├── .gitignore
├── License.txt
├── README.md
├── data
├── SiF4_NH3_mec.yaml
├── WangMechanismRK.yaml
├── co2-thermo.yaml
├── galway.yaml
├── lithium_ion_battery.yaml
├── seiser.yaml
└── zhangExpData.csv
├── electrochemistry
├── images
│ └── SingleParticleBattery.png
└── lithium_ion_battery.ipynb
├── environment.yml
├── flames
├── flame_speed_with_convergence_analysis.ipynb
├── flame_speed_with_sensitivity_analysis.ipynb
├── images
│ ├── flameSpeed.png
│ └── twinPremixedFlame.png
└── twin_premixed_flame_axisymmetric.ipynb
├── input
├── chemkin
│ ├── air.inp
│ ├── airDataNASA9.dat
│ ├── airNASA9.inp
│ ├── air_extra.yaml
│ ├── argon.inp
│ ├── argon_extra.yaml
│ ├── gri30.inp
│ ├── gri30_extra.yaml
│ ├── gri30_thermo.dat
│ ├── gri30_tran.dat
│ ├── h2o2.inp
│ ├── h2o2_extra.yaml
│ └── nasathermo.dat
└── ck2yaml_demo.ipynb
├── python_tutorial.ipynb
├── reactors
├── 1D_packbed.ipynb
├── 1D_pfr_surfchem.ipynb
├── batch_reactor_ignition_delay_NTC.ipynb
├── data
│ └── Ammonia-Ru-Ba-YSZ.yaml
├── images
│ ├── batchReactor.png
│ ├── stirredReactorCanteraSimulation.png
│ └── stirredReactorCartoon.png
├── interactive_path_diagram.ipynb
├── nonideal_shock_tube.ipynb
└── stirred_reactor.ipynb
└── thermo
├── equations_of_state.ipynb
├── flame_temperature.ipynb
└── heating_value.ipynb
/.gitignore:
--------------------------------------------------------------------------------
1 | .ipynb_checkpoints
2 | .DS_Store
3 | .python-version
4 | .vscode/
5 | *.nbconvert.ipynb
6 | reactors/reaction_paths.*
7 | input/*.yaml
8 |
--------------------------------------------------------------------------------
/License.txt:
--------------------------------------------------------------------------------
1 | Copyright (c) 2016-2018, Cantera Developers.
2 | All rights reserved.
3 |
4 | Redistribution and use in source and binary forms, with or without
5 | modification, are permitted provided that the following conditions are
6 | met:
7 |
8 | - Redistributions of source code must retain the above copyright
9 | notice, this list of conditions and the following disclaimer.
10 |
11 | - Redistributions in binary form must reproduce the above copyright
12 | notice, this list of conditions and the following disclaimer in the
13 | documentation and/or other materials provided with the distribution.
14 |
15 | - Neither the name of the California Institute of Technology, Sandia
16 | Corporation nor the names of other contributors may be used to
17 | endorse or promote products derived from this software without
18 | specific prior written permission.
19 |
20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # cantera-jupyter
2 |
3 | ## 🚨 This repository is obsolete! 🚨
4 |
5 | Starting with Cantera 3.1, all of these examples have been migrated into the main repository as
6 | pure Python scripts that are then rendered by [Sphinx Gallery](https://sphinx-gallery.github.io).
7 | You can see the gallery of Python examples for the current version of Cantera at
8 | https://cantera.org/stable/examples/python/index.html.
9 |
10 | If you would like to contribute a new Cantera example, please write it as a pure Python example
11 | like those in https://github.com/Cantera/cantera/tree/main/samples/python and open a Pull Request
12 | to the main Cantera repository (https://github.com/Cantera/cantera).
13 |
14 | ## Examples
15 |
16 |
17 |
18 |
19 | Freely Propagating Flame
20 | Strained Flames
21 |
22 |
23 |
24 | Continuous Stirred Tank Reactor
25 | Batch Reactor
26 |
27 |
28 |
29 | Li+ Battery OCV Calculation
30 |
31 |
32 |
33 |
34 | * Basic Thermodynamics Calculations
35 | * [Fuel heating value calculator](https://github.com/Cantera/cantera-jupyter/blob/main/thermo/heating_value.ipynb)
36 | * [Equilibrium flame temperature calculator](https://github.com/Cantera/cantera-jupyter/blob/main/thermo/flame_temperature.ipynb)
37 | * [Equation of State Comparison: Ideal, Redlich-Kwong, and Helmholtz Energy](https://github.com/Cantera/cantera-jupyter/blob/main/thermo/equations_of_state.ipynb)
38 |
39 | * Flame Simulations
40 | * [Flame speed calculator with sensitivity analysis](https://github.com/Cantera/cantera-jupyter/blob/main/flames/flame_speed_with_sensitivity_analysis.ipynb)
41 | * [Flame speed calculator with grid convergence analysis](https://github.com/Cantera/cantera-jupyter/blob/main/flames/flame_speed_with_convergence_analysis.ipynb)
42 | * [Counter-flow twin premixed flame simulator](https://github.com/Cantera/cantera-jupyter/blob/main/flames/twin_premixed_flame_axisymmetric.ipynb)
43 |
44 | * Reactor Models
45 | * [Batch Reactors: Illustration of ignition delay calculation](https://github.com/Cantera/cantera-jupyter/blob/main/reactors/batch_reactor_ignition_delay_NTC.ipynb)
46 | * [Batch reactors with non-ideal gases](https://github.com/Cantera/cantera-jupyter/blob/main/reactors/NonIdealShockTube.ipynb)
47 | * [Continuous Reactors: Simulations at a given residence time](https://github.com/Cantera/cantera-jupyter/blob/main/reactors/stirred_reactor.ipynb)
48 |
49 | * Electrochemistry
50 | * [Open circuit voltage calculations in a Lithium ion battery](https://github.com/Cantera/cantera-jupyter/blob/main/electrochemistry/lithium_ion_battery.ipynb)
51 |
52 | ## Installation Instructions
53 |
54 | ### 1. Install Cantera
55 |
56 | If you don't already have Cantera installed, refer to the instructions on
57 | the [Cantera website](https://cantera.org/install/index.html).
58 |
59 | ### 2. Install Jupyter Notebook
60 |
61 | If you used Conda to install Cantera (the recommended method), you will
62 | need to install Jupyter Lab into the same environment where you
63 | installed Cantera.
64 |
65 | 1. Activate the environment with the Cantera package (called `cantera` here):
66 |
67 | ```shell
68 | conda activate cantera
69 | ```
70 |
71 | 2. Install Jupyter Notebook into that environment
72 |
73 | ```shell
74 | conda install jupyterlab
75 | ```
76 |
77 | 3. Run Jupyter Lab, which will open a browser window
78 |
79 | ```shell
80 | jupyter lab
81 | ```
82 |
83 | Otherwise, use `pip` to install the Jupyter Notebook:
84 |
85 | ```shell
86 | python -m pip install jupyterlab
87 | ```
88 |
89 | ### 3. Download the Cantera Jupyter Examples
90 |
91 | **Option 1:** Download the zip file from [GitHub](https://github.com/Cantera/cantera-jupyter/archive/main.zip)
92 | and extract it to a convenient location on your computer.
93 |
94 | **Option 2:** Use Git to clone this repository to a convenient location on your computer
95 |
96 | ```shell
97 | git clone https://github.com/Cantera/cantera-jupyter.git
98 | ```
99 |
100 | ## Code of Conduct
101 |
102 | This repository follows the same code of conduct as the main Cantera repository.
103 | Cantera adheres to a [code of conduct](https://github.com/Cantera/cantera/blob/main/CODE_OF_CONDUCT.md)
104 | adapted from the [Contributor Covenant code of conduct](https://contributor-covenant.org/).
105 |
106 | ## Frequently Asked Questions
107 |
108 | **How do I use Cantera with Python?**
109 |
110 | An introduction to the Cantera Python interface is available
111 | [here](https://cantera.org/tutorials/python-tutorial.html). For more
112 | advanced uses of Cantera, the complete documentation can be found
113 | [here](https://cantera.org/documentation/index.html).
114 |
115 | **Can I forgo installing Cantera locally and just use Cantera in the cloud every
116 | time?**
117 |
118 | The problem with using Cantera with MyBinder is that there is no way for you to
119 | save your work. You can upload/download files in a session, but once the session
120 | is over (you close your browser window), you lose all your work. You thus cannot
121 | save your modified Jupyter notebooks.
122 |
123 | **I still can't figure something out. Who do I ask?**
124 |
125 | If you have more questions, need help with something, or have any suggestions,
126 | please visit the
127 | [Cantera Google Groups Page](https://groups.google.com/forum/#!forum/cantera-users)
128 | and create a post.
129 |
--------------------------------------------------------------------------------
/data/SiF4_NH3_mec.yaml:
--------------------------------------------------------------------------------
1 | generator: cti2yaml
2 | cantera-version: 2.6.0a1
3 | date: Wed, 03 Mar 2021 11:59:03 -0500
4 | input-files: [SiF4_NH3_mec.cti]
5 |
6 | units: {length: cm, quantity: mol, activation-energy: cal/mol}
7 |
8 | phases:
9 | - name: gas
10 | thermo: ideal-gas
11 | elements: [H, N, Si, F]
12 | species: [H2, H, N2, N, NH, NH2, NNH, N2H2, N2H3, N2H4, HF, F, SIF4, SIF3,
13 | SIHF3, SIF3NH2, NH3]
14 | kinetics: gas
15 | reactions: [gas-reactions]
16 | transport: mixture-averaged
17 | state:
18 | T: 300.0
19 | P: 1.01325e+05
20 | - name: SiBulk
21 | thermo: ideal-condensed
22 | elements: [Si]
23 | species: [SI(D)]
24 | standard-concentration-basis: unity
25 | - name: NBulk
26 | thermo: ideal-condensed
27 | elements: [N]
28 | species: [N(D)]
29 | standard-concentration-basis: unity
30 | - name: SI3N4
31 | thermo: ideal-surface
32 | elements: [H, N, Si, F]
33 | species: [HN_SIF(S), HN_NH2(S), F3SI_NH2(S), F2SINH(S), H2NFSINH(S), HN(FSINH)2(S)]
34 | kinetics: surface
35 | reactions: [SI3N4-reactions]
36 | state:
37 | T: 300.0
38 | P: 1.01325e+05
39 | site-density: 4.1683e-09
40 |
41 | species:
42 | - name: H2
43 | composition: {H: 2}
44 | thermo:
45 | model: NASA7
46 | temperature-ranges: [200.0, 1000.0, 6000.0]
47 | data:
48 | - [2.34433112, 7.98052075e-03, -1.9478151e-05, 2.01572094e-08, -7.37611761e-12,
49 | -917.935173, 0.683010238]
50 | - [2.93286575, 8.26608026e-04, -1.46402364e-07, 1.54100414e-11, -6.888048e-16,
51 | -813.065581, -1.02432865]
52 | transport:
53 | model: gas
54 | geometry: linear
55 | diameter: 2.92
56 | well-depth: 38.0
57 | polarizability: 0.79
58 | rotational-relaxation: 280.0
59 | note: TPIS78
60 | - name: H
61 | composition: {H: 1}
62 | thermo:
63 | model: NASA7
64 | temperature-ranges: [200.0, 1000.0, 6000.0]
65 | data:
66 | - [2.5, 0.0, 0.0, 0.0, 0.0, 2.547366e+04, -0.44668285]
67 | - [2.5, 0.0, 0.0, 0.0, 0.0, 2.547366e+04, -0.44668285]
68 | transport:
69 | model: gas
70 | geometry: atom
71 | diameter: 2.05
72 | well-depth: 145.0
73 | note: L6/94
74 | - name: N2
75 | composition: {N: 2}
76 | thermo:
77 | model: NASA7
78 | temperature-ranges: [200.0, 1000.0, 6000.0]
79 | data:
80 | - [3.53100528, -1.23660988e-04, -5.02999433e-07, 2.43530612e-09, -1.40881235e-12,
81 | -1046.97628, 2.96747038]
82 | - [2.95257637, 1.3969004e-03, -4.92631603e-07, 7.86010195e-11, -4.60755204e-15,
83 | -923.948688, 5.87188762]
84 | transport:
85 | model: gas
86 | geometry: linear
87 | diameter: 3.621
88 | well-depth: 97.53
89 | polarizability: 1.76
90 | rotational-relaxation: 4.0
91 | note: G8/02
92 | - name: N
93 | composition: {N: 1}
94 | thermo:
95 | model: NASA7
96 | temperature-ranges: [300.0, 1000.0, 5000.0]
97 | data:
98 | - [2.503071, -2.180018e-05, 5.420529e-08, -5.64756e-11, 2.099904e-14,
99 | 5.60989e+04, 4.167566]
100 | - [2.450268, 1.066146e-04, -7.465337e-08, 1.879652e-11, -1.025984e-15,
101 | 5.611604e+04, 4.448758]
102 | transport:
103 | model: gas
104 | geometry: atom
105 | diameter: 3.298
106 | well-depth: 71.4
107 | note: '120186'
108 | - name: NH
109 | composition: {H: 1, N: 1}
110 | thermo:
111 | model: NASA7
112 | temperature-ranges: [200.0, 1000.0, 6000.0]
113 | data:
114 | - [3.4929084, 3.1179197e-04, -1.4890484e-06, 2.4816442e-09, -1.0356967e-12,
115 | 4.1894294e+04, 1.8483277]
116 | - [2.7836929, 1.3298429e-03, -4.2478047e-07, 7.8348504e-11, -5.504447e-15,
117 | 4.2134514e+04, 5.7407798]
118 | transport:
119 | model: gas
120 | geometry: linear
121 | diameter: 2.65
122 | well-depth: 80.0
123 | rotational-relaxation: 4.0
124 | - name: NH2
125 | composition: {H: 2, N: 1}
126 | thermo:
127 | model: NASA7
128 | temperature-ranges: [300.0, 1000.0, 5000.0]
129 | data:
130 | - [3.432493, 3.29954e-03, -6.6136e-06, 8.590947e-09, -3.572047e-12,
131 | 2.177228e+04, 3.090111]
132 | - [2.961311, 2.932699e-03, -9.0636e-07, 1.617257e-10, -1.2042e-14, 2.191977e+04,
133 | 5.777878]
134 | transport:
135 | model: gas
136 | geometry: nonlinear
137 | diameter: 2.65
138 | well-depth: 80.0
139 | polarizability: 2.26
140 | rotational-relaxation: 4.0
141 | note: '121686'
142 | - name: NNH
143 | composition: {H: 1, N: 2}
144 | thermo:
145 | model: NASA7
146 | temperature-ranges: [250.0, 1000.0, 4000.0]
147 | data:
148 | - [3.501344, 2.053587e-03, 7.17041e-07, 4.921348e-10, -9.67117e-13,
149 | 2.833347e+04, 6.391837]
150 | - [4.415342, 1.614388e-03, -1.632894e-07, -8.559846e-11, 1.614791e-14,
151 | 2.788029e+04, 0.9042888]
152 | transport:
153 | model: gas
154 | geometry: nonlinear
155 | diameter: 3.798
156 | well-depth: 71.4
157 | rotational-relaxation: 1.0
158 | note: '120186'
159 | - name: N2H2
160 | composition: {H: 2, N: 2}
161 | thermo:
162 | model: NASA7
163 | temperature-ranges: [300.0, 1000.0, 5000.0]
164 | data:
165 | - [1.617999, 0.01306312, -1.715712e-05, 1.605608e-08, -6.093639e-12,
166 | 2.467526e+04, 13.79467]
167 | - [3.371185, 6.039968e-03, -2.303854e-06, 4.062789e-10, -2.713144e-14,
168 | 2.418172e+04, 4.980585]
169 | transport:
170 | model: gas
171 | geometry: nonlinear
172 | diameter: 3.798
173 | well-depth: 71.4
174 | rotational-relaxation: 1.0
175 | note: '121286'
176 | - name: N2H3
177 | composition: {H: 3, N: 2}
178 | thermo:
179 | model: NASA7
180 | temperature-ranges: [300.0, 1000.0, 5000.0]
181 | data:
182 | - [3.174204, 4.715907e-03, 1.334867e-05, -1.919685e-08, 7.487564e-12,
183 | 1.72727e+04, 7.557224]
184 | - [4.441846, 7.214271e-03, -2.495684e-06, 3.920565e-10, -2.29895e-14,
185 | 1.664221e+04, -0.4275205]
186 | transport:
187 | model: gas
188 | geometry: nonlinear
189 | diameter: 3.9
190 | well-depth: 200.0
191 | rotational-relaxation: 1.0
192 | note: '120186'
193 | - name: N2H4
194 | composition: {H: 4, N: 2}
195 | thermo:
196 | model: NASA7
197 | temperature-ranges: [300.0, 1000.0, 5000.0]
198 | data:
199 | - [0.06442606, 0.0274973, -2.899451e-05, 1.74524e-08, -4.422282e-12,
200 | 1.045192e+04, 21.27789]
201 | - [4.977317, 9.595519e-03, -3.547639e-06, 6.124299e-10, -4.029795e-14,
202 | 9341.219, -2.96299]
203 | transport:
204 | model: gas
205 | geometry: nonlinear
206 | diameter: 4.23
207 | well-depth: 205.0
208 | polarizability: 4.26
209 | rotational-relaxation: 1.5
210 | note: '121286'
211 | - name: HF
212 | composition: {F: 1, H: 1}
213 | thermo:
214 | model: NASA7
215 | temperature-ranges: [300.0, 1000.0, 5000.0]
216 | data:
217 | - [3.4379986, 5.3571598e-04, -1.5229655e-06, 1.7564491e-09, -5.786994e-13,
218 | -3.3818972e+04, 1.1930153]
219 | - [2.991911, 7.1489475e-04, -6.8630973e-08, -1.161713e-11, 1.9412375e-15,
220 | -3.3621364e+04, 3.8123288]
221 | transport:
222 | model: gas
223 | geometry: linear
224 | diameter: 3.148
225 | well-depth: 330.0
226 | dipole: 1.92
227 | polarizability: 2.46
228 | rotational-relaxation: 1.0
229 | note: J6/77
230 | - name: F
231 | composition: {F: 1}
232 | thermo:
233 | model: NASA7
234 | temperature-ranges: [300.0, 1000.0, 5000.0]
235 | data:
236 | - [2.812874, -3.3023098e-06, -1.289731e-06, 1.6837365e-09, -6.4587833e-13,
237 | 8660.4019, 3.0984198]
238 | - [2.7004353, -2.2293182e-04, 9.7941385e-08, -1.9123038e-11, 1.3768154e-15,
239 | 8716.3617, 3.8067182]
240 | transport:
241 | model: gas
242 | geometry: atom
243 | diameter: 2.75
244 | well-depth: 80.0
245 | note: J9/65
246 | - name: SIF4
247 | composition: {F: 4, Si: 1}
248 | thermo:
249 | model: NASA7
250 | temperature-ranges: [300.0, 1000.0, 5000.0]
251 | data:
252 | - [2.1893068, 0.033702007, -4.6723179e-05, 3.1584638e-08, -8.4506114e-12,
253 | -1.9603289e+05, 13.287308]
254 | - [10.478473, 2.8586756e-03, -1.2646314e-06, 2.4746863e-10, -1.7824296e-14,
255 | -1.979055e+05, -27.520641]
256 | transport:
257 | model: gas
258 | geometry: nonlinear
259 | diameter: 4.88
260 | well-depth: 171.9
261 | rotational-relaxation: 1.0
262 | note: J6/76
263 | - name: SIF3
264 | composition: {F: 3, Si: 1}
265 | thermo:
266 | model: NASA7
267 | temperature-ranges: [300.0, 1000.0, 3000.0]
268 | data:
269 | - [4.6628685, 0.010087878, -1.8055442e-06, -7.769299e-09, 4.3778518e-12,
270 | -1.2129652e+05, 4.672966]
271 | - [8.5247898, 1.3237924e-03, -2.1042787e-07, -1.149504e-10, 3.0553014e-14,
272 | -1.2235223e+05, -15.502343]
273 | transport:
274 | model: gas
275 | geometry: nonlinear
276 | diameter: 4.359
277 | well-depth: 309.6
278 | rotational-relaxation: 1.0
279 | note: '41889'
280 | - name: SIHF3
281 | composition: {F: 3, H: 1, Si: 1}
282 | thermo:
283 | model: NASA7
284 | temperature-ranges: [300.0, 1000.0, 3000.0]
285 | data:
286 | - [3.9180529, 0.014639172, -1.8560698e-06, -1.0582003e-08, 5.6175433e-12,
287 | -1.4704386e+05, 7.0242615]
288 | - [9.3635674, 2.9475559e-03, -3.577633e-07, -2.8582245e-10, 6.9157286e-14,
289 | -1.4860736e+05, -21.694529]
290 | transport:
291 | model: gas
292 | geometry: nonlinear
293 | diameter: 4.681
294 | well-depth: 180.8
295 | rotational-relaxation: 1.0
296 | note: '41889'
297 | - name: SIF3NH2
298 | composition: {F: 3, H: 2, N: 1, Si: 1}
299 | thermo:
300 | model: NASA7
301 | temperature-ranges: [300.0, 1000.0, 3000.0]
302 | data:
303 | - [6.229403, 0.017780151, -2.6123043e-06, -1.2672435e-08, 7.0445559e-12,
304 | -1.6258489e+05, 0.20454407]
305 | - [12.109636, 4.3832823e-03, -4.1422453e-07, -3.9890902e-10, 8.9589543e-14,
306 | -1.6417678e+05, -30.469284]
307 | transport:
308 | model: gas
309 | geometry: nonlinear
310 | diameter: 4.975
311 | well-depth: 231.0
312 | rotational-relaxation: 1.0
313 | note: '41889'
314 | - name: NH3
315 | composition: {H: 3, N: 1}
316 | thermo:
317 | model: NASA7
318 | temperature-ranges: [300.0, 1000.0, 5000.0]
319 | data:
320 | - [2.204352, 0.01011476, -1.465265e-05, 1.447235e-08, -5.328509e-12,
321 | -6525.488, 8.127138]
322 | - [2.461904, 6.059166e-03, -2.004977e-06, 3.136003e-10, -1.938317e-14,
323 | -6493.27, 7.472097]
324 | transport:
325 | model: gas
326 | geometry: nonlinear
327 | diameter: 2.92
328 | well-depth: 481.0
329 | dipole: 1.47
330 | rotational-relaxation: 10.0
331 | note: '121386'
332 | - name: F3SI_NH2(S)
333 | composition: {F: 3, H: 2, N: 1, Si: 1}
334 | sites: 2.0
335 | thermo:
336 | model: NASA7
337 | temperature-ranges: [300.0, 1000.0, 1685.0]
338 | data:
339 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12,
340 | -524.86288, -4.5272678]
341 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14,
342 | -812.5562, -12.188747]
343 | note: J3/67
344 | - name: F2SINH(S)
345 | composition: {F: 2, H: 1, N: 1, Si: 1}
346 | sites: 2.0
347 | thermo:
348 | model: NASA7
349 | temperature-ranges: [300.0, 1000.0, 1685.0]
350 | data:
351 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12,
352 | -524.86288, -4.5272678]
353 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14,
354 | -812.5562, -12.188747]
355 | note: J3/67
356 | - name: H2NFSINH(S)
357 | composition: {F: 1, H: 3, N: 2, Si: 1}
358 | sites: 2.0
359 | thermo:
360 | model: NASA7
361 | temperature-ranges: [300.0, 1000.0, 1685.0]
362 | data:
363 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12,
364 | -524.86288, -4.5272678]
365 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14,
366 | -812.5562, -12.188747]
367 | note: J3/67
368 | - name: HN(FSINH)2(S)
369 | composition: {F: 2, H: 3, N: 3, Si: 2}
370 | sites: 4.0
371 | thermo:
372 | model: NASA7
373 | temperature-ranges: [300.0, 1000.0, 1685.0]
374 | data:
375 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12,
376 | -524.86288, -4.5272678]
377 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14,
378 | -812.5562, -12.188747]
379 | note: J3/67
380 | - name: HN_SIF(S)
381 | composition: {F: 1, H: 1, N: 1, Si: 1}
382 | sites: 2.0
383 | thermo:
384 | model: NASA7
385 | temperature-ranges: [300.0, 1000.0, 1685.0]
386 | data:
387 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12,
388 | -524.86288, -4.5272678]
389 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14,
390 | -812.5562, -12.188747]
391 | note: J3/67
392 | - name: HN_NH2(S)
393 | composition: {H: 3, N: 2}
394 | sites: 2.0
395 | thermo:
396 | model: NASA7
397 | temperature-ranges: [300.0, 1000.0, 1685.0]
398 | data:
399 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12,
