├── .gitignore
├── LICENSE
├── README.md
├── data
├── kitti
│ └── ImageSets
│ │ ├── test.txt
│ │ ├── train.txt
│ │ └── val.txt
├── lyft
│ └── ImageSets
│ │ ├── test.txt
│ │ ├── train.txt
│ │ └── val.txt
└── waymo
│ └── ImageSets
│ ├── train.txt
│ └── val.txt
├── docs
├── DEMO.md
├── GETTING_STARTED.md
├── INSTALL.md
├── dataset_vs_model.png
├── demo.png
├── model_framework.png
├── multiple_models_demo.png
└── open_mmlab.png
├── pcdet
├── __init__.py
├── config.py
├── datasets
│ ├── __init__.py
│ ├── augmentor
│ │ ├── __init__.py
│ │ ├── augmentor_utils.py
│ │ ├── data_augmentor.py
│ │ └── database_sampler.py
│ ├── dataset.py
│ ├── kitti
│ │ ├── __init__.py
│ │ ├── kitti_dataset.py
│ │ ├── kitti_object_eval_python
│ │ │ ├── LICENSE
│ │ │ ├── README.md
│ │ │ ├── __init__.py
│ │ │ ├── eval.py
│ │ │ ├── evaluate.py
│ │ │ ├── kitti_common.py
│ │ │ └── rotate_iou.py
│ │ └── kitti_utils.py
│ ├── lyft
│ │ ├── __init__.py
│ │ ├── lyft_dataset.py
│ │ ├── lyft_mAP_eval
│ │ │ ├── __init__.py
│ │ │ └── lyft_eval.py
│ │ └── lyft_utils.py
│ ├── nuscenes
│ │ ├── __init__.py
│ │ ├── nuscenes_dataset.py
│ │ └── nuscenes_utils.py
│ ├── pandaset
│ │ ├── __init__.py
│ │ └── pandaset_dataset.py
│ ├── processor
│ │ ├── __init__.py
│ │ ├── data_processor.py
│ │ └── point_feature_encoder.py
│ └── waymo
│ │ ├── __init__.py
│ │ ├── waymo_dataset.py
│ │ ├── waymo_eval.py
│ │ └── waymo_utils.py
├── models
│ ├── __init__.py
│ ├── backbones_2d
│ │ ├── __init__.py
│ │ ├── base_bev_backbone.py
│ │ └── map_to_bev
│ │ │ ├── __init__.py
│ │ │ ├── conv2d_collapse.py
│ │ │ ├── height_compression.py
│ │ │ └── pointpillar_scatter.py
│ ├── backbones_3d
│ │ ├── __init__.py
│ │ ├── focal_loss.py
│ │ ├── pfe
│ │ │ ├── __init__.py
│ │ │ └── voxel_set_abstraction.py
│ │ ├── pointnet2_backbone.py
│ │ ├── spconv_backbone.py
│ │ ├── spconv_backbone_pruning.py
│ │ ├── spconv_unet.py
│ │ └── vfe
│ │ │ ├── __init__.py
│ │ │ ├── dynamic_mean_vfe.py
│ │ │ ├── dynamic_pillar_vfe.py
│ │ │ ├── image_vfe.py
│ │ │ ├── image_vfe_modules
│ │ │ ├── __init__.py
│ │ │ ├── f2v
│ │ │ │ ├── __init__.py
│ │ │ │ ├── frustum_grid_generator.py
│ │ │ │ ├── frustum_to_voxel.py
│ │ │ │ └── sampler.py
│ │ │ └── ffn
│ │ │ │ ├── __init__.py
│ │ │ │ ├── ddn
│ │ │ │ ├── __init__.py
│ │ │ │ ├── ddn_deeplabv3.py
│ │ │ │ └── ddn_template.py
│ │ │ │ ├── ddn_loss
│ │ │ │ ├── __init__.py
│ │ │ │ ├── balancer.py
│ │ │ │ └── ddn_loss.py
│ │ │ │ └── depth_ffn.py
│ │ │ ├── mean_vfe.py
│ │ │ ├── pillar_vfe.py
│ │ │ └── vfe_template.py
│ ├── dense_heads
│ │ ├── __init__.py
│ │ ├── anchor_head_multi.py
│ │ ├── anchor_head_single.py
│ │ ├── anchor_head_template.py
│ │ ├── center_head.py
│ │ ├── point_head_box.py
│ │ ├── point_head_simple.py
│ │ ├── point_head_template.py
│ │ ├── point_intra_part_head.py
│ │ └── target_assigner
│ │ │ ├── __init__.py
│ │ │ ├── anchor_generator.py
│ │ │ ├── atss_target_assigner.py
│ │ │ └── axis_aligned_target_assigner.py
│ ├── detectors
│ │ ├── PartA2_net.py
│ │ ├── __init__.py
│ │ ├── caddn.py
│ │ ├── centerpoint.py
│ │ ├── detector3d_template.py
│ │ ├── point_rcnn.py
│ │ ├── pointpillar.py
│ │ ├── pv_rcnn.py
│ │ ├── pv_rcnn_plusplus.py
│ │ ├── second_net.py
│ │ ├── second_net_iou.py
│ │ └── voxel_rcnn.py
│ ├── model_utils
│ │ ├── __init__.py
│ │ ├── basic_block_2d.py
│ │ ├── centernet_utils.py
│ │ ├── flops_utils.py
│ │ ├── model_nms_utils.py
│ │ ├── pruning_block.py
│ │ └── split_voxels.py
│ └── roi_heads
│ │ ├── __init__.py
│ │ ├── partA2_head.py
│ │ ├── pointrcnn_head.py
│ │ ├── pvrcnn_head.py
│ │ ├── roi_head_template.py
│ │ ├── second_head.py
│ │ ├── target_assigner
│ │ ├── __init__.py
│ │ └── proposal_target_layer.py
│ │ └── voxelrcnn_head.py
├── ops
│ ├── iou3d_nms
│ │ ├── iou3d_nms_utils.py
│ │ └── src
│ │ │ ├── iou3d_cpu.cpp
│ │ │ ├── iou3d_cpu.h
│ │ │ ├── iou3d_nms.cpp
│ │ │ ├── iou3d_nms.h
│ │ │ ├── iou3d_nms_api.cpp
│ │ │ └── iou3d_nms_kernel.cu
│ ├── pointnet2
│ │ ├── pointnet2_batch
│ │ │ ├── pointnet2_modules.py
│ │ │ ├── pointnet2_utils.py
│ │ │ └── src
│ │ │ │ ├── ball_query.cpp
│ │ │ │ ├── ball_query_gpu.cu
│ │ │ │ ├── ball_query_gpu.h
│ │ │ │ ├── cuda_utils.h
│ │ │ │ ├── group_points.cpp
│ │ │ │ ├── group_points_gpu.cu
│ │ │ │ ├── group_points_gpu.h
│ │ │ │ ├── interpolate.cpp
│ │ │ │ ├── interpolate_gpu.cu
│ │ │ │ ├── interpolate_gpu.h
│ │ │ │ ├── pointnet2_api.cpp
│ │ │ │ ├── sampling.cpp
│ │ │ │ ├── sampling_gpu.cu
│ │ │ │ └── sampling_gpu.h
│ │ └── pointnet2_stack
│ │ │ ├── pointnet2_modules.py
│ │ │ ├── pointnet2_utils.py
│ │ │ ├── src
│ │ │ ├── ball_query.cpp
│ │ │ ├── ball_query_gpu.cu
│ │ │ ├── ball_query_gpu.h
│ │ │ ├── cuda_utils.h
│ │ │ ├── group_points.cpp
│ │ │ ├── group_points_gpu.cu
│ │ │ ├── group_points_gpu.h
│ │ │ ├── interpolate.cpp
│ │ │ ├── interpolate_gpu.cu
│ │ │ ├── interpolate_gpu.h
│ │ │ ├── pointnet2_api.cpp
│ │ │ ├── sampling.cpp
│ │ │ ├── sampling_gpu.cu
│ │ │ ├── sampling_gpu.h
│ │ │ ├── vector_pool.cpp
│ │ │ ├── vector_pool_gpu.cu
│ │ │ ├── vector_pool_gpu.h
│ │ │ ├── voxel_query.cpp
│ │ │ ├── voxel_query_gpu.cu
│ │ │ └── voxel_query_gpu.h
│ │ │ ├── voxel_pool_modules.py
│ │ │ └── voxel_query_utils.py
│ ├── roiaware_pool3d
│ │ ├── roiaware_pool3d_utils.py
│ │ └── src
│ │ │ ├── roiaware_pool3d.cpp
│ │ │ └── roiaware_pool3d_kernel.cu
│ └── roipoint_pool3d
│ │ ├── roipoint_pool3d_utils.py
│ │ └── src
│ │ ├── roipoint_pool3d.cpp
│ │ └── roipoint_pool3d_kernel.cu
└── utils
│ ├── __init__.py
│ ├── box_coder_utils.py
│ ├── box_utils.py
│ ├── calibration_kitti.py
│ ├── common_utils.py
│ ├── commu_utils.py
│ ├── loss_utils.py
│ ├── object3d_kitti.py
│ ├── spconv_utils.py
│ └── transform_utils.py
├── pic
└── method.png
├── requirements.txt
├── setup.py
└── tools
├── _init_path.py
├── cfgs
├── dataset_configs
│ ├── kitti_dataset.yaml
│ ├── lyft_dataset.yaml
│ ├── nuscenes_dataset.yaml
│ ├── pandaset_dataset.yaml
│ └── waymo_dataset.yaml
├── kitti_models
│ ├── CaDDN.yaml
│ ├── PartA2.yaml
│ ├── PartA2_free.yaml
│ ├── pointpillar.yaml
│ ├── pointpillar_newaugs.yaml
│ ├── pointpillar_pyramid_aug.yaml
│ ├── pointrcnn.yaml
│ ├── pointrcnn_iou.yaml
│ ├── pv_rcnn.yaml
│ ├── second.yaml
│ ├── second_iou.yaml
│ ├── second_multihead.yaml
│ ├── voxel_rcnn_car.yaml
│ └── voxel_rcnn_car_spss_ratio0.5_sprs_ratio0.5.yaml
├── lyft_models
│ ├── cbgs_second-nores_multihead.yaml
│ └── cbgs_second_multihead.yaml
├── nuscenes_models
│ ├── cbgs_dyn_pp_centerpoint.yaml
│ ├── cbgs_pp_multihead.yaml
│ ├── cbgs_second_multihead.yaml
│ ├── cbgs_voxel0075_res3d_centerpoint.yaml
│ ├── cbgs_voxel0075_res3d_centerpoint_spss_ratio0.3_sprs_ratio0.5.yaml
│ └── cbgs_voxel0075_res3d_centerpoint_spss_ratio0.5_sprs_ratio0.5.yaml
└── waymo_models
│ ├── PartA2.yaml
│ ├── centerpoint.yaml
│ ├── centerpoint_dyn_pillar_1x.yaml
│ ├── centerpoint_pillar_1x.yaml
│ ├── centerpoint_spss_ratio0.3_sprs_ratio0.5.yaml
│ ├── centerpoint_spss_ratio0.5_sprs_ratio0.5.yaml
│ ├── centerpoint_without_resnet.yaml
│ ├── pointpillar_1x.yaml
│ ├── pv_rcnn.yaml
│ ├── pv_rcnn_plusplus.yaml
│ ├── pv_rcnn_plusplus_resnet.yaml
│ ├── pv_rcnn_with_centerhead_rpn.yaml
│ ├── second.yaml
│ └── voxel_rcnn_with_centerhead_dyn_voxel.yaml
├── demo.py
├── eval_utils
└── eval_utils.py
├── scripts
├── dist_test.sh
├── dist_train.sh
├── slurm_test_mgpu.sh
├── slurm_test_single.sh
├── slurm_train.sh
└── torch_train.sh
├── test.py
├── train.py
├── train_utils
├── optimization
│ ├── __init__.py
│ ├── fastai_optim.py
│ └── learning_schedules_fastai.py
└── train_utils.py
└── visual_utils
├── open3d_vis_utils.py
└── visualize_utils.py
/.gitignore:
--------------------------------------------------------------------------------
1 | **__pycache__**
2 | **build**
3 | **egg-info**
4 | **dist**
5 | data/
6 | *.pyc
7 | venv/
8 | *.idea/
9 | *.so
10 | *.pth
11 | *.pkl
12 | *.zip
13 | *.bin
14 | output
15 | version.py
16 | .DS_Store
--------------------------------------------------------------------------------
/data/lyft/ImageSets/val.txt:
--------------------------------------------------------------------------------
1 | host-a004-lidar0-1233080749298771736-1233080774198118416
2 | host-a004-lidar0-1232905197298264546-1232905222198133856
3 | host-a011-lidar0-1232732468299489666-1232732493199050666
4 | host-a101-lidar0-1241561147998866622-1241561172899320654
5 | host-a006-lidar0-1237322885198285226-1237322910098576786
6 | host-a004-lidar0-1233963848198981116-1233963873098642176
7 | host-a011-lidar0-1232752543198025666-1232752568099126026
8 | host-a004-lidar0-1232842367198056546-1232842392097783226
9 | host-a004-lidar0-1233615989298293586-1233616014198854636
10 | host-a011-lidar0-1233965426299054906-1233965451199121906
11 | host-a011-lidar0-1236104034298928316-1236104059198988026
12 | host-a007-lidar0-1233946614199227636-1233946639098289666
13 | host-a015-lidar0-1235423696198069636-1235423721098551296
14 | host-a004-lidar0-1233014843199117706-1233014868098023786
15 | host-a011-lidar0-1236093962299300416-1236093987199363346
16 | host-a011-lidar0-1234639296198260986-1234639321099417316
17 | host-a011-lidar0-1233524871199389346-1233524896098591466
18 | host-a011-lidar0-1235933781298838116-1235933806199517736
19 | host-a011-lidar0-1233965312298542226-1233965337198958586
20 | host-a011-lidar0-1233090567199118316-1233090592098933996
21 | host-a007-lidar0-1233621256298511876-1233621281197988026
22 | host-a007-lidar0-1233079617197863906-1233079642098533586
23 | host-a015-lidar0-1236112516098396876-1236112540999028556
24 | host-a008-lidar0-1236016333197799906-1236016358099063636
25 | host-a101-lidar0-1240710366399037786-1240710391298976894
26 | host-a102-lidar0-1242755350298764586-1242755375198787666
27 | host-a101-lidar0-1240877587199107226-1240877612099413030
28 | host-a101-lidar0-1242583745399163026-1242583770298821706
29 | host-a011-lidar0-1232817034199342856-1232817059098800346
30 | host-a004-lidar0-1232905117299287546-1232905142198246226
--------------------------------------------------------------------------------
/docs/DEMO.md:
--------------------------------------------------------------------------------
1 | # Quick Demo
2 |
3 | Here we provide a quick demo to test a pretrained model on the custom point cloud data and visualize the predicted results.
4 |
5 | We suppose you already followed the [INSTALL.md](INSTALL.md) to install the `OpenPCDet` repo successfully.
6 |
7 | 1. Download the provided pretrained models as shown in the [README.md](../README.md).
8 |
9 | 2. Make sure you have already installed the [`Open3D`](https://github.com/isl-org/Open3D) (faster) or `mayavi` visualization tools.
10 | If not, you could install it as follows:
11 | ```
12 | pip install open3d
13 | # or
14 | pip install mayavi
15 | ```
16 |
17 | 3. Prepare your custom point cloud data (skip this step if you use the original KITTI data).
18 | * You need to transform the coordinate of your custom point cloud to
19 | the unified normative coordinate of `OpenPCDet`, that is, x-axis points towards to front direction,
20 | y-axis points towards to the left direction, and z-axis points towards to the top direction.
21 | * (Optional) the z-axis origin of your point cloud coordinate should be about 1.6m above the ground surface,
22 | since currently the provided models are trained on the KITTI dataset.
23 | * Set the intensity information, and save your transformed custom data to `numpy file`:
24 | ```python
25 | # Transform your point cloud data
26 | ...
27 |
28 | # Save it to the file.
29 | # The shape of points should be (num_points, 4), that is [x, y, z, intensity] (Only for KITTI dataset).
30 | # If you doesn't have the intensity information, just set them to zeros.
31 | # If you have the intensity information, you should normalize them to [0, 1].
32 | points[:, 3] = 0
33 | np.save(`my_data.npy`, points)
34 | ```
35 |
36 | 4. Run the demo with a pretrained model (e.g. PV-RCNN) and your custom point cloud data as follows:
37 | ```shell
38 | python demo.py --cfg_file cfgs/kitti_models/pv_rcnn.yaml \
39 | --ckpt pv_rcnn_8369.pth \
40 | --data_path ${POINT_CLOUD_DATA}
41 | ```
42 | Here `${POINT_CLOUD_DATA}` could be in any of the following format:
43 | * Your transformed custom data with a single numpy file like `my_data.npy`.
44 | * Your transformed custom data with a directory to test with multiple point cloud data.
45 | * The original KITTI `.bin` data within `data/kitti`, like `data/kitti/training/velodyne/000008.bin`.
46 |
47 | Then you could see the predicted results with visualized point cloud as follows:
48 |
49 |
50 |
51 |
52 |
--------------------------------------------------------------------------------
/docs/INSTALL.md:
--------------------------------------------------------------------------------
1 | # Installation
2 |
3 | ### Requirements
4 | All the codes are tested in the following environment:
5 | * Linux (tested on Ubuntu 14.04/16.04/18.04/20.04/21.04)
6 | * Python 3.6+
7 | * PyTorch 1.1 or higher (tested on PyTorch 1.1, 1,3, 1,5~1.10)
8 | * CUDA 9.0 or higher (PyTorch 1.3+ needs CUDA 9.2+)
9 | * [`spconv v1.0 (commit 8da6f96)`](https://github.com/traveller59/spconv/tree/8da6f967fb9a054d8870c3515b1b44eca2103634) or [`spconv v1.2`](https://github.com/traveller59/spconv) or [`spconv v2.x`](https://github.com/traveller59/spconv)
10 |
11 |
12 | ### Install `pcdet v0.5`
13 | NOTE: Please re-install `pcdet v0.5` by running `python setup.py develop` even if you have already installed previous version.
14 |
15 | a. Clone this repository.
16 | ```shell
17 | git clone https://github.com/open-mmlab/OpenPCDet.git
18 | ```
19 |
20 | b. Install the dependent libraries as follows:
21 |
22 | [comment]: <> (* Install the dependent python libraries: )
23 |
24 | [comment]: <> (```)
25 |
26 | [comment]: <> (pip install -r requirements.txt )
27 |
28 | [comment]: <> (```)
29 |
30 | * Install the SparseConv library, we use the implementation from [`[spconv]`](https://github.com/traveller59/spconv).
31 | * If you use PyTorch 1.1, then make sure you install the `spconv v1.0` with ([commit 8da6f96](https://github.com/traveller59/spconv/tree/8da6f967fb9a054d8870c3515b1b44eca2103634)) instead of the latest one.
32 | * If you use PyTorch 1.3+, then you need to install the `spconv v1.2`. As mentioned by the author of [`spconv`](https://github.com/traveller59/spconv), you need to use their docker if you use PyTorch 1.4+.
33 | * You could also install latest `spconv v2.x` with pip, see the official documents of [spconv](https://github.com/traveller59/spconv).
34 |
35 | c. Install this `pcdet` library and its dependent libraries by running the following command:
36 | ```shell
37 | python setup.py develop
38 | ```
39 |
--------------------------------------------------------------------------------
/docs/dataset_vs_model.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/docs/dataset_vs_model.png
--------------------------------------------------------------------------------
/docs/demo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/docs/demo.png
--------------------------------------------------------------------------------
/docs/model_framework.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/docs/model_framework.png
--------------------------------------------------------------------------------
/docs/multiple_models_demo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/docs/multiple_models_demo.png
--------------------------------------------------------------------------------
/docs/open_mmlab.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/docs/open_mmlab.png
--------------------------------------------------------------------------------
/pcdet/__init__.py:
--------------------------------------------------------------------------------
1 | import subprocess
2 | from pathlib import Path
3 |
4 | from .version import __version__
5 |
6 | __all__ = [
7 | '__version__'
8 | ]
9 |
10 |
11 | def get_git_commit_number():
12 | if not (Path(__file__).parent / '../.git').exists():
13 | return '0000000'
14 |
15 | cmd_out = subprocess.run(['git', 'rev-parse', 'HEAD'], stdout=subprocess.PIPE)
16 | git_commit_number = cmd_out.stdout.decode('utf-8')[:7]
17 | return git_commit_number
18 |
19 |
20 | script_version = get_git_commit_number()
21 |
22 |
23 | if script_version not in __version__:
24 | __version__ = __version__ + '+py%s' % script_version
25 |
--------------------------------------------------------------------------------
/pcdet/config.py:
--------------------------------------------------------------------------------
1 | from pathlib import Path
2 |
3 | import yaml
4 | from easydict import EasyDict
5 |
6 |
7 | def log_config_to_file(cfg, pre='cfg', logger=None):
8 | for key, val in cfg.items():
9 | if isinstance(cfg[key], EasyDict):
10 | logger.info('\n%s.%s = edict()' % (pre, key))
11 | log_config_to_file(cfg[key], pre=pre + '.' + key, logger=logger)
12 | continue
13 | logger.info('%s.%s: %s' % (pre, key, val))
14 |
15 |
16 | def cfg_from_list(cfg_list, config):
17 | """Set config keys via list (e.g., from command line)."""
18 | from ast import literal_eval
19 | assert len(cfg_list) % 2 == 0
20 | for k, v in zip(cfg_list[0::2], cfg_list[1::2]):
21 | key_list = k.split('.')
22 | d = config
23 | for subkey in key_list[:-1]:
24 | assert subkey in d, 'NotFoundKey: %s' % subkey
25 | d = d[subkey]
26 | subkey = key_list[-1]
27 | assert subkey in d, 'NotFoundKey: %s' % subkey
28 | try:
29 | value = literal_eval(v)
30 | except:
31 | value = v
32 |
33 | if type(value) != type(d[subkey]) and isinstance(d[subkey], EasyDict):
34 | key_val_list = value.split(',')
35 | for src in key_val_list:
36 | cur_key, cur_val = src.split(':')
37 | val_type = type(d[subkey][cur_key])
38 | cur_val = val_type(cur_val)
39 | d[subkey][cur_key] = cur_val
40 | elif type(value) != type(d[subkey]) and isinstance(d[subkey], list):
41 | val_list = value.split(',')
42 | for k, x in enumerate(val_list):
43 | val_list[k] = type(d[subkey][0])(x)
44 | d[subkey] = val_list
45 | else:
46 | assert type(value) == type(d[subkey]), \
47 | 'type {} does not match original type {}'.format(type(value), type(d[subkey]))
48 | d[subkey] = value
49 |
50 |
51 | def merge_new_config(config, new_config):
52 | if '_BASE_CONFIG_' in new_config:
53 | with open(new_config['_BASE_CONFIG_'], 'r') as f:
54 | try:
55 | yaml_config = yaml.safe_load(f, Loader=yaml.FullLoader)
56 | except:
57 | yaml_config = yaml.safe_load(f)
58 | config.update(EasyDict(yaml_config))
59 |
60 | for key, val in new_config.items():
61 | if not isinstance(val, dict):
62 | config[key] = val
63 | continue
64 | if key not in config:
65 | config[key] = EasyDict()
66 | merge_new_config(config[key], val)
67 |
68 | return config
69 |
70 |
71 | def cfg_from_yaml_file(cfg_file, config):
72 | with open(cfg_file, 'r') as f:
73 | try:
74 | new_config = yaml.safe_load(f, Loader=yaml.FullLoader)
75 | except:
76 | new_config = yaml.safe_load(f)
77 |
78 | merge_new_config(config=config, new_config=new_config)
79 |
80 | return config
81 |
82 |
83 | cfg = EasyDict()
84 | cfg.ROOT_DIR = (Path(__file__).resolve().parent / '../').resolve()
85 | cfg.LOCAL_RANK = 0
86 |
--------------------------------------------------------------------------------
/pcdet/datasets/__init__.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.utils.data import DataLoader
3 | from torch.utils.data import DistributedSampler as _DistributedSampler
4 |
5 | from pcdet.utils import common_utils
6 |
7 | from .dataset import DatasetTemplate
8 | from .kitti.kitti_dataset import KittiDataset
9 | from .nuscenes.nuscenes_dataset import NuScenesDataset
10 | from .waymo.waymo_dataset import WaymoDataset
11 | from .pandaset.pandaset_dataset import PandasetDataset
12 | from .lyft.lyft_dataset import LyftDataset
13 |
14 | __all__ = {
15 | 'DatasetTemplate': DatasetTemplate,
16 | 'KittiDataset': KittiDataset,
17 | 'NuScenesDataset': NuScenesDataset,
18 | 'WaymoDataset': WaymoDataset,
19 | 'PandasetDataset': PandasetDataset,
20 | 'LyftDataset': LyftDataset
21 | }
22 |
23 |
24 | class DistributedSampler(_DistributedSampler):
25 |
26 | def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
27 | super().__init__(dataset, num_replicas=num_replicas, rank=rank)
28 | self.shuffle = shuffle
29 |
30 | def __iter__(self):
31 | if self.shuffle:
32 | g = torch.Generator()
33 | g.manual_seed(self.epoch)
34 | indices = torch.randperm(len(self.dataset), generator=g).tolist()
35 | else:
36 | indices = torch.arange(len(self.dataset)).tolist()
37 |
38 | indices += indices[:(self.total_size - len(indices))]
39 | assert len(indices) == self.total_size
40 |
41 | indices = indices[self.rank:self.total_size:self.num_replicas]
42 | assert len(indices) == self.num_samples
43 |
44 | return iter(indices)
45 |
46 |
47 | def build_dataloader(dataset_cfg, class_names, batch_size, dist, root_path=None, workers=4,
48 | logger=None, training=True, merge_all_iters_to_one_epoch=False, total_epochs=0):
49 |
50 | dataset = __all__[dataset_cfg.DATASET](
51 | dataset_cfg=dataset_cfg,
52 | class_names=class_names,
53 | root_path=root_path,
54 | training=training,
55 | logger=logger,
56 | )
57 |
58 | if merge_all_iters_to_one_epoch:
59 | assert hasattr(dataset, 'merge_all_iters_to_one_epoch')
60 | dataset.merge_all_iters_to_one_epoch(merge=True, epochs=total_epochs)
61 |
62 | if dist:
63 | if training:
64 | sampler = torch.utils.data.distributed.DistributedSampler(dataset)
65 | else:
66 | rank, world_size = common_utils.get_dist_info()
67 | sampler = DistributedSampler(dataset, world_size, rank, shuffle=False)
68 | else:
69 | sampler = None
70 | dataloader = DataLoader(
71 | dataset, batch_size=batch_size, pin_memory=True, num_workers=workers,
72 | shuffle=(sampler is None) and training, collate_fn=dataset.collate_batch,
73 | drop_last=False, sampler=sampler, timeout=0
74 | )
75 |
76 | return dataset, dataloader, sampler
77 |
--------------------------------------------------------------------------------
/pcdet/datasets/augmentor/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/datasets/augmentor/__init__.py
--------------------------------------------------------------------------------
/pcdet/datasets/kitti/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/datasets/kitti/__init__.py
--------------------------------------------------------------------------------
/pcdet/datasets/kitti/kitti_object_eval_python/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2018
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/pcdet/datasets/kitti/kitti_object_eval_python/README.md:
--------------------------------------------------------------------------------
1 | # kitti-object-eval-python
2 | **Note**: This is borrowed from [traveller59/kitti-object-eval-python](https://github.com/traveller59/kitti-object-eval-python)
3 |
4 | Fast kitti object detection eval in python(finish eval in less than 10 second), support 2d/bev/3d/aos. , support coco-style AP. If you use command line interface, numba need some time to compile jit functions.
5 | ## Dependencies
6 | Only support python 3.6+, need `numpy`, `skimage`, `numba`, `fire`. If you have Anaconda, just install `cudatoolkit` in anaconda. Otherwise, please reference to this [page](https://github.com/numba/numba#custom-python-environments) to set up llvm and cuda for numba.
