├── .gitignore
├── LICENSE
├── README.md
├── abs
└── abs.cpp
├── access_patterns
└── access_patterns.cpp
├── biased_branches
└── random.cpp
├── clamp
└── clamp_bench.cpp
├── cmake_example
├── CMakeLists.txt
├── PowersConfig.h.in
├── local_functions
│ ├── CMakeLists.txt
│ ├── exponent.cpp
│ └── exponent.h
└── powers.cpp
├── code_scheduling
├── base
│ ├── base.cpp
│ └── base_random.cpp
├── fast
│ ├── fast.cpp
│ └── fast_random.cpp
└── hint
│ └── hint.cpp
├── conditions
├── bool
│ ├── non_power.cpp
│ ├── power2.cpp
│ └── runtime_value.cpp
├── branch
│ ├── false.cpp
│ ├── random.cpp
│ └── true.cpp
├── char
│ ├── non_power.cpp
│ ├── power2.cpp
│ └── runtime_value.cpp
├── int
│ ├── non_power.cpp
│ ├── power2.cpp
│ └── runtime_value.cpp
└── sizes.cpp
├── dod
└── dod.cpp
├── dot_product
├── base
│ └── base.cpp
├── modern
│ └── modern.cpp
├── modern_double
│ └── modern_double.cpp
└── tuned
│ └── tuned.cpp
├── duplicate_removal
└── duplicate_removal.cpp
├── false_sharing
├── aligned_type.cpp
├── atomic_int.cpp
├── false_sharing.cpp
└── vary_thread.cpp
├── hw_barrier
├── hw_barrier.cpp
└── sw_barrier.cpp
├── inc_bench
├── bad_inc.cpp
└── inc_bench.cpp
├── java_sll
└── LinkedList.java
├── peterson
├── peterson.cpp
└── peterson_hw_barrier.cpp
├── simple_bench
└── my_bench.cpp
├── sorting
└── sorting.cpp
├── strength_reduction
└── mod_bench.cpp
├── sum_reduction
├── generalized.cu
└── sum_reduction.cu
├── task_group
└── task_group.cpp
├── thread_affinity
└── thread_affinity.cpp
└── vector_add
└── vectorAdd.cu
/.gitignore:
--------------------------------------------------------------------------------
1 | # Compiled class file
2 | *.class
3 |
4 | # Log file
5 | *.log
6 |
7 | # BlueJ files
8 | *.ctxt
9 |
10 | # Mobile Tools for Java (J2ME)
11 | .mtj.tmp/
12 |
13 | # Package Files #
14 | *.jar
15 | *.war
16 | *.nar
17 | *.ear
18 | *.zip
19 | *.tar.gz
20 | *.rar
21 |
22 | # virtual machine crash logs, see http://www.java.com/en/download/help/error_hotspot.xml
23 | hs_err_pid*
24 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Misc. Code
2 |
3 | This repository holds various examples that don't have a home (yet)
4 |
5 | ## Contact
6 |
7 | Suggestions for specific content can be sent to: CoffeeBeforeArch@gmail.com
8 |
9 | ## Environment
10 |
11 | Operating System: Ubuntu 20.04
12 |
13 | Text Editor: vim
14 |
15 | Compiler: g++-11
16 |
17 | ## Examples
18 |
19 | This repository contains the following examples:
20 |
21 | - [Access pattern benchmarks](access_patterns)
22 | - [Biased branches benchmarks](biased_branches)
23 | - [Clamp benchmarks](clamp)
24 | - [CMake Example](cmake_example)
25 | - [Code Scheduling](code_scheduling)
26 | - [Data oriented design](dod)
27 | - [Branchless programming](conditions)
28 | - [Dot product benchmarks](dot_product)
29 | - [False sharing benchmarks](false_sharing)
30 | - [Hardware memory barriers](hw_barrier)
31 | - [Increment benchmarks](inc_bench)
32 | - [Java singly linked list](java_sll)
33 | - [Simple Google Benchmark](simple_bench)
34 | - [Strength reduction benchmark](strength_reduction)
35 | - [Short string optimization](strings)
36 | - [CUDA sum reduction](sum_reduction)
37 | - [TBB task group](task_group)
38 | - [Thread affinity benchmark](thread_affinity)
39 | - [CUDA vector addition](vector_add)
40 | - [Duplicate Removal](duplicate_removal)
41 | - [Sorting Alternatives](sorting)
42 | - [Peterson's Algorithm](peterson)
43 |
--------------------------------------------------------------------------------
/abs/abs.cpp:
--------------------------------------------------------------------------------
1 | // A simple benchmark for absolute value
2 | // By Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | // A simple benchmark for absolute value
10 | static void abs_bench_base(benchmark::State &s) {
11 | // Number of elements
12 | auto num_elements = 1 << s.range(0);
13 |
14 | // Create our random number generators
15 | std::mt19937 rng;
16 | rng.seed(std::random_device()());
17 | std::uniform_real_distribution dist(-1, 1);
18 |
19 | // Fill our vector with random numbers
20 | std::vector v_in(num_elements);
21 | std::generate(begin(v_in), end(v_in), [&]() { return dist(rng); });
22 |
23 | // Create a vector for results
24 | std::vector v_out(num_elements);
25 |
26 | // Do our absolute value
27 | for (auto _ : s) {
28 | for (int i = 0; i < v_in.size(); i++) {
29 | v_out[i] = v_in[i] > 0 ? v_in[i] : - v_in[i];
30 | }
31 | }
32 | }
33 | BENCHMARK(abs_bench_base)->DenseRange(6, 12);
34 |
35 | // A simple benchmark for absolute value
36 | static void abs_bench_branch(benchmark::State &s) {
37 | // Number of elements
38 | auto num_elements = 1 << s.range(0);
39 |
40 | // Create our random number generators
41 | std::mt19937 rng;
42 | rng.seed(std::random_device()());
43 | std::uniform_real_distribution dist(-1, 1);
44 |
45 | // Fill our vector with random numbers
46 | std::vector v_in(num_elements);
47 | std::generate(begin(v_in), end(v_in), [&]() { return dist(rng); });
48 |
49 | // Create a vector for results
50 | std::vector v_out(num_elements);
51 |
52 | // Do our absolute value
53 | for (auto _ : s) {
54 | for (int i = 0; i < v_in.size(); i++) {
55 | if (v_in[i] > 0) v_out[i] = v_in[i];
56 | else v_out[i] = - v_in[i];
57 | }
58 | }
59 | }
60 | BENCHMARK(abs_bench_branch)->DenseRange(6, 12);
61 |
62 |
63 | // A simple benchmark for absolute value
64 | static void abs_bench_std(benchmark::State &s) {
65 | // Number of elements
66 | auto num_elements = 1 << s.range(0);
67 |
68 | // Create our random number generators
69 | std::mt19937 rng;
70 | rng.seed(std::random_device()());
71 | std::uniform_real_distribution dist(-1, 1);
72 |
73 | // Fill our vector with random numbers
74 | std::vector v_in(num_elements);
75 | std::generate(begin(v_in), end(v_in), [&]() { return dist(rng); });
76 |
77 | // Create a vector for results
78 | std::vector v_out(num_elements);
79 |
80 | // Do our absolute value
81 | for (auto _ : s) {
82 | for (int i = 0; i < v_in.size(); i++) {
83 | v_out[i] = std::abs(v_in[i]);
84 | }
85 | }
86 | }
87 | BENCHMARK(abs_bench_std)->DenseRange(6, 12);
88 |
89 |
90 | BENCHMARK_MAIN();
91 |
--------------------------------------------------------------------------------
/access_patterns/access_patterns.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks of different access patterns in C++
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 |
6 | #include
7 | #include
8 | #include
9 | #include
10 | #include
11 |
12 | // Accesses an array sequentially in row-major fashion
13 | static void rowMajor(benchmark::State &s) {
14 | // Input/output vector size
15 | int N = 1 << s.range(0);
16 |
17 | // Create our input indices
18 | std::vector v_in(N * N);
19 | std::iota(begin(v_in), end(v_in), 0);
20 |
21 | // Create an output vector
22 | std::vector v_out(N * N);
23 |
24 | // Profile a simple traversal with simple additions
25 | while (s.KeepRunning()) {
26 | for (int i = 0; i < N * N; i++) {
27 | v_out[v_in[i]]++;
28 | }
29 | }
30 | }
31 | // Register the benchmark
32 | BENCHMARK(rowMajor)->DenseRange(10, 12)->Unit(benchmark::kMillisecond);
33 |
34 | // Accesses an array sequentially in reverse row-major
35 | static void reverse(benchmark::State &s) {
36 | // Input/output vector size
37 | int N = 1 << s.range(0);
38 |
39 | // Create our input indices
40 | std::vector v_in(N * N);
41 | std::iota(begin(v_in), end(v_in), 0);
42 | std::reverse(begin(v_in), end(v_in));
43 |
44 | // Create an output vector
45 | std::vector v_out(N * N);
46 |
47 | // Profile a simple traversal with simple additions
48 | while (s.KeepRunning()) {
49 | for (int i = 0; i < N * N; i++) {
50 | // Pre-fetch an item for later
51 | v_out[v_in[i]]++;
52 | }
53 | }
54 | }
55 | // Register the benchmark
56 | BENCHMARK(reverse)->DenseRange(10, 12)->Unit(benchmark::kMillisecond);
57 |
58 | // Accesses an array sequentially in row-major fashion
59 | static void cacheLine(benchmark::State &s) {
60 | // Input/output vector size
61 | int N = 1 << s.range(0);
62 |
63 | // Cache line size
64 | const int stride = 64 / sizeof(int);
65 |
66 | // Create our input indices
67 | std::vector v_in(N * N);
68 |
69 | // For each element in a cache line
70 | int index = 0;
71 | for (int i = 0; i < stride; i++) {
72 | // For each cache line in the array