400 | -524.86288, -4.5272678]
401 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14,
402 | -812.5562, -12.188747]
403 | note: J3/67
404 | - name: SI(D)
405 | composition: {Si: 1}
406 | equation-of-state:
407 | model: constant-volume
408 | density: 0.2066E+01 g/cm^3
409 | thermo:
410 | model: NASA7
411 | temperature-ranges: [300.0, 1000.0, 1685.0]
412 | data:
413 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12,
414 | -524.86288, -4.5272678]
415 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14,
416 | -812.5562, -12.188747]
417 | note: J3/67
418 | - name: N(D)
419 | composition: {N: 1}
420 | equation-of-state:
421 | model: constant-volume
422 | density: 0.1374E+01 g/cm^3
423 | thermo:
424 | model: NASA7
425 | temperature-ranges: [300.0, 1000.0, 1685.0]
426 | data:
427 | - [0.84197538, 8.3710416e-03, -1.307703e-05, 9.7593603e-09, -2.727938e-12,
428 | -524.86288, -4.5272678]
429 | - [2.4753989, 8.8112187e-04, -2.0939481e-07, 4.2757187e-12, 1.6006564e-14,
430 | -812.5562, -12.188747]
431 | note: J3/67
432 |
433 | gas-reactions:
434 | - equation: H + H + M <=> H2 + M # Reaction 1
435 | type: three-body
436 | id: gas-1
437 | rate-constant: {A: 1.0e+18, b: -1.0, Ea: 0.0}
438 | efficiencies: {H2: 0.0}
439 | - equation: H + H + H2 <=> H2 + H2 # Reaction 2
440 | id: gas-2
441 | rate-constant: {A: 9.2e+16, b: -0.6, Ea: 0.0}
442 | - equation: NH + N <=> N2 + H # Reaction 3
443 | id: gas-3
444 | rate-constant: {A: 3.0e+13, b: 0.0, Ea: 0.0}
445 | - equation: NH + H <=> N + H2 # Reaction 4
446 | id: gas-4
447 | rate-constant: {A: 1.0e+14, b: 0.0, Ea: 0.0}
448 | - equation: NH2 + H <=> NH + H2 # Reaction 5
449 | id: gas-5
450 | rate-constant: {A: 6.92e+13, b: 0.0, Ea: 3650.0}
451 | - equation: NH3 + H <=> NH2 + H2 # Reaction 6
452 | id: gas-6
453 | rate-constant: {A: 6.36e+05, b: 2.39, Ea: 1.0171e+04}
454 | - equation: NNH <=> N2 + H # Reaction 7
455 | id: gas-7
456 | rate-constant: {A: 1.0e+04, b: 0.0, Ea: 0.0}
457 | - equation: NNH + H <=> N2 + H2 # Reaction 8
458 | id: gas-8
459 | rate-constant: {A: 1.0e+14, b: 0.0, Ea: 0.0}
460 | - equation: NNH + NH2 <=> N2 + NH3 # Reaction 9
461 | id: gas-9
462 | rate-constant: {A: 5.0e+13, b: 0.0, Ea: 0.0}
463 | - equation: NNH + NH <=> N2 + NH2 # Reaction 10
464 | id: gas-10
465 | rate-constant: {A: 5.0e+13, b: 0.0, Ea: 0.0}
466 | - equation: NH2 + NH <=> N2H2 + H # Reaction 11
467 | id: gas-11
468 | rate-constant: {A: 5.0e+13, b: 0.0, Ea: 0.0}
469 | - equation: NH + NH <=> N2 + H + H # Reaction 12
470 | id: gas-12
471 | rate-constant: {A: 2.54e+13, b: 0.0, Ea: 0.0}
472 | - equation: NH2 + N <=> N2 + H + H # Reaction 13
473 | id: gas-13
474 | rate-constant: {A: 7.2e+13, b: 0.0, Ea: 0.0}
475 | - equation: N2H2 + M <=> NNH + H + M # Reaction 14
476 | type: three-body
477 | id: gas-14
478 | rate-constant: {A: 5.0e+16, b: 0.0, Ea: 5.0e+04}
479 | efficiencies: {H2: 2.0, N2: 2.0}
480 | - equation: N2H2 + H <=> NNH + H2 # Reaction 15
481 | id: gas-15
482 | rate-constant: {A: 5.0e+13, b: 0.0, Ea: 1000.0}
483 | - equation: N2H2 + NH <=> NNH + NH2 # Reaction 16
484 | id: gas-16
485 | rate-constant: {A: 1.0e+13, b: 0.0, Ea: 1000.0}
486 | - equation: N2H2 + NH2 <=> NH3 + NNH # Reaction 17
487 | id: gas-17
488 | rate-constant: {A: 1.0e+13, b: 0.0, Ea: 1000.0}
489 | - equation: NH2 + NH2 <=> N2H2 + H2 # Reaction 18
490 | id: gas-18
491 | rate-constant: {A: 5.0e+11, b: 0.0, Ea: 0.0}
492 | - equation: NH3 + M <=> NH2 + H + M # Reaction 19
493 | type: three-body
494 | id: gas-19
495 | rate-constant: {A: 1.4e+16, b: 0.0, Ea: 9.06e+04}
496 | - equation: N2H3 + H <=> NH2 + NH2 # Reaction 20
497 | id: gas-20
498 | rate-constant: {A: 1.6e+12, b: 0.0, Ea: 0.0}
499 | - equation: N2H3 + M <=> N2H2 + H + M # Reaction 21
500 | type: three-body
501 | id: gas-21
502 | rate-constant: {A: 3.5e+16, b: 0.0, Ea: 4.6e+04}
503 | - equation: N2H3 + NH <=> NH2 + N2H2 # Reaction 22
504 | id: gas-22
505 | rate-constant: {A: 2.0e+13, b: 0.0, Ea: 0.0}
506 | - equation: NH2 + NH2 + M <=> N2H4 + M # Reaction 23
507 | type: three-body
508 | id: gas-23
509 | rate-constant: {A: 3.0e+20, b: -1.0, Ea: 0.0}
510 | - equation: H + N2H4 <=> H2 + N2H3 # Reaction 24
511 | id: gas-24
512 | rate-constant: {A: 1.3e+13, b: 0.0, Ea: 2500.0}
513 | - equation: NH2 + N2H4 <=> NH3 + N2H3 # Reaction 25
514 | id: gas-25
515 | rate-constant: {A: 3.9e+12, b: 0.0, Ea: 1500.0}
516 | - equation: NH + H + M <=> NH2 + M # Reaction 26
517 | type: three-body
518 | id: gas-26
519 | rate-constant: {A: 2.0e+16, b: -0.5, Ea: 0.0}
520 | - equation: NH2 + NH2 <=> NH3 + NH # Reaction 27
521 | id: gas-27
522 | rate-constant: {A: 5.0e+12, b: 0.0, Ea: 1.0e+04}
523 | - equation: F + NH3 <=> NH2 + HF # Reaction 28
524 | id: gas-28
525 | rate-constant: {A: 4.27e+11, b: 0.5, Ea: 800.0}
526 | - equation: SIF4 <=> SIF3 + F # Reaction 29
527 | id: gas-29
528 | rate-constant: {A: 3.0e+12, b: 0.0, Ea: 1.4717e+05}
529 | - equation: H + SIF4 <=> HF + SIF3 # Reaction 30
530 | id: gas-30
531 | rate-constant: {A: 1.0e+13, b: 0.0, Ea: 5.0e+04}
532 | - equation: NH2 + SIF4 <=> SIF3NH2 + F # Reaction 31
533 | id: gas-31
534 | rate-constant: {A: 1.0e+11, b: 0.0, Ea: 4.095e+04}
535 | - equation: NH3 + SIF3 <=> SIF3NH2 + H # Reaction 32
536 | id: gas-32
537 | rate-constant: {A: 1.0e+11, b: 0.0, Ea: 5000.0}
538 | - equation: NH3 + SIF3 <=> SIHF3 + NH2 # Reaction 33
539 | id: gas-33
540 | rate-constant: {A: 1.0e+11, b: 0.0, Ea: 1.0e+04}
541 |
542 | SI3N4-reactions:
543 | - equation: F3SI_NH2(S) => F2SINH(S) + HF # Reaction 34
544 | id: SI3N4-1
545 | rate-constant: {A: 1.0e+05, b: 0.0, Ea: 0.0}
546 | - equation: NH3 + F2SINH(S) => H2NFSINH(S) + HF # Reaction 35
547 | id: SI3N4-2
548 | rate-constant: {A: 7.562e+08, b: 0.5, Ea: 0.0}
549 | - equation: H2NFSINH(S) + F2SINH(S) => HN(FSINH)2(S) + HF # Reaction 36
550 | id: SI3N4-3
551 | rate-constant: {A: 1.0e+15, b: 0.0, Ea: 0.0}
552 | - equation: NH3 + HN_SIF(S) => HN_NH2(S) + SI(D) + HF # Reaction 37
553 | id: SI3N4-4
554 | rate-constant: {A: 7.56e+08, b: 0.5, Ea: 0.0}
555 | - equation: SIF4 + HN_NH2(S) => F3SI_NH2(S) + N(D) + HF # Reaction 38
556 | id: SI3N4-5
557 | rate-constant: {A: 3.1e+08, b: 0.5, Ea: 0.0}
558 | - equation: HN(FSINH)2(S) + F2SINH(S) => 3 HN_SIF(S) + N(D) + HF # Reaction 39
559 | id: SI3N4-6
560 | rate-constant: {A: 1.0e+15, b: 0.0, Ea: 0.0}
561 |
--------------------------------------------------------------------------------
/data/co2-thermo.yaml:
--------------------------------------------------------------------------------
1 | description: |-
2 | CO2 phases based on the equation of state
3 |
4 | units: {length: cm, time: s, quantity: mol, activation-energy: cal/mol}
5 |
6 | phases:
7 | - name: CO2-Ideal
8 | thermo: ideal-gas
9 | elements: [O, C]
10 | species: [CO2]
11 | kinetics: none
12 | state: {T: 300.0, P: 1 atm}
13 |
14 | - name: CO2-RK
15 | thermo: Redlich-Kwong
16 | elements: [O, C]
17 | species: [CO2]
18 | kinetics: none
19 | state: {T: 300.0, P: 1 atm}
20 |
21 | species:
22 | - name: CO2
23 | composition: {C: 1, O: 2}
24 | thermo:
25 | model: NASA7
26 | temperature-ranges: [200.0, 1000.0, 3500.0]
27 | data:
28 | - [2.35677352, 0.00898459677, -7.12356269e-06, 2.45919022e-09, -1.43699548e-13,
29 | -48371.9697, 9.90105222]
30 | - [3.85746029, 0.00441437026, -2.21481404e-06, 5.23490188e-10, -4.72084164e-14,
31 | -48759.166, 2.27163806]
32 | equation-of-state:
33 | model: Redlich-Kwong
34 | units: {length: cm, pressure: bar, quantity: mol}
35 | a: [7.54e7, -4.13e4]
36 | b: 27.80
37 |
--------------------------------------------------------------------------------
/data/lithium_ion_battery.yaml:
--------------------------------------------------------------------------------
1 | generator: cti2yaml
2 | cantera-version: 2.6.0a4
3 | date: Sun, 16 Jan 2022 14:37:51 -0500
4 | input-files: [lithium_ion_battery.cti]
5 |
6 | phases:
7 | - name: anode
8 | thermo: binary-solution-tabulated
9 | elements: [Li, C]
10 | species: ['Li[anode]', 'V[anode]']
11 | standard-concentration-basis: unity
12 | tabulated-species: Li[anode]
13 | tabulated-thermo:
14 | units: {energy: J, quantity: mol}
15 | mole-fractions: [5.75e-03, 0.0177591, 0.0297682, 0.0417773, 0.0537864,
16 | 0.0657954, 0.0778045, 0.0898136, 0.101823, 0.113832, 0.125841, 0.13785,
17 | 0.149859, 0.161868, 0.173877, 0.185886, 0.197896, 0.209904, 0.221914,
18 | 0.233923, 0.245932, 0.257941, 0.26995, 0.281959, 0.293968, 0.305977,
19 | 0.317986, 0.329995, 0.342004, 0.354014, 0.366023, 0.378032, 0.390041,
20 | 0.40205, 0.414059, 0.426068, 0.438077, 0.450086, 0.462095, 0.474104,
21 | 0.486114, 0.498123, 0.510132, 0.522141, 0.53415, 0.546159, 0.558168,
22 | 0.570177, 0.582186, 0.594195, 0.606205, 0.618214, 0.630223, 0.642232,
23 | 0.654241, 0.66625, 0.678259, 0.690268, 0.702277, 0.714286, 0.726295,
24 | 0.738305, 0.750314, 0.762323, 0.774332, 0.786341, 0.79835]
25 | enthalpy: [-6.40692e+04, -3.78794e+04, -1.99748e+04, -1.10478e+04, -7049.73,
26 | -7137.49, -8797.28, -9936.55, -1.0306e+04, -1.00679e+04, -9696.64,
27 | -9315.56, -8905.03, -8570.57, -8381.17, -8319.28, -8314.53, -8329.77,
28 | -8332.92, -8329.31, -8313.39, -8213.31, -8089.2, -8001.31, -7922.94,
29 | -7815.43, -7774.98, -7794.4, -7788.04, -7732.18, -7690.63, -7696.3,
30 | -7632.41, -7419.1, -7068.28, -6645.44, -6171.93, -5670.55, -5142.99,
31 | -4557.04, -3945.68, -3354.08, -2878.25, -2576.9, -2434.68, -2339.52,
32 | -2232.18, -2114.82, -2039.76, -2019.9, -2013.29, -1979.91, -1926.86,
33 | -1866.02, -1814.19, -1776.93, -1749.08, -1714.94, -1672.87, -1636.85,
34 | -1596.49, -1522.95, -1390.33, -1115.24, -534.643, 373.854, 1604.42]
35 | entropy: [30.5724, 40.4307, 47.5718, 52.569, 51.0953, 44.3414, 37.1575,
36 | 32.3216, 29.1586, 27.0081, 25.3501, 24.0845, 23.0042, 21.9373, 20.7212,
37 | 19.3057, 17.7319, 16.1153, 14.6399, 13.4767, 12.7, 12.3377, 12.2815,
38 | 12.37, 12.4863, 12.6368, 12.6925, 12.625, 12.4861, 12.3294, 12.1865,
39 | 12.0723, 12.1228, 12.4383, 13.0288, 13.7342, 14.446, 15.0813, 15.618,
40 | 16.2213, 17.0474, 18.0584, 18.8377, 19.2094, 19.2957, 19.3172, 19.3033,
41 | 19.2971, 19.2977, 19.2978, 19.298, 19.2978, 19.2945, 19.2899, 19.2877,
42 | 19.2882, 19.2882, 19.2882, 19.2882, 19.2882, 19.2885, 19.2876, 19.2837,
43 | 19.2769, 19.285, 19.31, 19.3514]
44 | - name: cathode
45 | thermo: binary-solution-tabulated
46 | elements: [Li, Co, O]
47 | species: ['Li[cathode]', 'V[cathode]']
48 | standard-concentration-basis: unity
49 | tabulated-species: Li[cathode]
50 | tabulated-thermo:
51 | units: {energy: J, quantity: mol}
52 | mole-fractions: [0.45963, 0.467368, 0.475105, 0.482843, 0.490581, 0.498318,
53 | 0.506056, 0.513794, 0.521531, 0.529269, 0.537007, 0.544744, 0.552482,
54 | 0.560219, 0.567957, 0.575695, 0.583432, 0.59117, 0.598908, 0.606645,
55 | 0.614383, 0.622121, 0.629858, 0.637596, 0.645334, 0.653071, 0.660809,
56 | 0.668547, 0.676284, 0.684022, 0.691759, 0.699497, 0.707235, 0.714972,
57 | 0.72271, 0.730448, 0.738185, 0.745923, 0.753661, 0.761398, 0.769136,
58 | 0.776873, 0.784611, 0.792349, 0.800087, 0.807824, 0.815562, 0.823299,
59 | 0.831037, 0.838775, 0.846512, 0.85425, 0.861988, 0.869725, 0.877463,
60 | 0.885201, 0.892938, 0.900676, 0.908413, 0.916151, 0.923889, 0.931627,
61 | 0.939364, 0.947102, 0.954839, 0.962577, 0.970315, 0.978052, 0.98579]
62 | enthalpy: [-4.16188e+05, -4.14839e+05, -4.12629e+05, -4.0962e+05, -4.05334e+05,
63 | -3.9942e+05, -3.92499e+05, -3.8594e+05, -3.81474e+05, -3.8029e+05,
64 | -3.81445e+05, -3.83295e+05, -3.85062e+05, -3.86633e+05, -3.87928e+05,
65 | -3.88837e+05, -3.8924e+05, -3.89238e+05, -3.89157e+05, -3.89174e+05,
66 | -3.89168e+05, -3.88988e+05, -3.88675e+05, -3.88478e+05, -3.88443e+05,
67 | -3.88346e+05, -3.88083e+05, -3.87768e+05, -3.87531e+05, -3.87356e+05,
68 | -3.87205e+05, -3.87052e+05, -3.8696e+05, -3.86957e+05, -3.86918e+05,
69 | -3.86814e+05, -3.86785e+05, -3.86957e+05, -3.87146e+05, -3.87188e+05,
70 | -3.87239e+05, -3.87507e+05, -3.87902e+05, -3.88142e+05, -3.88316e+05,
71 | -3.88464e+05, -3.88563e+05, -3.88687e+05, -3.89e+05, -3.89414e+05,
72 | -3.89735e+05, -3.90005e+05, -3.90317e+05, -3.90632e+05, -3.90865e+05,
73 | -3.911e+05, -3.91453e+05, -3.91742e+05, -3.91833e+05, -3.91858e+05,
74 | -3.9191e+05, -3.91798e+05, -3.9147e+05, -3.91005e+05, -3.90261e+05,
75 | -3.89181e+05, -3.85506e+05, -3.7345e+05, -3.53926e+05]
76 | entropy: [-25.2348, -25.4629, -22.6068, -16.8899, -6.74549, 9.76522,
77 | 30.8711, 49.8756, 58.5766, 54.6784, 44.0727, 33.0834, 23.7109, 16.1658,
78 | 10.2408, 5.75684, 2.19969, -0.693265, -3.40166, -6.03548, -8.45666,
79 | -10.3459, -11.886, -13.561, -15.3331, -16.8255, -18.1219, -19.5052,
80 | -20.7093, -21.6274, -22.5743, -23.8272, -25.2029, -26.5835, -27.7164,
81 | -28.6064, -29.6044, -30.9551, -32.199, -33.1284, -34.0633, -35.3177,
82 | -36.6599, -37.6439, -38.5616, -39.6433, -40.6506, -41.5566, -42.7485,
83 | -44.1419, -45.2082, -46.1154, -47.1614, -48.2305, -48.9739, -49.6529,
84 | -50.6905, -51.808, -52.658, -53.2766, -53.9817, -54.5468, -54.8125,
85 | -55.152, -55.4526, -55.2961, -55.0219, -54.6653, -54.2305]
86 | - name: electron
87 | thermo: electron-cloud
88 | elements: [E]
89 | species: [electron]
90 | state:
91 | X: {electron: 1.0}
92 | density: 1.0 kg/m^3
93 | - name: electrolyte
94 | thermo: ideal-condensed
95 | elements: [Li, P, F, C, H, O, E]
96 | species: ['C3H4O3[elyt]', 'C4H6O3[elyt]', 'Li+[elyt]', 'PF6-[elyt]']
97 | state:
98 | P: 1.01325e+05
99 | X: {'C3H4O3[elyt]': 0.47901, 'C4H6O3[elyt]': 0.37563, 'Li+[elyt]': 0.07268,
100 | 'PF6-[elyt]': 0.07268}
101 | standard-concentration-basis: unity
102 | - name: edge_anode_electrolyte
103 | thermo: ideal-surface
104 | elements: [Li, E, C]
105 | species: [(dummy)]
106 | kinetics: surface
107 | reactions: [edge_anode_electrolyte-reactions]
108 | site-density: 0.01 mol/cm^2
109 | - name: edge_cathode_electrolyte
110 | thermo: ideal-surface
111 | elements: [Li, E, Co, O]
112 | species: [(dummy)]
113 | kinetics: surface
114 | reactions: [edge_cathode_electrolyte-reactions]
115 | site-density: 0.01 mol/cm^2
116 |
117 | species:
118 | - name: Li[anode]
119 | composition: {Li: 1, C: 6}
120 | thermo:
121 | model: constant-cp
122 | h0: 0.0 kJ/mol
123 | s0: 0.0 J/mol/K
124 | equation-of-state:
125 | model: constant-volume
126 | molar-volume: 15.701850269292686 cm^3/gmol
127 | - name: V[anode]
128 | composition: {C: 6}
129 | thermo:
130 | model: constant-cp
131 | h0: 0.0 kJ/mol
132 | s0: 0.0 J/mol/K
133 | equation-of-state:
134 | model: constant-volume
135 | molar-volume: 14.322396009301032 cm^3/gmol
136 | - name: Li[cathode]
137 | composition: {Li: 1, Co: 1, O: 2}
138 | thermo:
139 | model: constant-cp
140 | h0: 0.0 kJ/mol
141 | s0: 0.0 J/mol/K
142 | equation-of-state:
143 | model: constant-volume
144 | molar-volume: 42.7020069808028 cm^3/gmol
145 | - name: V[cathode]
146 | composition: {Co: 1, O: 2}
147 | thermo:
148 | model: constant-cp
149 | h0: 0.0 kJ/mol
150 | s0: 0.0 J/mol/K
151 | equation-of-state:
152 | model: constant-volume
153 | molar-volume: 39.67364746945899 cm^3/gmol
154 | - name: electron
155 | composition: {E: 1}
156 | thermo:
157 | model: constant-cp
158 | h0: 0.0 kJ/mol
159 | s0: 0.0 J/mol/K
160 | - name: C3H4O3[elyt]
161 | composition: {C: 3, H: 4, O: 3}
162 | thermo:
163 | model: constant-cp
164 | h0: 0.0 J/mol
165 | s0: 0.0 J/mol/K
166 | equation-of-state:
167 | model: constant-volume
168 | molar-volume: 69.89126984126985 cm^3/gmol
169 | - name: C4H6O3[elyt]
170 | composition: {C: 4, H: 6, O: 3}
171 | thermo:
172 | model: constant-cp
173 | h0: 0.0 J/mol
174 | s0: 0.0 J/mol/K
175 | equation-of-state:
176 | model: constant-volume
177 | molar-volume: 81.02365079365079 cm^3/gmol
178 | - name: Li+[elyt]
179 | composition: {Li: 1, E: -1}
180 | thermo:
181 | model: constant-cp
182 | h0: -278.49 kJ/mol
183 | s0: 13.4 J/mol/K
184 | equation-of-state:
185 | model: constant-volume
186 | molar-volume: 5.508297619047619 cm^3/gmol
187 | - name: PF6-[elyt]
188 | composition: {P: 1, F: 6, E: 1}
189 | thermo:
190 | model: constant-cp
191 | h0: 0.0 J/mol
192 | s0: 0.0 J/mol/K
193 | equation-of-state:
194 | model: constant-volume
195 | molar-volume: 115.05138492063492 cm^3/gmol
196 | - name: (dummy)
197 | composition: {}
198 | thermo:
199 | model: constant-cp
200 | h0: 0.0 kJ/mol
201 | s0: 0.0 J/mol/K
202 |
203 | edge_anode_electrolyte-reactions:
204 | - equation: Li[anode] <=> Li+[elyt] + V[anode] + electron # Reaction 1
205 | id: anode_reaction
206 | rate-constant: {A: 4, b: 0.0, Ea: 0.0 kJ/mol}
207 | exchange-current-density-formulation: true
208 | beta: 0.5
209 |
210 | edge_cathode_electrolyte-reactions:
211 | - equation: Li+[elyt] + V[cathode] + electron <=> Li[cathode] # Reaction 2
212 | id: cathode_reaction
213 | rate-constant: {A: 100, b: 0.0, Ea: 0.0 kJ/mol}
214 | exchange-current-density-formulation: true
215 | beta: 0.5
216 |
--------------------------------------------------------------------------------
/data/zhangExpData.csv:
--------------------------------------------------------------------------------
1 | T,NC7H16,O2,CO,CO2
2 | 500,5.07E-03,2.93E-02,0.00E+00,0.00E+00
3 | 525,4.92E-03,2.86E-02,0.00E+00,0.00E+00
4 | 550,4.66E-03,2.85E-02,0.00E+00,0.00E+00
5 | 575,4.16E-03,2.63E-02,2.43E-04,1.01E-04
6 | 600,3.55E-03,2.33E-02,9.68E-04,2.51E-04
7 | 625,3.36E-03,2.31E-02,1.42E-03,2.67E-04
8 | 650,3.67E-03,2.45E-02,9.16E-04,1.46E-04
9 | 675,4.38E-03,2.77E-02,2.25E-04,0.00E+00
10 | 700,4.79E-03,2.87E-02,0.00E+00,0.00E+00
11 | 725,4.89E-03,2.93E-02,0.00E+00,0.00E+00
12 | 750,4.91E-03,2.84E-02,0.00E+00,0.00E+00
13 | 775,4.93E-03,2.80E-02,0.00E+00,0.00E+00
14 | 800,4.78E-03,2.82E-02,0.00E+00,0.00E+00
15 | 825,4.41E-03,2.80E-02,1.49E-05,0.00E+00
16 | 850,3.68E-03,2.80E-02,4.18E-04,1.66E-04
17 | 875,2.13E-03,2.45E-02,1.65E-03,2.22E-04
18 | 900,1.03E-03,2.05E-02,5.51E-03,3.69E-04
19 | 925,5.82E-04,1.79E-02,8.59E-03,6.78E-04
20 | 950,3.88E-04,1.47E-02,1.05E-02,1.07E-03
21 | 975,2.35E-04,1.28E-02,1.19E-02,1.36E-03
22 | 1000,1.14E-04,1.16E-02,1.34E-02,1.82E-03
23 | 1025,4.83E-05,9.88E-03,1.52E-02,2.41E-03
24 | 1050,1.64E-05,8.16E-03,1.83E-02,2.97E-03
25 | 1075,1.22E-06,5.48E-03,1.95E-02,3.67E-03
26 | 1100,0.00E+00,3.24E-03,2.14E-02,4.38E-03
--------------------------------------------------------------------------------
/electrochemistry/images/SingleParticleBattery.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Cantera/cantera-jupyter/a99ee55aeeb302abf975e7b57ee1e8dfd48c0d0f/electrochemistry/images/SingleParticleBattery.png
--------------------------------------------------------------------------------
/environment.yml:
--------------------------------------------------------------------------------
1 | name: cantera-latest-release
2 | channels:
3 | - conda-forge
4 | dependencies:
5 | - cantera
6 | - matplotlib
7 | - pandas
8 | - scipy
9 | - seaborn
10 | - coolprop
11 | - python-graphviz
12 | - ipywidgets
13 |
--------------------------------------------------------------------------------
/flames/images/flameSpeed.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Cantera/cantera-jupyter/a99ee55aeeb302abf975e7b57ee1e8dfd48c0d0f/flames/images/flameSpeed.png
--------------------------------------------------------------------------------
/flames/images/twinPremixedFlame.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Cantera/cantera-jupyter/a99ee55aeeb302abf975e7b57ee1e8dfd48c0d0f/flames/images/twinPremixedFlame.png
--------------------------------------------------------------------------------
/input/chemkin/air.inp:
--------------------------------------------------------------------------------
1 | ELEMENTS
2 | O N AR
3 | END
4 | SPECIES
5 | O O2 N NO NO2 N2O N2 AR
6 | END
7 | REACTIONS
8 | 2O+M<=>O2+M 1.200E+17 -1.000 .00
9 | AR/.83/
10 | N+NO<=>N2+O 2.700E+13 .000 355.00
11 | N+O2<=>NO+O 9.000E+09 1.000 6500.00
12 | N2O+O<=>N2+O2 1.400E+12 .000 10810.00
13 | N2O+O<=>2NO 2.900E+13 .000 23150.00
14 | N2O(+M)<=>N2+O(+M) 7.910E+10 .000 56020.00
15 | LOW / 6.370E+14 .000 56640.00/
16 | AR/ .625/
17 | NO+O+M<=>NO2+M 1.060E+20 -1.410 .00
18 | AR/ .70/
19 | NO2+O<=>NO+O2 3.900E+12 .000 -240.00
20 | END
21 |
--------------------------------------------------------------------------------
/input/chemkin/airDataNASA9.dat:
--------------------------------------------------------------------------------
1 | !
