├── LICENSE
├── README.md
├── data
├── README.md
├── convert_AITEX.py
├── convert_BrainMRI.py
├── convert_HeadCT.py
├── convert_MastCam.py
├── convert_SDD.py
├── convert_elpv.py
├── convert_hyperkvasir.py
└── convert_optical.py
├── dataloaders
├── dataloader.py
└── utlis.py
├── datasets
├── base_dataset.py
├── cutmix.py
└── mvtecad.py
├── modeling
├── layers
│ ├── __init__.py
│ ├── binary_focal_loss.py
│ └── deviation_loss.py
├── net.py
└── networks
│ ├── backbone.py
│ ├── resnet.py
│ └── resnet18.py
├── requirements.txt
└── train.py
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU AFFERO GENERAL PUBLIC LICENSE
2 | Version 3, 19 November 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU Affero General Public License is a free, copyleft license for
11 | software and other kinds of works, specifically designed to ensure
12 | cooperation with the community in the case of network server software.
13 |
14 | The licenses for most software and other practical works are designed
15 | to take away your freedom to share and change the works. By contrast,
16 | our General Public Licenses are intended to guarantee your freedom to
17 | share and change all versions of a program--to make sure it remains free
18 | software for all its users.
19 |
20 | When we speak of free software, we are referring to freedom, not
21 | price. Our General Public Licenses are designed to make sure that you
22 | have the freedom to distribute copies of free software (and charge for
23 | them if you wish), that you receive source code or can get it if you
24 | want it, that you can change the software or use pieces of it in new
25 | free programs, and that you know you can do these things.
26 |
27 | Developers that use our General Public Licenses protect your rights
28 | with two steps: (1) assert copyright on the software, and (2) offer
29 | you this License which gives you legal permission to copy, distribute
30 | and/or modify the software.
31 |
32 | A secondary benefit of defending all users' freedom is that
33 | improvements made in alternate versions of the program, if they
34 | receive widespread use, become available for other developers to
35 | incorporate. Many developers of free software are heartened and
36 | encouraged by the resulting cooperation. However, in the case of
37 | software used on network servers, this result may fail to come about.
38 | The GNU General Public License permits making a modified version and
39 | letting the public access it on a server without ever releasing its
40 | source code to the public.
41 |
42 | The GNU Affero General Public License is designed specifically to
43 | ensure that, in such cases, the modified source code becomes available
44 | to the community. It requires the operator of a network server to
45 | provide the source code of the modified version running there to the
46 | users of that server. Therefore, public use of a modified version, on
47 | a publicly accessible server, gives the public access to the source
48 | code of the modified version.
49 |
50 | An older license, called the Affero General Public License and
51 | published by Affero, was designed to accomplish similar goals. This is
52 | a different license, not a version of the Affero GPL, but Affero has
53 | released a new version of the Affero GPL which permits relicensing under
54 | this license.
55 |
56 | The precise terms and conditions for copying, distribution and
57 | modification follow.
58 |
59 | TERMS AND CONDITIONS
60 |
61 | 0. Definitions.
62 |
63 | "This License" refers to version 3 of the GNU Affero General Public License.
64 |
65 | "Copyright" also means copyright-like laws that apply to other kinds of
66 | works, such as semiconductor masks.
67 |
68 | "The Program" refers to any copyrightable work licensed under this
69 | License. Each licensee is addressed as "you". "Licensees" and
70 | "recipients" may be individuals or organizations.
71 |
72 | To "modify" a work means to copy from or adapt all or part of the work
73 | in a fashion requiring copyright permission, other than the making of an
74 | exact copy. The resulting work is called a "modified version" of the
75 | earlier work or a work "based on" the earlier work.
76 |
77 | A "covered work" means either the unmodified Program or a work based
78 | on the Program.
79 |
80 | To "propagate" a work means to do anything with it that, without
81 | permission, would make you directly or secondarily liable for
82 | infringement under applicable copyright law, except executing it on a
83 | computer or modifying a private copy. Propagation includes copying,
84 | distribution (with or without modification), making available to the
85 | public, and in some countries other activities as well.
86 |
87 | To "convey" a work means any kind of propagation that enables other
88 | parties to make or receive copies. Mere interaction with a user through
89 | a computer network, with no transfer of a copy, is not conveying.
90 |
91 | An interactive user interface displays "Appropriate Legal Notices"
92 | to the extent that it includes a convenient and prominently visible
93 | feature that (1) displays an appropriate copyright notice, and (2)
94 | tells the user that there is no warranty for the work (except to the
95 | extent that warranties are provided), that licensees may convey the
96 | work under this License, and how to view a copy of this License. If
97 | the interface presents a list of user commands or options, such as a
98 | menu, a prominent item in the list meets this criterion.
99 |
100 | 1. Source Code.
101 |
102 | The "source code" for a work means the preferred form of the work
103 | for making modifications to it. "Object code" means any non-source
104 | form of a work.
105 |
106 | A "Standard Interface" means an interface that either is an official
107 | standard defined by a recognized standards body, or, in the case of
108 | interfaces specified for a particular programming language, one that
109 | is widely used among developers working in that language.
110 |
111 | The "System Libraries" of an executable work include anything, other
112 | than the work as a whole, that (a) is included in the normal form of
113 | packaging a Major Component, but which is not part of that Major
114 | Component, and (b) serves only to enable use of the work with that
115 | Major Component, or to implement a Standard Interface for which an
116 | implementation is available to the public in source code form. A
117 | "Major Component", in this context, means a major essential component
118 | (kernel, window system, and so on) of the specific operating system
119 | (if any) on which the executable work runs, or a compiler used to
120 | produce the work, or an object code interpreter used to run it.
121 |
122 | The "Corresponding Source" for a work in object code form means all
123 | the source code needed to generate, install, and (for an executable
124 | work) run the object code and to modify the work, including scripts to
125 | control those activities. However, it does not include the work's
126 | System Libraries, or general-purpose tools or generally available free
127 | programs which are used unmodified in performing those activities but
128 | which are not part of the work. For example, Corresponding Source
129 | includes interface definition files associated with source files for
130 | the work, and the source code for shared libraries and dynamically
131 | linked subprograms that the work is specifically designed to require,
132 | such as by intimate data communication or control flow between those
133 | subprograms and other parts of the work.
134 |
135 | The Corresponding Source need not include anything that users
136 | can regenerate automatically from other parts of the Corresponding
137 | Source.
138 |
139 | The Corresponding Source for a work in source code form is that
140 | same work.
141 |
142 | 2. Basic Permissions.
143 |
144 | All rights granted under this License are granted for the term of
145 | copyright on the Program, and are irrevocable provided the stated
146 | conditions are met. This License explicitly affirms your unlimited
147 | permission to run the unmodified Program. The output from running a
148 | covered work is covered by this License only if the output, given its
149 | content, constitutes a covered work. This License acknowledges your
150 | rights of fair use or other equivalent, as provided by copyright law.
151 |
152 | You may make, run and propagate covered works that you do not
153 | convey, without conditions so long as your license otherwise remains
154 | in force. You may convey covered works to others for the sole purpose
155 | of having them make modifications exclusively for you, or provide you
156 | with facilities for running those works, provided that you comply with
157 | the terms of this License in conveying all material for which you do
158 | not control copyright. Those thus making or running the covered works
159 | for you must do so exclusively on your behalf, under your direction
160 | and control, on terms that prohibit them from making any copies of
161 | your copyrighted material outside their relationship with you.
162 |
163 | Conveying under any other circumstances is permitted solely under
164 | the conditions stated below. Sublicensing is not allowed; section 10
165 | makes it unnecessary.
166 |
167 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168 |
169 | No covered work shall be deemed part of an effective technological
170 | measure under any applicable law fulfilling obligations under article
171 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172 | similar laws prohibiting or restricting circumvention of such
173 | measures.
174 |
175 | When you convey a covered work, you waive any legal power to forbid
176 | circumvention of technological measures to the extent such circumvention
177 | is effected by exercising rights under this License with respect to
178 | the covered work, and you disclaim any intention to limit operation or
179 | modification of the work as a means of enforcing, against the work's
180 | users, your or third parties' legal rights to forbid circumvention of
181 | technological measures.
182 |
183 | 4. Conveying Verbatim Copies.
184 |
185 | You may convey verbatim copies of the Program's source code as you
186 | receive it, in any medium, provided that you conspicuously and
187 | appropriately publish on each copy an appropriate copyright notice;
188 | keep intact all notices stating that this License and any
189 | non-permissive terms added in accord with section 7 apply to the code;
190 | keep intact all notices of the absence of any warranty; and give all
191 | recipients a copy of this License along with the Program.
192 |
193 | You may charge any price or no price for each copy that you convey,
194 | and you may offer support or warranty protection for a fee.
195 |
196 | 5. Conveying Modified Source Versions.
197 |
198 | You may convey a work based on the Program, or the modifications to
199 | produce it from the Program, in the form of source code under the
200 | terms of section 4, provided that you also meet all of these conditions:
201 |
202 | a) The work must carry prominent notices stating that you modified
203 | it, and giving a relevant date.
204 |
205 | b) The work must carry prominent notices stating that it is
206 | released under this License and any conditions added under section
207 | 7. This requirement modifies the requirement in section 4 to
208 | "keep intact all notices".
209 |
210 | c) You must license the entire work, as a whole, under this
211 | License to anyone who comes into possession of a copy. This
212 | License will therefore apply, along with any applicable section 7
213 | additional terms, to the whole of the work, and all its parts,
214 | regardless of how they are packaged. This License gives no
215 | permission to license the work in any other way, but it does not
216 | invalidate such permission if you have separately received it.
217 |
218 | d) If the work has interactive user interfaces, each must display
219 | Appropriate Legal Notices; however, if the Program has interactive
220 | interfaces that do not display Appropriate Legal Notices, your
221 | work need not make them do so.
222 |
223 | A compilation of a covered work with other separate and independent
224 | works, which are not by their nature extensions of the covered work,
225 | and which are not combined with it such as to form a larger program,
226 | in or on a volume of a storage or distribution medium, is called an
227 | "aggregate" if the compilation and its resulting copyright are not
228 | used to limit the access or legal rights of the compilation's users
229 | beyond what the individual works permit. Inclusion of a covered work
230 | in an aggregate does not cause this License to apply to the other
231 | parts of the aggregate.
232 |
233 | 6. Conveying Non-Source Forms.