73 | for (int j = 0; j < (N * N / stride); j++) {
74 | v_in[index] = j * stride + i;
75 | index++;
76 | }
77 | }
78 |
79 | // Create an output vector
80 | std::vector v_out(N * N);
81 |
82 | // Profile a simple traversal with simple additions
83 | while (s.KeepRunning()) {
84 | for (int i = 0; i < N * N; i++) {
85 | v_out[v_in[i]]++;
86 | }
87 | }
88 | }
89 | // Register the benchmark
90 | BENCHMARK(cacheLine)->DenseRange(10, 12)->Unit(benchmark::kMillisecond);
91 |
92 | // Accesses an array sequentially in row-major fashion
93 | static void cacheLineReverse(benchmark::State &s) {
94 | // Input/output vector size
95 | int N = 1 << s.range(0);
96 |
97 | // Cache line size
98 | const int stride = 64 / sizeof(int);
99 |
100 | // Create our input indices
101 | std::vector v_in(N * N);
102 |
103 | // For each element in a cache line
104 | int index = 0;
105 | for (int i = 0; i < stride; i++) {
106 | // For each cache line in the array
107 | for (int j = 0; j < (N * N / stride); j++) {
108 | v_in[index] = j * stride + i;
109 | index++;
110 | }
111 | }
112 |
113 | // Reverse the indices
114 | std::reverse(begin(v_in), end(v_in));
115 |
116 | // Create an output vector
117 | std::vector v_out(N * N);
118 |
119 | // Profile a simple traversal with simple additions
120 | while (s.KeepRunning()) {
121 | for (int i = 0; i < N * N; i++) {
122 | v_out[v_in[i]]++;
123 | }
124 | }
125 | }
126 | // Register the benchmark
127 | BENCHMARK(cacheLineReverse)->DenseRange(10, 12)->Unit(benchmark::kMillisecond);
128 |
129 | // Accesses an array in column-major order
130 | static void columnMajor(benchmark::State &s) {
131 | // Input/output vector size
132 | int N = 1 << s.range(0);
133 |
134 | // Create our input indices
135 | std::vector v_in(N * N);
136 | for (int i = 0; i < N; i++) {
137 | for (int j = 0; j < N; j++) {
138 | v_in[i * N + j] = j * N + i;
139 | }
140 | }
141 |
142 | // Create an output vector
143 | std::vector v_out(N * N);
144 |
145 | // Profile a simple traversal with simple additions
146 | while (s.KeepRunning()) {
147 | for (int i = 0; i < N * N; i++) {
148 | v_out[v_in[i]]++;
149 | }
150 | }
151 | }
152 | // Register the benchmark
153 | BENCHMARK(columnMajor)->DenseRange(10, 12)->Unit(benchmark::kMillisecond);
154 |
155 | // Accesses an array in randomized order
156 | static void random(benchmark::State &s) {
157 | // Input/output vector size
158 | int N = 1 << s.range(0);
159 |
160 | // Create our input indices
161 | std::vector v_in(N * N);
162 | std::iota(begin(v_in), end(v_in), 0);
163 |
164 | // Now shuffle the vector
165 | std::random_device rng;
166 | std::mt19937 urng(rng());
167 | std::shuffle(begin(v_in), end(v_in), urng);
168 |
169 | // Create an output vector
170 | std::vector v_out(N * N);
171 |
172 | // Profile a simple traversal with simple additions
173 | while (s.KeepRunning()) {
174 | for (int i = 0; i < N * N; i++) {
175 | v_out[v_in[i]]++;
176 | }
177 | }
178 | }
179 | // Register the benchmark
180 | BENCHMARK(random)->DenseRange(10, 12)->Unit(benchmark::kMillisecond);
181 |
182 | // Accesses in a random order but try pre-fetching
183 | static void randomPrefetch(benchmark::State &s) {
184 | // Input/output vector size
185 | int N = 1 << s.range(0);
186 |
187 | // Create our input indices
188 | std::vector v_in(N * N);
189 | std::iota(begin(v_in), end(v_in), 0);
190 |
191 | // Now shuffle the vector
192 | std::random_device rng;
193 | std::mt19937 urng(rng());
194 | std::shuffle(begin(v_in), end(v_in), urng);
195 |
196 | // Create an output vector
197 | std::vector v_out(N * N);
198 |
199 | // Profile a simple traversal with simple additions
200 | while (s.KeepRunning()) {
201 | for (int i = 0; i < N * N; i++) {
202 | // Pre-fetch an item for later
203 | __builtin_prefetch(&v_out[v_in[i + 5]]);
204 | v_out[v_in[i]]++;
205 | }
206 | }
207 | }
208 | // Register the benchmark
209 | BENCHMARK(randomPrefetch)->DenseRange(10, 12)->Unit(benchmark::kMillisecond);
210 |
211 | // Benchmark main functions
212 | BENCHMARK_MAIN();
213 |
--------------------------------------------------------------------------------
/biased_branches/random.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks using branches for conditionally adding a value
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 |
6 | #include
7 | #include
8 | #include
9 |
10 | // Function for generating argument pairs
11 | static void custom_args(benchmark::internal::Benchmark *b) {
12 | for (auto i : {14}) {
13 | for (auto j : {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}) {
14 | b = b->ArgPair(i, j);
15 | }
16 | }
17 | }
18 |
19 | // Benchmark for using branches
20 | static void branchBenchRandom(benchmark::State &s) {
21 | // Get the input vector size
22 | auto N = 1 << s.range(0);
23 |
24 | // Get the distribution
25 | double probability = s.range(1) / 100.0;
26 |
27 | // Create random number generator
28 | // Bernoulli distribution gives T/F outcomes
29 | std::random_device rd;
30 | std::mt19937 gen(rd());
31 | std::bernoulli_distribution d(probability);
32 |
33 | // Create a vector of random booleans
34 | std::vector v_in(N);
35 | std::generate(begin(v_in), end(v_in), [&]() { return d(gen); });
36 |
37 | // Output element
38 | int sink = 0;
39 |
40 | // Benchmark main loop
41 | for (auto _ : s) {
42 | for (auto b : v_in)
43 | if (b) benchmark::DoNotOptimize(sink += s.range(0));
44 | }
45 | }
46 | BENCHMARK(branchBenchRandom)->Apply(custom_args)->Unit(benchmark::kMicrosecond);
47 |
48 | BENCHMARK_MAIN();
49 |
--------------------------------------------------------------------------------
/clamp/clamp_bench.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks for compiler optimizations of a clamp function
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 |
8 | #include "benchmark/benchmark.h"
9 |
10 | // Benchmark for a clamp function
11 | // std::vector + for-loop
12 | static void clamp_bench(benchmark::State &s) {
13 | // Number of elements in the vector
14 | auto N = 1 << s.range(0);
15 |
16 | // Create our random number generators
17 | std::mt19937 rng;
18 | rng.seed(std::random_device()());
19 | std::uniform_int_distribution dist(0, 1024);
20 |
21 | // Create a vector of random integers
22 | std::vector v_in(N);
23 | std::vector v_out(N);
24 | std::generate(begin(v_in), end(v_in), [&]() { return dist(rng); });
25 |
26 | // Main benchmark loop
27 | for (auto _ : s) {
28 | for (int i = 0; i < N; i++) {
29 | v_out[i] = (v_in[i] > 512) ? 512 : v_in[i];
30 | }
31 | }
32 | }
33 | BENCHMARK(clamp_bench)->DenseRange(8, 10);
34 |
35 | // Benchmark for a clamp function
36 | // Raw pointers + for-loop
37 | static void clamp_bench_raw_ptr(benchmark::State &s) {
38 | // Number of elements in the vector
39 | auto N = 1 << s.range(0);
40 |
41 | // Create our random number generators
42 | std::mt19937 rng;
43 | rng.seed(std::random_device()());
44 | std::uniform_int_distribution dist(0, 1024);
45 |
46 | // Create a vector of random integers
47 | int *v_in = new int[N]();
48 | int *v_out = new int[N]();
49 | std::generate(v_in, v_in + N, [&]() { return dist(rng); });
50 |
51 | // Main benchmark loop
52 | for (auto _ : s) {
53 | for (int i = 0; i < N; i++) {
54 | v_out[i] = (v_in[i] > 512) ? 512 : v_in[i];
55 | }
56 | }
57 |
58 | delete[] v_in;
59 | delete[] v_out;
60 | }
61 | BENCHMARK(clamp_bench_raw_ptr)->DenseRange(8, 10);
62 |
63 | // Benchmark for a clamp function
64 | // std::vector + std::transform
65 | static void clamp_bench_lambda(benchmark::State &s) {
66 | // Number of elements in the vector
67 | auto N = 1 << s.range(0);
68 |
69 | // Create our random number generators
70 | std::mt19937 rng;
71 | rng.seed(std::random_device()());
72 | std::uniform_int_distribution dist(0, 1024);
73 |
74 | // Create a vector of random integers
75 | std::vector v_in(N);
76 | std::vector v_out(N);
77 | std::generate(begin(v_in), end(v_in), [&]() { return dist(rng); });
78 |
79 | // Our clamp function
80 | auto clamp = [](int in) { return (in > 512) ? 512 : in; };
81 |
82 | // Main benchmark loop
83 | for (auto _ : s) {
84 | std::transform(begin(v_in), end(v_in), begin(v_out), clamp);
85 | }
86 | }
87 | BENCHMARK(clamp_bench_lambda)->DenseRange(8, 10);
88 |
89 | // Benchmark for a clamp function
90 | // Raw pointers + std::transform
91 | static void clamp_bench_raw_ptr_lambda(benchmark::State &s) {