2 | ! McBride, B. J. Zehe, M. J., Gordon, S. "Nasa Glenn coefficients for Calculating
3 | ! Thermodynamic Properties of Individual Species," NASA TP2002-211556,
4 | ! September, 2002.
5 | !
6 | thermo NASA9
7 | 200.00 1000.00 6000.00 20000. 3/19/02
8 | e- Ref-Species. Chase,1998 3/82.
9 | 3 g12/98 E 1.00 0.00 0.00 0.00 0.00 0.000548579903 0.000
10 | 298.150 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428
11 | 0.000000000D+00 0.000000000D+00 2.500000000D+00 0.000000000D+00 0.000000000D+00
12 | 0.000000000D+00 0.000000000D+00 -7.453750000D+02-1.172081224D+01
13 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428
14 | 0.000000000D+00 0.000000000D+00 2.500000000D+00 0.000000000D+00 0.000000000D+00
15 | 0.000000000D+00 0.000000000D+00 -7.453750000D+02-1.172081224D+01
16 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428
17 | 0.000000000D+00 0.000000000D+00 2.500000000D+00 0.000000000D+00 0.000000000D+00
18 | 0.000000000D+00 0.000000000D+00 -7.453750000D+02-1.172081224D+01
19 | N Hf:Cox,1989. Moore,1975. Gordon,1999.
20 | 3 g 5/97 N 1.00 0.00 0.00 0.00 0.00 0 14.0067000 472680.000
21 | 200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428
22 | 0.000000000D+00 0.000000000D+00 2.500000000D+00 0.000000000D+00 0.000000000D+00
23 | 0.000000000D+00 0.000000000D+00 5.610463780D+04 4.193905036D+00
24 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428
25 | 8.876501380D+04-1.071231500D+02 2.362188287D+00 2.916720081D-04-1.729515100D-07
26 | 4.012657880D-11-2.677227571D-15 5.697351330D+04 4.865231506D+00
27 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428
28 | 5.475181050D+08-3.107574980D+05 6.916782740D+01-6.847988130D-03 3.827572400D-07
29 | -1.098367709D-11 1.277986024D-16 2.550585618D+06-5.848769753D+02
30 | N+ Moore,1975. Gordon,1999.
31 | 3 g 6/97 N 1.00E -1.00 0.00 0.00 0.00 0 14.0061514 1882127.624
32 | 298.150 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 7116.524
33 | 5.237079210D+03 2.299958315D+00 2.487488821D+00 2.737490756D-05-3.134447576D-08
34 | 1.850111332D-11-4.447350984D-15 2.256284738D+05 5.076830786D+00
35 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 7116.524
36 | 2.904970374D+05-8.557908610D+02 3.477389290D+00-5.288267190D-04 1.352350307D-07
37 | -1.389834122D-11 5.046166279D-16 2.310809984D+05-1.994146545D+00
38 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 7116.524
39 | 1.646092148D+07-1.113165218D+04 4.976986640D+00-2.005393583D-04 1.022481356D-08
40 | -2.691430863D-13 3.539931593D-18 3.136284696D+05-1.706646380D+01
41 | NO Gurvich,1978,1989 pt1 p326 pt2 p203.
42 | 3 tpis89 N 1.00O 1.00 0.00 0.00 0.00 0 30.0061000 91271.310
43 | 200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9179.110
44 | -1.143916503D+04 1.536467592D+02 3.431468730D+00-2.668592368D-03 8.481399120D-06
45 | -7.685111050D-09 2.386797655D-12 9.098214410D+03 6.728725490D+00
46 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9179.110
47 | 2.239018716D+05-1.289651623D+03 5.433936030D+00-3.656034900D-04 9.880966450D-08
48 | -1.416076856D-11 9.380184620D-16 1.750317656D+04-8.501669090D+00
49 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9179.110
50 | -9.575303540D+08 5.912434480D+05-1.384566826D+02 1.694339403D-02-1.007351096D-06
51 | 2.912584076D-11-3.295109350D-16 -4.677501240D+06 1.242081216D+03
52 | NO+ Cp,S,IP(NO): Gurvich,1989 pt1 p330 pt2 p205.
53 | 3 g 5/99 N 1.00O 1.00E -1.00 0.00 0.00 0 30.0055514 990809.704
54 | 298.150 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8670.104
55 | 1.398106635D+03-1.590446941D+02 5.122895400D+00-6.394388620D-03 1.123918342D-05
56 | -7.988581260D-09 2.107383677D-12 1.187495132D+05-4.398433810D+00
57 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8670.104
58 | 6.069876900D+05-2.278395427D+03 6.080324670D+00-6.066847580D-04 1.432002611D-07
59 | -1.747990522D-11 8.935014060D-16 1.322709615D+05-1.519880037D+01
60 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8670.104
61 | 2.676400347D+09-1.832948690D+06 5.099249390D+02-7.113819280D-02 5.317659880D-06
62 | -1.963208212D-10 2.805268230D-15 1.443308939D+07-4.324044462D+03
63 | N2 Ref-Elm. Gurvich,1978 pt1 p280 pt2 p207.
64 | 3 tpis78 N 2.00 0.00 0.00 0.00 0.00 0 28.0134000 0.000
65 | 200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8670.104
66 | 2.210371497D+04-3.818461820D+02 6.082738360D+00-8.530914410D-03 1.384646189D-05
67 | -9.625793620D-09 2.519705809D-12 7.108460860D+02-1.076003744D+01
68 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8670.104
69 | 5.877124060D+05-2.239249073D+03 6.066949220D+00-6.139685500D-04 1.491806679D-07
70 | -1.923105485D-11 1.061954386D-15 1.283210415D+04-1.586640027D+01
71 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8670.104
72 | 8.310139160D+08-6.420733540D+05 2.020264635D+02-3.065092046D-02 2.486903333D-06
73 | -9.705954110D-11 1.437538881D-15 4.938707040D+06-1.672099740D+03
74 | N2+ Gurvich,1989 pt1 p323 pt2 p200.
75 | 3 tpis89 N 2.00E -1.00 0.00 0.00 0.00 0 28.0128514 1509508.424
76 | 298.150 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8671.100
77 | -3.474047470D+04 2.696222703D+02 3.164916370D+00-2.132239781D-03 6.730476400D-06
78 | -5.637304970D-09 1.621756000D-12 1.790004424D+05 6.832974166D+00
79 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8671.100
80 | -2.845599002D+06 7.058893030D+03-2.884886385D+00 3.068677059D-03-4.361652310D-07
81 | 2.102514545D-11 5.411996470D-16 1.340388483D+05 5.090897022D+01
82 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8671.100
83 | -3.712829770D+08 3.139287234D+05-9.603518050D+01 1.571193286D-02-1.175065525D-06
84 | 4.144441230D-11-5.621893090D-16 -2.217361867D+06 8.436270947D+02
85 | O D0(O2):Brix,1954. Moore,1976. Gordon,1999.
86 | 3 g 5/97 O 1.00 0.00 0.00 0.00 0.00 0 15.9994000 249175.003
87 | 200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6725.403
88 | -7.953611300D+03 1.607177787D+02 1.966226438D+00 1.013670310D-03-1.110415423D-06
89 | 6.517507500D-10-1.584779251D-13 2.840362437D+04 8.404241820D+00
90 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6725.403
91 | 2.619020262D+05-7.298722030D+02 3.317177270D+00-4.281334360D-04 1.036104594D-07
92 | -9.438304330D-12 2.725038297D-16 3.392428060D+04-6.679585350D-01
93 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6725.403
94 | 1.779004264D+08-1.082328257D+05 2.810778365D+01-2.975232262D-03 1.854997534D-07
95 | -5.796231540D-12 7.191720164D-17 8.890942630D+05-2.181728151D+02
96 | O+ Martin,W.C.,1993. Gordon,1999.
97 | 3 g 8/97 O 1.00E -1.00 0.00 0.00 0.00 0 15.9988514 1568787.228
98 | 298.150 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428
99 | 0.000000000D+00 0.000000000D+00 2.500000000D+00 0.000000000D+00 0.000000000D+00
100 | 0.000000000D+00 0.000000000D+00 1.879352842D+05 4.393376760D+00
101 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428
102 | -2.166513208D+05 6.665456150D+02 1.702064364D+00 4.714992810D-04-1.427131823D-07
103 | 2.016595903D-11-9.107157762D-16 1.837191966D+05 1.005690382D+01
104 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 6197.428
105 | -2.143835383D+08 1.469518523D+05-3.680864540D+01 5.036164540D-03-3.087873854D-07
106 | 9.186834870D-12-1.074163268D-16 -9.614208960D+05 3.426193080D+02
107 | O2 Ref-Elm. Gurvich,1989 pt1 p94 pt2 p9.
108 | 3 tpis89 O 2.00 0.00 0.00 0.00 0.00 0 31.9988000 0.000
109 | 200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8680.104
110 | -3.425563420D+04 4.847000970D+02 1.119010961D+00 4.293889240D-03-6.836300520D-07
111 | -2.023372700D-09 1.039040018D-12 -3.391454870D+03 1.849699470D+01
112 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8680.104
113 | -1.037939022D+06 2.344830282D+03 1.819732036D+00 1.267847582D-03-2.188067988D-07
114 | 2.053719572D-11-8.193467050D-16 -1.689010929D+04 1.738716506D+01
115 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 8680.104
116 | 4.975294300D+08-2.866106874D+05 6.690352250D+01-6.169959020D-03 3.016396027D-07
117 | -7.421416600D-12 7.278175770D-17 2.293554027D+06-5.530621610D+02
118 | O2+ Gurvich,1989 pt1 p98 pt2 p11.
119 | 3 tpis89 O 2.00E -1.00 0.00 0.00 0.00 0 31.9982514 1171828.436
120 | 298.150 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9311.112
121 | -8.607205450D+04 1.051875934D+03-5.432380470D-01 6.571166540D-03-3.274263750D-06
122 | 5.940645340D-11 3.238784790D-13 1.345544668D+05 2.902709750D+01
123 | 1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9311.112
124 | 7.384654880D+04-8.459559540D+02 4.985164160D+00-1.611010890D-04 6.427083990D-08
125 | -1.504939874D-11 1.578465409D-15 1.446321044D+05-5.811230650D+00
126 | 6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9311.112
127 | -1.562125524D+09 1.161406778D+06-3.302504720D+02 4.710937520D-02-3.354461380D-06
128 | 1.167968599D-10-1.589754791D-15 -8.857866270D+06 2.852035602D+03
129 | END
130 |
131 |
132 |
--------------------------------------------------------------------------------
/input/chemkin/airNASA9.inp:
--------------------------------------------------------------------------------
1 | !
2 | !
3 | !
4 | !
5 | ELEMENTS
6 | O N E
7 | END
8 | SPECIES
9 | N2 O2 NO N O N2+ O2+ NO+ N+ O+ e-
10 | END
11 |
--------------------------------------------------------------------------------
/input/chemkin/air_extra.yaml:
--------------------------------------------------------------------------------
1 | description: |-
2 | Ideal gas properties of air. Includes several reactions among
3 | the included species.
4 |
--------------------------------------------------------------------------------
/input/chemkin/argon.inp:
--------------------------------------------------------------------------------
1 | ELEMENTS
2 | AR
3 | END
4 | SPECIES
5 | AR
6 | END
7 | REACTIONS
8 | END
9 |
--------------------------------------------------------------------------------
/input/chemkin/argon_extra.yaml:
--------------------------------------------------------------------------------
1 | description: >-
2 | Pure argon phase. Thermo and transport properties are taken
3 | from GRI-Mech 3.0.
4 |
--------------------------------------------------------------------------------
/input/chemkin/gri30.inp:
--------------------------------------------------------------------------------
1 | ! GRI-Mech Version 3.0 7/30/99 CHEMKIN-II format
2 | ! See README30 file at anonymous FTP site unix.sri.com, directory gri;
3 | ! WorldWideWeb home page http://www.me.berkeley.edu/gri_mech/ or
4 | ! through http://www.gri.org , under 'Basic Research',
5 | ! for additional information, contacts, and disclaimer
6 | ELEMENTS
7 | O H C N AR
8 | END
9 | SPECIES
10 | H2 H O O2 OH H2O HO2 H2O2
11 | C CH CH2 CH2(S) CH3 CH4 CO CO2
12 | HCO CH2O CH2OH CH3O CH3OH C2H C2H2 C2H3
13 | C2H4 C2H5 C2H6 HCCO CH2CO HCCOH N NH
14 | NH2 NH3 NNH NO NO2 N2O HNO CN
15 | HCN H2CN HCNN HCNO HOCN HNCO NCO N2
16 | AR C3H7 C3H8 CH2CHO CH3CHO
17 | END
18 | !THERMO
19 | ! Insert GRI-Mech thermodynamics here or use in default file
20 | !END
21 | REACTIONS
22 | 2O+M<=>O2+M 1.200E+17 -1.000 .00
23 | H2/ 2.40/ H2O/15.40/ CH4/ 2.00/ CO/ 1.75/ CO2/ 3.60/ C2H6/ 3.00/ AR/ .83/
24 | O+H+M<=>OH+M 5.000E+17 -1.000 .00
25 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
26 | O+H2<=>H+OH 3.870E+04 2.700 6260.00
27 | O+HO2<=>OH+O2 2.000E+13 .000 .00
28 | O+H2O2<=>OH+HO2 9.630E+06 2.000 4000.00
29 | O+CH<=>H+CO 5.700E+13 .000 .00
30 | O+CH2<=>H+HCO 8.000E+13 .000 .00
31 | O+CH2(S)<=>H2+CO 1.500E+13 .000 .00
32 | O+CH2(S)<=>H+HCO 1.500E+13 .000 .00
33 | O+CH3<=>H+CH2O 5.060E+13 .000 .00
34 | O+CH4<=>OH+CH3 1.020E+09 1.500 8600.00
35 | O+CO(+M)<=>CO2(+M) 1.800E+10 .000 2385.00
36 | LOW/ 6.020E+14 .000 3000.00/
37 | H2/2.00/ O2/6.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/3.50/ C2H6/3.00/ AR/ .50/
38 | O+HCO<=>OH+CO 3.000E+13 .000 .00
39 | O+HCO<=>H+CO2 3.000E+13 .000 .00
40 | O+CH2O<=>OH+HCO 3.900E+13 .000 3540.00
41 | O+CH2OH<=>OH+CH2O 1.000E+13 .000 .00
42 | O+CH3O<=>OH+CH2O 1.000E+13 .000 .00
43 | O+CH3OH<=>OH+CH2OH 3.880E+05 2.500 3100.00
44 | O+CH3OH<=>OH+CH3O 1.300E+05 2.500 5000.00
45 | O+C2H<=>CH+CO 5.000E+13 .000 .00
46 | O+C2H2<=>H+HCCO 1.350E+07 2.000 1900.00
47 | O+C2H2<=>OH+C2H 4.600E+19 -1.410 28950.00
48 | O+C2H2<=>CO+CH2 6.940E+06 2.000 1900.00
49 | O+C2H3<=>H+CH2CO 3.000E+13 .000 .00
50 | O+C2H4<=>CH3+HCO 1.250E+07 1.830 220.00
51 | O+C2H5<=>CH3+CH2O 2.240E+13 .000 .00
52 | O+C2H6<=>OH+C2H5 8.980E+07 1.920 5690.00
53 | O+HCCO<=>H+2CO 1.000E+14 .000 .00
54 | O+CH2CO<=>OH+HCCO 1.000E+13 .000 8000.00
55 | O+CH2CO<=>CH2+CO2 1.750E+12 .000 1350.00
56 | O2+CO<=>O+CO2 2.500E+12 .000 47800.00
57 | O2+CH2O<=>HO2+HCO 1.000E+14 .000 40000.00
58 | H+O2+M<=>HO2+M 2.800E+18 -.860 .00
59 | O2/ .00/ H2O/ .00/ CO/ .75/ CO2/1.50/ C2H6/1.50/ N2/ .00/ AR/ .00/
60 | H+2O2<=>HO2+O2 2.080E+19 -1.240 .00
61 | H+O2+H2O<=>HO2+H2O 11.26E+18 -.760 .00
62 | H+O2+N2<=>HO2+N2 2.600E+19 -1.240 .00
63 | H+O2+AR<=>HO2+AR 7.000E+17 -.800 .00
64 | H+O2<=>O+OH 2.650E+16 -.6707 17041.00
65 | 2H+M<=>H2+M 1.000E+18 -1.000 .00
66 | H2/ .00/ H2O/ .00/ CH4/2.00/ CO2/ .00/ C2H6/3.00/ AR/ .63/
67 | 2H+H2<=>2H2 9.000E+16 -.600 .00
68 | 2H+H2O<=>H2+H2O 6.000E+19 -1.250 .00
69 | 2H+CO2<=>H2+CO2 5.500E+20 -2.000 .00
70 | H+OH+M<=>H2O+M 2.200E+22 -2.000 .00
71 | H2/ .73/ H2O/3.65/ CH4/2.00/ C2H6/3.00/ AR/ .38/
72 | H+HO2<=>O+H2O 3.970E+12 .000 671.00
73 | H+HO2<=>O2+H2 4.480E+13 .000 1068.00
74 | H+HO2<=>2OH 0.840E+14 .000 635.00
75 | H+H2O2<=>HO2+H2 1.210E+07 2.000 5200.00
76 | H+H2O2<=>OH+H2O 1.000E+13 .000 3600.00
77 | H+CH<=>C+H2 1.650E+14 .000 .00
78 | H+CH2(+M)<=>CH3(+M) 6.000E+14 .000 .00
79 | LOW / 1.040E+26 -2.760 1600.00/
80 | TROE/ .5620 91.00 5836.00 8552.00/
81 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
82 | H+CH2(S)<=>CH+H2 3.000E+13 .000 .00
83 | H+CH3(+M)<=>CH4(+M) 13.90E+15 -.534 536.00
84 | LOW / 2.620E+33 -4.760 2440.00/
85 | TROE/ .7830 74.00 2941.00 6964.00 /
86 | H2/2.00/ H2O/6.00/ CH4/3.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
87 | H+CH4<=>CH3+H2 6.600E+08 1.620 10840.00
88 | H+HCO(+M)<=>CH2O(+M) 1.090E+12 .480 -260.00
89 | LOW / 2.470E+24 -2.570 425.00/
90 | TROE/ .7824 271.00 2755.00 6570.00 /
91 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
92 | H+HCO<=>H2+CO 7.340E+13 .000 .00
93 | H+CH2O(+M)<=>CH2OH(+M) 5.400E+11 .454 3600.00
94 | LOW / 1.270E+32 -4.820 6530.00/
95 | TROE/ .7187 103.00 1291.00 4160.00 /
96 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
97 | H+CH2O(+M)<=>CH3O(+M) 5.400E+11 .454 2600.00
98 | LOW / 2.200E+30 -4.800 5560.00/
99 | TROE/ .7580 94.00 1555.00 4200.00 /
100 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
101 | H+CH2O<=>HCO+H2 5.740E+07 1.900 2742.00
102 | H+CH2OH(+M)<=>CH3OH(+M) 1.055E+12 .500 86.00
103 | LOW / 4.360E+31 -4.650 5080.00/
104 | TROE/ .600 100.00 90000.0 10000.0 /
105 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
106 | H+CH2OH<=>H2+CH2O 2.000E+13 .000 .00
107 | H+CH2OH<=>OH+CH3 1.650E+11 .650 -284.00
108 | H+CH2OH<=>CH2(S)+H2O 3.280E+13 -.090 610.00
109 | H+CH3O(+M)<=>CH3OH(+M) 2.430E+12 .515 50.00
110 | LOW / 4.660E+41 -7.440 14080.0/
111 | TROE/ .700 100.00 90000.0 10000.00 /
112 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
113 | H+CH3O<=>H+CH2OH 4.150E+07 1.630 1924.00
114 | H+CH3O<=>H2+CH2O 2.000E+13 .000 .00
115 | H+CH3O<=>OH+CH3 1.500E+12 .500 -110.00
116 | H+CH3O<=>CH2(S)+H2O 2.620E+14 -.230 1070.00
117 | H+CH3OH<=>CH2OH+H2 1.700E+07 2.100 4870.00
118 | H+CH3OH<=>CH3O+H2 4.200E+06 2.100 4870.00
119 | H+C2H(+M)<=>C2H2(+M) 1.000E+17 -1.000 .00
120 | LOW / 3.750E+33 -4.800 1900.00/
121 | TROE/ .6464 132.00 1315.00 5566.00 /
122 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
123 | H+C2H2(+M)<=>C2H3(+M) 5.600E+12 .000 2400.00
124 | LOW / 3.800E+40 -7.270 7220.00/
125 | TROE/ .7507 98.50 1302.00 4167.00 /
126 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
127 | H+C2H3(+M)<=>C2H4(+M) 6.080E+12 .270 280.00
128 | LOW / 1.400E+30 -3.860 3320.00/
129 | TROE/ .7820 207.50 2663.00 6095.00 /
130 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
131 | H+C2H3<=>H2+C2H2 3.000E+13 .000 .00
132 | H+C2H4(+M)<=>C2H5(+M) 0.540E+12 .454 1820.00
133 | LOW / 0.600E+42 -7.620 6970.00/
134 | TROE/ .9753 210.00 984.00 4374.00 /
135 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
136 | H+C2H4<=>C2H3+H2 1.325E+06 2.530 12240.00
137 | H+C2H5(+M)<=>C2H6(+M) 5.210E+17 -.990 1580.00
138 | LOW / 1.990E+41 -7.080 6685.00/
139 | TROE/ .8422 125.00 2219.00 6882.00 /
140 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
141 | H+C2H5<=>H2+C2H4 2.000E+12 .000 .00
142 | H+C2H6<=>C2H5+H2 1.150E+08 1.900 7530.00
143 | H+HCCO<=>CH2(S)+CO 1.000E+14 .000 .00
144 | H+CH2CO<=>HCCO+H2 5.000E+13 .000 8000.00
145 | H+CH2CO<=>CH3+CO 1.130E+13 .000 3428.00
146 | H+HCCOH<=>H+CH2CO 1.000E+13 .000 .00
147 | H2+CO(+M)<=>CH2O(+M) 4.300E+07 1.500 79600.00
