├── .gitignore
├── README.md
├── data
├── Adult_final.csv
├── AirPassengers.csv
├── data.csv
├── finaprojects.csv
└── hw2data.csv
├── final_project.md
├── flaskapi
├── README.md
├── data
│ └── titanic.csv
├── main.py
├── model
│ ├── model.pkl
│ └── model_columns.pkl
├── requirements.txt
├── sendrequest.py
└── tests.py
├── homework
├── Homework 0 - Mathematical and Coding Foundations and Review.ipynb
├── Homework 1 - Introduction to Supervised Learning.ipynb
├── Homework 2- Model Selection and Regularization.ipynb
└── hw3.csv
├── html
├── Makefile
├── content
│ └── keyboard-review.md
├── develop_server.sh
├── fabfile.py
├── output
│ ├── archives.html
│ ├── author
│ │ └── dorian-goldman.html
│ ├── authors.html
│ ├── categories.html
│ ├── category
│ │ └── review.html
│ ├── index.html
│ ├── my-first-review.html
│ ├── tags.html
│ └── theme
│ │ ├── css
│ │ ├── main.css
│ │ ├── pygment.css
│ │ ├── reset.css
│ │ ├── typogrify.css
│ │ └── wide.css
│ │ └── images
│ │ └── icons
│ │ ├── aboutme.png
│ │ ├── bitbucket.png
│ │ ├── delicious.png
│ │ ├── facebook.png
│ │ ├── github.png
│ │ ├── gitorious.png
│ │ ├── gittip.png
│ │ ├── google-groups.png
│ │ ├── google-plus.png
│ │ ├── hackernews.png
│ │ ├── lastfm.png
│ │ ├── linkedin.png
│ │ ├── reddit.png
│ │ ├── rss.png
│ │ ├── slideshare.png
│ │ ├── speakerdeck.png
│ │ ├── stackoverflow.png
│ │ ├── twitter.png
│ │ ├── vimeo.png
│ │ └── youtube.png
├── pelicanconf.py
├── pelicanconf.pyc
└── publishconf.py
├── img
├── levelsets.png
├── overfitting.png
├── regression.png
├── regressionexample
└── regularization.png
├── lectures
├── Lecture 1. What is Data Science_.pdf
├── Lecture 2 - Mathematics Review.pdf
├── Lecture 2. Introduction to Supervised Learning (1).pdf
├── Lecture 3 - Model Selection, Evaluation and Regularization.pdf
├── Lecture 4 - Classification (1).pdf
└── Lecture 5 - Decision Trees and Non-Parametric Models.pdf
├── notebooks
├── .DS_Store
├── .ipynb_checkpoints
│ ├── Cleaning and Featurizing Data-checkpoint.ipynb
│ ├── Lecture 2 - Regression Bookingdotcom Case Study-checkpoint.ipynb
│ ├── Lecture 3 - Model Complexity and Regularization-checkpoint.ipynb
│ ├── Lecture 4 - Correlation and Principle Component Analysis-checkpoint.ipynb
│ ├── Lecture 5 - Classification-checkpoint.ipynb
│ ├── Lecture 6 - Decision Tree Regression-checkpoint.ipynb
│ ├── Lecture 6 - Decision Trees-checkpoint.ipynb
│ ├── Lecture1 - Introduction-to-Regression-checkpoint.ipynb
│ ├── PCA - MNIST example-checkpoint.ipynb
│ └── Untitled-checkpoint.ipynb
├── Example of summing two normal random variables.ipynb
├── Lecture 1 - Introduction to Regression.ipynb
├── Lecture 10 - Time Series Forecasting.ipynb
├── Lecture 2 - Regression Bookingdotcom Case Study.ipynb
├── Lecture 3 - Model Complexity and Regularization.ipynb
├── Lecture 4 - Correlation and Principle Component Analysis.ipynb
├── Lecture 5 - Classification.ipynb
├── Lecture 5 - Cleaning and Featurizing Data.ipynb
├── Lecture 6 - Decision Tree Regression.ipynb
├── Lecture 6 - Decision Trees.ipynb
├── Lecture 7 - Recommendation Engines.ipynb
├── Lecture 9 - Unsupervised Learning.ipynb
├── Lecture Questions.ipynb
├── Markov Decision Processes via Policy Gradients.ipynb
├── PCA - MNIST example.ipynb
├── Untitled.ipynb
├── Untitled1.ipynb
├── Untitled2.ipynb
├── dt.dot
├── dt.png
├── matrix_factorization_recommender.ipynb
├── mnist_pca.png
└── temp-plot.html
├── pdfs
├── AllofStatistics.pdf
├── Conditional-Probability.pdf
├── Discrete-Probabilities.pdf
├── Effective Computation in Physics.pdf
