├── .gitignore ├── License.txt ├── README.md ├── data ├── SiF4_NH3_mec.yaml ├── WangMechanismRK.yaml ├── co2-thermo.yaml ├── galway.yaml ├── lithium_ion_battery.yaml ├── seiser.yaml └── zhangExpData.csv ├── electrochemistry ├── images │ └── SingleParticleBattery.png └── lithium_ion_battery.ipynb ├── environment.yml ├── flames ├── flame_speed_with_convergence_analysis.ipynb ├── flame_speed_with_sensitivity_analysis.ipynb ├── images │ ├── flameSpeed.png │ └── twinPremixedFlame.png └── twin_premixed_flame_axisymmetric.ipynb ├── input ├── chemkin │ ├── air.inp │ ├── airDataNASA9.dat │ ├── airNASA9.inp │ ├── air_extra.yaml │ ├── argon.inp │ ├── argon_extra.yaml │ ├── gri30.inp │ ├── gri30_extra.yaml │ ├── gri30_thermo.dat │ ├── gri30_tran.dat │ ├── h2o2.inp │ ├── h2o2_extra.yaml │ └── nasathermo.dat └── ck2yaml_demo.ipynb ├── python_tutorial.ipynb ├── reactors ├── 1D_packbed.ipynb ├── 1D_pfr_surfchem.ipynb ├── batch_reactor_ignition_delay_NTC.ipynb ├── data │ └── Ammonia-Ru-Ba-YSZ.yaml ├── images │ ├── batchReactor.png │ ├── stirredReactorCanteraSimulation.png │ └── stirredReactorCartoon.png ├── interactive_path_diagram.ipynb ├── nonideal_shock_tube.ipynb └── stirred_reactor.ipynb └── thermo ├── equations_of_state.ipynb ├── flame_temperature.ipynb └── heating_value.ipynb /.gitignore: -------------------------------------------------------------------------------- 1 | .ipynb_checkpoints 2 | .DS_Store 3 | .python-version 4 | .vscode/ 5 | *.nbconvert.ipynb 6 | reactors/reaction_paths.* 7 | input/*.yaml 8 | -------------------------------------------------------------------------------- /License.txt: -------------------------------------------------------------------------------- 1 | Copyright (c) 2016-2018, Cantera Developers. 2 | All rights reserved. 3 | 4 | Redistribution and use in source and binary forms, with or without 5 | modification, are permitted provided that the following conditions are 6 | met: 7 | 8 | - Redistributions of source code must retain the above copyright 9 | notice, this list of conditions and the following disclaimer. 10 | 11 | - Redistributions in binary form must reproduce the above copyright 12 | notice, this list of conditions and the following disclaimer in the 13 | documentation and/or other materials provided with the distribution. 14 | 15 | - Neither the name of the California Institute of Technology, Sandia 16 | Corporation nor the names of other contributors may be used to 17 | endorse or promote products derived from this software without 18 | specific prior written permission. 19 | 20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 30 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # cantera-jupyter 2 | 3 | ## 🚨 This repository is obsolete! 🚨 4 | 5 | Starting with Cantera 3.1, all of these examples have been migrated into the main repository as 6 | pure Python scripts that are then rendered by [Sphinx Gallery](https://sphinx-gallery.github.io). 7 | You can see the gallery of Python examples for the current version of Cantera at 8 | https://cantera.org/stable/examples/python/index.html. 9 | 10 | If you would like to contribute a new Cantera example, please write it as a pure Python example 11 | like those in https://github.com/Cantera/cantera/tree/main/samples/python and open a Pull Request 12 | to the main Cantera repository (https://github.com/Cantera/cantera). 13 | 14 | ## Examples 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |

Freely Propagating Flame

Strained Flames

Continuous Stirred Tank Reactor

Batch Reactor

Li+ Battery OCV Calculation
33 | 34 | * Basic Thermodynamics Calculations 35 | * [Fuel heating value calculator](https://github.com/Cantera/cantera-jupyter/blob/main/thermo/heating_value.ipynb) 36 | * [Equilibrium flame temperature calculator](https://github.com/Cantera/cantera-jupyter/blob/main/thermo/flame_temperature.ipynb) 37 | * [Equation of State Comparison: Ideal, Redlich-Kwong, and Helmholtz Energy](https://github.com/Cantera/cantera-jupyter/blob/main/thermo/equations_of_state.ipynb) 38 | 39 | * Flame Simulations 40 | * [Flame speed calculator with sensitivity analysis](https://github.com/Cantera/cantera-jupyter/blob/main/flames/flame_speed_with_sensitivity_analysis.ipynb) 41 | * [Flame speed calculator with grid convergence analysis](https://github.com/Cantera/cantera-jupyter/blob/main/flames/flame_speed_with_convergence_analysis.ipynb) 42 | * [Counter-flow twin premixed flame simulator](https://github.com/Cantera/cantera-jupyter/blob/main/flames/twin_premixed_flame_axisymmetric.ipynb) 43 | 44 | * Reactor Models 45 | * [Batch Reactors: Illustration of ignition delay calculation](https://github.com/Cantera/cantera-jupyter/blob/main/reactors/batch_reactor_ignition_delay_NTC.ipynb) 46 | * [Batch reactors with non-ideal gases](https://github.com/Cantera/cantera-jupyter/blob/main/reactors/NonIdealShockTube.ipynb) 47 | * [Continuous Reactors: Simulations at a given residence time](https://github.com/Cantera/cantera-jupyter/blob/main/reactors/stirred_reactor.ipynb) 48 | 49 | * Electrochemistry 50 | * [Open circuit voltage calculations in a Lithium ion battery](https://github.com/Cantera/cantera-jupyter/blob/main/electrochemistry/lithium_ion_battery.ipynb) 51 | 52 | ## Installation Instructions 53 | 54 | ### 1. Install Cantera 55 | 56 | If you don't already have Cantera installed, refer to the instructions on 57 | the [Cantera website](https://cantera.org/install/index.html). 58 | 59 | ### 2. Install Jupyter Notebook 60 | 61 | If you used Conda to install Cantera (the recommended method), you will 62 | need to install Jupyter Lab into the same environment where you 63 | installed Cantera. 64 | 65 | 1. Activate the environment with the Cantera package (called `cantera` here): 66 | 67 | ```shell 68 | conda activate cantera 69 | ``` 70 | 71 | 2. Install Jupyter Notebook into that environment 72 | 73 | ```shell 74 | conda install jupyterlab 75 | ``` 76 | 77 | 3. Run Jupyter Lab, which will open a browser window 78 | 79 | ```shell 80 | jupyter lab 81 | ``` 82 | 83 | Otherwise, use `pip` to install the Jupyter Notebook: 84 | 85 | ```shell 86 | python -m pip install jupyterlab 87 | ``` 88 | 89 | ### 3. Download the Cantera Jupyter Examples 90 | 91 | **Option 1:** Download the zip file from [GitHub](https://github.com/Cantera/cantera-jupyter/archive/main.zip) 92 | and extract it to a convenient location on your computer. 93 | 94 | **Option 2:** Use Git to clone this repository to a convenient location on your computer 95 | 96 | ```shell 97 | git clone https://github.com/Cantera/cantera-jupyter.git 98 | ``` 99 | 100 | ## Code of Conduct 101 | 102 | This repository follows the same code of conduct as the main Cantera repository. 103 | Cantera adheres to a [code of conduct](https://github.com/Cantera/cantera/blob/main/CODE_OF_CONDUCT.md) 104 | adapted from the [Contributor Covenant code of conduct](https://contributor-covenant.org/). 105 | 106 | ## Frequently Asked Questions 107 | 108 | **How do I use Cantera with Python?** 109 | 110 | An introduction to the Cantera Python interface is available 111 | [here](https://cantera.org/tutorials/python-tutorial.html). For more 112 | advanced uses of Cantera, the complete documentation can be found 113 | [here](https://cantera.org/documentation/index.html). 114 | 115 | **Can I forgo installing Cantera locally and just use Cantera in the cloud every 116 | time?** 117 | 118 | The problem with using Cantera with MyBinder is that there is no way for you to 119 | save your work. You can upload/download files in a session, but once the session 120 | is over (you close your browser window), you lose all your work. You thus cannot 121 | save your modified Jupyter notebooks. 122 | 123 | **I still can't figure something out. Who do I ask?** 124 | 125 | If you have more questions, need help with something, or have any suggestions, 126 | please visit the 127 | [Cantera Google Groups Page](https://groups.google.com/forum/#!forum/cantera-users) 128 | and create a post. 129 | -------------------------------------------------------------------------------- /data/SiF4_NH3_mec.yaml: -------------------------------------------------------------------------------- 1 | generator: cti2yaml 2 | cantera-version: 2.6.0a1 3 | date: Wed, 03 Mar 2021 11:59:03 -0500 4 | input-files: [SiF4_NH3_mec.cti] 5 | 6 | units: {length: cm, quantity: mol, activation-energy: cal/mol} 7 | 8 | phases: 9 | - name: gas 10 | thermo: ideal-gas 11 | elements: [H, N, Si, F] 12 | species: [H2, H, N2, N, NH, NH2, NNH, N2H2, N2H3, N2H4, HF, F, SIF4, SIF3, 13 | SIHF3, SIF3NH2, NH3] 14 | kinetics: gas 15 | reactions: [gas-reactions] 16 | transport: mixture-averaged 17 | state: 18 | T: 300.0 19 | P: 1.01325e+05 20 | - name: SiBulk 21 | thermo: ideal-condensed 22 | elements: [Si] 23 | species: [SI(D)] 24 | standard-concentration-basis: unity 25 | - name: NBulk 26 | thermo: ideal-condensed 27 | elements: [N] 28 | species: [N(D)] 29 | standard-concentration-basis: unity 30 | - name: SI3N4 31 | thermo: ideal-surface 32 | elements: [H, N, Si, F] 33 | species: [HN_SIF(S), HN_NH2(S), F3SI_NH2(S), F2SINH(S), H2NFSINH(S), HN(FSINH)2(S)] 34 | kinetics: surface 35 | reactions: [SI3N4-reactions] 36 | state: 37 | T: 300.0 38 | P: 1.01325e+05 39 | site-density: 4.1683e-09 40 | 41 | species: 42 | - name: H2 43 | composition: {H: 2} 44 | thermo: 45 | model: NASA7 46 | temperature-ranges: [200.0, 1000.0, 6000.0] 47 | data: 48 | - [2.34433112, 7.98052075e-03, -1.9478151e-05, 2.01572094e-08, -7.37611761e-12, 49 | -917.935173, 0.683010238] 50 | - [2.93286575, 8.26608026e-04, -1.46402364e-07, 1.54100414e-11, -6.888048e-16, 51 | -813.065581, -1.02432865] 52 | transport: 53 | model: gas 54 | geometry: linear 55 | diameter: 2.92 56 | well-depth: 38.0 57 | polarizability: 0.79 58 | rotational-relaxation: 280.0 59 | note: TPIS78 60 | - name: H 61 | composition: {H: 1} 62 | thermo: 63 | model: NASA7 64 | temperature-ranges: [200.0, 1000.0, 6000.0] 65 | data: 66 | - [2.5, 0.0, 0.0, 0.0, 0.0, 2.547366e+04, -0.44668285] 67 | - [2.5, 0.0, 0.0, 0.0, 0.0, 2.547366e+04, -0.44668285] 68 | transport: 69 | model: gas 70 | geometry: atom 71 | diameter: 2.05 72 | well-depth: 145.0 73 | note: L6/94 74 | - name: N2 75 | composition: {N: 2} 76 | thermo: 77 | model: NASA7 78 | temperature-ranges: [200.0, 1000.0, 6000.0] 79 | data: 80 | - [3.53100528, -1.23660988e-04, -5.02999433e-07, 2.43530612e-09, -1.40881235e-12, 81 | -1046.97628, 2.96747038] 82 | - [2.95257637, 1.3969004e-03, -4.92631603e-07, 7.86010195e-11, -4.60755204e-15, 83 | -923.948688, 5.87188762] 84 | transport: 85 | model: gas 86 | geometry: linear 87 | diameter: 3.621 88 | well-depth: 97.53 89 | polarizability: 1.76 90 | rotational-relaxation: 4.0 91 | note: G8/02 92 | - name: N 93 | composition: {N: 1} 94 | thermo: 95 | model: NASA7 96 | temperature-ranges: [300.0, 1000.0, 5000.0] 97 | data: 98 | - [2.503071, -2.180018e-05, 5.420529e-08, -5.64756e-11, 2.099904e-14, 99 | 5.60989e+04, 4.167566] 100 | - [2.450268, 1.066146e-04, -7.465337e-08, 1.879652e-11, -1.025984e-15, 101 | 5.611604e+04, 4.448758] 102 | transport: 103 | model: gas 104 | geometry: atom 105 | diameter: 3.298 106 | well-depth: 71.4 107 | note: '120186' 108 | - name: NH 109 | composition: {H: 1, N: 1} 110 | thermo: 111 | model: NASA7 112 | temperature-ranges: [200.0, 1000.0, 6000.0] 113 | data: 114 | - [3.4929084, 3.1179197e-04, -1.4890484e-06, 2.4816442e-09, -1.0356967e-12, 115 | 4.1894294e+04, 1.8483277] 116 | - [2.7836929, 1.3298429e-03, -4.2478047e-07, 7.8348504e-11, -5.504447e-15, 117 | 4.2134514e+04, 5.7407798] 118 | transport: 119 | model: gas 120 | geometry: linear 121 | diameter: 2.65 122 | well-depth: 80.0 123 | rotational-relaxation: 4.0 124 | - name: NH2 125 | composition: {H: 2, N: 1} 126 | thermo: 127 | model: NASA7 128 | temperature-ranges: [300.0, 1000.0, 5000.0] 129 | data: 130 | - [3.432493, 3.29954e-03, -6.6136e-06, 8.590947e-09, -3.572047e-12, 131 | 2.177228e+04, 3.090111] 132 | - [2.961311, 2.932699e-03, -9.0636e-07, 1.617257e-10, -1.2042e-14, 2.191977e+04, 133 | 5.777878] 134 | transport: 135 | model: gas 136 | geometry: nonlinear 137 | diameter: 2.65 138 | well-depth: 80.0 139 | polarizability: 2.26 140 | rotational-relaxation: 4.0 141 | note: '121686' 142 | - name: NNH 143 | composition: {H: 1, N: 2} 144 | thermo: 145 | model: NASA7 146 | temperature-ranges: [250.0, 1000.0, 4000.0] 147 | data: 148 | - [3.501344, 2.053587e-03, 7.17041e-07, 4.921348e-10, -9.67117e-13, 149 | 2.833347e+04, 6.391837] 150 | - [4.415342, 1.614388e-03, -1.632894e-07, -8.559846e-11, 1.614791e-14, 151 | 2.788029e+04, 0.9042888] 152 | transport: 153 | model: gas 154 | geometry: nonlinear 155 | diameter: 3.798 156 | well-depth: 71.4 157 | rotational-relaxation: 1.0 158 | note: '120186' 159 | - name: N2H2 160 | composition: {H: 2, N: 2} 161 | thermo: 162 | model: NASA7 163 | temperature-ranges: [300.0, 1000.0, 5000.0] 164 | data: 165 | - [1.617999, 0.01306312, -1.715712e-05, 1.605608e-08, -6.093639e-12, 166 | 2.467526e+04, 13.79467] 167 | - [3.371185, 6.039968e-03, -2.303854e-06, 4.062789e-10, -2.713144e-14, 168 | 2.418172e+04, 4.980585] 169 | transport: 170 | model: gas 171 | geometry: nonlinear 172 | diameter: 3.798 173 | well-depth: 71.4 174 | rotational-relaxation: 1.0 175 | note: '121286' 176 | - name: N2H3 177 | composition: {H: 3, N: 2} 178 | thermo: 179 | model: NASA7 180 | temperature-ranges: [300.0, 1000.0, 5000.0] 181 | data: 182 | - [3.174204, 4.715907e-03, 1.334867e-05, -1.919685e-08, 7.487564e-12, 183 | 1.72727e+04, 7.557224] 184 | - [4.441846, 7.214271e-03, -2.495684e-06, 3.920565e-10, -2.29895e-14, 185 | 1.664221e+04, -0.4275205] 186 | transport: 187 | model: gas 188 | geometry: nonlinear 189 | diameter: 3.9 190 | well-depth: 200.0 191 | rotational-relaxation: 1.0 192 | note: '120186' 193 | - name: N2H4 194 | composition: {H: 4, N: 2} 195 | thermo: 196 | model: NASA7 197 | temperature-ranges: [300.0, 1000.0, 5000.0] 198 | data: 199 | - [0.06442606, 0.0274973, -2.899451e-05, 1.74524e-08, -4.422282e-12, 200 | 1.045192e+04, 21.27789] 201 | - [4.977317, 9.595519e-03, -3.547639e-06, 6.124299e-10, -4.029795e-14, 202 | 9341.219, -2.96299] 203 | transport: 204 | model: gas 205 | geometry: nonlinear 206 | diameter: 4.23 207 | well-depth: 205.0 208 | polarizability: 4.26 209 | rotational-relaxation: 1.5 210 | note: '121286' 211 | - name: HF 212 | composition: {F: 1, H: 1} 213 | thermo: 214 | model: NASA7 215 | temperature-ranges: [300.0, 1000.0, 5000.0] 216 | data: 217 | - [3.4379986, 5.3571598e-04, -1.5229655e-06, 1.7564491e-09, -5.786994e-13, 218 | -3.3818972e+04, 1.1930153] 219 | - [2.991911, 7.1489475e-04, -6.8630973e-08, -1.161713e-11, 1.9412375e-15, 220 | -3.3621364e+04, 3.8123288] 221 | transport: 222 | model: gas 223 | geometry: linear 224 | diameter: 3.148 225 | well-depth: 330.0 226 | dipole: 1.92 227 | polarizability: 2.46 228 | rotational-relaxation: 1.0 229 | note: J6/77 230 | - name: F 231 | composition: {F: 1} 232 | thermo: 233 | model: NASA7 234 | temperature-ranges: [300.0, 1000.0, 5000.0] 235 | data: 236 | - [2.812874, -3.3023098e-06, -1.289731e-06, 1.6837365e-09, -6.4587833e-13, 237 | 8660.4019, 3.0984198] 238 | - [2.7004353, -2.2293182e-04, 9.7941385e-08, -1.9123038e-11, 1.3768154e-15, 239 | 8716.3617, 3.8067182] 240 | transport: 241 | model: gas 242 | geometry: atom 243 | diameter: 2.75 244 | well-depth: 80.0 245 | note: J9/65 246 | - name: SIF4 247 | composition: {F: 4, Si: 1} 248 | thermo: 249 | model: NASA7 250 | temperature-ranges: [300.0, 1000.0, 5000.0] 251 | data: 252 | - [2.1893068, 0.033702007, -4.6723179e-05, 3.1584638e-08, -8.4506114e-12, 253 | -1.9603289e+05, 13.287308] 254 | - [10.478473, 2.8586756e-03, -1.2646314e-06, 2.4746863e-10, -1.7824296e-14, 255 | -1.979055e+05, -27.520641] 256 | transport: 257 | model: gas 258 | geometry: nonlinear 259 | diameter: 4.88 260 | well-depth: 171.9 261 | rotational-relaxation: 1.0 262 | note: J6/76 263 | - name: SIF3 264 | composition: {F: 3, Si: 1} 265 | thermo: 266 | model: NASA7 267 | temperature-ranges: [300.0, 1000.0, 3000.0] 268 | data: 269 | - [4.6628685, 0.010087878, -1.8055442e-06, -7.769299e-09, 4.3778518e-12, 270 | -1.2129652e+05, 4.672966] 271 | - [8.5247898, 1.3237924e-03, -2.1042787e-07, -1.149504e-10, 3.0553014e-14, 272 | -1.2235223e+05, -15.502343] 273 | transport: 274 | model: gas 275 | geometry: nonlinear 276 | diameter: 4.359 277 | well-depth: 309.6 278 | rotational-relaxation: 1.0 279 | note: '41889' 280 | - name: SIHF3 281 | composition: {F: 3, H: 1, Si: 1} 282 | thermo: 283 | model: NASA7 284 | temperature-ranges: [300.0, 1000.0, 3000.0] 285 | data: 286 | - [3.9180529, 0.014639172, -1.8560698e-06, -1.0582003e-08, 5.6175433e-12, 287 | -1.4704386e+05, 7.0242615] 288 | - [9.3635674, 2.9475559e-03, -3.577633e-07, -2.8582245e-10, 6.9157286e-14, 289 | -1.4860736e+05, -21.694529] 290 | transport: 291 | model: gas 292 | geometry: nonlinear 293 | diameter: 4.681 294 | well-depth: 180.8 295 | rotational-relaxation: 1.0 296 | note: '41889' 297 | - name: SIF3NH2 298 | composition: {F: 3, H: 2, N: 1, Si: 1} 299 | thermo: 300 | model: NASA7 301 | temperature-ranges: [300.0, 1000.0, 3000.0] 302 | data: 303 | - [6.229403, 0.017780151, -2.6123043e-06, -1.2672435e-08, 7.0445559e-12, 304 | -1.6258489e+05, 0.20454407] 305 | - [12.109636, 4.3832823e-03, -4.1422453e-07, -3.9890902e-10, 8.9589543e-14, 306 | -1.6417678e+05, -30.469284] 307 | transport: 308 | model: gas 309 | geometry: nonlinear 310 | diameter: 4.975 311 | well-depth: 231.0 312 | rotational-relaxation: 1.0 313 | note: '41889' 314 | - name: NH3 315 | composition: {H: 3, N: 1} 316 | thermo: 317 | model: NASA7 318 | temperature-ranges: [300.0, 1000.0, 5000.0] 319 | data: 320 | - [2.204352, 0.01011476, -1.465265e-05, 1.447235e-08, -5.328509e-12, 321 | -6525.488, 8.127138] 322 | - [2.461904, 6.059166e-03, -2.004977e-06, 3.136003e-10, -1.938317e-14, 323 | -6493.27, 7.472097] 324 | transport: 325 | model: gas 326 | geometry: nonlinear 327 | diameter: 2.92 328 | well-depth: 481.0 329 | dipole: 1.47 330 | rotational-relaxation: 10.0 331 | note: '121386' 332 | - name: F3SI_NH2(S) 333 | composition: {F: 3, H: 2, N: 1, Si: 1} 334 | sites: 2.0 335 | thermo: 336 | model: NASA7 337 | temperature-ranges: [300.0, 1000.0, 1685.0] 338 | data: 339 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12, 340 | -524.86288, -4.5272678] 341 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14, 342 | -812.5562, -12.188747] 343 | note: J3/67 344 | - name: F2SINH(S) 345 | composition: {F: 2, H: 1, N: 1, Si: 1} 