upload-pages-artifact@v2 69 | with: 70 | path: ./book 71 | 72 | # Deployment job 73 | deploy: 74 | environment: 75 | name: github-pages 76 | url: ${{ steps.deployment.outputs.page_url }} 77 | runs-on: ubuntu-latest 78 | needs: build 79 | steps: 80 | - name: Deploy to GitHub Pages 81 | id: deployment 82 | uses: actions/deploy-pages@v3 83 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | book 2 | .DS_Store -------------------------------------------------------------------------------- /CCF_Recommended_List.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CS-BAOYAN/CSBasicKnowledge/b32a095c631d815c01d00a1a390701a3a6751f57/CCF_Recommended_List.pdf -------------------------------------------------------------------------------- /HowtoReadPaper.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CS-BAOYAN/CSBasicKnowledge/b32a095c631d815c01d00a1a390701a3a6751f57/HowtoReadPaper.pdf -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # CSBasicKnowledge 2 | 3 | 欢迎来到这个专注于计算机科学基础知识的仓库。本仓库的目标是补充计算机专业教育中可能缺失的知识点,提供广泛、优质的学习资源。 4 | 5 | 我们鼓励并期待有缘人加入我们,共同维护和丰富这个仓库。无论是添加新内容,还是改进现有内容,您的贡献都将使这个仓库变得更好。 6 | 7 | 在线阅读:https://cs-baoyan.github.io/CSBasicKnowledge/ 8 | 9 | Welcome to this repository focused on fundamental knowledge of computer science. The goal of this repository is to supplement potential gaps in computer science education and provide a wide range of high-quality learning resources. 10 | 11 | We encourage and look forward to like-minded individuals joining us to collectively maintain and enrich this repository. Whether it's adding new content or improving existing content, your contributions will make this repository better. 12 | 13 | Online reading: https://cs-baoyan.github.io/CSBasicKnowledge/ 14 | 15 | ## 鸣谢 16 | 17 | 18 | 19 | 20 | 21 | Made with [contrib.rocks](https://contrib.rocks). 22 | 23 | 24 | ## 贡献指南 25 | 若希望对**CSBasicKnowledge**进行贡献,请以`SUMMARY.md`为大纲,在`src`文件夹下进行markdown文件的添加即可。 26 | 27 | - src/ac(academic):本章节主要讲一些学术相关的知识,包括文献搜索,科研经验、读博体验等。 28 | - src/ai(artificial intelligence):本章节包括PyTorch,huggingface,各个小方向的相关知识。 29 | - PyTorch resources 30 | - huggingface resources(包括如何换源/加速下载 31 | - dataset resources 32 | - NLP / CV / Audio / Recommendation System / Large Language Model 33 | - 常见的tutorials,主要围绕有监督学习方向提供材料 34 | - prompts的使用 35 | - CUDA & NVIDIA 36 | - src/cg(computer graphics):计算机图形学相关资料 37 | - src/cs(computer science): 计算机科学相关材料 38 | - src/pl(programming language): 包括Program Synthesis & Automated Reasoning和Program Analysis 39 | - src/security: 安全相关的知识 40 | - src/sys(system): 是Computer System,涵盖sys的各个方面,包括arch/os/storage/db/HPC等等 41 | - src/useful: 一些实用的小工具。包括Linux常见操作,bash的编写,Vim,git/github的使用,如何debug,conda&docker 42 | - src/writing:写作相关的工具(LaTex,Typst,常见的简历模板 43 | - src/programmer: 程序员指南 44 | - src/file: 一些附属文件 45 | - src/misc: 一些杂项(如果你对要添加的内容没有一个很明确的归类,可以放在这个里面 46 | 47 | 目前,mdbook对数学公式的支持还不完善,如您需要使用数学公式,请参考下面的**数学公式支持**部分。 48 | 49 | **(可选)** 如果您在部署了mdbook并运行后,可以直接在`SUMMARY.md`中添加章节,例如: 50 | ```md 51 | # CSBasicKnowledge 52 | 53 | - [example](./example/example.md) 54 | ``` 55 | mdbook会自动创建`example`文件夹和`example.md`文件。 56 | 当然,mdbook依赖于rust语言开发,如果您不喜欢rust相关内容,可以无视可选项及后续的**本地部署**部分。 57 | 58 | ## 数学公式支持 59 | > **注意**: MathJax 目前仍不能使用 `$$ ... $$` 作为分隔符,并且 `\[ ... \]` 分隔符需要额外的反斜杠才能工作。 希望这个限制很快能解除。 60 | 61 | > **注意**: 当您需要在 MathJax 块中使用双反斜杠(例如 `\begin{cases} \frac 1 2 \\ \frac 3 4 \end{cases}` 等命令中)时,您需要添加两个额外的反斜杠(例如,`\begin{cases} \frac 1 2 \\\\ \frac 3 4 \end{cases}`)。 62 | 63 | ### 行内公式 64 | 行内公式由 `\\(` 和 `\\)`包围。例如,要渲染以下行内方程 65 | \\( \int x dx = \frac{x^2}{2} + C \\),可以这么写: 66 | ``` 67 | \\( \int x dx = \frac{x^2}{2} + C \\) 68 | ``` 69 | 70 | ### 块公式 71 | 块公式由 `\\[` 和 `\\]`分隔。 要渲染下面这个块公式 72 | 73 | \\[ \mu = \frac{1}{N} \sum_{i=0} x_i \\] 74 | 75 | 可以这么写: 76 | 77 | ``` 78 | \\[ \mu = \frac{1}{N} \sum_{i=0} x_i \\] 79 | ``` 80 | 81 | ## 本地部署 82 | CSBasicKnowledge的bookfy基于[mdbook](https://github.com/rust-lang/mdBook)实现,该工具基于Rust开发,是markdown文件书本化非常值得推荐的工具。Rust的圣经 ***The Rust Programming Language*** 便是利用了mdbook生成的。 83 | 84 | 要安装**mdbook**请安装Rust相关工具链。随后,通过Rust的包管理器cargo进行mdbook的安装: 85 | ```bash 86 | cargo install mdbook 87 | ``` 88 | 通常,mdbook会安装在`$HOME/.cargo/bin`,请将该目录添加至PATH 89 | 90 | mdbook的运行非常简单,只需要: 91 | ```bash 92 | # For detail, run `mdBook serve -h` 93 | mdbook serve # default 127.0.0.1:3000 94 | mdbook serve -p 8080 # 127.0.0.1:8080 95 | ``` 96 | -------------------------------------------------------------------------------- /book.toml: -------------------------------------------------------------------------------- 1 | [book] 2 | authors = ["CSBAOYAN"] 3 | language = "zh" 4 | multilingual = true 5 | src = "src" 6 | title = "CSBasicKnowledge" 7 | 8 | [output.html] 9 | mathjax-support = true 10 | site-url = "/CSBasicKnowledge/" 11 | git-repository-url = "https://github.com/CS-BAOYAN/CSBasicKnowledge" 12 | edit-url-template = "https://github.com/CS-BAOYAN/CSBasicKnowledge/edit/main/{path}" -------------------------------------------------------------------------------- /src/SUMMARY.md: -------------------------------------------------------------------------------- 1 | # Summary 2 | 3 | 4 | 5 | [写在前面的话](./prefix.md) 6 | 7 | --- 8 | 9 | # CSBasicKnowledge 10 | 11 | - [CS](./cs/cs.md) 12 | - [Programming Language](./pl/pl.md) 13 | - [Program Synthesis & Automated Reasoning](./pl/psar.md) 14 | - [Program Analysis](./pl/pa.md) 15 | - [Computer Graphics](./cg/cg.md) 16 | - [System](./sys/sys.md) 17 | - [HPC](./sys/hpc.md) 18 | - [System](./sys/system.md) 19 | - [Security](./security/security.md) 20 | - [AI](./ai/ai.md) 21 | - [PyTorch](./ai/pytorch.md) 22 | - [HuggingFace](./ai/huggingface.md) 23 | - [Dataset](./ai/dataset.md) 24 | - [NLP](./ai/nlp.md) 25 | - [CV](./ai/cv.md) 26 | - [Audio & Speech](./ai/speech.md) 27 | - [Recommendation System](./ai/recsys.md) 28 | - [Large Language Model](./ai/llm.md) 29 | - [Tutorials](./ai/tutorials.md) 30 | - [Prompts](./ai/prompt.md) 31 | - [CUDA & Nvidia](./ai/cuda.md) 32 | - [Academic](./ac/ac.md) 33 | - [Academic常用知识](./ac/academic.md) 34 | - [Tenure-Track Asst. Professors and PhD students ](./ac/ap_phd.md) 35 | - [(Special Issue)专业代码那些事儿](./ac/specialty_code.md) 36 | - [Writing](./writing/writing.md) 37 | - [CV & Resume](./writing/resume.md) 38 | - [LaTeX & Markdown](./writing/latex&markdown.md) 39 | - [Typst](./writing/typst.md) 40 | - [实用工具](./useful/useful.md) 41 | - [Linux](./useful/linux.md) 42 | - [Shell](./useful/shell.md) 43 | - [Vim](./useful/vim.md) 44 | - [Git & Github](./useful/git.md) 45 | - [Debug](./useful/debug.md) 46 | - [Conda](./useful/conda.md) 47 | - [Docker](./useful/docker.md) 48 | - [程序员指南](./programmer/programmer.md) 49 | - [MISC](./misc/misc.md) 50 | - [软件开发](./develop/front.md) 51 | - [Front End](./develop/front.md) 52 | 53 | --- 54 | 55 | [【重要】For contributers](./contrib.md) 56 | -------------------------------------------------------------------------------- /src/ac/ac.md: -------------------------------------------------------------------------------- 1 | 本章节主要讲一些学术相关的知识,包括文献搜索,科研经验、读博体验等,期待大佬补充内容。 -------------------------------------------------------------------------------- /src/ac/academic.md: -------------------------------------------------------------------------------- 1 | # Academic常用知识 2 | ## 论文写作 3 | - [learning_research](https://github.com/pengsida/learning_research): 科研经验总结 4 | - [English-Writing](https://github.com/yzy1996/English-Writing/tree/main): Enhance Your English Writing for Science Research 写论文英语素材 5 | - [ML Visuals](https://github.com/dair-ai/ml-visuals): 🎨 ML Visuals contains figures and templates which you can reuse and customize to improve your scientific writing. 6 | 7 | ## 常用工具 8 | - [Google Scholar](https://scholar.google.com):谷歌学术 9 | - 计算机科学文献数据库:DBLP [[en](https://dblp.org/)] 10 | - SCI期刊查询和scihub各种科研导航: [[Page](https://www.ablesci.com/journal )] 11 | - ACM数字图书馆:ACM Digital Library [[en](https://dl.acm.org/)] 12 | - IEEE学术数据库:IEEE Xplore [[en](https://ieeexplore.ieee.org/)] 13 | - SCI论文检索:Web of Science [[en](https://www.webofscience.com/)] 14 | - EI论文检索:Engineering Village [[en](https://www.engineeringvillage.com/)] 15 | - 中文文献检索:中国知网 [[zh-cn](https://www.cnki.net/)] 16 | - 中国计算机学会(CCF)推荐国际学术会议和期刊目录(2022版)[[pdf](https://github.com/CS-BAOYAN/CSBasicKnowledge/blob/main/CCF_Recommended_List.pdf)] 17 | - CCF会议投稿截止时间汇总:[[zh-cn](https://ccfddl.github.io/)] 18 | - CCFrank: 在相关网站的搜索结果中显示 CCF 评级的浏览器插件 \[[Github](https://github.com/WenyanLiu/CCFrank4dblp)\] \[[Chrome](https://chrome.google.com/webstore/detail/ccfrank/pfcajmbenomfbjnbjhgbnbdjmiklnkie)\] \[[Edge](https://microsoftedge.microsoft.com/addons/detail/pboigbpepikdoeindehghnpojjblhjmm)\] \[[FireFox](https://addons.mozilla.org/zh-CN/firefox/addon/ccfrank/)\] 19 | - [清华大学计算机学科推荐学术会议和期刊列表 (TH-CPL)](https://github.com/bugaosuni59/TH-CPL) 20 | - [CSRankings](https://csrankings.org/): Computer Science Rankings 21 | - [国家自然科学基金查询](https://kd.nsfc.gov.cn/resultInit) 22 | - [The-PhD-Grind(“研”磨记)英文版](https://step-out.github.io/files/The-PhD-Grind.pdf) 23 | - [The-PhD-Grind(“研”磨记)中文版](https://step-out.github.io/files/phd-grind-chn.pdf) 24 | - [对phd一年级新生有什么建议?](https://www.zhihu.com/question/32210068/answer/2786600114?utm_campaign=shareopn&utm_content=group1_Answer&utm_medium=social&utm_psn=1820616048568836096&utm_source=wechat_session) 25 | - [怎么熟练使用服务器并避免给实验室添麻烦呢?](https://www.zhihu.com/question/506241986/answer/3457669268) 26 | -------------------------------------------------------------------------------- /src/ac/ap_phd.md: -------------------------------------------------------------------------------- 1 | # Tenure-Track Asst. Professors and PhD students 2 | 3 | - Awesome Lists for Tenure-Track Asst. Professors and PhD students: [[Github: en & zh-cn](https://github.com/JunweiLiang/awesome_lists)] 4 | - 一个博士生在科研大组的生存指南: [[pdf](http://www.tcse.cn/~wsdou/advice/phd%20survival-chen.pdf)] 5 | - Collection of advice for prospective and current PhD students: [[Github: en](https://github.com/pliang279/awesome-phd-advice)] 6 | - A Survival Guide to a PhD: [[en](https://karpathy.github.io/2016/09/07/phd/)] 7 | - [nlp-phd-global-equality](https://github.com/zhijing-jin/nlp-phd-global-equality): A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP 8 | -------------------------------------------------------------------------------- /src/ac/img/0812.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CS-BAOYAN/CSBasicKnowledge/b32a095c631d815c01d00a1a390701a3a6751f57/src/ac/img/0812.png -------------------------------------------------------------------------------- /src/ac/img/0835.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CS-BAOYAN/CSBasicKnowledge/b32a095c631d815c01d00a1a390701a3a6751f57/src/ac/img/0835.png -------------------------------------------------------------------------------- /src/ac/img/example1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CS-BAOYAN/CSBasicKnowledge/b32a095c631d815c01d00a1a390701a3a6751f57/src/ac/img/example1.png -------------------------------------------------------------------------------- /src/ac/img/example2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CS-BAOYAN/CSBasicKnowledge/b32a095c631d815c01d00a1a390701a3a6751f57/src/ac/img/example2.png -------------------------------------------------------------------------------- /src/ac/specialty_code.md: -------------------------------------------------------------------------------- 1 | # (Special Issue)专业代码那些事儿 2 | 3 | ## 1. 专业代码是什么? 4 | 专业代码是教育部用于标识和管理不同学科专业的一种编码,通常由6位数字组成。专业代码在`本科专业设置`和`研究生专业设置`上是分离的。需要注意的的一点是⚠️:***两者并不相关,需要分情况说明,不可以混为一谈。*** 5 | 6 | ### 1.1 研究生教育学科专业目录(研究生专业代码) 7 | 目前研究生教育学科专业目录最新版本为2022版,并从2023年起开始实施。可通过研招网下载附件📎查看:[研究生教育学科专业目录(2022年)](https://yz.chsi.com.cn/kyzx/jybzc/202209/20220914/2216547448.html) 8 | 9 | 其中“研究生教育学科专业目录”中对于**专业学位**代码非常模糊,具体的**专业学位**代码请查看:[关于电子信息等8种专业学位类别专业领域指导性目录的说明](https://meng.tsinghua.edu.cn/docs/20210115210416891658.pdf) 10 | 11 | 通过两份文件,我们可以总结出与计算机学科相关的专业代码,如下表: 12 |