├── ISLR_First_Printing.pdf
├── MachineLearningMethodsGraph.pdf
├── Scikit_Learn_Cheat_Sheet_Python.pdf
├── [Mark Joshi]Quant Job Interview Questions And Answers (1).pdf
├── coinbias.pdf
├── eigenvaluenotes.pdf
├── lagrangemultipliers.aux
├── lagrangemultipliers.log
├── lagrangemultipliers.out
├── lagrangemultipliers.pdf
├── lagrangemultipliers.synctex.gz
├── lagrangemultipliers.tex
└── lecture4notes.pdf
├── recengine
├── .gitignore
├── README.md
├── event-suggestors
│ ├── RA_history_event_suggestions.py
│ ├── RA_neighbors_event_suggestions.py
│ └── RA_scrapedoutput_reader.py
├── nearest-neighbors-generators
│ ├── RASparse_rowcol_generator.py
│ └── RA_generate_neighbors.py
├── php-files
│ ├── raticket_advisor.php
│ ├── ratickets4b.py
│ ├── userid.html
│ ├── userid.php
│ └── write_events.php
└── scraper-programs
│ └── RAEventPageScraper.py
├── src
└── project_proposal_bot.py
└── webapp
├── data
└── train_titanic.csv
├── hello.py
└── templates
└── my-form.html
/.gitignore:
--------------------------------------------------------------------------------
1 | *.ipynb_checkpoints
2 | *.DS_Store
3 | *.DS_Store?
4 | .DS_Store
5 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # APMAE4990 - Introduction to Data Science in Industry
2 |
3 | ### Instructor: Dorian Goldman
4 | ### Term: Spring 2019
5 | ### Location: R 5:30pm-8:00pm 413 Kent
6 |
7 | ### Objectives:
8 | This course is designed for graduate and advanced undergraduate students who wish to learn the fundamentals of data science and machine learning in the context of real world applications. An emphasis will be placed on problems encountered by companies such as Amazon, Booking.com, Netflix, Uber/Lyft, The New York Times and others. Despite a focus on applications, the course will be mathematically rigorous, but the goal is to motivate each tool by a concrete problem arising in industry. The course will follow an online iPython notebook where students can try out various algorithms in real time as we go through the course.
9 |
10 |
11 | There will be no midterms or exams, but rather assignments which will be handed in periodically throughout the term.
12 |
13 | **Update:** While in prevoius years the students were free to select their own projects, for various reasons I have decided to have everyone work with the same dataset this year. Due to the growing size of the class, this will allow me to more efficiently answer questions and to focus on the relevant data science concepts. The project will be announced during the first few lecture of the class.
14 |
15 |
16 | ### Prerequisites:
17 | Exposure to undergraduate-level probability, statistics, calculus, programming, and linear algebra.
18 |
19 |
20 | ### Grading:
21 | - 50% Assignments
22 | - 50% Final Project
23 |
24 | ## Tentative Course Outline:
25 |
26 | ### Introduction
27 | - Problems that arise in industry involving data.
28 | - Introduction to regression, classification, clustering. Model training and evaluation.
29 |
30 | ### Supervised Learning
31 |
32 | - Regression: Linear Regression, Random Forest, Gradient Boosting. Examples: ETA prediction for taxis, real estate prediction, news paper demand forecasting.
33 | - Classification: Logistic Regression, Random Forest, Gradient Boosting. Examples: User Churn, Acquisition and Conversion.
34 | - Model selection and feature selection. Regularization. Real world performance evaluation and monitoring.
35 | - Examples from publishing, ride sharing, online commerce and more.
