├── Images
└── lvt.png
├── License.md
├── README.md
├── classification
├── .gitignore
├── Images
│ └── lvt.png
├── LICENSE
├── README.md
├── README.volo.md
├── configs
│ └── lvt_imagenet.py
├── distributed_train.sh
├── figures
│ ├── compare.png
│ └── outlook-attention-gif.gif
├── loss
│ ├── __init__.py
│ └── cross_entropy.py
├── main.py
├── models
│ ├── __init__.py
│ ├── lvt.py
│ └── lvt_cls.py
├── utils
│ ├── __init__.py
│ └── utils.py
└── validate.py
├── detection
├── .dev_scripts
│ ├── batch_test_list.py
│ ├── batch_train_list.txt
│ ├── benchmark_filter.py
│ ├── benchmark_inference_fps.py
│ ├── benchmark_test_image.py
│ ├── convert_test_benchmark_script.py
│ ├── convert_train_benchmark_script.py
│ ├── gather_models.py
│ ├── gather_test_benchmark_metric.py
│ ├── gather_train_benchmark_metric.py
│ ├── linter.sh
│ ├── test_benchmark.sh
│ ├── test_init_backbone.py
│ └── train_benchmark.sh
├── .github
│ ├── CODE_OF_CONDUCT.md
│ ├── CONTRIBUTING.md
│ ├── ISSUE_TEMPLATE
│ │ ├── config.yml
│ │ ├── error-report.md
│ │ ├── feature_request.md
│ │ ├── general_questions.md
│ │ └── reimplementation_questions.md
│ ├── pull_request_template.md
│ └── workflows
│ │ ├── build.yml
│ │ ├── build_pat.yml
│ │ └── deploy.yml
├── .gitignore
├── .pre-commit-config.yaml
├── .readthedocs.yml
├── CITATION.cff
├── LICENSE
├── MANIFEST.in
├── README.md
├── README.mmdet.md
├── README_zh-CN.md
├── configs
│ ├── _base_
│ │ ├── datasets
│ │ │ ├── cityscapes_detection.py
│ │ │ ├── cityscapes_instance.py
│ │ │ ├── coco_detection.py
│ │ │ ├── coco_detection_512.py
│ │ │ ├── coco_instance.py
│ │ │ ├── coco_instance_semantic.py
│ │ │ ├── coco_panoptic.py
│ │ │ ├── coco_panoptic_1024.py
│ │ │ ├── coco_panoptic_512.py
│ │ │ ├── coco_panoptic_640.py
│ │ │ ├── deepfashion.py
│ │ │ ├── lvis_v0.5_instance.py
│ │ │ ├── lvis_v1_instance.py
│ │ │ ├── voc0712.py
│ │ │ └── wider_face.py
│ │ ├── default_runtime.py
│ │ ├── models
│ │ │ ├── cascade_mask_rcnn_r50_fpn.py
│ │ │ ├── cascade_rcnn_r50_fpn.py
│ │ │ ├── fast_rcnn_r50_fpn.py
│ │ │ ├── faster_rcnn_r50_caffe_c4.py
│ │ │ ├── faster_rcnn_r50_caffe_dc5.py
│ │ │ ├── faster_rcnn_r50_fpn.py
│ │ │ ├── mask_rcnn_r50_caffe_c4.py
│ │ │ ├── mask_rcnn_r50_fpn.py
│ │ │ ├── retinanet_r50_fpn.py
│ │ │ ├── rpn_r50_caffe_c4.py
│ │ │ ├── rpn_r50_fpn.py
│ │ │ └── ssd300.py
│ │ └── schedules
│ │ │ ├── schedule_1x.py
│ │ │ ├── schedule_20e.py
│ │ │ └── schedule_2x.py
│ ├── albu_example
│ │ ├── README.md
│ │ └── mask_rcnn_r50_fpn_albu_1x_coco.py
│ ├── atss
│ │ ├── README.md
│ │ ├── atss_r101_fpn_1x_coco.py
│ │ ├── atss_r50_fpn_1x_coco.py
│ │ └── metafile.yml
│ ├── autoassign
│ │ ├── README.md
│ │ ├── autoassign_r50_fpn_8x2_1x_coco.py
│ │ └── metafile.yml
│ ├── carafe
│ │ ├── README.md
│ │ ├── faster_rcnn_r50_fpn_carafe_1x_coco.py
│ │ └── mask_rcnn_r50_fpn_carafe_1x_coco.py
│ ├── cascade_rcnn
│ │ ├── README.md
│ │ ├── cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py
│ │ ├── cascade_mask_rcnn_r101_caffe_fpn_mstrain_3x_coco.py
│ │ ├── cascade_mask_rcnn_r101_fpn_1x_coco.py
│ │ ├── cascade_mask_rcnn_r101_fpn_20e_coco.py
│ │ ├── cascade_mask_rcnn_r101_fpn_mstrain_3x_coco.py
│ │ ├── cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py
│ │ ├── cascade_mask_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
│ │ ├── cascade_mask_rcnn_r50_fpn_1x_coco.py
│ │ ├── cascade_mask_rcnn_r50_fpn_20e_coco.py
│ │ ├── cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py
│ │ ├── cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py
│ │ ├── cascade_mask_rcnn_x101_32x4d_fpn_20e_coco.py
│ │ ├── cascade_mask_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py
│ │ ├── cascade_mask_rcnn_x101_32x8d_fpn_mstrain_3x_coco.py
│ │ ├── cascade_mask_rcnn_x101_64x4d_fpn_1x_coco.py
│ │ ├── cascade_mask_rcnn_x101_64x4d_fpn_20e_coco.py
│ │ ├── cascade_mask_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py
│ │ ├── cascade_rcnn_r101_caffe_fpn_1x_coco.py
│ │ ├── cascade_rcnn_r101_fpn_1x_coco.py
│ │ ├── cascade_rcnn_r101_fpn_20e_coco.py
│ │ ├── cascade_rcnn_r50_caffe_fpn_1x_coco.py
│ │ ├── cascade_rcnn_r50_fpn_1x_coco.py
│ │ ├── cascade_rcnn_r50_fpn_20e_coco.py
│ │ ├── cascade_rcnn_x101_32x4d_fpn_1x_coco.py
│ │ ├── cascade_rcnn_x101_32x4d_fpn_20e_coco.py
│ │ ├── cascade_rcnn_x101_64x4d_fpn_1x_coco.py
│ │ ├── cascade_rcnn_x101_64x4d_fpn_20e_coco.py
│ │ └── metafile.yml
│ ├── cascade_rpn
│ │ ├── README.md
│ │ ├── crpn_fast_rcnn_r50_caffe_fpn_1x_coco.py
│ │ ├── crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py
│ │ └── crpn_r50_caffe_fpn_1x_coco.py
│ ├── centernet
│ │ ├── README.md
│ │ ├── centernet_resnet18_140e_coco.py
│ │ ├── centernet_resnet18_dcnv2_140e_coco.py
│ │ └── metafile.yml
│ ├── centripetalnet
│ │ ├── README.md
│ │ ├── centripetalnet_hourglass104_mstest_16x6_210e_coco.py
│ │ └── metafile.yml
│ ├── cityscapes
│ │ ├── README.md
│ │ ├── faster_rcnn_r50_fpn_1x_cityscapes.py
│ │ └── mask_rcnn_r50_fpn_1x_cityscapes.py
│ ├── common
│ │ ├── lsj_100e_coco_instance.py
│ │ ├── mstrain-poly_3x_coco_instance.py
│ │ ├── mstrain_3x_coco.py
│ │ ├── mstrain_3x_coco_instance.py
│ │ └── mstrain_3x_coco_segrescale.py
│ ├── cornernet
│ │ ├── README.md
│ │ ├── cornernet_hourglass104_mstest_10x5_210e_coco.py
│ │ ├── cornernet_hourglass104_mstest_32x3_210e_coco.py
│ │ ├── cornernet_hourglass104_mstest_8x6_210e_coco.py
│ │ └── metafile.yml
│ ├── dcn
│ │ ├── README.md
│ │ ├── cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
│ │ ├── cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
│ │ ├── cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
│ │ ├── cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
│ │ ├── cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
│ │ ├── faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_dpool_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_mdpool_1x_coco.py
│ │ ├── faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
│ │ └── metafile.yml
│ ├── deepfashion
│ │ ├── README.md
│ │ └── mask_rcnn_r50_fpn_15e_deepfashion.py
│ ├── deformable_detr
│ │ ├── README.md
│ │ ├── deformable_detr_r50_16x2_50e_coco.py
│ │ ├── deformable_detr_refine_r50_16x2_50e_coco.py
│ │ ├── deformable_detr_twostage_refine_r50_16x2_50e_coco.py
│ │ └── metafile.yml
│ ├── detectors
│ │ ├── README.md
│ │ ├── cascade_rcnn_r50_rfp_1x_coco.py
│ │ ├── cascade_rcnn_r50_sac_1x_coco.py
│ │ ├── detectors_cascade_rcnn_r50_1x_coco.py
│ │ ├── detectors_htc_r101_20e_coco.py
│ │ ├── detectors_htc_r50_1x_coco.py
│ │ ├── htc_r50_rfp_1x_coco.py
│ │ ├── htc_r50_sac_1x_coco.py
│ │ └── metafile.yml
│ ├── detr
│ │ ├── README.md
│ │ ├── detr_r50_8x2_150e_coco.py
│ │ └── metafile.yml
│ ├── double_heads
│ │ ├── README.md
│ │ ├── dh_faster_rcnn_r50_fpn_1x_coco.py
│ │ └── metafile.yml
│ ├── dynamic_rcnn
│ │ ├── README.md
│ │ ├── dynamic_rcnn_r50_fpn_1x_coco.py
│ │ └── metafile.yml
│ ├── empirical_attention
│ │ ├── README.md
│ │ ├── faster_rcnn_r50_fpn_attention_0010_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_attention_1111_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py
│ │ └── metafile.yml
│ ├── fast_rcnn
│ │ ├── README.md
│ │ ├── fast_rcnn_r101_caffe_fpn_1x_coco.py
│ │ ├── fast_rcnn_r101_fpn_1x_coco.py
│ │ ├── fast_rcnn_r101_fpn_2x_coco.py
│ │ ├── fast_rcnn_r50_caffe_fpn_1x_coco.py
│ │ ├── fast_rcnn_r50_fpn_1x_coco.py
│ │ └── fast_rcnn_r50_fpn_2x_coco.py
│ ├── faster_rcnn
│ │ ├── README.md
│ │ ├── faster_rcnn_r101_caffe_fpn_1x_coco.py
│ │ ├── faster_rcnn_r101_caffe_fpn_mstrain_3x_coco.py
│ │ ├── faster_rcnn_r101_fpn_1x_coco.py
│ │ ├── faster_rcnn_r101_fpn_2x_coco.py
│ │ ├── faster_rcnn_r101_fpn_mstrain_3x_coco.py
│ │ ├── faster_rcnn_r50_caffe_c4_1x_coco.py
│ │ ├── faster_rcnn_r50_caffe_dc5_1x_coco.py
│ │ ├── faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py
│ │ ├── faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py
│ │ ├── faster_rcnn_r50_caffe_fpn_1x_coco.py
│ │ ├── faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person-bicycle-car.py
│ │ ├── faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py
│ │ ├── faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
│ │ ├── faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py
│ │ ├── faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
│ │ ├── faster_rcnn_r50_caffe_fpn_mstrain_90k_coco.py
│ │ ├── faster_rcnn_r50_fpn_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_2x_coco.py
│ │ ├── faster_rcnn_r50_fpn_bounded_iou_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_ciou_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_giou_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_iou_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_mstrain_3x_coco.py
│ │ ├── faster_rcnn_r50_fpn_ohem_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_soft_nms_1x_coco.py
│ │ ├── faster_rcnn_x101_32x4d_fpn_1x_coco.py
│ │ ├── faster_rcnn_x101_32x4d_fpn_2x_coco.py
│ │ ├── faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py
│ │ ├── faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco.py
│ │ ├── faster_rcnn_x101_64x4d_fpn_1x_coco.py
│ │ ├── faster_rcnn_x101_64x4d_fpn_2x_coco.py
│ │ ├── faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py
│ │ └── metafile.yml
│ ├── fcos
│ │ ├── README.md
│ │ ├── fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py
│ │ ├── fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco.py
│ │ ├── fcos_center_r50_caffe_fpn_gn-head_1x_coco.py
│ │ ├── fcos_r101_caffe_fpn_gn-head_1x_coco.py
│ │ ├── fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
│ │ ├── fcos_r50_caffe_fpn_gn-head_1x_coco.py
│ │ ├── fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py
│ │ ├── fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
│ │ ├── fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco.py
│ │ └── metafile.yml
│ ├── foveabox
│ │ ├── README.md
│ │ ├── fovea_align_r101_fpn_gn-head_4x4_2x_coco.py
│ │ ├── fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
│ │ ├── fovea_align_r50_fpn_gn-head_4x4_2x_coco.py
│ │ ├── fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
│ │ ├── fovea_r101_fpn_4x4_1x_coco.py
│ │ ├── fovea_r101_fpn_4x4_2x_coco.py
│ │ ├── fovea_r50_fpn_4x4_1x_coco.py
│ │ ├── fovea_r50_fpn_4x4_2x_coco.py
│ │ └── metafile.yml
│ ├── fp16
│ │ ├── README.md
│ │ ├── faster_rcnn_r50_fpn_fp16_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_fp16_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco.py
│ │ ├── metafile.yml
│ │ └── retinanet_r50_fpn_fp16_1x_coco.py
│ ├── fpg
│ │ ├── README.md
│ │ ├── faster_rcnn_r50_fpg-chn128_crop640_50e_coco.py
│ │ ├── faster_rcnn_r50_fpg_crop640_50e_coco.py
│ │ ├── faster_rcnn_r50_fpn_crop640_50e_coco.py
│ │ ├── mask_rcnn_r50_fpg-chn128_crop640_50e_coco.py
│ │ ├── mask_rcnn_r50_fpg_crop640_50e_coco.py
│ │ ├── mask_rcnn_r50_fpn_crop640_50e_coco.py
│ │ ├── metafile.yml
│ │ ├── retinanet_r50_fpg-chn128_crop640_50e_coco.py
│ │ └── retinanet_r50_fpg_crop640_50e_coco.py
│ ├── free_anchor
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── retinanet_free_anchor_r101_fpn_1x_coco.py
│ │ ├── retinanet_free_anchor_r50_fpn_1x_coco.py
│ │ └── retinanet_free_anchor_x101_32x4d_fpn_1x_coco.py
│ ├── fsaf
│ │ ├── README.md
│ │ ├── fsaf_r101_fpn_1x_coco.py
│ │ ├── fsaf_r50_fpn_1x_coco.py
│ │ ├── fsaf_x101_64x4d_fpn_1x_coco.py
│ │ └── metafile.yml
│ ├── gcnet
│ │ ├── README.md
│ │ ├── cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py
│ │ ├── cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco.py
│ │ ├── cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco.py
│ │ ├── cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco.py
│ │ ├── cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
│ │ ├── cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_r101_fpn_syncbn-backbone_1x_coco.py
│ │ ├── mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_syncbn-backbone_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
│ │ └── metafile.yml
│ ├── gfl
│ │ ├── README.md
│ │ ├── gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py
│ │ ├── gfl_r101_fpn_mstrain_2x_coco.py
│ │ ├── gfl_r50_fpn_1x_coco.py
│ │ ├── gfl_r50_fpn_mstrain_2x_coco.py
│ │ ├── gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco.py
│ │ ├── gfl_x101_32x4d_fpn_mstrain_2x_coco.py
│ │ └── metafile.yml
│ ├── ghm
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── retinanet_ghm_r101_fpn_1x_coco.py
│ │ ├── retinanet_ghm_r50_fpn_1x_coco.py
│ │ ├── retinanet_ghm_x101_32x4d_fpn_1x_coco.py
│ │ └── retinanet_ghm_x101_64x4d_fpn_1x_coco.py
│ ├── gn+ws
│ │ ├── README.md
│ │ ├── faster_rcnn_r101_fpn_gn_ws-all_1x_coco.py
│ │ ├── faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py
│ │ ├── faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco.py
│ │ ├── faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco.py
│ │ ├── mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py
│ │ ├── mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py
│ │ ├── mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py
│ │ ├── mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py
│ │ ├── mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
│ │ ├── mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py
│ │ └── metafile.yml
│ ├── gn
│ │ ├── README.md
│ │ ├── mask_rcnn_r101_fpn_gn-all_2x_coco.py
│ │ ├── mask_rcnn_r101_fpn_gn-all_3x_coco.py
│ │ ├── mask_rcnn_r50_fpn_gn-all_2x_coco.py
│ │ ├── mask_rcnn_r50_fpn_gn-all_3x_coco.py
│ │ ├── mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py
│ │ ├── mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py
│ │ └── metafile.yml
│ ├── grid_rcnn
│ │ ├── README.md
│ │ ├── grid_rcnn_r101_fpn_gn-head_2x_coco.py
│ │ ├── grid_rcnn_r50_fpn_gn-head_1x_coco.py
│ │ ├── grid_rcnn_r50_fpn_gn-head_2x_coco.py
│ │ ├── grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco.py
│ │ ├── grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco.py
│ │ └── metafile.yml
│ ├── groie
│ │ ├── README.md
│ │ ├── faster_rcnn_r50_fpn_groie_1x_coco.py
│ │ ├── grid_rcnn_r50_fpn_gn-head_groie_1x_coco.py
│ │ ├── mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_groie_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py
│ │ └── metafile.yml
│ ├── guided_anchoring
│ │ ├── README.md
│ │ ├── ga_fast_r50_caffe_fpn_1x_coco.py
│ │ ├── ga_faster_r101_caffe_fpn_1x_coco.py
│ │ ├── ga_faster_r50_caffe_fpn_1x_coco.py
│ │ ├── ga_faster_r50_fpn_1x_coco.py
│ │ ├── ga_faster_x101_32x4d_fpn_1x_coco.py
│ │ ├── ga_faster_x101_64x4d_fpn_1x_coco.py
│ │ ├── ga_retinanet_r101_caffe_fpn_1x_coco.py
│ │ ├── ga_retinanet_r101_caffe_fpn_mstrain_2x.py
│ │ ├── ga_retinanet_r50_caffe_fpn_1x_coco.py
│ │ ├── ga_retinanet_r50_fpn_1x_coco.py
│ │ ├── ga_retinanet_x101_32x4d_fpn_1x_coco.py
│ │ ├── ga_retinanet_x101_64x4d_fpn_1x_coco.py
│ │ ├── ga_rpn_r101_caffe_fpn_1x_coco.py
│ │ ├── ga_rpn_r50_caffe_fpn_1x_coco.py
│ │ ├── ga_rpn_r50_fpn_1x_coco.py
│ │ ├── ga_rpn_x101_32x4d_fpn_1x_coco.py
│ │ ├── ga_rpn_x101_64x4d_fpn_1x_coco.py
│ │ └── metafile.yml
│ ├── hrnet
│ │ ├── README.md
│ │ ├── cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py
│ │ ├── cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py
│ │ ├── cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py
│ │ ├── cascade_rcnn_hrnetv2p_w18_20e_coco.py
