├── Lou (2013) The Research of Micro-blog Sentiment Analysis. CLSW. Springer.pdf ├── Shen (2009) Emotion mining research on microblog. IEEE.pdf ├── dict ├── LIWC Dictionaries │ ├── FrenchLIWCDictionary.dic │ ├── LIWC2001WordStat.txt │ ├── LIWC2001_Categories.txt │ ├── LIWC2001_English.dic │ ├── LIWC2001_German.dic │ ├── LIWC2001_Spanish.dic │ ├── LIWC2001_SpanishE.dic │ ├── LIWC2001_SpanishWordStat.txt │ ├── LIWC2007WordStat.zip │ ├── LIWC2007_Categories.txt │ ├── LIWC2007_Dutch.dic │ ├── LIWC2007_English080730.dic │ ├── LIWC2007_Italian.dic │ ├── LIWC2007_Pronoun.dic │ ├── LIWC2007_RIOT_Scan.txt │ └── LIWC2007dictionary poster.xls ├── insufficient.txt ├── inverse.txt ├── ish.txt ├── more.txt ├── most.txt ├── negative.txt ├── positive.txt ├── very.txt ├── zero.test.txt ├── 中文停用词表 │ └── 哈工大停用词表扩展.txt ├── 台湾大学简体中文情感极性词典ntusd │ ├── ntusd-negative.txt │ └── ntusd-positive.txt ├── 情感词汇本体 │ ├── 情感词汇本体.xlsx │ └── 情感词汇本体库说明文档.doc └── 知网情感分析用词语集 │ ├── 主张词语(中文).txt │ ├── 主张词语(英文).txt │ ├── 正面情感词语(中文).txt │ ├── 正面情感词语(英文).txt │ ├── 正面评价词语(中文).txt │ ├── 正面评价词语(英文).txt │ ├── 程度级别词语(中文).txt │ ├── 程度级别词语(英文).txt │ ├── 负面情感词语(中文).txt │ ├── 负面情感词语(英文).txt │ ├── 负面评价词语(中文).txt │ └── 负面评价词语(英文).txt ├── sentiment-master ├── README └── sentiment │ ├── ChangeLog │ ├── DESCRIPTION │ ├── NAMESPACE │ ├── R │ ├── classify_emotion.R │ ├── classify_polarity.R │ └── create_matrix.R │ ├── data │ ├── datalist │ ├── emotions.csv.gz │ └── subjectivity.csv.gz │ └── man │ ├── classify_emotion.Rd │ ├── classify_polarity.Rd │ ├── create_matrix.Rd │ ├── emotions.Rd │ └── subjectivity.Rd ├── sentimentCN.R ├── sentimentCN.py ├── sentiment_analysis-master ├── .Rhistory ├── .gitattributes ├── .gitignore ├── AFINN │ ├── AFINN-111.txt │ ├── AFINN-96.txt │ └── AFINN-README.txt ├── negative-words.txt ├── polarityData │ ├── rt-polaritydata.README.1.0.txt │ └── rt-polaritydata │ │ ├── rt-polarity-neg.txt │ │ └── rt-polarity-pos.txt ├── positive-words.txt ├── readme.md └── sentiment_analysis.R ├── sentiment_analysis.R └── sentiment_anlaysis_using_machine_learning_methods.R /Lou (2013) The Research of Micro-blog Sentiment Analysis. CLSW. Springer.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/Lou (2013) The Research of Micro-blog Sentiment Analysis. CLSW. Springer.pdf -------------------------------------------------------------------------------- /Shen (2009) Emotion mining research on microblog. IEEE.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/Shen (2009) Emotion mining research on microblog. IEEE.pdf -------------------------------------------------------------------------------- /dict/LIWC Dictionaries/FrenchLIWCDictionary.dic: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/LIWC Dictionaries/FrenchLIWCDictionary.dic -------------------------------------------------------------------------------- /dict/LIWC Dictionaries/LIWC2001_Categories.txt: -------------------------------------------------------------------------------- 1 | % 1 Pronoun@All pronouns 2 I@1st person singular 3 We@1st person plural 4 Self@Total 1st person 5 You@Total 2nd person 6 Other@Total 3rd person 7 Negate@Negations 8 Assent@Assents 9 Article@Articles 10 Preps@Prepositions 11 Number@Numbers 12 Affect 13 Posemo@Positive affect 14 Posfeel@Positive feelings 15 Optim@Optimism 16 Negemo@Negative affect 17 Anx@anxiety 18 Anger 19 Sad@Sadness 20 Cogmech@Cognition 21 Cause@Causation 22 Insight 23 Discrep@Discrepancy 24 Inhib@Inhibition 25 Tentat@Tentativeness 26 Certain@Certainty 27 Senses@Sensation/perception 28 See@Seeing 29 Hear@Hearing 30 Touch@Touching 31 Social 32 Comm@Communication 33 Othref@Reference to others 34 Friends 35 Family 36 Humans 37 Time 38 Past 39 Present 40 Future 41 Space 42 Up 43 Down 44 Incl@Inclusion 45 Excl@Exclusion 46 Motion 47 Occup@Occupation 48 School 49 Job 50 Achieve@Achievement 51 Leisure 52 Home 53 Sport@Sport/exercise 54 TV@TV/movies 55 Music 56 Money 57 Metaph@Metaphysical 58 Relig@Religion 59 Death 60 Physcal@Physical states/factors 61 Body@Symptoms & sensations 62 Sexual@Sexual 63 Eating@Eating/drinking 64 Sleep@Sleeping/dreaming 65 Groom@Grooming 66 Swear@Swear words 67 Nonfl@Non-fluencies 68 Fillers % -------------------------------------------------------------------------------- /dict/LIWC Dictionaries/LIWC2001_German.dic: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/LIWC Dictionaries/LIWC2001_German.dic -------------------------------------------------------------------------------- /dict/LIWC Dictionaries/LIWC2001_Spanish.dic: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/LIWC Dictionaries/LIWC2001_Spanish.dic -------------------------------------------------------------------------------- /dict/LIWC Dictionaries/LIWC2001_SpanishE.dic: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/LIWC Dictionaries/LIWC2001_SpanishE.dic -------------------------------------------------------------------------------- /dict/LIWC Dictionaries/LIWC2001_SpanishWordStat.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/LIWC Dictionaries/LIWC2001_SpanishWordStat.txt -------------------------------------------------------------------------------- /dict/LIWC Dictionaries/LIWC2007WordStat.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/LIWC Dictionaries/LIWC2007WordStat.zip -------------------------------------------------------------------------------- /dict/LIWC Dictionaries/LIWC2007_Categories.txt: -------------------------------------------------------------------------------- 1 | % 2 | 1 funct 3 | 2 pronoun 4 | 3 ppron 5 | 4 i 6 | 5 we 7 | 6 you 8 | 7 shehe 9 | 8 they 10 | 9 ipron 11 | 10 article 12 | 11 verb 13 | 12 auxverb 14 | 13 past 15 | 14 present 16 | 15 future 17 | 16 adverb 18 | 17 preps 19 | 18 conj 20 | 19 negate 21 | 20 quant 22 | 21 number 23 | 22 swear 24 | 121 social 25 | 122 family 26 | 123 friend 27 | 124 humans 28 | 125 affect 29 | 126 posemo 30 | 127 negemo 31 | 128 anx 32 | 129 anger 33 | 130 sad 34 | 131 cogmech 35 | 132 insight 36 | 133 cause 37 | 134 discrep 38 | 135 tentat 39 | 136 certain 40 | 137 inhib 41 | 138 incl 42 | 139 excl 43 | 140 percept 44 | 141 see 45 | 142 hear 46 | 143 feel 47 | 146 bio 48 | 147 body 49 | 148 health 50 | 149 sexual 51 | 150 ingest 52 | 250 relativ 53 | 251 motion 54 | 252 space 55 | 253 time 56 | 354 work 57 | 355 achieve 58 | 356 leisure 59 | 357 home 60 | 358 money 61 | 359 relig 62 | 360 death 63 | 462 assent 64 | 463 nonfl 65 | 464 filler 66 | % 67 | -------------------------------------------------------------------------------- /dict/LIWC Dictionaries/LIWC2007_Dutch.dic: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/LIWC Dictionaries/LIWC2007_Dutch.dic -------------------------------------------------------------------------------- /dict/LIWC Dictionaries/LIWC2007_Italian.dic: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/LIWC Dictionaries/LIWC2007_Italian.dic -------------------------------------------------------------------------------- /dict/LIWC Dictionaries/LIWC2007_Pronoun.dic: -------------------------------------------------------------------------------- 1 | % 1 I 2 Me 3 My 4 We 5 Us 6 Our 7 He 8 Him 9 His 10 She 11 Her 12 You 13 Yours 14 They 15 Them 16 Their 17 frstps 18 frstpp 19 secndp 20 thrdp 21 male 22 female % he 7 20 21 he'* 7 20 21 her 11 20 22 hers 11 20 22 herself 11 20 22 him 8 20 21 himself 8 20 21 his 9 20 21 i 1 17 i'* 1 17 me 2 17 mine 3 17 my 3 17 myself 2 17 our 6 18 ours 6 18 oursel* 5 18 she 10 20 22 she'* 10 20 22 their 16 20 them 15 20 they 14 20 they'* 14 20 us 5 18 we 4 18 we'* 4 18 you 12 19 you'* 12 19 your* 13 19 -------------------------------------------------------------------------------- /dict/LIWC Dictionaries/LIWC2007dictionary poster.xls: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/LIWC Dictionaries/LIWC2007dictionary poster.xls -------------------------------------------------------------------------------- /dict/insufficient.txt: -------------------------------------------------------------------------------- 1 | 半点 2 | 不大 3 | 不丁点儿 4 | 不甚 5 | 不怎么 6 | 聊 7 | 没怎么 8 | 轻度 9 | 弱 10 | 丝毫 11 | 微 12 | 相对 -------------------------------------------------------------------------------- /dict/inverse.txt: -------------------------------------------------------------------------------- 1 | 不为过 2 | 超 3 | 超额 4 | 超外差 5 | 超微结构 6 | 超物质 7 | 出头 8 | 多 9 | 浮 10 | 过 11 | 过度 12 | 过分 13 | 过火 14 | 过劲 15 | 过了头 16 | 过猛 17 | 过热 18 | 过甚 19 | 过头 20 | 过于 21 | 过逾 22 | 何止 23 | 何啻 24 | 开外 25 | 苦 26 | 老 27 | 偏 28 | 强 29 | 溢 30 | 忒 -------------------------------------------------------------------------------- /dict/ish.txt: -------------------------------------------------------------------------------- 1 | 点点滴滴 2 | 多多少少 3 | 怪 4 | 好生 5 | 还 6 | 或多或少 7 | 略 8 | 略加 9 | 略略 10 | 略微 11 | 略为 12 | 蛮 13 | 稍 14 | 稍稍 15 | 稍微 16 | 稍为 17 | 稍许 18 | 挺 19 | 未免 20 | 相当 21 | 些 22 | 些微 23 | 些小 24 | 一点 25 | 一点儿 26 | 一些 27 | 有点 28 | 有点儿 29 | 有些 -------------------------------------------------------------------------------- /dict/more.txt: -------------------------------------------------------------------------------- 1 | 大不了 2 | 多 3 | 更 4 | 更加 5 | 更进一步 6 | 更为 7 | 还 8 | 还要 9 | 较 10 | 较比 11 | 较为 12 | 进一步 13 | 那般 14 | 那么 15 | 那样 16 | 强 17 | 如斯 18 | 益 19 | 益发 20 | 尤甚 21 | 逾 22 | 愈 23 | 愈 ... 愈 24 | 愈发 25 | 愈加 26 | 愈来愈 27 | 愈益 28 | 远远 29 | 越 ... 越 30 | 越发 31 | 越加 32 | 越来越 33 | 越是 34 | 这般 35 | 这样 36 | 足 37 | 足足 -------------------------------------------------------------------------------- /dict/most.txt: -------------------------------------------------------------------------------- 1 | 百分之百 2 | 倍加 3 | 备至 4 | 不得了 5 | 不堪 6 | 不可开交 7 | 不亦乐乎 8 | 不折不扣 9 | 彻头彻尾 10 | 充分 11 | 到头 12 | 地地道道 13 | 非常 14 | 极 15 | 极度 16 | 极端 17 | 极其 18 | 极为 19 | 截然 20 | 尽 21 | 惊人地 22 | 绝 23 | 绝顶 24 | 绝对 25 | 绝对化 26 | 刻骨 27 | 酷 28 | 满 29 | 满贯 30 | 满心 31 | 莫大 32 | 奇 33 | 入骨 34 | 甚为 35 | 十二分 36 | 十分 37 | 十足 38 | 死 39 | 滔天 40 | 痛 41 | 透 42 | 完全 43 | 完完全全 44 | 万 45 | 万般 46 | 万分 47 | 万万 48 | 无比 49 | 无度 50 | 无可估量 51 | 无以复加 52 | 无以伦比 53 | 要命 54 | 要死 55 | 已极 56 | 已甚 57 | 异常 58 | 逾常 59 | 贼 60 | 之极 61 | 之至 62 | 至极 63 | 卓绝 64 | 最为 65 | 佼佼 66 | 郅 67 | 綦 68 | 齁 69 | 最 -------------------------------------------------------------------------------- /dict/very.txt: -------------------------------------------------------------------------------- 1 | 不过 2 | 不少 3 | 不胜 4 | 惨 5 | 沉 6 | 沉沉 7 | 出奇 8 | 大为 9 | 多 10 | 多多 11 | 多加 12 | 多么 13 | 分外 14 | 格外 15 | 够瞧的 16 | 够戗 17 | 好 18 | 好不 19 | 何等 20 | 很 21 | 很是 22 | 坏 23 | 可 24 | 老 25 | 老大 26 | 良 27 | 颇 28 | 颇为 29 | 甚 30 | 实在 31 | 太 32 | 太甚 33 | 特 34 | 特别 35 | 尤 36 | 尤其 37 | 尤为 38 | 尤以 39 | 远 40 | 着实 41 | 曷 42 | 碜 -------------------------------------------------------------------------------- /dict/zero.test.txt: -------------------------------------------------------------------------------- 1 | 我 喜欢 吃 螃蟹 。 味道 非常 鲜美 ! 今天 又 买了 几个 胖 螃蟹 ,美味 的 很 ! 小心翼翼地 烤 了 几个 ,送给 了 好朋友。 -------------------------------------------------------------------------------- /dict/中文停用词表/哈工大停用词表扩展.txt: -------------------------------------------------------------------------------- 1 | ——— 2 | 》), 3 | )÷(1- 4 | ”, 5 | )、 6 | =( 7 | : 8 | → 9 | ℃ 10 | & 11 | * 12 | 一一 13 | ~~~~ 14 | ’ 15 | . 16 | 『 17 | .一 18 | ./ 19 | -- 20 | 』 21 | =″ 22 | 【 23 | [*] 24 | }> 25 | [⑤]] 26 | [①D] 27 | c] 28 | ng昉 29 | * 30 | // 31 | [ 32 | ] 33 | [②e] 34 | [②g] 35 | ={ 36 | } 37 | ,也 38 | ‘ 39 | A 40 | [①⑥] 41 | [②B] 42 | [①a] 43 | [④a] 44 | [①③] 45 | [③h] 46 | ③] 47 | 1. 48 | -- 49 | [②b] 50 | ’‘ 51 | ××× 52 | [①⑧] 53 | 0:2 54 | =[ 55 | [⑤b] 56 | [②c] 57 | [④b] 58 | [②③] 59 | [③a] 60 | [④c] 61 | [①⑤] 62 | [①⑦] 63 | [①g] 64 | ∈[ 65 | [①⑨] 66 | [①④] 67 | [①c] 68 | [②f] 69 | [②⑧] 70 | [②①] 71 | [①C] 72 | [③c] 73 | [③g] 74 | [②⑤] 75 | [②②] 76 | 一. 77 | [①h] 78 | .数 79 | [] 80 | [①B] 81 | 数/ 82 | [①i] 83 | [③e] 84 | [①①] 85 | [④d] 86 | [④e] 87 | [③b] 88 | [⑤a] 89 | [①A] 90 | [②⑧] 91 | [②⑦] 92 | [①d] 93 | [②j] 94 | 〕〔 95 | ][ 96 | :// 97 | ′∈ 98 | [②④ 99 | [⑤e] 100 | 12% 101 | b] 102 | ... 103 | ................... 104 | …………………………………………………③ 105 | ZXFITL 106 | [③F] 107 | 」 108 | [①o] 109 | ]∧′=[ 110 | ∪φ∈ 111 | ′| 112 | {- 113 | ②c 114 | } 115 | [③①] 116 | R.L. 117 | [①E] 118 | Ψ 119 | -[*]- 120 | ↑ 121 | .日 122 | [②d] 123 | [② 124 | [②⑦] 125 | [②②] 126 | [③e] 127 | [①i] 128 | [①B] 129 | [①h] 130 | [①d] 131 | [①g] 132 | [①②] 133 | [②a] 134 | f] 135 | [⑩] 136 | a] 137 | [①e] 138 | [②h] 139 | [②⑥] 140 | [③d] 141 | [②⑩] 142 | e] 143 | 〉 144 | 】 145 | 元/吨 146 | [②⑩] 147 | 2.3% 148 | 5:0 149 | [①] 150 | :: 151 | [②] 152 | [③] 153 | [④] 154 | [⑤] 155 | [⑥] 156 | [⑦] 157 | [⑧] 158 | [⑨] 159 | …… 160 | —— 161 | ? 162 | 、 163 | 。 164 | “ 165 | ” 166 | 《 167 | 》 168 | ! 169 | , 170 | : 171 | ; 172 | ? 173 | . 174 | , 175 | . 176 | ' 177 | ? 178 | · 179 | ——— 180 | ── 181 | ? 182 | — 183 | < 184 | > 185 | ( 186 | ) 187 | 〔 188 | 〕 189 | [ 190 | ] 191 | ( 192 | ) 193 | - 194 | + 195 | ~ 196 | × 197 | / 198 | / 199 | ① 200 | ② 201 | ③ 202 | ④ 203 | ⑤ 204 | ⑥ 205 | ⑦ 206 | ⑧ 207 | ⑨ 208 | ⑩ 209 | Ⅲ 210 | В 211 | " 212 | ; 213 | # 214 | @ 215 | γ 216 | μ 217 | φ 218 | φ. 219 | × 220 | Δ 221 | ■ 222 | ▲ 223 | sub 224 | exp 225 | sup 226 | sub 227 | Lex 228 | # 229 | % 230 | & 231 | ' 232 | + 233 | +ξ 234 | ++ 235 | - 236 | -β 237 | < 238 | <± 239 | <Δ 240 | <λ 241 | <φ 242 | << 243 | = 244 | = 245 | =☆ 246 | =- 247 | > 248 | >λ 249 | _ 250 | ~± 251 | ~+ 252 | [⑤f] 253 | [⑤d] 254 | [②i] 255 | ≈ 256 | [②G] 257 | [①f] 258 | LI 259 | ㈧ 260 | [- 261 | ...... 262 | 〉 263 | [③⑩] 264 | 第二 265 | 一番 266 | 一直 267 | 一个 268 | 一些 269 | 许多 270 | 种 271 | 有的是 272 | 也就是说 273 | 末##末 274 | 啊 275 | 阿 276 | 哎 277 | 哎呀 278 | 哎哟 279 | 唉 280 | 俺 281 | 俺们 282 | 按 283 | 按照 284 | 吧 285 | 吧哒 286 | 把 287 | 罢了 288 | 被 289 | 本 290 | 本着 291 | 比 292 | 比方 293 | 比如 294 | 鄙人 295 | 彼 296 | 彼此 297 | 边 298 | 别 299 | 别的 300 | 别说 301 | 并 302 | 并且 303 | 不比 304 | 不成 305 | 不单 306 | 不但 307 | 不独 308 | 不管 309 | 不光 310 | 不过 311 | 不仅 312 | 不拘 313 | 不论 314 | 不怕 315 | 不然 316 | 不如 317 | 不特 318 | 不惟 319 | 不问 320 | 不只 321 | 朝 322 | 朝着 323 | 趁 324 | 趁着 325 | 乘 326 | 冲 327 | 除 328 | 除此之外 329 | 除非 330 | 除了 331 | 此 332 | 此间 333 | 此外 334 | 从 335 | 从而 336 | 打 337 | 待 338 | 但 339 | 但是 340 | 当 341 | 当着 342 | 到 343 | 得 344 | 的 345 | 的话 346 | 等 347 | 等等 348 | 地 349 | 第 350 | 叮咚 351 | 对 352 | 对于 353 | 多 354 | 多少 355 | 而 356 | 而况 357 | 而且 358 | 而是 359 | 而外 360 | 而言 361 | 而已 362 | 尔后 363 | 反过来 364 | 反过来说 365 | 反之 366 | 非但 367 | 非徒 368 | 否则 369 | 嘎 370 | 嘎登 371 | 该 372 | 赶 373 | 个 374 | 各 375 | 各个 376 | 各位 377 | 各种 378 | 各自 379 | 给 380 | 根据 381 | 跟 382 | 故 383 | 故此 384 | 固然 385 | 关于 386 | 管 387 | 归 388 | 果然 389 | 果真 390 | 过 391 | 哈 392 | 哈哈 393 | 呵 394 | 和 395 | 何 396 | 何处 397 | 何况 398 | 何时 399 | 嘿 400 | 哼 401 | 哼唷 402 | 呼哧 403 | 乎 404 | 哗 405 | 还是 406 | 还有 407 | 换句话说 408 | 换言之 409 | 或 410 | 或是 411 | 或者 412 | 极了 413 | 及 414 | 及其 415 | 及至 416 | 即 417 | 即便 418 | 即或 419 | 即令 420 | 即若 421 | 即使 422 | 几 423 | 几时 424 | 己 425 | 既 426 | 既然 427 | 既是 428 | 继而 429 | 加之 430 | 假如 431 | 假若 432 | 假使 433 | 鉴于 434 | 将 435 | 较 436 | 较之 437 | 叫 438 | 接着 439 | 结果 440 | 借 441 | 紧接着 442 | 进而 443 | 尽 444 | 尽管 445 | 经 446 | 经过 447 | 就 448 | 就是 449 | 就是说 450 | 据 451 | 具体地说 452 | 具体说来 453 | 开始 454 | 开外 455 | 靠 456 | 咳 457 | 可 458 | 可见 459 | 可是 460 | 可以 461 | 况且 462 | 啦 463 | 来 464 | 来着 465 | 离 466 | 例如 467 | 哩 468 | 连 469 | 连同 470 | 两者 471 | 了 472 | 临 473 | 另 474 | 另外 475 | 另一方面 476 | 论 477 | 嘛 478 | 吗 479 | 慢说 480 | 漫说 481 | 冒 482 | 么 483 | 每 484 | 每当 485 | 们 486 | 莫若 487 | 某 488 | 某个 489 | 某些 490 | 拿 491 | 哪 492 | 哪边 493 | 哪儿 494 | 哪个 495 | 哪里 496 | 哪年 497 | 哪怕 498 | 哪天 499 | 哪些 500 | 哪样 501 | 那 502 | 那边 503 | 那儿 504 | 那个 505 | 那会儿 506 | 那里 507 | 那么 508 | 那么些 509 | 那么样 510 | 那时 511 | 那些 512 | 那样 513 | 乃 514 | 乃至 515 | 呢 516 | 能 517 | 你 518 | 你们 519 | 您 520 | 宁 521 | 宁可 522 | 宁肯 523 | 宁愿 524 | 哦 525 | 呕 526 | 啪达 527 | 旁人 528 | 呸 529 | 凭 530 | 凭借 531 | 其 532 | 其次 533 | 其二 534 | 其他 535 | 其它 536 | 其一 537 | 其余 538 | 其中 539 | 起 540 | 起见 541 | 起见 542 | 岂但 543 | 恰恰相反 544 | 前后 545 | 前者 546 | 且 547 | 然而 548 | 然后 549 | 然则 550 | 让 551 | 人家 552 | 任 553 | 任何 554 | 任凭 555 | 如 556 | 如此 557 | 如果 558 | 如何 559 | 如其 560 | 如若 561 | 如上所述 562 | 若 563 | 若非 564 | 若是 565 | 啥 566 | 上下 567 | 尚且 568 | 设若 569 | 设使 570 | 甚而 571 | 甚么 572 | 甚至 573 | 省得 574 | 时候 575 | 什么 576 | 什么样 577 | 使得 578 | 是 579 | 是的 580 | 首先 581 | 谁 582 | 谁知 583 | 顺 584 | 顺着 585 | 似的 586 | 虽 587 | 虽然 588 | 虽说 589 | 虽则 590 | 随 591 | 随着 592 | 所 593 | 所以 594 | 他 595 | 他们 596 | 他人 597 | 它 598 | 它们 599 | 她 600 | 她们 601 | 倘 602 | 倘或 603 | 倘然 604 | 倘若 605 | 倘使 606 | 腾 607 | 替 608 | 通过 609 | 同 610 | 同时 611 | 哇 612 | 万一 613 | 往 614 | 望 615 | 为 616 | 为何 617 | 为了 618 | 为什么 619 | 为着 620 | 喂 621 | 嗡嗡 622 | 我 623 | 我们 624 | 呜 625 | 呜呼 626 | 乌乎 627 | 无论 628 | 无宁 629 | 毋宁 630 | 嘻 631 | 吓 632 | 相对而言 633 | 像 634 | 向 635 | 向着 636 | 嘘 637 | 呀 638 | 焉 639 | 沿 640 | 沿着 641 | 要 642 | 要不 643 | 要不然 644 | 要不是 645 | 要么 646 | 要是 647 | 也 648 | 也罢 649 | 也好 650 | 一 651 | 一般 652 | 一旦 653 | 一方面 654 | 一来 655 | 一切 656 | 一样 657 | 一则 658 | 依 659 | 依照 660 | 矣 661 | 以 662 | 以便 663 | 以及 664 | 以免 665 | 以至 666 | 以至于 667 | 以致 668 | 抑或 669 | 因 670 | 因此 671 | 因而 672 | 因为 673 | 哟 674 | 用 675 | 由 676 | 由此可见 677 | 由于 678 | 有 679 | 有的 680 | 有关 681 | 有些 682 | 又 683 | 于 684 | 于是 685 | 于是乎 686 | 与 687 | 与此同时 688 | 与否 689 | 与其 690 | 越是 691 | 云云 692 | 哉 693 | 再说 694 | 再者 695 | 在 696 | 在下 697 | 咱 698 | 咱们 699 | 则 700 | 怎 701 | 怎么 702 | 怎么办 703 | 怎么样 704 | 怎样 705 | 咋 706 | 照 707 | 照着 708 | 者 709 | 这 710 | 这边 711 | 这儿 712 | 这个 713 | 这会儿 714 | 这就是说 715 | 这里 716 | 这么 717 | 这么点儿 718 | 这么些 719 | 这么样 720 | 这时 721 | 这些 722 | 这样 723 | 正如 724 | 吱 725 | 之 726 | 之类 727 | 之所以 728 | 之一 729 | 只是 730 | 只限 731 | 只要 732 | 只有 733 | 至 734 | 至于 735 | 诸位 736 | 着 737 | 着呢 738 | 自 739 | 自从 740 | 自个儿 741 | 自各儿 742 | 自己 743 | 自家 744 | 自身 745 | 综上所述 746 | 总的来看 747 | 总的来说 748 | 总的说来 749 | 总而言之 750 | 总之 751 | 纵 752 | 纵令 753 | 纵然 754 | 纵使 755 | 遵照 756 | 作为 757 | 兮 758 | 呃 759 | 呗 760 | 咚 761 | 咦 762 | 喏 763 | 啐 764 | 喔唷 765 | 嗬 766 | 嗯 767 | 嗳 -------------------------------------------------------------------------------- /dict/台湾大学简体中文情感极性词典ntusd/ntusd-positive.txt: -------------------------------------------------------------------------------- 1 | 一帆风顺 2 | 一帆风顺的 3 | 一流 4 | 一致 5 | 一致的 6 | 了不起 7 | 了不起的 8 | 了解 9 | 人性 10 | 人性的 11 | 人格高尚 12 | 人格高尚的 13 | 人情 14 | 人情味 15 | 入神 16 | 入神的 17 | 入迷 18 | 入迷的 19 | 上好 20 | 上好的 21 | 上等 22 | 上等的 23 | 口头通过 24 | 大方 25 | 大方的 26 | 大无畏 27 | 大无畏的 28 | 大量的 29 | 大胆 30 | 大胆的 31 | 小天使 32 | 小心 33 | 小心的 34 | 小心谨慎 35 | 小心谨慎的 36 | 工整 37 | 工整的 38 | 才气 39 | 才能 40 | 才智 41 | 才干 42 | 才艺 43 | 不凡 44 | 不凡的 45 | 不凡的人 46 | 不可名状 47 | 不可名状的 48 | 不可否认 49 | 不可否认的 50 | 不可侵犯 51 | 不可侵犯的 52 | 不可思议 53 | 不可思议的 54 | 不任性 55 | 不任性的 56 | 不成为问题 57 | 不成为问题的 58 | 不自私 59 | 不自私的 60 | 不含糊 61 | 不含糊的 62 | 不受约束 63 | 不受约束的 64 | 不屈不挠 65 | 不屈不挠的 66 | 不屈服 67 | 不屈服的 68 | 不拘泥 69 | 不拘泥的 70 | 不迫 71 | 不偏不倚 72 | 不偏不倚地 73 | 不偏不倚的 74 | 不动摇 75 | 不动摇的 76 | 不犹豫 77 | 不犹豫的 78 | 不慌忙 79 | 不慌忙的 80 | 不会弄错 81 | 不会弄错的 82 | 不会受伤害 83 | 不会受伤害的 84 | 不懈 85 | 中和 86 | 中肯 87 | 中肯的 88 | 井然有序 89 | 井然有序的 90 | 互助 91 | 互助的 92 | 互相密合着 93 | 互相密合着的 94 | 仁慈 95 | 仁慈的 96 | 允诺 97 | 内行 98 | 内行的 99 | 公平 100 | 公平地 101 | 公平的 102 | 公正 103 | 公正地 104 | 公正的 105 | 公开 106 | 公开的 107 | 分寸 108 | 切实 109 | 切实的 110 | 切题 111 | 切题的 112 | 匀称 113 | 匀称的 114 | 升起 115 | 友好 116 | 友好的 117 | 友善 118 | 友善的 119 | 友爱 120 | 友爱的 121 | 友谊 122 | 及格 123 | 天才 124 | 天才人物 125 | 天使 126 | 天使的 127 | 天使般的人 128 | 天真 129 | 天真的 130 | 天真无邪 131 | 天堂 132 | 天然 133 | 天然的 134 | 天资 135 | 天赋 136 | 引人注目 137 | 引人注目的 138 | 引人赞美 139 | 引人赞美的人 140 | 引以为荣 141 | 引以为荣的事物 142 | 心甘情愿 143 | 心甘情愿的 144 | 心情愉快 145 | 心情愉快的 146 | 心情舒畅 147 | 心情舒畅的 148 | 心爱 149 | 心爱的 150 | 心满意足 151 | 心满意足地注视 152 | 心醉 153 | 心醉神迷 154 | 手艺 155 | 支援 156 | 文雅 157 | 文雅的 158 | 方便 159 | 方便的 160 | 比较好 161 | 主动 162 | 主动的 163 | 令人高兴 164 | 令人高兴的 165 | 令人喜悦 166 | 令人喜悦的 167 | 令人愉快 168 | 令人愉快的 169 | 令人钦佩 170 | 令人钦佩的 171 | 令人满意 172 | 令人满意地 173 | 令人满意的 174 | 令人难忘 175 | 令人难忘的 176 | 令人惊奇 177 | 令人惊奇的 178 | 充分 179 | 充份 180 | 充份的 181 | 充沛 182 | 充足 183 | 充足的 184 | 充裕 185 | 充满深情 186 | 充满深情的 187 | 出名 188 | 出名的 189 | 出色 190 | 出色的 191 | 出神 192 | 出神的 193 | 出众 194 | 出众的 195 | 加薪 196 | 功绩 197 | 去除 198 | 可了解 199 | 可了解的 200 | 可口 201 | 可口的 202 | 可以接受 203 | 可以接受的 204 | 可用 205 | 可用的 206 | 可行 207 | 可行的 208 | 可忍受 209 | 可忍受的 210 | 可取 211 | 可取的 212 | 可信 213 | 可信任 214 | 可信任的 215 | 可信的 216 | 可信赖 217 | 可信赖性 218 | 可信赖的 219 | 可理解 220 | 可理解的 221 | 可喜 222 | 可喜的 223 | 可尊敬 224 | 可尊敬的 225 | 可钦佩 226 | 可钦佩的 227 | 可贵 228 | 可贵的 229 | 可爱 230 | 可爱地 231 | 可爱的 232 | 可敬 233 | 可敬的 234 | 可敬重 235 | 可敬重的 236 | 可经营 237 | 可经营的 238 | 可实行 239 | 可实行的 240 | 可称赞 241 | 可称赞的 242 | 可靠 243 | 可靠性 244 | 可靠的 245 | 可靠程度 246 | 可亲 247 | 可携带 248 | 可携带的 249 | 古典 250 | 古典的 251 | 古雅 252 | 古雅的 253 | 叮嘱 254 | 巨大 255 | 巨大的 256 | 巧妙 257 | 巧妙的 258 | 平安 259 | 平安的 260 | 平坦 261 | 平坦的 262 | 平息 263 | 平等 264 | 平整 265 | 平衡 266 | 平静 267 | 平静的 268 | 平稳 269 | 平稳的 270 | 必要 271 | 打趣 272 | 本着良心 273 | 本着良心的 274 | 未被污染 275 | 未被污染的 276 | 正大 277 | 正式 278 | 正式批准 279 | 正式的 280 | 正直 281 | 正直的 282 | 正派 283 | 正派的 284 | 正面 285 | 正面地 286 | 正常 287 | 正常的 288 | 正统 289 | 正规 290 | 正规的 291 | 正当 292 | 正当的 293 | 正义 294 | 正义的 295 | 正道 296 | 正确 297 | 正确地 298 | 正确性 299 | 正确的 300 | 永恒 301 | 永恒的 302 | 甘愿 303 | 甘愿的 304 | 生育 305 | 生效 306 | 生效的 307 | 生气勃勃 308 | 生气勃勃地 309 | 生动 310 | 生动的 311 | 生产 312 | 生产多 313 | 生产多的 314 | 用功 315 | 由衷 316 | 由衷的高兴 317 | 目眩 318 | 伊甸园 319 | 休息 320 | 光芒 321 | 光芒四射 322 | 光芒四射的 323 | 光明 324 | 光明的 325 | 光亮 326 | 光亮的 327 | 光彩 328 | 光滑 329 | 光滑的 330 | 光荣 331 | 光荣的 332 | 光辉 333 | 光辉的 334 | 光泽 335 | 先见之明 336 | 全力 337 | 全力的 338 | 全面 339 | 全面的 340 | 全神贯注 341 | 全神贯注的 342 | 吉利 343 | 吉利的 344 | 吉祥 345 | 吉祥的 346 | 同情 347 | 同情心 348 | 同意 349 | 同意给予 350 | 同感 351 | 名声 352 | 名誉 353 | 合乎 354 | 合乎情理 355 | 合乎情理的 356 | 合乎卫生 357 | 合乎卫生的 358 | 合乎逻辑 359 | 合乎逻辑的 360 | 合作 361 | 合作的 362 | 合宜 363 | 合法 364 | 合法性 365 | 合法的 366 | 合格 367 | 合理 368 | 合理的 369 | 合意 370 | 合意的 371 | 合群 372 | 合适 373 | 合适地 374 | 合适的 375 | 吃苦 376 | 吃苦耐劳 377 | 在乎 378 | 在意 379 | 在赞成方面 380 | 多才多艺 381 | 多才多艺的 382 | 多产 383 | 多产的 384 | 多智 385 | 多智的 386 | 多趣 387 | 多趣的 388 | 好天气 389 | 好吃 390 | 好吃的 391 | 好事 392 | 好奇 393 | 好奇的 394 | 好客 395 | 好客的 396 | 好笑 397 | 好笑的 398 | 好追根究底 399 | 好追根究底的 400 | 好意 401 | 好意地 402 | 好运 403 | 好运的 404 | 好办法 405 | 如画 406 | 如画的 407 | 守法 408 | 守法的 409 | 安全 410 | 安全的 411 | 安定 412 | 安逸 413 | 安逸的 414 | 安详 415 | 安详的 416 | 安宁 417 | 安宁的 418 | 安慰 419 | 安适 420 | 安适的 421 | 安静 422 | 安静的 423 | 安稳 424 | 成功 425 | 成功的 426 | 成长 427 | 成为 428 | 成就 429 | 成熟 430 | 成熟的 431 | 收获 432 | 有力 433 | 有力的 434 | 有才气 435 | 有才气的 436 | 有才能 437 | 有才能的 438 | 有才智 439 | 有才智的 440 | 有才干 441 | 有才干的 442 | 有才干的人 443 | 有分寸 444 | 有分寸的 445 | 有天才的 446 | 有天资 447 | 有天资的 448 | 有天赋 449 | 有天赋的 450 | 有功绩 451 | 有功绩的 452 | 有用 453 | 有用的 454 | 有目的 455 | 有目的的 456 | 有光泽 457 | 有光泽的 458 | 有先见之明 459 | 有先见之明的 460 | 有同情心 461 | 有同情心的 462 | 有名 463 | 有名的 464 | 有判断力 465 | 有判断力的 466 | 有利 467 | 有利的 468 | 有利益 469 | 有利益的 470 | 有利条件 471 | 有利润 472 | 有利润的 473 | 有助 474 | 有助的 475 | 有助益 476 | 有助益的东西 477 | 有吸引力 478 | 有吸引力的 479 | 有含义 480 | 有含义的 481 | 有把握 482 | 有把握地 483 | 有把握的 484 | 有决心 485 | 有决心的 486 | 有知觉 487 | 有知觉的 488 | 有信心 489 | 有信心的 490 | 有前途 491 | 有品格 492 | 有品格的 493 | 有威严 494 | 有威严的 495 | 有思想 496 | 有思想性 497 | 有思想性的 498 | 有指望 499 | 有耐性 500 | 有耐性的 501 | 有效 502 | 有效性 503 | 有效的 504 | 有效率 505 | 有效率的 506 | 有特色 507 | 有特色的 508 | 有益 509 | 有益於健康 510 | 有益於健康的 511 | 有益的 512 | 有益健康 513 | 有益健康的 514 | 有秩序 515 | 有能力 516 | 有能力的 517 | 有财产 518 | 有财产的 519 | 有教育意义 520 | 有教育意义的 521 | 有理 522 | 有规矩 523 | 有规范 524 | 有规范的 525 | 有责任 526 | 有责任心 527 | 有责任心的 528 | 有责任的 529 | 有创造力 530 | 有创造力的 531 | 有智慧 532 | 有智慧的 533 | 有贵族气派 534 | 有贵族气派的 535 | 有进取精神 536 | 有进取精神的 537 | 有雅量 538 | 有雅量的 539 | 有势力 540 | 有势力的 541 | 有干劲 542 | 有干劲的 543 | 有意义 544 | 有意义的 545 | 有感觉 546 | 有感觉的 547 | 有爱心 548 | 有爱心的 549 | 有爱国心 550 | 有爱国心的 551 | 有节制 552 | 有节制的 553 | 有义务的 554 | 有道德 555 | 有道德的 556 | 有精神 557 | 有说服力 558 | 有说服力的 559 | 有远见 560 | 有远见的 561 | 有价值 562 | 有价值的 563 | 有价值的人 564 | 有乐趣 565 | 有乐趣的 566 | 有确实根据 567 | 有确实根据的 568 | 有趣 569 | 有趣的 570 | 有魅力 571 | 有魅力的 572 | 有钱 573 | 有钱的 574 | 有头脑 575 | 有头脑的 576 | 有帮手 577 | 有帮手的 578 | 有帮助 579 | 有帮助的 580 | 有帮助的人 581 | 有胆量 582 | 有胆量的 583 | 有礼 584 | 有礼貌 585 | 有礼貌的 586 | 有礼貌的行为 587 | 有魔力 588 | 有魔力的 589 | 有权 590 | 有权力 591 | 有权力的 592 | 有权益 593 | 有权益的 594 | 有权能 595 | 有权能的 596 | 老实 597 | 老实的 598 | 老练 599 | 老练的 600 | 考虑 601 | 自主 602 | 自由 603 | 自由的 604 | 自白 605 | 自立 606 | 自在 607 | 自信 608 | 自信地 609 | 自动 610 | 自动的 611 | 自尊 612 | 自然 613 | 自然的 614 | 自豪 615 | 自豪的 616 | 自愿 617 | 至上 618 | 至上的 619 | 至高 620 | 至高的 621 | 至善 622 | 至善的 623 | 行善 624 | 行善的 625 | 似天使 626 | 似天使的 627 | 似乎有理 628 | 作为奖品 629 | 作为奖品的 630 | 伶俐 631 | 伶俐的 632 | 克制 633 | 免除 634 | 免除的 635 | 免费 636 | 免费的 637 | 冷静 638 | 冷静的 639 | 别致 640 | 别致的 641 | 判断力 642 | 利益 643 | 利润 644 | 助手 645 | 助长 646 | 助益 647 | 努力 648 | 努力的 649 | 努力解决 650 | 吸引 651 | 吸引人 652 | 吸引人的 653 | 吸引人的事物 654 | 吸引力 655 | 均匀 656 | 均等 657 | 均衡 658 | 均衡的 659 | 壮丽 660 | 壮丽的 661 | 壮丽雄伟 662 | 壮丽雄伟的 663 | 壮观 664 | 壮观的 665 | 妙计 666 | 妥当 667 | 孝行 668 | 孝顺 669 | 孝顺的 670 | 完成 671 | 完成的 672 | 完美 673 | 完美的 674 | 完整 675 | 完整的 676 | 宏伟 677 | 宏伟的 678 | 希望 679 | 形影不离 680 | 形影不离的朋友 681 | 忘不了 682 | 忘不了的 683 | 志哀 684 | 志气 685 | 忍耐 686 | 忍耐力 687 | 忍耐的 688 | 快活 689 | 快活的 690 | 快乐 691 | 快乐主义 692 | 快乐主义的 693 | 快乐主义者 694 | 快乐主义者的 695 | 快乐地 696 | 快乐的 697 | 快乐论 698 | 快乐论的 699 | 戒除 700 | 技巧 701 | 把握 702 | 批准 703 | 抒情 704 | 抒情的 705 | 改良 706 | 改革 707 | 改善 708 | 改进 709 | 攻读 710 | 沈着 711 | 沈着的 712 | 决心 713 | 决定 714 | 决定性 715 | 决定性的 716 | 决断 717 | 决断力 718 | 冲劲 719 | 牢固 720 | 牢固的 721 | 牢靠 722 | 狂喜 723 | 狂喜的 724 | 狂热 725 | 狂热的 726 | 狂热赞扬 727 | 狂欢 728 | 狂欢的 729 | 罕见 730 | 罕见的 731 | 良心 732 | 良心的 733 | 良好 734 | 良好的 735 | 良性 736 | 良性的 737 | 足够 738 | 足够的 739 | 足智多谋 740 | 迅速 741 | 迅速地 742 | 迅速的 743 | 防止 744 | 防水 745 | 防水的 746 | 防备 747 | 事迹 748 | 享有 749 | 享受 750 | 使人信服 751 | 使人信服的 752 | 使人首肯 753 | 使人首肯的 754 | 使人敬畏 755 | 使人敬畏的 756 | 使平坦 757 | 使平静 758 | 使平静下来 759 | 使用方便 760 | 使用方便的 761 | 使安静 762 | 使免除 763 | 使固定 764 | 使相等 765 | 使凉快 766 | 使陶醉 767 | 使精细 768 | 使缓和 769 | 使醉心 770 | 供娱乐用 771 | 供娱乐用的 772 | 典雅 773 | 典雅的 774 | 刻苦 775 | 刻苦的 776 | 协力 777 | 协力的 778 | 协作 779 | 协助 780 | 协调 781 | 卓越 782 | 卓越的 783 | 取悦 784 | 受大众欢迎 785 | 受锺爱 786 | 受锺爱的 787 | 受欢迎 788 | 受欢迎的 789 | 和平 790 | 和平的 791 | 和睦 792 | 和睦的 793 | 和谐 794 | 和谐的 795 | 和蔼 796 | 和蔼可亲 797 | 和蔼可亲的 798 | 和蔼的 799 | 周到 800 | 周到的 801 | 固守 802 | 固守的 803 | 固定 804 | 固定的 805 | 坦白 806 | 坦白的 807 | 坦直 808 | 坦直的 809 | 坦率 810 | 坦率的 811 | 奇妙 812 | 奇妙的 813 | 奇异 814 | 奇迹 815 | 奇迹的 816 | 宜人 817 | 宜人的 818 | 尚好 819 | 幸运 820 | 幸运地 821 | 幸运的 822 | 幸福 823 | 幸福的 824 | 征服 825 | 忠心 826 | 忠贞 827 | 忠贞的 828 | 忠诚 829 | 忠诚的 830 | 忠诚的行为 831 | 忠实 832 | 忠实的 833 | 承认 834 | 承诺 835 | 招待 836 | 招待周到 837 | 招待周到的 838 | 放下武器 839 | 放心 840 | 放心的 841 | 易控制 842 | 易控制的 843 | 易理解 844 | 易理解的 845 | 易管理 846 | 易管理的 847 | 易办 848 | 易办的 849 | 易懂 850 | 昌盛 851 | 昌盛的 852 | 明了 853 | 明白 854 | 明白的 855 | 明亮 856 | 明亮的 857 | 明亮照耀 858 | 明亮照耀的 859 | 明理 860 | 明理的 861 | 明晰 862 | 明晰的 863 | 明智 864 | 明智的 865 | 明智的行为 866 | 明确 867 | 明了 868 | 明了的 869 | 明显 870 | 明显的 871 | 服从 872 | 服从的 873 | 欣喜 874 | 欣然 875 | 欣然地 876 | 欣赏 877 | 注目 878 | 注重实际 879 | 注重实际的 880 | 注意 881 | 注意的 882 | 法定 883 | 法定的 884 | 法律 885 | 法律的 886 | 治疗 887 | 物廉价美 888 | 物廉价美的 889 | 的确 890 | 的确地 891 | 直言不讳 892 | 直言不讳的 893 | 直率 894 | 直率的 895 | 直截了当 896 | 直觉 897 | 直觉的 898 | 知足 899 | 知性 900 | 知性的 901 | 知恩 902 | 知罪 903 | 知道 904 | 知觉 905 | 肥沃 906 | 肥沃的 907 | 肯定 908 | 肯定的 909 | 肯定词 910 | 肯定语 911 | 肯顺从 912 | 肯顺从的 913 | 芳香 914 | 芳香的 915 | 芬芳 916 | 芬芳的 917 | 表示赞成 918 | 表示赞成的 919 | 表现突出 920 | 表现突出的 921 | 表扬 922 | 长处 923 | 非凡 924 | 非凡的 925 | 非常大方 926 | 非常大方的 927 | 非常合适 