├── .idea
├── .gitignore
├── fast_yolov7_pytorch.iml
├── inspectionProfiles
│ ├── Project_Default.xml
│ └── profiles_settings.xml
├── modules.xml
└── vcs.xml
├── README.md
├── detect.py
├── models
├── __init__.py
├── common.py
├── experimental.py
├── quant_yolo.py
└── yolo.py
├── papers
└── README.md
├── prune.py
├── requirements.txt
├── test.py
├── train.py
└── utils
├── __init__.py
├── activations.py
├── add_nms.py
├── autoanchor.py
├── aws
├── __init__.py
├── mime.sh
├── resume.py
└── userdata.sh
├── datasets.py
├── general.py
├── google_app_engine
├── Dockerfile
├── additional_requirements.txt
└── app.yaml
├── google_utils.py
├── loss.py
├── metrics.py
├── plots.py
├── torch_utils.py
└── wandb_logging
├── __init__.py
├── log_dataset.py
└── wandb_utils.py
/.idea/.gitignore:
--------------------------------------------------------------------------------
1 | # Default ignored files
2 | /shelf/
3 | /workspace.xml
4 |
--------------------------------------------------------------------------------
/.idea/fast_yolov7_pytorch.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/.idea/inspectionProfiles/Project_Default.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
13 |
14 |
15 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
--------------------------------------------------------------------------------
/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/.idea/vcs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Fast_Yolov7_Pytorch🎉️🎉️🎉️
2 |
3 | ***
Use SOTA Pruning and Quant Algorithm to Build Your Faster Yolov7🚀️***
4 |
5 | ## Guide
6 |
7 | * [Installation](#index1)
8 | * [Quick Start](#index2)
9 | * [References](#index3)
10 | * [Contact Me](#index4)
11 |
12 | ## Installation:
13 |
14 | ```commandline
15 | git clone https://github.com/ChristianYang37/fast_yolov7_pytorch.git
16 | ```
17 |
18 | ```commandline
19 | pip install -r requirements.txt
20 | ```
21 |
22 | If you can't install torch_pruning, please do as follow
23 |
24 | ```commandline
25 | git clone https://github.com/VainF/Torch-Pruning.git
26 | cd Torch-Pruning
27 | python setup.py install
28 | ```
29 |
30 | For pytorch yolov7 state dicts, [click here](https://github.com/WongKinYiu/yolov7#transfer-learning) to download.
31 |
32 | ## Quick Start:
33 |
34 | ### Pruning & Training
35 |
36 | ```commandline
37 | python train.py --workers 8 --device 0 --batch-size 32 --data data/custom.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights 'yolov7_training.pt' --name yolov7-custom --hyp data/hyp.scratch.custom.yaml --sparsity 0.3 --num_epoch_to_prune 4 --prune_nore L2
38 | ```
39 |
40 | if you want prune model without training, you can just set `epochs` = 0
41 |
42 | #### Opts
43 |
44 | `sparsity`: the sparsity of pruning
45 |
46 | `num_epoch_to_prune`: prune model after `num_epoch_to_prune` times finetune
47 |
48 | `prune_norm`: L1 or L2
49 |
50 | the code actually do prune as follows
51 |
52 | ````python
53 | for idx, epoch in enumerate(range(start_epoch, epochs)):
54 | if (idx + 1) % opt.num_epochs_to_prune:
55 | yolo_pruner.step(model, device)
56 |
57 | ````
58 |
59 | So, for more efficient pruning, we suggest you set `num_batch_to_prune` big enough to make sure the model has fitted the data before you prune it, and also set `epochs` optimally.
60 |
61 | #### Some Results
62 |
63 | Prune `yolov7_training.pt` On COCO128.yaml (without finetune)
64 |
65 |
66 | | Sparsity | Macs | num_params | mAP@.5 | mAP@.0:.95 |
67 | | -------- | ---------- | ---------- | ------- | ---------- |
68 | | 0 | 6501867771 | 37622682 | 0.817 | 0.615 |
69 | | 0.005 | 6379356844 | 37115689 | 0.791 | 0.541 |
70 | | 0.007 | 6373571463 | 37033908 | 0.783 | 0.515 |
71 | | 0.01 | 6324846255 | 36735256 | 0.758 | 0.508 |
72 | | 0.02 | 6187011754 | 35974768 | 0.615 | 0.38 |
73 | | 0.05 | 5820065160 | 33891742 | 0.25 | 0.123 |
74 | | 0.1 | 5237469860 | 30417686 | 0.00056 | 0.000102 |
75 |
76 | Speed test on `GPU=A5000, batch_size=32`
77 |
78 |
79 | | Sparsity | batch 32 average time / s |
80 | | -------- | ------------------------- |
81 | | 0 | 0.055983 |
82 | | 0.005 | 0.044586 |
83 | | 0.01 | 0.044711 |
84 | | 0.05 | 0.043469 |
85 | | 0.1 | 0.041813 |
86 | | 0.2 | 0.037244 |
87 | | 0.5 | 0.023613 |
88 | | 0.7 | 0.024631 |
89 |
90 | ### Quantization
91 |
92 | ```commandline
93 | python train.py --workers 8 --device 0 --batch-size 32 --data data/custom.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights 'yolov7_training.pt' --name yolov7-custom --hyp data/hyp.scratch.custom.yaml --method static
94 | ```
95 |
96 | #### Opts
97 |
98 | `method`: algorithm to quantify model, static or dynamic
99 |
100 | `deploy_device`: pytorch now support x86 and arm, is enabled for `method` == static only
101 |
102 | When you set `method` = dynamic, it require train data to make quantified model fit the distribution.
103 |
104 | ## References:
105 |
106 | 1. [WongKinYiu/yolov7: Implementation of paper - YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (github.com)](https://github.com/WongKinYiu/yolov7)
107 | 2. [VainF/Torch-Pruning: [CVPR-2023] Towards Any Structural Pruning; LLaMA / CNNs / Transformers (github.com)](https://github.com/VainF/Torch-Pruning)
108 | 3. [PyTorch](https://pytorch.org/)
109 | 4. [ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite (github.com)](https://github.com/ultralytics/yolov5)
110 |
111 | ## Contact:
112 |
113 | This repository is for [AIRS](https://airs.cuhk.edu.cn/)'s project, the author is an undergraduate student at Sun Yat sen University.
114 |
115 | Email: christiannyang37@gmail.com
116 |
--------------------------------------------------------------------------------
/detect.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import time
3 | from pathlib import Path
4 |
5 | import cv2
6 | import torch
7 | import torch.backends.cudnn as cudnn
8 | from numpy import random
9 |
10 | from models.experimental import attempt_load
11 | from utils.datasets import LoadStreams, LoadImages
12 | from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
13 | scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
14 | from utils.plots import plot_one_box
15 | from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
16 |
17 |
18 | def detect(save_img=False):
19 | source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
20 | save_img = not opt.nosave and not source.endswith('.txt') # save inference images
21 | webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
22 | ('rtsp://', 'rtmp://', 'http://', 'https://'))
23 |
24 | # Directories
25 | save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
26 | (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
27 |
28 | # Initialize
29 | set_logging()
30 | device = select_device(opt.device)
31 | half = device.type != 'cpu' # half precision only supported on CUDA
32 |
33 | # Load model
34 | model = attempt_load(weights, map_location=device) # load FP32 model
35 | stride = int(model.stride.max()) # model stride
36 | imgsz = check_img_size(imgsz, s=stride) # check img_size
37 |
38 | if trace:
39 | model = TracedModel(model, device, opt.img_size)
40 |
41 | if half:
42 | model.half() # to FP16
43 |
44 | # Second-stage classifier
45 | classify = False
46 | if classify:
47 | modelc = load_classifier(name='resnet101', n=2) # initialize
48 | modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
49 |
50 | # Set Dataloader
51 | vid_path, vid_writer = None, None
52 | if webcam:
53 | view_img = check_imshow()
54 | cudnn.benchmark = True # set True to speed up constant image size inference
55 | dataset = LoadStreams(source, img_size=imgsz, stride=stride)
56 | else:
57 | dataset = LoadImages(source, img_size=imgsz, stride=stride)
58 |
59 | # Get names and colors
60 | names = model.module.names if hasattr(model, 'module') else model.names
61 | colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
62 |
63 | # Run inference
64 | if device.type != 'cpu':
65 | model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
66 | old_img_w = old_img_h = imgsz
67 | old_img_b = 1
68 |
69 | t0 = time.time()
70 | for path, img, im0s, vid_cap in dataset:
71 | img = torch.from_numpy(img).to(device)
72 | img = img.half() if half else img.float() # uint8 to fp16/32
73 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
74 | if img.ndimension() == 3:
75 | img = img.unsqueeze(0)
76 |
77 | # Warmup
78 | if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
79 | old_img_b = img.shape[0]
80 | old_img_h = img.shape[2]
81 | old_img_w = img.shape[3]
82 | for i in range(3):
83 | model(img, augment=opt.augment)[0]
84 |
85 | # Inference
86 | t1 = time_synchronized()
87 | with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
88 | pred = model(img, augment=opt.augment)[0]
89 | t2 = time_synchronized()
90 |
91 | # Apply NMS
92 | pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
93 | t3 = time_synchronized()
94 |
95 | # Apply Classifier
96 | if classify:
97 | pred = apply_classifier(pred, modelc, img, im0s)
98 |
99 | # Process detections
100 | for i, det in enumerate(pred): # detections per image
101 | if webcam: # batch_size >= 1
102 | p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
103 | else:
104 | p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
105 |
106 | p = Path(p) # to Path
107 | save_path = str(save_dir / p.name) # img.jpg
108 | txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
109 | gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
110 | if len(det):
111 | # Rescale boxes from img_size to im0 size
112 | det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
113 |
114 | # Print results
115 | for c in det[:, -1].unique():
116 | n = (det[:, -1] == c).sum() # detections per class
117 | s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
118 |
119 | # Write results
120 | for *xyxy, conf, cls in reversed(det):
121 | if save_txt: # Write to file
122 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
123 | line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
124 | with open(txt_path + '.txt', 'a') as f:
125 | f.write(('%g ' * len(line)).rstrip() % line + '\n')
126 |
127 | if save_img or view_img: # Add bbox to image
128 | label = f'{names[int(cls)]} {conf:.2f}'
129 | plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
130 |
131 | # Print time (inference + NMS)
132 | print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
133 |
134 | # Stream results
135 | if view_img:
136 | cv2.imshow(str(p), im0)
137 | cv2.waitKey(1) # 1 millisecond
138 |
139 | # Save results (image with detections)
140 | if save_img:
141 | if dataset.mode == 'image':
142 | cv2.imwrite(save_path, im0)
143 | print(f" The image with the result is saved in: {save_path}")
144 | else: # 'video' or 'stream'
145 | if vid_path != save_path: # new video
146 | vid_path = save_path
147 | if isinstance(vid_writer, cv2.VideoWriter):
148 | vid_writer.release() # release previous video writer
149 | if vid_cap: # video
150 | fps = vid_cap.get(cv2.CAP_PROP_FPS)
151 | w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
152 | h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
153 | else: # stream
154 | fps, w, h = 30, im0.shape[1], im0.shape[0]
155 | save_path += '.mp4'
156 | vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
157 | vid_writer.write(im0)
158 |
159 | if save_txt or save_img:
160 | s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
161 | #print(f"Results saved to {save_dir}{s}")
162 |
163 | print(f'Done. ({time.time() - t0:.3f}s)')
164 |
165 |
166 | if __name__ == '__main__':
167 | parser = argparse.ArgumentParser()
168 | parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
169 | parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
170 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
171 | parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
172 | parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
173 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
174 | parser.add_argument('--view-img', action='store_true', help='display results')
175 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
176 | parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
177 | parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
178 | parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
179 | parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
180 | parser.add_argument('--augment', action='store_true', help='augmented inference')
181 | parser.add_argument('--update', action='store_true', help='update all models')
182 | parser.add_argument('--project', default='runs/detect', help='save results to project/name')
183 | parser.add_argument('--name', default='exp', help='save results to project/name')
184 | parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
185 | parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
186 | opt = parser.parse_args()
187 | print(opt)
188 | #check_requirements(exclude=('pycocotools', 'thop'))
189 |
190 | with torch.no_grad():
191 | if opt.update: # update all models (to fix SourceChangeWarning)
192 | for opt.weights in ['yolov7.pt']:
193 | detect()
194 | strip_optimizer(opt.weights)
195 | else:
196 | detect()
197 |
--------------------------------------------------------------------------------
/models/__init__.py:
--------------------------------------------------------------------------------
1 | # init
--------------------------------------------------------------------------------
/models/experimental.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import random
3 | import torch
4 | import torch.nn as nn
5 |
6 | from models.common import Conv, DWConv
7 | from utils.google_utils import attempt_download
8 |
9 |
10 | class CrossConv(nn.Module):
11 | # Cross Convolution Downsample
12 | def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13 | # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14 | super(CrossConv, self).__init__()
15 | c_ = int(c2 * e) # hidden channels
16 | self.cv1 = Conv(c1, c_, (1, k), (1, s))
17 | self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18 | self.add = shortcut and c1 == c2
19 |
20 | def forward(self, x):
21 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22 |
23 |
24 | class Sum(nn.Module):
25 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
26 | def __init__(self, n, weight=False): # n: number of inputs
27 | super(Sum, self).__init__()
28 | self.weight = weight # apply weights boolean
29 | self.iter = range(n - 1) # iter object
30 | if weight:
31 | self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
32 |
33 | def forward(self, x):
34 | y = x[0] # no weight
35 | if self.weight:
36 | w = torch.sigmoid(self.w) * 2
37 | for i in self.iter:
38 | y = y + x[i + 1] * w[i]
39 | else:
40 | for i in self.iter:
41 | y = y + x[i + 1]
42 | return y
43 |
44 |
45 | class MixConv2d(nn.Module):
46 | # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
47 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
48 | super(MixConv2d, self).__init__()
49 | groups = len(k)
50 | if equal_ch: # equal c_ per group
51 | i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
52 | c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
53 | else: # equal weight.numel() per group
54 | b = [c2] + [0] * groups
55 | a = np.eye(groups + 1, groups, k=-1)
56 | a -= np.roll(a, 1, axis=1)
57 | a *= np.array(k) ** 2
58 | a[0] = 1
59 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
60 |
61 | self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
62 | self.bn = nn.BatchNorm2d(c2)
63 | self.act = nn.LeakyReLU(0.1, inplace=True)
64 |
65 | def forward(self, x):
66 | return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
67 |
68 |
69 | class Ensemble(nn.ModuleList):
70 | # Ensemble of models
71 | def __init__(self):
72 | super(Ensemble, self).__init__()
73 |
74 | def forward(self, x, augment=False):
75 | y = []
76 | for module in self:
77 | y.append(module(x, augment)[0])
78 | # y = torch.stack(y).max(0)[0] # max ensemble
79 | # y = torch.stack(y).mean(0) # mean ensemble
80 | y = torch.cat(y, 1) # nms ensemble
81 | return y, None # inference, train output
82 |
83 |
84 |
85 |
86 |
87 | class ORT_NMS(torch.autograd.Function):
88 | '''ONNX-Runtime NMS operation'''
89 | @staticmethod
90 | def forward(ctx,
91 | boxes,
92 | scores,
93 | max_output_boxes_per_class=torch.tensor([100]),
94 | iou_threshold=torch.tensor([0.45]),
95 | score_threshold=torch.tensor([0.25])):
96 | device = boxes.device
97 | batch = scores.shape[0]
98 | num_det = random.randint(0, 100)
99 | batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
100 | idxs = torch.arange(100, 100 + num_det).to(device)
101 | zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
102 | selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
103 | selected_indices = selected_indices.to(torch.int64)
104 | return selected_indices
105 |
106 | @staticmethod
107 | def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
108 | return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
109 |
110 |
111 | class TRT_NMS(torch.autograd.Function):
112 | '''TensorRT NMS operation'''
113 | @staticmethod
114 | def forward(
115 | ctx,
116 | boxes,
117 | scores,
118 | background_class=-1,
119 | box_coding=1,
120 | iou_threshold=0.45,
121 | max_output_boxes=100,
122 | plugin_version="1",
123 | score_activation=0,
124 | score_threshold=0.25,
125 | ):
126 | batch_size, num_boxes, num_classes = scores.shape
127 | num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
128 | det_boxes = torch.randn(batch_size, max_output_boxes, 4)
129 | det_scores = torch.randn(batch_size, max_output_boxes)
130 | det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
131 | return num_det, det_boxes, det_scores, det_classes
132 |
133 | @staticmethod
134 | def symbolic(g,
135 | boxes,
136 | scores,
137 | background_class=-1,
138 | box_coding=1,
139 | iou_threshold=0.45,
140 | max_output_boxes=100,
141 | plugin_version="1",
142 | score_activation=0,
143 | score_threshold=0.25):
144 | out = g.op("TRT::EfficientNMS_TRT",
145 | boxes,
146 | scores,
147 | background_class_i=background_class,
148 | box_coding_i=box_coding,
149 | iou_threshold_f=iou_threshold,
150 | max_output_boxes_i=max_output_boxes,
151 | plugin_version_s=plugin_version,
152 | score_activation_i=score_activation,
153 | score_threshold_f=score_threshold,
154 | outputs=4)
155 | nums, boxes, scores, classes = out
156 | return nums, boxes, scores, classes
157 |
158 |
159 | class ONNX_ORT(nn.Module):
160 | '''onnx module with ONNX-Runtime NMS operation.'''
161 | def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None, n_classes=80):
162 | super().__init__()
163 | self.device = device if device else torch.device("cpu")
164 | self.max_obj = torch.tensor([max_obj]).to(device)
165 | self.iou_threshold = torch.tensor([iou_thres]).to(device)
166 | self.score_threshold = torch.tensor([score_thres]).to(device)
167 | self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
168 | self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
169 | dtype=torch.float32,
170 | device=self.device)
171 | self.n_classes=n_classes
172 |
173 | def forward(self, x):
174 | boxes = x[:, :, :4]
175 | conf = x[:, :, 4:5]
176 | scores = x[:, :, 5:]
177 | if self.n_classes == 1:
178 | scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
179 | # so there is no need to multiplicate.