92 | // Number of elements in the vector
93 | auto N = 1 << s.range(0);
94 |
95 | // Create our random number generators
96 | std::mt19937 rng;
97 | rng.seed(std::random_device()());
98 | std::uniform_int_distribution dist(0, 1024);
99 |
100 | // Create a vector of random integers
101 | int *v_in = new int[N]();
102 | int *v_out = new int[N]();
103 | std::generate(v_in, v_in + N, [&]() { return dist(rng); });
104 |
105 | // Our clamp function
106 | auto clamp = [](int in) { return (in > 512) ? 512 : in; };
107 |
108 | // Main benchmark loop
109 | for (auto _ : s) {
110 | std::transform(v_in, v_in + N, v_out, clamp);
111 | }
112 |
113 | delete[] v_in;
114 | delete[] v_out;
115 | }
116 | BENCHMARK(clamp_bench_raw_ptr_lambda)->DenseRange(8, 10);
117 |
118 | BENCHMARK_MAIN();
119 |
--------------------------------------------------------------------------------
/cmake_example/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | # Set the minimum CMake version
2 | cmake_minimum_required (VERSION 3.5)
3 | # Name the project (sets PROJECT_NAME variable)
4 | project (Powers)
5 |
6 | # Add a version number
7 | set (Powers_VERSION_MAJOR 1)
8 | set (Powers_VERSION_MINOR 0)
9 |
10 | # Configure a header file to pass CMake settings to the source
11 | configure_file (
12 | "${PROJECT_SOURCE_DIR}/PowersConfig.h.in"
13 | "${PROJECT_BINARY_DIR}/PowersConfig.h"
14 | )
15 |
16 | # Add the binary tree to the search path for include files
17 | # This is necessary to find our generated header file
18 | include_directories("${PROJECT_BINARY_DIR}")
19 |
20 | # See if we should use our "myPow" function
21 | option (USE_MYMATH "Use our own exponent function" ON)
22 |
23 | # Act conditionally based on this option
24 | if(USE_MYMATH)
25 | # Add directories for our "myPow" prototype
26 | include_directories ("${PROJECT_SOURCE_DIR}/local_functions")
27 | # Add subdirectory so that the "myPow" function will be built
28 | add_subdirectory (local_functions)
29 | set (EXTRA_LIBS ${EXTRA_LIBS} Exponent)
30 | endif(USE_MYMATH)
31 |
32 | # Builds an executable "Powers" from source "powers.cxx"
33 | add_executable(Powers powers.cpp)
34 | # Target our library for linking
35 | target_link_libraries(Powers ${EXTRA_LIBS})
36 |
37 |
--------------------------------------------------------------------------------
/cmake_example/PowersConfig.h.in:
--------------------------------------------------------------------------------
1 | // This file contains the configured options for our CMake example
2 | #define Powers_VERSION_MAJOR @Powers_VERSION_MAJOR@
3 | #define Powers_VERSION_MINOR @Powers_VERSION_MINOR@
4 | #cmakedefine USE_MYMATH
5 |
--------------------------------------------------------------------------------
/cmake_example/local_functions/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | # Add the library target to be built
2 | add_library(Exponent exponent.cpp)
3 |
--------------------------------------------------------------------------------
/cmake_example/local_functions/exponent.cpp:
--------------------------------------------------------------------------------
1 | // This file contains the definition of an exponent function
2 | int myPow(int base, int exponent){
3 | int tmp = base;
4 |
5 | // Return 1 for exponent of 0
6 | if (exponent == 0){
7 | return 1;
8 | }
9 |
10 | // Accumulate exponent through multiplication
11 | for(int i = 0; i < exponent - 1; i++){
12 | tmp *= base;
13 | }
14 |
15 | return tmp;
16 | }
17 |
--------------------------------------------------------------------------------
/cmake_example/local_functions/exponent.h:
--------------------------------------------------------------------------------
1 | // This file contains the function prototype for the myPow function
2 | // By: Nick from CoffeeBeforeArch
3 | int myPow(int base, int exponent);
4 |
--------------------------------------------------------------------------------
/cmake_example/powers.cpp:
--------------------------------------------------------------------------------
1 | // This program takes the power of different numbers and is compiled
2 | // using CMake
3 | // By: Nick from CoffeeBeforeArch
4 |
5 | #include
6 | #include
7 |
8 | // Add header generated by CMake
9 | #include "PowersConfig.h"
10 |
11 | // Conditionally add our myPow function
12 | #ifdef USE_MYMATH
13 | #include "exponent.h"
14 | #endif
15 |
16 | using namespace std;
17 |
18 | int main(){
19 | // Print the version numbers that we generate
20 | cout << "Major Version: " << Powers_VERSION_MAJOR << endl;
21 | cout << "Minor Version: " << Powers_VERSION_MINOR << endl;
22 |
23 | // Compute some a power calculation
24 | int base = 4;
25 | int exponent = 3;
26 |
27 | // Conditionally use our myPow function
28 | #ifdef USE_MYMATH
29 | int result = myPow(base, exponent);
30 | #else
31 | int result = pow(base, exponent);
32 | #endif
33 |
34 | // Print the result
35 | cout << base << "^" << exponent << " = " << result << endl;
36 | return 0;
37 | }
38 |
--------------------------------------------------------------------------------
/code_scheduling/base/base.cpp:
--------------------------------------------------------------------------------
1 | // This program shows off a neat optimization for fast a faster
2 | // modulo operation in C++
3 | // By: Nick from CoffeeBeforeArch
4 |
5 | #include
6 | #include
7 | #include
8 |
9 | // Function for generating argument pairs
10 | static void custom_args(benchmark::internal::Benchmark *b) {
11 | for (int i = 1 << 4; i <= 1 << 10; i <<= 2) {
12 | // Collect stats at 1/8, 1/2, and 7/8
13 | for (int j : {32, 128, 224}) {
14 | b = b->ArgPair(i, j);
15 | }
16 | }
17 | }
18 |
19 | // Baseline benchmark
20 | static void baseMod(benchmark::State &s) {
21 | // Number of elements in the vectors
22 | int N = s.range(0);
23 |
24 | // Max for mod operator
25 | int ceil = s.range(1);
26 |
27 | // Vector for input and output of modulo
28 | std::vector input;
29 | std::vector output;
30 | input.resize(N);
31 | output.resize(N);
32 |
33 | // Generate random inputs (uniform random dist. between 0 & 255)
34 | std::mt19937 rng;
35 | rng.seed(std::random_device()());
36 | std::uniform_int_distribution dist(0, 255);
37 | for (int &i : input) {
38 | i = dist(rng);
39 | }
40 |
41 | // Main benchmark loop
42 | while (s.KeepRunning()) {
43 | // Compute the modulo for each element
44 | for (int i = 0; i < N; i++) {
45 | output[i] = input[i] % ceil;
46 | }
47 | }
48 | }
49 | // Register the benchmark
50 | BENCHMARK(baseMod)->Apply(custom_args);
51 |
52 | // Benchmark main function
53 | BENCHMARK_MAIN();
54 |
--------------------------------------------------------------------------------
/code_scheduling/base/base_random.cpp:
--------------------------------------------------------------------------------
1 | // This program shows off a neat optimization for fast a faster
2 | // modulo operation in C++
3 | // By: Nick from CoffeeBeforeArch
4 |
5 | #include
6 | #include
7 | #include
8 |
9 | // Function for generating argument pairs
10 | static void custom_args(benchmark::internal::Benchmark *b) {
11 | for (int i = 1 << 4; i <= 1 << 10; i <<= 2) {
12 | // Collect stats at 1/8, 1/2, and 7/8
13 | for (int j : {32, 128, 224}) {
14 | b = b->ArgPair(i, j);
15 | }
16 | }
17 | }
18 |
19 | // Baseline benchmark
20 | static void baseModRandom(benchmark::State &s) {
21 | // Number of elements in the vectors
22 | int N = s.range(0);
23 |
24 | // Max for mod operator
25 | int ceil = s.range(1);
26 |
27 | // Vector for input and output of modulo
28 | std::vector input;
29 | std::vector output;
30 | input.resize(N);
31 | output.resize(N);
32 |
33 | // Generate random inputs (uniform random dist. between 0 & 255)
34 | std::mt19937 rng;
35 | rng.seed(std::random_device()());
36 | std::uniform_int_distribution dist(0, 255);
37 | for (int &i : input) {
38 | i = dist(rng);
39 | }
40 |
41 | // Main benchmark loop
42 | while (s.KeepRunning()) {
43 | s.PauseTiming();
44 | for (int &i : input) {
45 | i = dist(rng);
46 | }
47 | s.ResumeTiming();
48 |
49 | // Compute the modulo for each element
50 | for (int i = 0; i < N; i++) {
51 | output[i] = input[i] % ceil;
52 | }
53 | }
54 | }
55 | // Register the benchmark
56 | BENCHMARK(baseModRandom)->Apply(custom_args);
57 |
58 | // Benchmark main function
59 | BENCHMARK_MAIN();
60 |