7 | * Install by conda:
8 | ```
9 | conda install -c numba cudatoolkit=x.x (8.0, 9.0, 9.1, depend on your environment)
10 | ```
11 | ## Usage
12 | * commandline interface:
13 | ```
14 | python evaluate.py evaluate --label_path=/path/to/your_gt_label_folder --result_path=/path/to/your_result_folder --label_split_file=/path/to/val.txt --current_class=0 --coco=False
15 | ```
16 | * python interface:
17 | ```Python
18 | import kitti_common as kitti
19 | from eval import get_official_eval_result, get_coco_eval_result
20 | def _read_imageset_file(path):
21 | with open(path, 'r') as f:
22 | lines = f.readlines()
23 | return [int(line) for line in lines]
24 | det_path = "/path/to/your_result_folder"
25 | dt_annos = kitti.get_label_annos(det_path)
26 | gt_path = "/path/to/your_gt_label_folder"
27 | gt_split_file = "/path/to/val.txt" # from https://xiaozhichen.github.io/files/mv3d/imagesets.tar.gz
28 | val_image_ids = _read_imageset_file(gt_split_file)
29 | gt_annos = kitti.get_label_annos(gt_path, val_image_ids)
30 | print(get_official_eval_result(gt_annos, dt_annos, 0)) # 6s in my computer
31 | print(get_coco_eval_result(gt_annos, dt_annos, 0)) # 18s in my computer
32 | ```
33 |
--------------------------------------------------------------------------------
/pcdet/datasets/kitti/kitti_object_eval_python/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/datasets/kitti/kitti_object_eval_python/__init__.py
--------------------------------------------------------------------------------
/pcdet/datasets/kitti/kitti_object_eval_python/evaluate.py:
--------------------------------------------------------------------------------
1 | import time
2 |
3 | import fire
4 |
5 | import .kitti_common as kitti
6 | from .eval import get_coco_eval_result, get_official_eval_result
7 |
8 |
9 | def _read_imageset_file(path):
10 | with open(path, 'r') as f:
11 | lines = f.readlines()
12 | return [int(line) for line in lines]
13 |
14 |
15 | def evaluate(label_path,
16 | result_path,
17 | label_split_file,
18 | current_class=0,
19 | coco=False,
20 | score_thresh=-1):
21 | dt_annos = kitti.get_label_annos(result_path)
22 | if score_thresh > 0:
23 | dt_annos = kitti.filter_annos_low_score(dt_annos, score_thresh)
24 | val_image_ids = _read_imageset_file(label_split_file)
25 | gt_annos = kitti.get_label_annos(label_path, val_image_ids)
26 | if coco:
27 | return get_coco_eval_result(gt_annos, dt_annos, current_class)
28 | else:
29 | return get_official_eval_result(gt_annos, dt_annos, current_class)
30 |
31 |
32 | if __name__ == '__main__':
33 | fire.Fire()
34 |
--------------------------------------------------------------------------------
/pcdet/datasets/kitti/kitti_utils.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from ...utils import box_utils
3 |
4 |
5 | def transform_annotations_to_kitti_format(annos, map_name_to_kitti=None, info_with_fakelidar=False):
6 | """
7 | Args:
8 | annos:
9 | map_name_to_kitti: dict, map name to KITTI names (Car, Pedestrian, Cyclist)
10 | info_with_fakelidar:
11 | Returns:
12 |
13 | """
14 | for anno in annos:
15 | # For lyft and nuscenes, different anno key in info
16 | if 'name' not in anno:
17 | anno['name'] = anno['gt_names']
18 | anno.pop('gt_names')
19 |
20 | for k in range(anno['name'].shape[0]):
21 | anno['name'][k] = map_name_to_kitti[anno['name'][k]]
22 |
23 | anno['bbox'] = np.zeros((len(anno['name']), 4))
24 | anno['bbox'][:, 2:4] = 50 # [0, 0, 50, 50]
25 | anno['truncated'] = np.zeros(len(anno['name']))
26 | anno['occluded'] = np.zeros(len(anno['name']))
27 | if 'boxes_lidar' in anno:
28 | gt_boxes_lidar = anno['boxes_lidar'].copy()
29 | else:
30 | gt_boxes_lidar = anno['gt_boxes_lidar'].copy()
31 |
32 | if len(gt_boxes_lidar) > 0:
33 | if info_with_fakelidar:
34 | gt_boxes_lidar = box_utils.boxes3d_kitti_fakelidar_to_lidar(gt_boxes_lidar)
35 |
36 | gt_boxes_lidar[:, 2] -= gt_boxes_lidar[:, 5] / 2
37 | anno['location'] = np.zeros((gt_boxes_lidar.shape[0], 3))
38 | anno['location'][:, 0] = -gt_boxes_lidar[:, 1] # x = -y_lidar
39 | anno['location'][:, 1] = -gt_boxes_lidar[:, 2] # y = -z_lidar
40 | anno['location'][:, 2] = gt_boxes_lidar[:, 0] # z = x_lidar
41 | dxdydz = gt_boxes_lidar[:, 3:6]
42 | anno['dimensions'] = dxdydz[:, [0, 2, 1]] # lwh ==> lhw
43 | anno['rotation_y'] = -gt_boxes_lidar[:, 6] - np.pi / 2.0
44 | anno['alpha'] = -np.arctan2(-gt_boxes_lidar[:, 1], gt_boxes_lidar[:, 0]) + anno['rotation_y']
45 | else:
46 | anno['location'] = anno['dimensions'] = np.zeros((0, 3))
47 | anno['rotation_y'] = anno['alpha'] = np.zeros(0)
48 |
49 | return annos
50 |
51 |
52 | def calib_to_matricies(calib):
53 | """
54 | Converts calibration object to transformation matricies
55 | Args:
56 | calib: calibration.Calibration, Calibration object
57 | Returns
58 | V2R: (4, 4), Lidar to rectified camera transformation matrix
59 | P2: (3, 4), Camera projection matrix
60 | """
61 | V2C = np.vstack((calib.V2C, np.array([0, 0, 0, 1], dtype=np.float32))) # (4, 4)
62 | R0 = np.hstack((calib.R0, np.zeros((3, 1), dtype=np.float32))) # (3, 4)
63 | R0 = np.vstack((R0, np.array([0, 0, 0, 1], dtype=np.float32))) # (4, 4)
64 | V2R = R0 @ V2C
65 | P2 = calib.P2
66 | return V2R, P2
--------------------------------------------------------------------------------
/pcdet/datasets/lyft/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/datasets/lyft/__init__.py
--------------------------------------------------------------------------------
/pcdet/datasets/lyft/lyft_mAP_eval/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/datasets/lyft/lyft_mAP_eval/__init__.py
--------------------------------------------------------------------------------
/pcdet/datasets/nuscenes/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/datasets/nuscenes/__init__.py
--------------------------------------------------------------------------------
/pcdet/datasets/pandaset/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/datasets/pandaset/__init__.py
--------------------------------------------------------------------------------
/pcdet/datasets/processor/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/datasets/processor/__init__.py
--------------------------------------------------------------------------------
/pcdet/datasets/processor/point_feature_encoder.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 |
4 | class PointFeatureEncoder(object):
5 | def __init__(self, config, point_cloud_range=None):
6 | super().__init__()
7 | self.point_encoding_config = config
8 | assert list(self.point_encoding_config.src_feature_list[0:3]) == ['x', 'y', 'z']
9 | self.used_feature_list = self.point_encoding_config.used_feature_list
10 | self.src_feature_list = self.point_encoding_config.src_feature_list
11 | self.point_cloud_range = point_cloud_range
12 |
13 | @property
14 | def num_point_features(self):
15 | return getattr(self, self.point_encoding_config.encoding_type)(points=None)
16 |
17 | def forward(self, data_dict):
18 | """
19 | Args:
20 | data_dict:
21 | points: (N, 3 + C_in)
22 | ...
23 | Returns:
24 | data_dict:
25 | points: (N, 3 + C_out),
26 | use_lead_xyz: whether to use xyz as point-wise features
27 | ...
28 | """
29 | data_dict['points'], use_lead_xyz = getattr(self, self.point_encoding_config.encoding_type)(
30 | data_dict['points']
31 | )
32 | data_dict['use_lead_xyz'] = use_lead_xyz
33 |
34 | if self.point_encoding_config.get('filter_sweeps', False) and 'timestamp' in self.src_feature_list:
35 | max_sweeps = self.point_encoding_config.max_sweeps
36 | idx = self.src_feature_list.index('timestamp')
37 | dt = np.round(data_dict['points'][:, idx], 2)
38 | max_dt = sorted(np.unique(dt))[min(len(np.unique(dt))-1, max_sweeps-1)]
39 | data_dict['points'] = data_dict['points'][dt <= max_dt]
40 |
41 | return data_dict
42 |
43 | def absolute_coordinates_encoding(self, points=None):
44 | if points is None:
45 | num_output_features = len(self.used_feature_list)
46 | return num_output_features
47 |
48 | point_feature_list = [points[:, 0:3]]
49 | for x in self.used_feature_list:
50 | if x in ['x', 'y', 'z']:
51 | continue
52 | idx = self.src_feature_list.index(x)
53 | point_feature_list.append(points[:, idx:idx+1])
54 | point_features = np.concatenate(point_feature_list, axis=1)
55 |
56 | return point_features, True
57 |
--------------------------------------------------------------------------------
/pcdet/datasets/waymo/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/datasets/waymo/__init__.py
--------------------------------------------------------------------------------
/pcdet/models/__init__.py:
--------------------------------------------------------------------------------
1 | from collections import namedtuple
2 |
3 | import numpy as np
4 | import torch
5 |
6 | from .detectors import build_detector
7 |
8 | try:
9 | import kornia
10 | except:
11 | pass
12 | # print('Warning: kornia is not installed. This package is only required by CaDDN')
13 |
14 |
15 |
16 | def build_network(model_cfg, num_class, dataset):
17 | model = build_detector(
18 | model_cfg=model_cfg, num_class=num_class, dataset=dataset
19 | )
20 | return model
21 |
22 |
23 | def load_data_to_gpu(batch_dict):
24 | for key, val in batch_dict.items():
25 | if not isinstance(val, np.ndarray):
26 | continue
27 | elif key in ['frame_id', 'metadata', 'calib']:
28 | continue
29 | elif key in ['images']:
30 | batch_dict[key] = kornia.image_to_tensor(val).float().cuda().contiguous()
31 | elif key in ['image_shape']:
32 | batch_dict[key] = torch.from_numpy(val).int().cuda()
33 | else:
34 | batch_dict[key] = torch.from_numpy(val).float().cuda()
35 |
36 |
37 | def model_fn_decorator():
38 | ModelReturn = namedtuple('ModelReturn', ['loss', 'tb_dict', 'disp_dict'])
39 |
40 | def model_func(model, batch_dict):
41 | load_data_to_gpu(batch_dict)
42 | ret_dict, tb_dict, disp_dict = model(batch_dict)
43 |
44 | loss = ret_dict['loss'].mean()
45 | if hasattr(model, 'update_global_step'):
46 | model.update_global_step()
47 | else:
48 | model.module.update_global_step()
49 |
50 | return ModelReturn(loss, tb_dict, disp_dict)
51 |
52 | return model_func
53 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_2d/__init__.py:
--------------------------------------------------------------------------------
1 | from .base_bev_backbone import BaseBEVBackbone
2 |
3 | __all__ = {
4 | 'BaseBEVBackbone': BaseBEVBackbone
5 | }
6 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_2d/map_to_bev/__init__.py:
--------------------------------------------------------------------------------
1 | from .height_compression import HeightCompression
2 | from .pointpillar_scatter import PointPillarScatter
3 | from .conv2d_collapse import Conv2DCollapse
4 |
5 | __all__ = {
6 | 'HeightCompression': HeightCompression,
7 | 'PointPillarScatter': PointPillarScatter,
8 | 'Conv2DCollapse': Conv2DCollapse
9 | }
10 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_2d/map_to_bev/conv2d_collapse.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 |
4 | from pcdet.models.model_utils.basic_block_2d import BasicBlock2D
5 |
6 |
7 | class Conv2DCollapse(nn.Module):
8 |
9 | def __init__(self, model_cfg, grid_size):
10 | """
11 | Initializes 2D convolution collapse module
12 | Args:
13 | model_cfg: EasyDict, Model configuration
14 | grid_size: (X, Y, Z) Voxel grid size
15 | """
16 | super().__init__()
17 | self.model_cfg = model_cfg
18 | self.num_heights = grid_size[-1]
19 | self.num_bev_features = self.model_cfg.NUM_BEV_FEATURES
20 | self.block = BasicBlock2D(in_channels=self.num_bev_features * self.num_heights,
21 | out_channels=self.num_bev_features,
22 | **self.model_cfg.ARGS)
23 |
24 | def forward(self, batch_dict):
25 | """
26 | Collapses voxel features to BEV via concatenation and channel reduction
27 | Args:
28 | batch_dict:
29 | voxel_features: (B, C, Z, Y, X), Voxel feature representation
30 | Returns:
31 | batch_dict:
32 | spatial_features: (B, C, Y, X), BEV feature representation
33 | """
34 | voxel_features = batch_dict["voxel_features"]
35 | bev_features = voxel_features.flatten(start_dim=1, end_dim=2) # (B, C, Z, Y, X) -> (B, C*Z, Y, X)
36 | bev_features = self.block(bev_features) # (B, C*Z, Y, X) -> (B, C, Y, X)
37 | batch_dict["spatial_features"] = bev_features
38 | return batch_dict
39 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_2d/map_to_bev/height_compression.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 |
3 |
4 | class HeightCompression(nn.Module):
5 | def __init__(self, model_cfg, **kwargs):
6 | super().__init__()
7 | self.model_cfg = model_cfg
8 | self.num_bev_features = self.model_cfg.NUM_BEV_FEATURES
9 |
10 | def forward(self, batch_dict):
11 | """
12 | Args:
13 | batch_dict:
14 | encoded_spconv_tensor: sparse tensor
15 | Returns:
16 | batch_dict:
17 | spatial_features:
18 |
19 | """
20 | encoded_spconv_tensor = batch_dict['encoded_spconv_tensor']
21 | spatial_features = encoded_spconv_tensor.dense()
22 | N, C, D, H, W = spatial_features.shape
23 | spatial_features = spatial_features.view(N, C * D, H, W)
24 | batch_dict['spatial_features'] = spatial_features
25 | batch_dict['spatial_features_stride'] = batch_dict['encoded_spconv_tensor_stride']
26 | return batch_dict
27 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_2d/map_to_bev/pointpillar_scatter.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 |
4 |
5 | class PointPillarScatter(nn.Module):
6 | def __init__(self, model_cfg, grid_size, **kwargs):
7 | super().__init__()
8 |
9 | self.model_cfg = model_cfg
10 | self.num_bev_features = self.model_cfg.NUM_BEV_FEATURES
11 | self.nx, self.ny, self.nz = grid_size
12 | assert self.nz == 1
13 |
14 | def forward(self, batch_dict, **kwargs):
15 | pillar_features, coords = batch_dict['pillar_features'], batch_dict['voxel_coords']
16 | batch_spatial_features = []
17 | batch_size = coords[:, 0].max().int().item() + 1
18 | for batch_idx in range(batch_size):
19 | spatial_feature = torch.zeros(
20 | self.num_bev_features,
21 | self.nz * self.nx * self.ny,
22 | dtype=pillar_features.dtype,
23 | device=pillar_features.device)
24 |
25 | batch_mask = coords[:, 0] == batch_idx
26 | this_coords = coords[batch_mask, :]
27 | indices = this_coords[:, 1] + this_coords[:, 2] * self.nx + this_coords[:, 3]
28 | indices = indices.type(torch.long)
29 | pillars = pillar_features[batch_mask, :]
30 | pillars = pillars.t()
31 | spatial_feature[:, indices] = pillars
32 | batch_spatial_features.append(spatial_feature)
33 |
34 | batch_spatial_features = torch.stack(batch_spatial_features, 0)
35 | batch_spatial_features = batch_spatial_features.view(batch_size, self.num_bev_features * self.nz, self.ny, self.nx)
36 | batch_dict['spatial_features'] = batch_spatial_features
37 | return batch_dict
38 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/__init__.py:
--------------------------------------------------------------------------------
1 | from .pointnet2_backbone import PointNet2Backbone, PointNet2MSG
2 | from .spconv_backbone import VoxelBackBone8x, VoxelResBackBone8x
3 | from .spconv_backbone_pruning import VoxelPruningResBackBone8x_SPSS_SPRS, VoxelPruningBackBone8x_SPSS_SPRS
4 | from .spconv_unet import UNetV2
5 | from .spconv_backbone_pruning import *
6 |
7 | __all__ = {
8 | 'VoxelBackBone8x': VoxelBackBone8x,
9 | 'UNetV2': UNetV2,
10 | 'PointNet2Backbone': PointNet2Backbone,
11 | 'PointNet2MSG': PointNet2MSG,
12 | 'VoxelResBackBone8x': VoxelResBackBone8x,
13 | 'VoxelPruningResBackBone8x_SPSS_SPRS': VoxelPruningResBackBone8x_SPSS_SPRS,
14 | 'VoxelPruningBackBone8x_SPSS_SPRS': VoxelPruningBackBone8x_SPSS_SPRS
15 | }
16 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/focal_loss.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from torch.autograd import Variable
5 |
6 |
7 | def one_hot(index, classes):
8 | size = index.size() + (classes,)
9 | view = index.size() + (1,)
10 |
11 | mask = torch.Tensor(*size).fill_(0).to(index.device)
12 | index = index.view(*view)
13 | ones = 1.
14 |
15 | if isinstance(index, Variable):
16 | ones = Variable(torch.Tensor(index.size()).fill_(1).to(index.device))
17 | mask = Variable(mask, volatile=index.volatile)
18 |
19 | return mask.scatter_(1, index, ones)
20 |
21 |
22 | class FocalLoss(nn.Module):
23 |
24 | def __init__(self, gamma=2.0, eps=1e-7):
25 | super(FocalLoss, self).__init__()
26 | self.gamma = gamma
27 | self.eps = eps
28 |
29 | def forward(self, input, target):
30 | y = one_hot(target, input.size(-1))
31 | logit = F.softmax(input, dim=-1)
32 | logit = logit.clamp(self.eps, 1. - self.eps)
33 |
34 | loss = -1 * y * torch.log(logit) # cross entropy
35 | loss = loss * (1 - logit) ** self.gamma # focal loss
36 |
37 | return loss.mean()
38 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/pfe/__init__.py:
--------------------------------------------------------------------------------
1 | from .voxel_set_abstraction import VoxelSetAbstraction
2 |
3 | __all__ = {
4 | 'VoxelSetAbstraction': VoxelSetAbstraction
5 | }
6 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/__init__.py:
--------------------------------------------------------------------------------
1 | from .mean_vfe import MeanVFE
2 | from .pillar_vfe import PillarVFE
3 | from .dynamic_mean_vfe import DynamicMeanVFE
4 | from .dynamic_pillar_vfe import DynamicPillarVFE
5 | from .image_vfe import ImageVFE
6 | from .vfe_template import VFETemplate
7 |
8 | __all__ = {
9 | 'VFETemplate': VFETemplate,
10 | 'MeanVFE': MeanVFE,
11 | 'PillarVFE': PillarVFE,
12 | 'ImageVFE': ImageVFE,
13 | 'DynMeanVFE': DynamicMeanVFE,
14 | 'DynPillarVFE': DynamicPillarVFE,
15 | }
16 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/dynamic_mean_vfe.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 | from .vfe_template import VFETemplate
4 |
5 | try:
6 | import torch_scatter
7 | except Exception as e:
8 | # Incase someone doesn't want to use dynamic pillar vfe and hasn't installed torch_scatter
9 | pass
10 |
11 | from .vfe_template import VFETemplate
12 |
13 |
14 | class DynamicMeanVFE(VFETemplate):
15 | def __init__(self, model_cfg, num_point_features, voxel_size, grid_size, point_cloud_range, **kwargs):
16 | super().__init__(model_cfg=model_cfg)
17 | self.num_point_features = num_point_features
18 |
19 | self.grid_size = torch.tensor(grid_size).cuda()
20 | self.voxel_size = torch.tensor(voxel_size).cuda()
21 | self.point_cloud_range = torch.tensor(point_cloud_range).cuda()
22 |
23 | self.voxel_x = voxel_size[0]
24 | self.voxel_y = voxel_size[1]
25 | self.voxel_z = voxel_size[2]
26 | self.x_offset = self.voxel_x / 2 + point_cloud_range[0]
27 | self.y_offset = self.voxel_y / 2 + point_cloud_range[1]
28 | self.z_offset = self.voxel_z / 2 + point_cloud_range[2]
29 |
30 | self.scale_xyz = grid_size[0] * grid_size[1] * grid_size[2]
31 | self.scale_yz = grid_size[1] * grid_size[2]
32 | self.scale_z = grid_size[2]
33 |
34 | def get_output_feature_dim(self):
35 | return self.num_point_features
36 |
37 | @torch.no_grad()
38 | def forward(self, batch_dict, **kwargs):
39 | """
40 | Args:
41 | batch_dict:
42 | voxels: (num_voxels, max_points_per_voxel, C)
43 | voxel_num_points: optional (num_voxels)
44 | **kwargs:
45 |
46 | Returns:
47 | vfe_features: (num_voxels, C)
48 | """
49 | batch_size = batch_dict['batch_size']
50 | points = batch_dict['points'] # (batch_idx, x, y, z, i, e)
51 |
52 | # # debug
53 | point_coords = torch.floor((points[:, 1:4] - self.point_cloud_range[0:3]) / self.voxel_size).int()
54 | mask = ((point_coords >= 0) & (point_coords < self.grid_size)).all(dim=1)
55 | points = points[mask]
56 | point_coords = point_coords[mask]
57 | merge_coords = points[:, 0].int() * self.scale_xyz + \
58 | point_coords[:, 0] * self.scale_yz + \
59 | point_coords[:, 1] * self.scale_z + \
60 | point_coords[:, 2]
61 | points_data = points[:, 1:].contiguous()
62 |
63 | unq_coords, unq_inv, unq_cnt = torch.unique(merge_coords, return_inverse=True, return_counts=True)
64 |
65 | points_mean = torch_scatter.scatter_mean(points_data, unq_inv, dim=0)
66 |
67 | unq_coords = unq_coords.int()
68 | voxel_coords = torch.stack((unq_coords // self.scale_xyz,
69 | (unq_coords % self.scale_xyz) // self.scale_yz,
70 | (unq_coords % self.scale_yz) // self.scale_z,
71 | unq_coords % self.scale_z), dim=1)
72 | voxel_coords = voxel_coords[:, [0, 3, 2, 1]]
73 |
74 | batch_dict['voxel_features'] = points_mean.contiguous()
75 | batch_dict['voxel_coords'] = voxel_coords.contiguous()
76 | return batch_dict
77 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/image_vfe.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 | from .vfe_template import VFETemplate
4 | from .image_vfe_modules import ffn, f2v
5 |
6 |
7 | class ImageVFE(VFETemplate):
8 | def __init__(self, model_cfg, grid_size, point_cloud_range, depth_downsample_factor, **kwargs):
9 | super().__init__(model_cfg=model_cfg)
10 | self.grid_size = grid_size
11 | self.pc_range = point_cloud_range
12 | self.downsample_factor = depth_downsample_factor
13 | self.module_topology = [
14 | 'ffn', 'f2v'
15 | ]
16 | self.build_modules()
17 |
18 | def build_modules(self):
19 | """
20 | Builds modules
21 | """
22 | for module_name in self.module_topology:
23 | module = getattr(self, 'build_%s' % module_name)()
24 | self.add_module(module_name, module)
25 |
26 | def build_ffn(self):
27 | """
28 | Builds frustum feature network
29 | Returns:
30 | ffn_module: nn.Module, Frustum feature network
31 | """
32 | ffn_module = ffn.__all__[self.model_cfg.FFN.NAME](
33 | model_cfg=self.model_cfg.FFN,
34 | downsample_factor=self.downsample_factor
35 | )
36 | self.disc_cfg = ffn_module.disc_cfg
37 | return ffn_module
38 |
39 | def build_f2v(self):
40 | """
41 | Builds frustum to voxel transformation
42 | Returns:
43 | f2v_module: nn.Module, Frustum to voxel transformation
44 | """
45 | f2v_module = f2v.__all__[self.model_cfg.F2V.NAME](
46 | model_cfg=self.model_cfg.F2V,
47 | grid_size=self.grid_size,
48 | pc_range=self.pc_range,
49 | disc_cfg=self.disc_cfg
50 | )
51 | return f2v_module
52 |
53 | def get_output_feature_dim(self):
54 | """
55 | Gets number of output channels
56 | Returns:
57 | out_feature_dim: int, Number of output channels
58 | """
59 | out_feature_dim = self.ffn.get_output_feature_dim()
60 | return out_feature_dim
61 |
62 | def forward(self, batch_dict, **kwargs):
63 | """
64 | Args:
65 | batch_dict:
66 | images: (N, 3, H_in, W_in), Input images
67 | **kwargs:
68 | Returns:
69 | batch_dict:
70 | voxel_features: (B, C, Z, Y, X), Image voxel features
71 | """
72 | batch_dict = self.ffn(batch_dict)
73 | batch_dict = self.f2v(batch_dict)
74 | return batch_dict
75 |
76 | def get_loss(self):
77 | """
78 | Gets DDN loss
79 | Returns:
80 | loss: (1), Depth distribution network loss
81 | tb_dict: dict[float], All losses to log in tensorboard
82 | """
83 |
84 | loss, tb_dict = self.ffn.get_loss()
85 | return loss, tb_dict
86 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/image_vfe_modules/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/models/backbones_3d/vfe/image_vfe_modules/__init__.py
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/image_vfe_modules/f2v/__init__.py:
--------------------------------------------------------------------------------
1 | from .frustum_to_voxel import FrustumToVoxel
2 |
3 | __all__ = {
4 | 'FrustumToVoxel': FrustumToVoxel
5 | }
6 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/image_vfe_modules/f2v/frustum_to_voxel.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 |
4 | from .frustum_grid_generator import FrustumGridGenerator
5 | from .sampler import Sampler
6 |
7 |
8 | class FrustumToVoxel(nn.Module):
9 |
10 | def __init__(self, model_cfg, grid_size, pc_range, disc_cfg):
11 | """
12 | Initializes module to transform frustum features to voxel features via 3D transformation and sampling
13 | Args:
14 | model_cfg: EasyDict, Module configuration
15 | grid_size: [X, Y, Z], Voxel grid size
16 | pc_range: [x_min, y_min, z_min, x_max, y_max, z_max], Voxelization point cloud range (m)
17 | disc_cfg: EasyDict, Depth discretiziation configuration
18 | """
19 | super().__init__()
20 | self.model_cfg = model_cfg
21 | self.grid_size = grid_size
22 | self.pc_range = pc_range
23 | self.disc_cfg = disc_cfg
24 | self.grid_generator = FrustumGridGenerator(grid_size=grid_size,
25 | pc_range=pc_range,
26 | disc_cfg=disc_cfg)
27 | self.sampler = Sampler(**model_cfg.SAMPLER)
28 |
29 | def forward(self, batch_dict):
30 | """
31 | Generates voxel features via 3D transformation and sampling
32 | Args:
33 | batch_dict:
34 | frustum_features: (B, C, D, H_image, W_image), Image frustum features
35 | lidar_to_cam: (B, 4, 4), LiDAR to camera frame transformation
36 | cam_to_img: (B, 3, 4), Camera projection matrix
37 | image_shape: (B, 2), Image shape [H, W]
38 | Returns:
39 | batch_dict:
40 | voxel_features: (B, C, Z, Y, X), Image voxel features
41 | """
42 | # Generate sampling grid for frustum volume
43 | grid = self.grid_generator(lidar_to_cam=batch_dict["trans_lidar_to_cam"],
44 | cam_to_img=batch_dict["trans_cam_to_img"],
45 | image_shape=batch_dict["image_shape"]) # (B, X, Y, Z, 3)
46 |
47 | # Sample frustum volume to generate voxel volume
48 | voxel_features = self.sampler(input_features=batch_dict["frustum_features"],
49 | grid=grid) # (B, C, X, Y, Z)
50 |
51 | # (B, C, X, Y, Z) -> (B, C, Z, Y, X)
52 | voxel_features = voxel_features.permute(0, 1, 4, 3, 2)
53 | batch_dict["voxel_features"] = voxel_features
54 | return batch_dict
55 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/image_vfe_modules/f2v/sampler.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 |
5 |
6 | class Sampler(nn.Module):
7 |
8 | def __init__(self, mode="bilinear", padding_mode="zeros"):
9 | """
10 | Initializes module
11 | Args:
12 | mode: string, Sampling mode [bilinear/nearest]
13 | padding_mode: string, Padding mode for outside grid values [zeros/border/reflection]
14 | """
15 | super().__init__()
16 | self.mode = mode
17 | self.padding_mode = padding_mode
18 |
19 | def forward(self, input_features, grid):
20 | """
21 | Samples input using sampling grid
22 | Args:
23 | input_features: (B, C, D, H, W), Input frustum features
24 | grid: (B, X, Y, Z, 3), Sampling grids for input features
25 | Returns
26 | output_features: (B, C, X, Y, Z) Output voxel features
27 | """
28 | # Sample from grid
29 | output = F.grid_sample(input=input_features, grid=grid, mode=self.mode, padding_mode=self.padding_mode)
30 | return output
31 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/image_vfe_modules/ffn/__init__.py:
--------------------------------------------------------------------------------
1 | from .depth_ffn import DepthFFN
2 |
3 | __all__ = {
4 | 'DepthFFN': DepthFFN
5 | }
6 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/image_vfe_modules/ffn/ddn/__init__.py:
--------------------------------------------------------------------------------
1 | from .ddn_deeplabv3 import DDNDeepLabV3
2 |
3 | __all__ = {
4 | 'DDNDeepLabV3': DDNDeepLabV3
5 | }
6 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/image_vfe_modules/ffn/ddn/ddn_deeplabv3.py:
--------------------------------------------------------------------------------
1 | from .ddn_template import DDNTemplate
2 |
3 | try:
4 | import torchvision
5 | except:
6 | pass
7 |
8 |
9 | class DDNDeepLabV3(DDNTemplate):
10 |
11 | def __init__(self, backbone_name, **kwargs):
12 | """
13 | Initializes DDNDeepLabV3 model
14 | Args:
15 | backbone_name: string, ResNet Backbone Name [ResNet50/ResNet101]
16 | """
17 | if backbone_name == "ResNet50":
18 | constructor = torchvision.models.segmentation.deeplabv3_resnet50
19 | elif backbone_name == "ResNet101":
20 | constructor = torchvision.models.segmentation.deeplabv3_resnet101
21 | else:
22 | raise NotImplementedError
23 |
24 | super().__init__(constructor=constructor, **kwargs)
25 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/image_vfe_modules/ffn/ddn_loss/__init__.py:
--------------------------------------------------------------------------------
1 | from .ddn_loss import DDNLoss
2 |
3 | __all__ = {
4 | "DDNLoss": DDNLoss
5 | }
6 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/image_vfe_modules/ffn/ddn_loss/balancer.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 |
4 | from pcdet.utils import loss_utils
5 |
6 |
7 | class Balancer(nn.Module):
8 | def __init__(self, fg_weight, bg_weight, downsample_factor=1):
9 | """
10 | Initialize fixed foreground/background loss balancer
11 | Args:
12 | fg_weight: float, Foreground loss weight
13 | bg_weight: float, Background loss weight
14 | downsample_factor: int, Depth map downsample factor
15 | """
16 | super().__init__()
17 | self.fg_weight = fg_weight
18 | self.bg_weight = bg_weight
19 | self.downsample_factor = downsample_factor
20 |
21 | def forward(self, loss, gt_boxes2d):
22 | """
23 | Forward pass
24 | Args:
25 | loss: (B, H, W), Pixel-wise loss
26 | gt_boxes2d: (B, N, 4), 2D box labels for foreground/background balancing
27 | Returns:
28 | loss: (1), Total loss after foreground/background balancing
29 | tb_dict: dict[float], All losses to log in tensorboard
30 | """
31 | # Compute masks
32 | fg_mask = loss_utils.compute_fg_mask(gt_boxes2d=gt_boxes2d,
33 | shape=loss.shape,
34 | downsample_factor=self.downsample_factor,
35 | device=loss.device)
36 | bg_mask = ~fg_mask
37 |
38 | # Compute balancing weights
39 | weights = self.fg_weight * fg_mask + self.bg_weight * bg_mask
40 | num_pixels = fg_mask.sum() + bg_mask.sum()
41 |
42 | # Compute losses
43 | loss *= weights
44 | fg_loss = loss[fg_mask].sum() / num_pixels
45 | bg_loss = loss[bg_mask].sum() / num_pixels
46 |
47 | # Get total loss
48 | loss = fg_loss + bg_loss
49 | tb_dict = {"balancer_loss": loss.item(), "fg_loss": fg_loss.item(), "bg_loss": bg_loss.item()}
50 | return loss, tb_dict
51 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/image_vfe_modules/ffn/ddn_loss/ddn_loss.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 |
4 |
5 | from .balancer import Balancer
6 | from pcdet.utils import transform_utils
7 |
8 | try:
9 | from kornia.losses.focal import FocalLoss
10 | except:
11 | pass
12 | # print('Warning: kornia is not installed. This package is only required by CaDDN')
13 |
14 |
15 | class DDNLoss(nn.Module):
16 |
17 | def __init__(self,
18 | weight,
19 | alpha,
20 | gamma,
21 | disc_cfg,
22 | fg_weight,
23 | bg_weight,
24 | downsample_factor):
25 | """
26 | Initializes DDNLoss module
27 | Args:
28 | weight: float, Loss function weight
29 | alpha: float, Alpha value for Focal Loss
30 | gamma: float, Gamma value for Focal Loss
31 | disc_cfg: dict, Depth discretiziation configuration
32 | fg_weight: float, Foreground loss weight
33 | bg_weight: float, Background loss weight
34 | downsample_factor: int, Depth map downsample factor
35 | """
36 | super().__init__()
37 | self.device = torch.cuda.current_device()
38 | self.disc_cfg = disc_cfg
39 | self.balancer = Balancer(downsample_factor=downsample_factor,
40 | fg_weight=fg_weight,
41 | bg_weight=bg_weight)
42 |
43 | # Set loss function
44 | self.alpha = alpha
45 | self.gamma = gamma
46 | self.loss_func = FocalLoss(alpha=self.alpha, gamma=self.gamma, reduction="none")
47 | self.weight = weight
48 |
49 | def forward(self, depth_logits, depth_maps, gt_boxes2d):
50 | """
51 | Gets DDN loss
52 | Args:
53 | depth_logits: (B, D+1, H, W), Predicted depth logits
54 | depth_maps: (B, H, W), Depth map [m]
55 | gt_boxes2d: torch.Tensor (B, N, 4), 2D box labels for foreground/background balancing
56 | Returns:
57 | loss: (1), Depth distribution network loss
58 | tb_dict: dict[float], All losses to log in tensorboard
59 | """
60 | tb_dict = {}
61 |
62 | # Bin depth map to create target
63 | depth_target = transform_utils.bin_depths(depth_maps, **self.disc_cfg, target=True)
64 |
65 | # Compute loss
66 | loss = self.loss_func(depth_logits, depth_target)
67 |
68 | # Compute foreground/background balancing
69 | loss, tb_dict = self.balancer(loss=loss, gt_boxes2d=gt_boxes2d)
70 |
71 | # Final loss
72 | loss *= self.weight
73 | tb_dict.update({"ddn_loss": loss.item()})
74 |
75 | return loss, tb_dict
76 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/image_vfe_modules/ffn/depth_ffn.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 | import torch.nn.functional as F
3 |
4 | from . import ddn, ddn_loss
5 | from pcdet.models.model_utils.basic_block_2d import BasicBlock2D
6 |
7 |
8 | class DepthFFN(nn.Module):
9 |
10 | def __init__(self, model_cfg, downsample_factor):
11 | """
12 | Initialize frustum feature network via depth distribution estimation
13 | Args:
14 | model_cfg: EasyDict, Depth classification network config
15 | downsample_factor: int, Depth map downsample factor
16 | """
17 | super().__init__()
18 | self.model_cfg = model_cfg
19 | self.disc_cfg = model_cfg.DISCRETIZE
20 | self.downsample_factor = downsample_factor
21 |
22 | # Create modules
23 | self.ddn = ddn.__all__[model_cfg.DDN.NAME](
24 | num_classes=self.disc_cfg["num_bins"] + 1,
25 | backbone_name=model_cfg.DDN.BACKBONE_NAME,
26 | **model_cfg.DDN.ARGS
27 | )
28 | self.channel_reduce = BasicBlock2D(**model_cfg.CHANNEL_REDUCE)
29 | self.ddn_loss = ddn_loss.__all__[model_cfg.LOSS.NAME](
30 | disc_cfg=self.disc_cfg,
31 | downsample_factor=downsample_factor,
32 | **model_cfg.LOSS.ARGS
33 | )
34 | self.forward_ret_dict = {}
35 |
36 | def get_output_feature_dim(self):
37 | return self.channel_reduce.out_channels
38 |
39 | def forward(self, batch_dict):
40 | """
41 | Predicts depths and creates image depth feature volume using depth distributions
42 | Args:
43 | batch_dict:
44 | images: (N, 3, H_in, W_in), Input images
45 | Returns:
46 | batch_dict:
47 | frustum_features: (N, C, D, H_out, W_out), Image depth features
48 | """
49 | # Pixel-wise depth classification
50 | images = batch_dict["images"]
51 | ddn_result = self.ddn(images)
52 | image_features = ddn_result["features"]
53 | depth_logits = ddn_result["logits"]
54 |
55 | # Channel reduce
56 | if self.channel_reduce is not None:
57 | image_features = self.channel_reduce(image_features)
58 |
59 | # Create image feature plane-sweep volume
60 | frustum_features = self.create_frustum_features(image_features=image_features,
61 | depth_logits=depth_logits)
62 | batch_dict["frustum_features"] = frustum_features
63 |
64 | if self.training:
65 | self.forward_ret_dict["depth_maps"] = batch_dict["depth_maps"]
66 | self.forward_ret_dict["gt_boxes2d"] = batch_dict["gt_boxes2d"]
67 | self.forward_ret_dict["depth_logits"] = depth_logits
68 | return batch_dict
69 |
70 | def create_frustum_features(self, image_features, depth_logits):
71 | """
72 | Create image depth feature volume by multiplying image features with depth distributions
73 | Args:
74 | image_features: (N, C, H, W), Image features
75 | depth_logits: (N, D+1, H, W), Depth classification logits
76 | Returns:
77 | frustum_features: (N, C, D, H, W), Image features
78 | """
79 | channel_dim = 1
80 | depth_dim = 2
81 |
82 | # Resize to match dimensions
83 | image_features = image_features.unsqueeze(depth_dim)
84 | depth_logits = depth_logits.unsqueeze(channel_dim)
85 |
86 | # Apply softmax along depth axis and remove last depth category (> Max Range)
87 | depth_probs = F.softmax(depth_logits, dim=depth_dim)
88 | depth_probs = depth_probs[:, :, :-1]
89 |
90 | # Multiply to form image depth feature volume
91 | frustum_features = depth_probs * image_features
92 | return frustum_features
93 |
94 | def get_loss(self):
95 | """
96 | Gets DDN loss
97 | Args:
98 | Returns:
99 | loss: (1), Depth distribution network loss
100 | tb_dict: dict[float], All losses to log in tensorboard
101 | """
102 | loss, tb_dict = self.ddn_loss(**self.forward_ret_dict)
103 | return loss, tb_dict
104 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/mean_vfe.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 | from .vfe_template import VFETemplate
4 |
5 |
6 | class MeanVFE(VFETemplate):
7 | def __init__(self, model_cfg, num_point_features, **kwargs):
8 | super().__init__(model_cfg=model_cfg)
9 | self.num_point_features = num_point_features
10 |
11 | def get_output_feature_dim(self):
12 | return self.num_point_features
13 |
14 | def forward(self, batch_dict, **kwargs):
15 | """
16 | Args:
17 | batch_dict:
18 | voxels: (num_voxels, max_points_per_voxel, C)
19 | voxel_num_points: optional (num_voxels)
20 | **kwargs:
21 |
22 | Returns:
23 | vfe_features: (num_voxels, C)
24 | """
25 | voxel_features, voxel_num_points = batch_dict['voxels'], batch_dict['voxel_num_points']
26 | points_mean = voxel_features[:, :, :].sum(dim=1, keepdim=False)
27 | normalizer = torch.clamp_min(voxel_num_points.view(-1, 1), min=1.0).type_as(voxel_features)
28 | points_mean = points_mean / normalizer
29 | batch_dict['voxel_features'] = points_mean.contiguous()
30 |
31 | return batch_dict
32 |
--------------------------------------------------------------------------------
/pcdet/models/backbones_3d/vfe/vfe_template.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 |
3 |
4 | class VFETemplate(nn.Module):
5 | def __init__(self, model_cfg, **kwargs):
6 | super().__init__()
7 | self.model_cfg = model_cfg
8 |
9 | def get_output_feature_dim(self):
10 | raise NotImplementedError
11 |
12 | def forward(self, **kwargs):
13 | """
14 | Args:
15 | **kwargs:
16 |
17 | Returns:
18 | batch_dict:
19 | ...