计算机学科相关专业研究生代码汇总

13 | 14 | | 学位类型 | 专业代码 | 专业名称 | 15 | | ------ | ------ | ---------------- | 16 | | 学术学位 | 081200 | 计算机科学与技术 | 17 | | 学术学位 | 083500 | 软件工程 | 18 | | 学术学位 | 083900 | 网络空间安全 | 19 | | 学术学位 | 140500 | 智能科学与技术 | 20 | | 专业学位 | 085400 | 电子信息 | 21 | | 专业学位 | 085404 | 计算机技术 | 22 | | 专业学位 | 085405 | 软件工程 | 23 | | 专业学位 | 085411 | 大数据技术与工程 | 24 | | 专业学位 | 085412 | 网络与信息安全 | 25 | 26 | 27 | 其中,有几点需要强调: 28 | 1. 专业代码中,第三、四位被划分成了上下两个半区,上半区为**01-50**,下半区为**51-99**。上半区对应**学术学位**,下半区对应**专业学位**。 29 | 2. 专业代码中,第五、六位对应二级学科,对于**专业学位**而言,需要**特别注意**,因为 **0854(电子信息)** 里同时包含计算机、自动化、电子、信息、生医、仪器等方向的专硕,无法表明到底是哪个学科的专硕。 30 | 31 | #### 下面是两个计算机类研究生专业代码的示例: 32 | 33 |

学术学位专业代码示例

34 |

drawing

35 |

专业学位专业代码示例

36 |

drawing

37 | 38 | 39 | ### 1.2 普通高等学校本科专业目录(本科专业代码) 40 | 普通高等学校本科专业目录最新版本为2024版,可通过教育部官方网站下载附件📎查看:[普通高等学校本科专业目录(2024年)](https://www.moe.gov.cn/srcsite/A08/moe_1034/s4930/202403/W020240319305498791768.pdf) 41 | 42 | 其中,与计算机类有关的专业代码如下表: 43 | 44 | # 计算机类相关专业代码汇总 45 | 46 |

计算机学科相关本科专业代码汇总

47 | 48 | | 序号 | 门类、专业类 | 专业代码 | 专业名称 | 学位授予门类 | 修业年限 | 增设年度 | 49 | | ---- | ------------ | -------- | ------------------ | -------------- | -------- | -------- | 50 | | 397 | 计算机类 | 080901 | 计算机科学与技术 | 理学、工学 | 四年 | | 51 | | 398 | 计算机类 | 080902 | 软件工程 | 工学 | 四年 | | 52 | | 399 | 计算机类 | 080903 | 网络工程 | 工学 | 四年 | | 53 | | 400 | 计算机类 | 080904K | 信息安全 | 管理学、理学、工学 | 四年 | | 54 | | 401 | 计算机类 | 080905 | 物联网工程 | 工学 | 四年 | | 55 | | 402 | 计算机类 | 080906 | 数字媒体技术 | 工学 | 四年 | | 56 | | 403 | 计算机类 | 080907T | 智能科学与技术 | 理学、工学 | 四年 | | 57 | | 404 | 计算机类 | 080908T | 空间信息与数字技术 | 工学 | 四年 | | 58 | | 405 | 计算机类 | 080909T | 电子与计算机工程 | 工学 | 四年 | | 59 | | 406 | 计算机类 | 080910T | 数据科学与大数据技术 | 理学、工学 | 四年 | 2015 | 60 | | 407 | 计算机类 | 080911TK | 网络空间安全 | 工学 | 四年 | 2015 | 61 | | 408 | 计算机类 | 080912T | 新媒体技术 | 工学 | 四年 | 2016 | 62 | | 409 | 计算机类 | 080913T | 电影制作 | 工学 | 四年 | 2016 | 63 | | 410 | 计算机类 | 080914TK | 保密技术 | 工学 | 四年 | 2017 | 64 | | 411 | 计算机类 | 080915T | 服务科学与工程 | 工学 | 四年 | 2019 | 65 | | 412 | 计算机类 | 080916T | 虚拟现实技术 | 工学 | 四年 | 2019 | 66 | | 413 | 计算机类 | 080917T | 区块链工程 | 工学 | 四年 | 2019 | 67 | | 414 | 计算机类 | 080918TK | 密码科学与技术 | 工学 | 四年 | 2020 | 68 | 69 | ## 2. 为什么需要专业代码? 70 | 71 | 害,还不是有单位会看要求,不然谁会来看这些东西?专业代码会在**考公**、**国企招聘**等位置不经意的出现。当然,对于打算进入私企就业的同学来说,专业代码就不是那么重要了。 72 | 73 | 举个例子🌰,以“[广东省2024年考试录用公务员](https://hrss.gd.gov.cn/zwgk/gsgg/content/post_4332302.html)”为例,0812相比0835在可报考岗位上有着绝对的优势(1405的同学😭): 74 | 75 |