234 |
235 | You may convey a covered work in object code form under the terms
236 | of sections 4 and 5, provided that you also convey the
237 | machine-readable Corresponding Source under the terms of this License,
238 | in one of these ways:
239 |
240 | a) Convey the object code in, or embodied in, a physical product
241 | (including a physical distribution medium), accompanied by the
242 | Corresponding Source fixed on a durable physical medium
243 | customarily used for software interchange.
244 |
245 | b) Convey the object code in, or embodied in, a physical product
246 | (including a physical distribution medium), accompanied by a
247 | written offer, valid for at least three years and valid for as
248 | long as you offer spare parts or customer support for that product
249 | model, to give anyone who possesses the object code either (1) a
250 | copy of the Corresponding Source for all the software in the
251 | product that is covered by this License, on a durable physical
252 | medium customarily used for software interchange, for a price no
253 | more than your reasonable cost of physically performing this
254 | conveying of source, or (2) access to copy the
255 | Corresponding Source from a network server at no charge.
256 |
257 | c) Convey individual copies of the object code with a copy of the
258 | written offer to provide the Corresponding Source. This
259 | alternative is allowed only occasionally and noncommercially, and
260 | only if you received the object code with such an offer, in accord
261 | with subsection 6b.
262 |
263 | d) Convey the object code by offering access from a designated
264 | place (gratis or for a charge), and offer equivalent access to the
265 | Corresponding Source in the same way through the same place at no
266 | further charge. You need not require recipients to copy the
267 | Corresponding Source along with the object code. If the place to
268 | copy the object code is a network server, the Corresponding Source
269 | may be on a different server (operated by you or a third party)
270 | that supports equivalent copying facilities, provided you maintain
271 | clear directions next to the object code saying where to find the
272 | Corresponding Source. Regardless of what server hosts the
273 | Corresponding Source, you remain obligated to ensure that it is
274 | available for as long as needed to satisfy these requirements.
275 |
276 | e) Convey the object code using peer-to-peer transmission, provided
277 | you inform other peers where the object code and Corresponding
278 | Source of the work are being offered to the general public at no
279 | charge under subsection 6d.
280 |
281 | A separable portion of the object code, whose source code is excluded
282 | from the Corresponding Source as a System Library, need not be
283 | included in conveying the object code work.
284 |
285 | A "User Product" is either (1) a "consumer product", which means any
286 | tangible personal property which is normally used for personal, family,
287 | or household purposes, or (2) anything designed or sold for incorporation
288 | into a dwelling. In determining whether a product is a consumer product,
289 | doubtful cases shall be resolved in favor of coverage. For a particular
290 | product received by a particular user, "normally used" refers to a
291 | typical or common use of that class of product, regardless of the status
292 | of the particular user or of the way in which the particular user
293 | actually uses, or expects or is expected to use, the product. A product
294 | is a consumer product regardless of whether the product has substantial
295 | commercial, industrial or non-consumer uses, unless such uses represent
296 | the only significant mode of use of the product.
297 |
298 | "Installation Information" for a User Product means any methods,
299 | procedures, authorization keys, or other information required to install
300 | and execute modified versions of a covered work in that User Product from
301 | a modified version of its Corresponding Source. The information must
302 | suffice to ensure that the continued functioning of the modified object
303 | code is in no case prevented or interfered with solely because
304 | modification has been made.
305 |
306 | If you convey an object code work under this section in, or with, or
307 | specifically for use in, a User Product, and the conveying occurs as
308 | part of a transaction in which the right of possession and use of the
309 | User Product is transferred to the recipient in perpetuity or for a
310 | fixed term (regardless of how the transaction is characterized), the
311 | Corresponding Source conveyed under this section must be accompanied
312 | by the Installation Information. But this requirement does not apply
313 | if neither you nor any third party retains the ability to install
314 | modified object code on the User Product (for example, the work has
315 | been installed in ROM).
316 |
317 | The requirement to provide Installation Information does not include a
318 | requirement to continue to provide support service, warranty, or updates
319 | for a work that has been modified or installed by the recipient, or for
320 | the User Product in which it has been modified or installed. Access to a
321 | network may be denied when the modification itself materially and
322 | adversely affects the operation of the network or violates the rules and
323 | protocols for communication across the network.
324 |
325 | Corresponding Source conveyed, and Installation Information provided,
326 | in accord with this section must be in a format that is publicly
327 | documented (and with an implementation available to the public in
328 | source code form), and must require no special password or key for
329 | unpacking, reading or copying.
330 |
331 | 7. Additional Terms.
332 |
333 | "Additional permissions" are terms that supplement the terms of this
334 | License by making exceptions from one or more of its conditions.
335 | Additional permissions that are applicable to the entire Program shall
336 | be treated as though they were included in this License, to the extent
337 | that they are valid under applicable law. If additional permissions
338 | apply only to part of the Program, that part may be used separately
339 | under those permissions, but the entire Program remains governed by
340 | this License without regard to the additional permissions.
341 |
342 | When you convey a copy of a covered work, you may at your option
343 | remove any additional permissions from that copy, or from any part of
344 | it. (Additional permissions may be written to require their own
345 | removal in certain cases when you modify the work.) You may place
346 | additional permissions on material, added by you to a covered work,
347 | for which you have or can give appropriate copyright permission.
348 |
349 | Notwithstanding any other provision of this License, for material you
350 | add to a covered work, you may (if authorized by the copyright holders of
351 | that material) supplement the terms of this License with terms:
352 |
353 | a) Disclaiming warranty or limiting liability differently from the
354 | terms of sections 15 and 16 of this License; or
355 |
356 | b) Requiring preservation of specified reasonable legal notices or
357 | author attributions in that material or in the Appropriate Legal
358 | Notices displayed by works containing it; or
359 |
360 | c) Prohibiting misrepresentation of the origin of that material, or
361 | requiring that modified versions of such material be marked in
362 | reasonable ways as different from the original version; or
363 |
364 | d) Limiting the use for publicity purposes of names of licensors or
365 | authors of the material; or
366 |
367 | e) Declining to grant rights under trademark law for use of some
368 | trade names, trademarks, or service marks; or
369 |
370 | f) Requiring indemnification of licensors and authors of that
371 | material by anyone who conveys the material (or modified versions of
372 | it) with contractual assumptions of liability to the recipient, for
373 | any liability that these contractual assumptions directly impose on
374 | those licensors and authors.
375 |
376 | All other non-permissive additional terms are considered "further
377 | restrictions" within the meaning of section 10. If the Program as you
378 | received it, or any part of it, contains a notice stating that it is
379 | governed by this License along with a term that is a further
380 | restriction, you may remove that term. If a license document contains
381 | a further restriction but permits relicensing or conveying under this
382 | License, you may add to a covered work material governed by the terms
383 | of that license document, provided that the further restriction does
384 | not survive such relicensing or conveying.
385 |
386 | If you add terms to a covered work in accord with this section, you
387 | must place, in the relevant source files, a statement of the
388 | additional terms that apply to those files, or a notice indicating
389 | where to find the applicable terms.
390 |
391 | Additional terms, permissive or non-permissive, may be stated in the
392 | form of a separately written license, or stated as exceptions;
393 | the above requirements apply either way.
394 |
395 | 8. Termination.
396 |
397 | You may not propagate or modify a covered work except as expressly
398 | provided under this License. Any attempt otherwise to propagate or
399 | modify it is void, and will automatically terminate your rights under
400 | this License (including any patent licenses granted under the third
401 | paragraph of section 11).
402 |
403 | However, if you cease all violation of this License, then your
404 | license from a particular copyright holder is reinstated (a)
405 | provisionally, unless and until the copyright holder explicitly and
406 | finally terminates your license, and (b) permanently, if the copyright
407 | holder fails to notify you of the violation by some reasonable means
408 | prior to 60 days after the cessation.
409 |
410 | Moreover, your license from a particular copyright holder is
411 | reinstated permanently if the copyright holder notifies you of the
412 | violation by some reasonable means, this is the first time you have
413 | received notice of violation of this License (for any work) from that
414 | copyright holder, and you cure the violation prior to 30 days after
415 | your receipt of the notice.
416 |
417 | Termination of your rights under this section does not terminate the
418 | licenses of parties who have received copies or rights from you under
419 | this License. If your rights have been terminated and not permanently
420 | reinstated, you do not qualify to receive new licenses for the same
421 | material under section 10.
422 |
423 | 9. Acceptance Not Required for Having Copies.
424 |
425 | You are not required to accept this License in order to receive or
426 | run a copy of the Program. Ancillary propagation of a covered work
427 | occurring solely as a consequence of using peer-to-peer transmission
428 | to receive a copy likewise does not require acceptance. However,
429 | nothing other than this License grants you permission to propagate or
430 | modify any covered work. These actions infringe copyright if you do
431 | not accept this License. Therefore, by modifying or propagating a
432 | covered work, you indicate your acceptance of this License to do so.
433 |
434 | 10. Automatic Licensing of Downstream Recipients.
435 |
436 | Each time you convey a covered work, the recipient automatically
437 | receives a license from the original licensors, to run, modify and
438 | propagate that work, subject to this License. You are not responsible
439 | for enforcing compliance by third parties with this License.
440 |
441 | An "entity transaction" is a transaction transferring control of an
442 | organization, or substantially all assets of one, or subdividing an
443 | organization, or merging organizations. If propagation of a covered
444 | work results from an entity transaction, each party to that
445 | transaction who receives a copy of the work also receives whatever
446 | licenses to the work the party's predecessor in interest had or could
447 | give under the previous paragraph, plus a right to possession of the
448 | Corresponding Source of the work from the predecessor in interest, if
449 | the predecessor has it or can get it with reasonable efforts.
450 |
451 | You may not impose any further restrictions on the exercise of the
452 | rights granted or affirmed under this License. For example, you may
453 | not impose a license fee, royalty, or other charge for exercise of
454 | rights granted under this License, and you may not initiate litigation
455 | (including a cross-claim or counterclaim in a lawsuit) alleging that
456 | any patent claim is infringed by making, using, selling, offering for
457 | sale, or importing the Program or any portion of it.
458 |
459 | 11. Patents.
460 |
461 | A "contributor" is a copyright holder who authorizes use under this
462 | License of the Program or a work on which the Program is based. The
463 | work thus licensed is called the contributor's "contributor version".