36 |
37 | ### Unsupervised Learning
38 | - Clustering: K means, DBScan, Gaussian Mixture Models and Expectation Maximization.
39 | - Correlation of features. Principle Component Analysis. Problem of dimensionality.
40 | - LDA and topic modeling.
41 |
42 | ### A/B tests and Causal Inference
43 | - A/B experiments. Causal inference introduction.
44 | - Offline and Online policy discovery.
45 |
46 | ### Intro to Data Engineering
47 | - Map Reduce. SQL.
48 | - Feature engineering: Testing out new features and verifying their predictive power.
49 | - The basics of API building.
50 |
51 | ### Recommendation Engines and Personalization
52 | - Collaborative Filtering: Matrix Factorization, Neighborhood Models and Graph Diffusion.
53 | - Content Filtering: Topic Modeling, Regression, Classification.
54 | - Cold Starts. Continous Cold starts. Warm Starts. Performance Comparison and Analysis.
55 | - Introduction to Bayesian statistics. Bayesian vs. Frequentist approach.
56 |
57 | ### Reinforcement Learning
58 | - Multi-armed Bandits. Thompson Sampling. LinUCB.
59 | - Markov Decision Processes.
60 |
61 | ### Deep Learning
62 | - When and why? The problem surrounding hype in deep learning.
63 | - Image and sound signal processing.
64 | - Embeddings.
65 |
66 |
67 |
68 | # References
69 |
70 | These are references to deepen your understanding of material presented in lecture. The list is by no means exhaustive.
71 |
72 | Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, *An Introduction to Statistical Learning*, Springer 2013
73 |
74 | Trevor Hastie, Robert Tibshirani, Jerome Friedman, *Elements of Statistical Learning*, Springer 2013
75 |
76 | Christopher M. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006.
77 |
78 | Cameron Davidson-Pilon, *Bayesian Methods for Hackers*, https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
79 |
--------------------------------------------------------------------------------
/data/AirPassengers.csv:
--------------------------------------------------------------------------------
1 | Month,#Passengers
2 | 1949-01,112
3 | 1949-02,118
4 | 1949-03,132
5 | 1949-04,129
6 | 1949-05,121
7 | 1949-06,135
8 | 1949-07,148
9 | 1949-08,148
10 | 1949-09,136
11 | 1949-10,119
12 | 1949-11,104
13 | 1949-12,118
14 | 1950-01,115
15 | 1950-02,126
16 | 1950-03,141
17 | 1950-04,135
18 | 1950-05,125
19 | 1950-06,149
20 | 1950-07,170
21 | 1950-08,170
22 | 1950-09,158
23 | 1950-10,133
24 | 1950-11,114
25 | 1950-12,140
26 | 1951-01,145
27 | 1951-02,150
28 | 1951-03,178
29 | 1951-04,163
30 | 1951-05,172
31 | 1951-06,178
32 | 1951-07,199
33 | 1951-08,199
34 | 1951-09,184
35 | 1951-10,162
36 | 1951-11,146
37 | 1951-12,166
38 | 1952-01,171
39 | 1952-02,180
40 | 1952-03,193
41 | 1952-04,181
42 | 1952-05,183
43 | 1952-06,218
44 | 1952-07,230
45 | 1952-08,242
46 | 1952-09,209
47 | 1952-10,191
48 | 1952-11,172
49 | 1952-12,194
50 | 1953-01,196
51 | 1953-02,196
52 | 1953-03,236
53 | 1953-04,235
54 | 1953-05,229
55 | 1953-06,243
56 | 1953-07,264
57 | 1953-08,272
58 | 1953-09,237
59 | 1953-10,211
60 | 1953-11,180
61 | 1953-12,201
62 | 1954-01,204
63 | 1954-02,188
64 | 1954-03,235
65 | 1954-04,227
66 | 1954-05,234
67 | 1954-06,264
68 | 1954-07,302
69 | 1954-08,293
70 | 1954-09,259
71 | 1954-10,229
72 | 1954-11,203
73 | 1954-12,229
74 | 1955-01,242
75 | 1955-02,233
76 | 1955-03,267
77 | 1955-04,269
78 | 1955-05,270
79 | 1955-06,315
80 | 1955-07,364
81 | 1955-08,347
82 | 1955-09,312
83 | 1955-10,274
84 | 1955-11,237
85 | 1955-12,278
86 | 1956-01,284
87 | 1956-02,277
88 | 1956-03,317
89 | 1956-04,313
90 | 1956-05,318