148 | LOW / 5.070E+27 -3.420 84350.00/
149 | TROE/ .9320 197.00 1540.00 10300.00 /
150 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
151 | OH+H2<=>H+H2O 2.160E+08 1.510 3430.00
152 | 2OH(+M)<=>H2O2(+M) 7.400E+13 -.370 .00
153 | LOW / 2.300E+18 -.900 -1700.00/
154 | TROE/ .7346 94.00 1756.00 5182.00 /
155 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
156 | 2OH<=>O+H2O 3.570E+04 2.400 -2110.00
157 | OH+HO2<=>O2+H2O 1.450E+13 .000 -500.00
158 | DUPLICATE
159 | OH+H2O2<=>HO2+H2O 2.000E+12 .000 427.00
160 | DUPLICATE
161 | OH+H2O2<=>HO2+H2O 1.700E+18 .000 29410.00
162 | DUPLICATE
163 | OH+C<=>H+CO 5.000E+13 .000 .00
164 | OH+CH<=>H+HCO 3.000E+13 .000 .00
165 | OH+CH2<=>H+CH2O 2.000E+13 .000 .00
166 | OH+CH2<=>CH+H2O 1.130E+07 2.000 3000.00
167 | OH+CH2(S)<=>H+CH2O 3.000E+13 .000 .00
168 | OH+CH3(+M)<=>CH3OH(+M) 2.790E+18 -1.430 1330.00
169 | LOW / 4.000E+36 -5.920 3140.00/
170 | TROE/ .4120 195.0 5900.00 6394.00/
171 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
172 | OH+CH3<=>CH2+H2O 5.600E+07 1.600 5420.00
173 | OH+CH3<=>CH2(S)+H2O 6.440E+17 -1.340 1417.00
174 | OH+CH4<=>CH3+H2O 1.000E+08 1.600 3120.00
175 | OH+CO<=>H+CO2 4.760E+07 1.228 70.00
176 | OH+HCO<=>H2O+CO 5.000E+13 .000 .00
177 | OH+CH2O<=>HCO+H2O 3.430E+09 1.180 -447.00
178 | OH+CH2OH<=>H2O+CH2O 5.000E+12 .000 .00
179 | OH+CH3O<=>H2O+CH2O 5.000E+12 .000 .00
180 | OH+CH3OH<=>CH2OH+H2O 1.440E+06 2.000 -840.00
181 | OH+CH3OH<=>CH3O+H2O 6.300E+06 2.000 1500.00
182 | OH+C2H<=>H+HCCO 2.000E+13 .000 .00
183 | OH+C2H2<=>H+CH2CO 2.180E-04 4.500 -1000.00
184 | OH+C2H2<=>H+HCCOH 5.040E+05 2.300 13500.00
185 | OH+C2H2<=>C2H+H2O 3.370E+07 2.000 14000.00
186 | OH+C2H2<=>CH3+CO 4.830E-04 4.000 -2000.00
187 | OH+C2H3<=>H2O+C2H2 5.000E+12 .000 .00
188 | OH+C2H4<=>C2H3+H2O 3.600E+06 2.000 2500.00
189 | OH+C2H6<=>C2H5+H2O 3.540E+06 2.120 870.00
190 | OH+CH2CO<=>HCCO+H2O 7.500E+12 .000 2000.00
191 | 2HO2<=>O2+H2O2 1.300E+11 .000 -1630.00
192 | DUPLICATE
193 | 2HO2<=>O2+H2O2 4.200E+14 .000 12000.00
194 | DUPLICATE
195 | HO2+CH2<=>OH+CH2O 2.000E+13 .000 .00
196 | HO2+CH3<=>O2+CH4 1.000E+12 .000 .00
197 | HO2+CH3<=>OH+CH3O 3.780E+13 .000 .00
198 | HO2+CO<=>OH+CO2 1.500E+14 .000 23600.00
199 | HO2+CH2O<=>HCO+H2O2 5.600E+06 2.000 12000.00
200 | C+O2<=>O+CO 5.800E+13 .000 576.00
201 | C+CH2<=>H+C2H 5.000E+13 .000 .00
202 | C+CH3<=>H+C2H2 5.000E+13 .000 .00
203 | CH+O2<=>O+HCO 6.710E+13 .000 .00
204 | CH+H2<=>H+CH2 1.080E+14 .000 3110.00
205 | CH+H2O<=>H+CH2O 5.710E+12 .000 -755.00
206 | CH+CH2<=>H+C2H2 4.000E+13 .000 .00
207 | CH+CH3<=>H+C2H3 3.000E+13 .000 .00
208 | CH+CH4<=>H+C2H4 6.000E+13 .000 .00
209 | CH+CO(+M)<=>HCCO(+M) 5.000E+13 .000 .00
210 | LOW / 2.690E+28 -3.740 1936.00/
211 | TROE/ .5757 237.00 1652.00 5069.00 /
212 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
213 | CH+CO2<=>HCO+CO 1.900E+14 .000 15792.00
214 | CH+CH2O<=>H+CH2CO 9.460E+13 .000 -515.00
215 | CH+HCCO<=>CO+C2H2 5.000E+13 .000 .00
216 | CH2+O2=>OH+H+CO 5.000E+12 .000 1500.00
217 | CH2+H2<=>H+CH3 5.000E+05 2.000 7230.00
218 | 2CH2<=>H2+C2H2 1.600E+15 .000 11944.00
219 | CH2+CH3<=>H+C2H4 4.000E+13 .000 .00
220 | CH2+CH4<=>2CH3 2.460E+06 2.000 8270.00
221 | CH2+CO(+M)<=>CH2CO(+M) 8.100E+11 .500 4510.00
222 | LOW / 2.690E+33 -5.110 7095.00/
223 | TROE/ .5907 275.00 1226.00 5185.00 /
224 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
225 | CH2+HCCO<=>C2H3+CO 3.000E+13 .000 .00
226 | CH2(S)+N2<=>CH2+N2 1.500E+13 .000 600.00
227 | CH2(S)+AR<=>CH2+AR 9.000E+12 .000 600.00
228 | CH2(S)+O2<=>H+OH+CO 2.800E+13 .000 .00
229 | CH2(S)+O2<=>CO+H2O 1.200E+13 .000 .00
230 | CH2(S)+H2<=>CH3+H 7.000E+13 .000 .00
231 | CH2(S)+H2O(+M)<=>CH3OH(+M) 4.820E+17 -1.160 1145.00
232 | LOW / 1.880E+38 -6.360 5040.00/
233 | TROE/ .6027 208.00 3922.00 10180.0 /
234 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
235 | CH2(S)+H2O<=>CH2+H2O 3.000E+13 .000 .00
236 | CH2(S)+CH3<=>H+C2H4 1.200E+13 .000 -570.00
237 | CH2(S)+CH4<=>2CH3 1.600E+13 .000 -570.00
238 | CH2(S)+CO<=>CH2+CO 9.000E+12 .000 .00
239 | CH2(S)+CO2<=>CH2+CO2 7.000E+12 .000 .00
240 | CH2(S)+CO2<=>CO+CH2O 1.400E+13 .000 .00
241 | CH2(S)+C2H6<=>CH3+C2H5 4.000E+13 .000 -550.00
242 | CH3+O2<=>O+CH3O 3.560E+13 .000 30480.00
243 | CH3+O2<=>OH+CH2O 2.310E+12 .000 20315.00
244 | CH3+H2O2<=>HO2+CH4 2.450E+04 2.470 5180.00
245 | 2CH3(+M)<=>C2H6(+M) 6.770E+16 -1.180 654.00
246 | LOW / 3.400E+41 -7.030 2762.00/
247 | TROE/ .6190 73.20 1180.00 9999.00 /
248 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
249 | 2CH3<=>H+C2H5 6.840E+12 .100 10600.00
250 | CH3+HCO<=>CH4+CO 2.648E+13 .000 .00
251 | CH3+CH2O<=>HCO+CH4 3.320E+03 2.810 5860.00
252 | CH3+CH3OH<=>CH2OH+CH4 3.000E+07 1.500 9940.00
253 | CH3+CH3OH<=>CH3O+CH4 1.000E+07 1.500 9940.00
254 | CH3+C2H4<=>C2H3+CH4 2.270E+05 2.000 9200.00
255 | CH3+C2H6<=>C2H5+CH4 6.140E+06 1.740 10450.00
256 | HCO+H2O<=>H+CO+H2O 1.500E+18 -1.000 17000.00
257 | HCO+M<=>H+CO+M 1.870E+17 -1.000 17000.00
258 | H2/2.00/ H2O/ .00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
259 | HCO+O2<=>HO2+CO 13.45E+12 .000 400.00
260 | CH2OH+O2<=>HO2+CH2O 1.800E+13 .000 900.00
261 | CH3O+O2<=>HO2+CH2O 4.280E-13 7.600 -3530.00
262 | C2H+O2<=>HCO+CO 1.000E+13 .000 -755.00
263 | C2H+H2<=>H+C2H2 5.680E+10 0.900 1993.00
264 | C2H3+O2<=>HCO+CH2O 4.580E+16 -1.390 1015.00
265 | C2H4(+M)<=>H2+C2H2(+M) 8.000E+12 .440 86770.00
266 | LOW / 1.580E+51 -9.300 97800.00/
267 | TROE/ .7345 180.00 1035.00 5417.00 /
268 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
269 | C2H5+O2<=>HO2+C2H4 8.400E+11 .000 3875.00
270 | HCCO+O2<=>OH+2CO 3.200E+12 .000 854.00
271 | 2HCCO<=>2CO+C2H2 1.000E+13 .000 .00
272 | N+NO<=>N2+O 2.700E+13 .000 355.00
273 | N+O2<=>NO+O 9.000E+09 1.000 6500.00
274 | N+OH<=>NO+H 3.360E+13 .000 385.00
275 | N2O+O<=>N2+O2 1.400E+12 .000 10810.00
276 | N2O+O<=>2NO 2.900E+13 .000 23150.00
277 | N2O+H<=>N2+OH 3.870E+14 .000 18880.00
278 | N2O+OH<=>N2+HO2 2.000E+12 .000 21060.00
279 | N2O(+M)<=>N2+O(+M) 7.910E+10 .000 56020.00
280 | LOW / 6.370E+14 .000 56640.00/
281 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .625/
282 | HO2+NO<=>NO2+OH 2.110E+12 .000 -480.00
283 | NO+O+M<=>NO2+M 1.060E+20 -1.410 .00
284 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
285 | NO2+O<=>NO+O2 3.900E+12 .000 -240.00
286 | NO2+H<=>NO+OH 1.320E+14 .000 360.00
287 | NH+O<=>NO+H 4.000E+13 .000 .00
288 | NH+H<=>N+H2 3.200E+13 .000 330.00
289 | NH+OH<=>HNO+H 2.000E+13 .000 .00
290 | NH+OH<=>N+H2O 2.000E+09 1.200 .00
291 | NH+O2<=>HNO+O 4.610E+05 2.000 6500.00
292 | NH+O2<=>NO+OH 1.280E+06 1.500 100.00
293 | NH+N<=>N2+H 1.500E+13 .000 .00
294 | NH+H2O<=>HNO+H2 2.000E+13 .000 13850.00
295 | NH+NO<=>N2+OH 2.160E+13 -.230 .00
296 | NH+NO<=>N2O+H 3.650E+14 -.450 .00
297 | NH2+O<=>OH+NH 3.000E+12 .000 .00
298 | NH2+O<=>H+HNO 3.900E+13 .000 .00
299 | NH2+H<=>NH+H2 4.000E+13 .000 3650.00
300 | NH2+OH<=>NH+H2O 9.000E+07 1.500 -460.00
301 | NNH<=>N2+H 3.300E+08 .000 .00
302 | NNH+M<=>N2+H+M 1.300E+14 -.110 4980.00
303 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
304 | NNH+O2<=>HO2+N2 5.000E+12 .000 .00
305 | NNH+O<=>OH+N2 2.500E+13 .000 .00
306 | NNH+O<=>NH+NO 7.000E+13 .000 .00
307 | NNH+H<=>H2+N2 5.000E+13 .000 .00
308 | NNH+OH<=>H2O+N2 2.000E+13 .000 .00
309 | NNH+CH3<=>CH4+N2 2.500E+13 .000 .00
310 | H+NO+M<=>HNO+M 4.480E+19 -1.320 740.00
311 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
312 | HNO+O<=>NO+OH 2.500E+13 .000 .00
313 | HNO+H<=>H2+NO 9.000E+11 .720 660.00
314 | HNO+OH<=>NO+H2O 1.300E+07 1.900 -950.00
315 | HNO+O2<=>HO2+NO 1.000E+13 .000 13000.00
316 | CN+O<=>CO+N 7.700E+13 .000 .00
317 | CN+OH<=>NCO+H 4.000E+13 .000 .00
318 | CN+H2O<=>HCN+OH 8.000E+12 .000 7460.00
319 | CN+O2<=>NCO+O 6.140E+12 .000 -440.00
320 | CN+H2<=>HCN+H 2.950E+05 2.450 2240.00
321 | NCO+O<=>NO+CO 2.350E+13 .000 .00
322 | NCO+H<=>NH+CO 5.400E+13 .000 .00
323 | NCO+OH<=>NO+H+CO 0.250E+13 .000 .00
324 | NCO+N<=>N2+CO 2.000E+13 .000 .00
325 | NCO+O2<=>NO+CO2 2.000E+12 .000 20000.00
326 | NCO+M<=>N+CO+M 3.100E+14 .000 54050.00
327 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
328 | NCO+NO<=>N2O+CO 1.900E+17 -1.520 740.00
329 | NCO+NO<=>N2+CO2 3.800E+18 -2.000 800.00
330 | HCN+M<=>H+CN+M 1.040E+29 -3.300 126600.00
331 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
332 | HCN+O<=>NCO+H 2.030E+04 2.640 4980.00
333 | HCN+O<=>NH+CO 5.070E+03 2.640 4980.00
334 | HCN+O<=>CN+OH 3.910E+09 1.580 26600.00
335 | HCN+OH<=>HOCN+H 1.100E+06 2.030 13370.00
336 | HCN+OH<=>HNCO+H 4.400E+03 2.260 6400.00
337 | HCN+OH<=>NH2+CO 1.600E+02 2.560 9000.00
338 | H+HCN(+M)<=>H2CN(+M) 3.300E+13 .000 .00
339 | LOW / 1.400E+26 -3.400 1900.00/
340 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
341 | H2CN+N<=>N2+CH2 6.000E+13 .000 400.00
342 | C+N2<=>CN+N 6.300E+13 .000 46020.00
343 | CH+N2<=>HCN+N 3.120E+09 0.880 20130.00
344 | CH+N2(+M)<=>HCNN(+M) 3.100E+12 .150 .00
345 | LOW / 1.300E+25 -3.160 740.00/
346 | TROE/ .6670 235.00 2117.00 4536.00 /
347 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ 1.0/
348 | CH2+N2<=>HCN+NH 1.000E+13 .000 74000.00
349 | CH2(S)+N2<=>NH+HCN 1.000E+11 .000 65000.00
350 | C+NO<=>CN+O 1.900E+13 .000 .00
351 | C+NO<=>CO+N 2.900E+13 .000 .00
352 | CH+NO<=>HCN+O 4.100E+13 .000 .00
353 | CH+NO<=>H+NCO 1.620E+13 .000 .00
354 | CH+NO<=>N+HCO 2.460E+13 .000 .00
355 | CH2+NO<=>H+HNCO 3.100E+17 -1.380 1270.00
356 | CH2+NO<=>OH+HCN 2.900E+14 -.690 760.00
357 | CH2+NO<=>H+HCNO 3.800E+13 -.360 580.00
358 | CH2(S)+NO<=>H+HNCO 3.100E+17 -1.380 1270.00
359 | CH2(S)+NO<=>OH+HCN 2.900E+14 -.690 760.00
360 | CH2(S)+NO<=>H+HCNO 3.800E+13 -.360 580.00
361 | CH3+NO<=>HCN+H2O 9.600E+13 .000 28800.00
362 | CH3+NO<=>H2CN+OH 1.000E+12 .000 21750.00
363 | HCNN+O<=>CO+H+N2 2.200E+13 .000 .00
364 | HCNN+O<=>HCN+NO 2.000E+12 .000 .00
365 | HCNN+O2<=>O+HCO+N2 1.200E+13 .000 .00
366 | HCNN+OH<=>H+HCO+N2 1.200E+13 .000 .00
367 | HCNN+H<=>CH2+N2 1.000E+14 .000 .00
368 | HNCO+O<=>NH+CO2 9.800E+07 1.410 8500.00
369 | HNCO+O<=>HNO+CO 1.500E+08 1.570 44000.00
370 | HNCO+O<=>NCO+OH 2.200E+06 2.110 11400.00
371 | HNCO+H<=>NH2+CO 2.250E+07 1.700 3800.00
372 | HNCO+H<=>H2+NCO 1.050E+05 2.500 13300.00
373 | HNCO+OH<=>NCO+H2O 3.300E+07 1.500 3600.00
374 | HNCO+OH<=>NH2+CO2 3.300E+06 1.500 3600.00
375 | HNCO+M<=>NH+CO+M 1.180E+16 .000 84720.00
376 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
377 | HCNO+H<=>H+HNCO 2.100E+15 -.690 2850.00
378 | HCNO+H<=>OH+HCN 2.700E+11 .180 2120.00
379 | HCNO+H<=>NH2+CO 1.700E+14 -.750 2890.00
380 | HOCN+H<=>H+HNCO 2.000E+07 2.000 2000.00
381 | HCCO+NO<=>HCNO+CO 0.900E+13 .000 .00
382 | CH3+N<=>H2CN+H 6.100E+14 -.310 290.00
383 | CH3+N<=>HCN+H2 3.700E+12 .150 -90.00
384 | NH3+H<=>NH2+H2 5.400E+05 2.400 9915.00
385 | NH3+OH<=>NH2+H2O 5.000E+07 1.600 955.00
386 | NH3+O<=>NH2+OH 9.400E+06 1.940 6460.00
387 | NH+CO2<=>HNO+CO 1.000E+13 .000 14350.00
388 | CN+NO2<=>NCO+NO 6.160E+15 -0.752 345.00
389 | NCO+NO2<=>N2O+CO2 3.250E+12 .000 -705.00
390 | N+CO2<=>NO+CO 3.000E+12 .000 11300.00
391 | O+CH3=>H+H2+CO 3.370E+13 .000 .00
392 | O+C2H4<=>H+CH2CHO 6.700E+06 1.830 220.00
393 | O+C2H5<=>H+CH3CHO 1.096E+14 .000 .00
394 | OH+HO2<=>O2+H2O 0.500E+16 .000 17330.00
395 | DUPLICATE
396 | OH+CH3=>H2+CH2O 8.000E+09 .500 -1755.00
397 | CH+H2(+M)<=>CH3(+M) 1.970E+12 .430 -370.00
398 | LOW/ 4.820E+25 -2.80 590.0 /
399 | TROE/ .578 122.0 2535.0 9365.0 /
400 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
401 | CH2+O2=>2H+CO2 5.800E+12 .000 1500.00
402 | CH2+O2<=>O+CH2O 2.400E+12 .000 1500.00
403 | CH2+CH2=>2H+C2H2 2.000E+14 .000 10989.00
404 | CH2(S)+H2O=>H2+CH2O 6.820E+10 .250 -935.00
405 | C2H3+O2<=>O+CH2CHO 3.030E+11 .290 11.00
406 | C2H3+O2<=>HO2+C2H2 1.337E+06 1.610 -384.00
407 | O+CH3CHO<=>OH+CH2CHO 2.920E+12 .000 1808.00
408 | O+CH3CHO=>OH+CH3+CO 2.920E+12 .000 1808.00
409 | O2+CH3CHO=>HO2+CH3+CO 3.010E+13 .000 39150.00
410 | H+CH3CHO<=>CH2CHO+H2 2.050E+09 1.160 2405.00
411 | H+CH3CHO=>CH3+H2+CO 2.050E+09 1.160 2405.00
412 | OH+CH3CHO=>CH3+H2O+CO 2.343E+10 0.730 -1113.00
413 | HO2+CH3CHO=>CH3+H2O2+CO 3.010E+12 .000 11923.00
414 | CH3+CH3CHO=>CH3+CH4+CO 2.720E+06 1.770 5920.00
415 | H+CH2CO(+M)<=>CH2CHO(+M) 4.865E+11 0.422 -1755.00
416 | LOW/ 1.012E+42 -7.63 3854.0/
417 | TROE/ 0.465 201.0 1773.0 5333.0 /
418 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
419 | O+CH2CHO=>H+CH2+CO2 1.500E+14 .000 .00
420 | O2+CH2CHO=>OH+CO+CH2O 1.810E+10 .000 .00
421 | O2+CH2CHO=>OH+2HCO 2.350E+10 .000 .00
422 | H+CH2CHO<=>CH3+HCO 2.200E+13 .000 .00
423 | H+CH2CHO<=>CH2CO+H2 1.100E+13 .000 .00
424 | OH+CH2CHO<=>H2O+CH2CO 1.200E+13 .000 .00
425 | OH+CH2CHO<=>HCO+CH2OH 3.010E+13 .000 .00
426 | CH3+C2H5(+M)<=>C3H8(+M) .9430E+13 .000 .00
427 | LOW/ 2.710E+74 -16.82 13065.0 /
428 | TROE/ .1527 291.0 2742.0 7748.0 /
429 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
430 | O+C3H8<=>OH+C3H7 1.930E+05 2.680 3716.00
431 | H+C3H8<=>C3H7+H2 1.320E+06 2.540 6756.00
432 | OH+C3H8<=>C3H7+H2O 3.160E+07 1.800 934.00
433 | C3H7+H2O2<=>HO2+C3H8 3.780E+02 2.720 1500.00
434 | CH3+C3H8<=>C3H7+CH4 0.903E+00 3.650 7154.00
435 | CH3+C2H4(+M)<=>C3H7(+M) 2.550E+06 1.600 5700.00
436 | LOW/ 3.00E+63 -14.6 18170./
437 | TROE/ .1894 277.0 8748.0 7891.0 /
438 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
439 | O+C3H7<=>C2H5+CH2O 9.640E+13 .000 .00
440 | H+C3H7(+M)<=>C3H8(+M) 3.613E+13 .000 .00
441 | LOW/ 4.420E+61 -13.545 11357.0/
442 | TROE/ .315 369.0 3285.0 6667.0 /
443 | H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/ .70/
444 | H+C3H7<=>CH3+C2H5 4.060E+06 2.190 890.00
445 | OH+C3H7<=>C2H5+CH2OH 2.410E+13 .000 .00
446 | HO2+C3H7<=>O2+C3H8 2.550E+10 0.255 -943.00
447 | HO2+C3H7=>OH+C2H5+CH2O 2.410E+13 .000 .00
448 | CH3+C3H7<=>2C2H5 1.927E+13 -0.320 .00
449 | END
450 |
--------------------------------------------------------------------------------
/input/chemkin/gri30_extra.yaml:
--------------------------------------------------------------------------------
1 | description: |-
2 | Updated webpage at http://combustion.berkeley.edu/gri-mech/version30/text30.html
3 |
--------------------------------------------------------------------------------
/input/chemkin/gri30_thermo.dat:
--------------------------------------------------------------------------------
1 | THERMO
2 | 300.000 1000.000 5000.000
3 | ! GRI-Mech Version 3.0 Thermodynamics released 7/30/99
4 | ! NASA Polynomial format for CHEMKIN-II
5 | ! see README file for disclaimer
6 | O L 1/90O 1 G 200.000 3500.000 1000.000 1
7 | 2.56942078E+00-8.59741137E-05 4.19484589E-08-1.00177799E-11 1.22833691E-15 2
8 | 2.92175791E+04 4.78433864E+00 3.16826710E+00-3.27931884E-03 6.64306396E-06 3
9 | -6.12806624E-09 2.11265971E-12 2.91222592E+04 2.05193346E+00 4
10 | O2 TPIS89O 2 G 200.000 3500.000 1000.000 1
11 | 3.28253784E+00 1.48308754E-03-7.57966669E-07 2.09470555E-10-2.16717794E-14 2
12 | -1.08845772E+03 5.45323129E+00 3.78245636E+00-2.99673416E-03 9.84730201E-06 3
13 | -9.68129509E-09 3.24372837E-12-1.06394356E+03 3.65767573E+00 4
14 | H L 7/88H 1 G 200.000 3500.000 1000.000 1
15 | 2.50000001E+00-2.30842973E-11 1.61561948E-14-4.73515235E-18 4.98197357E-22 2
16 | 2.54736599E+04-4.46682914E-01 2.50000000E+00 7.05332819E-13-1.99591964E-15 3
17 | 2.30081632E-18-9.27732332E-22 2.54736599E+04-4.46682853E-01 4
18 | H2 TPIS78H 2 G 200.000 3500.000 1000.000 1
19 | 3.33727920E+00-4.94024731E-05 4.99456778E-07-1.79566394E-10 2.00255376E-14 2
20 | -9.50158922E+02-3.20502331E+00 2.34433112E+00 7.98052075E-03-1.94781510E-05 3
21 | 2.01572094E-08-7.37611761E-12-9.17935173E+02 6.83010238E-01 4
22 | OH RUS 78O 1H 1 G 200.000 3500.000 1000.000 1
23 | 3.09288767E+00 5.48429716E-04 1.26505228E-07-8.79461556E-11 1.17412376E-14 2
24 | 3.85865700E+03 4.47669610E+00 3.99201543E+00-2.40131752E-03 4.61793841E-06 3
25 | -3.88113333E-09 1.36411470E-12 3.61508056E+03-1.03925458E-01 4
26 | H2O L 8/89H 2O 1 G 200.000 3500.000 1000.000 1
27 | 3.03399249E+00 2.17691804E-03-1.64072518E-07-9.70419870E-11 1.68200992E-14 2
28 | -3.00042971E+04 4.96677010E+00 4.19864056E+00-2.03643410E-03 6.52040211E-06 3
29 | -5.48797062E-09 1.77197817E-12-3.02937267E+04-8.49032208E-01 4
30 | HO2 L 5/89H 1O 2 G 200.000 3500.000 1000.000 1
31 | 4.01721090E+00 2.23982013E-03-6.33658150E-07 1.14246370E-10-1.07908535E-14 2
32 | 1.11856713E+02 3.78510215E+00 4.30179801E+00-4.74912051E-03 2.11582891E-05 3
33 | -2.42763894E-08 9.29225124E-12 2.94808040E+02 3.71666245E+00 4
34 | H2O2 L 7/88H 2O 2 G 200.000 3500.000 1000.000 1
35 | 4.16500285E+00 4.90831694E-03-1.90139225E-06 3.71185986E-10-2.87908305E-14 2
36 | -1.78617877E+04 2.91615662E+00 4.27611269E+00-5.42822417E-04 1.67335701E-05 3
37 | -2.15770813E-08 8.62454363E-12-1.77025821E+04 3.43505074E+00 4
38 | C L11/88C 1 G 200.000 3500.000 1000.000 1
39 | 2.49266888E+00 4.79889284E-05-7.24335020E-08 3.74291029E-11-4.87277893E-15 2
40 | 8.54512953E+04 4.80150373E+00 2.55423955E+00-3.21537724E-04 7.33792245E-07 3