464 |
465 | A contributor's "essential patent claims" are all patent claims
466 | owned or controlled by the contributor, whether already acquired or
467 | hereafter acquired, that would be infringed by some manner, permitted
468 | by this License, of making, using, or selling its contributor version,
469 | but do not include claims that would be infringed only as a
470 | consequence of further modification of the contributor version. For
471 | purposes of this definition, "control" includes the right to grant
472 | patent sublicenses in a manner consistent with the requirements of
473 | this License.
474 |
475 | Each contributor grants you a non-exclusive, worldwide, royalty-free
476 | patent license under the contributor's essential patent claims, to
477 | make, use, sell, offer for sale, import and otherwise run, modify and
478 | propagate the contents of its contributor version.
479 |
480 | In the following three paragraphs, a "patent license" is any express
481 | agreement or commitment, however denominated, not to enforce a patent
482 | (such as an express permission to practice a patent or covenant not to
483 | sue for patent infringement). To "grant" such a patent license to a
484 | party means to make such an agreement or commitment not to enforce a
485 | patent against the party.
486 |
487 | If you convey a covered work, knowingly relying on a patent license,
488 | and the Corresponding Source of the work is not available for anyone
489 | to copy, free of charge and under the terms of this License, through a
490 | publicly available network server or other readily accessible means,
491 | then you must either (1) cause the Corresponding Source to be so
492 | available, or (2) arrange to deprive yourself of the benefit of the
493 | patent license for this particular work, or (3) arrange, in a manner
494 | consistent with the requirements of this License, to extend the patent
495 | license to downstream recipients. "Knowingly relying" means you have
496 | actual knowledge that, but for the patent license, your conveying the
497 | covered work in a country, or your recipient's use of the covered work
498 | in a country, would infringe one or more identifiable patents in that
499 | country that you have reason to believe are valid.
500 |
501 | If, pursuant to or in connection with a single transaction or
502 | arrangement, you convey, or propagate by procuring conveyance of, a
503 | covered work, and grant a patent license to some of the parties
504 | receiving the covered work authorizing them to use, propagate, modify
505 | or convey a specific copy of the covered work, then the patent license
506 | you grant is automatically extended to all recipients of the covered
507 | work and works based on it.
508 |
509 | A patent license is "discriminatory" if it does not include within
510 | the scope of its coverage, prohibits the exercise of, or is
511 | conditioned on the non-exercise of one or more of the rights that are
512 | specifically granted under this License. You may not convey a covered
513 | work if you are a party to an arrangement with a third party that is
514 | in the business of distributing software, under which you make payment
515 | to the third party based on the extent of your activity of conveying
516 | the work, and under which the third party grants, to any of the
517 | parties who would receive the covered work from you, a discriminatory
518 | patent license (a) in connection with copies of the covered work
519 | conveyed by you (or copies made from those copies), or (b) primarily
520 | for and in connection with specific products or compilations that
521 | contain the covered work, unless you entered into that arrangement,
522 | or that patent license was granted, prior to 28 March 2007.
523 |
524 | Nothing in this License shall be construed as excluding or limiting
525 | any implied license or other defenses to infringement that may
526 | otherwise be available to you under applicable patent law.
527 |
528 | 12. No Surrender of Others' Freedom.
529 |
530 | If conditions are imposed on you (whether by court order, agreement or
531 | otherwise) that contradict the conditions of this License, they do not
532 | excuse you from the conditions of this License. If you cannot convey a
533 | covered work so as to satisfy simultaneously your obligations under this
534 | License and any other pertinent obligations, then as a consequence you may
535 | not convey it at all. For example, if you agree to terms that obligate you
536 | to collect a royalty for further conveying from those to whom you convey
537 | the Program, the only way you could satisfy both those terms and this
538 | License would be to refrain entirely from conveying the Program.
539 |
540 | 13. Remote Network Interaction; Use with the GNU General Public License.
541 |
542 | Notwithstanding any other provision of this License, if you modify the
543 | Program, your modified version must prominently offer all users
544 | interacting with it remotely through a computer network (if your version
545 | supports such interaction) an opportunity to receive the Corresponding
546 | Source of your version by providing access to the Corresponding Source
547 | from a network server at no charge, through some standard or customary
548 | means of facilitating copying of software. This Corresponding Source
549 | shall include the Corresponding Source for any work covered by version 3
550 | of the GNU General Public License that is incorporated pursuant to the
551 | following paragraph.
552 |
553 | Notwithstanding any other provision of this License, you have
554 | permission to link or combine any covered work with a work licensed
555 | under version 3 of the GNU General Public License into a single
556 | combined work, and to convey the resulting work. The terms of this
557 | License will continue to apply to the part which is the covered work,
558 | but the work with which it is combined will remain governed by version
559 | 3 of the GNU General Public License.
560 |
561 | 14. Revised Versions of this License.
562 |
563 | The Free Software Foundation may publish revised and/or new versions of
564 | the GNU Affero General Public License from time to time. Such new versions
565 | will be similar in spirit to the present version, but may differ in detail to
566 | address new problems or concerns.
567 |
568 | Each version is given a distinguishing version number. If the
569 | Program specifies that a certain numbered version of the GNU Affero General
570 | Public License "or any later version" applies to it, you have the
571 | option of following the terms and conditions either of that numbered
572 | version or of any later version published by the Free Software
573 | Foundation. If the Program does not specify a version number of the
574 | GNU Affero General Public License, you may choose any version ever published
575 | by the Free Software Foundation.
576 |
577 | If the Program specifies that a proxy can decide which future
578 | versions of the GNU Affero General Public License can be used, that proxy's
579 | public statement of acceptance of a version permanently authorizes you
580 | to choose that version for the Program.
581 |
582 | Later license versions may give you additional or different
583 | permissions. However, no additional obligations are imposed on any
584 | author or copyright holder as a result of your choosing to follow a
585 | later version.
586 |
587 | 15. Disclaimer of Warranty.
588 |
589 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597 |
598 | 16. Limitation of Liability.
599 |
600 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608 | SUCH DAMAGES.
609 |
610 | 17. Interpretation of Sections 15 and 16.
611 |
612 | If the disclaimer of warranty and limitation of liability provided
613 | above cannot be given local legal effect according to their terms,
614 | reviewing courts shall apply local law that most closely approximates
615 | an absolute waiver of all civil liability in connection with the
616 | Program, unless a warranty or assumption of liability accompanies a
617 | copy of the Program in return for a fee.
618 |
619 | END OF TERMS AND CONDITIONS
620 |
621 | How to Apply These Terms to Your New Programs
622 |
623 | If you develop a new program, and you want it to be of the greatest
624 | possible use to the public, the best way to achieve this is to make it
625 | free software which everyone can redistribute and change under these terms.
626 |
627 | To do so, attach the following notices to the program. It is safest
628 | to attach them to the start of each source file to most effectively
629 | state the exclusion of warranty; and each file should have at least
630 | the "copyright" line and a pointer to where the full notice is found.
631 |
632 |
633 | Copyright (C)
634 |
635 | This program is free software: you can redistribute it and/or modify
636 | it under the terms of the GNU Affero General Public License as published
637 | by the Free Software Foundation, either version 3 of the License, or
638 | (at your option) any later version.
639 |
640 | This program is distributed in the hope that it will be useful,
641 | but WITHOUT ANY WARRANTY; without even the implied warranty of
642 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643 | GNU Affero General Public License for more details.
644 |
645 | You should have received a copy of the GNU Affero General Public License
646 | along with this program. If not, see .
647 |
648 | Also add information on how to contact you by electronic and paper mail.
649 |
650 | If your software can interact with users remotely through a computer
651 | network, you should also make sure that it provides a way for users to
652 | get its source. For example, if your program is a web application, its
653 | interface could display a "Source" link that leads users to an archive
654 | of the code. There are many ways you could offer source, and different
655 | solutions will be better for different programs; see section 13 for the
656 | specific requirements.
657 |
658 | You should also get your employer (if you work as a programmer) or school,
659 | if any, to sign a "copyright disclaimer" for the program, if necessary.
660 | For more information on this, and how to apply and follow the GNU AGPL, see
661 | .
662 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Catching Both Gray and Black Swans: Open-set Supervised Anomaly Detection (CVPR2022)
2 | By Choubo Ding, Guansong Pang, Chunhua Shen
3 |
4 | Official PyTorch implementation of ["Catching Both Gray and Black Swans: Open-set Supervised Anomaly Detection"](https://arxiv.org/abs/2203.14506).
5 |
6 | ## Prerequisites
7 | This code is written in `Python 3.7` and requires the packages listed in `requirements.txt`. Install with `pip install -r
8 | requirements.txt` preferably in a virtualenv.
9 |
10 | ## Run
11 |
12 | #### Step 1. Setup the Anomaly Detection Dataset
13 | Download the Anomaly Detection Dataset and convert it to MVTec AD format. (For datasets we used in the paper, we provided the [convert script](https://github.com/Choubo/DRA/tree/main/data).)
14 | The dataset folder structure should look like:
15 | ```
16 | DATA_PATH/
17 | subset_1/
18 | train/
19 | good/
20 | test/
21 | good/
22 | defect_class_1/
23 | defect_class_2/
24 | defect_class_3/
25 | ...
26 | ...
27 | ```
28 |
29 | #### Step 2. Running DRA
30 | ```bash
31 | python train.py --dataset_root=./data/mvtec_anomaly_detection \
32 | --classname=carpet \
33 | --experiment_dir=./experiment
34 | ```
35 | - `dataset_root` denotes the path of the dataset.
36 | - `classname` denotes the subset name of the dataset.
37 | - `experiment_dir` denotes the path to store the experiment setting and model weight.
38 | - `outlier_root` (*optional) given the path of the outlier dataset to disable pseudo augmentation and enable external data for pseudo head.
39 | - `know_class` (*optional) specify the anomaly class in the training set to experiment within the hard setting.
40 |
41 | ## Citation
42 | ```bibtex
43 | @inproceedings{ding2022catching,
44 | title={Catching Both Gray and Black Swans: Open-set Supervised Anomaly Detection},
45 | author={Ding, Choubo and Pang, Guansong and Shen, Chunhua},
46 | booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
47 | year={2022}
48 | }
49 | ```
--------------------------------------------------------------------------------
/data/README.md:
--------------------------------------------------------------------------------
1 | ## Convert Script for Anomaly Detection Dataset
2 | The convert script of the data set used in the paper.
3 |
4 | ### Usage
5 | #### Step 1. Download the Anomaly Detection Dataset
6 | Download and unzip the required data set. (The download link of all datasets are provided in the appendix of paper.)