0812可报考岗位

76 |

drawing

77 |

0835可报考岗位

78 |

drawing

79 | 80 | ## 3. 常见问题 81 | 82 | ### 3.1 专硕的专业代码是否可以更改?比如从085400(电子信息)更加细化? 83 |   这个问题通常取决于学校,要符合学校的一些要求,比如只能细化到特定的一两个代码之中。ZJU SE就曾发过这样的公告,供大家参考:[软件学院专业学位领域代码调整通知](http://www.cst.zju.edu.cn/2022/1020/c36256a2649375/page.htm) 84 | 85 | ### 3.2 0812XY例如(0812Z1)这类专业代码是0812吗? 86 |   以0812Z1为例,这类专业代码一般来说是可以算作0812的,也就是一级学科是“计算机科学与技术——学术学位”,所以大多数情况下依然是0812。 87 | 88 | ### 3.3 以后有考公的打算,该怎么在计算机类学专硕的各个专业中选择? 89 |   答案很明确,0812就是神。所以能够拿到计科学硕对于考公是最有利的,0812也的确是认可度最高的万金油专业(卷成这样不是没有道理的)。而对于最近很多学校把AI学硕挪到140500这样的迷惑操作,实在是对于考公过于不友好了,需要谨慎考虑一下。至于其他的专业包括0835(软件学硕)、0839(网安学硕)、085404/5(计/软专硕),最好还是亲自调研一下目标省份的岗位要求。 -------------------------------------------------------------------------------- /src/ai/ai.md: -------------------------------------------------------------------------------- 1 | AI这一章节有太多可以津津乐道的内容,期待各位大佬补充。 -------------------------------------------------------------------------------- /src/ai/cuda.md: -------------------------------------------------------------------------------- 1 | # CUDA & Nvidia 2 | 3 | - [CUDA C++ Programming Guide](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html): The programming guide to the CUDA model and interface. 4 | - [NVIDIA/CUDALibrarySamples](https://github.com/NVIDIA/CUDALibrarySamples): The CUDA Library Samples are released by NVIDIA Corporation as Open Source software under the 3-clause "New" BSD license. 5 | - [pybind11 documentation](https://pybind11.readthedocs.io/en/stable/basics.html) 6 | - [Using pybind11](https://people.duke.edu/~ccc14/sta-663-2016/18G_C++_Python_pybind11.html) 7 | - [Use pybind11 for a detailed but simple example](https://iamsorush.com/posts/pybind11-robot/) 8 | - 查看你的显卡的情况: 9 | - nvitop: [[Github](https://github.com/XuehaiPan/nvitop)] 10 | - gpustat: [[Github](https://github.com/wookayin/gpustat)] 11 | - nvidia-smi 12 | - - 切换CUDA版本步骤 13 | - 删除软连接 14 | ```shell 15 | cd /usr/local 16 | ls -l cuda # 查看cuda的软链接 17 | sudo rm -rf cuda 18 | sudo ln -s /usr/local/cuda-10.0 /usr/local/cuda # 更换为对应的cuda 19 | ``` 20 | - 添加环境变量 21 | ```shell 22 | # 如果使用的是z-shell请替换`.bashrc`为`.zshrc` 23 | tee -a ~/.bashrc > /dev/null << 'EOF' 24 | # CUDA 25 | export PATH=${PATH}:/usr/local/cuda/bin 26 | export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64 27 | export CUDA_HOME=/usr/local/cuda # 通过设置软链接`/usr/local/cuda`,可以做到多版本CUDA共存 28 | EOF 29 | 30 | # 或者 31 | 32 | # 修改`/etc/profile`以做到多用户、多Shell解释器通用 33 | sudo tee -a /etc/profile > /dev/null << 'EOF' 34 | # CUDA 35 | export PATH=${PATH}:/usr/local/cuda/bin 36 | export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64 37 | export CUDA_HOME=/usr/local/cuda # 通过设置软链接`/usr/local/cuda`,可以做到多版本CUDA共存 38 | EOF 39 | ``` 40 | 在完成上述步骤后,你需要`source ~/.bashrc`(或`source /etc/profile`)刷新环境变量或者`reboot`重启 41 | -------------------------------------------------------------------------------- /src/ai/cv.md: -------------------------------------------------------------------------------- 1 | # CV(Computer Vision) 2 | 3 | - CS231n: Stanford 的 CV 入门课程 \[[Main Page](http://cs231n.stanford.edu/)\] \[[bilibili](https://www.bilibili.com/video/BV1nJ411z7fe)\] \[[Assignments](http://cs231n.stanford.edu/schedule.html)\] 4 | - [Awesome-Vision-Attentions](https://github.com/MenghaoGuo/Awesome-Vision-Attentions): Summary of related papers on visual attention. Related code will be released based on Jittor gradually. 5 | - [Transformer-in-Computer-Vision](https://github.com/Yangzhangcst/Transformer-in-Computer-Vision): A paper list of some recent Transformer-based CV works. 6 | - [rese1f/Awesome-VQVAE](https://github.com/rese1f/Awesome-VQVAE): A collection of resources and papers on Vector Quantized Variational Autoencoder (VQ-VAE) and its application 7 | 8 | 9 | ## object detection 10 | - [open-mmlab/mmdetection](https://github.com/open-mmlab/mmdetection): OpenMMLab Detection Toolbox and Benchmark 11 | - [facebookresearch/detectron2](https://github.com/facebookresearch/detectron2): Detectron2 is a platform for object detection, segmentation and other visual recognition tasks. 12 | - [facebookresearch/detr](https://github.com/facebookresearch/detr): End-to-End Object Detection with Transformers 13 | - [IDEA-Research/detrex](https://github.com/IDEA-Research/detrex): detrex is a research platform for DETR-based object detection, segmentation, pose estimation and other visual recognition tasks 14 | 15 | ## segmentation 16 | - [facebookresearch/segment-anything](https://github.com/facebookresearch/segment-anything) 17 | 18 | ## Vision-Language Model 19 | - [VLM_survey](https://github.com/jingyi0000/VLM_survey): Vision-Language Models for Vision Tasks: A Survey 20 | - [LLM-in-Vision](https://github.com/DirtyHarryLYL/LLM-in-Vision): Recent LLM-based CV and related works. Welcome to comment/contribute! 21 | -------------------------------------------------------------------------------- /src/ai/dataset.md: -------------------------------------------------------------------------------- 1 | # Dataset下载 2 | - [Opendatalab (国内pjlab实验室维护)](https://opendatalab.com/) 3 | - [OpenSLR (Daniel Povey维护)](https://openslr.org/) 4 | - [Baai data(智源维护)](https://data.baai.ac.cn/data) 5 | -------------------------------------------------------------------------------- /src/ai/huggingface.md: -------------------------------------------------------------------------------- 1 | # HuggingFace 2 | 3 | - 高速下载 huggingface 的超大体积的模型和数据集: 4 | - [Github: huggingface-go](https://github.com/xieincz/huggingface-go) 5 | - [国内huggingface加速镜像站](https://hf-mirror.com) 6 | - [如何快速下载huggingface模型——全方法总结](https://zhuanlan.zhihu.com/p/663712983?utm_medium=social&utm_oi=1347152889933049856&utm_psn=1703700804178083840&utm_source=wechat_session&s_r=0) 7 | -------------------------------------------------------------------------------- /src/ai/llm.md: -------------------------------------------------------------------------------- 1 | # Large Language Model 2 | - LLM-action: [Github: zh-cn](https://github.com/liguodongiot/llm-action) 3 | - LLMSurvey: [Github](https://github.com/RUCAIBox/LLMSurvey/tree/main) 4 | - LLM-Agent-Paper-List (Fdu NLP): [Github](https://github.com/WooooDyy/LLM-Agent-Paper-List#132-embodied-action) 5 | - llamafia.github: [[Github](https://github.com/LLaMafia/llamafia.github)] 一个中文前沿 AI / LLM 开源讨论空间 6 | - Large Language Model Course: [[Github](https://github.com/mlabonne/llm-course)] 7 | - 中文LLaMA&Alpaca大语言模型+本地CPU/GPU训练部署 (Chinese LLaMA & Alpaca LLMs): [[Github](https://github.com/ymcui/Chinese-LLaMA-Alpaca)] -------------------------------------------------------------------------------- /src/ai/nlp.md: -------------------------------------------------------------------------------- 1 | ### NLP(Natural language Processing) 2 | 3 | - CS224n:Stanford 的 NLP入门课程 \[[Main Page](http://web.stanford.edu/class/cs224n/index.html)\] \[[Slides, Notes & Assignments](http://web.stanford.edu/class/cs224n/index.html#schedule)\] \[[Bilibili](https://www.bilibili.com/video/BV1Eb411H7Pq/)\] 4 | - [funNLP](https://github.com/fighting41love/funNLP) NLP民工的乐园: 几乎最全的中文NLP资源库 5 | - [zibuyu/research_tao](https://github.com/zibuyu/research_tao?tab=readme-ov-file) 6 | - sebastianruder/NLP-progress: [Github:en](https://github.com/sebastianruder/NLP-progress) | [online](https://nlpprogress.com/) Tracking Progress in Natural Language Processing 7 | -------------------------------------------------------------------------------- /src/ai/prompt.md: -------------------------------------------------------------------------------- 1 | # Prompts 2 | 3 | - ChatGPT 中文调教指南: [[Github: zh-cn](https://github.com/PlexPt/awesome-chatgpt-prompts-zh)] 4 | - Awesome ChatGPT Prompts: [[Github: en](https://github.com/f/awesome-chatgpt-prompts)] 5 | - 🤖 ChatGPT 中文指南 🤖:[[Github: zh-cn](https://github.com/yzfly/awesome-chatgpt-zh?tab=readme-ov-file#-chatgpt-%E4%B8%AD%E6%96%87%E6%8C%87%E5%8D%97-)] 6 | - Openprompt(Create. Use. Share. Chatgpt prompts): [[zh-cn](https://openprompt.co/)] 7 | - understand-prompt: [[Github:zh-cn](https://github.com/phodal/understand-prompt)] 8 | -------------------------------------------------------------------------------- /src/ai/pytorch.md: -------------------------------------------------------------------------------- 1 | # PyTorch 2 | ## Installation 3 | ### 根据OS和cuda选择适配的torch版本 4 | https://pytorch.org/get-started/previous-versions/ 5 | ### pip 6 | #### 安装最新版 7 | ```shell 8 | pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple 9 | ``` 10 | #### 指定版本(preffered) 11 | 创建名为pytorch310的虚拟环境 12 | ```shell 13 | conda create -n pytorch310 python==3.10 14 | ``` 15 | 激活环境 16 | ```shell 17 | conda activate pytorch310 18 | ``` 19 | 设置清华源,加速安装 20 | ```shell 21 | pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple 22 | ``` 23 | 指定版本安装 24 | ```shell 25 | pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html 26 | ``` 27 | ### conda 28 | 添加清华镜像源 29 | ```shell 30 | # 若不含有`~/.condarc`,生成它 31 | ls ~/.condarc || conda config --set show_channel_urls yes 32 | 33 | # 之后配置镜像源(南科大提供的额外软件包镜像可以加速安装CUDA版Pytorch) 34 | tee ~/.condarc > /dev/null << EOF 35 | channels: 36 | - defaults 37 | show_channel_urls: true 38 | default_channels: 39 | - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r 40 | - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro 41 | - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main 42 | - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free 43 | - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 44 | custom_channels: 45 | msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud 46 | menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud 47 | pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud 48 | bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud 49 | simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud 50 | pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud 51 | conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud 52 | deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud 53 | nvidia: https://mirrors.sustech.edu.cn/anaconda-extra/cloud 54 | 55 | envs_dirs: 56 | - your-path/anaconda3/envs # 替换为您的路径(另外,若安装的是miniconda3,请自行替换),不设置此项有可能安装在`~/.conda/envs`中 57 | EOF 58 | ``` 59 | #### 安装最新版 60 | ```shell 61 | conda install pytorch torchvision torchaudio cudatoolkit=10.2 62 | ``` 63 | #### 指定版本 64 | ```shell 65 | conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4 cudatoolkit=10.2 66 | ``` 67 | 68 | ## Tutorial 69 | - [pytorch examples](https://github.com/pytorch/examples) 70 | - [pytorch tutorials](https://github.com/pytorch/tutorials) 71 | - pytorch模型性能分析和优化: [weixin](https://mp.weixin.qq.com/s/lxJthBk1L2nYOyQyLbqqEw) 72 | - pytorch handbook: [[Github:zh-cn](https://github.com/zergtant/pytorch-handbook)] 73 | - datawhale/thorough-pytorch: [[Github:zh-cn](https://github.com/datawhalechina/thorough-pytorch)] 74 | - 杂七杂八的收集DL相关的东西: [[Github:en](https://github.com/aymericdamien/TopDeepLearning)] 75 | 76 | ## Framework 77 | - [pytorch-lightning](https://github.com/Lightning-AI/pytorch-lightning): Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes. 78 | 79 | ## Visualization 80 | - [wandb](https://github.com/wandb/wandb): 🔥 A tool for visualizing and tracking your machine learning experiments. This repo contains the CLI and Python API. 81 | - [PyTorch tensorboard](https://pytorch.org/docs/stable/tensorboard.html): How to use tensorboard in PyTorch. 82 | - [SwanLab](https://github.com/SwanHubX/SwanLab): ⚡️SwanLab: track and visualize all the pieces of your machine learning pipeline. 跟踪与可视化你的机器学习全流程 83 | -------------------------------------------------------------------------------- /src/ai/recsys.md: -------------------------------------------------------------------------------- 1 | # Recommendation System 2 | - datawhale/fun-rec: [[Github:zh-cn](https://github.com/datawhalechina/fun-rec)] -------------------------------------------------------------------------------- /src/ai/speech.md: -------------------------------------------------------------------------------- 1 | # Audio & Speech 2 | - [Speech-Resources](https://github.com/ddlBoJack/Speech-Resources): 语音方向实验室/公司/资源/实习等,欢迎推荐或自荐 3 | - [metame-ai/awesome-audio-plaza](https://github.com/metame-ai/awesome-audio-plaza): Daily tracking of awesome audio papers, including music generation, zero-shot tts, asr, audio generation 4 | - [SpeechTasks](https://github.com/WangHelin1997/SpeechTasks): This is a list of speech tasks and datasets, which can provide training data for Generative AI, AIGC, AI model training, intelligent speech tool development, and speech applications. 5 | - [ai-audio-startups](https://github.com/csteinmetz1/ai-audio-startups): Community list of startups working with AI in audio and music technology 6 | - [speech_rankings](https://github.com/mutiann/speech_rankings): A CSRankings-like index for speech researchers 7 | - [INTERSPEECH-2023-Papers](https://github.com/DmitryRyumin/INTERSPEECH-2023-Papers): INTERSPEECH 2023 Papers: A complete collection of influential and exciting research papers from the INTERSPEECH 2023 conference. 8 | 9 | ## SSL 10 | - [Awesome-Speech-Pretraining](https://github.com/ddlBoJack/Awesome-Speech-Pretraining): Paper, Code and Statistics for Self-Supervised Learning and Pre-Training on Speech. 11 | - [facebookresearch/fairseq](https://github.com/facebookresearch/fairseq): Facebook AI Research Sequence-to-Sequence Toolkit written in Python. 12 | 13 | ## ASR 14 | - [kaldi](https://github.com/kaldi-asr/kaldi): Kaldi Speech Recognition Toolkit 15 | - next-gen kaldi 16 | - [k2-fsa/icefall](https://github.com/k2-fsa/icefall): The icefall project contains speech-related recipes for various datasets using k2-fsa and lhotse. 17 | - [lhotse-speech/lhotse](https://github.com/lhotse-speech/lhotse): Tools for handling speech data in machine learning projects. 18 | - [openai/whisper](https://github.com/openai/whisper): Robust Speech Recognition via Large-Scale Weak Supervision 19 | - [awesome-whisper](https://github.com/sindresorhus/awesome-whisper): Awesome list for Whisper — an open-source AI-powered speech recognition system developed by OpenAI 20 | 21 | ## Generation 22 | - [open-mmlab/Amphion](https://github.com/open-mmlab/Amphion): Amphion (/æmˈfaɪən/) is a toolkit for Audio, Music, and Speech Generation. 23 | - [facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft): Audiocraft is a library for audio processing and generation with deep learning. 24 | - [NVIDIA/NeMo](https://github.com/NVIDIA/NeMo): NeMo: a framework for generative AI 25 | 26 | ## Audio/Speech LLM 27 | - [QwenLM/Qwen-Audio](https://github.com/QwenLM/Qwen-Audio): The official repo of Qwen-Audio (通义千问-Audio) chat & pretrained large audio language model proposed by Alibaba Cloud. 28 | - [awesome-large-audio-models](https://github.com/EmulationAI/awesome-large-audio-models): Collection of resources on the applications of Large Language Models (LLMs) in Audio AI. 29 | - [Large-Audio-Models](https://github.com/liusongxiang/Large-Audio-Models): Keep track of big models in audio domain, including speech, singing, music etc. 30 | 31 | ## Dataset 32 | - [speech-datasets-collection](https://github.com/RevoSpeechTech/speech-datasets-collection): a curated list of speech datasets (110+ datasets, 75+ easy to download) 33 | - [ai-audio-datasets](https://github.com/Yuan-ManX/ai-audio-datasets): This is a list of datasets consisting of speech, music, and sound effects 34 | - [ULCA-asr-dataset-corpus](https://github.com/Open-Speech-EkStep/ULCA-asr-dataset-corpus): asr dataset corpus collection 35 | - [coqui-ai/open-speech-corpora](https://github.com/coqui-ai/open-speech-corpora): A list of accessible speech corpora for ASR, TTS, and other Speech Technologies 36 | - [voice_datasets](https://github.com/jim-schwoebel/voice_datasets): A comprehensive list of open-source datasets for voice and sound computing (95+ datasets). 