928 | 非常合适的 929 | 信心 930 | 信用 931 | 信任 932 | 信服 933 | 信实 934 | 信赖 935 | 便利 936 | 便利的 937 | 便宜 938 | 侠义 939 | 侠义的 940 | 保密 941 | 保证 942 | 保释 943 | 保护 944 | 促成 945 | 促成的 946 | 促进 947 | 俘获 948 | 冠军 949 | 冠军的 950 | 前进 951 | 勇气 952 | 勇猛 953 | 勇敢 954 | 勇敢的 955 | 勇敢的行为 956 | 勇敢的事迹 957 | 厚道 958 | 厚道的 959 | 品行 960 | 品行端正 961 | 品行端正的 962 | 品味 963 | 品性端正 964 | 品性端正的 965 | 威严 966 | 威严的 967 | 客气 968 | 客气的 969 | 幽默 970 | 幽默感 971 | 建设 972 | 建设性 973 | 建设性的 974 | 很多 975 | 很多的 976 | 很好 977 | 很好地 978 | 很好的 979 | 很棒 980 | 很棒的 981 | 待人如友 982 | 思考 983 | 思想性 984 | 恰好 985 | 恰好的 986 | 恰当 987 | 恰当地 988 | 恰当的 989 | 恒久 990 | 恒久不变 991 | 恒心 992 | 持久 993 | 持久的 994 | 指望 995 | 施舍 996 | 施舍慷慨 997 | 施舍慷慨的 998 | 柔和 999 | 柔和的 1000 | 柔软 1001 | 柔软的 1002 | 洋洋 1003 | 洋溢 1004 | 洋溢着幸福 1005 | 洋溢着幸福的 1006 | 流行 1007 | 流行的 1008 | 流利 1009 | 流利的 1010 | 流畅 1011 | 流畅的 1012 | 活着 1013 | 活着的 1014 | 活泼 1015 | 活泼地 1016 | 活泼的 1017 | 为荣 1018 | 为怀 1019 | 珍贵 1020 | 珍贵的 1021 | 珍爱 1022 | 珍爱的 1023 | 相宜 1024 | 相信 1025 | 相容 1026 | 相等 1027 | 相称 1028 | 相称的 1029 | 盼望 1030 | 突出 1031 | 红润 1032 | 红润的 1033 | 纪念 1034 | 约定 1035 | 美人 1036 | 美化 1037 | 美好 1038 | 美好的 1039 | 美妙 1040 | 美妙的 1041 | 美味 1042 | 美味的 1043 | 美的事物 1044 | 美的音乐 1045 | 美丽 1046 | 美丽的 1047 | 耐用 1048 | 耐用的 1049 | 耐性 1050 | 耐劳 1051 | 致富 1052 | 致意 1053 | 苦思 1054 | 苦修 1055 | 茂盛 1056 | 茂盛的 1057 | 英明 1058 | 英明的 1059 | 英俊 1060 | 英俊的 1061 | 英勇 1062 | 英勇的 1063 | 英雄 1064 | 英雄式 1065 | 英雄式的 1066 | 茁壮 1067 | 茁壮成长 1068 | 茁壮的 1069 | 要紧 1070 | 贞洁 1071 | 贞洁的 1072 | 负有 1073 | 负有义务 1074 | 负责 1075 | 负责的 1076 | 重大 1077 | 重大的 1078 | 重要 1079 | 重要性 1080 | 重要的 1081 | 重要的地位 1082 | 重视 1083 | 革命 1084 | 革新 1085 | 革新的 1086 | 音乐 1087 | 风度 1088 | 飞黄腾达 1089 | 飞黄腾达的 1090 | 首位 1091 | 首位的 1092 | 首肯 1093 | 香的 1094 | 值得 1095 | 值得注意 1096 | 值得注意地 1097 | 值得注意的 1098 | 值得的 1099 | 值得信赖 1100 | 值得信赖的 1101 | 值得纪念 1102 | 值得纪念的 1103 | 值得崇拜 1104 | 值得崇拜的 1105 | 值得接受 1106 | 值得接受的 1107 | 值得尊重 1108 | 值得尊重的 1109 | 值得尊敬 1110 | 值得尊敬的 1111 | 值得称赞 1112 | 值得称赞的 1113 | 值得拥有 1114 | 值得拥有的 1115 | 值得向往 1116 | 值得向往的 1117 | 值得赞美 1118 | 值得赞美的 1119 | 值得赞扬 1120 | 值得赞扬的 1121 | 值钱 1122 | 值钱的 1123 | 修理 1124 | 伦理 1125 | 伦理的 1126 | 刚毅 1127 | 刚毅的 1128 | 哲人 1129 | 娱乐 1130 | 容光 1131 | 容光焕发 1132 | 容光焕发的 1133 | 容忍 1134 | 容忍的 1135 | 容易 1136 | 容易的 1137 | 容易亲近 1138 | 容易亲近的 1139 | 恭喜 1140 | 恭敬 1141 | 恭敬的 1142 | 恭维 1143 | 恩人 1144 | 恩惠 1145 | 悔改 1146 | 悔悟 1147 | 悦耳 1148 | 悦耳的 1149 | 捐赠 1150 | 捐献 1151 | 效能 1152 | 效率 1153 | 时髦 1154 | 时髦的 1155 | 时机 1156 | 时机成熟 1157 | 时机成熟的 1158 | 时机适宜 1159 | 时机适宜的 1160 | 根除 1161 | 殷勤 1162 | 殷勤的 1163 | 气派 1164 | 浪漫 1165 | 浪漫的 1166 | 消退 1167 | 消除 1168 | 消散 1169 | 消遣 1170 | 特大 1171 | 特大的 1172 | 特色 1173 | 特别 1174 | 特别的 1175 | 特级 1176 | 特级的 1177 | 特许 1178 | 留心 1179 | 留心的 1180 | 留神 1181 | 留神的 1182 | 留情 1183 | 留意 1184 | 留意的 1185 | 疼爱 1186 | 疼爱地 1187 | 真正 1188 | 真正的 1189 | 真诚 1190 | 真诚的 1191 | 真实 1192 | 真实的 1193 | 真确 1194 | 真确的 1195 | 神志正常 1196 | 神志正常的 1197 | 神志清明 1198 | 神志清明的 1199 | 神气活现 1200 | 神气活现的 1201 | 神智健全 1202 | 神童 1203 | 神圣 1204 | 神圣的 1205 | 祝贺 1206 | 祝贺的 1207 | 秩序 1208 | 纯真 1209 | 纯净 1210 | 纯洁 1211 | 纯洁的 1212 | 能力 1213 | 能充分理解 1214 | 能充分理解的 1215 | 能生产 1216 | 能生产的 1217 | 能吃苦耐劳 1218 | 能吃苦耐劳的 1219 | 能干 1220 | 能干的 1221 | 能实行 1222 | 能实行的 1223 | 能懂 1224 | 能懂的 1225 | 虔信 1226 | 虔敬 1227 | 虔敬的 1228 | 虔诚 1229 | 虔诚的 1230 | 衷心 1231 | 衷心地 1232 | 衷心的 1233 | 讨人喜欢 1234 | 训练 1235 | 财产 1236 | 财富 1237 | 起作用 1238 | 迷人 1239 | 迷人之处 1240 | 迷人的 1241 | 迷人的美 1242 | 追根究底 1243 | 闪烁 1244 | 高尚 1245 | 高尚的 1246 | 高级 1247 | 高级的 1248 | 高处 1249 | 高贵 1250 | 高贵的 1251 | 高雅 1252 | 高兴 1253 | 高兴的 1254 | 斗志 1255 | 伟大 1256 | 健全 1257 | 健全的 1258 | 健壮 1259 | 健壮的 1260 | 健美 1261 | 健美的 1262 | 健康 1263 | 健康的 1264 | 偏爱 1265 | 务实 1266 | 参加 1267 | 唯实论 1268 | 唯实论的 1269 | 坚决 1270 | 坚决的 1271 | 坚固 1272 | 坚固的 1273 | 坚固耐用 1274 | 坚固耐用的 1275 | 坚定 1276 | 坚定不移 1277 | 坚定不移的 1278 | 坚定的 1279 | 坚持 1280 | 坚持不懈 1281 | 坚持的 1282 | 坚强 1283 | 坚强的 1284 | 坚硬无比 1285 | 坚硬无比的 1286 | 坚韧 1287 | 坚韧的 1288 | 坚毅 1289 | 堂皇 1290 | 堂皇的 1291 | 专门 1292 | 专门的 1293 | 专家 1294 | 专属 1295 | 专属的 1296 | 崇拜 1297 | 崇高 1298 | 崇敬 1299 | 带有灵感 1300 | 带有灵感的 1301 | 带来福气 1302 | 带来福气的 1303 | 强大 1304 | 强大的 1305 | 强壮 1306 | 强壮的 1307 | 强健 1308 | 强健的 1309 | 彬彬 1310 | 彬彬有礼 1311 | 彬彬有礼的 1312 | 得人心 1313 | 得力 1314 | 得到 1315 | 得要领 1316 | 得意 1317 | 得意扬扬 1318 | 得奖 1319 | 得奖的 1320 | 得体 1321 | 得体的 1322 | 从容 1323 | 从容不迫 1324 | 从容不迫的 1325 | 情愿 1326 | 接受 1327 | 接济 1328 | 推进 1329 | 推荐 1330 | 教养 1331 | 启发 1332 | 启发想像力 1333 | 启发想像力的 1334 | 敏悟 1335 | 敏悟的 1336 | 敏捷 1337 | 敏捷地 1338 | 敏捷的 1339 | 敏感 1340 | 敏感的 1341 | 敏锐 1342 | 敏锐的 1343 | 敏锐的感觉力 1344 | 毫不 1345 | 毫不含糊 1346 | 毫不含糊的 1347 | 毫无 1348 | 毫无隐讳交谈 1349 | 毫无隐讳交谈的 1350 | 凉快 1351 | 凉快的 1352 | 凉爽 1353 | 凉爽的空气 1354 | 清白 1355 | 清白的 1356 | 清秀 1357 | 清秀的 1358 | 清明 1359 | 清除 1360 | 清理 1361 | 清晰 1362 | 清楚 1363 | 清楚地 1364 | 清楚易懂 1365 | 清楚易懂的 1366 | 清楚的 1367 | 清澈 1368 | 清澈的 1369 | 清洁 1370 | 清洁的 1371 | 淘气 1372 | 深切 1373 | 深切注意 1374 | 深切注意的 1375 | 深刻 1376 | 深刻的 1377 | 深思 1378 | 深思的 1379 | 深情 1380 | 深虑 1381 | 深谋远虑 1382 | 率直 1383 | 率直地 1384 | 率直的 1385 | 理性 1386 | 理性的 1387 | 理想 1388 | 理想的 1389 | 理会 1390 | 理解 1391 | 甜蜜 1392 | 产量多 1393 | 产量多的 1394 | 盛年 1395 | 第一流 1396 | 第一流的 1397 | 符合 1398 | 符合的 1399 | 符合要求 1400 | 符合要求的 1401 | 细心 1402 | 细心的 1403 | 细致 1404 | 细致优雅 1405 | 细致优雅的 1406 | 细腻 1407 | 细腻的 1408 | 羞怯 1409 | 羞怯的 1410 | 习惯 1411 | 庄重 1412 | 庄严 1413 | 庄严的 1414 | 被喜爱 1415 | 被喜爱的 1416 | 规矩 1417 | 规范 1418 | 许可 1419 | 责任心 1420 | 责任重大 1421 | 责任重大的 1422 | 通用 1423 | 通用的 1424 | 通知 1425 | 通俗 1426 | 通俗的 1427 | 通过 1428 | 连根拔起 1429 | 连贯 1430 | 连贯的 1431 | 造诣 1432 | 透明 1433 | 透明的 1434 | 陶醉 1435 | 雀跃 1436 | 杰出 1437 | 杰出人物 1438 | 杰出的 1439 | 最上 1440 | 最上的 1441 | 最好 1442 | 最好地 1443 | 最有效地 1444 | 最佳 1445 | 最佳的 1446 | 最重要 1447 | 最重要的 1448 | 最高 1449 | 最高的 1450 | 最理想 1451 | 最理想的 1452 | 最适当地 1453 | 最优秀 1454 | 最优秀的 1455 | 凯旋 1456 | 凯旋的 1457 | 创立 1458 | 创立者 1459 | 创造 1460 | 创造力 1461 | 创造性 1462 | 创造性的 1463 | 创造的 1464 | 创新 1465 | 创新的 1466 | 胜任 1467 | 胜任的 1468 | 胜利 1469 | 胜利的 1470 | 胜过 1471 | 博爱 1472 | 博爱的 1473 | 博爱者 1474 | 喝彩 1475 | 喜不自禁 1476 | 喜不自禁的 1477 | 喜悦 1478 | 喜气 1479 | 喜气洋洋 1480 | 喜气洋洋的 1481 | 喜爱 1482 | 喜剧 1483 | 喜剧的 1484 | 喜庆 1485 | 喜庆的 1486 | 喜欢 1487 | 喜欢的 1488 | 报答 1489 | 报答的 1490 | 奠基 1491 | 奠基者 1492 | 富有 1493 | 富有的 1494 | 富有魅力 1495 | 富有魅力的 1496 | 富足 1497 | 富於 1498 | 富於同情心 1499 | 富於同情心的 1500 | 富於的 1501 | 富於机智 1502 | 富於机智的 1503 | 富幽默感 1504 | 富幽默感的 1505 | 富裕 1506 | 富裕的 1507 | 富丽 1508 | 富丽的 1509 | 富丽堂皇 1510 | 富丽堂皇的 1511 | 富饶 1512 | 富饶的 1513 | 寓意 1514 | 尊重 1515 | 尊重人 1516 | 尊重人的 1517 | 尊敬 1518 | 尊敬人 1519 | 尊敬人的 1520 | 尊敬的 1521 | 尊严 1522 | 惠顾 1523 | 惬意 1524 | 惬意的 1525 | 愉快 1526 | 愉快地 1527 | 愉快地说 1528 | 愉快的 1529 | 掌握 1530 | 提升 1531 | 提高 1532 | 扬扬 1533 | 晴朗 1534 | 晴朗的 1535 | 智力 1536 | 智力的 1537 | 智巧 1538 | 智慧 1539 | 期待 1540 | 钦佩 1541 | 减轻 1542 | 渴望 1543 | 渴望的 1544 | 渴望获得 1545 | 滋养 1546 | 滋养的 1547 | 无比 1548 | 无比的 1549 | 无可指责 1550 | 无可指责的 1551 | 无可挑剔 1552 | 无可挑剔的 1553 | 无可责难 1554 | 无可责难的 1555 | 无可置辩 1556 | 无可置辩的 1557 | 无污点 1558 | 无污点的 1559 | 无刺激性 1560 | 无刺激性的 1561 | 无畏 1562 | 无畏的 1563 | 无害处 1564 | 无害处的 1565 | 无缺点 1566 | 无缺点的 1567 | 无庸 1568 | 无庸置疑 1569 | 无庸置疑地 1570 | 无异议 1571 | 无异议的 1572 | 无恶意 1573 | 无恶意的 1574 | 无裂缝 1575 | 无裂缝的 1576 | 无瑕 1577 | 无瑕的 1578 | 无瑕疵 1579 | 无瑕疵的 1580 | 无罪 1581 | 无罪的 1582 | 无过失 1583 | 无过失的 1584 | 无疑 1585 | 无疑的 1586 | 无疑问 1587 | 无疑问的 1588 | 无误 1589 | 无误地 1590 | 无价 1591 | 无价的 1592 | 无忧无虑 1593 | 无忧无虑的 1594 | 无欲 1595 | 无欲的 1596 | 无敌 1597 | 无敌的 1598 | 无懈可击 1599 | 无懈可击的 1600 | 无边无际 1601 | 无髒污 1602 | 无髒污的 1603 | 痛快 1604 | 痛快地 1605 | 发育 1606 | 发展 1607 | 发财 1608 | 发财致富 1609 | 发达 1610 | 发觉 1611 | 稍息 1612 | 稀少 1613 | 稀少的 1614 | 稀罕 1615 | 稀罕的 1616 | 稀奇 1617 | 稀奇的 1618 | 答应 1619 | 绝妙 1620 | 绝妙的 1621 | 绝无 1622 | 绝无错误 1623 | 绝无错误的 1624 | 绝对可靠 1625 | 绝对可靠的 1626 | 给予 1627 | 善心 1628 | 善行 1629 | 善行的 1630 | 善良 1631 | 善良的 1632 | 善於 1633 | 善於经营 1634 | 善於经营的 1635 | 善理 1636 | 善理家 1637 | 善理家的 1638 | 善意 1639 | 善意的 1640 | 善说服 1641 | 善说服的 1642 | 善举 1643 | 善辩 1644 | 舒服 1645 | 舒服的 1646 | 舒畅 1647 | 舒适 1648 | 舒适的 1649 | 华丽 1650 | 华丽的 1651 | 着名 1652 | 着名的 1653 | 着迷 1654 | 着迷的 1655 | 贵重 1656 | 贵重的 1657 | 贵族 1658 | 贵族的 1659 | 超凡 1660 | 超凡技术 1661 | 进行 1662 | 进步 1663 | 进步的 1664 | 进取 1665 | 进取心 1666 | 开化 1667 | 开拓 1668 | 开放 1669 | 开放的 1670 | 开采 1671 | 开发 1672 | 间歇 1673 | 雅致 1674 | 雅致的 1675 | 雅量 1676 | 雅观 1677 | 雄伟 1678 | 雄辩 1679 | 雄辩的 1680 | 集资 1681 | 顺利 1682 | 顺利的 1683 | 顺从 1684 | 顺从的 1685 | 顺当 1686 | 传奇性 1687 | 传奇性的 1688 | 勤勉 1689 | 勤勉的 1690 | 勤奋 1691 | 勤奋的 1692 | 嗜好 1693 | 圆满 1694 | 圆满的 1695 | 干劲 1696 | 微妙 1697 | 微妙的 1698 | 微微 1699 | 微微的 1700 | 意味深长 1701 | 意味深长的 1702 | 慈祥 1703 | 慈祥的 1704 | 慈悲 1705 | 慈悲心 1706 | 慈悲的 1707 | 慈悲为怀 1708 | 慈悲为怀的 1709 | 慈善 1710 | 慈善的 1711 | 感人 1712 | 感人的 1713 | 感到满意 1714 | 感动 1715 | 感激 1716 | 感激的 1717 | 感谢 1718 | 感谢的 1719 | 想像 1720 | 想像力 1721 | 想像的 1722 | 爱心 1723 | 爱打趣 1724 | 爱打趣的 1725 | 爱好 1726 | 爱好和平 1727 | 爱好和平的 1728 | 爱国 1729 | 爱国心 1730 | 爱国的 1731 | 爱情 1732 | 爱说话 1733 | 爱说话的 1734 | 爱慕 1735 | 慎重 1736 | 慎重的 1737 | 慎虑 1738 | 慎虑的 1739 | 敬畏 1740 | 敬重 1741 | 敬礼 1742 | 新奇 1743 | 新奇的 1744 | 新鲜 1745 | 新鲜的 1746 | 暖和 1747 | 暖和的 1748 | 极力夸奖 1749 | 极好 1750 | 极好的 1751 | 极好的人 1752 | 极度高兴 1753 | 极度高兴的 1754 | 极贵重 1755 | 极贵重的 1756 | 极乐 1757 | 极乐的 1758 | 温文 1759 | 温文儒雅 1760 | 温文儒雅的 1761 | 温和 1762 | 温和的 1763 | 温柔 1764 | 温柔的 1765 | 温柔亲切 1766 | 温柔亲切的 1767 | 温顺 1768 | 温顺的 1769 | 温暖 1770 | 温暖的 1771 | 准备 1772 | 准确 1773 | 准确的 1774 | 照耀 1775 | 焕发 1776 | 当心 1777 | 当然 1778 | 当然的 1779 | 万能 1780 | 万能的 1781 | 节制 1782 | 节制的 1783 | 节约 1784 | 节约的 1785 | 节俭 1786 | 节俭的 1787 | 经回火後具有的韧度 1788 | 经得起检验 1789 | 经得起检验的 1790 | 经营 1791 | 经验 1792 | 义务 1793 | 羡慕 1794 | 羡慕的 1795 | 圣人 1796 | 圣徒 1797 | 圣洁 1798 | 圣洁的 1799 | 补足 1800 | 补足的 1801 | 解决 1802 | 解除 1803 | 解除武装 1804 | 解开 1805 | 详细 1806 | 详尽 1807 | 详尽的 1808 | 诗意 1809 | 诗意的 1810 | 夸奖 1811 | 诙谐 1812 | 诙谐的 1813 | 诚实 1814 | 诚实的 1815 | 诚挚 1816 | 诚挚的 1817 | 诚恳 1818 | 诚恳的 1819 | 资助 1820 | 资源 1821 | 资源丰富 1822 | 资源丰富的 1823 | 较好 1824 | 较好者 1825 | 较优 1826 | 较优者 1827 | 道理 1828 | 道德 1829 | 道德的 1830 | 道德崇高 1831 | 道德崇高的人 1832 | 达成 1833 | 达到 1834 | 逼真 1835 | 逼真地 1836 | 逼真的 1837 | 颂扬 1838 | 鼓掌 1839 | 鼓掌欢呼表示通过 1840 | 鼓掌欢迎 1841 | 鼓舞 1842 | 鼓舞人心 1843 | 鼓舞人心的 1844 | 鼓舞人心的人 1845 | 鼓励 1846 | 嘉奖 1847 | 嘟嘟 1848 | 夥伴 1849 | 夥伴的 1850 | 宁静 1851 | 宁静的 1852 | 实用 1853 | 实用性 1854 | 实用性的 1855 | 实在 1856 | 实在的 1857 | 实在论 1858 | 实在论的 1859 | 实行 1860 | 实际 1861 | 实际可行 1862 | 实际可行的 1863 | 实际的 1864 | 崭新 1865 | 崭新的 1866 | 慷慨 1867 | 慷慨的 1868 | 慷慨的行为 1869 | 畅谈 1870 | 畅谈的 1871 | 荣耀 1872 | 荣誉 1873 | 荣誉的 1874 | 漂亮 1875 | 漂亮地 1876 | 漂亮的 1877 | 漂亮的东西 1878 | 满足 1879 | 满意 1880 | 满意地说 1881 | 满意的 1882 | 满怀 1883 | 满怀敬畏 1884 | 满怀敬畏的 1885 | 尽情 1886 | 尽情地 1887 | 睿智 1888 | 福利 1889 | 福气 1890 | 称心 1891 | 称赞 1892 | 端正 1893 | 端庄 1894 | 端庄的 1895 | 管理 1896 | 精力 1897 | 精力充沛 1898 | 精力充沛的 1899 | 精心 1900 | 精心的 1901 | 精巧 1902 | 精巧地 1903 | 精巧的 1904 | 精巧的设计 1905 | 精明 1906 | 精明的 1907 | 精美 1908 | 精美的 1909 | 精致 1910 | 精致的 1911 | 精密 1912 | 精密的 1913 | 精细 1914 | 精细的 1915 | 精通 1916 | 精通的 1917 | 精确 1918 | 精确性 1919 | 精确的 1920 | 精确度 1921 | 精致 1922 | 精致的 1923 | 精选 1924 | 精选的 1925 | 紧要 1926 | 认可 1927 | 认真 1928 | 认真的 1929 | 说明 1930 | 说服 1931 | 说服力 1932 | 诱人 1933 | 豪勇 1934 | 豪华 1935 | 豪华的 1936 | 辅助 1937 | 辅助的 1938 | 轻快 1939 | 轻快地 1940 | 轻快的 1941 | 轻松 1942 | 轻松的 1943 | 远见 1944 | 仪态高贵 1945 | 仪态高贵的 1946 | 增加 1947 | 增进 1948 | 增进友谊 1949 | 增进友谊的 1950 | 嬉戏 1951 | 嬉戏的 1952 | 娴雅 1953 | 娴雅的 1954 | 娇美 1955 | 宽大 1956 | 宽大的 1957 | 宽容 1958 | 宽容的 1959 | 宽恕 1960 | 宽恕的 1961 | 宽阔 1962 | 宽阔的 1963 | 审慎 1964 | 审慎的 1965 | 写实 1966 | 写实地 1967 | 写实的 1968 | 履行 1969 | 广阔 1970 | 德高望重 1971 | 德高望重的人 1972 | 庆祝 1973 | 庆祝的 1974 | 庆贺 1975 | 怜悯 1976 | 怜悯心 1977 | 怜悯的 1978 | 标致 1979 | 标致的 1980 | 标准的 1981 | 乐而忘忧 1982 | 乐而忘忧的 1983 | 乐事 1984 | 乐园 1985 | 乐意 1986 | 乐意地 1987 | 乐意的 1988 | 乐趣 1989 | 乐观 1990 | 乐观的 1991 | 毅然 1992 | 毅然的 1993 | 澄清 1994 | 洁净 1995 | 洁净的 1996 | 潜心 1997 | 潜心於 1998 | 熟悉 1999 | 熟悉的 2000 | 熟虑 2001 | 熟练 2002 | 熟练地 2003 | 熟练的 2004 | 热切 2005 | 热切地 2006 | 热心 2007 | 热心的 2008 | 热心肠 2009 | 热心肠的 2010 | 热忱 2011 | 热忱的 2012 | 热烈 2013 | 热烈的 2014 | 热衷 2015 | 热衷的 2016 | 热情 2017 | 热情的 2018 | 热望 2019 | 热望的 2020 | 热爱 2021 | 热诚 2022 | 热诚地 2023 | 奖品 2024 | 奖励 2025 | 确定 2026 | 确信 2027 | 确实 2028 | 确实的 2029 | 缔造 2030 | 缔造者 2031 | 缓和 2032 | 卫生 2033 | 卫生的 2034 | 褒扬 2035 | 谈笑 2036 | 请求 2037 | 调和 2038 | 调和的 2039 | 调停 2040 | 调剂 2041 | 贤人 2042 | 贤明 2043 | 贤明的 2044 | 趣味 2045 | 趣味相同 2046 | 趣味相同的 2047 | 踏实 2048 | 踏实的 2049 | 辉煌 2050 | 辉煌的 2051 | 辉耀 2052 | 适任 2053 | 适合 2054 | 适合的 2055 | 适宜 2056 | 适宜的 2057 | 适度 2058 | 适度的 2059 | 适时 2060 | 适意 2061 | 适意的 2062 | 适当 2063 | 适当地 2064 | 适当的 2065 | 适应 2066 | 适应的 2067 | 醇的 2068 | 醉人 2069 | 醉心 2070 | 魅力 2071 | 儒雅 2072 | 凝聚 2073 | 凝聚性 2074 | 凝聚性的 2075 | 勋绩 2076 | 噪声小 2077 | 噪声小的 2078 | 奋争 2079 | 奋斗 2080 | 奋发 2081 | 奋进 2082 | 学习 2083 | 学识 2084 | 战胜 2085 | 擅长 2086 | 拥有 2087 | 担负 2088 | 整齐 2089 | 整齐的 2090 | 整洁 2091 | 整洁的 2092 | 朴素 2093 | 朴素的 2094 | 机巧 2095 | 机敏 2096 | 机敏地 2097 | 机敏的 2098 | 机智 2099 | 机智的 2100 | 机会 2101 | 机警 2102 | 机灵 2103 | 机灵的 2104 | 激励 2105 | 独一无二 2106 | 独一无二的 2107 | 独立 2108 | 独立自主 2109 | 独立自主的 2110 | 独有 2111 | 独有的 2112 | 独特 2113 | 独特的 2114 | 独创 2115 | 独创性 2116 | 积极 2117 | 积极性 2118 | 积极的 2119 | 兴旺 2120 | 兴高采烈 2121 | 兴高采烈地 2122 | 兴高采烈的 2123 | 兴盛 2124 | 兴盛的 2125 | 兴趣 2126 | 兴奋 2127 | 兴奋的 2128 | 亲切 2129 | 亲切的 2130 | 亲近 2131 | 亲密 2132 | 亲密的 2133 | 亲爱 2134 | 亲爱的 2135 | 谐调 2136 | 谐调的 2137 | 诺言 2138 | 遵守 2139 | 遵从 2140 | 头脑清楚 2141 | 头脑清楚的 2142 | 优秀 2143 | 优秀的 2144 | 优良 2145 | 优良的 2146 | 优於 2147 | 优美 2148 | 优美地 2149 | 优美的 2150 | 优胜 2151 | 优胜的 2152 | 优雅 2153 | 优势 2154 | 优质 2155 | 优质的 2156 | 偿清 2157 | 帮手 2158 | 帮助 2159 | 帮助脱离困境 2160 | 懂事 2161 | 恳求 2162 | 营养 2163 | 营养的 2164 | 灿烂 2165 | 灿烂的 2166 | 获利 2167 | 获利的 2168 | 获得 2169 | 获得胜利 2170 | 获胜 2171 | 获胜的 2172 | 了解 2173 | 矫正 2174 | 缝补 2175 | 繁茂 2176 | 繁茂的 2177 | 繁盛 2178 | 繁盛的 2179 | 繁荣 2180 | 繁荣的 2181 | 声望 2182 | 声誉 2183 | 声誉好 2184 | 声誉好的 2185 | 聪明 2186 | 聪明的 2187 | 聪慧 2188 | 聪慧的 2189 | 聪颖 2190 | 聪颖的 2191 | 联合 2192 | 联合起来 2193 | 胆量 2194 | 举行 2195 | 举行凯旋式 2196 | 谦卑 2197 | 谦卑的 2198 | 谦恭 2199 | 谦恭有礼 2200 | 谦恭有礼的言辞 2201 | 谦恭的 2202 | 谦虚 2203 | 谦逊 2204 | 谦逊地 2205 | 谦逊的 2206 | 豁免 2207 | 赚钱 2208 | 避免 2209 | 锺爱 2210 | 锻炼 2211 | 鲜明 2212 | 鲜明的 2213 | 鲜豔 2214 | 鲜豔的 2215 | 向往 2216 | 猎获 2217 | 礼貌 2218 | 简易 2219 | 简明 2220 | 简朴 2221 | 简朴的 2222 | 织补 2223 | 职责 2224 | 谨慎 2225 | 谨慎的 2226 | 丰富 2227 | 丰富的 2228 | 丰满 2229 | 丰满的 2230 | 丰饶 2231 | 丰饶的 2232 | 医治 2233 | 宠爱 2234 | 宠爱的 2235 | 怀着 2236 | 怀着希望 2237 | 怀着希望的 2238 | 稳固 2239 | 稳定 2240 | 稳定性 2241 | 稳定的 2242 | 稳重 2243 | 稳重的 2244 | 稳健 2245 | 稳健的 2246 | 艺术 2247 | 赞同 2248 | 赞成 2249 | 赞成的 2250 | 赞成的一方 2251 | 赞成的论点 2252 | 赞成者 2253 | 赞成票 2254 | 赞助 2255 | 赞许 2256 | 赞许的 2257 | 关心 2258 | 难忘 2259 | 难忘的 2260 | 愿意 2261 | 严密 2262 | 严肃 2263 | 严肃性 2264 | 严肃的 2265 | 严谨 2266 | 严谨的 2267 | 宝贵 2268 | 宝贵的 2269 | 忏悔 2270 | 搀扶 2271 | 觉察 2272 | 警觉 2273 | 腾跃 2274 | 顾虑周到 2275 | 顾虑周到的 2276 | 魔力 2277 | 魔法 2278 | 权益 2279 | 欢天喜地 2280 | 欢呼 2281 | 欢欣 2282 | 欢迎 2283 | 欢迎的 2284 | 欢笑 2285 | 欢喜 2286 | 欢喜的 2287 | 欢庆 2288 | 欢庆胜利 2289 | 欢乐 2290 | 欢乐的 2291 | 欢闹 2292 | 欢闹的 2293 | 欢腾 2294 | 欢腾的 2295 | 欢跃 2296 | 听话 2297 | 鉴别力 2298 | 纤细 2299 | 纤细的 2300 | 变平静 2301 | 变好 2302 | 变得较好 2303 | 变清 2304 | 逻辑 2305 | 显着 2306 | 显着地 2307 | 显着的 2308 | 显赫 2309 | 显赫的 2310 | 惊奇 2311 | 惊羡 2312 | 体面 2313 | 体贴 2314 | 体贴的 2315 | 体谅 2316 | 体谅的 2317 | 让步 2318 | 灵巧 2319 | 灵巧地 2320 | 灵巧的 2321 | 灵活 2322 | 灵活的 2323 | 灵敏 2324 | 灵敏性 2325 | 灵敏的 2326 | 灵感 2327 | 赞美 2328 | 赞扬 2329 | 赞扬的 2330 | 赞叹 2331 | 赞叹不已 2332 | 赞赏 2333 | 羡慕 2334 | 一吐为快 2335 | 一见锺情 2336 | 一往情深 2337 | 一笑置之 2338 | 了不起 2339 | 人味 2340 | 大笑 2341 | 大喜 2342 | 大喜若狂 2343 | 大无畏 2344 | 才华 2345 | 才干 2346 | 不亦乐乎 2347 | 不忍 2348 | 不争 2349 | 不遗馀力 2350 | 中肯 2351 | 互利 2352 | 互助 2353 | 互助合作 2354 | 互惠 2355 | 互爱 2356 | 互敬 2357 | 仁善 2358 | 公平 2359 | 分工 2360 | 分工合作 2361 | 友善 2362 | 友爱 2363 | 天籁 2364 | 太好 2365 | 太好了 2366 | 引以为傲 2367 | 引以为荣 2368 | 引吭 2369 | 引吭高歌 2370 | 心心相印 2371 | 心平气和 2372 | 心甘情愿 2373 | 心如止水 2374 | 心安理得 2375 | 心有戚戚 2376 | 心有灵犀 2377 | 心花怒放 2378 | 心动 2379 | 心想事成 2380 | 心爱 2381 | 心诚则灵 2382 | 心满意足 2383 | 心仪 2384 | 心宽 2385 | 心宽体胖 2386 | 心旷神怡 2387 | 日久生情 2388 | 出人意表 2389 | 出乎意料 2390 | 出息 2391 | 功德 2392 | 可信 2393 | 可喜 2394 | 可爱 2395 | 可敬 2396 | 平心 2397 | 平心静气 2398 | 平平淡淡 2399 | 平平静静 2400 | 平衡 2401 | 平静 2402 | 平静下来 2403 | 打趣 2404 | 母爱 2405 | 甘美 2406 | 甘甜 2407 | 甘愿 2408 | 生日快乐 2409 | 生情 2410 | 由衷 2411 | 白金 2412 | 光彩 2413 | 光荣 2414 | 同情 2415 | 合作 2416 | 地位 2417 | 多幸褔 2418 | 多福 2419 | 好心情 2420 | 好事 2421 | 好意 2422 | 好感 2423 | 好运 2424 | 好学 2425 | 如意 2426 | 守信 2427 | 安心 2428 | 安可 2429 | 安好 2430 | 安安静静 2431 | 安安稳稳 2432 | 安身 2433 | 安身立命 2434 | 安和乐利 2435 | 安命 2436 | 安定 2437 | 安於 2438 | 安泰 2439 | 安眠 2440 | 安康 2441 | 安祥 2442 | 安然 2443 | 安逸 2444 | 安详 2445 | 安宁 2446 | 安睡 2447 | 安慰 2448 | 安乐 2449 | 安适 2450 | 安静 2451 | 有说有笑 2452 | 有趣 2453 | 有礼 2454 | 自由 2455 | 自由自在 2456 | 自立自强 2457 | 自在 2458 | 自如 2459 | 自助 2460 | 自告奋勇 2461 | 自信 2462 | 自信满满 2463 | 自勉 2464 | 自得其乐 2465 | 你侬我侬 2466 | 克服 2467 | 冷静 2468 | 含笑 2469 | 含情脉脉 2470 | 妙不可言 2471 | 完好 2472 | 完美 2473 | 完满 2474 | 希望 2475 | 希冀 2476 | 快快活活 2477 | 快快乐乐 2478 | 快活 2479 | 快乐 2480 | 把握 2481 | 抒情 2482 | 抒发 2483 | 抒解 2484 | 抒怀 2485 | 改善 2486 | 改头换面 2487 | 求新 2488 | 狂喜 2489 | 狂爱 2490 | 狂热 2491 | 狂欢 2492 | 肝胆相照 2493 | 良心 2494 | 良好 2495 | 良性 2496 | 良善 2497 | 言笑晏晏 2498 | 言归於好 2499 | 走好运 2500 | 嗬嗬 2501 | 奉献 2502 | 幸福 2503 | 果断 2504 | 欣喜 2505 | 欣赏 2506 | 知耻 2507 | 长进 2508 | 信心 2509 | 信用 2510 | 冠军 2511 | 勇气 2512 | 哈哈 2513 | 威严 2514 | 很爽 2515 | 施恩 2516 | 柔情 2517 | 柔顺 2518 | 洋房 2519 | 活力 2520 | 为快 2521 | 为傲 2522 | 为荣 2523 | 美感 2524 | 美梦 2525 | 音乐 2526 | 香甜 2527 | 原谅 2528 | 振奋 2529 | 殷勤 2530 | 真理 2531 | 真爱 2532 | 笑兮兮 2533 | 笑死 2534 | 笑死罗 2535 | 笑勒 2536 | 讨好 2537 | 讨喜 2538 | 财富 2539 | 高高兴兴 2540 | 高歌 2541 | 高兴 2542 | 健美 2543 | 偏袒 2544 | 偏爱 2545 | 崇拜 2546 | 崇敬 2547 | 得意 2548 | 悠哉 2549 | 情不自禁 2550 | 情投意合 2551 | 情深 2552 | 情愿 2553 | 教养 2554 | 望子成龙 2555 | 淳朴 2556 | 清高 2557 | 爽快 2558 | 爽朗 2559 | 率真 2560 | 理会 2561 | 甜甜蜜蜜 2562 | 甜滋滋 2563 | 甜蜜 2564 | 脱俗 2565 | 雀跃 2566 | 博爱 2567 | 喜出望外 2568 | 喜悦 2569 | 喜感 2570 | 喜爱 2571 | 喜欢 2572 | 报恩 2573 | 报喜 2574 | 富强 2575 | 尊重 2576 | 尊崇 2577 | 尊严 2578 | 悲怜 2579 | 悲悯 2580 | 愉快 2581 | 愉悦 2582 | 扬扬自得 2583 | 智慧 2584 | 期待 2585 | 期盼 2586 | 期望 2587 | 期许 2588 | 钦佩 2589 | 渴求 2590 | 渴盼 2591 | 渴望 2592 | 渴慕 2593 | 无畏 2594 | 超好 2595 | 开心 2596 | 开朗 2597 | 雅观 2598 | 顺眼 2599 | 黄金 2600 | 廉洁 2601 | 意气风发 2602 | 慈和 2603 | 慈祥 2604 | 慈悲 2605 | 感人 2606 | 感同身受 2607 | 感恩 2608 | 感动 2609 | 感激 2610 | 感谢 2611 | 爱人 2612 | 爱人如己 2613 | 爱上 2614 | 爱心 2615 | 爱慕 2616 | 爱怜 2617 | 爱抚 2618 | 敬佩 2619 | 敬爱 2620 | 新奇 2621 | 暖呼呼 2622 | 暖烘烘 2623 | 暖意 2624 | 会心 2625 | 会心一笑 2626 | 溺爱 2627 | 温文 2628 | 温情 2629 | 温暖 2630 | 温慰 2631 | 温蔼 2632 | 温馨 2633 | 焕发 2634 | 痴心 2635 | 痴狂 2636 | 痴情 2637 | 痴痴 2638 | 义不容辞 2639 | 义无反顾 2640 | 羡煞 2641 | 羡慕 2642 | 群情激愤 2643 | 群策群力 2644 | 解决 2645 | 夸奖 2646 | 夸耀 2647 | 诙谐 2648 | 诚心诚意 2649 | 诚挚 2650 | 诚恳 2651 | 道谢 2652 | 达观 2653 | 过关 2654 | 过瘾 2655 | 酬谢 2656 | 鼓舞 2657 | 梦想 2658 | 夺冠 2659 | 夺得 2660 | 夺魁 2661 | 嫣然一笑 2662 | 实现 2663 | 实现出来 2664 | 慷慨 2665 | 旗开得胜 2666 | 畅快 2667 | 荣幸 2668 | 荣誉 2669 | 漂亮 2670 | 漂漂亮亮 2671 | 满足 2672 | 满面春风 2673 | 满意 2674 | 满载而归 2675 | 渐入佳境 2676 | 疯狂 2677 | 尽如人意 2678 | 尽兴 2679 | 福祉 2680 | 福气 2681 | 称赞 2682 | 窝心 2683 | 精神百倍 2684 | 与有荣焉 2685 | 认同 2686 | 诱人 2687 | 轻轻松松 2688 | 轻松 2689 | 遥遥领先 2690 | 领先 2691 | 嘻嘻 2692 | 嘻嘻哈哈 2693 | 嘿嘿 2694 | 宽厚 2695 | 宽容 2696 | 宽恕 2697 | 废寝忘食 2698 | 庆幸 2699 | 庆祝 2700 | 慰问 2701 | 憧憬 2702 | 怜惜 2703 | 怜悯 2704 | 乐子 2705 | 乐不可支 2706 | 乐天 2707 | 乐乎 2708 | 乐在其中 2709 | 乐此不疲 2710 | 乐见 2711 | 乐嗬嗬 2712 | 乐於 2713 | 乐意 2714 | 乐趣 2715 | 乐观 2716 | 毅力 2717 | 热力 2718 | 热中 2719 | 热切 2720 | 热切於 2721 | 热心 2722 | 热忱 2723 | 热情 2724 | 热爱 2725 | 热诚 2726 | 热热闹闹 2727 | 热闹 2728 | 热恋 2729 | 奖励 2730 | 练成 2731 | 蓬勃 2732 | 卫生 2733 | 卫冕 2734 | 冲劲 2735 | 谅解 2736 | 谈笑风生 2737 | 谈恋爱 2738 | 赏心悦目 2739 | 赏识 2740 | 赏识到 2741 | 贤明 2742 | 贤淑 2743 | 贤慧 2744 | 适性 2745 | 适得 2746 | 适得其所 2747 | 醉人 2748 | 养活 2749 | 魅力 2750 | 器重 2751 | 奋力 2752 | 奋不顾身 2753 | 奋勇 2754 | 奋起 2755 | 奋斗 2756 | 奋发 2757 | 学以致用 2758 | 学好 2759 | 学成 2760 | 学成归国 2761 | 学有专精 2762 | 学习好 2763 | 学进 2764 | 学进去 2765 | 学会 2766 | 战胜 2767 | 战无不胜 2768 | 拥护 2769 | 担待 2770 | 激昂 2771 | 激赏 2772 | 激励 2773 | 激荡 2774 | 兴冲冲 2775 | 兴致勃勃 2776 | 兴高采烈 2777 | 亲和 2778 | 亲善 2779 | 亲爱 2780 | 恳挚 2781 | 聪明 2782 | 脸红 2783 | 谦卑 2784 | 谢谢 2785 | 豁然开朗 2786 | 锺情 2787 | 锺爱 2788 | 向往 2789 | 丰腴 2790 | 关心 2791 | 关爱 2792 | 关怀 2793 | 韵味 2794 | 愿意 2795 | 牺牲 2796 | 欢天喜地 2797 | 欢叫 2798 | 欢呼 2799 | 欢欣 2800 | 欢迎 2801 | 欢笑 2802 | 欢喜 2803 | 欢愉 2804 | 欢乐 2805 | 恋爱 2806 | 恋恋 2807 | 惊喜 2808 | 赞许 2809 | 赞赏 2810 | 煇煌 2811 | 2812 | -------------------------------------------------------------------------------- /dict/情感词汇本体/情感词汇本体.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/情感词汇本体/情感词汇本体.xlsx -------------------------------------------------------------------------------- /dict/情感词汇本体/情感词汇本体库说明文档.doc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/情感词汇本体/情感词汇本体库说明文档.doc -------------------------------------------------------------------------------- /dict/知网情感分析用词语集/主张词语(中文).txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/知网情感分析用词语集/主张词语(中文).txt -------------------------------------------------------------------------------- /dict/知网情感分析用词语集/主张词语(英文).txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/知网情感分析用词语集/主张词语(英文).txt -------------------------------------------------------------------------------- /dict/知网情感分析用词语集/正面情感词语(中文).txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/知网情感分析用词语集/正面情感词语(中文).txt -------------------------------------------------------------------------------- /dict/知网情感分析用词语集/正面情感词语(英文).txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/知网情感分析用词语集/正面情感词语(英文).txt -------------------------------------------------------------------------------- /dict/知网情感分析用词语集/正面评价词语(英文).txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/知网情感分析用词语集/正面评价词语(英文).txt -------------------------------------------------------------------------------- /dict/知网情感分析用词语集/程度级别词语(中文).txt: -------------------------------------------------------------------------------- 1 | 中文程度级别词语 219 2 | 3 | 1. “极其|extreme / 最|most” 69 4 | 百分之百 5 | 倍加 6 | 备至 7 | 不得了 8 | 不堪 9 | 不可开交 10 | 不亦乐乎 11 | 不折不扣 12 | 彻头彻尾 13 | 充分 14 | 到头 15 | 地地道道 16 | 非常 17 | 极 18 | 极度 19 | 极端 20 | 极其 21 | 极为 22 | 截然 23 | 尽 24 | 惊人地 25 | 绝 26 | 绝顶 27 | 绝对 28 | 绝对化 29 | 刻骨 30 | 酷 31 | 满 32 | 满贯 33 | 满心 34 | 莫大 35 | 奇 36 | 入骨 37 | 甚为 38 | 十二分 39 | 十分 40 | 十足 41 | 死 42 | 滔天 43 | 痛 44 | 透 45 | 完全 46 | 完完全全 47 | 万 48 | 万般 49 | 万分 50 | 万万 51 | 无比 52 | 无度 53 | 无可估量 54 | 无以复加 55 | 无以伦比 56 | 要命 57 | 要死 58 | 已极 59 | 已甚 60 | 异常 61 | 逾常 62 | 贼 63 | 之极 64 | 之至 65 | 至极 66 | 卓绝 67 | 最为 68 | 佼佼 69 | 郅 70 | 綦 71 | 齁 72 | 最 73 | 74 | 2. “很|very” 42 75 | 不过 76 | 不少 77 | 不胜 78 | 惨 79 | 沉 80 | 沉沉 81 | 出奇 82 | 大为 83 | 多 84 | 多多 85 | 多加 86 | 多么 87 | 分外 88 | 格外 89 | 够瞧的 90 | 够戗 91 | 好 92 | 好不 93 | 何等 94 | 很 95 | 很是 96 | 坏 97 | 可 98 | 老 99 | 老大 100 | 良 101 | 颇 102 | 颇为 103 | 甚 104 | 实在 105 | 太 106 | 太甚 107 | 特 108 | 特别 109 | 尤 110 | 尤其 111 | 尤为 112 | 尤以 113 | 远 114 | 着实 115 | 曷 116 | 碜 117 | 118 | 3. “较|more” 37 119 | 大不了 120 | 多 121 | 更 122 | 更加 123 | 更进一步 124 | 更为 125 | 还 126 | 还要 127 | 较 128 | 较比 129 | 较为 130 | 进一步 131 | 那般 132 | 那么 133 | 那样 134 | 强 135 | 如斯 136 | 益 137 | 益发 138 | 尤甚 139 | 逾 140 | 愈 141 | 愈 ... 愈 142 | 愈发 143 | 愈加 144 | 愈来愈 145 | 愈益 146 | 远远 147 | 越 ... 越 148 | 越发 149 | 越加 150 | 越来越 151 | 越是 152 | 这般 153 | 这样 154 | 足 155 | 足足 156 | 157 | 4. “稍|-ish” 29 158 | 点点滴滴 159 | 多多少少 160 | 怪 161 | 好生 162 | 还 163 | 或多或少 164 | 略 165 | 略加 166 | 略略 167 | 略微 168 | 略为 169 | 蛮 170 | 稍 171 | 稍稍 172 | 稍微 173 | 稍为 174 | 稍许 175 | 挺 176 | 未免 177 | 相当 178 | 些 179 | 些微 180 | 些小 181 | 一点 182 | 一点儿 183 | 一些 184 | 有点 185 | 有点儿 186 | 有些 187 | 188 | 5. “欠|insufficiently” 12 189 | 半点 190 | 不大 191 | 不丁点儿 192 | 不甚 193 | 不怎么 194 | 聊 195 | 没怎么 196 | 轻度 197 | 弱 198 | 丝毫 199 | 微 200 | 相对 201 | 202 | 6. “超|over” 30 203 | 不为过 204 | 超 205 | 超额 206 | 超外差 207 | 超微结构 208 | 超物质 209 | 出头 210 | 多 211 | 浮 212 | 过 213 | 过度 214 | 过分 215 | 过火 216 | 过劲 217 | 过了头 218 | 过猛 219 | 过热 220 | 过甚 221 | 过头 222 | 过于 223 | 过逾 224 | 何止 225 | 何啻 226 | 开外 227 | 苦 228 | 老 229 | 偏 230 | 强 231 | 溢 232 | 忒 233 | 234 | 235 | 236 | -------------------------------------------------------------------------------- /dict/知网情感分析用词语集/程度级别词语(英文).txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/知网情感分析用词语集/程度级别词语(英文).txt -------------------------------------------------------------------------------- /dict/知网情感分析用词语集/负面情感词语(中文).txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/知网情感分析用词语集/负面情感词语(中文).txt -------------------------------------------------------------------------------- /dict/知网情感分析用词语集/负面情感词语(英文).txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/知网情感分析用词语集/负面情感词语(英文).txt -------------------------------------------------------------------------------- /dict/知网情感分析用词语集/负面评价词语(中文).txt: -------------------------------------------------------------------------------- 1 | 中文负面评价词语 3116 2 | 3 | 僄 4 | 啰啰唆唆 5 | 啰啰嗦嗦 6 | 啰里啰唆 7 | 啰里啰嗦 8 | 啰唆 9 | 啰嗦 10 | 噲 11 | 奓着头发 12 | 婞 13 | 婞直 14 | 崒 15 | 弇陋 16 | 惛 17 | 惼 18 | 梼昧 19 | 獪 20 | 瘆 21 | 瘆得慌 22 | 哀鸿遍野 23 | 矮 24 | 碍难 25 | 碍眼 26 | 爱搭不理 27 | 爱理不理 28 | 暗 29 | 暗暗 30 | 暗沉沉 31 | 暗淡 32 | 暗地 33 | 暗地里 34 | 暗黑 35 | 暗里 36 | 暗昧 37 | 暗弱 38 | 暗无天日 39 | 暗下 40 | 暗中 41 | 暗自 42 | 暗朦 43 | 岸然 44 | 肮里肮脏 45 | 肮脏 46 | 昂贵 47 | 凹凸 48 | 凹凸不平 49 | 傲 50 | 傲岸 51 | 傲慢 52 | 八面玲珑 53 | 跋扈 54 | 霸道 55 | 霸气 56 | 白 57 | 白白 58 | 白痴般 59 | 白搭 60 | 白忙 61 | 白忙活儿 62 | 白衣苍狗 63 | 白云苍狗 64 | 百孔千疮 65 | 败坏 66 | 稗 67 | 板 68 | 板板六十四 69 | 板滞 70 | 半半拉拉 71 | 半路出家 72 | 半新不旧 73 | 半真半假 74 | 薄 75 | 薄情 76 | 薄弱 77 | 薄幸 78 | 保残守缺 79 | 保守 80 | 抱残守缺 81 | 暴 82 | 暴烈 83 | 暴虐 84 | 暴躁 85 | 暴戾 86 | 暴戾恣睢 87 | 爆炸性 88 | 悲惨 89 | 悲观 90 | 悲观地 91 | 悲剧 92 | 悲凉 93 | 卑 94 | 卑鄙 95 | 卑鄙无耻 96 | 卑贱 97 | 卑劣 98 | 卑陋 99 | 卑怯 100 | 卑俗 101 | 卑琐 102 | 卑微 103 | 卑污 104 | 卑下 105 | 卑猥 106 | 背地 107 | 背地里 108 | 背光 109 | 背后 110 | 背悔 111 | 背静 112 | 背靠背 113 | 背理 114 | 背令 115 | 背人 116 | 背时 117 | 背阴 118 | 被动 119 | 被动式 120 | 被动性 121 | 本本主义 122 | 笨 123 | 笨手笨脚 124 | 笨头笨脑 125 | 笨重 126 | 笨拙 127 | 比肩接踵 128 | 鄙 129 | 鄙贱 130 | 鄙吝 131 | 鄙陋 132 | 鄙俗 133 | 鄙俚 134 | 蔽塞 135 | 闭塞 136 | 必修 137 | 变化不定 138 | 变化多端 139 | 变化万千 140 | 变化无常 141 | 变化无穷 142 | 变幻不定 143 | 变幻莫测 144 | 变幻无常 145 | 变态 146 | 变相 147 | 表里不一 148 | 憋拗 149 | 别别扭扭 150 | 别扭 151 | 别有用心 152 | 冰冷 153 | 冰炭不相容 154 | 秉性剌戾 155 | 病病歪歪 156 | 病弱 157 | 病态 158 | 病歪歪 159 | 病殃殃 160 | 病恹恹 161 | 波谲云诡 162 | 驳杂 163 | 捕风捉影 164 | 不爱交际 165 | 不便 166 | 不辨菽麦 167 | 不才 168 | 不成材 169 | 不成功 170 | 不成话 171 | 不成器 172 | 不成熟 173 | 不成体统 174 | 不成样子 175 | 不打紧 176 | 不大重要 177 | 不当 178 | 不到黄河心不死 179 | 不道德 180 | 不得当 181 | 不得劲 182 | 不得了 183 | 不得体 184 | 不登大雅之堂 185 | 不等 186 | 不端 187 | 不对 188 | 不对茬儿 189 | 不对称 190 | 不对付 191 | 不对劲 192 | 不对头 193 | 不发达 194 | 不法 195 | 不方便 196 | 不分青红皂白 197 | 不分皂白 198 | 不负责任 199 | 不干不净 200 | 不更事 201 | 不公 202 | 不公正 203 | 不共戴天 204 | 不够格 205 | 不够完善 206 | 不够意思 207 | 不关痛痒 208 | 不管三七二十一 209 | 不管用 210 | 不光彩 211 | 不光明 212 | 不规则 213 | 不轨 214 | 不好吃 215 | 不好看 216 | 不好客 217 | 不好卖 218 | 不好使 219 | 不好听 220 | 不好用 221 | 不和 222 | 不和蔼 223 | 不和谐 224 | 不合法 225 | 不合格 226 | 不合理 227 | 不合逻辑 228 | 不合情理 229 | 不合时令 230 | 不合时宜 231 | 不合适 232 | 不合算 233 | 不合宜 234 | 不合语法 235 | 不划算 236 | 不济 237 | 不济事 238 | 不俭省 239 | 不健康 240 | 不洁 241 | 不谨慎 242 | 不近情理 243 | 不近人情 244 | 不尽 245 | 不尽如人意 246 | 不精确 247 | 不敬 248 | 不绝如缕 249 | 不均匀 250 | 不开化 251 | 不堪入耳 252 | 不堪入目 253 | 不堪设想 254 | 不堪一击 255 | 不堪造就 256 | 不科学 257 | 不可爱 258 | 不可补救 259 | 不可读 260 | 不可告人 261 | 不可更新 262 | 不可恢复 263 | 不可降解 264 | 不可接受 265 | 不可救药 266 | 不可理喻 267 | 不可逆转 268 | 不可容忍 269 | 不可收拾 270 | 不可挽回 271 | 不可行 272 | 不可一世 273 | 不可逾越 274 | 不客气 275 | 不宽容 276 | 不郎不秀 277 | 不冷不热 278 | 不理智 279 | 不礼貌 280 | 不利 281 | 不利于健康 282 | 不力 283 | 不良 284 | 不灵敏 285 | 不灵巧 286 | 不流行 287 | 不伦不类 288 | 不美观 289 | 不妙 290 | 不民主 291 | 不明不白 292 | 不明显 293 | 不明智 294 | 不名一文 295 | 不名誉 296 | 不能解救 297 | 不能容忍 