180 | else:
181 | scores *= conf # conf = obj_conf * cls_conf
182 | boxes @= self.convert_matrix
183 | max_score, category_id = scores.max(2, keepdim=True)
184 | dis = category_id.float() * self.max_wh
185 | nmsbox = boxes + dis
186 | max_score_tp = max_score.transpose(1, 2).contiguous()
187 | selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
188 | X, Y = selected_indices[:, 0], selected_indices[:, 2]
189 | selected_boxes = boxes[X, Y, :]
190 | selected_categories = category_id[X, Y, :].float()
191 | selected_scores = max_score[X, Y, :]
192 | X = X.unsqueeze(1).float()
193 | return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
194 |
195 | class ONNX_TRT(nn.Module):
196 | '''onnx module with TensorRT NMS operation.'''
197 | def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None, n_classes=80):
198 | super().__init__()
199 | assert max_wh is None
200 | self.device = device if device else torch.device('cpu')
201 | self.background_class = -1,
202 | self.box_coding = 1,
203 | self.iou_threshold = iou_thres
204 | self.max_obj = max_obj
205 | self.plugin_version = '1'
206 | self.score_activation = 0
207 | self.score_threshold = score_thres
208 | self.n_classes=n_classes
209 |
210 | def forward(self, x):
211 | boxes = x[:, :, :4]
212 | conf = x[:, :, 4:5]
213 | scores = x[:, :, 5:]
214 | if self.n_classes == 1:
215 | scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
216 | # so there is no need to multiplicate.
217 | else:
218 | scores *= conf # conf = obj_conf * cls_conf
219 | num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding,
220 | self.iou_threshold, self.max_obj,
221 | self.plugin_version, self.score_activation,
222 | self.score_threshold)
223 | return num_det, det_boxes, det_scores, det_classes
224 |
225 |
226 | class End2End(nn.Module):
227 | '''export onnx or tensorrt model with NMS operation.'''
228 | def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None, n_classes=80):
229 | super().__init__()
230 | device = device if device else torch.device('cpu')
231 | assert isinstance(max_wh,(int)) or max_wh is None
232 | self.model = model.to(device)
233 | self.model.model[-1].end2end = True
234 | self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
235 | self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device, n_classes)
236 | self.end2end.eval()
237 |
238 | def forward(self, x):
239 | x = self.model(x)
240 | x = self.end2end(x)
241 | return x
242 |
243 |
244 |
245 |
246 |
247 | def attempt_load(weights, map_location=None):
248 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
249 | model = Ensemble()
250 | for w in weights if isinstance(weights, list) else [weights]:
251 | attempt_download(w)
252 | ckpt = torch.load(w, map_location=map_location) # load
253 | model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
254 |
255 | # Compatibility updates
256 | for m in model.modules():
257 | if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
258 | m.inplace = True # pytorch 1.7.0 compatibility
259 | elif type(m) is nn.Upsample:
260 | m.recompute_scale_factor = None # torch 1.11.0 compatibility
261 | elif type(m) is Conv:
262 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
263 |
264 | if len(model) == 1:
265 | return model[-1] # return model
266 | else:
267 | print('Ensemble created with %s\n' % weights)
268 | for k in ['names', 'stride']:
269 | setattr(model, k, getattr(model[-1], k))
270 | return model # return ensemble
271 |
272 |
273 |
--------------------------------------------------------------------------------
/models/quant_yolo.py:
--------------------------------------------------------------------------------
1 | import torch.quantization
2 | from .yolo import *
3 |
4 |
5 | class Model_quant_static(nn.Module):
6 | def __init__(self, cfg='yolor-csp-c.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
7 | super(Model_quant_static, self).__init__()
8 | self.quant = torch.quantization.QuantStub()
9 | self.dequant = torch.quantization.DeQuantStub()
10 | self.qconfig = None
11 |
12 | self.traced = False
13 | if isinstance(cfg, dict):
14 | self.yaml = cfg # model dict
15 | else: # is *.yaml
16 | import yaml # for torch hub
17 | self.yaml_file = Path(cfg).name
18 | with open(cfg) as f:
19 | self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
20 |
21 | # Define model
22 | ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
23 | if nc and nc != self.yaml['nc']:
24 | logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
25 | self.yaml['nc'] = nc # override yaml value
26 | if anchors:
27 | logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
28 | self.yaml['anchors'] = round(anchors) # override yaml value
29 | self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
30 | self.names = [str(i) for i in range(self.yaml['nc'])] # default names
31 | # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
32 |
33 | # Build strides, anchors
34 | m = self.model[-1] # Detect()
35 | if isinstance(m, Detect):
36 | s = 256 # 2x min stride
37 | m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
38 | check_anchor_order(m)
39 | m.anchors /= m.stride.view(-1, 1, 1)
40 | self.stride = m.stride
41 | self._initialize_biases() # only run once
42 | # print('Strides: %s' % m.stride.tolist())
43 | if isinstance(m, IDetect):
44 | s = 256 # 2x min stride
45 | m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
46 | check_anchor_order(m)
47 | m.anchors /= m.stride.view(-1, 1, 1)
48 | self.stride = m.stride
49 | self._initialize_biases() # only run once
50 | # print('Strides: %s' % m.stride.tolist())
51 | if isinstance(m, IAuxDetect):
52 | s = 256 # 2x min stride
53 | m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]]) # forward
54 | # print(m.stride)
55 | check_anchor_order(m)
56 | m.anchors /= m.stride.view(-1, 1, 1)
57 | self.stride = m.stride
58 | self._initialize_aux_biases() # only run once
59 | # print('Strides: %s' % m.stride.tolist())
60 | if isinstance(m, IBin):
61 | s = 256 # 2x min stride
62 | m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
63 | check_anchor_order(m)
64 | m.anchors /= m.stride.view(-1, 1, 1)
65 | self.stride = m.stride
66 | self._initialize_biases_bin() # only run once
67 | # print('Strides: %s' % m.stride.tolist())
68 | if isinstance(m, IKeypoint):
69 | s = 256 # 2x min stride
70 | m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
71 | check_anchor_order(m)
72 | m.anchors /= m.stride.view(-1, 1, 1)
73 | self.stride = m.stride
74 | self._initialize_biases_kpt() # only run once
75 | # print('Strides: %s' % m.stride.tolist())
76 |
77 | # Init weights, biases
78 | initialize_weights(self)
79 | self.info()
80 | logger.info('')
81 |
82 | def forward(self, x, augment=False, profile=False):
83 | x = self.quant(x)
84 |
85 | if augment:
86 | img_size = x.shape[-2:] # height, width
87 | s = [1, 0.83, 0.67] # scales
88 | f = [None, 3, None] # flips (2-ud, 3-lr)
89 | y = [] # outputs
90 | for si, fi in zip(s, f):
91 | xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
92 | yi = self.forward_once(xi)[0] # forward
93 | # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
94 | yi[..., :4] /= si # de-scale
95 | if fi == 2:
96 | yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
97 | elif fi == 3:
98 | yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
99 | y.append(yi)
100 | return self.dequant(torch.cat(y, 1)), None # augmented inference, train
101 | else:
102 | return self.dequant(self.forward_once(x, profile)) # single-scale inference, train
103 |
104 | def forward_once(self, x, profile=False):
105 | y, dt = [], [] # outputs
106 | for m in self.model:
107 | if m.f != -1: # if not from previous layer
108 | x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
109 |
110 | if not hasattr(self, 'traced'):
111 | self.traced = False
112 |
113 | if self.traced:
114 | if isinstance(m, Detect) or isinstance(m, IDetect) or isinstance(m, IAuxDetect) or isinstance(m,
115 | IKeypoint):
116 | break
117 |
118 | if profile:
119 | c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin))
120 | o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
121 | for _ in range(10):
122 | m(x.copy() if c else x)
123 | t = time_synchronized()
124 | for _ in range(10):
125 | m(x.copy() if c else x)
126 | dt.append((time_synchronized() - t) * 100)
127 | print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
128 |
129 | x = m(x) # run
130 |
131 | y.append(x if m.i in self.save else None) # save output
132 |
133 | if profile:
134 | print('%.1fms total' % sum(dt))
135 | return x
136 |
137 | def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
138 | # https://arxiv.org/abs/1708.02002 section 3.3
139 | # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
140 | m = self.model[-1] # Detect() module
141 | for mi, s in zip(m.m, m.stride): # from
142 | b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
143 | b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
144 | b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
145 | mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
146 |
147 | def _initialize_aux_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
148 | # https://arxiv.org/abs/1708.02002 section 3.3
149 | # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
150 | m = self.model[-1] # Detect() module
151 | for mi, mi2, s in zip(m.m, m.m2, m.stride): # from
152 | b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
153 | b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
154 | b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
155 | mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
156 | b2 = mi2.bias.view(m.na, -1) # conv.bias(255) to (3,85)
157 | b2.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
158 | b2.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
159 | mi2.bias = torch.nn.Parameter(b2.view(-1), requires_grad=True)
160 |
161 | def _initialize_biases_bin(self, cf=None): # initialize biases into Detect(), cf is class frequency
162 | # https://arxiv.org/abs/1708.02002 section 3.3
163 | # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
164 | m = self.model[-1] # Bin() module
165 | bc = m.bin_count
166 | for mi, s in zip(m.m, m.stride): # from
167 | b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
168 | old = b[:, (0, 1, 2, bc + 3)].data
169 | obj_idx = 2 * bc + 4
170 | b[:, :obj_idx].data += math.log(0.6 / (bc + 1 - 0.99))
171 | b[:, obj_idx].data += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
172 | b[:, (obj_idx + 1):].data += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(
173 | cf / cf.sum()) # cls
174 | b[:, (0, 1, 2, bc + 3)].data = old
175 | mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
176 |
177 | def _initialize_biases_kpt(self, cf=None): # initialize biases into Detect(), cf is class frequency
178 | # https://arxiv.org/abs/1708.02002 section 3.3
179 | # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
180 | m = self.model[-1] # Detect() module
181 | for mi, s in zip(m.m, m.stride): # from
182 | b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
183 | b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
184 | b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
185 | mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
186 |
187 | def _print_biases(self):
188 | m = self.model[-1] # Detect() module
189 | for mi in m.m: # from
190 | b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
191 | print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
192 |
193 | # def _print_weights(self):
194 | # for m in self.model.modules():
195 | # if type(m) is Bottleneck:
196 | # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
197 |
198 | def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
199 | print('Fusing layers... ')
200 | for m in self.model.modules():
201 | if isinstance(m, RepConv):
202 | # print(f" fuse_repvgg_block")
203 | m.fuse_repvgg_block()
204 | elif isinstance(m, RepConv_OREPA):
205 | # print(f" switch_to_deploy")
206 | m.switch_to_deploy()
207 | elif type(m) is Conv and hasattr(m, 'bn'):
208 | m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
209 | delattr(m, 'bn') # remove batchnorm
210 | m.forward = m.fuseforward # update forward
211 | elif isinstance(m, (IDetect, IAuxDetect)):
212 | m.fuse()
213 | m.forward = m.fuseforward
214 | self.info()
215 | return self
216 |
217 | def nms(self, mode=True): # add or remove NMS module
218 | present = type(self.model[-1]) is NMS # last layer is NMS
219 | if mode and not present:
220 | print('Adding NMS... ')
221 | m = NMS() # module
222 | m.f = -1 # from
223 | m.i = self.model[-1].i + 1 # index
224 | self.model.add_module(name='%s' % m.i, module=m) # add
225 | self.eval()
226 | elif not mode and present:
227 | print('Removing NMS... ')
228 | self.model = self.model[:-1] # remove
229 | return self
230 |
231 | def autoshape(self): # add autoShape module
232 | print('Adding autoShape... ')
233 | m = autoShape(self) # wrap model
234 | copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
235 | return m
236 |
237 | def info(self, verbose=False, img_size=640): # print model information
238 | model_info(self, verbose, img_size)
239 |
240 |
241 | def dynamic_quant(_model, dtype, qconfig_spec, save_path=None):
242 | print("Dynamic quantify model------")
243 | model_quant = torch.quantization.quantize_dynamic(
244 | model=_model,
245 | qconfig_spec=qconfig_spec,
246 | dtype=dtype
247 | )
248 |
249 | if save_path is not None:
250 | torch.save(model_quant.state_dict(), save_path)
251 |
252 | return model_quant
253 |
254 |
255 | def static_quant(_model, data_iter, deploy_device, device, save_path=None):
256 | print("Static quantify model------")
257 | _model.eval()
258 |
259 | if deploy_device == 'arm':
260 | _model.qconfig = torch.quantization.get_default_qconfig('qnnpack')
261 | elif deploy_device == 'x86':
262 | _model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
263 | else:
264 | raise ValueError(f"deploy_device only support arm or x86, but got {deploy_device}")
265 |
266 | model_prepare = torch.quantization.prepare(_model)
267 |
268 | for data, _, _, _ in data_iter:
269 | model_prepare(data.to(device).float() / 255.0)
270 | del data
271 |
272 | _model = torch.quantization.convert(model_prepare)
273 |
274 | if save_path is not None:
275 | torch.save(_model.state_dict(), save_path)
276 |
277 | return _model
278 |
279 |
--------------------------------------------------------------------------------
/papers/README.md:
--------------------------------------------------------------------------------
1 | # Papers:
2 |
3 | ## 剪枝
4 |
5 | ### (1)非结构剪枝
6 |
7 | 《DepGraph: Towards Any Structural Pruning》
8 |
9 | Link: [2301.12900.pdf (arxiv.org)](https://arxiv.org/pdf/2301.12900.pdf)
10 |
11 | 摘要:提出了一种通用的全自动方法——依赖图(Dependency Graph, DepGraph)来显式地对层间的相互依赖进行建模,并对耦合参数进行综合分组。
12 |
13 | Github: [WongKinYiu/yolov7: Implementation of paper - YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (github.com)](https://github.com/WongKinYiu/yolov7)
14 |
15 | 《Network Pruning via Transformable Architecture Search》
16 |
17 | Link: [1905.09717v5.pdf (arxiv.org)](https://arxiv.org/pdf/1905.09717v5.pdf)
18 |
19 | 摘要:对于每一层网络分化出多个同类的较小网络,通过知识蒸馏让预备网络结构学习原网络的特征图表示,选出损耗最小的网络替换原网络层。
20 |
21 | Github: [D-X-Y/AutoDL-Projects: Automated deep learning algorithms implemented in PyTorch. (github.com)](https://github.com/D-X-Y/AutoDL-Projects)
22 |
23 | ### (2)结构剪枝
24 |
25 | 《Structured Pruning for Deep Convolutional Neural Networks: A survey》
26 |
27 | Link: [2303.00566v1.pdf (arxiv.org)](https://arxiv.org/pdf/2303.00566v1.pdf)
28 |
29 | 摘要:从过滤器排序方法、正则化方法、动态执行、神经结构搜索、彩票假设和剪枝的应用等方面对目前最先进的结构化剪枝技术进行了总结和比较。(综述)
30 |
31 | Github: [he-y/Awesome-Pruning: A curated list of neural network pruning resources. (github.com)](https://github.com/he-y/Awesome-Pruning)
32 |
33 | 《Movement Pruning: Adaptive Sparsity by Fine-Tuning》
34 |
35 | Link: [2005.07683v2.pdf (arxiv.org)](https://arxiv.org/pdf/2005.07683v2.pdf)
36 |
37 | 摘要:运动剪枝,在训练过程中保留重要性高的连接,即修建在训练过程中逐渐趋于0的连接,适合用来微调预训练模型,使参数稀疏化。
38 |
39 | ## 量化
40 |
41 | 《TRAINING WITH QUANTIZATION NOISE FOR EXTREME MODEL COMPRESSION》
42 |
43 | Link: [2004.07320v3.pdf (arxiv.org)](https://arxiv.org/pdf/2004.07320v3.pdf)
44 |
45 | 摘要:通过在训练中引入随机量化、部分量化增强模型对精度损失的鲁棒性。
46 |
47 | 《LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale》
48 |
49 | Link: [2208.07339v2.pdf (arxiv.org)](https://arxiv.org/pdf/2208.07339v2.pdf)
50 |
51 | 摘要:对矩阵乘法中的每个内积使用独立的归一化常数的矢量量化,以量化大多数特征,通过对列和行规范化常数的外积进行反规范化处理来恢复矩阵乘法的输出,效果近乎无损。
--------------------------------------------------------------------------------
/prune.py:
--------------------------------------------------------------------------------
1 | import time
2 | import torch
3 | import torch_pruning as tp
4 | from models.yolo import Detect, IDetect
5 | from models.common import ImplicitA, ImplicitM
6 |
7 |
8 | class pruner:
9 | def __init__(self, model, device, opt):
10 | model.eval()
11 | example_inputs = torch.randn(1, 3, 224, 224).to(device)
12 | imp = tp.importance.MagnitudeImportance(p=2 if opt.prune_norm == 'L2' else 1) # L2 norm pruning
13 |
14 | ignored_layers = []
15 | for m in model.modules():
16 | if isinstance(m, (Detect, IDetect)):
17 | ignored_layers.append(m.m)
18 | unwrapped_parameters = []
19 | for m in model.modules():
20 | if isinstance(m, (ImplicitA, ImplicitM)):
21 | unwrapped_parameters.append((m.implicit, 1)) # pruning 1st dimension of implicit matrix
22 |
23 | iterative_steps = opt.epochs // opt.num_epochs_to_prune # progressive pruning
24 | self.pruner = tp.pruner.MagnitudePruner(
25 | model,
26 | example_inputs,
27 | importance=imp,
28 | iterative_steps=iterative_steps,
29 | ch_sparsity=opt.sparsity,
30 | # remove 50% channels, ResNet18 = {64, 128, 256, 512} => ResNet18_Half = {32, 64, 128, 256}
31 | ignored_layers=ignored_layers,
32 | unwrapped_parameters=unwrapped_parameters
33 | )
34 | self.sparsity = opt.sparsity
35 | self.num_steps = iterative_steps
36 | self.count = 0
37 |
38 | def step(self, model, device):
39 | self.count += 1
40 |
41 | example_inputs = torch.randn(1, 3, 224, 224).to(device)
42 | base_macs, base_nparams = tp.utils.count_ops_and_params(model, example_inputs)
43 |
44 | self.pruner.step()
45 |
46 | pruned_macs, pruned_nparams = tp.utils.count_ops_and_params(model, example_inputs)
47 | print("Pruning Sparsity=%f" % (self.sparsity / self.num_steps * self.count))
48 | print("Before Pruning: MACs=%f, #Params=%f" % (base_macs, base_nparams))
49 | print("After Pruning: MACs=%f, #Params=%f" % (pruned_macs, pruned_nparams))
50 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | torch~=1.13.0
2 | PyYAML~=6.0
3 | opencv-python~=4.6.0.66
4 | matplotlib~=3.5.2
5 | numpy~=1.23.1
6 | pandas~=1.4.3
7 | seaborn~=0.11.2
8 | Pillow~=9.2.0
9 | scipy~=1.8.1
10 | torchvision~=0.14.0
11 | tqdm~=4.64.0
12 | requests~=2.28.1
13 | torch_pruning~=1.1.6
--------------------------------------------------------------------------------
/test.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import json
3 | import os
4 | from pathlib import Path
5 | from threading import Thread
6 |
7 | import numpy as np
8 | import torch
9 | import yaml
10 | from tqdm import tqdm
11 |
12 | from models.experimental import attempt_load
13 | from utils.datasets import create_dataloader
14 | from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
15 | box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
16 | from utils.metrics import ap_per_class, ConfusionMatrix
17 | from utils.plots import plot_images, output_to_target, plot_study_txt
18 | from utils.torch_utils import select_device, time_synchronized, TracedModel
19 |
20 |
21 | def test(data,
22 | weights=None,
23 | batch_size=32,
24 | imgsz=640,
25 | conf_thres=0.001,
26 | iou_thres=0.6, # for NMS
27 | save_json=False,
28 | single_cls=False,
29 | augment=False,
30 | verbose=False,
31 | model=None,
32 | dataloader=None,
33 | save_dir=Path(''), # for saving images
34 | save_txt=False, # for auto-labelling
35 | save_hybrid=False, # for hybrid auto-labelling
36 | save_conf=False, # save auto-label confidences
37 | plots=True,
38 | wandb_logger=None,
39 | compute_loss=None,
40 | half_precision=True,
41 | trace=False,
42 | is_coco=False,
43 | v5_metric=False):
44 | # Initialize/load model and set device
45 | training = model is not None
46 | if training: # called by train.py
47 | device = next(model.parameters()).device # get model device
48 |
49 | else: # called directly
50 | set_logging()
51 | device = select_device(opt.device, batch_size=batch_size)
52 |
53 | # Directories
54 | save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
55 | (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
56 |
57 | # Load model
58 | model = attempt_load(weights, map_location=device) # load FP32 model
59 | gs = max(int(model.stride.max()), 32) # grid size (max stride)
60 | imgsz = check_img_size(imgsz, s=gs) # check img_size
61 |
62 | if trace:
63 | model = TracedModel(model, device, imgsz)
64 |
65 | # Half
66 | half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
67 | if half:
68 | model.half()
69 |
70 | # Configure
71 | model.eval()
72 | if isinstance(data, str):
73 | is_coco = data.endswith('coco.yaml')
74 | with open(data) as f:
75 | data = yaml.load(f, Loader=yaml.SafeLoader)
76 | check_dataset(data) # check
77 | nc = 1 if single_cls else int(data['nc']) # number of classes
78 | iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
79 | niou = iouv.numel()
80 |
81 | # Logging
82 | log_imgs = 0
83 | if wandb_logger and wandb_logger.wandb:
84 | log_imgs = min(wandb_logger.log_imgs, 100)
85 | # Dataloader
86 | if not training:
87 | if device.type != 'cpu':
88 | model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
89 | task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
90 | dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
91 | prefix=colorstr(f'{task}: '))[0]
92 |
93 | if v5_metric:
94 | print("Testing with YOLOv5 AP metric...")