7 | #### Step 2. Running the Convert Script
8 | Running the corresponding convert script with the argument `dataset_root` as the root of the dataset.
9 |
10 | e.g:
11 | ```bash
12 | python convert_AITEX.py --dataset_root=./AITEX
13 | ```
14 |
--------------------------------------------------------------------------------
/data/convert_AITEX.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | from sklearn.model_selection import train_test_split
4 | import cv2
5 | import argparse
6 |
7 | parser = argparse.ArgumentParser()
8 | parser.add_argument('--dataset_root', type=str, help="dataset root")
9 | args = parser.parse_args()
10 |
11 | DEFEAT_CLASS = {'002': "Broken_end", '006': "Broken_yarn", '010': "Broken_pick",
12 | '016': "Weft_curling", '019': "Fuzzyball", '022': "Cut_selvage",
13 | '023': "Crease", '025': "Warp_ball", '027': "Knots",
14 | '029': "Contamination", '030': "Nep", '036': "Weft_crack"}
15 |
16 | normal_images = list()
17 | normal_fname = list()
18 | outlier_images = list()
19 | outlier_labels = list()
20 | outlier_fname = list()
21 |
22 |
23 | normal_root = os.path.join(args.dataset_root, 'NODefect_images')
24 | normal_dirs = os.listdir(normal_root)
25 | for dir in normal_dirs:
26 | files = os.listdir(os.path.join(normal_root, dir))
27 | for image in files:
28 | image_name = image.split('.')[0]
29 | image_data = cv2.imread(os.path.join(normal_root, dir, image))
30 | for i in range(16):
31 | normal_images.append(image_data[:, i*256:(i+1)*256 ,:])
32 | normal_fname.append(dir + '_' + image_name + '_' + str(i))
33 |
34 | outlier_root = os.path.join(args.dataset_root, 'Defect_images/Defect_images')
35 | label_root = os.path.join(args.dataset_root, 'Mask_images/Mask_images')
36 | files = os.listdir(os.path.join(outlier_root))
37 | for image in files:
38 | split_images = list()
39 | split_labels = list()
40 | image_name = image.split('.')[0]
41 | image_data = cv2.imread(os.path.join(outlier_root, image))
42 | label_data = cv2.imread(os.path.join(label_root, image_name + '_mask.png'))
43 | if image_data.shape[1] % image_data.shape[0] == 0:
44 | count = image_data.shape[1]//image_data.shape[0]
45 | else:
46 | count = image_data.shape[1] // image_data.shape[0] + 1
47 | for i in range(count):
48 | split_images.append(image_data[:, i * 256:(i + 1) * 256, :])
49 | split_labels.append(label_data[:, i * 256:(i + 1) * 256, :])
50 | for i, (im, la) in enumerate(zip(split_images, split_labels)):
51 | if np.max(la) != 0:
52 | outlier_images.append(im)
53 | outlier_labels.append(la)
54 | outlier_fname.append(image_name + '_' + str(i))
55 |
56 | normal_train, normal_test, normal_name_train, normal_name_test = train_test_split(normal_images, normal_fname, test_size=0.25, random_state=42)
57 |
58 | target_root = './AITEX_anomaly_detection/AITEX'
59 | train_root = os.path.join(target_root, 'train/good')
60 | if not os.path.exists(train_root):
61 | os.makedirs(train_root)
62 | for image, name in zip(normal_train, normal_name_train):
63 | cv2.imwrite(os.path.join(train_root, name + '.png'), image)
64 |
65 | test_root = os.path.join(target_root, 'test/good')
66 | if not os.path.exists(test_root):
67 | os.makedirs(test_root)
68 | for image, name in zip(normal_test, normal_name_test):
69 | cv2.imwrite(os.path.join(test_root, name + '.png'), image)
70 |
71 | for image, label, name in zip(outlier_images, outlier_labels, outlier_fname):
72 | defect_class = DEFEAT_CLASS[name.split('_')[1]]
73 | defect_root = os.path.join(target_root, 'test', defect_class)
74 | label_root = os.path.join(target_root, 'ground_truth', defect_class)
75 | if not os.path.exists(defect_root):
76 | os.makedirs(defect_root)
77 | if not os.path.exists(label_root):
78 | os.makedirs(label_root)
79 | cv2.imwrite(os.path.join(defect_root, name + '.png'), image)
80 | cv2.imwrite(os.path.join(label_root, name + '_mask.png'), label)
81 |
82 | print("Done")
--------------------------------------------------------------------------------
/data/convert_BrainMRI.py:
--------------------------------------------------------------------------------
1 | import os
2 | from sklearn.model_selection import train_test_split
3 | import shutil
4 | import argparse
5 |
6 | parser = argparse.ArgumentParser()
7 | parser.add_argument('--dataset_root', type=str, help="dataset root")
8 | args = parser.parse_args()
9 |
10 | normal_root = os.path.join(args.dataset_root, 'no')
11 | outlier_root = os.path.join(args.dataset_root, 'yes')
12 |
13 | normal_fnames = os.listdir(normal_root)
14 | outlier_fnames = os.listdir(outlier_root)
15 |
16 | normal_train, normal_test, _, _ = train_test_split(normal_fnames, normal_fnames, test_size=0.25, random_state=42)
17 |
18 | target_root = './BrainMRI_anomaly_detection/brainmri'
19 | train_root = os.path.join(target_root, 'train/good')
20 | if not os.path.exists(train_root):
21 | os.makedirs(train_root)
22 | for f in normal_train:
23 | source = os.path.join(normal_root, f)
24 | shutil.copy(source, train_root)
25 |
26 | test_normal_root = os.path.join(target_root, 'test/good')
27 | if not os.path.exists(test_normal_root):
28 | os.makedirs(test_normal_root)
29 | for f in normal_test:
30 | source = os.path.join(normal_root, f)
31 | shutil.copy(source, test_normal_root)
32 |
33 | test_outlier_root = os.path.join(target_root, 'test/defect')
34 | if not os.path.exists(test_outlier_root):
35 | os.makedirs(test_outlier_root)
36 | for f in outlier_fnames:
37 | source = os.path.join(outlier_root, f)
38 | shutil.copy(source, test_outlier_root)
39 |
40 | print("Done")
--------------------------------------------------------------------------------
/data/convert_HeadCT.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | from sklearn.model_selection import train_test_split
4 | import shutil
5 | import argparse
6 |
7 | parser = argparse.ArgumentParser()
8 | parser.add_argument('--dataset_root', type=str, help="dataset root")
9 | args = parser.parse_args()
10 |
11 | label_file = os.path.join(args.dataset_root, 'labels.csv')
12 |
13 | data = np.loadtxt(label_file, dtype=int, delimiter=',', skiprows=1)
14 |
15 | fnames = data[:, 0]
16 | label = data[:, 1]
17 |
18 | normal_fnames = fnames[label==0]
19 | outlier_fnames = fnames[label==1]
20 |
21 | normal_train, normal_test, _, _ = train_test_split(normal_fnames, normal_fnames, test_size=0.25, random_state=42)
22 |
23 | target_root = './HeadCT_anomaly_detection/headct'
24 | train_root = os.path.join(target_root, 'train/good')
25 | if not os.path.exists(train_root):
26 | os.makedirs(train_root)
27 | for f in normal_train:
28 | source = os.path.join(args.dataset_root, 'head_ct/head_ct/', '{:0>3d}.png'.format(f))
29 | shutil.copy(source, train_root)
30 |
31 | test_normal_root = os.path.join(target_root, 'test/good')
32 | if not os.path.exists(test_normal_root):
33 | os.makedirs(test_normal_root)
34 | for f in normal_test:
35 | source = os.path.join(args.dataset_root, 'head_ct/head_ct/', '{:0>3d}.png'.format(f))
36 | shutil.copy(source, test_normal_root)
37 |
38 | test_outlier_root = os.path.join(target_root, 'test/defect')
39 | if not os.path.exists(test_outlier_root):
40 | os.makedirs(test_outlier_root)
41 | for f in outlier_fnames:
42 | source = os.path.join(args.dataset_root, 'head_ct/head_ct/', '{:0>3d}.png'.format(f))
43 | shutil.copy(source, test_outlier_root)
44 |
45 | print('Done')
--------------------------------------------------------------------------------
/data/convert_MastCam.py:
--------------------------------------------------------------------------------
1 | import os
2 | import shutil
3 | import argparse
4 |
5 | parser = argparse.ArgumentParser()
6 | parser.add_argument('--dataset_root', type=str, help="dataset root")
7 | args = parser.parse_args()
8 |
9 | normal_train = list()
10 | normal_test = list()
11 | outlier_fnames = list()
12 | normal_root = os.path.join(args.dataset_root, 'train_typical')
13 | for file in os.listdir(normal_root):
14 | normal_train.append(os.path.join(normal_root, file))
15 |
16 | test_normal_root = os.path.join(args.dataset_root, 'test_typical')
17 | for file in os.listdir(test_normal_root):
18 | normal_test.append(os.path.join(test_normal_root, file))
19 |
20 | outlier_root = os.path.join(args.dataset_root, 'test_novel')
21 | for dir in os.listdir(outlier_root):
22 | class_root = os.path.join(outlier_root, dir)
23 | for file in os.listdir(class_root):
24 | outlier_fnames.append(os.path.join(class_root, file))
25 |
26 | target_root = './MastCam_anomaly_detection/mastcam'
27 | train_root = os.path.join(target_root, 'train/good')
28 | if not os.path.exists(train_root):
29 | os.makedirs(train_root)
30 | for f in normal_train:
31 | shutil.copy(f, train_root)
32 |
33 | test_normal_root = os.path.join(target_root, 'test/good')
34 | if not os.path.exists(test_normal_root):
35 | os.makedirs(test_normal_root)
36 | for f in normal_test:
37 | shutil.copy(f, test_normal_root)
38 |
39 | test_outlier_root = os.path.join(target_root, 'test')
40 | if not os.path.exists(test_outlier_root):
41 | os.makedirs(test_outlier_root)
42 | for f in outlier_fnames:
43 | class_name = f.split('/')[-2]
44 | target_root = os.path.join(test_outlier_root,class_name)
45 | if not os.path.exists(target_root):
46 | os.makedirs(target_root)
47 | shutil.copy(f, target_root)
48 |
49 | print('Done')
--------------------------------------------------------------------------------
/data/convert_SDD.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | from sklearn.model_selection import train_test_split
4 | import cv2
5 | import argparse
6 |
7 | parser = argparse.ArgumentParser()
8 | parser.add_argument('--dataset_root', type=str, help="dataset root")
9 | args = parser.parse_args()
10 |
11 | dirs = os.listdir(args.dataset_root)
12 | normal_images = list()
13 | normal_labels = list()
14 | normal_fname = list()
15 | outlier_images = list()
16 | outlier_labels = list()
17 | outlier_fname = list()
18 | for d in dirs:
19 | files = os.listdir(os.path.join(args.dataset_root, d))