91 | 1956-06,374
92 | 1956-07,413
93 | 1956-08,405
94 | 1956-09,355
95 | 1956-10,306
96 | 1956-11,271
97 | 1956-12,306
98 | 1957-01,315
99 | 1957-02,301
100 | 1957-03,356
101 | 1957-04,348
102 | 1957-05,355
103 | 1957-06,422
104 | 1957-07,465
105 | 1957-08,467
106 | 1957-09,404
107 | 1957-10,347
108 | 1957-11,305
109 | 1957-12,336
110 | 1958-01,340
111 | 1958-02,318
112 | 1958-03,362
113 | 1958-04,348
114 | 1958-05,363
115 | 1958-06,435
116 | 1958-07,491
117 | 1958-08,505
118 | 1958-09,404
119 | 1958-10,359
120 | 1958-11,310
121 | 1958-12,337
122 | 1959-01,360
123 | 1959-02,342
124 | 1959-03,406
125 | 1959-04,396
126 | 1959-05,420
127 | 1959-06,472
128 | 1959-07,548
129 | 1959-08,559
130 | 1959-09,463
131 | 1959-10,407
132 | 1959-11,362
133 | 1959-12,405
134 | 1960-01,417
135 | 1960-02,391
136 | 1960-03,419
137 | 1960-04,461
138 | 1960-05,472
139 | 1960-06,535
140 | 1960-07,622
141 | 1960-08,606
142 | 1960-09,508
143 | 1960-10,461
144 | 1960-11,390
145 | 1960-12,432
146 |
--------------------------------------------------------------------------------
/data/data.csv:
--------------------------------------------------------------------------------
1 | 32.502345269453031,31.70700584656992
2 | 53.426804033275019,68.77759598163891
3 | 61.530358025636438,62.562382297945803
4 | 47.475639634786098,71.546632233567777
5 | 59.813207869512318,87.230925133687393
6 | 55.142188413943821,78.211518270799232
7 | 52.211796692214001,79.64197304980874
8 | 39.299566694317065,59.171489321869508
9 | 48.10504169176825,75.331242297063056
10 | 52.550014442733818,71.300879886850353
11 | 45.419730144973755,55.165677145959123
12 | 54.351634881228918,82.478846757497919
13 | 44.164049496773352,62.008923245725825
14 | 58.16847071685779,75.392870425994957
15 | 56.727208057096611,81.43619215887864
16 | 48.955888566093719,60.723602440673965
17 | 44.687196231480904,82.892503731453715
18 | 60.297326851333466,97.379896862166078
19 | 45.618643772955828,48.847153317355072
20 | 38.816817537445637,56.877213186268506
21 | 66.189816606752601,83.878564664602763
22 | 65.41605174513407,118.59121730252249
23 | 47.48120860786787,57.251819462268969
24 | 41.57564261748702,51.391744079832307
25 | 51.84518690563943,75.380651665312357
26 | 59.370822011089523,74.765564032151374
27 | 57.31000343834809,95.455052922574737
28 | 63.615561251453308,95.229366017555307
29 | 46.737619407976972,79.052406169565586
30 | 50.556760148547767,83.432071421323712
31 | 52.223996085553047,63.358790317497878
32 | 35.567830047746632,41.412885303700563
33 | 42.436476944055642,76.617341280074044
34 | 58.16454011019286,96.769566426108199
35 | 57.504447615341789,74.084130116602523
36 | 45.440530725319981,66.588144414228594
37 | 61.89622268029126,77.768482417793024
38 | 33.093831736163963,50.719588912312084
39 | 36.436009511386871,62.124570818071781
40 | 37.675654860850742,60.810246649902211
41 | 44.555608383275356,52.682983366387781
42 | 43.318282631865721,58.569824717692867
43 | 50.073145632289034,82.905981485070512
44 | 43.870612645218372,61.424709804339123
45 | 62.997480747553091,115.24415280079529
46 | 32.669043763467187,45.570588823376085
47 | 40.166899008703702,54.084054796223612
48 | 53.575077531673656,87.994452758110413
49 | 33.864214971778239,52.725494375900425
50 | 64.707138666121296,93.576118692658241
51 | 38.119824026822805,80.166275447370964
52 | 44.502538064645101,65.101711570560326
53 | 40.599538384552318,65.562301260400375
54 | 41.720676356341293,65.280886920822823
55 | 51.088634678336796,73.434641546324301
56 | 55.078095904923202,71.13972785861894
57 | 41.377726534895203,79.102829683549857