20 | vfe_features: (num_voxels, C)
21 | """
22 | raise NotImplementedError
23 |
--------------------------------------------------------------------------------
/pcdet/models/dense_heads/__init__.py:
--------------------------------------------------------------------------------
1 | from .anchor_head_multi import AnchorHeadMulti
2 | from .anchor_head_single import AnchorHeadSingle
3 | from .anchor_head_template import AnchorHeadTemplate
4 | from .point_head_box import PointHeadBox
5 | from .point_head_simple import PointHeadSimple
6 | from .point_intra_part_head import PointIntraPartOffsetHead
7 | from .center_head import CenterHead
8 |
9 | __all__ = {
10 | 'AnchorHeadTemplate': AnchorHeadTemplate,
11 | 'AnchorHeadSingle': AnchorHeadSingle,
12 | 'PointIntraPartOffsetHead': PointIntraPartOffsetHead,
13 | 'PointHeadSimple': PointHeadSimple,
14 | 'PointHeadBox': PointHeadBox,
15 | 'AnchorHeadMulti': AnchorHeadMulti,
16 | 'CenterHead': CenterHead
17 | }
18 |
--------------------------------------------------------------------------------
/pcdet/models/dense_heads/anchor_head_single.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch.nn as nn
3 |
4 | from .anchor_head_template import AnchorHeadTemplate
5 |
6 |
7 | class AnchorHeadSingle(AnchorHeadTemplate):
8 | def __init__(self, model_cfg, input_channels, num_class, class_names, grid_size, point_cloud_range,
9 | predict_boxes_when_training=True, **kwargs):
10 | super().__init__(
11 | model_cfg=model_cfg, num_class=num_class, class_names=class_names, grid_size=grid_size, point_cloud_range=point_cloud_range,
12 | predict_boxes_when_training=predict_boxes_when_training
13 | )
14 |
15 | self.num_anchors_per_location = sum(self.num_anchors_per_location)
16 |
17 | self.conv_cls = nn.Conv2d(
18 | input_channels, self.num_anchors_per_location * self.num_class,
19 | kernel_size=1
20 | )
21 | self.conv_box = nn.Conv2d(
22 | input_channels, self.num_anchors_per_location * self.box_coder.code_size,
23 | kernel_size=1
24 | )
25 |
26 | if self.model_cfg.get('USE_DIRECTION_CLASSIFIER', None) is not None:
27 | self.conv_dir_cls = nn.Conv2d(
28 | input_channels,
29 | self.num_anchors_per_location * self.model_cfg.NUM_DIR_BINS,
30 | kernel_size=1
31 | )
32 | else:
33 | self.conv_dir_cls = None
34 | self.init_weights()
35 |
36 | def init_weights(self):
37 | pi = 0.01
38 | nn.init.constant_(self.conv_cls.bias, -np.log((1 - pi) / pi))
39 | nn.init.normal_(self.conv_box.weight, mean=0, std=0.001)
40 |
41 | def forward(self, data_dict):
42 | spatial_features_2d = data_dict['spatial_features_2d']
43 |
44 | cls_preds = self.conv_cls(spatial_features_2d)
45 | box_preds = self.conv_box(spatial_features_2d)
46 |
47 | cls_preds = cls_preds.permute(0, 2, 3, 1).contiguous() # [N, H, W, C]
48 | box_preds = box_preds.permute(0, 2, 3, 1).contiguous() # [N, H, W, C]
49 |
50 | self.forward_ret_dict['cls_preds'] = cls_preds
51 | self.forward_ret_dict['box_preds'] = box_preds
52 |
53 | if self.conv_dir_cls is not None:
54 | dir_cls_preds = self.conv_dir_cls(spatial_features_2d)
55 | dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).contiguous()
56 | self.forward_ret_dict['dir_cls_preds'] = dir_cls_preds
57 | else:
58 | dir_cls_preds = None
59 |
60 | if self.training:
61 | targets_dict = self.assign_targets(
62 | gt_boxes=data_dict['gt_boxes']
63 | )
64 | self.forward_ret_dict.update(targets_dict)
65 |
66 | if not self.training or self.predict_boxes_when_training:
67 | batch_cls_preds, batch_box_preds = self.generate_predicted_boxes(
68 | batch_size=data_dict['batch_size'],
69 | cls_preds=cls_preds, box_preds=box_preds, dir_cls_preds=dir_cls_preds
70 | )
71 | data_dict['batch_cls_preds'] = batch_cls_preds
72 | data_dict['batch_box_preds'] = batch_box_preds
73 | data_dict['cls_preds_normalized'] = False
74 |
75 | return data_dict
76 |
--------------------------------------------------------------------------------
/pcdet/models/dense_heads/point_head_simple.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 | from ...utils import box_utils
4 | from .point_head_template import PointHeadTemplate
5 |
6 |
7 | class PointHeadSimple(PointHeadTemplate):
8 | """
9 | A simple point-based segmentation head, which are used for PV-RCNN keypoint segmentaion.
10 | Reference Paper: https://arxiv.org/abs/1912.13192
11 | PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
12 | """
13 | def __init__(self, num_class, input_channels, model_cfg, **kwargs):
14 | super().__init__(model_cfg=model_cfg, num_class=num_class)
15 | self.cls_layers = self.make_fc_layers(
16 | fc_cfg=self.model_cfg.CLS_FC,
17 | input_channels=input_channels,
18 | output_channels=num_class
19 | )
20 |
21 | def assign_targets(self, input_dict):
22 | """
23 | Args:
24 | input_dict:
25 | point_features: (N1 + N2 + N3 + ..., C)
26 | batch_size:
27 | point_coords: (N1 + N2 + N3 + ..., 4) [bs_idx, x, y, z]
28 | gt_boxes (optional): (B, M, 8)
29 | Returns:
30 | point_cls_labels: (N1 + N2 + N3 + ...), long type, 0:background, -1:ignored
31 | point_part_labels: (N1 + N2 + N3 + ..., 3)
32 | """
33 | point_coords = input_dict['point_coords']
34 | gt_boxes = input_dict['gt_boxes']
35 | assert gt_boxes.shape.__len__() == 3, 'gt_boxes.shape=%s' % str(gt_boxes.shape)
36 | assert point_coords.shape.__len__() in [2], 'points.shape=%s' % str(point_coords.shape)
37 |
38 | batch_size = gt_boxes.shape[0]
39 | extend_gt_boxes = box_utils.enlarge_box3d(
40 | gt_boxes.view(-1, gt_boxes.shape[-1]), extra_width=self.model_cfg.TARGET_CONFIG.GT_EXTRA_WIDTH
41 | ).view(batch_size, -1, gt_boxes.shape[-1])
42 | targets_dict = self.assign_stack_targets(
43 | points=point_coords, gt_boxes=gt_boxes, extend_gt_boxes=extend_gt_boxes,
44 | set_ignore_flag=True, use_ball_constraint=False,
45 | ret_part_labels=False
46 | )
47 |
48 | return targets_dict
49 |
50 | def get_loss(self, tb_dict=None):
51 | tb_dict = {} if tb_dict is None else tb_dict
52 | point_loss_cls, tb_dict_1 = self.get_cls_layer_loss()
53 |
54 | point_loss = point_loss_cls
55 | tb_dict.update(tb_dict_1)
56 | return point_loss, tb_dict
57 |
58 | def forward(self, batch_dict):
59 | """
60 | Args:
61 | batch_dict:
62 | batch_size:
63 | point_features: (N1 + N2 + N3 + ..., C) or (B, N, C)
64 | point_features_before_fusion: (N1 + N2 + N3 + ..., C)
65 | point_coords: (N1 + N2 + N3 + ..., 4) [bs_idx, x, y, z]
66 | point_labels (optional): (N1 + N2 + N3 + ...)
67 | gt_boxes (optional): (B, M, 8)
68 | Returns:
69 | batch_dict:
70 | point_cls_scores: (N1 + N2 + N3 + ..., 1)
71 | point_part_offset: (N1 + N2 + N3 + ..., 3)
72 | """
73 | if self.model_cfg.get('USE_POINT_FEATURES_BEFORE_FUSION', False):
74 | point_features = batch_dict['point_features_before_fusion']
75 | else:
76 | point_features = batch_dict['point_features']
77 | point_cls_preds = self.cls_layers(point_features) # (total_points, num_class)
78 |
79 | ret_dict = {
80 | 'point_cls_preds': point_cls_preds,
81 | }
82 |
83 | point_cls_scores = torch.sigmoid(point_cls_preds)
84 | batch_dict['point_cls_scores'], _ = point_cls_scores.max(dim=-1)
85 |
86 | if self.training:
87 | targets_dict = self.assign_targets(batch_dict)
88 | ret_dict['point_cls_labels'] = targets_dict['point_cls_labels']
89 | self.forward_ret_dict = ret_dict
90 |
91 | return batch_dict
92 |
--------------------------------------------------------------------------------
/pcdet/models/dense_heads/target_assigner/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/models/dense_heads/target_assigner/__init__.py
--------------------------------------------------------------------------------
/pcdet/models/dense_heads/target_assigner/anchor_generator.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | class AnchorGenerator(object):
5 | def __init__(self, anchor_range, anchor_generator_config):
6 | super().__init__()
7 | self.anchor_generator_cfg = anchor_generator_config
8 | self.anchor_range = anchor_range
9 | self.anchor_sizes = [config['anchor_sizes'] for config in anchor_generator_config]
10 | self.anchor_rotations = [config['anchor_rotations'] for config in anchor_generator_config]
11 | self.anchor_heights = [config['anchor_bottom_heights'] for config in anchor_generator_config]
12 | self.align_center = [config.get('align_center', False) for config in anchor_generator_config]
13 |
14 | assert len(self.anchor_sizes) == len(self.anchor_rotations) == len(self.anchor_heights)
15 | self.num_of_anchor_sets = len(self.anchor_sizes)
16 |
17 | def generate_anchors(self, grid_sizes):
18 | assert len(grid_sizes) == self.num_of_anchor_sets
19 | all_anchors = []
20 | num_anchors_per_location = []
21 | for grid_size, anchor_size, anchor_rotation, anchor_height, align_center in zip(
22 | grid_sizes, self.anchor_sizes, self.anchor_rotations, self.anchor_heights, self.align_center):
23 |
24 | num_anchors_per_location.append(len(anchor_rotation) * len(anchor_size) * len(anchor_height))
25 | if align_center:
26 | x_stride = (self.anchor_range[3] - self.anchor_range[0]) / grid_size[0]
27 | y_stride = (self.anchor_range[4] - self.anchor_range[1]) / grid_size[1]
28 | x_offset, y_offset = x_stride / 2, y_stride / 2
29 | else:
30 | x_stride = (self.anchor_range[3] - self.anchor_range[0]) / (grid_size[0] - 1)
31 | y_stride = (self.anchor_range[4] - self.anchor_range[1]) / (grid_size[1] - 1)
32 | x_offset, y_offset = 0, 0
33 |
34 | x_shifts = torch.arange(
35 | self.anchor_range[0] + x_offset, self.anchor_range[3] + 1e-5, step=x_stride, dtype=torch.float32,
36 | ).cuda()
37 | y_shifts = torch.arange(
38 | self.anchor_range[1] + y_offset, self.anchor_range[4] + 1e-5, step=y_stride, dtype=torch.float32,
39 | ).cuda()
40 | z_shifts = x_shifts.new_tensor(anchor_height)
41 |
42 | num_anchor_size, num_anchor_rotation = anchor_size.__len__(), anchor_rotation.__len__()
43 | anchor_rotation = x_shifts.new_tensor(anchor_rotation)
44 | anchor_size = x_shifts.new_tensor(anchor_size)
45 | x_shifts, y_shifts, z_shifts = torch.meshgrid([
46 | x_shifts, y_shifts, z_shifts
47 | ]) # [x_grid, y_grid, z_grid]
48 | anchors = torch.stack((x_shifts, y_shifts, z_shifts), dim=-1) # [x, y, z, 3]
49 | anchors = anchors[:, :, :, None, :].repeat(1, 1, 1, anchor_size.shape[0], 1)
50 | anchor_size = anchor_size.view(1, 1, 1, -1, 3).repeat([*anchors.shape[0:3], 1, 1])
51 | anchors = torch.cat((anchors, anchor_size), dim=-1)
52 | anchors = anchors[:, :, :, :, None, :].repeat(1, 1, 1, 1, num_anchor_rotation, 1)
53 | anchor_rotation = anchor_rotation.view(1, 1, 1, 1, -1, 1).repeat([*anchors.shape[0:3], num_anchor_size, 1, 1])
54 | anchors = torch.cat((anchors, anchor_rotation), dim=-1) # [x, y, z, num_size, num_rot, 7]
55 |
56 | anchors = anchors.permute(2, 1, 0, 3, 4, 5).contiguous()
57 | #anchors = anchors.view(-1, anchors.shape[-1])
58 | anchors[..., 2] += anchors[..., 5] / 2 # shift to box centers
59 | all_anchors.append(anchors)
60 | return all_anchors, num_anchors_per_location
61 |
62 |
63 | if __name__ == '__main__':
64 | from easydict import EasyDict
65 | config = [
66 | EasyDict({
67 | 'anchor_sizes': [[2.1, 4.7, 1.7], [0.86, 0.91, 1.73], [0.84, 1.78, 1.78]],
68 | 'anchor_rotations': [0, 1.57],
69 | 'anchor_heights': [0, 0.5]
70 | })
71 | ]
72 |
73 | A = AnchorGenerator(
74 | anchor_range=[-75.2, -75.2, -2, 75.2, 75.2, 4],
75 | anchor_generator_config=config
76 | )
77 | import pdb
78 | pdb.set_trace()
79 | A.generate_anchors([[188, 188]])
80 |
--------------------------------------------------------------------------------
/pcdet/models/detectors/PartA2_net.py:
--------------------------------------------------------------------------------
1 | from .detector3d_template import Detector3DTemplate
2 |
3 |
4 | class PartA2Net(Detector3DTemplate):
5 | def __init__(self, model_cfg, num_class, dataset):
6 | super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset)
7 | self.module_list = self.build_networks()
8 |
9 | def forward(self, batch_dict):
10 | for cur_module in self.module_list:
11 | batch_dict = cur_module(batch_dict)
12 |
13 | if self.training:
14 | loss, tb_dict, disp_dict = self.get_training_loss()
15 |
16 | ret_dict = {
17 | 'loss': loss
18 | }
19 | return ret_dict, tb_dict, disp_dict
20 | else:
21 | pred_dicts, recall_dicts = self.post_processing(batch_dict)
22 | return pred_dicts, recall_dicts
23 |
24 | def get_training_loss(self):
25 | disp_dict = {}
26 | loss_rpn, tb_dict = self.dense_head.get_loss()
27 | loss_point, tb_dict = self.point_head.get_loss(tb_dict)
28 | loss_rcnn, tb_dict = self.roi_head.get_loss(tb_dict)
29 |
30 | loss = loss_rpn + loss_point + loss_rcnn
31 | return loss, tb_dict, disp_dict
32 |
--------------------------------------------------------------------------------
/pcdet/models/detectors/__init__.py:
--------------------------------------------------------------------------------
1 | from .detector3d_template import Detector3DTemplate
2 | from .PartA2_net import PartA2Net
3 | from .point_rcnn import PointRCNN
4 | from .pointpillar import PointPillar
5 | from .pv_rcnn import PVRCNN
6 | from .second_net import SECONDNet
7 | from .second_net_iou import SECONDNetIoU
8 | from .caddn import CaDDN
9 | from .voxel_rcnn import VoxelRCNN
10 | from .centerpoint import CenterPoint
11 | from .pv_rcnn_plusplus import PVRCNNPlusPlus
12 |
13 | __all__ = {
14 | 'Detector3DTemplate': Detector3DTemplate,
15 | 'SECONDNet': SECONDNet,
16 | 'PartA2Net': PartA2Net,
17 | 'PVRCNN': PVRCNN,
18 | 'PointPillar': PointPillar,
19 | 'PointRCNN': PointRCNN,
20 | 'SECONDNetIoU': SECONDNetIoU,
21 | 'CaDDN': CaDDN,
22 | 'VoxelRCNN': VoxelRCNN,
23 | 'CenterPoint': CenterPoint,
24 | 'PVRCNNPlusPlus': PVRCNNPlusPlus
25 | }
26 |
27 |
28 | def build_detector(model_cfg, num_class, dataset):
29 | model = __all__[model_cfg.NAME](
30 | model_cfg=model_cfg, num_class=num_class, dataset=dataset
31 | )
32 |
33 | return model
34 |
--------------------------------------------------------------------------------
/pcdet/models/detectors/caddn.py:
--------------------------------------------------------------------------------
1 | from .detector3d_template import Detector3DTemplate
2 |
3 |
4 | class CaDDN(Detector3DTemplate):
5 | def __init__(self, model_cfg, num_class, dataset):
6 | super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset)
7 | self.module_list = self.build_networks()
8 |
9 | def forward(self, batch_dict):
10 | for cur_module in self.module_list:
11 | batch_dict = cur_module(batch_dict)
12 |
13 | if self.training:
14 | loss, tb_dict, disp_dict = self.get_training_loss()
15 |
16 | ret_dict = {
17 | 'loss': loss
18 | }
19 | return ret_dict, tb_dict, disp_dict
20 | else:
21 | pred_dicts, recall_dicts = self.post_processing(batch_dict)
22 | return pred_dicts, recall_dicts
23 |
24 | def get_training_loss(self):
25 | disp_dict = {}
26 |
27 | loss_rpn, tb_dict_rpn = self.dense_head.get_loss()
28 | loss_depth, tb_dict_depth = self.vfe.get_loss()
29 |
30 | tb_dict = {
31 | 'loss_rpn': loss_rpn.item(),
32 | 'loss_depth': loss_depth.item(),
33 | **tb_dict_rpn,
34 | **tb_dict_depth
35 | }
36 |
37 | loss = loss_rpn + loss_depth
38 | return loss, tb_dict, disp_dict
39 |
--------------------------------------------------------------------------------
/pcdet/models/detectors/centerpoint.py:
--------------------------------------------------------------------------------
1 | from .detector3d_template import Detector3DTemplate
2 |
3 |
4 | class CenterPoint(Detector3DTemplate):
5 | def __init__(self, model_cfg, num_class, dataset):
6 | super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset)
7 | self.module_list = self.build_networks()
8 |
9 | def forward(self, batch_dict):
10 | for cur_module in self.module_list:
11 | batch_dict = cur_module(batch_dict)
12 |
13 | if self.training:
14 | loss, tb_dict, disp_dict = self.get_training_loss()
15 |
16 | ret_dict = {
17 | 'loss': loss
18 | }
19 | return ret_dict, tb_dict, disp_dict
20 | else:
21 | pred_dicts, recall_dicts = self.post_processing(batch_dict)
22 | return pred_dicts, recall_dicts
23 |
24 | def get_training_loss(self):
25 | disp_dict = {}
26 |
27 | loss_rpn, tb_dict = self.dense_head.get_loss()
28 | tb_dict = {
29 | 'loss_rpn': loss_rpn.item(),
30 | **tb_dict
31 | }
32 |
33 | loss = loss_rpn
34 | return loss, tb_dict, disp_dict
35 |
36 | def post_processing(self, batch_dict):
37 | post_process_cfg = self.model_cfg.POST_PROCESSING
38 | batch_size = batch_dict['batch_size']
39 | final_pred_dict = batch_dict['final_box_dicts']
40 | recall_dict = {}
41 | for index in range(batch_size):
42 | pred_boxes = final_pred_dict[index]['pred_boxes']
43 |
44 | recall_dict = self.generate_recall_record(
45 | box_preds=pred_boxes,
46 | recall_dict=recall_dict, batch_index=index, data_dict=batch_dict,
47 | thresh_list=post_process_cfg.RECALL_THRESH_LIST
48 | )
49 |
50 | return final_pred_dict, recall_dict
51 |
--------------------------------------------------------------------------------
/pcdet/models/detectors/point_rcnn.py:
--------------------------------------------------------------------------------
1 | from .detector3d_template import Detector3DTemplate
2 |
3 |
4 | class PointRCNN(Detector3DTemplate):
5 | def __init__(self, model_cfg, num_class, dataset):
6 | super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset)
7 | self.module_list = self.build_networks()
8 |
9 | def forward(self, batch_dict):
10 | for cur_module in self.module_list:
11 | batch_dict = cur_module(batch_dict)
12 |
13 | if self.training:
14 | loss, tb_dict, disp_dict = self.get_training_loss()
15 |
16 | ret_dict = {
17 | 'loss': loss
18 | }
19 | return ret_dict, tb_dict, disp_dict
20 | else:
21 | pred_dicts, recall_dicts = self.post_processing(batch_dict)
22 | return pred_dicts, recall_dicts
23 |
24 | def get_training_loss(self):
25 | disp_dict = {}
26 | loss_point, tb_dict = self.point_head.get_loss()
27 | loss_rcnn, tb_dict = self.roi_head.get_loss(tb_dict)
28 |
29 | loss = loss_point + loss_rcnn
30 | return loss, tb_dict, disp_dict
31 |
--------------------------------------------------------------------------------
/pcdet/models/detectors/pointpillar.py:
--------------------------------------------------------------------------------
1 | from .detector3d_template import Detector3DTemplate
2 |
3 |
4 | class PointPillar(Detector3DTemplate):
5 | def __init__(self, model_cfg, num_class, dataset):
6 | super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset)
7 | self.module_list = self.build_networks()
8 |
9 | def forward(self, batch_dict):
10 | for cur_module in self.module_list:
11 | batch_dict = cur_module(batch_dict)
12 |
13 | if self.training:
14 | loss, tb_dict, disp_dict = self.get_training_loss()
15 |
16 | ret_dict = {
17 | 'loss': loss
18 | }
19 | return ret_dict, tb_dict, disp_dict
20 | else:
21 | pred_dicts, recall_dicts = self.post_processing(batch_dict)
22 | return pred_dicts, recall_dicts
23 |
24 | def get_training_loss(self):
25 | disp_dict = {}
26 |
27 | loss_rpn, tb_dict = self.dense_head.get_loss()
28 | tb_dict = {
29 | 'loss_rpn': loss_rpn.item(),
30 | **tb_dict
31 | }
32 |
33 | loss = loss_rpn
34 | return loss, tb_dict, disp_dict
35 |
--------------------------------------------------------------------------------
/pcdet/models/detectors/pv_rcnn.py:
--------------------------------------------------------------------------------
1 | from .detector3d_template import Detector3DTemplate
2 |
3 |
4 | class PVRCNN(Detector3DTemplate):
5 | def __init__(self, model_cfg, num_class, dataset):
6 | super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset)
7 | self.module_list = self.build_networks()
8 |
9 | def forward(self, batch_dict):
10 | for cur_module in self.module_list:
11 | batch_dict = cur_module(batch_dict)
12 |
13 | if self.training:
14 | loss, tb_dict, disp_dict = self.get_training_loss()
15 |
16 | ret_dict = {
17 | 'loss': loss
18 | }
19 | return ret_dict, tb_dict, disp_dict
20 | else:
21 | pred_dicts, recall_dicts = self.post_processing(batch_dict)
22 | return pred_dicts, recall_dicts
23 |
24 | def get_training_loss(self):
25 | disp_dict = {}
26 | loss_rpn, tb_dict = self.dense_head.get_loss()
27 | loss_point, tb_dict = self.point_head.get_loss(tb_dict)
28 | loss_rcnn, tb_dict = self.roi_head.get_loss(tb_dict)
29 |
30 | loss = loss_rpn + loss_point + loss_rcnn
31 | return loss, tb_dict, disp_dict
32 |
--------------------------------------------------------------------------------
/pcdet/models/detectors/pv_rcnn_plusplus.py:
--------------------------------------------------------------------------------
1 | from .detector3d_template import Detector3DTemplate
2 |
3 |
4 | class PVRCNNPlusPlus(Detector3DTemplate):
5 | def __init__(self, model_cfg, num_class, dataset):
6 | super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset)
7 | self.module_list = self.build_networks()
8 |
9 | def forward(self, batch_dict):
10 | batch_dict = self.vfe(batch_dict)
11 | batch_dict = self.backbone_3d(batch_dict)
12 | batch_dict = self.map_to_bev_module(batch_dict)
13 | batch_dict = self.backbone_2d(batch_dict)
14 | batch_dict = self.dense_head(batch_dict)
15 |
16 | batch_dict = self.roi_head.proposal_layer(
17 | batch_dict, nms_config=self.roi_head.model_cfg.NMS_CONFIG['TRAIN' if self.training else 'TEST']
18 | )
19 | if self.training:
20 | targets_dict = self.roi_head.assign_targets(batch_dict)
21 | batch_dict['rois'] = targets_dict['rois']
22 | batch_dict['roi_labels'] = targets_dict['roi_labels']
23 | batch_dict['roi_targets_dict'] = targets_dict
24 | num_rois_per_scene = targets_dict['rois'].shape[1]
25 | if 'roi_valid_num' in batch_dict:
26 | batch_dict['roi_valid_num'] = [num_rois_per_scene for _ in range(batch_dict['batch_size'])]
27 |
28 | batch_dict = self.pfe(batch_dict)
29 | batch_dict = self.point_head(batch_dict)
30 | batch_dict = self.roi_head(batch_dict)
31 |
32 | if self.training:
33 | loss, tb_dict, disp_dict = self.get_training_loss()
34 |
35 | ret_dict = {
36 | 'loss': loss
37 | }
38 | return ret_dict, tb_dict, disp_dict
39 | else:
40 | pred_dicts, recall_dicts = self.post_processing(batch_dict)
41 | return pred_dicts, recall_dicts
42 |
43 | def get_training_loss(self):
44 | disp_dict = {}
45 | loss_rpn, tb_dict = self.dense_head.get_loss()
46 | if self.point_head is not None:
47 | loss_point, tb_dict = self.point_head.get_loss(tb_dict)
48 | else:
49 | loss_point = 0
50 | loss_rcnn, tb_dict = self.roi_head.get_loss(tb_dict)
51 |
52 | loss = loss_rpn + loss_point + loss_rcnn
53 | return loss, tb_dict, disp_dict
54 |
--------------------------------------------------------------------------------
/pcdet/models/detectors/second_net.py:
--------------------------------------------------------------------------------
1 | from .detector3d_template import Detector3DTemplate
2 |
3 |
4 | class SECONDNet(Detector3DTemplate):
5 | def __init__(self, model_cfg, num_class, dataset):
6 | super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset)
7 | self.module_list = self.build_networks()
8 |
9 | def forward(self, batch_dict):
10 | for cur_module in self.module_list:
11 | batch_dict = cur_module(batch_dict)
12 |
13 | if self.training:
14 | loss, tb_dict, disp_dict = self.get_training_loss()
15 |
16 | ret_dict = {
17 | 'loss': loss
18 | }
19 | return ret_dict, tb_dict, disp_dict
20 | else:
21 | pred_dicts, recall_dicts = self.post_processing(batch_dict)
22 | return pred_dicts, recall_dicts
23 |
24 | def get_training_loss(self):
25 | disp_dict = {}
26 |
27 | loss_rpn, tb_dict = self.dense_head.get_loss()
28 | tb_dict = {
29 | 'loss_rpn': loss_rpn.item(),
30 | **tb_dict
31 | }
32 |
33 | loss = loss_rpn
34 | return loss, tb_dict, disp_dict
35 |
--------------------------------------------------------------------------------
/pcdet/models/detectors/voxel_rcnn.py:
--------------------------------------------------------------------------------
1 | from .detector3d_template import Detector3DTemplate
2 |
3 |
4 | class VoxelRCNN(Detector3DTemplate):
5 | def __init__(self, model_cfg, num_class, dataset):
6 | super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset)
7 | self.module_list = self.build_networks()
8 |
9 | def forward(self, batch_dict):
10 | for cur_module in self.module_list:
11 | batch_dict = cur_module(batch_dict)
12 |
13 | if self.training:
14 | loss, tb_dict, disp_dict = self.get_training_loss()
15 |
16 | ret_dict = {
17 | 'loss': loss
18 | }
19 | return ret_dict, tb_dict, disp_dict
20 | else:
21 | pred_dicts, recall_dicts = self.post_processing(batch_dict)
22 | return pred_dicts, recall_dicts
23 |
24 | def get_training_loss(self):
25 | disp_dict = {}
26 | loss = 0
27 |
28 | loss_rpn, tb_dict = self.dense_head.get_loss()
29 | loss_rcnn, tb_dict = self.roi_head.get_loss(tb_dict)
30 |
31 | loss = loss + loss_rpn + loss_rcnn
32 | return loss, tb_dict, disp_dict
33 |
--------------------------------------------------------------------------------
/pcdet/models/model_utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/models/model_utils/__init__.py
--------------------------------------------------------------------------------
/pcdet/models/model_utils/basic_block_2d.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 |
3 |
4 | class BasicBlock2D(nn.Module):
5 |
6 | def __init__(self, in_channels, out_channels, **kwargs):
7 | """
8 | Initializes convolutional block
9 | Args:
10 | in_channels: int, Number of input channels
11 | out_channels: int, Number of output channels
12 | **kwargs: Dict, Extra arguments for nn.Conv2d
13 | """
14 | super().__init__()
15 | self.in_channels = in_channels
16 | self.out_channels = out_channels
17 | self.conv = nn.Conv2d(in_channels=in_channels,
18 | out_channels=out_channels,
19 | **kwargs)
20 | self.bn = nn.BatchNorm2d(out_channels)
21 | self.relu = nn.ReLU(inplace=True)
22 |
23 | def forward(self, features):
24 | """
25 | Applies convolutional block
26 | Args:
27 | features: (B, C_in, H, W), Input features
28 | Returns:
29 | x: (B, C_out, H, W), Output features
30 | """
31 | x = self.conv(features)
32 | x = self.bn(x)
33 | x = self.relu(x)
34 | return x
35 |
--------------------------------------------------------------------------------
/pcdet/models/model_utils/flops_utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import spconv.pytorch as spconv
3 |
4 | def calculate_gemm_flops(x, batch_dict, indice_key, inchannel, outchannel):
5 | pair_fwd = x.indice_dict[indice_key].pair_fwd
6 | cur_flops = 2 * (pair_fwd > -1).sum() * inchannel * outchannel - pair_fwd.shape[1]
7 | return cur_flops
--------------------------------------------------------------------------------
/pcdet/models/model_utils/model_nms_utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 | from ...ops.iou3d_nms import iou3d_nms_utils