│ │ ├── cascade_rcnn_hrnetv2p_w32_20e_coco.py
│ │ ├── cascade_rcnn_hrnetv2p_w40_20e_coco.py
│ │ ├── faster_rcnn_hrnetv2p_w18_1x_coco.py
│ │ ├── faster_rcnn_hrnetv2p_w18_2x_coco.py
│ │ ├── faster_rcnn_hrnetv2p_w32_1x_coco.py
│ │ ├── faster_rcnn_hrnetv2p_w32_2x_coco.py
│ │ ├── faster_rcnn_hrnetv2p_w40_1x_coco.py
│ │ ├── faster_rcnn_hrnetv2p_w40_2x_coco.py
│ │ ├── fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py
│ │ ├── fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py
│ │ ├── fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco.py
│ │ ├── fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py
│ │ ├── fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py
│ │ ├── fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py
│ │ ├── fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco.py
│ │ ├── htc_hrnetv2p_w18_20e_coco.py
│ │ ├── htc_hrnetv2p_w32_20e_coco.py
│ │ ├── htc_hrnetv2p_w40_20e_coco.py
│ │ ├── htc_hrnetv2p_w40_28e_coco.py
│ │ ├── htc_x101_64x4d_fpn_16x1_28e_coco.py
│ │ ├── mask_rcnn_hrnetv2p_w18_1x_coco.py
│ │ ├── mask_rcnn_hrnetv2p_w18_2x_coco.py
│ │ ├── mask_rcnn_hrnetv2p_w32_1x_coco.py
│ │ ├── mask_rcnn_hrnetv2p_w32_2x_coco.py
│ │ ├── mask_rcnn_hrnetv2p_w40_1x_coco.py
│ │ ├── mask_rcnn_hrnetv2p_w40_2x_coco.py
│ │ └── metafile.yml
│ ├── htc
│ │ ├── README.md
│ │ ├── htc_r101_fpn_20e_coco.py
│ │ ├── htc_r50_fpn_1x_coco.py
│ │ ├── htc_r50_fpn_20e_coco.py
│ │ ├── htc_without_semantic_r50_fpn_1x_coco.py
│ │ ├── htc_x101_32x4d_fpn_16x1_20e_coco.py
│ │ ├── htc_x101_64x4d_fpn_16x1_20e_coco.py
│ │ ├── htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco.py
│ │ └── metafile.yml
│ ├── instaboost
│ │ ├── README.md
│ │ ├── cascade_mask_rcnn_r101_fpn_instaboost_4x_coco.py
│ │ ├── cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py
│ │ ├── cascade_mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py
│ │ ├── mask_rcnn_r101_fpn_instaboost_4x_coco.py
│ │ ├── mask_rcnn_r50_fpn_instaboost_4x_coco.py
│ │ ├── mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py
│ │ └── metafile.yml
│ ├── ld
│ │ ├── README.md
│ │ ├── ld_r101_gflv1_r101dcn_fpn_coco_2x.py
│ │ ├── ld_r18_gflv1_r101_fpn_coco_1x.py
│ │ ├── ld_r34_gflv1_r101_fpn_coco_1x.py
│ │ ├── ld_r50_gflv1_r101_fpn_coco_1x.py
│ │ └── metafile.yml
│ ├── legacy_1.x
│ │ ├── README.md
│ │ ├── cascade_mask_rcnn_r50_fpn_1x_coco_v1.py
│ │ ├── faster_rcnn_r50_fpn_1x_coco_v1.py
│ │ ├── mask_rcnn_r50_fpn_1x_coco_v1.py
│ │ ├── retinanet_r50_caffe_fpn_1x_coco_v1.py
│ │ ├── retinanet_r50_fpn_1x_coco_v1.py
│ │ └── ssd300_coco_v1.py
│ ├── libra_rcnn
│ │ ├── README.md
│ │ ├── libra_fast_rcnn_r50_fpn_1x_coco.py
│ │ ├── libra_faster_rcnn_r101_fpn_1x_coco.py
│ │ ├── libra_faster_rcnn_r50_fpn_1x_coco.py
│ │ ├── libra_faster_rcnn_x101_64x4d_fpn_1x_coco.py
│ │ ├── libra_retinanet_r50_fpn_1x_coco.py
│ │ └── metafile.yml
│ ├── lvis
│ │ ├── README.md
│ │ ├── mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1.py
│ │ ├── mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
│ │ ├── mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py
│ │ ├── mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
│ │ ├── mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
│ │ └── mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
│ ├── lvt
│ │ ├── panoptic_fpn_lvt_fpn_1x_coco.py
│ │ └── panoptic_fpn_lvt_fpn_3x_coco.py
│ ├── mask_rcnn
│ │ ├── README.md
│ │ ├── mask_rcnn_r101_caffe_fpn_1x_coco.py
│ │ ├── mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py
│ │ ├── mask_rcnn_r101_fpn_1x_coco.py
│ │ ├── mask_rcnn_r101_fpn_2x_coco.py
│ │ ├── mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py
│ │ ├── mask_rcnn_r50_caffe_c4_1x_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_1x_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py
│ │ ├── mask_rcnn_r50_fpn_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_2x_coco.py
│ │ ├── mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
│ │ ├── mask_rcnn_r50_fpn_poly_1x_coco.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_1x_coco.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_2x_coco.py
│ │ ├── mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py
│ │ ├── mask_rcnn_x101_32x8d_fpn_1x_coco.py
│ │ ├── mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
│ │ ├── mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
│ │ ├── mask_rcnn_x101_64x4d_fpn_1x_coco.py
│ │ ├── mask_rcnn_x101_64x4d_fpn_2x_coco.py
│ │ ├── mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
│ │ └── metafile.yml
│ ├── ms_rcnn
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── ms_rcnn_r101_caffe_fpn_1x_coco.py
│ │ ├── ms_rcnn_r101_caffe_fpn_2x_coco.py
│ │ ├── ms_rcnn_r50_caffe_fpn_1x_coco.py
│ │ ├── ms_rcnn_r50_caffe_fpn_2x_coco.py
│ │ ├── ms_rcnn_r50_fpn_1x_coco.py
│ │ ├── ms_rcnn_x101_32x4d_fpn_1x_coco.py
│ │ ├── ms_rcnn_x101_64x4d_fpn_1x_coco.py
│ │ └── ms_rcnn_x101_64x4d_fpn_2x_coco.py
│ ├── nas_fcos
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
│ │ └── nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
│ ├── nas_fpn
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── retinanet_r50_fpn_crop640_50e_coco.py
│ │ └── retinanet_r50_nasfpn_crop640_50e_coco.py
│ ├── paa
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── paa_r101_fpn_1x_coco.py
│ │ ├── paa_r101_fpn_2x_coco.py
│ │ ├── paa_r101_fpn_mstrain_3x_coco.py
│ │ ├── paa_r50_fpn_1.5x_coco.py
│ │ ├── paa_r50_fpn_1x_coco.py
│ │ ├── paa_r50_fpn_2x_coco.py
│ │ └── paa_r50_fpn_mstrain_3x_coco.py
│ ├── pafpn
│ │ ├── README.md
│ │ ├── faster_rcnn_r50_pafpn_1x_coco.py
│ │ └── metafile.yml
│ ├── panoptic_fpn
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── panoptic_fpn_r101_fpn_1x_coco.py
│ │ ├── panoptic_fpn_r101_fpn_mstrain_3x_coco.py
│ │ ├── panoptic_fpn_r50_fpn_1x_coco.py
│ │ └── panoptic_fpn_r50_fpn_mstrain_3x_coco.py
│ ├── pascal_voc
│ │ ├── README.md
│ │ ├── faster_rcnn_r50_fpn_1x_voc0712.py
│ │ ├── faster_rcnn_r50_fpn_1x_voc0712_cocofmt.py
│ │ ├── retinanet_r50_fpn_1x_voc0712.py
│ │ ├── ssd300_voc0712.py
│ │ └── ssd512_voc0712.py
│ ├── pisa
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── pisa_faster_rcnn_r50_fpn_1x_coco.py
│ │ ├── pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py
│ │ ├── pisa_mask_rcnn_r50_fpn_1x_coco.py
│ │ ├── pisa_mask_rcnn_x101_32x4d_fpn_1x_coco.py
│ │ ├── pisa_retinanet_r50_fpn_1x_coco.py
│ │ ├── pisa_retinanet_x101_32x4d_fpn_1x_coco.py
│ │ ├── pisa_ssd300_coco.py
│ │ └── pisa_ssd512_coco.py
│ ├── point_rend
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── point_rend_r50_caffe_fpn_mstrain_1x_coco.py
│ │ └── point_rend_r50_caffe_fpn_mstrain_3x_coco.py
│ ├── pvt
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── retinanet_pvt-l_fpn_1x_coco.py
│ │ ├── retinanet_pvt-m_fpn_1x_coco.py
│ │ ├── retinanet_pvt-s_fpn_1x_coco.py
│ │ ├── retinanet_pvt-t_fpn_1x_coco.py
│ │ ├── retinanet_pvtv2-b0_fpn_1x_coco.py
│ │ ├── retinanet_pvtv2-b1_fpn_1x_coco.py
│ │ ├── retinanet_pvtv2-b2_fpn_1x_coco.py
│ │ ├── retinanet_pvtv2-b3_fpn_1x_coco.py
│ │ ├── retinanet_pvtv2-b4_fpn_1x_coco.py
│ │ └── retinanet_pvtv2-b5_fpn_1x_coco.py
│ ├── regnet
│ │ ├── README.md
│ │ ├── cascade_mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
│ │ ├── cascade_mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
│ │ ├── cascade_mask_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py
│ │ ├── cascade_mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
│ │ ├── cascade_mask_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py
│ │ ├── faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
│ │ ├── faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py
│ │ ├── faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py
│ │ ├── faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
│ │ ├── faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py
│ │ ├── faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
│ │ ├── faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py
│ │ ├── mask_rcnn_regnetx-1.6GF_fpn_mstrain-poly_3x_coco.py
│ │ ├── mask_rcnn_regnetx-12GF_fpn_1x_coco.py
│ │ ├── mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py
│ │ ├── mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py
│ │ ├── mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
│ │ ├── mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco.py
│ │ ├── mask_rcnn_regnetx-4GF_fpn_1x_coco.py
│ │ ├── mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco.py
│ │ ├── mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py
│ │ ├── mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco.py
│ │ ├── mask_rcnn_regnetx-8GF_fpn_1x_coco.py
│ │ ├── metafile.yml
│ │ ├── retinanet_regnetx-1.6GF_fpn_1x_coco.py
│ │ ├── retinanet_regnetx-3.2GF_fpn_1x_coco.py
│ │ └── retinanet_regnetx-800MF_fpn_1x_coco.py
│ ├── reppoints
│ │ ├── README.md
│ │ ├── bbox_r50_grid_center_fpn_gn-neck+head_1x_coco.py
│ │ ├── bbox_r50_grid_fpn_gn-neck+head_1x_coco.py
│ │ ├── metafile.yml
│ │ ├── reppoints.png
│ │ ├── reppoints_minmax_r50_fpn_gn-neck+head_1x_coco.py
│ │ ├── reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
│ │ ├── reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py
│ │ ├── reppoints_moment_r50_fpn_1x_coco.py
│ │ ├── reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py
│ │ ├── reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py
│ │ ├── reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
│ │ └── reppoints_partial_minmax_r50_fpn_gn-neck+head_1x_coco.py
│ ├── res2net
│ │ ├── README.md
│ │ ├── cascade_mask_rcnn_r2_101_fpn_20e_coco.py
│ │ ├── cascade_rcnn_r2_101_fpn_20e_coco.py
│ │ ├── faster_rcnn_r2_101_fpn_2x_coco.py
│ │ ├── htc_r2_101_fpn_20e_coco.py
│ │ ├── mask_rcnn_r2_101_fpn_2x_coco.py
│ │ └── metafile.yml
│ ├── resnest
│ │ ├── README.md
│ │ ├── cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py
│ │ ├── cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py
│ │ ├── cascade_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
│ │ ├── cascade_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
│ │ ├── faster_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
│ │ ├── faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
│ │ ├── mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py
│ │ ├── mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py
│ │ └── metafile.yml
│ ├── retinanet
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── retinanet_r101_caffe_fpn_1x_coco.py
│ │ ├── retinanet_r101_caffe_fpn_mstrain_3x_coco.py
│ │ ├── retinanet_r101_fpn_1x_coco.py
│ │ ├── retinanet_r101_fpn_2x_coco.py
│ │ ├── retinanet_r101_fpn_mstrain_640-800_3x_coco.py
│ │ ├── retinanet_r50_caffe_fpn_1x_coco.py
│ │ ├── retinanet_r50_caffe_fpn_mstrain_1x_coco.py
│ │ ├── retinanet_r50_caffe_fpn_mstrain_2x_coco.py
│ │ ├── retinanet_r50_caffe_fpn_mstrain_3x_coco.py
│ │ ├── retinanet_r50_fpn_1x_coco.py
│ │ ├── retinanet_r50_fpn_2x_coco.py
│ │ ├── retinanet_r50_fpn_mstrain_640-800_3x_coco.py
│ │ ├── retinanet_x101_32x4d_fpn_1x_coco.py
│ │ ├── retinanet_x101_32x4d_fpn_2x_coco.py
│ │ ├── retinanet_x101_64x4d_fpn_1x_coco.py
│ │ ├── retinanet_x101_64x4d_fpn_2x_coco.py
│ │ └── retinanet_x101_64x4d_fpn_mstrain_640-800_3x_coco.py
│ ├── rpn
│ │ ├── README.md
│ │ ├── rpn_r101_caffe_fpn_1x_coco.py
│ │ ├── rpn_r101_fpn_1x_coco.py
│ │ ├── rpn_r101_fpn_2x_coco.py
│ │ ├── rpn_r50_caffe_c4_1x_coco.py
│ │ ├── rpn_r50_caffe_fpn_1x_coco.py
│ │ ├── rpn_r50_fpn_1x_coco.py
│ │ ├── rpn_r50_fpn_2x_coco.py
│ │ ├── rpn_x101_32x4d_fpn_1x_coco.py
│ │ ├── rpn_x101_32x4d_fpn_2x_coco.py
│ │ ├── rpn_x101_64x4d_fpn_1x_coco.py
│ │ └── rpn_x101_64x4d_fpn_2x_coco.py
│ ├── sabl
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── sabl_cascade_rcnn_r101_fpn_1x_coco.py
│ │ ├── sabl_cascade_rcnn_r50_fpn_1x_coco.py
│ │ ├── sabl_faster_rcnn_r101_fpn_1x_coco.py
│ │ ├── sabl_faster_rcnn_r50_fpn_1x_coco.py
│ │ ├── sabl_retinanet_r101_fpn_1x_coco.py
│ │ ├── sabl_retinanet_r101_fpn_gn_1x_coco.py
│ │ ├── sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco.py
│ │ ├── sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco.py
│ │ ├── sabl_retinanet_r50_fpn_1x_coco.py
│ │ └── sabl_retinanet_r50_fpn_gn_1x_coco.py
│ ├── scnet
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── scnet_r101_fpn_20e_coco.py
│ │ ├── scnet_r50_fpn_1x_coco.py
│ │ ├── scnet_r50_fpn_20e_coco.py
│ │ ├── scnet_x101_64x4d_fpn_20e_coco.py
│ │ └── scnet_x101_64x4d_fpn_8x1_20e_coco.py
│ ├── scratch
│ │ ├── README.md
│ │ ├── faster_rcnn_r50_fpn_gn-all_scratch_6x_coco.py
│ │ ├── mask_rcnn_r50_fpn_gn-all_scratch_6x_coco.py
│ │ └── metafile.yml
│ ├── seesaw_loss
│ │ ├── README.md
│ │ ├── cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py
│ │ ├── cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
│ │ ├── cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py
│ │ ├── cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
│ │ ├── mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py
│ │ ├── mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
│ │ ├── mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py
│ │ ├── mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
│ │ ├── mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py
│ │ ├── mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
│ │ ├── mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py
│ │ └── mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
│ ├── selfsup_pretrain
│ │ ├── README.md
│ │ ├── mask_rcnn_r50_fpn_mocov2-pretrain_1x_coco.py
│ │ ├── mask_rcnn_r50_fpn_mocov2-pretrain_ms-2x_coco.py
│ │ ├── mask_rcnn_r50_fpn_swav-pretrain_1x_coco.py
│ │ └── mask_rcnn_r50_fpn_swav-pretrain_ms-2x_coco.py
│ ├── solo
│ │ ├── README.md
│ │ ├── decoupled_solo_light_r50_fpn_3x_coco.py
│ │ ├── decoupled_solo_r50_fpn_1x_coco.py
│ │ ├── decoupled_solo_r50_fpn_3x_coco.py
│ │ ├── metafile.yml
│ │ ├── solo_r50_fpn_1x_coco.py
│ │ └── solo_r50_fpn_3x_coco.py
│ ├── sparse_rcnn
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
│ │ ├── sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco.py
│ │ ├── sparse_rcnn_r50_fpn_1x_coco.py
│ │ ├── sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
│ │ └── sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py
│ ├── ssd
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── ssd300_coco.py
│ │ ├── ssd512_coco.py
│ │ └── ssdlite_mobilenetv2_scratch_600e_coco.py
│ ├── strong_baselines
│ │ ├── README.md
│ │ ├── mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_100e_fp16_coco.py
│ │ ├── mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_400e_coco.py
│ │ ├── mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py
│ │ ├── mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_fp16_coco.py
│ │ └── mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_50e_coco.py
│ ├── swin
│ │ ├── README.md
│ │ ├── mask_rcnn_swin-s-p4-w7_fpn_fp16_ms-crop-3x_coco.py
│ │ ├── mask_rcnn_swin-t-p4-w7_fpn_1x_coco.py
│ │ ├── mask_rcnn_swin-t-p4-w7_fpn_fp16_ms-crop-3x_coco.py
│ │ ├── mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco.py
│ │ └── metafile.yml
│ ├── tridentnet
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── tridentnet_r50_caffe_1x_coco.py