346 | sites: 2.0 347 | thermo: 348 | model: NASA7 349 | temperature-ranges: [300.0, 1000.0, 1685.0] 350 | data: 351 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12, 352 | -524.86288, -4.5272678] 353 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14, 354 | -812.5562, -12.188747] 355 | note: J3/67 356 | - name: H2NFSINH(S) 357 | composition: {F: 1, H: 3, N: 2, Si: 1} 358 | sites: 2.0 359 | thermo: 360 | model: NASA7 361 | temperature-ranges: [300.0, 1000.0, 1685.0] 362 | data: 363 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12, 364 | -524.86288, -4.5272678] 365 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14, 366 | -812.5562, -12.188747] 367 | note: J3/67 368 | - name: HN(FSINH)2(S) 369 | composition: {F: 2, H: 3, N: 3, Si: 2} 370 | sites: 4.0 371 | thermo: 372 | model: NASA7 373 | temperature-ranges: [300.0, 1000.0, 1685.0] 374 | data: 375 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12, 376 | -524.86288, -4.5272678] 377 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14, 378 | -812.5562, -12.188747] 379 | note: J3/67 380 | - name: HN_SIF(S) 381 | composition: {F: 1, H: 1, N: 1, Si: 1} 382 | sites: 2.0 383 | thermo: 384 | model: NASA7 385 | temperature-ranges: [300.0, 1000.0, 1685.0] 386 | data: 387 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12, 388 | -524.86288, -4.5272678] 389 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14, 390 | -812.5562, -12.188747] 391 | note: J3/67 392 | - name: HN_NH2(S) 393 | composition: {H: 3, N: 2} 394 | sites: 2.0 395 | thermo: 396 | model: NASA7 397 | temperature-ranges: [300.0, 1000.0, 1685.0] 398 | data: 399 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12, 400 | -524.86288, -4.5272678] 401 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14, 402 | -812.5562, -12.188747] 403 | note: J3/67 404 | - name: SI(D) 405 | composition: {Si: 1} 406 | equation-of-state: 407 | model: constant-volume 408 | density: 0.2066E+01 g/cm^3 409 | thermo: 410 | model: NASA7 411 | temperature-ranges: [300.0, 1000.0, 1685.0] 412 | data: 413 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12, 414 | -524.86288, -4.5272678] 415 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14, 416 | -812.5562, -12.188747] 417 | note: J3/67 418 | - name: N(D) 419 | composition: {N: 1} 420 | equation-of-state: 421 | model: constant-volume 422 | density: 0.1374E+01 g/cm^3 423 | thermo: 424 | model: NASA7 425 | temperature-ranges: [300.0, 1000.0, 1685.0] 426 | data: 427 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12, 428 | -524.86288, -4.5272678] 429 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14, 430 | -812.5562, -12.188747] 431 | note: J3/67 432 | 433 | gas-reactions: 434 | - equation: H + H + M <=> H2 + M # Reaction 1 435 | type: three-body 436 | id: gas-1 437 | rate-constant: {A: 1.0e+18, b: -1.0, Ea: 0.0} 438 | efficiencies: {H2: 0.0} 439 | - equation: H + H + H2 <=> H2 + H2 # Reaction 2 440 | id: gas-2 441 | rate-constant: {A: 9.2e+16, b: -0.6, Ea: 0.0} 442 | - equation: NH + N <=> N2 + H # Reaction 3 443 | id: gas-3 444 | rate-constant: {A: 3.0e+13, b: 0.0, Ea: 0.0} 445 | - equation: NH + H <=> N + H2 # Reaction 4 446 | id: gas-4 447 | rate-constant: {A: 1.0e+14, b: 0.0, Ea: 0.0} 448 | - equation: NH2 + H <=> NH + H2 # Reaction 5 449 | id: gas-5 450 | rate-constant: {A: 6.92e+13, b: 0.0, Ea: 3650.0} 451 | - equation: NH3 + H <=> NH2 + H2 # Reaction 6 452 | id: gas-6 453 | rate-constant: {A: 6.36e+05, b: 2.39, Ea: 1.0171e+04} 454 | - equation: NNH <=> N2 + H # Reaction 7 455 | id: gas-7 456 | rate-constant: {A: 1.0e+04, b: 0.0, Ea: 0.0} 457 | - equation: NNH + H <=> N2 + H2 # Reaction 8 458 | id: gas-8 459 | rate-constant: {A: 1.0e+14, b: 0.0, Ea: 0.0} 460 | - equation: NNH + NH2 <=> N2 + NH3 # Reaction 9 461 | id: gas-9 462 | rate-constant: {A: 5.0e+13, b: 0.0, Ea: 0.0} 463 | - equation: NNH + NH <=> N2 + NH2 # Reaction 10 464 | id: gas-10 465 | rate-constant: {A: 5.0e+13, b: 0.0, Ea: 0.0} 466 | - equation: NH2 + NH <=> N2H2 + H # Reaction 11 467 | id: gas-11 468 | rate-constant: {A: 5.0e+13, b: 0.0, Ea: 0.0} 469 | - equation: NH + NH <=> N2 + H + H # Reaction 12 470 | id: gas-12 471 | rate-constant: {A: 2.54e+13, b: 0.0, Ea: 0.0} 472 | - equation: NH2 + N <=> N2 + H + H # Reaction 13 473 | id: gas-13 474 | rate-constant: {A: 7.2e+13, b: 0.0, Ea: 0.0} 475 | - equation: N2H2 + M <=> NNH + H + M # Reaction 14 476 | type: three-body 477 | id: gas-14 478 | rate-constant: {A: 5.0e+16, b: 0.0, Ea: 5.0e+04} 479 | efficiencies: {H2: 2.0, N2: 2.0} 480 | - equation: N2H2 + H <=> NNH + H2 # Reaction 15 481 | id: gas-15 482 | rate-constant: {A: 5.0e+13, b: 0.0, Ea: 1000.0} 483 | - equation: N2H2 + NH <=> NNH + NH2 # Reaction 16 484 | id: gas-16 485 | rate-constant: {A: 1.0e+13, b: 0.0, Ea: 1000.0} 486 | - equation: N2H2 + NH2 <=> NH3 + NNH # Reaction 17 487 | id: gas-17 488 | rate-constant: {A: 1.0e+13, b: 0.0, Ea: 1000.0} 489 | - equation: NH2 + NH2 <=> N2H2 + H2 # Reaction 18 490 | id: gas-18 491 | rate-constant: {A: 5.0e+11, b: 0.0, Ea: 0.0} 492 | - equation: NH3 + M <=> NH2 + H + M # Reaction 19 493 | type: three-body 494 | id: gas-19 495 | rate-constant: {A: 1.4e+16, b: 0.0, Ea: 9.06e+04} 496 | - equation: N2H3 + H <=> NH2 + NH2 # Reaction 20 497 | id: gas-20 498 | rate-constant: {A: 1.6e+12, b: 0.0, Ea: 0.0} 499 | - equation: N2H3 + M <=> N2H2 + H + M # Reaction 21 500 | type: three-body 501 | id: gas-21 502 | rate-constant: {A: 3.5e+16, b: 0.0, Ea: 4.6e+04} 503 | - equation: N2H3 + NH <=> NH2 + N2H2 # Reaction 22 504 | id: gas-22 505 | rate-constant: {A: 2.0e+13, b: 0.0, Ea: 0.0} 506 | - equation: NH2 + NH2 + M <=> N2H4 + M # Reaction 23 507 | type: three-body 508 | id: gas-23 509 | rate-constant: {A: 3.0e+20, b: -1.0, Ea: 0.0} 510 | - equation: H + N2H4 <=> H2 + N2H3 # Reaction 24 511 | id: gas-24 512 | rate-constant: {A: 1.3e+13, b: 0.0, Ea: 2500.0} 513 | - equation: NH2 + N2H4 <=> NH3 + N2H3 # Reaction 25 514 | id: gas-25 515 | rate-constant: {A: 3.9e+12, b: 0.0, Ea: 1500.0} 516 | - equation: NH + H + M <=> NH2 + M # Reaction 26 517 | type: three-body 518 | id: gas-26 519 | rate-constant: {A: 2.0e+16, b: -0.5, Ea: 0.0} 520 | - equation: NH2 + NH2 <=> NH3 + NH # Reaction 27 521 | id: gas-27 522 | rate-constant: {A: 5.0e+12, b: 0.0, Ea: 1.0e+04} 523 | - equation: F + NH3 <=> NH2 + HF # Reaction 28 524 | id: gas-28 525 | rate-constant: {A: 4.27e+11, b: 0.5, Ea: 800.0} 526 | - equation: SIF4 <=> SIF3 + F # Reaction 29 527 | id: gas-29 528 | rate-constant: {A: 3.0e+12, b: 0.0, Ea: 1.4717e+05} 529 | - equation: H + SIF4 <=> HF + SIF3 # Reaction 30 530 | id: gas-30 531 | rate-constant: {A: 1.0e+13, b: 0.0, Ea: 5.0e+04} 532 | - equation: NH2 + SIF4 <=> SIF3NH2 + F # Reaction 31 533 | id: gas-31 534 | rate-constant: {A: 1.0e+11, b: 0.0, Ea: 4.095e+04} 535 | - equation: NH3 + SIF3 <=> SIF3NH2 + H # Reaction 32 536 | id: gas-32 537 | rate-constant: {A: 1.0e+11, b: 0.0, Ea: 5000.0} 538 | - equation: NH3 + SIF3 <=> SIHF3 + NH2 # Reaction 33 539 | id: gas-33 540 | rate-constant: {A: 1.0e+11, b: 0.0, Ea: 1.0e+04} 541 | 542 | SI3N4-reactions: 543 | - equation: F3SI_NH2(S) => F2SINH(S) + HF # Reaction 34 544 | id: SI3N4-1 545 | rate-constant: {A: 1.0e+05, b: 0.0, Ea: 0.0} 546 | - equation: NH3 + F2SINH(S) => H2NFSINH(S) + HF # Reaction 35 547 | id: SI3N4-2 548 | rate-constant: {A: 7.562e+08, b: 0.5, Ea: 0.0} 549 | - equation: H2NFSINH(S) + F2SINH(S) => HN(FSINH)2(S) + HF # Reaction 36 550 | id: SI3N4-3 551 | rate-constant: {A: 1.0e+15, b: 0.0, Ea: 0.0} 552 | - equation: NH3 + HN_SIF(S) => HN_NH2(S) + SI(D) + HF # Reaction 37 553 | id: SI3N4-4 554 | rate-constant: {A: 7.56e+08, b: 0.5, Ea: 0.0} 555 | - equation: SIF4 + HN_NH2(S) => F3SI_NH2(S) + N(D) + HF # Reaction 38 556 | id: SI3N4-5 557 | rate-constant: {A: 3.1e+08, b: 0.5, Ea: 0.0} 558 | - equation: HN(FSINH)2(S) + F2SINH(S) => 3 HN_SIF(S) + N(D) + HF # Reaction 39 559 | id: SI3N4-6 560 | rate-constant: {A: 1.0e+15, b: 0.0, Ea: 0.0} 561 | -------------------------------------------------------------------------------- /data/co2-thermo.yaml: -------------------------------------------------------------------------------- 1 | description: |- 2 | CO2 phases based on the equation of state 3 | 4 | units: {length: cm, time: s, quantity: mol, activation-energy: cal/mol} 5 | 6 | phases: 7 | - name: CO2-Ideal 8 | thermo: ideal-gas 9 | elements: [O, C] 10 | species: [CO2] 11 | kinetics: none 12 | state: {T: 300.0, P: 1 atm} 13 | 14 | - name: CO2-RK 15 | thermo: Redlich-Kwong 16 | elements: [O, C] 17 | species: [CO2] 18 | kinetics: none 19 | state: {T: 300.0, P: 1 atm} 20 | 21 | species: 22 | - name: CO2 23 | composition: {C: 1, O: 2} 24 | thermo: 25 | model: NASA7 26 | temperature-ranges: [200.0, 1000.0, 3500.0] 27 | data: 28 | - [2.35677352, 0.00898459677, -7.12356269e-06, 2.45919022e-09, -1.43699548e-13, 29 | -48371.9697, 9.90105222] 30 | - [3.85746029, 0.00441437026, -2.21481404e-06, 5.23490188e-10, -4.72084164e-14, 31 | -48759.166, 2.27163806] 32 | equation-of-state: 33 | model: Redlich-Kwong 34 | units: {length: cm, pressure: bar, quantity: mol} 35 | a: [7.54e7, -4.13e4] 36 | b: 27.80 37 | -------------------------------------------------------------------------------- /data/lithium_ion_battery.yaml: -------------------------------------------------------------------------------- 1 | generator: cti2yaml 2 | cantera-version: 2.6.0a4 3 | date: Sun, 16 Jan 2022 14:37:51 -0500 4 | input-files: [lithium_ion_battery.cti] 5 | 6 | phases: 7 | - name: anode 8 | thermo: binary-solution-tabulated 9 | elements: [Li, C] 10 | species: ['Li[anode]', 'V[anode]'] 11 | standard-concentration-basis: unity 12 | tabulated-species: Li[anode] 13 | tabulated-thermo: 14 | units: {energy: J, quantity: mol} 15 | mole-fractions: [5.75e-03, 0.0177591, 0.0297682, 0.0417773, 0.0537864, 16 | 0.0657954, 0.0778045, 0.0898136, 0.101823, 0.113832, 0.125841, 0.13785, 17 | 0.149859, 0.161868, 0.173877, 0.185886, 0.197896, 0.209904, 0.221914, 18 | 0.233923, 0.245932, 0.257941, 0.26995, 0.281959, 0.293968, 0.305977, 19 | 0.317986, 0.329995, 0.342004, 0.354014, 0.366023, 0.378032, 0.390041, 20 | 0.40205, 0.414059, 0.426068, 0.438077, 0.450086, 0.462095, 0.474104, 21 | 0.486114, 0.498123, 0.510132, 0.522141, 0.53415, 0.546159, 0.558168, 22 | 0.570177, 0.582186, 0.594195, 0.606205, 0.618214, 0.630223, 0.642232, 23 | 0.654241, 0.66625, 0.678259, 0.690268, 0.702277, 0.714286, 0.726295, 24 | 0.738305, 0.750314, 0.762323, 0.774332, 0.786341, 0.79835] 25 | enthalpy: [-6.40692e+04, -3.78794e+04, -1.99748e+04, -1.10478e+04, -7049.73, 26 | -7137.49, -8797.28, -9936.55, -1.0306e+04, -1.00679e+04, -9696.64, 27 | -9315.56, -8905.03, -8570.57, -8381.17, -8319.28, -8314.53, -8329.77, 28 | -8332.92, -8329.31, -8313.39, -8213.31, -8089.2, -8001.31, -7922.94, 29 | -7815.43, -7774.98, -7794.4, -7788.04, -7732.18, -7690.63, -7696.3, 30 | -7632.41, -7419.1, -7068.28, -6645.44, -6171.93, -5670.55, -5142.99, 31 | -4557.04, -3945.68, -3354.08, -2878.25, -2576.9, -2434.68, -2339.52, 32 | -2232.18, -2114.82, -2039.76, -2019.9, -2013.29, -1979.91, -1926.86, 33 | -1866.02, -1814.19, -1776.93, -1749.08, -1714.94, -1672.87, -1636.85, 34 | -1596.49, -1522.95, -1390.33, -1115.24, -534.643, 373.854, 1604.42] 35 | entropy: [30.5724, 40.4307, 47.5718, 52.569, 51.0953, 44.3414, 37.1575, 36 | 32.3216, 29.1586, 27.0081, 25.3501, 24.0845, 23.0042, 21.9373, 20.7212, 37 | 19.3057, 17.7319, 16.1153, 14.6399, 13.4767, 12.7, 12.3377, 12.2815, 38 | 12.37, 12.4863, 12.6368, 12.6925, 12.625, 12.4861, 12.3294, 12.1865, 39 | 12.0723, 12.1228, 12.4383, 13.0288, 13.7342, 14.446, 15.0813, 15.618, 40 | 16.2213, 17.0474, 18.0584, 18.8377, 19.2094, 19.2957, 19.3172, 19.3033, 41 | 19.2971, 19.2977, 19.2978, 19.298, 19.2978, 19.2945, 19.2899, 19.2877, 42 | 19.2882, 19.2882, 19.2882, 19.2882, 19.2882, 19.2885, 19.2876, 19.2837, 43 | 19.2769, 19.285, 19.31, 19.3514] 44 | - name: cathode 45 | thermo: binary-solution-tabulated 46 | elements: [Li, Co, O] 47 | species: ['Li[cathode]', 'V[cathode]'] 48 | standard-concentration-basis: unity 49 | tabulated-species: Li[cathode] 50 | tabulated-thermo: 51 | units: {energy: J, quantity: mol} 52 | mole-fractions: [0.45963, 0.467368, 0.475105, 0.482843, 0.490581, 0.498318, 53 | 0.506056, 0.513794, 0.521531, 0.529269, 0.537007, 0.544744, 0.552482, 54 | 0.560219, 0.567957, 0.575695, 0.583432, 0.59117, 0.598908, 0.606645, 55 | 0.614383, 0.622121, 0.629858, 0.637596, 0.645334, 0.653071, 0.660809, 56 | 0.668547, 0.676284, 0.684022, 0.691759, 0.699497, 0.707235, 0.714972, 57 | 0.72271, 0.730448, 0.738185, 0.745923, 0.753661, 0.761398, 0.769136, 58 | 0.776873, 0.784611, 0.792349, 0.800087, 0.807824, 0.815562, 0.823299, 59 | 0.831037, 0.838775, 0.846512, 0.85425, 0.861988, 0.869725, 0.877463, 60 | 0.885201, 0.892938, 0.900676, 0.908413, 0.916151, 0.923889, 0.931627, 61 | 0.939364, 0.947102, 0.954839, 0.962577, 0.970315, 0.978052, 0.98579] 62 | enthalpy: [-4.16188e+05, -4.14839e+05, -4.12629e+05, -4.0962e+05, -4.05334e+05, 63 | -3.9942e+05, -3.92499e+05, -3.8594e+05, -3.81474e+05, -3.8029e+05, 64 | -3.81445e+05, -3.83295e+05, -3.85062e+05, -3.86633e+05, -3.87928e+05, 65 | -3.88837e+05, -3.8924e+05, -3.89238e+05, -3.89157e+05, -3.89174e+05, 66 | -3.89168e+05, -3.88988e+05, -3.88675e+05, -3.88478e+05, -3.88443e+05, 67 | -3.88346e+05, -3.88083e+05, -3.87768e+05, -3.87531e+05, -3.87356e+05, 68 | -3.87205e+05, -3.87052e+05, -3.8696e+05, -3.86957e+05, -3.86918e+05, 69 | -3.86814e+05, -3.86785e+05, -3.86957e+05, -3.87146e+05, -3.87188e+05, 70 | -3.87239e+05, -3.87507e+05, -3.87902e+05, -3.88142e+05, -3.88316e+05, 71 | -3.88464e+05, -3.88563e+05, -3.88687e+05, -3.89e+05, -3.89414e+05, 72 | -3.89735e+05, -3.90005e+05, -3.90317e+05, -3.90632e+05, -3.90865e+05, 73 | -3.911e+05, -3.91453e+05, -3.91742e+05, -3.91833e+05, -3.91858e+05, 74 | -3.9191e+05, -3.91798e+05, -3.9147e+05, -3.91005e+05, -3.90261e+05, 75 | -3.89181e+05, -3.85506e+05, -3.7345e+05, -3.53926e+05] 76 | entropy: [-25.2348, -25.4629, -22.6068, -16.8899, -6.74549, 9.76522, 77 | 30.8711, 49.8756, 58.5766, 54.6784, 44.0727, 33.0834, 23.7109, 16.1658, 78 | 10.2408, 5.75684, 2.19969, -0.693265, -3.40166, -6.03548, -8.45666, 79 | -10.3459, -11.886, -13.561, -15.3331, -16.8255, -18.1219, -19.5052, 80 | -20.7093, -21.6274, -22.5743, -23.8272, -25.2029, -26.5835, -27.7164, 81 | -28.6064, -29.6044, -30.9551, -32.199, -33.1284, -34.0633, -35.3177, 82 | -36.6599, -37.6439, -38.5616, -39.6433, -40.6506, -41.5566, -42.7485, 83 | -44.1419, -45.2082, -46.1154, -47.1614, -48.2305, -48.9739, -49.6529, 84 | -50.6905, -51.808, -52.658, -53.2766, -53.9817, -54.5468, -54.8125, 85 | -55.152, -55.4526, -55.2961, -55.0219, -54.6653, -54.2305] 86 | - name: electron 87 | thermo: electron-cloud 88 | elements: [E] 89 | species: [electron] 90 | state: 91 | X: {electron: 1.0} 92 | density: 1.0 kg/m^3 93 | - name: electrolyte 94 | thermo: ideal-condensed 95 | elements: [Li, P, F, C, H, O, E] 96 | species: ['C3H4O3[elyt]', 'C4H6O3[elyt]', 'Li+[elyt]', 'PF6-[elyt]'] 97 | state: 98 | P: 1.01325e+05 99 | X: {'C3H4O3[elyt]': 0.47901, 'C4H6O3[elyt]': 0.37563, 'Li+[elyt]': 0.07268, 100 | 'PF6-[elyt]': 0.07268} 101 | standard-concentration-basis: unity 102 | - name: edge_anode_electrolyte 103 | thermo: ideal-surface 104 | elements: [Li, E, C] 105 | species: [(dummy)] 106 | kinetics: surface 107 | reactions: [edge_anode_electrolyte-reactions] 108 | site-density: 0.01 mol/cm^2 109 | - name: edge_cathode_electrolyte 110 | thermo: ideal-surface 111 | elements: [Li, E, Co, O] 112 | species: [(dummy)] 113 | kinetics: surface 114 | reactions: [edge_cathode_electrolyte-reactions] 115 | site-density: 0.01 mol/cm^2 116 | 117 | species: 118 | - name: Li[anode] 119 | composition: {Li: 1, C: 6} 120 | thermo: 121 | model: constant-cp 122 | h0: 0.0 kJ/mol 123 | s0: 0.0 J/mol/K 124 | equation-of-state: 125 | model: constant-volume 126 | molar-volume: 15.701850269292686 cm^3/gmol 127 | - name: V[anode] 128 | composition: {C: 6} 129 | thermo: 130 | model: constant-cp 131 | h0: 0.0 kJ/mol 132 | s0: 0.0 J/mol/K 133 | equation-of-state: 134 | model: constant-volume 135 | molar-volume: 14.322396009301032 cm^3/gmol 136 | - name: Li[cathode] 137 | composition: {Li: 1, Co: 1, O: 2} 138 | thermo: 139 | model: constant-cp 140 | h0: 0.0 kJ/mol 141 | s0: 0.0 J/mol/K 142 | equation-of-state: 143 | model: constant-volume 144 | molar-volume: 42.7020069808028 cm^3/gmol 145 | - name: V[cathode] 146 | composition: {Co: 1, O: 2} 147 | thermo: 148 | model: constant-cp 149 | h0: 0.0 kJ/mol 150 | s0: 0.0 J/mol/K 151 | equation-of-state: 152 | model: constant-volume 153 | molar-volume: 39.67364746945899 cm^3/gmol 154 | - name: electron 155 | composition: {E: 1} 156 | thermo: 157 | model: constant-cp 158 | h0: 0.0 kJ/mol 159 | s0: 0.0 J/mol/K 160 | - name: C3H4O3[elyt] 161 | composition: {C: 3, H: 4, O: 3} 162 | thermo: 163 | model: constant-cp 164 | h0: 0.0 J/mol 165 | s0: 0.0 J/mol/K 166 | equation-of-state: 167 | model: constant-volume 168 | molar-volume: 69.89126984126985 cm^3/gmol 169 | - name: C4H6O3[elyt] 170 | composition: {C: 4, H: 6, O: 3} 171 | thermo: 172 | model: constant-cp 173 | h0: 0.0 J/mol 174 | s0: 0.0 J/mol/K 175 | equation-of-state: 176 | model: constant-volume 177 | molar-volume: 81.02365079365079 cm^3/gmol 178 | - name: Li+[elyt] 179 | composition: {Li: 1, E: -1} 180 | thermo: 181 | model: constant-cp 182 | h0: -278.49 kJ/mol 183 | s0: 13.4 J/mol/K 184 | equation-of-state: 185 | model: constant-volume 186 | molar-volume: 5.508297619047619 cm^3/gmol 187 | - name: PF6-[elyt] 188 | composition: {P: 1, F: 6, E: 1} 189 | thermo: 190 | model: constant-cp 191 | h0: 0.0 J/mol 192 | s0: 0.0 J/mol/K 193 | equation-of-state: 194 | model: constant-volume 195 | molar-volume: 115.05138492063492 cm^3/gmol 196 | - name: (dummy) 197 | composition: {} 198 | thermo: 199 | model: constant-cp 200 | h0: 0.0 kJ/mol 201 | s0: 0.0 J/mol/K 202 | 203 | edge_anode_electrolyte-reactions: 204 | - equation: Li[anode] <=> Li+[elyt] + V[anode] + electron # Reaction 1 205 | id: anode_reaction 206 | rate-constant: {A: 4, b: 0.0, Ea: 0.0 kJ/mol} 207 | exchange-current-density-formulation: true 208 | beta: 0.5 209 | 210 | edge_cathode_electrolyte-reactions: 211 | - equation: Li+[elyt] + V[cathode] + electron <=> Li[cathode] # Reaction 2 212 | id: cathode_reaction 213 | rate-constant: {A: 100, b: 0.0, Ea: 0.0 kJ/mol} 214 | exchange-current-density-formulation: true 215 | beta: 0.5 216 | -------------------------------------------------------------------------------- /data/zhangExpData.csv: -------------------------------------------------------------------------------- 1 | T,NC7H16,O2,CO,CO2 2 | 500,5.07E-03,2.93E-02,0.00E+00,0.00E+00 3 | 525,4.92E-03,2.86E-02,0.00E+00,0.00E+00 4 | 550,4.66E-03,2.85E-02,0.00E+00,0.00E+00 5 | 575,4.16E-03,2.63E-02,2.43E-04,1.01E-04 6 | 600,3.55E-03,2.33E-02,9.68E-04,2.51E-04 7 | 625,3.36E-03,2.31E-02,1.42E-03,2.67E-04 8 | 650,3.67E-03,2.45E-02,9.16E-04,1.46E-04 9 | 675,4.38E-03,2.77E-02,2.25E-04,0.00E+00 10 | 700,4.79E-03,2.87E-02,0.00E+00,0.00E+00 11 | 725,4.89E-03,2.93E-02,0.00E+00,0.00E+00 12 | 750,4.91E-03,2.84E-02,0.00E+00,0.00E+00 13 | 775,4.93E-03,2.80E-02,0.00E+00,0.00E+00 14 | 800,4.78E-03,2.82E-02,0.00E+00,0.00E+00 15 | 825,4.41E-03,2.80E-02,1.49E-05,0.00E+00 16 | 850,3.68E-03,2.80E-02,4.18E-04,1.66E-04 17 | 875,2.13E-03,2.45E-02,1.65E-03,2.22E-04 18 | 900,1.03E-03,2.05E-02,5.51E-03,3.69E-04 19 | 925,5.82E-04,1.79E-02,8.59E-03,6.78E-04 20 | 950,3.88E-04,1.47E-02,1.05E-02,1.07E-03 21 | 975,2.35E-04,1.28E-02,1.19E-02,1.36E-03 22 | 1000,1.14E-04,1.16E-02,1.34E-02,1.82E-03 23 | 1025,4.83E-05,9.88E-03,1.52E-02,2.41E-03 24 | 1050,1.64E-05,8.16E-03,1.83E-02,2.97E-03 25 | 1075,1.22E-06,5.48E-03,1.95E-02,3.67E-03 26 | 1100,0.00E+00,3.24E-03,2.14E-02,4.38E-03 -------------------------------------------------------------------------------- /electrochemistry/images/SingleParticleBattery.