298 | 不宁 299 | 不努力 300 | 不平 301 | 不平等 302 | 不平衡 303 | 不起眼 304 | 不起眼儿 305 | 不巧 306 | 不切实际 307 | 不清不白 308 | 不清不楚 309 | 不清楚 310 | 不清洁 311 | 不确切 312 | 不仁 313 | 不仁不义 314 | 不人道 315 | 不三不四 316 | 不善 317 | 不善交际 318 | 不善交谈 319 | 不甚重要 320 | 不慎 321 | 不胜 322 | 不是味儿 323 | 不是滋味儿 324 | 不适当 325 | 不适宜 326 | 不适应 327 | 不适于居住 328 | 不受欢迎 329 | 不熟练 330 | 不疼不痒 331 | 不体面 332 | 不痛不痒 333 | 不透明 334 | 不透气 335 | 不妥 336 | 不为人知 337 | 不卫生 338 | 不文明 339 | 不文雅 340 | 不稳定 341 | 不问青红皂白 342 | 不问三七二十一 343 | 不问是非情由 344 | 不显眼 345 | 不现实 346 | 不相适应 347 | 不祥 348 | 不详 349 | 不详尽 350 | 不像话 351 | 不消化 352 | 不孝 353 | 不肖 354 | 不协调 355 | 不兴 356 | 不行 357 | 不幸 358 | 不修边幅 359 | 不学无术 360 | 不逊 361 | 不雅 362 | 不雅观 363 | 不雅致 364 | 不要紧 365 | 不一致 366 | 不宜 367 | 不宜居住 368 | 不宜说出口 369 | 不易 370 | 不友好 371 | 不友善 372 | 不择手段 373 | 不真诚 374 | 不真实 375 | 不贞洁 376 | 不正常 377 | 不正当 378 | 不正派 379 | 不正直 380 | 不值得羡慕 381 | 不值一文 382 | 不中用 383 | 不重要 384 | 不周 385 | 不周到 386 | 不注意 387 | 不着边际 388 | 不着调 389 | 不足道 390 | 不足挂齿 391 | 不足轻重 392 | 不足取 393 | 不足为外人道 394 | 不足为训 395 | 不羁 396 | 不稂不莠 397 | 不虔诚 398 | 才疏学浅 399 | 财迷心窍 400 | 残 401 | 残败 402 | 残暴 403 | 残毒 404 | 残酷 405 | 残酷无情 406 | 残虐 407 | 残破 408 | 残破不全 409 | 残缺 410 | 残缺不全 411 | 残忍 412 | 残损 413 | 惨 414 | 惨不忍睹 415 | 惨淡 416 | 惨毒 417 | 惨绝人寰 418 | 惨苦 419 | 惨厉 420 | 惨烈 421 | 惨痛 422 | 惨无人道 423 | 苍白 424 | 苍白无力 425 | 苍凉 426 | 苍茫 427 | 操切 428 | 糙 429 | 草 430 | 草草 431 | 草荒 432 | 草率 433 | 草木皆兵 434 | 策略 435 | 策略性 436 | 差 437 | 差点儿 438 | 差劲 439 | 差可 440 | 豺狼成性 441 | 豺狼当道 442 | 缠手 443 | 颤颤巍巍 444 | 颤颤悠悠 445 | 颤巍巍 446 | 猖 447 | 猖狂 448 | 长长短短 449 | 长篇大论 450 | 长篇累牍 451 | 长线 452 | 超标 453 | 超常 454 | 超然 455 | 超重 456 | 朝不保夕 457 | 朝不谋夕 458 | 朝秦暮楚 459 | 朝三暮四 460 | 潮 461 | 吵吵闹闹 462 | 吵人 463 | 沉闷 464 | 沉痛 465 | 沉滞 466 | 陈 467 | 陈腐 468 | 陈旧 469 | 成事不足,败事有余 470 | 逞性 471 | 逞性子 472 | 吃不开 473 | 吃劲 474 | 吃力 475 | 吃重 476 | 痴 477 | 痴痴 478 | 痴呆 479 | 痴呆呆 480 | 痴傻 481 | 痴愚 482 | 迟钝 483 | 侈 484 | 侈靡 485 | 侈糜 486 | 赤地千里 487 | 赤裸裸淫秽 488 | 赤贫 489 | 充满危机 490 | 冲昏头脑 491 | 丑 492 | 丑恶 493 | 丑陋 494 | 臭 495 | 臭不可闻 496 | 臭哄哄 497 | 臭烘烘 498 | 臭名远扬 499 | 臭名昭彰 500 | 臭名昭著 501 | 臭气冲天 502 | 臭气熏天 503 | 臭味 504 | 初出茅庐 505 | 出手阔气 506 | 触目惊心 507 | 穿不出去 508 | 穿不得 509 | 串秧儿 510 | 疮痍满目 511 | 蠢 512 | 蠢笨 513 | 蠢头蠢脑 514 | 刺鼻 515 | 刺耳 516 | 刺眼 517 | 次 518 | 次等 519 | 从动 520 | 从心所欲 521 | 从严 522 | 从重 523 | 粗 524 | 粗暴 525 | 粗笨 526 | 粗鄙 527 | 粗糙 528 | 粗放 529 | 粗拉 530 | 粗里粗气 531 | 粗劣 532 | 粗陋 533 | 粗鲁 534 | 粗率 535 | 粗蛮 536 | 粗莽 537 | 粗浅 538 | 粗涩 539 | 粗手笨脚 540 | 粗疏 541 | 粗俗 542 | 粗线条 543 | 粗心 544 | 粗心大意 545 | 粗野 546 | 粗枝大叶 547 | 粗制滥造 548 | 粗重 549 | 粗拙 550 | 粗犷 551 | 促狭 552 | 脆弱 553 | 村气 554 | 村野 555 | 寸草不生 556 | 错 557 | 错乱 558 | 错误 559 | 错误百出 560 | 错杂 561 | 错综 562 | 错综复杂 563 | 大 564 | 大错而特错 565 | 大错特错 566 | 大大咧咧 567 | 大而笨拙 568 | 大而化之 569 | 大而无当 570 | 大海捞针 571 | 大面额 572 | 大谬不然 573 | 大手大脚 574 | 大肆 575 | 大摇大摆 576 | 大意 577 | 大咧咧 578 | 呆 579 | 呆板 580 | 呆笨 581 | 呆痴 582 | 呆呆 583 | 呆钝 584 | 呆气 585 | 呆傻 586 | 呆头呆脑 587 | 歹 588 | 歹毒 589 | 带有敌意 590 | 殆 591 | 怠惰 592 | 单 593 | 单薄 594 | 单调 595 | 单调枯燥 596 | 单弱 597 | 胆怯 598 | 胆小 599 | 胆小怕事 600 | 胆小如鼠 601 | 淡 602 | 淡薄 603 | 淡淡 604 | 淡而无味 605 | 淡漠 606 | 淡然 607 | 诞 608 | 荡 609 | 刀光剑影 610 | 蹈常袭故 611 | 倒胃口 612 | 道德败坏 613 | 道貌岸然 614 | 德行 615 | 德性 616 | 得寸进尺 617 | 得陇望蜀 618 | 得鱼忘筌 619 | 灯红酒绿 620 | 灯火阑珊 621 | 等而下之 622 | 等外 623 | 等因奉此 624 | 低 625 | 低卑 626 | 低标准 627 | 低层 628 | 低档 629 | 低等 630 | 低端 631 | 低级 632 | 低贱 633 | 低劣 634 | 低迷 635 | 低能 636 | 低人一等 637 | 低三下四 638 | 低声下气 639 | 低俗 640 | 低下 641 | 低效 642 | 低效能 643 | 低值 644 | 低智 645 | 低质 646 | 滴里嘟噜 647 | 敌对 648 | 地位低下 649 | 地下 650 | 地狱般 651 | 颠倒 652 | 颠连 653 | 颠三倒四 654 | 凋敝 655 | 刁 656 | 刁恶 657 | 刁悍 658 | 刁滑 659 | 刁赖 660 | 刁蛮 661 | 刁钻 662 | 刁钻古怪 663 | 吊儿郎当 664 | 调皮 665 | 鼎沸 666 | 丢魂 667 | 丢脸 668 | 丢三落四 669 | 东倒西歪 670 | 冬烘 671 | 动荡 672 | 动荡不安 673 | 动魄惊心 674 | 动作迟顿 675 | 毒 676 | 毒辣 677 | 独裁 678 | 独断 679 | 度量小 680 | 短浅 681 | 短视 682 | 钝 683 | 多变 684 | 多病 685 | 多事 686 | 多义 687 | 多余 688 | 惰 689 | 惰性 690 | 讹 691 | 恶 692 | 恶毒 693 | 恶贯满盈 694 | 恶狠狠 695 | 恶劣 696 | 恶煞煞 697 | 恶心 698 | 恶浊 699 | 饿殍遍野 700 | 耳生 701 | 二把刀 702 | 二手 703 | 二五眼 704 | 发狂 705 | 发腻 706 | 发育不全 707 | 乏 708 | 乏味 709 | 翻手为云,覆手为雨 710 | 翻云覆雨 711 | 繁复 712 | 繁乱 713 | 繁难 714 | 繁冗 715 | 繁琐 716 | 繁芜 717 | 繁杂 718 | 繁重 719 | 繁缛 720 | 烦 721 | 烦难 722 | 烦冗 723 | 烦琐 724 | 烦嚣 725 | 反 726 | 反常 727 | 反对称 728 | 反反复复 729 | 反复无常 730 | 反面 731 | 反叛 732 | 反社会 733 | 犯有罪行 734 | 饭桶 735 | 泛 736 | 泛泛 737 | 放诞 738 | 放荡 739 | 放荡不羁 740 | 放浪 741 | 放肆 742 | 放纵 743 | 菲 744 | 菲薄 745 | 非 746 | 非法 747 | 非分 748 | 非婚生 749 | 非礼 750 | 非人 751 | 非生产性 752 | 非正常 753 | 非正统 754 | 非正义 755 | 废 756 | 废弛 757 | 废旧 758 | 废物 759 | 沸沸扬扬 760 | 费 761 | 费工夫 762 | 费功夫 763 | 费劲 764 | 费力 765 | 费时 766 | 费事 767 | 纷 768 | 纷繁 769 | 纷乱 770 | 纷扰 771 | 纷杂 772 | 封闭 773 | 封闭式 774 | 封闭型 775 | 封建 776 | 锋芒毕露 777 | 风吹日晒 778 | 风刀霜剑 779 | 风风火火 780 | 风流 781 | 风骚 782 | 风声鹤唳 783 | 风雨飘摇 784 | 疯疯癫癫 785 | 疯狂 786 | 疯狂般 787 | 疯癫癫 788 | 否 789 | 否定 790 | 肤泛 791 | 肤皮潦草 792 | 肤浅 793 | 浮 794 | 浮泛 795 | 浮光掠影 796 | 浮滑 797 | 浮皮蹭痒 798 | 浮漂 799 | 浮浅 800 | 浮躁 801 | 浮噪 802 | 腐败 803 | 腐败堕落 804 | 腐臭 805 | 腐恶 806 | 腐化 807 | 腐化堕落 808 | 腐旧 809 | 腐烂 810 | 腐朽 811 | 腐朽没落 812 | 覆雨翻云 813 | 复 814 | 复合 815 | 复合式 816 | 复合型 817 | 复杂 818 | 复杂多变 819 | 傅会 820 | 负 821 | 负面 822 | 富余 823 | 附会 824 | 嘎 825 | 该死 826 | 概念化 827 | 干 828 | 干巴 829 | 干巴巴 830 | 干瘪 831 | 干瘪瘪 832 | 干干巴巴 833 | 干燥 834 | 赶尽杀绝 835 | 刚愎 836 | 刚愎自用 837 | 高昂 838 | 高傲 839 | 高不成,低不就 840 | 高不成低不就 841 | 高成本 842 | 高价 843 | 高价位 844 | 高难 845 | 高难度 846 | 高压 847 | 疙疙瘩瘩 848 | 疙里疙瘩 849 | 隔靴搔痒 850 | 勾心斗角 851 | 苟且 852 | 狗眼看人 853 | 垢 854 | 够呛 855 | 够戗 856 | 孤 857 | 孤傲 858 | 孤傲不群 859 | 孤单 860 | 孤单单 861 | 孤独 862 | 孤孤单单 863 | 孤寡 864 | 孤寂 865 | 孤立 866 | 孤立无援 867 | 孤零零 868 | 孤陋寡闻 869 | 孤僻 870 | 古怪 871 | 古旧 872 | 古里古怪 873 | 固定不变 874 | 固执 875 | 寡 876 | 寡淡 877 | 寡断 878 | 寡了叭叽 879 | 寡情 880 | 寡味 881 | 寡言 882 | 寡言少语 883 | 挂漏 884 | 挂名 885 | 挂一漏万 886 | 乖谬 887 | 乖僻 888 | 乖张 889 | 乖剌 890 | 乖戾 891 | 怪里怪气 892 | 怪僻 893 | 官僚 894 | 官僚主义 895 | 光怪陆离 896 | 鬼 897 | 鬼鬼祟祟 898 | 鬼计多端 899 | 鬼头鬼脑 900 | 诡 901 | 诡计多端 902 | 诡秘 903 | 诡诈 904 | 诡谲 905 | 贵 906 | 过当 907 | 过分简单化 908 | 过分拥挤 909 | 过河拆桥 910 | 过了气 911 | 过气 912 | 过桥抽板 913 | 过时 914 | 哈喇 915 | 孩子气 916 | 海底捞月 917 | 海底捞针 918 | 害 919 | 骇人听闻 920 | 憨 921 | 含含糊糊 922 | 含含混混 923 | 含糊 924 | 含糊不清 925 | 含糊其辞 926 | 含糊其词 927 | 含混 928 | 含混不清 929 | 含蓄 930 | 涵蓄 931 | 寒 932 | 寒苦 933 | 寒素 934 | 寒酸 935 | 寒微 936 | 寒伧 937 | 寒碜 938 | 悍 939 | 悍然 940 | 豪 941 | 豪侈 942 | 豪横 943 | 豪强 944 | 豪奢 945 | 毫不客气 946 | 毫不留情 947 | 毫无价值 948 | 毫无目标 949 | 毫无意义 950 | 毫无用处 951 | 好不容易 952 | 好容易 953 | 好事多磨 954 | 黑 955 | 黑暗 956 | 黑沉沉 957 | 黑灯瞎火 958 | 黑洞洞 959 | 黑咕隆咚 960 | 黑乎乎 961 | 黑茫茫 962 | 黑蒙蒙 963 | 黑漆寥光 964 | 黑漆漆 965 | 黑森森 966 | 黑心 967 | 黑心肠 968 | 黑黝黝 969 | 黑黢黢 970 | 狠 971 | 狠毒 972 | 狠劲 973 | 狠心 974 | 横 975 | 横暴 976 | 横加 977 | 横蛮无理 978 | 横七竖八 979 | 哄然 980 | 猴 981 | 后患无穷 982 | 后进 983 | 呼幺喝六 984 | 胡 985 | 胡里胡涂 986 | 胡乱 987 | 胡子拉茬 988 | 胡子拉碴 989 | 糊糊涂涂 990 | 糊里糊涂 991 | 糊涂 992 | 虎踞龙蟠 993 | 虎头蛇尾 994 | 花 995 | 花插着 996 | 花搭着 997 | 花花搭搭 998 | 花里胡哨 999 | 花钱浪费 1000 | 花拳绣腿 1001 | 花天酒地 1002 | 花心 1003 | 哗然 1004 | 华 1005 | 华而不实 1006 | 猾 1007 | 滑 1008 | 滑头 1009 | 滑头滑脑 1010 | 怀着恶意 1011 | 坏 1012 | 坏脾气 1013 | 坏人当道 1014 | 幻 1015 | 幻异 1016 | 荒 1017 | 荒诞 1018 | 荒诞不经 1019 | 荒诞派 1020 | 荒诞无稽 1021 | 荒废 1022 | 荒寂 1023 | 荒凉 1024 | 荒乱 1025 | 荒落 1026 | 荒谬 1027 | 荒谬绝伦 1028 | 荒漠 1029 | 荒僻 1030 | 荒弃 1031 | 荒疏 1032 | 荒唐 1033 | 荒唐无稽 1034 | 荒无人烟 1035 | 荒芜 1036 | 荒淫 1037 | 荒淫无耻 1038 | 荒淫无度 1039 | 荒瘠 1040 | 黄色 1041 | 晃晃悠悠 1042 | 晃悠悠 1043 | 恍恍惚惚 1044 | 恍惚 1045 | 谎 1046 | 灰暗 1047 | 灰沉沉 1048 | 灰溜溜 1049 | 灰茫茫 1050 | 灰蒙蒙 1051 | 灰色 1052 | 灰头灰脸 1053 | 灰头土脸 1054 | 灰秃秃 1055 | 灰朦朦 1056 | 慧黠 1057 | 晦 1058 | 晦暗 1059 | 晦涩 1060 | 晦冥 1061 | 晦暝 1062 | 秽 1063 | 秽恶 1064 | 秽乱 1065 | 秽土 1066 | 秽亵 1067 | 会来事 1068 | 昏 1069 | 昏暗 1070 | 昏沉 1071 | 昏黑 1072 | 昏乱 1073 | 昏昧 1074 | 昏天黑地 1075 | 昏头昏脑 1076 | 昏庸 1077 | 昏愦 1078 | 昏聩 1079 | 婚外 1080 | 浑 1081 | 浑浑噩噩 1082 | 浑头浑脑 1083 | 浑浊 1084 | 浑噩 1085 | 混 1086 | 混合 1087 | 混混沌沌 1088 | 混交 1089 | 混乱 1090 | 混淆不清 1091 | 混血 1092 | 混账 1093 | 混浊 1094 | 混沌 1095 | 活动 1096 | 火暴 1097 | 火爆 1098 | 祸不单行 1099 | 祸从天降 1100 | 机变 1101 | 机械 1102 | 机械式 1103 | 机械性 1104 | 畸 1105 | 畸轻畸重 1106 | 畸形 1107 | 积满灰尘 1108 | 积重难返 1109 | 鸡零狗碎 1110 | 鸡毛蒜皮 1111 | 鸡犬不留 1112 | 鸡犬不宁 1113 | 棘手 1114 | 急不可待 1115 | 急功近利 1116 | 急切 1117 | 急性子 1118 | 急于 1119 | 急躁 1120 | 疾言厉色 1121 | 挤 1122 | 挤巴 1123 | 挤得水泄不通 1124 | 挤得要命 1125 | 挤挤插插 1126 | 挤满 1127 | 寂 1128 | 寂寥 1129 | 寂寞 1130 | 忌刻 1131 | 夹七夹八 1132 | 家长式 1133 | 家贫如洗 1134 | 家徒壁立 1135 | 家徒四壁 1136 | 假 1137 | 假冒 1138 | 假模假式 1139 | 假仁假义 1140 | 假想 1141 | 假惺惺 1142 | 假意 1143 | 假造 1144 | 假正经 1145 | 假装神圣 1146 | 价高 1147 | 价格不菲 1148 | 价格高昂 1149 | 架空 1150 | 尖刻 1151 | 尖酸 1152 | 尖酸刻薄 1153 | 尖嘴薄舌 1154 | 尖嘴猴腮 1155 | 间不容发 1156 | 间杂 1157 | 肩摩毂击 1158 | 艰 1159 | 艰巨 1160 | 艰苦 1161 | 艰苦卓绝 1162 | 艰难 1163 | 艰难曲折 1164 | 艰难险阻 1165 | 艰涩 1166 | 艰深 1167 | 艰危 1168 | 艰辛 1169 | 奸 1170 | 奸刁 1171 | 奸恶 1172 | 奸猾 1173 | 奸险 1174 | 奸邪 1175 | 奸诈 1176 | 奸佞 1177 | 简单 1178 | 简陋 1179 | 简慢 1180 | 贱 1181 | 见不得人 1182 | 见风使舵 1183 | 见风转舵 1184 | 见识短浅 1185 | 见异思迁 1186 | 剑拔弩张 1187 | 僵 1188 | 僵化 1189 | 僵硬 1190 | 胶柱鼓瑟 1191 | 浇薄 1192 | 浇漓 1193 | 骄 1194 | 骄傲 1195 | 骄傲自满 1196 | 骄横 1197 | 骄慢 1198 | 骄气 1199 | 骄人 1200 | 骄奢淫逸 1201 | 骄纵 1202 | 骄矜 1203 | 娇 1204 | 娇痴 1205 | 娇贵 1206 | 娇憨 1207 | 娇嫩 1208 | 娇气 1209 | 娇弱 1210 | 娇生惯养 1211 | 矫情 1212 | 矫情造作 1213 | 矫揉造作 1214 | 侥 1215 | 狡 1216 | 狡猾 1217 | 狡计多端 1218 | 狡兔三窟 1219 | 狡诈 1220 | 狡狯 1221 | 狡黠 1222 | 揭不开锅 1223 | 竭蹶 1224 | 洁身自好 1225 | 结结巴巴 1226 | 斤斤计较 1227 | 金刚努目 1228 | 紧 1229 | 紧巴 1230 | 紧巴巴 1231 | 近视 1232 | 荆棘载途 1233 | 惊爆 1234 | 惊人 1235 | 惊天动地 1236 | 惊险 1237 | 精力枯竭 1238 | 精神不振 1239 | 精神溜号 1240 | 经济拮据 1241 | 经验不足 1242 | 静僻 1243 | 净余 1244 | 窘 1245 | 窘促 1246 | 窘急 1247 | 窘困 1248 | 窘迫 1249 | 窘涩 1250 | 旧 1251 | 旧式 1252 | 拘 1253 | 拘礼 1254 | 拘执 1255 | 狙 1256 | 拒人于千里之外 1257 | 剧毒 1258 | 倔 1259 | 倔强 1260 | 倔头倔脑 1261 | 倔犟 1262 | 绝 1263 | 绝情 1264 | 峻 1265 | 开小差 1266 | 坎坷 1267 | 坎坷不平 1268 | 看风使舵 1269 | 糠 1270 | 亢 1271 | 靠不住 1272 | 苛 1273 | 苛刻 1274 | 磕磕绊绊 1275 | 磕头碰脑 1276 | 可悲 1277 | 可鄙 1278 | 可怖 1279 | 可耻 1280 | 可恶 1281 | 可骇 1282 | 可恨 1283 | 可惊 1284 | 可怜 1285 | 可怕 1286 | 可叹 1287 | 可有可无 1288 | 可憎 1289 | 刻板 1290 | 刻薄 1291 | 刻毒 1292 | 刻舟求剑 1293 | 坑坑洼洼 1294 | 坑洼 1295 | 坑洼不平 1296 | 空 1297 | 空洞 1298 | 空洞洞 1299 | 空洞无聊 1300 | 空洞无物 1301 | 空乏 1302 | 空泛 1303 | 空幻 1304 | 空空洞洞 1305 | 空落落 1306 | 空头 1307 | 空虚 1308 | 空中楼阁 1309 | 恐怖 1310 | 抠 1311 | 抠门儿 1312 | 抠搜 1313 | 抠唆 1314 | 口蜜腹剑 1315 | 口是心非 1316 | 口头上 1317 | 枯 1318 | 枯寂 1319 | 枯涩 1320 | 枯燥 1321 | 枯燥乏味 1322 | 枯燥无味 1323 | 枯槁 1324 | 苦 1325 | 苦不唧 1326 | 苦口 1327 | 苦苦 1328 | 苦涩 1329 | 酷 1330 | 酷烈 1331 | 酷虐 1332 | 夸诞 1333 | 狂 1334 | 狂傲 1335 | 狂暴 1336 | 狂荡 1337 | 狂妄 1338 | 狂妄自大 1339 | 狂躁 1340 | 狂悖 1341 | 狂恣 1342 | 困顿 1343 | 困窘 1344 | 困苦 1345 | 困难 1346 | 困难重重 1347 | 困人 1348 | 阔绰 1349 | 阔气 1350 | 拉忽 1351 | 拉拉杂杂 1352 | 拉杂 1353 | 辣 1354 | 辣手 1355 | 来路不明 1356 | 来之不易 1357 | 赖 1358 | 赖皮 1359 | 懒 1360 | 懒到极点 1361 | 懒惰 1362 | 懒散 1363 | 烂 1364 | 滥 1365 | 狼狈 1366 | 狼狈不堪 1367 | 狼籍 1368 | 狼藉 1369 | 狼心狗肺 1370 | 浪 1371 | 浪荡 1372 | 劳而无功 1373 | 老 1374 | 老大难 1375 | 老掉牙 1376 | 老赶 1377 | 老虎屁股摸不得 1378 | 老奸巨猾 1379 | 老奸巨滑 1380 | 老辣 1381 | 老派 1382 | 老气 1383 | 老气横秋 1384 | 老弱病残 1385 | 老实 1386 | 老式 1387 | 老朽 1388 | 累卵 1389 | 累赘 1390 | 累牍连篇 1391 | 肋脦 1392 | 冷 1393 | 冷冰冰 1394 | 冷淡 1395 | 冷峻 1396 | 冷酷 1397 | 冷酷无情 1398 | 冷冷 1399 | 冷冷清清 1400 | 冷厉 1401 | 冷落 1402 | 冷门 1403 | 冷漠 1404 | 冷峭 1405 | 冷清 1406 | 冷清清 1407 | 冷若冰霜 1408 | 冷销 1409 | 冷血 1410 | 冷噤 1411 | 离索 1412 | 离题 1413 | 离心离德 1414 | 理亏 1415 | 理屈 1416 | 理屈词穷 1417 | 理由不充分 1418 | 里出外进 1419 | 厉 1420 | 厉害 1421 | 厉声 1422 | 利令智昏 1423 | 利已 1424 | 利欲熏心 1425 | 哩哩啦啦 1426 | 哩哩罗罗 1427 | 哩溜歪斜 1428 | 连篇累牍 1429 | 良莠不齐 1430 | 两面光 1431 | 两面三刀 1432 | 寥 1433 | 寥寂 1434 | 潦草 1435 | 了不得 1436 | 了不起 1437 | 烈 1438 | 烈性子 1439 | 劣 1440 | 劣等 1441 | 劣质 1442 | 劣中之劣 1443 | 鳞状 1444 | 凛 1445 | 凛凛 1446 | 凛然 1447 | 吝 1448 | 吝啬 1449 | 零 1450 | 零丁 1451 | 零零散散 1452 | 零零碎碎 1453 | 零乱 1454 | 零落 1455 | 零七八碎 1456 | 零散 1457 | 零碎 1458 | 零星 1459 | 伶仃 1460 | 凌乱 1461 | 凌杂 1462 | 令人不安 1463 | 令人齿冷 1464 | 令人恶心 1465 | 令人发指 1466 | 令人费解 1467 | 令人寒心 1468 | 令人敬畏 1469 | 令人困倦 1470 | 令人毛骨悚然 1471 | 令人恼火 1472 | 令人疲倦 1473 | 令人生气 1474 | 令人生厌 1475 | 令人讨厌 1476 | 令人厌恶 1477 | 令人厌倦 1478 | 令人遗憾 1479 | 令人折断腰 1480 | 令人窒息 1481 | 令人作呕 1482 | 溜号 1483 | 流里流气 1484 | 流气 1485 | 六亲不认 1486 | 娄 1487 | 漏洞百出 1488 | 陋 1489 | 鲁 1490 | 鲁钝 1491 | 鲁莽 1492 | 碌 1493 | 碌碌 1494 | 碌碌无为 1495 | 驴唇不对马嘴 1496 | 率 1497 | 率尔 1498 | 率然 1499 | 乱 1500 | 乱成一团 1501 | 乱纷纷 1502 | 乱哄哄 1503 | 乱烘烘 1504 | 乱乎 1505 | 乱了营 1506 | 乱乱哄哄 1507 | 乱虐并生 1508 | 乱蓬蓬 1509 | 乱七八糟 1510 | 乱套 1511 | 乱腾 1512 | 乱腾腾 1513 | 乱杂 1514 | 乱糟糟 1515 | 乱真 1516 | 乱嘈嘈 1517 | 落后 1518 | 落落寡合 1519 | 落寞 1520 | 落市 1521 | 落俗套 1522 | 落套 1523 | 落拓 1524 | 落伍 1525 | 麻 1526 | 麻痹 1527 | 麻烦 1528 | 麻麻黑 1529 | 麻木 1530 | 麻木不仁 1531 | 马虎 1532 | 马马虎虎 1533 | 埋汰 1534 | 卖不掉 1535 | 卖不动 1536 | 蛮 1537 | 蛮不讲理 1538 | 蛮悍 1539 | 蛮横 1540 | 蛮横无理 1541 | 蛮荒 1542 | 满 1543 | 满脸横肉 1544 | 满目疮痍 1545 | 漫 1546 | 漫不经心 1547 | 漫不经意 1548 | 漫无边际 1549 | 漫无目标 1550 | 漫无目的 1551 | 漫漶 1552 | 谩 1553 | 茫 1554 | 茫茫 1555 | 茫茫然 1556 | 盲目 1557 | 盲人瞎马 1558 | 莽 1559 | 莽苍 1560 | 莽莽苍苍 1561 | 莽莽撞撞 1562 | 莽撞 1563 | 猫哭老鼠 1564 | 毛 1565 | 毛糙 1566 | 毛毛躁躁 1567 | 毛手毛脚 1568 | 毛头毛脑 1569 | 毛躁 1570 | 冒 1571 | 冒牌 1572 | 冒失 1573 | 冒险 1574 | 冒有风险 1575 | 貌似强大 1576 | 貌似真实的 1577 | 贸贸然 1578 | 贸然 1579 | 没边儿 1580 | 没出息 1581 | 没骨头 1582 | 没关系 1583 | 没好气 1584 | 没见过世面 1585 | 没教养 1586 | 没劲 1587 | 没理 1588 | 没礼貌 1589 | 没良心 1590 | 没两下子 1591 | 没轻没重 1592 | 没什么了不得 1593 | 没什么了不起 1594 | 没受过教育 1595 | 没头没脑 1596 | 没头脑 1597 | 没味 1598 | 没心没肺 1599 | 没心眼儿 1600 | 没意思 1601 | 没用 1602 | 没有教养 1603 | 没有礼貌 1604 | 没有头脑 1605 | 没有学问 1606 | 没有勇气 1607 | 媚俗 1608 | 闷 1609 | 闷气 1610 | 蒙昧 1611 | 蒙蒙 1612 | 蒙蒙胧胧 1613 | 蒙胧 1614 | 孟浪 1615 | 靡丽 1616 | 靡靡 1617 | 糜 1618 | 糜烂 1619 | 迷濛 1620 | 迷宫般 1621 | 迷糊 1622 | 迷离 1623 | 迷离扑朔 1624 | 迷离倘恍 1625 | 迷漫 1626 | 迷茫 1627 | 迷蒙 1628 | 迷蒙蒙 1629 | 迷迷糊糊 1630 | 迷迷茫茫 1631 | 迷迷蒙蒙 1632 | 迷迷怔怔 1633 | 弥天 1634 | 米珠薪桂 1635 | 秘 1636 | 秘密 1637 | 密 1638 | 密不透风 1639 | 绵里藏针 1640 | 绵软 1641 | 勉勉强强 1642 | 勉强 1643 | 面呈病色 1644 | 面黄肌瘦 1645 | 面目可憎 1646 | 面目狰狞 1647 | 面色蜡黄 1648 | 面生 1649 | 面无表情 1650 | 藐小 1651 | 渺 1652 | 渺茫 1653 | 渺渺 1654 | 渺然 1655 | 渺若烟云 1656 | 渺小 1657 | 灭绝人性 1658 | 明哲保身 1659 | 名不副实 1660 | 名过其实 1661 | 名义 1662 | 名义上 1663 | 名誉扫地 1664 | 命苦 1665 | 谬 1666 | 模糊 1667 | 模糊不清 1668 | 模棱两可 1669 | 摩肩接踵 1670 | 魔鬼般 1671 | 魔怔 1672 | 莫须有 1673 | 墨 1674 | 漠 1675 | 漠不关心 1676 | 漠漠 1677 | 漠然 1678 | 寞 1679 | 陌生 1680 | 暮气 1681 | 暮气沉沉 1682 | 暮色苍茫 1683 | 幕后 1684 | 木 1685 | 木雕泥塑 1686 | 木头木脑 1687 | 木讷 1688 | 目不识丁 1689 | 目光短浅 1690 | 目光如豆 1691 | 目光凶狠 1692 | 目空一切 1693 | 目无余子 1694 | 目中无人 1695 | 拿腔拿调 1696 | 拿腔作势 1697 | 奶声奶气 1698 | 男盗女娼 1699 | 难 1700 | 难吃 1701 | 难看 1702 | 难人 1703 | 难上加难 1704 | 难上难 1705 | 难说话 1706 | 难听 1707 | 难闻 1708 | 难相处 1709 | 难驯服 1710 | 难以 1711 | 难以沟通 1712 | 囊空如洗 1713 | 囊中羞涩 1714 | 闹 1715 | 闹得慌 1716 | 闹哄哄 1717 | 闹闹哄哄 1718 | 闹闹嚷嚷 1719 | 闹嚷嚷 1720 | 嫩 1721 | 泥沙俱下 1722 | 你死我活 1723 | 匿名 1724 | 腻 1725 | 腻人 1726 | 逆 1727 | 逆耳 1728 | 蔫不唧儿 1729 | 蔫儿坏 1730 | 蔫头耷脑 1731 | 拈轻怕重 1732 | 年久失修 1733 | 鸟尽弓藏 1734 | 狞 1735 | 狞恶 1736 | 凝滞 1737 | 泞 1738 | 牛 1739 | 牛气 1740 | 扭扭捏捏 1741 | 奴颜婢膝 1742 | 虐 1743 | 懦 1744 | 懦怯 1745 | 懦弱 1746 | 盘根错节 1747 | 盘陁 1748 | 庞杂 1749 | 旁若无人 1750 | 配不上 1751 | 蓬乱 1752 | 蓬散 1753 | 蓬首垢面 1754 | 蓬头垢面 1755 | 蓬头散发 1756 | 脾气暴 1757 | 脾气爆躁 1758 | 脾气坏 1759 | 脾气火暴 1760 | 脾气急躁 1761 | 皮 1762 | 皮毛 1763 | 皮相 1764 | 僻 1765 | 僻静 1766 | 偏 1767 | 偏激 1768 | 偏颇 1769 | 偏听偏信 1770 | 偏狭 1771 | 偏斜 1772 | 偏心 1773 | 偏心眼 1774 | 片断 1775 | 片面 1776 | 骗人 1777 | 漂浮 1778 | 贫 1779 | 贫寒 1780 | 贫苦 1781 | 贫困 1782 | 贫穷 1783 | 贫瘠 1784 | 平白 1785 | 平白无故 1786 | 平淡 1787 | 平淡无奇 1788 | 平淡无味 1789 | 平铺直叙 1790 | 平铺直序 1791 | 凭白无故 1792 | 凭空 1793 | 坡 1794 | 泼 1795 | 泼辣 1796 | 婆婆妈妈 1797 | 破 1798 | 破败 1799 | 破坏性 1800 | 破旧 1801 | 破烂不堪 1802 | 破陋 1803 | 扑朔迷离 1804 | 铺张 1805 | 铺张浪费 1806 | 欺诈性 1807 | 七零八落 1808 | 凄 1809 | 凄惨 1810 | 凄楚 1811 | 凄寒 1812 | 凄寂 1813 | 凄苦 1814 | 凄冷 1815 | 凄厉 1816 | 凄凉 1817 | 凄迷 1818 | 凄怆 1819 | 漆黑 1820 | 漆黑一团 1821 | 其貌不扬 1822 | 奇丑无比 1823 | 奇形怪状 1824 | 崎 1825 | 崎岖 1826 | 崎岖不平 1827 | 起绉 1828 | 起褶子 1829 | 岂有此理 1830 | 气粗 1831 | 气闷 1832 | 气盛 1833 | 气势汹汹 1834 | 气壮如牛 1835 | 千变万化 1836 | 千疮百孔 1837 | 千金一掷 1838 | 千钧一发 1839 | 千篇一律 1840 | 前呼后拥 1841 | 潜 1842 | 浅 1843 | 浅薄 1844 | 浅尝辄止 1845 | 浅陋 1846 | 欠妥 1847 | 欠完善 1848 | 欠周到 1849 | 强 1850 | 强暴 1851 | 强横 1852 | 强行 1853 | 强制 1854 | 强制性 1855 | 巧 1856 | 巧黠 1857 | 翘尾巴 1858 | 峭 1859 | 峭直 1860 | 怯 1861 | 怯懦 1862 | 怯然 1863 | 怯弱 1864 | 怯生生 1865 | 窃 1866 | 禽兽不如 1867 | 轻 1868 | 轻薄 1869 | 轻淡 1870 | 轻浮 1871 | 轻贱 1872 | 轻狂 1873 | 轻率 1874 | 轻描淡写 1875 | 轻易 1876 | 轻佻 1877 | 倾斜 1878 | 清淡 1879 | 清高 1880 | 清寒 1881 | 清苦 1882 | 清冷 1883 | 清贫 1884 | 穷 1885 | 穷乏 1886 | 穷极潦倒 1887 | 穷苦 1888 | 穷困 1889 | 穷困潦倒 1890 | 穷奢极侈 1891 | 穷奢极欲 1892 | 穷酸 1893 | 穷途潦倒 1894 | 穷途末路 1895 | 穷凶极恶 1896 | 穷匮 1897 | 囚首垢面 1898 | 区区 1899 | 曲曲折折 1900 | 曲折 1901 | 屈才 1902 | 屈理 1903 | 犬牙交错 1904 | 缺 1905 | 缺德 1906 | 缺乏才智 1907 | 缺乏教养 1908 | 缺乏绅士风度 1909 | 缺乏幽默 1910 | 缺心眼 1911 | 缺心眼儿 1912 | 群魔乱舞 1913 | 攘攘 1914 | 扰扰 1915 | 绕脖子 1916 | 人不为己,天诛地灭 1917 | 人不知,鬼不觉 1918 | 人声鼎沸 1919 | 人声嘈杂 1920 | 人头攒动 1921 | 人为财死,鸟为食亡 1922 | 任重道远 1923 | 任纵 1924 | 认死理 1925 | 认死理儿 1926 | 冗 1927 | 冗长 1928 | 冗余 1929 | 冗赘 1930 | 柔弱 1931 | 肉 1932 | 肉了叭叽 1933 | 肉麻 1934 | 如临大敌 1935 | 如临深渊 1936 | 如履薄冰 1937 | 乳臭未干 1938 | 软 1939 | 软绵绵 1940 | 软弱 1941 | 软弱无力 1942 | 若明若暗 1943 | 若隐若现 1944 | 弱 1945 | 弱不禁风 1946 | 弱不胜衣 1947 | 弱势 1948 | 弱小 1949 | 弱智 1950 | 三天打鱼两天晒网 1951 | 散 1952 | 散乱 1953 | 散漫 1954 | 嗓子不好 1955 | 丧尽天良 1956 | 丧心病狂 1957 | 骚 1958 | 骚乱性 1959 | 色厉内荏 1960 | 色迷迷 1961 | 色情 1962 | 涩 1963 | 涩苦 1964 | 涩滞 1965 | 森 1966 | 杀气腾腾 1967 | 杀人不见血 1968 | 杀人不眨眼 1969 | 杀人如麻 1970 | 傻 1971 | 傻呵呵 1972 | 傻乎乎 1973 | 傻里瓜唧 1974 | 傻里傻气 1975 | 傻头傻脑 1976 | 山南海北 1977 | 山穷水尽 1978 | 闪烁 1979 | 伤风败俗 1980 | 伤脑筋 1981 | 伤天害理 1982 | 伤心惨目 1983 | 少不更事 1984 | 奢 1985 | 奢侈 1986 | 奢华 1987 | 奢靡 1988 | 奢糜 1989 | 蛇蝎心肠 1990 | 涉世不深 1991 | 身无分文 1992 | 深重 1993 | 神不知,鬼不觉 1994 | 神不知鬼不觉 1995 | 神秘 1996 | 神气活现 1997 | 神气十足 1998 | 神神秘秘 1999 | 神志委靡 2000 | 声名狼藉 2001 | 声色俱厉 2002 | 生 2003 | 生拉硬拽 2004 | 生涩 2005 | 生疏 2006 | 生硬 2007 | 盛气凌人 2008 | 剩余 2009 | 失常 2010 | 失当 2011 | 失检 2012 | 失礼 2013 | 失落 2014 | 失去理性 2015 | 失神 2016 | 失慎 2017 | 失实 2018 | 失宜 2019 | 十恶不赦 2020 | 十室九空 2021 | 什 2022 | 什锦 2023 | 食而不化 2024 | 食而不知其味 2025 | 食古不化 2026 | 实属不易 2027 | 使不得 2028 | 使人疲劳 2029 | 世故 2030 | 世情冷暖 2031 | 世俗 2032 | 世态炎凉 2033 | 誓不两立 2034 | 势不两立 2035 | 势利 2036 | 势利眼 2037 | 嗜杀成性 2038 | 嗜血 2039 | 嗜血成性 2040 | 恃才傲物 2041 | 手脚不干净 2042 | 手紧 2043 | 手生 2044 | 手头紧 2045 | 手无缚鸡之力 2046 | 守旧 2047 | 守株待兔 2048 | 瘦 2049 | 瘦弱 2050 | 输理 2051 | 疏忽 2052 | 疏懒 2053 | 疏松 2054 | 书生气 2055 | 鼠胆 2056 | 鼠目寸光 2057 | 数不上 2058 | 数不着 2059 | 衰弱 2060 | 衰颓 2061 | 水火不相容 2062 | 水泄不通 2063 | 水性杨花 2064 | 水中捞月 2065 | 瞬息万变 2066 | 说不过去 2067 | 说来话长 2068 | 斯文扫地 2069 | 私 2070 | 私底下 2071 | 私密 2072 | 私下 2073 | 私下里 2074 | 私自 2075 | 死 2076 | 死板 2077 | 死板板 2078 | 死沉沉 2079 | 死脑筋 2080 | 死气沉沉 2081 | 死去活来 2082 | 死死 2083 | 死心塌地 2084 | 死心眼 2085 | 死心眼儿 2086 | 死性 2087 | 死一般 2088 | 死硬 2089 | 死有余辜 2090 | 肆 2091 | 肆无忌惮 2092 | 肆意 2093 | 四大皆空 2094 | 四面楚歌 2095 | 似 2096 | 似乎 2097 | 似是而非 2098 | 松垮 2099 | 松垮垮 2100 | 松散 2101 | 松散散 2102 | 松松垮垮 2103 | 耸人听闻 2104 | 酥 2105 | 酥软 2106 | 酥松 2107 | 俗 2108 | 俗气 2109 | 素不相识 2110 | 素昧平生 2111 | 肃 2112 | 肃杀 2113 | 酸 2114 | 酸不溜丢 2115 | 酸臭 2116 | 酸刻 2117 | 酸溜溜 2118 | 酸涩 2119 | 随便 2120 | 随风倒 2121 | 随风使舵 2122 | 随风转舵 2123 | 随随便便 2124 | 随心所欲 2125 | 碎 2126 | 祟 2127 | 损 2128 | 损人利己 2129 | 琐 2130 | 琐碎 2131 | 琐细 2132 | 琐屑 2133 | 索 2134 | 索然 2135 | 索然乏味 2136 | 索然寡味 2137 | 索然无味 2138 | 所谓 2139 | 太随便 2140 | 太虚 2141 | 贪 2142 | 贪得无厌 2143 | 贪婪 2144 | 贪心 2145 | 贪心不足 2146 | 瘫软 2147 | 谈何容易 2148 | 唐突 2149 | 烫手 2150 | 淘 2151 | 淘气 2152 | 淘神 2153 | 讨厌 2154 | 特困 2155 | 特贫 2156 | 体力不支 2157 | 体弱 2158 | 体衰 2159 | 天昏地暗 2160 | 天南地北 2161 | 天南海北 2162 | 天真 2163 | 恬淡 2164 | 腆 2165 | 挑逗性 2166 | 铁杆儿 2167 | 铁公鸡一毛不拔 2168 | 铁石心肠 2169 | 铁血 2170 | 听天由命 2171 | 偷 2172 | 偷工减料 2173 | 偷偷 2174 | 偷偷摸摸 2175 | 投机 2176 | 头脑空虚 2177 | 头痛 2178 | 秃 2179 | 徒 2180 | 徒劳 2181 | 徒劳无功 2182 | 徒劳无益 2183 | 徒然 2184 | 土 2185 | 土得掉渣 2186 | 土里土气 2187 | 土气 2188 | 土俗 2189 | 土头土脑 2190 | 兔死狗烹 2191 | 兔子不吃窝边草 2192 | 兔子尾巴长不了 2193 | 颓 2194 | 颓败 2195 | 颓废 2196 | 蜕化 2197 | 蜕化变质 2198 | 退化 2199 | 拖泥带水 2200 | 拖沓 2201 | 歪 2202 | 歪歪扭扭 2203 | 歪斜 2204 | 外面儿光 2205 | 外行 2206 | 顽 2207 | 顽钝 2208 | 顽梗 2209 | 顽固 2210 | 顽劣 2211 | 顽皮 2212 | 完全不重要 2213 | 万恶 2214 | 万花筒似 2215 | 万马齐喑 2216 | 万难 2217 | 枉 2218 | 枉费心机 2219 | 枉然 2220 | 望梅止渴 2221 | 忘恩负义 2222 | 忘情 2223 | 妄 2224 | 妄自尊大 2225 | 威 2226 | 威厉 2227 | 微不足道 2228 | 微贱 2229 | 微茫 2230 | 微末 2231 | 危殆 2232 | 危机四伏 2233 | 危机重重 2234 | 危急 2235 | 危如累卵 2236 | 危亡 2237 | 危险 2238 | 危在旦夕 2239 | 唯利是图 2240 | 唯我独尊 2241 | 惟利是图 2242 | 惟我独尊 2243 | 为人作嫁 2244 | 为人作嫁衣裳 2245 | 为所欲为 2246 | 萎靡不振 2247 | 委靡不振 2248 | 委琐 2249 | 伪 2250 | 伪善 2251 | 伪造 2252 | 未便 2253 | 未成熟 2254 | 未归类 2255 | 未揭露 2256 | 未老先衰 2257 | 未列计划 2258 | 未受过教育 2259 | 味道不好 2260 | 味同嚼蜡 2261 | 畏怯 2262 | 畏首畏尾 2263 | 文不对题 2264 | 文弱 2265 | 文恬武嬉 2266 | 紊 2267 | 紊乱 2268 | 问道于盲 2269 | 窝囊 2270 | 乌沉沉 2271 | 乌灯黑火 2272 | 乌洞洞 2273 | 乌七八糟 2274 | 乌漆墨黑 2275 | 乌涂 2276 | 乌托邦 2277 | 乌压压 2278 | 乌烟瘴气 2279 | 污 2280 | 污秽 2281 | 污七八糟 2282 | 污浊 2283 | 无伴 2284 | 无表情 2285 | 无补 2286 | 无补于事 2287 | 无常 2288 | 无诚意 2289 | 无道德观念 2290 | 无的放矢 2291 | 无动于衷 2292 | 无度 2293 | 无端 2294 | 无端端 2295 | 无法无天 2296 | 无根据 2297 | 无故 2298 | 无关大局 2299 | 无关宏旨 2300 | 无关紧要 2301 | 无关痛痒 2302 | 无光 2303 | 无光泽 2304 | 无规 2305 | 无涵养 2306 | 无稽 2307 | 无济于事 2308 | 无计划 2309 | 无记名 2310 | 无纪律 2311 | 无价值 2312 | 无教养 2313 | 无节制 2314 | 无可无不可 2315 | 无口才 2316 | 无赖 2317 | 无理 2318 | 无礼 2319 | 无力 2320 | 无聊 2321 | 无眉目 2322 | 无目的 2323 | 无能 2324 | 无能为力 2325 | 无凭无据 2326 | 无情 2327 | 无情无义 2328 | 无人过问 2329 | 无人问津 2330 | 无伤大雅 2331 | 无生气 2332 | 无实效 2333 | 无实质 2334 | 无所帮助 2335 | 无所不用其极 2336 | 无特色 2337 | 无望 2338 | 无味 2339 | 无谓 2340 | 无吸引力 2341 | 无限制 2342 | 无效 2343 | 无依无靠 2344 | 无意义 2345 | 无益 2346 | 无用 2347 | 无原则 2348 | 无缘无故 2349 | 无证据 2350 | 无知 2351 | 无中生有 2352 | 无助 2353 | 无足轻重 2354 | 芜 2355 | 芜杂 2356 | 武断 2357 | 雾里看花 2358 | 误 2359 | 误诊 2360 | 稀里糊涂 2361 | 稀松 2362 | 稀松平常 2363 | 喜新厌旧 2364 | 细 2365 | 细碎 2366 | 细小 2367 | 瞎 2368 | 下 2369 | 下乘 2370 | 下道儿 2371 | 下等 2372 | 下贱 2373 | 下流 2374 | 下品 2375 | 下三烂 2376 | 下三滥 2377 | 下作 2378 | 吓人 2379 | 纤弱 2380 | 险 2381 | 险毒 2382 | 险恶 2383 | 险峻 2384 | 险峭 2385 | 险象环生 2386 | 险要 2387 | 险诈 2388 | 险阻 2389 | 现行 2390 | 羡余 2391 | 香艳 2392 | 享乐 2393 | 向上倾斜 2394 | 向下倾斜 2395 | 象征性 2396 | 萧 2397 | 萧然 2398 | 萧瑟 2399 | 萧森 2400 | 萧疏 2401 | 萧索 2402 | 萧条 2403 | 萧飒 2404 | 嚣杂 2405 | 嚣张 2406 | 消极 2407 | 小 2408 | 小肚鸡肠 2409 | 小儿科 2410 | 小家子气 2411 | 小家子相 2412 | 小里小气 2413 | 小气 2414 | 小手小脚 2415 | 小小不言 2416 | 小心眼 2417 | 小心眼儿 2418 | 笑里藏刀 2419 | 效率很差 2420 | 携贰 2421 | 邪 2422 | 邪恶 2423 | 斜 2424 | 斜体 2425 | 斜歪 2426 | 卸磨杀驴 2427 | 懈怠 2428 | 辛 2429 | 辛苦 2430 | 辛酸 2431 | 辛辛苦苦 2432 | 心不在焉 2433 | 心粗 2434 | 心地狭窄 2435 | 心毒 2436 | 心浮 2437 | 心黑手辣 2438 | 心狠 2439 | 心狠手辣 2440 | 心口不一 2441 | 心切 2442 | 心如蛇蝎 2443 | 心如铁石 2444 | 心胸狭隘 2445 | 心胸狭窄 2446 | 心眼儿小 2447 | 心眼儿窄 2448 | 心眼小 2449 | 心猿意马 2450 | 星星点点 2451 | 腥 2452 | 腥臭 2453 | 腥臊 2454 | 腥膻 2455 | 形单影只 2456 | 形格势禁 2457 | 形同路人 2458 | 形同虚设 2459 | 形影相吊 2460 | 行不通 2461 | 行为不端 2462 | 行为不检 2463 | 性格内向 2464 | 性急 2465 | 性情急躁 2466 | 凶 2467 | 凶巴巴 2468 | 凶暴 2469 | 凶残 2470 | 凶毒 2471 | 凶恶 2472 | 凶悍 2473 | 凶狠 2474 | 凶横 2475 | 凶狂 2476 | 凶蛮 2477 | 凶猛 2478 | 凶煞 2479 | 凶顽 2480 | 凶险 2481 | 凶戾 2482 | 胸无城府 2483 | 胸无点墨 2484 | 熊 2485 | 虚 2486 | 虚诞 2487 | 虚浮 2488 | 虚幻 2489 | 虚假 2490 | 虚空 2491 | 虚夸 2492 | 虚拟 2493 | 虚荣 2494 | 虚弱 2495 | 虚设 2496 | 虚妄 2497 | 虚伪 2498 | 虚无 2499 | 虚无飘渺 2500 | 虚无缥缈 2501 | 虚虚实实 2502 | 虚有其表 2503 | 虚诈 2504 | 絮 2505 | 絮叨 2506 | 絮聒 2507 | 喧 2508 | 喧天 2509 | 喧嚣 2510 | 喧杂 2511 | 喧噪 2512 | 悬 2513 | 悬乎 2514 | 悬空 2515 | 玄 2516 | 学究气 2517 | 学识浅薄 2518 | 学识谫陋 2519 | 雪上加霜 2520 | 血淋淋 2521 | 血腥 2522 | 血雨腥风 2523 | 牙碜 2524 | 亚 2525 | 烟雾弥漫 2526 | 烟雾腾腾 2527 | 严 2528 | 严加 2529 | 严峻 2530 | 严苛 2531 | 严酷 2532 | 严冷 2533 | 严厉 2534 | 严肃 2535 | 严重 2536 | 言不由衷 2537 | 言之无物 2538 | 眼巴巴 2539 | 眼光短浅 2540 | 眼皮子高 2541 | 眼皮子浅 2542 | 眼生 2543 | 衍 2544 | 扬长 2545 | 羊质虎皮 2546 | 阳奉阴违 2547 | 妖 2548 | 妖里妖气 2549 | 摇摇晃晃 2550 | 摇摇欲坠 2551 | 要不得 2552 | 野 2553 | 野鸡 2554 | 野蛮 2555 | 叶公好龙 2556 | 夜郎自大 2557 | 一把死拿 2558 | 一暴十寒 2559 | 一波三折 2560 | 一不小心 2561 | 一场空 2562 | 一成不变 2563 | 一触即溃 2564 | 一发千钧 2565 | 一锅粥 2566 | 一脸横肉 2567 | 一脸稚气 2568 | 一毛不拔 2569 | 一偏 2570 | 一贫如洗 2571 | 一钱不值 2572 | 一仍旧贯 2573 | 一手遮天 2574 | 一塌糊涂 2575 | 一团乱麻 2576 | 一团漆黑 2577 | 一团糟 2578 | 一文不名 2579 | 一文不值 2580 | 一窝蜂 2581 | 一无可取 2582 | 一无是处 2583 | 一无所长 2584 | 一无所有 2585 | 一言堂 2586 | 一掷千金 2587 | 依违 2588 | 依稀 2589 | 衣衫不整 2590 | 颐指气使 2591 | 疑难 2592 | 倚老卖老 2593 | 以怨报德 2594 | 易变 2595 | 易怒 2596 | 臆 2597 | 意马心猿 2598 | 义正词严 2599 | 溢价 2600 | 异常 2601 | 异形 2602 | 荫 2603 | 因循守旧 2604 | 殷 2605 | 殷切 2606 | 阴 2607 | 阴暗 2608 | 阴沉 2609 | 阴沉沉 2610 | 阴毒 2611 | 阴恶 2612 | 阴晦 2613 | 阴冷 2614 | 阴凄 2615 | 阴森 2616 | 阴森森 2617 | 阴损 2618 | 阴险 2619 | 阴险毒辣 2620 | 阴性 2621 | 阴阳怪气 2622 | 淫 2623 | 淫荡 2624 | 淫秽 2625 | 淫贱 2626 | 淫乱 2627 | 淫靡 2628 | 淫邪 2629 | 淫逸 2630 | 淫亵 2631 | 淫猥 2632 | 引起反感 2633 | 隐 2634 | 隐晦 2635 | 隐秘 2636 | 隐然 2637 | 隐身 2638 | 隐形 2639 | 隐性 2640 | 隐隐 2641 | 隐隐绰绰 2642 | 隐隐约约 2643 | 隐约 2644 | 应名儿 2645 | 影影绰绰 2646 | 硬 2647 | 硬气 2648 | 硬生生 2649 | 硬性 2650 | 拥挤 2651 | 拥挤不堪 2652 | 庸 2653 | 庸碌 2654 | 庸俗 2655 | 庸庸碌碌 2656 | 用不着 2657 | 幽 2658 | 幽暗 2659 | 幽晦 2660 | 幽幽 2661 | 幽冥 2662 | 幽黯 2663 | 优柔 2664 | 优柔寡断 2665 | 悠谬 2666 | 犹犹豫豫 2667 | 犹豫不决 2668 | 犹豫不前 2669 | 油 2670 | 油乎乎 2671 | 油滑 2672 | 油腻 2673 | 油腻腻 2674 | 油头滑脑 2675 | 油汪汪 2676 | 油脂麻花 2677 | 油渍渍 2678 | 有碍观瞻 2679 | 有弊 2680 | 有点旧 2681 | 有毒 2682 | 有毒性 2683 | 有害 2684 | 有名无实 2685 | 有难度 2686 | 有伤风化 2687 | 有失检点 2688 | 有失偏颇 2689 | 有失身分 2690 | 有始无终 2691 | 有恃无恐 2692 | 有头无尾 2693 | 有一搭没一搭 2694 | 有义务 2695 | 有罪 2696 | 幼稚 2697 | 迂 2698 | 迂腐 2699 | 迂阔 2700 | 迂拙 2701 | 于事无补 2702 | 愚 2703 | 愚笨 2704 | 愚不可及 2705 | 愚痴 2706 | 愚蠢 2707 | 愚钝 2708 | 愚陋 2709 | 愚鲁 2710 | 愚昧 2711 | 愚昧无知 2712 | 愚蒙 2713 | 愚傻 2714 | 愚顽 2715 | 愚妄 2716 | 愚拙 2717 | 余剩 2718 | 逾分 2719 | 鱼龙混杂 2720 | 鱼游釜中 2721 | 与虎谋皮 2722 | 与世隔绝 2723 | 与世无争 2724 | 语无伦次 2725 | 语焉不详 2726 | 羽毛未丰 2727 | 欲壑难填 2728 | 原始 2729 | 圆 2730 | 圆滑 2731 | 约略 2732 | 越轨 2733 | 越礼 2734 | 云遮雾障 2735 | 云谲波诡 2736 | 蕴藉 2737 | 晕头转向 2738 | 杂 2739 | 杂草丛生 2740 | 杂乱 2741 | 杂乱无章 2742 | 杂牌 2743 | 杂七杂八 2744 | 杂遝 2745 | 杂沓 2746 | 灾难性 2747 | 在困难中 2748 | 脏 2749 | 脏乎乎 2750 | 脏乱 2751 | 脏乱差 2752 | 脏兮兮 2753 | 糟 2754 | 糟糕 2755 | 凿空 2756 | 凿死理儿 2757 | 躁 2758 | 躁急 2759 | 躁狂 2760 | 造次 2761 | 造作 2762 | 贼 2763 | 贼溜溜 2764 | 贼眉鼠眼 2765 | 贼去关门 2766 | 贼头贼脑 2767 | 扎手 2768 | 轧 2769 | 窄 2770 | 张冠李戴 2771 | 张狂 2772 | 招致不幸 2773 | 照本宣科 2774 | 狰狞 2775 | 正色 2776 | 正颜厉色 2777 | 枝蔓 2778 | 支离 2779 | 支离破碎 2780 | 直呆呆 2781 | 直瞪瞪 2782 | 直盯盯 2783 | 直勾勾 2784 | 直愣愣 2785 | 执迷不悟 2786 | 执拗 2787 | 趾高气扬 2788 | 只顾自身利益 2789 | 只听楼梯响,不见人下来 2790 | 纸上谈兵 2791 | 纸醉金迷 2792 | 志大才疏 2793 | 智障 2794 | 稚气 2795 | 质次价高 2796 | 质量差 2797 | 滞 2798 | 滞背 2799 | 滞钝 2800 | 滞涩 2801 | 滞销 2802 | 窒闷 2803 | 重 2804 | 重沓 2805 | 众叛亲离 2806 | 皱 2807 | 皱巴 2808 | 皱巴巴 2809 | 皱皱巴巴 2810 | 竹篮打水 2811 | 竹篮子打水 2812 | 竹篮子打水一场空 2813 | 煮豆燃萁 2814 | 主观 2815 | 主观上 2816 | 讆 2817 | 专横 2818 | 专横跋扈 2819 | 专制 2820 | 转移性 2821 | 装备不良 2822 | 装模作样 2823 | 装腔 2824 | 装腔作势 2825 | 装相 2826 | 装样子 2827 | 赘 2828 | 赘余 2829 | 捉襟见肘 2830 | 捉摸不定 2831 | 拙 2832 | 拙笨 2833 | 拙劣 2834 | 着三不着两 2835 | 浊 2836 | 子虚 2837 | 子虚乌有 2838 | 自傲 2839 | 自大 2840 | 自负 2841 | 自高自大 2842 | 自豪 2843 | 自命不凡 2844 | 自命清高 2845 | 自恃 2846 | 自私 2847 | 自私自利 2848 | 自相矛盾 2849 | 纵恣 2850 | 走神 2851 | 走油 2852 | 嘴尖 2853 | 醉翁之意不在酒 2854 | 最差 2855 | 最坏 2856 | 罪不容诛 2857 | 罪大恶极 2858 | 罪恶 2859 | 罪恶多端 2860 | 罪恶深重 2861 | 罪恶滔天 2862 | 罪恶昭彰 2863 | 罪恶昭著 2864 | 罪该万死 2865 | 罪孽深重 2866 | 左 2867 | 做作 2868 | 作势 2869 | 坐而论道 2870 | 坐井观天 2871 | 兀突 2872 | 孬 2873 | 噩 2874 | 卮 2875 | 孛 2876 | 啬 2877 | 啬刻 2878 | 厝火积薪 2879 | 赝 2880 | 剌 2881 | 剌戾 2882 | 剽悍 2883 | 罔 2884 | 伧 2885 | 伧俗 2886 | 佶屈聱牙 2887 | 侉 2888 | 佻 2889 | 俚 2890 | 俚俗 2891 | 倜然 2892 | 倥 2893 | 倥侗 2894 | 倥偬 2895 | 倨 2896 | 倨傲 2897 | 傥 2898 | 僭 2899 | 儇 2900 | 巽 2901 | 亵 2902 | 羸弱 2903 | 跅弛 2904 | 跅驰 2905 | 冥 2906 | 冥顽 2907 | 冥顽不化 2908 | 冥顽不灵 2909 | 冥冥 2910 | 讷 2911 | 诎 2912 | 诘屈聱牙 2913 | 谫 2914 | 谫陋 2915 | 谲 2916 | 谲诈 2917 | 阢 2918 | 阽 2919 | 刍 2920 | 堙 2921 | 艽 2922 | 芴 2923 | 苴 2924 | 茕 2925 | 茕茕 2926 | 茕茕孑立 2927 | 茕茕孑立,形影相吊 2928 | 荏 2929 | 荏弱 2930 | 萋迷 2931 | 迍邅 2932 | 瞢 2933 | 拗 2934 | 拮据 2935 | 吆三喝四 2936 | 吆五喝六 2937 | 咄咄逼人 2938 | 哙 2939 | 哝 2940 | 啷 2941 | 嗲 2942 | 嗲声嗲气 2943 | 嘈 2944 | 嘈杂 2945 | 嘀里嘟噜 2946 | 岌岌 2947 | 岌岌不可终日 2948 | 岌岌可危 2949 | 嶙峋 2950 | 嶙嶙 2951 | 犷 2952 | 犷悍 2953 | 狃 2954 | 狎 2955 | 狎昵 2956 | 狯 2957 | 狷 2958 | 狷急 2959 | 猥 2960 | 猥鄙 2961 | 猥贱 2962 | 猥劣 2963 | 猥陋 2964 | 猥琐 2965 | 猥亵 2966 | 獐头鼠目 2967 | 獠 2968 | 舛 2969 | 馀 2970 | 廪 2971 | 忉 2972 | 忮 2973 | 忸忸怩怩 2974 | 忸怩作态 2975 | 怊 2976 | 恹 2977 | 恹恹 2978 | 悖 2979 | 悖晦 2980 | 悖谬 2981 | 悖逆 2982 | 悖妄 2983 | 悭 2984 | 悭吝 2985 | 悱 2986 | 愦 2987 | 愣 2988 | 愣头愣脑 2989 | 愀然 2990 | 愎 2991 | 慵懒 2992 | 懵 2993 | 懵懂 2994 | 懵里懵懂 2995 | 懵懵懂懂 2996 | 阙陋 2997 | 阙略 2998 | 湎 2999 | 溲 3000 | 溷浊 3001 | 滂 3002 | 澹然 3003 | 蹇 3004 | 遴 3005 | 邋里邋遢 3006 | 邋遢 3007 | 邋邋遢遢 3008 | 孱 3009 | 孱弱 3010 | 羼 3011 | 娆 3012 | 媸 3013 | 孑 3014 | 孑然 3015 | 孑然一身 3016 | 孑身 3017 | 驽 3018 | 驽钝 3019 | 骈枝 3020 | 绌 3021 | 缈 3022 | 缛 3023 | 缥缈 3024 | 缭乱 3025 | 幺麽 3026 | 杌 3027 | 桀 3028 | 桀骜不驯 3029 | 棼 3030 | 槁 3031 | 轫 3032 | 辁 3033 | 暧 3034 | 暧昧 3035 | 暝 3036 | 犟 3037 | 毵毵 3038 | 虢 3039 | 朦 3040 | 朦胧 3041 | 朦朦胧胧 3042 | 臊 3043 | 膻 3044 | 膻气 3045 | 膻腥 3046 | 熹微 3047 | 戾 3048 | 恝 3049 | 恝然 3050 | 恣 3051 | 恣肆 3052 | 恣意 3053 | 憝 3054 | 戆 3055 | 戆头戆脑 3056 | 沓 3057 | 硗 3058 | 硗薄 3059 | 硗瘠 3060 | 碜 3061 | 睨 3062 | 瞀 3063 | 瞑 3064 | 瞽 3065 | 锱铢必较 3066 | 鸷 3067 | 鸷悍 3068 | 疣赘 3069 | 瘠 3070 | 瘠薄 3071 | 癃 3072 | 癫狂 3073 | 窈冥 3074 | 窭 3075 | 窳 3076 | 窳败 3077 | 窳惰 3078 | 窳劣 3079 | 褊 3080 | 褊急 3081 | 褊狭 3082 | 褶 3083 | 矜 3084 | 矜持 3085 | 矜夸 3086 | 聒 3087 | 聒噪 3088 | 颛 3089 | 颛蒙 3090 | 颟顸 3091 | 蚍蜉撼大树 3092 | 蚍蜉撼树 3093 | 蚩 3094 | 蜻蜓点水 3095 | 笃 3096 | 箪食瓢饮 3097 | 趄 3098 | 蹩脚 3099 | 霭霭 3100 | 龃 3101 | 龃龉 3102 | 龉 3103 | 龌 3104 | 龌龊 3105 | 鲰 3106 | 饕 3107 | 黝 3108 | 黝暗 3109 | 黝黯 3110 | 黠 3111 | 黠慧 3112 | 黢 3113 | 黢黑 3114 | 黩 3115 | 黪 3116 | 黯 3117 | 黯淡 3118 | 黯然 3119 | -------------------------------------------------------------------------------- /dict/知网情感分析用词语集/负面评价词语(英文).txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/dict/知网情感分析用词语集/负面评价词语(英文).txt -------------------------------------------------------------------------------- /sentiment-master/README: -------------------------------------------------------------------------------- 1 | sentiment: Tools for Sentiment Analysis 2 | 3 | Description: sentiment is an R package with tools for sentiment analysis including bayesian classifiers for positivity/negativity and emotion classification. 