20 | images = list()
21 | for f in files:
22 | if 'jpg' in f[-3:]:
23 | images.append(f)
24 |
25 | for image in images:
26 | split_images = list()
27 | split_labels = list()
28 | image_name = image.split('.')[0]
29 | image_data = cv2.imread(os.path.join(args.dataset_root, d, image))
30 | label_data = cv2.imread(os.path.join(args.dataset_root, d, image_name + '_label.bmp'))
31 | if image_data.shape != label_data.shape:
32 | raise ValueError
33 | image_length = image_data.shape[0]
34 | split_images.append(image_data[:image_length // 3, :, :])
35 | split_images.append(image_data[image_length // 3:image_length * 2 // 3, :, :])
36 | split_images.append(image_data[image_length * 2 // 3:, :, :])
37 | split_labels.append(label_data[:image_length // 3, :, :])
38 | split_labels.append(label_data[image_length // 3:image_length * 2 // 3, :, :])
39 | split_labels.append(label_data[image_length * 2 // 3:, :, :])
40 | for i, (im, la) in enumerate(zip(split_images, split_labels)):
41 | if np.max(la) != 0:
42 | outlier_images.append(im)
43 | outlier_labels.append(la)
44 | outlier_fname.append(d + '_' + image_name + '_' + str(i))
45 | else:
46 | normal_images.append(im)
47 | normal_labels.append(la)
48 | normal_fname.append(d + '_' + image_name + '_' + str(i))
49 |
50 | normal_train, normal_test, normal_name_train, normal_name_test = train_test_split(normal_images, normal_fname, test_size=0.25, random_state=42)
51 |
52 | target_root = './SDD_anomaly_detection/SDD'
53 | train_root = os.path.join(target_root, 'train/good')
54 | if not os.path.exists(train_root):
55 | os.makedirs(train_root)
56 | for image, name in zip(normal_train, normal_name_train):
57 | cv2.imwrite(os.path.join(train_root, name + '.png'), image)
58 |
59 | test_root = os.path.join(target_root, 'test/good')
60 | if not os.path.exists(test_root):
61 | os.makedirs(test_root)
62 | for image, name in zip(normal_test, normal_name_test):
63 | cv2.imwrite(os.path.join(test_root, name + '.png'), image)
64 |
65 | defect_root = os.path.join(target_root, 'test/defect')
66 | label_root = os.path.join(target_root, 'ground_truth/defect')
67 | if not os.path.exists(defect_root):
68 | os.makedirs(defect_root)
69 | if not os.path.exists(label_root):
70 | os.makedirs(label_root)
71 | for image, label, name in zip(outlier_images, outlier_labels, outlier_fname):
72 | cv2.imwrite(os.path.join(defect_root, name + '.png'), image)
73 | cv2.imwrite(os.path.join(label_root, name + '_mask.png'), label)
74 |
75 | print("Done")
76 |
--------------------------------------------------------------------------------
/data/convert_elpv.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | from sklearn.model_selection import train_test_split
4 | import shutil
5 | import argparse
6 |
7 | parser = argparse.ArgumentParser()
8 | parser.add_argument('--dataset_root', type=str, help="dataset root")
9 | args = parser.parse_args()
10 |
11 | label_file = os.path.join(args.dataset_root, 'labels.csv')
12 |
13 | data = np.genfromtxt(label_file, dtype=['|S19', '0:
36 | self.test_threshold = int((len(normal_data)/(1-self.args.test_rate)) * self.args.test_rate) + self.args.nAnomaly
37 |
38 | self.ood_data = self.get_ood_data()
39 |
40 | if self.train is False:
41 | normal_data = list()
42 | split = 'test'
43 | normal_files = os.listdir(os.path.join(self.root, split, 'good'))
44 | for file in normal_files:
45 | if 'png' in file[-3:] or 'PNG' in file[-3:] or 'jpg' in file[-3:] or 'npy' in file[-3:]:
46 | normal_data.append(split + '/good/' + file)
47 |
48 | outlier_data, pollution_data = self.split_outlier()
49 | outlier_data.sort()
50 |
51 | normal_data = normal_data + pollution_data
52 |
53 | normal_label = np.zeros(len(normal_data)).tolist()
54 | outlier_label = np.ones(len(outlier_data)).tolist()
55 |
56 | self.images = normal_data + outlier_data
57 | self.labels = np.array(normal_label + outlier_label)
58 | self.normal_idx = np.argwhere(self.labels == 0).flatten()
59 | self.outlier_idx = np.argwhere(self.labels == 1).flatten()
60 |
61 | def get_ood_data(self):
62 | ood_data = list()
63 | if self.args.outlier_root is None:
64 | return None
65 | dataset_classes = os.listdir(self.args.outlier_root)
66 | for cl in dataset_classes:
67 | if cl == self.args.classname:
68 | continue
69 | cl_root = os.path.join(self.args.outlier_root, cl, 'train', 'good')
70 | ood_file = os.listdir(cl_root)
71 | for file in ood_file:
72 | if 'png' in file[-3:] or 'PNG' in file[-3:] or 'jpg' in file[-3:] or 'npy' in file[-3:]:
73 | ood_data.append(os.path.join(cl_root, file))
74 | return ood_data
75 |
76 | def split_outlier(self):
77 | outlier_data_dir = os.path.join(self.root, 'test')
78 | outlier_classes = os.listdir(outlier_data_dir)
79 | if self.know_class in outlier_classes:
80 | print("Know outlier class: " + self.know_class)
81 | outlier_data = list()
82 | know_class_data = list()
83 | for cl in outlier_classes:
84 | if cl == 'good':
85 | continue
86 | outlier_file = os.listdir(os.path.join(outlier_data_dir, cl))
87 | for file in outlier_file:
88 | if 'png' in file[-3:] or 'PNG' in file[-3:] or 'jpg' in file[-3:] or 'npy' in file[-3:]:
89 | if cl == self.know_class:
90 | know_class_data.append('test/' + cl + '/' + file)
91 | else:
92 | outlier_data.append('test/' + cl + '/' + file)
93 | np.random.RandomState(self.args.ramdn_seed).shuffle(know_class_data)
94 | know_outlier = know_class_data[0:self.args.nAnomaly]
95 | unknow_outlier = outlier_data
96 | if self.train:
97 | return know_outlier, list()
98 | else:
99 | return unknow_outlier, list()
100 |
101 |
102 | outlier_data = list()
103 | for cl in outlier_classes:
104 | if cl == 'good':
105 | continue
106 | outlier_file = os.listdir(os.path.join(outlier_data_dir, cl))
107 | for file in outlier_file:
108 | if 'png' in file[-3:] or 'PNG' in file[-3:] or 'jpg' in file[-3:] or 'npy' in file[-3:]:
109 | outlier_data.append('test/' + cl + '/' + file)
110 | np.random.RandomState(self.args.ramdn_seed).shuffle(outlier_data)
111 | if self.train:
112 | return outlier_data[0:self.args.nAnomaly], outlier_data[self.args.nAnomaly:self.args.nAnomaly + self.nPollution]
113 | else:
114 | return outlier_data[self.test_threshold:], list()
115 |
116 | def load_image(self, path):
117 | if 'npy' in path[-3:]:
118 | img = np.load(path).astype(np.uint8)
119 | img = img[:, :, :3]
120 | return Image.fromarray(img)
121 | return Image.open(path).convert('RGB')
122 |
123 | def transform_train(self):
124 | composed_transforms = transforms.Compose([
125 | transforms.Resize((self.args.img_size,self.args.img_size)),
126 | transforms.RandomRotation(180),
127 | transforms.ToTensor(),
128 | transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
129 | return composed_transforms
130 |
131 | def transform_pseudo(self):
132 | composed_transforms = transforms.Compose([
133 | transforms.Resize((self.args.img_size,self.args.img_size)),
134 | CutMix(),
135 | transforms.RandomRotation(180),
136 | transforms.ToTensor(),
137 | transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
138 | return composed_transforms
139 |
140 | def transform_test(self):
141 | composed_transforms = transforms.Compose([
142 | transforms.Resize((self.args.img_size, self.args.img_size)),
143 | transforms.ToTensor(),
144 | transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
145 | return composed_transforms
146 |
147 | def __len__(self):
148 | return len(self.images)
149 |
150 | def __getitem__(self, index):
151 | rnd = random.randint(0, 1)
152 | if index in self.normal_idx and rnd == 0 and self.train:
153 | if self.ood_data is None:
154 | index = random.choice(self.normal_idx)
155 | image = self.load_image(os.path.join(self.root, self.images[index]))
156 | transform = self.transform_pseudo
157 | else:
158 | image = self.load_image(random.choice(self.ood_data))
159 | transform = self.transform
160 | label = 2
161 | else:
162 | image = self.load_image(os.path.join(self.root, self.images[index]))
163 | transform = self.transform
164 | label = self.labels[index]
165 | sample = {'image': transform(image), 'label': label}
166 | return sample
167 |
--------------------------------------------------------------------------------
/modeling/layers/__init__.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from modeling.layers.deviation_loss import DeviationLoss
3 | from modeling.layers.binary_focal_loss import BinaryFocalLoss
4 |
5 | def build_criterion(criterion):
6 | if criterion == "deviation":
7 | print("Loss : Deviation")
8 | return DeviationLoss()
9 | elif criterion == "BCE":
10 | print("Loss : Binary Cross Entropy")
11 | return torch.nn.BCEWithLogitsLoss()
12 | elif criterion == "focal":
13 | print("Loss : Focal")
14 | return BinaryFocalLoss()
15 | elif criterion == "CE":
16 | print("Loss : CE")
17 | return torch.nn.CrossEntropyLoss()
18 | else:
19 | raise NotImplementedError
--------------------------------------------------------------------------------
/modeling/layers/binary_focal_loss.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 |
5 | class BinaryFocalLoss(nn.Module):
6 | def __init__(self, alpha=1, gamma=2, logits=True, reduce=True):
7 | super(BinaryFocalLoss, self).__init__()
8 | self.alpha = alpha
9 | self.gamma = gamma
10 | self.logits = logits
11 | self.reduce = reduce
12 |
13 | def forward(self, inputs, targets):
14 | if self.logits:
15 | BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')
16 | else:
17 | BCE_loss = F.binary_cross_entropy(inputs, targets, reduction='none')
18 | pt = torch.exp(-BCE_loss)
19 | F_loss = self.alpha * (1-pt)**self.gamma * BCE_loss
20 |
21 | if self.reduce:
22 | return torch.mean(F_loss)
23 | else:
24 | return F_loss
--------------------------------------------------------------------------------
/modeling/layers/deviation_loss.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 |
4 | class DeviationLoss(nn.Module):
5 |
6 | def __init__(self):
7 | super().__init__()
8 |
9 | def forward(self, y_pred, y_true):
10 | confidence_margin = 5.