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cantera/cantera-jupyter/a99ee55aeeb302abf975e7b57ee1e8dfd48c0d0f/electrochemistry/images/SingleParticleBattery.png -------------------------------------------------------------------------------- /environment.yml: -------------------------------------------------------------------------------- 1 | name: cantera-latest-release 2 | channels: 3 | - conda-forge 4 | dependencies: 5 | - cantera 6 | - matplotlib 7 | - pandas 8 | - scipy 9 | - seaborn 10 | - coolprop 11 | - python-graphviz 12 | - ipywidgets 13 | -------------------------------------------------------------------------------- /flames/images/flameSpeed.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cantera/cantera-jupyter/a99ee55aeeb302abf975e7b57ee1e8dfd48c0d0f/flames/images/flameSpeed.png -------------------------------------------------------------------------------- /flames/images/twinPremixedFlame.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cantera/cantera-jupyter/a99ee55aeeb302abf975e7b57ee1e8dfd48c0d0f/flames/images/twinPremixedFlame.png -------------------------------------------------------------------------------- /input/chemkin/air.inp: -------------------------------------------------------------------------------- 1 | ELEMENTS 2 | O N AR 3 | END 4 | SPECIES 5 | O O2 N NO NO2 N2O N2 AR 6 | END 7 | REACTIONS 8 | 2O+M<=>O2+M 1.200E+17 -1.000 .00 9 | AR/.83/ 10 | N+NO<=>N2+O 2.700E+13 .000 355.00 11 | N+O2<=>NO+O 9.000E+09 1.000 6500.00 12 | N2O+O<=>N2+O2 1.400E+12 .000 10810.00 13 | N2O+O<=>2NO 2.900E+13 .000 23150.00 14 | N2O(+M)<=>N2+O(+M) 7.910E+10 .000 56020.00 15 | LOW / 6.370E+14 .000 56640.00/ 16 | AR/ .625/ 17 | NO+O+M<=>NO2+M 1.060E+20 -1.410 .00 18 | AR/ .70/ 19 | NO2+O<=>NO+O2 3.900E+12 .000 -240.00 20 | END 21 | -------------------------------------------------------------------------------- /input/chemkin/airDataNASA9.dat: -------------------------------------------------------------------------------- 1 | ! 2 | ! McBride, B. J. Zehe, M. J., Gordon, S. "Nasa Glenn coefficients for Calculating 3 | ! Thermodynamic Properties of Individual Species," NASA TP2002-211556, 4 | ! September, 2002. 5 | ! 6 | thermo NASA9 7 | 200.00 1000.00 6000.00 20000. 3/19/02 8 | e- Ref-Species. Chase,1998 3/82. 9 | 3 g12/98 E 1.00 0.00 0.00 0.00 0.00 0.000548579903 0.000 10 | 298.150 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428 11 | 0.000000000D+00 0.000000000D+00 2.500000000D+00 0.000000000D+00 0.000000000D+00 12 | 0.000000000D+00 0.000000000D+00 -7.453750000D+02-1.172081224D+01 13 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428 14 | 0.000000000D+00 0.000000000D+00 2.500000000D+00 0.000000000D+00 0.000000000D+00 15 | 0.000000000D+00 0.000000000D+00 -7.453750000D+02-1.172081224D+01 16 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428 17 | 0.000000000D+00 0.000000000D+00 2.500000000D+00 0.000000000D+00 0.000000000D+00 18 | 0.000000000D+00 0.000000000D+00 -7.453750000D+02-1.172081224D+01 19 | N Hf:Cox,1989. Moore,1975. Gordon,1999. 20 | 3 g 5/97 N 1.00 0.00 0.00 0.00 0.00 0 14.0067000 472680.000 21 | 200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428 22 | 0.000000000D+00 0.000000000D+00 2.500000000D+00 0.000000000D+00 0.000000000D+00 23 | 0.000000000D+00 0.000000000D+00 5.610463780D+04 4.193905036D+00 24 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428 25 | 8.876501380D+04-1.071231500D+02 2.362188287D+00 2.916720081D-04-1.729515100D-07 26 | 4.012657880D-11-2.677227571D-15 5.697351330D+04 4.865231506D+00 27 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428 28 | 5.475181050D+08-3.107574980D+05 6.916782740D+01-6.847988130D-03 3.827572400D-07 29 | -1.098367709D-11 1.277986024D-16 2.550585618D+06-5.848769753D+02 30 | N+ Moore,1975. Gordon,1999. 31 | 3 g 6/97 N 1.00E -1.00 0.00 0.00 0.00 0 14.0061514 1882127.624 32 | 298.150 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 7116.524 33 | 5.237079210D+03 2.299958315D+00 2.487488821D+00 2.737490756D-05-3.134447576D-08 34 | 1.850111332D-11-4.447350984D-15 2.256284738D+05 5.076830786D+00 35 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 7116.524 36 | 2.904970374D+05-8.557908610D+02 3.477389290D+00-5.288267190D-04 1.352350307D-07 37 | -1.389834122D-11 5.046166279D-16 2.310809984D+05-1.994146545D+00 38 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 7116.524 39 | 1.646092148D+07-1.113165218D+04 4.976986640D+00-2.005393583D-04 1.022481356D-08 40 | -2.691430863D-13 3.539931593D-18 3.136284696D+05-1.706646380D+01 41 | NO Gurvich,1978,1989 pt1 p326 pt2 p203. 42 | 3 tpis89 N 1.00O 1.00 0.00 0.00 0.00 0 30.0061000 91271.310 43 | 200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9179.110 44 | -1.143916503D+04 1.536467592D+02 3.431468730D+00-2.668592368D-03 8.481399120D-06 45 | -7.685111050D-09 2.386797655D-12 9.098214410D+03 6.728725490D+00 46 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9179.110 47 | 2.239018716D+05-1.289651623D+03 5.433936030D+00-3.656034900D-04 9.880966450D-08 48 | -1.416076856D-11 9.380184620D-16 1.750317656D+04-8.501669090D+00 49 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9179.110 50 | -9.575303540D+08 5.912434480D+05-1.384566826D+02 1.694339403D-02-1.007351096D-06 51 | 2.912584076D-11-3.295109350D-16 -4.677501240D+06 1.242081216D+03 52 | NO+ Cp,S,IP(NO): Gurvich,1989 pt1 p330 pt2 p205. 53 | 3 g 5/99 N 1.00O 1.00E -1.00 0.00 0.00 0 30.0055514 990809.704 54 | 298.150 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8670.104 55 | 1.398106635D+03-1.590446941D+02 5.122895400D+00-6.394388620D-03 1.123918342D-05 56 | -7.988581260D-09 2.107383677D-12 1.187495132D+05-4.398433810D+00 57 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8670.104 58 | 6.069876900D+05-2.278395427D+03 6.080324670D+00-6.066847580D-04 1.432002611D-07 59 | -1.747990522D-11 8.935014060D-16 1.322709615D+05-1.519880037D+01 60 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8670.104 61 | 2.676400347D+09-1.832948690D+06 5.099249390D+02-7.113819280D-02 5.317659880D-06 62 | -1.963208212D-10 2.805268230D-15 1.443308939D+07-4.324044462D+03 63 | N2 Ref-Elm. Gurvich,1978 pt1 p280 pt2 p207. 64 | 3 tpis78 N 2.00 0.00 0.00 0.00 0.00 0 28.0134000 0.000 65 | 200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8670.104 66 | 2.210371497D+04-3.818461820D+02 6.082738360D+00-8.530914410D-03 1.384646189D-05 67 | -9.625793620D-09 2.519705809D-12 7.108460860D+02-1.076003744D+01 68 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8670.104 69 | 5.877124060D+05-2.239249073D+03 6.066949220D+00-6.139685500D-04 1.491806679D-07 70 | -1.923105485D-11 1.061954386D-15 1.283210415D+04-1.586640027D+01 71 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8670.104 72 | 8.310139160D+08-6.420733540D+05 2.020264635D+02-3.065092046D-02 2.486903333D-06 73 | -9.705954110D-11 1.437538881D-15 4.938707040D+06-1.672099740D+03 74 | N2+ Gurvich,1989 pt1 p323 pt2 p200. 75 | 3 tpis89 N 2.00E -1.00 0.00 0.00 0.00 0 28.0128514 1509508.424 76 | 298.150 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8671.100 77 | -3.474047470D+04 2.696222703D+02 3.164916370D+00-2.132239781D-03 6.730476400D-06 78 | -5.637304970D-09 1.621756000D-12 1.790004424D+05 6.832974166D+00 79 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8671.100 80 | -2.845599002D+06 7.058893030D+03-2.884886385D+00 3.068677059D-03-4.361652310D-07 81 | 2.102514545D-11 5.411996470D-16 1.340388483D+05 5.090897022D+01 82 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8671.100 83 | -3.712829770D+08 3.139287234D+05-9.603518050D+01 1.571193286D-02-1.175065525D-06 84 | 4.144441230D-11-5.621893090D-16 -2.217361867D+06 8.436270947D+02 85 | O D0(O2):Brix,1954. Moore,1976. Gordon,1999. 86 | 3 g 5/97 O 1.00 0.00 0.00 0.00 0.00 0 15.9994000 249175.003 87 | 200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6725.403 88 | -7.953611300D+03 1.607177787D+02 1.966226438D+00 1.013670310D-03-1.110415423D-06 89 | 6.517507500D-10-1.584779251D-13 2.840362437D+04 8.404241820D+00 90 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6725.403 91 | 2.619020262D+05-7.298722030D+02 3.317177270D+00-4.281334360D-04 1.036104594D-07 92 | -9.438304330D-12 2.725038297D-16 3.392428060D+04-6.679585350D-01 93 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6725.403 94 | 1.779004264D+08-1.082328257D+05 2.810778365D+01-2.975232262D-03 1.854997534D-07 95 | -5.796231540D-12 7.191720164D-17 8.890942630D+05-2.181728151D+02 96 | O+ Martin,W.C.,1993. Gordon,1999. 97 | 3 g 8/97 O 1.00E -1.00 0.00 0.00 0.00 0 15.9988514 1568787.228 98 | 298.150 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428 99 | 0.000000000D+00 0.000000000D+00 2.500000000D+00 0.000000000D+00 0.000000000D+00 100 | 0.000000000D+00 0.000000000D+00 1.879352842D+05 4.393376760D+00 101 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428 102 | -2.166513208D+05 6.665456150D+02 1.702064364D+00 4.714992810D-04-1.427131823D-07 103 | 2.016595903D-11-9.107157762D-16 1.837191966D+05 1.005690382D+01 104 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428 105 | -2.143835383D+08 1.469518523D+05-3.680864540D+01 5.036164540D-03-3.087873854D-07 106 | 9.186834870D-12-1.074163268D-16 -9.614208960D+05 3.426193080D+02 107 | O2 Ref-Elm. Gurvich,1989 pt1 p94 pt2 p9. 108 | 3 tpis89 O 2.00 0.00 0.00 0.00 0.00 0 31.9988000 0.000 109 | 200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8680.104 110 | -3.425563420D+04 4.847000970D+02 1.119010961D+00 4.293889240D-03-6.836300520D-07 111 | -2.023372700D-09 1.039040018D-12 -3.391454870D+03 1.849699470D+01 112 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8680.104 113 | -1.037939022D+06 2.344830282D+03 1.819732036D+00 1.267847582D-03-2.188067988D-07 114 | 2.053719572D-11-8.193467050D-16 -1.689010929D+04 1.738716506D+01 115 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8680.104 116 | 4.975294300D+08-2.866106874D+05 6.690352250D+01-6.169959020D-03 3.016396027D-07 117 | -7.421416600D-12 7.278175770D-17 2.293554027D+06-5.530621610D+02 118 | O2+ Gurvich,1989 pt1 p98 pt2 p11. 119 | 3 tpis89 O 2.00E -1.00 0.00 0.00 0.00 0 31.9982514 1171828.436 120 | 298.150 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9311.112 121 | -8.607205450D+04 1.051875934D+03-5.432380470D-01 6.571166540D-03-3.274263750D-06 122 | 5.940645340D-11 3.238784790D-13 1.345544668D+05 2.902709750D+01 123 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9311.112 124 | 7.384654880D+04-8.459559540D+02 4.985164160D+00-1.611010890D-04 6.427083990D-08 125 | -1.504939874D-11 1.578465409D-15 1.446321044D+05-5.811230650D+00 126 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9311.112 127 | -1.562125524D+09 1.161406778D+06-3.302504720D+02 4.710937520D-02-3.354461380D-06 128 | 1.167968599D-10-1.589754791D-15 -8.857866270D+06 2.852035602D+03 129 | END 130 | 131 | 132 | -------------------------------------------------------------------------------- /input/chemkin/airNASA9.inp: -------------------------------------------------------------------------------- 1 | ! 2 | ! 3 | ! 4 | ! 5 | ELEMENTS 6 | O N E 7 | END 8 | SPECIES 9 | N2 O2 NO N O N2+ O2+ NO+ N+ O+ e- 10 | END 11 | -------------------------------------------------------------------------------- /input/chemkin/air_extra.yaml: -------------------------------------------------------------------------------- 1 | description: |- 2 | Ideal gas properties of air. Includes several reactions among 3 | the included species. 4 | -------------------------------------------------------------------------------- /input/chemkin/argon.inp: -------------------------------------------------------------------------------- 1 | ELEMENTS 2 | AR 3 | END 4 | SPECIES 5 | AR 6 | END 7 | REACTIONS 8 | END 9 | -------------------------------------------------------------------------------- /input/chemkin/argon_extra.yaml: -------------------------------------------------------------------------------- 1 | description: >- 2 | Pure argon phase. Thermo and transport properties are taken 3 | from GRI-Mech 3.0. 4 | -------------------------------------------------------------------------------- /input/chemkin/gri30.inp: -------------------------------------------------------------------------------- 1 | ! GRI-Mech Version 3.0 7/30/99 CHEMKIN-II format 2 | ! See README30 file at anonymous FTP site unix.sri.com, directory gri; 3 | ! WorldWideWeb home page http://www.me.berkeley.edu/gri_mech/ or 4 | ! through http://www.gri.org , under 'Basic Research', 5 | ! for additional information, contacts, and disclaimer 6 | ELEMENTS 7 | O H C N AR 8 | END 9 | SPECIES 10 | H2 H O O2 OH H2O HO2 H2O2 11 | C CH CH2 CH2(S) CH3 CH4 CO CO2 12 | HCO CH2O CH2OH CH3O CH3OH C2H C2H2 C2H3 13 | C2H4 C2H5 C2H6 HCCO CH2CO HCCOH N NH 14 | NH2 NH3 NNH NO NO2 N2O HNO CN 15 | HCN H2CN HCNN HCNO HOCN HNCO NCO N2 16 | AR C3H7 C3H8 CH2CHO CH3CHO 17 | END 18 | !THERMO 19 | ! Insert GRI-Mech thermodynamics here or use in default file 20 | !END 21 | REACTIONS 22 | 2O+M<=>O2+M 1.200E+17 -1.000 .00 23 | H2/ 2.40/ H2O/15.40/ CH4/ 2.00/ CO/ 1.75/ CO2/ 3.60/ C2H6/ 3.00/ AR/ .83/ 24 | O+H+M<=>OH+M 5.000E+17 -1.000 .00 25 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 26 | O+H2<=>H+OH 3.870E+04 2.700 6260.00 27 | O+HO2<=>OH+O2 2.000E+13 .000 .00 28 | O+H2O2<=>OH+HO2 9.630E+06 2.000 4000.00 29 | O+CH<=>H+CO 5.700E+13 .000 .00 30 | O+CH2<=>H+HCO 8.000E+13 .000 .00 31 | O+CH2(S)<=>H2+CO 1.500E+13 .000 .00 32 | O+CH2(S)<=>H+HCO 1.500E+13 .000 .00 33 | O+CH3<=>H+CH2O 5.060E+13 .000 .00 34 | O+CH4<=>OH+CH3 1.020E+09 1.500 8600.00 35 | O+CO(+M)<=>CO2(+M) 1.800E+10 .000 2385.00 36 | LOW/ 6.020E+14 .000 3000.00/ 37 | H2/2.00/ O2/6.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/3.50/ C2H6/3.00/ AR/ .50/ 38 | O+HCO<=>OH+CO 3.000E+13 .000 .00 39 | O+HCO<=>H+CO2 3.000E+13 .000 .00 40 | O+CH2O<=>OH+HCO 3.900E+13 .000 3540.00 41 | O+CH2OH<=>OH+CH2O 1.000E+13 .000 .00 42 | O+CH3O<=>OH+CH2O 1.000E+13 .000 .00 43 | O+CH3OH<=>OH+CH2OH 3.880E+05 2.500 3100.00 44 | O+CH3OH<=>OH+CH3O 1.300E+05 2.500 5000.00 45 | O+C2H<=>CH+CO 5.000E+13 .000 .00 46 | O+C2H2<=>H+HCCO 1.350E+07 2.000 1900.00 47 | O+C2H2<=>OH+C2H 4.600E+19 -1.410 28950.00 48 | O+C2H2<=>CO+CH2 6.940E+06 2.000 1900.00 49 | O+C2H3<=>H+CH2CO 3.000E+13 .000 .00 50 | O+C2H4<=>CH3+HCO 1.250E+07 1.830 220.00 51 | O+C2H5<=>CH3+CH2O 2.240E+13 .000 .00 52 | O+C2H6<=>OH+C2H5 8.980E+07 1.920 5690.00 53 | O+HCCO<=>H+2CO 1.000E+14 .000 .00 54 | O+CH2CO<=>OH+HCCO 1.000E+13 .000 8000.00 55 | O+CH2CO<=>CH2+CO2 1.750E+12 .000 1350.00 56 | O2+CO<=>O+CO2 2.500E+12 .000 47800.00 57 | O2+CH2O<=>HO2+HCO 1.000E+14 .000 40000.00 58 | H+O2+M<=>HO2+M 2.800E+18 -.860 .00 59 | O2/ .00/ H2O/ .00/ CO/ .75/ CO2/1.50/ C2H6/1.50/ N2/ .00/ AR/ .00/ 60 | H+2O2<=>HO2+O2 2.080E+19 -1.240 .00 61 | H+O2+H2O<=>HO2+H2O 11.26E+18 -.760 .00 62 | H+O2+N2<=>HO2+N2 2.600E+19 -1.240 .00 63 | H+O2+AR<=>HO2+AR 7.000E+17 -.800 .00 64 | H+O2<=>O+OH 2.650E+16 -.6707 17041.00 65 | 2H+M<=>H2+M 1.000E+18 -1.000 .00 66 | H2/ .00/ H2O/ .00/ CH4/2.00/ CO2/ .00/ C2H6/3.00/ AR/ .63/ 67 | 2H+H2<=>2H2 9.000E+16 -.600 .00 68 | 2H+H2O<=>H2+H2O 6.000E+19 -1.250 .00 69 | 2H+CO2<=>H2+CO2 5.500E+20 -2.000 .00 70 | H+OH+M<=>H2O+M 2.200E+22 -2.000 .00 71 | H2/ .73/ H2O/3.65/ CH4/2.00/ C2H6/3.00/ AR/ .38/ 72 | H+HO2<=>O+H2O 3.970E+12 .000 671.00 73 | H+HO2<=>O2+H2 4.480E+13 .000 1068.00 74 | H+HO2<=>2OH 0.840E+14 .000 635.00 75 | H+H2O2<=>HO2+H2 1.210E+07 2.000 5200.00 76 | H+H2O2<=>OH+H2O 1.000E+13 .000 3600.00 77 | H+CH<=>C+H2 1.650E+14 .000 .00 78 | H+CH2(+M)<=>CH3(+M) 6.000E+14 .000 .00 79 | LOW / 1.040E+26 -2.760 1600.00/ 80 | TROE/ .5620 91.00 5836.00 8552.00/ 81 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 82 | H+CH2(S)<=>CH+H2 3.000E+13 .000 .00 83 | H+CH3(+M)<=>CH4(+M) 13.90E+15 -.534 536.00 84 | LOW / 2.620E+33 -4.760 2440.00/ 85 | TROE/ .7830 74.00 2941.00 6964.00 / 86 | H2/2.00/ H2O/6.00/ CH4/3.