│ │ ├── tridentnet_r50_caffe_mstrain_1x_coco.py
│ │ └── tridentnet_r50_caffe_mstrain_3x_coco.py
│ ├── vfnet
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── vfnet_r101_fpn_1x_coco.py
│ │ ├── vfnet_r101_fpn_2x_coco.py
│ │ ├── vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco.py
│ │ ├── vfnet_r101_fpn_mstrain_2x_coco.py
│ │ ├── vfnet_r2_101_fpn_mdconv_c3-c5_mstrain_2x_coco.py
│ │ ├── vfnet_r2_101_fpn_mstrain_2x_coco.py
│ │ ├── vfnet_r50_fpn_1x_coco.py
│ │ ├── vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py
│ │ ├── vfnet_r50_fpn_mstrain_2x_coco.py
│ │ ├── vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py
│ │ ├── vfnet_x101_32x4d_fpn_mstrain_2x_coco.py
│ │ ├── vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py
│ │ └── vfnet_x101_64x4d_fpn_mstrain_2x_coco.py
│ ├── wider_face
│ │ ├── README.md
│ │ └── ssd300_wider_face.py
│ ├── yolact
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── yolact_r101_1x8_coco.py
│ │ ├── yolact_r50_1x8_coco.py
│ │ └── yolact_r50_8x8_coco.py
│ ├── yolo
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── yolov3_d53_320_273e_coco.py
│ │ ├── yolov3_d53_fp16_mstrain-608_273e_coco.py
│ │ ├── yolov3_d53_mstrain-416_273e_coco.py
│ │ ├── yolov3_d53_mstrain-608_273e_coco.py
│ │ ├── yolov3_mobilenetv2_320_300e_coco.py
│ │ └── yolov3_mobilenetv2_mstrain-416_300e_coco.py
│ ├── yolof
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── yolof_r50_c5_8x8_1x_coco.py
│ │ └── yolof_r50_c5_8x8_iter-1x_coco.py
│ └── yolox
│ │ ├── README.md
│ │ ├── metafile.yml
│ │ ├── yolox_l_8x8_300e_coco.py
│ │ ├── yolox_m_8x8_300e_coco.py
│ │ ├── yolox_nano_8x8_300e_coco.py
│ │ ├── yolox_s_8x8_300e_coco.py
│ │ ├── yolox_tiny_8x8_300e_coco.py
│ │ └── yolox_x_8x8_300e_coco.py
├── demo
│ ├── MMDet_Tutorial.ipynb
│ ├── create_result_gif.py
│ ├── demo.jpg
│ ├── demo.mp4
│ ├── image_demo.py
│ ├── inference_demo.ipynb
│ ├── video_demo.py
│ └── webcam_demo.py
├── docker
│ ├── Dockerfile
│ └── serve
│ │ ├── Dockerfile
│ │ ├── config.properties
│ │ └── entrypoint.sh
├── docs
│ ├── 1_exist_data_model.md
│ ├── 2_new_data_model.md
│ ├── 3_exist_data_new_model.md
│ ├── Makefile
│ ├── _static
│ │ ├── css
│ │ │ └── readthedocs.css
│ │ └── image
│ │ │ └── mmdet-logo.png
│ ├── api.rst
│ ├── changelog.md
│ ├── compatibility.md
│ ├── conf.py
│ ├── conventions.md
│ ├── faq.md
│ ├── get_started.md
│ ├── index.rst
│ ├── make.bat
│ ├── model_zoo.md
│ ├── projects.md
│ ├── robustness_benchmarking.md
│ ├── stat.py
│ ├── switch_language.md
│ ├── tutorials
│ │ ├── config.md
│ │ ├── customize_dataset.md
│ │ ├── customize_losses.md
│ │ ├── customize_models.md
│ │ ├── customize_runtime.md
│ │ ├── data_pipeline.md
│ │ ├── finetune.md
│ │ ├── index.rst
│ │ ├── init_cfg.md
│ │ ├── onnx2tensorrt.md
│ │ └── pytorch2onnx.md
│ └── useful_tools.md
├── docs_zh-CN
│ ├── 1_exist_data_model.md
│ ├── 2_new_data_model.md
│ ├── 3_exist_data_new_model.md
│ ├── Makefile
│ ├── _static
│ │ ├── css
│ │ │ └── readthedocs.css
│ │ └── image
│ │ │ └── mmdet-logo.png
│ ├── api.rst
│ ├── compatibility.md
│ ├── conf.py
│ ├── conventions.md
│ ├── faq.md
│ ├── get_started.md
│ ├── index.rst
│ ├── make.bat
│ ├── model_zoo.md
│ ├── projects.md
│ ├── robustness_benchmarking.md
│ ├── stat.py
│ ├── switch_language.md
│ ├── tutorials
│ │ ├── config.md
│ │ ├── customize_dataset.md
│ │ ├── customize_losses.md
│ │ ├── customize_models.md
│ │ ├── customize_runtime.md
│ │ ├── data_pipeline.md
│ │ ├── finetune.md
│ │ ├── index.rst
│ │ ├── onnx2tensorrt.md
│ │ └── pytorch2onnx.md
│ └── useful_tools.md
├── lvt.png
├── mmdet
│ ├── __init__.py
│ ├── apis
│ │ ├── __init__.py
│ │ ├── inference.py
│ │ ├── test.py
│ │ └── train.py
│ ├── core
│ │ ├── __init__.py
│ │ ├── anchor
│ │ │ ├── __init__.py
│ │ │ ├── anchor_generator.py
│ │ │ ├── builder.py
│ │ │ ├── point_generator.py
│ │ │ └── utils.py
│ │ ├── bbox
│ │ │ ├── __init__.py
│ │ │ ├── assigners
│ │ │ │ ├── __init__.py
│ │ │ │ ├── approx_max_iou_assigner.py
│ │ │ │ ├── assign_result.py
│ │ │ │ ├── atss_assigner.py
│ │ │ │ ├── base_assigner.py
│ │ │ │ ├── center_region_assigner.py
│ │ │ │ ├── grid_assigner.py
│ │ │ │ ├── hungarian_assigner.py
│ │ │ │ ├── max_iou_assigner.py
│ │ │ │ ├── point_assigner.py
│ │ │ │ ├── region_assigner.py
│ │ │ │ ├── sim_ota_assigner.py
│ │ │ │ └── uniform_assigner.py
│ │ │ ├── builder.py
│ │ │ ├── coder
│ │ │ │ ├── __init__.py
│ │ │ │ ├── base_bbox_coder.py
│ │ │ │ ├── bucketing_bbox_coder.py
│ │ │ │ ├── delta_xywh_bbox_coder.py
│ │ │ │ ├── legacy_delta_xywh_bbox_coder.py
│ │ │ │ ├── pseudo_bbox_coder.py
│ │ │ │ ├── tblr_bbox_coder.py
│ │ │ │ └── yolo_bbox_coder.py
│ │ │ ├── demodata.py
│ │ │ ├── iou_calculators
│ │ │ │ ├── __init__.py
│ │ │ │ ├── builder.py
│ │ │ │ └── iou2d_calculator.py
│ │ │ ├── match_costs
│ │ │ │ ├── __init__.py
│ │ │ │ ├── builder.py
│ │ │ │ └── match_cost.py
│ │ │ ├── samplers
│ │ │ │ ├── __init__.py
│ │ │ │ ├── base_sampler.py
│ │ │ │ ├── combined_sampler.py
│ │ │ │ ├── instance_balanced_pos_sampler.py
│ │ │ │ ├── iou_balanced_neg_sampler.py
│ │ │ │ ├── ohem_sampler.py
│ │ │ │ ├── pseudo_sampler.py
│ │ │ │ ├── random_sampler.py
│ │ │ │ ├── sampling_result.py
│ │ │ │ └── score_hlr_sampler.py
│ │ │ └── transforms.py
│ │ ├── data_structures
│ │ │ ├── __init__.py
│ │ │ ├── general_data.py
│ │ │ └── instance_data.py
│ │ ├── evaluation
│ │ │ ├── __init__.py
│ │ │ ├── bbox_overlaps.py
│ │ │ ├── class_names.py
│ │ │ ├── eval_hooks.py
│ │ │ ├── mean_ap.py
│ │ │ └── recall.py
│ │ ├── export
│ │ │ ├── __init__.py
│ │ │ ├── model_wrappers.py
│ │ │ ├── onnx_helper.py
│ │ │ └── pytorch2onnx.py
│ │ ├── hook
│ │ │ ├── __init__.py
│ │ │ ├── checkloss_hook.py
│ │ │ ├── ema.py
│ │ │ ├── sync_norm_hook.py
│ │ │ ├── sync_random_size_hook.py
│ │ │ ├── yolox_lrupdater_hook.py
│ │ │ └── yolox_mode_switch_hook.py
│ │ ├── mask
│ │ │ ├── __init__.py
│ │ │ ├── mask_target.py
│ │ │ ├── structures.py
│ │ │ └── utils.py
│ │ ├── post_processing
│ │ │ ├── __init__.py
│ │ │ ├── bbox_nms.py
│ │ │ ├── matrix_nms.py
│ │ │ └── merge_augs.py
│ │ ├── utils
│ │ │ ├── __init__.py
│ │ │ ├── dist_utils.py
│ │ │ └── misc.py
│ │ └── visualization
│ │ │ ├── __init__.py
│ │ │ └── image.py
│ ├── datasets
│ │ ├── __init__.py
│ │ ├── api_wrappers
│ │ │ ├── __init__.py
│ │ │ └── coco_api.py
│ │ ├── builder.py
│ │ ├── cityscapes.py
│ │ ├── coco.py
│ │ ├── coco_panoptic.py
│ │ ├── custom.py
│ │ ├── dataset_wrappers.py
│ │ ├── deepfashion.py
│ │ ├── lvis.py
│ │ ├── pipelines
│ │ │ ├── __init__.py
│ │ │ ├── auto_augment.py
│ │ │ ├── compose.py
│ │ │ ├── formating.py
│ │ │ ├── instaboost.py
│ │ │ ├── loading.py
│ │ │ ├── test_time_aug.py
│ │ │ └── transforms.py
│ │ ├── samplers
│ │ │ ├── __init__.py
│ │ │ ├── distributed_sampler.py
│ │ │ └── group_sampler.py
│ │ ├── utils.py
│ │ ├── voc.py
│ │ ├── wider_face.py
│ │ └── xml_style.py
│ ├── models
│ │ ├── __init__.py
│ │ ├── backbones
│ │ │ ├── __init__.py
│ │ │ ├── csp_darknet.py
│ │ │ ├── darknet.py
│ │ │ ├── detectors_resnet.py
│ │ │ ├── detectors_resnext.py
│ │ │ ├── hourglass.py
│ │ │ ├── hrnet.py
│ │ │ ├── lvt.py
│ │ │ ├── mobilenet_v2.py
│ │ │ ├── pvt.py
│ │ │ ├── regnet.py
│ │ │ ├── res2net.py
│ │ │ ├── resnest.py
│ │ │ ├── resnet.py
│ │ │ ├── resnext.py
│ │ │ ├── ssd_vgg.py
│ │ │ ├── swin.py
│ │ │ └── trident_resnet.py
│ │ ├── builder.py
│ │ ├── dense_heads
│ │ │ ├── __init__.py
│ │ │ ├── anchor_free_head.py
│ │ │ ├── anchor_head.py
│ │ │ ├── atss_head.py
│ │ │ ├── autoassign_head.py
│ │ │ ├── base_dense_head.py
│ │ │ ├── base_mask_head.py
│ │ │ ├── cascade_rpn_head.py
│ │ │ ├── centernet_head.py
│ │ │ ├── centripetal_head.py
│ │ │ ├── corner_head.py
│ │ │ ├── deformable_detr_head.py
│ │ │ ├── dense_test_mixins.py
│ │ │ ├── detr_head.py
│ │ │ ├── embedding_rpn_head.py
│ │ │ ├── fcos_head.py
│ │ │ ├── fovea_head.py
│ │ │ ├── free_anchor_retina_head.py
│ │ │ ├── fsaf_head.py
│ │ │ ├── ga_retina_head.py
│ │ │ ├── ga_rpn_head.py
│ │ │ ├── gfl_head.py
│ │ │ ├── guided_anchor_head.py
│ │ │ ├── ld_head.py
│ │ │ ├── nasfcos_head.py
│ │ │ ├── paa_head.py
│ │ │ ├── pisa_retinanet_head.py
│ │ │ ├── pisa_ssd_head.py
│ │ │ ├── reppoints_head.py
│ │ │ ├── retina_head.py
│ │ │ ├── retina_sepbn_head.py
│ │ │ ├── rpn_head.py
│ │ │ ├── sabl_retina_head.py
│ │ │ ├── solo_head.py
│ │ │ ├── ssd_head.py
│ │ │ ├── vfnet_head.py
│ │ │ ├── yolact_head.py
│ │ │ ├── yolo_head.py
│ │ │ ├── yolof_head.py
│ │ │ └── yolox_head.py
│ │ ├── detectors
│ │ │ ├── __init__.py
│ │ │ ├── atss.py
│ │ │ ├── autoassign.py
│ │ │ ├── base.py
│ │ │ ├── cascade_rcnn.py
│ │ │ ├── centernet.py
│ │ │ ├── cornernet.py
│ │ │ ├── deformable_detr.py
│ │ │ ├── detr.py
│ │ │ ├── fast_rcnn.py
│ │ │ ├── faster_rcnn.py
│ │ │ ├── fcos.py
│ │ │ ├── fovea.py
│ │ │ ├── fsaf.py
│ │ │ ├── gfl.py
│ │ │ ├── grid_rcnn.py
│ │ │ ├── htc.py
│ │ │ ├── kd_one_stage.py
│ │ │ ├── mask_rcnn.py
│ │ │ ├── mask_scoring_rcnn.py
│ │ │ ├── nasfcos.py
│ │ │ ├── paa.py
│ │ │ ├── panoptic_fpn.py
│ │ │ ├── panoptic_two_stage_segmentor.py
│ │ │ ├── point_rend.py
│ │ │ ├── reppoints_detector.py
│ │ │ ├── retinanet.py
│ │ │ ├── rpn.py
│ │ │ ├── scnet.py
│ │ │ ├── single_stage.py
│ │ │ ├── single_stage_instance_seg.py
│ │ │ ├── solo.py
│ │ │ ├── sparse_rcnn.py
│ │ │ ├── trident_faster_rcnn.py
│ │ │ ├── two_stage.py
│ │ │ ├── vfnet.py
│ │ │ ├── yolact.py
│ │ │ ├── yolo.py
│ │ │ ├── yolof.py
│ │ │ └── yolox.py
│ │ ├── losses
│ │ │ ├── __init__.py
│ │ │ ├── accuracy.py
│ │ │ ├── ae_loss.py
│ │ │ ├── balanced_l1_loss.py
│ │ │ ├── cross_entropy_loss.py
│ │ │ ├── dice_loss.py
│ │ │ ├── focal_loss.py
│ │ │ ├── gaussian_focal_loss.py
│ │ │ ├── gfocal_loss.py
│ │ │ ├── ghm_loss.py
│ │ │ ├── iou_loss.py
│ │ │ ├── kd_loss.py
│ │ │ ├── mse_loss.py
│ │ │ ├── pisa_loss.py
│ │ │ ├── seesaw_loss.py
│ │ │ ├── smooth_l1_loss.py
│ │ │ ├── utils.py
│ │ │ └── varifocal_loss.py
│ │ ├── necks
│ │ │ ├── __init__.py
│ │ │ ├── bfp.py
│ │ │ ├── channel_mapper.py
│ │ │ ├── ct_resnet_neck.py
│ │ │ ├── dilated_encoder.py
│ │ │ ├── fpg.py
│ │ │ ├── fpn.py
│ │ │ ├── fpn_carafe.py
│ │ │ ├── hrfpn.py
│ │ │ ├── nas_fpn.py
│ │ │ ├── nasfcos_fpn.py
│ │ │ ├── pafpn.py
│ │ │ ├── rfp.py
│ │ │ ├── ssd_neck.py
│ │ │ ├── yolo_neck.py
│ │ │ └── yolox_pafpn.py
│ │ ├── plugins
│ │ │ ├── __init__.py
│ │ │ └── dropblock.py
│ │ ├── roi_heads
│ │ │ ├── __init__.py
│ │ │ ├── base_roi_head.py
│ │ │ ├── bbox_heads
│ │ │ │ ├── __init__.py
│ │ │ │ ├── bbox_head.py
│ │ │ │ ├── convfc_bbox_head.py
│ │ │ │ ├── dii_head.py
│ │ │ │ ├── double_bbox_head.py
│ │ │ │ ├── sabl_head.py
│ │ │ │ └── scnet_bbox_head.py
│ │ │ ├── cascade_roi_head.py
│ │ │ ├── double_roi_head.py
│ │ │ ├── dynamic_roi_head.py
│ │ │ ├── grid_roi_head.py
│ │ │ ├── htc_roi_head.py
│ │ │ ├── mask_heads
│ │ │ │ ├── __init__.py
│ │ │ │ ├── coarse_mask_head.py
│ │ │ │ ├── fcn_mask_head.py
│ │ │ │ ├── feature_relay_head.py
│ │ │ │ ├── fused_semantic_head.py
│ │ │ │ ├── global_context_head.py
│ │ │ │ ├── grid_head.py
│ │ │ │ ├── htc_mask_head.py
│ │ │ │ ├── mask_point_head.py
│ │ │ │ ├── maskiou_head.py
│ │ │ │ ├── scnet_mask_head.py
│ │ │ │ └── scnet_semantic_head.py
│ │ │ ├── mask_scoring_roi_head.py
│ │ │ ├── pisa_roi_head.py
│ │ │ ├── point_rend_roi_head.py
│ │ │ ├── roi_extractors
│ │ │ │ ├── __init__.py
│ │ │ │ ├── base_roi_extractor.py
│ │ │ │ ├── generic_roi_extractor.py
│ │ │ │ └── single_level_roi_extractor.py
│ │ │ ├── scnet_roi_head.py
│ │ │ ├── shared_heads
│ │ │ │ ├── __init__.py
│ │ │ │ └── res_layer.py
│ │ │ ├── sparse_roi_head.py
│ │ │ ├── standard_roi_head.py
│ │ │ ├── test_mixins.py
│ │ │ └── trident_roi_head.py
│ │ ├── seg_heads
│ │ │ ├── __init__.py
│ │ │ ├── base_semantic_head.py
│ │ │ ├── panoptic_fpn_head.py
│ │ │ └── panoptic_fusion_heads
│ │ │ │ ├── __init__.py
│ │ │ │ ├── base_panoptic_fusion_head.py
│ │ │ │ └── heuristic_fusion_head.py
│ │ └── utils
│ │ │ ├── __init__.py
│ │ │ ├── brick_wrappers.py
│ │ │ ├── builder.py
│ │ │ ├── ckpt_convert.py
│ │ │ ├── conv_upsample.py
│ │ │ ├── csp_layer.py
│ │ │ ├── gaussian_target.py
│ │ │ ├── inverted_residual.py
│ │ │ ├── make_divisible.py
│ │ │ ├── misc.py
│ │ │ ├── normed_predictor.py
│ │ │ ├── positional_encoding.py
│ │ │ ├── res_layer.py
│ │ │ ├── se_layer.py
│ │ │ └── transformer.py
│ ├── utils
│ │ ├── __init__.py
│ │ ├── collect_env.py
│ │ ├── contextmanagers.py
│ │ ├── logger.py
│ │ ├── profiling.py
│ │ ├── util_mixins.py
│ │ └── util_random.py
│ └── version.py
├── model-index.yml
├── pytest.ini
├── requirements.txt
├── requirements
│ ├── build.txt
│ ├── docs.txt
│ ├── mminstall.txt
│ ├── optional.txt
│ ├── readthedocs.txt
│ ├── runtime.txt
│ └── tests.txt
├── resources
│ ├── coco_test_12510.jpg
│ ├── corruptions_sev_3.png
│ ├── data_pipeline.png
│ ├── loss_curve.png
│ ├── mmdet-logo.png
│ ├── qq_group_qrcode.jpg
│ └── zhihu_qrcode.jpg
├── setup.cfg
├── setup.py
├── tests
│ ├── test_data
│ │ ├── test_datasets
│ │ │ ├── test_coco_dataset.py
│ │ │ ├── test_common.py
│ │ │ ├── test_custom_dataset.py
│ │ │ ├── test_dataset_wrapper.py
│ │ │ ├── test_panoptic_dataset.py
│ │ │ └── test_xml_dataset.py
│ │ ├── test_pipelines
│ │ │ ├── test_formatting.py
│ │ │ ├── test_loading.py
│ │ │ ├── test_sampler.py
│ │ │ └── test_transform
│ │ │ │ ├── __init__.py
│ │ │ │ ├── test_img_augment.py
│ │ │ │ ├── test_models_aug_test.py
│ │ │ │ ├── test_rotate.py
│ │ │ │ ├── test_shear.py
│ │ │ │ ├── test_transform.py
│ │ │ │ ├── test_translate.py
│ │ │ │ └── utils.py
│ │ └── test_utils.py
│ ├── test_downstream
│ │ └── test_mmtrack.py
│ ├── test_metrics
│ │ ├── test_box_overlap.py
│ │ ├── test_losses.py
│ │ ├── test_mean_ap.py
│ │ └── test_recall.py
│ ├── test_models
│ │ ├── test_backbones
│ │ │ ├── __init__.py
│ │ │ ├── test_csp_darknet.py
│ │ │ ├── test_detectors_resnet.py
│ │ │ ├── test_hourglass.py
│ │ │ ├── test_hrnet.py
│ │ │ ├── test_mobilenet_v2.py
│ │ │ ├── test_pvt.py
│ │ │ ├── test_regnet.py
│ │ │ ├── test_renext.py
│ │ │ ├── test_res2net.py
│ │ │ ├── test_resnest.py
│ │ │ ├── test_resnet.py
│ │ │ ├── test_swin.py
│ │ │ ├── test_trident_resnet.py
│ │ │ └── utils.py
│ │ ├── test_dense_heads
│ │ │ ├── test_anchor_head.py
│ │ │ ├── test_atss_head.py
│ │ │ ├── test_autoassign_head.py
│ │ │ ├── test_centernet_head.py
│ │ │ ├── test_corner_head.py
│ │ │ ├── test_dense_heads_attr.py
│ │ │ ├── test_detr_head.py
│ │ │ ├── test_fcos_head.py
│ │ │ ├── test_fsaf_head.py
│ │ │ ├── test_ga_anchor_head.py
│ │ │ ├── test_gfl_head.py
│ │ │ ├── test_ld_head.py
│ │ │ ├── test_paa_head.py
│ │ │ ├── test_pisa_head.py
│ │ │ ├── test_sabl_retina_head.py
│ │ │ ├── test_solo_head.py
│ │ │ ├── test_vfnet_head.py
│ │ │ ├── test_yolact_head.py
│ │ │ ├── test_yolof_head.py
│ │ │ └── test_yolox_head.py
│ │ ├── test_forward.py
│ │ ├── test_loss.py
│ │ ├── test_loss_compatibility.py
│ │ ├── test_necks.py
│ │ ├── test_plugins.py
│ │ ├── test_roi_heads
│ │ │ ├── __init__.py
│ │ │ ├── test_bbox_head.py
│ │ │ ├── test_mask_head.py
│ │ │ ├── test_roi_extractor.py
│ │ │ ├── test_sabl_bbox_head.py
│ │ │ └── utils.py
│ │ └── test_utils
│ │ │ ├── test_brick_wrappers.py
│ │ │ ├── test_conv_upsample.py
│ │ │ ├── test_inverted_residual.py
│ │ │ ├── test_model_misc.py
│ │ │ ├── test_position_encoding.py
│ │ │ ├── test_se_layer.py
│ │ │ └── test_transformer.py
│ ├── test_onnx