--------------------------------------------------------------------------------
/code_scheduling/fast/fast.cpp:
--------------------------------------------------------------------------------
1 | // This program shows off a neat optimization for fast a faster
2 | // modulo operation in C++
3 | // By: Nick from CoffeeBeforeArch
4 |
5 | #include
6 | #include
7 | #include
8 |
9 | // Function for generating argument pairs
10 | static void custom_args(benchmark::internal::Benchmark *b) {
11 | for (int i = 1 << 4; i <= 1 << 10; i <<= 2) {
12 | // Collect stats at 1/8, 1/2, and 7/8
13 | for (int j : {32, 128, 224}) {
14 | b = b->ArgPair(i, j);
15 | }
16 | }
17 | }
18 |
19 | // Our fast modulo operation
20 | static void fastMod(benchmark::State &s) {
21 | // Number of elements
22 | int N = s.range(0);
23 |
24 | // Max for mod operator
25 | int ceil = s.range(1);
26 |
27 | // Vector for input and output
28 | std::vector input;
29 | std::vector output;
30 | input.resize(N);
31 | output.resize(N);
32 |
33 | // Generate random inputs
34 | std::mt19937 rng;
35 | rng.seed(std::random_device()());
36 | std::uniform_int_distribution dist(0, 255);
37 | for (int &i : input) {
38 | i = dist(rng);
39 | }
40 |
41 | for (auto _ : s) {
42 | // DON'T compute the mod for each element
43 | // Skip the expensive operation using a simple compare
44 | for (int i = 0; i < N; i++) {
45 | output[i] = (input[i] >= ceil) ? input[i] % ceil : input[i];
46 | }
47 | }
48 | }
49 | // Register the benchmark
50 | BENCHMARK(fastMod)->Apply(custom_args);
51 |
52 | // Benchmark main function
53 | BENCHMARK_MAIN();
54 |
--------------------------------------------------------------------------------
/code_scheduling/fast/fast_random.cpp:
--------------------------------------------------------------------------------
1 | // This program shows off a neat optimization for fast a faster
2 | // modulo operation in C++
3 | // By: Nick from CoffeeBeforeArch
4 |
5 | #include
6 | #include
7 | #include
8 |
9 | // Function for generating argument pairs
10 | static void custom_args(benchmark::internal::Benchmark *b) {
11 | for (int i = 1 << 4; i <= 1 << 10; i <<= 2) {
12 | // Collect stats at 1/8, 1/2, and 7/8
13 | for (int j : {32, 128, 224}) {
14 | b = b->ArgPair(i, j);
15 | }
16 | }
17 | }
18 |
19 | // Our fast modulo operation
20 | static void fastMod(benchmark::State &s) {
21 | // Number of elements
22 | int N = s.range(0);
23 |
24 | // Max for mod operator
25 | int ceil = s.range(1);
26 |
27 | // Vector for input and output
28 | std::vector input;
29 | std::vector output;
30 | input.resize(N);
31 | output.resize(N);
32 |
33 | // Generate random inputs
34 | std::mt19937 rng;
35 | rng.seed(std::random_device()());
36 | std::uniform_int_distribution dist(0, 255);
37 |
38 | for (auto _ : s) {
39 | // Generate random numbers but don't profile it
40 | s.PauseTiming();
41 | for (int &i : input) {
42 | i = dist(rng);
43 | }
44 | s.ResumeTiming();
45 |
46 | // DON'T compute the mod for each element
47 | // Skip the expensive operation using a simple compare
48 | for (int i = 0; i < N; i++) {
49 | output[i] = (input[i] >= ceil) ? input[i] % ceil : input[i];
50 | }
51 | }
52 | }
53 | // Register the benchmark
54 | BENCHMARK(fastMod)->Apply(custom_args);
55 |
56 | // Benchmark main function
57 | BENCHMARK_MAIN();
58 |
--------------------------------------------------------------------------------
/code_scheduling/hint/hint.cpp:
--------------------------------------------------------------------------------
1 | // This program shows off a neat optimization for fast a faster
2 | // modulo operation in C++
3 | // By: Nick from CoffeeBeforeArch
4 |
5 | #include
6 | #include
7 | #include
8 |
9 | // Function for generating argument pairs
10 | static void custom_args(benchmark::internal::Benchmark *b) {
11 | for (int i = 1 << 4; i <= 1 << 10; i <<= 2) {
12 | // Collect stats at 1/8, 1/2, and 7/8
13 | for (int j : {32, 128, 224}) {
14 | b = b->ArgPair(i, j);
15 | }
16 | }
17 | }
18 |
19 | // Baseline for intuitive modulo operation
20 | static void fastModHint(benchmark::State &s) {
21 | // Number of elements
22 | int N = s.range(0);
23 |
24 | // Max for mod operator
25 | int ceil = s.range(1);
26 |
27 | // Vector for input and output of modulo
28 | std::vector input;
29 | std::vector output;
30 | input.resize(N);
31 | output.resize(N);
32 |
33 | // Generate random inputs
34 | std::mt19937 rng;
35 | rng.seed(std::random_device()());
36 | std::uniform_int_distribution dist(0, 255);
37 | for (int &i : input) {
38 | i = dist(rng);
39 | }
40 |
41 | for (auto _ : s) {
42 | // DON'T compute the mod for each element
43 | // Skip the expensive operation using a simple compare
44 | for (int i = 0; i < N; i++) {
45 | // Hint to the compiler that we usually skip the mod
46 | output[i] =
47 | __builtin_expect(input[i] >= ceil, 0) ? input[i] % ceil : input[i];
48 | }
49 | }
50 | }
51 | // Register the benchmark
52 | BENCHMARK(fastModHint)->Apply(custom_args);
53 |
54 | // Benchmark main function
55 | BENCHMARK_MAIN();
56 |
--------------------------------------------------------------------------------
/conditions/bool/non_power.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks for using booleans in arithmetic
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | // Benchmark for integrating boolean into multiply and add
10 | // Uses constant that is not a power of 2
11 | static void boolBenchNonPower(benchmark::State &s) {
12 | // Get the input vector size
13 | auto N = 1 << s.range(0);
14 |
15 | // Create random number generator
16 | std::random_device rd;
17 | std::mt19937 gen(rd());
18 | std::bernoulli_distribution d(0.5);
19 |
20 | // Create a vector of random booleans
21 | std::vector v_in(N);
22 | std::generate(begin(v_in), end(v_in), [&]() { return d(gen); });
23 |
24 | // Output element
25 | // Dynamically allocated int isn't optimized away
26 | int *sink = new int;
27 | *sink = 0;
28 |
29 | // Benchmark main loop
30 | for (auto _ : s) {
31 | for (auto b : v_in) *sink += 41 * b;
32 | }
33 |
34 | // Free our memory
35 | delete sink;
36 | }
37 | BENCHMARK(boolBenchNonPower)->DenseRange(12, 14)->Unit(benchmark::kMicrosecond);
38 |
39 | BENCHMARK_MAIN();
40 |
--------------------------------------------------------------------------------
/conditions/bool/power2.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks for using booleans in arithmetic
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | // Benchmark for integrating boolean into multiply and add
10 | // Uses a constant that is a power of 2
11 | static void boolBenchPower(benchmark::State &s) {
12 | // Get the input vector size
13 | auto N = 1 << s.range(0);
14 |
15 | // Create random number generator
16 | std::random_device rd;
17 | std::mt19937 gen(rd());
18 | std::bernoulli_distribution d(0.5);
19 |
20 | // Create a vector of random booleans
21 | std::vector v_in(N);
22 | std::generate(begin(v_in), end(v_in), [&]() { return d(gen); });
23 |
24 | // Output element
25 | // Dynamically allocated int isn't optimized away
26 | int *sink = new int;
27 | *sink = 0;
28 |
29 | // Benchmark main loop
30 | for (auto _ : s) {
31 | for (auto b : v_in) *sink += 32 * b;
32 | }
33 |
34 | // Free our memory
35 | delete sink;
36 | }
37 | BENCHMARK(boolBenchPower)->DenseRange(12, 14)->Unit(benchmark::kMicrosecond);
38 |
39 | BENCHMARK_MAIN();
40 |
--------------------------------------------------------------------------------
/conditions/bool/runtime_value.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks for using booleans in arithmetic
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | // Benchmark for integrating boolean into multiply and add
10 | // Uses a value known only at runtime
11 | static void boolBenchInput(benchmark::State &s) {
12 | // Get the input vector size
13 | auto N = 1 << s.range(0);
14 |
15 | // Create random number generator
16 | std::random_device rd;
17 | std::mt19937 gen(rd());
18 | std::bernoulli_distribution d(0.5);
19 |
20 | // Create a vector of random booleans
21 | std::vector v_in(N);
22 | std::generate(begin(v_in), end(v_in), [&]() { return d(gen); });
23 |
24 | // Output element
25 | // Dynamically allocated int isn't optimized away
26 | int *sink = new int;
27 | *sink = 0;
28 |
29 | // Benchmark main loop
30 | for (auto _ : s) {