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 87 | H+CH4<=>CH3+H2 6.600E+08 1.620 10840.00 88 | H+HCO(+M)<=>CH2O(+M) 1.090E+12 .480 -260.00 89 | LOW / 2.470E+24 -2.570 425.00/ 90 | TROE/ .7824 271.00 2755.00 6570.00 / 91 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 92 | H+HCO<=>H2+CO 7.340E+13 .000 .00 93 | H+CH2O(+M)<=>CH2OH(+M) 5.400E+11 .454 3600.00 94 | LOW / 1.270E+32 -4.820 6530.00/ 95 | TROE/ .7187 103.00 1291.00 4160.00 / 96 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ 97 | H+CH2O(+M)<=>CH3O(+M) 5.400E+11 .454 2600.00 98 | LOW / 2.200E+30 -4.800 5560.00/ 99 | TROE/ .7580 94.00 1555.00 4200.00 / 100 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ 101 | H+CH2O<=>HCO+H2 5.740E+07 1.900 2742.00 102 | H+CH2OH(+M)<=>CH3OH(+M) 1.055E+12 .500 86.00 103 | LOW / 4.360E+31 -4.650 5080.00/ 104 | TROE/ .600 100.00 90000.0 10000.0 / 105 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ 106 | H+CH2OH<=>H2+CH2O 2.000E+13 .000 .00 107 | H+CH2OH<=>OH+CH3 1.650E+11 .650 -284.00 108 | H+CH2OH<=>CH2(S)+H2O 3.280E+13 -.090 610.00 109 | H+CH3O(+M)<=>CH3OH(+M) 2.430E+12 .515 50.00 110 | LOW / 4.660E+41 -7.440 14080.0/ 111 | TROE/ .700 100.00 90000.0 10000.00 / 112 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ 113 | H+CH3O<=>H+CH2OH 4.150E+07 1.630 1924.00 114 | H+CH3O<=>H2+CH2O 2.000E+13 .000 .00 115 | H+CH3O<=>OH+CH3 1.500E+12 .500 -110.00 116 | H+CH3O<=>CH2(S)+H2O 2.620E+14 -.230 1070.00 117 | H+CH3OH<=>CH2OH+H2 1.700E+07 2.100 4870.00 118 | H+CH3OH<=>CH3O+H2 4.200E+06 2.100 4870.00 119 | H+C2H(+M)<=>C2H2(+M) 1.000E+17 -1.000 .00 120 | LOW / 3.750E+33 -4.800 1900.00/ 121 | TROE/ .6464 132.00 1315.00 5566.00 / 122 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 123 | H+C2H2(+M)<=>C2H3(+M) 5.600E+12 .000 2400.00 124 | LOW / 3.800E+40 -7.270 7220.00/ 125 | TROE/ .7507 98.50 1302.00 4167.00 / 126 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 127 | H+C2H3(+M)<=>C2H4(+M) 6.080E+12 .270 280.00 128 | LOW / 1.400E+30 -3.860 3320.00/ 129 | TROE/ .7820 207.50 2663.00 6095.00 / 130 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 131 | H+C2H3<=>H2+C2H2 3.000E+13 .000 .00 132 | H+C2H4(+M)<=>C2H5(+M) 0.540E+12 .454 1820.00 133 | LOW / 0.600E+42 -7.620 6970.00/ 134 | TROE/ .9753 210.00 984.00 4374.00 / 135 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 136 | H+C2H4<=>C2H3+H2 1.325E+06 2.530 12240.00 137 | H+C2H5(+M)<=>C2H6(+M) 5.210E+17 -.990 1580.00 138 | LOW / 1.990E+41 -7.080 6685.00/ 139 | TROE/ .8422 125.00 2219.00 6882.00 / 140 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 141 | H+C2H5<=>H2+C2H4 2.000E+12 .000 .00 142 | H+C2H6<=>C2H5+H2 1.150E+08 1.900 7530.00 143 | H+HCCO<=>CH2(S)+CO 1.000E+14 .000 .00 144 | H+CH2CO<=>HCCO+H2 5.000E+13 .000 8000.00 145 | H+CH2CO<=>CH3+CO 1.130E+13 .000 3428.00 146 | H+HCCOH<=>H+CH2CO 1.000E+13 .000 .00 147 | H2+CO(+M)<=>CH2O(+M) 4.300E+07 1.500 79600.00 148 | LOW / 5.070E+27 -3.420 84350.00/ 149 | TROE/ .9320 197.00 1540.00 10300.00 / 150 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 151 | OH+H2<=>H+H2O 2.160E+08 1.510 3430.00 152 | 2OH(+M)<=>H2O2(+M) 7.400E+13 -.370 .00 153 | LOW / 2.300E+18 -.900 -1700.00/ 154 | TROE/ .7346 94.00 1756.00 5182.00 / 155 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 156 | 2OH<=>O+H2O 3.570E+04 2.400 -2110.00 157 | OH+HO2<=>O2+H2O 1.450E+13 .000 -500.00 158 | DUPLICATE 159 | OH+H2O2<=>HO2+H2O 2.000E+12 .000 427.00 160 | DUPLICATE 161 | OH+H2O2<=>HO2+H2O 1.700E+18 .000 29410.00 162 | DUPLICATE 163 | OH+C<=>H+CO 5.000E+13 .000 .00 164 | OH+CH<=>H+HCO 3.000E+13 .000 .00 165 | OH+CH2<=>H+CH2O 2.000E+13 .000 .00 166 | OH+CH2<=>CH+H2O 1.130E+07 2.000 3000.00 167 | OH+CH2(S)<=>H+CH2O 3.000E+13 .000 .00 168 | OH+CH3(+M)<=>CH3OH(+M) 2.790E+18 -1.430 1330.00 169 | LOW / 4.000E+36 -5.920 3140.00/ 170 | TROE/ .4120 195.0 5900.00 6394.00/ 171 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ 172 | OH+CH3<=>CH2+H2O 5.600E+07 1.600 5420.00 173 | OH+CH3<=>CH2(S)+H2O 6.440E+17 -1.340 1417.00 174 | OH+CH4<=>CH3+H2O 1.000E+08 1.600 3120.00 175 | OH+CO<=>H+CO2 4.760E+07 1.228 70.00 176 | OH+HCO<=>H2O+CO 5.000E+13 .000 .00 177 | OH+CH2O<=>HCO+H2O 3.430E+09 1.180 -447.00 178 | OH+CH2OH<=>H2O+CH2O 5.000E+12 .000 .00 179 | OH+CH3O<=>H2O+CH2O 5.000E+12 .000 .00 180 | OH+CH3OH<=>CH2OH+H2O 1.440E+06 2.000 -840.00 181 | OH+CH3OH<=>CH3O+H2O 6.300E+06 2.000 1500.00 182 | OH+C2H<=>H+HCCO 2.000E+13 .000 .00 183 | OH+C2H2<=>H+CH2CO 2.180E-04 4.500 -1000.00 184 | OH+C2H2<=>H+HCCOH 5.040E+05 2.300 13500.00 185 | OH+C2H2<=>C2H+H2O 3.370E+07 2.000 14000.00 186 | OH+C2H2<=>CH3+CO 4.830E-04 4.000 -2000.00 187 | OH+C2H3<=>H2O+C2H2 5.000E+12 .000 .00 188 | OH+C2H4<=>C2H3+H2O 3.600E+06 2.000 2500.00 189 | OH+C2H6<=>C2H5+H2O 3.540E+06 2.120 870.00 190 | OH+CH2CO<=>HCCO+H2O 7.500E+12 .000 2000.00 191 | 2HO2<=>O2+H2O2 1.300E+11 .000 -1630.00 192 | DUPLICATE 193 | 2HO2<=>O2+H2O2 4.200E+14 .000 12000.00 194 | DUPLICATE 195 | HO2+CH2<=>OH+CH2O 2.000E+13 .000 .00 196 | HO2+CH3<=>O2+CH4 1.000E+12 .000 .00 197 | HO2+CH3<=>OH+CH3O 3.780E+13 .000 .00 198 | HO2+CO<=>OH+CO2 1.500E+14 .000 23600.00 199 | HO2+CH2O<=>HCO+H2O2 5.600E+06 2.000 12000.00 200 | C+O2<=>O+CO 5.800E+13 .000 576.00 201 | C+CH2<=>H+C2H 5.000E+13 .000 .00 202 | C+CH3<=>H+C2H2 5.000E+13 .000 .00 203 | CH+O2<=>O+HCO 6.710E+13 .000 .00 204 | CH+H2<=>H+CH2 1.080E+14 .000 3110.00 205 | CH+H2O<=>H+CH2O 5.710E+12 .000 -755.00 206 | CH+CH2<=>H+C2H2 4.000E+13 .000 .00 207 | CH+CH3<=>H+C2H3 3.000E+13 .000 .00 208 | CH+CH4<=>H+C2H4 6.000E+13 .000 .00 209 | CH+CO(+M)<=>HCCO(+M) 5.000E+13 .000 .00 210 | LOW / 2.690E+28 -3.740 1936.00/ 211 | TROE/ .5757 237.00 1652.00 5069.00 / 212 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 213 | CH+CO2<=>HCO+CO 1.900E+14 .000 15792.00 214 | CH+CH2O<=>H+CH2CO 9.460E+13 .000 -515.00 215 | CH+HCCO<=>CO+C2H2 5.000E+13 .000 .00 216 | CH2+O2=>OH+H+CO 5.000E+12 .000 1500.00 217 | CH2+H2<=>H+CH3 5.000E+05 2.000 7230.00 218 | 2CH2<=>H2+C2H2 1.600E+15 .000 11944.00 219 | CH2+CH3<=>H+C2H4 4.000E+13 .000 .00 220 | CH2+CH4<=>2CH3 2.460E+06 2.000 8270.00 221 | CH2+CO(+M)<=>CH2CO(+M) 8.100E+11 .500 4510.00 222 | LOW / 2.690E+33 -5.110 7095.00/ 223 | TROE/ .5907 275.00 1226.00 5185.00 / 224 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 225 | CH2+HCCO<=>C2H3+CO 3.000E+13 .000 .00 226 | CH2(S)+N2<=>CH2+N2 1.500E+13 .000 600.00 227 | CH2(S)+AR<=>CH2+AR 9.000E+12 .000 600.00 228 | CH2(S)+O2<=>H+OH+CO 2.800E+13 .000 .00 229 | CH2(S)+O2<=>CO+H2O 1.200E+13 .000 .00 230 | CH2(S)+H2<=>CH3+H 7.000E+13 .000 .00 231 | CH2(S)+H2O(+M)<=>CH3OH(+M) 4.820E+17 -1.160 1145.00 232 | LOW / 1.880E+38 -6.360 5040.00/ 233 | TROE/ .6027 208.00 3922.00 10180.0 / 234 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ 235 | CH2(S)+H2O<=>CH2+H2O 3.000E+13 .000 .00 236 | CH2(S)+CH3<=>H+C2H4 1.200E+13 .000 -570.00 237 | CH2(S)+CH4<=>2CH3 1.600E+13 .000 -570.00 238 | CH2(S)+CO<=>CH2+CO 9.000E+12 .000 .00 239 | CH2(S)+CO2<=>CH2+CO2 7.000E+12 .000 .00 240 | CH2(S)+CO2<=>CO+CH2O 1.400E+13 .000 .00 241 | CH2(S)+C2H6<=>CH3+C2H5 4.000E+13 .000 -550.00 242 | CH3+O2<=>O+CH3O 3.560E+13 .000 30480.00 243 | CH3+O2<=>OH+CH2O 2.310E+12 .000 20315.00 244 | CH3+H2O2<=>HO2+CH4 2.450E+04 2.470 5180.00 245 | 2CH3(+M)<=>C2H6(+M) 6.770E+16 -1.180 654.00 246 | LOW / 3.400E+41 -7.030 2762.00/ 247 | TROE/ .6190 73.20 1180.00 9999.00 / 248 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 249 | 2CH3<=>H+C2H5 6.840E+12 .100 10600.00 250 | CH3+HCO<=>CH4+CO 2.648E+13 .000 .00 251 | CH3+CH2O<=>HCO+CH4 3.320E+03 2.810 5860.00 252 | CH3+CH3OH<=>CH2OH+CH4 3.000E+07 1.500 9940.00 253 | CH3+CH3OH<=>CH3O+CH4 1.000E+07 1.500 9940.00 254 | CH3+C2H4<=>C2H3+CH4 2.270E+05 2.000 9200.00 255 | CH3+C2H6<=>C2H5+CH4 6.140E+06 1.740 10450.00 256 | HCO+H2O<=>H+CO+H2O 1.500E+18 -1.000 17000.00 257 | HCO+M<=>H+CO+M 1.870E+17 -1.000 17000.00 258 | H2/2.00/ H2O/ .00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ 259 | HCO+O2<=>HO2+CO 13.45E+12 .000 400.00 260 | CH2OH+O2<=>HO2+CH2O 1.800E+13 .000 900.00 261 | CH3O+O2<=>HO2+CH2O 4.280E-13 7.600 -3530.00 262 | C2H+O2<=>HCO+CO 1.000E+13 .000 -755.00 263 | C2H+H2<=>H+C2H2 5.680E+10 0.900 1993.00 264 | C2H3+O2<=>HCO+CH2O 4.580E+16 -1.390 1015.00 265 | C2H4(+M)<=>H2+C2H2(+M) 8.000E+12 .440 86770.00 266 | LOW / 1.580E+51 -9.300 97800.00/ 267 | TROE/ .7345 180.00 1035.00 5417.00 / 268 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 269 | C2H5+O2<=>HO2+C2H4 8.400E+11 .000 3875.00 270 | HCCO+O2<=>OH+2CO 3.200E+12 .000 854.00 271 | 2HCCO<=>2CO+C2H2 1.000E+13 .000 .00 272 | N+NO<=>N2+O 2.700E+13 .000 355.00 273 | N+O2<=>NO+O 9.000E+09 1.000 6500.00 274 | N+OH<=>NO+H 3.360E+13 .000 385.00 275 | N2O+O<=>N2+O2 1.400E+12 .000 10810.00 276 | N2O+O<=>2NO 2.900E+13 .000 23150.00 277 | N2O+H<=>N2+OH 3.870E+14 .000 18880.00 278 | N2O+OH<=>N2+HO2 2.000E+12 .000 21060.00 279 | N2O(+M)<=>N2+O(+M) 7.910E+10 .000 56020.00 280 | LOW / 6.370E+14 .000 56640.00/ 281 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .625/ 282 | HO2+NO<=>NO2+OH 2.110E+12 .000 -480.00 283 | NO+O+M<=>NO2+M 1.060E+20 -1.410 .00 284 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 285 | NO2+O<=>NO+O2 3.900E+12 .000 -240.00 286 | NO2+H<=>NO+OH 1.320E+14 .000 360.00 287 | NH+O<=>NO+H 4.000E+13 .000 .00 288 | NH+H<=>N+H2 3.200E+13 .000 330.00 289 | NH+OH<=>HNO+H 2.000E+13 .000 .00 290 | NH+OH<=>N+H2O 2.000E+09 1.200 .00 291 | NH+O2<=>HNO+O 4.610E+05 2.000 6500.00 292 | NH+O2<=>NO+OH 1.280E+06 1.500 100.00 293 | NH+N<=>N2+H 1.500E+13 .000 .00 294 | NH+H2O<=>HNO+H2 2.000E+13 .000 13850.00 295 | NH+NO<=>N2+OH 2.160E+13 -.230 .00 296 | NH+NO<=>N2O+H 3.650E+14 -.450 .00 297 | NH2+O<=>OH+NH 3.000E+12 .000 .00 298 | NH2+O<=>H+HNO 3.900E+13 .000 .00 299 | NH2+H<=>NH+H2 4.000E+13 .000 3650.00 300 | NH2+OH<=>NH+H2O 9.000E+07 1.500 -460.00 301 | NNH<=>N2+H 3.300E+08 .000 .00 302 | NNH+M<=>N2+H+M 1.300E+14 -.110 4980.00 303 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 304 | NNH+O2<=>HO2+N2 5.000E+12 .000 .00 305 | NNH+O<=>OH+N2 2.500E+13 .000 .00 306 | NNH+O<=>NH+NO 7.000E+13 .000 .00 307 | NNH+H<=>H2+N2 5.000E+13 .000 .00 308 | NNH+OH<=>H2O+N2 2.000E+13 .000 .00 309 | NNH+CH3<=>CH4+N2 2.500E+13 .000 .00 310 | H+NO+M<=>HNO+M 4.480E+19 -1.320 740.00 311 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 312 | HNO+O<=>NO+OH 2.500E+13 .000 .00 313 | HNO+H<=>H2+NO 9.000E+11 .720 660.00 314 | HNO+OH<=>NO+H2O 1.300E+07 1.900 -950.00 315 | HNO+O2<=>HO2+NO 1.000E+13 .000 13000.00 316 | CN+O<=>CO+N 7.700E+13 .000 .00 317 | CN+OH<=>NCO+H 4.000E+13 .000 .00 318 | CN+H2O<=>HCN+OH 8.000E+12 .000 7460.00 319 | CN+O2<=>NCO+O 6.140E+12 .000 -440.00 320 | CN+H2<=>HCN+H 2.950E+05 2.450 2240.00 321 | NCO+O<=>NO+CO 2.350E+13 .000 .00 322 | NCO+H<=>NH+CO 5.400E+13 .000 .00 323 | NCO+OH<=>NO+H+CO 0.250E+13 .000 .00 324 | NCO+N<=>N2+CO 2.000E+13 .000 .00 325 | NCO+O2<=>NO+CO2 2.000E+12 .000 20000.00 326 | NCO+M<=>N+CO+M 3.100E+14 .000 54050.00 327 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 328 | NCO+NO<=>N2O+CO 1.900E+17 -1.520 740.00 329 | NCO+NO<=>N2+CO2 3.800E+18 -2.000 800.00 330 | HCN+M<=>H+CN+M 1.040E+29 -3.300 126600.00 331 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 332 | HCN+O<=>NCO+H 2.030E+04 2.640 4980.00 333 | HCN+O<=>NH+CO 5.070E+03 2.640 4980.00 334 | HCN+O<=>CN+OH 3.910E+09 1.580 26600.00 335 | HCN+OH<=>HOCN+H 1.100E+06 2.030 13370.00 336 | HCN+OH<=>HNCO+H 4.400E+03 2.260 6400.00 337 | HCN+OH<=>NH2+CO 1.600E+02 2.560 9000.00 338 | H+HCN(+M)<=>H2CN(+M) 3.300E+13 .000 .00 339 | LOW / 1.400E+26 -3.400 1900.00/ 340 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 341 | H2CN+N<=>N2+CH2 6.000E+13 .000 400.00 342 | C+N2<=>CN+N 6.300E+13 .000 46020.00 343 | CH+N2<=>HCN+N 3.120E+09 0.880 20130.00 344 | CH+N2(+M)<=>HCNN(+M) 3.100E+12 .150 .00 345 | LOW / 1.300E+25 -3.160 740.00/ 346 | TROE/ .6670 235.00 2117.00 4536.00 / 347 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ 1.0/ 348 | CH2+N2<=>HCN+NH 1.000E+13 .000 74000.00 349 | CH2(S)+N2<=>NH+HCN 1.000E+11 .000 65000.00 350 | C+NO<=>CN+O 1.900E+13 .000 .00 351 | C+NO<=>CO+N 2.900E+13 .000 .00 352 | CH+NO<=>HCN+O 4.100E+13 .000 .00 353 | CH+NO<=>H+NCO 1.620E+13 .000 .00 354 | CH+NO<=>N+HCO 2.460E+13 .000 .00 355 | CH2+NO<=>H+HNCO 3.100E+17 -1.380 1270.00 356 | CH2+NO<=>OH+HCN 2.900E+14 -.690 760.00 357 | CH2+NO<=>H+HCNO 3.800E+13 -.360 580.00 358 | CH2(S)+NO<=>H+HNCO 3.100E+17 -1.380 1270.00 359 | CH2(S)+NO<=>OH+HCN 2.900E+14 -.690 760.00 360 | CH2(S)+NO<=>H+HCNO 3.800E+13 -.360 580.00 361 | CH3+NO<=>HCN+H2O 9.600E+13 .000 28800.00 362 | CH3+NO<=>H2CN+OH 1.000E+12 .000 21750.00 363 | HCNN+O<=>CO+H+N2 2.200E+13 .000 .00 364 | HCNN+O<=>HCN+NO 2.000E+12 .000 .00 365 | HCNN+O2<=>O+HCO+N2 1.200E+13 .000 .00 366 | HCNN+OH<=>H+HCO+N2 1.200E+13 .000 .00 367 | HCNN+H<=>CH2+N2 1.000E+14 .000 .00 368 | HNCO+O<=>NH+CO2 9.800E+07 1.410 8500.00 369 | HNCO+O<=>HNO+CO 1.500E+08 1.570 44000.00 370 | HNCO+O<=>NCO+OH 2.200E+06 2.110 11400.00 371 | HNCO+H<=>NH2+CO 2.250E+07 1.700 3800.00 372 | HNCO+H<=>H2+NCO 1.050E+05 2.500 13300.00 373 | HNCO+OH<=>NCO+H2O 3.300E+07 1.500 3600.00 374 | HNCO+OH<=>NH2+CO2 3.300E+06 1.500 3600.00 375 | HNCO+M<=>NH+CO+M 1.180E+16 .000 84720.00 376 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 377 | HCNO+H<=>H+HNCO 2.100E+15 -.690 2850.00 378 | HCNO+H<=>OH+HCN 2.700E+11 .180 2120.00 379 | HCNO+H<=>NH2+CO 1.700E+14 -.750 2890.00 380 | HOCN+H<=>H+HNCO 2.000E+07 2.000 2000.00 381 | HCCO+NO<=>HCNO+CO 0.900E+13 .000 .00 382 | CH3+N<=>H2CN+H 6.100E+14 -.310 290.00 383 | CH3+N<=>HCN+H2 3.700E+12 .150 -90.00 384 | NH3+H<=>NH2+H2 5.400E+05 2.400 9915.00 385 | NH3+OH<=>NH2+H2O 5.000E+07 1.600 955.00 386 | NH3+O<=>NH2+OH 9.400E+06 1.940 6460.00 387 | NH+CO2<=>HNO+CO 1.000E+13 .000 14350.00 388 | CN+NO2<=>NCO+NO 6.160E+15 -0.752 345.00 389 | NCO+NO2<=>N2O+CO2 3.250E+12 .000 -705.00 390 | N+CO2<=>NO+CO 3.000E+12 .000 11300.00 391 | O+CH3=>H+H2+CO 3.370E+13 .000 .00 392 | O+C2H4<=>H+CH2CHO 6.700E+06 1.830 220.00 393 | O+C2H5<=>H+CH3CHO 1.096E+14 .000 .00 394 | OH+HO2<=>O2+H2O 0.500E+16 .000 17330.00 395 | DUPLICATE 396 | OH+CH3=>H2+CH2O 8.000E+09 .500 -1755.00 397 | CH+H2(+M)<=>CH3(+M) 1.970E+12 .430 -370.00 398 | LOW/ 4.820E+25 -2.80 590.0 / 399 | TROE/ .578 122.0 2535.0 9365.0 / 400 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 401 | CH2+O2=>2H+CO2 5.800E+12 .000 1500.00 402 | CH2+O2<=>O+CH2O 2.400E+12 .000 1500.00 403 | CH2+CH2=>2H+C2H2 2.000E+14 .000 10989.00 404 | CH2(S)+H2O=>H2+CH2O 6.820E+10 .250 -935.00 405 | C2H3+O2<=>O+CH2CHO 3.030E+11 .290 11.00 406 | C2H3+O2<=>HO2+C2H2 1.337E+06 1.610 -384.00 407 | O+CH3CHO<=>OH+CH2CHO 2.920E+12 .000 1808.00 408 | O+CH3CHO=>OH+CH3+CO 2.920E+12 .000 1808.00 409 | O2+CH3CHO=>HO2+CH3+CO 3.010E+13 .000 39150.00 410 | H+CH3CHO<=>CH2CHO+H2 2.050E+09 1.160 2405.00 411 | H+CH3CHO=>CH3+H2+CO 2.050E+09 1.160 2405.00 412 | OH+CH3CHO=>CH3+H2O+CO 2.343E+10 0.730 -1113.00 413 | HO2+CH3CHO=>CH3+H2O2+CO 3.010E+12 .000 11923.00 414 | CH3+CH3CHO=>CH3+CH4+CO 2.720E+06 1.770 5920.00 415 | H+CH2CO(+M)<=>CH2CHO(+M) 4.865E+11 0.422 -1755.00 416 | LOW/ 1.012E+42 -7.63 3854.0/ 417 | TROE/ 0.465 201.0 1773.0 5333.0 / 418 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 419 | O+CH2CHO=>H+CH2+CO2 1.500E+14 .000 .00 420 | O2+CH2CHO=>OH+CO+CH2O 1.810E+10 .000 .00 421 | O2+CH2CHO=>OH+2HCO 2.350E+10 .000 .00 422 | H+CH2CHO<=>CH3+HCO 2.200E+13 .000 .00 423 | H+CH2CHO<=>CH2CO+H2 1.100E+13 .000 .00 424 | OH+CH2CHO<=>H2O+CH2CO 1.200E+13 .000 .00 425 | OH+CH2CHO<=>HCO+CH2OH 3.010E+13 .000 .00 426 | CH3+C2H5(+M)<=>C3H8(+M) .9430E+13 .000 .00 427 | LOW/ 2.710E+74 -16.82 13065.0 / 428 | TROE/ .1527 291.0 2742.0 7748.0 / 429 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 430 | O+C3H8<=>OH+C3H7 1.930E+05 2.680 3716.00 431 | H+C3H8<=>C3H7+H2 1.320E+06 2.540 6756.00 432 | OH+C3H8<=>C3H7+H2O 3.160E+07 1.800 934.00 433 | C3H7+H2O2<=>HO2+C3H8 3.780E+02 2.720 1500.00 434 | CH3+C3H8<=>C3H7+CH4 0.903E+00 3.650 7154.00 435 | CH3+C2H4(+M)<=>C3H7(+M) 2.550E+06 1.600 5700.00 436 | LOW/ 3.00E+63 -14.6 18170./ 437 | TROE/ .1894 277.0 8748.0 7891.0 / 438 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 439 | O+C3H7<=>C2H5+CH2O 9.640E+13 .000 .00 440 | H+C3H7(+M)<=>C3H8(+M) 3.613E+13 .000 .00 441 | LOW/ 4.420E+61 -13.545 11357.0/ 442 | TROE/ .315 369.0 3285.0 6667.0 / 443 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/ 444 | H+C3H7<=>CH3+C2H5 4.060E+06 2.190 890.00 445 | OH+C3H7<=>C2H5+CH2OH 2.410E+13 .000 .00 446 | HO2+C3H7<=>O2+C3H8 2.550E+10 0.255 -943.00 447 | HO2+C3H7=>OH+C2H5+CH2O 2.410E+13 .000 .00 448 | CH3+C3H7<=>2C2H5 1.927E+13 -0.320 .00 449 | END 450 | -------------------------------------------------------------------------------- /input/chemkin/gri30_extra.yaml: -------------------------------------------------------------------------------- 1 | description: |- 2 | Updated webpage at http://combustion.berkeley.edu/gri-mech/version30/text30.html 3 | -------------------------------------------------------------------------------- /input/chemkin/gri30_thermo.dat: -------------------------------------------------------------------------------- 1 | THERMO 2 | 300.000 1000.000 5000.000 3 | ! GRI-Mech Version 3.0 Thermodynamics released 7/30/99 4 | ! NASA Polynomial format for CHEMKIN-II 5 | ! see README file for disclaimer 6 | O L 1/90O 1 G 200.000 3500.000 1000.000 1 7 | 2.56942078E+00-8.59741137E-05 4.19484589E-08-1.00177799E-11 1.22833691E-15 2 8 | 2.92175791E+04 4.78433864E+00 3.16826710E+00-3.27931884E-03 6.64306396E-06 3 9 | -6.12806624E-09 2.11265971E-12 2.91222592E+04 2.05193346E+00 4 10 | O2 TPIS89O 2 G 200.000 3500.000 1000.000 1 11 | 3.28253784E+00 1.48308754E-03-7.57966669E-07 2.09470555E-10-2.16717794E-14 2 12 | -1.08845772E+03 5.45323129E+00 3.78245636E+00-2.99673416E-03 9.84730201E-06 3 13 | -9.68129509E-09 3.24372837E-12-1.06394356E+03 3.65767573E+00 4 14 | H L 7/88H 1 G 200.000 3500.000 1000.000 1 15 | 2.50000001E+00-2.30842973E-11 1.61561948E-14-4.73515235E-18 4.98197357E-22 2 16 | 2.54736599E+04-4.46682914E-01 2.50000000E+00 7.05332819E-13-1.99591964E-15 3 17 | 2.30081632E-18-9.27732332E-22 2.54736599E+04-4.46682853E-01 4 18 | H2 TPIS78H 2 G 200.000 3500.000 1000.000 1 19 | 3.33727920E+00-4.94024731E-05 4.99456778E-07-1.79566394E-10 2.00255376E-14 2 20 | -9.50158922E+02-3.20502331E+00 2.34433112E+00 7.98052075E-03-1.94781510E-05 3 21 | 2.01572094E-08-7.37611761E-12-9.17935173E+02 6.83010238E-01 4 22 | OH RUS 78O 1H 1 G 200.000 3500.000 1000.000 1 23 | 3.09288767E+00 5.48429716E-04 1.26505228E-07-8.79461556E-11 1.17412376E-14 2 24 | 3.85865700E+03 4.47669610E+00 3.99201543E+00-2.40131752E-03 4.61793841E-06 3 25 | -3.88113333E-09 1.36411470E-12 3.61508056E+03-1.03925458E-01 4 26 | H2O L 8/89H 2O 1 G 200.000 3500.000 1000.000 1 27 | 3.03399249E+00 2.17691804E-03-1.64072518E-07-9.70419870E-11 1.68200992E-14 2 28 | -3.00042971E+04 4.96677010E+00 4.19864056E+00-2.03643410E-03 6.52040211E-06 3 29 | -5.48797062E-09 1.77197817E-12-3.02937267E+04-8.49032208E-01 4 30 | HO2 L 5/89H 1O 2 G 200.000 3500.000 1000.000 1 31 | 4.01721090E+00 2.23982013E-03-6.33658150E-07 1.14246370E-10-1.07908535E-14 2 32 | 1.11856713E+02 3.78510215E+00 4.30179801E+00-4.74912051E-03 2.11582891E-05 3 33 | -2.42763894E-08 9.29225124E-12 2.94808040E+02 3.71666245E+00 4 34 | H2O2 L 7/88H 2O 2 G 200.000 3500.000 1000.000 1 35 | 4.16500285E+00 4.90831694E-03-1.90139225E-06 3.71185986E-10-2.87908305E-14 2 36 | -1.78617877E+04 2.91615662E+00 4.27611269E+00-5.42822417E-04 1.67335701E-05 3 37 | -2.15770813E-08 8.62454363E-12-1.77025821E+04 3.43505074E+00 4 38 | C L11/88C 1 G 200.000 3500.000 1000.000 1 39 | 2.49266888E+00 4.79889284E-05-7.24335020E-08 3.74291029E-11-4.87277893E-15 2 40 | 8.54512953E+04 4.80150373E+00 2.55423955E+00-3.21537724E-04 7.33792245E-07 3 41 | -7.32234889E-10 2.66521446E-13 8.54438832E+04 4.53130848E+00 4 42 | CH TPIS79C 1H 1 G 200.000 3500.000 1000.000 1 43 | 2.87846473E+00 9.70913681E-04 1.44445655E-07-1.30687849E-10 1.76079383E-14 2 44 | 7.10124364E+04 5.48497999E+00 3.48981665E+00 