37 | - [audio-datasets](https://github.com/DagsHub/audio-datasets): open-source audio datasets 38 | - [speech_dataset](https://github.com/double22a/speech_dataset): The dataset of Speech Recognition 39 | - [k2-fsa/libriheavy](https://github.com/k2-fsa/libriheavy): Libriheavy: a 50,000 hours ASR corpus with punctuation casing and context 40 | - [facebookresearch/libri-light](https://github.com/facebookresearch/libri-light) 41 | -------------------------------------------------------------------------------- /src/ai/tutorials.md: -------------------------------------------------------------------------------- 1 | # Tutorials 2 | 3 | - 一些国内的广为人知的视频教程,适合边睡边看: 4 | - 李沐动手学深度学习([[bilibili](https://space.bilibili.com/1567748478/channel/seriesdetail?sid=358497)]、[[课程主页](https://courses.d2l.ai/zh-v2/)]、[[教材](https://zh-v2.d2l.ai/)]) 5 | - 吴恩达机器学习([[bilibili](https://www.bilibili.com/video/BV1Pa411X76s/?spm_id_from=333.337.search-card.all.click&vd_source=62c6b20b70c91e96b6a69bd5e1f914a8)]) 6 | - 李宏毅机器学习 ([[bilibili](https://www.bilibili.com/video/BV1Wv411h7kN)]、[[课程主页](https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php)]) 7 | - 一篇不太专业的如何读论文的小文档:\[[pdf](https://github.com/CS-BAOYAN/CSBasicKnowledge/blob/main/%E8%AE%BA%E6%96%87%E7%B2%97%E8%AF%BB%E6%94%BB%E7%95%A5.md)\] 8 | - paper with code:[[page](https://paperswithcode.com/)] 9 | - 算法知识应知应会:[[Github](https://github.com/nosuggest/Reflection_Summary)] 10 | - Microsoft AI-EDU: [[zh-cn](https://microsoft.github.io/ai-edu/index.html)] 11 | - 机器学习入门指南: [[zh-cn](https://tjxj.github.io/)] 12 | - CS229机器学习技巧和秘诀速查表: [[zh-cn](https://stanford.edu/~shervine/l/zh/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks#)] 13 | - 科学空间(苏剑林): [[zh-cn](https://spaces.ac.cn/)] 14 | - 深度学习500问: [[Github: zh-cn](https://github.com/scutan90/DeepLearning-500-questions)] 15 | - awesome-ai-tools: [[Github: en](https://github.com/NoFish-528/awesome-ai-tools)] 16 | - Learning Research: [[Github: zh-cn](https://github.com/pengsida/learning_research)] 17 | - Stanford HowToReadpaper: [[page](https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf)] [[pdf](https://github.com/CS-BAOYAN/CSBasicKnowledge/blob/main/HowtoReadPaper.pdf)] 18 | - 有关迁移学习的一切的资料: [[Github](https://github.com/jindongwang/transferlearning)] 19 | -------------------------------------------------------------------------------- /src/cg/cg.md: -------------------------------------------------------------------------------- 1 | # CG 2 | 3 | - Ray Tracing in One Weekend 系列 [[en](https://raytracing.github.io/)] 4 | - LearnOpenGL [[en](https://learnopengl.com/)] [[zh-cn](https://learnopengl-cn.github.io/)] 5 | - 太极图形课第一季 [[Github](https://github.com/taichiCourse01)] 6 | - GAMES 系列课程 [[主页](https://games-cn.org/gamescoursescollection/)] 7 | - CGPC2023 [[Bilibili](https://space.bilibili.com/3546554723994043)] 8 | - Rendering 渲染相关 9 | - UCSD CSE 272: Advanced Image Synthesis [[课程主页](https://cseweb.ucsd.edu/~tzli/cse272/)] 10 | - Physically Based Rendering [[主页](https://www.pbrt.org/)] 11 | - Real-Time Rendering [[主页](https://www.realtimerendering.com/)] [[zh-cn](https://github.com/Morakito/Real-Time-Rendering-4th-CN)] [[参考文献合集](https://github.com/QianMo/Real-Time-Rendering-4th-Bibliography-Collection)] -------------------------------------------------------------------------------- /src/contrib.md: -------------------------------------------------------------------------------- 1 | # 【重要】For contributers 2 | 3 | ## 鸣谢 4 | 衷心感谢以下参与者对本指南的贡献。 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Made with [contrib.rocks](https://contrib.rocks). 13 | 14 | ## 贡献指南 15 | 若希望对**CSBasicKnowledge**进行贡献,请以`SUMMARY.md`为大纲,在`src`文件夹下进行markdown文件的添加即可。 16 | 17 | 目前,mdbook对数学公式的支持还不完善,如您需要使用数学公式,请参考下面的**数学公式支持**部分。 18 | 19 | **(可选)** 如果您在部署了mdbook并运行后,可以直接在`SUMMARY.md`中添加章节,例如: 20 | ```md 21 | # CSBasicKnowledge 22 | 23 | - [example](./example/example.md) 24 | ``` 25 | mdbook会自动创建`example`文件夹和`example.md`文件。 26 | 当然,mdbook依赖于rust语言开发,如果您不喜欢rust相关内容,可以无视可选项及后续的**本地部署**部分。 27 | 28 | ## 数学公式支持 29 | > **注意**: MathJax 目前仍不能使用 `$$ ... $$` 作为分隔符,并且 `\[ ... \]` 分隔符需要额外的反斜杠才能工作。 希望这个限制很快能解除。 30 | 31 | > **注意**: 当您需要在 MathJax 块中使用双反斜杠(例如 `\begin{cases} \frac 1 2 \\ \frac 3 4 \end{cases}` 等命令中)时,您需要添加两个额外的反斜杠(例如,`\begin{cases} \frac 1 2 \\\\ \frac 3 4 \end{cases}`)。 32 | 33 | ### 行内公式 34 | 行内公式由 `\\(` 和 `\\)`包围。例如,要渲染以下行内方程 35 | \\( \int x dx = \frac{x^2}{2} + C \\),可以这么写: 36 | ```latex 37 | \\( \int x dx = \frac{x^2}{2} + C \\) 38 | ``` 39 | 40 | ### 块公式 41 | 块公式由 `\\[` 和 `\\]`分隔。 要渲染下面这个块公式 42 | 43 | \\[ \mu = \frac{1}{N} \sum_{i=0} x_i \\] 44 | 45 | 可以这么写: 46 | 47 | ```latex 48 | \\[ \mu = \frac{1}{N} \sum_{i=0} x_i \\] 49 | ``` 50 | 51 | ## 本地部署 52 | CSBasicKnowledge的bookfy基于[mdbook](https://github.com/rust-lang/mdBook)实现,该工具基于Rust开发,是markdown文件书本化非常值得推荐的工具。Rust的圣经 ***The Rust Programming Language*** 便是利用了mdbook生成的。 53 | 54 | 要安装**mdbook**请安装Rust相关工具链。随后,通过Rust的包管理器cargo进行mdbook的安装: 55 | ```bash 56 | cargo install mdbook 57 | ``` 58 | 通常,mdbook会安装在`$HOME/.cargo/bin`,请将该目录添加至PATH 59 | 60 | mdbook的运行非常简单,只需要: 61 | ```bash 62 | # For detail, run `mdBook serve -h` 63 | mdbook serve # default 127.0.0.1:3000 64 | mdbook serve -p 8080 # 127.0.0.1:8080 65 | ``` 66 | -------------------------------------------------------------------------------- /src/cs/cs.md: -------------------------------------------------------------------------------- 1 | ## CS 2 | 3 | - CS 自学指南: [[zh-cn](https://github.com/PKUFlyingPig/cs-self-learning)] [[en](https://github.com/PKUFlyingPig/Self-learning-Computer-Science)] 4 | - OI Wiki(ACMer必备): [[zh-cn](https://oi-wiki.org/)] 5 | - The Missing Semester of Your CS Education: [[en](https://missing.csail.mit.edu/)] [[zh-cn](https://missing-semester-cn.github.io/)] 6 | - CS免费编程书籍:\[[Github](https://github.com/yinhonggen/free-programming-books-zh_CN)\] 7 | - Crash Course Computer Science(个人觉得值得观看的计算机知识速成科普课程): [[Origin_YouTube](https://www.youtube.com/playlist?list=PL8dPuuaLjXtNlUrzyH5r6jN9ulI)] [[CN_Bilibili](BV1EW411u7th)] [[CN_Source](https://github.com/1c7/crash-course-computer-science-chinese)] 8 | - 在有用和没用之间徘徊的速查网站:\[[zh-cn](https://quickref.cn/)\] 9 | -------------------------------------------------------------------------------- /src/develop/front.md: -------------------------------------------------------------------------------- 1 | # Front End 2 | 3 | - HTML & CSS [[Bibilili](https://www.bilibili.com/video/BV1kM4y127Li)] 4 | - float布局不用学,熟悉flex和grid即可 5 | - 自测:能完成基本的静态页面 6 | - JavaScript [[Bilibili](https://www.bilibili.com/video/BV1Y84y1L7Nn)] [[现代JavaScript](https://zh.javascript.info/)] 7 | - Vue [[Bilibili-尚硅谷](https://www.bilibili.com/video/BV1Zy4y1K7SH)] [[Bilibili-小满](https://www.bilibili.com/video/BV1dS4y1y7vd)] 8 | - 小满的比较难,需要有vue2基础,看自己情况 9 | - 项目实战 [[Bilibili](https://www.bilibili.com/video/BV1Ac411K7EQ)] 10 | - 到这时候,已经能够承担前端工作了,如果bg比较好的话,可以找到实习 11 | 12 | ## 进阶 13 | 14 | > 实际上这些是必需品,如果面试的时候就会这些的话,可以有效提高竞争力。不过虽然大厂一般都需要这些,但也会允许实习生到岗再学习。 15 | 16 | - TypeScript [[Bilibili-小满](https://www.bilibili.com/video/BV1wR4y1377K)] 17 | - 实际中用不到这么复杂的ts,一般去掘金上看几篇教程就够用了。不过小满的教程看明白的话,可以和面试官掰扯很久。 18 | - React [[官网](https://zh-hans.react.dev/learn)] [[Bilibili-小满](https://www.bilibili.com/video/BV1mcpPeMETt)] 19 | - 抠字眼的话,`Vue`是前端框架,而`React`只是JS库。也就是说,`React`并没有很复杂的语法和API,只是对`JavaScrip`的熟练程度要求较高。不要在教程上面纠结太长时间,把生命周期看明白之后就去看项目。 20 | - Node [[Bilibili-小满](https://www.bilibili.com/video/BV1cV4y1B7P4)] 21 | - 前端就是全栈!有的大厂会用Node搭建`BFF`(Backend For FrontEnd),还会搭配上`Nest`、`GraphQL`等技术。到这里就比较难了,有了解即可。 22 | -------------------------------------------------------------------------------- /src/file/CCF_Recommended_List.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CS-BAOYAN/CSBasicKnowledge/b32a095c631d815c01d00a1a390701a3a6751f57/src/file/CCF_Recommended_List.pdf -------------------------------------------------------------------------------- /src/file/HowtoReadPaper.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CS-BAOYAN/CSBasicKnowledge/b32a095c631d815c01d00a1a390701a3a6751f57/src/file/HowtoReadPaper.pdf -------------------------------------------------------------------------------- /src/file/如何设置代理.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CS-BAOYAN/CSBasicKnowledge/b32a095c631d815c01d00a1a390701a3a6751f57/src/file/如何设置代理.pdf -------------------------------------------------------------------------------- /src/file/论文粗读攻略.md: -------------------------------------------------------------------------------- 1 | ## 原始积累 2 | 3 | 首先先积累一些基础知识,比如说一些经典的网络架构,比如说经典的 transformer,然后以及各个大的领域主要 focus 的东西,包括说一些这方面比较经典的绝活,诸如对比学习里的那个 InstDisc 等等。 4 | 5 | ## 认祖归宗 6 | 7 | 首先问一问老师,看看自己做的这个领域有没有经典文章,也就是一些老祖宗级别的 baseline,比如说我有读过 mean teacher,在半监督领域挺知名的,这类论文的一个特点是,你去最新的论文的 introduction 里面转一圈,基本还会提到它们。 8 | 9 | 这些论文的思想都是十分实用的,了解这些论文算是进阶版的知识积累。一个“稳啦”的开局是,有大佬做过相关的综述或者论文串讲,别找比较野鸡的,对于方法的故事后面真正 work 的东西是什么有了解很重要。 10 | 11 | ## GPT,启动! 12 | 13 | 接下来你终于来到了论文粗度的起点,所以说还不快去注册一个 gpt,为了以防有打广告的嫌疑,仅是提一嘴,假如觉得注册很麻烦,买一个号很方便的,几块钱就够,被封了大不了再买一个。 14 | 15 | 一般来说,我们认为中文的知识密度是大于英文的,而且作为母语,也比较好理解。 16 | 17 | 直接全部复制摘要,问 GPT,翻译以下内容,然后你就知道它干了什么。