4 |
5 |
6 | def class_agnostic_nms(box_scores, box_preds, nms_config, score_thresh=None):
7 | src_box_scores = box_scores
8 | if score_thresh is not None:
9 | scores_mask = (box_scores >= score_thresh)
10 | box_scores = box_scores[scores_mask]
11 | box_preds = box_preds[scores_mask]
12 |
13 | selected = []
14 | if box_scores.shape[0] > 0:
15 | box_scores_nms, indices = torch.topk(box_scores, k=min(nms_config.NMS_PRE_MAXSIZE, box_scores.shape[0]))
16 | boxes_for_nms = box_preds[indices]
17 | keep_idx, selected_scores = getattr(iou3d_nms_utils, nms_config.NMS_TYPE)(
18 | boxes_for_nms[:, 0:7], box_scores_nms, nms_config.NMS_THRESH, **nms_config
19 | )
20 | selected = indices[keep_idx[:nms_config.NMS_POST_MAXSIZE]]
21 |
22 | if score_thresh is not None:
23 | original_idxs = scores_mask.nonzero().view(-1)
24 | selected = original_idxs[selected]
25 | return selected, src_box_scores[selected]
26 |
27 |
28 | def multi_classes_nms(cls_scores, box_preds, nms_config, score_thresh=None):
29 | """
30 | Args:
31 | cls_scores: (N, num_class)
32 | box_preds: (N, 7 + C)
33 | nms_config:
34 | score_thresh:
35 |
36 | Returns:
37 |
38 | """
39 | pred_scores, pred_labels, pred_boxes = [], [], []
40 | for k in range(cls_scores.shape[1]):
41 | if score_thresh is not None:
42 | scores_mask = (cls_scores[:, k] >= score_thresh)
43 | box_scores = cls_scores[scores_mask, k]
44 | cur_box_preds = box_preds[scores_mask]
45 | else:
46 | box_scores = cls_scores[:, k]
47 | cur_box_preds = box_preds
48 |
49 | selected = []
50 | if box_scores.shape[0] > 0:
51 | box_scores_nms, indices = torch.topk(box_scores, k=min(nms_config.NMS_PRE_MAXSIZE, box_scores.shape[0]))
52 | boxes_for_nms = cur_box_preds[indices]
53 | keep_idx, selected_scores = getattr(iou3d_nms_utils, nms_config.NMS_TYPE)(
54 | boxes_for_nms[:, 0:7], box_scores_nms, nms_config.NMS_THRESH, **nms_config
55 | )
56 | selected = indices[keep_idx[:nms_config.NMS_POST_MAXSIZE]]
57 |
58 | pred_scores.append(box_scores[selected])
59 | pred_labels.append(box_scores.new_ones(len(selected)).long() * k)
60 | pred_boxes.append(cur_box_preds[selected])
61 |
62 | pred_scores = torch.cat(pred_scores, dim=0)
63 | pred_labels = torch.cat(pred_labels, dim=0)
64 | pred_boxes = torch.cat(pred_boxes, dim=0)
65 |
66 | return pred_scores, pred_labels, pred_boxes
67 |
--------------------------------------------------------------------------------
/pcdet/models/roi_heads/__init__.py:
--------------------------------------------------------------------------------
1 | from .partA2_head import PartA2FCHead
2 | from .pointrcnn_head import PointRCNNHead
3 | from .pvrcnn_head import PVRCNNHead
4 | from .second_head import SECONDHead
5 | from .voxelrcnn_head import VoxelRCNNHead
6 | from .roi_head_template import RoIHeadTemplate
7 |
8 |
9 | __all__ = {
10 | 'RoIHeadTemplate': RoIHeadTemplate,
11 | 'PartA2FCHead': PartA2FCHead,
12 | 'PVRCNNHead': PVRCNNHead,
13 | 'SECONDHead': SECONDHead,
14 | 'PointRCNNHead': PointRCNNHead,
15 | 'VoxelRCNNHead': VoxelRCNNHead
16 | }
17 |
--------------------------------------------------------------------------------
/pcdet/models/roi_heads/target_assigner/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/models/roi_heads/target_assigner/__init__.py
--------------------------------------------------------------------------------
/pcdet/ops/iou3d_nms/iou3d_nms_utils.py:
--------------------------------------------------------------------------------
1 | """
2 | 3D IoU Calculation and Rotated NMS
3 | Written by Shaoshuai Shi
4 | All Rights Reserved 2019-2020.
5 | """
6 | import torch
7 |
8 | from ...utils import common_utils
9 | from . import iou3d_nms_cuda
10 |
11 |
12 | def boxes_bev_iou_cpu(boxes_a, boxes_b):
13 | """
14 | Args:
15 | boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
16 | boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
17 |
18 | Returns:
19 | ans_iou: (N, M)
20 | """
21 | boxes_a, is_numpy = common_utils.check_numpy_to_torch(boxes_a)
22 | boxes_b, is_numpy = common_utils.check_numpy_to_torch(boxes_b)
23 | assert not (boxes_a.is_cuda or boxes_b.is_cuda), 'Only support CPU tensors'
24 | assert boxes_a.shape[1] == 7 and boxes_b.shape[1] == 7
25 | ans_iou = boxes_a.new_zeros(torch.Size((boxes_a.shape[0], boxes_b.shape[0])))
26 | iou3d_nms_cuda.boxes_iou_bev_cpu(boxes_a.contiguous(), boxes_b.contiguous(), ans_iou)
27 |
28 | return ans_iou.numpy() if is_numpy else ans_iou
29 |
30 |
31 | def boxes_iou_bev(boxes_a, boxes_b):
32 | """
33 | Args:
34 | boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
35 | boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
36 |
37 | Returns:
38 | ans_iou: (N, M)
39 | """
40 | assert boxes_a.shape[1] == boxes_b.shape[1] == 7
41 | ans_iou = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))).zero_()
42 |
43 | iou3d_nms_cuda.boxes_iou_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), ans_iou)
44 |
45 | return ans_iou
46 |
47 |
48 | def boxes_iou3d_gpu(boxes_a, boxes_b):
49 | """
50 | Args:
51 | boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
52 | boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
53 |
54 | Returns:
55 | ans_iou: (N, M)
56 | """
57 | assert boxes_a.shape[1] == boxes_b.shape[1] == 7
58 |
59 | # height overlap
60 | boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1)
61 | boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1)
62 | boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(1, -1)
63 | boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(1, -1)
64 |
65 | # bev overlap
66 | overlaps_bev = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))).zero_() # (N, M)
67 | iou3d_nms_cuda.boxes_overlap_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), overlaps_bev)
68 |
69 | max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min)
70 | min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max)
71 | overlaps_h = torch.clamp(min_of_max - max_of_min, min=0)
72 |
73 | # 3d iou
74 | overlaps_3d = overlaps_bev * overlaps_h
75 |
76 | vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1)
77 | vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(1, -1)
78 |
79 | iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6)
80 |
81 | return iou3d
82 |
83 |
84 | def nms_gpu(boxes, scores, thresh, pre_maxsize=None, **kwargs):
85 | """
86 | :param boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
87 | :param scores: (N)
88 | :param thresh:
89 | :return:
90 | """
91 | assert boxes.shape[1] == 7
92 | order = scores.sort(0, descending=True)[1]
93 | if pre_maxsize is not None:
94 | order = order[:pre_maxsize]
95 |
96 | boxes = boxes[order].contiguous()
97 | keep = torch.LongTensor(boxes.size(0))
98 | num_out = iou3d_nms_cuda.nms_gpu(boxes, keep, thresh)
99 | return order[keep[:num_out].cuda()].contiguous(), None
100 |
101 |
102 | def nms_normal_gpu(boxes, scores, thresh, **kwargs):
103 | """
104 | :param boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
105 | :param scores: (N)
106 | :param thresh:
107 | :return:
108 | """
109 | assert boxes.shape[1] == 7
110 | order = scores.sort(0, descending=True)[1]
111 |
112 | boxes = boxes[order].contiguous()
113 |
114 | keep = torch.LongTensor(boxes.size(0))
115 | num_out = iou3d_nms_cuda.nms_normal_gpu(boxes, keep, thresh)
116 | return order[keep[:num_out].cuda()].contiguous(), None
117 |
--------------------------------------------------------------------------------
/pcdet/ops/iou3d_nms/src/iou3d_cpu.h:
--------------------------------------------------------------------------------
1 | #ifndef IOU3D_CPU_H
2 | #define IOU3D_CPU_H
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | int boxes_iou_bev_cpu(at::Tensor boxes_a_tensor, at::Tensor boxes_b_tensor, at::Tensor ans_iou_tensor);
10 |
11 | #endif
12 |
--------------------------------------------------------------------------------
/pcdet/ops/iou3d_nms/src/iou3d_nms.h:
--------------------------------------------------------------------------------
1 | #ifndef IOU3D_NMS_H
2 | #define IOU3D_NMS_H
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | int boxes_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap);
10 | int boxes_iou_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_iou);
11 | int nms_gpu(at::Tensor boxes, at::Tensor keep, float nms_overlap_thresh);
12 | int nms_normal_gpu(at::Tensor boxes, at::Tensor keep, float nms_overlap_thresh);
13 |
14 | #endif
15 |
--------------------------------------------------------------------------------
/pcdet/ops/iou3d_nms/src/iou3d_nms_api.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 | #include
5 | #include
6 |
7 | #include "iou3d_cpu.h"
8 | #include "iou3d_nms.h"
9 |
10 |
11 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
12 | m.def("boxes_overlap_bev_gpu", &boxes_overlap_bev_gpu, "oriented boxes overlap");
13 | m.def("boxes_iou_bev_gpu", &boxes_iou_bev_gpu, "oriented boxes iou");
14 | m.def("nms_gpu", &nms_gpu, "oriented nms gpu");
15 | m.def("nms_normal_gpu", &nms_normal_gpu, "nms gpu");
16 | m.def("boxes_iou_bev_cpu", &boxes_iou_bev_cpu, "oriented boxes iou");
17 | }
18 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_batch/src/ball_query.cpp:
--------------------------------------------------------------------------------
1 | /*
2 | batch version of ball query, modified from the original implementation of official PointNet++ codes.
3 | Written by Shaoshuai Shi
4 | All Rights Reserved 2018.
5 | */
6 |
7 |
8 | #include
9 | #include
10 | #include
11 | #include
12 | #include
13 | #include "ball_query_gpu.h"
14 |
15 | extern THCState *state;
16 |
17 | #define CHECK_CUDA(x) do { \
18 | if (!x.type().is_cuda()) { \
19 | fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \
20 | exit(-1); \
21 | } \
22 | } while (0)
23 | #define CHECK_CONTIGUOUS(x) do { \
24 | if (!x.is_contiguous()) { \
25 | fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \
26 | exit(-1); \
27 | } \
28 | } while (0)
29 | #define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
30 |
31 |
32 | int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
33 | at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor) {
34 | CHECK_INPUT(new_xyz_tensor);
35 | CHECK_INPUT(xyz_tensor);
36 | const float *new_xyz = new_xyz_tensor.data();
37 | const float *xyz = xyz_tensor.data();
38 | int *idx = idx_tensor.data();
39 |
40 | ball_query_kernel_launcher_fast(b, n, m, radius, nsample, new_xyz, xyz, idx);
41 | return 1;
42 | }
43 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_batch/src/ball_query_gpu.cu:
--------------------------------------------------------------------------------
1 | /*
2 | batch version of ball query, modified from the original implementation of official PointNet++ codes.
3 | Written by Shaoshuai Shi
4 | All Rights Reserved 2018.
5 | */
6 |
7 | #include
8 | #include
9 | #include
10 |
11 | #include "ball_query_gpu.h"
12 | #include "cuda_utils.h"
13 |
14 |
15 | __global__ void ball_query_kernel_fast(int b, int n, int m, float radius, int nsample,
16 | const float *__restrict__ new_xyz, const float *__restrict__ xyz, int *__restrict__ idx) {
17 | // new_xyz: (B, M, 3)
18 | // xyz: (B, N, 3)
19 | // output:
20 | // idx: (B, M, nsample)
21 | int bs_idx = blockIdx.y;
22 | int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
23 | if (bs_idx >= b || pt_idx >= m) return;
24 |
25 | new_xyz += bs_idx * m * 3 + pt_idx * 3;
26 | xyz += bs_idx * n * 3;
27 | idx += bs_idx * m * nsample + pt_idx * nsample;
28 |
29 | float radius2 = radius * radius;
30 | float new_x = new_xyz[0];
31 | float new_y = new_xyz[1];
32 | float new_z = new_xyz[2];
33 |
34 | int cnt = 0;
35 | for (int k = 0; k < n; ++k) {
36 | float x = xyz[k * 3 + 0];
37 | float y = xyz[k * 3 + 1];
38 | float z = xyz[k * 3 + 2];
39 | float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) + (new_z - z) * (new_z - z);
40 | if (d2 < radius2){
41 | if (cnt == 0){
42 | for (int l = 0; l < nsample; ++l) {
43 | idx[l] = k;
44 | }
45 | }
46 | idx[cnt] = k;
47 | ++cnt;
48 | if (cnt >= nsample) break;
49 | }
50 | }
51 | }
52 |
53 |
54 | void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample, \
55 | const float *new_xyz, const float *xyz, int *idx) {
56 | // new_xyz: (B, M, 3)
57 | // xyz: (B, N, 3)
58 | // output:
59 | // idx: (B, M, nsample)
60 |
61 | cudaError_t err;
62 |
63 | dim3 blocks(DIVUP(m, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
64 | dim3 threads(THREADS_PER_BLOCK);
65 |
66 | ball_query_kernel_fast<<>>(b, n, m, radius, nsample, new_xyz, xyz, idx);
67 | // cudaDeviceSynchronize(); // for using printf in kernel function
68 | err = cudaGetLastError();
69 | if (cudaSuccess != err) {
70 | fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
71 | exit(-1);
72 | }
73 | }
74 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_batch/src/ball_query_gpu.h:
--------------------------------------------------------------------------------
1 | #ifndef _BALL_QUERY_GPU_H
2 | #define _BALL_QUERY_GPU_H
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
10 | at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor);
11 |
12 | void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample,
13 | const float *xyz, const float *new_xyz, int *idx);
14 |
15 | #endif
16 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_batch/src/cuda_utils.h:
--------------------------------------------------------------------------------
1 | #ifndef _CUDA_UTILS_H
2 | #define _CUDA_UTILS_H
3 |
4 | #include
5 |
6 | #define TOTAL_THREADS 1024
7 | #define THREADS_PER_BLOCK 256
8 | #define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
9 |
10 | inline int opt_n_threads(int work_size) {
11 | const int pow_2 = std::log(static_cast(work_size)) / std::log(2.0);
12 |
13 | return max(min(1 << pow_2, TOTAL_THREADS), 1);
14 | }
15 | #endif
16 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_batch/src/group_points.cpp:
--------------------------------------------------------------------------------
1 | /*
2 | batch version of point grouping, modified from the original implementation of official PointNet++ codes.
3 | Written by Shaoshuai Shi
4 | All Rights Reserved 2018.
5 | */
6 |
7 |
8 | #include
9 | #include
10 | #include
11 | #include
12 | #include
13 | #include "group_points_gpu.h"
14 |
15 | extern THCState *state;
16 |
17 |
18 | int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
19 | at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
20 |
21 | float *grad_points = grad_points_tensor.data();
22 | const int *idx = idx_tensor.data();
23 | const float *grad_out = grad_out_tensor.data();
24 |
25 | group_points_grad_kernel_launcher_fast(b, c, n, npoints, nsample, grad_out, idx, grad_points);
26 | return 1;
27 | }
28 |
29 |
30 | int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
31 | at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor) {
32 |
33 | const float *points = points_tensor.data();
34 | const int *idx = idx_tensor.data();
35 | float *out = out_tensor.data();
36 |
37 | group_points_kernel_launcher_fast(b, c, n, npoints, nsample, points, idx, out);
38 | return 1;
39 | }
40 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_batch/src/group_points_gpu.cu:
--------------------------------------------------------------------------------
1 | /*
2 | batch version of point grouping, modified from the original implementation of official PointNet++ codes.
3 | Written by Shaoshuai Shi
4 | All Rights Reserved 2018.
5 | */
6 |
7 | #include
8 | #include
9 |
10 | #include "cuda_utils.h"
11 | #include "group_points_gpu.h"
12 |
13 |
14 | __global__ void group_points_grad_kernel_fast(int b, int c, int n, int npoints, int nsample,
15 | const float *__restrict__ grad_out, const int *__restrict__ idx, float *__restrict__ grad_points) {
16 | // grad_out: (B, C, npoints, nsample)
17 | // idx: (B, npoints, nsample)
18 | // output:
19 | // grad_points: (B, C, N)
20 | int bs_idx = blockIdx.z;
21 | int c_idx = blockIdx.y;
22 | int index = blockIdx.x * blockDim.x + threadIdx.x;
23 | int pt_idx = index / nsample;
24 | if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
25 |
26 | int sample_idx = index % nsample;
27 | grad_out += bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
28 | idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
29 |
30 | atomicAdd(grad_points + bs_idx * c * n + c_idx * n + idx[0] , grad_out[0]);
31 | }
32 |
33 | void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
34 | const float *grad_out, const int *idx, float *grad_points) {
35 | // grad_out: (B, C, npoints, nsample)
36 | // idx: (B, npoints, nsample)
37 | // output:
38 | // grad_points: (B, C, N)
39 | cudaError_t err;
40 | dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
41 | dim3 threads(THREADS_PER_BLOCK);
42 |
43 | group_points_grad_kernel_fast<<>>(b, c, n, npoints, nsample, grad_out, idx, grad_points);
44 |
45 | err = cudaGetLastError();
46 | if (cudaSuccess != err) {
47 | fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
48 | exit(-1);
49 | }
50 | }
51 |
52 |
53 | __global__ void group_points_kernel_fast(int b, int c, int n, int npoints, int nsample,
54 | const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
55 | // points: (B, C, N)
56 | // idx: (B, npoints, nsample)
57 | // output:
58 | // out: (B, C, npoints, nsample)
59 | int bs_idx = blockIdx.z;
60 | int c_idx = blockIdx.y;
61 | int index = blockIdx.x * blockDim.x + threadIdx.x;
62 | int pt_idx = index / nsample;
63 | if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
64 |
65 | int sample_idx = index % nsample;
66 |
67 | idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
68 | int in_idx = bs_idx * c * n + c_idx * n + idx[0];
69 | int out_idx = bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
70 |
71 | out[out_idx] = points[in_idx];
72 | }
73 |
74 |
75 | void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
76 | const float *points, const int *idx, float *out) {
77 | // points: (B, C, N)
78 | // idx: (B, npoints, nsample)
79 | // output:
80 | // out: (B, C, npoints, nsample)
81 | cudaError_t err;
82 | dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
83 | dim3 threads(THREADS_PER_BLOCK);
84 |
85 | group_points_kernel_fast<<>>(b, c, n, npoints, nsample, points, idx, out);
86 | // cudaDeviceSynchronize(); // for using printf in kernel function
87 | err = cudaGetLastError();
88 | if (cudaSuccess != err) {
89 | fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
90 | exit(-1);
91 | }
92 | }
93 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_batch/src/group_points_gpu.h:
--------------------------------------------------------------------------------
1 | #ifndef _GROUP_POINTS_GPU_H
2 | #define _GROUP_POINTS_GPU_H
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 |
10 | int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
11 | at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
12 |
13 | void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
14 | const float *points, const int *idx, float *out);
15 |
16 | int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
17 | at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
18 |
19 | void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
20 | const float *grad_out, const int *idx, float *grad_points);
21 |
22 | #endif
23 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_batch/src/interpolate.cpp:
--------------------------------------------------------------------------------
1 | /*
2 | batch version of point interpolation, modified from the original implementation of official PointNet++ codes.
3 | Written by Shaoshuai Shi
4 | All Rights Reserved 2018.
5 | */
6 |
7 |
8 | #include
9 | #include
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include
15 | #include
16 | #include "interpolate_gpu.h"
17 |
18 | extern THCState *state;
19 |
20 |
21 | void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
22 | at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor) {
23 | const float *unknown = unknown_tensor.data();
24 | const float *known = known_tensor.data();
25 | float *dist2 = dist2_tensor.data();
26 | int *idx = idx_tensor.data();
27 |
28 | three_nn_kernel_launcher_fast(b, n, m, unknown, known, dist2, idx);
29 | }
30 |
31 |
32 | void three_interpolate_wrapper_fast(int b, int c, int m, int n,
33 | at::Tensor points_tensor,
34 | at::Tensor idx_tensor,
35 | at::Tensor weight_tensor,
36 | at::Tensor out_tensor) {
37 |
38 | const float *points = points_tensor.data();
39 | const float *weight = weight_tensor.data();
40 | float *out = out_tensor.data();
41 | const int *idx = idx_tensor.data();
42 |
43 | three_interpolate_kernel_launcher_fast(b, c, m, n, points, idx, weight, out);
44 | }
45 |
46 | void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m,
47 | at::Tensor grad_out_tensor,
48 | at::Tensor idx_tensor,
49 | at::Tensor weight_tensor,
50 | at::Tensor grad_points_tensor) {
51 |
52 | const float *grad_out = grad_out_tensor.data();
53 | const float *weight = weight_tensor.data();
54 | float *grad_points = grad_points_tensor.data();
55 | const int *idx = idx_tensor.data();
56 |
57 | three_interpolate_grad_kernel_launcher_fast(b, c, n, m, grad_out, idx, weight, grad_points);
58 | }
59 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_batch/src/interpolate_gpu.h:
--------------------------------------------------------------------------------
1 | #ifndef _INTERPOLATE_GPU_H
2 | #define _INTERPOLATE_GPU_H
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 |
10 | void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
11 | at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor);
12 |
13 | void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
14 | const float *known, float *dist2, int *idx);
15 |
16 |
17 | void three_interpolate_wrapper_fast(int b, int c, int m, int n, at::Tensor points_tensor,
18 | at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor);
19 |
20 | void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
21 | const float *points, const int *idx, const float *weight, float *out);
22 |
23 |
24 | void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m, at::Tensor grad_out_tensor,
25 | at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor grad_points_tensor);
26 |
27 | void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
28 | const int *idx, const float *weight, float *grad_points);
29 |
30 | #endif
31 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_batch/src/pointnet2_api.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 |
4 | #include "ball_query_gpu.h"
5 | #include "group_points_gpu.h"
6 | #include "sampling_gpu.h"
7 | #include "interpolate_gpu.h"
8 |
9 |
10 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
11 | m.def("ball_query_wrapper", &ball_query_wrapper_fast, "ball_query_wrapper_fast");
12 |
13 | m.def("group_points_wrapper", &group_points_wrapper_fast, "group_points_wrapper_fast");
14 | m.def("group_points_grad_wrapper", &group_points_grad_wrapper_fast, "group_points_grad_wrapper_fast");
15 |
16 | m.def("gather_points_wrapper", &gather_points_wrapper_fast, "gather_points_wrapper_fast");
17 | m.def("gather_points_grad_wrapper", &gather_points_grad_wrapper_fast, "gather_points_grad_wrapper_fast");
18 |
19 | m.def("farthest_point_sampling_wrapper", &farthest_point_sampling_wrapper, "farthest_point_sampling_wrapper");
20 |
21 | m.def("three_nn_wrapper", &three_nn_wrapper_fast, "three_nn_wrapper_fast");
22 | m.def("three_interpolate_wrapper", &three_interpolate_wrapper_fast, "three_interpolate_wrapper_fast");
23 | m.def("three_interpolate_grad_wrapper", &three_interpolate_grad_wrapper_fast, "three_interpolate_grad_wrapper_fast");
24 | }
25 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_batch/src/sampling.cpp:
--------------------------------------------------------------------------------
1 | /*
2 | batch version of point sampling and gathering, modified from the original implementation of official PointNet++ codes.
3 | Written by Shaoshuai Shi
4 | All Rights Reserved 2018.
5 | */
6 |
7 |
8 | #include
9 | #include
10 | #include
11 | #include
12 |
13 | #include "sampling_gpu.h"
14 |
15 | extern THCState *state;
16 |
17 |
18 | int gather_points_wrapper_fast(int b, int c, int n, int npoints,
19 | at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor){
20 | const float *points = points_tensor.data();
21 | const int *idx = idx_tensor.data();
22 | float *out = out_tensor.data();
23 |
24 | gather_points_kernel_launcher_fast(b, c, n, npoints, points, idx, out);
25 | return 1;
26 | }
27 |
28 |
29 | int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
30 | at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
31 |
32 | const float *grad_out = grad_out_tensor.data();
33 | const int *idx = idx_tensor.data();
34 | float *grad_points = grad_points_tensor.data();
35 |
36 | gather_points_grad_kernel_launcher_fast(b, c, n, npoints, grad_out, idx, grad_points);
37 | return 1;
38 | }
39 |
40 |
41 | int farthest_point_sampling_wrapper(int b, int n, int m,
42 | at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor) {
43 |
44 | const float *points = points_tensor.data();
45 | float *temp = temp_tensor.data();
46 | int *idx = idx_tensor.data();
47 |
48 | farthest_point_sampling_kernel_launcher(b, n, m, points, temp, idx);
49 | return 1;
50 | }
51 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_batch/src/sampling_gpu.h:
--------------------------------------------------------------------------------
1 | #ifndef _SAMPLING_GPU_H
2 | #define _SAMPLING_GPU_H
3 |
4 | #include
5 | #include
6 | #include
7 |
8 |
9 | int gather_points_wrapper_fast(int b, int c, int n, int npoints,
10 | at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
11 |
12 | void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
13 | const float *points, const int *idx, float *out);
14 |
15 |
16 | int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
17 | at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
18 |
19 | void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
20 | const float *grad_out, const int *idx, float *grad_points);
21 |
22 |
23 | int farthest_point_sampling_wrapper(int b, int n, int m,
24 | at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor);
25 |
26 | void farthest_point_sampling_kernel_launcher(int b, int n, int m,
27 | const float *dataset, float *temp, int *idxs);
28 |
29 | #endif
30 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/ball_query.cpp:
--------------------------------------------------------------------------------
1 | /*
2 | Stacked-batch-data version of ball query, modified from the original implementation of official PointNet++ codes.