3.23835541E-04-1.68899065E-06 3 45 | 3.16217327E-09-1.40609067E-12 7.07972934E+04 2.08401108E+00 4 46 | CH2 L S/93C 1H 2 G 200.000 3500.000 1000.000 1 47 | 2.87410113E+00 3.65639292E-03-1.40894597E-06 2.60179549E-10-1.87727567E-14 2 48 | 4.62636040E+04 6.17119324E+00 3.76267867E+00 9.68872143E-04 2.79489841E-06 3 49 | -3.85091153E-09 1.68741719E-12 4.60040401E+04 1.56253185E+00 4 50 | CH2(S) L S/93C 1H 2 G 200.000 3500.000 1000.000 1 51 | 2.29203842E+00 4.65588637E-03-2.01191947E-06 4.17906000E-10-3.39716365E-14 2 52 | 5.09259997E+04 8.62650169E+00 4.19860411E+00-2.36661419E-03 8.23296220E-06 3 53 | -6.68815981E-09 1.94314737E-12 5.04968163E+04-7.69118967E-01 4 54 | CH3 L11/89C 1H 3 G 200.000 3500.000 1000.000 1 55 | 2.28571772E+00 7.23990037E-03-2.98714348E-06 5.95684644E-10-4.67154394E-14 2 56 | 1.67755843E+04 8.48007179E+00 3.67359040E+00 2.01095175E-03 5.73021856E-06 3 57 | -6.87117425E-09 2.54385734E-12 1.64449988E+04 1.60456433E+00 4 58 | CH4 L 8/88C 1H 4 G 200.000 3500.000 1000.000 1 59 | 7.48514950E-02 1.33909467E-02-5.73285809E-06 1.22292535E-09-1.01815230E-13 2 60 | -9.46834459E+03 1.84373180E+01 5.14987613E+00-1.36709788E-02 4.91800599E-05 3 61 | -4.84743026E-08 1.66693956E-11-1.02466476E+04-4.64130376E+00 4 62 | CO TPIS79C 1O 1 G 200.000 3500.000 1000.000 1 63 | 2.71518561E+00 2.06252743E-03-9.98825771E-07 2.30053008E-10-2.03647716E-14 2 64 | -1.41518724E+04 7.81868772E+00 3.57953347E+00-6.10353680E-04 1.01681433E-06 3 65 | 9.07005884E-10-9.04424499E-13-1.43440860E+04 3.50840928E+00 4 66 | CO2 L 7/88C 1O 2 G 200.000 3500.000 1000.000 1 67 | 3.85746029E+00 4.41437026E-03-2.21481404E-06 5.23490188E-10-4.72084164E-14 2 68 | -4.87591660E+04 2.27163806E+00 2.35677352E+00 8.98459677E-03-7.12356269E-06 3 69 | 2.45919022E-09-1.43699548E-13-4.83719697E+04 9.90105222E+00 4 70 | HCO L12/89H 1C 1O 1 G 200.000 3500.000 1000.000 1 71 | 2.77217438E+00 4.95695526E-03-2.48445613E-06 5.89161778E-10-5.33508711E-14 2 72 | 4.01191815E+03 9.79834492E+00 4.22118584E+00-3.24392532E-03 1.37799446E-05 3 73 | -1.33144093E-08 4.33768865E-12 3.83956496E+03 3.39437243E+00 4 74 | CH2O L 8/88H 2C 1O 1 G 200.000 3500.000 1000.000 1 75 | 1.76069008E+00 9.20000082E-03-4.42258813E-06 1.00641212E-09-8.83855640E-14 2 76 | -1.39958323E+04 1.36563230E+01 4.79372315E+00-9.90833369E-03 3.73220008E-05 3 77 | -3.79285261E-08 1.31772652E-11-1.43089567E+04 6.02812900E-01 4 78 | CH2OH GUNL93C 1H 3O 1 G 200.000 3500.000 1000.000 1 79 | 3.69266569E+00 8.64576797E-03-3.75101120E-06 7.87234636E-10-6.48554201E-14 2 80 | -3.24250627E+03 5.81043215E+00 3.86388918E+00 5.59672304E-03 5.93271791E-06 3 81 | -1.04532012E-08 4.36967278E-12-3.19391367E+03 5.47302243E+00 4 82 | CH3O 121686C 1H 3O 1 G 300.00 3000.00 1000.000 1 83 | 0.03770799E+02 0.07871497E-01-0.02656384E-04 0.03944431E-08-0.02112616E-12 2 84 | 0.12783252E+03 0.02929575E+02 0.02106204E+02 0.07216595E-01 0.05338472E-04 3 85 | -0.07377636E-07 0.02075610E-10 0.09786011E+04 0.13152177E+02 4 86 | CH3OH L 8/88C 1H 4O 1 G 200.000 3500.000 1000.000 1 87 | 1.78970791E+00 1.40938292E-02-6.36500835E-06 1.38171085E-09-1.17060220E-13 2 88 | -2.53748747E+04 1.45023623E+01 5.71539582E+00-1.52309129E-02 6.52441155E-05 3 89 | -7.10806889E-08 2.61352698E-11-2.56427656E+04-1.50409823E+00 4 90 | C2H L 1/91C 2H 1 G 200.000 3500.000 1000.000 1 91 | 3.16780652E+00 4.75221902E-03-1.83787077E-06 3.04190252E-10-1.77232770E-14 2 92 | 6.71210650E+04 6.63589475E+00 2.88965733E+00 1.34099611E-02-2.84769501E-05 3 93 | 2.94791045E-08-1.09331511E-11 6.68393932E+04 6.22296438E+00 4 94 | C2H2 L 1/91C 2H 2 G 200.000 3500.000 1000.000 1 95 | 4.14756964E+00 5.96166664E-03-2.37294852E-06 4.67412171E-10-3.61235213E-14 2 96 | 2.59359992E+04-1.23028121E+00 8.08681094E-01 2.33615629E-02-3.55171815E-05 3 97 | 2.80152437E-08-8.50072974E-12 2.64289807E+04 1.39397051E+01 4 98 | C2H3 L 2/92C 2H 3 G 200.000 3500.000 1000.000 1 99 | 3.01672400E+00 1.03302292E-02-4.68082349E-06 1.01763288E-09-8.62607041E-14 2 100 | 3.46128739E+04 7.78732378E+00 3.21246645E+00 1.51479162E-03 2.59209412E-05 3 101 | -3.57657847E-08 1.47150873E-11 3.48598468E+04 8.51054025E+00 4 102 | C2H4 L 1/91C 2H 4 G 200.000 3500.000 1000.000 1 103 | 2.03611116E+00 1.46454151E-02-6.71077915E-06 1.47222923E-09-1.25706061E-13 2 104 | 4.93988614E+03 1.03053693E+01 3.95920148E+00-7.57052247E-03 5.70990292E-05 3 105 | -6.91588753E-08 2.69884373E-11 5.08977593E+03 4.09733096E+00 4 106 | C2H5 L12/92C 2H 5 G 200.000 3500.000 1000.000 1 107 | 1.95465642E+00 1.73972722E-02-7.98206668E-06 1.75217689E-09-1.49641576E-13 2 108 | 1.28575200E+04 1.34624343E+01 4.30646568E+00-4.18658892E-03 4.97142807E-05 3 109 | -5.99126606E-08 2.30509004E-11 1.28416265E+04 4.70720924E+00 4 110 | C2H6 L 8/88C 2H 6 G 200.000 3500.000 1000.000 1 111 | 1.07188150E+00 2.16852677E-02-1.00256067E-05 2.21412001E-09-1.90002890E-13 2 112 | -1.14263932E+04 1.51156107E+01 4.29142492E+00-5.50154270E-03 5.99438288E-05 3 113 | -7.08466285E-08 2.68685771E-11-1.15222055E+04 2.66682316E+00 4 114 | CH2CO L 5/90C 2H 2O 1 G 200.000 3500.000 1000.000 1 115 | 4.51129732E+00 9.00359745E-03-4.16939635E-06 9.23345882E-10-7.94838201E-14 2 116 | -7.55105311E+03 6.32247205E-01 2.13583630E+00 1.81188721E-02-1.73947474E-05 3 117 | 9.34397568E-09-2.01457615E-12-7.04291804E+03 1.22156480E+01 4 118 | HCCO SRIC91H 1C 2O 1 G 300.00 4000.00 1000.000 1 119 | 0.56282058E+01 0.40853401E-02-0.15934547E-05 0.28626052E-09-0.19407832E-13 2 120 | 0.19327215E+05-0.39302595E+01 0.22517214E+01 0.17655021E-01-0.23729101E-04 3 121 | 0.17275759E-07-0.50664811E-11 0.20059449E+05 0.12490417E+02 4 122 | HCCOH SRI91C 2O 1H 2 G 300.000 5000.000 1000.000 1 123 | 0.59238291E+01 0.67923600E-02-0.25658564E-05 0.44987841E-09-0.29940101E-13 2 124 | 0.72646260E+04-0.76017742E+01 0.12423733E+01 0.31072201E-01-0.50866864E-04 3 125 | 0.43137131E-07-0.14014594E-10 0.80316143E+04 0.13874319E+02 4 126 | H2CN 41687H 2C 1N 1 G 300.00 4000.000 1000.000 1 127 | 0.52097030E+01 0.29692911E-02-0.28555891E-06-0.16355500E-09 0.30432589E-13 2 128 | 0.27677109E+05-0.44444780E+01 0.28516610E+01 0.56952331E-02 0.10711400E-05 3 129 | -0.16226120E-08-0.23511081E-12 0.28637820E+05 0.89927511E+01 4 130 | HCN GRI/98H 1C 1N 1 G 200.000 6000.000 1000.000 1 131 | 0.38022392E+01 0.31464228E-02-0.10632185E-05 0.16619757E-09-0.97997570E-14 2 132 | 0.14407292E+05 0.15754601E+01 0.22589886E+01 0.10051170E-01-0.13351763E-04 3 133 | 0.10092349E-07-0.30089028E-11 0.14712633E+05 0.89164419E+01 4 134 | HNO And93 H 1N 1O 1 G 200.000 6000.000 1000.000 1 135 | 0.29792509E+01 0.34944059E-02-0.78549778E-06 0.57479594E-10-0.19335916E-15 2 136 | 0.11750582E+05 0.86063728E+01 0.45334916E+01-0.56696171E-02 0.18473207E-04 3 137 | -0.17137094E-07 0.55454573E-11 0.11548297E+05 0.17498417E+01 4 138 | N L 6/88N 1 G 200.000 6000.000 1000.000 1 139 | 0.24159429E+01 0.17489065E-03-0.11902369E-06 0.30226245E-10-0.20360982E-14 2 140 | 0.56133773E+05 0.46496096E+01 0.25000000E+01 0.00000000E+00 0.00000000E+00 3 141 | 0.00000000E+00 0.00000000E+00 0.56104637E+05 0.41939087E+01 4 142 | NNH T07/93N 2H 1 G 200.000 6000.000 1000.000 1 143 | 0.37667544E+01 0.28915082E-02-0.10416620E-05 0.16842594E-09-0.10091896E-13 2 144 | 0.28650697E+05 0.44705067E+01 0.43446927E+01-0.48497072E-02 0.20059459E-04 3 145 | -0.21726464E-07 0.79469539E-11 0.28791973E+05 0.29779410E+01 4 146 | N2O L 7/88N 2O 1 G 200.000 6000.000 1000.000 1 147 | 0.48230729E+01 0.26270251E-02-0.95850874E-06 0.16000712E-09-0.97752303E-14 2 148 | 0.80734048E+04-0.22017207E+01 0.22571502E+01 0.11304728E-01-0.13671319E-04 3 149 | 0.96819806E-08-0.29307182E-11 0.87417744E+04 0.10757992E+02 4 150 | NH And94 N 1H 1 G 200.000 6000.000 1000.000 1 151 | 0.27836928E+01 0.13298430E-02-0.42478047E-06 0.78348501E-10-0.55044470E-14 2 152 | 0.42120848E+05 0.57407799E+01 0.34929085E+01 0.31179198E-03-0.14890484E-05 3 153 | 0.24816442E-08-0.10356967E-11 0.41880629E+05 0.18483278E+01 4 154 | NH2 And89 N 1H 2 G 200.000 6000.000 1000.000 1 155 | 0.28347421E+01 0.32073082E-02-0.93390804E-06 0.13702953E-09-0.79206144E-14 2 156 | 0.22171957E+05 0.65204163E+01 0.42040029E+01-0.21061385E-02 0.71068348E-05 3 157 | -0.56115197E-08 0.16440717E-11 0.21885910E+05-0.14184248E+00 4 158 | NH3 J 6/77N 1H 3 G 200.000 6000.000 1000.000 1 159 | 0.26344521E+01 0.56662560E-02-0.17278676E-05 0.23867161E-09-0.12578786E-13 2 160 | -0.65446958E+04 0.65662928E+01 0.42860274E+01-0.46605230E-02 0.21718513E-04 3 161 | -0.22808887E-07 0.82638046E-11-0.67417285E+04-0.62537277E+00 4 162 | NO RUS 78N 1O 1 G 200.000 6000.000 1000.000 1 163 | 0.32606056E+01 0.11911043E-02-0.42917048E-06 0.69457669E-10-0.40336099E-14 2 164 | 0.99209746E+04 0.63693027E+01 0.42184763E+01-0.46389760E-02 0.11041022E-04 3 165 | -0.93361354E-08 0.28035770E-11 0.98446230E+04 0.22808464E+01 4 166 | NO2 L 7/88N 1O 2 G 200.000 6000.000 1000.000 1 167 | 0.48847542E+01 0.21723956E-02-0.82806906E-06 0.15747510E-09-0.10510895E-13 2 168 | 0.23164983E+04-0.11741695E+00 0.39440312E+01-0.15854290E-02 0.16657812E-04 3 169 | -0.20475426E-07 0.78350564E-11 0.28966179E+04 0.63119917E+01 4 170 | HCNO BDEA94H 1N 1C 1O 1G 300.000 5000.000 1382.000 1 171 | 6.59860456E+00 3.02778626E-03-1.07704346E-06 1.71666528E-10-1.01439391E-14 2 172 | 1.79661339E+04-1.03306599E+01 2.64727989E+00 1.27505342E-02-1.04794236E-05 3 173 | 4.41432836E-09-7.57521466E-13 1.92990252E+04 1.07332972E+01 4 174 | HOCN BDEA94H 1N 1C 1O 1G 300.000 5000.000 1368.000 1 175 | 5.89784885E+00 3.16789393E-03-1.11801064E-06 1.77243144E-10-1.04339177E-14 2 176 | -3.70653331E+03-6.18167825E+00 3.78604952E+00 6.88667922E-03-3.21487864E-06 3 177 | 5.17195767E-10 1.19360788E-14-2.82698400E+03 5.63292162E+00 4 178 | HNCO BDEA94H 1N 1C 1O 1G 300.000 5000.000 1478.000 1 179 | 6.22395134E+00 3.17864004E-03-1.09378755E-06 1.70735163E-10-9.95021955E-15 2 180 | -1.66599344E+04-8.38224741E+00 3.63096317E+00 7.30282357E-03-2.28050003E-06 3 181 | -6.61271298E-10 3.62235752E-13-1.55873636E+04 6.19457727E+00 4 182 | NCO EA 93 N 1C 1O 1 G 200.000 6000.000 1000.000 1 183 | 0.51521845E+01 0.23051761E-02-0.88033153E-06 0.14789098E-09-0.90977996E-14 2 184 | 0.14004123E+05-0.25442660E+01 0.28269308E+01 0.88051688E-02-0.83866134E-05 3 185 | 0.48016964E-08-0.13313595E-11 0.14682477E+05 0.95504646E+01 4 186 | CN HBH92 C 1N 1 G 200.000 6000.000 1000.000 1 187 | 0.37459805E+01 0.43450775E-04 0.29705984E-06-0.68651806E-10 0.44134173E-14 2 188 | 0.51536188E+05 0.27867601E+01 0.36129351E+01-0.95551327E-03 0.21442977E-05 3 189 | -0.31516323E-09-0.46430356E-12 0.51708340E+05 0.39804995E+01 4 190 | HCNN SRI/94C 1N 2H 1 G 300.000 5000.000 1000.000 1 191 | 0.58946362E+01 0.39895959E-02-0.15982380E-05 0.29249395E-09-0.20094686E-13 2 192 | 0.53452941E+05-0.51030502E+01 0.25243194E+01 0.15960619E-01-0.18816354E-04 3 193 | 0.12125540E-07-0.32357378E-11 0.54261984E+05 0.11675870E+02 4 194 | N2 121286N 2 G 300.000 5000.000 1000.000 1 195 | 0.02926640E+02 0.14879768E-02-0.05684760E-05 0.10097038E-09-0.06753351E-13 2 196 | -0.09227977E+04 0.05980528E+02 0.03298677E+02 0.14082404E-02-0.03963222E-04 3 197 | 0.05641515E-07-0.02444854E-10-0.10208999E+04 0.03950372E+02 4 198 | AR 120186AR 1 G 300.000 5000.000 1000.000 1 199 | 0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2 200 | -0.07453750E+04 0.04366000E+02 0.02500000E+02 0.00000000E+00 0.00000000E+00 3 201 | 0.00000000E+00 0.00000000E+00-0.07453750E+04 0.04366000E+02 4 202 | C3H8 L 4/85C 3H 8 G 300.000 5000.000 1000.000 1 203 | 0.75341368E+01 0.18872239E-01-0.62718491E-05 0.91475649E-09-0.47838069E-13 2 204 | -0.16467516E+05-0.17892349E+02 0.93355381E+00 0.26424579E-01 0.61059727E-05 3 205 | -0.21977499E-07 0.95149253E-11-0.13958520E+05 0.19201691E+02 4 206 | C3H7 L 9/84C 3H 7 G 300.000 5000.000 1000.000 1 207 | 0.77026987E+01 0.16044203E-01-0.52833220E-05 0.76298590E-09-0.39392284E-13 2 208 | 0.82984336E+04-0.15480180E+02 0.10515518E+01 0.25991980E-01 0.23800540E-05 3 209 | -0.19609569E-07 0.93732470E-11 0.10631863E+05 0.21122559E+02 4 210 | CH3CHO L 8/88C 2H 4O 1 G 200.000 6000.000 1000.000 1 211 | 0.54041108E+01 0.11723059E-01-0.42263137E-05 0.68372451E-09-0.40984863E-13 2 212 | -0.22593122E+05-0.34807917E+01 0.47294595E+01-0.31932858E-02 0.47534921E-04 3 213 | -0.57458611E-07 0.21931112E-10-0.21572878E+05 0.41030159E+01 4 214 | CH2CHO SAND86O 1H 3C 2 G 300.000 5000.000 1000.000 1 215 | 0.05975670E+02 0.08130591E-01-0.02743624E-04 0.04070304E-08-0.02176017E-12 2 216 | 0.04903218E+04-0.05045251E+02 0.03409062E+02 0.10738574E-01 0.01891492E-04 3 217 | -0.07158583E-07 0.02867385E-10 0.15214766E+04 0.09558290E+02 4 218 | END 219 | 220 | 221 | 222 | 223 | -------------------------------------------------------------------------------- /input/chemkin/gri30_tran.dat: -------------------------------------------------------------------------------- 1 | AR 0 136.500 3.330 0.000 0.000 0.000 2 | C 0 71.400 3.298 0.000 0.000 0.000 ! * 3 | C2 1 97.530 3.621 0.000 1.760 4.000 4 | C2O 1 232.400 3.828 0.000 0.000 1.000 ! * 5 | CN2 1 232.400 3.828 0.000 0.000 1.000 ! OIS 6 | C2H 1 209.000 4.100 0.000 0.000 2.500 7 | C2H2 1 209.000 4.100 0.000 0.000 2.500 8 | C2H2OH 2 224.700 4.162 0.000 0.000 1.000 ! * 9 | C2H3 2 209.000 4.100 0.000 0.000 1.000 ! * 10 | C2H4 2 280.800 3.971 0.000 0.000 1.500 11 | C2H5 2 252.300 4.302 0.000 0.000 1.500 12 | C2H6 2 252.300 4.302 0.000 0.000 1.500 13 | C2N 1 232.400 3.828 0.000 0.000 1.000 ! OIS 14 | C2N2 1 349.000 4.361 0.000 0.000 1.000 ! OIS 15 | C3H2 2 209.000 4.100 0.000 0.000 1.000 ! * 16 | C3H4 1 252.000 4.760 0.000 0.000 1.000 17 | C3H6 2 266.800 4.982 0.000 0.000 1.000 18 | C3H7 2 266.800 4.982 0.000 0.000 1.000 19 | C4H6 2 357.000 5.180 0.000 0.000 1.000 20 | I*C3H7 2 266.800 4.982 0.000 0.000 1.000 21 | N*C3H7 2 266.800 4.982 0.000 0.000 1.000 22 | C3H8 2 266.800 4.982 0.000 0.000 1.000 23 | C4H 1 357.000 5.180 0.000 0.000 1.000 24 | C4H2 1 357.000 5.180 0.000 0.000 1.000 25 | C4H2OH 2 224.700 4.162 0.000 0.000 1.000 ! * 26 | C4H8 2 357.000 5.176 0.000 0.000 1.000 27 | C4H9 2 357.000 5.176 0.000 0.000 1.000 28 | I*C4H9 2 357.000 5.176 0.000 0.000 1.000 29 | C5H2 1 357.000 5.180 0.000 0.000 1.000 30 | C5H3 1 357.000 5.180 0.000 0.000 1.000 31 | C6H2 1 357.000 5.180 0.000 0.000 1.000 32 | C6H5 2 412.300 5.349 0.000 0.000 1.000 ! JAM 33 | C6H5O 2 450.000 5.500 0.000 0.000 1.000 ! JAM 34 | C5H5OH 2 450.000 5.500 0.000 0.000 1.000 ! JAM 35 | C6H6 2 412.300 5.349 0.000 0.000 1.000 ! SVE 36 | C6H7 2 412.300 5.349 0.000 0.000 1.000 ! JAM 37 | CH 1 80.000 2.750 0.000 0.000 0.000 38 | CH2 1 144.000 3.800 0.000 0.000 0.000 39 | CH2(S) 1 144.000 3.800 0.000 0.000 0.000 40 | CH2* 1 144.000 3.800 0.000 0.000 0.000 41 | CH2CHCCH 2 357.000 5.180 0.000 0.000 1.000 ! JAM 42 | CH2CHCCH2 2 357.000 5.180 0.000 0.000 1.000 ! JAM 43 | CH2CHCH2 2 260.000 4.850 0.000 0.000 1.000 ! JAM 44 | CH2CHCHCH 2 357.000 5.180 0.000 0.000 1.000 ! JAM 45 | CH2CHCHCH2 2 357.000 5.180 0.000 0.000 1.000 ! JAM 46 | CH2CO 2 436.000 3.970 0.000 0.000 2.000 47 | CH2O 2 498.000 3.590 0.000 0.000 2.000 48 | CH2OH 2 417.000 3.690 1.700 0.000 2.000 49 | CH3 1 144.000 3.800 0.000 0.000 0.000 50 | CH3CC 2 252.000 4.760 0.000 0.000 1.000 ! JAM 51 | CH3CCCH2 2 357.000 5.180 0.000 0.000 1.000 ! JAM 52 | CH3CCCH3 2 357.000 5.180 0.000 0.000 1.000 ! JAM 53 | CH3CCH2 2 260.000 4.850 0.000 0.000 1.000 ! JAM 54 | CH3CHCH 2 260.000 4.850 0.000 0.000 1.000 ! JAM 55 | CH3CH2CCH 2 357.000 5.180 0.000 0.000 1.000 ! JAM 56 | CH3CHO 2 436.000 3.970 0.000 0.000 2.000 57 | CH2CHO 2 436.000 3.970 0.000 0.000 2.000 58 | CH3CO 2 436.000 3.970 0.000 0.000 2.000 59 | CH3O 2 417.000 3.690 1.700 0.000 2.000 60 | CH3OH 2 481.800 3.626 0.000 0.000 1.000 ! SVE 61 | CH4 2 141.400 3.746 0.000 2.600 13.000 62 | CH4O 2 417.000 3.690 1.700 0.000 2.000 63 | CN 1 75.000 3.856 0.000 0.000 1.000 ! OIS 64 | CNC 1 232.400 3.828 0.000 0.000 1.000 ! OIS 65 | CNN 1 232.400 3.828 0.000 0.000 1.000 ! OIS 66 | CO 1 98.100 3.650 0.000 1.950 1.800 67 | CO2 1 244.000 3.763 0.000 2.650 2.100 68 | H 0 145.000 2.050 0.000 0.000 0.000 69 | H2C4O 2 357.000 5.180 0.000 0.000 1.000 ! JAM 70 | H2 1 38.000 2.920 0.000 0.790 280.000 71 | H2CCCCH 2 357.000 5.180 0.000 0.000 1.000 ! JAM 72 | H2CCCCH2 2 357.000 5.180 0.000 0.000 1.000 ! JAM 73 | H2CCCH 2 252.000 4.760 0.000 0.000 1.000 ! JAM 74 | H2CN 1 569.000 3.630 0.000 0.000 1.000 ! os/jm 75 | H2NO 2 116.700 3.492 0.000 0.000 1.000 ! JAM 76 | H2O 2 572.400 2.605 1.844 0.000 4.000 77 | H2O2 2 107.400 3.458 0.000 0.000 3.800 78 | HC2N2 1 349.000 4.361 0.000 0.000 1.000 ! OIS 79 | HCCHCCH 2 357.000 5.180 0.000 0.000 1.000 ! JAM 80 | HCCO 2 150.000 2.500 0.000 0.000 1.000 ! * 81 | HCNN 2 150.000 2.500 0.000 0.000 1.000 ! * 82 | HCCOH 2 436.000 3.970 0.000 0.000 2.000 83 | HCN 1 569.000 3.630 0.000 0.000 1.000 ! OIS 84 | HCO 2 498.000 3.590 0.000 0.000 0.000 85 | HE 0 10.200 2.576 0.000 0.000 0.000 ! * 86 | HCNO 2 232.400 3.828 0.000 0.000 1.000 ! JAM 87 | HOCN 2 232.400 3.828 0.000 0.000 1.000 ! JAM 88 | HNCO 2 232.400 3.828 0.000 0.000 1.000 ! OIS 89 | HNNO 2 232.400 3.828 0.000 0.000 1.000 ! * 90 | HNO 2 116.700 3.492 0.000 0.000 1.000 ! * 91 | HNOH 2 116.700 3.492 0.000 0.000 1.000 ! JAM 92 | HO2 2 107.400 3.458 0.000 0.000 1.000 ! * 93 | N 0 71.400 3.298 0.000 0.000 0.000 ! * 94 | N2 1 97.530 3.621 0.000 1.760 4.000 95 | N2H2 2 71.400 3.798 0.000 0.000 1.000 ! * 96 | N2H3 2 200.000 3.900 0.000 0.000 1.000 ! * 97 | N2H4 2 205.000 4.230 0.000 4.260 1.500 98 | N2O 1 232.400 3.828 0.000 0.000 1.000 ! * 99 | NCN 1 232.400 3.828 0.000 0.000 1.000 ! OIS 100 | NCO 1 232.400 3.828 0.000 0.000 1.000 ! OIS 101 | NH 1 80.000 2.650 0.000 0.000 4.000 102 | NH2 2 80.000 2.650 0.000 2.260 4.000 103 | NH3 2 481.000 2.920 1.470 0.000 10.000 104 | NNH 2 71.400 3.798 0.000 0.000 1.000 ! * 105 | NO 1 97.530 3.621 0.000 1.760 4.000 106 | NCNO 2 232.400 3.828 0.000 0.000 1.000 ! OIS 107 | NO2 2 200.000 3.500 0.000 0.000 1.000 ! * 108 | O 0 80.000 2.750 0.000 0.000 0.000 109 | O2 1 107.400 3.458 0.000 1.600 3.800 110 | OH 1 80.000 2.750 0.000 0.000 0.000 111 | -------------------------------------------------------------------------------- /input/chemkin/h2o2.inp: -------------------------------------------------------------------------------- 1 | ELEMENTS 2 | O H AR 3 | END 4 | SPECIES 5 | H2 H O O2 OH H2O HO2 H2O2 6 | AR 7 | END 8 | THERMO ALL 9 | 300.000 1000.000 5000.000 10 | O L 1/90O 1 00 00 00G 200.000 3500.000 1000.000 1 11 | 2.56942078E+00-8.59741137E-05 4.19484589E-08-1.00177799E-11 1.22833691E-15 2 12 | 2.92175791E+04 4.78433864E+00 3.16826710E+00-3.27931884E-03 6.64306396E-06 3 13 | -6.12806624E-09 2.11265971E-12 2.91222592E+04 2.05193346E+00 4 14 | O2 TPIS89O 2 00 00 