甚至因为排版的问题,可能你直接复制会有一定乱的格式,都不用管,gpt can handle this。摘要是一篇文章的精华,告诉了你他们的 work 是什么。 18 | 19 | 推荐在看introduction之前再看看论文的附图(一般的cs论文都会有附图的,无论是模型结构图还是性能比较图亦或是采集数据集的实地照片或者构建的3D模型的图),都可以帮助阅读者快速了解论文作者到底在干什么,顺便快速判断一篇论文是否有阅读的价值。 20 | 21 | 之后看 introduction,作为一个领域刚刚入门的人,可以进行一个迭代学习,看到不会的之前的工作,向前回溯,introduction 是论文的故事在的地方,看看可以知道这篇工作的故事走向,可以信一部分,但别完全信。 22 | 23 | 之后跳到 discussions,老规矩继续 gpt 翻译,不会的东西先问 gpt,再查网上,毕竟都到论文了,网上的东西只会越来越少,尤其是一些下游任务,和它聊久了你就能感觉出来它有什么东西讲的很确信,有什么是在瞎扯。 24 | 25 | 这时候你已经读完论文了,你可以大言不惭的说你读完了,但是假如说你觉得这个工作很吸引你,那就继续看,related works 就是一个小综述,看看总没坏处,万一写得很好呢。 26 | 27 | 之后 method 里面别管方法的名字,看这些公式的本质,实在不行问问 gpt 或者去查查,说不定这个方法只是之前的一个别的方法的翻版,毕竟 MLP 都可以叫做 predictor,方法的名字取决于故事,但是它为什么 work,你可能需要自己想一想自己的理解,捋一下数据在它的 pipeline 图里的流向。 28 | 29 | 在之后,在 experiment 里面主要关注消融实验,方法对比主要是秀肌肉,消融实验能告诉你它可能提出的三五种策略组合起来之后,哪些 work 了。 30 | 31 | 这样你就彻底读完一篇论文了,它具体有没有前景你的心里也已经有数了。 32 | 33 | ## 润一下源码 34 | 35 | 接下来你要是想要去做,和老师谈一谈,然后找到它的代码,作为新手,还是建议大家找有源码的论文,在上面做拓展也方便,不懂的地方依然 gpt 解决,直接每个文件 `ctrl+A` 全部复制,或者分段复制,让 gpt 加中文注释或者简要解释每个函数的功能,之后 `tree` 一下,也给 gpt,方便 gpt 理解一切。 36 | 37 | 潤码时有一个不错的网站推荐:Paper with Code,里面的论文基本上都会附带GitHub的仓库链接,可以快速找到与论文相关的代码。 38 | \[[Main Page](https://paperswithcode.com/)\] 39 | 40 | 代码也是讲究一个跑通就好,看看上面的 args 里面都有啥,然后看看 dataloader 这部分的循环里面怎么训练的,假如有实现一个 module,看看里面的结构,像是数据处理之类的就不用管了,主要看 idea 是怎么实现的,至于怎么读,这里我要提一个人类的好朋友,gpt...... 41 | 42 | 以上,当然,也不难发现,最重要的是成为一个 gpt chater,每一个人一天和 gpt 说话少于 20 句,都是摸鱼的一天。 43 | 44 | Version 0.0.1 -------------------------------------------------------------------------------- /src/misc/misc.md: -------------------------------------------------------------------------------- 1 | # MISC 2 | 3 | - 如何设置代理: [[PDF](https://github.com/CS-BAOYAN/CSBasicKnowledge/blob/main/%E5%A6%82%E4%BD%95%E8%AE%BE%E7%BD%AE%E4%BB%A3%E7%90%86.pdf)] 4 | - 耗时很长的程序忘加nohup就运行了怎么办?: [[zhihu](https://www.zhihu.com/question/586298694/answer/2991647868)] 5 | - linux 多线程下载工具-aria2c: [[zhihu.com](https://zhuanlan.zhihu.com/p/637294044)] 6 | - 你的指法真的标准吗?打字练习一下:\[[zh-cn](https://qwerty.kaiyi.cool/)\] 7 | - 利用学生身份可以享受到的相关学生优惠权益: [[Github](https://github.com/ivmm/Student-resources)] 8 | - 论文常用词汇i.e.,e.g.,etc.,viz.,et al.的前世今生: [[zhihu](https://zhuanlan.zhihu.com/p/63640148)] 9 | - 中国程序员容易发音错误的单词: \[[Github: zh-cn](https://github.com/shimohq/chinese-programmer-wrong-pronunciation)\] 10 | - 图吧工具箱: [[page](http://www.tbtool.cn/)] 11 | - 文献管理软件 Zotero:安装设置教程及各插件配置(知网支持、影响因子、被引数): [[zh-cn](https://www.starryfk.com/tec/zotero-settings-and-plugins-for-literature-management-software.html)] 12 | - 阿里巴巴矢量图标库: [[page](https://www.iconfont.cn/)] 13 | - Paper Picture Writing Code: [Github](https://github.com/MLNLP-World/Paper-Picture-Writing-Code) 14 | - 魔盾安全分析(可疑软件在线分析):[[zh-cn](https://www.maldun.com/submit/submit_file/)] 15 | - 崔庆才 Python3 网络爬虫学习教程: [[zh-cn](https://cuiqingcai.com/17777.html)] 16 | - youtube下载工具:[[Github](https://github.com/yt-dlp/yt-dlp)] 17 | - 掘金翻译计划:[[Github:zh-cn](https://github.com/xitu/gold-miner)] 18 | - 桌面管理工具:[[Github:zh-cn](https://github.com/coodesker/coodesker-desktop/releases)],推荐1.0.4.1release的免费版! 19 | - 论文代码查找网站:[[page](https://paperswithcode.com/)] 20 | - [one-api](https://github.com/songquanpeng/one-api): OpenAI 接口管理 & 分发系统,支持 Azure、Anthropic Claude、Google PaLM 2 & Gemini、智谱 ChatGLM、百度文心一言、讯飞星火认知、阿里通义千问、360 智脑以及腾讯混元,可用于二次分发管理 key,仅单可执行文件,已打包好 Docker 镜像,一键部署,开箱即用 21 | 22 | ## 翻译软件 23 | 1. [Pot](https://pot-app.com/): 跨平台划词翻译和OCR,支持大模型API,支持windows,mac和linux 24 | 2. [Easydict](https://github.com/tisfeng/Easydict):一个简洁优雅的词典翻译 macOS App。开箱即用,支持离线 OCR 识别,支持有道词典,🍎 苹果系统词典,🍎 苹果系统翻译,OpenAI,Gemini,DeepL,Google,Bing,腾讯,百度,阿里,小牛,彩云和火山翻译。 25 | -------------------------------------------------------------------------------- /src/pl/pa.md: -------------------------------------------------------------------------------- 1 | # Program Analysis 2 | 3 | - 静态分析: 4 | - 相关课程: 5 | - PKU 软件分析技术:[[Page](https://xiongyingfei.github.io/SA/2022/main.htm)] [[Bilibili](https://www.bilibili.com/video/BV1Rt4y1s7tC)] 6 | - NJU 软件分析: [[Page](https://tai-e.pascal-lab.net/lectures.html)] [[Bilibili](https://www.bilibili.com/video/BV1b7411K7P4)] 7 | - 符号执行:A Survey of Symbolic Execution Techniques:[[Paper](https://arxiv.org/pdf/1610.00502.pdf)] 8 | - 指针分析:Pointer Analysis:[[Paper](https://www.nowpublishers.com/article/DownloadSummary/PGL-014)] 9 | - 堆分析:Shape Analysis:[[Paper](https://www.researchgate.net/profile/Mooly-Sagiv/publication/225670890_Shape_Analysis/links/58be76a7a6fdcc9831446b58/Shape-Analysis.pdf)] 10 | - 参数化分析:[[Paper](https://plrg.korea.ac.kr/assets/data/publication/csur21-park-psa.pdf)] 11 | - 动态分析: 12 | - Fuzzing(这个也可以放在Security):[[Paper](https://dl.acm.org/doi/abs/10.1145/3512345)] 13 | - CS研究生如何入门模糊测试方向?[[Page](https://www.zhihu.com/question/388240608/answer/1157919593)] 14 | - Fuzzing技术总结 [[Page](https://zhuanlan.zhihu.com/p/43432370)] 15 | - Fuzzing Notes [[Page](https://hkustprism.notion.site/Fuzzing-Notes-4d91f1e6234944ed8a25195792f241ef)] 16 | - AFL:[[GitHub](https://github.com/google/AFL)] [[Tutorial](https://qhjchc.notion.site/AFL-d285922586494d2dba5aa01efaf65a4c)] 17 | - Fuzzing-101(练习afl++工具,可作为fuzz入门的十个“小”练习)[[GitHub](https://github.com/antonio-morales/Fuzzing101/tree/main)] 18 | - 程序分析工具: 19 | - Java: 20 | - Wala:[[GitHub](https://github.com/wala/WALA)] [[Tutorial(unfinished)](https://github.com/Leo0426/WALA-improve)] 21 | - Doop:[[GitHub](https://github.com/plast-lab/doop-mirror)] 22 | - Soot:[[GitHub](https://github.com/soot-oss/soot)] 23 | - C++: 24 | - C/C++开源静态代码分析及验证工具介绍:[[Page](https://bbs.huaweicloud.com/blogs/401616)] 25 | - SVF(找Bug、指针分析、etc...,好像不包含DSA):[[GitHub](https://github.com/SVF-tools/SVF)] 26 | - dg(PDG):[[GitHub](https://github.com/mchalupa/dg)] 27 | - phasar(数据流分析):[[GitHub](https://github.com/secure-software-engineering/phasar)] 28 | - ikos(数值抽象域):[[GitHub](https://github.com/NASA-SW-VnV/ikos)] 29 | - Smack(模型检测):[[GitHub](https://github.com/smackers/smack)] 30 | - LLVM:[[Book](https://s3-us-west-2.amazonaws.com/secure.notion-static.com/448c60be-b116-43fb-82fe-640fcd47a604/LLVM_Cookbook.pdf)] 31 | -------------------------------------------------------------------------------- /src/pl/pl.md: -------------------------------------------------------------------------------- 1 | 本章的内容是Programming Language,期待大佬补充内容。 2 | # gleam 3 | 4 | - 函数式编程语言,用于编写可维护和可扩展的并发系统,属于BEAM家族,和Erlang和Elixir等基于Actor的并发模型和持久运行时,擅长低延迟、高并发、网络应用程序。 5 | - 没有图形库不适合GUI程序,也不适合命令行程序。 6 | # 代码速查表 7 | 8 | - 一个开源的代码规范和基本语法速查工具,包含大部分主流编程语言,而且社区还比较有活力经常更新。直接使用可以访问[Page](https://wangchujiang.com/reference)。 9 | - 也可以本地化部署,GitHub开源仓库地址为[[Github](https://github.com/Justjustifyjudge/reference.git)]。 10 | 11 | - add -------------------------------------------------------------------------------- /src/pl/psar.md: -------------------------------------------------------------------------------- 1 | # Program Synthesis & Automated Reasoning 2 | 3 | - 相关课程: 4 | 5 | - 威斯康辛 CS703:[[Github](https://github.com/lorisdanto/cs703-program-synthesis)] 6 | - UCSD CSE291:[[Github](https://github.com/nadia-polikarpova/cse291-program-synthesis)] 7 | - MIT Introduction to Program Synthesis:[[Page](http://people.csail.mit.edu/asolar/SynthesisCourse/TOC.htm)] 8 | - Automated Reasoning课程:[[en](https://www.inf.ed.ac.uk/teaching/courses/ar/)] 9 | 10 | - Satisfiability Modulo Theories:[[Paper](http://homepage.divms.uiowa.edu/~tinelli/papers/RanTin-IS-06.pdf)] 11 | 12 | - Z3:最常见的SMT Solver:[[Paper](https://theory.stanford.edu/~nikolaj/programmingz3.html)] [[GitHub](https://github.com/Z3Prover/z3)] [[Tutorial](https://microsoft.github.io/z3guide/)] 13 | - Z3-rise4fun:[[Page](https://www.philipzucker.com/z3-rise4fun/)] 14 | - Z3 Playground:[[Page](https://jfmc.github.io/z3-play/)] 15 | - Z3 python API:[[Page](https://z3prover.github.io/api/html/namespacez3py.html)] 16 | 17 | - PySMT:可与多个SMT求解器进行交互的符号模型检验和约束求解的Python库:[[Page](https://pysmt.readthedocs.io/en/latest/)] 18 | - 程序修复:[[Paper](https://www.jos.org.cn/jos/article/pdf/6274)] 19 | 20 | - 香蕉空间: 21 | - [类型论板块](https://www.bananaspace.org/wiki/%E6%A8%A1%E6%9D%BF:%E7%B1%BB%E5%9E%8B%E8%AE%BA) 22 | - [亚结构逻辑](https://www.bananaspace.org/wiki/%E4%BA%9A%E7%BB%93%E6%9E%84%E9%80%BB%E8%BE%91) -------------------------------------------------------------------------------- /src/prefix.md: -------------------------------------------------------------------------------- 1 | # CSBasicKnowledge 2 | 3 |
4 |