11 | ref = torch.normal(mean=0., std=torch.full([5000], 1.)).cuda()
12 | dev = (y_pred - torch.mean(ref)) / torch.std(ref)
13 | inlier_loss = torch.abs(dev)
14 | outlier_loss = torch.abs((confidence_margin - dev).clamp_(min=0.))
15 | dev_loss = (1 - y_true) * inlier_loss + y_true * outlier_loss
16 | return torch.mean(dev_loss)
17 |
--------------------------------------------------------------------------------
/modeling/net.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from modeling.networks.backbone import build_feature_extractor, NET_OUT_DIM
5 |
6 |
7 | class HolisticHead(nn.Module):
8 | def __init__(self, in_dim, dropout=0):
9 | super(HolisticHead, self).__init__()
10 | self.fc1 = nn.Linear(in_dim, 256)
11 | self.fc2 = nn.Linear(256, 1)
12 | self.drop = nn.Dropout(dropout)
13 |
14 | def forward(self, x):
15 | x = F.adaptive_avg_pool2d(x, (1, 1))
16 | x = x.view(x.size(0), -1)
17 | x = self.drop(F.relu(self.fc1(x)))
18 | x = self.fc2(x)
19 | return torch.abs(x)
20 |
21 |
22 | class PlainHead(nn.Module):
23 | def __init__(self, in_dim, topk_rate=0.1):
24 | super(PlainHead, self).__init__()
25 | self.scoring = nn.Conv2d(in_channels=in_dim, out_channels=1, kernel_size=1, padding=0)
26 | self.topk_rate = topk_rate
27 |
28 | def forward(self, x):
29 | x = self.scoring(x)
30 | x = x.view(int(x.size(0)), -1)
31 | topk = max(int(x.size(1) * self.topk_rate), 1)
32 | x = torch.topk(torch.abs(x), topk, dim=1)[0]
33 | x = torch.mean(x, dim=1).view(-1, 1)
34 | return x
35 |
36 |
37 | class CompositeHead(PlainHead):
38 | def __init__(self, in_dim, topk=0.1):
39 | super(CompositeHead, self).__init__(in_dim, topk)
40 | self.conv = nn.Sequential(nn.Conv2d(in_dim, in_dim, 3, padding=1),
41 | nn.BatchNorm2d(in_dim),
42 | nn.ReLU())
43 |
44 | def forward(self, x, ref):
45 | ref = torch.mean(ref, dim=0).repeat([x.size(0), 1, 1, 1])
46 | x = ref - x
47 | x = self.conv(x)
48 | x = super().forward(x)
49 | return x
50 |
51 |
52 | class DRA(nn.Module):
53 | def __init__(self, cfg, backbone="resnet18"):
54 | super(DRA, self).__init__()
55 | self.cfg = cfg
56 | self.feature_extractor = build_feature_extractor(backbone, cfg)
57 | self.in_c = NET_OUT_DIM[backbone]
58 | self.holistic_head = HolisticHead(self.in_c)
59 | self.seen_head = PlainHead(self.in_c, self.cfg.topk)
60 | self.pseudo_head = PlainHead(self.in_c, self.cfg.topk)
61 | self.composite_head = CompositeHead(self.in_c, self.cfg.topk)
62 |
63 | def forward(self, image, label):
64 | image_pyramid = list()
65 | for i in range(self.cfg.total_heads):
66 | image_pyramid.append(list())
67 | for s in range(self.cfg.n_scales):
68 | image_scaled = F.interpolate(image, size=self.cfg.img_size // (2 ** s)) if s > 0 else image
69 | feature = self.feature_extractor(image_scaled)
70 |
71 | ref_feature = feature[:self.cfg.nRef, :, :, :]
72 | feature = feature[self.cfg.nRef:, :, :, :]
73 |
74 | if self.training:
75 | normal_scores = self.holistic_head(feature)
76 | abnormal_scores = self.seen_head(feature[label != 2])
77 | dummy_scores = self.pseudo_head(feature[label != 1])
78 | comparison_scores = self.composite_head(feature, ref_feature)
79 | else:
80 | normal_scores = self.holistic_head(feature)
81 | abnormal_scores = self.seen_head(feature)
82 | dummy_scores = self.pseudo_head(feature)
83 | comparison_scores = self.composite_head(feature, ref_feature)
84 | for i, scores in enumerate([normal_scores, abnormal_scores, dummy_scores, comparison_scores]):
85 | image_pyramid[i].append(scores)
86 | for i in range(self.cfg.total_heads):
87 | image_pyramid[i] = torch.cat(image_pyramid[i], dim=1)
88 | image_pyramid[i] = torch.mean(image_pyramid[i], dim=1)
89 | return image_pyramid
90 |
91 |
92 |
--------------------------------------------------------------------------------
/modeling/networks/backbone.py:
--------------------------------------------------------------------------------
1 | from torchvision.models import alexnet
2 | from modeling.networks.resnet18 import FeatureRESNET18
3 |
4 | NET_OUT_DIM = {'alexnet': 256, 'resnet18': 512}
5 |
6 | def build_feature_extractor(backbone, cfg):
7 | if backbone == "alexnet":
8 | print("Feature extractor: AlexNet")
9 | return alexnet(pretrained=True).features
10 | elif backbone == "resnet18":
11 | print("Feature extractor: ResNet-18")
12 | return FeatureRESNET18()
13 | else:
14 | raise NotImplementedError
--------------------------------------------------------------------------------
/modeling/networks/resnet.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import Tensor
3 | import torch.nn as nn
4 | from torchvision.models.utils import load_state_dict_from_url
5 | from typing import Type, Any, Callable, Union, List, Optional
6 |
7 |
8 | __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
9 | 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
10 | 'wide_resnet50_2', 'wide_resnet101_2']
11 |
12 |
13 | model_urls = {
14 | 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
15 | 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
16 | 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
17 | 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
18 | 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
19 | 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
20 | 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
21 | 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
22 | 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
23 | }
24 |
25 |
26 | def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
27 | """3x3 convolution with padding"""
28 | return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
29 | padding=dilation, groups=groups, bias=False, dilation=dilation)
30 |
31 |
32 | def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
33 | """1x1 convolution"""
34 | return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
35 |
36 |
37 | class BasicBlock(nn.Module):
38 | expansion: int = 1
39 |
40 | def __init__(
41 | self,
42 | inplanes: int,
43 | planes: int,
44 | stride: int = 1,
45 | downsample: Optional[nn.Module] = None,
46 | groups: int = 1,
47 | base_width: int = 64,
48 | dilation: int = 1,
49 | norm_layer: Optional[Callable[..., nn.Module]] = None
50 | ) -> None:
51 | super(BasicBlock, self).__init__()
52 | if norm_layer is None:
53 | norm_layer = nn.BatchNorm2d
54 | if groups != 1 or base_width != 64:
55 | raise ValueError('BasicBlock only supports groups=1 and base_width=64')
56 | if dilation > 1:
57 | raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
58 | # Both self.conv1 and self.downsample layers downsample the input when stride != 1
59 | self.conv1 = conv3x3(inplanes, planes, stride)
60 | self.bn1 = norm_layer(planes)
61 | self.relu = nn.ReLU(inplace=True)
62 | self.conv2 = conv3x3(planes, planes)
63 | self.bn2 = norm_layer(planes)
64 | self.downsample = downsample
65 | self.stride = stride
66 |
67 | def forward(self, x: Tensor) -> Tensor:
68 | identity = x
69 |
70 | out = self.conv1(x)
71 | out = self.bn1(out)
72 | out = self.relu(out)
73 |
74 | out = self.conv2(out)
75 | out = self.bn2(out)
76 |
77 | if self.downsample is not None:
78 | identity = self.downsample(x)
79 |
80 | out += identity
81 | out = self.relu(out)
82 |
83 | return out
84 |
85 |
86 | class Bottleneck(nn.Module):
87 | # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
88 | # while original implementation places the stride at the first 1x1 convolution(self.conv1)
89 | # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
90 | # This variant is also known as ResNet V1.5 and improves accuracy according to
91 | # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
92 |
93 | expansion: int = 4
94 |
95 | def __init__(
96 | self,
97 | inplanes: int,
98 | planes: int,
99 | stride: int = 1,
100 | downsample: Optional[nn.Module] = None,
101 | groups: int = 1,
102 | base_width: int = 64,
103 | dilation: int = 1,
104 | norm_layer: Optional[Callable[..., nn.Module]] = None
105 | ) -> None:
106 | super(Bottleneck, self).__init__()
107 | if norm_layer is None:
108 | norm_layer = nn.BatchNorm2d
109 | width = int(planes * (base_width / 64.)) * groups
110 | # Both self.conv2 and self.downsample layers downsample the input when stride != 1
111 | self.conv1 = conv1x1(inplanes, width)
112 | self.bn1 = norm_layer(width)
113 | self.conv2 = conv3x3(width, width, stride, groups, dilation)
114 | self.bn2 = norm_layer(width)
115 | self.conv3 = conv1x1(width, planes * self.expansion)
116 | self.bn3 = norm_layer(planes * self.expansion)
117 | self.relu = nn.ReLU(inplace=True)
118 | self.downsample = downsample
119 | self.stride = stride
120 |
121 | def forward(self, x: Tensor) -> Tensor:
122 | identity = x
123 |
124 | out = self.conv1(x)
125 | out = self.bn1(out)
126 | out = self.relu(out)
127 |
128 | out = self.conv2(out)
129 | out = self.bn2(out)
130 | out = self.relu(out)
131 |
132 | out = self.conv3(out)
133 | out = self.bn3(out)
134 |
135 | if self.downsample is not None:
136 | identity = self.downsample(x)
137 |
138 | out += identity
139 | out = self.relu(out)
140 |
141 | return out
142 |
143 |
144 | class ResNet(nn.Module):
145 |
146 | def __init__(
147 | self,
148 | block: Type[Union[BasicBlock, Bottleneck]],
149 | layers: List[int],
150 | num_classes: int = 1000,
151 | zero_init_residual: bool = False,
152 | groups: int = 1,
153 | width_per_group: int = 64,
154 | replace_stride_with_dilation: Optional[List[bool]] = None,
155 | norm_layer: Optional[Callable[..., nn.Module]] = None
156 | ) -> None:
157 | super(ResNet, self).__init__()
158 | if norm_layer is None:
159 | norm_layer = nn.BatchNorm2d
160 | self._norm_layer = norm_layer
161 |
162 | self.inplanes = 64
163 | self.dilation = 1
164 | if replace_stride_with_dilation is None:
165 | # each element in the tuple indicates if we should replace
166 | # the 2x2 stride with a dilated convolution instead
167 | replace_stride_with_dilation = [False, False, False]
168 | if len(replace_stride_with_dilation) != 3:
169 | raise ValueError("replace_stride_with_dilation should be None "
170 | "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
171 | self.groups = groups
172 | self.base_width = width_per_group
173 | self.conv1 = nn.Conv2d(6, self.inplanes, kernel_size=7, stride=2, padding=3,
174 | bias=False)
175 | self.bn1 = norm_layer(self.inplanes)
176 | self.relu = nn.ReLU(inplace=True)
177 | self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
178 | self.layer1 = self._make_layer(block, 64, layers[0])
179 | self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
180 | dilate=replace_stride_with_dilation[0])
181 | self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
182 | dilate=replace_stride_with_dilation[1])
183 | self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
184 | dilate=replace_stride_with_dilation[2])
185 | self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
186 | self.fc = nn.Linear(512 * block.expansion, num_classes)
187 |
188 | for m in self.modules():
189 | if isinstance(m, nn.Conv2d):
190 | nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
191 | elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
192 | nn.init.constant_(m.weight, 1)
193 | nn.init.constant_(m.bias, 0)
194 |
195 | # Zero-initialize the last BN in each residual branch,
196 | # so that the residual branch starts with zeros, and each residual block behaves like an identity.