│ │ ├── __init__.py
│ │ ├── test_head.py
│ │ ├── test_neck.py
│ │ └── utils.py
│ ├── test_runtime
│ │ ├── async_benchmark.py
│ │ ├── test_async.py
│ │ ├── test_config.py
│ │ ├── test_eval_hook.py
│ │ └── test_fp16.py
│ └── test_utils
│ │ ├── test_anchor.py
│ │ ├── test_assigner.py
│ │ ├── test_coder.py
│ │ ├── test_general_data.py
│ │ ├── test_hook.py
│ │ ├── test_masks.py
│ │ ├── test_misc.py
│ │ ├── test_nms.py
│ │ ├── test_version.py
│ │ └── test_visualization.py
└── tools
│ ├── analysis_tools
│ ├── analyze_logs.py
│ ├── analyze_results.py
│ ├── benchmark.py
│ ├── coco_error_analysis.py
│ ├── eval_metric.py
│ ├── get_flops.py
│ ├── optimize_anchors.py
│ ├── robustness_eval.py
│ └── test_robustness.py
│ ├── dataset_converters
│ ├── cityscapes.py
│ ├── images2coco.py
│ └── pascal_voc.py
│ ├── deployment
│ ├── mmdet2torchserve.py
│ ├── mmdet_handler.py
│ ├── onnx2tensorrt.py
│ ├── pytorch2onnx.py
│ ├── test.py
│ └── test_torchserver.py
│ ├── dist_test.sh
│ ├── dist_train.sh
│ ├── misc
│ ├── browse_dataset.py
│ └── print_config.py
│ ├── model_converters
│ ├── detectron2pytorch.py
│ ├── publish_model.py
│ ├── regnet2mmdet.py
│ ├── selfsup2mmdet.py
│ ├── upgrade_model_version.py
│ └── upgrade_ssd_version.py
│ ├── slurm_test.sh
│ ├── slurm_train.sh
│ ├── test.py
│ └── train.py
└── segmentation
├── .gitignore
├── Images
└── lvt.png
├── LICENSE
├── README.md
├── README.segformer.md
├── configs
├── _base_
│ ├── datasets
│ │ ├── ade20k.py
│ │ ├── chase_db1.py
│ │ ├── cityscapes.py
│ │ ├── cityscapes_768x768.py
│ │ ├── cityscapes_769x769.py
│ │ ├── drive.py
│ │ ├── hrf.py
│ │ ├── pascal_context.py
│ │ ├── pascal_voc12.py
│ │ ├── pascal_voc12_aug.py
│ │ └── stare.py
│ ├── default_runtime.py
│ ├── models
│ │ ├── ann_r50-d8.py
│ │ ├── apcnet_r50-d8.py
│ │ ├── ccnet_r50-d8.py
│ │ ├── cgnet.py
│ │ ├── danet_r50-d8.py
│ │ ├── deeplabv3_r50-d8.py
│ │ ├── deeplabv3_unet_s5-d16.py
│ │ ├── deeplabv3plus_r50-d8.py
│ │ ├── dmnet_r50-d8.py
│ │ ├── dnl_r50-d8.py
│ │ ├── emanet_r50-d8.py
│ │ ├── encnet_r50-d8.py
│ │ ├── fast_scnn.py
│ │ ├── fcn_hr18.py
│ │ ├── fcn_r50-d8.py
│ │ ├── fcn_unet_s5-d16.py
│ │ ├── fpn_r50.py
│ │ ├── gcnet_r50-d8.py
│ │ ├── lraspp_m-v3-d8.py
│ │ ├── nonlocal_r50-d8.py
│ │ ├── ocrnet_hr18.py
│ │ ├── ocrnet_r50-d8.py
│ │ ├── pointrend_r50.py
│ │ ├── psanet_r50-d8.py
│ │ ├── pspnet_r50-d8.py
│ │ ├── pspnet_unet_s5-d16.py
│ │ └── upernet_r50.py
│ └── schedules
│ │ ├── schedule_160k.py
│ │ ├── schedule_20k.py
│ │ ├── schedule_40k.py
│ │ └── schedule_80k.py
├── ann
│ ├── README.md
│ ├── ann_r101-d8_512x1024_40k_cityscapes.py
│ ├── ann_r101-d8_512x1024_80k_cityscapes.py
│ ├── ann_r101-d8_512x512_160k_ade20k.py
│ ├── ann_r101-d8_512x512_20k_voc12aug.py
│ ├── ann_r101-d8_512x512_40k_voc12aug.py
│ ├── ann_r101-d8_512x512_80k_ade20k.py
│ ├── ann_r101-d8_769x769_40k_cityscapes.py
│ ├── ann_r101-d8_769x769_80k_cityscapes.py
│ ├── ann_r50-d8_512x1024_40k_cityscapes.py
│ ├── ann_r50-d8_512x1024_80k_cityscapes.py
│ ├── ann_r50-d8_512x512_160k_ade20k.py
│ ├── ann_r50-d8_512x512_20k_voc12aug.py
│ ├── ann_r50-d8_512x512_40k_voc12aug.py
│ ├── ann_r50-d8_512x512_80k_ade20k.py
│ ├── ann_r50-d8_769x769_40k_cityscapes.py
│ └── ann_r50-d8_769x769_80k_cityscapes.py
├── apcnet
│ ├── README.md
│ ├── apcnet_r101-d8_512x1024_40k_cityscapes.py
│ ├── apcnet_r101-d8_512x1024_80k_cityscapes.py
│ ├── apcnet_r101-d8_512x512_160k_ade20k.py
│ ├── apcnet_r101-d8_512x512_80k_ade20k.py
│ ├── apcnet_r101-d8_769x769_40k_cityscapes.py
│ ├── apcnet_r101-d8_769x769_80k_cityscapes.py
│ ├── apcnet_r50-d8_512x1024_40k_cityscapes.py
│ ├── apcnet_r50-d8_512x1024_80k_cityscapes.py
│ ├── apcnet_r50-d8_512x512_160k_ade20k.py
│ ├── apcnet_r50-d8_512x512_80k_ade20k.py
│ ├── apcnet_r50-d8_769x769_40k_cityscapes.py
│ └── apcnet_r50-d8_769x769_80k_cityscapes.py
├── ccnet
│ ├── README.md
│ ├── ccnet_r101-d8_512x1024_40k_cityscapes.py
│ ├── ccnet_r101-d8_512x1024_80k_cityscapes.py
│ ├── ccnet_r101-d8_512x512_160k_ade20k.py
│ ├── ccnet_r101-d8_512x512_20k_voc12aug.py
│ ├── ccnet_r101-d8_512x512_40k_voc12aug.py
│ ├── ccnet_r101-d8_512x512_80k_ade20k.py
│ ├── ccnet_r101-d8_769x769_40k_cityscapes.py
│ ├── ccnet_r101-d8_769x769_80k_cityscapes.py
│ ├── ccnet_r50-d8_512x1024_40k_cityscapes.py
│ ├── ccnet_r50-d8_512x1024_80k_cityscapes.py
│ ├── ccnet_r50-d8_512x512_160k_ade20k.py
│ ├── ccnet_r50-d8_512x512_20k_voc12aug.py
│ ├── ccnet_r50-d8_512x512_40k_voc12aug.py
│ ├── ccnet_r50-d8_512x512_80k_ade20k.py
│ ├── ccnet_r50-d8_769x769_40k_cityscapes.py
│ └── ccnet_r50-d8_769x769_80k_cityscapes.py
├── cgnet
│ ├── README.md
│ ├── cgnet_512x1024_60k_cityscapes.py
│ └── cgnet_680x680_60k_cityscapes.py
├── danet
│ ├── README.md
│ ├── danet_r101-d8_512x1024_40k_cityscapes.py
│ ├── danet_r101-d8_512x1024_80k_cityscapes.py
│ ├── danet_r101-d8_512x512_160k_ade20k.py
│ ├── danet_r101-d8_512x512_20k_voc12aug.py
│ ├── danet_r101-d8_512x512_40k_voc12aug.py
│ ├── danet_r101-d8_512x512_80k_ade20k.py
│ ├── danet_r101-d8_769x769_40k_cityscapes.py
│ ├── danet_r101-d8_769x769_80k_cityscapes.py
│ ├── danet_r50-d8_512x1024_40k_cityscapes.py
│ ├── danet_r50-d8_512x1024_80k_cityscapes.py
│ ├── danet_r50-d8_512x512_160k_ade20k.py
│ ├── danet_r50-d8_512x512_20k_voc12aug.py
│ ├── danet_r50-d8_512x512_40k_voc12aug.py
│ ├── danet_r50-d8_512x512_80k_ade20k.py
│ ├── danet_r50-d8_769x769_40k_cityscapes.py
│ └── danet_r50-d8_769x769_80k_cityscapes.py
├── deeplabv3
│ ├── README.md
│ ├── deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes.py
│ ├── deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes.py
│ ├── deeplabv3_r101-d8_480x480_40k_pascal_context.py
│ ├── deeplabv3_r101-d8_480x480_80k_pascal_context.py
│ ├── deeplabv3_r101-d8_512x1024_40k_cityscapes.py
│ ├── deeplabv3_r101-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3_r101-d8_512x512_160k_ade20k.py
│ ├── deeplabv3_r101-d8_512x512_20k_voc12aug.py
│ ├── deeplabv3_r101-d8_512x512_40k_voc12aug.py
│ ├── deeplabv3_r101-d8_512x512_80k_ade20k.py
│ ├── deeplabv3_r101-d8_769x769_40k_cityscapes.py
│ ├── deeplabv3_r101-d8_769x769_80k_cityscapes.py
│ ├── deeplabv3_r101b-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3_r101b-d8_769x769_80k_cityscapes.py
│ ├── deeplabv3_r18-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3_r18-d8_769x769_80k_cityscapes.py
│ ├── deeplabv3_r18b-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3_r18b-d8_769x769_80k_cityscapes.py
│ ├── deeplabv3_r50-d8_480x480_40k_pascal_context.py
│ ├── deeplabv3_r50-d8_480x480_80k_pascal_context.py
│ ├── deeplabv3_r50-d8_512x1024_40k_cityscapes.py
│ ├── deeplabv3_r50-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3_r50-d8_512x512_160k_ade20k.py
│ ├── deeplabv3_r50-d8_512x512_20k_voc12aug.py
│ ├── deeplabv3_r50-d8_512x512_40k_voc12aug.py
│ ├── deeplabv3_r50-d8_512x512_80k_ade20k.py
│ ├── deeplabv3_r50-d8_769x769_40k_cityscapes.py
│ ├── deeplabv3_r50-d8_769x769_80k_cityscapes.py
│ ├── deeplabv3_r50b-d8_512x1024_80k_cityscapes.py
│ └── deeplabv3_r50b-d8_769x769_80k_cityscapes.py
├── deeplabv3plus
│ ├── README.md
│ ├── deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes.py
│ ├── deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes.py
│ ├── deeplabv3plus_r101-d8_480x480_40k_pascal_context.py
│ ├── deeplabv3plus_r101-d8_480x480_80k_pascal_context.py
│ ├── deeplabv3plus_r101-d8_512x1024_40k_cityscapes.py
│ ├── deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3plus_r101-d8_512x512_160k_ade20k.py
│ ├── deeplabv3plus_r101-d8_512x512_20k_voc12aug.py
│ ├── deeplabv3plus_r101-d8_512x512_40k_voc12aug.py
│ ├── deeplabv3plus_r101-d8_512x512_80k_ade20k.py
│ ├── deeplabv3plus_r101-d8_769x769_40k_cityscapes.py
│ ├── deeplabv3plus_r101-d8_769x769_80k_cityscapes.py
│ ├── deeplabv3plus_r101b-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3plus_r101b-d8_769x769_80k_cityscapes.py
│ ├── deeplabv3plus_r18-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3plus_r18-d8_769x769_80k_cityscapes.py
│ ├── deeplabv3plus_r18b-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3plus_r18b-d8_769x769_80k_cityscapes.py
│ ├── deeplabv3plus_r50-d8_480x480_40k_pascal_context.py
│ ├── deeplabv3plus_r50-d8_480x480_80k_pascal_context.py
│ ├── deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py
│ ├── deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3plus_r50-d8_512x512_160k_ade20k.py
│ ├── deeplabv3plus_r50-d8_512x512_20k_voc12aug.py
│ ├── deeplabv3plus_r50-d8_512x512_40k_voc12aug.py
│ ├── deeplabv3plus_r50-d8_512x512_80k_ade20k.py
│ ├── deeplabv3plus_r50-d8_769x769_40k_cityscapes.py
│ ├── deeplabv3plus_r50-d8_769x769_80k_cityscapes.py
│ ├── deeplabv3plus_r50b-d8_512x1024_80k_cityscapes.py
│ └── deeplabv3plus_r50b-d8_769x769_80k_cityscapes.py
├── dmnet
│ ├── README.md
│ ├── dmnet_r101-d8_512x1024_40k_cityscapes.py
│ ├── dmnet_r101-d8_512x1024_80k_cityscapes.py
│ ├── dmnet_r101-d8_512x512_160k_ade20k.py
│ ├── dmnet_r101-d8_512x512_80k_ade20k.py
│ ├── dmnet_r101-d8_769x769_40k_cityscapes.py
│ ├── dmnet_r101-d8_769x769_80k_cityscapes.py
│ ├── dmnet_r50-d8_512x1024_40k_cityscapes.py
│ ├── dmnet_r50-d8_512x1024_80k_cityscapes.py
│ ├── dmnet_r50-d8_512x512_160k_ade20k.py
│ ├── dmnet_r50-d8_512x512_80k_ade20k.py
│ ├── dmnet_r50-d8_769x769_40k_cityscapes.py
│ └── dmnet_r50-d8_769x769_80k_cityscapes.py
├── dnlnet
│ ├── README.md
│ ├── dnl_r101-d8_512x1024_40k_cityscapes.py
│ ├── dnl_r101-d8_512x1024_80k_cityscapes.py
│ ├── dnl_r101-d8_512x512_160k_ade20k.py
│ ├── dnl_r101-d8_512x512_80k_ade20k.py
│ ├── dnl_r101-d8_769x769_40k_cityscapes.py
│ ├── dnl_r101-d8_769x769_80k_cityscapes.py
│ ├── dnl_r50-d8_512x1024_40k_cityscapes.py
│ ├── dnl_r50-d8_512x1024_80k_cityscapes.py
│ ├── dnl_r50-d8_512x512_160k_ade20k.py
│ ├── dnl_r50-d8_512x512_80k_ade20k.py
│ ├── dnl_r50-d8_769x769_40k_cityscapes.py
│ └── dnl_r50-d8_769x769_80k_cityscapes.py
├── emanet
│ ├── README.md
│ ├── emanet_r101-d8_512x1024_80k_cityscapes.py
│ ├── emanet_r101-d8_769x769_80k_cityscapes.py
│ ├── emanet_r50-d8_512x1024_80k_cityscapes.py
│ └── emanet_r50-d8_769x769_80k_cityscapes.py
├── encnet
│ ├── README.md
│ ├── encnet_r101-d8_512x1024_40k_cityscapes.py
│ ├── encnet_r101-d8_512x1024_80k_cityscapes.py
│ ├── encnet_r101-d8_512x512_160k_ade20k.py
│ ├── encnet_r101-d8_512x512_20k_voc12aug.py
│ ├── encnet_r101-d8_512x512_40k_voc12aug.py
│ ├── encnet_r101-d8_512x512_80k_ade20k.py
│ ├── encnet_r101-d8_769x769_40k_cityscapes.py
│ ├── encnet_r101-d8_769x769_80k_cityscapes.py
│ ├── encnet_r50-d8_512x1024_40k_cityscapes.py
│ ├── encnet_r50-d8_512x1024_80k_cityscapes.py
│ ├── encnet_r50-d8_512x512_160k_ade20k.py
│ ├── encnet_r50-d8_512x512_20k_voc12aug.py
│ ├── encnet_r50-d8_512x512_40k_voc12aug.py
│ ├── encnet_r50-d8_512x512_80k_ade20k.py
│ ├── encnet_r50-d8_769x769_40k_cityscapes.py
│ ├── encnet_r50-d8_769x769_80k_cityscapes.py
│ └── encnet_r50s-d8_512x512_80k_ade20k.py
├── fastscnn
│ ├── README.md
│ └── fast_scnn_4x8_80k_lr0.12_cityscapes.py
├── fcn
│ ├── README.md
│ ├── fcn_r101-d8_480x480_40k_pascal_context.py
│ ├── fcn_r101-d8_480x480_80k_pascal_context.py
│ ├── fcn_r101-d8_512x1024_40k_cityscapes.py
│ ├── fcn_r101-d8_512x1024_80k_cityscapes.py
│ ├── fcn_r101-d8_512x512_160k_ade20k.py
│ ├── fcn_r101-d8_512x512_20k_voc12aug.py
│ ├── fcn_r101-d8_512x512_40k_voc12aug.py
│ ├── fcn_r101-d8_512x512_80k_ade20k.py
│ ├── fcn_r101-d8_769x769_40k_cityscapes.py
│ ├── fcn_r101-d8_769x769_80k_cityscapes.py
│ ├── fcn_r101b-d8_512x1024_80k_cityscapes.py
│ ├── fcn_r101b-d8_769x769_80k_cityscapes.py
│ ├── fcn_r18-d8_512x1024_80k_cityscapes.py
│ ├── fcn_r18-d8_769x769_80k_cityscapes.py
│ ├── fcn_r18b-d8_512x1024_80k_cityscapes.py
│ ├── fcn_r18b-d8_769x769_80k_cityscapes.py
│ ├── fcn_r50-d8_480x480_40k_pascal_context.py
│ ├── fcn_r50-d8_480x480_80k_pascal_context.py
│ ├── fcn_r50-d8_512x1024_40k_cityscapes.py
│ ├── fcn_r50-d8_512x1024_80k_cityscapes.py
│ ├── fcn_r50-d8_512x512_160k_ade20k.py
│ ├── fcn_r50-d8_512x512_20k_voc12aug.py
│ ├── fcn_r50-d8_512x512_40k_voc12aug.py
│ ├── fcn_r50-d8_512x512_80k_ade20k.py
│ ├── fcn_r50-d8_769x769_40k_cityscapes.py
│ ├── fcn_r50-d8_769x769_80k_cityscapes.py
│ ├── fcn_r50b-d8_512x1024_80k_cityscapes.py
│ └── fcn_r50b-d8_769x769_80k_cityscapes.py
├── fp16
│ ├── README.md
│ ├── deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes.py
│ ├── deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py
│ ├── fcn_r101-d8_512x1024_80k_fp16_cityscapes.py
│ └── pspnet_r101-d8_512x1024_80k_fp16_cityscapes.py
├── gcnet
│ ├── README.md
│ ├── gcnet_r101-d8_512x1024_40k_cityscapes.py
│ ├── gcnet_r101-d8_512x1024_80k_cityscapes.py
│ ├── gcnet_r101-d8_512x512_160k_ade20k.py
│ ├── gcnet_r101-d8_512x512_20k_voc12aug.py
│ ├── gcnet_r101-d8_512x512_40k_voc12aug.py
│ ├── gcnet_r101-d8_512x512_80k_ade20k.py
│ ├── gcnet_r101-d8_769x769_40k_cityscapes.py
│ ├── gcnet_r101-d8_769x769_80k_cityscapes.py
│ ├── gcnet_r50-d8_512x1024_40k_cityscapes.py
│ ├── gcnet_r50-d8_512x1024_80k_cityscapes.py
│ ├── gcnet_r50-d8_512x512_160k_ade20k.py
│ ├── gcnet_r50-d8_512x512_20k_voc12aug.py
│ ├── gcnet_r50-d8_512x512_40k_voc12aug.py
│ ├── gcnet_r50-d8_512x512_80k_ade20k.py
│ ├── gcnet_r50-d8_769x769_40k_cityscapes.py
│ └── gcnet_r50-d8_769x769_80k_cityscapes.py
├── hrnet
│ ├── README.md
│ ├── fcn_hr18_480x480_40k_pascal_context.py
│ ├── fcn_hr18_480x480_80k_pascal_context.py
│ ├── fcn_hr18_512x1024_160k_cityscapes.py
│ ├── fcn_hr18_512x1024_40k_cityscapes.py
│ ├── fcn_hr18_512x1024_80k_cityscapes.py
│ ├── fcn_hr18_512x512_160k_ade20k.py
│ ├── fcn_hr18_512x512_20k_voc12aug.py
│ ├── fcn_hr18_512x512_40k_voc12aug.py
│ ├── fcn_hr18_512x512_80k_ade20k.py
│ ├── fcn_hr18s_480x480_40k_pascal_context.py
│ ├── fcn_hr18s_480x480_80k_pascal_context.py
│ ├── fcn_hr18s_512x1024_160k_cityscapes.py
│ ├── fcn_hr18s_512x1024_40k_cityscapes.py
│ ├── fcn_hr18s_512x1024_80k_cityscapes.py
│ ├── fcn_hr18s_512x512_160k_ade20k.py
│ ├── fcn_hr18s_512x512_20k_voc12aug.py
│ ├── fcn_hr18s_512x512_40k_voc12aug.py
│ ├── fcn_hr18s_512x512_80k_ade20k.py
│ ├── fcn_hr48_480x480_40k_pascal_context.py
│ ├── fcn_hr48_480x480_80k_pascal_context.py
│ ├── fcn_hr48_512x1024_160k_cityscapes.py
│ ├── fcn_hr48_512x1024_40k_cityscapes.py
│ ├── fcn_hr48_512x1024_80k_cityscapes.py
│ ├── fcn_hr48_512x512_160k_ade20k.py
│ ├── fcn_hr48_512x512_20k_voc12aug.py
│ ├── fcn_hr48_512x512_40k_voc12aug.py
│ └── fcn_hr48_512x512_80k_ade20k.py
├── mobilenet_v2
│ ├── README.md
│ ├── deeplabv3_m-v2-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3_m-v2-d8_512x512_160k_ade20k.py
│ ├── deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3plus_m-v2-d8_512x512_160k_ade20k.py
│ ├── fcn_m-v2-d8_512x1024_80k_cityscapes.py
│ ├── fcn_m-v2-d8_512x512_160k_ade20k.py
│ ├── pspnet_m-v2-d8_512x1024_80k_cityscapes.py
│ └── pspnet_m-v2-d8_512x512_160k_ade20k.py
├── mobilenet_v3
│ ├── README.md
│ ├── lraspp_m-v3-d8_512x1024_320k_cityscapes.py
│ ├── lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes.py
│ ├── lraspp_m-v3s-d8_512x1024_320k_cityscapes.py
│ └── lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes.py
├── nonlocal_net
│ ├── README.md
│ ├── nonlocal_r101-d8_512x1024_40k_cityscapes.py
│ ├── nonlocal_r101-d8_512x1024_80k_cityscapes.py
│ ├── nonlocal_r101-d8_512x512_160k_ade20k.py