3 | Written by Shaoshuai Shi
4 | All Rights Reserved 2019-2020.
5 | */
6 |
7 |
8 | #include
9 | #include
10 | #include
11 | #include
12 | #include
13 | #include "ball_query_gpu.h"
14 |
15 | extern THCState *state;
16 |
17 | #define CHECK_CUDA(x) do { \
18 | if (!x.type().is_cuda()) { \
19 | fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \
20 | exit(-1); \
21 | } \
22 | } while (0)
23 | #define CHECK_CONTIGUOUS(x) do { \
24 | if (!x.is_contiguous()) { \
25 | fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \
26 | exit(-1); \
27 | } \
28 | } while (0)
29 | #define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
30 |
31 | int ball_query_wrapper_stack(int B, int M, float radius, int nsample,
32 | at::Tensor new_xyz_tensor, at::Tensor new_xyz_batch_cnt_tensor,
33 | at::Tensor xyz_tensor, at::Tensor xyz_batch_cnt_tensor, at::Tensor idx_tensor) {
34 | CHECK_INPUT(new_xyz_tensor);
35 | CHECK_INPUT(xyz_tensor);
36 | CHECK_INPUT(new_xyz_batch_cnt_tensor);
37 | CHECK_INPUT(xyz_batch_cnt_tensor);
38 |
39 | const float *new_xyz = new_xyz_tensor.data();
40 | const float *xyz = xyz_tensor.data();
41 | const int *new_xyz_batch_cnt = new_xyz_batch_cnt_tensor.data();
42 | const int *xyz_batch_cnt = xyz_batch_cnt_tensor.data();
43 | int *idx = idx_tensor.data();
44 |
45 | ball_query_kernel_launcher_stack(B, M, radius, nsample, new_xyz, new_xyz_batch_cnt, xyz, xyz_batch_cnt, idx);
46 | return 1;
47 | }
48 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/ball_query_gpu.cu:
--------------------------------------------------------------------------------
1 | /*
2 | Stacked-batch-data version of ball query, modified from the original implementation of official PointNet++ codes.
3 | Written by Shaoshuai Shi
4 | All Rights Reserved 2019-2020.
5 | */
6 |
7 |
8 | #include
9 | #include
10 | #include
11 |
12 | #include "ball_query_gpu.h"
13 | #include "cuda_utils.h"
14 |
15 |
16 | __global__ void ball_query_kernel_stack(int B, int M, float radius, int nsample, \
17 | const float *new_xyz, const int *new_xyz_batch_cnt, const float *xyz, const int *xyz_batch_cnt, int *idx) {
18 | // :param xyz: (N1 + N2 ..., 3) xyz coordinates of the features
19 | // :param xyz_batch_cnt: (batch_size), [N1, N2, ...]
20 | // :param new_xyz: (M1 + M2 ..., 3) centers of the ball query
21 | // :param new_xyz_batch_cnt: (batch_size), [M1, M2, ...]
22 | // output:
23 | // idx: (M, nsample)
24 | int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
25 | if (pt_idx >= M) return;
26 |
27 | int bs_idx = 0, pt_cnt = new_xyz_batch_cnt[0];
28 | for (int k = 1; k < B; k++){
29 | if (pt_idx < pt_cnt) break;
30 | pt_cnt += new_xyz_batch_cnt[k];
31 | bs_idx = k;
32 | }
33 |
34 | int xyz_batch_start_idx = 0;
35 | for (int k = 0; k < bs_idx; k++) xyz_batch_start_idx += xyz_batch_cnt[k];
36 | // for (int k = 0; k < bs_idx; k++) new_xyz_batch_start_idx += new_xyz_batch_cnt[k];
37 |
38 | new_xyz += pt_idx * 3;
39 | xyz += xyz_batch_start_idx * 3;
40 | idx += pt_idx * nsample;
41 |
42 | float radius2 = radius * radius;
43 | float new_x = new_xyz[0];
44 | float new_y = new_xyz[1];
45 | float new_z = new_xyz[2];
46 | int n = xyz_batch_cnt[bs_idx];
47 |
48 | int cnt = 0;
49 | for (int k = 0; k < n; ++k) {
50 | float x = xyz[k * 3 + 0];
51 | float y = xyz[k * 3 + 1];
52 | float z = xyz[k * 3 + 2];
53 | float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) + (new_z - z) * (new_z - z);
54 | if (d2 < radius2){
55 | if (cnt == 0){
56 | for (int l = 0; l < nsample; ++l) {
57 | idx[l] = k;
58 | }
59 | }
60 | idx[cnt] = k;
61 | ++cnt;
62 | if (cnt >= nsample) break;
63 | }
64 | }
65 | if (cnt == 0) idx[0] = -1;
66 | }
67 |
68 |
69 | void ball_query_kernel_launcher_stack(int B, int M, float radius, int nsample,
70 | const float *new_xyz, const int *new_xyz_batch_cnt, const float *xyz, const int *xyz_batch_cnt, int *idx){
71 | // :param xyz: (N1 + N2 ..., 3) xyz coordinates of the features
72 | // :param xyz_batch_cnt: (batch_size), [N1, N2, ...]
73 | // :param new_xyz: (M1 + M2 ..., 3) centers of the ball query
74 | // :param new_xyz_batch_cnt: (batch_size), [M1, M2, ...]
75 | // output:
76 | // idx: (M, nsample)
77 |
78 | cudaError_t err;
79 |
80 | dim3 blocks(DIVUP(M, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row)
81 | dim3 threads(THREADS_PER_BLOCK);
82 |
83 | ball_query_kernel_stack<<>>(B, M, radius, nsample, new_xyz, new_xyz_batch_cnt, xyz, xyz_batch_cnt, idx);
84 | // cudaDeviceSynchronize(); // for using printf in kernel function
85 | err = cudaGetLastError();
86 | if (cudaSuccess != err) {
87 | fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
88 | exit(-1);
89 | }
90 | }
91 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/ball_query_gpu.h:
--------------------------------------------------------------------------------
1 | /*
2 | Stacked-batch-data version of ball query, modified from the original implementation of official PointNet++ codes.
3 | Written by Shaoshuai Shi
4 | All Rights Reserved 2019-2020.
5 | */
6 |
7 |
8 | #ifndef _STACK_BALL_QUERY_GPU_H
9 | #define _STACK_BALL_QUERY_GPU_H
10 |
11 | #include
12 | #include
13 | #include
14 | #include
15 |
16 | int ball_query_wrapper_stack(int B, int M, float radius, int nsample,
17 | at::Tensor new_xyz_tensor, at::Tensor new_xyz_batch_cnt_tensor,
18 | at::Tensor xyz_tensor, at::Tensor xyz_batch_cnt_tensor, at::Tensor idx_tensor);
19 |
20 |
21 | void ball_query_kernel_launcher_stack(int B, int M, float radius, int nsample,
22 | const float *new_xyz, const int *new_xyz_batch_cnt, const float *xyz, const int *xyz_batch_cnt, int *idx);
23 |
24 |
25 | #endif
26 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/cuda_utils.h:
--------------------------------------------------------------------------------
1 | #ifndef _STACK_CUDA_UTILS_H
2 | #define _STACK_CUDA_UTILS_H
3 |
4 | #include
5 |
6 | #define THREADS_PER_BLOCK 256
7 | #define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
8 |
9 | #endif
10 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/group_points.cpp:
--------------------------------------------------------------------------------
1 | /*
2 | Stacked-batch-data version of point grouping, modified from the original implementation of official PointNet++ codes.
3 | Written by Shaoshuai Shi
4 | All Rights Reserved 2019-2020.
5 | */
6 |
7 |
8 | #include
9 | #include
10 | #include
11 | #include
12 | #include
13 | #include "group_points_gpu.h"
14 |
15 | extern THCState *state;
16 | #define CHECK_CUDA(x) do { \
17 | if (!x.type().is_cuda()) { \
18 | fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \
19 | exit(-1); \
20 | } \
21 | } while (0)
22 | #define CHECK_CONTIGUOUS(x) do { \
23 | if (!x.is_contiguous()) { \
24 | fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \
25 | exit(-1); \
26 | } \
27 | } while (0)
28 | #define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
29 |
30 |
31 | int group_points_grad_wrapper_stack(int B, int M, int C, int N, int nsample,
32 | at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor idx_batch_cnt_tensor,
33 | at::Tensor features_batch_cnt_tensor, at::Tensor grad_features_tensor) {
34 |
35 | CHECK_INPUT(grad_out_tensor);
36 | CHECK_INPUT(idx_tensor);
37 | CHECK_INPUT(idx_batch_cnt_tensor);
38 | CHECK_INPUT(features_batch_cnt_tensor);
39 | CHECK_INPUT(grad_features_tensor);
40 |
41 | const float *grad_out = grad_out_tensor.data();
42 | const int *idx = idx_tensor.data();
43 | const int *idx_batch_cnt = idx_batch_cnt_tensor.data();
44 | const int *features_batch_cnt = features_batch_cnt_tensor.data();
45 | float *grad_features = grad_features_tensor.data();
46 |
47 | group_points_grad_kernel_launcher_stack(B, M, C, N, nsample, grad_out, idx, idx_batch_cnt, features_batch_cnt, grad_features);
48 | return 1;
49 | }
50 |
51 |
52 | int group_points_wrapper_stack(int B, int M, int C, int nsample,
53 | at::Tensor features_tensor, at::Tensor features_batch_cnt_tensor,
54 | at::Tensor idx_tensor, at::Tensor idx_batch_cnt_tensor, at::Tensor out_tensor) {
55 |
56 | CHECK_INPUT(features_tensor);
57 | CHECK_INPUT(features_batch_cnt_tensor);
58 | CHECK_INPUT(idx_tensor);
59 | CHECK_INPUT(idx_batch_cnt_tensor);
60 | CHECK_INPUT(out_tensor);
61 |
62 | const float *features = features_tensor.data();
63 | const int *idx = idx_tensor.data();
64 | const int *features_batch_cnt = features_batch_cnt_tensor.data();
65 | const int *idx_batch_cnt = idx_batch_cnt_tensor.data();
66 | float *out = out_tensor.data();
67 |
68 | group_points_kernel_launcher_stack(B, M, C, nsample, features, features_batch_cnt, idx, idx_batch_cnt, out);
69 | return 1;
70 | }
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/group_points_gpu.h:
--------------------------------------------------------------------------------
1 | /*
2 | Stacked-batch-data version of point grouping, modified from the original implementation of official PointNet++ codes.
3 | Written by Shaoshuai Shi
4 | All Rights Reserved 2019-2020.
5 | */
6 |
7 |
8 | #ifndef _STACK_GROUP_POINTS_GPU_H
9 | #define _STACK_GROUP_POINTS_GPU_H
10 |
11 | #include
12 | #include
13 | #include
14 | #include
15 |
16 |
17 | int group_points_wrapper_stack(int B, int M, int C, int nsample,
18 | at::Tensor features_tensor, at::Tensor features_batch_cnt_tensor,
19 | at::Tensor idx_tensor, at::Tensor idx_batch_cnt_tensor, at::Tensor out_tensor);
20 |
21 | void group_points_kernel_launcher_stack(int B, int M, int C, int nsample,
22 | const float *features, const int *features_batch_cnt, const int *idx, const int *idx_batch_cnt, float *out);
23 |
24 | int group_points_grad_wrapper_stack(int B, int M, int C, int N, int nsample,
25 | at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor idx_batch_cnt_tensor,
26 | at::Tensor features_batch_cnt_tensor, at::Tensor grad_features_tensor);
27 |
28 | void group_points_grad_kernel_launcher_stack(int B, int M, int C, int N, int nsample,
29 | const float *grad_out, const int *idx, const int *idx_batch_cnt, const int *features_batch_cnt, float *grad_features);
30 |
31 | #endif
32 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/interpolate_gpu.h:
--------------------------------------------------------------------------------
1 | #ifndef _INTERPOLATE_GPU_H
2 | #define _INTERPOLATE_GPU_H
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 |
10 | void three_nn_wrapper_stack(at::Tensor unknown_tensor,
11 | at::Tensor unknown_batch_cnt_tensor, at::Tensor known_tensor,
12 | at::Tensor known_batch_cnt_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor);
13 |
14 |
15 | void three_interpolate_wrapper_stack(at::Tensor features_tensor,
16 | at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor);
17 |
18 |
19 |
20 | void three_interpolate_grad_wrapper_stack(at::Tensor grad_out_tensor, at::Tensor idx_tensor,
21 | at::Tensor weight_tensor, at::Tensor grad_features_tensor);
22 |
23 |
24 | void three_nn_kernel_launcher_stack(int batch_size, int N, int M, const float *unknown,
25 | const int *unknown_batch_cnt, const float *known, const int *known_batch_cnt,
26 | float *dist2, int *idx);
27 |
28 |
29 | void three_interpolate_kernel_launcher_stack(int N, int channels,
30 | const float *features, const int *idx, const float *weight, float *out);
31 |
32 |
33 |
34 | void three_interpolate_grad_kernel_launcher_stack(int N, int channels, const float *grad_out,
35 | const int *idx, const float *weight, float *grad_features);
36 |
37 |
38 |
39 | #endif
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/pointnet2_api.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 |
4 | #include "ball_query_gpu.h"
5 | #include "group_points_gpu.h"
6 | #include "sampling_gpu.h"
7 | #include "interpolate_gpu.h"
8 | #include "voxel_query_gpu.h"
9 | #include "vector_pool_gpu.h"
10 |
11 |
12 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
13 | m.def("ball_query_wrapper", &ball_query_wrapper_stack, "ball_query_wrapper_stack");
14 | m.def("voxel_query_wrapper", &voxel_query_wrapper_stack, "voxel_query_wrapper_stack");
15 |
16 | m.def("farthest_point_sampling_wrapper", &farthest_point_sampling_wrapper, "farthest_point_sampling_wrapper");
17 | m.def("stack_farthest_point_sampling_wrapper", &stack_farthest_point_sampling_wrapper, "stack_farthest_point_sampling_wrapper");
18 |
19 | m.def("group_points_wrapper", &group_points_wrapper_stack, "group_points_wrapper_stack");
20 | m.def("group_points_grad_wrapper", &group_points_grad_wrapper_stack, "group_points_grad_wrapper_stack");
21 |
22 | m.def("three_nn_wrapper", &three_nn_wrapper_stack, "three_nn_wrapper_stack");
23 | m.def("three_interpolate_wrapper", &three_interpolate_wrapper_stack, "three_interpolate_wrapper_stack");
24 | m.def("three_interpolate_grad_wrapper", &three_interpolate_grad_wrapper_stack, "three_interpolate_grad_wrapper_stack");
25 |
26 | m.def("query_stacked_local_neighbor_idxs_wrapper_stack", &query_stacked_local_neighbor_idxs_wrapper_stack, "query_stacked_local_neighbor_idxs_wrapper_stack");
27 | m.def("query_three_nn_by_stacked_local_idxs_wrapper_stack", &query_three_nn_by_stacked_local_idxs_wrapper_stack, "query_three_nn_by_stacked_local_idxs_wrapper_stack");
28 |
29 | m.def("vector_pool_wrapper", &vector_pool_wrapper_stack, "vector_pool_grad_wrapper_stack");
30 | m.def("vector_pool_grad_wrapper", &vector_pool_grad_wrapper_stack, "vector_pool_grad_wrapper_stack");
31 | }
32 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/sampling.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 | #include
5 |
6 | #include "sampling_gpu.h"
7 |
8 | extern THCState *state;
9 | #define CHECK_CUDA(x) do { \
10 | if (!x.type().is_cuda()) { \
11 | fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \
12 | exit(-1); \
13 | } \
14 | } while (0)
15 | #define CHECK_CONTIGUOUS(x) do { \
16 | if (!x.is_contiguous()) { \
17 | fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \
18 | exit(-1); \
19 | } \
20 | } while (0)
21 | #define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
22 |
23 |
24 | int farthest_point_sampling_wrapper(int b, int n, int m,
25 | at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor) {
26 |
27 | CHECK_INPUT(points_tensor);
28 | CHECK_INPUT(temp_tensor);
29 | CHECK_INPUT(idx_tensor);
30 |
31 | const float *points = points_tensor.data();
32 | float *temp = temp_tensor.data();
33 | int *idx = idx_tensor.data();
34 |
35 | farthest_point_sampling_kernel_launcher(b, n, m, points, temp, idx);
36 | return 1;
37 | }
38 |
39 |
40 | int stack_farthest_point_sampling_wrapper(at::Tensor points_tensor,
41 | at::Tensor temp_tensor, at::Tensor xyz_batch_cnt_tensor, at::Tensor idx_tensor,
42 | at::Tensor num_sampled_points_tensor) {
43 |
44 | CHECK_INPUT(points_tensor);
45 | CHECK_INPUT(temp_tensor);
46 | CHECK_INPUT(idx_tensor);
47 | CHECK_INPUT(xyz_batch_cnt_tensor);
48 | CHECK_INPUT(num_sampled_points_tensor);
49 |
50 | int batch_size = xyz_batch_cnt_tensor.size(0);
51 | int N = points_tensor.size(0);
52 | const float *points = points_tensor.data();
53 | float *temp = temp_tensor.data();
54 | int *xyz_batch_cnt = xyz_batch_cnt_tensor.data();
55 | int *idx = idx_tensor.data();
56 | int *num_sampled_points = num_sampled_points_tensor.data();
57 |
58 | stack_farthest_point_sampling_kernel_launcher(N, batch_size, points, temp, xyz_batch_cnt, idx, num_sampled_points);
59 | return 1;
60 | }
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/sampling_gpu.h:
--------------------------------------------------------------------------------
1 | #ifndef _SAMPLING_GPU_H
2 | #define _SAMPLING_GPU_H
3 |
4 | #include
5 | #include
6 | #include
7 |
8 |
9 | int farthest_point_sampling_wrapper(int b, int n, int m,
10 | at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor);
11 |
12 | void farthest_point_sampling_kernel_launcher(int b, int n, int m,
13 | const float *dataset, float *temp, int *idxs);
14 |
15 | int stack_farthest_point_sampling_wrapper(
16 | at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor xyz_batch_cnt_tensor,
17 | at::Tensor idx_tensor, at::Tensor num_sampled_points_tensor);
18 |
19 |
20 | void stack_farthest_point_sampling_kernel_launcher(int N, int batch_size,
21 | const float *dataset, float *temp, int *xyz_batch_cnt, int *idxs, int *num_sampled_points);
22 |
23 | #endif
24 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/vector_pool_gpu.h:
--------------------------------------------------------------------------------
1 | /*
2 | Vector-pool aggregation based local feature aggregation for point cloud.
3 | PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection
4 | https://arxiv.org/abs/2102.00463
5 |
6 | Written by Shaoshuai Shi
7 | All Rights Reserved 2020.
8 | */
9 |
10 |
11 | #ifndef _STACK_VECTOR_POOL_GPU_H
12 | #define _STACK_VECTOR_POOL_GPU_H
13 |
14 | #include
15 | #include
16 | #include
17 | #include
18 |
19 |
20 | int query_stacked_local_neighbor_idxs_kernel_launcher_stack(
21 | const float *support_xyz, const int *xyz_batch_cnt, const float *new_xyz, const int *new_xyz_batch_cnt,
22 | int *stack_neighbor_idxs, int *start_len, int *cumsum, int avg_length_of_neighbor_idxs,
23 | float max_neighbour_distance, int batch_size, int M, int nsample, int neighbor_type);
24 |
25 | int query_stacked_local_neighbor_idxs_wrapper_stack(at::Tensor support_xyz_tensor, at::Tensor xyz_batch_cnt_tensor,
26 | at::Tensor new_xyz_tensor, at::Tensor new_xyz_batch_cnt_tensor,
27 | at::Tensor stack_neighbor_idxs_tensor, at::Tensor start_len_tensor, at::Tensor cumsum_tensor,
28 | int avg_length_of_neighbor_idxs, float max_neighbour_distance, int nsample, int neighbor_type);
29 |
30 |
31 | int query_three_nn_by_stacked_local_idxs_kernel_launcher_stack(
32 | const float *support_xyz, const float *new_xyz, const float *new_xyz_grid_centers,
33 | int *new_xyz_grid_idxs, float *new_xyz_grid_dist2,
34 | const int *stack_neighbor_idxs, const int *start_len,
35 | int M, int num_total_grids);
36 |
37 | int query_three_nn_by_stacked_local_idxs_wrapper_stack(at::Tensor support_xyz_tensor,
38 | at::Tensor new_xyz_tensor, at::Tensor new_xyz_grid_centers_tensor,
39 | at::Tensor new_xyz_grid_idxs_tensor, at::Tensor new_xyz_grid_dist2_tensor,
40 | at::Tensor stack_neighbor_idxs_tensor, at::Tensor start_len_tensor,
41 | int M, int num_total_grids);
42 |
43 |
44 | int vector_pool_wrapper_stack(at::Tensor support_xyz_tensor, at::Tensor xyz_batch_cnt_tensor,
45 | at::Tensor support_features_tensor, at::Tensor new_xyz_tensor, at::Tensor new_xyz_batch_cnt_tensor,
46 | at::Tensor new_features_tensor, at::Tensor new_local_xyz,
47 | at::Tensor point_cnt_of_grid_tensor, at::Tensor grouped_idxs_tensor,
48 | int num_grid_x, int num_grid_y, int num_grid_z, float max_neighbour_distance, int use_xyz,
49 | int num_max_sum_points, int nsample, int neighbor_type, int pooling_type);
50 |
51 |
52 | int vector_pool_kernel_launcher_stack(
53 | const float *support_xyz, const float *support_features, const int *xyz_batch_cnt,
54 | const float *new_xyz, float *new_features, float * new_local_xyz, const int *new_xyz_batch_cnt,
55 | int *point_cnt_of_grid, int *grouped_idxs,
56 | int num_grid_x, int num_grid_y, int num_grid_z, float max_neighbour_distance,
57 | int batch_size, int N, int M, int num_c_in, int num_c_out, int num_total_grids, int use_xyz,
58 | int num_max_sum_points, int nsample, int neighbor_type, int pooling_type);
59 |
60 |
61 | int vector_pool_grad_wrapper_stack(at::Tensor grad_new_features_tensor,
62 | at::Tensor point_cnt_of_grid_tensor, at::Tensor grouped_idxs_tensor,
63 | at::Tensor grad_support_features_tensor);
64 |
65 |
66 | void vector_pool_grad_kernel_launcher_stack(
67 | const float *grad_new_features, const int *point_cnt_of_grid, const int *grouped_idxs,
68 | float *grad_support_features, int N, int M, int num_c_out, int num_c_in, int num_total_grids,
69 | int num_max_sum_points);
70 |
71 | #endif
72 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/voxel_query.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 | #include
5 | #include
6 | #include
7 | #include
8 | #include
9 | #include "voxel_query_gpu.h"
10 |
11 | extern THCState *state;
12 |
13 | #define CHECK_CUDA(x) do { \
14 | if (!x.type().is_cuda()) { \
15 | fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \
16 | exit(-1); \
17 | } \
18 | } while (0)
19 | #define CHECK_CONTIGUOUS(x) do { \
20 | if (!x.is_contiguous()) { \
21 | fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \
22 | exit(-1); \
23 | } \
24 | } while (0)
25 | #define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
26 |
27 |
28 | int voxel_query_wrapper_stack(int M, int R1, int R2, int R3, int nsample, float radius,
29 | int z_range, int y_range, int x_range, at::Tensor new_xyz_tensor, at::Tensor xyz_tensor,
30 | at::Tensor new_coords_tensor, at::Tensor point_indices_tensor, at::Tensor idx_tensor) {
31 | CHECK_INPUT(new_coords_tensor);
32 | CHECK_INPUT(point_indices_tensor);
33 | CHECK_INPUT(new_xyz_tensor);
34 | CHECK_INPUT(xyz_tensor);
35 |
36 | const float *new_xyz = new_xyz_tensor.data();
37 | const float *xyz = xyz_tensor.data();
38 | const int *new_coords = new_coords_tensor.data();
39 | const int *point_indices = point_indices_tensor.data();
40 | int *idx = idx_tensor.data();
41 |
42 | voxel_query_kernel_launcher_stack(M, R1, R2, R3, nsample, radius, z_range, y_range, x_range, new_xyz, xyz, new_coords, point_indices, idx);
43 | return 1;
44 | }
45 |
--------------------------------------------------------------------------------
/pcdet/ops/pointnet2/pointnet2_stack/src/voxel_query_gpu.h:
--------------------------------------------------------------------------------
1 | #ifndef _STACK_VOXEL_QUERY_GPU_H
2 | #define _STACK_VOXEL_QUERY_GPU_H
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | int voxel_query_wrapper_stack(int M, int R1, int R2, int R3, int nsample, float radius,
10 | int z_range, int y_range, int x_range, at::Tensor new_xyz_tensor, at::Tensor xyz_tensor,
11 | at::Tensor new_coords_tensor, at::Tensor point_indices_tensor, at::Tensor idx_tensor);
12 |
13 |
14 | void voxel_query_kernel_launcher_stack(int M, int R1, int R2, int R3, int nsample,
15 | float radius, int z_range, int y_range, int x_range, const float *new_xyz,
16 | const float *xyz, const int *new_coords, const int *point_indices, int *idx);
17 |
18 |
19 | #endif
20 |
--------------------------------------------------------------------------------
/pcdet/ops/roipoint_pool3d/roipoint_pool3d_utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | from torch.autograd import Function
4 |
5 | from ...utils import box_utils
6 | from . import roipoint_pool3d_cuda
7 |
8 |
9 | class RoIPointPool3d(nn.Module):
10 | def __init__(self, num_sampled_points=512, pool_extra_width=1.0):
11 | super().__init__()
12 | self.num_sampled_points = num_sampled_points
13 | self.pool_extra_width = pool_extra_width
14 |
15 | def forward(self, points, point_features, boxes3d):
16 | """
17 | Args:
18 | points: (B, N, 3)
19 | point_features: (B, N, C)
20 | boxes3d: (B, M, 7), [x, y, z, dx, dy, dz, heading]
21 |
22 | Returns:
23 | pooled_features: (B, M, 512, 3 + C)
24 | pooled_empty_flag: (B, M)
25 | """
26 | return RoIPointPool3dFunction.apply(
27 | points, point_features, boxes3d, self.pool_extra_width, self.num_sampled_points
28 | )
29 |
30 |
31 | class RoIPointPool3dFunction(Function):
32 | @staticmethod
33 | def forward(ctx, points, point_features, boxes3d, pool_extra_width, num_sampled_points=512):