31 | for (auto b : v_in) *sink += s.range(0) * b;
32 | }
33 |
34 | // Free our memory
35 | delete sink;
36 | }
37 | BENCHMARK(boolBenchInput)->DenseRange(12, 14)->Unit(benchmark::kMicrosecond);
38 |
39 | BENCHMARK_MAIN();
40 |
--------------------------------------------------------------------------------
/conditions/branch/false.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks using branches for conditionally adding a value
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 |
8 | // Benchmark for using branches
9 | static void branchBenchFalse(benchmark::State &s) {
10 | // Get the input vector size
11 | auto N = 1 << s.range(0);
12 |
13 | // Create a vector of random booleans
14 | std::vector v_in(N);
15 | std::generate(begin(v_in), end(v_in), []() { return false; });
16 |
17 | // Output element
18 | // Dynamically allocated int isn't optimized away
19 | int *sink = new int;
20 | *sink = 0;
21 |
22 | // Benchmark main loop
23 | for (auto _ : s) {
24 | for (auto b : v_in)
25 | if (b) *sink += 41;
26 | }
27 |
28 | // Free our memory
29 | delete sink;
30 | }
31 | BENCHMARK(branchBenchFalse)->DenseRange(12, 14)->Unit(benchmark::kMicrosecond);
32 |
33 | BENCHMARK_MAIN();
34 |
--------------------------------------------------------------------------------
/conditions/branch/random.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks using branches for conditionally adding a value
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | // Benchmark for using branches
10 | static void branchBenchRandom(benchmark::State &s) {
11 | // Get the input vector size
12 | auto N = 1 << s.range(0);
13 |
14 | // Create random number generator
15 | std::random_device rd;
16 | std::mt19937 gen(rd());
17 | std::bernoulli_distribution d(0.5);
18 |
19 | // Create a vector of random booleans
20 | std::vector v_in(N);
21 | std::generate(begin(v_in), end(v_in), [&]() { return d(gen); });
22 |
23 | // Output element
24 | // Dynamically allocated int isn't optimized away
25 | int *sink = new int;
26 | *sink = 0;
27 |
28 | // Benchmark main loop
29 | for (auto _ : s) {
30 | for (auto b : v_in)
31 | if (b) *sink += 41;
32 | }
33 |
34 | // Free our memory
35 | delete sink;
36 | }
37 | BENCHMARK(branchBenchRandom)->DenseRange(12, 14)->Unit(benchmark::kMicrosecond);
38 |
39 | BENCHMARK_MAIN();
40 |
--------------------------------------------------------------------------------
/conditions/branch/true.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks using branches for conditionally adding a value
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 |
8 | // Benchmark for using branches
9 | static void branchBenchTrue(benchmark::State &s) {
10 | // Get the input vector size
11 | auto N = 1 << s.range(0);
12 |
13 | // Create a vector of random booleans
14 | std::vector v_in(N);
15 | std::generate(begin(v_in), end(v_in), []() { return true; });
16 |
17 | // Output element
18 | // Dynamically allocated int isn't optimized away
19 | int *sink = new int;
20 | *sink = 0;
21 |
22 | // Benchmark main loop
23 | for (auto _ : s) {
24 | for (auto b : v_in)
25 | if (b) *sink += 41;
26 | }
27 |
28 | // Free our memory
29 | delete sink;
30 | }
31 | BENCHMARK(branchBenchTrue)->DenseRange(12, 14)->Unit(benchmark::kMicrosecond);
32 |
33 | BENCHMARK_MAIN();
34 |
--------------------------------------------------------------------------------
/conditions/char/non_power.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks for using chars to store boolean values
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | // Benchmark for integrating character into multiply and add
10 | // Uses a constant that is not a power of two
11 | static void charBenchNonPower(benchmark::State &s) {
12 | // Get the input vector size
13 | auto N = 1 << s.range(0);
14 |
15 | // Create random number generator
16 | std::random_device rd;
17 | std::mt19937 gen(rd());
18 | std::bernoulli_distribution d(0.5);
19 |
20 | // Create a vector of random booleans
21 | std::vector v_in(N);
22 | std::generate(begin(v_in), end(v_in), [&]() { return d(gen); });
23 |
24 | // Output element
25 | // Dynamically allocated int isn't optimized away
26 | int *sink = new int;
27 | *sink = 0;
28 |
29 | // Benchmark main loop
30 | for (auto _ : s) {
31 | for (auto b : v_in) *sink += 41 * b;
32 | }
33 |
34 | // Free our memory
35 | delete sink;
36 | }
37 | BENCHMARK(charBenchNonPower)->DenseRange(12, 14)->Unit(benchmark::kMicrosecond);
38 |
39 | BENCHMARK_MAIN();
40 |
--------------------------------------------------------------------------------
/conditions/char/power2.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks for using chars to store boolean values
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | // Benchmark for integrating character into multiply and add
10 | // Uses a constant that is a power of two
11 | static void charBenchPower(benchmark::State &s) {
12 | // Get the input vector size
13 | auto N = 1 << s.range(0);
14 |
15 | // Create random number generator
16 | std::random_device rd;
17 | std::mt19937 gen(rd());
18 | std::bernoulli_distribution d(0.5);
19 |
20 | // Create a vector of random booleans
21 | std::vector v_in(N);
22 | std::generate(begin(v_in), end(v_in), [&]() { return d(gen); });
23 |
24 | // Output element
25 | // Dynamically allocated int isn't optimized away
26 | int *sink = new int;
27 | *sink = 0;
28 |
29 | // Benchmark main loop
30 | for (auto _ : s) {
31 | for (auto b : v_in) *sink += 32 * b;
32 | }
33 |
34 | // Free our memory
35 | delete sink;
36 | }
37 | BENCHMARK(charBenchPower)->DenseRange(12, 14)->Unit(benchmark::kMicrosecond);
38 |
39 | BENCHMARK_MAIN();
40 |
--------------------------------------------------------------------------------
/conditions/char/runtime_value.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks for using chars to store boolean values
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | // Benchmark for integrating character into multiply and add
10 | // Uses value known only at runtime
11 | static void charBenchInput(benchmark::State &s) {
12 | // Get the input vector size
13 | auto N = 1 << s.range(0);
14 |
15 | // Create random number generator
16 | std::random_device rd;
17 | std::mt19937 gen(rd());
18 | std::bernoulli_distribution d(0.5);
19 |
20 | // Create a vector of random booleans
21 | std::vector v_in(N);
22 | std::generate(begin(v_in), end(v_in), [&]() { return d(gen); });
23 |
24 | // Output element
25 | // Dynamically allocated int isn't optimized away
26 | int *sink = new int;
27 | *sink = 0;
28 |
29 | // Benchmark main loop
30 | for (auto _ : s) {
31 | for (auto b : v_in) *sink += s.range(0) * b;
32 | }
33 |
34 | // Free our memory
35 | delete sink;
36 | }
37 | BENCHMARK(charBenchInput)->DenseRange(12, 14)->Unit(benchmark::kMicrosecond);
38 |
39 | BENCHMARK_MAIN();
40 |
--------------------------------------------------------------------------------
/conditions/int/non_power.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks for using integers to store boolean values
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | // Benchmark for integrating integer into multiply and add
10 | // Uses a constant that is not a power of two
11 | static void intBenchNonPower(benchmark::State &s) {
12 | // Get the input vector size
13 | auto N = 1 << s.range(0);
14 |
15 | // Create random number generator
16 | std::random_device rd;
17 | std::mt19937 gen(rd());
18 | std::bernoulli_distribution d(0.5);
19 |
20 | // Create a vector of random booleans
21 | std::vector v_in(N);
22 | std::generate(begin(v_in), end(v_in), [&]() { return d(gen); });
23 |
24 | // Output element
25 | // Dynamically allocated int isn't optimized away
26 | int *sink = new int;
27 | *sink = 0;
28 |
29 | // Benchmark main loop
30 | for (auto _ : s) {
31 | for (auto b : v_in) *sink += 41 * b;
32 | }
33 |
34 | // Free our memory
35 | delete sink;
36 | }
37 | BENCHMARK(intBenchNonPower)->DenseRange(12, 14)->Unit(benchmark::kMicrosecond);
38 |
39 | BENCHMARK_MAIN();
40 |
--------------------------------------------------------------------------------
/conditions/int/power2.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks for using integers to store boolean values
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | // Benchmark for integrating integer into multiply and add