95 |
96 | seen = 0
97 | confusion_matrix = ConfusionMatrix(nc=nc)
98 | names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
99 | coco91class = coco80_to_coco91_class()
100 | s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
101 | p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
102 | loss = torch.zeros(3, device=device)
103 | jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
104 | for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
105 | img = img.to(device, non_blocking=True)
106 | img = img.half() if half else img.float() # uint8 to fp16/32
107 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
108 | targets = targets.to(device)
109 | nb, _, height, width = img.shape # batch size, channels, height, width
110 |
111 | with torch.no_grad():
112 | # Run model
113 | t = time_synchronized()
114 | out, train_out = model(img, augment=augment) # inference and training outputs
115 | t0 += time_synchronized() - t
116 |
117 | # Compute loss
118 | if compute_loss:
119 | loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
120 |
121 | # Run NMS
122 | targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
123 | lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
124 | t = time_synchronized()
125 | out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
126 | t1 += time_synchronized() - t
127 |
128 | # Statistics per image
129 | for si, pred in enumerate(out):
130 | labels = targets[targets[:, 0] == si, 1:]
131 | nl = len(labels)
132 | tcls = labels[:, 0].tolist() if nl else [] # target class
133 | path = Path(paths[si])
134 | seen += 1
135 |
136 | if len(pred) == 0:
137 | if nl:
138 | stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
139 | continue
140 |
141 | # Predictions
142 | predn = pred.clone()
143 | scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
144 |
145 | # Append to text file
146 | if save_txt:
147 | gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
148 | for *xyxy, conf, cls in predn.tolist():
149 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
150 | line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
151 | with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
152 | f.write(('%g ' * len(line)).rstrip() % line + '\n')
153 |
154 | # W&B logging - Media Panel Plots
155 | if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
156 | if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
157 | box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
158 | "class_id": int(cls),
159 | "box_caption": "%s %.3f" % (names[cls], conf),
160 | "scores": {"class_score": conf},
161 | "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
162 | boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
163 | wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
164 | wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
165 |
166 | # Append to pycocotools JSON dictionary
167 | if save_json:
168 | # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
169 | image_id = int(path.stem) if path.stem.isnumeric() else path.stem
170 | box = xyxy2xywh(predn[:, :4]) # xywh
171 | box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
172 | for p, b in zip(pred.tolist(), box.tolist()):
173 | jdict.append({'image_id': image_id,
174 | 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
175 | 'bbox': [round(x, 3) for x in b],
176 | 'score': round(p[4], 5)})
177 |
178 | # Assign all predictions as incorrect
179 | correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
180 | if nl:
181 | detected = [] # target indices
182 | tcls_tensor = labels[:, 0]
183 |
184 | # target boxes
185 | tbox = xywh2xyxy(labels[:, 1:5])
186 | scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
187 | if plots:
188 | confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
189 |
190 | # Per target class
191 | for cls in torch.unique(tcls_tensor):
192 | ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
193 | pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
194 |
195 | # Search for detections
196 | if pi.shape[0]:
197 | # Prediction to target ious
198 | ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
199 |
200 | # Append detections
201 | detected_set = set()
202 | for j in (ious > iouv[0]).nonzero(as_tuple=False):
203 | d = ti[i[j]] # detected target
204 | if d.item() not in detected_set:
205 | detected_set.add(d.item())
206 | detected.append(d)
207 | correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
208 | if len(detected) == nl: # all targets already located in image
209 | break
210 |
211 | # Append statistics (correct, conf, pcls, tcls)
212 | stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
213 |
214 | # Plot images
215 | if plots and batch_i < 3:
216 | f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
217 | Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
218 | f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
219 | Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
220 |
221 | # Compute statistics
222 | stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
223 | if len(stats) and stats[0].any():
224 | p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, v5_metric=v5_metric, save_dir=save_dir, names=names)
225 | ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
226 | mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
227 | nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
228 | else:
229 | nt = torch.zeros(1)
230 |
231 | # Print results
232 | pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
233 | print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
234 |
235 | # Print results per class
236 | if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
237 | for i, c in enumerate(ap_class):
238 | print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
239 |
240 | # Print speeds
241 | t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
242 | if not training:
243 | print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
244 |
245 | # Plots
246 | if plots:
247 | confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
248 | if wandb_logger and wandb_logger.wandb:
249 | val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
250 | wandb_logger.log({"Validation": val_batches})
251 | if wandb_images:
252 | wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
253 |
254 | # Save JSON
255 | if save_json and len(jdict):
256 | w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
257 | anno_json = './coco/annotations/instances_val2017.json' # annotations json
258 | pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
259 | print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
260 | with open(pred_json, 'w') as f:
261 | json.dump(jdict, f)
262 |
263 | try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
264 | from pycocotools.coco import COCO
265 | from pycocotools.cocoeval import COCOeval
266 |
267 | anno = COCO(anno_json) # init annotations api
268 | pred = anno.loadRes(pred_json) # init predictions api
269 | eval = COCOeval(anno, pred, 'bbox')
270 | if is_coco:
271 | eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
272 | eval.evaluate()
273 | eval.accumulate()
274 | eval.summarize()
275 | map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
276 | except Exception as e:
277 | print(f'pycocotools unable to run: {e}')
278 |
279 | # Return results
280 | model.float() # for training
281 | if not training:
282 | s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
283 | print(f"Results saved to {save_dir}{s}")
284 | maps = np.zeros(nc) + map
285 | for i, c in enumerate(ap_class):
286 | maps[c] = ap[i]
287 | return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
288 |
289 |
290 | if __name__ == '__main__':
291 | parser = argparse.ArgumentParser(prog='test.py')
292 | parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
293 | parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
294 | parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
295 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
296 | parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
297 | parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
298 | parser.add_argument('--task', default='val', help='train, val, test, speed or study')
299 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
300 | parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
301 | parser.add_argument('--augment', action='store_true', help='augmented inference')
302 | parser.add_argument('--verbose', action='store_true', help='report mAP by class')
303 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
304 | parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
305 | parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
306 | parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
307 | parser.add_argument('--project', default='runs/test', help='save to project/name')
308 | parser.add_argument('--name', default='exp', help='save to project/name')
309 | parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
310 | parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
311 | parser.add_argument('--v5-metric', action='store_true', help='assume maximum recall as 1.0 in AP calculation')
312 | opt = parser.parse_args()
313 | opt.save_json |= opt.data.endswith('coco.yaml')
314 | opt.data = check_file(opt.data) # check file
315 | print(opt)
316 | #check_requirements()
317 |
318 | if opt.task in ('train', 'val', 'test'): # run normally
319 | test(opt.data,
320 | opt.weights,
321 | opt.batch_size,
322 | opt.img_size,
323 | opt.conf_thres,
324 | opt.iou_thres,
325 | opt.save_json,
326 | opt.single_cls,
327 | opt.augment,
328 | opt.verbose,
329 | save_txt=opt.save_txt | opt.save_hybrid,
330 | save_hybrid=opt.save_hybrid,
331 | save_conf=opt.save_conf,
332 | trace=not opt.no_trace,
333 | v5_metric=opt.v5_metric
334 | )
335 |
336 | elif opt.task == 'speed': # speed benchmarks
337 | for w in opt.weights:
338 | test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False, v5_metric=opt.v5_metric)
339 |
340 | elif opt.task == 'study': # run over a range of settings and save/plot
341 | # python test.py --task study --data coco.yaml --iou 0.65 --weights yolov7.pt
342 | x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
343 | for w in opt.weights:
344 | f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
345 | y = [] # y axis
346 | for i in x: # img-size
347 | print(f'\nRunning {f} point {i}...')
348 | r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
349 | plots=False, v5_metric=opt.v5_metric)
350 | y.append(r + t) # results and times
351 | np.savetxt(f, y, fmt='%10.4g') # save
352 | os.system('zip -r study.zip study_*.txt')
353 | plot_study_txt(x=x) # plot
354 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
1 | # init
--------------------------------------------------------------------------------
/utils/activations.py:
--------------------------------------------------------------------------------
1 | # Activation functions
2 |
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 |
7 |
8 | # SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
9 | class SiLU(nn.Module): # export-friendly version of nn.SiLU()
10 | @staticmethod
11 | def forward(x):
12 | return x * torch.sigmoid(x)
13 |
14 |
15 | class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
16 | @staticmethod
17 | def forward(x):
18 | # return x * F.hardsigmoid(x) # for torchscript and CoreML
19 | return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
20 |
21 |
22 | class MemoryEfficientSwish(nn.Module):
23 | class F(torch.autograd.Function):
24 | @staticmethod
25 | def forward(ctx, x):
26 | ctx.save_for_backward(x)
27 | return x * torch.sigmoid(x)
28 |
29 | @staticmethod
30 | def backward(ctx, grad_output):
31 | x = ctx.saved_tensors[0]
32 | sx = torch.sigmoid(x)
33 | return grad_output * (sx * (1 + x * (1 - sx)))
34 |
35 | def forward(self, x):
36 | return self.F.apply(x)
37 |
38 |
39 | # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
40 | class Mish(nn.Module):
41 | @staticmethod
42 | def forward(x):
43 | return x * F.softplus(x).tanh()
44 |
45 |
46 | class MemoryEfficientMish(nn.Module):
47 | class F(torch.autograd.Function):
48 | @staticmethod
49 | def forward(ctx, x):
50 | ctx.save_for_backward(x)
51 | return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
52 |
53 | @staticmethod
54 | def backward(ctx, grad_output):
55 | x = ctx.saved_tensors[0]
56 | sx = torch.sigmoid(x)
57 | fx = F.softplus(x).tanh()
58 | return grad_output * (fx + x * sx * (1 - fx * fx))
59 |
60 | def forward(self, x):
61 | return self.F.apply(x)
62 |
63 |
64 | # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
65 | class FReLU(nn.Module):
66 | def __init__(self, c1, k=3): # ch_in, kernel
67 | super().__init__()
68 | self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
69 | self.bn = nn.BatchNorm2d(c1)
70 |
71 | def forward(self, x):
72 | return torch.max(x, self.bn(self.conv(x)))
73 |
--------------------------------------------------------------------------------
/utils/add_nms.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import onnx
3 | from onnx import shape_inference
4 | try:
5 | import onnx_graphsurgeon as gs
6 | except Exception as e:
7 | print('Import onnx_graphsurgeon failure: %s' % e)
8 |
9 | import logging
10 |
11 | LOGGER = logging.getLogger(__name__)
12 |
13 | class RegisterNMS(object):
14 | def __init__(
15 | self,
16 | onnx_model_path: str,
17 | precision: str = "fp32",
18 | ):
19 |
20 | self.graph = gs.import_onnx(onnx.load(onnx_model_path))
21 | assert self.graph
22 | LOGGER.info("ONNX graph created successfully")
23 | # Fold constants via ONNX-GS that PyTorch2ONNX may have missed
24 | self.graph.fold_constants()
25 | self.precision = precision
26 | self.batch_size = 1
27 | def infer(self):
28 | """
29 | Sanitize the graph by cleaning any unconnected nodes, do a topological resort,
30 | and fold constant inputs values. When possible, run shape inference on the
31 | ONNX graph to determine tensor shapes.
32 | """
33 | for _ in range(3):
34 | count_before = len(self.graph.nodes)
35 |
36 | self.graph.cleanup().toposort()
37 | try:
38 | for node in self.graph.nodes:
39 | for o in node.outputs:
40 | o.shape = None
41 | model = gs.export_onnx(self.graph)
42 | model = shape_inference.infer_shapes(model)
43 | self.graph = gs.import_onnx(model)
44 | except Exception as e:
45 | LOGGER.info(f"Shape inference could not be performed at this time:\n{e}")
46 | try:
47 | self.graph.fold_constants(fold_shapes=True)
48 | except TypeError as e:
49 | LOGGER.error(
50 | "This version of ONNX GraphSurgeon does not support folding shapes, "
51 | f"please upgrade your onnx_graphsurgeon module. Error:\n{e}"
52 | )
53 | raise
54 |
55 | count_after = len(self.graph.nodes)
56 | if count_before == count_after:
57 | # No new folding occurred in this iteration, so we can stop for now.
58 | break
59 |
60 | def save(self, output_path):
61 | """
62 | Save the ONNX model to the given location.
63 | Args:
64 | output_path: Path pointing to the location where to write
65 | out the updated ONNX model.
66 | """
67 | self.graph.cleanup().toposort()
68 | model = gs.export_onnx(self.graph)
69 | onnx.save(model, output_path)
70 | LOGGER.info(f"Saved ONNX model to {output_path}")
71 |
72 | def register_nms(
73 | self,
74 | *,
75 | score_thresh: float = 0.25,
76 | nms_thresh: float = 0.45,
77 | detections_per_img: int = 100,
78 | ):
79 | """
80 | Register the ``EfficientNMS_TRT`` plugin node.
81 | NMS expects these shapes for its input tensors:
82 | - box_net: [batch_size, number_boxes, 4]
83 | - class_net: [batch_size, number_boxes, number_labels]
84 | Args:
85 | score_thresh (float): The scalar threshold for score (low scoring boxes are removed).
86 | nms_thresh (float): The scalar threshold for IOU (new boxes that have high IOU
87 | overlap with previously selected boxes are removed).
88 | detections_per_img (int): Number of best detections to keep after NMS.
89 | """
90 |
91 | self.infer()
92 | # Find the concat node at the end of the network
93 | op_inputs = self.graph.outputs
94 | op = "EfficientNMS_TRT"
95 | attrs = {
96 | "plugin_version": "1",
97 | "background_class": -1, # no background class
98 | "max_output_boxes": detections_per_img,
99 | "score_threshold": score_thresh,
100 | "iou_threshold": nms_thresh,
101 | "score_activation": False,
102 | "box_coding": 0,
103 | }
104 |
105 | if self.precision == "fp32":
106 | dtype_output = np.float32
107 | elif self.precision == "fp16":
108 | dtype_output = np.float16
109 | else:
110 | raise NotImplementedError(f"Currently not supports precision: {self.precision}")
111 |
112 | # NMS Outputs
113 | output_num_detections = gs.Variable(
114 | name="num_dets",
115 | dtype=np.int32,
116 | shape=[self.batch_size, 1],
117 | ) # A scalar indicating the number of valid detections per batch image.