00G 200.000 3500.000 1000.000 1 15 | 3.28253784E+00 1.48308754E-03-7.57966669E-07 2.09470555E-10-2.16717794E-14 2 16 | -1.08845772E+03 5.45323129E+00 3.78245636E+00-2.99673416E-03 9.84730201E-06 3 17 | -9.68129509E-09 3.24372837E-12-1.06394356E+03 3.65767573E+00 4 18 | H L 7/88H 1 00 00 00G 200.000 3500.000 1000.000 1 19 | 2.50000001E+00-2.30842973E-11 1.61561948E-14-4.73515235E-18 4.98197357E-22 2 20 | 2.54736599E+04-4.46682914E-01 2.50000000E+00 7.05332819E-13-1.99591964E-15 3 21 | 2.30081632E-18-9.27732332E-22 2.54736599E+04-4.46682853E-01 4 22 | H2 TPIS78H 2 00 00 00G 200.000 3500.000 1000.000 1 23 | 3.33727920E+00-4.94024731E-05 4.99456778E-07-1.79566394E-10 2.00255376E-14 2 24 | -9.50158922E+02-3.20502331E+00 2.34433112E+00 7.98052075E-03-1.94781510E-05 3 25 | 2.01572094E-08-7.37611761E-12-9.17935173E+02 6.83010238E-01 4 26 | OH RUS 78O 1H 1 00 00G 200.000 3500.000 1000.000 1 27 | 3.09288767E+00 5.48429716E-04 1.26505228E-07-8.79461556E-11 1.17412376E-14 2 28 | 3.85865700E+03 4.47669610E+00 3.99201543E+00-2.40131752E-03 4.61793841E-06 3 29 | -3.88113333E-09 1.36411470E-12 3.61508056E+03-1.03925458E-01 4 30 | H2O L 8/89H 2O 1 00 00G 200.000 3500.000 1000.000 1 31 | 3.03399249E+00 2.17691804E-03-1.64072518E-07-9.70419870E-11 1.68200992E-14 2 32 | -3.00042971E+04 4.96677010E+00 4.19864056E+00-2.03643410E-03 6.52040211E-06 3 33 | -5.48797062E-09 1.77197817E-12-3.02937267E+04-8.49032208E-01 4 34 | HO2 L 5/89H 1O 2 00 00G 200.000 3500.000 1000.000 1 35 | 4.01721090E+00 2.23982013E-03-6.33658150E-07 1.14246370E-10-1.07908535E-14 2 36 | 1.11856713E+02 3.78510215E+00 4.30179801E+00-4.74912051E-03 2.11582891E-05 3 37 | -2.42763894E-08 9.29225124E-12 2.94808040E+02 3.71666245E+00 4 38 | H2O2 L 7/88H 2O 2 00 00G 200.000 3500.000 1000.000 1 39 | 4.16500285E+00 4.90831694E-03-1.90139225E-06 3.71185986E-10-2.87908305E-14 2 40 | -1.78617877E+04 2.91615662E+00 4.27611269E+00-5.42822417E-04 1.67335701E-05 3 41 | -2.15770813E-08 8.62454363E-12-1.77025821E+04 3.43505074E+00 4 42 | AR 120186AR 1 G 300.000 5000.000 1000.000 1 43 | 0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2 44 | -0.07453750E+04 0.04366000E+02 0.02500000E+02 0.00000000E+00 0.00000000E+00 3 45 | 0.00000000E+00 0.00000000E+00-0.07453750E+04 0.04366000E+02 4 46 | END 47 | REACTIONS 48 | 2O+M<=>O2+M 1.200E+17 -1.000 .00 49 | H2/ 2.40/ H2O/15.40/ AR/ .83/ 50 | O+H+M<=>OH+M 5.000E+17 -1.000 .00 51 | H2/2.00/ H2O/6.00/ AR/ .70/ 52 | O+H2<=>H+OH 3.870E+04 2.700 6260.00 53 | O+HO2<=>OH+O2 2.000E+13 .000 .00 54 | O+H2O2<=>OH+HO2 9.630E+06 2.000 4000.00 55 | H+O2+M<=>HO2+M 2.800E+18 -.860 .00 56 | O2/ .00/ H2O/ .00/ AR/ .00/ 57 | H+2O2<=>HO2+O2 2.080E+19 -1.240 .00 58 | H+O2+H2O<=>HO2+H2O 11.26E+18 -.760 .00 59 | H+O2+AR<=>HO2+AR 7.000E+17 -.800 .00 60 | H+O2<=>O+OH 2.650E+16 -.6707 17041.00 61 | 2H+M<=>H2+M 1.000E+18 -1.000 .00 62 | H2/ .00/ H2O/ .00/ AR/ .63/ 63 | 2H+H2<=>2H2 9.000E+16 -.600 .00 64 | 2H+H2O<=>H2+H2O 6.000E+19 -1.250 .00 65 | H+OH+M<=>H2O+M 2.200E+22 -2.000 .00 66 | H2/ .73/ H2O/3.65/ AR/ .38/ 67 | H+HO2<=>O+H2O 3.970E+12 .000 671.00 68 | H+HO2<=>O2+H2 4.480E+13 .000 1068.00 69 | H+HO2<=>2OH 0.840E+14 .000 635.00 70 | H+H2O2<=>HO2+H2 1.210E+07 2.000 5200.00 71 | H+H2O2<=>OH+H2O 1.000E+13 .000 3600.00 72 | OH+H2<=>H+H2O 2.160E+08 1.510 3430.00 73 | 2OH(+M)<=>H2O2(+M) 7.400E+13 -.370 .00 74 | LOW / 2.300E+18 -.900 -1700.00/ 75 | TROE/ .7346 94.00 1756.00 5182.00 / 76 | H2/2.00/ H2O/6.00/ AR/ .70/ 77 | 2OH<=>O+H2O 3.570E+04 2.400 -2110.00 78 | OH+HO2<=>O2+H2O 1.450E+13 .000 -500.00 79 | DUPLICATE 80 | OH+H2O2<=>HO2+H2O 2.000E+12 .000 427.00 81 | DUPLICATE 82 | OH+H2O2<=>HO2+H2O 1.700E+18 .000 29410.00 83 | DUPLICATE 84 | 2HO2<=>O2+H2O2 1.300E+11 .000 -1630.00 85 | DUPLICATE 86 | 2HO2<=>O2+H2O2 4.200E+14 .000 12000.00 87 | DUPLICATE 88 | OH+HO2<=>O2+H2O 0.500E+16 .000 17330.00 89 | DUPLICATE 90 | END 91 | -------------------------------------------------------------------------------- /input/chemkin/h2o2_extra.yaml: -------------------------------------------------------------------------------- 1 | description: |- 2 | Hydrogen-Oxygen submechanism extracted from GRI-Mech 3.0. 3 | -------------------------------------------------------------------------------- /input/ck2yaml_demo.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Conversion of CHEMKIN Data\n", 8 | "\n", 9 | "This notebook illustrates the conversion of CHEMKIN input files to Cantera YAML input files. The conversion utility `ck2yaml` is run as a shell command (using the exclamation mark `!` magic shortcut). \n", 10 | "\n", 11 | "The YAML files produced with this notebook are close re-recreations of input files that are already included with Cantera; `_demo` is added to differentiate from the original YAML files:\n", 12 | "\n", 13 | "**GRI-Mech 3.0 derived:**\n", 14 | " * `gri30_demo.yaml`\n", 15 | " * `h2o2_demo.yaml`\n", 16 | " * `air_demo.yaml`\n", 17 | " * `argon_demo.yaml`\n", 18 | "\n", 19 | "**NASA derived:**\n", 20 | " * `airNASA9_demo.yaml`\n", 21 | " * `nasa_demo.yaml`\n", 22 | "\n", 23 | "All CHEMKIN input files are stored in the `chemkin` subfolder; the `--extra` flag is used to update file descriptions to match YAML files from Cantera 2.5.\n", 24 | "\n", 25 | "**Requires:** cantera >= 2.5.0" 26 | ] 27 | }, 28 | { 29 | "cell_type": "code", 30 | "execution_count": 1, 31 | "metadata": {}, 32 | "outputs": [ 33 | { 34 | "name": "stdout", 35 | "output_type": "stream", 36 | "text": [ 37 | "\n", 38 | "ck2yaml.py: Convert Chemkin-format mechanisms to Cantera YAML input files\n", 39 | "\n", 40 | "Usage:\n", 41 | " ck2yaml [--input=]\n", 42 | " [--thermo=]\n", 43 | " [--transport=]\n", 44 | " [--surface=]\n", 45 | " [--name=]\n", 46 | " [--extra=]\n", 47 | " [--output=]\n", 48 | " [--single-intermediate-temperature]\n", 49 | " [--permissive]\n", 50 | " [--quiet]\n", 51 | " [--no-validate]\n", 52 | " [-d | --debug]\n", 53 | "\n", 54 | "Example:\n", 55 | " ck2yaml --input=chem.inp --thermo=therm.dat --transport=tran.dat\n", 56 | "\n", 57 | "If the output file name is not given, an output file with the same name as the\n", 58 | "input file, with the extension changed to '.yaml'.\n", 59 | "\n", 60 | "An input file containing only species definitions (which can be referenced from\n", 61 | "phase definitions in other input files) can be created by specifying only a\n", 62 | "thermo file.\n", 63 | "\n", 64 | "For the case of a surface mechanism, the gas phase input file should be\n", 65 | "specified as 'input' and the surface phase input file should be specified as\n", 66 | "'surface'.\n", 67 | "\n", 68 | "The '--single-intermediate-temperature' option should be used with thermo data where\n", 69 | "only a single break temperature is used and the last value in the first line of each\n", 70 | "species thermo entry is the molecular weight instead.\n", 71 | "\n", 72 | "The '--permissive' option allows certain recoverable parsing errors (such as\n", 73 | "duplicate transport data) to be ignored. The '--name=' option\n", 74 | "is used to override default phase names (that is, 'gas').\n", 75 | "\n", 76 | "The '--extra=' option takes a YAML file as input. This option can be\n", 77 | "used to add to the file description, or to define custom fields that are\n", 78 | "included in the YAML output.\n", 79 | "\n" 80 | ] 81 | } 82 | ], 83 | "source": [ 84 | "# display ck2yaml help text\n", 85 | "! ck2yaml --help" 86 | ] 87 | }, 88 | { 89 | "cell_type": "markdown", 90 | "metadata": {}, 91 | "source": [ 92 | "## 1. YAML files based on GRI-Mech 3.0" 93 | ] 94 | }, 95 | { 96 | "cell_type": "markdown", 97 | "metadata": {}, 98 | "source": [ 99 | "### 1.1 Input file `gri30.yaml`" 100 | ] 101 | }, 102 | { 103 | "cell_type": "code", 104 | "execution_count": 2, 105 | "metadata": {}, 106 | "outputs": [ 107 | { 108 | "name": "stdout", 109 | "output_type": "stream", 110 | "text": [ 111 | "Wrote YAML mechanism file to 'gri30_demo.yaml'.\n", 112 | "Mechanism contains 53 species and 325 reactions.\n", 113 | "Validating mechanism...\n", 114 | "PASSED\n" 115 | ] 116 | } 117 | ], 118 | "source": [ 119 | "! ck2yaml --input=chemkin/gri30.inp --thermo=chemkin/gri30_thermo.dat --transport=chemkin/gri30_tran.dat \\\n", 120 | "--extra=chemkin/gri30_extra.yaml --output=gri30_demo.yaml --name=gri30" 121 | ] 122 | }, 123 | { 124 | "cell_type": "markdown", 125 | "metadata": {}, 126 | "source": [ 127 | "### 1.2 Input file `h2o2.yaml`" 128 | ] 129 | }, 130 | { 131 | "cell_type": "code", 132 | "execution_count": 3, 133 | "metadata": {}, 134 | "outputs": [ 135 | { 136 | "name": "stdout", 137 | "output_type": "stream", 138 | "text": [ 139 | "Wrote YAML mechanism file to 'h2o2_demo.yaml'.\n", 140 | "Mechanism contains 9 species and 28 reactions.\n", 141 | "Validating mechanism...\n", 142 | "PASSED\n" 143 | ] 144 | } 145 | ], 146 | "source": [ 147 | "# options for h2o2.yaml\n", 148 | "! ck2yaml --input=chemkin/h2o2.inp --transport=chemkin/gri30_tran.dat \\\n", 149 | "--extra=chemkin/h2o2_extra.yaml --output=h2o2_demo.yaml --name=ohmech" 150 | ] 151 | }, 152 | { 153 | "cell_type": "markdown", 154 | "metadata": {}, 155 | "source": [ 156 | "### 1.3 Input file `air.yaml`\n", 157 | "\n", 158 | "**Notes:** The `--quiet` option suppresses warnings about unexpected/unused species in thermo data." 159 | ] 160 | }, 161 | { 162 | "cell_type": "code", 163 | "execution_count": 4, 164 | "metadata": {}, 165 | "outputs": [], 166 | "source": [ 167 | "# options for air.yaml\n", 168 | "! ck2yaml --input=chemkin/air.inp --thermo=chemkin/gri30_thermo.dat --transport=chemkin/gri30_tran.dat \\\n", 169 | "--extra=chemkin/air_extra.yaml --output=air_demo.yaml --name=air --quiet" 170 | ] 171 | }, 172 | { 173 | "cell_type": "markdown", 174 | "metadata": {}, 175 | "source": [ 176 | "### 1.4 Input file `argon.yaml`\n", 177 | "\n", 178 | "**Notes:** The `--quiet` option suppresses warnings about unexpected/unused species in thermo data." 179 | ] 180 | }, 181 | { 182 | "cell_type": "code", 183 | "execution_count": 5, 184 | "metadata": {}, 185 | "outputs": [], 186 | "source": [ 187 | "# options for argon.yaml\n", 188 | "! ck2yaml --input=chemkin/argon.inp --thermo=chemkin/gri30_thermo.dat --transport=chemkin/gri30_tran.dat \\\n", 189 | "--extra=chemkin/argon_extra.yaml --output=argon_demo.yaml --quiet" 190 | ] 191 | }, 192 | { 193 | "cell_type": "markdown", 194 | "metadata": {}, 195 | "source": [ 196 | "## 2. YAML files based on NASA Thermodynamic databases" 197 | ] 198 | }, 199 | { 200 | "cell_type": "markdown", 201 | "metadata": {}, 202 | "source": [ 203 | "### 2.1 Input file `nasa.yaml`" 204 | ] 205 | }, 206 | { 207 | "cell_type": "code", 208 | "execution_count": 6, 209 | "metadata": {}, 210 | "outputs": [ 211 | { 212 | "name": "stdout", 213 | "output_type": "stream", 214 | "text": [ 215 | "Found additional thermo entry for species (HCOOH)2. If --permissive was given, the first entry is used.\n", 216 | "Found additional thermo entry for species Br2(L). If --permissive was given, the first entry is used.\n", 217 | "Found additional thermo entry for species Cr(cr). If --permissive was given, the first entry is used.\n", 218 | "Found additional thermo entry for species Fe(a). If --permissive was given, the first entry is used.\n", 219 | "Found additional thermo entry for species Ni(cr). If --permissive was given, the first entry is used.\n", 220 | "Found additional thermo entry for species ZnSO4(a). If --permissive was given, the first entry is used.\n", 221 | "Wrote YAML mechanism file to 'nasa_demo.yaml'.\n", 222 | "Mechanism contains 1130 species and 0 reactions.\n" 223 | ] 224 | } 225 | ], 226 | "source": [ 227 | "# options for nasa.yaml (the --permissive suppresses an error due to duplicate thermo entries)\n", 228 | "! ck2yaml --thermo=chemkin/nasathermo.dat --output=nasa_demo.yaml --permissive" 229 | ] 230 | }, 231 | { 232 | "cell_type": "markdown", 233 | "metadata": {}, 234 | "source": [ 235 | "### 2.2 Input file `airNASA9.yaml`" 236 | ] 237 | }, 238 | { 239 | "cell_type": "code", 240 | "execution_count": 7, 241 | "metadata": {}, 242 | "outputs": [ 243 | { 244 | "name": "stdout", 245 | "output_type": "stream", 246 | "text": [ 247 | "Wrote YAML mechanism file to 'airNASA9_demo.yaml'.\n", 248 | "Mechanism contains 11 species and 0 reactions.\n", 249 | "Validating mechanism...\n", 250 | "PASSED\n" 251 | ] 252 | } 253 | ], 254 | "source": [ 255 | "# options for airNASA9.yaml\n", 256 | "! ck2yaml --input=chemkin/airNASA9.inp --thermo=chemkin/airDataNASA9.dat --output=airNASA9_demo.yaml --name=airNASA9" 257 | ] 258 | } 259 | ], 260 | "metadata": { 261 | "kernelspec": { 262 | "display_name": "Python 3 (ipykernel)", 263 | "language": "python", 264 | "name": "python3" 265 | }, 266 | "language_info": { 267 | "codemirror_mode": { 268 | "name": "ipython", 269 | "version": 3 270 | }, 271 | "file_extension": ".py", 272 | "mimetype": "text/x-python", 273 | "name": "python", 274 | "nbconvert_exporter": "python", 275 | "pygments_lexer": "ipython3", 276 | "version": "3.10.13" 277 | } 278 | }, 279 | "nbformat": 4, 280 | "nbformat_minor": 4 281 | } 282 | -------------------------------------------------------------------------------- /reactors/1D_packbed.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# One-dimensional packed-bed, catalytic-membrane reactor model without streamwise diffusion" 8 | ] 9 | }, 10 | { 11 | "cell_type": "markdown", 12 | "metadata": {}, 13 | "source": [ 14 | "The present model simulates heterogeneous catalytic processes inside packed-bed, catalytic membrane reactors. The gas-phase and surface-phase species conservation equations are derived and the system of differential-algebraic equations (DAE) is solved using the scikits.odes.dae IDA solver." 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 1, 20 | "metadata": {}, 21 | "outputs": [], 22 | "source": [ 23 | "# Import Cantera and scikits\n", 24 | "import numpy as np\n", 25 | "from scikits.odes import dae\n", 26 | "import cantera as ct\n", 27 | "import matplotlib.pyplot as plt\n", 28 | "\n", 29 | "%matplotlib inline\n", 30 | "%config InlineBackend.figure_formats = [\"svg\"]\n", 31 | "print(\"Runnning Cantera version: \" + ct.__version__)" 32 | ] 33 | }, 34 | { 35 | "cell_type": "markdown", 36 | "metadata": {}, 37 | "source": [ 38 | "## Methodology\n", 39 | "\n", 40 | "One-dimensional, steady-state catalytic-membrane reactor model with surface chemistry is developed to analyze species profiles along the length of a packed-bed, catalytic membrane reactor. The same model can further be simplified to simulate a simple packed-bed reactor by excluding the membrane. The example here demonstrates the one-dimensional reactor model explained by G. Kogekar, et al., \"Efficient and robust computational models of heterogeneous catalysis in catalytic membrane reactors,\" (2022), In preparation [1]." 41 | ] 42 | }, 43 | { 44 | "cell_type": "markdown", 45 | "metadata": {}, 46 | "source": [ 47 | "### Governing equations\n", 48 | "\n", 49 | "Assuming steady-state, one-dimensional flow within the packed bed, total-mass, species mass and energy conservation may be stated as [2]\n", 50 | "\n", 51 | "$$\n", 52 | " \\frac{d(\\rho u)}{dz} = \\sum_{k=1}^{K_{\\mathrm{g}}} \\dot {s}_k W_k A_{\\mathrm{s}} + \\frac{P_{\\mathrm b}}{A_{\\mathrm b}} j_{k_{\\mathrm M}}, \\\\\n", 53 | " \\rho u \\frac{dY_k}{dz} + A_{\\mathrm{s}} Y_k \\sum_{k=1}^{K_{\\mathrm{g}}} \\dot {s}_k W_k = A_{\\mathrm s} \\dot {s}_k W_k + \\delta_{k, k_{\\mathrm M}} \\frac{P_{\\mathrm b}}{A_{\\mathrm b}} j_{k_{\\mathrm M}}, \\\\\n", 54 | " \\rho u c_{\\mathrm p} \\frac{dT}{dz} + \\sum_{k=1}^{K_{\\mathrm g}} h_k (\\phi_{\\mathrm g} \\dot {\\omega}_k + A_{\\mathrm s} \\dot {s}_k) W_k = \\hat h \\frac{P_{\\mathrm b}}{A_{\\mathrm b}}(T_{\\mathrm w} - T) + \\delta_{k, k_{\\mathrm M}} \\frac{P_{\\mathrm b}}{A_{\\mathrm b}} h_{k_{\\rm M}} j_{k_{\\mathrm M}}.\n", 55 | "$$\n", 56 | "\n", 57 | "The fractional coverages of the $K_{\\rm s}$ surface adsorbates $\\theta_k$ must satisfy \n", 58 | "$$\n", 59 | " \\dot {s}_k = 0, {\\ \\ \\ \\ \\ \\ } (k = 1,\\ldots, K_{\\mathrm s}),\n", 60 | "$$\n", 61 | "which, at steady state, requires no net production/consumption of surface species by the heterogeneous reactions [3].\n", 62 | "\n", 63 | "The pressure within the bed is calculated as\n", 64 | "$$ \n", 65 | " \\frac{dp}{dz} = - \\left( \\frac{\\phi_{\\mathrm{g}} \\mu}{\\beta_{\\mathrm{g}}} \\right) u,\n", 66 | "$$\n", 67 | "where $\\mu$ is the gas-phase mixture viscosity. The packed-bed permeability $\\beta_{\\rm g}$ is evaluated using the Kozeny-Carman relationship as \n", 68 | "$$\n", 69 | " \\beta_{\\mathrm g} = \\frac{\\phi_{\\mathrm{g}}^3 D_{\\mathrm p}^2}{72 \\tau_{\\mathrm{g}}(1 - \\phi_{\\mathrm{g}})^2},\n", 70 | "$$\n", 71 | "where $\\phi_{\\mathrm{g}}$, $\\tau_{\\mathrm{g}}$, and $D_{\\mathrm {p}}$ are the bed porosity, tortuosity, and particle diameter, respectively.\n", 72 | "\n", 73 | "The independent variable in these conservation equations is the position $z$ along the reactor length. The dependent variables include total mass flux $\\rho u$, pressure $p$, temperature $T$, gas-phase mass fractions $Y_k$, and surfaces coverages $\\theta_k$. Gas-phase fluxes through the membrane are represented as $j_{k, {\\mathrm M}}$. Geometric parameters $A_{\\mathrm s}$, $P_{\\mathrm b}$, and $A_{\\mathrm b}$ represent the catalyst specific surface area (dimensions of surface area per unit volume), reactor perimeter, and reactor cross-sectional flow area, respectively. Other parameters include bed porosity $\\phi_{\\mathrm g}$ and gas-phase species molecular weights $W_k$. The gas density $\\rho$ is evaluated using the equation of state (ideal Eos, RK or PR EoS).\n", 74 | "\n", 75 | "If a perm-selective membrane is present, then $j_{k_{\\mathrm M}}$ represents the gas-phase flux through the membrane and ${k_{\\mathrm M}}$ is the gas-phase species that permeates through the membrane. The Kronecker delta, $\\delta_{k, k_{\\mathrm M}} = 1$ for the membrane-permeable species and $\\delta_{k, k_{\\mathrm M}} = 0$ otherwise. The membrane flux is calculated using Sievert's law as\n", 76 | "$$\n", 77 | " {j_{k_{\\mathrm M}}}^{\\text{Mem}} = \\frac{B_{k_{\\mathrm M}}}{t} \\left ( p_{k_{\\mathrm M} {\\text{, mem}}}^\\alpha - p_{k_{\\mathrm M} \\text{, sweep}}^\\alpha \\right ) W_{k_{\\rm M}}\n", 78 | "$$\n", 79 | "where $B_{k_{\\mathrm M}}$ is the membrane permeability, $t$ is the membrane thickness. $p_{k_{\\mathrm M} \\text{, mem}}$ and $p_{k_{\\mathrm M} \\text{, sweep}}$ represent perm-selective species partial pressures within the packed-bed and the exterior sweep channel. The present model takes the pressure exponent $\\alpha$ to be unity. The membrane flux for all other species ($ k \\neq k_{\\mathrm M}$) is zero.