4 | Version: 0.2 5 | Depends: R (≥ 2.14.0), tm, Rstem 6 | Published: 2012-01-08 7 | Authors: Timothy P. Jurka 8 | Maintainer: Timothy P. Jurka 9 | License: GPL-3 10 | 11 | 12 | INSTALLATION 13 | ============ 14 | sentiment requires R 2.14+, which can be downloaded at http://www.r-project.org/. To build and install sentiment, run the following commands while in the root folder: 15 | 16 | R CMD REMOVE sentiment 17 | R CMD BUILD sentiment 18 | R CMD INSTALL sentiment_X.X.tar.gz (where the X's should be replaced with the version number -- e.g. 0.2) 19 | 20 | 21 | SOURCE CODE 22 | ============ 23 | To modify the R code, go to the sentiment folder, and modify files within the R directory. After making changes, ensure the package passes R CHECK using the following command: 24 | 25 | R CMD CHECK sentiment -------------------------------------------------------------------------------- /sentiment-master/sentiment/ChangeLog: -------------------------------------------------------------------------------- 1 | 2011-01-10 Timothy P. Jurka 2 | 3 | * DESCRIPTION: Release 0.2 4 | * Updated requirements for package, namely R >=2.14 5 | * Updated documentation to fix bugs in examples 6 | * Removed references to Rcpp, artifacts of development 7 | 8 | 9 | 2011-01-01 Timothy P. Jurka 10 | 11 | * DESCRIPTION: Release 0.1 12 | -------------------------------------------------------------------------------- /sentiment-master/sentiment/DESCRIPTION: -------------------------------------------------------------------------------- 1 | Package: sentiment 2 | Type: Package 3 | Title: Tools for Sentiment Analysis 4 | Version: 0.2 5 | Date: 2012-01-10 6 | Author: Timothy P. Jurka 7 | Maintainer: Timothy P. Jurka 8 | Depends: R (>= 2.14.0), tm, Rstem 9 | Description: sentiment is an R package with tools for sentiment analysis including bayesian classifiers for positivity/negativity and emotion classification. 10 | License: GPL-3 11 | LazyLoad: yes 12 | Packaged: 2012-01-05 00:17:55 UTC; timjurka 13 | Repository: CRAN 14 | Date/Publication: 2012-01-08 19:33:28 15 | -------------------------------------------------------------------------------- /sentiment-master/sentiment/NAMESPACE: -------------------------------------------------------------------------------- 1 | import(tm) 2 | import(Rstem) 3 | 4 | exportPattern("^[^\\.]") -------------------------------------------------------------------------------- /sentiment-master/sentiment/R/classify_emotion.R: -------------------------------------------------------------------------------- 1 | classify_emotion <- function(textColumns,algorithm="bayes",prior=1.0,verbose=FALSE,...) { 2 | matrix <- create_matrix(textColumns,...) 3 | lexicon <- read.csv(system.file("data/emotions.csv.gz",package="sentiment"),header=FALSE) 4 | 5 | counts <- list(anger=length(which(lexicon[,2]=="anger")), 6 | disgust=length(which(lexicon[,2]=="disgust")), 7 | fear=length(which(lexicon[,2]=="fear")), 8 | joy=length(which(lexicon[,2]=="joy")), 9 | sadness=length(which(lexicon[,2]=="sadness")), 10 | surprise=length(which(lexicon[,2]=="surprise")), 11 | total=nrow(lexicon)) 12 | documents <- c() 13 | 14 | for (i in 1:nrow(matrix)) { 15 | if (verbose) print(paste("DOCUMENT",i)) 16 | scores <- list(anger=0,disgust=0,fear=0,joy=0,sadness=0,surprise=0) 17 | doc <- matrix[i,] 18 | words <- findFreqTerms(doc,lowfreq=1) 19 | 20 | for (word in words) { 21 | for (key in names(scores)) { 22 | emotions <- lexicon[which(lexicon[,2]==key),] 23 | index <- pmatch(word,emotions[,1],nomatch=0) 24 | if (index > 0) { 25 | entry <- emotions[index,] 26 | 27 | category <- as.character(entry[[2]]) 28 | count <- counts[[category]] 29 | 30 | score <- 1.0 31 | if (algorithm=="bayes") score <- abs(log(score*prior/count)) 32 | 33 | if (verbose) { 34 | print(paste("WORD:",word,"CAT:",category,"SCORE:",score)) 35 | } 36 | 37 | scores[[category]] <- scores[[category]]+score 38 | } 39 | } 40 | } 41 | 42 | if (algorithm=="bayes") { 43 | for (key in names(scores)) { 44 | count <- counts[[key]] 45 | total <- counts[["total"]] 46 | score <- abs(log(count/total)) 47 | scores[[key]] <- scores[[key]]+score 48 | } 49 | } else { 50 | for (key in names(scores)) { 51 | scores[[key]] <- scores[[key]]+0.000001 52 | } 53 | } 54 | 55 | best_fit <- names(scores)[which.max(unlist(scores))] 56 | if (best_fit == "disgust" && as.numeric(unlist(scores[2]))-3.09234 < .01) best_fit <- NA 57 | documents <- rbind(documents,c(scores$anger,scores$disgust,scores$fear,scores$joy,scores$sadness,scores$surprise,best_fit)) 58 | } 59 | 60 | colnames(documents) <- c("ANGER","DISGUST","FEAR","JOY","SADNESS","SURPRISE","BEST_FIT") 61 | return(documents) 62 | } -------------------------------------------------------------------------------- /sentiment-master/sentiment/R/classify_polarity.R: -------------------------------------------------------------------------------- 1 | classify_polarity <- function(textColumns,algorithm="bayes",pstrong=0.5,pweak=1.0,prior=1.0,verbose=FALSE,...) { 2 | matrix <- create_matrix(textColumns,...) 3 | lexicon <- read.csv(system.file("data/subjectivity.csv.gz",package="sentiment"),header=FALSE) 4 | 5 | counts <- list(positive=length(which(lexicon[,3]=="positive")),negative=length(which(lexicon[,3]=="negative")),total=nrow(lexicon)) 6 | documents <- c() 7 | 8 | for (i in 1:nrow(matrix)) { 9 | if (verbose) print(paste("DOCUMENT",i)) 10 | scores <- list(positive=0,negative=0) 11 | doc <- matrix[i,] 12 | words <- findFreqTerms(doc,lowfreq=1) 13 | 14 | for (word in words) { 15 | index <- pmatch(word,lexicon[,1],nomatch=0) 16 | if (index > 0) { 17 | entry <- lexicon[index,] 18 | 19 | polarity <- as.character(entry[[2]]) 20 | category <- as.character(entry[[3]]) 21 | count <- counts[[category]] 22 | 23 | score <- pweak 24 | if (polarity == "strongsubj") score <- pstrong 25 | if (algorithm=="bayes") score <- abs(log(score*prior/count)) 26 | 27 | if (verbose) { 28 | print(paste("WORD:",word,"CAT:",category,"POL:",polarity,"SCORE:",score)) 29 | } 30 | 31 | scores[[category]] <- scores[[category]]+score 32 | } 33 | } 34 | 35 | if (algorithm=="bayes") { 36 | for (key in names(scores)) { 37 | count <- counts[[key]] 38 | total <- counts[["total"]] 39 | score <- abs(log(count/total)) 40 | scores[[key]] <- scores[[key]]+score 41 | } 42 | } else { 43 | for (key in names(scores)) { 44 | scores[[key]] <- scores[[key]]+0.000001 45 | } 46 | } 47 | 48 | best_fit <- names(scores)[which.max(unlist(scores))] 49 | ratio <- as.integer(abs(scores$positive/scores$negative)) 50 | if (ratio==1) best_fit <- "neutral" 51 | documents <- rbind(documents,c(scores$positive,scores$negative,abs(scores$positive/scores$negative),best_fit)) 52 | if (verbose) { 53 | print(paste("POS:",scores$positive,"NEG:",scores$negative,"RATIO:",abs(scores$positive/scores$negative))) 54 | cat("\n") 55 | } 56 | } 57 | 58 | colnames(documents) <- c("POS","NEG","POS/NEG","BEST_FIT") 59 | return(documents) 60 | } -------------------------------------------------------------------------------- /sentiment-master/sentiment/R/create_matrix.R: -------------------------------------------------------------------------------- 1 | create_matrix <- function(textColumns, language="english", minDocFreq=1, minWordLength=3, removeNumbers=TRUE, removePunctuation=TRUE, removeSparseTerms=0, removeStopwords=TRUE, stemWords=FALSE, stripWhitespace=TRUE, toLower=TRUE, weighting=weightTf) { 2 | 3 | stem_words <- function(x) { 4 | split <- strsplit(x," ") 5 | return(wordStem(split[[1]],language=language)) 6 | } 7 | 8 | control <- list(language=language,tolower=toLower,removeNumbers=removeNumbers,removePunctuation=removePunctuation,stripWhitespace=stripWhitespace,minWordLength=minWordLength,stopwords=removeStopwords,minDocFreq=minDocFreq,weighting=weighting) 9 | 10 | if (stemWords == TRUE) control <- append(control,list(stemming=stem_words),after=6) 11 | 12 | trainingColumn <- apply(as.matrix(textColumns),1,paste,collapse=" ") 13 | trainingColumn <- sapply(as.vector(trainingColumn,mode="character"),iconv,to="UTF8",sub="byte") 14 | 15 | corpus <- Corpus(VectorSource(trainingColumn),readerControl=list(language=language)) 16 | matrix <- DocumentTermMatrix(corpus,control=control); 17 | if (removeSparseTerms > 0) matrix <- removeSparseTerms(matrix,removeSparseTerms) 18 | 19 | gc() 20 | return(matrix) 21 | } -------------------------------------------------------------------------------- /sentiment-master/sentiment/data/datalist: -------------------------------------------------------------------------------- 1 | subjectivity 2 | emotions 3 | -------------------------------------------------------------------------------- /sentiment-master/sentiment/data/emotions.csv.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/sentiment-master/sentiment/data/emotions.csv.gz -------------------------------------------------------------------------------- /sentiment-master/sentiment/data/subjectivity.csv.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/sentiment-master/sentiment/data/subjectivity.csv.gz -------------------------------------------------------------------------------- /sentiment-master/sentiment/man/classify_emotion.Rd: -------------------------------------------------------------------------------- 1 | \name{classify_emotion} 2 | \alias{classify_emotion} 3 | %- Also NEED an '\alias' for EACH other topic documented here. 4 | \title{ 5 | classifies the emotion (e.g. anger, disgust, fear, joy, sadness, surprise) of a set of texts. 6 | } 7 | \description{ 8 | Classifies the emotion (e.g. anger, disgust, fear, joy, sadness, surprise) of a set of texts using a naive Bayes classifier trained on Carlo Strapparava and Alessandro Valitutti's \code{\link{emotions}} lexicon. 9 | } 10 | \usage{ 11 | classify_emotion(textColumns,algorithm="bayes",prior=1.0,verbose=FALSE,...) 12 | } 13 | %- maybe also 'usage' for other objects documented here. 14 | \arguments{ 15 | \item{textColumns}{ 16 | A \code{data.frame} of text documents listed one per row. 17 | } 18 | \item{algorithm}{ 19 | A \code{string} indicating whether to use the naive \code{bayes} algorithm or a simple \code{voter} algorithm. 20 | } 21 | \item{prior}{ 22 | a \code{numeric} specifying the prior probability to use for the naive Bayes classifier. 23 | } 24 | \item{verbose}{ 25 | A \code{logical} specifying whether to print detailed output regarding the classification process. 26 | } 27 | \item{\dots}{ 28 | Additional parameters to be passed into the \code{\link{create_matrix}} function. 29 | } 30 | } 31 | \value{ 32 | Returns an object of class \code{data.frame} with seven columns and one row for each document. 33 | 34 | \item{anger}{The absolute log likelihood of the document expressing an angry sentiment.} 35 | \item{disgust}{The absolute log likelihood of the document expressing a disgusted sentiment.} 36 | \item{fear}{The absolute log likelihood of the document expressing a fearful sentiment.} 37 | \item{joy}{The absolute log likelihood of the document expressing a joyous sentiment.} 38 | \item{sadness}{The absolute log likelihood of the document expressing a sad sentiment.} 39 | \item{surprise}{The absolute log likelihood of the document expressing a surprised sentiment.} 40 | \item{best_fit}{The most likely sentiment category (e.g. anger, disgust, fear, joy, sadness, surprise) for the given text.} 41 | } 42 | \author{ 43 | Timothy P. Jurka 44 | } 45 | \examples{ 46 | # LOAD LIBRARY 47 | library(sentiment) 48 | 49 | # DEFINE DOCUMENTS 50 | documents <- c("I am very happy, excited, and optimistic.", 51 | "I am very scared, annoyed, and irritated.", 52 | "Iraq's political crisis entered its second week one step closer to the potential 53 | dissolution of the government, with a call for elections by a vital coalition partner 54 | and a suicide attack that extended the spate of violence that has followed the withdrawal 55 | of U.S. troops.") 56 | 57 | # CLASSIFY EMOTIONS 58 | classify_emotion(documents,algorithm="bayes",verbose=TRUE) 59 | } 60 | % Add one or more standard keywords, see file 'KEYWORDS' in the 61 | % R documentation directory. 62 | \keyword{methods} -------------------------------------------------------------------------------- /sentiment-master/sentiment/man/classify_polarity.Rd: -------------------------------------------------------------------------------- 1 | \name{classify_polarity} 2 | \alias{classify_polarity} 3 | %- Also NEED an '\alias' for EACH other topic documented here. 4 | \title{ 5 | classifies the polarity (e.g. positive or negative) of a set of texts. 6 | } 7 | \description{ 8 | Classifies the polarity (e.g. positive or negative) of a set of texts using a naive Bayes classifier trained on Janyce Wiebe's \code{\link{subjectivity}} lexicon. 9 | } 10 | \usage{ 11 | classify_polarity(textColumns,algorithm="bayes",pstrong=0.5,pweak=1.0, 12 | prior=1.0,verbose=FALSE,...) 13 | } 14 | %- maybe also 'usage' for other objects documented here. 15 | \arguments{ 16 | \item{textColumns}{ 17 | A \code{data.frame} of text documents listed one per row. 18 | } 19 | \item{algorithm}{ 20 | A \code{string} indicating whether to use the naive \code{bayes} algorithm or a simple \code{voter} algorithm. 21 | } 22 | \item{pstrong}{ 23 | A \code{numeric} specifying the probability that a strongly subjective term appears in the given text. 24 | } 25 | \item{pweak}{ 26 | A \code{numeric} specifying the probability that a weakly subjective term appears in the given text. 27 | } 28 | \item{prior}{ 29 | a \code{numeric} specifying the prior probability to use for the naive Bayes classifier. 30 | } 31 | \item{verbose}{ 32 | A \code{logical} specifying whether to print detailed output regarding the classification process. 33 | } 34 | \item{\dots}{ 35 | Additional parameters to be passed into the \code{\link{create_matrix}} function. 36 | } 37 | } 38 | \value{ 39 | Returns an object of class \code{data.frame} with four columns and one row for each document. 40 | 41 | \item{pos}{The absolute log likelihood of the document expressing a positive sentiment.} 42 | \item{neg}{The absolute log likelihood of the document expressing a negative sentiment.} 43 | \item{pos/neg}{The ratio of absolute log likelihoods between positive and negative sentiment scores. A score of 1 indicates a neutral sentiment, less than 1 indicates a negative sentiment, and greater than 1 indicates a positive sentiment.} 44 | \item{best_fit}{The most likely sentiment category (e.g. positive, negative, neutral) for the given text.} 45 | } 46 | \author{ 47 | Timothy P. Jurka 48 | } 49 | \examples{ 50 | # LOAD LIBRARY 51 | library(sentiment) 52 | 53 | # DEFINE DOCUMENTS 54 | documents <- c("I am very happy, excited, and optimistic.", 55 | "I am very scared, annoyed, and irritated.", 56 | "Iraq's political crisis entered its second week one step closer to the potential 57 | dissolution of the government, with a call for elections by a vital coalition partner 58 | and a suicide attack that extended the spate of violence that has followed the withdrawal 59 | of U.S. troops.", 60 | "With nightfall approaching, Los Angeles authorities are urging residents to keep their 61 | outdoor lights on as police and fire officials try to catch the person or people responsible 62 | for nearly 40 arson fires in the last three days.") 63 | 64 | # CLASSIFY POLARITY 65 | classify_polarity(documents,algorithm="bayes",verbose=TRUE) 66 | } 67 | % Add one or more standard keywords, see file 'KEYWORDS' in the 68 | % R documentation directory. 69 | \keyword{methods} -------------------------------------------------------------------------------- /sentiment-master/sentiment/man/create_matrix.Rd: -------------------------------------------------------------------------------- 1 | \name{create_matrix} 2 | \alias{create_matrix} 3 | %- Also NEED an '\alias' for EACH other topic documented here. 4 | \title{ 5 | creates a document-term matrix. 6 | } 7 | \description{ 8 | Creates an object of class \code{DocumentTermMatrix} from \pkg{tm}. 9 | } 10 | \usage{ 11 | create_matrix(textColumns, language="english", minDocFreq=1, minWordLength=3, 12 | removeNumbers=TRUE, removePunctuation=TRUE, removeSparseTerms=0, removeStopwords=TRUE, 13 | stemWords=FALSE, stripWhitespace=TRUE, toLower=TRUE, weighting=weightTf) 14 | } 15 | %- maybe also 'usage' for other objects documented here. 16 | \arguments{ 17 | \item{textColumns}{ 18 | Either character vector (e.g. data$Title) or a \code{cbind()} of columns to use for training the algorithms (e.g. \code{cbind(data$Title,data$Subject)}). 19 | } 20 | \item{language}{ 21 | The language to be used for stemming the text data. 22 | } 23 | \item{minDocFreq}{ 24 | The minimum number of times a word should appear in a document for it to be included in the matrix. See package \pkg{tm} for more details. 25 | } 26 | \item{minWordLength}{ 27 | The minimum number of letters a word should contain to be included in the matrix. See package \pkg{tm} for more details. 28 | } 29 | \item{removeNumbers}{ 30 | A \code{logical} parameter to specify whether to remove numbers. 31 | } 32 | \item{removePunctuation}{ 33 | A \code{logical} parameter to specify whether to remove punctuation. 34 | } 35 | \item{removeSparseTerms}{ 36 | See package \pkg{tm} for more details. 37 | } 38 | \item{removeStopwords}{ 39 | A \code{logical} parameter to specify whether to remove stopwords using the language specified in language. 40 | } 41 | \item{stemWords}{ 42 | A \code{logical} parameter to specify whether to stem words using the language specified in language. 43 | } 44 | \item{stripWhitespace}{ 45 | A \code{logical} parameter to specify whether to strip whitespace. 46 | } 47 | \item{toLower}{ 48 | A \code{logical} parameter to specify whether to make all text lowercase. 49 | } 50 | \item{weighting}{ 51 | Either \code{weightTf} or \code{weightTfIdf}. See package \pkg{tm} for more details. 52 | } 53 | } 54 | \author{ 55 | Timothy P. Jurka 56 | } 57 | \examples{ 58 | library(sentiment) 59 | 60 | # DEFINE THE DOCUMENTS 61 | documents <- c("I am very happy, excited, and optimistic.", 62 | "I am very scared, annoyed, and irritated.", 63 | "Iraq's political crisis entered its second week one step closer to the potential 64 | dissolution of the government, with a call for elections by a vital coalition partner 65 | and a suicide attack that extended the spate of violence that has followed the withdrawal 66 | of U.S. troops.", 67 | "With nightfall approaching, Los Angeles authorities are urging residents to keep their 68 | outdoor lights on as police and fire officials try to catch the person or people responsible 69 | for nearly 40 arson fires in the last three days.") 70 | 71 | matrix <- create_matrix(documents, language="english", removeNumbers=TRUE, 72 | stemWords=FALSE, weighting=weightTfIdf) 73 | } 74 | % Add one or more standard keywords, see file 'KEYWORDS' in the 75 | % R documentation directory. 76 | \keyword{methods} 77 | -------------------------------------------------------------------------------- /sentiment-master/sentiment/man/emotions.Rd: -------------------------------------------------------------------------------- 1 | \name{emotions} 2 | \alias{emotions} 3 | \docType{data} 4 | %- Also NEED an '\alias' for EACH other topic documented here. 5 | \title{ 6 | a dataset containing words categorized into six emotion categories. 7 | } 8 | \description{ 9 | A dataset containing approximately 1500 words classified into six emotion categories: anger, disgust, fear, joy, sadness, and surprise. 10 | } 11 | \usage{ 12 | data(emotions) 13 | } 14 | \format{ 15 | A \code{data.frame} containing two columns. 16 | 17 | 1. \code{word} - A word from the WordNet database. 18 | 19 | 2. \code{emotion} - The emotion it is classified under (e.g. anger, disgust, fear, joy, sadness, surprise). 20 | } 21 | \source{ 22 | Carlo Strapparava and Alessandro Valitutti, "WordNet-Affect: an affective 23 | extension of WordNet". In Proceedings of the 4th International Conference 24 | on Language Resources and Evaluation (LREC 2004), Lisbon, May 2004, pp. 25 | 1083-1086. \url{http://www.cse.unt.edu/~rada/affectivetext/} 26 | } 27 | \examples{ 28 | # READ THE CSV 29 | data <- read.csv(system.file("data/emotions.csv.gz",package="sentiment")) 30 | # ALTERNATIVELY, USE THE data() FUNCTION 31 | data(emotions) 32 | } 33 | \keyword{datasets} 34 | 35 | -------------------------------------------------------------------------------- /sentiment-master/sentiment/man/subjectivity.Rd: -------------------------------------------------------------------------------- 1 | \name{subjectivity} 2 | \alias{subjectivity} 3 | \docType{data} 4 | %- Also NEED an '\alias' for EACH other topic documented here. 5 | \title{ 6 | a dataset containing a list of positive and negative subjective words. 7 | } 8 | \description{ 9 | A dataset containing a list of positive and negative subjective words parsed from Janyce Wiebe's subjectivity lexicon. 10 | } 11 | \usage{ 12 | data(subjectivity) 13 | } 14 | \format{ 15 | A \code{data.frame} containing three columns. 16 | 17 | 1. \code{word} - A word from Janyce Wiebe's subjectivity lexicon. 18 | 19 | 2. \code{subjectivity} - A string indicating whether the word is strongly or weakly subjective. 20 | 21 | 3. \code{polarity} - A string indicating whether the word expresses a positive or negative sentiment. 22 | } 23 | \source{ 24 | Riloff and Wiebe (2003). Learning extraction patterns for subjective 25 | expressions. EMNLP-2003. \url{http://www.cs.pitt.edu/mpqa/#subj_lexicon} 26 | } 27 | \examples{ 28 | # READ THE CSV 29 | data <- read.csv(system.file("data/subjectivity.csv.gz",package="sentiment")) 30 | # ALTERNATIVELY, USE THE data() FUNCTION 31 | data(subjectivity) 32 | } 33 | \keyword{datasets} 34 | 35 | -------------------------------------------------------------------------------- /sentimentCN.R: -------------------------------------------------------------------------------- 1 | # Sentiment analysis for Chinese text 2 | # Cheng-Jun Wang 3 | 4 | 5 | ############ 6 | "Algorithm" 7 | ############ 8 | 9 | ############## 10 | "read dict" 11 | ############## 12 | library(plyr) 13 | library(stringr) 14 | library(e1071) 15 | library(Rwordseg) 16 | require(rJava) 17 | library(tm) 18 | library(slam) 19 | Sys.setlocale(locale="Chinese") 20 | 21 | setwd("D:/Dropbox/sentimentCN/dict/") 22 | 23 | # positive: combine 正面情感词语(中文),正面评价词语(中文), ntusd-positive 24 | posdict = read.csv("positive.txt", header = FALSE, stringsAsFactors = FALSE)[,1] 25 | # negative: combine 负面情感词语(中文),负面评价词语(中文), ntusd-negative 26 | negdict = read.csv("negative.txt", header = FALSE, stringsAsFactors = FALSE)[,1] 27 | 28 | # split 程度级别词语(中文).txt into 6 extent term most, very, more, ish, insufficient, inverse (over) 29 | mostdict = read.csv("./most.txt", header = FALSE, stringsAsFactors = FALSE)[,1] 30 | verydict = read.csv("./very.txt", header = FALSE, stringsAsFactors = FALSE)[,1] 31 | moredict = read.csv("./more.txt", header = FALSE, stringsAsFactors = FALSE)[,1] 32 | ishdict = read.csv("./ish.txt", header = FALSE, stringsAsFactors = FALSE)[,1] 33 | insufficientdict = read.csv("./insufficient.txt", header = FALSE, stringsAsFactors = FALSE)[,1] 34 | inversedict = read.csv("./inverse.txt", header = FALSE, stringsAsFactors = FALSE)[,1] 35 | inversedict = c("不","不是","没","没有", inversedict) 36 | 37 | ################## 38 | "sentiment function" 39 | ################## 40 | # "4. 定义判断基数偶数的函数。在判断否定词时使用。" 41 | judgeodd = function(num){ 42 | judge = num %% 2 # 1 is odd, 0 is even 43 | return (judge) 44 | } 45 | 46 | # clean data 47 | dataset = c("这手机的画面不是很好,不过操作却比较流畅。拍照真的太烂了!系统也不好。", 48 | "我喜欢苹果手机!非常好用。就是太贵了。") 49 | 50 | dataset = gsub("。", "。 ", dataset, fixed = T) 51 | dataset = gsub("!", "! ", dataset, fixed = T) 52 | dataset = gsub("?", "? ", dataset, fixed = T) 53 | 54 | # cut sentences 55 | cut_sentence = function(x){ 56 | ht1 = strsplit(x, " ", fixed = T) 57 | return(ht1) 58 | } 59 | 60 | cuted_data = cut_sentence(dataset) 61 | 62 | 63 | # cuted_data = c() 64 | # for (cell in dataset){ 65 | # cuted_data = c(cuted_data, cut_sentence(cell) ) 66 | # } 67 | 68 | # word segment 69 | dataset <- lapply(1:length(dataset), 70 | function(i) segmentCN(dataset[i], nosymbol = FALSE, nature = FALSE)) 71 | 72 | # sentiment_score_list 73 | sentiment_score_list = function(cuted_data ){ 74 | count1 = c() 75 | count2 = c() 76 | for (sents in cuted_data){ #循环遍历每一个评论 77 | for (sent in sents){ #循环遍历评论中的每一个分句 78 | # sent = cuted_data[[1]][1] # Testing with this sent 79 | segtmp = segmentCN(sent, nosymbol = FALSE, nature = FALSE) #把句子进行分词,以列表的形式返回 80 | i = 1 #记录扫描到的词的位置 81 | a = 1 #记录情感词的位置 82 | poscount = 0 #积极词的第一次分值 83 | poscount2 = 0 #积极词反转后的分值 84 | poscount3 = 0 #积极词的最后分值(包括叹号的分值) 85 | negcount = 0 86 | negcount2 = 0 87 | negcount3 = 0 88 | for (word in segtmp){ 89 | if (word %in% posdict){#判断词语是否是情感词 90 | poscount = poscount + 1 91 | c = 0 # 记录分句中否定词数量 92 | for (w in segtmp[a:i]){#扫描情感词前的程度词 93 | if (w %in% mostdict){ 94 | poscount = poscount*4.0 95 | } 96 | else if (w %in% verydict){ 97 | poscount = poscount*3.0 98 | } 99 | else if (w %in% moredict){ 100 | poscount = poscount*2.0 101 | } 102 | else if (w %in% ishdict){ 103 | poscount = poscount/2.0 104 | } 105 | else if (w %in% insufficientdict){ 106 | poscount = poscount/4.0 107 | } 108 | else if (w %in% inversedict){ 109 | c = c + 1 110 | } 111 | } 112 | if (judgeodd(c) == 1){ # "odd"==1 113 | poscount = poscount*(-1.0) 114 | poscount2 = poscount2 + poscount 115 | poscount = 0 116 | poscount3 = poscount + poscount2 + poscount3 117 | poscount2 = 0 118 | } #扫描情感词前的否定词数 119 | else{ 120 | poscount3 = poscount + poscount2 + poscount3 121 | poscount = 0 122 | } 123 | a = i + 1 #情感词的位置变化 124 | } 125 | else if (word %in% negdict){#消极情感的分析,与上面一致 126 | negcount = negcount + 1 127 | d = 0 128 | for (w in segtmp[a:i]){#扫描情感词前的程度词 129 | if (w %in% mostdict){ 130 | negcount = negcount*4.0 131 | } 132 | else if (w %in% verydict){ 133 | negcount = negcount*3.0 134 | } 135 | else if (w %in% moredict){ 136 | negcount = negcount*2.0 137 | } 138 | else if (w %in% ishdict){ 139 | negcount = negcount/2.0 140 | } 141 | else if (w %in% insufficientdict){ 142 | negcount = negcount/4.0 143 | } 144 | else if (w %in% inversedict){ 145 | d = d + 1 146 | } 147 | } 148 | if (judgeodd(c) == 1){ 149 | negcount = negcount*(-1.0) 150 | negcount2 = negcount2 + negcount 151 | negcount = 0 152 | negcount3 = negcount + negcount2 + negcount3 153 | negcount2 = 0 154 | } #扫描情感词前的否定词数 155 | else{ 156 | negcount3 = negcount + negcount2 + negcount3 157 | negcount = 0 158 | } 159 | a = i + 1 #情感词的位置变化 160 | } 161 | else if (word == '!'| word == '!'){ 162 | for (w2 in segtmp[1:length(segtmp)-1]){#扫描感叹号前的情感词,发现后权值+2,然后退出循环 163 | if (w2 %in% c(posdict[,1], negdict[,1]) ){ 164 | poscount3 = poscount3 + 2 165 | negcount3 = poscount3 + 2 166 | break 167 | } 168 | } 169 | 170 | } ##判断句子是否有感叹号 171 | i = i + 1 #扫描词位置前移 172 | } 173 | #以下是防止出现负数的情况 174 | pos_count = 0 175 | neg_count = 0 176 | if (poscount3 < 0 & negcount3 > 0){ 177 | neg_count = neg_count + negcount3 - poscount3 178 | pos_count = 0 179 | } 180 | else if (negcount3 < 0 & poscount3 > 0){ 181 | pos_count = poscount3 - negcount3 182 | neg_count = 0 183 | } 184 | else if (poscount3 < 0 & negcount3 < 0){ 185 | neg_count = -poscount3 186 | pos_count = -negcount3 187 | } 188 | else{ 189 | pos_count = poscount3 190 | neg_count = negcount3 191 | count1 = c(count1, pos_count, neg_count) 192 | count2 = c(count2, count1) 193 | count1 = c() 194 | } 195 | } 196 | } 197 | return (count2) 198 | } 199 | 200 | sentiment_score_list(cuted_data) 201 | 202 | 203 | # sent = cuted_data[[1]][1] # Testing with this sent 204 | segtmp = segmentCN(sent, nosymbol = FALSE, nature = FALSE) #把句子进行分词,以列表的形式返回 205 | for (word in segtmp){ 206 | i = 1 #记录扫描到的词的位置 207 | cat(segtmp[i]) 208 | a = 1 #记录情感词的位置 209 | cat(segtmp[a]) 210 | poscount = 0 #积极词的第一次分值 211 | poscount2 = 0 #积极词反转后的分值 212 | poscount3 = 0 #积极词的最后分值(包括叹号的分值) 213 | negcount = 0 214 | negcount2 = 0 215 | negcount3 = 0 216 | if (word %in% posdict){#判断词语是否是情感词 217 | poscount = poscount + 1 218 | c = 0 # 记录分句中否定词数量 219 | cat(c) 220 | for (w in segtmp[a:i]){#扫描情感词前的程度词 221 | cat("this is", w) 222 | if (w %in% mostdict){ 223 | poscount = poscount*4.0 224 | } 225 | else if (w %in% verydict){ 226 | poscount = poscount*3.0 227 | } 228 | else if (w %in% moredict){ 229 | poscount = poscount*2.0 230 | } 231 | else if (w %in% ishdict){ 232 | poscount = poscount/2.0 233 | } 234 | else if (w %in% insufficientdict){ 235 | poscount = poscount/4.0 236 | } 237 | else if (w %in% inversedict){ 238 | c <<- c + 1 239 | cat(c) 240 | } 241 | 242 | } 243 | a = i + 1 244 | cat(c) 245 | } 246 | i = i + 1 247 | } 248 | 249 | -------------------------------------------------------------------------------- /sentimentCN.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/sentimentCN.py -------------------------------------------------------------------------------- /sentiment_analysis-master/.Rhistory: -------------------------------------------------------------------------------- 1 | Group = "group" , width = 800, height = 800, 2 | linkColour = "#666", file = "networks.html", 3 | opacity = 0.9, zoom = TRUE) 4 | d3ForceNetwork(Links = net, Nodes = node_group, 5 | Source = "source", Target = "target", 6 | Value = "value", NodeID = "name", 7 | Group = "group" , width = 800, height = 800, 8 | linkColour = "red", file = "networks.html", 9 | opacity = 0.9, zoom = TRUE) 10 | d3ForceNetwork(Links = net, Nodes = node_group, 11 | Source = "source", Target = "target", 12 | Value = "value", 13 | NodeID = "name", Group = "group" , 14 | width = 800, height = 800, 15 | linkColour = "red", textColour = "orange", 16 | file = "networks.html", 17 | opacity = 0.9, zoom = TRUE) 18 | d3ForceNetwork(Links = net, Nodes = node_group, 19 | Source = "source", Target = "target", 20 | Value = "value", 21 | NodeID = "name", Group = "group" , 22 | width = 800, height = 800, 23 | linkColour = "red", textColour = "orange", 24 | file = "networks.html", 25 | opacity = 0.9) 26 | d3ForceNetwork(Links = net, Nodes = node_group, 27 | Source = "source", Target = "target", 28 | Value = "value", 29 | NodeID = "name", Group = "group" , 30 | width = 800, height = 800, 31 | linkColour = "red", 32 | file = "networks.html", 33 | opacity = 0.9) 34 | ?d3ForceNetwork 35 | d3ForceNetwork(Links = net, Nodes = node_group, 36 | Source = "source", Target = "target", Value = "value", 37 | NodeID = "name", Group = "group" , 38 | fontsize = 8, linkDistance = 50 39 | width = 800, height = 800, 40 | linkColour = "red", 41 | file = "networks.html", 42 | opacity = 0.9) 43 | d3ForceNetwork(Links = net, Nodes = node_group, 44 | Source = "source", Target = "target", Value = "value", 45 | NodeID = "name", Group = "group" , 46 | fontsize = 8, linkDistance = 50, 47 | width = 800, height = 800, 48 | linkColour = "red", 49 | file = "networks.html", 50 | opacity = 0.9) 51 | d3ForceNetwork(Links = net, Nodes = node_group, 52 | Source = "source", Target = "target", Value = "value", 53 | NodeID = "name", Group = "group" , 54 | fontsize = 8, linkDistance = 250, 55 | width = 800, height = 800, 56 | linkColour = "red", 57 | file = "networks.html", 58 | opacity = 0.9) 59 | d3SimpleNetwork(net, width = 1800, height = 1800, file = "networks1.html", 60 | textColour = "orange", linkColour = "red", 61 | opacity = 0.9) 62 | install.packges("knitr") 63 | install.packages("knitr") 64 | # basss diffusion model 65 | # basss diffusion model 66 | require(knitr) 67 | install.packages("knitr") 68 | detect_poisson_process(y) 69 | source('D:/possion_process.R') 70 | detect_poisson_process = function(y){ 71 | x=table(y) 72 | freq = as.vector(x) 73 | count = as.numeric(names(x)) 74 | nfreq = rep(0, max(count) + 1) 75 | nfreq[count + 1] = freq 76 | freq = nfreq 77 | count = 0:max(count) 78 | n = length(count) 79 | df = df - 1 80 | p.hat = diff(c(0, ppois(count[-n], lambda = mean(y)), 1)) 81 | expected = sum(freq) * p.hat 82 | # plot 83 | plot(count,freq,type="s",ylim=c(0,max(freq,expected)), main="Poison density and histogram") 84 | lines(count,expected, col="red") 85 | # calculate chisquare 86 | chisq = sum((freq-expected)^2/expected) 87 | df = n-1-1 88 | pvalue=pchisq(chisq,df) ; pvalue 89 | if (pvalue > 0.05){print "It is a poisson process"} 90 | else(print "It is not a poisson process") 91 | return(pvalue) 92 | } 93 | x=table(y) 94 | freq = as.vector(x) 95 | count = as.numeric(names(x)) 96 | nfreq = rep(0, max(count) + 1) 97 | nfreq[count + 1] = freq 98 | freq = nfreq 99 | count = 0:max(count) 100 | n = length(count) 101 | df = df - 1 102 | p.hat = diff(c(0, ppois(count[-n], lambda = mean(y)), 1)) 103 | expected = sum(freq) * p.hat 104 | # plot 105 | plot(count,freq,type="s",ylim=c(0,max(freq,expected)), main="Poison density and histogram") 106 | lines(count,expected, col="red") 107 | # calculate chisquare 108 | chisq = sum((freq-expected)^2/expected) 109 | df = n-1-1 110 | pvalue=pchisq(chisq,df) ; pvalue 111 | if (pvalue > 0.05){print "It is a poisson process"} 112 | else{print "It is not a poisson process"} 113 | pvalue 114 | set.seed(1);y=rpois(100,5) 115 | x=table(y) 116 | freq = as.vector(x) 117 | count = as.numeric(names(x)) 118 | nfreq = rep(0, max(count) + 1) 119 | nfreq[count + 1] = freq 120 | freq = nfreq 121 | count = 0:max(count) 122 | n = length(count) 123 | df = df - 1 124 | p.hat = diff(c(0, ppois(count[-n], lambda = mean(y)), 1)) 125 | expected = sum(freq) * p.hat 126 | # plot 127 | plot(count,freq,type="s",ylim=c(0,max(freq,expected)), main="Poison density and histogram") 128 | lines(count,expected, col="red") 129 | # calculate chisquare 130 | chisq = sum((freq-expected)^2/expected) 131 | df = n-1-1 132 | pvalue=pchisq(chisq,df) ; pvalue 133 | if (pvalue > 0.05){print "It is a poisson process"} 134 | else {print "It is not a poisson process"} 135 | print "a" 136 | ?print 137 | if (pvalue > 0.05){ 138 | print ("It is a poisson process") 139 | } else {print ("It is not a poisson process")} 140 | source('D:/possion_process.R') 141 | detect_poisson_process = function(y){ 142 | x=table(y) 143 | freq = as.vector(x) 144 | count = as.numeric(names(x)) 145 | nfreq = rep(0, max(count) + 1) 146 | nfreq[count + 1] = freq 147 | freq = nfreq 148 | count = 0:max(count) 149 | n = length(count) 150 | df = df - 1 151 | p.hat = diff(c(0, ppois(count[-n], lambda = mean(y)), 1)) 152 | expected = sum(freq) * p.hat 153 | # plot 154 | plot(count,freq,type="s",ylim=c(0,max(freq,expected)), main="Poison density and histogram") 155 | lines(count,expected, col="red") 156 | # calculate chisquare 157 | chisq = sum((freq-expected)^2/expected) 158 | df = n-1-1 159 | pvalue=pchisq(chisq,df) ; pvalue 160 | if (pvalue > 0.05){ 161 | print ("It is a poisson process") 162 | } else {print ("It is not a poisson process")} 163 | return(pvalue) 164 | } 165 | detect_poisson_process(y) 166 | set.seed(1);y=rpois(100,5) 167 | detect_poisson_process(y) 168 | set.seed(1);y=rnorm(100) 169 | detect_poisson_process(y) 170 | ?rnorm 171 | set.seed(1);y=rnorm(100, 5, 0.2) 172 | y 173 | detect_poisson_process(y) 174 | gf = goodfit(y,type= "poisson",method= "ML") 175 | gf.summary = capture.output(summary(gf))[[5]] 176 | pvalue = unlist(strsplit(gf.summary, split = " ")) 177 | pvalue = as.numeric(pvalue[length(pvalue)]); pvalue 178 | source('D:/possion_process.R') 179 | set.seed(1);y=rnorm(100) 180 | gf = goodfit(y,type= "poisson",method= "ML") 181 | gf.summary = capture.output(summary(gf))[[5]] 182 | pvalue = unlist(strsplit(gf.summary, split = " ")) 183 | pvalue = as.numeric(pvalue[length(pvalue)]); pvalue 184 | set.seed(1);y=rnorm(100) 185 | gf.summary = capture.output(summary(gf))[[5]] 186 | pvalue = unlist(strsplit(gf.summary, split = " ")) 187 | pvalue = as.numeric(pvalue[length(pvalue)]); pvalue 188 | set.seed(2014);y=rnorm(100) 189 | gf = goodfit(y,type= "poisson",method= "ML") 190 | gf.summary = capture.output(summary(gf))[[5]] 191 | pvalue = unlist(strsplit(gf.summary, split = " ")) 192 | pvalue = as.numeric(pvalue[length(pvalue)]); pvalue 193 | set.seed(2014);y=rnorm(100, 5, 0.3) 194 | gf = goodfit(y,type= "poisson",method= "ML") 195 | gf.summary = capture.output(summary(gf))[[5]] 196 | pvalue = unlist(strsplit(gf.summary, split = " ")) 197 | pvalue = as.numeric(pvalue[length(pvalue)]); pvalue 198 | source('D:/possion_process.R') 199 | source('D:/possion_process.R') 200 | plot(gf,main="Count data vs Poisson distribution") 201 | hist(y) 202 | chisq = sum( (gf$observed-gf$fitted)^2/gf$fitted ) 203 | df = length(gf$observed)-1-1 204 | pvalue=pchisq(chisq,9) ; pvalue 205 | source('D:/possion_process.R') 206 | source('D:/possion_process.R') 207 | source('D:/possion_process.R') 208 | pvalue=pchisq(chisq,df) ; pvalue 209 | set.seed(2014);y=rnorm(100, 5, 0.3) # goodfit asks for non-negative values 210 | gf = goodfit(y,type= "poisson",method= "ML") 211 | chisq = sum( (gf$observed-gf$fitted)^2/gf$fitted ) 212 | df = length(gf$observed)-1-1 213 | pvalue=pchisq(chisq,df) ; pvalue 214 | set.seed(2014);y=rnorm(100, 5, 0.3) # goodfit asks for non-negative values 215 | # to mannualy compute the pvalue 216 | chisq = sum( (gf$observed-gf$fitted)^2/gf$fitted ) 217 | df = length(gf$observed)-1-1 218 | pvalue=pchisq(chisq,df) ; pvalue 219 | set.seed(2014);y=rnorm(100, 5, 0.3) # goodfit asks for non-negative values 220 | plot(gf,main="Count data vs Poisson distribution") 221 | gf.summary = capture.output(summary(gf))[[5]] 222 | pvalue = unlist(strsplit(gf.summary, split = " ")) 223 | pvalue = as.numeric(pvalue[length(pvalue)]); pvalue 224 | chisq = sum( (gf$observed-gf$fitted)^2/gf$fitted ) 225 | df = length(gf$observed)-1-1 226 | pvalue=pchisq(chisq,df) ; pvalue 227 | source('D:/possion_process.R') 228 | pvalue=pchisq(chisq, df) ; pvalue 229 | set.seed(2014);y=rnorm(100, 5, 0.3) # goodfit asks for non-negative values 230 | chisq = sum( (gf$observed-gf$fitted)^2/gf$fitted ) 231 | df = length(gf$observed)-1-1 232 | pvalue=pchisq(chisq, df) ; pvalue 233 | df 234 | set.seed(2014);y=rnorm(100, 5, 0.3) # goodfit asks for non-negative values 235 | gf = goodfit(y,type= "poisson",method= "ML") 236 | gf 237 | set.seed(2014);y=rpois(200,5) 238 | gf = goodfit(y,type= "poisson",method= "ML") 239 | plot(gf,main="Count data vs Poisson distribution") 240 | chisq = sum( (gf$observed-gf$fitted)^2/gf$fitted ) 241 | df = length(gf$observed)-1-1 242 | pvalue=pchisq(chisq, df) ; pvalue 243 | gf.summary = capture.output(summary(gf))[[5]] 244 | pvalue = unlist(strsplit(gf.summary, split = " ")) 245 | pvalue = as.numeric(pvalue[length(pvalue)]); pvalue 246 | source('D:/possion_process.R') 247 | demo("cfplot_reg", "migest") 248 | library(plyr) 249 | library(stringr) 250 | library(e1071) 251 | as.list(c("a", "b"), c("d", "e")) 252 | rbind(c("a", "b"), c("d", "e")) 253 | pos_tweets = rbind( 254 | c('I love this car', 'positive'), 255 | c('This view is amazing', 'positive'), 256 | c('I feel great this morning', 'positive'), 257 | c('I am so excited about the concert', 'positive'), 258 | c('He is my best friend', 'positive')) 259 | pos_tweets 260 | pos_tweets = rbind( 261 | c('I love this car', 'positive'), 262 | c('This view is amazing', 'positive'), 263 | c('I feel great this morning', 'positive'), 264 | c('I am so excited about the concert', 'positive'), 265 | c('He is my best friend', 'positive') 266 | ) 267 | neg_tweets = rbind( 268 | c('I do not like this car', 'negative'), 269 | c('This view is horrible', 'negative'), 270 | c('I feel tired this morning', 'negative'), 271 | c('I am not looking forward to the concert', 'negative'), 272 | c('He is my enemy', 'negative') 273 | ) 274 | pos_tweets 275 | neg_tweets 276 | class(pos_tweets) 277 | test_tweets = rbind( 278 | c('feel happy this morning', 'positive'), 279 | c('larry friend', 'positive'), 280 | c('not like that man', 'negative'), 281 | c('house not great', 'negative'), 282 | c('your song annoying', 'negative') 283 | ) 284 | tweets = rbind(pos_tweets, neg_tweets) 285 | tweets 286 | twees[1,] 287 | twees[,1] 288 | tweets[,1] 289 | get_word_list = function(sentence){ 290 | sentence = gsub('[[:punct:]]', '', sentence) 291 | sentence = gsub('[[:cntrl:]]', '', sentence) 292 | sentence = gsub('\\d+', '', sentence) 293 | sentence = tolower(sentence) 294 | wordList = str_split(sentence, '\\s+') 295 | return(wordList) 296 | } 297 | lapply(tweets[,1], get_word_list) 298 | wordlist = lapply(tweets[,1], get_word_list) 299 | wordlsit[1] 300 | wordlsit[[1]] 301 | wordlist[1] 302 | wordlist[[1]] 303 | wordlist[[[1]]] 304 | wordlist[[1]] 305 | unique_words = unique(unlist(wordlist)) 306 | unique_words 307 | word_features = unique(unlist(wordlist)) 308 | ?naiveBayes 309 | tweets = rbind(pos_tweets, neg_tweets, test_tweets) 310 | matrix <- create_matrix(tweets, language="english",removeNumbers=TRUE, stemWords=FALSE, weighting=weightTfIdf) 311 | library(RTextTools) 312 | install.packages("RTextTools") 313 | library(RTextTools) 314 | matrix <- create_matrix(tweets[,1], language="english",removeNumbers=TRUE, stemWords=FALSE, weighting=weightTfIdf) 315 | ?create_matrix 316 | matrix <- create_matrix(tweets[,1], language="english",removeNumbers=TRUE, stemWords=FALSE, weighting=weightTf) 317 | library(RTextTools) 318 | matrix <- create_matrix(tweets[,1], language="english",removeNumbers=TRUE, stemWords=FALSE, weighting=weightTf) 319 | matrix <- create_matrix(tweets[,1], language="english",removeNumbers=TRUE, stemWords=FALSE) 320 | matrix 321 | as.matrix(matrix) 322 | matrix <- create_matrix(tweets[,1], language="english",removeNumbers=TRUE, 323 | stemWords=FALSE, tm::weightTfIdf) 324 | print_algorithms() 325 | models <- train_models(container, algorithms=c("MAXENT","SVM" 326 | "GLMNET", "BOOSTING", 327 | # "SLDA","BAGGING", 328 | "RF", "NNET", 329 | "TREE" )) 330 | container <- create_container(matrix,data$Topic.Code,trainSize=1:10, testSize=11:15,virgin=TRUE) #可以设置removeSparseTerms 331 | container <- create_container(matrix,tweets[,2],trainSize=1:10, testSize=11:15,virgin=TRUE) #可以设置removeSparseTerms 332 | models <- train_models(container, algorithms=c("MAXENT","SVM" 333 | "GLMNET", "BOOSTING", 334 | # "SLDA","BAGGING", 335 | "RF", "NNET", 336 | "TREE" )) 337 | models <- train_models(container, algorithms=c("MAXENT","SVM", 338 | "GLMNET", "BOOSTING", 339 | # "SLDA","BAGGING", 340 | "RF", "NNET", 341 | "TREE" )) 342 | results <- classify_models(container, models) 343 | dim(tweets) 344 | tweets[,2] 345 | container 346 | models <- train_models(container, algorithms=c("MAXENT","SVM", 347 | "GLMNET", "BOOSTING", 348 | # "SLDA","BAGGING", 349 | "RF", "NNET", 350 | "TREE" )) 351 | results <- classify_models(container, models) 352 | classify_models 353 | ?classify_models 354 | models <- train_models(container, algorithms=c("MAXENT","SVM", 355 | "GLMNET", "BOOSTING", 356 | # "SLDA","BAGGING", 357 | "RF", #"NNET", 358 | "TREE" )) 359 | results <- classify_models(container, models) 360 | analytics <- create_analytics(container, results) 361 | results 362 | analytics 363 | analytics = create_analytics(container, results) 364 | # 对以词语为特征向量的文本矩阵划分训练集和测试集 365 | container = create_container(matrix, tweets[,2], 366 | trainSize=1:10, testSize=11:15,virgin=TRUE) #可以设置removeSparseTerms 367 | # 训练模型,可以选择其它方法 368 | models = train_models(container, algorithms=c("MAXENT","SVM", 369 | #"GLMNET", "BOOSTING", 370 | # "SLDA","BAGGING", 371 | "RF", #"NNET", 372 | "TREE" )) 373 | results = classify_models(container, models) 374 | # 分析结果 375 | analytics = create_analytics(container, results) 376 | models = train_models(container, algorithms=c(#"MAXENT", 377 | "SVM", 378 | #"GLMNET", "BOOSTING", 379 | # "SLDA","BAGGING", 380 | "RF", #"NNET", 381 | "TREE" )) 382 | # 测试模型 383 | results = classify_models(container, models) 384 | # 分析结果 385 | analytics = create_analytics(container, results) 386 | # 训练模型,可以选择其它方法 387 | models = train_models(container, algorithms=c(#"MAXENT", 388 | #"SVM", 389 | #"GLMNET", "BOOSTING", 390 | # "SLDA","BAGGING", 391 | "RF", #"NNET", 392 | "TREE" )) 393 | # 测试模型 394 | results = classify_models(container, models) 395 | # 分析结果 396 | analytics = create_analytics(container, results) 397 | results 398 | tweets[,2] 399 | library(plyr) 400 | library(stringr) 401 | library(e1071) 402 | setwd("D:/Dropbox/sentimentCN/sentiment_analysis-master/") 403 | ############## 404 | "read dict" 405 | ############## 406 | #load up word polarity list and format it 407 | afinn_list = read.delim(file='./AFINN/AFINN-111.txt', header=FALSE, stringsAsFactors=FALSE) 408 | names(afinn_list) = c('word', 'score') 409 | afinn_list$word = tolower(afinn_list$word) 410 | #categorize words as very negative to very positive and add some movie-specific words 411 | vNegTerms = afinn_list$word[afinn_list$score==-5 | afinn_list$score==-4] 412 | negTerms = c(afinn_list$word[afinn_list$score==-3 | afinn_list$score==-2 | afinn_list$score==-1], 413 | "second-rate", "moronic", "third-rate", "flawed", "juvenile", "boring", "distasteful", 414 | "ordinary", "disgusting", "senseless", "static", "brutal", "confused", "disappointing", 415 | "bloody", "silly", "tired", "predictable", "stupid", "uninteresting", "trite", "uneven", 416 | "outdated", "dreadful", "bland") 417 | posTerms = c(afinn_list$word[afinn_list$score==3 | afinn_list$score==2 | afinn_list$score==1], 418 | "first-rate", "insightful", "clever", "charming", "comical", "charismatic", 419 | "enjoyable", "absorbing", "sensitive", "intriguing", "powerful", "pleasant", 420 | "surprising", "thought-provoking", "imaginative", "unpretentious") 421 | vPosTerms = c(afinn_list$word[afinn_list$score==5 | afinn_list$score==4], 422 | "uproarious", "riveting", "fascinating", "dazzling", "legendary") 423 | ############################# 424 | "function of sentimentScore" 425 | ############################# 426 | sentimentScore = function(sentences, vNegTerms, negTerms, posTerms, vPosTerms){ 427 | final_scores = matrix('', 0, 5) 428 | scores = laply(sentences, function(sentence, vNegTerms, negTerms, posTerms, vPosTerms){ 429 | initial_sentence = sentence 430 | #remove unnecessary characters and split up by word 431 | sentence = gsub('[[:punct:]]', '', sentence) 432 | sentence = gsub('[[:cntrl:]]', '', sentence) 433 | sentence = gsub('\\d+', '', sentence) 434 | sentence = tolower(sentence) 435 | wordList = str_split(sentence, '\\s+') 436 | words = unlist(wordList) 437 | #build vector with matches between sentence and each category 438 | vPosMatches = match(words, vPosTerms) 439 | posMatches = match(words, posTerms) 440 | vNegMatches = match(words, vNegTerms) 441 | negMatches = match(words, negTerms) 442 | #sum up number of words in each category 443 | vPosMatches = sum(!is.na(vPosMatches)) 444 | posMatches = sum(!is.na(posMatches)) 445 | vNegMatches = sum(!is.na(vNegMatches)) 446 | negMatches = sum(!is.na(negMatches)) 447 | score = c(vNegMatches, negMatches, posMatches, vPosMatches) 448 | #add row to scores table 449 | newrow = c(initial_sentence, score) 450 | final_scores = rbind(final_scores, newrow) 451 | return(final_scores) 452 | }, vNegTerms, negTerms, posTerms, vPosTerms) 453 | return(scores) 454 | } 455 | ################ 456 | "load data" 457 | ################ 458 | #load up positive and negative sentences and format 459 | posText = read.delim(file='polarityData/rt-polaritydata/rt-polarity-pos.txt', header=FALSE, stringsAsFactors=FALSE) 460 | negText = read.delim(file='polarityData/rt-polaritydata/rt-polarity-neg.txt', header=FALSE, stringsAsFactors=FALSE) 461 | posText = posText$V1 462 | negText = negText$V1 463 | posText = unlist(lapply(posText, function(x) { str_split(x, "\n") })) 464 | negText = unlist(lapply(negText, function(x) { str_split(x, "\n") })) 465 | #build tables of positive and negative sentences with scores 466 | posResult = as.data.frame(sentimentScore(posText, vNegTerms, negTerms, posTerms, vPosTerms)) 467 | negResult = as.data.frame(sentimentScore(negText, vNegTerms, negTerms, posTerms, vPosTerms)) 468 | posResult = cbind(posResult, 'positive') 469 | negResult = cbind(negResult, 'negative') 470 | colnames(posResult) = c('sentence', 'vNeg', 'neg', 'pos', 'vPos', 'sentiment') 471 | colnames(negResult) = c('sentence', 'vNeg', 'neg', 'pos', 'vPos', 'sentiment') 472 | ######################################################### 473 | "run the naive bayes algorithm using all four categories" 474 | ######################################################### 475 | results = rbind(posResult, negResult) 476 | classifier = naiveBayes(results[,2:5], results[,6]) 477 | predicted = predict(classifier, results) 478 | results$predicted = predicted 479 | results[1:50,2:7] 480 | #display the confusion table for the classification ran on the same data 481 | confTable = table(predicted, results[,6], dnn=list('predicted','actual')) 482 | confTable 483 | #run a binomial test for confidence interval of results 484 | binom.test(confTable[1,1] + confTable[2,2], nrow(results), p=0.5) 485 | matrix 486 | matrix 487 | as.matrix(container) 488 | as.matrix(matrix) 489 | mat = as.matrix(matrix) 490 | dim(mat) 491 | classifier = naiveBayes(mat, tweet[,2]) 492 | classifier = naiveBayes(mat, tweets[,2]) 493 | mat= create_matrix(tweets[,1], language="english",removeNumbers=TRUE, 494 | stemWords=FALSE, tm::weightTfIdf) 495 | mat = as.matrix(matrix) 496 | classifier = naiveBayes(mat[1:10, ], tweets[1:10,2]) 497 | predict(classifier, mat[11:15,]) 498 | classifier = naiveBayes(mat[1:10, ], tweets[1:10,2]) 499 | predicted = predict(classifier, mat[11:15,]) 500 | predicted 501 | classifier 502 | mat[11:15,] 503 | predicted = predict(classifier, mat[11:15,]) 504 | predict(classifier, mat[11:15,]) 505 | predict(classifier, mat) 506 | classifier = naiveBayes(mat, tweets) 507 | classifier = naiveBayes(mat, tweets[,2]) 508 | predict(classifier, mat) 509 | predicted 510 | classifier = naiveBayes(results[,2:5], results[,6]) 511 | predicted = predict(classifier, results) 512 | predicted 513 | -------------------------------------------------------------------------------- /sentiment_analysis-master/.gitattributes: -------------------------------------------------------------------------------- 1 | # Auto detect text files and perform LF normalization 2 | * text=auto 3 | 4 | # Custom for Visual Studio 5 | *.cs diff=csharp 6 | *.sln merge=union 7 | *.csproj merge=union 8 | *.vbproj merge=union 9 | *.fsproj merge=union 10 | *.dbproj merge=union 11 | 12 | # Standard to msysgit 13 | *.doc diff=astextplain 14 | *.DOC diff=astextplain 15 | *.docx diff=astextplain 16 | *.DOCX diff=astextplain 17 | *.dot diff=astextplain 18 | *.DOT diff=astextplain 19 | *.pdf diff=astextplain 20 | *.PDF diff=astextplain 21 | *.rtf diff=astextplain 22 | *.RTF diff=astextplain 23 | -------------------------------------------------------------------------------- /sentiment_analysis-master/.gitignore: -------------------------------------------------------------------------------- 1 | ################# 2 | ## Eclipse 3 | ################# 4 | 5 | *.pydevproject 6 | .project 7 | .metadata 8 | bin/ 9 | tmp/ 10 | *.tmp 11 | *.bak 12 | *.swp 13 | *~.nib 14 | local.properties 15 | .classpath 16 | .settings/ 17 | .loadpath 18 | 19 | # External tool builders 20 | .externalToolBuilders/ 21 | 22 | # Locally stored "Eclipse launch configurations" 23 | *.launch 24 | 25 | # CDT-specific 26 | .cproject 27 | 28 | # PDT-specific 29 | .buildpath 30 | 31 | 32 | ################# 33 | ## Visual Studio 34 | ################# 35 | 36 | ## Ignore Visual Studio temporary files, build results, and 37 | ## files generated by popular Visual Studio add-ons. 38 | 39 | # User-specific files 40 | *.suo 41 | *.user 42 | *.sln.docstates 43 | 44 | # Build results 45 | [Dd]ebug/ 46 | [Rr]elease/ 47 | *_i.c 48 | *_p.c 49 | *.ilk 50 | *.meta 51 | *.obj 52 | *.pch 53 | *.pdb 54 | *.pgc 55 | *.pgd 56 | *.rsp 57 | *.sbr 58 | *.tlb 59 | *.tli 60 | *.tlh 61 | *.tmp 62 | *.vspscc 63 | .builds 64 | *.dotCover 65 | 66 | ## TODO: If you have NuGet Package Restore enabled, uncomment this 67 | #packages/ 68 | 69 | # Visual C++ cache files 70 | ipch/ 71 | *.aps 72 | *.ncb 73 | *.opensdf 74 | *.sdf 75 | 76 | # Visual Studio profiler 77 | *.psess 78 | *.vsp 79 | 80 | # ReSharper is a .NET coding add-in 81 | _ReSharper* 82 | 83 | # Installshield output folder 84 | [Ee]xpress 85 | 86 | # DocProject is a documentation generator add-in 87 | DocProject/buildhelp/ 88 | DocProject/Help/*.HxT 89 | DocProject/Help/*.HxC 90 | DocProject/Help/*.hhc 91 | DocProject/Help/*.hhk 92 | DocProject/Help/*.hhp 93 | DocProject/Help/Html2 94 | DocProject/Help/html 95 | 96 | # Click-Once directory 97 | publish 98 | 99 | # Others 100 | [Bb]in 101 | [Oo]bj 102 | sql 103 | TestResults 104 | *.Cache 105 | ClientBin 106 | stylecop.