118 | output_boxes = gs.Variable(
119 | name="det_boxes",
120 | dtype=dtype_output,
121 | shape=[self.batch_size, detections_per_img, 4],
122 | )
123 | output_scores = gs.Variable(
124 | name="det_scores",
125 | dtype=dtype_output,
126 | shape=[self.batch_size, detections_per_img],
127 | )
128 | output_labels = gs.Variable(
129 | name="det_classes",
130 | dtype=np.int32,
131 | shape=[self.batch_size, detections_per_img],
132 | )
133 |
134 | op_outputs = [output_num_detections, output_boxes, output_scores, output_labels]
135 |
136 | # Create the NMS Plugin node with the selected inputs. The outputs of the node will also
137 | # become the final outputs of the graph.
138 | self.graph.layer(op=op, name="batched_nms", inputs=op_inputs, outputs=op_outputs, attrs=attrs)
139 | LOGGER.info(f"Created NMS plugin '{op}' with attributes: {attrs}")
140 |
141 | self.graph.outputs = op_outputs
142 |
143 | self.infer()
144 |
145 | def save(self, output_path):
146 | """
147 | Save the ONNX model to the given location.
148 | Args:
149 | output_path: Path pointing to the location where to write
150 | out the updated ONNX model.
151 | """
152 | self.graph.cleanup().toposort()
153 | model = gs.export_onnx(self.graph)
154 | onnx.save(model, output_path)
155 | LOGGER.info(f"Saved ONNX model to {output_path}")
156 |
--------------------------------------------------------------------------------
/utils/autoanchor.py:
--------------------------------------------------------------------------------
1 | # Auto-anchor utils
2 |
3 | import numpy as np
4 | import torch
5 | import yaml
6 | from scipy.cluster.vq import kmeans
7 | from tqdm import tqdm
8 |
9 | from utils.general import colorstr
10 |
11 |
12 | def check_anchor_order(m):
13 | # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary
14 | a = m.anchor_grid.prod(-1).view(-1) # anchor area
15 | da = a[-1] - a[0] # delta a
16 | ds = m.stride[-1] - m.stride[0] # delta s
17 | if da.sign() != ds.sign(): # same order
18 | print('Reversing anchor order')
19 | m.anchors[:] = m.anchors.flip(0)
20 | m.anchor_grid[:] = m.anchor_grid.flip(0)
21 |
22 |
23 | def check_anchors(dataset, model, thr=4.0, imgsz=640):
24 | # Check anchor fit to data, recompute if necessary
25 | prefix = colorstr('autoanchor: ')
26 | print(f'\n{prefix}Analyzing anchors... ', end='')
27 | m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
28 | shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29 | scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
30 | wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
31 |
32 | def metric(k): # compute metric
33 | r = wh[:, None] / k[None]
34 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
35 | best = x.max(1)[0] # best_x
36 | aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
37 | bpr = (best > 1. / thr).float().mean() # best possible recall
38 | return bpr, aat
39 |
40 | anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
41 | bpr, aat = metric(anchors)
42 | print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
43 | if bpr < 0.98: # threshold to recompute
44 | print('. Attempting to improve anchors, please wait...')
45 | na = m.anchor_grid.numel() // 2 # number of anchors
46 | try:
47 | anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
48 | except Exception as e:
49 | print(f'{prefix}ERROR: {e}')
50 | new_bpr = metric(anchors)[0]
51 | if new_bpr > bpr: # replace anchors
52 | anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
53 | m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
54 | check_anchor_order(m)
55 | m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
56 | print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
57 | else:
58 | print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
59 | print('') # newline
60 |
61 |
62 | def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
63 | """ Creates kmeans-evolved anchors from training dataset
64 |
65 | Arguments:
66 | path: path to dataset *.yaml, or a loaded dataset
67 | n: number of anchors
68 | img_size: image size used for training
69 | thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
70 | gen: generations to evolve anchors using genetic algorithm
71 | verbose: print all results
72 |
73 | Return:
74 | k: kmeans evolved anchors
75 |
76 | Usage:
77 | from utils.autoanchor import *; _ = kmean_anchors()
78 | """
79 | thr = 1. / thr
80 | prefix = colorstr('autoanchor: ')
81 |
82 | def metric(k, wh): # compute metrics
83 | r = wh[:, None] / k[None]
84 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
85 | # x = wh_iou(wh, torch.tensor(k)) # iou metric
86 | return x, x.max(1)[0] # x, best_x
87 |
88 | def anchor_fitness(k): # mutation fitness
89 | _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
90 | return (best * (best > thr).float()).mean() # fitness
91 |
92 | def print_results(k):
93 | k = k[np.argsort(k.prod(1))] # sort small to large
94 | x, best = metric(k, wh0)
95 | bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
96 | print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
97 | print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
98 | f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
99 | for i, x in enumerate(k):
100 | print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
101 | return k
102 |
103 | if isinstance(path, str): # *.yaml file
104 | with open(path) as f:
105 | data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
106 | from utils.datasets import LoadImagesAndLabels
107 | dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
108 | else:
109 | dataset = path # dataset
110 |
111 | # Get label wh
112 | shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
113 | wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
114 |
115 | # Filter
116 | i = (wh0 < 3.0).any(1).sum()
117 | if i:
118 | print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
119 | wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
120 | # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
121 |
122 | # Kmeans calculation
123 | print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
124 | s = wh.std(0) # sigmas for whitening
125 | k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
126 | assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
127 | k *= s
128 | wh = torch.tensor(wh, dtype=torch.float32) # filtered
129 | wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
130 | k = print_results(k)
131 |
132 | # Plot
133 | # k, d = [None] * 20, [None] * 20
134 | # for i in tqdm(range(1, 21)):
135 | # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
136 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
137 | # ax = ax.ravel()
138 | # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
139 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
140 | # ax[0].hist(wh[wh[:, 0]<100, 0],400)
141 | # ax[1].hist(wh[wh[:, 1]<100, 1],400)
142 | # fig.savefig('wh.png', dpi=200)
143 |
144 | # Evolve
145 | npr = np.random
146 | f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
147 | pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
148 | for _ in pbar:
149 | v = np.ones(sh)
150 | while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
151 | v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
152 | kg = (k.copy() * v).clip(min=2.0)
153 | fg = anchor_fitness(kg)
154 | if fg > f:
155 | f, k = fg, kg.copy()
156 | pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
157 | if verbose:
158 | print_results(k)
159 |
160 | return print_results(k)
161 |
--------------------------------------------------------------------------------
/utils/aws/__init__.py:
--------------------------------------------------------------------------------
1 | #init
--------------------------------------------------------------------------------
/utils/aws/mime.sh:
--------------------------------------------------------------------------------
1 | # AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
2 | # This script will run on every instance restart, not only on first start
3 | # --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
4 |
5 | Content-Type: multipart/mixed; boundary="//"
6 | MIME-Version: 1.0
7 |
8 | --//
9 | Content-Type: text/cloud-config; charset="us-ascii"
10 | MIME-Version: 1.0
11 | Content-Transfer-Encoding: 7bit
12 | Content-Disposition: attachment; filename="cloud-config.txt"
13 |
14 | #cloud-config
15 | cloud_final_modules:
16 | - [scripts-user, always]
17 |
18 | --//
19 | Content-Type: text/x-shellscript; charset="us-ascii"
20 | MIME-Version: 1.0
21 | Content-Transfer-Encoding: 7bit
22 | Content-Disposition: attachment; filename="userdata.txt"
23 |
24 | #!/bin/bash
25 | # --- paste contents of userdata.sh here ---
26 | --//
27 |
--------------------------------------------------------------------------------
/utils/aws/resume.py:
--------------------------------------------------------------------------------
1 | # Resume all interrupted trainings in yolor/ dir including DDP trainings
2 | # Usage: $ python utils/aws/resume.py
3 |
4 | import os
5 | import sys
6 | from pathlib import Path
7 |
8 | import torch
9 | import yaml
10 |
11 | sys.path.append('./') # to run '$ python *.py' files in subdirectories
12 |
13 | port = 0 # --master_port
14 | path = Path('').resolve()
15 | for last in path.rglob('*/**/last.pt'):
16 | ckpt = torch.load(last)
17 | if ckpt['optimizer'] is None:
18 | continue
19 |
20 | # Load opt.yaml
21 | with open(last.parent.parent / 'opt.yaml') as f:
22 | opt = yaml.load(f, Loader=yaml.SafeLoader)
23 |
24 | # Get device count
25 | d = opt['device'].split(',') # devices
26 | nd = len(d) # number of devices
27 | ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
28 |
29 | if ddp: # multi-GPU
30 | port += 1
31 | cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
32 | else: # single-GPU
33 | cmd = f'python train.py --resume {last}'
34 |
35 | cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
36 | print(cmd)
37 | os.system(cmd)
38 |
--------------------------------------------------------------------------------
/utils/aws/userdata.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
3 | # This script will run only once on first instance start (for a re-start script see mime.sh)
4 | # /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
5 | # Use >300 GB SSD
6 |
7 | cd home/ubuntu
8 | if [ ! -d yolor ]; then
9 | echo "Running first-time script." # install dependencies, download COCO, pull Docker
10 | git clone -b main https://github.com/WongKinYiu/yolov7 && sudo chmod -R 777 yolov7
11 | cd yolov7
12 | bash data/scripts/get_coco.sh && echo "Data done." &
13 | sudo docker pull nvcr.io/nvidia/pytorch:21.08-py3 && echo "Docker done." &
14 | python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
15 | wait && echo "All tasks done." # finish background tasks
16 | else
17 | echo "Running re-start script." # resume interrupted runs
18 | i=0
19 | list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
20 | while IFS= read -r id; do
21 | ((i++))
22 | echo "restarting container $i: $id"
23 | sudo docker start $id
24 | # sudo docker exec -it $id python train.py --resume # single-GPU
25 | sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
26 | done <<<"$list"
27 | fi
28 |
--------------------------------------------------------------------------------
/utils/general.py:
--------------------------------------------------------------------------------
1 | # YOLOR general utils
2 |
3 | import glob
4 | import logging
5 | import math
6 | import os
7 | import platform
8 | import random
9 | import re
10 | import subprocess
11 | import time
12 | from pathlib import Path
13 |
14 | import cv2
15 | import numpy as np
16 | import pandas as pd
17 | import torch
18 | import torchvision
19 | import yaml
20 |
21 | from utils.google_utils import gsutil_getsize
22 | from utils.metrics import fitness
23 | from utils.torch_utils import init_torch_seeds
24 |
25 | # Settings
26 | torch.set_printoptions(linewidth=320, precision=5, profile='long')
27 | np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
28 | pd.options.display.max_columns = 10
29 | cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
30 | os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
31 |
32 |
33 | def set_logging(rank=-1):
34 | logging.basicConfig(
35 | format="%(message)s",
36 | level=logging.INFO if rank in [-1, 0] else logging.WARN)
37 |
38 |
39 | def init_seeds(seed=0):
40 | # Initialize random number generator (RNG) seeds
41 | random.seed(seed)
42 | np.random.seed(seed)
43 | init_torch_seeds(seed)
44 |
45 |
46 | def get_latest_run(search_dir='.'):
47 | # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
48 | last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
49 | return max(last_list, key=os.path.getctime) if last_list else ''
50 |
51 |
52 | def isdocker():
53 | # Is environment a Docker container
54 | return Path('/workspace').exists() # or Path('/.dockerenv').exists()
55 |
56 |
57 | def emojis(str=''):
58 | # Return platform-dependent emoji-safe version of string
59 | return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
60 |
61 |
62 | def check_online():
63 | # Check internet connectivity
64 | import socket
65 | try:
66 | socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
67 | return True
68 | except OSError:
69 | return False
70 |
71 |
72 | def check_git_status():
73 | # Recommend 'git pull' if code is out of date
74 | print(colorstr('github: '), end='')
75 | try:
76 | assert Path('.git').exists(), 'skipping check (not a git repository)'
77 | assert not isdocker(), 'skipping check (Docker image)'
78 | assert check_online(), 'skipping check (offline)'
79 |
80 | cmd = 'git fetch && git config --get remote.origin.url'
81 | url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
82 | branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
83 | n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
84 | if n > 0:
85 | s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
86 | f"Use 'git pull' to update or 'git clone {url}' to download latest."
87 | else:
88 | s = f'up to date with {url} ✅'
89 | print(emojis(s)) # emoji-safe
90 | except Exception as e:
91 | print(e)
92 |
93 |
94 | def check_requirements(requirements='requirements.txt', exclude=()):
95 | # Check installed dependencies meet requirements (pass *.txt file or list of packages)
96 | import pkg_resources as pkg
97 | prefix = colorstr('red', 'bold', 'requirements:')
98 | if isinstance(requirements, (str, Path)): # requirements.txt file
99 | file = Path(requirements)
100 | if not file.exists():
101 | print(f"{prefix} {file.resolve()} not found, check failed.")
102 | return
103 | requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
104 | else: # list or tuple of packages
105 | requirements = [x for x in requirements if x not in exclude]
106 |
107 | n = 0 # number of packages updates
108 | for r in requirements:
109 | try:
110 | pkg.require(r)
111 | except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
112 | n += 1
113 | print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...")
114 | print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
115 |
116 | if n: # if packages updated
117 | source = file.resolve() if 'file' in locals() else requirements
118 | s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
119 | f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
120 | print(emojis(s)) # emoji-safe
121 |
122 |
123 | def check_img_size(img_size, s=32):
124 | # Verify img_size is a multiple of stride s
125 | new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
126 | if new_size != img_size:
127 | print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
128 | return new_size
129 |
130 |
131 | def check_imshow():
132 | # Check if environment supports image displays
133 | try:
134 | assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
135 | cv2.imshow('test', np.zeros((1, 1, 3)))
136 | cv2.waitKey(1)
137 | cv2.destroyAllWindows()
138 | cv2.waitKey(1)
139 | return True
140 | except Exception as e:
141 | print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
142 | return False
143 |
144 |
145 | def check_file(file):
146 | # Search for file if not found
147 | if Path(file).is_file() or file == '':
148 | return file
149 | else:
150 | files = glob.glob('./**/' + file, recursive=True) # find file
151 | assert len(files), f'File Not Found: {file}' # assert file was found
152 | assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
153 | return files[0] # return file
154 |
155 |
156 | def check_dataset(dict):
157 | # Download dataset if not found locally
158 | val, s = dict.get('val'), dict.get('download')
159 | if val and len(val):
160 | val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
161 | if not all(x.exists() for x in val):
162 | print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
163 | if s and len(s): # download script
164 | print('Downloading %s ...' % s)
165 | if s.startswith('http') and s.endswith('.zip'): # URL
166 | f = Path(s).name # filename
167 | torch.hub.download_url_to_file(s, f)
168 | r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
169 | else: # bash script
170 | r = os.system(s)
171 | print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
172 | else:
173 | raise Exception('Dataset not found.')