│ ├── nonlocal_r101-d8_512x512_20k_voc12aug.py
│ ├── nonlocal_r101-d8_512x512_40k_voc12aug.py
│ ├── nonlocal_r101-d8_512x512_80k_ade20k.py
│ ├── nonlocal_r101-d8_769x769_40k_cityscapes.py
│ ├── nonlocal_r101-d8_769x769_80k_cityscapes.py
│ ├── nonlocal_r50-d8_512x1024_40k_cityscapes.py
│ ├── nonlocal_r50-d8_512x1024_80k_cityscapes.py
│ ├── nonlocal_r50-d8_512x512_160k_ade20k.py
│ ├── nonlocal_r50-d8_512x512_20k_voc12aug.py
│ ├── nonlocal_r50-d8_512x512_40k_voc12aug.py
│ ├── nonlocal_r50-d8_512x512_80k_ade20k.py
│ ├── nonlocal_r50-d8_769x769_40k_cityscapes.py
│ └── nonlocal_r50-d8_769x769_80k_cityscapes.py
├── ocrnet
│ ├── README.md
│ ├── ocrnet_hr18_512x1024_160k_cityscapes.py
│ ├── ocrnet_hr18_512x1024_40k_cityscapes.py
│ ├── ocrnet_hr18_512x1024_80k_cityscapes.py
│ ├── ocrnet_hr18_512x512_160k_ade20k.py
│ ├── ocrnet_hr18_512x512_20k_voc12aug.py
│ ├── ocrnet_hr18_512x512_40k_voc12aug.py
│ ├── ocrnet_hr18_512x512_80k_ade20k.py
│ ├── ocrnet_hr18s_512x1024_160k_cityscapes.py
│ ├── ocrnet_hr18s_512x1024_40k_cityscapes.py
│ ├── ocrnet_hr18s_512x1024_80k_cityscapes.py
│ ├── ocrnet_hr18s_512x512_160k_ade20k.py
│ ├── ocrnet_hr18s_512x512_20k_voc12aug.py
│ ├── ocrnet_hr18s_512x512_40k_voc12aug.py
│ ├── ocrnet_hr18s_512x512_80k_ade20k.py
│ ├── ocrnet_hr48_512x1024_160k_cityscapes.py
│ ├── ocrnet_hr48_512x1024_40k_cityscapes.py
│ ├── ocrnet_hr48_512x1024_80k_cityscapes.py
│ ├── ocrnet_hr48_512x512_160k_ade20k.py
│ ├── ocrnet_hr48_512x512_20k_voc12aug.py
│ ├── ocrnet_hr48_512x512_40k_voc12aug.py
│ ├── ocrnet_hr48_512x512_80k_ade20k.py
│ ├── ocrnet_r101-d8_512x1024_40k_b16_cityscapes.py
│ ├── ocrnet_r101-d8_512x1024_40k_b8_cityscapes.py
│ └── ocrnet_r101-d8_512x1024_80k_b16_cityscapes.py
├── point_rend
│ ├── README.md
│ ├── pointrend_r101_512x1024_80k_cityscapes.py
│ ├── pointrend_r101_512x512_160k_ade20k.py
│ ├── pointrend_r50_512x1024_80k_cityscapes.py
│ └── pointrend_r50_512x512_160k_ade20k.py
├── psanet
│ ├── README.md
│ ├── psanet_r101-d8_512x1024_40k_cityscapes.py
│ ├── psanet_r101-d8_512x1024_80k_cityscapes.py
│ ├── psanet_r101-d8_512x512_160k_ade20k.py
│ ├── psanet_r101-d8_512x512_20k_voc12aug.py
│ ├── psanet_r101-d8_512x512_40k_voc12aug.py
│ ├── psanet_r101-d8_512x512_80k_ade20k.py
│ ├── psanet_r101-d8_769x769_40k_cityscapes.py
│ ├── psanet_r101-d8_769x769_80k_cityscapes.py
│ ├── psanet_r50-d8_512x1024_40k_cityscapes.py
│ ├── psanet_r50-d8_512x1024_80k_cityscapes.py
│ ├── psanet_r50-d8_512x512_160k_ade20k.py
│ ├── psanet_r50-d8_512x512_20k_voc12aug.py
│ ├── psanet_r50-d8_512x512_40k_voc12aug.py
│ ├── psanet_r50-d8_512x512_80k_ade20k.py
│ ├── psanet_r50-d8_769x769_40k_cityscapes.py
│ └── psanet_r50-d8_769x769_80k_cityscapes.py
├── pspnet
│ ├── README.md
│ ├── pspnet_r101-d8_480x480_40k_pascal_context.py
│ ├── pspnet_r101-d8_480x480_80k_pascal_context.py
│ ├── pspnet_r101-d8_512x1024_40k_cityscapes.py
│ ├── pspnet_r101-d8_512x1024_80k_cityscapes.py
│ ├── pspnet_r101-d8_512x512_160k_ade20k.py
│ ├── pspnet_r101-d8_512x512_20k_voc12aug.py
│ ├── pspnet_r101-d8_512x512_40k_voc12aug.py
│ ├── pspnet_r101-d8_512x512_80k_ade20k.py
│ ├── pspnet_r101-d8_769x769_40k_cityscapes.py
│ ├── pspnet_r101-d8_769x769_80k_cityscapes.py
│ ├── pspnet_r101b-d8_512x1024_80k_cityscapes.py
│ ├── pspnet_r101b-d8_769x769_80k_cityscapes.py
│ ├── pspnet_r18-d8_512x1024_80k_cityscapes.py
│ ├── pspnet_r18-d8_769x769_80k_cityscapes.py
│ ├── pspnet_r18b-d8_512x1024_80k_cityscapes.py
│ ├── pspnet_r18b-d8_769x769_80k_cityscapes.py
│ ├── pspnet_r50-d8_480x480_40k_pascal_context.py
│ ├── pspnet_r50-d8_480x480_80k_pascal_context.py
│ ├── pspnet_r50-d8_512x1024_40k_cityscapes.py
│ ├── pspnet_r50-d8_512x1024_80k_cityscapes.py
│ ├── pspnet_r50-d8_512x512_160k_ade20k.py
│ ├── pspnet_r50-d8_512x512_20k_voc12aug.py
│ ├── pspnet_r50-d8_512x512_40k_voc12aug.py
│ ├── pspnet_r50-d8_512x512_80k_ade20k.py
│ ├── pspnet_r50-d8_769x769_40k_cityscapes.py
│ ├── pspnet_r50-d8_769x769_80k_cityscapes.py
│ ├── pspnet_r50b-d8_512x1024_80k_cityscapes.py
│ └── pspnet_r50b-d8_769x769_80k_cityscapes.py
├── resnest
│ ├── README.md
│ ├── deeplabv3_s101-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3_s101-d8_512x512_160k_ade20k.py
│ ├── deeplabv3plus_s101-d8_512x1024_80k_cityscapes.py
│ ├── deeplabv3plus_s101-d8_512x512_160k_ade20k.py
│ ├── fcn_s101-d8_512x1024_80k_cityscapes.py
│ ├── fcn_s101-d8_512x512_160k_ade20k.py
│ ├── pspnet_s101-d8_512x1024_80k_cityscapes.py
│ └── pspnet_s101-d8_512x512_160k_ade20k.py
├── sem_fpn
│ ├── README.md
│ ├── fpn_r101_512x512_80k_ade20k.py
│ ├── fpn_r18_512x512_80k_ade20k.py
│ ├── fpn_r50_512x512_80k_ade20k.py
│ ├── fpn_x101324d_512x512_80k_ade20k.py
│ └── fpn_x101644d_512x512_80k_ade20k.py
├── unet
│ ├── README.md
│ ├── deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py
│ ├── deeplabv3_unet_s5-d16_128x128_40k_stare.py
│ ├── deeplabv3_unet_s5-d16_256x256_40k_hrf.py
│ ├── deeplabv3_unet_s5-d16_64x64_40k_drive.py
│ ├── fcn_unet_s5-d16_128x128_40k_chase_db1.py
│ ├── fcn_unet_s5-d16_128x128_40k_stare.py
│ ├── fcn_unet_s5-d16_256x256_40k_hrf.py
│ ├── fcn_unet_s5-d16_64x64_40k_drive.py
│ ├── pspnet_unet_s5-d16_128x128_40k_chase_db1.py
│ ├── pspnet_unet_s5-d16_128x128_40k_stare.py
│ ├── pspnet_unet_s5-d16_256x256_40k_hrf.py
│ └── pspnet_unet_s5-d16_64x64_40k_drive.py
└── upernet
│ ├── README.md
│ ├── upernet_r101_512x1024_40k_cityscapes.py
│ ├── upernet_r101_512x1024_80k_cityscapes.py
│ ├── upernet_r101_512x512_160k_ade20k.py
│ ├── upernet_r101_512x512_20k_voc12aug.py
│ ├── upernet_r101_512x512_40k_voc12aug.py
│ ├── upernet_r101_512x512_80k_ade20k.py
│ ├── upernet_r101_769x769_40k_cityscapes.py
│ ├── upernet_r101_769x769_80k_cityscapes.py
│ ├── upernet_r50_512x1024_40k_cityscapes.py
│ ├── upernet_r50_512x1024_80k_cityscapes.py
│ ├── upernet_r50_512x512_160k_ade20k.py
│ ├── upernet_r50_512x512_20k_voc12aug.py
│ ├── upernet_r50_512x512_40k_voc12aug.py
│ ├── upernet_r50_512x512_80k_ade20k.py
│ ├── upernet_r50_769x769_40k_cityscapes.py
│ └── upernet_r50_769x769_80k_cityscapes.py
├── demo
├── demo.png
└── image_demo.py
├── docker
└── Dockerfile
├── docs
├── Makefile
├── api.rst
├── changelog.md
├── conf.py
├── dataset_prepare.md
├── get_started.md
├── index.rst
├── inference.md
├── make.bat
├── model_zoo.md
├── stat.py
├── train.md
├── tutorials
│ ├── config.md
│ ├── customize_datasets.md
│ ├── customize_models.md
│ ├── customize_runtime.md
│ ├── data_pipeline.md
│ ├── index.rst
│ └── training_tricks.md
└── useful_tools.md
├── local_configs
├── _base_
│ ├── datasets
│ │ ├── ade20k.py
│ │ ├── ade20k_repeat.py
│ │ ├── chase_db1.py
│ │ ├── cityscapes.py
│ │ ├── cityscapes_1024x1024_repeat.py
│ │ ├── cityscapes_768x768_repeat.py
│ │ ├── cityscapes_repeat.py
│ │ ├── drive.py
│ │ ├── hrf.py
│ │ ├── mapillary_1024x1024_repeat.py
│ │ ├── mapillary_768x768_repeat.py
│ │ ├── pascal_context.py
│ │ ├── pascal_voc12.py
│ │ ├── pascal_voc12_aug.py
│ │ └── stare.py
│ ├── default_runtime.py
│ ├── models
│ │ ├── ann_r50-d8.py
│ │ ├── apcnet_r50-d8.py
│ │ ├── ccnet_r50-d8.py
│ │ ├── cgnet.py
│ │ ├── danet_r50-d8.py
│ │ ├── deeplabv3_r50-d8.py
│ │ ├── deeplabv3_unet_s5-d16.py
│ │ ├── deeplabv3plus_r50-d8.py
│ │ ├── dmnet_r50-d8.py
│ │ ├── dnl_r50-d8.py
│ │ ├── emanet_r50-d8.py
│ │ ├── encnet_r50-d8.py
│ │ ├── fast_scnn.py
│ │ ├── fcn_hr18.py
│ │ ├── fcn_r50-d8.py
│ │ ├── fcn_unet_s5-d16.py
│ │ ├── fpn_r50.py
│ │ ├── gcnet_r50-d8.py
│ │ ├── lraspp_m-v3-d8.py
│ │ ├── nonlocal_r50-d8.py
│ │ ├── ocrnet_hr18.py
│ │ ├── ocrnet_r50-d8.py
│ │ ├── pointrend_r50.py
│ │ ├── psanet_r50-d8.py
│ │ ├── pspnet_r50-d8.py
│ │ ├── pspnet_unet_s5-d16.py
│ │ ├── segformer.py
│ │ └── upernet_r50.py
│ └── schedules
│ │ ├── schedule_160k.py
│ │ ├── schedule_160k_adamw.py
│ │ ├── schedule_20k.py
│ │ ├── schedule_40k.py
│ │ ├── schedule_40k_adamw.py
│ │ ├── schedule_80k.py
│ │ └── schedule_80k_adamw.py
├── lvt
│ └── segformer.lvt.512x512.ade.160k.py
└── segformer
│ ├── B0
│ ├── segformer.b0.1024x1024.city.160k.py
│ ├── segformer.b0.1024x1024.city.160k_210917_408.py
│ ├── segformer.b0.512x1024.city.160k.py
│ ├── segformer.b0.512x512.ade.160k.py
│ ├── segformer.b0.640x1280.city.160k.py
│ └── segformer.b0.768x768.city.160k.py
│ ├── B1
│ ├── segformer.b1.1024x1024.city.160k.py
│ └── segformer.b1.512x512.ade.160k.py
│ ├── B2
│ ├── segformer.b2.1024x1024.city.160k.py
│ └── segformer.b2.512x512.ade.160k.py
│ ├── B3
│ ├── segformer.b3.1024x1024.city.160k.py
│ └── segformer.b3.512x512.ade.160k.py
│ ├── B4
│ ├── segformer.b4.1024x1024.city.160k.py
│ └── segformer.b4.512x512.ade.160k.py
│ └── B5
│ ├── segformer.b5.1024x1024.city.160k.py
│ └── segformer.b5.640x640.ade.160k.py
├── mmseg
├── __init__.py
├── apis
│ ├── __init__.py
│ ├── inference.py
│ ├── test.py
│ └── train.py
├── core
│ ├── __init__.py
│ ├── evaluation
│ │ ├── __init__.py
│ │ ├── class_names.py
│ │ ├── eval_hooks.py
│ │ └── metrics.py
│ ├── seg
│ │ ├── __init__.py
│ │ ├── builder.py
│ │ └── sampler
│ │ │ ├── __init__.py
│ │ │ ├── base_pixel_sampler.py
│ │ │ └── ohem_pixel_sampler.py
│ └── utils
│ │ ├── __init__.py
│ │ └── misc.py
├── datasets
│ ├── __init__.py
│ ├── ade.py
│ ├── builder.py
│ ├── chase_db1.py
│ ├── cityscapes.py
│ ├── cocostuff.py
│ ├── custom.py
│ ├── dataset_wrappers.py
│ ├── drive.py
│ ├── hrf.py
│ ├── mapillary.py
│ ├── pascal_context.py
│ ├── pipelines
│ │ ├── __init__.py
│ │ ├── compose.py
│ │ ├── formating.py
│ │ ├── loading.py
│ │ ├── test_time_aug.py
│ │ └── transforms.py
│ ├── stare.py
│ └── voc.py
├── models
│ ├── __init__.py
│ ├── backbones
│ │ ├── __init__.py
│ │ ├── cgnet.py
│ │ ├── fast_scnn.py
│ │ ├── hrnet.py
│ │ ├── lvt.py
│ │ ├── mix_transformer.py
│ │ ├── mobilenet_v2.py
│ │ ├── mobilenet_v3.py
│ │ ├── resnest.py
│ │ ├── resnet.py
│ │ ├── resnext.py
│ │ └── unet.py
│ ├── builder.py
│ ├── decode_heads
│ │ ├── __init__.py
│ │ ├── ann_head.py
│ │ ├── apc_head.py
│ │ ├── aspp_head.py
│ │ ├── cascade_decode_head.py
│ │ ├── cc_head.py
│ │ ├── da_head.py
│ │ ├── decode_head.py
│ │ ├── dm_head.py
│ │ ├── dnl_head.py
│ │ ├── ema_head.py
│ │ ├── enc_head.py
│ │ ├── fcn_head.py
│ │ ├── fpn_head.py
│ │ ├── gc_head.py
│ │ ├── lraspp_head.py
│ │ ├── nl_head.py
│ │ ├── ocr_head.py
│ │ ├── point_head.py
│ │ ├── psa_head.py
│ │ ├── psp_head.py
│ │ ├── segformer_head.py
│ │ ├── sep_aspp_head.py
│ │ ├── sep_fcn_head.py
│ │ └── uper_head.py
│ ├── dynamic_conv.py
│ ├── losses
│ │ ├── __init__.py
│ │ ├── accuracy.py
│ │ ├── cross_entropy_loss.py
│ │ ├── lovasz_loss.py
│ │ └── utils.py
│ ├── necks
│ │ ├── __init__.py
│ │ └── fpn.py
│ ├── segmentors
│ │ ├── __init__.py
│ │ ├── base.py
│ │ ├── cascade_encoder_decoder.py
│ │ └── encoder_decoder.py
│ └── utils
│ │ ├── __init__.py
│ │ ├── drop.py
│ │ ├── inverted_residual.py
│ │ ├── make_divisible.py
│ │ ├── norm.py
│ │ ├── res_layer.py
│ │ ├── se_layer.py
│ │ ├── self_attention_block.py
│ │ └── up_conv_block.py
├── ops
│ ├── __init__.py
│ ├── encoding.py
│ └── wrappers.py
├── utils
│ ├── __init__.py
│ ├── collect_env.py
│ └── logger.py
└── version.py
├── pytest.ini
├── requirements.txt
├── requirements
├── docs.txt
├── optional.txt
├── readthedocs.txt
├── runtime.txt
└── tests.txt
├── resources
├── image.png
├── mmseg-logo.png
└── seg_demo.gif
├── setup.cfg
├── setup.py
├── tests
├── test_config.py
├── test_data
│ ├── test_dataset.py
│ ├── test_dataset_builder.py
│ ├── test_loading.py
│ ├── test_transform.py
│ └── test_tta.py
├── test_eval_hook.py
├── test_inference.py
├── test_metrics.py
├── test_models
│ ├── test_backbone.py
│ ├── test_forward.py
│ ├── test_heads.py
│ ├── test_losses.py
│ ├── test_necks.py
│ ├── test_segmentor.py
│ └── test_unet.py
├── test_sampler.py
└── test_utils
│ ├── test_inverted_residual_module.py
│ ├── test_make_divisible.py
│ └── test_se_layer.py
└── tools
├── benchmark.py
├── convert_datasets
├── chase_db1.py
├── cityscapes.py
├── drive.py
├── hrf.py
├── pascal_context.py
├── stare.py
└── voc_aug.py
├── convert_model.py
├── dist_test.sh
├── dist_train.sh
├── get_flops.py
├── print_config.py
├── publish_model.py
├── pytorch2onnx.py
├── slurm_test.sh
├── slurm_train.sh
├── test.py
└── train.py
/Images/lvt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/Images/lvt.png
--------------------------------------------------------------------------------
/classification/.gitignore:
--------------------------------------------------------------------------------
1 | configs/.ipynb_checkpoints/
2 | *.pyc
3 | models/.ipynb_checkpoints/
4 | *.csv
5 | work_dirs/
6 | .ipynb_checkpoints
7 | work_dirs_debug
8 | *.ipynb
9 | checkpoints
10 |
--------------------------------------------------------------------------------
/classification/Images/lvt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/classification/Images/lvt.png
--------------------------------------------------------------------------------
/classification/README.md:
--------------------------------------------------------------------------------
1 | ../README.md
--------------------------------------------------------------------------------
/classification/configs/lvt_imagenet.py:
--------------------------------------------------------------------------------
1 | config = dict(
2 | # classification/downstream tasks
3 | with_cls_head = True,
4 |
5 | # rasa setting
6 | rasa_cfg = dict(
7 | atrous_rates= [1,3,5], # None, [1,3,5]
8 | act_layer= 'nn.SiLU(True)',
9 | init= 'kaiming',
10 | r_num = 2,
11 | ),
12 | )
13 |
--------------------------------------------------------------------------------
/classification/distributed_train.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | NUM_PROC=$1
3 | shift
4 | python3 -m torch.distributed.launch --nproc_per_node=$NUM_PROC main.py "$@"
5 |
6 |
--------------------------------------------------------------------------------
/classification/figures/compare.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/classification/figures/compare.png
--------------------------------------------------------------------------------
/classification/figures/outlook-attention-gif.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/classification/figures/outlook-attention-gif.gif
--------------------------------------------------------------------------------
/classification/loss/__init__.py:
--------------------------------------------------------------------------------
1 | from .cross_entropy import TokenLabelGTCrossEntropy, TokenLabelSoftTargetCrossEntropy, TokenLabelCrossEntropy
--------------------------------------------------------------------------------
/classification/models/__init__.py:
--------------------------------------------------------------------------------
1 | from .lvt_cls import *
2 | from .lvt import *
--------------------------------------------------------------------------------
/classification/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .utils import load_pretrained_weights
--------------------------------------------------------------------------------
/detection/.dev_scripts/linter.sh:
--------------------------------------------------------------------------------
1 | yapf -r -i mmdet/ configs/ tests/ tools/
2 | isort -rc mmdet/ configs/ tests/ tools/
3 | flake8 .