"Open Source allows people to build on a solid base of previous knowledge, without some silly hiding."

5 |

- Linus Torvalds

6 |
7 | 8 |   欢迎来到这个专注于计算机科学基础知识的仓库。本仓库的目标是补充计算机专业教育中可能缺失的知识点,提供广泛、优质的学习资源。 9 | 10 |   我们鼓励并期待有缘人加入我们,共同维护和丰富这个仓库。无论是添加新内容,还是改进现有内容,您的贡献都将使这个仓库变得更好。 11 | -------------------------------------------------------------------------------- /src/programmer/programmer.md: -------------------------------------------------------------------------------- 1 | # 程序员指南 2 | 3 | - 程序员延寿指南: [[Github: zh-cn](https://github.com/geekan/HowToLiveLonger)] 4 | - 程序员做菜指南: [[Github: zh-cn](https://github.com/Anduin2017/HowToCook)] 5 | - 颈椎病腰突康复指南: [[Github: zh-cn](https://github.com/AnsonZnl/RehabilitationGuide)] 6 | - 超赞合集 awesome list chinese: [[Github:zh-cn](https://github.com/icopy-site/awesome-cn)] 7 | -------------------------------------------------------------------------------- /src/security/security.md: -------------------------------------------------------------------------------- 1 | # Security 2 | - [ctf-wiki](https://github.com/ctf-wiki/ctf-wiki): CTF wiki 3 | - [awesome-ctf-resources](https://github.com/devploit/awesome-ctf-resources): A list of Capture The Flag (CTF) frameworks, libraries, resources and software for started/experienced CTF players 🚩 4 | -------------------------------------------------------------------------------- /src/sys/hpc.md: -------------------------------------------------------------------------------- 1 | # HPC 2 | 3 | * 高性能计算学习路线:[[Github: zh-cn](https://heptagonhust.github.io/HPC-roadmap/)] 4 | * [高等数值分析(高性能计算,并行计算)](https://math.ecnu.edu.cn/~jypan/Teaching/ParaComp/): 华东师范大学高等数值分析(高性能计算,并行计算) 5 | * 超算习堂:[[zh-cn](https://www.easyhpc.net/)] 6 | * [UTAustinX UT.PHP.16.01xLAFF-On](https://learning.edx.org/course/course-v1:UTAustinX+UT.PHP.16.01x+1T2020/home) Programming for High Performance, 一个基于mpi编程的入门课程,可以作为高性能计算的入门课程,资料完善(视频、文档、字幕都很全),课后作业也很合适。 7 | * 并行计算课程: 8 | * CMU15-418 并行计算架构及编程:[[Bilibili](https://www.bilibili.com/video/BV1Xz4y1p7ZN)] [[课程主页](http://15418.courses.cs.cmu.edu/spring2016/lectures)] 9 | * 伯克利CS267 并行计算应用:[[Bilibili: en](https://www.bilibili.com/video/BV1qV411q7RS)] [[课程主页](https://sites.google.com/lbl.gov/cs267-spr2018/home)] 10 | * MIT6.172 软件系统性能优化:[[Bilibili](https://www.bilibili.com/video/BV1wA411h7N7)] [[课程主页](https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/)] 11 | * Labs: 12 | * CS149 并行计算(该课程与15-418一致) Lab:[[Github](https://github.com/stanford-cs149/asst1)] 13 | * HPC101 Lab:[[主页](https://www.zjusct.io/HPC101-Labs-2022/)] 14 | * 其他资源: 15 | * [Rolf Rabenseifner拓扑算子的一种仿真实现](https://github.com/Justjustifyjudge/repo4mpi.git),根据Optimization of Collective Reduction Operations给出的拓扑图完成的不同逻辑拓扑的Allreduce算子。 16 | ### OpenMPI的安装 17 | > 更多内容可以查看:https://docs.open-mpi.org/en/v5.0.x/installing-open-mpi/quickstart.html 18 | 1. OpenMPI的下载及解压: 在[OpenMPI官方主页](https://www-lb.open-mpi.org/software/ompi/v5.0/)找到合适版本的OpenMPI下载并解压 19 | ```shell 20 | wget https://download.open-mpi.org/release/open-mpi/v5.0/openmpi-5.0.5.tar.gz 21 | tar xf openmpi-5.0.5.tar.gz 22 | cd openmpi-5.0.5 23 | ``` 24 | 2. 配置安装路径,编译并安装,安装路径自定义 25 | ```shell 26 | ./configure --prefix=/usr/local/openmpi 27 | make -j $(nproc) all 28 | make install 29 | ``` 30 | 3. 设置环境变量,路径为自己安装的路径 31 | ```shell 32 | MPI_HOME=/usr/local/openmpi 33 | export PATH=$MPI_HOME/bin:$PATH 34 | export LD_LIBRARY_PATH=$MPI_HOME/lib:$LD_LIBRARY_PATH 35 | export MANPATH=${MPI_HOME}/share/man:$MANPATH 36 | ``` 37 | -------------------------------------------------------------------------------- /src/sys/sys.md: -------------------------------------------------------------------------------- 1 | 本章的内容是Computer System,涵盖sys的各个方面,包括arch/os/storage/db等等,期待大佬补充。 -------------------------------------------------------------------------------- /src/sys/system.md: -------------------------------------------------------------------------------- 1 | # System 2 | 3 | - 机器学习系统:设计和实现: [[page](https://openmlsys.github.io/)] [[Github: zh-cn](https://github.com/openmlsys/openmlsys-zh)] 4 | - 机器学习编译:[[Page](https://mlc.ai/summer22-zh/)] [[Bilibili](https://www.bilibili.com/video/BV15v4y1g7EU/)] [[Notes](https://mlc.ai/zh/)] 5 | - [南京大学 计算机科学与技术系 计算机系统基础 课程实验 2021](https://nju-projectn.github.io/ics-pa-gitbook/ics2021/index.html) 6 | - [南京大学 操作系统:设计与实现](https://jyywiki.cn/OS/2023/index.html) | [南京大学2022操作系统-蒋炎岩 视频](https://www.bilibili.com/video/BV1Cm4y1d7Ur/?vd_source=206566e58b9a1dbba8404cfac33ee816) 7 | - [MIT 6.S081: Operating System Engineering](https://pdos.csail.mit.edu/6.828/2021/schedule.html) 8 | 9 | - [System Conference Deadline](https://dants.github.io/index_sysvenues_deadline.html) 10 | -------------------------------------------------------------------------------- /src/useful/conda.md: -------------------------------------------------------------------------------- 1 | # Conda 2 | 3 | - miniconda环境配置以及jupyter notebook使用指南: [[zhihu](https://zhuanlan.zhihu.com/p/449750184)] 4 | - micromamba: miniconda 的平替,同时依赖解析等基础操作更快: [[GitHub](https://github.com/mamba-org/mamba)] 5 | - [清华大学开源镜像站-miniconda的下载](https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/) 6 | ```shell 7 | # 下载安装脚本 8 | wget -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linux-x86_64.sh 9 | 10 | # 修改权限 11 | chmod 777 Miniconda3-latest-Linux-x86_64.sh 12 | 13 | # 执行安装脚本 14 | bash Miniconda3-latest-Linux-x86_64.sh 15 | 16 | # 删除安装脚本 17 | rm Miniconda3-latest-Linux-x86_64.sh 18 | 19 | # 刷新环境变量 20 | source ~/.bashrc 21 | ``` 22 | -------------------------------------------------------------------------------- /src/useful/debug.md: -------------------------------------------------------------------------------- 1 | # How to Debug 2 | ## gdb 3 | - [gdb-dashboard](https://github.com/cyrus-and/gdb-dashboard): 使用 Python 在命令行中可视化使用 gdb 的小工具 4 | 5 | ## pdb & ipdb 6 | - 10分钟教程掌握Python调试器pdb: [[zhihu](https://zhuanlan.zhihu.com/p/37294138)] 7 | - 使用ipdb在终端调试:[[zhihu](https://zhuanlan.zhihu.com/p/252272792)] 8 | 9 | ## debugpy 10 | - vscode python设置debug: [[zhihu](https://www.zhihu.com/question/35022733/answer/3178874019)] 11 | 12 | ## vscode debug setting 13 | - Debug C++ in Visual Studio Code: \[[Document: en](https://code.visualstudio.com/docs/cpp/cpp-debug)\] 14 | - Configure C/C++ debugging in VSCode: \[[Document: en](https://code.visualstudio.com/docs/cpp/launch-json-reference)\] 15 | -------------------------------------------------------------------------------- /src/useful/docker.md: -------------------------------------------------------------------------------- 1 | # Docker 2 | 3 | - Docker-从入门到实践: [[zh-cn](https://docker-practice.github.io/zh-cn/)] 4 | - How to Install PyTorch on the GPU with Docker: [[en](https://saturncloud.io/blog/how-to-install-pytorch-on-the-gpu-with-docker/)] 5 | - Vscode连接远程服务器中的docker容器进行开发: [[CSDN](https://blog.csdn.net/qq_19716143/article/details/132310200?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-132310200-blog-125781144.235%5Ev38%5Epc_relevant_sort&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-132310200-blog-125781144.235%5Ev38%5Epc_relevant_sort&utm_relevant_index=1)] 6 | - docker权限问题:[[CSDN](https://blog.csdn.net/weixin_44583856/article/details/120757864)] 7 | - 如何临时退出一个正在交互的容器的终端,而不终止它? 8 | 按 Ctrl-p Ctrl-q。如果按 Ctrl-c 往往会让容器内应用进程终止,进而会终止容器,如果没有在IDE里面没有成功,请去除IDE对应的快捷键。 9 | - docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]]. 10 | 1. https://github.com/NVIDIA/nvidia-docker/issues/1238 11 | 2. https://github.com/NVIDIA/nvidia-docker/issues/1243 12 | - Got permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: 13 | ```shell 14 | sudo chmod 666 /var/run/docker.sock 15 | ``` 16 | 17 | -------------------------------------------------------------------------------- /src/useful/git.md: -------------------------------------------------------------------------------- 1 | # Git & Github 2 | 3 | - Learn Git Branching(强推): [[zh-cn](https://learngitbranching.js.org/?locale=zh_CN)] 4 | - [Pro Git 中文版](https://www.progit.cn/) 5 | - [Git lfs install](https://github.com/git-lfs/git-lfs/wiki/Installation#ubuntu) 6 | - Gitchat: [[zh](https://wkevin.github.io/GitChat/gitchat.html#round-1-%E8%B5%B7%E6%AD%A5)] 7 | - Git规范化提交 8 | - 约定式提交,或许可以规范你的Github提交:\[[zh-cn](https://www.conventionalcommits.org/zh-hans/v1.0.0/)\] 9 | - Commit message 和 Change log 编写指南:[[zh-cn](https://ruanyifeng.com/blog/2016/01/commit_message_change_log.html)] 10 | - commitizen/cz-cli: [[Github](https://github.com/commitizen/cz-cli)] 11 | - 第一次参与开源项目,如何提交pr: [[Github: zh-cn](https://github.com/firstcontributions/first-contributions/blob/main/translations/README.zh-cn.md)] | [[mmcv contribution](https://mmcv.readthedocs.io/zh-cn/latest/community/contributing.html)] 12 | - [给 Github Desktop 设置代理](https://xieincz.github.io/post/gei-github-desktop-she-zhi-dai-li/) 13 | - clone远程仓库的指定分支 14 | ```bash 15 | git clone -b + 要clone的分支名 + 仓库地址 16 | # eg: git clone -b dev git@github.com:CS-BAOYAN/CSBasicKnowledge.git 17 | ``` 18 | - SSH key的生成: 19 | - 检查SSH key是否存在: 20 | ```bash 21 | ls -al ~/.ssh 22 | # Lists the files in your .ssh directory, if they exist 23 | ``` 24 | - 生成SSH key, 会在/your_home_path/.ssh/生成id_rsa和id_rsa.pub 25 | ```bash 26 | ssh-keygen -t rsa -C "your_email@example.com" 27 | # Creates a new ssh key using the provided email 28 | Generating public/private rsa key pair. 29 | Enter file in which to save the key (/your_home_path/.ssh/id_rsa): 30 | ``` 31 | - 下拉/提交远程仓库 32 | - 查看远程仓库的信息: 33 | ```bash 34 | git remote -v 35 | ``` 36 | 可以看到远程仓库的名字和地址。 