197 | # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
198 | if zero_init_residual:
199 | for m in self.modules():
200 | if isinstance(m, Bottleneck):
201 | nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
202 | elif isinstance(m, BasicBlock):
203 | nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
204 |
205 | def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int,
206 | stride: int = 1, dilate: bool = False) -> nn.Sequential:
207 | norm_layer = self._norm_layer
208 | downsample = None
209 | previous_dilation = self.dilation
210 | if dilate:
211 | self.dilation *= stride
212 | stride = 1
213 | if stride != 1 or self.inplanes != planes * block.expansion:
214 | downsample = nn.Sequential(
215 | conv1x1(self.inplanes, planes * block.expansion, stride),
216 | norm_layer(planes * block.expansion),
217 | )
218 |
219 | layers = []
220 | layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
221 | self.base_width, previous_dilation, norm_layer))
222 | self.inplanes = planes * block.expansion
223 | for _ in range(1, blocks):
224 | layers.append(block(self.inplanes, planes, groups=self.groups,
225 | base_width=self.base_width, dilation=self.dilation,
226 | norm_layer=norm_layer))
227 |
228 | return nn.Sequential(*layers)
229 |
230 | def _forward_impl(self, x: Tensor) -> Tensor:
231 | # See note [TorchScript super()]
232 | x = self.conv1(x)
233 | x = self.bn1(x)
234 | x = self.relu(x)
235 | x = self.maxpool(x)
236 |
237 | x = self.layer1(x)
238 | x = self.layer2(x)
239 | x = self.layer3(x)
240 | x = self.layer4(x)
241 |
242 | x = self.avgpool(x)
243 | x = torch.flatten(x, 1)
244 | x = self.fc(x)
245 |
246 | return x
247 |
248 | def forward(self, x: Tensor) -> Tensor:
249 | return self._forward_impl(x)
250 |
251 |
252 | def _resnet(
253 | arch: str,
254 | block: Type[Union[BasicBlock, Bottleneck]],
255 | layers: List[int],
256 | pretrained: bool,
257 | progress: bool,
258 | **kwargs: Any
259 | ) -> ResNet:
260 | model = ResNet(block, layers, **kwargs)
261 | if pretrained:
262 | state_dict = load_state_dict_from_url(model_urls[arch],
263 | progress=progress)
264 | model.load_state_dict(state_dict)
265 | return model
266 |
267 |
268 | def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
269 | r"""ResNet-18 model from
270 | `"Deep Residual Learning for Image Recognition" `_.
271 | Args:
272 | pretrained (bool): If True, returns a model pre-trained on ImageNet
273 | progress (bool): If True, displays a progress bar of the download to stderr
274 | """
275 | return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
276 | **kwargs)
277 |
278 |
279 | def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
280 | r"""ResNet-34 model from
281 | `"Deep Residual Learning for Image Recognition" `_.
282 | Args:
283 | pretrained (bool): If True, returns a model pre-trained on ImageNet
284 | progress (bool): If True, displays a progress bar of the download to stderr
285 | """
286 | return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
287 | **kwargs)
288 |
289 |
290 | def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
291 | r"""ResNet-50 model from
292 | `"Deep Residual Learning for Image Recognition" `_.
293 | Args:
294 | pretrained (bool): If True, returns a model pre-trained on ImageNet
295 | progress (bool): If True, displays a progress bar of the download to stderr
296 | """
297 | return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
298 | **kwargs)
299 |
300 |
301 | def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
302 | r"""ResNet-101 model from
303 | `"Deep Residual Learning for Image Recognition" `_.
304 | Args:
305 | pretrained (bool): If True, returns a model pre-trained on ImageNet
306 | progress (bool): If True, displays a progress bar of the download to stderr
307 | """
308 | return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
309 | **kwargs)
310 |
311 |
312 | def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
313 | r"""ResNet-152 model from
314 | `"Deep Residual Learning for Image Recognition" `_.
315 | Args:
316 | pretrained (bool): If True, returns a model pre-trained on ImageNet
317 | progress (bool): If True, displays a progress bar of the download to stderr
318 | """
319 | return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
320 | **kwargs)
321 |
322 |
323 | def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
324 | r"""ResNeXt-50 32x4d model from
325 | `"Aggregated Residual Transformation for Deep Neural Networks" `_.
326 | Args:
327 | pretrained (bool): If True, returns a model pre-trained on ImageNet
328 | progress (bool): If True, displays a progress bar of the download to stderr
329 | """
330 | kwargs['groups'] = 32
331 | kwargs['width_per_group'] = 4
332 | return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
333 | pretrained, progress, **kwargs)
334 |
335 |
336 | def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
337 | r"""ResNeXt-101 32x8d model from
338 | `"Aggregated Residual Transformation for Deep Neural Networks" `_.
339 | Args:
340 | pretrained (bool): If True, returns a model pre-trained on ImageNet
341 | progress (bool): If True, displays a progress bar of the download to stderr
342 | """
343 | kwargs['groups'] = 32
344 | kwargs['width_per_group'] = 8
345 | return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
346 | pretrained, progress, **kwargs)
347 |
348 |
349 | def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
350 | r"""Wide ResNet-50-2 model from
351 | `"Wide Residual Networks" `_.
352 | The model is the same as ResNet except for the bottleneck number of channels
353 | which is twice larger in every block. The number of channels in outer 1x1
354 | convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
355 | channels, and in Wide ResNet-50-2 has 2048-1024-2048.
356 | Args:
357 | pretrained (bool): If True, returns a model pre-trained on ImageNet
358 | progress (bool): If True, displays a progress bar of the download to stderr
359 | """
360 | kwargs['width_per_group'] = 64 * 2
361 | return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
362 | pretrained, progress, **kwargs)
363 |
364 |
365 | def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
366 | r"""Wide ResNet-101-2 model from
367 | `"Wide Residual Networks" `_.
368 | The model is the same as ResNet except for the bottleneck number of channels
369 | which is twice larger in every block. The number of channels in outer 1x1
370 | convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
371 | channels, and in Wide ResNet-50-2 has 2048-1024-2048.