4 |
--------------------------------------------------------------------------------
/detection/.github/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | We appreciate all contributions to improve MMDetection. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) in MMCV for more details about the contributing guideline.
2 |
--------------------------------------------------------------------------------
/detection/.github/ISSUE_TEMPLATE/general_questions.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: General questions
3 | about: Ask general questions to get help
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
--------------------------------------------------------------------------------
/detection/.readthedocs.yml:
--------------------------------------------------------------------------------
1 | version: 2
2 |
3 | formats: all
4 |
5 | python:
6 | version: 3.7
7 | install:
8 | - requirements: requirements/docs.txt
9 | - requirements: requirements/readthedocs.txt
10 |
--------------------------------------------------------------------------------
/detection/CITATION.cff:
--------------------------------------------------------------------------------
1 | cff-version: 1.2.0
2 | message: "If you use this software, please cite it as below."
3 | authors:
4 | - name: "MMDetection Contributors"
5 | title: "OpenMMLab Detection Toolbox and Benchmark"
6 | date-released: 2018-08-22
7 | url: "https://github.com/open-mmlab/mmdetection"
8 | license: Apache-2.0
9 |
--------------------------------------------------------------------------------
/detection/MANIFEST.in:
--------------------------------------------------------------------------------
1 | include requirements/*.txt
2 | include mmdet/VERSION
3 | include mmdet/.mim/model-index.yml
4 | include mmdet/.mim/demo/*/*
5 | recursive-include mmdet/.mim/configs *.py *.yml
6 | recursive-include mmdet/.mim/tools *.sh *.py
7 |
--------------------------------------------------------------------------------
/detection/README.md:
--------------------------------------------------------------------------------
1 | ../README.md
--------------------------------------------------------------------------------
/detection/configs/atss/atss_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './atss_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_caffe_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_20e.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/mstrain_3x_coco_instance.py',
3 | '../_base_/models/cascade_mask_rcnn_r50_fpn.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/cascade_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/detection/configs/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_r50_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 19])
4 | runner = dict(type='EpochBasedRunner', max_epochs=20)
5 |
--------------------------------------------------------------------------------
/detection/configs/centernet/centernet_resnet18_140e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './centernet_resnet18_dcnv2_140e_coco.py'
2 |
3 | model = dict(neck=dict(use_dcn=False))
4 |
--------------------------------------------------------------------------------
/detection/configs/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/detection/configs/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/detection/configs/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/detection/configs/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/detection/configs/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/detection/configs/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/detection/configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/detection/configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/detection/configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=4, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/detection/configs/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/detection/configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/detection/configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/detection/configs/deformable_detr/deformable_detr_refine_r50_16x2_50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'deformable_detr_r50_16x2_50e_coco.py'
2 | model = dict(bbox_head=dict(with_box_refine=True))
3 |
--------------------------------------------------------------------------------
/detection/configs/deformable_detr/deformable_detr_twostage_refine_r50_16x2_50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'deformable_detr_refine_r50_16x2_50e_coco.py'
2 | model = dict(bbox_head=dict(as_two_stage=True))
3 |
--------------------------------------------------------------------------------
/detection/configs/detectors/htc_r50_sac_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../htc/htc_r50_fpn_1x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | type='DetectoRS_ResNet',
6 | conv_cfg=dict(type='ConvAWS'),
7 | sac=dict(type='SAC', use_deform=True),
8 | stage_with_sac=(False, True, True, True)))
9 |
--------------------------------------------------------------------------------
/detection/configs/fast_rcnn/README.md:
--------------------------------------------------------------------------------
1 | # Fast R-CNN
2 |
3 | ## Introduction
4 |
5 |
6 |
7 | ```latex
8 | @inproceedings{girshick2015fast,
9 | title={Fast r-cnn},
10 | author={Girshick, Ross},
11 | booktitle={Proceedings of the IEEE international conference on computer vision},
12 | year={2015}
13 | }
14 | ```
15 |
16 | ## Results and models
17 |
--------------------------------------------------------------------------------
/detection/configs/fast_rcnn/fast_rcnn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fast_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/fast_rcnn/fast_rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fast_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/fast_rcnn/fast_rcnn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fast_rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/fast_rcnn/fast_rcnn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fast_rcnn_r50_fpn_1x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(step=[16, 22])
5 | runner = dict(type='EpochBasedRunner', max_epochs=24)
6 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'faster_rcnn_r50_fpn_mstrain_3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[28, 34])
4 | runner = dict(type='EpochBasedRunner', max_epochs=36)
5 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r50_fpn_bounded_iou_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_head=dict(
5 | reg_decoded_bbox=True,
6 | loss_bbox=dict(type='BoundedIoULoss', loss_weight=10.0))))
7 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r50_fpn_ciou_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_head=dict(
5 | reg_decoded_bbox=True,
6 | loss_bbox=dict(type='CIoULoss', loss_weight=12.0))))
7 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r50_fpn_giou_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_head=dict(
5 | reg_decoded_bbox=True,
6 | loss_bbox=dict(type='GIoULoss', loss_weight=10.0))))
7 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r50_fpn_iou_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_head=dict(
5 | reg_decoded_bbox=True,
6 | loss_bbox=dict(type='IoULoss', loss_weight=10.0))))
7 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
3 | ]
4 |
--------------------------------------------------------------------------------
/detection/configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(train_cfg=dict(rcnn=dict(sampler=dict(type='OHEMSampler'))))
3 |
--------------------------------------------------------------------------------
/detection/configs/fcos/fcos_center_r50_caffe_fpn_gn-head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
2 | model = dict(bbox_head=dict(center_sampling=True, center_sample_radius=1.5))
3 |
--------------------------------------------------------------------------------
/detection/configs/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py:
--------------------------------------------------------------------------------
1 | # TODO: Remove this config after benchmarking all related configs
2 | _base_ = 'fcos_r50_caffe_fpn_gn-head_1x_coco.py'
3 |
4 | data = dict(samples_per_gpu=4, workers_per_gpu=4)
5 |
--------------------------------------------------------------------------------
/detection/configs/foveabox/fovea_r101_fpn_4x4_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fovea_r50_fpn_4x4_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/foveabox/fovea_r101_fpn_4x4_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fovea_r50_fpn_4x4_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/foveabox/fovea_r50_fpn_4x4_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fovea_r50_fpn_4x4_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/fp16/faster_rcnn_r50_fpn_fp16_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | # fp16 settings
3 | fp16 = dict(loss_scale=512.)
4 |
--------------------------------------------------------------------------------
/detection/configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | # fp16 settings
3 | fp16 = dict(loss_scale=512.)
4 |
--------------------------------------------------------------------------------
/detection/configs/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
7 | fp16 = dict(loss_scale=512.)
8 |
--------------------------------------------------------------------------------
/detection/configs/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
7 | fp16 = dict(loss_scale=512.)
8 |
--------------------------------------------------------------------------------
/detection/configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
2 | # fp16 settings
3 | fp16 = dict(loss_scale=512.)
4 |
--------------------------------------------------------------------------------
/detection/configs/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_r50_fpg_crop640_50e_coco.py'
2 |
3 | model = dict(
4 | neck=dict(out_channels=128, inter_channels=128),
5 | bbox_head=dict(in_channels=128))
6 |
--------------------------------------------------------------------------------
/detection/configs/free_anchor/retinanet_free_anchor_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_free_anchor_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/fsaf/fsaf_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fsaf_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/detection/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/detection/configs/gcnet/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(type='ContextBlock', ratio=1. / 16),
6 | stages=(False, True, True, True),
7 | position='after_conv3')
8 | ]))
9 |
--------------------------------------------------------------------------------
/detection/configs/gcnet/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(type='ContextBlock', ratio=1. / 4),
6 | stages=(False, True, True, True),
7 | position='after_conv3')
8 | ]))
9 |
--------------------------------------------------------------------------------
/detection/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/detection/configs/gcnet/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(type='ContextBlock', ratio=1. / 16),
6 | stages=(False, True, True, True),
7 | position='after_conv3')
8 | ]))
9 |
--------------------------------------------------------------------------------
/detection/configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(type='ContextBlock', ratio=1. / 4),
6 | stages=(False, True, True, True),
7 | position='after_conv3')
8 | ]))
9 |
--------------------------------------------------------------------------------
/detection/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/detection/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/detection/configs/ghm/retinanet_ghm_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_ghm_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/gn+ws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained', checkpoint='open-mmlab://jhu/resnet101_gn_ws')))
7 |
--------------------------------------------------------------------------------
/detection/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[20, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained', checkpoint='open-mmlab://jhu/resnet101_gn_ws')))
7 |
--------------------------------------------------------------------------------
/detection/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[20, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[20, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[20, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_gn-all_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron/resnet101_gn')))
8 |
--------------------------------------------------------------------------------
/detection/configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r101_fpn_gn-all_2x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(step=[28, 34])
5 | runner = dict(type='EpochBasedRunner', max_epochs=36)
6 |
--------------------------------------------------------------------------------
/detection/configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_gn-all_2x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(step=[28, 34])
5 | runner = dict(type='EpochBasedRunner', max_epochs=36)
6 |
--------------------------------------------------------------------------------
/detection/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(step=[28, 34])
5 | runner = dict(type='EpochBasedRunner', max_epochs=36)
6 |
--------------------------------------------------------------------------------
/detection/configs/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './grid_rcnn_r50_fpn_gn-head_2x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/detection/configs/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga_faster_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga_retinanet_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga_rpn_r50_caffe_fpn_1x_coco.py'
2 | # model settings
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(
7 | type='Pretrained',
8 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
9 |
--------------------------------------------------------------------------------
/detection/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_hrnetv2p_w18_1x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(step=[16, 22])
5 | runner = dict(type='EpochBasedRunner', max_epochs=24)
6 |
--------------------------------------------------------------------------------
/detection/configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_hrnetv2p_w40_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/hrnet/htc_hrnetv2p_w40_28e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_hrnetv2p_w40_20e_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[24, 27])
4 | runner = dict(type='EpochBasedRunner', max_epochs=28)
5 |
--------------------------------------------------------------------------------
/detection/configs/hrnet/htc_x101_64x4d_fpn_16x1_28e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../htc/htc_x101_64x4d_fpn_16x1_20e_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[24, 27])
4 | runner = dict(type='EpochBasedRunner', max_epochs=28)
5 |
--------------------------------------------------------------------------------
/detection/configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_hrnetv2p_w18_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_hrnetv2p_w32_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_hrnetv2p_w40_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/htc/htc_r101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 | # learning policy
8 | lr_config = dict(step=[16, 19])
9 | runner = dict(type='EpochBasedRunner', max_epochs=20)
10 |
--------------------------------------------------------------------------------
/detection/configs/htc/htc_r50_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_r50_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 19])
4 | runner = dict(type='EpochBasedRunner', max_epochs=20)
5 |
--------------------------------------------------------------------------------
/detection/configs/instaboost/cascade_mask_rcnn_r101_fpn_instaboost_4x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/detection/configs/instaboost/mask_rcnn_r101_fpn_instaboost_4x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_instaboost_4x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './libra_faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/mstrain-poly_3x_coco_instance.py',
3 | '../_base_/models/mask_rcnn_r50_fpn.py'
4 | ]
5 |
6 | model = dict(
7 | backbone=dict(
8 | depth=101,
9 | init_cfg=dict(type='Pretrained',
10 | checkpoint='torchvision://resnet101')))
11 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[28, 34])
4 | runner = dict(type='EpochBasedRunner', max_epochs=36)
5 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/detection/configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/mstrain-poly_3x_coco_instance.py',
3 | '../_base_/models/mask_rcnn_r50_fpn.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/detection/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms_rcnn_r101_caffe_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms_rcnn_r50_caffe_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms_rcnn_x101_64x4d_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/paa/paa_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/paa/paa_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r101_fpn_1x_coco.py'
2 | lr_config = dict(step=[16, 22])
3 | runner = dict(type='EpochBasedRunner', max_epochs=24)
4 |
--------------------------------------------------------------------------------
/detection/configs/paa/paa_r101_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r50_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/paa/paa_r50_fpn_1.5x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r50_fpn_1x_coco.py'
2 | lr_config = dict(step=[12, 16])
3 | runner = dict(type='EpochBasedRunner', max_epochs=18)
4 |
--------------------------------------------------------------------------------
/detection/configs/paa/paa_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r50_fpn_1x_coco.py'
2 | lr_config = dict(step=[16, 22])
3 | runner = dict(type='EpochBasedRunner', max_epochs=24)
4 |
--------------------------------------------------------------------------------
/detection/configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 |
3 | model = dict(
4 | neck=dict(
5 | type='PAFPN',
6 | in_channels=[256, 512, 1024, 2048],
7 | out_channels=256,
8 | num_outs=5))
9 |
--------------------------------------------------------------------------------
/detection/configs/panoptic_fpn/panoptic_fpn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './panoptic_fpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/panoptic_fpn/panoptic_fpn_r101_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './panoptic_fpn_r50_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
2 |
3 | model = dict(
4 | bbox_head=dict(
5 | type='PISARetinaHead',
6 | loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
7 | train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
8 |
--------------------------------------------------------------------------------
/detection/configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../retinanet/retinanet_x101_32x4d_fpn_1x_coco.py'
2 |
3 | model = dict(
4 | bbox_head=dict(
5 | type='PISARetinaHead',
6 | loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
7 | train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
8 |
--------------------------------------------------------------------------------
/detection/configs/pisa/pisa_ssd300_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../ssd/ssd300_coco.py'
2 |
3 | model = dict(
4 | bbox_head=dict(type='PISASSDHead'),
5 | train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
6 |
7 | optimizer_config = dict(
8 | _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
9 |
--------------------------------------------------------------------------------
/detection/configs/pisa/pisa_ssd512_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../ssd/ssd512_coco.py'
2 |
3 | model = dict(
4 | bbox_head=dict(type='PISASSDHead'),
5 | train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
6 |
7 | optimizer_config = dict(
8 | _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
9 |
--------------------------------------------------------------------------------
/detection/configs/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './point_rend_r50_caffe_fpn_mstrain_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[28, 34])
4 | runner = dict(type='EpochBasedRunner', max_epochs=36)
5 |
--------------------------------------------------------------------------------
/detection/configs/pvt/retinanet_pvt-l_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvt-t_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | num_layers=[3, 8, 27, 3],
5 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
6 | 'releases/download/v2/pvt_large.pth')))
7 | fp16 = dict(loss_scale=dict(init_scale=512))
8 |
--------------------------------------------------------------------------------
/detection/configs/pvt/retinanet_pvt-m_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvt-t_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | num_layers=[3, 4, 18, 3],
5 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
6 | 'releases/download/v2/pvt_medium.pth')))
7 |
--------------------------------------------------------------------------------
/detection/configs/pvt/retinanet_pvt-s_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvt-t_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | num_layers=[3, 4, 6, 3],
5 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
6 | 'releases/download/v2/pvt_small.pth')))
7 |
--------------------------------------------------------------------------------
/detection/configs/pvt/retinanet_pvtv2-b1_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | embed_dims=64,
5 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
6 | 'releases/download/v2/pvt_v2_b1.pth')),
7 | neck=dict(in_channels=[64, 128, 320, 512]))
8 |
--------------------------------------------------------------------------------
/detection/configs/pvt/retinanet_pvtv2-b2_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | embed_dims=64,
5 | num_layers=[3, 4, 6, 3],
6 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
7 | 'releases/download/v2/pvt_v2_b2.pth')),
8 | neck=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/detection/configs/pvt/retinanet_pvtv2-b3_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | embed_dims=64,
5 | num_layers=[3, 4, 18, 3],
6 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
7 | 'releases/download/v2/pvt_v2_b3.pth')),
8 | neck=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/detection/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
2 | lr_config = dict(step=[16, 22])
3 | runner = dict(type='EpochBasedRunner', max_epochs=24)
4 |
--------------------------------------------------------------------------------
/detection/configs/reppoints/bbox_r50_grid_center_fpn_gn-neck+head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
2 | model = dict(bbox_head=dict(transform_method='minmax', use_grid_points=True))
3 |
--------------------------------------------------------------------------------
/detection/configs/reppoints/reppoints.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/configs/reppoints/reppoints.png
--------------------------------------------------------------------------------
/detection/configs/reppoints/reppoints_minmax_r50_fpn_gn-neck+head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
2 | model = dict(bbox_head=dict(transform_method='minmax'))
3 |
--------------------------------------------------------------------------------
/detection/configs/reppoints/reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_1x_coco.py'
2 | norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
3 | model = dict(neck=dict(norm_cfg=norm_cfg), bbox_head=dict(norm_cfg=norm_cfg))
4 | optimizer = dict(lr=0.01)
5 |
--------------------------------------------------------------------------------
/detection/configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
2 | lr_config = dict(step=[16, 22])
3 | runner = dict(type='EpochBasedRunner', max_epochs=24)
4 |
--------------------------------------------------------------------------------
/detection/configs/reppoints/reppoints_partial_minmax_r50_fpn_gn-neck+head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
2 | model = dict(bbox_head=dict(transform_method='partial_minmax'))
3 |
--------------------------------------------------------------------------------
/detection/configs/res2net/cascade_rcnn_r2_101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 |
--------------------------------------------------------------------------------
/detection/configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 |
--------------------------------------------------------------------------------
/detection/configs/res2net/mask_rcnn_r2_101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 |
--------------------------------------------------------------------------------
/detection/configs/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | stem_channels=128,
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='open-mmlab://resnest101')))
8 |
--------------------------------------------------------------------------------
/detection/configs/resnest/cascade_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | stem_channels=128,
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='open-mmlab://resnest101')))
8 |
--------------------------------------------------------------------------------
/detection/configs/resnest/faster_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | stem_channels=128,
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='open-mmlab://resnest101')))
8 |
--------------------------------------------------------------------------------
/detection/configs/resnest/mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | stem_channels=128,
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='open-mmlab://resnest101')))
8 |
--------------------------------------------------------------------------------
/detection/configs/retinanet/retinanet_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/retinanet/retinanet_r101_caffe_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_caffe_fpn_mstrain_1x_coco.py'
2 | # learning policy
3 | model = dict(
4 | pretrained='open-mmlab://detectron2/resnet101_caffe',
5 | backbone=dict(depth=101))
6 | lr_config = dict(step=[28, 34])
7 | runner = dict(type='EpochBasedRunner', max_epochs=36)
8 |
--------------------------------------------------------------------------------
/detection/configs/retinanet/retinanet_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/retinanet/retinanet_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/retinanet/retinanet_r101_fpn_mstrain_640-800_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py', '../common/mstrain_3x_coco.py'
3 | ]
4 | # optimizer
5 | model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
6 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
7 |
--------------------------------------------------------------------------------
/detection/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_caffe_fpn_mstrain_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_caffe_fpn_mstrain_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[28, 34])
4 | runner = dict(type='EpochBasedRunner', max_epochs=36)
5 |
--------------------------------------------------------------------------------
/detection/configs/retinanet/retinanet_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 | # optimizer
7 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
8 |
--------------------------------------------------------------------------------
/detection/configs/retinanet/retinanet_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/detection/configs/retinanet/retinanet_r50_fpn_mstrain_640-800_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py', '../common/mstrain_3x_coco.py'
3 | ]
4 | # optimizer
5 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
6 |
--------------------------------------------------------------------------------
/detection/configs/retinanet/retinanet_x101_64x4d_fpn_mstrain_640-800_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py', '../common/mstrain_3x_coco.py'
3 | ]
4 | # optimizer
5 | model = dict(
6 | pretrained='open-mmlab://resnext101_64x4d',
7 | backbone=dict(type='ResNeXt', depth=101, groups=64, base_width=4))
8 | optimizer = dict(type='SGD', lr=0.01)
9 |
--------------------------------------------------------------------------------
/detection/configs/rpn/rpn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/detection/configs/rpn/rpn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/rpn/rpn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/rpn/rpn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_1x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(step=[16, 22])
5 | runner = dict(type='EpochBasedRunner', max_epochs=24)
6 |
--------------------------------------------------------------------------------
/detection/configs/scnet/scnet_r101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './scnet_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/scnet/scnet_r50_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './scnet_r50_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 19])
4 | runner = dict(type='EpochBasedRunner', max_epochs=20)
5 |
--------------------------------------------------------------------------------
/detection/configs/scnet/scnet_x101_64x4d_fpn_8x1_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './scnet_x101_64x4d_fpn_20e_coco.py'
2 | data = dict(samples_per_gpu=1, workers_per_gpu=1)
3 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
4 |
--------------------------------------------------------------------------------
/detection/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py' # noqa: E501
2 | model = dict(
3 | roi_head=dict(
4 | mask_head=dict(
5 | predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
6 |
--------------------------------------------------------------------------------
/detection/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py' # noqa: E501
2 | model = dict(
3 | roi_head=dict(
4 | mask_head=dict(
5 | predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
6 |
--------------------------------------------------------------------------------
/detection/configs/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py' # noqa: E501
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py' # noqa: E501
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py'
2 | model = dict(
3 | roi_head=dict(
4 | mask_head=dict(
5 | predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
6 |
--------------------------------------------------------------------------------
/detection/configs/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py'
2 | model = dict(
3 | roi_head=dict(
4 | mask_head=dict(
5 | predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
6 |
--------------------------------------------------------------------------------
/detection/configs/sparse_rcnn/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/detection/configs/sparse_rcnn/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/detection/configs/strong_baselines/mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_100e_fp16_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py'
2 | fp16 = dict(loss_scale=512.)