174 |
175 |
176 | def make_divisible(x, divisor):
177 | # Returns x evenly divisible by divisor
178 | return math.ceil(x / divisor) * divisor
179 |
180 |
181 | def clean_str(s):
182 | # Cleans a string by replacing special characters with underscore _
183 | return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
184 |
185 |
186 | def one_cycle(y1=0.0, y2=1.0, steps=100):
187 | # lambda function for sinusoidal ramp from y1 to y2
188 | return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
189 |
190 |
191 | def colorstr(*input):
192 | # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
193 | *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
194 | colors = {'black': '\033[30m', # basic colors
195 | 'red': '\033[31m',
196 | 'green': '\033[32m',
197 | 'yellow': '\033[33m',
198 | 'blue': '\033[34m',
199 | 'magenta': '\033[35m',
200 | 'cyan': '\033[36m',
201 | 'white': '\033[37m',
202 | 'bright_black': '\033[90m', # bright colors
203 | 'bright_red': '\033[91m',
204 | 'bright_green': '\033[92m',
205 | 'bright_yellow': '\033[93m',
206 | 'bright_blue': '\033[94m',
207 | 'bright_magenta': '\033[95m',
208 | 'bright_cyan': '\033[96m',
209 | 'bright_white': '\033[97m',
210 | 'end': '\033[0m', # misc
211 | 'bold': '\033[1m',
212 | 'underline': '\033[4m'}
213 | return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
214 |
215 |
216 | def labels_to_class_weights(labels, nc=80):
217 | # Get class weights (inverse frequency) from training labels
218 | if labels[0] is None: # no labels loaded
219 | return torch.Tensor()
220 |
221 | labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
222 | classes = labels[:, 0].astype(np.int32) # labels = [class xywh]
223 | weights = np.bincount(classes, minlength=nc) # occurrences per class
224 |
225 | # Prepend gridpoint count (for uCE training)
226 | # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
227 | # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
228 |
229 | weights[weights == 0] = 1 # replace empty bins with 1
230 | weights = 1 / weights # number of targets per class
231 | weights /= weights.sum() # normalize
232 | return torch.from_numpy(weights)
233 |
234 |
235 | def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
236 | # Produces image weights based on class_weights and image contents
237 | class_counts = np.array([np.bincount(x[:, 0].astype(np.int32), minlength=nc) for x in labels])
238 | image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
239 | # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
240 | return image_weights
241 |
242 |
243 | def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
244 | # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
245 | # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
246 | # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
247 | # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
248 | # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
249 | x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
250 | 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
251 | 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
252 | return x
253 |
254 |
255 | def xyxy2xywh(x):
256 | # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
257 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
258 | y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
259 | y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
260 | y[:, 2] = x[:, 2] - x[:, 0] # width
261 | y[:, 3] = x[:, 3] - x[:, 1] # height
262 | return y
263 |
264 |
265 | def xywh2xyxy(x):
266 | # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
267 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
268 | y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
269 | y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
270 | y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
271 | y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
272 | return y
273 |
274 |
275 | def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
276 | # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
277 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
278 | y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
279 | y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
280 | y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
281 | y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
282 | return y
283 |
284 |
285 | def xyn2xy(x, w=640, h=640, padw=0, padh=0):
286 | # Convert normalized segments into pixel segments, shape (n,2)
287 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
288 | y[:, 0] = w * x[:, 0] + padw # top left x
289 | y[:, 1] = h * x[:, 1] + padh # top left y
290 | return y
291 |
292 |
293 | def segment2box(segment, width=640, height=640):
294 | # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
295 | x, y = segment.T # segment xy
296 | inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
297 | x, y, = x[inside], y[inside]
298 | return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
299 |
300 |
301 | def segments2boxes(segments):
302 | # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
303 | boxes = []
304 | for s in segments:
305 | x, y = s.T # segment xy
306 | boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
307 | return xyxy2xywh(np.array(boxes)) # cls, xywh
308 |
309 |
310 | def resample_segments(segments, n=1000):
311 | # Up-sample an (n,2) segment
312 | for i, s in enumerate(segments):
313 | s = np.concatenate((s, s[0:1, :]), axis=0)
314 | x = np.linspace(0, len(s) - 1, n)
315 | xp = np.arange(len(s))
316 | segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
317 | return segments
318 |
319 |
320 | def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
321 | # Rescale coords (xyxy) from img1_shape to img0_shape
322 | if ratio_pad is None: # calculate from img0_shape
323 | gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
324 | pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
325 | else:
326 | gain = ratio_pad[0][0]
327 | pad = ratio_pad[1]
328 |
329 | coords[:, [0, 2]] -= pad[0] # x padding
330 | coords[:, [1, 3]] -= pad[1] # y padding
331 | coords[:, :4] /= gain
332 | clip_coords(coords, img0_shape)
333 | return coords
334 |
335 |
336 | def clip_coords(boxes, img_shape):
337 | # Clip bounding xyxy bounding boxes to image shape (height, width)
338 | boxes[:, 0].clamp_(0, img_shape[1]) # x1
339 | boxes[:, 1].clamp_(0, img_shape[0]) # y1
340 | boxes[:, 2].clamp_(0, img_shape[1]) # x2
341 | boxes[:, 3].clamp_(0, img_shape[0]) # y2
342 |
343 |
344 | def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
345 | # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
346 | box2 = box2.T
347 |
348 | # Get the coordinates of bounding boxes
349 | if x1y1x2y2: # x1, y1, x2, y2 = box1
350 | b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
351 | b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
352 | else: # transform from xywh to xyxy
353 | b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
354 | b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
355 | b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
356 | b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
357 |
358 | # Intersection area
359 | inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
360 | (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
361 |
362 | # Union Area
363 | w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
364 | w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
365 | union = w1 * h1 + w2 * h2 - inter + eps
366 |
367 | iou = inter / union
368 |
369 | if GIoU or DIoU or CIoU:
370 | cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
371 | ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
372 | if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
373 | c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
374 | rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
375 | (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
376 | if DIoU:
377 | return iou - rho2 / c2 # DIoU
378 | elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
379 | v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
380 | with torch.no_grad():
381 | alpha = v / (v - iou + (1 + eps))
382 | return iou - (rho2 / c2 + v * alpha) # CIoU
383 | else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
384 | c_area = cw * ch + eps # convex area
385 | return iou - (c_area - union) / c_area # GIoU
386 | else:
387 | return iou # IoU
388 |
389 |
390 |
391 |
392 | def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):
393 | # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
394 | box2 = box2.T
395 |
396 | # Get the coordinates of bounding boxes
397 | if x1y1x2y2: # x1, y1, x2, y2 = box1
398 | b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
399 | b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
400 | else: # transform from xywh to xyxy
401 | b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
402 | b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
403 | b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
404 | b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
405 |
406 | # Intersection area
407 | inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
408 | (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
409 |
410 | # Union Area
411 | w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
412 | w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
413 | union = w1 * h1 + w2 * h2 - inter + eps
414 |
415 | # change iou into pow(iou+eps)
416 | # iou = inter / union
417 | iou = torch.pow(inter/union + eps, alpha)
418 | # beta = 2 * alpha
419 | if GIoU or DIoU or CIoU:
420 | cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
421 | ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
422 | if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
423 | c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal
424 | rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
425 | rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
426 | rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance
427 | if DIoU:
428 | return iou - rho2 / c2 # DIoU
429 | elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
430 | v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
431 | with torch.no_grad():
432 | alpha_ciou = v / ((1 + eps) - inter / union + v)
433 | # return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
434 | return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
435 | else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
436 | # c_area = cw * ch + eps # convex area
437 | # return iou - (c_area - union) / c_area # GIoU
438 | c_area = torch.max(cw * ch + eps, union) # convex area
439 | return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
440 | else:
441 | return iou # torch.log(iou+eps) or iou
442 |
443 |
444 | def box_iou(box1, box2):
445 | # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
446 | """
447 | Return intersection-over-union (Jaccard index) of boxes.
448 | Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
449 | Arguments:
450 | box1 (Tensor[N, 4])
451 | box2 (Tensor[M, 4])
452 | Returns:
453 | iou (Tensor[N, M]): the NxM matrix containing the pairwise
454 | IoU values for every element in boxes1 and boxes2
455 | """
456 |
457 | def box_area(box):
458 | # box = 4xn
459 | return (box[2] - box[0]) * (box[3] - box[1])
460 |
461 | area1 = box_area(box1.T)
462 | area2 = box_area(box2.T)
463 |
464 | # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
465 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
466 | return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
467 |
468 |
469 | def wh_iou(wh1, wh2):
470 | # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
471 | wh1 = wh1[:, None] # [N,1,2]
472 | wh2 = wh2[None] # [1,M,2]
473 | inter = torch.min(wh1, wh2).prod(2) # [N,M]
474 | return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
475 |
476 |
477 | def box_giou(box1, box2):
478 | """
479 | Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
480 | Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
481 | ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
482 | Args:
483 | boxes1 (Tensor[N, 4]): first set of boxes
484 | boxes2 (Tensor[M, 4]): second set of boxes
485 | Returns:
486 | Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
487 | for every element in boxes1 and boxes2
488 | """
489 |
490 | def box_area(box):
491 | # box = 4xn
492 | return (box[2] - box[0]) * (box[3] - box[1])
493 |
494 | area1 = box_area(box1.T)
495 | area2 = box_area(box2.T)
496 |
497 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
498 | union = (area1[:, None] + area2 - inter)
499 |
500 | iou = inter / union
501 |
502 | lti = torch.min(box1[:, None, :2], box2[:, :2])
503 | rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
504 |
505 | whi = (rbi - lti).clamp(min=0) # [N,M,2]
506 | areai = whi[:, :, 0] * whi[:, :, 1]
507 |
508 | return iou - (areai - union) / areai
509 |
510 |
511 | def box_ciou(box1, box2, eps: float = 1e-7):
512 | """
513 | Return complete intersection-over-union (Jaccard index) between two sets of boxes.
514 | Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
515 | ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
516 | Args:
517 | boxes1 (Tensor[N, 4]): first set of boxes
518 | boxes2 (Tensor[M, 4]): second set of boxes
519 | eps (float, optional): small number to prevent division by zero. Default: 1e-7
520 | Returns:
521 | Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values
522 | for every element in boxes1 and boxes2
523 | """
524 |
525 | def box_area(box):
526 | # box = 4xn
527 | return (box[2] - box[0]) * (box[3] - box[1])
528 |
529 | area1 = box_area(box1.T)
530 | area2 = box_area(box2.T)
531 |
532 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
533 | union = (area1[:, None] + area2 - inter)
534 |
535 | iou = inter / union
536 |
537 | lti = torch.min(box1[:, None, :2], box2[:, :2])
538 | rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
539 |
540 | whi = (rbi - lti).clamp(min=0) # [N,M,2]
541 | diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
542 |
543 | # centers of boxes
544 | x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
545 | y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
546 | x_g = (box2[:, 0] + box2[:, 2]) / 2
547 | y_g = (box2[:, 1] + box2[:, 3]) / 2
548 | # The distance between boxes' centers squared.
549 | centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
550 |
551 | w_pred = box1[:, None, 2] - box1[:, None, 0]
552 | h_pred = box1[:, None, 3] - box1[:, None, 1]
553 |
554 | w_gt = box2[:, 2] - box2[:, 0]
555 | h_gt = box2[:, 3] - box2[:, 1]
556 |
557 | v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
558 | with torch.no_grad():
559 | alpha = v / (1 - iou + v + eps)
560 | return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v
561 |
562 |
563 | def box_diou(box1, box2, eps: float = 1e-7):
564 | """
565 | Return distance intersection-over-union (Jaccard index) between two sets of boxes.
566 | Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
567 | ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
568 | Args:
569 | boxes1 (Tensor[N, 4]): first set of boxes
570 | boxes2 (Tensor[M, 4]): second set of boxes
571 | eps (float, optional): small number to prevent division by zero. Default: 1e-7
572 | Returns:
573 | Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values
574 | for every element in boxes1 and boxes2
575 | """
576 |
577 | def box_area(box):
578 | # box = 4xn
579 | return (box[2] - box[0]) * (box[3] - box[1])
580 |
581 | area1 = box_area(box1.T)
582 | area2 = box_area(box2.T)
583 |
584 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
585 | union = (area1[:, None] + area2 - inter)
586 |
587 | iou = inter / union
588 |
589 | lti = torch.min(box1[:, None, :2], box2[:, :2])
590 | rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
591 |
592 | whi = (rbi - lti).clamp(min=0) # [N,M,2]
593 | diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
594 |
595 | # centers of boxes
596 | x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
597 | y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
598 | x_g = (box2[:, 0] + box2[:, 2]) / 2
599 | y_g = (box2[:, 1] + box2[:, 3]) / 2
600 | # The distance between boxes' centers squared.
601 | centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
602 |
603 | # The distance IoU is the IoU penalized by a normalized
604 | # distance between boxes' centers squared.
605 | return iou - (centers_distance_squared / diagonal_distance_squared)
606 |
607 |
608 | def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
609 | labels=()):
610 | """Runs Non-Maximum Suppression (NMS) on inference results
611 |
612 | Returns:
613 | list of detections, on (n,6) tensor per image [xyxy, conf, cls]
614 | """
615 |
616 | nc = prediction.shape[2] - 5 # number of classes
617 | xc = prediction[..., 4] > conf_thres # candidates
618 |
619 | # Settings
620 | min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
621 | max_det = 300 # maximum number of detections per image
622 | max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
623 | time_limit = 10.0 # seconds to quit after
624 | redundant = True # require redundant detections
625 | multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
626 | merge = False # use merge-NMS
627 |
628 | t = time.time()
629 | output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
630 | for xi, x in enumerate(prediction): # image index, image inference
631 | # Apply constraints
632 | # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
633 | x = x[xc[xi]] # confidence
634 |
635 | # Cat apriori labels if autolabelling
636 | if labels and len(labels[xi]):
637 | l = labels[xi]
638 | v = torch.zeros((len(l), nc + 5), device=x.device)
639 | v[:, :4] = l[:, 1:5] # box
640 | v[:, 4] = 1.0 # conf
641 | v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
642 | x = torch.cat((x, v), 0)
643 |
644 | # If none remain process next image
645 | if not x.shape[0]:
646 | continue
647 |
648 | # Compute conf
649 | if nc == 1:
650 | x[:, 5:] = x[:, 4:5] # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
651 | # so there is no need to multiplicate.
652 | else:
653 | x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
654 |
655 | # Box (center x, center y, width, height) to (x1, y1, x2, y2)
656 | box = xywh2xyxy(x[:, :4])
657 |
658 | # Detections matrix nx6 (xyxy, conf, cls)
659 | if multi_label:
660 | i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
661 | x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
662 | else: # best class only
663 | conf, j = x[:, 5:].max(1, keepdim=True)
664 | x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
665 |
666 | # Filter by class
667 | if classes is not None:
668 | x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
669 |
670 | # Apply finite constraint
671 | # if not torch.isfinite(x).all():
672 | # x = x[torch.isfinite(x).all(1)]
673 |
674 | # Check shape
675 | n = x.shape[0] # number of boxes
676 | if not n: # no boxes
677 | continue
678 | elif n > max_nms: # excess boxes
679 | x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
680 |
681 | # Batched NMS
682 | c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
683 | boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
684 | i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
685 | if i.shape[0] > max_det: # limit detections
686 | i = i[:max_det]
687 | if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
688 | # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
689 | iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
690 | weights = iou * scores[None] # box weights
691 | x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
692 | if redundant:
693 | i = i[iou.sum(1) > 1] # require redundancy
694 |
695 | output[xi] = x[i]
696 | if (time.time() - t) > time_limit:
697 | print(f'WARNING: NMS time limit {time_limit}s exceeded')
698 | break # time limit exceeded
699 |
700 | return output
701 |
702 |
703 | def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
704 | labels=(), kpt_label=False, nc=None, nkpt=None):
705 | """Runs Non-Maximum Suppression (NMS) on inference results
706 |
707 | Returns:
708 | list of detections, on (n,6) tensor per image [xyxy, conf, cls]
709 | """
710 | if nc is None:
711 | nc = prediction.shape[2] - 5 if not kpt_label else prediction.shape[2] - 56 # number of classes
712 | xc = prediction[..., 4] > conf_thres # candidates
713 |
714 | # Settings
715 | min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
716 | max_det = 300 # maximum number of detections per image
717 | max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
718 | time_limit = 10.0 # seconds to quit after
719 | redundant = True # require redundant detections
720 | multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
721 | merge = False # use merge-NMS
722 |
723 | t = time.time()
724 | output = [torch.zeros((0,6), device=prediction.device)] * prediction.shape[0]
725 | for xi, x in enumerate(prediction): # image index, image inference
726 | # Apply constraints
727 | # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
728 | x = x[xc[xi]] # confidence
729 |
730 | # Cat apriori labels if autolabelling
731 | if labels and len(labels[xi]):
732 | l = labels[xi]
733 | v = torch.zeros((len(l), nc + 5), device=x.device)
734 | v[:, :4] = l[:, 1:5] # box
735 | v[:, 4] = 1.0 # conf
736 | v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
737 | x = torch.cat((x, v), 0)
738 |
739 | # If none remain process next image
740 | if not x.shape[0]:
741 | continue
742 |
743 | # Compute conf
744 | x[:, 5:5+nc] *= x[:, 4:5] # conf = obj_conf * cls_conf
745 |
746 | # Box (center x, center y, width, height) to (x1, y1, x2, y2)
747 | box = xywh2xyxy(x[:, :4])
748 |
749 | # Detections matrix nx6 (xyxy, conf, cls)
750 | if multi_label:
751 | i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
752 | x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
753 | else: # best class only
754 | if not kpt_label:
755 | conf, j = x[:, 5:].max(1, keepdim=True)
756 | x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
757 | else:
758 | kpts = x[:, 6:]
759 | conf, j = x[:, 5:6].max(1, keepdim=True)
760 | x = torch.cat((box, conf, j.float(), kpts), 1)[conf.view(-1) > conf_thres]
761 |
762 |
763 | # Filter by class
764 | if classes is not None:
765 | x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
766 |
767 | # Apply finite constraint
768 | # if not torch.isfinite(x).all():
769 | # x = x[torch.isfinite(x).all(1)]
770 |
771 | # Check shape
772 | n = x.shape[0] # number of boxes
773 | if not n: # no boxes
774 | continue
775 | elif n > max_nms: # excess boxes
776 | x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
777 |
778 | # Batched NMS
779 | c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
780 | boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
781 | i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
782 | if i.shape[0] > max_det: # limit detections
783 | i = i[:max_det]
784 | if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
785 | # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
786 | iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
787 | weights = iou * scores[None] # box weights
788 | x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
789 | if redundant:
790 | i = i[iou.sum(1) > 1] # require redundancy
791 |
792 | output[xi] = x[i]
793 | if (time.time() - t) > time_limit:
794 | print(f'WARNING: NMS time limit {time_limit}s exceeded')
795 | break # time limit exceeded
796 |
797 | return output
798 |
799 |
800 | def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
801 | # Strip optimizer from 'f' to finalize training, optionally save as 's'
802 | x = torch.load(f, map_location=torch.device('cpu'))
803 | if x.get('ema'):
804 | x['model'] = x['ema'] # replace model with ema
805 | for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
806 | x[k] = None
807 | x['epoch'] = -1
808 | x['model'].half() # to FP16
809 | for p in x['model'].parameters():
810 | p.requires_grad = False
811 | torch.save(x, s or f)
812 | mb = os.path.getsize(s or f) / 1E6 # filesize
813 | print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
814 |
815 |
816 | def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
817 | # Print mutation results to evolve.txt (for use with train.py --evolve)
818 | a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
819 | b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
820 | c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
821 | print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
822 |
823 | if bucket:
824 | url = 'gs://%s/evolve.txt' % bucket
825 | if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
826 | os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
827 |
828 | with open('evolve.txt', 'a') as f: # append result
829 | f.write(c + b + '\n')
830 | x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
831 | x = x[np.argsort(-fitness(x))] # sort
832 | np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
833 |
834 | # Save yaml
835 | for i, k in enumerate(hyp.keys()):
836 | hyp[k] = float(x[0, i + 7])
837 | with open(yaml_file, 'w') as f:
838 | results = tuple(x[0, :7])
839 | c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
840 | f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
841 | yaml.dump(hyp, f, sort_keys=False)
842 |
843 | if bucket:
844 | os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
845 |
846 |
847 | def apply_classifier(x, model, img, im0):
848 | # applies a second stage classifier to yolo outputs
849 | im0 = [im0] if isinstance(im0, np.ndarray) else im0
850 | for i, d in enumerate(x): # per image
851 | if d is not None and len(d):
852 | d = d.clone()
853 |
854 | # Reshape and pad cutouts
855 | b = xyxy2xywh(d[:, :4]) # boxes
856 | b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
857 | b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
858 | d[:, :4] = xywh2xyxy(b).long()
859 |
860 | # Rescale boxes from img_size to im0 size
861 | scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
862 |
863 | # Classes
864 | pred_cls1 = d[:, 5].long()
865 | ims = []
866 | for j, a in enumerate(d): # per item
867 | cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
868 | im = cv2.resize(cutout, (224, 224)) # BGR
869 | # cv2.imwrite('test%i.jpg' % j, cutout)
870 |
871 | im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
872 | im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
873 | im /= 255.0 # 0 - 255 to 0.0 - 1.0
874 | ims.append(im)
875 |
876 | pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
877 | x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
878 |
879 | return x
880 |
881 |
882 | def increment_path(path, exist_ok=True, sep=''):
883 | # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
884 | path = Path(path) # os-agnostic
885 | if (path.exists() and exist_ok) or (not path.exists()):
886 | return str(path)
887 | else:
888 | dirs = glob.glob(f"{path}{sep}*") # similar paths
889 | matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
890 | i = [int(m.groups()[0]) for m in matches if m] # indices
891 | n = max(i) + 1 if i else 2 # increment number
892 | return f"{path}{sep}{n}" # update path
893 |
--------------------------------------------------------------------------------
/utils/google_app_engine/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM gcr.io/google-appengine/python
2 |
3 | # Create a virtualenv for dependencies. This isolates these packages from
4 | # system-level packages.