\n", 80 | "\n", 81 | "### Chemistry mechanism\n", 82 | "This example uses a detailed 12-step elementary micro-kinetic reaction mechanism that describes ammonia formation and decomposition kinetics over the Ru/Ba-YSZ catalyst. The reaction mechanism is developed and validated using measured performance in a laboratory-scale packed-bed reactor [4]. This example also incorporates a Pd-based H2 perm-selective membrane.\n", 83 | "\n", 84 | "\n", 85 | "### Solver\n", 86 | "\n", 87 | "Above governing equations represent a complete solution for a steady-state packed-bed, catalytic membrane reactor model. The dependent variables are the mass-flux $\\rho u$, species mass-fractions $Y_k$, pressure $p$, temperature $T$, and surface coverages $\\theta_k$. The equation of state is used to obtain the mass density, $\\rho$.\n", 88 | "\n", 89 | "The governing equations form an initial value problem (IVP) in a differential-algebraic (DAE) form as follows:\n", 90 | "$$\n", 91 | " f(z,{\\bf{y}}, \\bf {y'}, c) = 0,\n", 92 | "$$\n", 93 | "where $\\bf{y}$ and $\\bf{y'}$ represent the solution vector and its derivative vector, respectively. All other constants such as reference temperature, chemical constants, etc. are incorporated in vector $c$ (Refer to [5] for more details). This type of DAE system in this example is solved using the `scikits.odes.dae` IDA solver.\n", 94 | "> 1. G. Kogekar, H. Zhu, R.J. Kee, 'Efficient and robust computational models of heterogeneous catalysis in catalytic membrane reactors', (2022), In preparation\n", 95 | "> 2. B. Kee, C. Karakaya, H. Zhu, S. DeCaluwe, and R.J. Kee, 'The Influence of Hydrogen-Permeable Membranes and Pressure on Methane Dehydroaromatization in Packed-Bed Catalytic Reactors', Industrial & Engineering Chemistry Research (2017) 56, 13:3551 - 3559\n", 96 | "> 3. R.J. Kee, M.E. Coltrin, P. Glarborg, and H. Zhu, 'Chemically Reacting Flow: Theory, Modeling and Simulation', Wiley (2018)\n", 97 | "> 4. Z. Zhang, C. Karakaya, R.J. Kee, J. Douglas Way, C. Wolden,, 'Barium-Promoted Ruthenium Catalysts on Yittria-Stabilized Zirconia Supports for Ammonia Synthesis', ACS Sustainable Chemistry & Engineering (2019) 7:18038 - 18047\n", 98 | "> 5. G. Kogekar, 'Computationally efficient and robust models of non-ideal thermodynamics, gas-phase kinetics and heterogeneous catalysis in chemical reactors' (2021), Doctoral dissertation. " 99 | ] 100 | }, 101 | { 102 | "cell_type": "markdown", 103 | "metadata": {}, 104 | "source": [ 105 | "### Define gas-phase and surface-phase species" 106 | ] 107 | }, 108 | { 109 | "cell_type": "code", 110 | "execution_count": 2, 111 | "metadata": {}, 112 | "outputs": [], 113 | "source": [ 114 | "# Import the reaction mechanism for Ammonia synthesis/decomposition on Ru-Ba/YSZ catalyst\n", 115 | "mechfile = \"data/Ammonia-Ru-Ba-YSZ.yaml\"\n", 116 | "# Import the models for gas-phase\n", 117 | "gas = ct.Solution(mechfile, \"gas\")\n", 118 | "# Import the model for surface-phase\n", 119 | "surf = ct.Interface(mechfile, \"Ru_surface\", [gas])\n", 120 | "\n", 121 | "# Other parameters\n", 122 | "n_gas = gas.n_species # number of gas species\n", 123 | "n_surf = surf.n_species # number of surface species\n", 124 | "n_gas_reactions = gas.n_reactions # number of gas-phase reactions\n", 125 | "\n", 126 | "# Set offsets of dependent variables in the solution vector\n", 127 | "offset_rhou = 0\n", 128 | "offset_p = 1\n", 129 | "offset_T = 2\n", 130 | "offset_Y = 3\n", 131 | "offset_Z = offset_Y + n_gas\n", 132 | "n_var = offset_Z + n_surf # total number of variables (rhou, P, T, Yk and Zk)\n", 133 | "\n", 134 | "print(\"Number of gas-phase species = \", n_gas)\n", 135 | "print(\"Number of surface-phase species = \", n_surf)\n", 136 | "print(\"Number of variables = \", n_var)" 137 | ] 138 | }, 139 | { 140 | "cell_type": "markdown", 141 | "metadata": {}, 142 | "source": [ 143 | "### Define reactor geometry and operating conditions" 144 | ] 145 | }, 146 | { 147 | "cell_type": "code", 148 | "execution_count": 3, 149 | "metadata": {}, 150 | "outputs": [], 151 | "source": [ 152 | "# Reactor geometry\n", 153 | "L = 5e-2 # length of the reactor (m)\n", 154 | "R = 5e-3 # radius of the reactor channel (m)\n", 155 | "phi = 0.5 # porosity of the bed (-)\n", 156 | "tau = 2.0 # tortuosity of the bed (-)\n", 157 | "dp = 3.37e-4 # particle diameter (m)\n", 158 | "As = 3.5e6 # specific surface area (1/m)\n", 159 | "\n", 160 | "# Energy (adiabatic or isothermal)\n", 161 | "solve_energy = True # True: Adiabatic, False: isothermal\n", 162 | "\n", 163 | "# Membrane (True: membrane, False: no membrane)\n", 164 | "membrane_present = True\n", 165 | "membrane_perm = 1e-15 # membrane permeability (kmol*m3/s/Pa)\n", 166 | "thickness = 3e-6 # membrane thickness (m)\n", 167 | "membrane_sp_name = \"H2\" # membrane-permeable species name\n", 168 | "p_sweep = 1e5 # partial pressure of permeable species in the sweep channel (Pa)\n", 169 | "permeance = membrane_perm / thickness # permeance of the membrane (kmol*m2/s/Pa)\n", 170 | "\n", 171 | "if membrane_present:\n", 172 | " print(\"Modeling packed-bed, catalytic-membrane reactor...\")\n", 173 | " print(membrane_sp_name, \"permeable membrane is present.\")\n", 174 | "\n", 175 | "# Get required properties based on the geometry and mechanism\n", 176 | "W_g = gas.molecular_weights # vector of molecular weight of gas species\n", 177 | "vol_ratio = phi / (1 - phi)\n", 178 | "eff_factor = phi / tau # effective factor for permeability calculation\n", 179 | "# permeability based on Kozeny-Carman equation\n", 180 | "B_g = B_g = vol_ratio**2 * dp**2 * eff_factor / 72 \n", 181 | "area2vol = 2 / R # area to volume ratio assuming a cylindrical reactor\n", 182 | "D_h = 2 * R # hydraulic diameter\n", 183 | "membrane_sp_ind = gas.species_index(membrane_sp_name)\n", 184 | "\n", 185 | "# Inlet operating conditions\n", 186 | "T_in = 673 # inlet temperature [K]\n", 187 | "p_in = 5e5 # inlet pressure [Pa]\n", 188 | "v_in = 0.001 # inlet velocity [m/s]\n", 189 | "T_wall = 723 # wall temperature [K]\n", 190 | "h_coeff = 1e2 # heat transfer coefficient [W/m2/K]\n", 191 | "\n", 192 | "# Set gas and surface states\n", 193 | "gas.TPX = T_in, p_in, \"NH3:0.99, AR:0.01\" # inlet composition\n", 194 | "surf.TP = T_in, p_in\n", 195 | "Yk_0 = gas.Y\n", 196 | "rhou0 = gas.density * v_in\n", 197 | "\n", 198 | "# Initial surface coverages\n", 199 | "# advancing coverages over a long period of time to get the steady state.\n", 200 | "surf.advance_coverages(1e10) \n", 201 | "Zk_0 = surf.coverages" 202 | ] 203 | }, 204 | { 205 | "cell_type": "markdown", 206 | "metadata": {}, 207 | "source": [ 208 | "### Define residual function required for IDA solver" 209 | ] 210 | }, 211 | { 212 | "cell_type": "code", 213 | "execution_count": 4, 214 | "metadata": {}, 215 | "outputs": [], 216 | "source": [ 217 | "def residual(z, y, yPrime, res):\n", 218 | " \"\"\"Solution vector for the model\n", 219 | " y = [rho*u, p, T, Yk, Zk]\n", 220 | " yPrime = [d(rho*u)dz, dpdz, dTdz, dYkdz, dZkdz]\n", 221 | " \"\"\"\n", 222 | " # Get current thermodynamic state from solution vector and save it to local variables.\n", 223 | " rhou = y[offset_rhou] # mass flux (density * velocity)\n", 224 | " Y = y[offset_Y : offset_Y + n_gas] # vector of mass fractions\n", 225 | " Z = y[offset_Z : offset_Z + n_surf] # vector of site fractions \n", 226 | " p = y[offset_p] # pressure\n", 227 | " T = y[offset_T] # temperature\n", 228 | "\n", 229 | " # Get derivatives of dependent variables\n", 230 | " drhoudz = yPrime[offset_rhou] \n", 231 | " dYdz = yPrime[offset_Y : offset_Y + n_gas] \n", 232 | " dZdz = yPrime[offset_Z : offset_Z + n_surf] \n", 233 | " dpdz = yPrime[offset_p] \n", 234 | " dTdz = yPrime[offset_T] \n", 235 | "\n", 236 | " # Set current thermodynamic state for the gas and surface phases\n", 237 | " # Note: use unnormalized mass fractions and site fractions to avoid over-constraining the system\n", 238 | " gas.set_unnormalized_mass_fractions(Y)\n", 239 | " gas.TP = T, p\n", 240 | " surf.set_unnormalized_coverages(Z)\n", 241 | " surf.TP = T, p\n", 242 | "\n", 243 | " # Calculate required variables based on the current state\n", 244 | " coverages = surf.coverages # surface site coverages\n", 245 | " # heterogeneous production rate of gas species\n", 246 | " sdot_g = surf.get_net_production_rates(\"gas\")\n", 247 | " # heterogeneous production rate of surface species\n", 248 | " sdot_s = surf.get_net_production_rates(\"Ru_surface\")\n", 249 | " wdot_g = np.zeros(n_gas)\n", 250 | " # specific heat of the mixture\n", 251 | " cp = gas.cp_mass \n", 252 | " # partial enthalpies of gas species\n", 253 | " hk_g = gas.partial_molar_enthalpies \n", 254 | "\n", 255 | " if n_gas_reactions > 0:\n", 256 | " # homogeneous production rate of gas species\n", 257 | " wdot_g = gas.net_production_rates \n", 258 | " mu = gas.viscosity # viscosity of the gas-phase\n", 259 | "\n", 260 | " # Calculate density using equation of state\n", 261 | " rho = gas.density\n", 262 | "\n", 263 | " # Calculate flux term through the membrane\n", 264 | " # partial pressure of membrane-permeable species\n", 265 | " memsp_pres = (p * gas.X[membrane_sp_ind]) \n", 266 | " # negative sign indicates the flux going out\n", 267 | " membrane_flux = (-permeance * (memsp_pres - p_sweep) * W_g[membrane_sp_ind]) \n", 268 | "\n", 269 | " # Conservation of total-mass\n", 270 | " # temporary variable\n", 271 | " sum_continuity = As * np.sum(sdot_g * W_g) + phi * np.sum(wdot_g * W_g) \n", 272 | " res[offset_rhou] = (drhoudz - sum_continuity - area2vol * membrane_flux * membrane_present)\n", 273 | "\n", 274 | " # Conservation of gas-phase species \n", 275 | " res[offset_Y:offset_Y+ n_gas] = (dYdz + (Y * sum_continuity - phi * np.multiply(wdot_g,W_g) \n", 276 | " - As * np.multiply(sdot_g,W_g)) / rhou)\n", 277 | " res[offset_Y + membrane_sp_ind] -= area2vol * membrane_flux * membrane_present\n", 278 | "\n", 279 | " # Conservation of site fractions (algebraic contraints in this example)\n", 280 | " res[offset_Z : offset_Z + n_surf] = sdot_s\n", 281 | "\n", 282 | " # For the species with largest site coverage (k_large), solve the constraint equation: sum(Zk) = 1\n", 283 | " # The residual function for 'k_large' would be 'res[k_large] = 1 - sum(Zk)'\n", 284 | " # Note that here sum(Zk) will be the sum of coverages for all surface species, including the 'k_large' species.\n", 285 | " ind_large = np.argmax(coverages)\n", 286 | " res[offset_Z + ind_large] = 1 - np.sum(coverages)\n", 287 | "\n", 288 | " # Conservation of momentum\n", 289 | " u = rhou / rho\n", 290 | " res[offset_p] = dpdz + phi * mu * u / B_g\n", 291 | "\n", 292 | " # Conservation of energy\n", 293 | " res[offset_T] = dTdz - 0 # isothermal condition\n", 294 | " # Note: One can just not solve the energy equation by keeping temperature constant. \n", 295 | " # But since 'T' is used as the dependent variable, the residual is res[T] = dTdz - 0 \n", 296 | " # One can also write res[T] = 0 directly, but that leads to a solver failure due to singular jacobian\n", 297 | "\n", 298 | " if solve_energy:\n", 299 | " conv_term = (4 / D_h) * h_coeff * (T_wall - T) * (2 * np.pi * R)\n", 300 | " chem_term = np.sum(hk_g * (phi * wdot_g + As * sdot_g))\n", 301 | " res[offset_T] -= (conv_term - chem_term) / (rhou * cp)" 302 | ] 303 | }, 304 | { 305 | "cell_type": "markdown", 306 | "metadata": {}, 307 | "source": [ 308 | "### Calculate the spatial derivatives at the inlet that will be used as the initial conditions for the IDA solver\n" 309 | ] 310 | }, 311 | { 312 | "cell_type": "code", 313 | "execution_count": 5, 314 | "metadata": {}, 315 | "outputs": [], 316 | "source": [ 317 | "# Initialize yPrime to 0 and call residual to get initial derivatives\n", 318 | "y0 = np.hstack((rhou0, p_in, T_in, Yk_0, Zk_0))\n", 319 | "yprime0 = np.zeros(n_var)\n", 320 | "res = np.zeros(n_var)\n", 321 | "residual(0, y0, yprime0, res)\n", 322 | "yprime0 = -res" 323 | ] 324 | }, 325 | { 326 | "cell_type": "markdown", 327 | "metadata": {}, 328 | "source": [ 329 | "### Solve the system of DAEs using ida solver" 330 | ] 331 | }, 332 | { 333 | "cell_type": "code", 334 | "execution_count": 6, 335 | "metadata": {}, 336 | "outputs": [], 337 | "source": [ 338 | "solver = dae(\n", 339 | " \"ida\",\n", 340 | " residual,\n", 341 | " first_step_size=1e-15,\n", 342 | " atol=1e-14, # absolute tolerance for solution\n", 343 | " rtol=1e-06, # relative tolerance for solution\n", 344 | " algebraic_vars_idx=[np.arange(offset_Y + n_gas, offset_Z + n_surf, 1)],\n", 345 | " max_steps=8000,\n", 346 | " one_step_compute=True,\n", 347 | " old_api=False, # forces use of new api (namedtuple)\n", 348 | ")\n", 349 | "\n", 350 | "distance = []\n", 351 | "solution = []\n", 352 | "state = solver.init_step(0.0, y0, yprime0)\n", 353 | "\n", 354 | "# Note that here the variable t is an internal varible used in scikits. In this example, it represents\n", 355 | "# the natural variable z, which corresponds to the axial distance inside the reactor.\n", 356 | "while state.values.t < L:\n", 357 | " distance.append(state.values.t)\n", 358 | " solution.append(state.values.y)\n", 359 | " state = solver.step(L)\n", 360 | "\n", 361 | "distance = np.array(distance)\n", 362 | "solution = np.array(solution)\n", 363 | "print(state)" 364 | ] 365 | }, 366 | { 367 | "cell_type": "markdown", 368 | "metadata": {}, 369 | "source": [ 370 | "### Plot results" 371 | ] 372 | }, 373 | { 374 | "cell_type": "code", 375 | "execution_count": 7, 376 | "metadata": {}, 377 | "outputs": [], 378 | "source": [ 379 | "plt.rcParams[\"font.size\"] = 14\n", 380 | "f, ax = plt.subplots(3, 2, figsize=(12, 12), dpi=96)\n", 381 | "\n", 382 | "# Plot gas pressure profile along the flow direction\n", 383 | "ax[0, 0].plot(distance, solution[:, offset_p], color=\"C0\")\n", 384 | "ax[0, 0].set_xlabel(\"Distance (m)\")\n", 385 | "ax[0, 0].set_ylabel(\"Pressure (Pa)\")\n", 386 | "\n", 387 | "# Plot gas temperature profile along the flow direction\n", 388 | "ax[0, 1].plot(distance, solution[:, offset_T], color=\"C1\")\n", 389 | "ax[0, 1].set_xlabel(\"Distance (m)\")\n", 390 | "ax[0, 1].set_ylabel(\"Temperature (K)\")\n", 391 | "\n", 392 | "# Plot major and minor gas species separately\n", 393 | "minor_idx = []\n", 394 | "major_idx = []\n", 395 | "for j, name in enumerate(gas.species_names):\n", 396 | " mean = np.mean(solution[:, offset_Y + j])\n", 397 | " if mean <= 0.1:\n", 398 | " minor_idx.append(j)\n", 399 | " else:\n", 400 | " major_idx.append(j)\n", 401 | "\n", 402 | "# Plot mass fractions of the gas-phase species along the flow direction\n", 403 | "\n", 404 | "# Major gas-phase species\n", 405 | "for j in major_idx:\n", 406 | " ax[1, 0].plot(distance, solution[:, offset_Y + j], label=gas.species_names[j])\n", 407 | "ax[1, 0].legend(fontsize=12, loc=\"best\")\n", 408 | "ax[1, 0].set_xlabel(\"Distance (m)\")\n", 409 | "ax[1, 0].set_ylabel(\"Mass Fraction\")\n", 410 | "\n", 411 | "# Minor gas-phase species\n", 412 | "for j in minor_idx:\n", 413 | " ax[1, 1].plot(distance, solution[:, offset_Y + j], label=gas.species_names[j])\n", 414 | "ax[1, 1].legend(fontsize=12, loc=\"best\")\n", 415 | "ax[1, 1].set_xlabel(\"Distance (m)\")\n", 416 | "ax[1, 1].set_ylabel(\"Mass Fraction\")\n", 417 | "\n", 418 | "# Plot major and minor surface species separately\n", 419 | "minor_idx = []\n", 420 | "major_idx = []\n", 421 | "for j, name in enumerate(surf.species_names):\n", 422 | " mean = np.mean(solution[:, offset_Z + j])\n", 423 | " if mean <= 0.1:\n", 424 | " minor_idx.append(j)\n", 425 | " else:\n", 426 | " major_idx.append(j)\n", 427 | "\n", 428 | "# Plot the site fraction of the surface-phase species along the flow direction\n", 429 | "# Major surf-phase species\n", 430 | "for j in major_idx:\n", 431 | " ax[2, 0].plot(distance, solution[:, offset_Z + j], label=surf.species_names[j])\n", 432 | "ax[2, 0].legend(fontsize=12, loc=\"best\")\n", 433 | "ax[2, 0].set_xlabel(\"Distance (m)\")\n", 434 | "ax[2, 0].set_ylabel(\"Site Fraction\")\n", 435 | "\n", 436 | "# Minor surf-phase species\n", 437 | "for j in minor_idx:\n", 438 | " ax[2, 1].plot(distance, solution[:, offset_Z + j], label=surf.species_names[j])\n", 439 | "ax[2, 1].legend(fontsize=12, loc=\"best\")\n", 440 | "ax[2, 1].set_xlabel(\"Distance (m)\")\n", 441 | "ax[2, 1].set_ylabel(\"Site Fraction\")\n", 442 | "f.tight_layout()" 443 | ] 444 | }, 445 | { 446 | "cell_type": "code", 447 | "execution_count": null, 448 | "metadata": {}, 449 | "outputs": [], 450 | "source": [] 451 | } 452 | ], 453 | "metadata": { 454 | "kernelspec": { 455 | "display_name": "Python 3 (ipykernel)", 456 | "language": "python", 457 | "name": "python3" 458 | }, 459 | "language_info": { 460 | "codemirror_mode": { 461 | "name": "ipython", 462 | "version": 3 463 | }, 464 | "file_extension": ".py", 465 | "mimetype": "text/x-python", 466 | "name": "python", 467 | "nbconvert_exporter": "python", 468 | "pygments_lexer": "ipython3", 469 | "version": "3.9.18" 470 | } 471 | }, 472 | "nbformat": 4, 473 | "nbformat_minor": 4 474 | } 475 | -------------------------------------------------------------------------------- /reactors/data/Ammonia-Ru-Ba-YSZ.yaml: -------------------------------------------------------------------------------- 1 | description: |- 2 | Ru-Ba/YSZ mechanism 3 | 4 | generator: ck2yaml 5 | input-files: [chem.inp, therm.dat, tran.dat, surf.inp] 6 | cantera-version: 2.6.0 7 | date: Wed, 03 Aug 2022 14:22:42 -0400 8 | 9 | units: {length: cm, time: s, quantity: mol, activation-energy: kJ/mol} 10 | 11 | phases: 12 | - name: gas 13 | thermo: ideal-gas 14 | elements: [H, N, Ru, Ar] 15 | species: [H2, NH3, N2, AR] 16 | transport: mixture-averaged 17 | state: {T: 300.0, P: 1 atm} 18 | - name: Ru_surface 19 | thermo: ideal-surface 20 | adjacent-phases: [gas] 21 | elements: [H, N, Ru, Ar] 22 | species: [Ru(s), N(s), H(s), NH(s), NH2(s), NH3(s)] 23 | site-density: 2.6079e-09 24 | Motz-Wise: false 25 | kinetics: surface 26 | state: {T: 300.0, P: 1 atm} 27 | 28 | species: 29 | - name: H2 30 | composition: {H: 2} 31 | thermo: 32 | model: NASA7 33 | temperature-ranges: [300.0, 1000.0, 5000.0] 34 | data: 35 | - [3.298124, 8.249441e-04, -8.143015e-07, -9.475434e-11, 4.134872e-13, 36 | -1012.5209, -3.294094] 37 | - [2.991423, 7.000644e-04, -5.633828e-08, -9.231578e-12, 