3 |
--------------------------------------------------------------------------------
/detection/configs/strong_baselines/mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_400e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py'
2 |
3 | # Use RepeatDataset to speed up training
4 | # change repeat time from 4 (for 100 epochs) to 16 (for 400 epochs)
5 | data = dict(train=dict(times=4 * 4))
6 | lr_config = dict(warmup_iters=500 * 4)
7 |
--------------------------------------------------------------------------------
/detection/configs/strong_baselines/mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_fp16_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py'
2 | # use FP16
3 | fp16 = dict(loss_scale=512.)
4 |
--------------------------------------------------------------------------------
/detection/configs/strong_baselines/mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py'
2 |
3 | # Use RepeatDataset to speed up training
4 | # change repeat time from 4 (for 100 epochs) to 2 (for 50 epochs)
5 | data = dict(train=dict(times=2))
6 |
--------------------------------------------------------------------------------
/detection/configs/swin/mask_rcnn_swin-t-p4-w7_fpn_fp16_ms-crop-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco.py'
2 | # you need to set mode='dynamic' if you are using pytorch<=1.5.0
3 | fp16 = dict(loss_scale=dict(init_scale=512))
4 |
--------------------------------------------------------------------------------
/detection/configs/tridentnet/tridentnet_r50_caffe_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'tridentnet_r50_caffe_mstrain_1x_coco.py'
2 |
3 | lr_config = dict(step=[28, 34])
4 | runner = dict(type='EpochBasedRunner', max_epochs=36)
5 |
--------------------------------------------------------------------------------
/detection/configs/vfnet/vfnet_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/vfnet/vfnet_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 | lr_config = dict(step=[16, 22])
8 | runner = dict(type='EpochBasedRunner', max_epochs=24)
9 |
--------------------------------------------------------------------------------
/detection/configs/vfnet/vfnet_r101_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/detection/configs/vfnet/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)),
6 | bbox_head=dict(dcn_on_last_conv=True))
7 |
--------------------------------------------------------------------------------
/detection/configs/yolact/yolact_r101_1x8_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolact_r50_1x8_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/detection/configs/yolo/yolov3_d53_fp16_mstrain-608_273e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolov3_d53_mstrain-608_273e_coco.py'
2 | # fp16 settings
3 | fp16 = dict(loss_scale='dynamic')
4 |
--------------------------------------------------------------------------------
/detection/configs/yolox/yolox_l_8x8_300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolox_s_8x8_300e_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(deepen_factor=1.0, widen_factor=1.0),
6 | neck=dict(
7 | in_channels=[256, 512, 1024], out_channels=256, num_csp_blocks=3),
8 | bbox_head=dict(in_channels=256, feat_channels=256))
9 |
--------------------------------------------------------------------------------
/detection/configs/yolox/yolox_m_8x8_300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolox_s_8x8_300e_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(deepen_factor=0.67, widen_factor=0.75),
6 | neck=dict(in_channels=[192, 384, 768], out_channels=192, num_csp_blocks=2),
7 | bbox_head=dict(in_channels=192, feat_channels=192),
8 | )
9 |
--------------------------------------------------------------------------------
/detection/configs/yolox/yolox_x_8x8_300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolox_s_8x8_300e_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(deepen_factor=1.33, widen_factor=1.25),
6 | neck=dict(
7 | in_channels=[320, 640, 1280], out_channels=320, num_csp_blocks=4),
8 | bbox_head=dict(in_channels=320, feat_channels=320))
9 |
--------------------------------------------------------------------------------
/detection/demo/demo.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/demo/demo.jpg
--------------------------------------------------------------------------------
/detection/demo/demo.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/demo/demo.mp4
--------------------------------------------------------------------------------
/detection/docker/serve/config.properties:
--------------------------------------------------------------------------------
1 | inference_address=http://0.0.0.0:8080
2 | management_address=http://0.0.0.0:8081
3 | metrics_address=http://0.0.0.0:8082
4 | model_store=/home/model-server/model-store
5 | load_models=all
6 |
--------------------------------------------------------------------------------
/detection/docker/serve/entrypoint.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -e
3 |
4 | if [[ "$1" = "serve" ]]; then
5 | shift 1
6 | torchserve --start --ts-config /home/model-server/config.properties
7 | else
8 | eval "$@"
9 | fi
10 |
11 | # prevent docker exit
12 | tail -f /dev/null
13 |
--------------------------------------------------------------------------------
/detection/docs/_static/css/readthedocs.css:
--------------------------------------------------------------------------------
1 | .header-logo {
2 | background-image: url("../image/mmdet-logo.png");
3 | background-size: 156px 40px;
4 | height: 40px;
5 | width: 156px;
6 | }
7 |
--------------------------------------------------------------------------------
/detection/docs/_static/image/mmdet-logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/docs/_static/image/mmdet-logo.png
--------------------------------------------------------------------------------
/detection/docs/switch_language.md:
--------------------------------------------------------------------------------
1 | ## English
2 |
3 | ## 简体中文
4 |
--------------------------------------------------------------------------------
/detection/docs/tutorials/index.rst:
--------------------------------------------------------------------------------
1 | .. toctree::
2 | :maxdepth: 2
3 |
4 | config.md
5 | customize_dataset.md
6 | data_pipeline.md
7 | customize_models.md
8 | customize_runtime.md
9 | customize_losses.md
10 | finetune.md
11 | robustness_benchmarking.md
12 | pytorch2onnx.md
13 | onnx2tensorrt.md
14 | init_cfg.md
15 |
--------------------------------------------------------------------------------
/detection/docs_zh-CN/_static/css/readthedocs.css:
--------------------------------------------------------------------------------
1 | .header-logo {
2 | background-image: url("../image/mmdet-logo.png");
3 | background-size: 156px 40px;
4 | height: 40px;
5 | width: 156px;
6 | }
7 |
--------------------------------------------------------------------------------
/detection/docs_zh-CN/_static/image/mmdet-logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/docs_zh-CN/_static/image/mmdet-logo.png
--------------------------------------------------------------------------------
/detection/docs_zh-CN/robustness_benchmarking.md:
--------------------------------------------------------------------------------
1 | # 检测器鲁棒性检查
2 |
--------------------------------------------------------------------------------
/detection/docs_zh-CN/switch_language.md:
--------------------------------------------------------------------------------
1 | ## English
2 |
3 | ## 简体中文
4 |
--------------------------------------------------------------------------------
/detection/docs_zh-CN/tutorials/customize_models.md:
--------------------------------------------------------------------------------
1 | # 教程 4: 自定义模型
2 |
--------------------------------------------------------------------------------
/detection/docs_zh-CN/tutorials/customize_runtime.md:
--------------------------------------------------------------------------------
1 | # 教程 5: 自定义训练配置
2 |
--------------------------------------------------------------------------------
/detection/docs_zh-CN/tutorials/finetune.md:
--------------------------------------------------------------------------------
1 | # 教程 7: 模型微调
2 |
--------------------------------------------------------------------------------
/detection/docs_zh-CN/tutorials/index.rst:
--------------------------------------------------------------------------------
1 | .. toctree::
2 | :maxdepth: 2
3 |
4 | config.md
5 | customize_dataset.md
6 | data_pipeline.md
7 | customize_models.md
8 | customize_runtime.md
9 | customize_losses.md
10 | finetune.md
11 | pytorch2onnx.md
12 | onnx2tensorrt.md
13 |
--------------------------------------------------------------------------------
/detection/docs_zh-CN/tutorials/onnx2tensorrt.md:
--------------------------------------------------------------------------------
1 | # 教程 9: ONNX 到 TensorRT 的模型转换(实验性支持)
2 |
--------------------------------------------------------------------------------
/detection/docs_zh-CN/tutorials/pytorch2onnx.md:
--------------------------------------------------------------------------------
1 | # 教程 8: Pytorch 到 ONNX 的模型转换(实验性支持)
2 |
--------------------------------------------------------------------------------
/detection/docs_zh-CN/useful_tools.md:
--------------------------------------------------------------------------------
1 | ## 日志分析
2 |
--------------------------------------------------------------------------------
/detection/lvt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/lvt.png
--------------------------------------------------------------------------------
/detection/mmdet/core/bbox/iou_calculators/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .builder import build_iou_calculator
3 | from .iou2d_calculator import BboxOverlaps2D, bbox_overlaps
4 |
5 | __all__ = ['build_iou_calculator', 'BboxOverlaps2D', 'bbox_overlaps']
6 |
--------------------------------------------------------------------------------
/detection/mmdet/core/bbox/iou_calculators/builder.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmcv.utils import Registry, build_from_cfg
3 |
4 | IOU_CALCULATORS = Registry('IoU calculator')
5 |
6 |
7 | def build_iou_calculator(cfg, default_args=None):
8 | """Builder of IoU calculator."""
9 | return build_from_cfg(cfg, IOU_CALCULATORS, default_args)
10 |
--------------------------------------------------------------------------------
/detection/mmdet/core/bbox/match_costs/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .builder import build_match_cost
3 | from .match_cost import BBoxL1Cost, ClassificationCost, FocalLossCost, IoUCost
4 |
5 | __all__ = [
6 | 'build_match_cost', 'ClassificationCost', 'BBoxL1Cost', 'IoUCost',
7 | 'FocalLossCost'
8 | ]
9 |
--------------------------------------------------------------------------------
/detection/mmdet/core/bbox/match_costs/builder.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmcv.utils import Registry, build_from_cfg
3 |
4 | MATCH_COST = Registry('Match Cost')
5 |
6 |
7 | def build_match_cost(cfg, default_args=None):
8 | """Builder of IoU calculator."""
9 | return build_from_cfg(cfg, MATCH_COST, default_args)
10 |
--------------------------------------------------------------------------------
/detection/mmdet/core/data_structures/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .general_data import GeneralData
3 | from .instance_data import InstanceData
4 |
5 | __all__ = ['GeneralData', 'InstanceData']
6 |
--------------------------------------------------------------------------------
/detection/mmdet/core/visualization/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .image import (color_val_matplotlib, imshow_det_bboxes,
3 | imshow_gt_det_bboxes)
4 |
5 | __all__ = ['imshow_det_bboxes', 'imshow_gt_det_bboxes', 'color_val_matplotlib']
6 |
--------------------------------------------------------------------------------
/detection/mmdet/datasets/api_wrappers/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .coco_api import COCO, COCOeval
3 |
4 | __all__ = ['COCO', 'COCOeval']
5 |
--------------------------------------------------------------------------------
/detection/mmdet/datasets/samplers/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .distributed_sampler import DistributedSampler
3 | from .group_sampler import DistributedGroupSampler, GroupSampler
4 |
5 | __all__ = ['DistributedSampler', 'DistributedGroupSampler', 'GroupSampler']
6 |
--------------------------------------------------------------------------------
/detection/mmdet/models/detectors/deformable_detr.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from ..builder import DETECTORS
3 | from .detr import DETR
4 |
5 |
6 | @DETECTORS.register_module()
7 | class DeformableDETR(DETR):
8 |
9 | def __init__(self, *args, **kwargs):
10 | super(DETR, self).__init__(*args, **kwargs)
11 |
--------------------------------------------------------------------------------
/detection/mmdet/models/plugins/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .dropblock import DropBlock
3 |
4 | __all__ = ['DropBlock']
5 |
--------------------------------------------------------------------------------
/detection/mmdet/models/roi_heads/roi_extractors/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .base_roi_extractor import BaseRoIExtractor
3 | from .generic_roi_extractor import GenericRoIExtractor
4 | from .single_level_roi_extractor import SingleRoIExtractor
5 |
6 | __all__ = ['BaseRoIExtractor', 'SingleRoIExtractor', 'GenericRoIExtractor']
7 |
--------------------------------------------------------------------------------
/detection/mmdet/models/roi_heads/shared_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .res_layer import ResLayer
3 |
4 | __all__ = ['ResLayer']
5 |
--------------------------------------------------------------------------------
/detection/mmdet/models/seg_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .panoptic_fpn_head import PanopticFPNHead # noqa: F401,F403
3 | from .panoptic_fusion_heads import * # noqa: F401,F403
4 |
--------------------------------------------------------------------------------
/detection/mmdet/models/seg_heads/panoptic_fusion_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .base_panoptic_fusion_head import \
3 | BasePanopticFusionHead # noqa: F401,F403
4 | from .heuristic_fusion_head import HeuristicFusionHead # noqa: F401,F403
5 |
--------------------------------------------------------------------------------
/detection/mmdet/utils/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .collect_env import collect_env
3 | from .logger import get_root_logger
4 |
5 | __all__ = ['get_root_logger', 'collect_env']
6 |
--------------------------------------------------------------------------------
/detection/pytest.ini:
--------------------------------------------------------------------------------
1 | [pytest]
2 | addopts = --xdoctest --xdoctest-style=auto
3 | norecursedirs = .git ignore build __pycache__ data docker docs .eggs
4 |
5 | filterwarnings= default
6 | ignore:.*No cfgstr given in Cacher constructor or call.*:Warning
7 | ignore:.*Define the __nice__ method for.*:Warning
8 |
--------------------------------------------------------------------------------
/detection/requirements.txt:
--------------------------------------------------------------------------------
1 | -r requirements/build.txt
2 | -r requirements/optional.txt
3 | -r requirements/runtime.txt
4 | -r requirements/tests.txt
5 |
--------------------------------------------------------------------------------
/detection/requirements/build.txt:
--------------------------------------------------------------------------------
1 | # These must be installed before building mmdetection
2 | cython
3 | numpy
4 |
--------------------------------------------------------------------------------
/detection/requirements/docs.txt:
--------------------------------------------------------------------------------
1 | docutils==0.16.0
2 | -e git+https://github.com/open-mmlab/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
3 | recommonmark
4 | sphinx==4.0.2
5 | sphinx-copybutton
6 | sphinx_markdown_tables
7 | sphinx_rtd_theme==0.5.2
8 |
--------------------------------------------------------------------------------
/detection/requirements/mminstall.txt:
--------------------------------------------------------------------------------
1 | mmcv-full>=1.3.8
2 |
--------------------------------------------------------------------------------
/detection/requirements/optional.txt:
--------------------------------------------------------------------------------
1 | cityscapesscripts
2 | imagecorruptions
3 | scipy
4 | sklearn
5 |
--------------------------------------------------------------------------------
/detection/requirements/readthedocs.txt:
--------------------------------------------------------------------------------
1 | mmcv
2 | torch
3 | torchvision
4 |
--------------------------------------------------------------------------------
/detection/requirements/runtime.txt:
--------------------------------------------------------------------------------
1 | matplotlib
2 | numpy
3 | pycocotools; platform_system == "Linux"
4 | pycocotools-windows; platform_system == "Windows"
5 | six
6 | terminaltables
7 |
--------------------------------------------------------------------------------
/detection/requirements/tests.txt:
--------------------------------------------------------------------------------
1 | asynctest
2 | codecov
3 | flake8
4 | interrogate
5 | isort==4.3.21
6 | # Note: used for kwarray.group_items, this may be ported to mmcv in the future.