10 | // Uses a constant that is a power of two
11 | static void intBenchPower(benchmark::State &s) {
12 | // Get the input vector size
13 | auto N = 1 << s.range(0);
14 |
15 | // Create random number generator
16 | std::random_device rd;
17 | std::mt19937 gen(rd());
18 | std::bernoulli_distribution d(0.5);
19 |
20 | // Create a vector of random booleans
21 | std::vector v_in(N);
22 | std::generate(begin(v_in), end(v_in), [&]() { return d(gen); });
23 |
24 | // Output element
25 | // Dynamically allocated int isn't optimized away
26 | int *sink = new int;
27 | *sink = 0;
28 |
29 | // Benchmark main loop
30 | for (auto _ : s) {
31 | for (auto b : v_in) *sink += 32 * b;
32 | }
33 |
34 | // Free our memory
35 | delete sink;
36 | }
37 | BENCHMARK(intBenchPower)->DenseRange(12, 14)->Unit(benchmark::kMicrosecond);
38 |
39 | BENCHMARK_MAIN();
40 |
--------------------------------------------------------------------------------
/conditions/int/runtime_value.cpp:
--------------------------------------------------------------------------------
1 | // Benchmarks for using integers to store boolean values
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | // Benchmark for integrating integer into multiply and add
10 | // Uses a value that is only known at runtime
11 | static void intBenchInput(benchmark::State &s) {
12 | // Get the input vector size
13 | auto N = 1 << s.range(0);
14 |
15 | // Create random number generator
16 | std::random_device rd;
17 | std::mt19937 gen(rd());
18 | std::bernoulli_distribution d(0.5);
19 |
20 | // Create a vector of random booleans
21 | std::vector v_in(N);
22 | std::generate(begin(v_in), end(v_in), [&]() { return d(gen); });
23 |
24 | // Output element
25 | // Dynamically allocated int isn't optimized away
26 | int *sink = new int;
27 | *sink = 0;
28 |
29 | // Benchmark main loop
30 | for (auto _ : s) {
31 | for (auto b : v_in) *sink += s.range(0) * b;
32 | }
33 |
34 | // Free our memory
35 | delete sink;
36 | }
37 | BENCHMARK(intBenchInput)->DenseRange(12, 14)->Unit(benchmark::kMicrosecond);
38 |
39 | BENCHMARK_MAIN();
40 |
--------------------------------------------------------------------------------
/conditions/sizes.cpp:
--------------------------------------------------------------------------------
1 | // Short program for printing out sizing information
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 |
8 | // Overloaded new operator to track dynamic allocation
9 | void* operator new(size_t N) {
10 | std::cout << "Allocating " << N << " bytes of memory!\n";
11 | return malloc(N);
12 | }
13 |
14 | int main() {
15 | // Measure for the largest size
16 | const size_t N = 1 << 12;
17 |
18 | // Create the vectors used in the benchmarks
19 | std::vector v_bool(N);
20 | std::vector v_char(N);
21 | std::vector v_int(N);
22 |
23 | return 0;
24 | }
25 |
--------------------------------------------------------------------------------
/dod/dod.cpp:
--------------------------------------------------------------------------------
1 | // This program shows off the basics of data-oriented-design in C++
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | using std::back_inserter;
10 | using std::fill_n;
11 | using std::vector;
12 |
13 | // A simple struct aligned in such a way no two instances will be on
14 | // the same cache line (64 bytes cache lines, 64 byte alignment)
15 | struct SimpleStruct {
16 | // Struct with a 16 integer fields
17 | int v0 = 0;
18 | int v1 = 0;
19 | int v2 = 0;
20 | int v3 = 0;
21 | int v4 = 0;
22 | int v5 = 0;
23 | int v6 = 0;
24 | int v7 = 0;
25 | int v8 = 0;
26 | int v9 = 0;
27 | int v10 = 0;
28 | int v11 = 0;
29 | int v12 = 0;
30 | int v13 = 0;
31 | int v14 = 0;
32 | int v15 = 0;
33 |
34 | // Method to increment the field (only 1 here for brevity)
35 | void inc_v0() { v0++; }
36 | };
37 |
38 | // A simple struct that contains an array the fields stored in the
39 | // other object
40 | struct SoA {
41 | // Simple constructor that resizes the vector to store N values
42 | SoA(int N) {
43 | // Zero-initialized by default
44 | v0s.resize(N);
45 | v1s.resize(N);
46 | v2s.resize(N);
47 | v3s.resize(N);
48 | v4s.resize(N);
49 | v5s.resize(N);
50 | v6s.resize(N);
51 | v7s.resize(N);
52 | v8s.resize(N);
53 | v9s.resize(N);
54 | v10s.resize(N);
55 | v11s.resize(N);
56 | v12s.resize(N);
57 | v13s.resize(N);
58 | v14s.resize(N);
59 | v15s.resize(N);
60 | }
61 |
62 | // Update method that increments each value
63 | // Only for v0 for the sake of brevity
64 | void update_v0() {
65 | for (auto &i : v0s) {
66 | i++;
67 | }
68 | }
69 |
70 | // Vector of values
71 | vector v0s;
72 | vector v1s;
73 | vector v2s;
74 | vector v3s;
75 | vector v4s;
76 | vector v5s;
77 | vector v6s;
78 | vector v7s;
79 | vector v8s;
80 | vector v9s;
81 | vector v10s;
82 | vector v11s;
83 | vector v12s;
84 | vector v13s;
85 | vector v14s;
86 | vector v15s;
87 | };
88 |
89 | // Benchmark for classic OO approach
90 | static void ArrayOfStructs_Bench(benchmark::State &s) {
91 | // Extract the number of objects we want
92 | int N = 1 << s.range(0);
93 |
94 | // Create a vector for the PaddedStruct
95 | vector v;
96 | fill_n(back_inserter(v), N, SimpleStruct());
97 |
98 | // Profile the update for each field
99 | while (s.KeepRunning()) {
100 | // Increment the field for each struct
101 | for (auto &i : v) {
102 | i.inc_v0();
103 | }
104 | }
105 | }
106 | // Register the SoA benchmark
107 | BENCHMARK(ArrayOfStructs_Bench)->DenseRange(8, 16);
108 |
109 | // Benchmark for DoD approach
110 | static void StructOfArrays_Bench(benchmark::State &s) {
111 | // Extract the number of objects we want
112 | int N = 1 << s.range(0);
113 |
114 | // Create an Struct of Arrays
115 | SoA struct_of_arrays(N);
116 |
117 | // Profile the update of each field
118 | while (s.KeepRunning()) {
119 | struct_of_arrays.update_v0();
120 | }
121 | }
122 | // Register the AoS benchmark
123 | BENCHMARK(StructOfArrays_Bench)->DenseRange(8, 16);
124 |
125 | // Main function for the benchmarks
126 | BENCHMARK_MAIN();
127 |
--------------------------------------------------------------------------------
/dot_product/base/base.cpp:
--------------------------------------------------------------------------------
1 | // This program implements a baseline dot product in C++
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 |
6 | #include
7 | #include
8 | #include
9 |
10 | // Classic C-style dot product
11 | float dot_product(std::vector &__restrict v1,
12 | std::vector &__restrict v2) {
13 | float tmp = 0.0f;
14 | for (size_t i = 0; i < v1.size(); i++) {
15 | tmp += v1[i] * v2[i];
16 | }
17 | return tmp;
18 | }
19 |
20 | // Benchmark the baseline C-style dot product
21 | static void baseDP(benchmark::State &s) {
22 | // Get the size of the vector
23 | size_t N = 1 << s.range(0);
24 |
25 | // Initialize the vectors
26 | std::vector v1;
27 | std::fill_n(std::back_inserter(v1), N, rand() % 100);
28 | std::vector v2;
29 | std::fill_n(std::back_inserter(v2), N, rand() % 100);
30 |
31 | // Keep the result from being optimized away
32 | volatile float result = 0.0f;
33 |
34 | // Our benchmark loop
35 | while (s.KeepRunning()) {
36 | result = dot_product(v1, v2);
37 | }
38 | }
39 | BENCHMARK(baseDP)->DenseRange(8, 10);
40 |
41 | // Our benchmark main function
42 | BENCHMARK_MAIN();
43 |
--------------------------------------------------------------------------------
/dot_product/modern/modern.cpp:
--------------------------------------------------------------------------------
1 | // This program implements a modern C++ dot product
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 |
6 | #include
7 | #include
8 | #include
9 | #include
10 |
11 | // Modern C++ dot product
12 | float dot_product(std::vector &__restrict v1,
13 | std::vector &__restrict v2) {
14 | return std::transform_reduce(std::execution::unseq, begin(v1), end(v1),
15 | begin(v2), 0.0f);
16 | }
17 |
18 | // Benchmark for a modern C++ dot product
19 | static void modernDP(benchmark::State &s) {
20 | // Get the size of the vector
21 | size_t N = 1 << s.range(0);
22 |
23 | // Initialize the vectors
24 | std::vector v1;
25 | std::fill_n(std::back_inserter(v1), N, rand() % 100);
26 | std::vector v2;
27 | std::fill_n(std::back_inserter(v2), N, rand() % 100);
28 |
29 | // Keep our result from being optimized away