34 | """
35 | Args:
36 | ctx:
37 | points: (B, N, 3)
38 | point_features: (B, N, C)
39 | boxes3d: (B, num_boxes, 7), [x, y, z, dx, dy, dz, heading]
40 | pool_extra_width:
41 | num_sampled_points:
42 |
43 | Returns:
44 | pooled_features: (B, num_boxes, 512, 3 + C)
45 | pooled_empty_flag: (B, num_boxes)
46 | """
47 | assert points.shape.__len__() == 3 and points.shape[2] == 3
48 | batch_size, boxes_num, feature_len = points.shape[0], boxes3d.shape[1], point_features.shape[2]
49 | pooled_boxes3d = box_utils.enlarge_box3d(boxes3d.view(-1, 7), pool_extra_width).view(batch_size, -1, 7)
50 |
51 | pooled_features = point_features.new_zeros((batch_size, boxes_num, num_sampled_points, 3 + feature_len))
52 | pooled_empty_flag = point_features.new_zeros((batch_size, boxes_num)).int()
53 |
54 | roipoint_pool3d_cuda.forward(
55 | points.contiguous(), pooled_boxes3d.contiguous(),
56 | point_features.contiguous(), pooled_features, pooled_empty_flag
57 | )
58 |
59 | return pooled_features, pooled_empty_flag
60 |
61 | @staticmethod
62 | def backward(ctx, grad_out):
63 | raise NotImplementedError
64 |
65 |
66 | if __name__ == '__main__':
67 | pass
68 |
--------------------------------------------------------------------------------
/pcdet/ops/roipoint_pool3d/src/roipoint_pool3d.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 |
4 | #define CHECK_CUDA(x) do { \
5 | if (!x.type().is_cuda()) { \
6 | fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \
7 | exit(-1); \
8 | } \
9 | } while (0)
10 | #define CHECK_CONTIGUOUS(x) do { \
11 | if (!x.is_contiguous()) { \
12 | fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \
13 | exit(-1); \
14 | } \
15 | } while (0)
16 | #define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
17 |
18 |
19 | void roipool3dLauncher(int batch_size, int pts_num, int boxes_num, int feature_in_len, int sampled_pts_num,
20 | const float *xyz, const float *boxes3d, const float *pts_feature, float *pooled_features, int *pooled_empty_flag);
21 |
22 |
23 | int roipool3d_gpu(at::Tensor xyz, at::Tensor boxes3d, at::Tensor pts_feature, at::Tensor pooled_features, at::Tensor pooled_empty_flag){
24 | // params xyz: (B, N, 3)
25 | // params boxes3d: (B, M, 7)
26 | // params pts_feature: (B, N, C)
27 | // params pooled_features: (B, M, 512, 3+C)
28 | // params pooled_empty_flag: (B, M)
29 | CHECK_INPUT(xyz);
30 | CHECK_INPUT(boxes3d);
31 | CHECK_INPUT(pts_feature);
32 | CHECK_INPUT(pooled_features);
33 | CHECK_INPUT(pooled_empty_flag);
34 |
35 | int batch_size = xyz.size(0);
36 | int pts_num = xyz.size(1);
37 | int boxes_num = boxes3d.size(1);
38 | int feature_in_len = pts_feature.size(2);
39 | int sampled_pts_num = pooled_features.size(2);
40 |
41 |
42 | const float * xyz_data = xyz.data();
43 | const float * boxes3d_data = boxes3d.data();
44 | const float * pts_feature_data = pts_feature.data();
45 | float * pooled_features_data = pooled_features.data();
46 | int * pooled_empty_flag_data = pooled_empty_flag.data();
47 |
48 | roipool3dLauncher(batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num,
49 | xyz_data, boxes3d_data, pts_feature_data, pooled_features_data, pooled_empty_flag_data);
50 |
51 |
52 |
53 | return 1;
54 | }
55 |
56 |
57 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
58 | m.def("forward", &roipool3d_gpu, "roipool3d forward (CUDA)");
59 | }
60 |
61 |
--------------------------------------------------------------------------------
/pcdet/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pcdet/utils/__init__.py
--------------------------------------------------------------------------------
/pcdet/utils/object3d_kitti.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 |
4 | def get_objects_from_label(label_file):
5 | with open(label_file, 'r') as f:
6 | lines = f.readlines()
7 | objects = [Object3d(line) for line in lines]
8 | return objects
9 |
10 |
11 | def cls_type_to_id(cls_type):
12 | type_to_id = {'Car': 1, 'Pedestrian': 2, 'Cyclist': 3, 'Van': 4}
13 | if cls_type not in type_to_id.keys():
14 | return -1
15 | return type_to_id[cls_type]
16 |
17 |
18 | class Object3d(object):
19 | def __init__(self, line):
20 | label = line.strip().split(' ')
21 | self.src = line
22 | self.cls_type = label[0]
23 | self.cls_id = cls_type_to_id(self.cls_type)
24 | self.truncation = float(label[1])
25 | self.occlusion = float(label[2]) # 0:fully visible 1:partly occluded 2:largely occluded 3:unknown
26 | self.alpha = float(label[3])
27 | self.box2d = np.array((float(label[4]), float(label[5]), float(label[6]), float(label[7])), dtype=np.float32)
28 | self.h = float(label[8])
29 | self.w = float(label[9])
30 | self.l = float(label[10])
31 | self.loc = np.array((float(label[11]), float(label[12]), float(label[13])), dtype=np.float32)
32 | self.dis_to_cam = np.linalg.norm(self.loc)
33 | self.ry = float(label[14])
34 | self.score = float(label[15]) if label.__len__() == 16 else -1.0
35 | self.level_str = None
36 | self.level = self.get_kitti_obj_level()
37 |
38 | def get_kitti_obj_level(self):
39 | height = float(self.box2d[3]) - float(self.box2d[1]) + 1
40 |
41 | if height >= 40 and self.truncation <= 0.15 and self.occlusion <= 0:
42 | self.level_str = 'Easy'
43 | return 0 # Easy
44 | elif height >= 25 and self.truncation <= 0.3 and self.occlusion <= 1:
45 | self.level_str = 'Moderate'
46 | return 1 # Moderate
47 | elif height >= 25 and self.truncation <= 0.5 and self.occlusion <= 2:
48 | self.level_str = 'Hard'
49 | return 2 # Hard
50 | else:
51 | self.level_str = 'UnKnown'
52 | return -1
53 |
54 | def generate_corners3d(self):
55 | """
56 | generate corners3d representation for this object
57 | :return corners_3d: (8, 3) corners of box3d in camera coord
58 | """
59 | l, h, w = self.l, self.h, self.w
60 | x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]
61 | y_corners = [0, 0, 0, 0, -h, -h, -h, -h]
62 | z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]
63 |
64 | R = np.array([[np.cos(self.ry), 0, np.sin(self.ry)],
65 | [0, 1, 0],
66 | [-np.sin(self.ry), 0, np.cos(self.ry)]])
67 | corners3d = np.vstack([x_corners, y_corners, z_corners]) # (3, 8)
68 | corners3d = np.dot(R, corners3d).T
69 | corners3d = corners3d + self.loc
70 | return corners3d
71 |
72 | def to_str(self):
73 | print_str = '%s %.3f %.3f %.3f box2d: %s hwl: [%.3f %.3f %.3f] pos: %s ry: %.3f' \
74 | % (self.cls_type, self.truncation, self.occlusion, self.alpha, self.box2d, self.h, self.w, self.l,
75 | self.loc, self.ry)
76 | return print_str
77 |
78 | def to_kitti_format(self):
79 | kitti_str = '%s %.2f %d %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f' \
80 | % (self.cls_type, self.truncation, int(self.occlusion), self.alpha, self.box2d[0], self.box2d[1],
81 | self.box2d[2], self.box2d[3], self.h, self.w, self.l, self.loc[0], self.loc[1], self.loc[2],
82 | self.ry)
83 | return kitti_str
84 |
--------------------------------------------------------------------------------
/pcdet/utils/spconv_utils.py:
--------------------------------------------------------------------------------
1 | from typing import Set
2 |
3 | try:
4 | import spconv.pytorch as spconv
5 | except:
6 | import spconv as spconv
7 |
8 | import torch.nn as nn
9 |
10 |
11 | def find_all_spconv_keys(model: nn.Module, prefix="") -> Set[str]:
12 | """
13 | Finds all spconv keys that need to have weight's transposed
14 | """
15 | found_keys: Set[str] = set()
16 | for name, child in model.named_children():
17 | new_prefix = f"{prefix}.{name}" if prefix != "" else name
18 |
19 | if isinstance(child, spconv.conv.SparseConvolution):
20 | new_prefix = f"{new_prefix}.weight"
21 | found_keys.add(new_prefix)
22 |
23 | found_keys.update(find_all_spconv_keys(child, prefix=new_prefix))
24 |
25 | return found_keys
26 |
27 |
28 | def replace_feature(out, new_features):
29 | if "replace_feature" in out.__dir__():
30 | # spconv 2.x behaviour
31 | return out.replace_feature(new_features)
32 | else:
33 | out.features = new_features
34 | return out
35 |
--------------------------------------------------------------------------------
/pcdet/utils/transform_utils.py:
--------------------------------------------------------------------------------
1 | import math
2 | import torch
3 |
4 | try:
5 | from kornia.geometry.conversions import (
6 | convert_points_to_homogeneous,
7 | convert_points_from_homogeneous,
8 | )
9 | except:
10 | pass
11 | # print('Warning: kornia is not installed. This package is only required by CaDDN')
12 |
13 |
14 | def project_to_image(project, points):
15 | """
16 | Project points to image
17 | Args:
18 | project [torch.tensor(..., 3, 4)]: Projection matrix
19 | points [torch.Tensor(..., 3)]: 3D points
20 | Returns:
21 | points_img [torch.Tensor(..., 2)]: Points in image
22 | points_depth [torch.Tensor(...)]: Depth of each point
23 | """
24 | # Reshape tensors to expected shape
25 | points = convert_points_to_homogeneous(points)
26 | points = points.unsqueeze(dim=-1)
27 | project = project.unsqueeze(dim=1)
28 |
29 | # Transform points to image and get depths
30 | points_t = project @ points
31 | points_t = points_t.squeeze(dim=-1)
32 | points_img = convert_points_from_homogeneous(points_t)
33 | points_depth = points_t[..., -1] - project[..., 2, 3]
34 |
35 | return points_img, points_depth
36 |
37 |
38 | def normalize_coords(coords, shape):
39 | """
40 | Normalize coordinates of a grid between [-1, 1]
41 | Args:
42 | coords: (..., 3), Coordinates in grid
43 | shape: (3), Grid shape
44 | Returns:
45 | norm_coords: (.., 3), Normalized coordinates in grid
46 | """
47 | min_n = -1
48 | max_n = 1
49 | shape = torch.flip(shape, dims=[0]) # Reverse ordering of shape
50 |
51 | # Subtract 1 since pixel indexing from [0, shape - 1]
52 | norm_coords = coords / (shape - 1) * (max_n - min_n) + min_n
53 | return norm_coords
54 |
55 |
56 | def bin_depths(depth_map, mode, depth_min, depth_max, num_bins, target=False):
57 | """
58 | Converts depth map into bin indices
59 | Args:
60 | depth_map: (H, W), Depth Map
61 | mode: string, Discretiziation mode (See https://arxiv.org/pdf/2005.13423.pdf for more details)
62 | UD: Uniform discretiziation
63 | LID: Linear increasing discretiziation
64 | SID: Spacing increasing discretiziation
65 | depth_min: float, Minimum depth value
66 | depth_max: float, Maximum depth value
67 | num_bins: int, Number of depth bins
68 | target: bool, Whether the depth bins indices will be used for a target tensor in loss comparison
69 | Returns:
70 | indices: (H, W), Depth bin indices
71 | """
72 | if mode == "UD":
73 | bin_size = (depth_max - depth_min) / num_bins
74 | indices = ((depth_map - depth_min) / bin_size)
75 | elif mode == "LID":
76 | bin_size = 2 * (depth_max - depth_min) / (num_bins * (1 + num_bins))
77 | indices = -0.5 + 0.5 * torch.sqrt(1 + 8 * (depth_map - depth_min) / bin_size)
78 | elif mode == "SID":
79 | indices = num_bins * (torch.log(1 + depth_map) - math.log(1 + depth_min)) / \
80 | (math.log(1 + depth_max) - math.log(1 + depth_min))
81 | else:
82 | raise NotImplementedError
83 |
84 | if target:
85 | # Remove indicies outside of bounds
86 | mask = (indices < 0) | (indices > num_bins) | (~torch.isfinite(indices))
87 | indices[mask] = num_bins
88 |
89 | # Convert to integer
90 | indices = indices.type(torch.int64)
91 | return indices
92 |
--------------------------------------------------------------------------------
/pic/method.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CVMI-Lab/SPS-Conv/e949d14f57757b0bcb51680a8603f0538471eea0/pic/method.png
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy<=1.20
2 | llvmlite
3 | numba
4 | torch>=1.1
5 | tensorboardX
6 | easydict
7 | pyyaml
8 | scikit-image
9 | tqdm
10 | torchvision
11 | SharedArray
--------------------------------------------------------------------------------
/tools/_init_path.py:
--------------------------------------------------------------------------------
1 | import sys
2 | sys.path.insert(0, '../')
--------------------------------------------------------------------------------
/tools/cfgs/dataset_configs/kitti_dataset.yaml:
--------------------------------------------------------------------------------
1 | DATASET: 'KittiDataset'
2 | DATA_PATH: '../data/kitti'
3 |
4 | POINT_CLOUD_RANGE: [0, -40, -3, 70.4, 40, 1]
5 |
6 | DATA_SPLIT: {
7 | 'train': train,
8 | 'test': val
9 | }
10 |
11 | INFO_PATH: {
12 | 'train': [kitti_infos_train.pkl],
13 | 'test': [kitti_infos_val.pkl],
14 | }
15 |
16 | GET_ITEM_LIST: ["points"]
17 | FOV_POINTS_ONLY: True
18 |
19 | DATA_AUGMENTOR:
20 | DISABLE_AUG_LIST: ['placeholder']
21 | AUG_CONFIG_LIST:
22 | - NAME: gt_sampling
23 | USE_ROAD_PLANE: True
24 | DB_INFO_PATH:
25 | - kitti_dbinfos_train.pkl
26 | PREPARE: {
27 | filter_by_min_points: ['Car:5', 'Pedestrian:5', 'Cyclist:5'],
28 | filter_by_difficulty: [-1],
29 | }
30 |
31 | SAMPLE_GROUPS: ['Car:20','Pedestrian:15', 'Cyclist:15']
32 | NUM_POINT_FEATURES: 4
33 | DATABASE_WITH_FAKELIDAR: False
34 | REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
35 | LIMIT_WHOLE_SCENE: True
36 |
37 | - NAME: random_world_flip
38 | ALONG_AXIS_LIST: ['x']
39 |
40 | - NAME: random_world_rotation
41 | WORLD_ROT_ANGLE: [-0.78539816, 0.78539816]
42 |
43 | - NAME: random_world_scaling
44 | WORLD_SCALE_RANGE: [0.95, 1.05]
45 |
46 |
47 | POINT_FEATURE_ENCODING: {
48 | encoding_type: absolute_coordinates_encoding,
49 | used_feature_list: ['x', 'y', 'z', 'intensity'],
50 | src_feature_list: ['x', 'y', 'z', 'intensity'],
51 | }
52 |
53 |
54 | DATA_PROCESSOR:
55 | - NAME: mask_points_and_boxes_outside_range
56 | REMOVE_OUTSIDE_BOXES: True
57 |
58 | - NAME: shuffle_points
59 | SHUFFLE_ENABLED: {
60 | 'train': True,
61 | 'test': False
62 | }
63 |
64 | - NAME: transform_points_to_voxels
65 | VOXEL_SIZE: [0.05, 0.05, 0.1]
66 | MAX_POINTS_PER_VOXEL: 5
67 | MAX_NUMBER_OF_VOXELS: {
68 | 'train': 16000,
69 | 'test': 40000
70 | }
71 |
--------------------------------------------------------------------------------
/tools/cfgs/dataset_configs/lyft_dataset.yaml:
--------------------------------------------------------------------------------
1 | DATASET: 'LyftDataset'
2 | DATA_PATH: '../data/lyft'
3 |
4 | VERSION: 'trainval'
5 | SET_NAN_VELOCITY_TO_ZEROS: True
6 | FILTER_MIN_POINTS_IN_GT: 1
7 | MAX_SWEEPS: 5
8 | EVAL_LYFT_IOU_LIST: [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]
9 |
10 | DATA_SPLIT: {
11 | 'train': train,
12 | 'test': val
13 | }
14 |
15 | INFO_PATH: {
16 | 'train': [lyft_infos_train.pkl],
17 | 'test': [lyft_infos_val.pkl],
18 | }
19 |
20 | POINT_CLOUD_RANGE: [-80.0, -80.0, -5.0, 80.0, 80.0, 3.0]
21 |
22 | DATA_AUGMENTOR:
23 | DISABLE_AUG_LIST: ['placeholder']
24 | AUG_CONFIG_LIST:
25 | - NAME: gt_sampling
26 | DB_INFO_PATH:
27 | - lyft_dbinfos_10sweeps.pkl
28 | PREPARE: {
29 | filter_by_min_points: [
30 | 'car:5','pedestrian:5', 'motorcycle:5', 'bicycle:5', 'other_vehicle:5',
31 | 'bus:5', 'truck:5', 'emergency_vehicle:5', 'animal:5'
32 | ],
33 | }
34 |
35 | SAMPLE_GROUPS: [
36 | 'car:3','pedestrian:3', 'motorcycle:6', 'bicycle:6', 'other_vehicle:4',
37 | 'bus:4', 'truck:3', 'emergency_vehicle:7', 'animal:3'
38 | ]
39 |
40 | NUM_POINT_FEATURES: 5
41 | DATABASE_WITH_FAKELIDAR: False
42 | REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
43 | LIMIT_WHOLE_SCENE: True
44 |
45 | - NAME: random_world_flip
46 | ALONG_AXIS_LIST: ['x', 'y']
47 |
48 | - NAME: random_world_rotation
49 | WORLD_ROT_ANGLE: [-0.3925, 0.3925]
50 |
51 | - NAME: random_world_scaling
52 | WORLD_SCALE_RANGE: [0.95, 1.05]
53 |
54 |
55 | POINT_FEATURE_ENCODING: {
56 | encoding_type: absolute_coordinates_encoding,
57 | used_feature_list: ['x', 'y', 'z', 'intensity', 'timestamp'],
58 | src_feature_list: ['x', 'y', 'z', 'intensity', 'timestamp'],
59 | }
60 |
61 |
62 | DATA_PROCESSOR:
63 | - NAME: mask_points_and_boxes_outside_range
64 | REMOVE_OUTSIDE_BOXES: True
65 |
66 | - NAME: shuffle_points
67 | SHUFFLE_ENABLED: {
68 | 'train': True,
69 | 'test': True
70 | }
71 |
72 | - NAME: transform_points_to_voxels
73 | VOXEL_SIZE: [0.1, 0.1, 0.2]
74 | MAX_POINTS_PER_VOXEL: 10
75 | MAX_NUMBER_OF_VOXELS: {
76 | 'train': 80000,
77 | 'test': 80000
78 | }
--------------------------------------------------------------------------------
/tools/cfgs/dataset_configs/nuscenes_dataset.yaml:
--------------------------------------------------------------------------------
1 | DATASET: 'NuScenesDataset'
2 | DATA_PATH: '../data/nuscenes'
3 |
4 | VERSION: 'v1.0-trainval'
5 | MAX_SWEEPS: 10
6 | PRED_VELOCITY: True
7 | SET_NAN_VELOCITY_TO_ZEROS: True
8 | FILTER_MIN_POINTS_IN_GT: 1
9 |
10 | DATA_SPLIT: {
11 | 'train': train,
12 | 'test': val
13 | }
14 |
15 | INFO_PATH: {
16 | 'train': [nuscenes_infos_10sweeps_train.pkl],
17 | 'test': [nuscenes_infos_10sweeps_val.pkl],
18 | }
19 |
20 | POINT_CLOUD_RANGE: [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
21 |
22 | BALANCED_RESAMPLING: True
23 |
24 | DATA_AUGMENTOR:
25 | DISABLE_AUG_LIST: ['placeholder']
26 | AUG_CONFIG_LIST:
27 | - NAME: gt_sampling
28 | DB_INFO_PATH:
29 | - nuscenes_dbinfos_10sweeps_withvelo.pkl
30 | PREPARE: {
31 | filter_by_min_points: [
32 | 'car:5','truck:5', 'construction_vehicle:5', 'bus:5', 'trailer:5',
33 | 'barrier:5', 'motorcycle:5', 'bicycle:5', 'pedestrian:5', 'traffic_cone:5'
34 | ],
35 | }
36 |
37 | SAMPLE_GROUPS: [
38 | 'car:2','truck:3', 'construction_vehicle:7', 'bus:4', 'trailer:6',
39 | 'barrier:2', 'motorcycle:6', 'bicycle:6', 'pedestrian:2', 'traffic_cone:2'
40 | ]
41 |
42 | NUM_POINT_FEATURES: 5
43 | DATABASE_WITH_FAKELIDAR: False
44 | REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
45 | LIMIT_WHOLE_SCENE: True
46 |
47 | - NAME: random_world_flip
48 | ALONG_AXIS_LIST: ['x', 'y']
49 |
50 | - NAME: random_world_rotation
51 | WORLD_ROT_ANGLE: [-0.3925, 0.3925]
52 |
53 | - NAME: random_world_scaling
54 | WORLD_SCALE_RANGE: [0.95, 1.05]
55 |
56 |
57 | POINT_FEATURE_ENCODING: {
58 | encoding_type: absolute_coordinates_encoding,
59 | used_feature_list: ['x', 'y', 'z', 'intensity', 'timestamp'],
60 | src_feature_list: ['x', 'y', 'z', 'intensity', 'timestamp'],
61 | }
62 |
63 |
64 | DATA_PROCESSOR:
65 | - NAME: mask_points_and_boxes_outside_range
66 | REMOVE_OUTSIDE_BOXES: True
67 |
68 | - NAME: shuffle_points
69 | SHUFFLE_ENABLED: {
70 | 'train': True,
71 | 'test': True
72 | }
73 |
74 | - NAME: transform_points_to_voxels
75 | VOXEL_SIZE: [0.1, 0.1, 0.2]
76 | MAX_POINTS_PER_VOXEL: 10
77 | MAX_NUMBER_OF_VOXELS: {
78 | 'train': 60000,
79 | 'test': 60000
80 | }
81 |
--------------------------------------------------------------------------------
/tools/cfgs/dataset_configs/pandaset_dataset.yaml:
--------------------------------------------------------------------------------
1 | DATASET: 'PandasetDataset'
2 | DATA_PATH: '../data/pandaset'
3 |
4 | POINT_CLOUD_RANGE: [-70, -40, -3, 70, 40, 1] # xmin, ymin, zmin, xmax, ymax, zmax
5 |
6 | DATA_SPLIT: {
7 | 'train': train,
8 | 'test': val
9 | }
10 |
11 | SEQUENCES: {
12 | 'train': ['014', '050', '079', '048', '093', '091', '063', '104', '100', '092', '012', '047', '018', '006', '099', '085', '035', '041', '052', '105', '030', '113', '002', '084', '028', '119', '044', '005', '102', '034', '077', '064', '067', '058', '019', '015', '037', '095', '120', '066', '023', '071', '117', '098', '139', '038', '116', '046', '088', '089', '040', '033', '016', '024', '122', '039', '158', '069', '124', '123', '106'], # ~60% of the sequences, randomly chosen
13 | 'val': ['045', '059', '055', '051', '020', '097', '073', '043', '003', '101', '027', '056', '011', '078', '080', '109', '042', '021', '094', '057'], # ~20% of the sequences, randomly chosen
14 | 'test': ['074', '004', '086', '062', '068', '008', '001', '110', '053', '115', '054', '065', '017', '103', '072', '013', '029', '090', '112', '149', '070', '032'] # ~20% of the sequences, randomly chosen
15 | }
16 |
17 | # Acquisition device to consider when loading the data
18 | # Pandaset contains data from:
19 | # - a pandar64 spinning lidar
20 | # - a pandarGT forward facing lidar
21 | # To use data from:
22 | # - the pandar64 lidar only (default), set LIDAR_DEVICE to 0,
23 | # - the pandarGT lidar onlu, set it to 1
24 | # - both devices, set it to -1
25 | LIDAR_DEVICE: 0
26 |
27 |
28 | INFO_PATH: {
29 | 'train': [pandaset_infos_train.pkl],
30 | 'test': [pandaset_infos_val.pkl],
31 | }
32 |
33 | TRAINING_CATEGORIES: {
34 | # This maps raw dataset categories with the corresponding categories used in training
35 | # This map can be incomplete. In case a category is not present, the category
36 | # for training is the same as the raw dataset category
37 | 'Car': 'Car',
38 | 'Pickup Truck': 'Car',
39 | 'Medium-sized Truck': 'Truck',
40 | 'Semi-truck': 'Truck',
41 | 'Towed Object': 'Other Vehicle',
42 | 'Motorcycle': 'Motorcycle',
43 | 'Other Vehicle - Construction Vehicle': 'Other Vehicle',
44 | 'Other Vehicle - Uncommon': 'Other Vehicle',
45 | 'Other Vehicle - Pedicab': 'Other Vehicle',
46 | 'Emergency Vehicle': 'Other Vehicle',
47 | 'Bus': 'Bus',
48 | 'Bicycle': 'Bicycle',
49 | 'Pedestrian': 'Pedestrian',
50 | 'Pedestrian with Object': 'Pedestrian',
51 | 'Animals - Other': 'Animal'
52 | }
53 |
54 |
55 | FOV_POINTS_ONLY: False
56 |
57 |
58 | DATA_AUGMENTOR:
59 | DISABLE_AUG_LIST: ['placeholder']
60 | AUG_CONFIG_LIST:
61 | # gt sampling not working at the moment
62 | - NAME: gt_sampling
63 | USE_ROAD_PLANE: False
64 | DB_INFO_PATH:
65 | - pandaset_dbinfos_train.pkl
66 | PREPARE: {
67 | filter_by_min_points: ['Car:5', 'Pedestrian:5', 'Bicycle:5'],
68 | filter_by_difficulty: [-1],
69 | }
70 |
71 | SAMPLE_GROUPS: ['Car:20','Pedestrian:15', 'Bicycle:15']
72 | NUM_POINT_FEATURES: 4
73 | DATABASE_WITH_FAKELIDAR: False
74 | REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
75 | LIMIT_WHOLE_SCENE: True
76 |
77 | - NAME: random_world_flip
78 | ALONG_AXIS_LIST: ['x', 'y']
79 |
80 | - NAME: random_world_rotation
81 | WORLD_ROT_ANGLE: [-3.14159265, 3.114159265]
82 |
83 | - NAME: random_world_scaling
84 | WORLD_SCALE_RANGE: [0.95, 1.05]
85 |
86 |
87 | POINT_FEATURE_ENCODING: {
88 | encoding_type: absolute_coordinates_encoding,
89 | used_feature_list: ['x', 'y', 'z', 'intensity'],
90 | src_feature_list: ['x', 'y', 'z', 'intensity'],
91 | }
92 |
93 |
94 | DATA_PROCESSOR:
95 | - NAME: mask_points_and_boxes_outside_range
96 | REMOVE_OUTSIDE_BOXES: True
97 |
98 | - NAME: shuffle_points
99 | SHUFFLE_ENABLED: {
100 | 'train': True,
101 | 'test': False
102 | }
103 |
104 | - NAME: transform_points_to_voxels
105 | VOXEL_SIZE: [0.05, 0.05, 0.1]
106 | MAX_POINTS_PER_VOXEL: 5
107 | MAX_NUMBER_OF_VOXELS: {
108 | 'train': 16000,
109 | 'test': 40000
110 | }
111 |
--------------------------------------------------------------------------------
/tools/cfgs/dataset_configs/waymo_dataset.yaml:
--------------------------------------------------------------------------------
1 | DATASET: 'WaymoDataset'
2 | DATA_PATH: '../data/waymo'
3 | PROCESSED_DATA_TAG: 'waymo_processed_data_v0_5_0'
4 |
5 | POINT_CLOUD_RANGE: [-75.2, -75.2, -2, 75.2, 75.2, 4]
6 |
7 | DATA_SPLIT: {
8 | 'train': train,
9 | 'test': val
10 | }
11 |
12 | SAMPLED_INTERVAL: {
13 | 'train': 5,
14 | 'test': 1
15 | }
16 |
17 | FILTER_EMPTY_BOXES_FOR_TRAIN: True
18 | DISABLE_NLZ_FLAG_ON_POINTS: True
19 |
20 | USE_SHARED_MEMORY: False # it will load the data to shared memory to speed up (DO NOT USE IT IF YOU DO NOT FULLY UNDERSTAND WHAT WILL HAPPEN)