37 | - 查看当前分支名: 38 | ```bash 39 | git branch 40 | ``` 41 | 可以看到当前代码分支的名字 42 | - 从远程仓库下拉: 43 | ```bash 44 | git pull <远程仓库的名字/地址> <代码的分支名> 45 | ``` 46 | - 冲突处理(苯人的笨方法) 47 | ```bash 48 | git pull <远程仓库的名字/地址> <代码的分支名> --allow-unrelated-histories 49 | ``` 50 | 然后使用 51 | ```bash 52 | git status 53 | ``` 54 | 查看冲突文件,手动解决冲突。 55 | - 提交本地代码到远程仓库: 56 | ```bash 57 | git push <远程仓库的名字/地址> <代码的分支名> 58 | ``` 59 | - 强制推送(苯人的笨方法,高风险,慎用): 60 | ```bash 61 | git push -f <远程仓库的名字/地址> <代码的分支名> 62 | ``` 63 | - 推送tags到远程仓库: 64 | ```bash 65 | git push --tags 66 | ``` 67 | - 删除远程分支: 68 | ```bash 69 | git push origin --delete <分支名> 70 | ``` 71 | - 同步本地分支到远程仓库: 72 | ```bash 73 | git push origin <本地分支名>:<远程分支名> 74 | ``` 75 | - 同步远程分支到本地仓库: 76 | ```bash 77 | git checkout -b <本地分支名> <远程分支名> 78 | ``` 79 | 80 | -------------------------------------------------------------------------------- /src/useful/linux.md: -------------------------------------------------------------------------------- 1 | # Linux 2 | 3 | - 中科大 LUG 基础 Linux 教程: [[zh-cn](https://101.lug.ustc.edu.cn/)] 4 | - 南京大学计算机科学与技术系计算机系统基础: [Linux入门教程](https://nju-projectn.github.io/ics-pa-gitbook/ics2021/linux.html) 5 | - 鳥哥的 Linux 私房菜:[[zh](https://linux.vbird.org/)] 6 | - 从 Socket error 丢失网络连接的 Linux SSH 恢复 pts 会话:[[zh-cn](https://wangye.org/posts/2022/02/restore-ssh-pts-session-after-socket-error.html)] 7 | > 下次记得运行长时间程序前先使用 `screen` 或 `tmux` 8 | - [Update GCC](https://gist.github.com/cobaohieu/ded429cb892b46ae9bfd9919a11e593a) 9 | -------------------------------------------------------------------------------- /src/useful/shell.md: -------------------------------------------------------------------------------- 1 | # Shell 2 | 3 | - [Linux命令搜索](https://jaywcjlove.gitee.io/linux-command/) 4 | - [explainshell](https://explainshell.com/) 5 | - [Bash scripting cheatsheet](https://devhints.io/bash) 6 | - [The art of command line](https://github.com/jlevy/the-art-of-command-line/blob/master/README-zh.md) 7 | - [bash.academy](https://guide.bash.academy/): This guide is an introduction to basic and advanced concepts of the bash shell. 8 | - [Shell学习与开发的资料](https://github.com/oldratlee/useful-scripts/blob/dev-3.x/docs/developer-guide.md) 9 | -------------------------------------------------------------------------------- /src/useful/useful.md: -------------------------------------------------------------------------------- 1 | 本章节包括了CS中的实用工具和技能,欢迎大佬补充。 -------------------------------------------------------------------------------- /src/useful/vim.md: -------------------------------------------------------------------------------- 1 | # Vim 2 | 3 | - `vimtutor` 关于 vim 最基础的教程,安装 vim 之后自带的命令 4 | - 聪明地学习 vim: [[GitHub: en](https://github.com/iggredible/Learn-Vim)]/[[GitHub: zh-cn](https://github.com/wsdjeg/Learn-Vim_zh_cn/tree/88c823118735d1a39c3e04451304c1c2c91a5ac3)] 5 | - [Vim命令速查表](https://github.com/chloneda/vim-cheatsheet): 简介:Vim 命令速查表,注释化 vimrc 配置文件,经典 Vim 键盘图,实用 Vim 书籍,Markdown 格式,目录化检索,系统化学习,体系化配置工具集,快速熟悉使用。✨ 6 | - [Vim Cheat Sheet](https://vim.rtorr.com/lang/zh_cn) 7 | - [vim-galore-zh_cn](https://github.com/wsdjeg/vim-galore-zh_cn):Vim 从入门到精通 8 | -------------------------------------------------------------------------------- /src/writing/latex&markdown.md: -------------------------------------------------------------------------------- 1 | # LaTeX & Markdown 2 | 3 | - [latex codebook](https://github.com/xinychen/latex-cookbook) 4 | - [Latex公式识别](https://www.simpletex.cn/ai/latex_ocr) 5 | - [Overleaf(在线Latex编辑器)](https://www.overleaf.com/) 6 | - [Typora 伪装 LaTeX 中文样式主题](https://github.com/Keldos-Li/typora-latex-theme) 7 | - [latex-templates](https://github.com/hantang/latex-templates) 8 | - [Latex 常见的数学符号](./symbols.pdf) 9 | - [awesome-latex-drawing](https://github.com/xinychen/awesome-latex-drawing): Drawing Bayesian networks, graphical models, tensors, technical frameworks, and illustrations in LaTeX. 10 | - LaTeX教程,篇幅较大,但是好用:\[[官网](https://ctan.org/tex-archive/info/lshort/chinese)\]\[[镜像](http://mirrors.cqu.edu.cn/CTAN/info/lshort/chinese/lshort-zh-cn.pdf)\]\[[Github](https://github.com/CTeX-org/lshort-zh-cn)\] 11 | - \\(\LaTeX\\) 在线表格生成工具:\[[工具1](https://www.tablesgenerator.com/)\] \[[工具2](https://www.latex-tables.com/)\] 12 | 13 | ## LaTex Beamer tutorial 14 | - [A simple guide to Beamer– Step by Step](https://latex-beamer.com/tutorials/) 15 | - [Beamer v3.0 指南](http://static.latexstudio.net/wp-content/uploads/2014/12/beamer_guide-cnbyl00l.pdf) 16 | 17 | # Markdown 18 | - [Markdown 基本语法](https://markdown.com.cn/basic-syntax/) 19 | - [Markdown 基本语法](https://github.com/guodongxiaren/README):README文件语法解读,即Github Flavored Markdown语法介绍 20 | - [Github Star历史](https://star-history.com/) 21 | - [静态徽章绘制](https://shields.io/badges) 22 | - [Markdown emoji cheatsheet](https://www.webfx.com/tools/emoji-cheat-sheet/) 23 | - [moffee](https://github.com/BMPixel/moffee): moffee: Make Markdown Ready to Present 24 | -------------------------------------------------------------------------------- /src/writing/resume.md: -------------------------------------------------------------------------------- 1 | # CV & Resume 2 | 3 | - [Awesome Resume for Chinese](https://github.com/dyweb/awesome-resume-for-chinese) 4 | - [cv_emuluate](https://github.com/hongtaoh/cv_emulate): Academic CVs that you can (hopefully) emulate 5 | - [Awesome-CV](https://github.com/posquit0/Awesome-CV): 📄 Awesome CV is LaTeX template for your outstanding job application 6 | -------------------------------------------------------------------------------- /src/writing/symbols.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CS-BAOYAN/CSBasicKnowledge/b32a095c631d815c01d00a1a390701a3a6751f57/src/writing/symbols.pdf -------------------------------------------------------------------------------- /src/writing/typst.md: -------------------------------------------------------------------------------- 1 | # Typst 2 | 3 | - [Typst Web App](https://typst.app/) 4 | - [Typst官方文档](https://typst.app/docs/) 5 | - [Typst Github Repo](https://github.com/typst/typst/) 6 | - [Typst sildes:polylux](https://polylux.dev/book/polylux.html) 7 | - [Awesome Typst 中文版](https://github.com/qjcg/awesome-typst/blob/main/README_ZH.md) 8 | - [Typst非官方的中文文档](https://typst-doc-cn.github.io/docs/) 9 | - [brilliant-CV](https://github.com/mintyfrankie/brilliant-CV): 💼 another CV template for your job application, yet powered by Typst and more 10 | -------------------------------------------------------------------------------- /src/writing/writing.md: -------------------------------------------------------------------------------- 1 | 本章节包含与写作有关的知识,欢迎大佬补充。 -------------------------------------------------------------------------------- /如何设置代理.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CS-BAOYAN/CSBasicKnowledge/b32a095c631d815c01d00a1a390701a3a6751f57/如何设置代理.pdf -------------------------------------------------------------------------------- /论文粗读攻略.md: -------------------------------------------------------------------------------- 1 | ## 原始积累 2 | 3 | 首先先积累一些基础知识,比如说一些经典的网络架构,比如说经典的 transformer,然后以及各个大的领域主要 focus 的东西,包括说一些这方面比较经典的绝活,诸如对比学习里的那个 InstDisc 等等。 4 | 5 | ## 认祖归宗 6 | 7 | 首先问一问老师,看看自己做的这个领域有没有经典文章,也就是一些老祖宗级别的 baseline,比如说我有读过 mean teacher,在半监督领域挺知名的,这类论文的一个特点是,你去最新的论文的 introduction 里面转一圈,基本还会提到它们。 8 | 9 | 这些论文的思想都是十分实用的,了解这些论文算是进阶版的知识积累。一个“稳啦”的开局是,有大佬做过相关的综述或者论文串讲,别找比较野鸡的,对于方法的故事后面真正 work 的东西是什么有了解很重要。 10 | 11 | ## GPT,启动! 12 | 13 | 接下来你终于来到了论文粗度的起点,所以说还不快去注册一个 gpt,为了以防有打广告的嫌疑,仅是提一嘴,假如觉得注册很麻烦,买一个号很方便的,几块钱就够,被封了大不了再买一个。 14 | 15 | 一般来说,我们认为中文的知识密度是大于英文的,而且作为母语,也比较好理解。 16 | 17 | 直接全部复制摘要,问 GPT,翻译以下内容,然后你就知道它干了什么。甚至因为排版的问题,可能你直接复制会有一定乱的格式,都不用管,gpt can handle this。摘要是一篇文章的精华,告诉了你他们的 work 是什么。 18 | 19 | 之后看 introduction,作为一个领域刚刚入门的人,可以进行一个迭代学习,看到不会的之前的工作,向前回溯,introduction 是论文的故事在的地方,看看可以知道这篇工作的故事走向,可以信一部分,但别完全信。 20 | 21 | 之后跳到 discussions,老规矩继续 gpt 翻译,不会的东西先问 gpt,再查网上,毕竟都到论文了,网上的东西只会越来越少,尤其是一些下游任务,和它聊久了你就能感觉出来它有什么东西讲的很确信,有什么是在瞎扯。 22 | 23 | 这时候你已经读完论文了,你可以大言不惭的说你读完了,但是假如说你觉得这个工作很吸引你,那就继续看,related works 就是一个小综述,看看总没坏处,万一写得很好呢。 24 | 25 | 之后 method 里面别管方法的名字,看这些公式的本质,实在不行问问 gpt 或者去查查,说不定这个方法只是之前的一个别的方法的翻版,毕竟 MLP 都可以叫做 predictor,方法的名字取决于故事,但是它为什么 work,你可能需要自己想一想自己的理解,捋一下数据在它的 pipeline 图里的流向。 26 | 27 | 在之后,在 experiment 里面主要关注消融实验,方法对比主要是秀肌肉,消融实验能告诉你它可能提出的三五种策略组合起来之后,哪些 work 了。 28 | 29 | 这样你就彻底读完一篇论文了,它具体有没有前景你的心里也已经有数了。 30 | 31 | ## 润一下源码 32 | 33 | 接下来你要是想要去做,和老师谈一谈,然后找到它的代码,作为新手,还是建议大家找有源码的论文,在上面做拓展也方便,不懂的地方依然 gpt 解决,直接每个文件 `ctrl+A` 全部复制,或者分段复制,让 gpt 加中文注释或者简要解释每个函数的功能,之后 `tree` 一下,也给 gpt,方便 gpt 理解一切。 34 | 35 | 代码也是讲究一个跑通就好,看看上面的 args 里面都有啥,然后看看 dataloader 这部分的循环里面怎么训练的,假如有实现一个 module,看看里面的结构,像是数据处理之类的就不用管了,主要看 idea 是怎么实现的,至于怎么读,这里我要提一个人类的好朋友,gpt...... 36 | 37 | 以上,当然,也不难发现,最重要的是成为一个 gpt chater,每一个人一天和 gpt 说话少于 20 句,都是摸鱼的一天。 38 | 39 | Version 0.0.1 --------------------------------------------------------------------------------