30 | volatile float result = 0;
31 |
32 | // Our benchmark loop
33 | while (s.KeepRunning()) {
34 | result = dot_product(v1, v2);
35 | }
36 | }
37 | BENCHMARK(modernDP)->DenseRange(8, 10);
38 |
39 | // Our benchmark main function
40 | BENCHMARK_MAIN();
41 |
--------------------------------------------------------------------------------
/dot_product/modern_double/modern_double.cpp:
--------------------------------------------------------------------------------
1 | // This program implements two dot product implementations in C++
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 | #include
9 |
10 | // Modern C++ dot product
11 | float dot_product(std::vector &__restrict v1,
12 | std::vector &__restrict v2) {
13 | return std::transform_reduce(std::execution::unseq, begin(v1), end(v1),
14 | begin(v2), 0.0);
15 | }
16 |
17 | // Benchmark the modern C++ dot product
18 | static void modernDP_double(benchmark::State &s) {
19 | // Get the size of the vector
20 | size_t N = 1 << s.range(0);
21 |
22 | // Initialize the vectors
23 | std::vector v1;
24 | std::fill_n(std::back_inserter(v1), N, rand() % 100);
25 | std::vector v2;
26 | std::fill_n(std::back_inserter(v2), N, rand() % 100);
27 |
28 | // Keep our result from being optimized away
29 | volatile float result = 0;
30 |
31 | // Our benchmark loop
32 | while (s.KeepRunning()) {
33 | result = dot_product(v1, v2);
34 | }
35 | }
36 | BENCHMARK(modernDP_double)->DenseRange(8, 10);
37 |
38 | // Our benchmark main function
39 | BENCHMARK_MAIN();
40 |
--------------------------------------------------------------------------------
/dot_product/tuned/tuned.cpp:
--------------------------------------------------------------------------------
1 | // This program implements two dot product implementations in C++
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 |
7 | #include
8 | #include
9 | #include
10 |
11 | // Hand-vectorized dot product
12 | float dot_product(const float *__restrict v1, const float *v2, const size_t N) {
13 | auto tmp = 0.0f;
14 | for (size_t i = 0; i < N; i += 8) {
15 | // Temporary variables to help with intrinsic
16 | float r[8];
17 | __m256 rv;
18 |
19 | // Our dot product intrinsic
20 | rv = _mm256_dp_ps(_mm256_load_ps(v1 + i), _mm256_load_ps(v2 + i), 0xf1);
21 |
22 | // Avoid type punning using memcpy
23 | std::memcpy(r, &rv, sizeof(float) * 8);
24 |
25 | tmp += r[0] + r[4];
26 | }
27 | return tmp;
28 | }
29 |
30 | // Benchmark our hand-tuned dot product
31 | static void handTunedDP(benchmark::State &s) {
32 | // Get the size of the vector
33 | size_t N = 1 << s.range(0);
34 |
35 | // Initialize the vectors
36 | // Align memory to 32 bytes for the vector instruction
37 | float *v1 = (float *)aligned_alloc(32, N * sizeof(float));
38 | float *v2 = (float *)aligned_alloc(32, N * sizeof(float));
39 | for (size_t i = 0; i < N; i++) {
40 | v1[i] = rand() % 100;
41 | v2[i] = rand() % 100;
42 | }
43 |
44 | // Keep our result from being optimized away
45 | volatile float result = 0;
46 |
47 | // Our benchmark loop
48 | while (s.KeepRunning()) {
49 | result = dot_product(v1, v2, N);
50 | }
51 | }
52 | BENCHMARK(handTunedDP)->DenseRange(8, 10);
53 |
54 | // Our benchmark main function
55 | BENCHMARK_MAIN();
56 |
--------------------------------------------------------------------------------
/duplicate_removal/duplicate_removal.cpp:
--------------------------------------------------------------------------------
1 | // Benchmark for removing duplicates from a vector
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 |
6 | #include
7 | #include
8 | #include
9 | #include
10 |
11 | // Function for generating argument pairs
12 | static void custom_args(benchmark::internal::Benchmark *b) {
13 | for (auto i : {10, 11, 12}) {
14 | for (auto j : {10, 100, 1000, 10000}) {
15 | b = b->ArgPair(i, j);
16 | }
17 | }
18 | }
19 |
20 | // Baseline benchmark used by sorting vectors
21 | static void baseline(benchmark::State &s) {
22 | // Create input and output vectors
23 | int N = 1 << s.range(0);
24 | std::vector v_in(N);
25 | std::vector v_out;
26 |
27 | // Create our random number generators
28 | std::mt19937 rng;
29 | rng.seed(std::random_device()());
30 | std::uniform_int_distribution dist(0, s.range(1));
31 |
32 | // Fill the input vector with random numbers
33 | std::generate(begin(v_in), end(v_in), [&] { return dist(rng); });
34 |
35 | // Benchmark loop
36 | for (auto _ : s) {
37 | // For every value in the input vector
38 | for (auto i : v_in) {
39 | // Check if it is not in the output vector
40 | if (std::find(begin(v_out), end(v_out), i) == v_out.end())
41 | // And put it in if it's not
42 | v_out.push_back(i);
43 | }
44 |
45 | // Clear each iteration
46 | v_out.clear();
47 | }
48 | }
49 | BENCHMARK(baseline)->Apply(custom_args)->Unit(benchmark::kMicrosecond);
50 |
51 | // Benchmark that filters the values in a hash set
52 | static void unordered_set(benchmark::State &s) {
53 | // Create input and output vectors
54 | int N = 1 << s.range(0);
55 | std::vector v_in(N);
56 | std::unordered_set filter;
57 |
58 | // Create our random number generators
59 | std::mt19937 rng;
60 | rng.seed(std::random_device()());
61 | std::uniform_int_distribution dist(0, s.range(1));
62 |
63 | // Fill the input vector with random numbers
64 | std::generate(begin(v_in), end(v_in), [&] { return dist(rng); });
65 |
66 | // Benchmark loop
67 | for (auto _ : s) {
68 | // Insert each element into the unordered set
69 | // Duplicate will be overridden
70 | for (auto i : v_in) filter.insert(i);
71 |
72 | // Clear each iteration
73 | filter.clear();
74 | }
75 | }
76 | BENCHMARK(unordered_set)->Apply(custom_args)->Unit(benchmark::kMicrosecond);
77 |
78 | // Benchmark that filters with a has set then copies into a vector
79 | static void unordered_set_copy(benchmark::State &s) {
80 | // Create input and output vectors
81 | int N = 1 << s.range(0);
82 | std::vector v_in(N);
83 | std::vector v_out;
84 | std::unordered_set filter;
85 |
86 | // Create our random number generators
87 | std::mt19937 rng;
88 | rng.seed(std::random_device()());
89 | std::uniform_int_distribution dist(0, s.range(1));
90 |
91 | // Fill the input vector with random numbers
92 | std::generate(begin(v_in), end(v_in), [&] { return dist(rng); });
93 |
94 | // Benchmark loop
95 | for (auto _ : s) {
96 | // Create the output vector and filter inside the loop so it gets cleared
97 | // each iteration
98 |
99 | // Insert each element into the unordered set
100 | // Duplicate will be overridden
101 | for (auto i : v_in) filter.insert(i);
102 | for (auto i : filter) v_out.push_back(i);
103 |
104 | // Clear each iteration
105 | v_out.clear();
106 | filter.clear();
107 | }
108 | }
109 | BENCHMARK(unordered_set_copy)
110 | ->Apply(custom_args)
111 | ->Unit(benchmark::kMicrosecond);
112 |
113 | // Benchmark that sorts the data then removes adjacent duplicates
114 | static void sort_unique(benchmark::State &s) {
115 | // Create input and output vectors
116 | int N = 1 << s.range(0);
117 | std::vector v_in(N);
118 | std::vector v_out;
119 |
120 | // Create our random number generators
121 | std::mt19937 rng;
122 | rng.seed(std::random_device()());
123 | std::uniform_int_distribution dist(0, s.range(1));
124 |
125 | // Fill the input vector with random numbers
126 | std::generate(begin(v_in), end(v_in), [&] { return dist(rng); });
127 |
128 | // Benchmark loop
129 | for (auto _ : s) {
130 | // Copy in the random numbers
131 | v_out = v_in;
132 |
133 | // Sort the vector
134 | std::ranges::sort(v_out);
135 |
136 | // Use std::unique to get rid of duplicates
137 | std::ranges::unique(v_out);
138 | }
139 | }
140 | BENCHMARK(sort_unique)->Apply(custom_args)->Unit(benchmark::kMicrosecond);
141 |
142 | BENCHMARK_MAIN();
143 |
--------------------------------------------------------------------------------
/false_sharing/aligned_type.cpp:
--------------------------------------------------------------------------------
1 | // This program shows how atomic integers may be allocated in C++
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 |
7 | // Our aligned atomic
8 | struct alignas(64) AlignedType {
9 | AlignedType() { val = 0; }
10 | std::atomic val;
11 | };
12 |
13 | int main() {
14 | // Now we're guaranteed that our atomics will be at least 64 bytes apart!