58 | 62.494697427269791,86.520538440347153
59 | 49.203887540826003,84.742697807826218
60 | 41.102685187349664,59.358850248624933
61 | 41.182016105169822,61.684037524833627
62 | 50.186389494880601,69.847604158249183
63 | 52.378446219236217,86.098291205774103
64 | 50.135485486286122,59.108839267699643
65 | 33.644706006191782,69.89968164362763
66 | 39.557901222906828,44.862490711164398
67 | 56.130388816875467,85.498067778840223
68 | 57.362052133238237,95.536686846467219
69 | 60.269214393997906,70.251934419771587
70 | 35.678093889410732,52.721734964774988
71 | 31.588116998132829,50.392670135079896
72 | 53.66093226167304,63.642398775657753
73 | 46.682228649471917,72.247251068662365
74 | 43.107820219102464,57.812512976181402
75 | 70.34607561504933,104.25710158543822
76 | 44.492855880854073,86.642020318822006
77 | 57.50453330326841,91.486778000110135
78 | 36.930076609191808,55.231660886212836
79 | 55.805733357942742,79.550436678507609
80 | 38.954769073377065,44.847124242467601
81 | 56.901214702247074,80.207523139682763
82 | 56.868900661384046,83.14274979204346
83 | 34.33312470421609,55.723489260543914
84 | 59.04974121466681,77.634182511677864
85 | 57.788223993230673,99.051414841748269
86 | 54.282328705967409,79.120646274680027
87 | 51.088719898979143,69.588897851118475
88 | 50.282836348230731,69.510503311494389
89 | 44.211741752090113,73.687564318317285
90 | 38.005488008060688,61.366904537240131
91 | 32.940479942618296,67.170655768995118
92 | 53.691639571070056,85.668203145001542
93 | 68.76573426962166,114.85387123391394
94 | 46.230966498310252,90.123572069967423
95 | 68.319360818255362,97.919821035242848
96 | 50.030174340312143,81.536990783015028
97 | 49.239765342753763,72.111832469615663
98 | 50.039575939875988,85.232007342325673
99 | 48.149858891028863,66.224957888054632
100 | 25.128484647772304,53.454394214850524
101 |
--------------------------------------------------------------------------------
/data/finaprojects.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/data/finaprojects.csv
--------------------------------------------------------------------------------
/final_project.md:
--------------------------------------------------------------------------------
1 | # Final Project Grading Outline
2 |
3 | Below is the outline for the grading of the final project. Your main goal is to have a public web server I can go to such as `http://yourname.somedomain.com`.
4 |
5 | **Broad requirements:**
6 | - Each team member has pushed their contributions to Github.
7 | - A notebook is pushed along with the code base that summarizes your work on the steps below.
8 |
9 | **Specific Requirements:**
10 |
11 | - A 5-10 minute presentation of your work which will include: motivation, using the app, notebook presentation. **Note:** For CVN students, please provide a youtube link to a video (or upload it to your Github).
12 | - An iPython notebook which shows your analysis/work.
13 | - The full code base in the same Github repo.
14 | - Provide a link in the projects worksheet to your completed project.
15 |
16 |
17 | # Data Engineering and Machine Learning
18 |
19 | Below is a breakdown of the grading scheme.
20 |
21 | ## Data Gathering and Preparation (30%):
22 |
23 | **Data gathering/preprocessing** (may not be as relevant depending on project):
24 |
25 | - Did you find ways of processing your data to make the problem at hand more tractible/easier
26 |
27 | **Examples:** image formatting, string matching.
28 |
29 | **Data integrity checks (10%):**
30 |
31 | - Did you account for missing values and outliers?