1.5827519e-15, 38 | -835.034, -1.3551101] 39 | note: '121286' 40 | transport: 41 | model: gas 42 | geometry: linear 43 | well-depth: 38.0 44 | diameter: 2.92 45 | polarizability: 0.79 46 | rotational-relaxation: 280.0 47 | - name: NH3 48 | composition: {N: 1, H: 3} 49 | thermo: 50 | model: NASA7 51 | temperature-ranges: [300.0, 1000.0, 5000.0] 52 | data: 53 | - [2.204351, 0.010114765, -1.4652648e-05, 1.447235e-08, -5.328509e-12, 54 | -6525.488, 8.127138] 55 | - [2.461904, 6.059166e-03, -2.004976e-06, 3.136003e-10, -1.938317e-14, 56 | -6493.269, 7.472097] 57 | note: '121386' 58 | transport: 59 | model: gas 60 | geometry: nonlinear 61 | well-depth: 481.0 62 | diameter: 2.92 63 | dipole: 1.47 64 | rotational-relaxation: 10.0 65 | - name: N2 66 | composition: {N: 2} 67 | thermo: 68 | model: NASA7 69 | temperature-ranges: [300.0, 1000.0, 5000.0] 70 | data: 71 | - [3.298677, 1.40824e-03, -3.963222e-06, 5.641515e-09, -2.444855e-12, 72 | -1020.9, 3.950372] 73 | - [2.92664, 1.487977e-03, -5.684761e-07, 1.009704e-10, -6.753351e-15, 74 | -922.7977, 5.980528] 75 | note: '121286' 76 | transport: 77 | model: gas 78 | geometry: linear 79 | well-depth: 97.53 80 | diameter: 3.621 81 | polarizability: 1.76 82 | rotational-relaxation: 4.0 83 | - name: AR 84 | composition: {Ar: 1} 85 | thermo: 86 | model: NASA7 87 | temperature-ranges: [300.0, 5000.0] 88 | data: 89 | - [2.5, 0.0, 0.0, 0.0, 0.0, -745.375, 4.366] 90 | note: |- 91 | 120186 92 | FROM GRI MECHANISM 93 | transport: 94 | model: gas 95 | geometry: atom 96 | well-depth: 136.5 97 | diameter: 3.33 98 | - name: Ru(s) 99 | composition: {Ru: 1} 100 | thermo: 101 | model: NASA7 102 | temperature-ranges: [300.0, 5000.0] 103 | data: 104 | - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 105 | - name: N(s) 106 | composition: {N: 1, Ru: 1} 107 | thermo: 108 | model: NASA7 109 | temperature-ranges: [300.0, 5000.0] 110 | data: 111 | - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 112 | - name: H(s) 113 | composition: {H: 1, Ru: 1} 114 | thermo: 115 | model: NASA7 116 | temperature-ranges: [300.0, 5000.0] 117 | data: 118 | - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 119 | - name: NH(s) 120 | composition: {N: 1, H: 1, Ru: 1} 121 | thermo: 122 | model: NASA7 123 | temperature-ranges: [300.0, 5000.0] 124 | data: 125 | - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 126 | - name: NH2(s) 127 | composition: {H: 2, N: 1, Ru: 1} 128 | thermo: 129 | model: NASA7 130 | temperature-ranges: [300.0, 5000.0] 131 | data: 132 | - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 133 | - name: NH3(s) 134 | composition: {H: 3, N: 1, Ru: 1} 135 | thermo: 136 | model: NASA7 137 | temperature-ranges: [300.0, 5000.0] 138 | data: 139 | - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 140 | 141 | reactions: 142 | - equation: N2 + Ru(s) + Ru(s) => N(s) + N(s) # Reaction 1 143 | sticking-coefficient: {A: 2.892e-06, b: 0.0, Ea: 38.949} 144 | - equation: N(s) + N(s) => Ru(s) + Ru(s) + N2 # Reaction 2 145 | rate-constant: {A: 2.015e+17, b: -0.279, Ea: 148.027} 146 | coverage-dependencies: 147 | N(s): [0.0, 0.0, -14.0] 148 | - equation: H2 + Ru(s) + Ru(s) => H(s) + H(s) # Reaction 3 149 | sticking-coefficient: {A: 4.007e-03, b: 0.0, Ea: 0.0} 150 | - equation: H(s) + H(s) => Ru(s) + Ru(s) + H2 # Reaction 4 151 | rate-constant: {A: 3.6e+20, b: 0.658, Ea: 91.948} 152 | coverage-dependencies: 153 | H(s): [0.0, 0.0, -2.0] 154 | - equation: NH3 + Ru(s) => NH3(s) # Reaction 5 155 | sticking-coefficient: {A: 1.247e-05, b: 0.0, Ea: 0.0} 156 | - equation: NH3(s) => Ru(s) + NH3 # Reaction 6 157 | rate-constant: {A: 2.235e+11, b: 0.083, Ea: 83.536} 158 | - equation: H(s) + N(s) => NH(s) + Ru(s) # Reaction 7 159 | rate-constant: {A: 8.424e+20, b: 0.0, Ea: 83.62} 160 | coverage-dependencies: 161 | N(s): [0.0, 0.0, -7.0] 162 | - equation: NH(s) + Ru(s) => H(s) + N(s) # Reaction 8 163 | rate-constant: {A: 6.813e+19, b: 0.207, Ea: 30.972} 164 | coverage-dependencies: 165 | H(s): [0.0, 0.0, 1.0] 166 | - equation: NH(s) + H(s) => NH2(s) + Ru(s) # Reaction 9 167 | rate-constant: {A: 4.949e+19, b: 0.083, Ea: 75.236} 168 | - equation: NH2(s) + Ru(s) => NH(s) + H(s) # Reaction 10 169 | rate-constant: {A: 8.321e+19, b: -0.083, Ea: 15.767} 170 | coverage-dependencies: 171 | H(s): [0.0, 0.0, 1.0] 172 | - equation: NH2(s) + H(s) => NH3(s) + Ru(s) # Reaction 11 173 | rate-constant: {A: 3.886e+19, b: 0.083, Ea: 17.036} 174 | - equation: NH3(s) + Ru(s) => NH2(s) + H(s) # Reaction 12 175 | rate-constant: {A: 1.478e+20, b: 0.0, Ea: 64.98} 176 | coverage-dependencies: 177 | H(s): [0.0, 0.0, 1.0] 178 | -------------------------------------------------------------------------------- /reactors/images/batchReactor.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cantera/cantera-jupyter/a99ee55aeeb302abf975e7b57ee1e8dfd48c0d0f/reactors/images/batchReactor.png -------------------------------------------------------------------------------- /reactors/images/stirredReactorCanteraSimulation.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cantera/cantera-jupyter/a99ee55aeeb302abf975e7b57ee1e8dfd48c0d0f/reactors/images/stirredReactorCanteraSimulation.png -------------------------------------------------------------------------------- /reactors/images/stirredReactorCartoon.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cantera/cantera-jupyter/a99ee55aeeb302abf975e7b57ee1e8dfd48c0d0f/reactors/images/stirredReactorCartoon.png -------------------------------------------------------------------------------- /thermo/flame_temperature.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Flame Temperature\n", 8 | "This example demonstrates calculation of the adiabatic flame temperature for a methane/air mixture, comparing calculations which assume either complete or incomplete combustion." 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": 1, 14 | "metadata": {}, 15 | "outputs": [ 16 | { 17 | "name": "stdout", 18 | "output_type": "stream", 19 | "text": [ 20 | "Using Cantera version: 2.6.0a4\n" 21 | ] 22 | } 23 | ], 24 | "source": [ 25 | "%matplotlib inline\n", 26 | "%config InlineBackend.figure_formats = [\"svg\"]\n", 27 | "import cantera as ct\n", 28 | "import numpy as np\n", 29 | "import matplotlib.pyplot as plt\n", 30 | "\n", 31 | "plt.rcParams[\"figure.dpi\"] = 120\n", 32 | "\n", 33 | "print(f\"Using Cantera version: {ct.__version__}\")" 34 | ] 35 | }, 36 | { 37 | "cell_type": "markdown", 38 | "metadata": {}, 39 | "source": [ 40 | "## Complete Combustion\n", 41 | "\n", 42 | "The stoichiometric equation for complete combustion of a lean methane/air mixture ($\\phi < 1$) is:\n", 43 | "\n", 44 | "$$\\mathrm{\\phi CH_4 + 2(O_2 + 3.76 N_2) \\rightarrow \\phi CO_2 + 2\\phi H_2O + 2 (1-\\phi) O_2 + 7.52 N_2}$$\n", 45 | "\n", 46 | "For a rich mixture ($\\phi > 1$), this becomes:\n", 47 | "\n", 48 | "$$\\mathrm{\\phi CH_4 + 2(O_2 + 3.76 N_2) \\rightarrow CO_2 + 2 H_2O + (\\phi - 1) CH_4 + 7.52 N_2}$$\n", 49 | "\n", 50 | "To find the flame temperature resulting from these reactions using Cantera, we create a gas object containing only the species in the above stoichiometric equations, and then use the `equilibrate()` function to find the resulting mixture composition and temperature, taking advantage of the fact that equilibrium will strongly favor conversion of the fuel molecule." 51 | ] 52 | }, 53 | { 54 | "cell_type": "code", 55 | "execution_count": 2, 56 | "metadata": {}, 57 | "outputs": [], 58 | "source": [ 59 | "# Get all of the Species objects defined in the GRI 3.0 mechanism\n", 60 | "species = {S.name: S for S in ct.Species.list_from_file(\"gri30.yaml\")}\n", 61 | "\n", 62 | "# Create an IdealGas object with species representing complete combustion\n", 63 | "complete_species = [species[S] for S in (\"CH4\", \"O2\", \"N2\", \"CO2\", \"H2O\")]\n", 64 | "gas1 = ct.Solution(thermo=\"ideal-gas\", species=complete_species)\n", 65 | "\n", 66 | "phi = np.linspace(0.5, 2.0, 100)\n", 67 | "T_complete = np.zeros(phi.shape)\n", 68 | "for i in range(len(phi)):\n", 69 | " gas1.TP = 300, ct.one_atm\n", 70 | " gas1.set_equivalence_ratio(phi[i], \"CH4\", \"O2:1, N2:3.76\")\n", 71 | " gas1.equilibrate(\"HP\")\n", 72 | " T_complete[i] = gas1.T" 73 | ] 74 | }, 75 | { 76 | "cell_type": "markdown", 77 | "metadata": {}, 78 | "source": [ 79 | "## Incomplete Combustion\n", 80 | "\n", 81 | "In the case of incomplete combustion, the resulting mixture composition is not known in advance, but must be found by calculating the equilibrium composition at constant enthalpy and temperature:\n", 82 | "\n", 83 | "$$\\mathrm{\\phi CH_4 + 2(O_2 + 3.76 N_2) \\rightarrow ? CO_2 + ? CO + ? H_2 + ? H_2O + ? O_2 + 7.52 N_2 + minor\\ species}$$\n", 84 | "\n", 85 | "Now, we use a gas phase object containing all 53 species defined in the GRI 3.0 mechanism, and compute the equilibrium composition as a function of equivalence ratio." 86 | ] 87 | }, 88 | { 89 | "cell_type": "code", 90 | "execution_count": 3, 91 | "metadata": {}, 92 | "outputs": [], 93 | "source": [ 94 | "# Create an IdealGas object including incomplete combustion species\n", 95 | "gas2 = ct.Solution(thermo=\"IdealGas\", species=species.values())\n", 96 | "T_incomplete = np.zeros(phi.shape)\n", 97 | "for i in range(len(phi)):\n", 98 | " gas2.TP = 300, ct.one_atm\n", 99 | " gas2.set_equivalence_ratio(phi[i], \"CH4\", \"O2:1, N2:3.76\")\n", 100 | " gas2.equilibrate(\"HP\")\n", 101 | " T_incomplete[i] = gas2.T" 102 | ] 103 | }, 104 | { 105 | "cell_type": "code", 106 | "execution_count": 4, 107 | "metadata": {}, 108 | "outputs": [ 109 | { 110 | "data": { 111 | "image/svg+xml": [ 112 | "\n", 113 | "\n", 115 | "\n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " 2022-04-05T14:37:31.586706\n", 121 | " image/svg+xml\n", 122 | " \n", 123 | " \n", 124 | " Matplotlib v3.5.1, https://matplotlib.org/\n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 194 | " \n", 201 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 501 | " \n", 527 | " \n", 549 | " \n", 562 | " \n", 572 | " \n", 605 | " \n", 612 | " \n", 637 | " \n", 656 | " \n", 677 | " \n", 678 | " \n", 695 | " \n", 716 | " \n", 737 | " \n", 746 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | " \n", 849 | " \n", 850 | " \n", 851 | " \n", 854 | " \n", 855 | " \n", 856 | " \n", 857 | " \n", 858 | " \n", 859 | " \n", 860 | " \n", 861 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 865 | " \n", 866 | " \n", 867 | " \n", 868 | " \n", 869 | " \n", 870 | " \n", 871 | " \n", 872 | " \n", 875 | " \n", 876 | " \n", 877 | " \n", 878 | " \n", 879 | " \n", 880 | " \n", 881 | " \n", 882 | " \n", 883 | " \n", 884 | " \n", 885 | " \n", 886 | " \n", 887 | " \n", 888 | " \n", 889 | " \n", 890 | " \n", 891 | " \n", 892 | " \n", 893 | " \n", 894 | " \n", 895 | " \n", 906 | " \n", 936 | " \n", 962 | " \n", 973 | " \n", 987 | " \n", 998 | " \n", 999 | " \n", 1000 | " \n", 1001 | " \n", 1002 | " \n", 1003 | " \n", 1004 | " \n", 1005 | " \n", 1006 | " \n", 1007 | " \n", 1008 | " \n", 1009 | " \n", 1010 | " \n", 1011 | " \n", 1012 | " \n", 1013 | " \n", 1014 | " \n", 1015 | " \n", 1016 | " \n", 1017 | " \n", 1018 | " \n", 1119 | " \n", 1120 | " \n", 1121 | " \n", 1222 | " \n", 1223 | " \n", 1224 | " \n", 1227 | " \n", 1228 | " \n", 1229 | " \n", 1232 | " \n", 1233 | " \n", 1234 | " \n", 1237 | " \n", 1238 | " \n", 1239 | " \n", 1242 | " \n", 1243 | " \n", 1244 | " \n", 1245 | " \n", 1246 | " \n", 1247 | " \n", 1248 | " \n", 1249 | " \n", 1250 | "\n" 1251 | ], 1252 | "text/plain": [ 1253 | "
" 1254 | ] 1255 | }, 1256 | "metadata": { 1257 | "needs_background": "light" 1258 | }, 1259 | "output_type": "display_data" 1260 | } 1261 | ], 1262 | "source": [ 1263 | "plt.plot(phi, T_complete, label=\"complete combustion\", lw=2)\n", 1264 | "plt.plot(phi, T_incomplete, label=\"incomplete combustion\", lw=2)\n", 1265 | "plt.grid(True)\n", 1266 | "plt.xlabel(r\"Equivalence ratio, $\\phi$\")\n", 1267 | "plt.ylabel(\"Temperature [K]\");" 1268 | ] 1269 | } 1270 | ], 1271 | "metadata": { 1272 | "kernelspec": { 1273 | "display_name": "Python 3 (ipykernel)", 1274 | "language": "python", 1275 | "name": "python3" 1276 | }, 1277 | "language_info": { 1278 | "codemirror_mode": { 1279 | "name": "ipython", 1280 | "version": 3 1281 | }, 1282 | "file_extension": ".py", 1283 | "mimetype": "text/x-python", 1284 | "name": "python", 1285 | "nbconvert_exporter": "python", 1286 | "pygments_lexer": "ipython3", 1287 | "version": "3.9.12" 1288 | } 1289 | }, 1290 | "nbformat": 4, 1291 | "nbformat_minor": 4 1292 | } 1293 | -------------------------------------------------------------------------------- /thermo/heating_value.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Heating values\n", 8 | "Use Cantera's thermodynamic data to calculate the lower heating value (LHV) and higher heating value (HHV) of methane and other fuels." 9 | ] 10 | }, 11 | { 12 | "cell_type": "markdown", 13 | "metadata": {}, 14 | "source": [ 15 | "## Heating value of Methane\n", 16 | "The complete reaction for heating methane is:\n", 17 | "\n", 18 | "$\\mathrm{CH_4+2O_2\\rightarrow CO_2+2H_2O}$\n", 19 | "\n", 20 | "We compute the lower heating value (LHV) as the difference in enthalpy (per kg *mixture*) between reactants and products at constant temperature and pressure, divided by the mass fraction of fuel in the reactants." 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 1, 26 | "metadata": {}, 27 | "outputs": [ 28 | { 29 | "name": "stdout", 30 | "output_type": "stream", 31 | "text": [ 32 | "Using Cantera version: 2.6.0a4\n" 33 | ] 34 | } 35 | ], 36 | "source": [ 37 | "import cantera as ct\n", 38 | "\n", 39 | "print(f\"Using Cantera version: {ct.__version__}\")" 40 | ] 41 | }, 42 | { 43 | "cell_type": "code", 44 | "execution_count": 3, 45 | "metadata": {}, 46 | "outputs": [ 47 | { 48 | "name": "stdout", 49 | "output_type": "stream", 50 | "text": [ 51 | "LHV = 50.025 MJ/kg\n" 52 | ] 53 | } 54 | ], 55 | "source": [ 56 | "gas = ct.Solution(\"gri30.yaml\")\n", 57 | "\n", 58 | "# Set reactants state\n", 59 | "gas.TPX = 298, 101325, \"CH4:1, O2:2\"\n", 60 | "h1 = gas.enthalpy_mass\n", 61 | "Y_CH4 = gas[\"CH4\"].Y[0] # returns an array, of which we only want the first element\n", 62 | "\n", 63 | "# set state to complete combustion products without changing T or P\n", 64 | "gas.TPX = None, None, \"CO2:1, H2O:2\"\n", 65 | "h2 = gas.enthalpy_mass\n", 66 | "\n", 67 | "LHV = -(h2 - h1) / Y_CH4 / 1e6\n", 68 | "print(f\"LHV = {LHV:.3f} MJ/kg\")" 69 | ] 70 | }, 71 | { 72 | "cell_type": "markdown", 73 | "metadata": {}, 74 | "source": [ 75 | "The LHV is calculated assuming that water remains in the gas phase. However, more energy can be extracted from the mixture if this water is condensed. This value is the higher heating value (HHV).\n", 76 | "\n", 77 | "The ideal gas mixture model used here cannot calculate this contribution directly. However, Cantera also has a non-ideal equation of state which can be used to compute this contribution." 78 | ] 79 | }, 80 | { 81 | "cell_type": "code", 82 | "execution_count": 4, 83 | "metadata": {}, 84 | "outputs": [ 85 | { 86 | "name": "stdout", 87 | "output_type": "stream", 88 | "text": [ 89 | "HHV = 55.511 MJ/kg\n" 90 | ] 91 | } 92 | ], 93 | "source": [ 94 | "water = ct.Water()\n", 95 | "# Set liquid water state, with vapor fraction x = 0\n", 96 | "water.TQ = 298, 0\n", 97 | "h_liquid = water.h\n", 98 | "# Set gaseous water state, with vapor fraction x = 1\n", 99 | "water.TQ = 298, 1\n", 100 | "h_gas = water.h\n", 101 | "\n", 102 | "# Calculate higher heating value\n", 103 | "Y_H2O = gas[\"H2O\"].Y[0]\n", 104 | "HHV = -(h2 - h1 + (h_liquid - h_gas) * Y_H2O) / Y_CH4 / 1e6\n", 105 | "print(f\"HHV = {HHV:.3f} MJ/kg\")" 106 | ] 107 | }, 108 | { 109 | "cell_type": "markdown", 110 | "metadata": {}, 111 | "source": [ 112 | "## Generalizing to arbitrary species\n", 113 | "We can generalize this calculation by determining the composition of the products automatically rather than directly specifying the product composition. This can be done by computing the *elemental mole fractions* of the reactants mixture and noting that for complete combustion, all of the carbon ends up as $\\mathrm{CO}_2$, all of the hydrogen ends up as $\\mathrm{H}_2\\mathrm{O}$, and all of the nitrogen ends up as $\\mathrm{N}_2$. From this, we can compute the ratio of these species in the products." 114 | ] 115 | }, 116 | { 117 | "cell_type": "code", 118 | "execution_count": 5, 119 | "metadata": {}, 120 | "outputs": [ 121 | { 122 | "name": "stdout", 123 | "output_type": "stream", 124 | "text": [ 125 | "fuel LHV (MJ/kg) HHV (MJ/kg)\n", 126 | "H2 119.952 141.780\n", 127 | "CH4 50.025 55.511\n", 128 | "C2H6 47.511 51.901\n", 129 | "C3H8 46.352 50.343\n", 130 | "NH3 18.604 22.479\n", 131 | "CH3OH 21.104 23.851\n" 132 | ] 133 | } 134 | ], 135 | "source": [ 136 | "def heating_value(fuel):\n", 137 | " \"\"\"Returns the LHV and HHV for the specified fuel\"\"\"\n", 138 | " gas.TP = 298, ct.one_atm\n", 139 | " gas.set_equivalence_ratio(1.0, fuel, \"O2:1.0\")\n", 140 | " h1 = gas.enthalpy_mass\n", 141 | " Y_fuel = gas[fuel].Y[0]\n", 142 | "\n", 143 | " # complete combustion products\n", 144 | " X_products = {\n", 145 | " \"CO2\": gas.elemental_mole_fraction(\"C\"),\n", 146 | " \"H2O\": 0.5 * gas.elemental_mole_fraction(\"H\"),\n", 147 | " \"N2\": 0.5 * gas.elemental_mole_fraction(\"N\"),\n", 148 | " }\n", 149 | "\n", 150 | " gas.TPX = None, None, X_products\n", 151 | " Y_H2O = gas[\"H2O\"].Y[0]\n", 152 | " h2 = gas.enthalpy_mass\n", 153 | " LHV = -(h2 - h1) / Y_fuel / 1e6\n", 154 | " HHV = -(h2 - h1 + (h_liquid - h_gas) * Y_H2O) / Y_fuel / 1e6\n", 155 | " return LHV, HHV\n", 156 | "\n", 157 | "\n", 158 | "fuels = [\"H2\", \"CH4\", \"C2H6\", \"C3H8\", \"NH3\", \"CH3OH\"]\n", 159 | "print(\"fuel LHV (MJ/kg) HHV (MJ/kg)\")\n", 160 | "for fuel in fuels:\n", 161 | " LHV, HHV = heating_value(fuel)\n", 162 | " print(f\"{fuel:8s} {LHV:7.3f} {HHV:7.3f}\")" 163 | ] 164 | } 165 | ], 166 | "metadata": { 167 | "kernelspec": { 168 | "display_name": "Python 3 (ipykernel)", 169 | "language": "python", 170 | "name": "python3" 171 | }, 172 | "language_info": { 173 | "codemirror_mode": { 174 | "name": "ipython", 175 | "version": 3 176 | }, 177 | "file_extension": ".py", 178 | "mimetype": "text/x-python", 179 | "name": "python", 180 | "nbconvert_exporter": "python", 181 | "pygments_lexer": "ipython3", 182 | "version": "3.9.12" 183 | } 184 | }, 185 | "nbformat": 4, 186 | "nbformat_minor": 4 187 | } 188 | --------------------------------------------------------------------------------