15 | AlignedType a{};
16 | AlignedType b{};
17 | AlignedType c{};
18 | AlignedType d{};
19 |
20 | // Print out the addresses
21 | std::cout << "Address of AlignedType a - " << &a << '\n';
22 | std::cout << "Address of AlignedType b - " << &b << '\n';
23 | std::cout << "Address of AlignedType c - " << &c << '\n';
24 | std::cout << "Address of AlignedType d - " << &d << '\n';
25 |
26 | return 0;
27 | }
28 |
--------------------------------------------------------------------------------
/false_sharing/atomic_int.cpp:
--------------------------------------------------------------------------------
1 | // This program shows how atomic integers may be allocated in C++
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 |
7 | int main() {
8 | // If we create four atomic integers like this, there's a high probability
9 | // they'll wind up next to each other in memory
10 | std::atomic a;
11 | std::atomic b;
12 | std::atomic c;
13 | std::atomic d;
14 |
15 | // Print out the addresses
16 | std::cout << "Address of atomic a - " << &a << '\n';
17 | std::cout << "Address of atomic b - " << &b << '\n';
18 | std::cout << "Address of atomic c - " << &c << '\n';
19 | std::cout << "Address of atomic d - " << &d << '\n';
20 |
21 | return 0;
22 | }
23 |
--------------------------------------------------------------------------------
/false_sharing/false_sharing.cpp:
--------------------------------------------------------------------------------
1 | // This program shows off the sever implications of false sharing in
2 | // C++ using std::atomic and std::thread
3 |
4 | #include
5 | #include
6 | #include
7 |
8 | // Simple function for incrememnting an atomic int
9 | void work(std::atomic& a) {
10 | for (int i = 0; i < 100000; i++) {
11 | a++;
12 | }
13 | }
14 |
15 | // Simple single-threaded function that calls work 4 times
16 | void single_thread() {
17 | std::atomic a;
18 | a = 0;
19 |
20 | work(a);
21 | work(a);
22 | work(a);
23 | work(a);
24 | }
25 |
26 | // A simple benchmark that runs our single-threaded implementation
27 | static void singleThread(benchmark::State& s) {
28 | while (s.KeepRunning()) {
29 | single_thread();
30 | }
31 | }
32 | BENCHMARK(singleThread)->Unit(benchmark::kMillisecond);
33 |
34 | // Tries to parallelize the work across multiple threads
35 | // However, each core invalidates the other cores copies on a write
36 | // This is an EXTREME example of poorly thought out code
37 | void same_var() {
38 | std::atomic a;
39 | a = 0;
40 |
41 | // Create four threads and use a lambda to launch work
42 | std::thread t1([&]() { work(a); });
43 | std::thread t2([&]() { work(a); });
44 | std::thread t3([&]() { work(a); });
45 | std::thread t4([&]() { work(a); });
46 |
47 | // Join the threads
48 | t1.join();
49 | t2.join();
50 | t3.join();
51 | t4.join();
52 | }
53 |
54 | // A simple benchmark that runs our single-threaded implementation
55 | static void directSharing(benchmark::State& s) {
56 | while (s.KeepRunning()) {
57 | same_var();
58 | }
59 | }
60 | BENCHMARK(directSharing)->UseRealTime()->Unit(benchmark::kMillisecond);
61 |
62 | // How well does it work if we use different atomic ints?
63 | // Not that well! But look at the addresses! They all reside on the
64 | // same cache line. That means we have false sharing!
65 | // (We invalidate variables that aren't actually being accessed
66 | // because they happen to be on the same cache line)
67 | void diff_var() {
68 | std::atomic a{0};
69 | std::atomic b{0};
70 | std::atomic c{0};
71 | std::atomic d{0};
72 |
73 | // Creat four threads and use lambda to launch work
74 | std::thread t1([&]() { work(a); });
75 | std::thread t2([&]() { work(b); });
76 | std::thread t3([&]() { work(c); });
77 | std::thread t4([&]() { work(d); });
78 |
79 | // Join the threads
80 | t1.join();
81 | t2.join();
82 | t3.join();
83 | t4.join();
84 | }
85 |
86 | // A simple benchmark that runs our single-threaded implementation
87 | static void falseSharing(benchmark::State& s) {
88 | while (s.KeepRunning()) {
89 | diff_var();
90 | }
91 | }
92 | BENCHMARK(falseSharing)->UseRealTime()->Unit(benchmark::kMillisecond);
93 |
94 | // We can align the struct to 64 bytes
95 | // Now each struct will be on a different cache line
96 | struct alignas(64) AlignedType {
97 | AlignedType() { val = 0; }
98 | std::atomic val;
99 | };
100 |
101 | // No more invalidations, so our code should be roughly the same as the
102 | void diff_line() {
103 | AlignedType a{};
104 | AlignedType b{};
105 | AlignedType c{};
106 | AlignedType d{};
107 |
108 | // Launch the four threads now using our aligned data
109 | std::thread t1([&]() { work(a.val); });
110 | std::thread t2([&]() { work(b.val); });
111 | std::thread t3([&]() { work(c.val); });
112 | std::thread t4([&]() { work(d.val); });
113 |
114 | // Join the threads
115 | t1.join();
116 | t2.join();
117 | t3.join();
118 | t4.join();
119 | }
120 |
121 | // A simple benchmark that runs our single-threaded implementation
122 | static void noSharing(benchmark::State& s) {
123 | while (s.KeepRunning()) {
124 | diff_line();
125 | }
126 | }
127 | BENCHMARK(noSharing)->UseRealTime()->Unit(benchmark::kMillisecond);
128 |
129 | BENCHMARK_MAIN();
130 |
--------------------------------------------------------------------------------
/false_sharing/vary_thread.cpp:
--------------------------------------------------------------------------------
1 | // This benchmark scales the number of threads in our false sharing benchmark
2 | // By: Nick from CoffeeBeforeArch
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | // Simple function for incrementing an atomic int
10 | void work(std::atomic& a, int n) {
11 | for (int i = 0; i < (400000 / n); i++) {
12 | a++;
13 | }
14 | }
15 |
16 | // Benchmark 2 threads
17 | void bench2() {
18 | std::atomic a{0};
19 | std::atomic b{0};
20 |
21 | // Creat four threads and use lambda to launch work
22 | std::thread t1([&]() { work(a, 2); });
23 | std::thread t2([&]() { work(b, 2); });
24 |
25 | // Join the threads
26 | t1.join();
27 | t2.join();
28 | }
29 |
30 | // A simple benchmark that runs our single-threaded implementation
31 | static void twoThreads(benchmark::State& s) {
32 | while (s.KeepRunning()) {
33 | bench2();
34 | }
35 | }
36 | BENCHMARK(twoThreads)->UseRealTime()->Unit(benchmark::kMillisecond);
37 |
38 | // Benchmark 4 threads
39 | void bench4() {
40 | std::atomic a{0};
41 | std::atomic