41 | -7.32234889E-10 2.66521446E-13 8.54438832E+04 4.53130848E+00 4
42 | CH TPIS79C 1H 1 G 200.000 3500.000 1000.000 1
43 | 2.87846473E+00 9.70913681E-04 1.44445655E-07-1.30687849E-10 1.76079383E-14 2
44 | 7.10124364E+04 5.48497999E+00 3.48981665E+00 3.23835541E-04-1.68899065E-06 3
45 | 3.16217327E-09-1.40609067E-12 7.07972934E+04 2.08401108E+00 4
46 | CH2 L S/93C 1H 2 G 200.000 3500.000 1000.000 1
47 | 2.87410113E+00 3.65639292E-03-1.40894597E-06 2.60179549E-10-1.87727567E-14 2
48 | 4.62636040E+04 6.17119324E+00 3.76267867E+00 9.68872143E-04 2.79489841E-06 3
49 | -3.85091153E-09 1.68741719E-12 4.60040401E+04 1.56253185E+00 4
50 | CH2(S) L S/93C 1H 2 G 200.000 3500.000 1000.000 1
51 | 2.29203842E+00 4.65588637E-03-2.01191947E-06 4.17906000E-10-3.39716365E-14 2
52 | 5.09259997E+04 8.62650169E+00 4.19860411E+00-2.36661419E-03 8.23296220E-06 3
53 | -6.68815981E-09 1.94314737E-12 5.04968163E+04-7.69118967E-01 4
54 | CH3 L11/89C 1H 3 G 200.000 3500.000 1000.000 1
55 | 2.28571772E+00 7.23990037E-03-2.98714348E-06 5.95684644E-10-4.67154394E-14 2
56 | 1.67755843E+04 8.48007179E+00 3.67359040E+00 2.01095175E-03 5.73021856E-06 3
57 | -6.87117425E-09 2.54385734E-12 1.64449988E+04 1.60456433E+00 4
58 | CH4 L 8/88C 1H 4 G 200.000 3500.000 1000.000 1
59 | 7.48514950E-02 1.33909467E-02-5.73285809E-06 1.22292535E-09-1.01815230E-13 2
60 | -9.46834459E+03 1.84373180E+01 5.14987613E+00-1.36709788E-02 4.91800599E-05 3
61 | -4.84743026E-08 1.66693956E-11-1.02466476E+04-4.64130376E+00 4
62 | CO TPIS79C 1O 1 G 200.000 3500.000 1000.000 1
63 | 2.71518561E+00 2.06252743E-03-9.98825771E-07 2.30053008E-10-2.03647716E-14 2
64 | -1.41518724E+04 7.81868772E+00 3.57953347E+00-6.10353680E-04 1.01681433E-06 3
65 | 9.07005884E-10-9.04424499E-13-1.43440860E+04 3.50840928E+00 4
66 | CO2 L 7/88C 1O 2 G 200.000 3500.000 1000.000 1
67 | 3.85746029E+00 4.41437026E-03-2.21481404E-06 5.23490188E-10-4.72084164E-14 2
68 | -4.87591660E+04 2.27163806E+00 2.35677352E+00 8.98459677E-03-7.12356269E-06 3
69 | 2.45919022E-09-1.43699548E-13-4.83719697E+04 9.90105222E+00 4
70 | HCO L12/89H 1C 1O 1 G 200.000 3500.000 1000.000 1
71 | 2.77217438E+00 4.95695526E-03-2.48445613E-06 5.89161778E-10-5.33508711E-14 2
72 | 4.01191815E+03 9.79834492E+00 4.22118584E+00-3.24392532E-03 1.37799446E-05 3
73 | -1.33144093E-08 4.33768865E-12 3.83956496E+03 3.39437243E+00 4
74 | CH2O L 8/88H 2C 1O 1 G 200.000 3500.000 1000.000 1
75 | 1.76069008E+00 9.20000082E-03-4.42258813E-06 1.00641212E-09-8.83855640E-14 2
76 | -1.39958323E+04 1.36563230E+01 4.79372315E+00-9.90833369E-03 3.73220008E-05 3
77 | -3.79285261E-08 1.31772652E-11-1.43089567E+04 6.02812900E-01 4
78 | CH2OH GUNL93C 1H 3O 1 G 200.000 3500.000 1000.000 1
79 | 3.69266569E+00 8.64576797E-03-3.75101120E-06 7.87234636E-10-6.48554201E-14 2
80 | -3.24250627E+03 5.81043215E+00 3.86388918E+00 5.59672304E-03 5.93271791E-06 3
81 | -1.04532012E-08 4.36967278E-12-3.19391367E+03 5.47302243E+00 4
82 | CH3O 121686C 1H 3O 1 G 300.00 3000.00 1000.000 1
83 | 0.03770799E+02 0.07871497E-01-0.02656384E-04 0.03944431E-08-0.02112616E-12 2
84 | 0.12783252E+03 0.02929575E+02 0.02106204E+02 0.07216595E-01 0.05338472E-04 3
85 | -0.07377636E-07 0.02075610E-10 0.09786011E+04 0.13152177E+02 4
86 | CH3OH L 8/88C 1H 4O 1 G 200.000 3500.000 1000.000 1
87 | 1.78970791E+00 1.40938292E-02-6.36500835E-06 1.38171085E-09-1.17060220E-13 2
88 | -2.53748747E+04 1.45023623E+01 5.71539582E+00-1.52309129E-02 6.52441155E-05 3
89 | -7.10806889E-08 2.61352698E-11-2.56427656E+04-1.50409823E+00 4
90 | C2H L 1/91C 2H 1 G 200.000 3500.000 1000.000 1
91 | 3.16780652E+00 4.75221902E-03-1.83787077E-06 3.04190252E-10-1.77232770E-14 2
92 | 6.71210650E+04 6.63589475E+00 2.88965733E+00 1.34099611E-02-2.84769501E-05 3
93 | 2.94791045E-08-1.09331511E-11 6.68393932E+04 6.22296438E+00 4
94 | C2H2 L 1/91C 2H 2 G 200.000 3500.000 1000.000 1
95 | 4.14756964E+00 5.96166664E-03-2.37294852E-06 4.67412171E-10-3.61235213E-14 2
96 | 2.59359992E+04-1.23028121E+00 8.08681094E-01 2.33615629E-02-3.55171815E-05 3
97 | 2.80152437E-08-8.50072974E-12 2.64289807E+04 1.39397051E+01 4
98 | C2H3 L 2/92C 2H 3 G 200.000 3500.000 1000.000 1
99 | 3.01672400E+00 1.03302292E-02-4.68082349E-06 1.01763288E-09-8.62607041E-14 2
100 | 3.46128739E+04 7.78732378E+00 3.21246645E+00 1.51479162E-03 2.59209412E-05 3
101 | -3.57657847E-08 1.47150873E-11 3.48598468E+04 8.51054025E+00 4
102 | C2H4 L 1/91C 2H 4 G 200.000 3500.000 1000.000 1
103 | 2.03611116E+00 1.46454151E-02-6.71077915E-06 1.47222923E-09-1.25706061E-13 2
104 | 4.93988614E+03 1.03053693E+01 3.95920148E+00-7.57052247E-03 5.70990292E-05 3
105 | -6.91588753E-08 2.69884373E-11 5.08977593E+03 4.09733096E+00 4
106 | C2H5 L12/92C 2H 5 G 200.000 3500.000 1000.000 1
107 | 1.95465642E+00 1.73972722E-02-7.98206668E-06 1.75217689E-09-1.49641576E-13 2
108 | 1.28575200E+04 1.34624343E+01 4.30646568E+00-4.18658892E-03 4.97142807E-05 3
109 | -5.99126606E-08 2.30509004E-11 1.28416265E+04 4.70720924E+00 4
110 | C2H6 L 8/88C 2H 6 G 200.000 3500.000 1000.000 1
111 | 1.07188150E+00 2.16852677E-02-1.00256067E-05 2.21412001E-09-1.90002890E-13 2
112 | -1.14263932E+04 1.51156107E+01 4.29142492E+00-5.50154270E-03 5.99438288E-05 3
113 | -7.08466285E-08 2.68685771E-11-1.15222055E+04 2.66682316E+00 4
114 | CH2CO L 5/90C 2H 2O 1 G 200.000 3500.000 1000.000 1
115 | 4.51129732E+00 9.00359745E-03-4.16939635E-06 9.23345882E-10-7.94838201E-14 2
116 | -7.55105311E+03 6.32247205E-01 2.13583630E+00 1.81188721E-02-1.73947474E-05 3
117 | 9.34397568E-09-2.01457615E-12-7.04291804E+03 1.22156480E+01 4
118 | HCCO SRIC91H 1C 2O 1 G 300.00 4000.00 1000.000 1
119 | 0.56282058E+01 0.40853401E-02-0.15934547E-05 0.28626052E-09-0.19407832E-13 2
120 | 0.19327215E+05-0.39302595E+01 0.22517214E+01 0.17655021E-01-0.23729101E-04 3
121 | 0.17275759E-07-0.50664811E-11 0.20059449E+05 0.12490417E+02 4
122 | HCCOH SRI91C 2O 1H 2 G 300.000 5000.000 1000.000 1
123 | 0.59238291E+01 0.67923600E-02-0.25658564E-05 0.44987841E-09-0.29940101E-13 2
124 | 0.72646260E+04-0.76017742E+01 0.12423733E+01 0.31072201E-01-0.50866864E-04 3
125 | 0.43137131E-07-0.14014594E-10 0.80316143E+04 0.13874319E+02 4
126 | H2CN 41687H 2C 1N 1 G 300.00 4000.000 1000.000 1
127 | 0.52097030E+01 0.29692911E-02-0.28555891E-06-0.16355500E-09 0.30432589E-13 2
128 | 0.27677109E+05-0.44444780E+01 0.28516610E+01 0.56952331E-02 0.10711400E-05 3
129 | -0.16226120E-08-0.23511081E-12 0.28637820E+05 0.89927511E+01 4
130 | HCN GRI/98H 1C 1N 1 G 200.000 6000.000 1000.000 1
131 | 0.38022392E+01 0.31464228E-02-0.10632185E-05 0.16619757E-09-0.97997570E-14 2
132 | 0.14407292E+05 0.15754601E+01 0.22589886E+01 0.10051170E-01-0.13351763E-04 3
133 | 0.10092349E-07-0.30089028E-11 0.14712633E+05 0.89164419E+01 4
134 | HNO And93 H 1N 1O 1 G 200.000 6000.000 1000.000 1
135 | 0.29792509E+01 0.34944059E-02-0.78549778E-06 0.57479594E-10-0.19335916E-15 2
136 | 0.11750582E+05 0.86063728E+01 0.45334916E+01-0.56696171E-02 0.18473207E-04 3
137 | -0.17137094E-07 0.55454573E-11 0.11548297E+05 0.17498417E+01 4
138 | N L 6/88N 1 G 200.000 6000.000 1000.000 1
139 | 0.24159429E+01 0.17489065E-03-0.11902369E-06 0.30226245E-10-0.20360982E-14 2
140 | 0.56133773E+05 0.46496096E+01 0.25000000E+01 0.00000000E+00 0.00000000E+00 3
141 | 0.00000000E+00 0.00000000E+00 0.56104637E+05 0.41939087E+01 4
142 | NNH T07/93N 2H 1 G 200.000 6000.000 1000.000 1
143 | 0.37667544E+01 0.28915082E-02-0.10416620E-05 0.16842594E-09-0.10091896E-13 2
144 | 0.28650697E+05 0.44705067E+01 0.43446927E+01-0.48497072E-02 0.20059459E-04 3
145 | -0.21726464E-07 0.79469539E-11 0.28791973E+05 0.29779410E+01 4
146 | N2O L 7/88N 2O 1 G 200.000 6000.000 1000.000 1
147 | 0.48230729E+01 0.26270251E-02-0.95850874E-06 0.16000712E-09-0.97752303E-14 2
148 | 0.80734048E+04-0.22017207E+01 0.22571502E+01 0.11304728E-01-0.13671319E-04 3
149 | 0.96819806E-08-0.29307182E-11 0.87417744E+04 0.10757992E+02 4
150 | NH And94 N 1H 1 G 200.000 6000.000 1000.000 1
151 | 0.27836928E+01 0.13298430E-02-0.42478047E-06 0.78348501E-10-0.55044470E-14 2
152 | 0.42120848E+05 0.57407799E+01 0.34929085E+01 0.31179198E-03-0.14890484E-05 3
153 | 0.24816442E-08-0.10356967E-11 0.41880629E+05 0.18483278E+01 4
154 | NH2 And89 N 1H 2 G 200.000 6000.000 1000.000 1
155 | 0.28347421E+01 0.32073082E-02-0.93390804E-06 0.13702953E-09-0.79206144E-14 2
156 | 0.22171957E+05 0.65204163E+01 0.42040029E+01-0.21061385E-02 0.71068348E-05 3
157 | -0.56115197E-08 0.16440717E-11 0.21885910E+05-0.14184248E+00 4
158 | NH3 J 6/77N 1H 3 G 200.000 6000.000 1000.000 1
159 | 0.26344521E+01 0.56662560E-02-0.17278676E-05 0.23867161E-09-0.12578786E-13 2
160 | -0.65446958E+04 0.65662928E+01 0.42860274E+01-0.46605230E-02 0.21718513E-04 3
161 | -0.22808887E-07 0.82638046E-11-0.67417285E+04-0.62537277E+00 4
162 | NO RUS 78N 1O 1 G 200.000 6000.000 1000.000 1
163 | 0.32606056E+01 0.11911043E-02-0.42917048E-06 0.69457669E-10-0.40336099E-14 2
164 | 0.99209746E+04 0.63693027E+01 0.42184763E+01-0.46389760E-02 0.11041022E-04 3
165 | -0.93361354E-08 0.28035770E-11 0.98446230E+04 0.22808464E+01 4
166 | NO2 L 7/88N 1O 2 G 200.000 6000.000 1000.000 1
167 | 0.48847542E+01 0.21723956E-02-0.82806906E-06 0.15747510E-09-0.10510895E-13 2
168 | 0.23164983E+04-0.11741695E+00 0.39440312E+01-0.15854290E-02 0.16657812E-04 3
169 | -0.20475426E-07 0.78350564E-11 0.28966179E+04 0.63119917E+01 4
170 | HCNO BDEA94H 1N 1C 1O 1G 300.000 5000.000 1382.000 1
171 | 6.59860456E+00 3.02778626E-03-1.07704346E-06 1.71666528E-10-1.01439391E-14 2
172 | 1.79661339E+04-1.03306599E+01 2.64727989E+00 1.27505342E-02-1.04794236E-05 3
173 | 4.41432836E-09-7.57521466E-13 1.92990252E+04 1.07332972E+01 4
174 | HOCN BDEA94H 1N 1C 1O 1G 300.000 5000.000 1368.000 1
175 | 5.89784885E+00 3.16789393E-03-1.11801064E-06 1.77243144E-10-1.04339177E-14 2
176 | -3.70653331E+03-6.18167825E+00 3.78604952E+00 6.88667922E-03-3.21487864E-06 3
177 | 5.17195767E-10 1.19360788E-14-2.82698400E+03 5.63292162E+00 4
178 | HNCO BDEA94H 1N 1C 1O 1G 300.000 5000.000 1478.000 1
179 | 6.22395134E+00 3.17864004E-03-1.09378755E-06 1.70735163E-10-9.95021955E-15 2
180 | -1.66599344E+04-8.38224741E+00 3.63096317E+00 7.30282357E-03-2.28050003E-06 3
181 | -6.61271298E-10 3.62235752E-13-1.55873636E+04 6.19457727E+00 4
182 | NCO EA 93 N 1C 1O 1 G 200.000 6000.000 1000.000 1
183 | 0.51521845E+01 0.23051761E-02-0.88033153E-06 0.14789098E-09-0.90977996E-14 2
184 | 0.14004123E+05-0.25442660E+01 0.28269308E+01 0.88051688E-02-0.83866134E-05 3
185 | 0.48016964E-08-0.13313595E-11 0.14682477E+05 0.95504646E+01 4
186 | CN HBH92 C 1N 1 G 200.000 6000.000 1000.000 1
187 | 0.37459805E+01 0.43450775E-04 0.29705984E-06-0.68651806E-10 0.44134173E-14 2
188 | 0.51536188E+05 0.27867601E+01 0.36129351E+01-0.95551327E-03 0.21442977E-05 3
189 | -0.31516323E-09-0.46430356E-12 0.51708340E+05 0.39804995E+01 4
190 | HCNN SRI/94C 1N 2H 1 G 300.000 5000.000 1000.000 1
191 | 0.58946362E+01 0.39895959E-02-0.15982380E-05 0.29249395E-09-0.20094686E-13 2
192 | 0.53452941E+05-0.51030502E+01 0.25243194E+01 0.15960619E-01-0.18816354E-04 3
193 | 0.12125540E-07-0.32357378E-11 0.54261984E+05 0.11675870E+02 4
194 | N2 121286N 2 G 300.000 5000.000 1000.000 1
195 | 0.02926640E+02 0.14879768E-02-0.05684760E-05 0.10097038E-09-0.06753351E-13 2
196 | -0.09227977E+04 0.05980528E+02 0.03298677E+02 0.14082404E-02-0.03963222E-04 3
197 | 0.05641515E-07-0.02444854E-10-0.10208999E+04 0.03950372E+02 4
198 | AR 120186AR 1 G 300.000 5000.000 1000.000 1
199 | 0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2
200 | -0.07453750E+04 0.04366000E+02 0.02500000E+02 0.00000000E+00 0.00000000E+00 3
201 | 0.00000000E+00 0.00000000E+00-0.07453750E+04 0.04366000E+02 4
202 | C3H8 L 4/85C 3H 8 G 300.000 5000.000 1000.000 1
203 | 0.75341368E+01 0.18872239E-01-0.62718491E-05 0.91475649E-09-0.47838069E-13 2
204 | -0.16467516E+05-0.17892349E+02 0.93355381E+00 0.26424579E-01 0.61059727E-05 3
205 | -0.21977499E-07 0.95149253E-11-0.13958520E+05 0.19201691E+02 4
206 | C3H7 L 9/84C 3H 7 G 300.000 5000.000 1000.000 1
207 | 0.77026987E+01 0.16044203E-01-0.52833220E-05 0.76298590E-09-0.39392284E-13 2
208 | 0.82984336E+04-0.15480180E+02 0.10515518E+01 0.25991980E-01 0.23800540E-05 3
209 | -0.19609569E-07 0.93732470E-11 0.10631863E+05 0.21122559E+02 4
210 | CH3CHO L 8/88C 2H 4O 1 G 200.000 6000.000 1000.000 1
211 | 0.54041108E+01 0.11723059E-01-0.42263137E-05 0.68372451E-09-0.40984863E-13 2
212 | -0.22593122E+05-0.34807917E+01 0.47294595E+01-0.31932858E-02 0.47534921E-04 3
213 | -0.57458611E-07 0.21931112E-10-0.21572878E+05 0.41030159E+01 4
214 | CH2CHO SAND86O 1H 3C 2 G 300.000 5000.000 1000.000 1
215 | 0.05975670E+02 0.08130591E-01-0.02743624E-04 0.04070304E-08-0.02176017E-12 2
216 | 0.04903218E+04-0.05045251E+02 0.03409062E+02 0.10738574E-01 0.01891492E-04 3
217 | -0.07158583E-07 0.02867385E-10 0.15214766E+04 0.09558290E+02 4
218 | END
219 |
220 |
221 |
222 |
223 |
--------------------------------------------------------------------------------
/input/chemkin/gri30_tran.dat:
--------------------------------------------------------------------------------
1 | AR 0 136.500 3.330 0.000 0.000 0.000
2 | C 0 71.400 3.298 0.000 0.000 0.000 ! *
3 | C2 1 97.530 3.621 0.000 1.760 4.000
4 | C2O 1 232.400 3.828 0.000 0.000 1.000 ! *
5 | CN2 1 232.400 3.828 0.000 0.000 1.000 ! OIS
6 | C2H 1 209.000 4.100 0.000 0.000 2.500
7 | C2H2 1 209.000 4.100 0.000 0.000 2.500
8 | C2H2OH 2 224.700 4.162 0.000 0.000 1.000 ! *
9 | C2H3 2 209.000 4.100 0.000 0.000 1.000 ! *
10 | C2H4 2 280.800 3.971 0.000 0.000 1.500
11 | C2H5 2 252.300 4.302 0.000 0.000 1.500
12 | C2H6 2 252.300 4.302 0.000 0.000 1.500
13 | C2N 1 232.400 3.828 0.000 0.000 1.000 ! OIS
14 | C2N2 1 349.000 4.361 0.000 0.000 1.000 ! OIS
15 | C3H2 2 209.000 4.100 0.000 0.000 1.000 ! *
16 | C3H4 1 252.000 4.760 0.000 0.000 1.000
17 | C3H6 2 266.800 4.982 0.000 0.000 1.000
18 | C3H7 2 266.800 4.982 0.000 0.000 1.000
19 | C4H6 2 357.000 5.180 0.000 0.000 1.000
20 | I*C3H7 2 266.800 4.982 0.000 0.000 1.000
21 | N*C3H7 2 266.800 4.982 0.000 0.000 1.000
22 | C3H8 2 266.800 4.982 0.000 0.000 1.000
23 | C4H 1 357.000 5.180 0.000 0.000 1.000
24 | C4H2 1 357.000 5.180 0.000 0.000 1.000
25 | C4H2OH 2 224.700 4.162 0.000 0.000 1.000 ! *
26 | C4H8 2 357.000 5.176 0.000 0.000 1.000
27 | C4H9 2 357.000 5.176 0.000 0.000 1.000
28 | I*C4H9 2 357.000 5.176 0.000 0.000 1.000
29 | C5H2 1 357.000 5.180 0.000 0.000 1.000
30 | C5H3 1 357.000 5.180 0.000 0.000 1.000
31 | C6H2 1 357.000 5.180 0.000 0.000 1.000
32 | C6H5 2 412.300 5.349 0.000 0.000 1.000 ! JAM
33 | C6H5O 2 450.000 5.500 0.000 0.000 1.000 ! JAM
34 | C5H5OH 2 450.000 5.500 0.000 0.000 1.000 ! JAM
35 | C6H6 2 412.300 5.349 0.000 0.000 1.000 ! SVE
36 | C6H7 2 412.300 5.349 0.000 0.000 1.000 ! JAM
37 | CH 1 80.000 2.750 0.000 0.000 0.000
38 | CH2 1 144.000 3.800 0.000 0.000 0.000
39 | CH2(S) 1 144.000 3.800 0.000 0.000 0.000
40 | CH2* 1 144.000 3.800 0.000 0.000 0.000
41 | CH2CHCCH 2 357.000 5.180 0.000 0.000 1.000 ! JAM
42 | CH2CHCCH2 2 357.000 5.180 0.000 0.000 1.000 ! JAM
43 | CH2CHCH2 2 260.000 4.850 0.000 0.000 1.000 ! JAM
44 | CH2CHCHCH 2 357.000 5.180 0.000 0.000 1.000 ! JAM
45 | CH2CHCHCH2 2 357.000 5.180 0.000 0.000 1.000 ! JAM
46 | CH2CO 2 436.000 3.970 0.000 0.000 2.000
47 | CH2O 2 498.000 3.590 0.000 0.000 2.000
48 | CH2OH 2 417.000 3.690 1.700 0.000 2.000
49 | CH3 1 144.000 3.800 0.000 0.000 0.000
50 | CH3CC 2 252.000 4.760 0.000 0.000 1.000 ! JAM
51 | CH3CCCH2 2 357.000 5.180 0.000 0.000 1.000 ! JAM
52 | CH3CCCH3 2 357.000 5.180 0.000 0.000 1.000 ! JAM
53 | CH3CCH2 2 260.000 4.850 0.000 0.000 1.000 ! JAM
54 | CH3CHCH 2 260.000 4.850 0.000 0.000 1.000 ! JAM
55 | CH3CH2CCH 2 357.000 5.180 0.000 0.000 1.000 ! JAM
56 | CH3CHO 2 436.000 3.970 0.000 0.000 2.000
57 | CH2CHO 2 436.000 3.970 0.000 0.000 2.000
58 | CH3CO 2 436.000 3.970 0.000 0.000 2.000
59 | CH3O 2 417.000 3.690 1.700 0.000 2.000
60 | CH3OH 2 481.800 3.626 0.000 0.000 1.000 ! SVE
61 | CH4 2 141.400 3.746 0.000 2.600 13.000
62 | CH4O 2 417.000 3.690 1.700 0.000 2.000
63 | CN 1 75.000 3.856 0.000 0.000 1.000 ! OIS
64 | CNC 1 232.400 3.828 0.000 0.000 1.000 ! OIS
65 | CNN 1 232.400 3.828 0.000 0.000 1.000 ! OIS
66 | CO 1 98.100 3.650 0.000 1.950 1.800
67 | CO2 1 244.000 3.763 0.000 2.650 2.100
68 | H 0 145.000 2.050 0.000 0.000 0.000
69 | H2C4O 2 357.000 5.180 0.000 0.000 1.000 ! JAM
70 | H2 1 38.000 2.920 0.000 0.790 280.000
71 | H2CCCCH 2 357.000 5.180 0.000 0.000 1.000 ! JAM
72 | H2CCCCH2 2 357.000 5.180 0.000 0.000 1.000 ! JAM
73 | H2CCCH 2 252.000 4.760 0.000 0.000 1.000 ! JAM
74 | H2CN 1 569.000 3.630 0.000 0.000 1.000 ! os/jm
75 | H2NO 2 116.700 3.492 0.000 0.000 1.000 ! JAM
76 | H2O 2 572.400 2.605 1.844 0.000 4.000
77 | H2O2 2 107.400 3.458 0.000 0.000 3.800
78 | HC2N2 1 349.000 4.361 0.000 0.000 1.000 ! OIS
79 | HCCHCCH 2 357.000 5.180 0.000 0.000 1.000 ! JAM
80 | HCCO 2 150.000 2.500 0.000 0.000 1.000 ! *
81 | HCNN 2 150.000 2.500 0.000 0.000 1.000 ! *