5 | # Use -p python3 or -p python3.7 to select python version. Default is version 2.
6 | RUN virtualenv /env -p python3
7 |
8 | # Setting these environment variables are the same as running
9 | # source /env/bin/activate.
10 | ENV VIRTUAL_ENV /env
11 | ENV PATH /env/bin:$PATH
12 |
13 | RUN apt-get update && apt-get install -y python-opencv
14 |
15 | # Copy the application's requirements.txt and run pip to install all
16 | # dependencies into the virtualenv.
17 | ADD requirements.txt /app/requirements.txt
18 | RUN pip install -r /app/requirements.txt
19 |
20 | # Add the application source code.
21 | ADD . /app
22 |
23 | # Run a WSGI server to serve the application. gunicorn must be declared as
24 | # a dependency in requirements.txt.
25 | CMD gunicorn -b :$PORT main:app
26 |
--------------------------------------------------------------------------------
/utils/google_app_engine/additional_requirements.txt:
--------------------------------------------------------------------------------
1 | # add these requirements in your app on top of the existing ones
2 | pip==18.1
3 | Flask==1.0.2
4 | gunicorn==19.9.0
5 |
--------------------------------------------------------------------------------
/utils/google_app_engine/app.yaml:
--------------------------------------------------------------------------------
1 | runtime: custom
2 | env: flex
3 |
4 | service: yolorapp
5 |
6 | liveness_check:
7 | initial_delay_sec: 600
8 |
9 | manual_scaling:
10 | instances: 1
11 | resources:
12 | cpu: 1
13 | memory_gb: 4
14 | disk_size_gb: 20
--------------------------------------------------------------------------------
/utils/google_utils.py:
--------------------------------------------------------------------------------
1 | # Google utils: https://cloud.google.com/storage/docs/reference/libraries
2 |
3 | import os
4 | import platform
5 | import subprocess
6 | import time
7 | from pathlib import Path
8 |
9 | import requests
10 | import torch
11 |
12 |
13 | def gsutil_getsize(url=''):
14 | # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
15 | s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
16 | return eval(s.split(' ')[0]) if len(s) else 0 # bytes
17 |
18 |
19 | def attempt_download(file, repo='WongKinYiu/yolov7'):
20 | # Attempt file download if does not exist
21 | file = Path(str(file).strip().replace("'", '').lower())
22 |
23 | if not file.exists():
24 | try:
25 | response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
26 | assets = [x['name'] for x in response['assets']] # release assets
27 | tag = response['tag_name'] # i.e. 'v1.0'
28 | except: # fallback plan
29 | assets = ['yolov7.pt', 'yolov7-tiny.pt', 'yolov7x.pt', 'yolov7-d6.pt', 'yolov7-e6.pt',
30 | 'yolov7-e6e.pt', 'yolov7-w6.pt']
31 | tag = subprocess.check_output('git tag', shell=True).decode().split()[-1]
32 |
33 | name = file.name
34 | if name in assets:
35 | msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
36 | redundant = False # second download option
37 | try: # GitHub
38 | url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
39 | print(f'Downloading {url} to {file}...')
40 | torch.hub.download_url_to_file(url, file)
41 | assert file.exists() and file.stat().st_size > 1E6 # check
42 | except Exception as e: # GCP
43 | print(f'Download error: {e}')
44 | assert redundant, 'No secondary mirror'
45 | url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
46 | print(f'Downloading {url} to {file}...')
47 | os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
48 | finally:
49 | if not file.exists() or file.stat().st_size < 1E6: # check
50 | file.unlink(missing_ok=True) # remove partial downloads
51 | print(f'ERROR: Download failure: {msg}')
52 | print('')
53 | return
54 |
55 |
56 | def gdrive_download(id='', file='tmp.zip'):
57 | # Downloads a file from Google Drive. from yolov7.utils.google_utils import *; gdrive_download()
58 | t = time.time()
59 | file = Path(file)
60 | cookie = Path('cookie') # gdrive cookie
61 | print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
62 | file.unlink(missing_ok=True) # remove existing file
63 | cookie.unlink(missing_ok=True) # remove existing cookie
64 |
65 | # Attempt file download
66 | out = "NUL" if platform.system() == "Windows" else "/dev/null"
67 | os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
68 | if os.path.exists('cookie'): # large file
69 | s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
70 | else: # small file
71 | s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
72 | r = os.system(s) # execute, capture return
73 | cookie.unlink(missing_ok=True) # remove existing cookie
74 |
75 | # Error check
76 | if r != 0:
77 | file.unlink(missing_ok=True) # remove partial
78 | print('Download error ') # raise Exception('Download error')
79 | return r
80 |
81 | # Unzip if archive
82 | if file.suffix == '.zip':
83 | print('unzipping... ', end='')
84 | os.system(f'unzip -q {file}') # unzip
85 | file.unlink() # remove zip to free space
86 |
87 | print(f'Done ({time.time() - t:.1f}s)')
88 | return r
89 |
90 |
91 | def get_token(cookie="./cookie"):
92 | with open(cookie) as f:
93 | for line in f:
94 | if "download" in line:
95 | return line.split()[-1]
96 | return ""
97 |
98 | # def upload_blob(bucket_name, source_file_name, destination_blob_name):
99 | # # Uploads a file to a bucket
100 | # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
101 | #
102 | # storage_client = storage.Client()
103 | # bucket = storage_client.get_bucket(bucket_name)
104 | # blob = bucket.blob(destination_blob_name)
105 | #
106 | # blob.upload_from_filename(source_file_name)
107 | #
108 | # print('File {} uploaded to {}.'.format(
109 | # source_file_name,
110 | # destination_blob_name))
111 | #
112 | #
113 | # def download_blob(bucket_name, source_blob_name, destination_file_name):
114 | # # Uploads a blob from a bucket
115 | # storage_client = storage.Client()
116 | # bucket = storage_client.get_bucket(bucket_name)
117 | # blob = bucket.blob(source_blob_name)
118 | #
119 | # blob.download_to_filename(destination_file_name)
120 | #
121 | # print('Blob {} downloaded to {}.'.format(
122 | # source_blob_name,
123 | # destination_file_name))
124 |
--------------------------------------------------------------------------------
/utils/metrics.py:
--------------------------------------------------------------------------------
1 | # Model validation metrics
2 |
3 | from pathlib import Path
4 |
5 | import matplotlib.pyplot as plt
6 | import numpy as np
7 | import torch
8 |
9 | from . import general
10 |
11 |
12 | def fitness(x):
13 | # Model fitness as a weighted combination of metrics
14 | w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
15 | return (x[:, :4] * w).sum(1)
16 |
17 |
18 | def ap_per_class(tp, conf, pred_cls, target_cls, v5_metric=False, plot=False, save_dir='.', names=()):
19 | """ Compute the average precision, given the recall and precision curves.
20 | Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
21 | # Arguments
22 | tp: True positives (nparray, nx1 or nx10).
23 | conf: Objectness value from 0-1 (nparray).
24 | pred_cls: Predicted object classes (nparray).
25 | target_cls: True object classes (nparray).
26 | plot: Plot precision-recall curve at mAP@0.5
27 | save_dir: Plot save directory
28 | # Returns
29 | The average precision as computed in py-faster-rcnn.
30 | """
31 |
32 | # Sort by objectness
33 | i = np.argsort(-conf)
34 | tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
35 |
36 | # Find unique classes
37 | unique_classes = np.unique(target_cls)
38 | nc = unique_classes.shape[0] # number of classes, number of detections
39 |
40 | # Create Precision-Recall curve and compute AP for each class
41 | px, py = np.linspace(0, 1, 1000), [] # for plotting
42 | ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
43 | for ci, c in enumerate(unique_classes):
44 | i = pred_cls == c
45 | n_l = (target_cls == c).sum() # number of labels
46 | n_p = i.sum() # number of predictions
47 |
48 | if n_p == 0 or n_l == 0:
49 | continue
50 | else:
51 | # Accumulate FPs and TPs
52 | fpc = (1 - tp[i]).cumsum(0)
53 | tpc = tp[i].cumsum(0)
54 |
55 | # Recall
56 | recall = tpc / (n_l + 1e-16) # recall curve
57 | r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
58 |
59 | # Precision
60 | precision = tpc / (tpc + fpc) # precision curve
61 | p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
62 |
63 | # AP from recall-precision curve
64 | for j in range(tp.shape[1]):
65 | ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j], v5_metric=v5_metric)
66 | if plot and j == 0:
67 | py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
68 |
69 | # Compute F1 (harmonic mean of precision and recall)
70 | f1 = 2 * p * r / (p + r + 1e-16)
71 | if plot:
72 | plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
73 | plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
74 | plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
75 | plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
76 |
77 | i = f1.mean(0).argmax() # max F1 index
78 | return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
79 |
80 |
81 | def compute_ap(recall, precision, v5_metric=False):
82 | """ Compute the average precision, given the recall and precision curves
83 | # Arguments
84 | recall: The recall curve (list)
85 | precision: The precision curve (list)
86 | v5_metric: Assume maximum recall to be 1.0, as in YOLOv5, MMDetetion etc.
87 | # Returns
88 | Average precision, precision curve, recall curve
89 | """
90 |
91 | # Append sentinel values to beginning and end
92 | if v5_metric: # New YOLOv5 metric, same as MMDetection and Detectron2 repositories
93 | mrec = np.concatenate(([0.], recall, [1.0]))
94 | else: # Old YOLOv5 metric, i.e. default YOLOv7 metric
95 | mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
96 | mpre = np.concatenate(([1.], precision, [0.]))
97 |
98 | # Compute the precision envelope
99 | mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
100 |
101 | # Integrate area under curve
102 | method = 'interp' # methods: 'continuous', 'interp'
103 | if method == 'interp':
104 | x = np.linspace(0, 1, 101) # 101-point interp (COCO)
105 | ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
106 | else: # 'continuous'
107 | i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
108 | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
109 |
110 | return ap, mpre, mrec
111 |
112 |
113 | class ConfusionMatrix:
114 | # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
115 | def __init__(self, nc, conf=0.25, iou_thres=0.45):
116 | self.matrix = np.zeros((nc + 1, nc + 1))
117 | self.nc = nc # number of classes
118 | self.conf = conf
119 | self.iou_thres = iou_thres
120 |
121 | def process_batch(self, detections, labels):
122 | """
123 | Return intersection-over-union (Jaccard index) of boxes.
124 | Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
125 | Arguments:
126 | detections (Array[N, 6]), x1, y1, x2, y2, conf, class
127 | labels (Array[M, 5]), class, x1, y1, x2, y2
128 | Returns:
129 | None, updates confusion matrix accordingly
130 | """
131 | detections = detections[detections[:, 4] > self.conf]
132 | gt_classes = labels[:, 0].int()
133 | detection_classes = detections[:, 5].int()
134 | iou = general.box_iou(labels[:, 1:], detections[:, :4])
135 |
136 | x = torch.where(iou > self.iou_thres)
137 | if x[0].shape[0]:
138 | matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
139 | if x[0].shape[0] > 1:
140 | matches = matches[matches[:, 2].argsort()[::-1]]
141 | matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
142 | matches = matches[matches[:, 2].argsort()[::-1]]
143 | matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
144 | else:
145 | matches = np.zeros((0, 3))
146 |
147 | n = matches.shape[0] > 0
148 | m0, m1, _ = matches.transpose().astype(np.int16)
149 | for i, gc in enumerate(gt_classes):
150 | j = m0 == i
151 | if n and sum(j) == 1:
152 | self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
153 | else:
154 | self.matrix[self.nc, gc] += 1 # background FP
155 |
156 | if n:
157 | for i, dc in enumerate(detection_classes):
158 | if not any(m1 == i):
159 | self.matrix[dc, self.nc] += 1 # background FN
160 |
161 | def matrix(self):
162 | return self.matrix
163 |
164 | def plot(self, save_dir='', names=()):
165 | try:
166 | import seaborn as sn
167 |
168 | array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
169 | array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
170 |
171 | fig = plt.figure(figsize=(12, 9), tight_layout=True)
172 | sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
173 | labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
174 | sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
175 | xticklabels=names + ['background FP'] if labels else "auto",
176 | yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
177 | fig.axes[0].set_xlabel('True')
178 | fig.axes[0].set_ylabel('Predicted')
179 | fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
180 | except Exception as e:
181 | pass
182 |
183 | def print(self):
184 | for i in range(self.nc + 1):
185 | print(' '.join(map(str, self.matrix[i])))
186 |
187 |
188 | # Plots ----------------------------------------------------------------------------------------------------------------
189 |
190 | def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
191 | # Precision-recall curve
192 | fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
193 | py = np.stack(py, axis=1)
194 |
195 | if 0 < len(names) < 21: # display per-class legend if < 21 classes
196 | for i, y in enumerate(py.T):
197 | ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
198 | else:
199 | ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
200 |
201 | ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
202 | ax.set_xlabel('Recall')
203 | ax.set_ylabel('Precision')
204 | ax.set_xlim(0, 1)
205 | ax.set_ylim(0, 1)
206 | plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
207 | fig.savefig(Path(save_dir), dpi=250)
208 |
209 |
210 | def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
211 | # Metric-confidence curve
212 | fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
213 |
214 | if 0 < len(names) < 21: # display per-class legend if < 21 classes
215 | for i, y in enumerate(py):
216 | ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
217 | else:
218 | ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
219 |
220 | y = py.mean(0)
221 | ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
222 | ax.set_xlabel(xlabel)
223 | ax.set_ylabel(ylabel)
224 | ax.set_xlim(0, 1)
225 | ax.set_ylim(0, 1)
226 | plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
227 | fig.savefig(Path(save_dir), dpi=250)
228 |
--------------------------------------------------------------------------------
/utils/plots.py:
--------------------------------------------------------------------------------
1 | # Plotting utils
2 |
3 | import glob
4 | import math
5 | import os
6 | import random
7 | from copy import copy
8 | from pathlib import Path
9 |
10 | import cv2
11 | import matplotlib
12 | import matplotlib.pyplot as plt
13 | import numpy as np
14 | import pandas as pd
15 | import seaborn as sns
16 | import torch
17 | import yaml
18 | from PIL import Image, ImageDraw, ImageFont
19 | from scipy.signal import butter, filtfilt
20 |
21 | from utils.general import xywh2xyxy, xyxy2xywh
22 | from utils.metrics import fitness
23 |
24 | # Settings
25 | matplotlib.rc('font', **{'size': 11})
26 | matplotlib.use('Agg') # for writing to files only
27 |
28 |
29 | def color_list():
30 | # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
31 | def hex2rgb(h):
32 | return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
33 |
34 | return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] # or BASE_ (8), CSS4_ (148), XKCD_ (949)
35 |
36 |
37 | def hist2d(x, y, n=100):
38 | # 2d histogram used in labels.png and evolve.png
39 | xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
40 | hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
41 | xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
42 | yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
43 | return np.log(hist[xidx, yidx])
44 |
45 |
46 | def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
47 | # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
48 | def butter_lowpass(cutoff, fs, order):
49 | nyq = 0.5 * fs
50 | normal_cutoff = cutoff / nyq
51 | return butter(order, normal_cutoff, btype='low', analog=False)
52 |
53 | b, a = butter_lowpass(cutoff, fs, order=order)
54 | return filtfilt(b, a, data) # forward-backward filter
55 |
56 |
57 | def plot_one_box(x, img, color=None, label=None, line_thickness=3):
58 | # Plots one bounding box on image img
59 | tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
60 | color = color or [random.randint(0, 255) for _ in range(3)]
61 | c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
62 | cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
63 | if label:
64 | tf = max(tl - 1, 1) # font thickness
65 | t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
66 | c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
67 | cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
68 | cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
69 |
70 |
71 | def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None):
72 | img = Image.fromarray(img)
73 | draw = ImageDraw.Draw(img)
74 | line_thickness = line_thickness or max(int(min(img.size) / 200), 2)
75 | draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot
76 | if label:
77 | fontsize = max(round(max(img.size) / 40), 12)
78 | font = ImageFont.truetype("Arial.ttf", fontsize)
79 | txt_width, txt_height = font.getsize(label)
80 | draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color))
81 | draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
82 | return np.asarray(img)
83 |
84 |
85 | def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
86 | # Compares the two methods for width-height anchor multiplication
87 | # https://github.com/ultralytics/yolov3/issues/168
88 | x = np.arange(-4.0, 4.0, .1)
89 | ya = np.exp(x)
90 | yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
91 |
92 | fig = plt.figure(figsize=(6, 3), tight_layout=True)
93 | plt.plot(x, ya, '.-', label='YOLOv3')
94 | plt.plot(x, yb ** 2, '.-', label='YOLOR ^2')
95 | plt.plot(x, yb ** 1.6, '.-', label='YOLOR ^1.6')
96 | plt.xlim(left=-4, right=4)
97 | plt.ylim(bottom=0, top=6)
98 | plt.xlabel('input')
99 | plt.ylabel('output')
100 | plt.grid()
101 | plt.legend()
102 | fig.savefig('comparison.png', dpi=200)
103 |
104 |
105 | def output_to_target(output):
106 | # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
107 | targets = []
108 | for i, o in enumerate(output):
109 | for *box, conf, cls in o.cpu().numpy():
110 | targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
111 | return np.array(targets)
112 |
113 |
114 | def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
115 | # Plot image grid with labels
116 |
117 | if isinstance(images, torch.Tensor):
118 | images = images.cpu().float().numpy()
119 | if isinstance(targets, torch.Tensor):
120 | targets = targets.cpu().numpy()
121 |
122 | # un-normalise
123 | if np.max(images[0]) <= 1:
124 | images *= 255
125 |
126 | tl = 3 # line thickness
127 | tf = max(tl - 1, 1) # font thickness
128 | bs, _, h, w = images.shape # batch size, _, height, width
129 | bs = min(bs, max_subplots) # limit plot images
130 | ns = np.ceil(bs ** 0.5) # number of subplots (square)
131 |
132 | # Check if we should resize