* 107 | ~$* 108 | *.dbmdl 109 | Generated_Code #added for RIA/Silverlight projects 110 | 111 | # Backup & report files from converting an old project file to a newer 112 | # Visual Studio version. Backup files are not needed, because we have git ;-) 113 | _UpgradeReport_Files/ 114 | Backup*/ 115 | UpgradeLog*.XML 116 | 117 | 118 | 119 | ############ 120 | ## Windows 121 | ############ 122 | 123 | # Windows image file caches 124 | Thumbs.db 125 | 126 | # Folder config file 127 | Desktop.ini 128 | 129 | 130 | ############# 131 | ## Python 132 | ############# 133 | 134 | *.py[co] 135 | 136 | # Packages 137 | *.egg 138 | *.egg-info 139 | dist 140 | build 141 | eggs 142 | parts 143 | bin 144 | var 145 | sdist 146 | develop-eggs 147 | .installed.cfg 148 | 149 | # Installer logs 150 | pip-log.txt 151 | 152 | # Unit test / coverage reports 153 | .coverage 154 | .tox 155 | 156 | #Translations 157 | *.mo 158 | 159 | #Mr Developer 160 | .mr.developer.cfg 161 | 162 | # Mac crap 163 | .DS_Store 164 | -------------------------------------------------------------------------------- /sentiment_analysis-master/AFINN/AFINN-96.txt: -------------------------------------------------------------------------------- 1 | abandon -2 2 | abandons -2 3 | abandoned -2 4 | absentee -1 5 | absentees -1 6 | aboard 1 7 | abducted -2 8 | abduction -2 9 | abductions -2 10 | abuse -3 11 | abused -3 12 | abuses -3 13 | accept 1 14 | accepting 1 15 | accepts 1 16 | accepted 1 17 | accident -2 18 | accidental -2 19 | accidentally -2 20 | accidents -2 21 | accomplish 2 22 | accomplished 2 23 | accomplishes 2 24 | accusation -2 25 | accusations -2 26 | accuse -2 27 | accused -2 28 | ache -2 29 | achievable 1 30 | acquitted 2 31 | admit -1 32 | admits -1 33 | admitted -1 34 | adopt 1 35 | adopts 1 36 | advanced 1 37 | affected -1 38 | afraid -2 39 | aggressive -2 40 | aggression -2 41 | aggressions -2 42 | agree 1 43 | agrees 1 44 | agreed 1 45 | alarm -2 46 | alarmist -2 47 | alarmists -2 48 | alas -1 49 | alert -1 50 | alienation -2 51 | alive 1 52 | allergic -2 53 | allow 1 54 | alone -2 55 | amazed 2 56 | amazing 4 57 | ambitious 2 58 | amuse 3 59 | amused 3 60 | amusement 3 61 | amusements 3 62 | anger -3 63 | angers -3 64 | annoy -2 65 | annoys -2 66 | annoying -2 67 | anti -1 68 | anxious -2 69 | anxiety -2 70 | apocalyptic -2 71 | appalling -2 72 | applauded 2 73 | applaudes 2 74 | applauding 2 75 | applause 2 76 | appreciation 2 77 | approval 2 78 | approved 2 79 | approves 2 80 | apologise -1 81 | apologised -1 82 | apologises -1 83 | apologising -1 84 | apology -1 85 | ardent 1 86 | arrest -2 87 | arrests -2 88 | arrested -3 89 | arrogant -2 90 | ashamed -2 91 | ass -4 92 | assassination -3 93 | assassinations -3 94 | asset 2 95 | assets 2 96 | asshole -4 97 | attack -1 98 | attacked -1 99 | attacking -1 100 | attacks -1 101 | attract 1 102 | attracts 1 103 | attracting 2 104 | attraction 2 105 | attractions 2 106 | avert -1 107 | averted -1 108 | averts -1 109 | avoid -1 110 | avoided -1 111 | avoids -1 112 | await -1 113 | awaited -1 114 | awaits -1 115 | award 3 116 | awarded 3 117 | awards 3 118 | awesome 4 119 | awful -3 120 | axe -1 121 | axed -1 122 | backed 1 123 | backing 2 124 | backs 1 125 | bad -3 126 | badly -3 127 | bailout -2 128 | bamboozle -2 129 | bamboozled -2 130 | bamboozles -2 131 | ban -2 132 | banish -1 133 | bankrupt -3 134 | bankster -3 135 | banned -2 136 | bargain 2 137 | barrier -2 138 | bastard -5 139 | bastards -5 140 | battle -1 141 | battles -1 142 | beating -1 143 | beautiful 3 144 | beloved 3 145 | benefit 2 146 | benefits 2 147 | best 3 148 | betrayal -3 149 | better 2 150 | big 1 151 | bitch -5 152 | bitches -5 153 | bizarre -2 154 | blah -2 155 | blame -2 156 | bless 2 157 | blind -1 158 | bliss 3 159 | block -1 160 | blockbuster 3 161 | blocked -1 162 | blocks -1 163 | blocking -1 164 | bloody -3 165 | bomb -1 166 | boost 1 167 | boosted 1 168 | boosting 1 169 | boosts 1 170 | bored -2 171 | boring -3 172 | bother -2 173 | boycott -2 174 | boycots -2 175 | boycotted -2 176 | boycotting -2 177 | brainwashing -3 178 | brave 2 179 | breathtaking 5 180 | breakthrough 3 181 | bribe -3 182 | brilliant 4 183 | broke -1 184 | broked -1 185 | broken -1 186 | bullshit -4 187 | bullied -2 188 | bully -2 189 | bullying -2 190 | bummer -2 191 | burden -2 192 | calm 2 193 | calmed 2 194 | calming 2 195 | calms 2 196 | cancel -1 197 | cancels -1 198 | cancer -1 199 | can't stand -3 200 | care 2 201 | carefree 1 202 | careful 2 203 | carefully 2 204 | cares 2 205 | catastrophic -4 206 | cashing in -2 207 | casualty -2 208 | celebrate 3 209 | celebrated 3 210 | celebrates 3 211 | celebrating 3 212 | censor -2 213 | censored -2 214 | censors -2 215 | certain 1 216 | challenge -1 217 | charges -2 218 | cheer 2 219 | cheerful 2 220 | cheering 2 221 | cheers 3 222 | cheery 3 223 | chilling -1 224 | clarifies 2 225 | clarity 2 226 | clash -2 227 | clean 2 228 | cleaner 2 229 | clear 1 230 | clears 1 231 | cleared 1 232 | clever 2 233 | chance 2 234 | chances 2 235 | chaos -2 236 | chaotic -2 237 | charged -3 238 | cheat -3 239 | cheater -3 240 | cheaters -3 241 | cheats -3 242 | cheated -3 243 | cheer 2 244 | cheers 2 245 | cheered 2 246 | cherish 2 247 | cherished 2 248 | cherishes 2 249 | cherishing 2 250 | clueless -2 251 | cock -5 252 | cocksucker -5 253 | collapse -2 254 | collapsed -2 255 | collapses -2 256 | collapsing -2 257 | collide -1 258 | collides -1 259 | colliding -1 260 | collision -2 261 | collisions -2 262 | colluding -3 263 | combat -1 264 | combats -1 265 | commend 2 266 | commended 2 267 | commit 1 268 | commitment 2 269 | committed 1 270 | committing 1 271 | commits 1 272 | comprehensive 2 273 | confidence 2 274 | conflict -2 275 | conflicting -2 276 | conflicts -2 277 | confusing -2 278 | confuse -2 279 | confused -2 280 | congrats 2 281 | congratulate 2 282 | congratulation 2 283 | congratulations 2 284 | conspiracy -3 285 | controversial -2 286 | controversially -2 287 | convince 1 288 | convinced 1 289 | convinces 1 290 | cool 1 291 | cool stuff 3 292 | corpse -1 293 | costly -2 294 | courtesy 2 295 | cover-up -3 296 | coziness 2 297 | cramp -1 298 | crap -3 299 | crash -2 300 | crazy -2 301 | creative 2 302 | cried -2 303 | crime -3 304 | criminal -3 305 | criminals -3 306 | crisis -3 307 | critic -2 308 | critics -2 309 | criticize -2 310 | criticized -2 311 | criticizes -2 312 | criticizing -2 313 | cruel -3 314 | cruelty -3 315 | cry -1 316 | crying -2 317 | cunt -5 318 | curse -1 319 | cut -1 320 | cute 2 321 | cuts -1 322 | cutting -1 323 | cynicism -2 324 | damage -3 325 | damages -3 326 | damn -4 327 | damned -4 328 | darkest -2 329 | demonstration -1 330 | danger -2 331 | dead -3 332 | deadlock -2 333 | dear 2 334 | dearly 3 335 | deafening -1 336 | death -2 337 | debt -2 338 | deceive -3 339 | deceived -3 340 | deceives -3 341 | deceiving -3 342 | deception -3 343 | defect -3 344 | defects -3 345 | defender 2 346 | defenders 2 347 | defer -1 348 | defering -1 349 | deficit -2 350 | delay -1 351 | delayed -1 352 | delight 3 353 | delighted 3 354 | denied -2 355 | denier -2 356 | deniers -2 357 | denies -2 358 | denounce -2 359 | denounces -2 360 | deny -2 361 | denying -2 362 | depressed -2 363 | depressing -2 364 | derail -2 365 | derails -2 366 | deride -2 367 | derided -2 368 | derides -2 369 | deriding -2 370 | desire 1 371 | desired 2 372 | derision -2 373 | despair -3 374 | despairs -3 375 | desperate -3 376 | desperately -3 377 | destroy -3 378 | destroys -3 379 | destroyed -3 380 | destruction -3 381 | detain -2 382 | detained -2 383 | detention -2 384 | devastated -2 385 | devastating -2 386 | devoted 3 387 | dick -4 388 | dickhead -4 389 | die -3 390 | died -3 391 | difficult -1 392 | dilemma -1 393 | dire -3 394 | dirt -2 395 | dirty -2 396 | dirtier -2 397 | dirtiest -2 398 | disabling -1 399 | disappear -1 400 | disappears -1 401 | disappeared -1 402 | disappoint -2 403 | disappointed -2 404 | disappointing -2 405 | disappointment -2 406 | disappointments -2 407 | disappoints -2 408 | disaster -2 409 | disasters -2 410 | disastrous -3 411 | discord -2 412 | disgust -3 413 | disgusting -3 414 | dishonest -2 415 | dismayed -2 416 | dispute -2 417 | disputed -2 418 | disputes -2 419 | disputing -2 420 | disrespect -2 421 | disruption -2 422 | disruptions -2 423 | disruptive -2 424 | distort -2 425 | distorted -2 426 | distorting -2 427 | distorts -2 428 | dissy -1 429 | distract -2 430 | distracted -2 431 | distracts -2 432 | distraction -2 433 | distrust -3 434 | dithering -2 435 | dodgy -2 436 | dodging -2 437 | does not work -3 438 | dont like -2 439 | doom -2 440 | doomed -2 441 | doubt -1 442 | doubts -1 443 | downside -2 444 | drag -1 445 | drags -1 446 | dragged -1 447 | dread -2 448 | dream 1 449 | dreams 1 450 | drop -1 451 | drown -2 452 | drowned -2 453 | drowns -2 454 | drunk -2 455 | dubious -2 456 | dud -2 457 | dumb -3 458 | dump -1 459 | dumped -2 460 | dysfunction -2 461 | eager 2 462 | ease 2 463 | eerie -2 464 | eery -2 465 | effective 2 466 | effectively 2 467 | embarrass -2 468 | embarrassed -2 469 | embarrasses -2 470 | embarrassing -2 471 | embrace 1 472 | emergency -2 473 | encourage 2 474 | encourages 2 475 | encouraged 2 476 | endorse 2 477 | endorsed 2 478 | endorses 2 479 | endorsement 2 480 | enemies -2 481 | enemy -2 482 | engage 1 483 | engages 1 484 | enjoy 2 485 | enjoys 2 486 | enjoying 2 487 | enlightening 2 488 | enslave -2 489 | enslaved -2 490 | enslaves -2 491 | ensure 1 492 | ensuring 1 493 | entertaining 2 494 | envies -1 495 | envy -1 496 | envying -1 497 | escate -1 498 | escates -1 499 | escating -1 500 | ethical 2 501 | eviction -1 502 | evil -3 503 | exaggerate -2 504 | exaggerated -2 505 | exaggerates -2 506 | exaggerating -2 507 | excellence 3 508 | excellent 3 509 | excited 3 510 | excitement 3 511 | exciting 3 512 | exclude -1 513 | excluded -2 514 | exclusion -1 515 | exclusive 2 516 | excuse -1 517 | exhausted -2 518 | expand 1 519 | expands 1 520 | expel -2 521 | expels -2 522 | expelled -2 523 | expelling -2 524 | exploit -2 525 | exploited -2 526 | exploits -2 527 | exploiting -2 528 | expose -1 529 | exposed -1 530 | exposes -1 531 | exposing -1 532 | extend 1 533 | extends 1 534 | fabulous 4 535 | facinate 3 536 | facinated 3 537 | facinating 3 538 | fad -2 539 | faggot -3 540 | faggots -3 541 | fail -2 542 | failed -2 543 | fails -2 544 | failing -2 545 | failure -2 546 | faithful 3 547 | fair 2 548 | faith 1 549 | fake -3 550 | fakes -3 551 | faking -3 552 | falling -1 553 | falsify -3 554 | falsified -3 555 | fame 1 556 | fan 3 557 | fantastic 4 558 | farce -1 559 | fascist -2 560 | fascists -2 561 | fatality -3 562 | fatalities -3 563 | favor 2 564 | favors 2 565 | favorite 2 566 | favorites 2 567 | favorited 2 568 | fear -2 569 | fearful -2 570 | fearing -2 571 | fearless 2 572 | fed up -3 573 | feeble -2 574 | feeling 1 575 | feeble -2 576 | felony -3 577 | felonies -3 578 | fiasco -3 579 | fight -1 580 | fine 2 581 | fire -2 582 | fired -2 583 | firing -2 584 | fitness 1 585 | flagship 2 586 | flees -1 587 | flop -2 588 | flops -2 589 | flu -2 590 | fool -2 591 | fools -2 592 | forget -1 593 | forgetful -2 594 | forgotten -1 595 | frantic -1 596 | fraud -4 597 | fraudster -4 598 | fraudsters -4 599 | fraudulent -4 600 | free 1 601 | frenzy -3 602 | fresh 1 603 | friendly 2 604 | frightened -2 605 | frikin -2 606 | frustration -2 607 | ftw 3 608 | fuck -4 609 | fucked -4 610 | fuckers -4 611 | fucking -4 612 | fud -3 613 | fulfill 2 614 | fulfilled 2 615 | fulfills 2 616 | fun 4 617 | funeral -1 618 | funky 2 619 | funny 4 620 | furious -3 621 | hail 2 622 | hailed 2 623 | hell -4 624 | help 2 625 | helping 2 626 | helpless -2 627 | helps 2 628 | hero 2 629 | heroes 2 630 | heroic 3 631 | hunger -2 632 | hurt -2 633 | hurting -2 634 | hurts -2 635 | gag -2 636 | gagged -2 637 | gain 2 638 | gained 2 639 | gaining 2 640 | gains 2 641 | ghost -1 642 | glad 3 643 | gloom -1 644 | glorious 2 645 | god 1 646 | goddamn -3 647 | good 3 648 | grace 1 649 | grand 3 650 | grant 1 651 | granted 1 652 | granting 1 653 | grants 1 654 | grateful 3 655 | grave -2 656 | gray -1 657 | great 3 658 | greater 3 659 | greatest 3 660 | greed -3 661 | green wash -3 662 | green washing -3 663 | greenwash -3 664 | greenwasher -3 665 | greenwashers -3 666 | greenwashing -3 667 | greet 1 668 | greeted 1 669 | greets 1 670 | greeting 1 671 | greetings 2 672 | grey -1 673 | grief -2 674 | gross -2 675 | growing 1 676 | guilt -3 677 | guilty -3 678 | gun -1 679 | hacked -1 680 | happiness 3 681 | happy 3 682 | hard -1 683 | harm -2 684 | harmed -2 685 | harmful -2 686 | harming -2 687 | harms -2 688 | hate -3 689 | haunt -1 690 | haunted -2 691 | haunts -1 692 | haunting 1 693 | havoc -2 694 | healthy 2 695 | heartbroken -3 696 | help 2 697 | highlight 2 698 | hilarious 2 699 | hoax -2 700 | honest 2 701 | hope 2 702 | hopeful 2 703 | hopefully 2 704 | hopeless -2 705 | hopelessness -2 706 | hopes 2 707 | hoping 2 708 | honor 2 709 | honour 2 710 | horrible -3 711 | horrific -3 712 | hostile -2 713 | hug 2 714 | hugs 2 715 | huge 1 716 | huckster -2 717 | humerous 3 718 | humor 3 719 | humour 3 720 | hurrah 5 721 | hunger -2 722 | hysteria -3 723 | growth 2 724 | idiot -3 725 | idiotic -3 726 | ignorance -2 727 | ignore -1 728 | ignores -1 729 | ignored -2 730 | ill -2 731 | illegal -3 732 | illiteracy -2 733 | illness -2 734 | illnesses -2 735 | imperfect -2 736 | importance 2 737 | important 2 738 | impose -1 739 | imposed -1 740 | imposes -1 741 | imposing -1 742 | impotent -2 743 | impress 3 744 | impressed 3 745 | impresses 3 746 | impressive 3 747 | improve 2 748 | improves 2 749 | improved 2 750 | improvement 2 751 | improving 2 752 | inability -2 753 | inaction -2 754 | inadequate -2 755 | incompetence -2 756 | inconvenient -2 757 | increase 1 758 | increased 1 759 | indifferent -2 760 | indignation -2 761 | indoctrinate -2 762 | indoctrinated -2 763 | indoctrinates -2 764 | indoctrinating -2 765 | ineffective -2 766 | ineffectively -2 767 | infringement -2 768 | infuriate -2 769 | infuriates -2 770 | inhibit -1 771 | injury -2 772 | injustice -2 773 | innovate 1 774 | innovates 1 775 | innovation 1 776 | inquisition -2 777 | insane -2 778 | insanity -2 779 | insensitivity -2 780 | insipid -2 781 | inspiration 2 782 | inspirational 2 783 | inspire 2 784 | inspires 2 785 | inspiring 3 786 | intact 2 787 | integrity 2 788 | intense 1 789 | interest 1 790 | interests 1 791 | interested 2 792 | interesting 2 793 | interrupt -2 794 | interrupted -2 795 | interrupts -2 796 | interrupting -2 797 | interruption -2 798 | intimidate -2 799 | intimidated -2 800 | intimidates -2 801 | intimidating -2 802 | inviting 1 803 | irrational -1 804 | irreversible -1 805 | irony -1 806 | ironic -1 807 | jackass -4 808 | jackasses -4 809 | jailed -2 810 | jeopardy -2 811 | jerk -3 812 | jesus 1 813 | join 1 814 | joke 2 815 | joy 3 816 | justice 2 817 | justifiably 2 818 | kill -3 819 | killing -3 820 | kills -3 821 | kind 2 822 | kiss 2 823 | kudos 3 824 | lack -2 825 | lag -1 826 | lagged -2 827 | lagging -2 828 | lags -2 829 | lame -2 830 | landmark 2 831 | laugh 1 832 | laughs 1 833 | laughing 1 834 | launched 1 835 | lawsuit -2 836 | lawsuits -2 837 | leak -1 838 | leaked -1 839 | leave -1 840 | legal 1 841 | legally 1 842 | liar -3 843 | liars -3 844 | libelous -2 845 | lied -2 846 | like 2 847 | likes 2 848 | liked 2 849 | limited -1 850 | limits -1 851 | limitation -1 852 | litigation -1 853 | lively 2 854 | lobby -2 855 | lobbying -2 856 | lol 3 857 | lonely -2 858 | loom -1 859 | loomed -1 860 | looming -1 861 | looms -1 862 | loose -3 863 | looses -3 864 | losing -3 865 | loss -3 866 | lost -3 867 | love 3 868 | lovely 3 869 | lowest -1 870 | luck 3 871 | lunatic -3 872 | lunatics -3 873 | lurk -1 874 | lurks -1 875 | lurking -1 876 | mad -3 877 | made-up -1 878 | madly -3 879 | madness -3 880 | mandatory -1 881 | manipulated -1 882 | manipulating -1 883 | manipulation -1 884 | matter 1 885 | matters 1 886 | meaningful 2 887 | meaningless -2 888 | medal 3 889 | mercy 2 890 | mess -2 891 | messed -2 892 | messing up -2 893 | mindless -2 894 | misery -2 895 | misleading -3 896 | miss -2 897 | mischief -2 898 | mischiefs -2 899 | misinformation -2 900 | misinformed -2 901 | misread -1 902 | misreporting -2 903 | missed -2 904 | mistake -2 905 | mistaken -2 906 | mistakes -2 907 | mistaking -2 908 | mongering -2 909 | monopolizing -2 910 | motherfucker -5 911 | motherfucking -5 912 | murder -2 913 | murderer -2 914 | myth -1 915 | nasty -3 916 | negative -2 917 | neglect -2 918 | neglected -2 919 | neglecting -2 920 | neglects -2 921 | nerves -1 922 | nervous -2 923 | nice 3 924 | nifty 2 925 | nigger -5 926 | no -1 927 | no fun -3 928 | noble 2 929 | nonsense -2 930 | not good -2 931 | novel 2 932 | notorious -2 933 | not working -3 934 | nuts -3 935 | obliterate -2 936 | obliterated -2 937 | obscene -2 938 | offline -1 939 | obsolete -2 940 | obstacle -2 941 | obstacles -2 942 | offend -2 943 | offended -2 944 | offender -2 945 | offending -2 946 | offends -2 947 | oks 2 948 | ominous 3 949 | opportunity 2 950 | opportunities 2 951 | optimism 2 952 | outrage -3 953 | outraged -3 954 | outreach 2 955 | outstanding 5 956 | overload -1 957 | overreact -2 958 | overreacts -2 959 | overreacted -2 960 | oversell -2 961 | overselling -2 962 | oversells -2 963 | oversimplification -2 964 | oversimplified -2 965 | oversimplifies -2 966 | oversimplify -2 967 | overweight -1 968 | oxymoron -1 969 | pain -2 970 | panic -3 971 | paradox -1 972 | parley -1 973 | pathetic -2 974 | pay -1 975 | peace 2 976 | peaceful 2 977 | peacefully 2 978 | penalty -2 979 | perfect 3 980 | perfects 2 981 | perfected 2 982 | perfectly 3 983 | peril -2 984 | perjury -3 985 | perpetrator -2 986 | perpetrators -2 987 | pessimism -2 988 | picturesque 2 989 | piss -4 990 | pissed -4 991 | pity -2 992 | pleasant 3 993 | please 1 994 | pleased 3 995 | poised -2 996 | poison -2 997 | poisoned -2 998 | poisons -2 999 | pollute -2 1000 | pollutes -2 1001 | polluted -2 1002 | polluter -2 1003 | polluters -2 1004 | popular 3 1005 | poor -2 1006 | poorer -2 1007 | poorest -2 1008 | positive 2 1009 | positively 2 1010 | postpone -1 1011 | postponed -1 1012 | postpones -1 1013 | postponing -1 1014 | poverty -1 1015 | praise 3 1016 | praised 3 1017 | prases 3 1018 | praising 3 1019 | pray 1 1020 | praying 1 1021 | prays 1 1022 | prblm -2 1023 | prblms -2 1024 | prepaired 1 1025 | pressure -1 1026 | pretend -1 1027 | pretends -1 1028 | pretending -1 1029 | pretty 1 1030 | prevent -1 1031 | prevented -1 1032 | preventing -1 1033 | prevents -1 1034 | prick -5 1035 | problem -2 1036 | problems -2 1037 | profiteer -2 1038 | progress 2 1039 | promise 1 1040 | promised 1 1041 | promises 1 1042 | promote 1 1043 | promoted 1 1044 | promotes 1 1045 | promoting 1 1046 | propaganda -2 1047 | prosecute -1 1048 | prosecuted -2 1049 | prosecutes -1 1050 | prosecution -1 1051 | prospect 1 1052 | prospects 1 1053 | prosperous 3 1054 | protect 1 1055 | protected 1 1056 | protects 1 1057 | protest -2 1058 | protesters -2 1059 | protests -2 1060 | protesting -2 1061 | proud 2 1062 | proudly 2 1063 | pseudoscience -3 1064 | punish -2 1065 | punishes -2 1066 | punitive -2 1067 | questioned -1 1068 | rainy -1 1069 | rant -3 1070 | rants -3 1071 | ranter -3 1072 | ranters -3 1073 | rape -4 1074 | rash -2 1075 | reach 1 1076 | reaches 1 1077 | reached 1 1078 | reaching 1 1079 | recommend 2 1080 | recommended 2 1081 | recommends 2 1082 | refuse -2 1083 | refused -2 1084 | refusing -2 1085 | regret -2 1086 | reject -1 1087 | rejected -1 1088 | rejects -1 1089 | rejecting -1 1090 | rejoice 4 1091 | rejoiced 4 1092 | rejoices 4 1093 | rejoicing 4 1094 | relaxed 2 1095 | remarkable 2 1096 | rescue 2 1097 | rescued 2 1098 | rescues 2 1099 | resign -1 1100 | resigned -1 1101 | resigning -1 1102 | resigns -1 1103 | resolve 2 1104 | resolved 2 1105 | resolves 2 1106 | resolving 2 1107 | responsible 2 1108 | restless -2 1109 | restore 1 1110 | restored 1 1111 | restoring 1 1112 | restores 1 1113 | restrict -2 1114 | restricted -2 1115 | restricting -2 1116 | restricts -2 1117 | restriction -2 1118 | retained -1 1119 | retarded -2 1120 | revive 2 1121 | revives 2 1122 | reward 2 1123 | rewarded 2 1124 | rewarding 2 1125 | rewards 2 1126 | rich 2 1127 | ridiculous -3 1128 | right direction 3 1129 | rig -1 1130 | rigged -1 1131 | rigorous 3 1132 | rigorously 3 1133 | riot -2 1134 | riots -2 1135 | risk -2 1136 | risks -2 1137 | rob -2 1138 | robed -2 1139 | robs -2 1140 | robing -2 1141 | ruin -2 1142 | ruining -2 1143 | sabotage -2 1144 | sad -2 1145 | sadden -2 1146 | saddenede -2 1147 | sadly -2 1148 | sappy -1 1149 | sarcastic -2 1150 | satisfied 2 1151 | save 2 1152 | saved 2 1153 | scam -2 1154 | scams -2 1155 | scandal -3 1156 | scandalous -3 1157 | scandals -3 1158 | scapegoat -2 1159 | scapegoats -2 1160 | scare -2 1161 | scared -2 1162 | sceptical -2 1163 | sceptics -2 1164 | scoop 3 1165 | screwed -2 1166 | screwed up -3 1167 | secure 2 1168 | secured 2 1169 | secures 2 1170 | seduced -1 1171 | selfish -3 1172 | selfishness -3 1173 | sentence -2 1174 | sentenced -2 1175 | sentencing -2 1176 | sentences -2 1177 | sexy 3 1178 | shaky -2 1179 | shame -2 1180 | shameful -2 1181 | share 1 1182 | shares 1 1183 | shared 1 1184 | shrew -4 1185 | shit -4 1186 | shithead -4 1187 | shitty -3 1188 | shock -2 1189 | shocks -2 1190 | shocked -2 1191 | shocking -2 1192 | shoot -1 1193 | short-sighted -2 1194 | short-sightness -2 1195 | shortage -2 1196 | shortages -2 1197 | shy -1 1198 | sick -2 1199 | sigh -2 1200 | silly -2 1201 | silencing -1 1202 | sinful -3 1203 | singleminded -2 1204 | skeptic -2 1205 | skeptics -2 1206 | skepticism -2 1207 | slam -2 1208 | slash -2 1209 | slashed -2 1210 | slashes -2 1211 | slashing -2 1212 | sleeplessness -2 1213 | slut -5 1214 | smart 1 1215 | smear -2 1216 | smile 2 1217 | smiling 2 1218 | smog -2 1219 | snub -2 1220 | snubs -2 1221 | sobering 1 1222 | solid 2 1223 | solidarity 2 1224 | solution 1 1225 | solutions 1 1226 | solve 1 1227 | solved 1 1228 | solves 1 1229 | solving 1 1230 | some kind 0 1231 | son-of-a-bitch -5 1232 | sore -1 1233 | sorry -1 1234 | spark 1 1235 | sparkle 3 1236 | sparkles 3 1237 | sparkling 3 1238 | spirit 1 1239 | stab -2 1240 | stabbed -2 1241 | stable 2 1242 | stabs -2 1243 | stall -2 1244 | stalled -2 1245 | stalling -2 1246 | starve -2 1247 | starved -2 1248 | starves -2 1249 | starving -2 1250 | steal -2 1251 | steals -2 1252 | stimulate 1 1253 | stimulated 1 1254 | stimulates 1 1255 | stimulating 2 1256 | stolen -2 1257 | stop -1 1258 | stopping -1 1259 | stopped -1 1260 | stops -1 1261 | strangely -1 1262 | strangled -2 1263 | strength 2 1264 | strengthen 2 1265 | strengthening 2 1266 | strengthened 2 1267 | strengthens 2 1268 | strike -1 1269 | strikers -2 1270 | strikes -1 1271 | strong 2 1272 | stronger 2 1273 | strongest 2 1274 | stunning 4 1275 | stupid -2 1276 | success 2 1277 | successful 3 1278 | suffer -2 1279 | suffers -2 1280 | suicide -2 1281 | suing -2 1282 | sulking -2 1283 | sunshine 2 1284 | super 3 1285 | superb 5 1286 | support 2 1287 | supported 2 1288 | supporter 1 1289 | supporters 1 1290 | supportive 2 1291 | supports 2 1292 | survived 2 1293 | surviving 2 1294 | survivor 2 1295 | suspect -1 1296 | suspected -1 1297 | suspecting -1 1298 | suspects -1 1299 | suspend -1 1300 | suspended -1 1301 | stampede -2 1302 | straight 1 1303 | stressor -2 1304 | stressors -2 1305 | strike -2 1306 | substantial 1 1307 | suck -3 1308 | sucks -3 1309 | suffer -2 1310 | suffering -2 1311 | support 1 1312 | supported 1 1313 | supporting 1 1314 | supports 1 1315 | sweet 2 1316 | swift 2 1317 | swiftly 2 1318 | swindle -3 1319 | swindles -3 1320 | swindling -3 1321 | sympathetic 2 1322 | tears -2 1323 | tender 2 1324 | tense -2 1325 | tension -1 1326 | terrible -3 1327 | terribly -3 1328 | terrific 4 1329 | terror -3 1330 | terrorize -3 1331 | terrorized -3 1332 | terrorizes -3 1333 | thank 2 1334 | thanks 2 1335 | thoughtful 2 1336 | thoughtless -2 1337 | threat -2 1338 | threaten -2 1339 | threatens -2 1340 | threating -2 1341 | threats -2 1342 | thrilled 5 1343 | tired -2 1344 | totalitarian -2 1345 | totalitarianism -2 1346 | toothless -2 1347 | top 2 1348 | tops 2 1349 | torture -4 1350 | tortured -4 1351 | tortures -4 1352 | torturing -4 1353 | tout -2 1354 | touts -2 1355 | touted -2 1356 | touting -2 1357 | tragedy -2 1358 | tragic -2 1359 | trap -1 1360 | trauma -3 1361 | traumatic -3 1362 | travesty -2 1363 | treason -3 1364 | trickery -2 1365 | triumph 4 1366 | trouble -2 1367 | troubled -2 1368 | troubles -2 1369 | true 2 1370 | trust 1 1371 | ugly -3 1372 | unacceptable -2 1373 | unapproved -2 1374 | unbelievable -1 1375 | unclear -1 1376 | unconvinced -1 1377 | unconfirmed -1 1378 | undermine -2 1379 | undermines -2 1380 | undermined -2 1381 | undermining -2 1382 | uneasy -2 1383 | unemployment -2 1384 | unethical -2 1385 | unhappy -2 1386 | unimpressed -2 1387 | united 1 1388 | unprofessional -2 1389 | unresearched -2 1390 | unsatisfied -2 1391 | untarnished 2 1392 | upset -2 1393 | upsets -2 1394 | upsetting -2 1395 | urgent -1 1396 | useful 2 1397 | usefulness 2 1398 | useless -2 1399 | uselessness -2 1400 | vested 1 1401 | vulnerable 2 1402 | yeah 1 1403 | yes 1 1404 | yeees 2 1405 | yucky -2 1406 | yummy 3 1407 | vague -2 1408 | verdict -1 1409 | verdicts -1 1410 | victim -3 1411 | victims -3 1412 | violence -3 1413 | violent -3 1414 | virtuous 2 1415 | vision 1 1416 | visionary 3 1417 | visions 1 1418 | visioning 1 1419 | vitality 3 1420 | vitamin 1 1421 | vulnerable -2 1422 | walkout -2 1423 | walkouts -2 1424 | want 1 1425 | war -2 1426 | warfare -2 1427 | warm 1 1428 | warmth 2 1429 | warning -3 1430 | warnings -3 1431 | warn -2 1432 | warned -2 1433 | warning -2 1434 | warns -2 1435 | waste -1 1436 | wasted -2 1437 | wasting -2 1438 | weak -2 1439 | weakness -2 1440 | wealth 3 1441 | wealthy 2 1442 | weep -2 1443 | weeping -2 1444 | weird -2 1445 | welcome 2 1446 | welcomes 2 1447 | whitewash -3 1448 | whore -4 1449 | widowed -1 1450 | willingness 2 1451 | win 4 1452 | winner 4 1453 | wins 4 1454 | winwin 3 1455 | wish 1 1456 | wishes 1 1457 | wishing 1 1458 | withdrawal -3 1459 | won 3 1460 | wonderful 4 1461 | woohoo 3 1462 | woo 3 1463 | wooo 4 1464 | woow 4 1465 | worry -3 1466 | worried -3 1467 | worrying -3 1468 | worse -3 1469 | worsen -3 1470 | worsened -3 1471 | worsening -3 1472 | worsens -3 1473 | worst -3 1474 | worth 2 1475 | wow 4 1476 | wowow 4 1477 | wowww 4 1478 | wrong -2 1479 | zealot -2 1480 | zealots -2 1481 | -------------------------------------------------------------------------------- /sentiment_analysis-master/AFINN/AFINN-README.txt: -------------------------------------------------------------------------------- 1 | AFINN is a list of English words rated for valence with an integer 2 | between minus five (negative) and plus five (positive). The words have 3 | been manually labeled by Finn Årup Nielsen in 2009-2011. The file 4 | is tab-separated. There are two versions: 5 | 6 | AFINN-111: Newest version with 2477 words and phrases. 