372 | Args:
373 | pretrained (bool): If True, returns a model pre-trained on ImageNet
374 | progress (bool): If True, displays a progress bar of the download to stderr
375 | """
376 | kwargs['width_per_group'] = 64 * 2
377 | return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
378 | pretrained, progress, **kwargs)
--------------------------------------------------------------------------------
/modeling/networks/resnet18.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 | from torchvision import models
3 |
4 |
5 | class FeatureRESNET18(nn.Module):
6 | def __init__(self):
7 | super(FeatureRESNET18, self).__init__()
8 | self.net = models.resnet18(pretrained=True)
9 |
10 | def forward(self, x):
11 | x = self.net.conv1(x)
12 | x = self.net.bn1(x)
13 | x = self.net.relu(x)
14 | x = self.net.maxpool(x)
15 | x = self.net.layer1(x)
16 | x = self.net.layer2(x)
17 | x = self.net.layer3(x)
18 | x = self.net.layer4(x)
19 | return x
20 |
21 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | matplotlib==3.3.3
2 | numpy==1.18.5
3 | pandas==0.25.3
4 | Pillow==8.4.0
5 | scikit_learn==1.0.1
6 | torch==1.1.0
7 | torchvision==0.3.0
8 | tqdm==4.54.0
9 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 | import argparse
6 | import os
7 |
8 | from dataloaders.dataloader import initDataloader
9 | from modeling.net import DRA
10 | from tqdm import tqdm
11 | from sklearn.metrics import average_precision_score, roc_auc_score
12 | from modeling.layers import build_criterion
13 | import random
14 |
15 | import matplotlib.pyplot as plt
16 |
17 | WEIGHT_DIR = './weights'
18 |
19 |
20 | class Trainer(object):
21 |
22 | def __init__(self, args):
23 | self.args = args
24 | # Define Dataloader
25 | kwargs = {'num_workers': args.workers}
26 | self.train_loader, self.test_loader= initDataloader.build(args, **kwargs)
27 | if self.args.total_heads == 4:
28 | temp_args = args
29 | temp_args.batch_size = self.args.nRef
30 | temp_args.nAnomaly = 0
31 | self.ref_loader, _ = initDataloader.build(temp_args, **kwargs)
32 | self.ref = iter(self.ref_loader)
33 |
34 | self.model = DRA(args, backbone=self.args.backbone)
35 |
36 | if self.args.pretrain_dir != None:
37 | self.model.load_state_dict(torch.load(self.args.pretrain_dir))
38 | print('Load pretrain weight from: ' + self.args.pretrain_dir)
39 |
40 | self.criterion = build_criterion(args.criterion)
41 |
42 | self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.0002, weight_decay=1e-5)
43 | self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=10, gamma=0.1)
44 |
45 | def generate_target(self, target, eval=False):
46 | targets = list()
47 | if eval:
48 | targets.append(target==0)
49 | targets.append(target)
50 | targets.append(target)
51 | targets.append(target)
52 | return targets
53 | else:
54 | temp_t = target != 0
55 | targets.append(target == 0)
56 | targets.append(temp_t[target != 2])
57 | targets.append(temp_t[target != 1])
58 | targets.append(target != 0)
59 | return targets
60 |
61 | def training(self, epoch):
62 | train_loss = 0.0
63 | class_loss = list()
64 | for j in range(self.args.total_heads):
65 | class_loss.append(0.0)
66 | self.model.train()
67 | self.scheduler.step()
68 | tbar = tqdm(self.train_loader)
69 | for idx, sample in enumerate(tbar):
70 | image, target = sample['image'], sample['label']
71 | if self.args.cuda:
72 | image, target = image.cuda(), target.cuda()
73 | if self.args.total_heads == 4:
74 | try:
75 | ref_image = next(self.ref)['image']
76 | except StopIteration:
77 | self.ref = iter(self.ref_loader)
78 | ref_image = next(self.ref)['image']
79 | ref_image = ref_image.cuda()
80 | image = torch.cat([ref_image, image], dim=0)
81 |
82 | outputs = self.model(image, target)
83 | targets = self.generate_target(target)
84 |
85 | losses = list()
86 | for i in range(self.args.total_heads):
87 | if self.args.criterion == 'CE':
88 | prob = F.softmax(outputs[i], dim=1)
89 | losses.append(self.criterion(prob, targets[i].long()).view(-1, 1))
90 | else:
91 | losses.append(self.criterion(outputs[i], targets[i].float()).view(-1, 1))
92 |
93 | loss = torch.cat(losses)
94 | loss = torch.sum(loss)
95 |
96 | self.optimizer.zero_grad()
97 | loss.backward()
98 |
99 | torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
100 | self.optimizer.step()
101 | train_loss += loss.item()
102 | for i in range(self.args.total_heads):
103 | class_loss[i] += losses[i].item()
104 |
105 | tbar.set_description('Epoch:%d, Train loss: %.3f' % (epoch, train_loss / (idx + 1)))
106 |
107 |
108 | def normalization(self, data):
109 | return data
110 |
111 | def eval(self):
112 | self.model.eval()
113 | tbar = tqdm(self.test_loader, desc='\r')
114 | test_loss = 0.0
115 | class_pred = list()
116 | for i in range(self.args.total_heads):
117 | class_pred.append(np.array([]))
118 | total_target = np.array([])
119 | for i, sample in enumerate(tbar):
120 | image, target = sample['image'], sample['label']
121 | if self.args.cuda:
122 | image, target = image.cuda(), target.cuda()
123 |
124 | if self.args.total_heads == 4:
125 | try:
126 | ref_image = next(self.ref)['image']
127 | except StopIteration:
128 | self.ref = iter(self.ref_loader)
129 | ref_image = next(self.ref)['image']
130 | ref_image = ref_image.cuda()
131 | image = torch.cat([ref_image, image], dim=0)
132 |
133 | with torch.no_grad():
134 | outputs = self.model(image, target)
135 | targets = self.generate_target(target, eval=True)
136 |
137 | losses = list()
138 | for i in range(self.args.total_heads):
139 | if self.args.criterion == 'CE':
140 | prob = F.softmax(outputs[i], dim=1)
141 | losses.append(self.criterion(prob, targets[i].long()))
142 | else:
143 | losses.append(self.criterion(outputs[i], targets[i].float()))
144 |
145 | loss = losses[0]
146 | for i in range(1, self.args.total_heads):
147 | loss += losses[i]
148 |
149 | test_loss += loss.item()
150 | tbar.set_description('Test loss: %.3f' % (test_loss / (i + 1)))
151 |
152 | for i in range(self.args.total_heads):
153 | if i == 0:
154 | data = -1 * outputs[i].data.cpu().numpy()
155 | else:
156 | data = outputs[i].data.cpu().numpy()
157 | class_pred[i] = np.append(class_pred[i], data)
158 | total_target = np.append(total_target, target.cpu().numpy())
159 |
160 | total_pred = self.normalization(class_pred[0])
161 | for i in range(1, self.args.total_heads):
162 | total_pred = total_pred + self.normalization(class_pred[i])
163 |
164 | with open(self.args.experiment_dir + '/result.txt', mode='a+', encoding="utf-8") as w:
165 | for label, score in zip(total_target, total_pred):
166 | w.write(str(label) + ' ' + str(score) + "\n")
167 |
168 | total_roc, total_pr = aucPerformance(total_pred, total_target)
169 |
170 | normal_mask = total_target == 0
171 | outlier_mask = total_target == 1
172 | plt.clf()
173 | plt.bar(np.arange(total_pred.size)[normal_mask], total_pred[normal_mask], color='green')
174 | plt.bar(np.arange(total_pred.size)[outlier_mask], total_pred[outlier_mask], color='red')
175 | plt.ylabel("Anomaly score")
176 | plt.savefig(args.experiment_dir + "/vis.png")
177 | return total_roc, total_pr
178 |
179 | def save_weights(self, filename):
180 | # if not os.path.exists(WEIGHT_DIR):
181 | # os.makedirs(WEIGHT_DIR)
182 | torch.save(self.model.state_dict(), os.path.join(args.experiment_dir, filename))
183 |
184 | def load_weights(self, filename):
185 | path = os.path.join(WEIGHT_DIR, filename)
186 | self.model.load_state_dict(torch.load(path))
187 |
188 | def init_network_weights_from_pretraining(self):
189 |
190 | net_dict = self.model.state_dict()
191 | ae_net_dict = self.ae_model.state_dict()
192 |
193 | ae_net_dict = {k: v for k, v in ae_net_dict.items() if k in net_dict}
194 | net_dict.update(ae_net_dict)
195 | self.model.load_state_dict(net_dict)
196 |
197 | def aucPerformance(mse, labels, prt=True):
198 | roc_auc = roc_auc_score(labels, mse)
199 | ap = average_precision_score(labels, mse)
200 | if prt:
201 | print("AUC-ROC: %.4f, AUC-PR: %.4f" % (roc_auc, ap))
202 | return roc_auc, ap;
203 |
204 | if __name__ == '__main__':
205 | parser = argparse.ArgumentParser()
206 | parser.add_argument("--batch_size", type=int, default=48, help="batch size used in SGD")
207 | parser.add_argument("--steps_per_epoch", type=int, default=20, help="the number of batches per epoch")
208 | parser.add_argument("--epochs", type=int, default=30, help="the number of epochs")
209 | parser.add_argument("--cont_rate", type=float, default=0.0, help="the outlier contamination rate in the training data")
210 | parser.add_argument("--test_threshold", type=int, default=0,
211 | help="the outlier contamination rate in the training data")
212 | parser.add_argument("--test_rate", type=float, default=0.0,
213 | help="the outlier contamination rate in the training data")
214 | parser.add_argument("--dataset", type=str, default='mvtecad', help="a list of data set names")
215 | parser.add_argument("--ramdn_seed", type=int, default=42, help="the random seed number")
216 | parser.add_argument('--workers', type=int, default=4, metavar='N', help='dataloader threads')
217 | parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
218 | parser.add_argument('--savename', type=str, default='model.pkl', help="save modeling")
219 | parser.add_argument('--dataset_root', type=str, default='./data/mvtec_anomaly_detection', help="dataset root")
220 | parser.add_argument('--experiment_dir', type=str, default='./experiment/experiment_14', help="dataset root")
221 | parser.add_argument('--classname', type=str, default='capsule', help="dataset class")
222 | parser.add_argument('--img_size', type=int, default=448, help="dataset root")
223 | parser.add_argument("--nAnomaly", type=int, default=10, help="the number of anomaly data in training set")
224 | parser.add_argument("--n_scales", type=int, default=2, help="number of scales at which features are extracted")
225 | parser.add_argument('--backbone', type=str, default='resnet18', help="backbone")
226 | parser.add_argument('--criterion', type=str, default='deviation', help="loss")
227 | parser.add_argument("--topk", type=float, default=0.1, help="topk in MIL")
228 | parser.add_argument('--know_class', type=str, default=None, help="set the know class for hard setting")
229 | parser.add_argument('--pretrain_dir', type=str, default=None, help="root of pretrain weight")
230 | parser.add_argument("--total_heads", type=int, default=4, help="number of head in training")
231 | parser.add_argument("--nRef", type=int, default=5, help="number of reference set")
232 | parser.add_argument('--outlier_root', type=str, default=None, help="OOD dataset root")
233 | args = parser.parse_args()
234 |
235 | args.cuda = not args.no_cuda and torch.cuda.is_available()
236 | trainer = Trainer(args)
237 |
238 |
239 | argsDict = args.__dict__
240 | if not os.path.exists(args.experiment_dir):
241 | os.makedirs(args.experiment_dir)
242 | with open(args.experiment_dir + '/setting.txt', 'w') as f:
243 | f.writelines('------------------ start ------------------' + '\n')
244 | for eachArg, value in argsDict.items():
245 | f.writelines(eachArg + ' : ' + str(value) + '\n')
246 | f.writelines('------------------- end -------------------')
247 |
248 | print('Total Epoches:', trainer.args.epochs)
249 | trainer.model = trainer.model.to('cuda')
250 | trainer.criterion = trainer.criterion.to('cuda')
251 | for epoch in range(0, trainer.args.epochs):
252 | trainer.training(epoch)
253 | trainer.eval()
254 | trainer.save_weights(args.savename)
255 |
256 |
--------------------------------------------------------------------------------