21 | SHARED_MEMORY_FILE_LIMIT: 35000 # set it based on the size of your shared memory
22 |
23 | DATA_AUGMENTOR:
24 | DISABLE_AUG_LIST: ['placeholder']
25 | AUG_CONFIG_LIST:
26 | - NAME: gt_sampling
27 | USE_ROAD_PLANE: False
28 | DB_INFO_PATH:
29 | - waymo_processed_data_v0_5_0_waymo_dbinfos_train_sampled_1.pkl
30 |
31 | USE_SHARED_MEMORY: False # set it to True to speed up (it costs about 15GB shared memory)
32 | DB_DATA_PATH:
33 | - waymo_processed_data_v0_5_0_gt_database_train_sampled_1_global.npy
34 |
35 | PREPARE: {
36 | filter_by_min_points: ['Vehicle:5', 'Pedestrian:5', 'Cyclist:5'],
37 | filter_by_difficulty: [-1],
38 | }
39 |
40 | SAMPLE_GROUPS: ['Vehicle:15', 'Pedestrian:10', 'Cyclist:10']
41 | NUM_POINT_FEATURES: 5
42 | REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
43 | LIMIT_WHOLE_SCENE: True
44 |
45 | - NAME: random_world_flip
46 | ALONG_AXIS_LIST: ['x', 'y']
47 |
48 | - NAME: random_world_rotation
49 | WORLD_ROT_ANGLE: [-0.78539816, 0.78539816]
50 |
51 | - NAME: random_world_scaling
52 | WORLD_SCALE_RANGE: [0.95, 1.05]
53 |
54 |
55 | POINT_FEATURE_ENCODING: {
56 | encoding_type: absolute_coordinates_encoding,
57 | used_feature_list: ['x', 'y', 'z', 'intensity', 'elongation'],
58 | src_feature_list: ['x', 'y', 'z', 'intensity', 'elongation'],
59 | }
60 |
61 |
62 | DATA_PROCESSOR:
63 | - NAME: mask_points_and_boxes_outside_range
64 | REMOVE_OUTSIDE_BOXES: True
65 |
66 | - NAME: shuffle_points
67 | SHUFFLE_ENABLED: {
68 | 'train': True,
69 | 'test': True
70 | }
71 |
72 | - NAME: transform_points_to_voxels
73 | VOXEL_SIZE: [0.1, 0.1, 0.15]
74 | MAX_POINTS_PER_VOXEL: 5
75 | MAX_NUMBER_OF_VOXELS: {
76 | 'train': 150000,
77 | 'test': 150000
78 | }
79 |
--------------------------------------------------------------------------------
/tools/cfgs/kitti_models/PartA2_free.yaml:
--------------------------------------------------------------------------------
1 | CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
2 |
3 | DATA_CONFIG:
4 | _BASE_CONFIG_: cfgs/dataset_configs/kitti_dataset.yaml
5 |
6 |
7 | MODEL:
8 | NAME: PointRCNN
9 |
10 | VFE:
11 | NAME: MeanVFE
12 |
13 | BACKBONE_3D:
14 | NAME: UNetV2
15 | RETURN_ENCODED_TENSOR: False
16 |
17 | POINT_HEAD:
18 | NAME: PointIntraPartOffsetHead
19 | CLS_FC: [128, 128]
20 | PART_FC: [128, 128]
21 | REG_FC: [128, 128]
22 | CLASS_AGNOSTIC: False
23 | USE_POINT_FEATURES_BEFORE_FUSION: False
24 | TARGET_CONFIG:
25 | GT_EXTRA_WIDTH: [0.2, 0.2, 0.2]
26 | BOX_CODER: PointResidualCoder
27 | BOX_CODER_CONFIG: {
28 | 'use_mean_size': True,
29 | 'mean_size': [
30 | [3.9, 1.6, 1.56],
31 | [0.8, 0.6, 1.73],
32 | [1.76, 0.6, 1.73]
33 | ]
34 | }
35 |
36 | LOSS_CONFIG:
37 | LOSS_REG: WeightedSmoothL1Loss
38 | LOSS_WEIGHTS: {
39 | 'point_cls_weight': 1.0,
40 | 'point_box_weight': 1.0,
41 | 'point_part_weight': 1.0,
42 | 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
43 | }
44 |
45 | ROI_HEAD:
46 | NAME: PartA2FCHead
47 | CLASS_AGNOSTIC: True
48 |
49 | SHARED_FC: [256, 256, 256]
50 | CLS_FC: [256, 256]
51 | REG_FC: [256, 256]
52 | DP_RATIO: 0.3
53 | DISABLE_PART: True
54 | SEG_MASK_SCORE_THRESH: 0.0
55 |
56 | NMS_CONFIG:
57 | TRAIN:
58 | NMS_TYPE: nms_gpu
59 | MULTI_CLASSES_NMS: False
60 | NMS_PRE_MAXSIZE: 9000
61 | NMS_POST_MAXSIZE: 512
62 | NMS_THRESH: 0.8
63 | TEST:
64 | NMS_TYPE: nms_gpu
65 | MULTI_CLASSES_NMS: False
66 | NMS_PRE_MAXSIZE: 9000
67 | NMS_POST_MAXSIZE: 100
68 | NMS_THRESH: 0.85
69 |
70 | ROI_AWARE_POOL:
71 | POOL_SIZE: 12
72 | NUM_FEATURES: 128
73 | MAX_POINTS_PER_VOXEL: 128
74 |
75 | TARGET_CONFIG:
76 | BOX_CODER: ResidualCoder
77 | ROI_PER_IMAGE: 128
78 | FG_RATIO: 0.5
79 |
80 | SAMPLE_ROI_BY_EACH_CLASS: True
81 | CLS_SCORE_TYPE: roi_iou
82 |
83 | CLS_FG_THRESH: 0.75
84 | CLS_BG_THRESH: 0.25
85 | CLS_BG_THRESH_LO: 0.1
86 | HARD_BG_RATIO: 0.8
87 |
88 | REG_FG_THRESH: 0.65
89 |
90 | LOSS_CONFIG:
91 | CLS_LOSS: BinaryCrossEntropy
92 | REG_LOSS: smooth-l1
93 | CORNER_LOSS_REGULARIZATION: True
94 | LOSS_WEIGHTS: {
95 | 'rcnn_cls_weight': 1.0,
96 | 'rcnn_reg_weight': 1.0,
97 | 'rcnn_corner_weight': 1.0,
98 | 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
99 | }
100 |
101 | POST_PROCESSING:
102 | RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
103 | SCORE_THRESH: 0.1
104 | OUTPUT_RAW_SCORE: False
105 |
106 | EVAL_METRIC: kitti
107 |
108 | NMS_CONFIG:
109 | MULTI_CLASSES_NMS: False
110 | NMS_TYPE: nms_gpu
111 | NMS_THRESH: 0.1
112 | NMS_PRE_MAXSIZE: 4096
113 | NMS_POST_MAXSIZE: 500
114 |
115 |
116 | OPTIMIZATION:
117 | BATCH_SIZE_PER_GPU: 4
118 | NUM_EPOCHS: 80
119 |
120 | OPTIMIZER: adam_onecycle
121 | LR: 0.003
122 | WEIGHT_DECAY: 0.01
123 | MOMENTUM: 0.9
124 |
125 | MOMS: [0.95, 0.85]
126 | PCT_START: 0.4
127 | DIV_FACTOR: 10
128 | DECAY_STEP_LIST: [35, 45]
129 | LR_DECAY: 0.1
130 | LR_CLIP: 0.0000001
131 |
132 | LR_WARMUP: False
133 | WARMUP_EPOCH: 1
134 |
135 | GRAD_NORM_CLIP: 10
136 |
--------------------------------------------------------------------------------
/tools/cfgs/kitti_models/second.yaml:
--------------------------------------------------------------------------------
1 | CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
2 |
3 | DATA_CONFIG:
4 | _BASE_CONFIG_: cfgs/dataset_configs/kitti_dataset.yaml
5 |
6 |
7 | MODEL:
8 | NAME: SECONDNet
9 |
10 | VFE:
11 | NAME: MeanVFE
12 |
13 | BACKBONE_3D:
14 | NAME: VoxelBackBone8x
15 |
16 | MAP_TO_BEV:
17 | NAME: HeightCompression
18 | NUM_BEV_FEATURES: 256
19 |
20 | BACKBONE_2D:
21 | NAME: BaseBEVBackbone
22 |
23 | LAYER_NUMS: [5, 5]
24 | LAYER_STRIDES: [1, 2]
25 | NUM_FILTERS: [128, 256]
26 | UPSAMPLE_STRIDES: [1, 2]
27 | NUM_UPSAMPLE_FILTERS: [256, 256]
28 |
29 | DENSE_HEAD:
30 | NAME: AnchorHeadSingle
31 | CLASS_AGNOSTIC: False
32 |
33 | USE_DIRECTION_CLASSIFIER: True
34 | DIR_OFFSET: 0.78539
35 | DIR_LIMIT_OFFSET: 0.0
36 | NUM_DIR_BINS: 2
37 |
38 | ANCHOR_GENERATOR_CONFIG: [
39 | {
40 | 'class_name': 'Car',
41 | 'anchor_sizes': [[3.9, 1.6, 1.56]],
42 | 'anchor_rotations': [0, 1.57],
43 | 'anchor_bottom_heights': [-1.78],
44 | 'align_center': False,
45 | 'feature_map_stride': 8,
46 | 'matched_threshold': 0.6,
47 | 'unmatched_threshold': 0.45
48 | },
49 | {
50 | 'class_name': 'Pedestrian',
51 | 'anchor_sizes': [[0.8, 0.6, 1.73]],
52 | 'anchor_rotations': [0, 1.57],
53 | 'anchor_bottom_heights': [-0.6],
54 | 'align_center': False,
55 | 'feature_map_stride': 8,
56 | 'matched_threshold': 0.5,
57 | 'unmatched_threshold': 0.35
58 | },
59 | {
60 | 'class_name': 'Cyclist',
61 | 'anchor_sizes': [[1.76, 0.6, 1.73]],
62 | 'anchor_rotations': [0, 1.57],
63 | 'anchor_bottom_heights': [-0.6],
64 | 'align_center': False,
65 | 'feature_map_stride': 8,
66 | 'matched_threshold': 0.5,
67 | 'unmatched_threshold': 0.35
68 | }
69 | ]
70 |
71 | TARGET_ASSIGNER_CONFIG:
72 | NAME: AxisAlignedTargetAssigner
73 | POS_FRACTION: -1.0
74 | SAMPLE_SIZE: 512
75 | NORM_BY_NUM_EXAMPLES: False
76 | MATCH_HEIGHT: False
77 | BOX_CODER: ResidualCoder
78 |
79 | LOSS_CONFIG:
80 | LOSS_WEIGHTS: {
81 | 'cls_weight': 1.0,
82 | 'loc_weight': 2.0,
83 | 'dir_weight': 0.2,
84 | 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
85 | }
86 |
87 | POST_PROCESSING:
88 | RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
89 | SCORE_THRESH: 0.1
90 | OUTPUT_RAW_SCORE: False
91 |
92 | EVAL_METRIC: kitti
93 |
94 | NMS_CONFIG:
95 | MULTI_CLASSES_NMS: False
96 | NMS_TYPE: nms_gpu
97 | NMS_THRESH: 0.01
98 | NMS_PRE_MAXSIZE: 4096
99 | NMS_POST_MAXSIZE: 500
100 |
101 |
102 | OPTIMIZATION:
103 | BATCH_SIZE_PER_GPU: 4
104 | NUM_EPOCHS: 80
105 |
106 | OPTIMIZER: adam_onecycle
107 | LR: 0.003
108 | WEIGHT_DECAY: 0.01
109 | MOMENTUM: 0.9
110 |
111 | MOMS: [0.95, 0.85]
112 | PCT_START: 0.4
113 | DIV_FACTOR: 10
114 | DECAY_STEP_LIST: [35, 45]
115 | LR_DECAY: 0.1
116 | LR_CLIP: 0.0000001
117 |
118 | LR_WARMUP: False
119 | WARMUP_EPOCH: 1
120 |
121 | GRAD_NORM_CLIP: 10
122 |
--------------------------------------------------------------------------------
/tools/cfgs/kitti_models/second_multihead.yaml:
--------------------------------------------------------------------------------
1 | CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
2 | DATA_CONFIG:
3 | _BASE_CONFIG_: cfgs/dataset_configs/kitti_dataset.yaml
4 |
5 |
6 | MODEL:
7 | NAME: SECONDNet
8 |
9 | VFE:
10 | NAME: MeanVFE
11 |
12 | BACKBONE_3D:
13 | NAME: VoxelBackBone8x
14 |
15 | MAP_TO_BEV:
16 | NAME: HeightCompression
17 | NUM_BEV_FEATURES: 256
18 |
19 | BACKBONE_2D:
20 | NAME: BaseBEVBackbone
21 |
22 | LAYER_NUMS: [5, 5]
23 | LAYER_STRIDES: [1, 2]
24 | NUM_FILTERS: [128, 256]
25 | UPSAMPLE_STRIDES: [1, 2]
26 | NUM_UPSAMPLE_FILTERS: [256, 256]
27 |
28 | DENSE_HEAD:
29 | NAME: AnchorHeadMulti
30 | CLASS_AGNOSTIC: False
31 |
32 | USE_DIRECTION_CLASSIFIER: True
33 | DIR_OFFSET: 0.78539
34 | DIR_LIMIT_OFFSET: 0.0
35 | NUM_DIR_BINS: 2
36 |
37 | USE_MULTIHEAD: True
38 | SEPARATE_MULTIHEAD: True
39 | ANCHOR_GENERATOR_CONFIG: [
40 | {
41 | 'class_name': 'Car',
42 | 'anchor_sizes': [[3.9, 1.6, 1.56]],
43 | 'anchor_rotations': [0, 1.57],
44 | 'anchor_bottom_heights': [-1.6],
45 | 'align_center': False,
46 | 'feature_map_stride': 8,
47 | 'matched_threshold': 0.6,
48 | 'unmatched_threshold': 0.45
49 | },
50 | {
51 | 'class_name': 'Pedestrian',
52 | 'anchor_sizes': [[0.8, 0.6, 1.73]],
53 | 'anchor_rotations': [0, 1.57],
54 | 'anchor_bottom_heights': [-1.6],
55 | 'align_center': False,
56 | 'feature_map_stride': 8,
57 | 'matched_threshold': 0.5,
58 | 'unmatched_threshold': 0.35
59 | },
60 | {
61 | 'class_name': 'Cyclist',
62 | 'anchor_sizes': [[1.76, 0.6, 1.73]],
63 | 'anchor_rotations': [0, 1.57],
64 | 'anchor_bottom_heights': [-1.6],
65 | 'align_center': False,
66 | 'feature_map_stride': 8,
67 | 'matched_threshold': 0.5,
68 | 'unmatched_threshold': 0.35
69 | }
70 | ]
71 |
72 | SHARED_CONV_NUM_FILTER: 64
73 |
74 | RPN_HEAD_CFGS: [
75 | {
76 | 'HEAD_CLS_NAME': ['Car'],
77 | },
78 | {
79 | 'HEAD_CLS_NAME': ['Pedestrian'],
80 | },
81 | {
82 | 'HEAD_CLS_NAME': ['Cyclist'],
83 | }
84 | ]
85 |
86 | TARGET_ASSIGNER_CONFIG:
87 | NAME: AxisAlignedTargetAssigner
88 | POS_FRACTION: -1.0
89 | SAMPLE_SIZE: 512
90 | NORM_BY_NUM_EXAMPLES: False
91 | MATCH_HEIGHT: False
92 | BOX_CODER: ResidualCoder
93 |
94 | LOSS_CONFIG:
95 | LOSS_WEIGHTS: {
96 | 'cls_weight': 1.0,
97 | 'loc_weight': 2.0,
98 | 'dir_weight': 0.2,
99 | 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
100 | }
101 |
102 | POST_PROCESSING:
103 | RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
104 | MULTI_CLASSES_NMS: True
105 | SCORE_THRESH: 0.1
106 | OUTPUT_RAW_SCORE: False
107 |
108 | EVAL_METRIC: kitti
109 |
110 | NMS_CONFIG:
111 | MULTI_CLASSES_NMS: True
112 | NMS_TYPE: nms_gpu
113 | NMS_THRESH: 0.1
114 | NMS_PRE_MAXSIZE: 4096
115 | NMS_POST_MAXSIZE: 500
116 |
117 |
118 | OPTIMIZATION:
119 | BATCH_SIZE_PER_GPU: 4
120 | NUM_EPOCHS: 80
121 |
122 | OPTIMIZER: adam_onecycle
123 | LR: 0.003
124 | WEIGHT_DECAY: 0.01
125 | MOMENTUM: 0.9
126 |
127 | MOMS: [0.95, 0.85]
128 | PCT_START: 0.4
129 | DIV_FACTOR: 10
130 | DECAY_STEP_LIST: [35, 45]
131 | LR_DECAY: 0.1
132 | LR_CLIP: 0.0000001
133 |
134 | LR_WARMUP: False
135 | WARMUP_EPOCH: 1
136 |
137 | GRAD_NORM_CLIP: 10
138 |
--------------------------------------------------------------------------------
/tools/cfgs/nuscenes_models/cbgs_dyn_pp_centerpoint.yaml:
--------------------------------------------------------------------------------
1 | CLASS_NAMES: ['car','truck', 'construction_vehicle', 'bus', 'trailer',
2 | 'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone']
3 |
4 | DATA_CONFIG:
5 | _BASE_CONFIG_: cfgs/dataset_configs/nuscenes_dataset.yaml
6 |
7 | POINT_CLOUD_RANGE: [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
8 | DATA_PROCESSOR:
9 | - NAME: mask_points_and_boxes_outside_range
10 | REMOVE_OUTSIDE_BOXES: True
11 |
12 | - NAME: shuffle_points
13 | SHUFFLE_ENABLED: {
14 | 'train': True,
15 | 'test': True
16 | }
17 |
18 | - NAME: transform_points_to_voxels_placeholder
19 | VOXEL_SIZE: [0.2, 0.2, 8.0]
20 |
21 | MODEL:
22 | NAME: CenterPoint
23 |
24 | VFE:
25 | NAME: DynPillarVFE
26 | WITH_DISTANCE: False
27 | USE_ABSLOTE_XYZ: True
28 | USE_NORM: True
29 | NUM_FILTERS: [ 64, 64 ]
30 |
31 | MAP_TO_BEV:
32 | NAME: PointPillarScatter
33 | NUM_BEV_FEATURES: 64
34 |
35 | BACKBONE_2D:
36 | NAME: BaseBEVBackbone
37 | LAYER_NUMS: [3, 5, 5]
38 | LAYER_STRIDES: [2, 2, 2]
39 | NUM_FILTERS: [64, 128, 256]
40 | UPSAMPLE_STRIDES: [0.5, 1, 2]
41 | NUM_UPSAMPLE_FILTERS: [128, 128, 128]
42 |
43 | DENSE_HEAD:
44 | NAME: CenterHead
45 | CLASS_AGNOSTIC: False
46 |
47 | CLASS_NAMES_EACH_HEAD: [
48 | ['car'],
49 | ['truck', 'construction_vehicle'],
50 | ['bus', 'trailer'],
51 | ['barrier'],
52 | ['motorcycle', 'bicycle'],
53 | ['pedestrian', 'traffic_cone'],
54 | ]
55 |
56 | SHARED_CONV_CHANNEL: 64
57 | USE_BIAS_BEFORE_NORM: True
58 | NUM_HM_CONV: 2
59 | SEPARATE_HEAD_CFG:
60 | HEAD_ORDER: ['center', 'center_z', 'dim', 'rot', 'vel']
61 | HEAD_DICT: {
62 | 'center': {'out_channels': 2, 'num_conv': 2},
63 | 'center_z': {'out_channels': 1, 'num_conv': 2},
64 | 'dim': {'out_channels': 3, 'num_conv': 2},
65 | 'rot': {'out_channels': 2, 'num_conv': 2},
66 | 'vel': {'out_channels': 2, 'num_conv': 2},
67 | }
68 |
69 | TARGET_ASSIGNER_CONFIG:
70 | FEATURE_MAP_STRIDE: 4
71 | NUM_MAX_OBJS: 500
72 | GAUSSIAN_OVERLAP: 0.1
73 | MIN_RADIUS: 2
74 |
75 | LOSS_CONFIG:
76 | LOSS_WEIGHTS: {
77 | 'cls_weight': 1.0,
78 | 'loc_weight': 0.25,
79 | 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 1.0, 1.0]
80 | }
81 |
82 | POST_PROCESSING:
83 | SCORE_THRESH: 0.1
84 | POST_CENTER_LIMIT_RANGE: [-61.2, -61.2, -10.0, 61.2, 61.2, 10.0]
85 | MAX_OBJ_PER_SAMPLE: 500
86 | NMS_CONFIG:
87 | NMS_TYPE: nms_gpu
88 | NMS_THRESH: 0.2
89 | NMS_PRE_MAXSIZE: 1000
90 | NMS_POST_MAXSIZE: 83
91 |
92 | POST_PROCESSING:
93 | RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
94 |
95 | EVAL_METRIC: kitti
96 |
97 |
98 | OPTIMIZATION:
99 | BATCH_SIZE_PER_GPU: 4
100 | NUM_EPOCHS: 20
101 |
102 | OPTIMIZER: adam_onecycle
103 | LR: 0.001
104 | WEIGHT_DECAY: 0.01
105 | MOMENTUM: 0.9
106 |
107 | MOMS: [0.95, 0.85]
108 | PCT_START: 0.4
109 | DIV_FACTOR: 10
110 | DECAY_STEP_LIST: [35, 45]
111 | LR_DECAY: 0.1
112 | LR_CLIP: 0.0000001
113 |
114 | LR_WARMUP: False
115 | WARMUP_EPOCH: 1
116 |
117 | GRAD_NORM_CLIP: 10
118 |
--------------------------------------------------------------------------------
/tools/cfgs/waymo_models/centerpoint.yaml:
--------------------------------------------------------------------------------
1 | CLASS_NAMES: ['Vehicle', 'Pedestrian', 'Cyclist']
2 |
3 | DATA_CONFIG:
4 | _BASE_CONFIG_: cfgs/dataset_configs/waymo_dataset.yaml
5 |
6 | MODEL:
7 | NAME: CenterPoint
8 |
9 | VFE:
10 | NAME: MeanVFE
11 |
12 | BACKBONE_3D:
13 | NAME: VoxelResBackBone8x
14 |
15 | MAP_TO_BEV:
16 | NAME: HeightCompression
17 | NUM_BEV_FEATURES: 256
18 |
19 | BACKBONE_2D:
20 | NAME: BaseBEVBackbone
21 |
22 | LAYER_NUMS: [5, 5]
23 | LAYER_STRIDES: [1, 2]
24 | NUM_FILTERS: [128, 256]
25 | UPSAMPLE_STRIDES: [1, 2]
26 | NUM_UPSAMPLE_FILTERS: [256, 256]
27 |
28 | DENSE_HEAD:
29 | NAME: CenterHead
30 | CLASS_AGNOSTIC: False
31 |
32 | CLASS_NAMES_EACH_HEAD: [
33 | ['Vehicle', 'Pedestrian', 'Cyclist']
34 | ]
35 |
36 | SHARED_CONV_CHANNEL: 64
37 | USE_BIAS_BEFORE_NORM: True
38 | NUM_HM_CONV: 2
39 | SEPARATE_HEAD_CFG:
40 | HEAD_ORDER: ['center', 'center_z', 'dim', 'rot']
41 | HEAD_DICT: {
42 | 'center': {'out_channels': 2, 'num_conv': 2},
43 | 'center_z': {'out_channels': 1, 'num_conv': 2},
44 | 'dim': {'out_channels': 3, 'num_conv': 2},
45 | 'rot': {'out_channels': 2, 'num_conv': 2},
46 | }
47 |
48 | TARGET_ASSIGNER_CONFIG:
49 | FEATURE_MAP_STRIDE: 8
50 | NUM_MAX_OBJS: 500
51 | GAUSSIAN_OVERLAP: 0.1
52 | MIN_RADIUS: 2
53 |
54 | LOSS_CONFIG:
55 | LOSS_WEIGHTS: {
56 | 'cls_weight': 1.0,
57 | 'loc_weight': 2.0,
58 | 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
59 | }
60 |
61 | POST_PROCESSING:
62 | SCORE_THRESH: 0.1
63 | POST_CENTER_LIMIT_RANGE: [-75.2, -75.2, -2, 75.2, 75.2, 4]
64 | MAX_OBJ_PER_SAMPLE: 500
65 | NMS_CONFIG:
66 | NMS_TYPE: nms_gpu
67 | NMS_THRESH: 0.7
68 | NMS_PRE_MAXSIZE: 4096
69 | NMS_POST_MAXSIZE: 500
70 |
71 | POST_PROCESSING:
72 | RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
73 |
74 | EVAL_METRIC: waymo
75 |
76 |
77 | OPTIMIZATION:
78 | BATCH_SIZE_PER_GPU: 4
79 | NUM_EPOCHS: 30
80 |
81 | OPTIMIZER: adam_onecycle
82 | LR: 0.003
83 | WEIGHT_DECAY: 0.01
84 | MOMENTUM: 0.9
85 |
86 | MOMS: [0.95, 0.85]
87 | PCT_START: 0.4
88 | DIV_FACTOR: 10
89 | DECAY_STEP_LIST: [35, 45]
90 | LR_DECAY: 0.1
91 | LR_CLIP: 0.0000001
92 |
93 | LR_WARMUP: False
94 | WARMUP_EPOCH: 1
95 |
96 | GRAD_NORM_CLIP: 10
97 |
--------------------------------------------------------------------------------
/tools/cfgs/waymo_models/centerpoint_dyn_pillar_1x.yaml:
--------------------------------------------------------------------------------
1 | CLASS_NAMES: ['Vehicle', 'Pedestrian', 'Cyclist']
2 |
3 | DATA_CONFIG:
4 | _BASE_CONFIG_: cfgs/dataset_configs/waymo_dataset.yaml
5 |
6 | POINT_CLOUD_RANGE: [-74.88, -74.88, -2, 74.88, 74.88, 4.0]
7 | DATA_PROCESSOR:
8 | - NAME: mask_points_and_boxes_outside_range
9 | REMOVE_OUTSIDE_BOXES: True
10 |
11 | - NAME: shuffle_points
12 | SHUFFLE_ENABLED: {
13 | 'train': True,
14 | 'test': True
15 | }
16 |
17 | - NAME: transform_points_to_voxels_placeholder
18 | VOXEL_SIZE: [ 0.32, 0.32, 6.0 ]
19 |
20 | MODEL:
21 | NAME: CenterPoint
22 |
23 | VFE:
24 | NAME: DynPillarVFE
25 | WITH_DISTANCE: False
26 | USE_ABSLOTE_XYZ: True
27 | USE_NORM: True
28 | NUM_FILTERS: [ 64, 64 ]
29 |
30 | MAP_TO_BEV:
31 | NAME: PointPillarScatter
32 | NUM_BEV_FEATURES: 64
33 |
34 | BACKBONE_2D:
35 | NAME: BaseBEVBackbone
36 | LAYER_NUMS: [ 3, 5, 5 ]
37 | LAYER_STRIDES: [ 1, 2, 2 ]
38 | NUM_FILTERS: [ 64, 128, 256 ]
39 | UPSAMPLE_STRIDES: [ 1, 2, 4 ]
40 | NUM_UPSAMPLE_FILTERS: [ 128, 128, 128 ]
41 |
42 | DENSE_HEAD:
43 | NAME: CenterHead
44 | CLASS_AGNOSTIC: False
45 |
46 | CLASS_NAMES_EACH_HEAD: [
47 | ['Vehicle', 'Pedestrian', 'Cyclist']
48 | ]
49 |
50 | SHARED_CONV_CHANNEL: 64
51 | USE_BIAS_BEFORE_NORM: True
52 | NUM_HM_CONV: 2
53 | SEPARATE_HEAD_CFG:
54 | HEAD_ORDER: ['center', 'center_z', 'dim', 'rot']
55 | HEAD_DICT: {
56 | 'center': {'out_channels': 2, 'num_conv': 2},
57 | 'center_z': {'out_channels': 1, 'num_conv': 2},
58 | 'dim': {'out_channels': 3, 'num_conv': 2},
59 | 'rot': {'out_channels': 2, 'num_conv': 2},
60 | }
61 |
62 | TARGET_ASSIGNER_CONFIG:
63 | FEATURE_MAP_STRIDE: 1
64 | NUM_MAX_OBJS: 500
65 | GAUSSIAN_OVERLAP: 0.1
66 | MIN_RADIUS: 2
67 |
68 | LOSS_CONFIG:
69 | LOSS_WEIGHTS: {
70 | 'cls_weight': 1.0,
71 | 'loc_weight': 2.0,
72 | 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
73 | }
74 |
75 | POST_PROCESSING:
76 | SCORE_THRESH: 0.1
77 | POST_CENTER_LIMIT_RANGE: [-80, -80, -10.0, 80, 80, 10.0]
78 | MAX_OBJ_PER_SAMPLE: 500
79 | NMS_CONFIG:
80 | NMS_TYPE: nms_gpu
81 | NMS_THRESH: 0.7
82 | NMS_PRE_MAXSIZE: 4096
83 | NMS_POST_MAXSIZE: 500
84 |
85 | POST_PROCESSING:
86 | RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
87 |
88 | EVAL_METRIC: waymo
89 |
90 |
91 | OPTIMIZATION:
92 | BATCH_SIZE_PER_GPU: 2
93 | NUM_EPOCHS: 30
94 |
95 | OPTIMIZER: adam_onecycle
96 | LR: 0.003
97 | WEIGHT_DECAY: 0.01
98 | MOMENTUM: 0.9
99 |
100 | MOMS: [0.95, 0.85]
101 | PCT_START: 0.4
102 | DIV_FACTOR: 10
103 | DECAY_STEP_LIST: [35, 45]
104 | LR_DECAY: 0.1
105 | LR_CLIP: 0.0000001
106 |
107 | LR_WARMUP: False
108 | WARMUP_EPOCH: 1
109 |
110 | GRAD_NORM_CLIP: 10
111 |
--------------------------------------------------------------------------------
/tools/cfgs/waymo_models/centerpoint_pillar_1x.yaml:
--------------------------------------------------------------------------------
1 | CLASS_NAMES: ['Vehicle', 'Pedestrian', 'Cyclist']
2 |
3 | DATA_CONFIG:
4 | _BASE_CONFIG_: cfgs/dataset_configs/waymo_dataset.yaml
5 |
6 | POINT_CLOUD_RANGE: [-74.88, -74.88, -2, 74.88, 74.88, 4.0]
7 | DATA_PROCESSOR:
8 | - NAME: mask_points_and_boxes_outside_range
9 | REMOVE_OUTSIDE_BOXES: True
10 |
11 | - NAME: shuffle_points
12 | SHUFFLE_ENABLED: {
13 | 'train': True,
14 | 'test': True
15 | }
16 |
17 | - NAME: transform_points_to_voxels
18 | VOXEL_SIZE: [ 0.32, 0.32, 6.0 ]
19 | MAX_POINTS_PER_VOXEL: 20
20 | MAX_NUMBER_OF_VOXELS: {
21 | 'train': 150000,
22 | 'test': 150000
23 | }
24 |
25 |
26 | MODEL:
27 | NAME: CenterPoint
28 |
29 | VFE:
30 | NAME: PillarVFE
31 | WITH_DISTANCE: False
32 | USE_ABSLOTE_XYZ: True
33 | USE_NORM: True
34 | NUM_FILTERS: [ 64, 64 ]
35 |
36 | MAP_TO_BEV:
37 | NAME: PointPillarScatter
38 | NUM_BEV_FEATURES: 64
39 |
40 | BACKBONE_2D:
41 | NAME: BaseBEVBackbone
42 | LAYER_NUMS: [ 3, 5, 5 ]
43 | LAYER_STRIDES: [ 1, 2, 2 ]
44 | NUM_FILTERS: [ 64, 128, 256 ]
45 | UPSAMPLE_STRIDES: [ 1, 2, 4 ]
46 | NUM_UPSAMPLE_FILTERS: [ 128, 128, 128 ]
47 |
48 | DENSE_HEAD:
49 | NAME: CenterHead
50 | CLASS_AGNOSTIC: False
51 |
52 | CLASS_NAMES_EACH_HEAD: [
53 | ['Vehicle', 'Pedestrian', 'Cyclist']
54 | ]
55 |
56 | SHARED_CONV_CHANNEL: 64
57 | USE_BIAS_BEFORE_NORM: True
58 | NUM_HM_CONV: 2
59 | SEPARATE_HEAD_CFG:
60 | HEAD_ORDER: ['center', 'center_z', 'dim', 'rot']
61 | HEAD_DICT: {
62 | 'center': {'out_channels': 2, 'num_conv': 2},
63 | 'center_z': {'out_channels': 1, 'num_conv': 2},
64 | 'dim': {'out_channels': 3, 'num_conv': 2},
65 | 'rot': {'out_channels': 2, 'num_conv': 2},
66 | }
67 |
68 | TARGET_ASSIGNER_CONFIG:
69 | FEATURE_MAP_STRIDE: 1
70 | NUM_MAX_OBJS: 500
71 | GAUSSIAN_OVERLAP: 0.1
72 | MIN_RADIUS: 2
73 |
74 | LOSS_CONFIG:
75 | LOSS_WEIGHTS: {
76 | 'cls_weight': 1.0,
77 | 'loc_weight': 2.0,
78 | 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
79 | }
80 |
81 | POST_PROCESSING:
82 | SCORE_THRESH: 0.1
83 | POST_CENTER_LIMIT_RANGE: [-80, -80, -10.0, 80, 80, 10.0]
84 | MAX_OBJ_PER_SAMPLE: 500
85 | NMS_CONFIG:
86 | NMS_TYPE: nms_gpu
87 | NMS_THRESH: 0.7
88 | NMS_PRE_MAXSIZE: 4096
89 | NMS_POST_MAXSIZE: 500
90 |
91 | POST_PROCESSING:
92 | RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
93 |
94 | EVAL_METRIC: waymo
95 |
96 |
97 | OPTIMIZATION:
98 | BATCH_SIZE_PER_GPU: 2
99 | NUM_EPOCHS: 30
100 |
101 | OPTIMIZER: adam_onecycle
102 | LR: 0.003
103 | WEIGHT_DECAY: 0.01
104 | MOMENTUM: 0.9
105 |
106 | MOMS: [0.95, 0.85]
107 | PCT_START: 0.4
108 | DIV_FACTOR: 10
109 | DECAY_STEP_LIST: [35, 45]
110 | LR_DECAY: 0.1
111 | LR_CLIP: 0.0000001
112 |
113 | LR_WARMUP: False
114 | WARMUP_EPOCH: 1
115 |
116 | GRAD_NORM_CLIP: 10
117 |
--------------------------------------------------------------------------------
/tools/cfgs/waymo_models/centerpoint_spss_ratio0.3_sprs_ratio0.5.yaml:
--------------------------------------------------------------------------------
1 | CLASS_NAMES: ['Vehicle', 'Pedestrian', 'Cyclist']
2 |
3 | DATA_CONFIG:
4 | _BASE_CONFIG_: cfgs/dataset_configs/waymo_dataset.yaml
5 |
6 | MODEL:
7 | NAME: CenterPoint
8 |
9 | VFE:
10 | NAME: MeanVFE
11 |
12 | BACKBONE_3D:
13 | NAME: VoxelPruningResBackBone8x_SPSS_SPRS
14 | POINT_CLOUD_RANGE: [-2, -75.2, -75.2, 4, 75.2, 75.2]
15 | VOXEL_SIZE: [0.15, 0.1, 0.1]
16 | PRUNING_MODE: topk
17 | PRUNING_RATIO: [[0.3, 0.3], [0.3, 0.3], [0.3, 0.3], [0.3, 0.3]]
18 | DOWNSAMPLE_PRUNING_MODE: topk
19 | DOWNSAMPLE_PRUNING_RATIO: [0.5, 0.5, 0.5]
20 |
21 | MAP_TO_BEV:
22 | NAME: HeightCompression
23 | NUM_BEV_FEATURES: 256
24 |
25 | BACKBONE_2D:
26 | NAME: BaseBEVBackbone
27 |
28 | LAYER_NUMS: [5, 5]
29 | LAYER_STRIDES: [1, 2]
30 | NUM_FILTERS: [128, 256]
31 | UPSAMPLE_STRIDES: [1, 2]
32 | NUM_UPSAMPLE_FILTERS: [256, 256]
33 |
34 | DENSE_HEAD:
35 | NAME: CenterHead