7 | 8 | AFINN-96: 1468 unique words and phrases on 1480 lines. Note that there 9 | are 1480 lines, as some words are listed twice. The word list in not 10 | entirely in alphabetic ordering. 11 | 12 | An evaluation of the word list is available in: 13 | 14 | Finn Årup Nielsen, "A new ANEW: Evaluation of a word list for 15 | sentiment analysis in microblogs", http://arxiv.org/abs/1103.2903 16 | 17 | The list was used in: 18 | 19 | Lars Kai Hansen, Adam Arvidsson, Finn Årup Nielsen, Elanor Colleoni, 20 | Michael Etter, "Good Friends, Bad News - Affect and Virality in 21 | Twitter", The 2011 International Workshop on Social Computing, 22 | Network, and Services (SocialComNet 2011). 23 | 24 | 25 | This database of words is copyright protected and distributed under 26 | "Open Database License (ODbL) v1.0" 27 | http://www.opendatacommons.org/licenses/odbl/1.0/ or a similar 28 | copyleft license. 29 | 30 | See comments on the word list here: 31 | http://fnielsen.posterous.com/old-anew-a-sentiment-about-sentiment-analysis 32 | 33 | 34 | In Python the file may be read into a dictionary with: 35 | 36 | >>> afinn = dict(map(lambda (k,v): (k,int(v)), 37 | [ line.split('\t') for line in open("AFINN-111.txt") ])) 38 | >>> afinn["Good".lower()] 39 | 3 40 | >>> sum(map(lambda word: afinn.get(word, 0), "Rainy day but still in a good mood".lower().split())) 41 | 2 42 | 43 | 44 | -------------------------------------------------------------------------------- /sentiment_analysis-master/negative-words.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/sentiment_analysis-master/negative-words.txt -------------------------------------------------------------------------------- /sentiment_analysis-master/polarityData/rt-polaritydata.README.1.0.txt: -------------------------------------------------------------------------------- 1 | 2 | ======= 3 | 4 | Introduction 5 | 6 | This README v1.0 (June, 2005) for the v1.0 sentence polarity dataset comes 7 | from the URL 8 | http://www.cs.cornell.edu/people/pabo/movie-review-data . 9 | 10 | ======= 11 | 12 | Citation Info 13 | 14 | This data was first used in Bo Pang and Lillian Lee, 15 | ``Seeing stars: Exploiting class relationships for sentiment categorization 16 | with respect to rating scales.'', Proceedings of the ACL, 2005. 17 | 18 | @InProceedings{Pang+Lee:05a, 19 | author = {Bo Pang and Lillian Lee}, 20 | title = {Seeing stars: Exploiting class relationships for sentiment 21 | categorization with respect to rating scales}, 22 | booktitle = {Proceedings of the ACL}, 23 | year = 2005 24 | } 25 | 26 | ======= 27 | 28 | Data Format Summary 29 | 30 | - rt-polaritydata.tar.gz: contains this readme and two data files that 31 | were used in the experiments described in Pang/Lee ACL 2005. 32 | 33 | Specifically: 34 | * rt-polarity.pos contains 5331 positive snippets 35 | * rt-polarity.neg contains 5331 negative snippets 36 | 37 | Each line in these two files corresponds to a single snippet (usually 38 | containing roughly one single sentence); all snippets are down-cased. 39 | The snippets were labeled automatically, as described below (see 40 | section "Label Decision"). 41 | 42 | Note: The original source files from which the data in 43 | rt-polaritydata.tar.gz was derived can be found in the subjective 44 | part (Rotten Tomatoes pages) of subjectivity_html.tar.gz (released 45 | with subjectivity dataset v1.0). 46 | 47 | 48 | ======= 49 | 50 | Label Decision 51 | 52 | We assumed snippets (from Rotten Tomatoes webpages) for reviews marked with 53 | ``fresh'' are positive, and those for reviews marked with ``rotten'' are 54 | negative. 55 | -------------------------------------------------------------------------------- /sentiment_analysis-master/polarityData/rt-polaritydata/rt-polarity-neg.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/sentiment_analysis-master/polarityData/rt-polaritydata/rt-polarity-neg.txt -------------------------------------------------------------------------------- /sentiment_analysis-master/polarityData/rt-polaritydata/rt-polarity-pos.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Cesar456/sentimentCN/7e2d5c78c8fc5b1cf41dcc781222691c2b2fd75b/sentiment_analysis-master/polarityData/rt-polaritydata/rt-polarity-pos.txt -------------------------------------------------------------------------------- /sentiment_analysis-master/positive-words.txt: -------------------------------------------------------------------------------- 1 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 2 | ; 3 | ; Opinion Lexicon: Positive 4 | ; 5 | ; This file contains a list of POSITIVE opinion words (or sentiment words). 6 | ; 7 | ; This file and the papers can all be downloaded from 8 | ; http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html 9 | ; 10 | ; If you use this list, please cite one of the following two papers: 11 | ; 12 | ; Minqing Hu and Bing Liu. "Mining and Summarizing Customer Reviews." 13 | ; Proceedings of the ACM SIGKDD International Conference on Knowledge 14 | ; Discovery and Data Mining (KDD-2004), Aug 22-25, 2004, Seattle, 15 | ; Washington, USA, 16 | ; Bing Liu, Minqing Hu and Junsheng Cheng. "Opinion Observer: Analyzing 17 | ; and Comparing Opinions on the Web." Proceedings of the 14th 18 | ; International World Wide Web conference (WWW-2005), May 10-14, 19 | ; 2005, Chiba, Japan. 20 | ; 21 | ; Notes: 22 | ; 1. The appearance of an opinion word in a sentence does not necessarily 23 | ; mean that the sentence expresses a positive or negative opinion. 24 | ; See the paper below: 25 | ; 26 | ; Bing Liu. "Sentiment Analysis and Subjectivity." An chapter in 27 | ; Handbook of Natural Language Processing, Second Edition, 28 | ; (editors: N. Indurkhya and F. J. Damerau), 2010. 29 | ; 30 | ; 2. You will notice many misspelled words in the list. They are not 31 | ; mistakes. They are included as these misspelled words appear 32 | ; frequently in social media content. 33 | ; 34 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 35 | 36 | a+ 37 | abound 38 | abounds 39 | abundance 40 | abundant 41 | accessable 42 | accessible 43 | acclaim 44 | acclaimed 45 | acclamation 46 | accolade 47 | accolades 48 | accommodative 49 | accomodative 50 | accomplish 51 | accomplished 52 | accomplishment 53 | accomplishments 54 | accurate 55 | accurately 56 | achievable 57 | achievement 58 | achievements 59 | achievible 60 | acumen 61 | adaptable 62 | adaptive 63 | adequate 64 | adjustable 65 | admirable 66 | admirably 67 | admiration 68 | admire 69 | admirer 70 | admiring 71 | admiringly 72 | adorable 73 | adore 74 | adored 75 | adorer 76 | adoring 77 | adoringly 78 | adroit 79 | adroitly 80 | adulate 81 | adulation 82 | adulatory 83 | advanced 84 | advantage 85 | advantageous 86 | advantageously 87 | advantages 88 | adventuresome 89 | adventurous 90 | advocate 91 | advocated 92 | advocates 93 | affability 94 | affable 95 | affably 96 | affectation 97 | affection 98 | affectionate 99 | affinity 100 | affirm 101 | affirmation 102 | affirmative 103 | affluence 104 | affluent 105 | afford 106 | affordable 107 | affordably 108 | afordable 109 | agile 110 | agilely 111 | agility 112 | agreeable 113 | agreeableness 114 | agreeably 115 | all-around 116 | alluring 117 | alluringly 118 | altruistic 119 | altruistically 120 | amaze 121 | amazed 122 | amazement 123 | amazes 124 | amazing 125 | amazingly 126 | ambitious 127 | ambitiously 128 | ameliorate 129 | amenable 130 | amenity 131 | amiability 132 | amiabily 133 | amiable 134 | amicability 135 | amicable 136 | amicably 137 | amity 138 | ample 139 | amply 140 | amuse 141 | amusing 142 | amusingly 143 | angel 144 | angelic 145 | apotheosis 146 | appeal 147 | appealing 148 | applaud 149 | appreciable 150 | appreciate 151 | appreciated 152 | appreciates 153 | appreciative 154 | appreciatively 155 | appropriate 156 | approval 157 | approve 158 | ardent 159 | ardently 160 | ardor 161 | articulate 162 | aspiration 163 | aspirations 164 | aspire 165 | assurance 166 | assurances 167 | assure 168 | assuredly 169 | assuring 170 | astonish 171 | astonished 172 | astonishing 173 | astonishingly 174 | astonishment 175 | astound 176 | astounded 177 | astounding 178 | astoundingly 179 | astutely 180 | attentive 181 | attraction 182 | attractive 183 | attractively 184 | attune 185 | audible 186 | audibly 187 | auspicious 188 | authentic 189 | authoritative 190 | autonomous 191 | available 192 | aver 193 | avid 194 | avidly 195 | award 196 | awarded 197 | awards 198 | awe 199 | awed 200 | awesome 201 | awesomely 202 | awesomeness 203 | awestruck 204 | awsome 205 | backbone 206 | balanced 207 | bargain 208 | beauteous 209 | beautiful 210 | beautifullly 211 | beautifully 212 | beautify 213 | beauty 214 | beckon 215 | beckoned 216 | beckoning 217 | beckons 218 | believable 219 | believeable 220 | beloved 221 | benefactor 222 | beneficent 223 | beneficial 224 | beneficially 225 | beneficiary 226 | benefit 227 | benefits 228 | benevolence 229 | benevolent 230 | benifits 231 | best 232 | best-known 233 | best-performing 234 | best-selling 235 | better 236 | better-known 237 | better-than-expected 238 | beutifully 239 | blameless 240 | bless 241 | blessing 242 | bliss 243 | blissful 244 | blissfully 245 | blithe 246 | blockbuster 247 | bloom 248 | blossom 249 | bolster 250 | bonny 251 | bonus 252 | bonuses 253 | boom 254 | booming 255 | boost 256 | boundless 257 | bountiful 258 | brainiest 259 | brainy 260 | brand-new 261 | brave 262 | bravery 263 | bravo 264 | breakthrough 265 | breakthroughs 266 | breathlessness 267 | breathtaking 268 | breathtakingly 269 | breeze 270 | bright 271 | brighten 272 | brighter 273 | brightest 274 | brilliance 275 | brilliances 276 | brilliant 277 | brilliantly 278 | brisk 279 | brotherly 280 | bullish 281 | buoyant 282 | cajole 283 | calm 284 | calming 285 | calmness 286 | capability 287 | capable 288 | capably 289 | captivate 290 | captivating 291 | carefree 292 | cashback 293 | cashbacks 294 | catchy 295 | celebrate 296 | celebrated 297 | celebration 298 | celebratory 299 | champ 300 | champion 301 | charisma 302 | charismatic 303 | charitable 304 | charm 305 | charming 306 | charmingly 307 | chaste 308 | cheaper 309 | cheapest 310 | cheer 311 | cheerful 312 | cheery 313 | cherish 314 | cherished 315 | cherub 316 | chic 317 | chivalrous 318 | chivalry 319 | civility 320 | civilize 321 | clarity 322 | classic 323 | classy 324 | clean 325 | cleaner 326 | cleanest 327 | cleanliness 328 | cleanly 329 | clear 330 | clear-cut 331 | cleared 332 | clearer 333 | clearly 334 | clears 335 | clever 336 | cleverly 337 | cohere 338 | coherence 339 | coherent 340 | cohesive 341 | colorful 342 | comely 343 | comfort 344 | comfortable 345 | comfortably 346 | comforting 347 | comfy 348 | commend 349 | commendable 350 | commendably 351 | commitment 352 | commodious 353 | compact 354 | compactly 355 | compassion 356 | compassionate 357 | compatible 358 | competitive 359 | complement 360 | complementary 361 | complemented 362 | complements 363 | compliant 364 | compliment 365 | complimentary 366 | comprehensive 367 | conciliate 368 | conciliatory 369 | concise 370 | confidence 371 | confident 372 | congenial 373 | congratulate 374 | congratulation 375 | congratulations 376 | congratulatory 377 | conscientious 378 | considerate 379 | consistent 380 | consistently 381 | constructive 382 | consummate 383 | contentment 384 | continuity 385 | contrasty 386 | contribution 387 | convenience 388 | convenient 389 | conveniently 390 | convience 391 | convienient 392 | convient 393 | convincing 394 | convincingly 395 | cool 396 | coolest 397 | cooperative 398 | cooperatively 399 | cornerstone 400 | correct 401 | correctly 402 | cost-effective 403 | cost-saving 404 | counter-attack 405 | counter-attacks 406 | courage 407 | courageous 408 | courageously 409 | courageousness 410 | courteous 411 | courtly 412 | covenant 413 | cozy 414 | creative 415 | credence 416 | credible 417 | crisp 418 | crisper 419 | cure 420 | cure-all 421 | cushy 422 | cute 423 | cuteness 424 | danke 425 | danken 426 | daring 427 | daringly 428 | darling 429 | dashing 430 | dauntless 431 | dawn 432 | dazzle 433 | dazzled 434 | dazzling 435 | dead-cheap 436 | dead-on 437 | decency 438 | decent 439 | decisive 440 | decisiveness 441 | dedicated 442 | defeat 443 | defeated 444 | defeating 445 | defeats 446 | defender 447 | deference 448 | deft 449 | deginified 450 | delectable 451 | delicacy 452 | delicate 453 | delicious 454 | delight 455 | delighted 456 | delightful 457 | delightfully 458 | delightfulness 459 | dependable 460 | dependably 461 | deservedly 462 | deserving 463 | desirable 464 | desiring 465 | desirous 466 | destiny 467 | detachable 468 | devout 469 | dexterous 470 | dexterously 471 | dextrous 472 | dignified 473 | dignify 474 | dignity 475 | diligence 476 | diligent 477 | diligently 478 | diplomatic 479 | dirt-cheap 480 | distinction 481 | distinctive 482 | distinguished 483 | diversified 484 | divine 485 | divinely 486 | dominate 487 | dominated 488 | dominates 489 | dote 490 | dotingly 491 | doubtless 492 | dreamland 493 | dumbfounded 494 | dumbfounding 495 | dummy-proof 496 | durable 497 | dynamic 498 | eager 499 | eagerly 500 | eagerness 501 | earnest 502 | earnestly 503 | earnestness 504 | ease 505 | eased 506 | eases 507 | easier 508 | easiest 509 | easiness 510 | easing 511 | easy 512 | easy-to-use 513 | easygoing 514 | ebullience 515 | ebullient 516 | ebulliently 517 | ecenomical 518 | economical 519 | ecstasies 520 | ecstasy 521 | ecstatic 522 | ecstatically 523 | edify 524 | educated 525 | effective 526 | effectively 527 | effectiveness 528 | effectual 529 | efficacious 530 | efficient 531 | efficiently 532 | effortless 533 | effortlessly 534 | effusion 535 | effusive 536 | effusively 537 | effusiveness 538 | elan 539 | elate 540 | elated 541 | elatedly 542 | elation 543 | electrify 544 | elegance 545 | elegant 546 | elegantly 547 | elevate 548 | elite 549 | eloquence 550 | eloquent 551 | eloquently 552 | embolden 553 | eminence 554 | eminent 555 | empathize 556 | empathy 557 | empower 558 | empowerment 559 | enchant 560 | enchanted 561 | enchanting 562 | enchantingly 563 | encourage 564 | encouragement 565 | encouraging 566 | encouragingly 567 | endear 568 | endearing 569 | endorse 570 | endorsed 571 | endorsement 572 | endorses 573 | endorsing 574 | energetic 575 | energize 576 | energy-efficient 577 | energy-saving 578 | engaging 579 | engrossing 580 | enhance 581 | enhanced 582 | enhancement 583 | enhances 584 | enjoy 585 | enjoyable 586 | enjoyably 587 | enjoyed 588 | enjoying 589 | enjoyment 590 | enjoys 591 | enlighten 592 | enlightenment 593 | enliven 594 | ennoble 595 | enough 596 | enrapt 597 | enrapture 598 | enraptured 599 | enrich 600 | enrichment 601 | enterprising 602 | entertain 603 | entertaining 604 | entertains 605 | enthral 606 | enthrall 607 | enthralled 608 | enthuse 609 | enthusiasm 610 | enthusiast 611 | enthusiastic 612 | enthusiastically 613 | entice 614 | enticed 615 | enticing 616 | enticingly 617 | entranced 618 | entrancing 619 | entrust 620 | enviable 621 | enviably 622 | envious 623 | enviously 624 | enviousness 625 | envy 626 | equitable 627 | ergonomical 628 | err-free 629 | erudite 630 | ethical 631 | eulogize 632 | euphoria 633 | euphoric 634 | euphorically 635 | evaluative 636 | evenly 637 | eventful 638 | everlasting 639 | evocative 640 | exalt 641 | exaltation 642 | exalted 643 | exaltedly 644 | exalting 645 | exaltingly 646 | examplar 647 | examplary 648 | excallent 649 | exceed 650 | exceeded 651 | exceeding 652 | exceedingly 653 | exceeds 654 | excel 655 | exceled 656 | excelent 657 | excellant 658 | excelled 659 | excellence 660 | excellency 661 | excellent 662 | excellently 663 | excels 664 | exceptional 665 | exceptionally 666 | excite 667 | excited 668 | excitedly 669 | excitedness 670 | excitement 671 | excites 672 | exciting 673 | excitingly 674 | exellent 675 | exemplar 676 | exemplary 677 | exhilarate 678 | exhilarating 679 | exhilaratingly 680 | exhilaration 681 | exonerate 682 | expansive 683 | expeditiously 684 | expertly 685 | exquisite 686 | exquisitely 687 | extol 688 | extoll 689 | extraordinarily 690 | extraordinary 691 | exuberance 692 | exuberant 693 | exuberantly 694 | exult 695 | exultant 696 | exultation 697 | exultingly 698 | eye-catch 699 | eye-catching 700 | eyecatch 701 | eyecatching 702 | fabulous 703 | fabulously 704 | facilitate 705 | fair 706 | fairly 707 | fairness 708 | faith 709 | faithful 710 | faithfully 711 | faithfulness 712 | fame 713 | famed 714 | famous 715 | famously 716 | fancier 717 | fancinating 718 | fancy 719 | fanfare 720 | fans 721 | fantastic 722 | fantastically 723 | fascinate 724 | fascinating 725 | fascinatingly 726 | fascination 727 | fashionable 728 | fashionably 729 | fast 730 | fast-growing 731 | fast-paced 732 | faster 733 | fastest 734 | fastest-growing 735 | faultless 736 | fav 737 | fave 738 | favor 739 | favorable 740 | favored 741 | favorite 742 | favorited 743 | favour 744 | fearless 745 | fearlessly 746 | feasible 747 | feasibly 748 | feat 749 | feature-rich 750 | fecilitous 751 | feisty 752 | felicitate 753 | felicitous 754 | felicity 755 | fertile 756 | fervent 757 | fervently 758 | fervid 759 | fervidly 760 | fervor 761 | festive 762 | fidelity 763 | fiery 764 | fine 765 | fine-looking 766 | finely 767 | finer 768 | finest 769 | firmer 770 | first-class 771 | first-in-class 772 | first-rate 773 | flashy 774 | flatter 775 | flattering 776 | flatteringly 777 | flawless 778 | flawlessly 779 | flexibility 780 | flexible 781 | flourish 782 | flourishing 783 | fluent 784 | flutter 785 | fond 786 | fondly 787 | fondness 788 | foolproof 789 | foremost 790 | foresight 791 | formidable 792 | fortitude 793 | fortuitous 794 | fortuitously 795 | fortunate 796 | fortunately 797 | fortune 798 | fragrant 799 | free 800 | freed 801 | freedom 802 | freedoms 803 | fresh 804 | fresher 805 | freshest 806 | friendliness 807 | friendly 808 | frolic 809 | frugal 810 | fruitful 811 | ftw 812 | fulfillment 813 | fun 814 | futurestic 815 | futuristic 816 | gaiety 817 | gaily 818 | gain 819 | gained 820 | gainful 821 | gainfully 822 | gaining 823 | gains 824 | gallant 825 | gallantly 826 | galore 827 | geekier 828 | geeky 829 | gem 830 | gems 831 | generosity 832 | generous 833 | generously 834 | genial 835 | genius 836 | gentle 837 | gentlest 838 | genuine 839 | gifted 840 | glad 841 | gladden 842 | gladly 843 | gladness 844 | glamorous 845 | glee 846 | gleeful 847 | gleefully 848 | glimmer 849 | glimmering 850 | glisten 851 | glistening 852 | glitter 853 | glitz 854 | glorify 855 | glorious 856 | gloriously 857 | glory 858 | glow 859 | glowing 860 | glowingly 861 | god-given 862 | god-send 863 | godlike 864 | godsend 865 | gold 866 | golden 867 | good 868 | goodly 869 | goodness 870 | goodwill 871 | goood 872 | gooood 873 | gorgeous 874 | gorgeously 875 | grace 876 | graceful 877 | gracefully 878 | gracious 879 | graciously 880 | graciousness 881 | grand 882 | grandeur 883 | grateful 884 | gratefully 885 | gratification 886 | gratified 887 | gratifies 888 | gratify 889 | gratifying 890 | gratifyingly 891 | gratitude 892 | great 893 | greatest 894 | greatness 895 | grin 896 | groundbreaking 897 | guarantee 898 | guidance 899 | guiltless 900 | gumption 901 | gush 902 | gusto 903 | gutsy 904 | hail 905 | halcyon 906 | hale 907 | hallmark 908 | hallmarks 909 | hallowed 910 | handier 911 | handily 912 | hands-down 913 | handsome 914 | handsomely 915 | handy 916 | happier 917 | happily 918 | happiness 919 | happy 920 | hard-working 921 | hardier 922 | hardy 923 | harmless 924 | harmonious 925 | harmoniously 926 | harmonize 927 | harmony 928 | headway 929 | heal 930 | healthful 931 | healthy 932 | hearten 933 | heartening 934 | heartfelt 935 | heartily 936 | heartwarming 937 | heaven 938 | heavenly 939 | helped 940 | helpful 941 | helping 942 | hero 943 | heroic 944 | heroically 945 | heroine 946 | heroize 947 | heros 948 | high-quality 949 | high-spirited 950 | hilarious 951 | holy 952 | homage 953 | honest 954 | honesty 955 | honor 956 | honorable 957 | honored 958 | honoring 959 | hooray 960 | hopeful 961 | hospitable 962 | hot 963 | hotcake 964 | hotcakes 965 | hottest 966 | hug 967 | humane 968 | humble 969 | humility 970 | humor 971 | humorous 972 | humorously 973 | humour 974 | humourous 975 | ideal 976 | idealize 977 | ideally 978 | idol 979 | idolize 980 | idolized 981 | idyllic 982 | illuminate 983 | illuminati 984 | illuminating 985 | illumine 986 | illustrious 987 | ilu 988 | imaculate 989 | imaginative 990 | immaculate 991 | immaculately 992 | immense 993 | impartial 994 | impartiality 995 | impartially 996 | impassioned 997 | impeccable 998 | impeccably 999 | important 1000 | impress 1001 | impressed 1002 | impresses 1003 | impressive 1004 | impressively 1005 | impressiveness 1006 | improve 1007 | improved 1008 | improvement 1009 | improvements 1010 | improves 1011 | improving 1012 | incredible 1013 | incredibly 1014 | indebted 1015 | individualized 1016 | indulgence 1017 | indulgent 1018 | industrious 1019 | inestimable 1020 | inestimably 1021 | inexpensive 1022 | infallibility 1023 | infallible 1024 | infallibly 1025 | influential 1026 | ingenious 1027 | ingeniously 1028 | ingenuity 1029 | ingenuous 1030 | ingenuously 1031 | innocuous 1032 | innovation 1033 | innovative 1034 | inpressed 1035 | insightful 1036 | insightfully 1037 | inspiration 1038 | inspirational 1039 | inspire 1040 | inspiring 1041 | instantly 1042 | instructive 1043 | instrumental 1044 | integral 1045 | integrated 1046 | intelligence 1047 | intelligent 1048 | intelligible 1049 | interesting 1050 | interests 1051 | intimacy 1052 | intimate 1053 | intricate 1054 | intrigue 1055 | intriguing 1056 | intriguingly 1057 | intuitive 1058 | invaluable 1059 | invaluablely 1060 | inventive 1061 | invigorate 1062 | invigorating 1063 | invincibility 1064 | invincible 1065 | inviolable 1066 | inviolate 1067 | invulnerable 1068 | irreplaceable 1069 | irreproachable 1070 | irresistible 1071 | irresistibly 1072 | issue-free 1073 | jaw-droping 1074 | jaw-dropping 1075 | jollify 1076 | jolly 1077 | jovial 1078 | joy 1079 | joyful 1080 | joyfully 1081 | joyous 1082 | joyously 1083 | jubilant 1084 | jubilantly 1085 | jubilate 1086 | jubilation 1087 | jubiliant 1088 | judicious 1089 | justly 1090 | keen 1091 | keenly 1092 | keenness 1093 | kid-friendly 1094 | kindliness 1095 | kindly 1096 | kindness 1097 | knowledgeable 1098 | kudos 1099 | large-capacity 1100 | laud 1101 | laudable 1102 | laudably 1103 | lavish 1104 | lavishly 1105 | law-abiding 1106 | lawful 1107 | lawfully 1108 | lead 1109 | leading 1110 | leads 1111 | lean 1112 | led 1113 | legendary 1114 | leverage 1115 | levity 1116 | liberate 1117 | liberation 1118 | liberty 1119 | lifesaver 1120 | light-hearted 1121 | lighter 1122 | likable 1123 | like 1124 | liked 1125 | likes 1126 | liking 1127 | lionhearted 1128 | lively 1129 | logical 1130 | long-lasting 1131 | lovable 1132 | lovably 1133 | love 1134 | loved 1135 | loveliness 1136 | lovely 1137 | lover 1138 | loves 1139 | loving 1140 | low-cost 1141 | low-price 1142 | low-priced 1143 | low-risk 1144 | lower-priced 1145 | loyal 1146 | loyalty 1147 | lucid 1148 | lucidly 1149 | luck 1150 | luckier 1151 | luckiest 1152 | luckiness 1153 | lucky 1154 | lucrative 1155 | luminous 1156 | lush 1157 | luster 1158 | lustrous 1159 | luxuriant 1160 | luxuriate 1161 | luxurious 1162 | luxuriously 1163 | luxury 1164 | lyrical 1165 | magic 1166 | magical 1167 | magnanimous 1168 | magnanimously 1169 | magnificence 1170 | magnificent 1171 | magnificently 1172 | majestic 1173 | majesty 1174 | manageable 1175 | maneuverable 1176 | marvel 1177 | marveled 1178 | marvelled 1179 | marvellous 1180 | marvelous 1181 | marvelously 1182 | marvelousness 1183 | marvels 1184 | master 1185 | masterful 1186 | masterfully 1187 | masterpiece 1188 | masterpieces 1189 | masters 1190 | mastery 1191 | matchless 1192 | mature 1193 | maturely 1194 | maturity 1195 | meaningful 1196 | memorable 1197 | merciful 1198 | mercifully 1199 | mercy 1200 | merit 1201 | meritorious 1202 | merrily 1203 | merriment 1204 | merriness 1205 | merry 1206 | mesmerize 1207 | mesmerized 1208 | mesmerizes 1209 | mesmerizing 1210 | mesmerizingly 1211 | meticulous 1212 | meticulously 1213 | mightily 1214 | mighty 1215 | mind-blowing 1216 | miracle 1217 | miracles 1218 | miraculous 1219 | miraculously 1220 | miraculousness 1221 | modern 1222 | modest 1223 | modesty 1224 | momentous 1225 | monumental 1226 | monumentally 1227 | morality 1228 | motivated 1229 | multi-purpose 1230 | navigable 1231 | neat 1232 | neatest 1233 | neatly 1234 | nice 1235 | nicely 1236 | nicer 1237 | nicest 1238 | nifty 1239 | nimble 1240 | noble 1241 | nobly 1242 | noiseless 1243 | non-violence 1244 | non-violent 1245 | notably 1246 | noteworthy 1247 | nourish 1248 | nourishing 1249 | nourishment 1250 | novelty 1251 | nurturing 1252 | oasis 1253 | obsession 1254 | obsessions 1255 | obtainable 1256 | openly 1257 | openness 1258 | optimal 1259 | optimism 1260 | optimistic 1261 | opulent 1262 | orderly 1263 | originality 1264 | outdo 1265 | outdone 1266 | outperform 1267 | outperformed 1268 | outperforming 1269 | outperforms 1270 | outshine 1271 | outshone 1272 | outsmart 1273 | outstanding 1274 | outstandingly 1275 | outstrip 1276 | outwit 1277 | ovation 1278 | overjoyed 1279 | overtake 1280 | overtaken 1281 | overtakes 1282 | overtaking 1283 | overtook 1284 | overture 1285 | pain-free 1286 | painless 1287 | painlessly 1288 | palatial 1289 | pamper 1290 | pampered 1291 | pamperedly 1292 | pamperedness 1293 | pampers 1294 | panoramic 1295 | paradise 1296 | paramount 1297 | pardon 1298 | passion 1299 | passionate 1300 | passionately 1301 | patience 1302 | patient 1303 | patiently 1304 | patriot 1305 | patriotic 1306 | peace 1307 | peaceable 1308 | peaceful 1309 | peacefully 1310 | peacekeepers 1311 | peach 1312 | peerless 1313 | pep 1314 | pepped 1315 | pepping 1316 | peppy 1317 | peps 1318 | perfect 1319 | perfection 1320 | perfectly 1321 | permissible 1322 | perseverance 1323 | persevere 1324 | personages 1325 | personalized 1326 | phenomenal 1327 | phenomenally 1328 | picturesque 1329 | piety 1330 | pinnacle 1331 | playful 1332 | playfully 1333 | pleasant 1334 | pleasantly 