32 | - Is there information leakage? ie. a variable which is actually inferred by the outcome (eg. predicting a user likes a movie using the fact that they've liked that movie before).
33 | - Are some variables non-sensical or redundant? (ie. if you see "Male" sometimes and "M" other times, or numerical values in the gender column).
34 |
35 | **Feature Engineering (15%):**
36 | - Did you convert categorical features into one hot encoded dummy variables?
37 | - Was there an opportunity to make a new variable from the old ones that has more predictive power? (ie. if you are predicting the Titanic survivor problem and Cabin seems to be predictive but it's sparse, maybe replacing it with a binary variable "had a cabin or not" is better).
38 |
39 | **Standarization (5%):**
40 | - Did you standardize your variables properly?
41 |
42 | **Use of databases (BONUS) (+15%):** If you use any kind of SQL database for your data storage/retrieval (MySQL, Postgres, etc).
43 |
44 |
45 | ## Model Selection, Comparison and Cross Validation (60%):
46 |
47 | ### Supervised Problem (predicting an outcome such as a recommendation, stock price, disease, etc):
48 |
49 | **Exploratory Analysis (10%):**
50 | - Did you analyze the features and how they are related to the outcome variable? (regression: scatter plots, classification: conditional histograms).
51 | - Did you look at correlations or chi-squared if the variables are categorical?
52 | (https://en.wikipedia.org/wiki/Chi-squared_test. But feel free to find a package that does this automatically).
53 |
54 | **Model Selection (50%)**:
55 | - Did you randomly split your data into training and testing data (20%, 80%) using k-fold cross validation?
56 | - Did you perform regularization (very important if the number of features is large!)? Why did you use L^1 or L^2? I expect to see use of GridSearchCV for this with at least 2 fold cross validation.
57 | - Did you try out various models and see which one performed best? (You don't need to check all of them, but for classification/regression you should at least try a couple. **DID YOU TRY OUT THE SIMPLEST MODEL FIRST?**
58 |
59 | **Examples:**
60 |
61 | *Classification:* Logistic Regression and Random Forest Classification. (Use ROC for evaluation)
62 |
63 | *Regression:* Linear Regression and Random Forest. (Use R^2 for evaluation)
64 |
65 | *Recommendation Engines:* Item/Item, User/User, Matrix Factorization. (Use precision/recall for evaluation).
66 |
67 | *Image classification/segmentation:* Try neural nets and simple logistic regression.
68 |
69 | *Time Series:* Auto-regressive models with different distributions (Poisson, Normal, etc).
70 |
71 | **I would like to see a performance comparison of at least two different models.**
72 |
73 | ### Unsupervised Problem (extracting meaning from text, finding similar images/documents, etc):
74 |
75 | **Model Selection /Exploration (60%)**:
76 | - Did you analyze features and see relationships?
77 | - Did you do dimensionality reduction and try making scatter plots of your data?
78 | - Did you then investigate properties of those clusters?
79 | - Did you check if the groups have comparable numbers of points, similar covariances? For instance, if you did K-means, did you check for the kinds of behavior we covered in class?
80 | - Based on the above, did you try various clustering algorithms appropriate for this problem?
81 | - Are the clusters stable? (ie. when you take random subsets of your data, do you get similar clusters? When you choose different initial conditions, do you get the same result?
82 | - Do you have interpretations for the clusters you found? Can you justfiy the number of clusters you selected?
83 |
84 | **Examples:**
85 |
86 | - *Word embeddings/Topic models:* LDA, word2vec with K-means, GMM, DBSCAN.
87 | - *Recommendations:* If you don't have any validation data, cosine similarity is a good start. Try item/item, user/user, etc. Did you account for high dimensionality?
88 |
89 | **Ideally you can find a way of validating your model in a supervised way. If this isn't possible, try to show that your clusters are stable, and make sense by investigating what they say.
90 |
91 | ## Design and Strategy (10%)
92 |
93 | ## Problem Statement and Usefuleness: (5%)
94 |
95 | Is the problem clearly stated and motivated? Is this something useful or is it contrived?
96 |
97 | ## User Experience (5%):
98 |
99 | Is the website relatively easy to use? Does it accept some kind of user input and then apply a model, and return
100 | the user information?