133 | scale_factor = max_size / max(h, w)
134 | if scale_factor < 1:
135 | h = math.ceil(scale_factor * h)
136 | w = math.ceil(scale_factor * w)
137 |
138 | colors = color_list() # list of colors
139 | mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
140 | for i, img in enumerate(images):
141 | if i == max_subplots: # if last batch has fewer images than we expect
142 | break
143 |
144 | block_x = int(w * (i // ns))
145 | block_y = int(h * (i % ns))
146 |
147 | img = img.transpose(1, 2, 0)
148 | if scale_factor < 1:
149 | img = cv2.resize(img, (w, h))
150 |
151 | mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
152 | if len(targets) > 0:
153 | image_targets = targets[targets[:, 0] == i]
154 | boxes = xywh2xyxy(image_targets[:, 2:6]).T
155 | classes = image_targets[:, 1].astype('int')
156 | labels = image_targets.shape[1] == 6 # labels if no conf column
157 | conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
158 |
159 | if boxes.shape[1]:
160 | if boxes.max() <= 1.01: # if normalized with tolerance 0.01
161 | boxes[[0, 2]] *= w # scale to pixels
162 | boxes[[1, 3]] *= h
163 | elif scale_factor < 1: # absolute coords need scale if image scales
164 | boxes *= scale_factor
165 | boxes[[0, 2]] += block_x
166 | boxes[[1, 3]] += block_y
167 | for j, box in enumerate(boxes.T):
168 | cls = int(classes[j])
169 | color = colors[cls % len(colors)]
170 | cls = names[cls] if names else cls
171 | if labels or conf[j] > 0.25: # 0.25 conf thresh
172 | label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
173 | plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
174 |
175 | # Draw image filename labels
176 | if paths:
177 | label = Path(paths[i]).name[:40] # trim to 40 char
178 | t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
179 | cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
180 | lineType=cv2.LINE_AA)
181 |
182 | # Image border
183 | cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
184 |
185 | if fname:
186 | r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
187 | mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
188 | # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
189 | Image.fromarray(mosaic).save(fname) # PIL save
190 | return mosaic
191 |
192 |
193 | def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
194 | # Plot LR simulating training for full epochs
195 | optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
196 | y = []
197 | for _ in range(epochs):
198 | scheduler.step()
199 | y.append(optimizer.param_groups[0]['lr'])
200 | plt.plot(y, '.-', label='LR')
201 | plt.xlabel('epoch')
202 | plt.ylabel('LR')
203 | plt.grid()
204 | plt.xlim(0, epochs)
205 | plt.ylim(0)
206 | plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
207 | plt.close()
208 |
209 |
210 | def plot_test_txt(): # from utils.plots import *; plot_test()
211 | # Plot test.txt histograms
212 | x = np.loadtxt('test.txt', dtype=np.float32)
213 | box = xyxy2xywh(x[:, :4])
214 | cx, cy = box[:, 0], box[:, 1]
215 |
216 | fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
217 | ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
218 | ax.set_aspect('equal')
219 | plt.savefig('hist2d.png', dpi=300)
220 |
221 | fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
222 | ax[0].hist(cx, bins=600)
223 | ax[1].hist(cy, bins=600)
224 | plt.savefig('hist1d.png', dpi=200)
225 |
226 |
227 | def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
228 | # Plot targets.txt histograms
229 | x = np.loadtxt('targets.txt', dtype=np.float32).T
230 | s = ['x targets', 'y targets', 'width targets', 'height targets']
231 | fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
232 | ax = ax.ravel()
233 | for i in range(4):
234 | ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
235 | ax[i].legend()
236 | ax[i].set_title(s[i])
237 | plt.savefig('targets.jpg', dpi=200)
238 |
239 |
240 | def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
241 | # Plot study.txt generated by test.py
242 | fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
243 | # ax = ax.ravel()
244 |
245 | fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
246 | # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolor-p6', 'yolor-w6', 'yolor-e6', 'yolor-d6']]:
247 | for f in sorted(Path(path).glob('study*.txt')):
248 | y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
249 | x = np.arange(y.shape[1]) if x is None else np.array(x)
250 | s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
251 | # for i in range(7):
252 | # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
253 | # ax[i].set_title(s[i])
254 |
255 | j = y[3].argmax() + 1
256 | ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
257 | label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
258 |
259 | ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
260 | 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
261 |
262 | ax2.grid(alpha=0.2)
263 | ax2.set_yticks(np.arange(20, 60, 5))
264 | ax2.set_xlim(0, 57)
265 | ax2.set_ylim(30, 55)
266 | ax2.set_xlabel('GPU Speed (ms/img)')
267 | ax2.set_ylabel('COCO AP val')
268 | ax2.legend(loc='lower right')
269 | plt.savefig(str(Path(path).name) + '.png', dpi=300)
270 |
271 |
272 | def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
273 | # plot dataset labels
274 | print('Plotting labels... ')
275 | c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
276 | nc = int(c.max() + 1) # number of classes
277 | colors = color_list()
278 | x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
279 |
280 | # seaborn correlogram
281 | sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
282 | plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
283 | plt.close()
284 |
285 | # matplotlib labels
286 | matplotlib.use('svg') # faster
287 | ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
288 | ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
289 | ax[0].set_ylabel('instances')
290 | if 0 < len(names) < 30:
291 | ax[0].set_xticks(range(len(names)))
292 | ax[0].set_xticklabels(names, rotation=90, fontsize=10)
293 | else:
294 | ax[0].set_xlabel('classes')
295 | sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
296 | sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
297 |
298 | # rectangles
299 | labels[:, 1:3] = 0.5 # center
300 | labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
301 | img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
302 | for cls, *box in labels[:1000]:
303 | ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
304 | ax[1].imshow(img)
305 | ax[1].axis('off')
306 |
307 | for a in [0, 1, 2, 3]:
308 | for s in ['top', 'right', 'left', 'bottom']:
309 | ax[a].spines[s].set_visible(False)
310 |
311 | plt.savefig(save_dir / 'labels.jpg', dpi=200)
312 | matplotlib.use('Agg')
313 | plt.close()
314 |
315 | # loggers
316 | for k, v in loggers.items() or {}:
317 | if k == 'wandb' and v:
318 | v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
319 |
320 |
321 | def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
322 | # Plot hyperparameter evolution results in evolve.txt
323 | with open(yaml_file) as f:
324 | hyp = yaml.load(f, Loader=yaml.SafeLoader)
325 | x = np.loadtxt('evolve.txt', ndmin=2)
326 | f = fitness(x)
327 | # weights = (f - f.min()) ** 2 # for weighted results
328 | plt.figure(figsize=(10, 12), tight_layout=True)
329 | matplotlib.rc('font', **{'size': 8})
330 | for i, (k, v) in enumerate(hyp.items()):
331 | y = x[:, i + 7]
332 | # mu = (y * weights).sum() / weights.sum() # best weighted result
333 | mu = y[f.argmax()] # best single result
334 | plt.subplot(6, 5, i + 1)
335 | plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
336 | plt.plot(mu, f.max(), 'k+', markersize=15)
337 | plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
338 | if i % 5 != 0:
339 | plt.yticks([])
340 | print('%15s: %.3g' % (k, mu))
341 | plt.savefig('evolve.png', dpi=200)
342 | print('\nPlot saved as evolve.png')
343 |
344 |
345 | def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
346 | # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
347 | ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
348 | s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
349 | files = list(Path(save_dir).glob('frames*.txt'))
350 | for fi, f in enumerate(files):
351 | try:
352 | results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
353 | n = results.shape[1] # number of rows
354 | x = np.arange(start, min(stop, n) if stop else n)
355 | results = results[:, x]
356 | t = (results[0] - results[0].min()) # set t0=0s
357 | results[0] = x
358 | for i, a in enumerate(ax):
359 | if i < len(results):
360 | label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
361 | a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
362 | a.set_title(s[i])
363 | a.set_xlabel('time (s)')
364 | # if fi == len(files) - 1:
365 | # a.set_ylim(bottom=0)
366 | for side in ['top', 'right']:
367 | a.spines[side].set_visible(False)
368 | else:
369 | a.remove()
370 | except Exception as e:
371 | print('Warning: Plotting error for %s; %s' % (f, e))
372 |
373 | ax[1].legend()
374 | plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
375 |
376 |
377 | def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
378 | # Plot training 'results*.txt', overlaying train and val losses
379 | s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
380 | t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
381 | for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
382 | results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
383 | n = results.shape[1] # number of rows
384 | x = range(start, min(stop, n) if stop else n)
385 | fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
386 | ax = ax.ravel()
387 | for i in range(5):
388 | for j in [i, i + 5]:
389 | y = results[j, x]
390 | ax[i].plot(x, y, marker='.', label=s[j])
391 | # y_smooth = butter_lowpass_filtfilt(y)
392 | # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
393 |
394 | ax[i].set_title(t[i])
395 | ax[i].legend()
396 | ax[i].set_ylabel(f) if i == 0 else None # add filename
397 | fig.savefig(f.replace('.txt', '.png'), dpi=200)
398 |
399 |
400 | def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
401 | # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
402 | fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
403 | ax = ax.ravel()
404 | s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
405 | 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
406 | if bucket:
407 | # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
408 | files = ['results%g.txt' % x for x in id]
409 | c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
410 | os.system(c)
411 | else:
412 | files = list(Path(save_dir).glob('results*.txt'))
413 | assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
414 | for fi, f in enumerate(files):
415 | try:
416 | results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
417 | n = results.shape[1] # number of rows
418 | x = range(start, min(stop, n) if stop else n)
419 | for i in range(10):
420 | y = results[i, x]
421 | if i in [0, 1, 2, 5, 6, 7]:
422 | y[y == 0] = np.nan # don't show zero loss values
423 | # y /= y[0] # normalize
424 | label = labels[fi] if len(labels) else f.stem
425 | ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
426 | ax[i].set_title(s[i])
427 | # if i in [5, 6, 7]: # share train and val loss y axes
428 | # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
429 | except Exception as e:
430 | print('Warning: Plotting error for %s; %s' % (f, e))
431 |
432 | ax[1].legend()
433 | fig.savefig(Path(save_dir) / 'results.png', dpi=200)
434 |
435 |
436 | def output_to_keypoint(output):
437 | # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
438 | targets = []
439 | for i, o in enumerate(output):
440 | kpts = o[:,6:]
441 | o = o[:,:6]
442 | for index, (*box, conf, cls) in enumerate(o.detach().cpu().numpy()):
443 | targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf, *list(kpts.detach().cpu().numpy()[index])])
444 | return np.array(targets)
445 |
446 |
447 | def plot_skeleton_kpts(im, kpts, steps, orig_shape=None):
448 | #Plot the skeleton and keypointsfor coco datatset
449 | palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],
450 | [230, 230, 0], [255, 153, 255], [153, 204, 255],
451 | [255, 102, 255], [255, 51, 255], [102, 178, 255],
452 | [51, 153, 255], [255, 153, 153], [255, 102, 102],
453 | [255, 51, 51], [153, 255, 153], [102, 255, 102],
454 | [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0],
455 | [255, 255, 255]])
456 |
457 | skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12],
458 | [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3],
459 | [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
460 |
461 | pose_limb_color = palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
462 | pose_kpt_color = palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
463 | radius = 5
464 | num_kpts = len(kpts) // steps
465 |
466 | for kid in range(num_kpts):
467 | r, g, b = pose_kpt_color[kid]
468 | x_coord, y_coord = kpts[steps * kid], kpts[steps * kid + 1]
469 | if not (x_coord % 640 == 0 or y_coord % 640 == 0):
470 | if steps == 3:
471 | conf = kpts[steps * kid + 2]
472 | if conf < 0.5:
473 | continue
474 | cv2.circle(im, (int(x_coord), int(y_coord)), radius, (int(r), int(g), int(b)), -1)
475 |
476 | for sk_id, sk in enumerate(skeleton):
477 | r, g, b = pose_limb_color[sk_id]
478 | pos1 = (int(kpts[(sk[0]-1)*steps]), int(kpts[(sk[0]-1)*steps+1]))
479 | pos2 = (int(kpts[(sk[1]-1)*steps]), int(kpts[(sk[1]-1)*steps+1]))
480 | if steps == 3:
481 | conf1 = kpts[(sk[0]-1)*steps+2]
482 | conf2 = kpts[(sk[1]-1)*steps+2]
483 | if conf1<0.5 or conf2<0.5:
484 | continue
485 | if pos1[0]%640 == 0 or pos1[1]%640==0 or pos1[0]<0 or pos1[1]<0:
486 | continue
487 | if pos2[0] % 640 == 0 or pos2[1] % 640 == 0 or pos2[0]<0 or pos2[1]<0:
488 | continue
489 | cv2.line(im, pos1, pos2, (int(r), int(g), int(b)), thickness=2)
490 |
--------------------------------------------------------------------------------
/utils/torch_utils.py:
--------------------------------------------------------------------------------
1 | # YOLOR PyTorch utils
2 |
3 | import datetime
4 | import logging
5 | import math
6 | import os
7 | import platform
8 | import subprocess
9 | import time
10 | from contextlib import contextmanager
11 | from copy import deepcopy
12 | from pathlib import Path
13 |
14 | import torch
15 | import torch.backends.cudnn as cudnn
16 | import torch.nn as nn
17 | import torch.nn.functional as F
18 | import torchvision
19 |
20 | try:
21 | import thop # for FLOPS computation
22 | except ImportError:
23 | thop = None
24 | logger = logging.getLogger(__name__)
25 |
26 |
27 | @contextmanager
28 | def torch_distributed_zero_first(local_rank: int):
29 | """
30 | Decorator to make all processes in distributed training wait for each local_master to do something.
31 | """
32 | if local_rank not in [-1, 0]:
33 | torch.distributed.barrier()
34 | yield
35 | if local_rank == 0:
36 | torch.distributed.barrier()
37 |
38 |
39 | def init_torch_seeds(seed=0):
40 | # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
41 | torch.manual_seed(seed)
42 | if seed == 0: # slower, more reproducible
43 | cudnn.benchmark, cudnn.deterministic = False, True
44 | else: # faster, less reproducible
45 | cudnn.benchmark, cudnn.deterministic = True, False
46 |
47 |
48 | def date_modified(path=__file__):
49 | # return human-readable file modification date, i.e. '2021-3-26'
50 | t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
51 | return f'{t.year}-{t.month}-{t.day}'
52 |
53 |
54 | def git_describe(path=Path(__file__).parent): # path must be a directory
55 | # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
56 | s = f'git -C {path} describe --tags --long --always'
57 | try:
58 | return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
59 | except subprocess.CalledProcessError as e:
60 | return '' # not a git repository
61 |
62 |
63 | def select_device(device='', batch_size=None):
64 | # device = 'cpu' or '0' or '0,1,2,3'
65 | s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
66 | cpu = device.lower() == 'cpu'
67 | if cpu:
68 | os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
69 | elif device: # non-cpu device requested
70 | os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
71 | assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
72 |
73 | cuda = not cpu and torch.cuda.is_available()
74 | if cuda:
75 | n = torch.cuda.device_count()
76 | if n > 1 and batch_size: # check that batch_size is compatible with device_count
77 | assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
78 | space = ' ' * len(s)
79 | for i, d in enumerate(device.split(',') if device else range(n)):
80 | p = torch.cuda.get_device_properties(i)
81 | s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
82 | else:
83 | s += 'CPU\n'
84 |
85 | logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
86 | return torch.device('cuda:0' if cuda else 'cpu')
87 |
88 |
89 | def time_synchronized():
90 | # pytorch-accurate time
91 | if torch.cuda.is_available():
92 | torch.cuda.synchronize()
93 | return time.time()
94 |
95 |
96 | def profile(x, ops, n=100, device=None):
97 | # profile a pytorch module or list of modules. Example usage:
98 | # x = torch.randn(16, 3, 640, 640) # input
99 | # m1 = lambda x: x * torch.sigmoid(x)
100 | # m2 = nn.SiLU()
101 | # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
102 |
103 | device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
104 | x = x.to(device)
105 | x.requires_grad = True
106 | print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
107 | print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
108 | for m in ops if isinstance(ops, list) else [ops]:
109 | m = m.to(device) if hasattr(m, 'to') else m # device
110 | m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
111 | dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
112 | try:
113 | flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
114 | except:
115 | flops = 0
116 |
117 | for _ in range(n):
118 | t[0] = time_synchronized()
119 | y = m(x)
120 | t[1] = time_synchronized()
121 | try:
122 | _ = y.sum().backward()
123 | t[2] = time_synchronized()
124 | except: # no backward method
125 | t[2] = float('nan')
126 | dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
127 | dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
128 |
129 | s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
130 | s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
131 | p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
132 | print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
133 |
134 |
135 | def is_parallel(model):
136 | return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
137 |
138 |
139 | def intersect_dicts(da, db, exclude=()):
140 | # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
141 | return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
142 |
143 |
144 | def initialize_weights(model):
145 | for m in model.modules():
146 | t = type(m)
147 | if t is nn.Conv2d:
148 | pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
149 | elif t is nn.BatchNorm2d:
150 | m.eps = 1e-3
151 | m.momentum = 0.03
152 | elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
153 | m.inplace = True
154 |
155 |
156 | def find_modules(model, mclass=nn.Conv2d):
157 | # Finds layer indices matching module class 'mclass'
158 | return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
159 |
160 |
161 | def sparsity(model):
162 | # Return global model sparsity
163 | a, b = 0., 0.