82 | HCCOH 2 436.000 3.970 0.000 0.000 2.000
83 | HCN 1 569.000 3.630 0.000 0.000 1.000 ! OIS
84 | HCO 2 498.000 3.590 0.000 0.000 0.000
85 | HE 0 10.200 2.576 0.000 0.000 0.000 ! *
86 | HCNO 2 232.400 3.828 0.000 0.000 1.000 ! JAM
87 | HOCN 2 232.400 3.828 0.000 0.000 1.000 ! JAM
88 | HNCO 2 232.400 3.828 0.000 0.000 1.000 ! OIS
89 | HNNO 2 232.400 3.828 0.000 0.000 1.000 ! *
90 | HNO 2 116.700 3.492 0.000 0.000 1.000 ! *
91 | HNOH 2 116.700 3.492 0.000 0.000 1.000 ! JAM
92 | HO2 2 107.400 3.458 0.000 0.000 1.000 ! *
93 | N 0 71.400 3.298 0.000 0.000 0.000 ! *
94 | N2 1 97.530 3.621 0.000 1.760 4.000
95 | N2H2 2 71.400 3.798 0.000 0.000 1.000 ! *
96 | N2H3 2 200.000 3.900 0.000 0.000 1.000 ! *
97 | N2H4 2 205.000 4.230 0.000 4.260 1.500
98 | N2O 1 232.400 3.828 0.000 0.000 1.000 ! *
99 | NCN 1 232.400 3.828 0.000 0.000 1.000 ! OIS
100 | NCO 1 232.400 3.828 0.000 0.000 1.000 ! OIS
101 | NH 1 80.000 2.650 0.000 0.000 4.000
102 | NH2 2 80.000 2.650 0.000 2.260 4.000
103 | NH3 2 481.000 2.920 1.470 0.000 10.000
104 | NNH 2 71.400 3.798 0.000 0.000 1.000 ! *
105 | NO 1 97.530 3.621 0.000 1.760 4.000
106 | NCNO 2 232.400 3.828 0.000 0.000 1.000 ! OIS
107 | NO2 2 200.000 3.500 0.000 0.000 1.000 ! *
108 | O 0 80.000 2.750 0.000 0.000 0.000
109 | O2 1 107.400 3.458 0.000 1.600 3.800
110 | OH 1 80.000 2.750 0.000 0.000 0.000
111 |
--------------------------------------------------------------------------------
/input/chemkin/h2o2.inp:
--------------------------------------------------------------------------------
1 | ELEMENTS
2 | O H AR
3 | END
4 | SPECIES
5 | H2 H O O2 OH H2O HO2 H2O2
6 | AR
7 | END
8 | THERMO ALL
9 | 300.000 1000.000 5000.000
10 | O L 1/90O 1 00 00 00G 200.000 3500.000 1000.000 1
11 | 2.56942078E+00-8.59741137E-05 4.19484589E-08-1.00177799E-11 1.22833691E-15 2
12 | 2.92175791E+04 4.78433864E+00 3.16826710E+00-3.27931884E-03 6.64306396E-06 3
13 | -6.12806624E-09 2.11265971E-12 2.91222592E+04 2.05193346E+00 4
14 | O2 TPIS89O 2 00 00 00G 200.000 3500.000 1000.000 1
15 | 3.28253784E+00 1.48308754E-03-7.57966669E-07 2.09470555E-10-2.16717794E-14 2
16 | -1.08845772E+03 5.45323129E+00 3.78245636E+00-2.99673416E-03 9.84730201E-06 3
17 | -9.68129509E-09 3.24372837E-12-1.06394356E+03 3.65767573E+00 4
18 | H L 7/88H 1 00 00 00G 200.000 3500.000 1000.000 1
19 | 2.50000001E+00-2.30842973E-11 1.61561948E-14-4.73515235E-18 4.98197357E-22 2
20 | 2.54736599E+04-4.46682914E-01 2.50000000E+00 7.05332819E-13-1.99591964E-15 3
21 | 2.30081632E-18-9.27732332E-22 2.54736599E+04-4.46682853E-01 4
22 | H2 TPIS78H 2 00 00 00G 200.000 3500.000 1000.000 1
23 | 3.33727920E+00-4.94024731E-05 4.99456778E-07-1.79566394E-10 2.00255376E-14 2
24 | -9.50158922E+02-3.20502331E+00 2.34433112E+00 7.98052075E-03-1.94781510E-05 3
25 | 2.01572094E-08-7.37611761E-12-9.17935173E+02 6.83010238E-01 4
26 | OH RUS 78O 1H 1 00 00G 200.000 3500.000 1000.000 1
27 | 3.09288767E+00 5.48429716E-04 1.26505228E-07-8.79461556E-11 1.17412376E-14 2
28 | 3.85865700E+03 4.47669610E+00 3.99201543E+00-2.40131752E-03 4.61793841E-06 3
29 | -3.88113333E-09 1.36411470E-12 3.61508056E+03-1.03925458E-01 4
30 | H2O L 8/89H 2O 1 00 00G 200.000 3500.000 1000.000 1
31 | 3.03399249E+00 2.17691804E-03-1.64072518E-07-9.70419870E-11 1.68200992E-14 2
32 | -3.00042971E+04 4.96677010E+00 4.19864056E+00-2.03643410E-03 6.52040211E-06 3
33 | -5.48797062E-09 1.77197817E-12-3.02937267E+04-8.49032208E-01 4
34 | HO2 L 5/89H 1O 2 00 00G 200.000 3500.000 1000.000 1
35 | 4.01721090E+00 2.23982013E-03-6.33658150E-07 1.14246370E-10-1.07908535E-14 2
36 | 1.11856713E+02 3.78510215E+00 4.30179801E+00-4.74912051E-03 2.11582891E-05 3
37 | -2.42763894E-08 9.29225124E-12 2.94808040E+02 3.71666245E+00 4
38 | H2O2 L 7/88H 2O 2 00 00G 200.000 3500.000 1000.000 1
39 | 4.16500285E+00 4.90831694E-03-1.90139225E-06 3.71185986E-10-2.87908305E-14 2
40 | -1.78617877E+04 2.91615662E+00 4.27611269E+00-5.42822417E-04 1.67335701E-05 3
41 | -2.15770813E-08 8.62454363E-12-1.77025821E+04 3.43505074E+00 4
42 | AR 120186AR 1 G 300.000 5000.000 1000.000 1
43 | 0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2
44 | -0.07453750E+04 0.04366000E+02 0.02500000E+02 0.00000000E+00 0.00000000E+00 3
45 | 0.00000000E+00 0.00000000E+00-0.07453750E+04 0.04366000E+02 4
46 | END
47 | REACTIONS
48 | 2O+M<=>O2+M 1.200E+17 -1.000 .00
49 | H2/ 2.40/ H2O/15.40/ AR/ .83/
50 | O+H+M<=>OH+M 5.000E+17 -1.000 .00
51 | H2/2.00/ H2O/6.00/ AR/ .70/
52 | O+H2<=>H+OH 3.870E+04 2.700 6260.00
53 | O+HO2<=>OH+O2 2.000E+13 .000 .00
54 | O+H2O2<=>OH+HO2 9.630E+06 2.000 4000.00
55 | H+O2+M<=>HO2+M 2.800E+18 -.860 .00
56 | O2/ .00/ H2O/ .00/ AR/ .00/
57 | H+2O2<=>HO2+O2 2.080E+19 -1.240 .00
58 | H+O2+H2O<=>HO2+H2O 11.26E+18 -.760 .00
59 | H+O2+AR<=>HO2+AR 7.000E+17 -.800 .00
60 | H+O2<=>O+OH 2.650E+16 -.6707 17041.00
61 | 2H+M<=>H2+M 1.000E+18 -1.000 .00
62 | H2/ .00/ H2O/ .00/ AR/ .63/
63 | 2H+H2<=>2H2 9.000E+16 -.600 .00
64 | 2H+H2O<=>H2+H2O 6.000E+19 -1.250 .00
65 | H+OH+M<=>H2O+M 2.200E+22 -2.000 .00
66 | H2/ .73/ H2O/3.65/ AR/ .38/
67 | H+HO2<=>O+H2O 3.970E+12 .000 671.00
68 | H+HO2<=>O2+H2 4.480E+13 .000 1068.00
69 | H+HO2<=>2OH 0.840E+14 .000 635.00
70 | H+H2O2<=>HO2+H2 1.210E+07 2.000 5200.00
71 | H+H2O2<=>OH+H2O 1.000E+13 .000 3600.00
72 | OH+H2<=>H+H2O 2.160E+08 1.510 3430.00
73 | 2OH(+M)<=>H2O2(+M) 7.400E+13 -.370 .00
74 | LOW / 2.300E+18 -.900 -1700.00/
75 | TROE/ .7346 94.00 1756.00 5182.00 /
76 | H2/2.00/ H2O/6.00/ AR/ .70/
77 | 2OH<=>O+H2O 3.570E+04 2.400 -2110.00
78 | OH+HO2<=>O2+H2O 1.450E+13 .000 -500.00
79 | DUPLICATE
80 | OH+H2O2<=>HO2+H2O 2.000E+12 .000 427.00
81 | DUPLICATE
82 | OH+H2O2<=>HO2+H2O 1.700E+18 .000 29410.00
83 | DUPLICATE
84 | 2HO2<=>O2+H2O2 1.300E+11 .000 -1630.00
85 | DUPLICATE
86 | 2HO2<=>O2+H2O2 4.200E+14 .000 12000.00
87 | DUPLICATE
88 | OH+HO2<=>O2+H2O 0.500E+16 .000 17330.00
89 | DUPLICATE
90 | END
91 |
--------------------------------------------------------------------------------
/input/chemkin/h2o2_extra.yaml:
--------------------------------------------------------------------------------
1 | description: |-
2 | Hydrogen-Oxygen submechanism extracted from GRI-Mech 3.0.
3 |
--------------------------------------------------------------------------------
/input/ck2yaml_demo.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Conversion of CHEMKIN Data\n",
8 | "\n",
9 | "This notebook illustrates the conversion of CHEMKIN input files to Cantera YAML input files. The conversion utility `ck2yaml` is run as a shell command (using the exclamation mark `!` magic shortcut). \n",
10 | "\n",
11 | "The YAML files produced with this notebook are close re-recreations of input files that are already included with Cantera; `_demo` is added to differentiate from the original YAML files:\n",
12 | "\n",
13 | "**GRI-Mech 3.0 derived:**\n",
14 | " * `gri30_demo.yaml`\n",
15 | " * `h2o2_demo.yaml`\n",
16 | " * `air_demo.yaml`\n",
17 | " * `argon_demo.yaml`\n",
18 | "\n",
19 | "**NASA derived:**\n",
20 | " * `airNASA9_demo.yaml`\n",
21 | " * `nasa_demo.yaml`\n",
22 | "\n",
23 | "All CHEMKIN input files are stored in the `chemkin` subfolder; the `--extra` flag is used to update file descriptions to match YAML files from Cantera 2.5.\n",
24 | "\n",
25 | "**Requires:** cantera >= 2.5.0"
26 | ]
27 | },
28 | {
29 | "cell_type": "code",
30 | "execution_count": 1,
31 | "metadata": {},
32 | "outputs": [
33 | {
34 | "name": "stdout",
35 | "output_type": "stream",
36 | "text": [
37 | "\n",
38 | "ck2yaml.py: Convert Chemkin-format mechanisms to Cantera YAML input files\n",
39 | "\n",
40 | "Usage:\n",
41 | " ck2yaml [--input=]\n",
42 | " [--thermo=]\n",
43 | " [--transport=]\n",
44 | " [--surface=]\n",
45 | " [--name=]\n",
46 | " [--extra=]\n",
47 | " [--output=]\n",
48 | " [--single-intermediate-temperature]\n",
49 | " [--permissive]\n",
50 | " [--quiet]\n",
51 | " [--no-validate]\n",
52 | " [-d | --debug]\n",
53 | "\n",
54 | "Example:\n",
55 | " ck2yaml --input=chem.inp --thermo=therm.dat --transport=tran.dat\n",
56 | "\n",
57 | "If the output file name is not given, an output file with the same name as the\n",
58 | "input file, with the extension changed to '.yaml'.\n",
59 | "\n",
60 | "An input file containing only species definitions (which can be referenced from\n",
61 | "phase definitions in other input files) can be created by specifying only a\n",
62 | "thermo file.\n",
63 | "\n",
64 | "For the case of a surface mechanism, the gas phase input file should be\n",
65 | "specified as 'input' and the surface phase input file should be specified as\n",
66 | "'surface'.\n",
67 | "\n",
68 | "The '--single-intermediate-temperature' option should be used with thermo data where\n",
69 | "only a single break temperature is used and the last value in the first line of each\n",
70 | "species thermo entry is the molecular weight instead.\n",
71 | "\n",
72 | "The '--permissive' option allows certain recoverable parsing errors (such as\n",
73 | "duplicate transport data) to be ignored. The '--name=' option\n",
74 | "is used to override default phase names (that is, 'gas').\n",
75 | "\n",
76 | "The '--extra=' option takes a YAML file as input. This option can be\n",
77 | "used to add to the file description, or to define custom fields that are\n",
78 | "included in the YAML output.\n",
79 | "\n"
80 | ]
81 | }
82 | ],
83 | "source": [
84 | "# display ck2yaml help text\n",
85 | "! ck2yaml --help"
86 | ]
87 | },
88 | {
89 | "cell_type": "markdown",
90 | "metadata": {},
91 | "source": [
92 | "## 1. YAML files based on GRI-Mech 3.0"
93 | ]
94 | },
95 | {
96 | "cell_type": "markdown",
97 | "metadata": {},
98 | "source": [
99 | "### 1.1 Input file `gri30.yaml`"
100 | ]
101 | },
102 | {
103 | "cell_type": "code",
104 | "execution_count": 2,
105 | "metadata": {},
106 | "outputs": [
107 | {
108 | "name": "stdout",
109 | "output_type": "stream",
110 | "text": [
111 | "Wrote YAML mechanism file to 'gri30_demo.yaml'.\n",
112 | "Mechanism contains 53 species and 325 reactions.\n",
113 | "Validating mechanism...\n",
114 | "PASSED\n"
115 | ]
116 | }
117 | ],
118 | "source": [
119 | "! ck2yaml --input=chemkin/gri30.inp --thermo=chemkin/gri30_thermo.dat --transport=chemkin/gri30_tran.dat \\\n",
120 | "--extra=chemkin/gri30_extra.yaml --output=gri30_demo.yaml --name=gri30"
121 | ]
122 | },
123 | {
124 | "cell_type": "markdown",
125 | "metadata": {},
126 | "source": [
127 | "### 1.2 Input file `h2o2.yaml`"
128 | ]
129 | },
130 | {
131 | "cell_type": "code",
132 | "execution_count": 3,
133 | "metadata": {},
134 | "outputs": [
135 | {
136 | "name": "stdout",
137 | "output_type": "stream",
138 | "text": [
139 | "Wrote YAML mechanism file to 'h2o2_demo.yaml'.\n",
140 | "Mechanism contains 9 species and 28 reactions.\n",
141 | "Validating mechanism...\n",
142 | "PASSED\n"
143 | ]
144 | }
145 | ],
146 | "source": [
147 | "# options for h2o2.yaml\n",
148 | "! ck2yaml --input=chemkin/h2o2.inp --transport=chemkin/gri30_tran.dat \\\n",
149 | "--extra=chemkin/h2o2_extra.yaml --output=h2o2_demo.yaml --name=ohmech"
150 | ]
151 | },
152 | {
153 | "cell_type": "markdown",
154 | "metadata": {},
155 | "source": [
156 | "### 1.3 Input file `air.yaml`\n",
157 | "\n",
158 | "**Notes:** The `--quiet` option suppresses warnings about unexpected/unused species in thermo data."
159 | ]
160 | },
161 | {
162 | "cell_type": "code",
163 | "execution_count": 4,
164 | "metadata": {},
165 | "outputs": [],
166 | "source": [
167 | "# options for air.yaml\n",
168 | "! ck2yaml --input=chemkin/air.inp --thermo=chemkin/gri30_thermo.dat --transport=chemkin/gri30_tran.dat \\\n",
169 | "--extra=chemkin/air_extra.yaml --output=air_demo.yaml --name=air --quiet"
170 | ]
171 | },
172 | {
173 | "cell_type": "markdown",
174 | "metadata": {},
175 | "source": [
176 | "### 1.4 Input file `argon.yaml`\n",
177 | "\n",
178 | "**Notes:** The `--quiet` option suppresses warnings about unexpected/unused species in thermo data."
179 | ]
180 | },
181 | {
182 | "cell_type": "code",
183 | "execution_count": 5,
184 | "metadata": {},
185 | "outputs": [],
186 | "source": [
187 | "# options for argon.yaml\n",
188 | "! ck2yaml --input=chemkin/argon.inp --thermo=chemkin/gri30_thermo.dat --transport=chemkin/gri30_tran.dat \\\n",
189 | "--extra=chemkin/argon_extra.yaml --output=argon_demo.yaml --quiet"
190 | ]
191 | },
192 | {
193 | "cell_type": "markdown",
194 | "metadata": {},
195 | "source": [
196 | "## 2. YAML files based on NASA Thermodynamic databases"
197 | ]
198 | },
199 | {
200 | "cell_type": "markdown",
201 | "metadata": {},
202 | "source": [
203 | "### 2.1 Input file `nasa.yaml`"
204 | ]
205 | },
206 | {
207 | "cell_type": "code",
208 | "execution_count": 6,
209 | "metadata": {},
210 | "outputs": [
211 | {
212 | "name": "stdout",
213 | "output_type": "stream",
214 | "text": [
215 | "Found additional thermo entry for species (HCOOH)2. If --permissive was given, the first entry is used.\n",
216 | "Found additional thermo entry for species Br2(L). If --permissive was given, the first entry is used.\n",
217 | "Found additional thermo entry for species Cr(cr). If --permissive was given, the first entry is used.\n",
218 | "Found additional thermo entry for species Fe(a). If --permissive was given, the first entry is used.\n",
219 | "Found additional thermo entry for species Ni(cr). If --permissive was given, the first entry is used.\n",
220 | "Found additional thermo entry for species ZnSO4(a). If --permissive was given, the first entry is used.\n",
221 | "Wrote YAML mechanism file to 'nasa_demo.yaml'.\n",
222 | "Mechanism contains 1130 species and 0 reactions.\n"
223 | ]
224 | }
225 | ],
226 | "source": [
227 | "# options for nasa.yaml (the --permissive suppresses an error due to duplicate thermo entries)\n",
228 | "! ck2yaml --thermo=chemkin/nasathermo.dat --output=nasa_demo.yaml --permissive"
229 | ]
230 | },
231 | {
232 | "cell_type": "markdown",
233 | "metadata": {},
234 | "source": [
235 | "### 2.2 Input file `airNASA9.yaml`"
236 | ]
237 | },
238 | {
239 | "cell_type": "code",
240 | "execution_count": 7,
241 | "metadata": {},
242 | "outputs": [
243 | {
244 | "name": "stdout",
245 | "output_type": "stream",
246 | "text": [
247 | "Wrote YAML mechanism file to 'airNASA9_demo.yaml'.\n",
248 | "Mechanism contains 11 species and 0 reactions.\n",
249 | "Validating mechanism...\n",
250 | "PASSED\n"
251 | ]
252 | }
253 | ],
254 | "source": [
255 | "# options for airNASA9.yaml\n",
256 | "! ck2yaml --input=chemkin/airNASA9.inp --thermo=chemkin/airDataNASA9.dat --output=airNASA9_demo.yaml --name=airNASA9"
257 | ]
258 | }
259 | ],
260 | "metadata": {
261 | "kernelspec": {
262 | "display_name": "Python 3 (ipykernel)",
263 | "language": "python",
264 | "name": "python3"
265 | },
266 | "language_info": {
267 | "codemirror_mode": {
268 | "name": "ipython",
269 | "version": 3
270 | },
271 | "file_extension": ".py",
272 | "mimetype": "text/x-python",
273 | "name": "python",
274 | "nbconvert_exporter": "python",
275 | "pygments_lexer": "ipython3",
276 | "version": "3.10.13"
277 | }
278 | },
279 | "nbformat": 4,
280 | "nbformat_minor": 4
281 | }
282 |
--------------------------------------------------------------------------------
/reactors/1D_packbed.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# One-dimensional packed-bed, catalytic-membrane reactor model without streamwise diffusion"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "The present model simulates heterogeneous catalytic processes inside packed-bed, catalytic membrane reactors. The gas-phase and surface-phase species conservation equations are derived and the system of differential-algebraic equations (DAE) is solved using the scikits.odes.dae IDA solver."
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 1,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": [
23 | "# Import Cantera and scikits\n",
24 | "import numpy as np\n",
25 | "from scikits.odes import dae\n",
26 | "import cantera as ct\n",
27 | "import matplotlib.pyplot as plt\n",
28 | "\n",
29 | "%matplotlib inline\n",
30 | "%config InlineBackend.figure_formats = [\"svg\"]\n",
31 | "print(\"Runnning Cantera version: \" + ct.__version__)"
32 | ]
33 | },
34 | {
35 | "cell_type": "markdown",
36 | "metadata": {},
37 | "source": [
38 | "## Methodology\n",
39 | "\n",
40 | "One-dimensional, steady-state catalytic-membrane reactor model with surface chemistry is developed to analyze species profiles along the length of a packed-bed, catalytic membrane reactor. The same model can further be simplified to simulate a simple packed-bed reactor by excluding the membrane. The example here demonstrates the one-dimensional reactor model explained by G. Kogekar, et al., \"Efficient and robust computational models of heterogeneous catalysis in catalytic membrane reactors,\" (2022), In preparation [1]."