36 | CLASS_AGNOSTIC: False
37 |
38 | CLASS_NAMES_EACH_HEAD: [
39 | ['Vehicle', 'Pedestrian', 'Cyclist']
40 | ]
41 |
42 | SHARED_CONV_CHANNEL: 64
43 | USE_BIAS_BEFORE_NORM: True
44 | NUM_HM_CONV: 2
45 | SEPARATE_HEAD_CFG:
46 | HEAD_ORDER: ['center', 'center_z', 'dim', 'rot']
47 | HEAD_DICT: {
48 | 'center': {'out_channels': 2, 'num_conv': 2},
49 | 'center_z': {'out_channels': 1, 'num_conv': 2},
50 | 'dim': {'out_channels': 3, 'num_conv': 2},
51 | 'rot': {'out_channels': 2, 'num_conv': 2},
52 | }
53 |
54 | TARGET_ASSIGNER_CONFIG:
55 | FEATURE_MAP_STRIDE: 8
56 | NUM_MAX_OBJS: 500
57 | GAUSSIAN_OVERLAP: 0.1
58 | MIN_RADIUS: 2
59 |
60 | LOSS_CONFIG:
61 | LOSS_WEIGHTS: {
62 | 'cls_weight': 1.0,
63 | 'loc_weight': 2.0,
64 | 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
65 | }
66 |
67 | POST_PROCESSING:
68 | SCORE_THRESH: 0.1
69 | POST_CENTER_LIMIT_RANGE: [-75.2, -75.2, -2, 75.2, 75.2, 4]
70 | MAX_OBJ_PER_SAMPLE: 500
71 | NMS_CONFIG:
72 | NMS_TYPE: nms_gpu
73 | NMS_THRESH: 0.7
74 | NMS_PRE_MAXSIZE: 4096
75 | NMS_POST_MAXSIZE: 500
76 |
77 | POST_PROCESSING:
78 | RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
79 |
80 | EVAL_METRIC: waymo
81 |
82 |
83 | OPTIMIZATION:
84 | BATCH_SIZE_PER_GPU: 4
85 | NUM_EPOCHS: 30
86 |
87 | OPTIMIZER: adam_onecycle
88 | LR: 0.003
89 | WEIGHT_DECAY: 0.01
90 | MOMENTUM: 0.9
91 |
92 | MOMS: [0.95, 0.85]
93 | PCT_START: 0.4
94 | DIV_FACTOR: 10
95 | DECAY_STEP_LIST: [35, 45]
96 | LR_DECAY: 0.1
97 | LR_CLIP: 0.0000001
98 |
99 | LR_WARMUP: False
100 | WARMUP_EPOCH: 1
101 |
102 | GRAD_NORM_CLIP: 10
103 |
--------------------------------------------------------------------------------
/tools/cfgs/waymo_models/centerpoint_spss_ratio0.5_sprs_ratio0.5.yaml:
--------------------------------------------------------------------------------
1 | CLASS_NAMES: ['Vehicle', 'Pedestrian', 'Cyclist']
2 |
3 | DATA_CONFIG:
4 | _BASE_CONFIG_: cfgs/dataset_configs/waymo_dataset.yaml
5 |
6 | MODEL:
7 | NAME: CenterPoint
8 |
9 | VFE:
10 | NAME: MeanVFE
11 |
12 | BACKBONE_3D:
13 | NAME: VoxelPruningResBackBone8x_SPSS_SPRS
14 | POINT_CLOUD_RANGE: [-2, -75.2, -75.2, 4, 75.2, 75.2]
15 | VOXEL_SIZE: [0.15, 0.1, 0.1]
16 | PRUNING_MODE: topk
17 | PRUNING_RATIO: [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
18 | DOWNSAMPLE_PRUNING_MODE: topk
19 | DOWNSAMPLE_PRUNING_RATIO: [0.5, 0.5, 0.5]
20 |
21 | MAP_TO_BEV:
22 | NAME: HeightCompression
23 | NUM_BEV_FEATURES: 256
24 |
25 | BACKBONE_2D:
26 | NAME: BaseBEVBackbone
27 |
28 | LAYER_NUMS: [5, 5]
29 | LAYER_STRIDES: [1, 2]
30 | NUM_FILTERS: [128, 256]
31 | UPSAMPLE_STRIDES: [1, 2]
32 | NUM_UPSAMPLE_FILTERS: [256, 256]
33 |
34 | DENSE_HEAD:
35 | NAME: CenterHead
36 | CLASS_AGNOSTIC: False
37 |
38 | CLASS_NAMES_EACH_HEAD: [
39 | ['Vehicle', 'Pedestrian', 'Cyclist']
40 | ]
41 |
42 | SHARED_CONV_CHANNEL: 64
43 | USE_BIAS_BEFORE_NORM: True
44 | NUM_HM_CONV: 2
45 | SEPARATE_HEAD_CFG:
46 | HEAD_ORDER: ['center', 'center_z', 'dim', 'rot']
47 | HEAD_DICT: {
48 | 'center': {'out_channels': 2, 'num_conv': 2},
49 | 'center_z': {'out_channels': 1, 'num_conv': 2},
50 | 'dim': {'out_channels': 3, 'num_conv': 2},
51 | 'rot': {'out_channels': 2, 'num_conv': 2},
52 | }
53 |
54 | TARGET_ASSIGNER_CONFIG:
55 | FEATURE_MAP_STRIDE: 8
56 | NUM_MAX_OBJS: 500
57 | GAUSSIAN_OVERLAP: 0.1
58 | MIN_RADIUS: 2
59 |
60 | LOSS_CONFIG:
61 | LOSS_WEIGHTS: {
62 | 'cls_weight': 1.0,
63 | 'loc_weight': 2.0,
64 | 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
65 | }
66 |
67 | POST_PROCESSING:
68 | SCORE_THRESH: 0.1
69 | POST_CENTER_LIMIT_RANGE: [-75.2, -75.2, -2, 75.2, 75.2, 4]
70 | MAX_OBJ_PER_SAMPLE: 500
71 | NMS_CONFIG:
72 | NMS_TYPE: nms_gpu
73 | NMS_THRESH: 0.7
74 | NMS_PRE_MAXSIZE: 4096
75 | NMS_POST_MAXSIZE: 500
76 |
77 | POST_PROCESSING:
78 | RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
79 |
80 | EVAL_METRIC: waymo
81 |
82 |
83 | OPTIMIZATION:
84 | BATCH_SIZE_PER_GPU: 4
85 | NUM_EPOCHS: 30
86 |
87 | OPTIMIZER: adam_onecycle
88 | LR: 0.003
89 | WEIGHT_DECAY: 0.01
90 | MOMENTUM: 0.9
91 |
92 | MOMS: [0.95, 0.85]
93 | PCT_START: 0.4
94 | DIV_FACTOR: 10
95 | DECAY_STEP_LIST: [35, 45]
96 | LR_DECAY: 0.1
97 | LR_CLIP: 0.0000001
98 |
99 | LR_WARMUP: False
100 | WARMUP_EPOCH: 1
101 |
102 | GRAD_NORM_CLIP: 10
103 |
--------------------------------------------------------------------------------
/tools/cfgs/waymo_models/centerpoint_without_resnet.yaml:
--------------------------------------------------------------------------------
1 | CLASS_NAMES: ['Vehicle', 'Pedestrian', 'Cyclist']
2 |
3 | DATA_CONFIG:
4 | _BASE_CONFIG_: cfgs/dataset_configs/waymo_dataset.yaml
5 |
6 | MODEL:
7 | NAME: CenterPoint
8 |
9 | VFE:
10 | NAME: MeanVFE
11 |
12 | BACKBONE_3D:
13 | NAME: VoxelBackBone8x
14 |
15 | MAP_TO_BEV:
16 | NAME: HeightCompression
17 | NUM_BEV_FEATURES: 256
18 |
19 | BACKBONE_2D:
20 | NAME: BaseBEVBackbone
21 |
22 | LAYER_NUMS: [5, 5]
23 | LAYER_STRIDES: [1, 2]
24 | NUM_FILTERS: [128, 256]
25 | UPSAMPLE_STRIDES: [1, 2]
26 | NUM_UPSAMPLE_FILTERS: [256, 256]
27 |
28 | DENSE_HEAD:
29 | NAME: CenterHead
30 | CLASS_AGNOSTIC: False
31 |
32 | CLASS_NAMES_EACH_HEAD: [
33 | ['Vehicle', 'Pedestrian', 'Cyclist']
34 | ]
35 |
36 | SHARED_CONV_CHANNEL: 64
37 | USE_BIAS_BEFORE_NORM: True
38 | NUM_HM_CONV: 2
39 | SEPARATE_HEAD_CFG:
40 | HEAD_ORDER: ['center', 'center_z', 'dim', 'rot']
41 | HEAD_DICT: {
42 | 'center': {'out_channels': 2, 'num_conv': 2},
43 | 'center_z': {'out_channels': 1, 'num_conv': 2},
44 | 'dim': {'out_channels': 3, 'num_conv': 2},
45 | 'rot': {'out_channels': 2, 'num_conv': 2},
46 | }
47 |
48 | TARGET_ASSIGNER_CONFIG:
49 | FEATURE_MAP_STRIDE: 8
50 | NUM_MAX_OBJS: 500
51 | GAUSSIAN_OVERLAP: 0.1
52 | MIN_RADIUS: 2
53 |
54 | LOSS_CONFIG:
55 | LOSS_WEIGHTS: {
56 | 'cls_weight': 1.0,
57 | 'loc_weight': 2.0,
58 | 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
59 | }
60 |
61 | POST_PROCESSING:
62 | SCORE_THRESH: 0.1
63 | POST_CENTER_LIMIT_RANGE: [-75.2, -75.2, -2, 75.2, 75.2, 4]
64 | MAX_OBJ_PER_SAMPLE: 500
65 | NMS_CONFIG:
66 | NMS_TYPE: nms_gpu
67 | NMS_THRESH: 0.7
68 | NMS_PRE_MAXSIZE: 4096
69 | NMS_POST_MAXSIZE: 500
70 |
71 | POST_PROCESSING:
72 | RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
73 |
74 | EVAL_METRIC: waymo
75 |
76 |
77 | OPTIMIZATION:
78 | BATCH_SIZE_PER_GPU: 4
79 | NUM_EPOCHS: 30
80 |
81 | OPTIMIZER: adam_onecycle
82 | LR: 0.003
83 | WEIGHT_DECAY: 0.01
84 | MOMENTUM: 0.9
85 |
86 | MOMS: [0.95, 0.85]
87 | PCT_START: 0.4
88 | DIV_FACTOR: 10
89 | DECAY_STEP_LIST: [35, 45]
90 | LR_DECAY: 0.1
91 | LR_CLIP: 0.0000001
92 |
93 | LR_WARMUP: False
94 | WARMUP_EPOCH: 1
95 |
96 | GRAD_NORM_CLIP: 10
97 |
--------------------------------------------------------------------------------
/tools/cfgs/waymo_models/second.yaml:
--------------------------------------------------------------------------------
1 | CLASS_NAMES: ['Vehicle', 'Pedestrian', 'Cyclist']
2 |
3 | DATA_CONFIG:
4 | _BASE_CONFIG_: cfgs/dataset_configs/waymo_dataset.yaml
5 |
6 |
7 | MODEL:
8 | NAME: SECONDNet
9 |
10 | VFE:
11 | NAME: MeanVFE
12 |
13 | BACKBONE_3D:
14 | NAME: VoxelBackBone8x
15 |
16 | MAP_TO_BEV:
17 | NAME: HeightCompression
18 | NUM_BEV_FEATURES: 256
19 |
20 | BACKBONE_2D:
21 | NAME: BaseBEVBackbone
22 |
23 | LAYER_NUMS: [5, 5]
24 | LAYER_STRIDES: [1, 2]
25 | NUM_FILTERS: [128, 256]
26 | UPSAMPLE_STRIDES: [1, 2]
27 | NUM_UPSAMPLE_FILTERS: [256, 256]
28 |
29 | DENSE_HEAD:
30 | NAME: AnchorHeadSingle
31 | CLASS_AGNOSTIC: False
32 |
33 | USE_DIRECTION_CLASSIFIER: True
34 | DIR_OFFSET: 0.78539
35 | DIR_LIMIT_OFFSET: 0.0
36 | NUM_DIR_BINS: 2
37 |
38 | ANCHOR_GENERATOR_CONFIG: [
39 | {
40 | 'class_name': 'Vehicle',
41 | 'anchor_sizes': [[4.7, 2.1, 1.7]],
42 | 'anchor_rotations': [0, 1.57],
43 | 'anchor_bottom_heights': [0],
44 | 'align_center': False,
45 | 'feature_map_stride': 8,
46 | 'matched_threshold': 0.55,
47 | 'unmatched_threshold': 0.4
48 | },
49 | {
50 | 'class_name': 'Pedestrian',
51 | 'anchor_sizes': [[0.91, 0.86, 1.73]],
52 | 'anchor_rotations': [0, 1.57],
53 | 'anchor_bottom_heights': [0],
54 | 'align_center': False,
55 | 'feature_map_stride': 8,
56 | 'matched_threshold': 0.5,
57 | 'unmatched_threshold': 0.35
58 | },
59 | {
60 | 'class_name': 'Cyclist',
61 | 'anchor_sizes': [[1.78, 0.84, 1.78]],
62 | 'anchor_rotations': [0, 1.57],
63 | 'anchor_bottom_heights': [0],
64 | 'align_center': False,
65 | 'feature_map_stride': 8,
66 | 'matched_threshold': 0.5,
67 | 'unmatched_threshold': 0.35
68 | }
69 | ]
70 |
71 | TARGET_ASSIGNER_CONFIG:
72 | NAME: AxisAlignedTargetAssigner
73 | POS_FRACTION: -1.0
74 | SAMPLE_SIZE: 512
75 | NORM_BY_NUM_EXAMPLES: False
76 | MATCH_HEIGHT: False
77 | BOX_CODER: ResidualCoder
78 |
79 | LOSS_CONFIG:
80 | LOSS_WEIGHTS: {
81 | 'cls_weight': 1.0,
82 | 'loc_weight': 2.0,
83 | 'dir_weight': 0.2,
84 | 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
85 | }
86 |
87 | POST_PROCESSING:
88 | RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
89 | SCORE_THRESH: 0.1
90 | OUTPUT_RAW_SCORE: False
91 |
92 | EVAL_METRIC: waymo
93 |
94 | NMS_CONFIG:
95 | MULTI_CLASSES_NMS: False
96 | NMS_TYPE: nms_gpu
97 | NMS_THRESH: 0.7
98 | NMS_PRE_MAXSIZE: 4096
99 | NMS_POST_MAXSIZE: 500
100 |
101 |
102 | OPTIMIZATION:
103 | BATCH_SIZE_PER_GPU: 4
104 | NUM_EPOCHS: 30
105 |
106 | OPTIMIZER: adam_onecycle
107 | LR: 0.003
108 | WEIGHT_DECAY: 0.01
109 | MOMENTUM: 0.9
110 |
111 | MOMS: [0.95, 0.85]
112 | PCT_START: 0.4
113 | DIV_FACTOR: 10
114 | DECAY_STEP_LIST: [35, 45]
115 | LR_DECAY: 0.1
116 | LR_CLIP: 0.0000001
117 |
118 | LR_WARMUP: False
119 | WARMUP_EPOCH: 1
120 |
121 | GRAD_NORM_CLIP: 10
--------------------------------------------------------------------------------
/tools/demo.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import glob
3 | from pathlib import Path
4 |
5 | try:
6 | import open3d
7 | from visual_utils import open3d_vis_utils as V
8 | OPEN3D_FLAG = True
9 | except:
10 | import mayavi.mlab as mlab
11 | from visual_utils import visualize_utils as V
12 | OPEN3D_FLAG = False
13 |
14 | import numpy as np
15 | import torch
16 |
17 | from pcdet.config import cfg, cfg_from_yaml_file
18 | from pcdet.datasets import DatasetTemplate
19 | from pcdet.models import build_network, load_data_to_gpu
20 | from pcdet.utils import common_utils
21 |
22 |
23 | class DemoDataset(DatasetTemplate):
24 | def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None, ext='.bin'):
25 | """
26 | Args:
27 | root_path:
28 | dataset_cfg:
29 | class_names:
30 | training:
31 | logger:
32 | """
33 | super().__init__(
34 | dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger
35 | )
36 | self.root_path = root_path
37 | self.ext = ext
38 | data_file_list = glob.glob(str(root_path / f'*{self.ext}')) if self.root_path.is_dir() else [self.root_path]
39 |
40 | data_file_list.sort()
41 | self.sample_file_list = data_file_list
42 |
43 | def __len__(self):
44 | return len(self.sample_file_list)
45 |
46 | def __getitem__(self, index):
47 | if self.ext == '.bin':
48 | points = np.fromfile(self.sample_file_list[index], dtype=np.float32).reshape(-1, 4)
49 | elif self.ext == '.npy':
50 | points = np.load(self.sample_file_list[index])
51 | else:
52 | raise NotImplementedError
53 |
54 | input_dict = {
55 | 'points': points,
56 | 'frame_id': index,
57 | }
58 |
59 | data_dict = self.prepare_data(data_dict=input_dict)
60 | return data_dict
61 |
62 |
63 | def parse_config():
64 | parser = argparse.ArgumentParser(description='arg parser')
65 | parser.add_argument('--cfg_file', type=str, default='cfgs/kitti_models/second.yaml',
66 | help='specify the config for demo')
67 | parser.add_argument('--data_path', type=str, default='demo_data',
68 | help='specify the point cloud data file or directory')
69 | parser.add_argument('--ckpt', type=str, default=None, help='specify the pretrained model')
70 | parser.add_argument('--ext', type=str, default='.bin', help='specify the extension of your point cloud data file')
71 |
72 | args = parser.parse_args()
73 |
74 | cfg_from_yaml_file(args.cfg_file, cfg)
75 |
76 | return args, cfg
77 |
78 |
79 | def main():
80 | args, cfg = parse_config()
81 | logger = common_utils.create_logger()
82 | logger.info('-----------------Quick Demo of OpenPCDet-------------------------')
83 | demo_dataset = DemoDataset(
84 | dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, training=False,
85 | root_path=Path(args.data_path), ext=args.ext, logger=logger
86 | )
87 | logger.info(f'Total number of samples: \t{len(demo_dataset)}')
88 |
89 | model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=demo_dataset)
90 | model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
91 | model.cuda()
92 | model.eval()
93 | with torch.no_grad():
94 | for idx, data_dict in enumerate(demo_dataset):
95 | logger.info(f'Visualized sample index: \t{idx + 1}')
96 | data_dict = demo_dataset.collate_batch([data_dict])
97 | load_data_to_gpu(data_dict)
98 | pred_dicts, _ = model.forward(data_dict)
99 |
100 | V.draw_scenes(
101 | points=data_dict['points'][:, 1:], ref_boxes=pred_dicts[0]['pred_boxes'],
102 | ref_scores=pred_dicts[0]['pred_scores'], ref_labels=pred_dicts[0]['pred_labels']
103 | )
104 |
105 | if not OPEN3D_FLAG:
106 | mlab.show(stop=True)
107 |
108 | logger.info('Demo done.')
109 |
110 |
111 | if __name__ == '__main__':
112 | main()
113 |
--------------------------------------------------------------------------------
/tools/scripts/dist_test.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | set -x
4 | NGPUS=$1
5 | PY_ARGS=${@:2}
6 |
7 | python -m torch.distributed.launch --nproc_per_node=${NGPUS} test.py --launcher pytorch ${PY_ARGS}
8 |
9 |
--------------------------------------------------------------------------------
/tools/scripts/dist_train.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | set -x
4 | NGPUS=$1
5 | PY_ARGS=${@:2}
6 |
7 | while true
8 | do
9 | PORT=$(( ((RANDOM<<15)|RANDOM) % 49152 + 10000 ))
10 | status="$(nc -z 127.0.0.1 $PORT < /dev/null &>/dev/null; echo $?)"
11 | if [ "${status}" != "0" ]; then
12 | break;
13 | fi
14 | done
15 | echo $PORT
16 |
17 | python -m torch.distributed.launch --nproc_per_node=${NGPUS} --rdzv_endpoint=localhost:${PORT} train.py --launcher pytorch ${PY_ARGS}
18 |
19 |
--------------------------------------------------------------------------------
/tools/scripts/slurm_test_mgpu.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | set -x
4 |
5 | PARTITION=$1
6 | GPUS=$2
7 | GPUS_PER_NODE=$GPUS
8 | PY_ARGS=${@:3}
9 | JOB_NAME=eval
10 | SRUN_ARGS=${SRUN_ARGS:-""}
11 |
12 | while true
13 | do
14 | PORT=$(( ((RANDOM<<15)|RANDOM) % 49152 + 10000 ))
15 | status="$(nc -z 127.0.0.1 $PORT < /dev/null &>/dev/null; echo $?)"
16 | if [ "${status}" != "0" ]; then
17 | break;
18 | fi
19 | done
20 | echo $PORT
21 |
22 | srun -p ${PARTITION} \
23 | --job-name=${JOB_NAME} \
24 | --gres=gpu:${GPUS_PER_NODE} \
25 | --ntasks=${GPUS} \
26 | --ntasks-per-node=${GPUS_PER_NODE} \
27 | --kill-on-bad-exit=1 \
28 | ${SRUN_ARGS} \
29 | python -u test.py --launcher slurm --tcp_port $PORT ${PY_ARGS}
30 |
31 |
--------------------------------------------------------------------------------
/tools/scripts/slurm_test_single.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | set -x
4 |
5 | PARTITION=$1
6 | GPUS=1
7 | GPUS_PER_NODE=1
8 | PY_ARGS=${@:2}
9 | JOB_NAME=eval
10 | SRUN_ARGS=${SRUN_ARGS:-""}
11 |
12 | srun -p ${PARTITION} \
13 | --job-name=${JOB_NAME} \
14 | --gres=gpu:${GPUS_PER_NODE} \
15 | --ntasks=${GPUS} \
16 | --ntasks-per-node=${GPUS_PER_NODE} \
17 | --kill-on-bad-exit=1 \
18 | ${SRUN_ARGS} \
19 | python -u test.py ${PY_ARGS}
20 |
--------------------------------------------------------------------------------
/tools/scripts/slurm_train.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | set -x
4 |
5 | PARTITION=$1
6 | JOB_NAME=$2
7 | GPUS=$3
8 | PY_ARGS=${@:4}
9 |
10 | GPUS_PER_NODE=${GPUS_PER_NODE:-8}
11 | CPUS_PER_TASK=${CPUS_PER_TASK:-5}
12 | SRUN_ARGS=${SRUN_ARGS:-""}
13 |
14 | while true
15 | do
16 | PORT=$(( ((RANDOM<<15)|RANDOM) % 49152 + 10000 ))
17 | status="$(nc -z 127.0.0.1 $PORT < /dev/null &>/dev/null; echo $?)"
18 | if [ "${status}" != "0" ]; then
19 | break;
20 | fi
21 | done
22 | echo $PORT
23 |
24 | srun -p ${PARTITION} \
25 | --job-name=${JOB_NAME} \
26 | --gres=gpu:${GPUS_PER_NODE} \
27 | --ntasks=${GPUS} \
28 | --ntasks-per-node=${GPUS_PER_NODE} \
29 | --cpus-per-task=${CPUS_PER_TASK} \
30 | --kill-on-bad-exit=1 \
31 | ${SRUN_ARGS} \
32 | python -u train.py --launcher slurm --tcp_port $PORT ${PY_ARGS}
33 |
--------------------------------------------------------------------------------
/tools/scripts/torch_train.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | set -x
4 | NGPUS=$1
5 | PY_ARGS=${@:2}
6 |
7 | while true
8 | do
9 | PORT=$(( ((RANDOM<<15)|RANDOM) % 49152 + 10000 ))
10 | status="$(nc -z 127.0.0.1 $PORT < /dev/null &>/dev/null; echo $?)"
11 | if [ "${status}" != "0" ]; then
12 | break;
13 | fi
14 | done
15 | echo $PORT
16 |
17 | torchrun --nproc_per_node=${NGPUS} --rdzv_endpoint=localhost:${PORT} train.py --launcher pytorch ${PY_ARGS}
18 |
19 |
--------------------------------------------------------------------------------
/tools/train_utils/optimization/__init__.py:
--------------------------------------------------------------------------------
1 | from functools import partial
2 |
3 | import torch.nn as nn
4 | import torch.optim as optim
5 | import torch.optim.lr_scheduler as lr_sched
6 |
7 | from .fastai_optim import OptimWrapper
8 | from .learning_schedules_fastai import CosineWarmupLR, OneCycle
9 |
10 |
11 | def build_optimizer(model, optim_cfg):
12 | if optim_cfg.OPTIMIZER == 'adam':
13 | optimizer = optim.Adam(model.parameters(), lr=optim_cfg.LR, weight_decay=optim_cfg.WEIGHT_DECAY)
14 | elif optim_cfg.OPTIMIZER == 'sgd':
15 | optimizer = optim.SGD(
16 | model.parameters(), lr=optim_cfg.LR, weight_decay=optim_cfg.WEIGHT_DECAY,
17 | momentum=optim_cfg.MOMENTUM
18 | )
19 | elif optim_cfg.OPTIMIZER == 'adam_onecycle':
20 | def children(m: nn.Module):
21 | return list(m.children())
22 |
23 | def num_children(m: nn.Module) -> int:
24 | return len(children(m))
25 |
26 | flatten_model = lambda m: sum(map(flatten_model, m.children()), []) if num_children(m) else [m]
27 | get_layer_groups = lambda m: [nn.Sequential(*flatten_model(m))]
28 |
29 | optimizer_func = partial(optim.Adam, betas=(0.9, 0.99))
30 | optimizer = OptimWrapper.create(
31 | optimizer_func, 3e-3, get_layer_groups(model), wd=optim_cfg.WEIGHT_DECAY, true_wd=True, bn_wd=True
32 | )
33 | else:
34 | raise NotImplementedError
35 |
36 | return optimizer
37 |
38 |
39 | def build_scheduler(optimizer, total_iters_each_epoch, total_epochs, last_epoch, optim_cfg):
40 | decay_steps = [x * total_iters_each_epoch for x in optim_cfg.DECAY_STEP_LIST]
41 | def lr_lbmd(cur_epoch):
42 | cur_decay = 1
43 | for decay_step in decay_steps:
44 | if cur_epoch >= decay_step:
45 | cur_decay = cur_decay * optim_cfg.LR_DECAY
46 | return max(cur_decay, optim_cfg.LR_CLIP / optim_cfg.LR)
47 |
48 | lr_warmup_scheduler = None
49 | total_steps = total_iters_each_epoch * total_epochs
50 | if optim_cfg.OPTIMIZER == 'adam_onecycle':
51 | lr_scheduler = OneCycle(
52 | optimizer, total_steps, optim_cfg.LR, list(optim_cfg.MOMS), optim_cfg.DIV_FACTOR, optim_cfg.PCT_START
53 | )
54 | else:
55 | lr_scheduler = lr_sched.LambdaLR(optimizer, lr_lbmd, last_epoch=last_epoch)
56 |
57 | if optim_cfg.LR_WARMUP:
58 | lr_warmup_scheduler = CosineWarmupLR(
59 | optimizer, T_max=optim_cfg.WARMUP_EPOCH * len(total_iters_each_epoch),
60 | eta_min=optim_cfg.LR / optim_cfg.DIV_FACTOR
61 | )
62 |
63 | return lr_scheduler, lr_warmup_scheduler
64 |
--------------------------------------------------------------------------------
/tools/visual_utils/open3d_vis_utils.py:
--------------------------------------------------------------------------------
1 | """
2 | Open3d visualization tool box
3 | Written by Jihan YANG
4 | All rights preserved from 2021 - present.
5 | """
6 | import open3d
7 | import torch
8 | import matplotlib
9 | import numpy as np
10 |
11 | box_colormap = [
12 | [1, 1, 1],
13 | [0, 1, 0],
14 | [0, 1, 1],
15 | [1, 1, 0],
16 | ]
17 |
18 |
19 | def get_coor_colors(obj_labels):
20 | """
21 | Args:
22 | obj_labels: 1 is ground, labels > 1 indicates different instance cluster
23 |
24 | Returns:
25 | rgb: [N, 3]. color for each point.
26 | """
27 | colors = matplotlib.colors.XKCD_COLORS.values()
28 | max_color_num = obj_labels.max()
29 |
30 | color_list = list(colors)[:max_color_num+1]
31 | colors_rgba = [matplotlib.colors.to_rgba_array(color) for color in color_list]
32 | label_rgba = np.array(colors_rgba)[obj_labels]
33 | label_rgba = label_rgba.squeeze()[:, :3]
34 |
35 | return label_rgba
36 |
37 |
38 | def draw_scenes(points, gt_boxes=None, ref_boxes=None, ref_labels=None, ref_scores=None, point_colors=None, draw_origin=True):
39 | if isinstance(points, torch.Tensor):
40 | points = points.cpu().numpy()
41 | if isinstance(gt_boxes, torch.Tensor):
42 | gt_boxes = gt_boxes.cpu().numpy()
43 | if isinstance(ref_boxes, torch.Tensor):
44 | ref_boxes = ref_boxes.cpu().numpy()
45 |
46 | vis = open3d.visualization.Visualizer()
47 | vis.create_window()
48 |
49 | vis.get_render_option().point_size = 1.0
50 | vis.get_render_option().background_color = np.zeros(3)
51 |
52 | # draw origin
53 | if draw_origin:
54 | axis_pcd = open3d.geometry.TriangleMesh.create_coordinate_frame(size=1.0, origin=[0, 0, 0])
55 | vis.add_geometry(axis_pcd)
56 |
57 | pts = open3d.geometry.PointCloud()
58 | pts.points = open3d.utility.Vector3dVector(points[:, :3])
59 |
60 | vis.add_geometry(pts)
61 | if point_colors is None:
62 | pts.colors = open3d.utility.Vector3dVector(np.ones((points.shape[0], 3)))
63 | else:
64 | pts.colors = open3d.utility.Vector3dVector(point_colors)
65 |
66 | if gt_boxes is not None:
67 | vis = draw_box(vis, gt_boxes, (0, 0, 1))
68 |
69 | if ref_boxes is not None:
70 | vis = draw_box(vis, ref_boxes, (0, 1, 0), ref_labels, ref_scores)
71 |
72 | vis.run()
73 | vis.destroy_window()
74 |
75 |
76 | def translate_boxes_to_open3d_instance(gt_boxes):
77 | """
78 | 4-------- 6
79 | /| /|
80 | 5 -------- 3 .
81 | | | | |
82 | . 7 -------- 1
83 | |/ |/
84 | 2 -------- 0
85 | """
86 | center = gt_boxes[0:3]
87 | lwh = gt_boxes[3:6]
88 | axis_angles = np.array([0, 0, gt_boxes[6] + 1e-10])
89 | rot = open3d.geometry.get_rotation_matrix_from_axis_angle(axis_angles)
90 | box3d = open3d.geometry.OrientedBoundingBox(center, rot, lwh)
91 |
92 | line_set = open3d.geometry.LineSet.create_from_oriented_bounding_box(box3d)
93 |
94 | # import ipdb; ipdb.set_trace(context=20)
95 | lines = np.asarray(line_set.lines)
96 | lines = np.concatenate([lines, np.array([[1, 4], [7, 6]])], axis=0)
97 |
98 | line_set.lines = open3d.utility.Vector2iVector(lines)
99 |
100 | return line_set, box3d
101 |
102 |
103 | def draw_box(vis, gt_boxes, color=(0, 1, 0), ref_labels=None, score=None):
104 | for i in range(gt_boxes.shape[0]):
105 | line_set, box3d = translate_boxes_to_open3d_instance(gt_boxes[i])
106 | if ref_labels is None:
107 | line_set.paint_uniform_color(color)
108 | else:
109 | line_set.paint_uniform_color(box_colormap[ref_labels[i]])
110 |
111 | vis.add_geometry(line_set)
112 |
113 | # if score is not None:
114 | # corners = box3d.get_box_points()
115 | # vis.add_3d_label(corners[5], '%.2f' % score[i])
116 | return vis
117 |
--------------------------------------------------------------------------------