1335 | pleased 1336 | pleases 1337 | pleasing 1338 | pleasingly 1339 | pleasurable 1340 | pleasurably 1341 | pleasure 1342 | plentiful 1343 | pluses 1344 | plush 1345 | plusses 1346 | poetic 1347 | poeticize 1348 | poignant 1349 | poise 1350 | poised 1351 | polished 1352 | polite 1353 | politeness 1354 | popular 1355 | portable 1356 | posh 1357 | positive 1358 | positively 1359 | positives 1360 | powerful 1361 | powerfully 1362 | praise 1363 | praiseworthy 1364 | praising 1365 | pre-eminent 1366 | precious 1367 | precise 1368 | precisely 1369 | preeminent 1370 | prefer 1371 | preferable 1372 | preferably 1373 | prefered 1374 | preferes 1375 | preferring 1376 | prefers 1377 | premier 1378 | prestige 1379 | prestigious 1380 | prettily 1381 | pretty 1382 | priceless 1383 | pride 1384 | principled 1385 | privilege 1386 | privileged 1387 | prize 1388 | proactive 1389 | problem-free 1390 | problem-solver 1391 | prodigious 1392 | prodigiously 1393 | prodigy 1394 | productive 1395 | productively 1396 | proficient 1397 | proficiently 1398 | profound 1399 | profoundly 1400 | profuse 1401 | profusion 1402 | progress 1403 | progressive 1404 | prolific 1405 | prominence 1406 | prominent 1407 | promise 1408 | promised 1409 | promises 1410 | promising 1411 | promoter 1412 | prompt 1413 | promptly 1414 | proper 1415 | properly 1416 | propitious 1417 | propitiously 1418 | pros 1419 | prosper 1420 | prosperity 1421 | prosperous 1422 | prospros 1423 | protect 1424 | protection 1425 | protective 1426 | proud 1427 | proven 1428 | proves 1429 | providence 1430 | proving 1431 | prowess 1432 | prudence 1433 | prudent 1434 | prudently 1435 | punctual 1436 | pure 1437 | purify 1438 | purposeful 1439 | quaint 1440 | qualified 1441 | qualify 1442 | quicker 1443 | quiet 1444 | quieter 1445 | radiance 1446 | radiant 1447 | rapid 1448 | rapport 1449 | rapt 1450 | rapture 1451 | raptureous 1452 | raptureously 1453 | rapturous 1454 | rapturously 1455 | rational 1456 | razor-sharp 1457 | reachable 1458 | readable 1459 | readily 1460 | ready 1461 | reaffirm 1462 | reaffirmation 1463 | realistic 1464 | realizable 1465 | reasonable 1466 | reasonably 1467 | reasoned 1468 | reassurance 1469 | reassure 1470 | receptive 1471 | reclaim 1472 | recomend 1473 | recommend 1474 | recommendation 1475 | recommendations 1476 | recommended 1477 | reconcile 1478 | reconciliation 1479 | record-setting 1480 | recover 1481 | recovery 1482 | rectification 1483 | rectify 1484 | rectifying 1485 | redeem 1486 | redeeming 1487 | redemption 1488 | refine 1489 | refined 1490 | refinement 1491 | reform 1492 | reformed 1493 | reforming 1494 | reforms 1495 | refresh 1496 | refreshed 1497 | refreshing 1498 | refund 1499 | refunded 1500 | regal 1501 | regally 1502 | regard 1503 | rejoice 1504 | rejoicing 1505 | rejoicingly 1506 | rejuvenate 1507 | rejuvenated 1508 | rejuvenating 1509 | relaxed 1510 | relent 1511 | reliable 1512 | reliably 1513 | relief 1514 | relish 1515 | remarkable 1516 | remarkably 1517 | remedy 1518 | remission 1519 | remunerate 1520 | renaissance 1521 | renewed 1522 | renown 1523 | renowned 1524 | replaceable 1525 | reputable 1526 | reputation 1527 | resilient 1528 | resolute 1529 | resound 1530 | resounding 1531 | resourceful 1532 | resourcefulness 1533 | respect 1534 | respectable 1535 | respectful 1536 | respectfully 1537 | respite 1538 | resplendent 1539 | responsibly 1540 | responsive 1541 | restful 1542 | restored 1543 | restructure 1544 | restructured 1545 | restructuring 1546 | retractable 1547 | revel 1548 | revelation 1549 | revere 1550 | reverence 1551 | reverent 1552 | reverently 1553 | revitalize 1554 | revival 1555 | revive 1556 | revives 1557 | revolutionary 1558 | revolutionize 1559 | revolutionized 1560 | revolutionizes 1561 | reward 1562 | rewarding 1563 | rewardingly 1564 | rich 1565 | richer 1566 | richly 1567 | richness 1568 | right 1569 | righten 1570 | righteous 1571 | righteously 1572 | righteousness 1573 | rightful 1574 | rightfully 1575 | rightly 1576 | rightness 1577 | risk-free 1578 | robust 1579 | rock-star 1580 | rock-stars 1581 | rockstar 1582 | rockstars 1583 | romantic 1584 | romantically 1585 | romanticize 1586 | roomier 1587 | roomy 1588 | rosy 1589 | safe 1590 | safely 1591 | sagacity 1592 | sagely 1593 | saint 1594 | saintliness 1595 | saintly 1596 | salutary 1597 | salute 1598 | sane 1599 | satisfactorily 1600 | satisfactory 1601 | satisfied 1602 | satisfies 1603 | satisfy 1604 | satisfying 1605 | satisified 1606 | saver 1607 | savings 1608 | savior 1609 | savvy 1610 | scenic 1611 | seamless 1612 | seasoned 1613 | secure 1614 | securely 1615 | selective 1616 | self-determination 1617 | self-respect 1618 | self-satisfaction 1619 | self-sufficiency 1620 | self-sufficient 1621 | sensation 1622 | sensational 1623 | sensationally 1624 | sensations 1625 | sensible 1626 | sensibly 1627 | sensitive 1628 | serene 1629 | serenity 1630 | sexy 1631 | sharp 1632 | sharper 1633 | sharpest 1634 | shimmering 1635 | shimmeringly 1636 | shine 1637 | shiny 1638 | significant 1639 | silent 1640 | simpler 1641 | simplest 1642 | simplified 1643 | simplifies 1644 | simplify 1645 | simplifying 1646 | sincere 1647 | sincerely 1648 | sincerity 1649 | skill 1650 | skilled 1651 | skillful 1652 | skillfully 1653 | slammin 1654 | sleek 1655 | slick 1656 | smart 1657 | smarter 1658 | smartest 1659 | smartly 1660 | smile 1661 | smiles 1662 | smiling 1663 | smilingly 1664 | smitten 1665 | smooth 1666 | smoother 1667 | smoothes 1668 | smoothest 1669 | smoothly 1670 | snappy 1671 | snazzy 1672 | sociable 1673 | soft 1674 | softer 1675 | solace 1676 | solicitous 1677 | solicitously 1678 | solid 1679 | solidarity 1680 | soothe 1681 | soothingly 1682 | sophisticated 1683 | soulful 1684 | soundly 1685 | soundness 1686 | spacious 1687 | sparkle 1688 | sparkling 1689 | spectacular 1690 | spectacularly 1691 | speedily 1692 | speedy 1693 | spellbind 1694 | spellbinding 1695 | spellbindingly 1696 | spellbound 1697 | spirited 1698 | spiritual 1699 | splendid 1700 | splendidly 1701 | splendor 1702 | spontaneous 1703 | sporty 1704 | spotless 1705 | sprightly 1706 | stability 1707 | stabilize 1708 | stable 1709 | stainless 1710 | standout 1711 | state-of-the-art 1712 | stately 1713 | statuesque 1714 | staunch 1715 | staunchly 1716 | staunchness 1717 | steadfast 1718 | steadfastly 1719 | steadfastness 1720 | steadiest 1721 | steadiness 1722 | steady 1723 | stellar 1724 | stellarly 1725 | stimulate 1726 | stimulates 1727 | stimulating 1728 | stimulative 1729 | stirringly 1730 | straighten 1731 | straightforward 1732 | streamlined 1733 | striking 1734 | strikingly 1735 | striving 1736 | strong 1737 | stronger 1738 | strongest 1739 | stunned 1740 | stunning 1741 | stunningly 1742 | stupendous 1743 | stupendously 1744 | sturdier 1745 | sturdy 1746 | stylish 1747 | stylishly 1748 | stylized 1749 | suave 1750 | suavely 1751 | sublime 1752 | subsidize 1753 | subsidized 1754 | subsidizes 1755 | subsidizing 1756 | substantive 1757 | succeed 1758 | succeeded 1759 | succeeding 1760 | succeeds 1761 | succes 1762 | success 1763 | successes 1764 | successful 1765 | successfully 1766 | suffice 1767 | sufficed 1768 | suffices 1769 | sufficient 1770 | sufficiently 1771 | suitable 1772 | sumptuous 1773 | sumptuously 1774 | sumptuousness 1775 | super 1776 | superb 1777 | superbly 1778 | superior 1779 | superiority 1780 | supple 1781 | support 1782 | supported 1783 | supporter 1784 | supporting 1785 | supportive 1786 | supports 1787 | supremacy 1788 | supreme 1789 | supremely 1790 | supurb 1791 | supurbly 1792 | surmount 1793 | surpass 1794 | surreal 1795 | survival 1796 | survivor 1797 | sustainability 1798 | sustainable 1799 | swank 1800 | swankier 1801 | swankiest 1802 | swanky 1803 | sweeping 1804 | sweet 1805 | sweeten 1806 | sweetheart 1807 | sweetly 1808 | sweetness 1809 | swift 1810 | swiftness 1811 | talent 1812 | talented 1813 | talents 1814 | tantalize 1815 | tantalizing 1816 | tantalizingly 1817 | tempt 1818 | tempting 1819 | temptingly 1820 | tenacious 1821 | tenaciously 1822 | tenacity 1823 | tender 1824 | tenderly 1825 | terrific 1826 | terrifically 1827 | thank 1828 | thankful 1829 | thinner 1830 | thoughtful 1831 | thoughtfully 1832 | thoughtfulness 1833 | thrift 1834 | thrifty 1835 | thrill 1836 | thrilled 1837 | thrilling 1838 | thrillingly 1839 | thrills 1840 | thrive 1841 | thriving 1842 | thumb-up 1843 | thumbs-up 1844 | tickle 1845 | tidy 1846 | time-honored 1847 | timely 1848 | tingle 1849 | titillate 1850 | titillating 1851 | titillatingly 1852 | togetherness 1853 | tolerable 1854 | toll-free 1855 | top 1856 | top-notch 1857 | top-quality 1858 | topnotch 1859 | tops 1860 | tough 1861 | tougher 1862 | toughest 1863 | traction 1864 | tranquil 1865 | tranquility 1866 | transparent 1867 | treasure 1868 | tremendously 1869 | trendy 1870 | triumph 1871 | triumphal 1872 | triumphant 1873 | triumphantly 1874 | trivially 1875 | trophy 1876 | trouble-free 1877 | trump 1878 | trumpet 1879 | trust 1880 | trusted 1881 | trusting 1882 | trustingly 1883 | trustworthiness 1884 | trustworthy 1885 | trusty 1886 | truthful 1887 | truthfully 1888 | truthfulness 1889 | twinkly 1890 | ultra-crisp 1891 | unabashed 1892 | unabashedly 1893 | unaffected 1894 | unassailable 1895 | unbeatable 1896 | unbiased 1897 | unbound 1898 | uncomplicated 1899 | unconditional 1900 | undamaged 1901 | undaunted 1902 | understandable 1903 | undisputable 1904 | undisputably 1905 | undisputed 1906 | unencumbered 1907 | unequivocal 1908 | unequivocally 1909 | unfazed 1910 | unfettered 1911 | unforgettable 1912 | unity 1913 | unlimited 1914 | unmatched 1915 | unparalleled 1916 | unquestionable 1917 | unquestionably 1918 | unreal 1919 | unrestricted 1920 | unrivaled 1921 | unselfish 1922 | unwavering 1923 | upbeat 1924 | upgradable 1925 | upgradeable 1926 | upgraded 1927 | upheld 1928 | uphold 1929 | uplift 1930 | uplifting 1931 | upliftingly 1932 | upliftment 1933 | upscale 1934 | usable 1935 | useable 1936 | useful 1937 | user-friendly 1938 | user-replaceable 1939 | valiant 1940 | valiantly 1941 | valor 1942 | valuable 1943 | variety 1944 | venerate 1945 | verifiable 1946 | veritable 1947 | versatile 1948 | versatility 1949 | vibrant 1950 | vibrantly 1951 | victorious 1952 | victory 1953 | viewable 1954 | vigilance 1955 | vigilant 1956 | virtue 1957 | virtuous 1958 | virtuously 1959 | visionary 1960 | vivacious 1961 | vivid 1962 | vouch 1963 | vouchsafe 1964 | warm 1965 | warmer 1966 | warmhearted 1967 | warmly 1968 | warmth 1969 | wealthy 1970 | welcome 1971 | well 1972 | well-backlit 1973 | well-balanced 1974 | well-behaved 1975 | well-being 1976 | well-bred 1977 | well-connected 1978 | well-educated 1979 | well-established 1980 | well-informed 1981 | well-intentioned 1982 | well-known 1983 | well-made 1984 | well-managed 1985 | well-mannered 1986 | well-positioned 1987 | well-received 1988 | well-regarded 1989 | well-rounded 1990 | well-run 1991 | well-wishers 1992 | wellbeing 1993 | whoa 1994 | wholeheartedly 1995 | wholesome 1996 | whooa 1997 | whoooa 1998 | wieldy 1999 | willing 2000 | willingly 2001 | willingness 2002 | win 2003 | windfall 2004 | winnable 2005 | winner 2006 | winners 2007 | winning 2008 | wins 2009 | wisdom 2010 | wise 2011 | wisely 2012 | witty 2013 | won 2014 | wonder 2015 | wonderful 2016 | wonderfully 2017 | wonderous 2018 | wonderously 2019 | wonders 2020 | wondrous 2021 | woo 2022 | work 2023 | workable 2024 | worked 2025 | works 2026 | world-famous 2027 | worth 2028 | worth-while 2029 | worthiness 2030 | worthwhile 2031 | worthy 2032 | wow 2033 | wowed 2034 | wowing 2035 | wows 2036 | yay 2037 | youthful 2038 | zeal 2039 | zenith 2040 | zest 2041 | zippy 2042 | -------------------------------------------------------------------------------- /sentiment_analysis-master/readme.md: -------------------------------------------------------------------------------- 1 | ## README 2 | 3 | ### Steps to Run 4 | 5 | 1. Install and launch R. I like to use [RStudio](http://www.rstudio.com/). 6 | 2. Create a directory called *sentiment_analysis*. From the command line: *mkdir sentiment_analysis* 7 | 3. Open up that directory. From the command line: *cd sentiment_analysis* 8 | 4. Clone this repository. From the command line: *git clone git@github.com:abromberg/sentiment_analysis.git* 9 | 5. Open the file *sentiment_analysis.R* in RStudio. 10 | 6. Make sure your working directory is the *sentiment_analysis* directory. From RStudio, you can go to Tools -> Set Working Directory -> Choose Directory. Or you can run the command *setwd('path/to/directory')* 11 | 7. Select 'Run' to execute the program. 12 | 13 | ### More Documentation 14 | 15 | For more documentation, check out the blog post about this code [here](http://andybromberg.com/sentiment-analysis). 16 | -------------------------------------------------------------------------------- /sentiment_analysis-master/sentiment_analysis.R: -------------------------------------------------------------------------------- 1 | #import libraries to work with 2 | library(plyr) 3 | library(stringr) 4 | library(e1071) 5 | 6 | setwd("~/Documents/GitHub/sentiment_analysis") 7 | 8 | #load up word polarity list and format it 9 | afinn_list <- read.delim(file='AFINN/AFINN-111.txt', header=FALSE, stringsAsFactors=FALSE) 10 | names(afinn_list) <- c('word', 'score') 11 | afinn_list$word <- tolower(afinn_list$word) 12 | 13 | #categorize words as very negative to very positive and add some movie-specific words 14 | vNegTerms <- afinn_list$word[afinn_list$score==-5 | afinn_list$score==-4] 15 | negTerms <- c(afinn_list$word[afinn_list$score==-3 | afinn_list$score==-2 | afinn_list$score==-1], "second-rate", "moronic", "third-rate", "flawed", "juvenile", "boring", "distasteful", "ordinary", "disgusting", "senseless", "static", "brutal", "confused", "disappointing", "bloody", "silly", "tired", "predictable", "stupid", "uninteresting", "trite", "uneven", "outdated", "dreadful", "bland") 16 | posTerms <- c(afinn_list$word[afinn_list$score==3 | afinn_list$score==2 | afinn_list$score==1], "first-rate", "insightful", "clever", "charming", "comical", "charismatic", "enjoyable", "absorbing", "sensitive", "intriguing", "powerful", "pleasant", "surprising", "thought-provoking", "imaginative", "unpretentious") 17 | vPosTerms <- c(afinn_list$word[afinn_list$score==5 | afinn_list$score==4], "uproarious", "riveting", "fascinating", "dazzling", "legendary") 18 | 19 | #load up positive and negative sentences and format 20 | posText <- read.delim(file='polarityData/rt-polaritydata/rt-polarity-pos.txt', header=FALSE, stringsAsFactors=FALSE) 21 | posText <- posText$V1 22 | posText <- unlist(lapply(posText, function(x) { str_split(x, "\n") })) 23 | negText <- read.delim(file='polarityData/rt-polaritydata/rt-polarity-neg.txt', header=FALSE, stringsAsFactors=FALSE) 24 | negText <- negText$V1 25 | negText <- unlist(lapply(negText, function(x) { str_split(x, "\n") })) 26 | 27 | #function to calculate number of words in each category within a sentence 28 | sentimentScore <- function(sentences, vNegTerms, negTerms, posTerms, vPosTerms){ 29 | final_scores <- matrix('', 0, 5) 30 | scores <- laply(sentences, function(sentence, vNegTerms, negTerms, posTerms, vPosTerms){ 31 | initial_sentence <- sentence 32 | #remove unnecessary characters and split up by word 33 | sentence <- gsub('[[:punct:]]', '', sentence) 34 | sentence <- gsub('[[:cntrl:]]', '', sentence) 35 | sentence <- gsub('\\d+', '', sentence) 36 | sentence <- tolower(sentence) 37 | wordList <- str_split(sentence, '\\s+') 38 | words <- unlist(wordList) 39 | #build vector with matches between sentence and each category 40 | vPosMatches <- match(words, vPosTerms) 41 | posMatches <- match(words, posTerms) 42 | vNegMatches <- match(words, vNegTerms) 43 | negMatches <- match(words, negTerms) 44 | #sum up number of words in each category 45 | vPosMatches <- sum(!is.na(vPosMatches)) 46 | posMatches <- sum(!is.na(posMatches)) 47 | vNegMatches <- sum(!is.na(vNegMatches)) 48 | negMatches <- sum(!is.na(negMatches)) 49 | score <- c(vNegMatches, negMatches, posMatches, vPosMatches) 50 | #add row to scores table 51 | newrow <- c(initial_sentence, score) 52 | final_scores <- rbind(final_scores, newrow) 53 | return(final_scores) 54 | }, vNegTerms, negTerms, posTerms, vPosTerms) 55 | return(scores) 56 | } 57 | 58 | #build tables of positive and negative sentences with scores 59 | posResult <- as.data.frame(sentimentScore(posText, vNegTerms, negTerms, posTerms, vPosTerms)) 60 | negResult <- as.data.frame(sentimentScore(negText, vNegTerms, negTerms, posTerms, vPosTerms)) 61 | posResult <- cbind(posResult, 'positive') 62 | colnames(posResult) <- c('sentence', 'vNeg', 'neg', 'pos', 'vPos', 'sentiment') 63 | negResult <- cbind(negResult, 'negative') 64 | colnames(negResult) <- c('sentence', 'vNeg', 'neg', 'pos', 'vPos', 'sentiment') 65 | 66 | #combine the positive and negative tables 67 | results <- rbind(posResult, negResult) 68 | 69 | #run the naive bayes algorithm using all four categories 70 | classifier <- naiveBayes(results[,2:5], results[,6]) 71 | 72 | #display the confusion table for the classification ran on the same data 73 | confTable <- table(predict(classifier, results), results[,6], dnn=list('predicted','actual')) 74 | confTable 75 | 76 | #run a binomial test for confidence interval of results 77 | binom.test(confTable[1,1] + confTable[2,2], nrow(results), p=0.5) -------------------------------------------------------------------------------- /sentiment_analysis.R: -------------------------------------------------------------------------------- 1 | # sentiment analysis using R 2 | # https://github.com/abromberg/sentiment_analysis 3 | 4 | 5 | 6 | library(plyr) 7 | library(stringr) 8 | library(e1071) 9 | 10 | 11 | setwd("D:/Dropbox/sentimentCN/sentiment_analysis-master/") 12 | 13 | ############## 14 | "read dict" 15 | ############## 16 | #load up word polarity list and format it 17 | afinn_list = read.delim(file='./AFINN/AFINN-111.txt', header=FALSE, stringsAsFactors=FALSE) 18 | names(afinn_list) = c('word', 'score') 19 | afinn_list$word = tolower(afinn_list$word) 20 | 21 | #categorize words as very negative to very positive and add some movie-specific words 22 | vNegTerms = afinn_list$word[afinn_list$score==-5 | afinn_list$score==-4] 23 | negTerms = c(afinn_list$word[afinn_list$score==-3 | afinn_list$score==-2 | afinn_list$score==-1], 24 | "second-rate", "moronic", "third-rate", "flawed", "juvenile", "boring", "distasteful", 25 | "ordinary", "disgusting", "senseless", "static", "brutal", "confused", "disappointing", 26 | "bloody", "silly", "tired", "predictable", "stupid", "uninteresting", "trite", "uneven", 27 | "outdated", "dreadful", "bland") 28 | posTerms = c(afinn_list$word[afinn_list$score==3 | afinn_list$score==2 | afinn_list$score==1], 29 | "first-rate", "insightful", "clever", "charming", "comical", "charismatic", 30 | "enjoyable", "absorbing", "sensitive", "intriguing", "powerful", "pleasant", 31 | "surprising", "thought-provoking", "imaginative", "unpretentious") 32 | vPosTerms = c(afinn_list$word[afinn_list$score==5 | afinn_list$score==4], 33 | "uproarious", "riveting", "fascinating", "dazzling", "legendary") 34 | 35 | ############################# 36 | "function of sentimentScore" 37 | ############################# 38 | sentimentScore = function(sentences, vNegTerms, negTerms, posTerms, vPosTerms){ 39 | final_scores = matrix('', 0, 5) 40 | scores = laply(sentences, function(sentence, vNegTerms, negTerms, posTerms, vPosTerms){ 41 | initial_sentence = sentence 42 | #remove unnecessary characters and split up by word 43 | sentence = gsub('[[:punct:]]', '', sentence) 44 | sentence = gsub('[[:cntrl:]]', '', sentence) 45 | sentence = gsub('\\d+', '', sentence) 46 | sentence = tolower(sentence) 47 | wordList = str_split(sentence, '\\s+') 48 | words = unlist(wordList) 49 | #build vector with matches between sentence and each category 50 | vPosMatches = match(words, vPosTerms) 51 | posMatches = match(words, posTerms) 52 | vNegMatches = match(words, vNegTerms) 53 | negMatches = match(words, negTerms) 54 | #sum up number of words in each category 55 | vPosMatches = sum(!is.na(vPosMatches)) 56 | posMatches = sum(!is.na(posMatches)) 57 | vNegMatches = sum(!is.na(vNegMatches)) 58 | negMatches = sum(!is.na(negMatches)) 59 | score = c(vNegMatches, negMatches, posMatches, vPosMatches) 60 | #add row to scores table 61 | newrow = c(initial_sentence, score) 62 | final_scores = rbind(final_scores, newrow) 63 | return(final_scores) 64 | }, vNegTerms, negTerms, posTerms, vPosTerms) 65 | return(scores) 66 | } 67 | 68 | ################ 69 | "load data" 70 | ################ 71 | 72 | #load up positive and negative sentences and format 73 | posText = read.delim(file='polarityData/rt-polaritydata/rt-polarity-pos.txt', header=FALSE, stringsAsFactors=FALSE) 74 | negText = read.delim(file='polarityData/rt-polaritydata/rt-polarity-neg.txt', header=FALSE, stringsAsFactors=FALSE) 75 | 76 | posText = posText$V1 77 | negText = negText$V1 78 | 79 | posText = unlist(lapply(posText, function(x) { str_split(x, "\n") })) 80 | negText = unlist(lapply(negText, function(x) { str_split(x, "\n") })) 81 | 82 | #build tables of positive and negative sentences with scores 83 | posResult = as.data.frame(sentimentScore(posText, vNegTerms, negTerms, posTerms, vPosTerms)) 84 | negResult = as.data.frame(sentimentScore(negText, vNegTerms, negTerms, posTerms, vPosTerms)) 85 | posResult = cbind(posResult, 'positive') 86 | negResult = cbind(negResult, 'negative') 87 | colnames(posResult) = c('sentence', 'vNeg', 'neg', 'pos', 'vPos', 'sentiment') 88 | colnames(negResult) = c('sentence', 'vNeg', 'neg', 'pos', 'vPos', 'sentiment') 89 | 90 | ######################################################### 91 | "run the naive bayes algorithm using all four categories" 92 | ######################################################### 93 | results = rbind(posResult, negResult) 94 | classifier = naiveBayes(results[,2:5], results[,6]) 95 | predicted = predict(classifier, results) 96 | 97 | results$predicted = predicted 98 | results[1:50,2:7] 99 | 100 | #display the confusion table for the classification ran on the same data 101 | confTable = table(predicted, results[,6], dnn=list('predicted','actual')) 102 | confTable 103 | 104 | #run a binomial test for confidence interval of results 105 | binom.test(confTable[1,1] + confTable[2,2], nrow(results), p=0.5) 106 | 107 | 108 | 109 | -------------------------------------------------------------------------------- /sentiment_anlaysis_using_machine_learning_methods.R: -------------------------------------------------------------------------------- 1 | ########################################### 2 | "Sentiment analysis with machine learning" 3 | ########################################## 4 | library(RTextTools) 5 | library(e1071) 6 | 7 | pos_tweets = rbind( 8 | c('I love this car', 'positive'), 9 | c('This view is amazing', 'positive'), 10 | c('I feel great this morning', 'positive'), 11 | c('I am so excited about the concert', 'positive'), 12 | c('He is my best friend', 'positive') 13 | ) 14 | 15 | 16 | neg_tweets = rbind( 17 | c('I do not like this car', 'negative'), 18 | c('This view is horrible', 'negative'), 19 | c('I feel tired this morning', 'negative'), 20 | c('I am not looking forward to the concert', 'negative'), 21 | c('He is my enemy', 'negative') 22 | ) 23 | 24 | 25 | test_tweets = rbind( 26 | c('feel happy this morning', 'positive'), 27 | c('larry friend', 'positive'), 28 | c('not like that man', 'negative'), 29 | c('house not great', 'negative'), 30 | c('your song annoying', 'negative') 31 | ) 32 | 33 | tweets = rbind(pos_tweets, neg_tweets, test_tweets) 34 | 35 | # native bayes 36 | matrix1= create_matrix(tweets[,1], language="english", 37 | removeStopwords=TRUE, removeNumbers=TRUE, 38 | minWordLength=3, 39 | stemWords=FALSE, 40 | weighting=tm::weightTfIdf, 41 | ngramLength=1) 42 | mat1 = as.matrix(matrix1) 43 | 44 | matrix2= create_matrix(tweets[,1], language="english", 45 | removeStopwords=TRUE, removeNumbers=TRUE, 46 | minWordLength=3, 47 | stemWords=FALSE, 48 | weighting=tm::weightTfIdf, 49 | ngramLength=2) 50 | mat2 = as.matrix(matrix2) 51 | 52 | matrix3= create_matrix(tweets[,1], language="english", 53 | removeStopwords=TRUE, removeNumbers=TRUE, 54 | minWordLength=3, 55 | stemWords=FALSE, 56 | weighting=tm::weightTfIdf, 57 | ngramLength=3) 58 | mat3 = as.matrix(matrix3) 59 | 60 | mat = cbind(mat1, mat2, mat3) 61 | 62 | mean(colSums(mat)) 63 | 64 | library(tau) 65 | tokenize_ngrams <- function(x, n=ngramLength) return(names(textcnt(x,method="string",n=n))) 66 | 67 | tokenize_ngrams_list <- function(x, n = ngramList){ # ngramList in the form of 1:3 68 | ngrams_name = NULL 69 | for (i in n){ 70 | ngrams_name[[i]] = names(textcnt(x,method="string",n=i)) 71 | } 72 | return(unlist(ngrams_name)) 73 | } 74 | 75 | 76 | txt = "i love this car because it is fast" 77 | tokenize_ngrams(txt, 3) 78 | tokenize_ngrams_list(txt, 1:3) 79 | 80 | control <- list(bounds=list(local=c(minDocFreq,maxDocFreq)),language=language,tolower=toLower,removeNumbers=removeNumbers,removePunctuation=removePunctuation,stopwords=removeStopwords,stripWhitespace=stripWhitespace,wordLengths=c(minWordLength,maxWordLength),weighting=weighting) 81 | 82 | if (ngramLength > 1) { 83 | control <- append(control,list(tokenize=tokenize_ngrams),after=7) 84 | } else { 85 | control <- append(control,list(tokenize=scan_tokenizer),after=4) 86 | } 87 | 88 | 89 | 90 | 91 | 92 | classifier = naiveBayes(mat[1:10,], as.factor(tweets[1:10,2]) ) 93 | predicted = predict(classifier, mat[11:15,]); predicted 94 | 95 | table(predicted, true = tweets[11:15, 2]) 96 | accuracy = recall_accuracy(tweets[11:15, 2], predicted); accuracy 97 | 98 | # the other methods 99 | container = create_container(matrix, as.numeric(as.factor(tweets[,2])), 100 | trainSize=1:10, testSize=11:15,virgin=FALSE) #可以设置removeSparseTerms 101 | 102 | models = train_models(container, algorithms=c("MAXENT" , "SVM", "RF", "BAGGING", "TREE")) 103 | 104 | results = classify_models(container, models) 105 | 106 | # accuracy 107 | table(as.numeric(as.factor(tweets[11:15, 2])), results[,"FORESTS_LABEL"]) 108 | table(as.numeric(as.factor(tweets[11:15, 2])), results[,"MAXENTROPY_LABEL"]) 109 | 110 | recall_accuracy(as.numeric(as.factor(tweets[11:15, 2])), results[,"FORESTS_LABEL"]) 111 | recall_accuracy(as.numeric(as.factor(tweets[11:15, 2])), results[,"MAXENTROPY_LABEL"]) 112 | recall_accuracy(as.numeric(as.factor(tweets[11:15, 2])), results[,"TREE_LABEL"]) 113 | recall_accuracy(as.numeric(as.factor(tweets[11:15, 2])), results[,"BAGGING_LABEL"]) 114 | recall_accuracy(as.numeric(as.factor(tweets[11:15, 2])), results[,"SVM_LABEL"]) 115 | # model summary 116 | analytics = create_analytics(container, results) 117 | summary(analytics) 118 | 119 | head(analytics@document_summary) 120 | analytics@ensemble_summary 121 | 122 | N=4 123 | set.seed(2014) 124 | cross_validate(container,N,"MAXENT") 125 | cross_validate(container,N,"TREE") 126 | cross_validate(container,N,"SVM") 127 | cross_validate(container,N,"RF") --------------------------------------------------------------------------------