41 | ]
42 | },
43 | {
44 | "cell_type": "markdown",
45 | "metadata": {},
46 | "source": [
47 | "### Governing equations\n",
48 | "\n",
49 | "Assuming steady-state, one-dimensional flow within the packed bed, total-mass, species mass and energy conservation may be stated as [2]\n",
50 | "\n",
51 | "$$\n",
52 | " \\frac{d(\\rho u)}{dz} = \\sum_{k=1}^{K_{\\mathrm{g}}} \\dot {s}_k W_k A_{\\mathrm{s}} + \\frac{P_{\\mathrm b}}{A_{\\mathrm b}} j_{k_{\\mathrm M}}, \\\\\n",
53 | " \\rho u \\frac{dY_k}{dz} + A_{\\mathrm{s}} Y_k \\sum_{k=1}^{K_{\\mathrm{g}}} \\dot {s}_k W_k = A_{\\mathrm s} \\dot {s}_k W_k + \\delta_{k, k_{\\mathrm M}} \\frac{P_{\\mathrm b}}{A_{\\mathrm b}} j_{k_{\\mathrm M}}, \\\\\n",
54 | " \\rho u c_{\\mathrm p} \\frac{dT}{dz} + \\sum_{k=1}^{K_{\\mathrm g}} h_k (\\phi_{\\mathrm g} \\dot {\\omega}_k + A_{\\mathrm s} \\dot {s}_k) W_k = \\hat h \\frac{P_{\\mathrm b}}{A_{\\mathrm b}}(T_{\\mathrm w} - T) + \\delta_{k, k_{\\mathrm M}} \\frac{P_{\\mathrm b}}{A_{\\mathrm b}} h_{k_{\\rm M}} j_{k_{\\mathrm M}}.\n",
55 | "$$\n",
56 | "\n",
57 | "The fractional coverages of the $K_{\\rm s}$ surface adsorbates $\\theta_k$ must satisfy \n",
58 | "$$\n",
59 | " \\dot {s}_k = 0, {\\ \\ \\ \\ \\ \\ } (k = 1,\\ldots, K_{\\mathrm s}),\n",
60 | "$$\n",
61 | "which, at steady state, requires no net production/consumption of surface species by the heterogeneous reactions [3].\n",
62 | "\n",
63 | "The pressure within the bed is calculated as\n",
64 | "$$ \n",
65 | " \\frac{dp}{dz} = - \\left( \\frac{\\phi_{\\mathrm{g}} \\mu}{\\beta_{\\mathrm{g}}} \\right) u,\n",
66 | "$$\n",
67 | "where $\\mu$ is the gas-phase mixture viscosity. The packed-bed permeability $\\beta_{\\rm g}$ is evaluated using the Kozeny-Carman relationship as \n",
68 | "$$\n",
69 | " \\beta_{\\mathrm g} = \\frac{\\phi_{\\mathrm{g}}^3 D_{\\mathrm p}^2}{72 \\tau_{\\mathrm{g}}(1 - \\phi_{\\mathrm{g}})^2},\n",
70 | "$$\n",
71 | "where $\\phi_{\\mathrm{g}}$, $\\tau_{\\mathrm{g}}$, and $D_{\\mathrm {p}}$ are the bed porosity, tortuosity, and particle diameter, respectively.\n",
72 | "\n",
73 | "The independent variable in these conservation equations is the position $z$ along the reactor length. The dependent variables include total mass flux $\\rho u$, pressure $p$, temperature $T$, gas-phase mass fractions $Y_k$, and surfaces coverages $\\theta_k$. Gas-phase fluxes through the membrane are represented as $j_{k, {\\mathrm M}}$. Geometric parameters $A_{\\mathrm s}$, $P_{\\mathrm b}$, and $A_{\\mathrm b}$ represent the catalyst specific surface area (dimensions of surface area per unit volume), reactor perimeter, and reactor cross-sectional flow area, respectively. Other parameters include bed porosity $\\phi_{\\mathrm g}$ and gas-phase species molecular weights $W_k$. The gas density $\\rho$ is evaluated using the equation of state (ideal Eos, RK or PR EoS).\n",
74 | "\n",
75 | "If a perm-selective membrane is present, then $j_{k_{\\mathrm M}}$ represents the gas-phase flux through the membrane and ${k_{\\mathrm M}}$ is the gas-phase species that permeates through the membrane. The Kronecker delta, $\\delta_{k, k_{\\mathrm M}} = 1$ for the membrane-permeable species and $\\delta_{k, k_{\\mathrm M}} = 0$ otherwise. The membrane flux is calculated using Sievert's law as\n",
76 | "$$\n",
77 | " {j_{k_{\\mathrm M}}}^{\\text{Mem}} = \\frac{B_{k_{\\mathrm M}}}{t} \\left ( p_{k_{\\mathrm M} {\\text{, mem}}}^\\alpha - p_{k_{\\mathrm M} \\text{, sweep}}^\\alpha \\right ) W_{k_{\\rm M}}\n",
78 | "$$\n",
79 | "where $B_{k_{\\mathrm M}}$ is the membrane permeability, $t$ is the membrane thickness. $p_{k_{\\mathrm M} \\text{, mem}}$ and $p_{k_{\\mathrm M} \\text{, sweep}}$ represent perm-selective species partial pressures within the packed-bed and the exterior sweep channel. The present model takes the pressure exponent $\\alpha$ to be unity. The membrane flux for all other species ($ k \\neq k_{\\mathrm M}$) is zero.\n",
80 | "\n",
81 | "### Chemistry mechanism\n",
82 | "This example uses a detailed 12-step elementary micro-kinetic reaction mechanism that describes ammonia formation and decomposition kinetics over the Ru/Ba-YSZ catalyst. The reaction mechanism is developed and validated using measured performance in a laboratory-scale packed-bed reactor [4]. This example also incorporates a Pd-based H2 perm-selective membrane.\n",
83 | "\n",
84 | "\n",
85 | "### Solver\n",
86 | "\n",
87 | "Above governing equations represent a complete solution for a steady-state packed-bed, catalytic membrane reactor model. The dependent variables are the mass-flux $\\rho u$, species mass-fractions $Y_k$, pressure $p$, temperature $T$, and surface coverages $\\theta_k$. The equation of state is used to obtain the mass density, $\\rho$.\n",
88 | "\n",
89 | "The governing equations form an initial value problem (IVP) in a differential-algebraic (DAE) form as follows:\n",
90 | "$$\n",
91 | " f(z,{\\bf{y}}, \\bf {y'}, c) = 0,\n",
92 | "$$\n",
93 | "where $\\bf{y}$ and $\\bf{y'}$ represent the solution vector and its derivative vector, respectively. All other constants such as reference temperature, chemical constants, etc. are incorporated in vector $c$ (Refer to [5] for more details). This type of DAE system in this example is solved using the `scikits.odes.dae` IDA solver.\n",
94 | "> 1. G. Kogekar, H. Zhu, R.J. Kee, 'Efficient and robust computational models of heterogeneous catalysis in catalytic membrane reactors', (2022), In preparation\n",
95 | "> 2. B. Kee, C. Karakaya, H. Zhu, S. DeCaluwe, and R.J. Kee, 'The Influence of Hydrogen-Permeable Membranes and Pressure on Methane Dehydroaromatization in Packed-Bed Catalytic Reactors', Industrial & Engineering Chemistry Research (2017) 56, 13:3551 - 3559\n",
96 | "> 3. R.J. Kee, M.E. Coltrin, P. Glarborg, and H. Zhu, 'Chemically Reacting Flow: Theory, Modeling and Simulation', Wiley (2018)\n",
97 | "> 4. Z. Zhang, C. Karakaya, R.J. Kee, J. Douglas Way, C. Wolden,, 'Barium-Promoted Ruthenium Catalysts on Yittria-Stabilized Zirconia Supports for Ammonia Synthesis', ACS Sustainable Chemistry & Engineering (2019) 7:18038 - 18047\n",
98 | "> 5. G. Kogekar, 'Computationally efficient and robust models of non-ideal thermodynamics, gas-phase kinetics and heterogeneous catalysis in chemical reactors' (2021), Doctoral dissertation. "
99 | ]
100 | },
101 | {
102 | "cell_type": "markdown",
103 | "metadata": {},
104 | "source": [
105 | "### Define gas-phase and surface-phase species"
106 | ]
107 | },
108 | {
109 | "cell_type": "code",
110 | "execution_count": 2,
111 | "metadata": {},
112 | "outputs": [],
113 | "source": [
114 | "# Import the reaction mechanism for Ammonia synthesis/decomposition on Ru-Ba/YSZ catalyst\n",
115 | "mechfile = \"data/Ammonia-Ru-Ba-YSZ.yaml\"\n",
116 | "# Import the models for gas-phase\n",
117 | "gas = ct.Solution(mechfile, \"gas\")\n",
118 | "# Import the model for surface-phase\n",
119 | "surf = ct.Interface(mechfile, \"Ru_surface\", [gas])\n",
120 | "\n",
121 | "# Other parameters\n",
122 | "n_gas = gas.n_species # number of gas species\n",
123 | "n_surf = surf.n_species # number of surface species\n",
124 | "n_gas_reactions = gas.n_reactions # number of gas-phase reactions\n",
125 | "\n",
126 | "# Set offsets of dependent variables in the solution vector\n",
127 | "offset_rhou = 0\n",
128 | "offset_p = 1\n",
129 | "offset_T = 2\n",
130 | "offset_Y = 3\n",
131 | "offset_Z = offset_Y + n_gas\n",
132 | "n_var = offset_Z + n_surf # total number of variables (rhou, P, T, Yk and Zk)\n",
133 | "\n",
134 | "print(\"Number of gas-phase species = \", n_gas)\n",
135 | "print(\"Number of surface-phase species = \", n_surf)\n",
136 | "print(\"Number of variables = \", n_var)"
137 | ]
138 | },
139 | {
140 | "cell_type": "markdown",
141 | "metadata": {},
142 | "source": [
143 | "### Define reactor geometry and operating conditions"
144 | ]
145 | },
146 | {
147 | "cell_type": "code",
148 | "execution_count": 3,
149 | "metadata": {},
150 | "outputs": [],
151 | "source": [
152 | "# Reactor geometry\n",
153 | "L = 5e-2 # length of the reactor (m)\n",
154 | "R = 5e-3 # radius of the reactor channel (m)\n",
155 | "phi = 0.5 # porosity of the bed (-)\n",
156 | "tau = 2.0 # tortuosity of the bed (-)\n",
157 | "dp = 3.37e-4 # particle diameter (m)\n",
158 | "As = 3.5e6 # specific surface area (1/m)\n",
159 | "\n",
160 | "# Energy (adiabatic or isothermal)\n",
161 | "solve_energy = True # True: Adiabatic, False: isothermal\n",
162 | "\n",
163 | "# Membrane (True: membrane, False: no membrane)\n",
164 | "membrane_present = True\n",
165 | "membrane_perm = 1e-15 # membrane permeability (kmol*m3/s/Pa)\n",
166 | "thickness = 3e-6 # membrane thickness (m)\n",
167 | "membrane_sp_name = \"H2\" # membrane-permeable species name\n",
168 | "p_sweep = 1e5 # partial pressure of permeable species in the sweep channel (Pa)\n",
169 | "permeance = membrane_perm / thickness # permeance of the membrane (kmol*m2/s/Pa)\n",
170 | "\n",
171 | "if membrane_present:\n",
172 | " print(\"Modeling packed-bed, catalytic-membrane reactor...\")\n",
173 | " print(membrane_sp_name, \"permeable membrane is present.\")\n",
174 | "\n",
175 | "# Get required properties based on the geometry and mechanism\n",
176 | "W_g = gas.molecular_weights # vector of molecular weight of gas species\n",
177 | "vol_ratio = phi / (1 - phi)\n",
178 | "eff_factor = phi / tau # effective factor for permeability calculation\n",
179 | "# permeability based on Kozeny-Carman equation\n",
180 | "B_g = B_g = vol_ratio**2 * dp**2 * eff_factor / 72 \n",
181 | "area2vol = 2 / R # area to volume ratio assuming a cylindrical reactor\n",
182 | "D_h = 2 * R # hydraulic diameter\n",
183 | "membrane_sp_ind = gas.species_index(membrane_sp_name)\n",
184 | "\n",
185 | "# Inlet operating conditions\n",
186 | "T_in = 673 # inlet temperature [K]\n",
187 | "p_in = 5e5 # inlet pressure [Pa]\n",
188 | "v_in = 0.001 # inlet velocity [m/s]\n",
189 | "T_wall = 723 # wall temperature [K]\n",
190 | "h_coeff = 1e2 # heat transfer coefficient [W/m2/K]\n",
191 | "\n",
192 | "# Set gas and surface states\n",
193 | "gas.TPX = T_in, p_in, \"NH3:0.99, AR:0.01\" # inlet composition\n",
194 | "surf.TP = T_in, p_in\n",
195 | "Yk_0 = gas.Y\n",
196 | "rhou0 = gas.density * v_in\n",
197 | "\n",
198 | "# Initial surface coverages\n",
199 | "# advancing coverages over a long period of time to get the steady state.\n",
200 | "surf.advance_coverages(1e10) \n",
201 | "Zk_0 = surf.coverages"
202 | ]
203 | },
204 | {
205 | "cell_type": "markdown",
206 | "metadata": {},
207 | "source": [
208 | "### Define residual function required for IDA solver"
209 | ]
210 | },
211 | {
212 | "cell_type": "code",
213 | "execution_count": 4,
214 | "metadata": {},
215 | "outputs": [],
216 | "source": [
217 | "def residual(z, y, yPrime, res):\n",
218 | " \"\"\"Solution vector for the model\n",
219 | " y = [rho*u, p, T, Yk, Zk]\n",
220 | " yPrime = [d(rho*u)dz, dpdz, dTdz, dYkdz, dZkdz]\n",
221 | " \"\"\"\n",
222 | " # Get current thermodynamic state from solution vector and save it to local variables.\n",
223 | " rhou = y[offset_rhou] # mass flux (density * velocity)\n",
224 | " Y = y[offset_Y : offset_Y + n_gas] # vector of mass fractions\n",
225 | " Z = y[offset_Z : offset_Z + n_surf] # vector of site fractions \n",
226 | " p = y[offset_p] # pressure\n",
227 | " T = y[offset_T] # temperature\n",
228 | "\n",
229 | " # Get derivatives of dependent variables\n",
230 | " drhoudz = yPrime[offset_rhou] \n",
231 | " dYdz = yPrime[offset_Y : offset_Y + n_gas] \n",
232 | " dZdz = yPrime[offset_Z : offset_Z + n_surf] \n",
233 | " dpdz = yPrime[offset_p] \n",
234 | " dTdz = yPrime[offset_T] \n",
235 | "\n",
236 | " # Set current thermodynamic state for the gas and surface phases\n",
237 | " # Note: use unnormalized mass fractions and site fractions to avoid over-constraining the system\n",
238 | " gas.set_unnormalized_mass_fractions(Y)\n",
239 | " gas.TP = T, p\n",
240 | " surf.set_unnormalized_coverages(Z)\n",
241 | " surf.TP = T, p\n",
242 | "\n",
243 | " # Calculate required variables based on the current state\n",
244 | " coverages = surf.coverages # surface site coverages\n",
245 | " # heterogeneous production rate of gas species\n",
246 | " sdot_g = surf.get_net_production_rates(\"gas\")\n",
247 | " # heterogeneous production rate of surface species\n",
248 | " sdot_s = surf.get_net_production_rates(\"Ru_surface\")\n",
249 | " wdot_g = np.zeros(n_gas)\n",
250 | " # specific heat of the mixture\n",
251 | " cp = gas.cp_mass \n",
252 | " # partial enthalpies of gas species\n",
253 | " hk_g = gas.partial_molar_enthalpies \n",
254 | "\n",
255 | " if n_gas_reactions > 0:\n",
256 | " # homogeneous production rate of gas species\n",
257 | " wdot_g = gas.net_production_rates \n",
258 | " mu = gas.viscosity # viscosity of the gas-phase\n",
259 | "\n",
260 | " # Calculate density using equation of state\n",
261 | " rho = gas.density\n",
262 | "\n",
263 | " # Calculate flux term through the membrane\n",
264 | " # partial pressure of membrane-permeable species\n",
265 | " memsp_pres = (p * gas.X[membrane_sp_ind]) \n",
266 | " # negative sign indicates the flux going out\n",
267 | " membrane_flux = (-permeance * (memsp_pres - p_sweep) * W_g[membrane_sp_ind]) \n",
268 | "\n",
269 | " # Conservation of total-mass\n",
270 | " # temporary variable\n",
271 | " sum_continuity = As * np.sum(sdot_g * W_g) + phi * np.sum(wdot_g * W_g) \n",
272 | " res[offset_rhou] = (drhoudz - sum_continuity - area2vol * membrane_flux * membrane_present)\n",
273 | "\n",
274 | " # Conservation of gas-phase species \n",
275 | " res[offset_Y:offset_Y+ n_gas] = (dYdz + (Y * sum_continuity - phi * np.multiply(wdot_g,W_g) \n",
276 | " - As * np.multiply(sdot_g,W_g)) / rhou)\n",
277 | " res[offset_Y + membrane_sp_ind] -= area2vol * membrane_flux * membrane_present\n",
278 | "\n",
279 | " # Conservation of site fractions (algebraic contraints in this example)\n",
280 | " res[offset_Z : offset_Z + n_surf] = sdot_s\n",
281 | "\n",
282 | " # For the species with largest site coverage (k_large), solve the constraint equation: sum(Zk) = 1\n",
283 | " # The residual function for 'k_large' would be 'res[k_large] = 1 - sum(Zk)'\n",
284 | " # Note that here sum(Zk) will be the sum of coverages for all surface species, including the 'k_large' species.\n",
285 | " ind_large = np.argmax(coverages)\n",
286 | " res[offset_Z + ind_large] = 1 - np.sum(coverages)\n",
287 | "\n",
288 | " # Conservation of momentum\n",
289 | " u = rhou / rho\n",
290 | " res[offset_p] = dpdz + phi * mu * u / B_g\n",
291 | "\n",
292 | " # Conservation of energy\n",
293 | " res[offset_T] = dTdz - 0 # isothermal condition\n",
294 | " # Note: One can just not solve the energy equation by keeping temperature constant. \n",
295 | " # But since 'T' is used as the dependent variable, the residual is res[T] = dTdz - 0 \n",
296 | " # One can also write res[T] = 0 directly, but that leads to a solver failure due to singular jacobian\n",
297 | "\n",
298 | " if solve_energy:\n",
299 | " conv_term = (4 / D_h) * h_coeff * (T_wall - T) * (2 * np.pi * R)\n",
300 | " chem_term = np.sum(hk_g * (phi * wdot_g + As * sdot_g))\n",
301 | " res[offset_T] -= (conv_term - chem_term) / (rhou * cp)"
302 | ]
303 | },
304 | {
305 | "cell_type": "markdown",
306 | "metadata": {},
307 | "source": [
308 | "### Calculate the spatial derivatives at the inlet that will be used as the initial conditions for the IDA solver\n"
309 | ]
310 | },
311 | {
312 | "cell_type": "code",
313 | "execution_count": 5,
314 | "metadata": {},
315 | "outputs": [],
316 | "source": [
317 | "# Initialize yPrime to 0 and call residual to get initial derivatives\n",
318 | "y0 = np.hstack((rhou0, p_in, T_in, Yk_0, Zk_0))\n",
319 | "yprime0 = np.zeros(n_var)\n",
320 | "res = np.zeros(n_var)\n",
321 | "residual(0, y0, yprime0, res)\n",
322 | "yprime0 = -res"
323 | ]
324 | },
325 | {
326 | "cell_type": "markdown",
327 | "metadata": {},
328 | "source": [
329 | "### Solve the system of DAEs using ida solver"
330 | ]
331 | },
332 | {
333 | "cell_type": "code",
334 | "execution_count": 6,
335 | "metadata": {},
336 | "outputs": [],
337 | "source": [
338 | "solver = dae(\n",
339 | " \"ida\",\n",
340 | " residual,\n",
341 | " first_step_size=1e-15,\n",
342 | " atol=1e-14, # absolute tolerance for solution\n",
343 | " rtol=1e-06, # relative tolerance for solution\n",
344 | " algebraic_vars_idx=[np.arange(offset_Y + n_gas, offset_Z + n_surf, 1)],\n",
345 | " max_steps=8000,\n",
346 | " one_step_compute=True,\n",
347 | " old_api=False, # forces use of new api (namedtuple)\n",
348 | ")\n",
349 | "\n",
350 | "distance = []\n",
351 | "solution = []\n",
352 | "state = solver.init_step(0.0, y0, yprime0)\n",
353 | "\n",
354 | "# Note that here the variable t is an internal varible used in scikits. In this example, it represents\n",
355 | "# the natural variable z, which corresponds to the axial distance inside the reactor.\n",
356 | "while state.values.t < L:\n",
357 | " distance.append(state.values.t)\n",
358 | " solution.append(state.values.y)\n",
359 | " state = solver.step(L)\n",
360 | "\n",
361 | "distance = np.array(distance)\n",
362 | "solution = np.array(solution)\n",
363 | "print(state)"
364 | ]
365 | },
366 | {
367 | "cell_type": "markdown",
368 | "metadata": {},
369 | "source": [
370 | "### Plot results"
371 | ]
372 | },
373 | {
374 | "cell_type": "code",
375 | "execution_count": 7,
376 | "metadata": {},
377 | "outputs": [],
378 | "source": [
379 | "plt.rcParams[\"font.size\"] = 14\n",
380 | "f, ax = plt.subplots(3, 2, figsize=(12, 12), dpi=96)\n",
381 | "\n",
382 | "# Plot gas pressure profile along the flow direction\n",
383 | "ax[0, 0].plot(distance, solution[:, offset_p], color=\"C0\")\n",
384 | "ax[0, 0].set_xlabel(\"Distance (m)\")\n",
385 | "ax[0, 0].set_ylabel(\"Pressure (Pa)\")\n",
386 | "\n",
387 | "# Plot gas temperature profile along the flow direction\n",
388 | "ax[0, 1].plot(distance, solution[:, offset_T], color=\"C1\")\n",
389 | "ax[0, 1].set_xlabel(\"Distance (m)\")\n",
390 | "ax[0, 1].set_ylabel(\"Temperature (K)\")\n",
391 | "\n",
392 | "# Plot major and minor gas species separately\n",
393 | "minor_idx = []\n",
394 | "major_idx = []\n",
395 | "for j, name in enumerate(gas.species_names):\n",
396 | " mean = np.mean(solution[:, offset_Y + j])\n",
397 | " if mean <= 0.1:\n",
398 | " minor_idx.append(j)\n",
399 | " else:\n",
400 | " major_idx.append(j)\n",
401 | "\n",
402 | "# Plot mass fractions of the gas-phase species along the flow direction\n",
403 | "\n",
404 | "# Major gas-phase species\n",
405 | "for j in major_idx:\n",
406 | " ax[1, 0].plot(distance, solution[:, offset_Y + j], label=gas.species_names[j])\n",
407 | "ax[1, 0].legend(fontsize=12, loc=\"best\")\n",
408 | "ax[1, 0].set_xlabel(\"Distance (m)\")\n",
409 | "ax[1, 0].set_ylabel(\"Mass Fraction\")\n",
410 | "\n",
411 | "# Minor gas-phase species\n",
412 | "for j in minor_idx:\n",
413 | " ax[1, 1].plot(distance, solution[:, offset_Y + j], label=gas.species_names[j])\n",
414 | "ax[1, 1].legend(fontsize=12, loc=\"best\")\n",
415 | "ax[1, 1].set_xlabel(\"Distance (m)\")\n",
416 | "ax[1, 1].set_ylabel(\"Mass Fraction\")\n",
417 | "\n",
418 | "# Plot major and minor surface species separately\n",
419 | "minor_idx = []\n",
420 | "major_idx = []\n",
421 | "for j, name in enumerate(surf.species_names):\n",
422 | " mean = np.mean(solution[:, offset_Z + j])\n",
423 | " if mean <= 0.1:\n",
424 | " minor_idx.append(j)\n",
425 | " else:\n",
426 | " major_idx.append(j)\n",
427 | "\n",
428 | "# Plot the site fraction of the surface-phase species along the flow direction\n",
429 | "# Major surf-phase species\n",
430 | "for j in major_idx:\n",
431 | " ax[2, 0].plot(distance, solution[:, offset_Z + j], label=surf.species_names[j])\n",
432 | "ax[2, 0].legend(fontsize=12, loc=\"best\")\n",
433 | "ax[2, 0].set_xlabel(\"Distance (m)\")\n",
434 | "ax[2, 0].set_ylabel(\"Site Fraction\")\n",
435 | "\n",
436 | "# Minor surf-phase species\n",
437 | "for j in minor_idx:\n",
438 | " ax[2, 1].plot(distance, solution[:, offset_Z + j], label=surf.species_names[j])\n",
439 | "ax[2, 1].legend(fontsize=12, loc=\"best\")\n",
440 | "ax[2, 1].set_xlabel(\"Distance (m)\")\n",
441 | "ax[2, 1].set_ylabel(\"Site Fraction\")\n",
442 | "f.tight_layout()"
443 | ]
444 | },
445 | {
446 | "cell_type": "code",
447 | "execution_count": null,
448 | "metadata": {},
449 | "outputs": [],
450 | "source": []
451 | }
452 | ],
453 | "metadata": {
454 | "kernelspec": {
455 | "display_name": "Python 3 (ipykernel)",
456 | "language": "python",
457 | "name": "python3"
458 | },
459 | "language_info": {
460 | "codemirror_mode": {
461 | "name": "ipython",
462 | "version": 3
463 | },
464 | "file_extension": ".py",
465 | "mimetype": "text/x-python",
466 | "name": "python",
467 | "nbconvert_exporter": "python",
468 | "pygments_lexer": "ipython3",
469 | "version": "3.9.18"
470 | }
471 | },
472 | "nbformat": 4,
473 | "nbformat_minor": 4
474 | }
475 |
--------------------------------------------------------------------------------
/reactors/data/Ammonia-Ru-Ba-YSZ.yaml:
--------------------------------------------------------------------------------
1 | description: |-
2 | Ru-Ba/YSZ mechanism
3 |
4 | generator: ck2yaml
5 | input-files: [chem.inp, therm.dat, tran.dat, surf.inp]
6 | cantera-version: 2.6.0
7 | date: Wed, 03 Aug 2022 14:22:42 -0400
8 |
9 | units: {length: cm, time: s, quantity: mol, activation-energy: kJ/mol}
10 |
11 | phases:
12 | - name: gas
13 | thermo: ideal-gas
14 | elements: [H, N, Ru, Ar]
15 | species: [H2, NH3, N2, AR]
16 | transport: mixture-averaged
17 | state: {T: 300.0, P: 1 atm}
18 | - name: Ru_surface
19 | thermo: ideal-surface
20 | adjacent-phases: [gas]
21 | elements: [H, N, Ru, Ar]
22 | species: [Ru(s), N(s), H(s), NH(s), NH2(s), NH3(s)]
23 | site-density: 2.6079e-09
24 | Motz-Wise: false
25 | kinetics: surface
26 | state: {T: 300.0, P: 1 atm}
27 |
28 | species:
29 | - name: H2
30 | composition: {H: 2}
31 | thermo:
32 | model: NASA7
33 | temperature-ranges: [300.0, 1000.0, 5000.0]
34 | data:
35 | - [3.298124, 8.249441e-04, -8.143015e-07, -9.475434e-11, 4.134872e-13,
36 | -1012.5209, -3.294094]
37 | - [2.991423, 7.000644e-04, -5.633828e-08, -9.231578e-12, 1.5827519e-15,
38 | -835.034, -1.3551101]
39 | note: '121286'
40 | transport:
41 | model: gas
42 | geometry: linear
43 | well-depth: 38.0
44 | diameter: 2.92
45 | polarizability: 0.79
46 | rotational-relaxation: 280.0
47 | - name: NH3
48 | composition: {N: 1, H: 3}
49 | thermo:
50 | model: NASA7
51 | temperature-ranges: [300.0, 1000.0, 5000.0]
52 | data:
53 | - [2.204351, 0.010114765, -1.4652648e-05, 1.447235e-08, -5.328509e-12,
54 | -6525.488, 8.127138]
55 | - [2.461904, 6.059166e-03, -2.004976e-06, 3.136003e-10, -1.938317e-14,
56 | -6493.269, 7.472097]
57 | note: '121386'
58 | transport:
59 | model: gas
60 | geometry: nonlinear
61 | well-depth: 481.0
62 | diameter: 2.92
63 | dipole: 1.47
64 | rotational-relaxation: 10.0
65 | - name: N2
66 | composition: {N: 2}
67 | thermo:
68 | model: NASA7
69 | temperature-ranges: [300.0, 1000.0, 5000.0]
70 | data:
71 | - [3.298677, 1.40824e-03, -3.963222e-06, 5.641515e-09, -2.444855e-12,
72 | -1020.9, 3.950372]
73 | - [2.92664, 1.487977e-03, -5.684761e-07, 1.009704e-10, -6.753351e-15,
74 | -922.7977, 5.980528]
75 | note: '121286'
76 | transport:
77 | model: gas
78 | geometry: linear
79 | well-depth: 97.53
80 | diameter: 3.621
81 | polarizability: 1.76
82 | rotational-relaxation: 4.0
83 | - name: AR
84 | composition: {Ar: 1}
85 | thermo:
86 | model: NASA7
87 | temperature-ranges: [300.0, 5000.0]
88 | data:
89 | - [2.5, 0.0, 0.0, 0.0, 0.0, -745.375, 4.366]
90 | note: |-
91 | 120186
92 | FROM GRI MECHANISM
93 | transport:
94 | model: gas
95 | geometry: atom
96 | well-depth: 136.5
97 | diameter: 3.33
98 | - name: Ru(s)
99 | composition: {Ru: 1}
100 | thermo:
101 | model: NASA7
102 | temperature-ranges: [300.0, 5000.0]
103 | data:
104 | - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
105 | - name: N(s)
106 | composition: {N: 1, Ru: 1}
107 | thermo:
108 | model: NASA7
109 | temperature-ranges: [300.0, 5000.0]
110 | data:
111 | - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
112 | - name: H(s)
113 | composition: {H: 1, Ru: 1}
114 | thermo:
115 | model: NASA7
116 | temperature-ranges: [300.0, 5000.0]
117 | data:
118 | - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
119 | - name: NH(s)
120 | composition: {N: 1, H: 1, Ru: 1}
121 | thermo:
122 | model: NASA7
123 | temperature-ranges: [300.0, 5000.0]
124 | data:
125 | - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
126 | - name: NH2(s)
127 | composition: {H: 2, N: 1, Ru: 1}
128 | thermo:
129 | model: NASA7
130 | temperature-ranges: [300.0, 5000.0]
131 | data:
132 | - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
133 | - name: NH3(s)
134 | composition: {H: 3, N: 1, Ru: 1}
135 | thermo:
136 | model: NASA7
137 | temperature-ranges: [300.0, 5000.0]
138 | data:
139 | - [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
140 |
141 | reactions:
142 | - equation: N2 + Ru(s) + Ru(s) => N(s) + N(s) # Reaction 1
143 | sticking-coefficient: {A: 2.892e-06, b: 0.0, Ea: 38.949}
144 | - equation: N(s) + N(s) => Ru(s) + Ru(s) + N2 # Reaction 2
145 | rate-constant: {A: 2.015e+17, b: -0.279, Ea: 148.027}
146 | coverage-dependencies:
147 | N(s): [0.0, 0.0, -14.0]
148 | - equation: H2 + Ru(s) + Ru(s) => H(s) + H(s) # Reaction 3
149 | sticking-coefficient: {A: 4.007e-03, b: 0.0, Ea: 0.0}
150 | - equation: H(s) + H(s) => Ru(s) + Ru(s) + H2 # Reaction 4
151 | rate-constant: {A: 3.6e+20, b: 0.658, Ea: 91.948}
152 | coverage-dependencies:
153 | H(s): [0.0, 0.0, -2.0]
154 | - equation: NH3 + Ru(s) => NH3(s) # Reaction 5
155 | sticking-coefficient: {A: 1.247e-05, b: 0.0, Ea: 0.0}
156 | - equation: NH3(s) => Ru(s) + NH3 # Reaction 6
157 | rate-constant: {A: 2.235e+11, b: 0.083, Ea: 83.536}
158 | - equation: H(s) + N(s) => NH(s) + Ru(s) # Reaction 7
159 | rate-constant: {A: 8.424e+20, b: 0.0, Ea: 83.62}
160 | coverage-dependencies:
161 | N(s): [0.0, 0.0, -7.0]
162 | - equation: NH(s) + Ru(s) => H(s) + N(s) # Reaction 8
163 | rate-constant: {A: 6.813e+19, b: 0.207, Ea: 30.972}
164 | coverage-dependencies:
165 | H(s): [0.0, 0.0, 1.0]
166 | - equation: NH(s) + H(s) => NH2(s) + Ru(s) # Reaction 9
167 | rate-constant: {A: 4.949e+19, b: 0.083, Ea: 75.236}
168 | - equation: NH2(s) + Ru(s) => NH(s) + H(s) # Reaction 10
169 | rate-constant: {A: 8.321e+19, b: -0.083, Ea: 15.767}
170 | coverage-dependencies:
171 | H(s): [0.0, 0.0, 1.0]
172 | - equation: NH2(s) + H(s) => NH3(s) + Ru(s) # Reaction 11
173 | rate-constant: {A: 3.886e+19, b: 0.083, Ea: 17.036}
174 | - equation: NH3(s) + Ru(s) => NH2(s) + H(s) # Reaction 12
175 | rate-constant: {A: 1.478e+20, b: 0.0, Ea: 64.98}
176 | coverage-dependencies:
177 | H(s): [0.0, 0.0, 1.0]
178 |
--------------------------------------------------------------------------------
/reactors/images/batchReactor.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Cantera/cantera-jupyter/a99ee55aeeb302abf975e7b57ee1e8dfd48c0d0f/reactors/images/batchReactor.png
--------------------------------------------------------------------------------
/reactors/images/stirredReactorCanteraSimulation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Cantera/cantera-jupyter/a99ee55aeeb302abf975e7b57ee1e8dfd48c0d0f/reactors/images/stirredReactorCanteraSimulation.png
--------------------------------------------------------------------------------
/reactors/images/stirredReactorCartoon.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Cantera/cantera-jupyter/a99ee55aeeb302abf975e7b57ee1e8dfd48c0d0f/reactors/images/stirredReactorCartoon.png
--------------------------------------------------------------------------------
/thermo/flame_temperature.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Flame Temperature\n",
8 | "This example demonstrates calculation of the adiabatic flame temperature for a methane/air mixture, comparing calculations which assume either complete or incomplete combustion."