164 | for p in model.parameters():
165 | a += p.numel()
166 | b += (p == 0).sum()
167 | return b / a
168 |
169 |
170 | def prune(model, amount=0.3):
171 | # Prune model to requested global sparsity
172 | import torch.nn.utils.prune as prune
173 | print('Pruning model... ', end='')
174 | for name, m in model.named_modules():
175 | if isinstance(m, nn.Conv2d):
176 | prune.l1_unstructured(m, name='weight', amount=amount) # prune
177 | prune.remove(m, 'weight') # make permanent
178 | print(' %.3g global sparsity' % sparsity(model))
179 |
180 |
181 | def fuse_conv_and_bn(conv, bn):
182 | # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
183 | fusedconv = nn.Conv2d(conv.in_channels,
184 | conv.out_channels,
185 | kernel_size=conv.kernel_size,
186 | stride=conv.stride,
187 | padding=conv.padding,
188 | groups=conv.groups,
189 | bias=True).requires_grad_(False).to(conv.weight.device)
190 |
191 | # prepare filters
192 | w_conv = conv.weight.clone().view(conv.out_channels, -1)
193 | w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
194 | fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
195 |
196 | # prepare spatial bias
197 | b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
198 | b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
199 | fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
200 |
201 | return fusedconv
202 |
203 |
204 | def model_info(model, verbose=False, img_size=640):
205 | # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
206 | n_p = sum(x.numel() for x in model.parameters()) # number parameters
207 | n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
208 | if verbose:
209 | print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
210 | for i, (name, p) in enumerate(model.named_parameters()):
211 | name = name.replace('module_list.', '')
212 | print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
213 | (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
214 |
215 | try: # FLOPS
216 | from thop import profile
217 | stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
218 | img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
219 | flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
220 | img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
221 | fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
222 | except (ImportError, Exception):
223 | fs = ''
224 |
225 | logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
226 |
227 |
228 | def load_classifier(name='resnet101', n=2):
229 | # Loads a pretrained model reshaped to n-class output
230 | model = torchvision.models.__dict__[name](pretrained=True)
231 |
232 | # ResNet model properties
233 | # input_size = [3, 224, 224]
234 | # input_space = 'RGB'
235 | # input_range = [0, 1]
236 | # mean = [0.485, 0.456, 0.406]
237 | # std = [0.229, 0.224, 0.225]
238 |
239 | # Reshape output to n classes
240 | filters = model.fc.weight.shape[1]
241 | model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
242 | model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
243 | model.fc.out_features = n
244 | return model
245 |
246 |
247 | def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
248 | # scales img(bs,3,y,x) by ratio constrained to gs-multiple
249 | if ratio == 1.0:
250 | return img
251 | else:
252 | h, w = img.shape[2:]
253 | s = (int(h * ratio), int(w * ratio)) # new size
254 | img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
255 | if not same_shape: # pad/crop img
256 | h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
257 | return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
258 |
259 |
260 | def copy_attr(a, b, include=(), exclude=()):
261 | # Copy attributes from b to a, options to only include [...] and to exclude [...]
262 | for k, v in b.__dict__.items():
263 | if (len(include) and k not in include) or k.startswith('_') or k in exclude:
264 | continue
265 | else:
266 | setattr(a, k, v)
267 |
268 |
269 | class ModelEMA:
270 | """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
271 | Keep a moving average of everything in the model state_dict (parameters and buffers).
272 | This is intended to allow functionality like
273 | https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
274 | A smoothed version of the weights is necessary for some training schemes to perform well.
275 | This class is sensitive where it is initialized in the sequence of model init,
276 | GPU assignment and distributed training wrappers.
277 | """
278 |
279 | def __init__(self, model, decay=0.9999, updates=0):
280 | # Create EMA
281 | self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
282 | # if next(model.parameters()).device.type != 'cpu':
283 | # self.ema.half() # FP16 EMA
284 | self.updates = updates # number of EMA updates
285 | self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
286 | for p in self.ema.parameters():
287 | p.requires_grad_(False)
288 |
289 | def update(self, model):
290 | # Update EMA parameters
291 | with torch.no_grad():
292 | self.updates += 1
293 | d = self.decay(self.updates)
294 |
295 | msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
296 | for k, v in self.ema.state_dict().items():
297 | if v.dtype.is_floating_point:
298 | v *= d
299 | v += (1. - d) * msd[k].detach()
300 |
301 | def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
302 | # Update EMA attributes
303 | copy_attr(self.ema, model, include, exclude)
304 |
305 |
306 | class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
307 | def _check_input_dim(self, input):
308 | # The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
309 | # is this method that is overwritten by the sub-class
310 | # This original goal of this method was for tensor sanity checks
311 | # If you're ok bypassing those sanity checks (eg. if you trust your inference
312 | # to provide the right dimensional inputs), then you can just use this method
313 | # for easy conversion from SyncBatchNorm
314 | # (unfortunately, SyncBatchNorm does not store the original class - if it did
315 | # we could return the one that was originally created)
316 | return
317 |
318 | def revert_sync_batchnorm(module):
319 | # this is very similar to the function that it is trying to revert:
320 | # https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679
321 | module_output = module
322 | if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
323 | new_cls = BatchNormXd
324 | module_output = BatchNormXd(module.num_features,
325 | module.eps, module.momentum,
326 | module.affine,
327 | module.track_running_stats)
328 | if module.affine:
329 | with torch.no_grad():
330 | module_output.weight = module.weight
331 | module_output.bias = module.bias
332 | module_output.running_mean = module.running_mean
333 | module_output.running_var = module.running_var
334 | module_output.num_batches_tracked = module.num_batches_tracked
335 | if hasattr(module, "qconfig"):
336 | module_output.qconfig = module.qconfig
337 | for name, child in module.named_children():
338 | module_output.add_module(name, revert_sync_batchnorm(child))
339 | del module
340 | return module_output
341 |
342 |
343 | class TracedModel(nn.Module):
344 |
345 | def __init__(self, model=None, device=None, img_size=(640,640)):
346 | super(TracedModel, self).__init__()
347 |
348 | print(" Convert model to Traced-model... ")
349 | self.stride = model.stride
350 | self.names = model.names
351 | self.model = model
352 |
353 | self.model = revert_sync_batchnorm(self.model)
354 | self.model.to('cpu')
355 | self.model.eval()
356 |
357 | self.detect_layer = self.model.model[-1]
358 | self.model.traced = True
359 |
360 | rand_example = torch.rand(1, 3, img_size, img_size)
361 |
362 | traced_script_module = torch.jit.trace(self.model, rand_example, strict=False)
363 | #traced_script_module = torch.jit.script(self.model)
364 | traced_script_module.save("traced_model.pt")
365 | print(" traced_script_module saved! ")
366 | self.model = traced_script_module
367 | self.model.to(device)
368 | self.detect_layer.to(device)
369 | print(" model is traced! \n")
370 |
371 | def forward(self, x, augment=False, profile=False):
372 | out = self.model(x)
373 | out = self.detect_layer(out)
374 | return out
--------------------------------------------------------------------------------
/utils/wandb_logging/__init__.py:
--------------------------------------------------------------------------------
1 | # init
--------------------------------------------------------------------------------
/utils/wandb_logging/log_dataset.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | import yaml
4 |
5 | from wandb_utils import WandbLogger
6 |
7 | WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
8 |
9 |
10 | def create_dataset_artifact(opt):
11 | with open(opt.data) as f:
12 | data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
13 | logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
14 |
15 |
16 | if __name__ == '__main__':
17 | parser = argparse.ArgumentParser()
18 | parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
19 | parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
20 | parser.add_argument('--project', type=str, default='YOLOR', help='name of W&B Project')
21 | opt = parser.parse_args()
22 | opt.resume = False # Explicitly disallow resume check for dataset upload job
23 |
24 | create_dataset_artifact(opt)
25 |
--------------------------------------------------------------------------------
/utils/wandb_logging/wandb_utils.py:
--------------------------------------------------------------------------------
1 | import json
2 | import sys
3 | from pathlib import Path
4 |
5 | import torch
6 | import yaml
7 | from tqdm import tqdm
8 |
9 | sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
10 | from utils.datasets import LoadImagesAndLabels
11 | from utils.datasets import img2label_paths
12 | from utils.general import colorstr, xywh2xyxy, check_dataset
13 |
14 | try:
15 | import wandb
16 | from wandb import init, finish
17 | except ImportError:
18 | wandb = None
19 |
20 | WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
21 |
22 |
23 | def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
24 | return from_string[len(prefix):]
25 |
26 |
27 | def check_wandb_config_file(data_config_file):
28 | wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
29 | if Path(wandb_config).is_file():
30 | return wandb_config
31 | return data_config_file
32 |
33 |
34 | def get_run_info(run_path):
35 | run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
36 | run_id = run_path.stem
37 | project = run_path.parent.stem
38 | model_artifact_name = 'run_' + run_id + '_model'
39 | return run_id, project, model_artifact_name
40 |
41 |
42 | def check_wandb_resume(opt):
43 | process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None
44 | if isinstance(opt.resume, str):
45 | if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
46 | if opt.global_rank not in [-1, 0]: # For resuming DDP runs
47 | run_id, project, model_artifact_name = get_run_info(opt.resume)
48 | api = wandb.Api()
49 | artifact = api.artifact(project + '/' + model_artifact_name + ':latest')
50 | modeldir = artifact.download()
51 | opt.weights = str(Path(modeldir) / "last.pt")
52 | return True
53 | return None
54 |
55 |
56 | def process_wandb_config_ddp_mode(opt):
57 | with open(opt.data) as f:
58 | data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
59 | train_dir, val_dir = None, None
60 | if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
61 | api = wandb.Api()
62 | train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
63 | train_dir = train_artifact.download()
64 | train_path = Path(train_dir) / 'data/images/'
65 | data_dict['train'] = str(train_path)
66 |
67 | if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
68 | api = wandb.Api()
69 | val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
70 | val_dir = val_artifact.download()
71 | val_path = Path(val_dir) / 'data/images/'
72 | data_dict['val'] = str(val_path)
73 | if train_dir or val_dir:
74 | ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
75 | with open(ddp_data_path, 'w') as f:
76 | yaml.dump(data_dict, f)
77 | opt.data = ddp_data_path
78 |
79 |
80 | class WandbLogger():
81 | def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
82 | # Pre-training routine --
83 | self.job_type = job_type
84 | self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict
85 | # It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call
86 | if isinstance(opt.resume, str): # checks resume from artifact
87 | if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
88 | run_id, project, model_artifact_name = get_run_info(opt.resume)
89 | model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
90 | assert wandb, 'install wandb to resume wandb runs'
91 | # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
92 | self.wandb_run = wandb.init(id=run_id, project=project, resume='allow')
93 | opt.resume = model_artifact_name
94 | elif self.wandb:
95 | self.wandb_run = wandb.init(config=opt,
96 | resume="allow",
97 | project='YOLOR' if opt.project == 'runs/train' else Path(opt.project).stem,
98 | name=name,
99 | job_type=job_type,
100 | id=run_id) if not wandb.run else wandb.run
101 | if self.wandb_run:
102 | if self.job_type == 'Training':
103 | if not opt.resume:
104 | wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict
105 | # Info useful for resuming from artifacts
106 | self.wandb_run.config.opt = vars(opt)
107 | self.wandb_run.config.data_dict = wandb_data_dict
108 | self.data_dict = self.setup_training(opt, data_dict)
109 | if self.job_type == 'Dataset Creation':
110 | self.data_dict = self.check_and_upload_dataset(opt)
111 | else:
112 | prefix = colorstr('wandb: ')
113 | print(f"{prefix}Install Weights & Biases for YOLOR logging with 'pip install wandb' (recommended)")
114 |
115 | def check_and_upload_dataset(self, opt):
116 | assert wandb, 'Install wandb to upload dataset'
117 | check_dataset(self.data_dict)
118 | config_path = self.log_dataset_artifact(opt.data,
119 | opt.single_cls,
120 | 'YOLOR' if opt.project == 'runs/train' else Path(opt.project).stem)
121 | print("Created dataset config file ", config_path)
122 | with open(config_path) as f:
123 | wandb_data_dict = yaml.load(f, Loader=yaml.SafeLoader)
124 | return wandb_data_dict
125 |
126 | def setup_training(self, opt, data_dict):
127 | self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants
128 | self.bbox_interval = opt.bbox_interval
129 | if isinstance(opt.resume, str):
130 | modeldir, _ = self.download_model_artifact(opt)
131 | if modeldir:
132 | self.weights = Path(modeldir) / "last.pt"
133 | config = self.wandb_run.config
134 | opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
135 | self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \
136 | config.opt['hyp']
137 | data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
138 | if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download
139 | self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
140 | opt.artifact_alias)
141 | self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
142 | opt.artifact_alias)
143 | self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None
144 | if self.train_artifact_path is not None:
145 | train_path = Path(self.train_artifact_path) / 'data/images/'
146 | data_dict['train'] = str(train_path)
147 | if self.val_artifact_path is not None:
148 | val_path = Path(self.val_artifact_path) / 'data/images/'
149 | data_dict['val'] = str(val_path)
150 | self.val_table = self.val_artifact.get("val")
151 | self.map_val_table_path()
152 | if self.val_artifact is not None:
153 | self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
154 | self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
155 | if opt.bbox_interval == -1:
156 | self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
157 | return data_dict
158 |
159 | def download_dataset_artifact(self, path, alias):
160 | if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
161 | dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
162 | assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
163 | datadir = dataset_artifact.download()
164 | return datadir, dataset_artifact
165 | return None, None
166 |
167 | def download_model_artifact(self, opt):
168 | if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
169 | model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
170 | assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
171 | modeldir = model_artifact.download()
172 | epochs_trained = model_artifact.metadata.get('epochs_trained')
173 | total_epochs = model_artifact.metadata.get('total_epochs')
174 | assert epochs_trained < total_epochs, 'training to %g epochs is finished, nothing to resume.' % (
175 | total_epochs)
176 | return modeldir, model_artifact
177 | return None, None
178 |
179 | def log_model(self, path, opt, epoch, fitness_score, best_model=False):
180 | model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
181 | 'original_url': str(path),
182 | 'epochs_trained': epoch + 1,
183 | 'save period': opt.save_period,
184 | 'project': opt.project,
185 | 'total_epochs': opt.epochs,
186 | 'fitness_score': fitness_score
187 | })
188 | model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
189 | wandb.log_artifact(model_artifact,
190 | aliases=['latest', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
191 | print("Saving model artifact on epoch ", epoch + 1)
192 |
193 | def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
194 | with open(data_file) as f:
195 | data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
196 | nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
197 | names = {k: v for k, v in enumerate(names)} # to index dictionary
198 | self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
199 | data['train']), names, name='train') if data.get('train') else None
200 | self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
201 | data['val']), names, name='val') if data.get('val') else None
202 | if data.get('train'):
203 | data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
204 | if data.get('val'):
205 | data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
206 | path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path
207 | data.pop('download', None)
208 | with open(path, 'w') as f:
209 | yaml.dump(data, f)
210 |
211 | if self.job_type == 'Training': # builds correct artifact pipeline graph
212 | self.wandb_run.use_artifact(self.val_artifact)
213 | self.wandb_run.use_artifact(self.train_artifact)
214 | self.val_artifact.wait()
215 | self.val_table = self.val_artifact.get('val')
216 | self.map_val_table_path()
217 | else:
218 | self.wandb_run.log_artifact(self.train_artifact)
219 | self.wandb_run.log_artifact(self.val_artifact)
220 | return path
221 |
222 | def map_val_table_path(self):
223 | self.val_table_map = {}
224 | print("Mapping dataset")
225 | for i, data in enumerate(tqdm(self.val_table.data)):
226 | self.val_table_map[data[3]] = data[0]
227 |
228 | def create_dataset_table(self, dataset, class_to_id, name='dataset'):
229 | # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
230 | artifact = wandb.Artifact(name=name, type="dataset")
231 | img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
232 | img_files = tqdm(dataset.img_files) if not img_files else img_files
233 | for img_file in img_files:
234 | if Path(img_file).is_dir():
235 | artifact.add_dir(img_file, name='data/images')
236 | labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
237 | artifact.add_dir(labels_path, name='data/labels')
238 | else:
239 | artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
240 | label_file = Path(img2label_paths([img_file])[0])
241 | artifact.add_file(str(label_file),
242 | name='data/labels/' + label_file.name) if label_file.exists() else None
243 | table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
244 | class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
245 | for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
246 | height, width = shapes[0]
247 | labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4))) * torch.Tensor([width, height, width, height])
248 | box_data, img_classes = [], {}
249 | for cls, *xyxy in labels[:, 1:].tolist():
250 | cls = int(cls)
251 | box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
252 | "class_id": cls,
253 | "box_caption": "%s" % (class_to_id[cls]),
254 | "scores": {"acc": 1},
255 | "domain": "pixel"})
256 | img_classes[cls] = class_to_id[cls]
257 | boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
258 | table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes),
259 | Path(paths).name)
260 | artifact.add(table, name)
261 | return artifact
262 |
263 | def log_training_progress(self, predn, path, names):
264 | if self.val_table and self.result_table:
265 | class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
266 | box_data = []
267 | total_conf = 0
268 | for *xyxy, conf, cls in predn.tolist():
269 | if conf >= 0.25:
270 | box_data.append(
271 | {"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
272 | "class_id": int(cls),
273 | "box_caption": "%s %.3f" % (names[cls], conf),
274 | "scores": {"class_score": conf},
275 | "domain": "pixel"})
276 | total_conf = total_conf + conf
277 | boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
278 | id = self.val_table_map[Path(path).name]
279 | self.result_table.add_data(self.current_epoch,
280 | id,
281 | wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
282 | total_conf / max(1, len(box_data))
283 | )
284 |
285 | def log(self, log_dict):
286 | if self.wandb_run:
287 | for key, value in log_dict.items():
288 | self.log_dict[key] = value
289 |
290 | def end_epoch(self, best_result=False):
291 | if self.wandb_run:
292 | wandb.log(self.log_dict)
293 | self.log_dict = {}
294 | if self.result_artifact:
295 | train_results = wandb.JoinedTable(self.val_table, self.result_table, "id")
296 | self.result_artifact.add(train_results, 'result')
297 | wandb.log_artifact(self.result_artifact, aliases=['latest', 'epoch ' + str(self.current_epoch),
298 | ('best' if best_result else '')])
299 | self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
300 | self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
301 |
302 | def finish_run(self):
303 | if self.wandb_run:
304 | if self.log_dict:
305 | wandb.log(self.log_dict)
306 | wandb.run.finish()
307 |
--------------------------------------------------------------------------------