7 | kwarray
8 | mmtrack
9 | onnx==1.7.0
10 | onnxruntime>=1.8.0
11 | pytest
12 | ubelt
13 | xdoctest>=0.10.0
14 | yapf
15 |
--------------------------------------------------------------------------------
/detection/resources/coco_test_12510.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/resources/coco_test_12510.jpg
--------------------------------------------------------------------------------
/detection/resources/corruptions_sev_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/resources/corruptions_sev_3.png
--------------------------------------------------------------------------------
/detection/resources/data_pipeline.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/resources/data_pipeline.png
--------------------------------------------------------------------------------
/detection/resources/loss_curve.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/resources/loss_curve.png
--------------------------------------------------------------------------------
/detection/resources/mmdet-logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/resources/mmdet-logo.png
--------------------------------------------------------------------------------
/detection/resources/qq_group_qrcode.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/resources/qq_group_qrcode.jpg
--------------------------------------------------------------------------------
/detection/resources/zhihu_qrcode.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/detection/resources/zhihu_qrcode.jpg
--------------------------------------------------------------------------------
/detection/tests/test_data/test_pipelines/test_transform/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .utils import check_result_same, construct_toy_data, create_random_bboxes
3 |
4 | __all__ = ['create_random_bboxes', 'construct_toy_data', 'check_result_same']
5 |
--------------------------------------------------------------------------------
/detection/tests/test_models/test_backbones/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .utils import check_norm_state, is_block, is_norm
3 |
4 | __all__ = ['is_block', 'is_norm', 'check_norm_state']
5 |
--------------------------------------------------------------------------------
/detection/tests/test_models/test_roi_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .utils import _dummy_bbox_sampling
3 |
4 | __all__ = ['_dummy_bbox_sampling']
5 |
--------------------------------------------------------------------------------
/detection/tests/test_onnx/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .utils import ort_validate
3 |
4 | __all__ = ['ort_validate']
5 |
--------------------------------------------------------------------------------
/detection/tools/dist_test.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | CONFIG=$1
4 | CHECKPOINT=$2
5 | GPUS=$3
6 | PORT=${PORT:-29500}
7 |
8 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
9 | python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT \
10 | $(dirname "$0")/test.py $CONFIG $CHECKPOINT --launcher pytorch ${@:4}
11 |
--------------------------------------------------------------------------------
/detection/tools/dist_train.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | CONFIG=$1
4 | GPUS=$2
5 | PORT=${PORT:-29500}
6 |
7 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
8 | python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT \
9 | $(dirname "$0")/train.py $CONFIG --launcher pytorch ${@:3}
10 |
--------------------------------------------------------------------------------
/segmentation/Images/lvt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/segmentation/Images/lvt.png
--------------------------------------------------------------------------------
/segmentation/README.md:
--------------------------------------------------------------------------------
1 | ../README.md
--------------------------------------------------------------------------------
/segmentation/configs/_base_/datasets/pascal_voc12_aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './pascal_voc12.py'
2 | # dataset settings
3 | data = dict(
4 | train=dict(
5 | ann_dir=['SegmentationClass', 'SegmentationClassAug'],
6 | split=[
7 | 'ImageSets/Segmentation/train.txt',
8 | 'ImageSets/Segmentation/aug.txt'
9 | ]))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r101-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_512x512_20k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r101-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_512x512_40k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r50-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r50-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/ann/ann_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './apcnet_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './apcnet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/apcnet/apcnet_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './apcnet_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/apcnet/apcnet_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './apcnet_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/apcnet/apcnet_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './apcnet_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './apcnet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/apcnet/apcnet_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/apcnet/apcnet_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r101-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_512x512_20k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r101-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_512x512_40k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r50-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ccnet_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_20k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r50-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ccnet_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/ccnet/ccnet_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r101-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_512x512_20k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r101-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_512x512_40k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/danet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/danet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/danet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r50-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/danet_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_20k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r50-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/danet_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/danet/danet_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/danet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_480x480_40k_pascal_context.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_480x480_80k_pascal_context.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_512x512_20k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_512x512_40k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_20k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_480x480_40k_pascal_context.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_480x480_80k_pascal_context.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_512x512_20k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_512x512_40k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3plus_r50-d8.py',
3 | '../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3plus_r50-d8.py',
3 | '../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_80k.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3plus_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3plus_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_20k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3plus_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3plus_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './dmnet_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './dmnet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dmnet/dmnet_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './dmnet_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dmnet/dmnet_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './dmnet_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dmnet/dmnet_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './dmnet_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dmnet/dmnet_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './dmnet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/dmnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/dmnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/dmnet/dmnet_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/dmnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/dmnet/dmnet_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/dmnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './dnl_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './dnl_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dnlnet/dnl_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './dnl_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dnlnet/dnl_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './dnl_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dnlnet/dnl_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './dnl_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dnlnet/dnl_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './dnl_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/dnl_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/dnl_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/dnlnet/dnl_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/dnl_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/dnlnet/dnl_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/dnl_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/emanet/emanet_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './emanet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/emanet/emanet_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './emanet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/emanet/emanet_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/emanet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r101-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_512x512_20k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r101-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_512x512_40k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/encnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/encnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/encnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r50-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/encnet_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_20k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r50-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/encnet_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/encnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/encnet/encnet_r50s-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/encnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | backbone=dict(stem_channels=128),
7 | decode_head=dict(num_classes=150),
8 | auxiliary_head=dict(num_classes=150))
9 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r101-d8_480x480_40k_pascal_context.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_480x480_40k_pascal_context.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r101-d8_480x480_80k_pascal_context.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_480x480_80k_pascal_context.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r101-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_512x512_20k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r101-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_512x512_40k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r101b-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r101b-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r18-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r18-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r18b-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='torchvision://resnet18',
4 | backbone=dict(type='ResNet', depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r18b-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='torchvision://resnet18',
4 | backbone=dict(type='ResNet', depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r50-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r50-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r50b-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/fcn/fcn_r50b-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = '../deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py'
2 | # fp16 settings
3 | optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
4 |
--------------------------------------------------------------------------------
/segmentation/configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = '../deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py'
2 | # fp16 settings
3 | optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
4 |
--------------------------------------------------------------------------------
/segmentation/configs/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = '../fcn/fcn_r101-d8_512x1024_80k_cityscapes.py'
2 | # fp16 settings
3 | optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
4 |
--------------------------------------------------------------------------------
/segmentation/configs/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = '../pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py'
2 | # fp16 settings
3 | optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
4 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r101-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_512x512_20k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r101-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_512x512_40k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/gcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/gcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/gcnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r50-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/gcnet_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_20k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r50-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/gcnet_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/gcnet/gcnet_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/gcnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/hrnet/fcn_hr18_512x1024_160k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/hrnet/fcn_hr18_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/hrnet/fcn_hr18_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/hrnet/fcn_hr18_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(decode_head=dict(num_classes=150))
6 |
--------------------------------------------------------------------------------
/segmentation/configs/hrnet/fcn_hr18_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/pascal_voc12_aug.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py'
4 | ]
5 | model = dict(decode_head=dict(num_classes=21))
6 |
--------------------------------------------------------------------------------
/segmentation/configs/hrnet/fcn_hr18_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/pascal_voc12_aug.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(decode_head=dict(num_classes=21))
6 |
--------------------------------------------------------------------------------
/segmentation/configs/hrnet/fcn_hr18_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(decode_head=dict(num_classes=150))
6 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_512x512_20k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_512x512_40k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/nonlocal_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/nonlocal_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/nonlocal_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/nonlocal_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_20k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/nonlocal_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/nonlocal_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ocrnet_hr18.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ocrnet_hr18.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ocrnet_hr18.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ocrnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
6 | optimizer = dict(lr=0.02)
7 | lr_config = dict(min_lr=2e-4)
8 |
--------------------------------------------------------------------------------
/segmentation/configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ocrnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
6 |
--------------------------------------------------------------------------------
/segmentation/configs/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ocrnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
6 | optimizer = dict(lr=0.02)
7 | lr_config = dict(min_lr=2e-4)
8 |
--------------------------------------------------------------------------------
/segmentation/configs/point_rend/pointrend_r101_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pointrend_r50_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/point_rend/pointrend_r101_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './pointrend_r50_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/point_rend/pointrend_r50_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pointrend_r50.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | lr_config = dict(warmup='linear', warmup_iters=200)
6 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r101-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_512x512_20k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r101-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_512x512_40k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/psanet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/psanet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/psanet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(mask_size=(66, 66), num_classes=150),
7 | auxiliary_head=dict(num_classes=150))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r50-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/psanet_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_20k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r50-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/psanet_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/psanet/psanet_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/psanet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(mask_size=(66, 66), num_classes=150),
7 | auxiliary_head=dict(num_classes=150))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r101-d8_480x480_40k_pascal_context.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_480x480_40k_pascal_context.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r101-d8_480x480_80k_pascal_context.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_480x480_80k_pascal_context.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r101-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_512x512_20k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r101-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_512x512_40k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r101-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r101-d8_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r101-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r18-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='torchvision://resnet18',
4 | backbone=dict(type='ResNet', depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='torchvision://resnet18',
4 | backbone=dict(type='ResNet', depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r50-d8_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pspnet_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_20k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r50-d8_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pspnet_r50-d8.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r50-d8_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = '../deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/resnest/deeplabv3_s101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = '../deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/resnest/fcn_s101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = '../fcn/fcn_r101-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/resnest/fcn_s101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../fcn/fcn_r101-d8_512x512_160k_ade20k.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = '../pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = '../pspnet/pspnet_r101-d8_512x512_160k_ade20k.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/segmentation/configs/sem_fpn/fpn_r101_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './fpn_r50_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/sem_fpn/fpn_r18_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './fpn_r50_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet18_v1c',
3 | backbone=dict(depth=18),
4 | neck=dict(in_channels=[64, 128, 256, 512]))
5 |
--------------------------------------------------------------------------------
/segmentation/configs/sem_fpn/fpn_x101324d_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './fpn_r50_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnext101_32x4d',
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/sem_fpn/fpn_x101644d_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './fpn_r50_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnext101_64x4d',
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3_unet_s5-d16.py',
3 | '../_base_/datasets/chase_db1.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
7 | evaluation = dict(metric='mDice')
8 |
--------------------------------------------------------------------------------
/segmentation/configs/unet/deeplabv3_unet_s5-d16_128x128_40k_stare.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3_unet_s5-d16.py', '../_base_/datasets/stare.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
6 | evaluation = dict(metric='mDice')
7 |
--------------------------------------------------------------------------------
/segmentation/configs/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3_unet_s5-d16.py', '../_base_/datasets/hrf.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(test_cfg=dict(crop_size=(256, 256), stride=(170, 170)))
6 | evaluation = dict(metric='mDice')
7 |
--------------------------------------------------------------------------------
/segmentation/configs/unet/deeplabv3_unet_s5-d16_64x64_40k_drive.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3_unet_s5-d16.py', '../_base_/datasets/drive.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(test_cfg=dict(crop_size=(64, 64), stride=(42, 42)))
6 | evaluation = dict(metric='mDice')
7 |
--------------------------------------------------------------------------------
/segmentation/configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_unet_s5-d16.py', '../_base_/datasets/chase_db1.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
6 | evaluation = dict(metric='mDice')
7 |
--------------------------------------------------------------------------------
/segmentation/configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_unet_s5-d16.py', '../_base_/datasets/stare.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
6 | evaluation = dict(metric='mDice')
7 |
--------------------------------------------------------------------------------
/segmentation/configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_unet_s5-d16.py', '../_base_/datasets/hrf.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(test_cfg=dict(crop_size=(256, 256), stride=(170, 170)))
6 | evaluation = dict(metric='mDice')
7 |
--------------------------------------------------------------------------------
/segmentation/configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_unet_s5-d16.py', '../_base_/datasets/drive.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(test_cfg=dict(crop_size=(64, 64), stride=(42, 42)))
6 | evaluation = dict(metric='mDice')
7 |
--------------------------------------------------------------------------------
/segmentation/configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pspnet_unet_s5-d16.py',
3 | '../_base_/datasets/chase_db1.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
7 | evaluation = dict(metric='mDice')
8 |
--------------------------------------------------------------------------------
/segmentation/configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pspnet_unet_s5-d16.py', '../_base_/datasets/stare.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
6 | evaluation = dict(metric='mDice')
7 |
--------------------------------------------------------------------------------
/segmentation/configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pspnet_unet_s5-d16.py', '../_base_/datasets/hrf.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(test_cfg=dict(crop_size=(256, 256), stride=(170, 170)))
6 | evaluation = dict(metric='mDice')
7 |
--------------------------------------------------------------------------------
/segmentation/configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pspnet_unet_s5-d16.py', '../_base_/datasets/drive.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | model = dict(test_cfg=dict(crop_size=(64, 64), stride=(42, 42)))
6 | evaluation = dict(metric='mDice')
7 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_512x1024_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_512x1024_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_512x512_160k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_512x512_20k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_512x512_40k_voc12aug.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_512x512_80k_ade20k.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_769x769_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_769x769_40k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r101_769x769_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_769x769_80k_cityscapes.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_512x1024_40k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_512x1024_80k_cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_512x512_160k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_512x512_20k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_20k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_512x512_40k_voc12aug.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py',
3 | '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | model = dict(
7 | decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
8 |
--------------------------------------------------------------------------------
/segmentation/configs/upernet/upernet_r50_512x512_80k_ade20k.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | model = dict(
6 | decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
7 |
--------------------------------------------------------------------------------
/segmentation/demo/demo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/segmentation/demo/demo.png
--------------------------------------------------------------------------------
/segmentation/docs/tutorials/index.rst:
--------------------------------------------------------------------------------
1 | .. toctree::
2 | :maxdepth: 2
3 |
4 | config.md
5 | customize_datasets.md
6 | data_pipeline.md
7 | customize_models.md
8 | training_tricks.md
9 | customize_runtime.md
10 |
--------------------------------------------------------------------------------
/segmentation/local_configs/_base_/datasets/pascal_voc12_aug.py:
--------------------------------------------------------------------------------
1 | _base_ = './pascal_voc12.py'
2 | # dataset settings
3 | data = dict(
4 | train=dict(
5 | ann_dir=['SegmentationClass', 'SegmentationClassAug'],
6 | split=[
7 | 'ImageSets/Segmentation/train.txt',
8 | 'ImageSets/Segmentation/aug.txt'
9 | ]))
10 |
--------------------------------------------------------------------------------
/segmentation/mmseg/core/__init__.py:
--------------------------------------------------------------------------------
1 | from .evaluation import * # noqa: F401, F403
2 | from .seg import * # noqa: F401, F403
3 | from .utils import * # noqa: F401, F403
4 |
--------------------------------------------------------------------------------
/segmentation/mmseg/core/evaluation/__init__.py:
--------------------------------------------------------------------------------
1 | from .class_names import get_classes, get_palette
2 | from .eval_hooks import DistEvalHook, EvalHook
3 | from .metrics import eval_metrics, mean_dice, mean_iou
4 |
5 | __all__ = [
6 | 'EvalHook', 'DistEvalHook', 'mean_dice', 'mean_iou', 'eval_metrics',
7 | 'get_classes', 'get_palette'
8 | ]
9 |
--------------------------------------------------------------------------------
/segmentation/mmseg/core/seg/__init__.py:
--------------------------------------------------------------------------------
1 | from .builder import build_pixel_sampler
2 | from .sampler import BasePixelSampler, OHEMPixelSampler
3 |
4 | __all__ = ['build_pixel_sampler', 'BasePixelSampler', 'OHEMPixelSampler']
5 |
--------------------------------------------------------------------------------
/segmentation/mmseg/core/seg/builder.py:
--------------------------------------------------------------------------------
1 | from mmcv.utils import Registry, build_from_cfg
2 |
3 | PIXEL_SAMPLERS = Registry('pixel sampler')
4 |
5 |
6 | def build_pixel_sampler(cfg, **default_args):
7 | """Build pixel sampler for segmentation map."""
8 | return build_from_cfg(cfg, PIXEL_SAMPLERS, default_args)
9 |
--------------------------------------------------------------------------------
/segmentation/mmseg/core/seg/sampler/__init__.py:
--------------------------------------------------------------------------------
1 | from .base_pixel_sampler import BasePixelSampler
2 | from .ohem_pixel_sampler import OHEMPixelSampler
3 |
4 | __all__ = ['BasePixelSampler', 'OHEMPixelSampler']
5 |
--------------------------------------------------------------------------------
/segmentation/mmseg/core/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .misc import add_prefix
2 |
3 | __all__ = ['add_prefix']
4 |
--------------------------------------------------------------------------------
/segmentation/mmseg/models/necks/__init__.py:
--------------------------------------------------------------------------------
1 | from .fpn import FPN
2 |
3 | __all__ = ['FPN']
4 |
--------------------------------------------------------------------------------
/segmentation/mmseg/models/segmentors/__init__.py:
--------------------------------------------------------------------------------
1 | from .cascade_encoder_decoder import CascadeEncoderDecoder
2 | from .encoder_decoder import EncoderDecoder
3 |
4 | __all__ = ['EncoderDecoder', 'CascadeEncoderDecoder']
5 |
--------------------------------------------------------------------------------
/segmentation/mmseg/ops/__init__.py:
--------------------------------------------------------------------------------
1 | from .encoding import Encoding
2 | from .wrappers import Upsample, resize
3 |
4 | __all__ = ['Upsample', 'resize', 'Encoding']
5 |
--------------------------------------------------------------------------------
/segmentation/mmseg/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .collect_env import collect_env
2 | from .logger import get_root_logger, print_log
3 |
4 | __all__ = ['get_root_logger', 'collect_env', 'print_log']
5 |
--------------------------------------------------------------------------------
/segmentation/pytest.ini:
--------------------------------------------------------------------------------
1 | [pytest]
2 | addopts = --xdoctest --xdoctest-style=auto
3 | norecursedirs = .git ignore build __pycache__ data docker docs .eggs
4 |
5 | filterwarnings= default
6 | ignore:.*No cfgstr given in Cacher constructor or call.*:Warning
7 | ignore:.*Define the __nice__ method for.*:Warning
8 |
--------------------------------------------------------------------------------
/segmentation/requirements.txt:
--------------------------------------------------------------------------------
1 | -r requirements/optional.txt
2 | -r requirements/runtime.txt
3 | -r requirements/tests.txt
4 |
--------------------------------------------------------------------------------
/segmentation/requirements/docs.txt:
--------------------------------------------------------------------------------
1 | recommonmark
2 | sphinx
3 | sphinx_markdown_tables
4 | sphinx_rtd_theme
5 |
--------------------------------------------------------------------------------
/segmentation/requirements/optional.txt:
--------------------------------------------------------------------------------
1 | cityscapesscripts
2 |
--------------------------------------------------------------------------------
/segmentation/requirements/readthedocs.txt:
--------------------------------------------------------------------------------
1 | mmcv
2 | torch
3 | torchvision
4 |
--------------------------------------------------------------------------------
/segmentation/requirements/runtime.txt:
--------------------------------------------------------------------------------
1 | matplotlib
2 | numpy
3 | terminaltables
4 |
--------------------------------------------------------------------------------
/segmentation/requirements/tests.txt:
--------------------------------------------------------------------------------
1 | codecov
2 | flake8
3 | interrogate
4 | isort==4.3.21
5 | pytest
6 | xdoctest>=0.10.0
7 | yapf
8 |
--------------------------------------------------------------------------------
/segmentation/resources/image.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/segmentation/resources/image.png
--------------------------------------------------------------------------------
/segmentation/resources/mmseg-logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/segmentation/resources/mmseg-logo.png
--------------------------------------------------------------------------------
/segmentation/resources/seg_demo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Chenglin-Yang/LVT/c56189777d31e75fbfdf60514ca755aa23a25aac/segmentation/resources/seg_demo.gif
--------------------------------------------------------------------------------
/segmentation/tools/dist_test.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | CONFIG=$1
4 | CHECKPOINT=$2
5 | GPUS=$3
6 | PORT=${PORT:-29500}
7 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
8 | python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT \
9 | $(dirname "$0")/test.py $CONFIG $CHECKPOINT --launcher pytorch ${@:4}
10 |
--------------------------------------------------------------------------------
/segmentation/tools/dist_train.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | CONFIG=$1
4 | GPUS=$2
5 | PORT=${PORT:-29500}
6 |
7 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
8 | python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT \
9 | $(dirname "$0")/train.py $CONFIG --launcher pytorch ${@:3}
10 |
--------------------------------------------------------------------------------