9 | ]
10 | },
11 | {
12 | "cell_type": "code",
13 | "execution_count": 1,
14 | "metadata": {},
15 | "outputs": [
16 | {
17 | "name": "stdout",
18 | "output_type": "stream",
19 | "text": [
20 | "Using Cantera version: 2.6.0a4\n"
21 | ]
22 | }
23 | ],
24 | "source": [
25 | "%matplotlib inline\n",
26 | "%config InlineBackend.figure_formats = [\"svg\"]\n",
27 | "import cantera as ct\n",
28 | "import numpy as np\n",
29 | "import matplotlib.pyplot as plt\n",
30 | "\n",
31 | "plt.rcParams[\"figure.dpi\"] = 120\n",
32 | "\n",
33 | "print(f\"Using Cantera version: {ct.__version__}\")"
34 | ]
35 | },
36 | {
37 | "cell_type": "markdown",
38 | "metadata": {},
39 | "source": [
40 | "## Complete Combustion\n",
41 | "\n",
42 | "The stoichiometric equation for complete combustion of a lean methane/air mixture ($\\phi < 1$) is:\n",
43 | "\n",
44 | "$$\\mathrm{\\phi CH_4 + 2(O_2 + 3.76 N_2) \\rightarrow \\phi CO_2 + 2\\phi H_2O + 2 (1-\\phi) O_2 + 7.52 N_2}$$\n",
45 | "\n",
46 | "For a rich mixture ($\\phi > 1$), this becomes:\n",
47 | "\n",
48 | "$$\\mathrm{\\phi CH_4 + 2(O_2 + 3.76 N_2) \\rightarrow CO_2 + 2 H_2O + (\\phi - 1) CH_4 + 7.52 N_2}$$\n",
49 | "\n",
50 | "To find the flame temperature resulting from these reactions using Cantera, we create a gas object containing only the species in the above stoichiometric equations, and then use the `equilibrate()` function to find the resulting mixture composition and temperature, taking advantage of the fact that equilibrium will strongly favor conversion of the fuel molecule."
51 | ]
52 | },
53 | {
54 | "cell_type": "code",
55 | "execution_count": 2,
56 | "metadata": {},
57 | "outputs": [],
58 | "source": [
59 | "# Get all of the Species objects defined in the GRI 3.0 mechanism\n",
60 | "species = {S.name: S for S in ct.Species.list_from_file(\"gri30.yaml\")}\n",
61 | "\n",
62 | "# Create an IdealGas object with species representing complete combustion\n",
63 | "complete_species = [species[S] for S in (\"CH4\", \"O2\", \"N2\", \"CO2\", \"H2O\")]\n",
64 | "gas1 = ct.Solution(thermo=\"ideal-gas\", species=complete_species)\n",
65 | "\n",
66 | "phi = np.linspace(0.5, 2.0, 100)\n",
67 | "T_complete = np.zeros(phi.shape)\n",
68 | "for i in range(len(phi)):\n",
69 | " gas1.TP = 300, ct.one_atm\n",
70 | " gas1.set_equivalence_ratio(phi[i], \"CH4\", \"O2:1, N2:3.76\")\n",
71 | " gas1.equilibrate(\"HP\")\n",
72 | " T_complete[i] = gas1.T"
73 | ]
74 | },
75 | {
76 | "cell_type": "markdown",
77 | "metadata": {},
78 | "source": [
79 | "## Incomplete Combustion\n",
80 | "\n",
81 | "In the case of incomplete combustion, the resulting mixture composition is not known in advance, but must be found by calculating the equilibrium composition at constant enthalpy and temperature:\n",
82 | "\n",
83 | "$$\\mathrm{\\phi CH_4 + 2(O_2 + 3.76 N_2) \\rightarrow ? CO_2 + ? CO + ? H_2 + ? H_2O + ? O_2 + 7.52 N_2 + minor\\ species}$$\n",
84 | "\n",
85 | "Now, we use a gas phase object containing all 53 species defined in the GRI 3.0 mechanism, and compute the equilibrium composition as a function of equivalence ratio."
86 | ]
87 | },
88 | {
89 | "cell_type": "code",
90 | "execution_count": 3,
91 | "metadata": {},
92 | "outputs": [],
93 | "source": [
94 | "# Create an IdealGas object including incomplete combustion species\n",
95 | "gas2 = ct.Solution(thermo=\"IdealGas\", species=species.values())\n",
96 | "T_incomplete = np.zeros(phi.shape)\n",
97 | "for i in range(len(phi)):\n",
98 | " gas2.TP = 300, ct.one_atm\n",
99 | " gas2.set_equivalence_ratio(phi[i], \"CH4\", \"O2:1, N2:3.76\")\n",
100 | " gas2.equilibrate(\"HP\")\n",
101 | " T_incomplete[i] = gas2.T"
102 | ]
103 | },
104 | {
105 | "cell_type": "code",
106 | "execution_count": 4,
107 | "metadata": {},
108 | "outputs": [
109 | {
110 | "data": {
111 | "image/svg+xml": [
112 | "\n",
113 | "\n",
115 | "\n",
116 | " \n",
117 | " \n",
118 | " \n",
119 | " \n",
120 | " 2022-04-05T14:37:31.586706 \n",
121 | " image/svg+xml \n",
122 | " \n",
123 | " \n",
124 | " Matplotlib v3.5.1, https://matplotlib.org/ \n",
125 | " \n",
126 | " \n",
127 | " \n",
128 | " \n",
129 | " \n",
130 | " \n",
131 | " \n",
132 | " \n",
133 | " \n",
134 | " \n",
135 | " \n",
142 | " \n",
143 | " \n",
144 | " \n",
145 | " \n",
151 | " \n",
152 | " \n",
153 | " \n",
154 | " \n",
155 | " \n",
158 | " \n",
159 | " \n",
160 | " \n",
161 | " \n",
164 | " \n",
165 | " \n",
166 | " \n",
167 | " \n",
168 | " \n",
169 | " \n",
170 | " \n",
171 | " \n",
172 | " \n",
173 | " \n",
194 | " \n",
201 | " \n",
231 | " \n",
232 | " \n",
233 | " \n",
234 | " \n",
235 | " \n",
236 | " \n",
237 | " \n",
238 | " \n",
239 | " \n",
240 | " \n",
243 | " \n",
244 | " \n",
245 | " \n",
246 | " \n",
247 | " \n",
248 | " \n",
249 | " \n",
250 | " \n",
251 | " \n",
252 | " \n",
253 | " \n",
292 | " \n",
293 | " \n",
294 | " \n",
295 | " \n",
296 | " \n",
297 | " \n",
298 | " \n",
299 | " \n",
300 | " \n",
301 | " \n",
304 | " \n",
305 | " \n",
306 | " \n",
307 | " \n",
308 | " \n",
309 | " \n",
310 | " \n",
311 | " \n",
312 | " \n",
313 | " \n",
314 | " \n",
328 | " \n",
329 | " \n",
330 | " \n",
331 | " \n",
332 | " \n",
333 | " \n",
334 | " \n",
335 | " \n",
336 | " \n",
337 | " \n",
340 | " \n",
341 | " \n",
342 | " \n",
343 | " \n",
344 | " \n",
345 | " \n",
346 | " \n",
347 | " \n",
348 | " \n",
349 | " \n",
350 | " \n",
374 | " \n",
375 | " \n",
376 | " \n",
377 | " \n",
378 | " \n",
379 | " \n",
380 | " \n",
381 | " \n",
382 | " \n",
383 | " \n",
386 | " \n",
387 | " \n",
388 | " \n",
389 | " \n",
390 | " \n",
391 | " \n",
392 | " \n",
393 | " \n",
394 | " \n",
395 | " \n",
396 | " \n",
415 | " \n",
416 | " \n",
417 | " \n",
418 | " \n",
419 | " \n",
420 | " \n",
421 | " \n",
422 | " \n",
423 | " \n",
424 | " \n",
427 | " \n",
428 | " \n",
429 | " \n",
430 | " \n",
431 | " \n",
432 | " \n",
433 | " \n",
434 | " \n",
435 | " \n",
436 | " \n",
437 | " \n",
438 | " \n",
439 | " \n",
440 | " \n",
441 | " \n",
442 | " \n",
443 | " \n",
444 | " \n",
447 | " \n",
448 | " \n",
449 | " \n",
450 | " \n",
451 | " \n",
452 | " \n",
453 | " \n",
454 | " \n",
455 | " \n",
456 | " \n",
457 | " \n",
458 | " \n",
459 | " \n",
460 | " \n",
461 | " \n",
462 | " \n",
463 | " \n",
464 | " \n",
467 | " \n",
468 | " \n",
469 | " \n",
470 | " \n",
471 | " \n",
472 | " \n",
473 | " \n",
474 | " \n",
475 | " \n",
476 | " \n",
477 | " \n",
478 | " \n",
479 | " \n",
480 | " \n",
481 | " \n",
482 | " \n",
483 | " \n",
484 | " \n",
485 | " \n",
486 | " \n",
501 | " \n",
527 | " \n",
549 | " \n",
562 | " \n",
572 | " \n",
605 | " \n",
612 | " \n",
637 | " \n",
656 | " \n",
677 | " \n",
678 | " \n",
695 | " \n",
716 | " \n",
737 | " \n",
746 | " \n",
777 | " \n",
778 | " \n",
779 | " \n",
780 | " \n",
781 | " \n",
782 | " \n",
783 | " \n",
784 | " \n",
785 | " \n",
786 | " \n",
787 | " \n",
788 | " \n",
789 | " \n",
790 | " \n",
791 | " \n",
792 | " \n",
793 | " \n",
794 | " \n",
795 | " \n",
796 | " \n",
797 | " \n",
798 | " \n",
799 | " \n",
800 | " \n",
801 | " \n",
802 | " \n",
803 | " \n",
804 | " \n",
807 | " \n",
808 | " \n",
809 | " \n",
810 | " \n",
813 | " \n",
814 | " \n",
815 | " \n",
816 | " \n",
817 | " \n",
818 | " \n",
819 | " \n",
820 | " \n",
821 | " \n",
822 | " \n",
823 | " \n",
824 | " \n",
825 | " \n",
826 | " \n",
827 | " \n",
828 | " \n",
829 | " \n",
830 | " \n",
833 | " \n",
834 | " \n",
835 | " \n",
836 | " \n",
837 | " \n",
838 | " \n",
839 | " \n",
840 | " \n",
841 | " \n",
842 | " \n",
843 | " \n",
844 | " \n",
845 | " \n",
846 | " \n",
847 | " \n",
848 | " \n",
849 | " \n",
850 | " \n",
851 | " \n",
854 | " \n",
855 | " \n",
856 | " \n",
857 | " \n",
858 | " \n",
859 | " \n",
860 | " \n",
861 | " \n",
862 | " \n",
863 | " \n",
864 | " \n",
865 | " \n",
866 | " \n",
867 | " \n",
868 | " \n",
869 | " \n",
870 | " \n",
871 | " \n",
872 | " \n",
875 | " \n",
876 | " \n",
877 | " \n",
878 | " \n",
879 | " \n",
880 | " \n",
881 | " \n",
882 | " \n",
883 | " \n",
884 | " \n",
885 | " \n",
886 | " \n",
887 | " \n",
888 | " \n",
889 | " \n",
890 | " \n",
891 | " \n",
892 | " \n",
893 | " \n",
894 | " \n",
895 | " \n",
906 | " \n",
936 | " \n",
962 | " \n",
973 | " \n",
987 | " \n",
998 | " \n",
999 | " \n",
1000 | " \n",
1001 | " \n",
1002 | " \n",
1003 | " \n",
1004 | " \n",
1005 | " \n",
1006 | " \n",
1007 | " \n",
1008 | " \n",
1009 | " \n",
1010 | " \n",
1011 | " \n",
1012 | " \n",
1013 | " \n",
1014 | " \n",
1015 | " \n",
1016 | " \n",
1017 | " \n",
1018 | " \n",
1119 | " \n",
1120 | " \n",
1121 | " \n",
1222 | " \n",
1223 | " \n",
1224 | " \n",
1227 | " \n",
1228 | " \n",
1229 | " \n",
1232 | " \n",
1233 | " \n",
1234 | " \n",
1237 | " \n",
1238 | " \n",
1239 | " \n",
1242 | " \n",
1243 | " \n",
1244 | " \n",
1245 | " \n",
1246 | " \n",
1247 | " \n",
1248 | " \n",
1249 | " \n",
1250 | " \n"
1251 | ],
1252 | "text/plain": [
1253 | ""
1254 | ]
1255 | },
1256 | "metadata": {
1257 | "needs_background": "light"
1258 | },
1259 | "output_type": "display_data"
1260 | }
1261 | ],
1262 | "source": [
1263 | "plt.plot(phi, T_complete, label=\"complete combustion\", lw=2)\n",
1264 | "plt.plot(phi, T_incomplete, label=\"incomplete combustion\", lw=2)\n",
1265 | "plt.grid(True)\n",
1266 | "plt.xlabel(r\"Equivalence ratio, $\\phi$\")\n",
1267 | "plt.ylabel(\"Temperature [K]\");"
1268 | ]
1269 | }
1270 | ],
1271 | "metadata": {
1272 | "kernelspec": {
1273 | "display_name": "Python 3 (ipykernel)",
1274 | "language": "python",
1275 | "name": "python3"
1276 | },
1277 | "language_info": {
1278 | "codemirror_mode": {
1279 | "name": "ipython",
1280 | "version": 3
1281 | },
1282 | "file_extension": ".py",
1283 | "mimetype": "text/x-python",
1284 | "name": "python",
1285 | "nbconvert_exporter": "python",
1286 | "pygments_lexer": "ipython3",
1287 | "version": "3.9.12"
1288 | }
1289 | },
1290 | "nbformat": 4,
1291 | "nbformat_minor": 4
1292 | }
1293 |
--------------------------------------------------------------------------------
/thermo/heating_value.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Heating values\n",
8 | "Use Cantera's thermodynamic data to calculate the lower heating value (LHV) and higher heating value (HHV) of methane and other fuels."
9 | ]
10 | },
11 | {
12 | "cell_type": "markdown",
13 | "metadata": {},
14 | "source": [
15 | "## Heating value of Methane\n",
16 | "The complete reaction for heating methane is:\n",
17 | "\n",
18 | "$\\mathrm{CH_4+2O_2\\rightarrow CO_2+2H_2O}$\n",
19 | "\n",
20 | "We compute the lower heating value (LHV) as the difference in enthalpy (per kg *mixture*) between reactants and products at constant temperature and pressure, divided by the mass fraction of fuel in the reactants."
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 1,
26 | "metadata": {},
27 | "outputs": [
28 | {
29 | "name": "stdout",
30 | "output_type": "stream",
31 | "text": [
32 | "Using Cantera version: 2.6.0a4\n"
33 | ]
34 | }
35 | ],
36 | "source": [
37 | "import cantera as ct\n",
38 | "\n",
39 | "print(f\"Using Cantera version: {ct.__version__}\")"
40 | ]
41 | },
42 | {
43 | "cell_type": "code",
44 | "execution_count": 3,
45 | "metadata": {},
46 | "outputs": [
47 | {
48 | "name": "stdout",
49 | "output_type": "stream",
50 | "text": [
51 | "LHV = 50.025 MJ/kg\n"
52 | ]
53 | }
54 | ],
55 | "source": [
56 | "gas = ct.Solution(\"gri30.yaml\")\n",
57 | "\n",
58 | "# Set reactants state\n",
59 | "gas.TPX = 298, 101325, \"CH4:1, O2:2\"\n",
60 | "h1 = gas.enthalpy_mass\n",
61 | "Y_CH4 = gas[\"CH4\"].Y[0] # returns an array, of which we only want the first element\n",
62 | "\n",
63 | "# set state to complete combustion products without changing T or P\n",
64 | "gas.TPX = None, None, \"CO2:1, H2O:2\"\n",
65 | "h2 = gas.enthalpy_mass\n",
66 | "\n",
67 | "LHV = -(h2 - h1) / Y_CH4 / 1e6\n",
68 | "print(f\"LHV = {LHV:.3f} MJ/kg\")"
69 | ]
70 | },
71 | {
72 | "cell_type": "markdown",
73 | "metadata": {},
74 | "source": [
75 | "The LHV is calculated assuming that water remains in the gas phase. However, more energy can be extracted from the mixture if this water is condensed. This value is the higher heating value (HHV).\n",
76 | "\n",
77 | "The ideal gas mixture model used here cannot calculate this contribution directly. However, Cantera also has a non-ideal equation of state which can be used to compute this contribution."
78 | ]
79 | },
80 | {
81 | "cell_type": "code",
82 | "execution_count": 4,
83 | "metadata": {},
84 | "outputs": [
85 | {
86 | "name": "stdout",
87 | "output_type": "stream",
88 | "text": [
89 | "HHV = 55.511 MJ/kg\n"
90 | ]
91 | }
92 | ],
93 | "source": [
94 | "water = ct.Water()\n",
95 | "# Set liquid water state, with vapor fraction x = 0\n",
96 | "water.TQ = 298, 0\n",
97 | "h_liquid = water.h\n",
98 | "# Set gaseous water state, with vapor fraction x = 1\n",
99 | "water.TQ = 298, 1\n",
100 | "h_gas = water.h\n",
101 | "\n",
102 | "# Calculate higher heating value\n",
103 | "Y_H2O = gas[\"H2O\"].Y[0]\n",
104 | "HHV = -(h2 - h1 + (h_liquid - h_gas) * Y_H2O) / Y_CH4 / 1e6\n",
105 | "print(f\"HHV = {HHV:.3f} MJ/kg\")"
106 | ]
107 | },
108 | {
109 | "cell_type": "markdown",
110 | "metadata": {},
111 | "source": [
112 | "## Generalizing to arbitrary species\n",
113 | "We can generalize this calculation by determining the composition of the products automatically rather than directly specifying the product composition. This can be done by computing the *elemental mole fractions* of the reactants mixture and noting that for complete combustion, all of the carbon ends up as $\\mathrm{CO}_2$, all of the hydrogen ends up as $\\mathrm{H}_2\\mathrm{O}$, and all of the nitrogen ends up as $\\mathrm{N}_2$. From this, we can compute the ratio of these species in the products."
114 | ]
115 | },
116 | {
117 | "cell_type": "code",
118 | "execution_count": 5,
119 | "metadata": {},
120 | "outputs": [
121 | {
122 | "name": "stdout",
123 | "output_type": "stream",
124 | "text": [
125 | "fuel LHV (MJ/kg) HHV (MJ/kg)\n",
126 | "H2 119.952 141.780\n",
127 | "CH4 50.025 55.511\n",
128 | "C2H6 47.511 51.901\n",
129 | "C3H8 46.352 50.343\n",
130 | "NH3 18.604 22.479\n",
131 | "CH3OH 21.104 23.851\n"
132 | ]
133 | }
134 | ],
135 | "source": [
136 | "def heating_value(fuel):\n",
137 | " \"\"\"Returns the LHV and HHV for the specified fuel\"\"\"\n",
138 | " gas.TP = 298, ct.one_atm\n",
139 | " gas.set_equivalence_ratio(1.0, fuel, \"O2:1.0\")\n",
140 | " h1 = gas.enthalpy_mass\n",
141 | " Y_fuel = gas[fuel].Y[0]\n",
142 | "\n",
143 | " # complete combustion products\n",
144 | " X_products = {\n",
145 | " \"CO2\": gas.elemental_mole_fraction(\"C\"),\n",
146 | " \"H2O\": 0.5 * gas.elemental_mole_fraction(\"H\"),\n",
147 | " \"N2\": 0.5 * gas.elemental_mole_fraction(\"N\"),\n",
148 | " }\n",
149 | "\n",
150 | " gas.TPX = None, None, X_products\n",
151 | " Y_H2O = gas[\"H2O\"].Y[0]\n",
152 | " h2 = gas.enthalpy_mass\n",
153 | " LHV = -(h2 - h1) / Y_fuel / 1e6\n",
154 | " HHV = -(h2 - h1 + (h_liquid - h_gas) * Y_H2O) / Y_fuel / 1e6\n",
155 | " return LHV, HHV\n",
156 | "\n",
157 | "\n",
158 | "fuels = [\"H2\", \"CH4\", \"C2H6\", \"C3H8\", \"NH3\", \"CH3OH\"]\n",
159 | "print(\"fuel LHV (MJ/kg) HHV (MJ/kg)\")\n",
160 | "for fuel in fuels:\n",
161 | " LHV, HHV = heating_value(fuel)\n",
162 | " print(f\"{fuel:8s} {LHV:7.3f} {HHV:7.3f}\")"
163 | ]
164 | }
165 | ],
166 | "metadata": {
167 | "kernelspec": {
168 | "display_name": "Python 3 (ipykernel)",
169 | "language": "python",
170 | "name": "python3"
171 | },
172 | "language_info": {
173 | "codemirror_mode": {
174 | "name": "ipython",
175 | "version": 3
176 | },
177 | "file_extension": ".py",
178 | "mimetype": "text/x-python",
179 | "name": "python",
180 | "nbconvert_exporter": "python",
181 | "pygments_lexer": "ipython3",
182 | "version": "3.9.12"
183 | }
184 | },
185 | "nbformat": 4,
186 | "nbformat_minor": 4
187 | }
188 |
--------------------------------------------------------------------------------