101 |
102 | ## Extra interesting ideas (BONUS 10-20%):
103 |
104 | This isn't necessary, but I'm leaving this here to allow for interesting and novel modeling/strategy approaches that I may not have thought of.
105 |
106 | - Did you use a novel modelling approach for your problem that required coding something by hand?
107 | - Did you use clever processing or hierechcal models for your problem to customize for your context?
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
--------------------------------------------------------------------------------
/flaskapi/README.md:
--------------------------------------------------------------------------------
1 | # Flask API for scikit learn
2 | A simple Flask application that can serve predictions from a scikit-learn model. Reads a pickled sklearn model into memory when the Flask app is started and returns predictions through the /predict endpoint. You can also use the /train endpoint to train/retrain the model. Any sklearn model can be used for prediction.
3 |
4 | ### Dependencies
5 | - scikit-learn
6 | - Flask
7 | - pandas
8 | - numpy
9 |
10 | ```
11 | pip install -r requirements.txt
12 | ```
13 | # BEFORE YOU DO ANYTHING
14 | Run
15 | ```
16 | $ python main.py
17 | ```
18 |
19 | Then go to
20 |
21 | ```
22 | http:///0.0.0.0:80/train
23 | ```
24 | in your web browswer.
25 |
26 | Then run
27 | ```
28 | $ python sendrequest.py
29 | ```
30 |
31 | This sends your data to the API and it outputs predictions.
32 | # Endpoints
33 | ### /predict (POST)
34 | Returns an array of predictions given a JSON object representing independent variables. Here's a sample input:
35 | ```
36 | [
37 | {'Age': 85, 'Sex': 'male', 'Embarked': 'S'},
38 | {'Age': 24, 'Sex': 'female', 'Embarked': 'C'},
39 | {'Age': 3, 'Sex': 'male', 'Embarked': 'C'},
40 | {'Age': 21, 'Sex': 'male', 'Embarked': 'S'}
41 | ]
42 | ```
43 |
44 | and sample output:
45 | ```
46 | {'prediction': [0, 1, 1, 0]}
47 | ```
48 |
49 |
50 | ### /train (GET)
51 | Trains the model. This is currently hard-coded to be a random forest model that is run on a subset of columns of the titanic dataset.
52 |
53 | ### /wipe (GET)
54 | Removes the trained model.
55 |
--------------------------------------------------------------------------------
/flaskapi/main.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | import shutil
4 | import time
5 | import traceback
6 |
7 | from flask import Flask, request, jsonify
8 | import pandas as pd
9 | from sklearn.externals import joblib
10 |
11 | app = Flask(__name__)
12 |
13 | # inputs
14 | training_data = 'data/titanic.csv'
15 | include = ['Age', 'Sex', 'Embarked', 'Survived']
16 | dependent_variable = include[-1]
17 |
18 | model_directory = 'model'
19 | model_file_name = '%s/model.pkl' % model_directory
20 | model_columns_file_name = '%s/model_columns.pkl' % model_directory
21 |
22 | # These will be populated at training time
23 | model_columns = None
24 | clf = None
25 |
26 |
27 | @app.route('/predict', methods=['POST'])
28 | def predict():
29 | if clf:
30 | try:
31 | json_ = request.json
32 | query = pd.get_dummies(pd.DataFrame(json_))
33 |
34 | for col in model_columns:
35 | if col not in query.columns:
36 | query[col] = 0
37 |
38 | prediction = list(clf.predict(query))
39 |
40 | return jsonify({'prediction': prediction})
41 |
42 | except Exception, e:
43 |
44 | return jsonify({'error': str(e), 'trace': traceback.format_exc()})
45 | else:
46 | print 'train first'
47 | return 'no model here'
48 |
49 |
50 | @app.route('/train', methods=['GET'])
51 | def train():
52 | # using random forest as an example
53 | # can do the training separately and just update the pickles
54 | from sklearn.ensemble import RandomForestClassifier as rf
55 |
56 | df = pd.read_csv(training_data)
57 | df_ = df[include]
58 |
59 | categoricals = [] # going to one-hot encode categorical variables
60 |
61 | for col, col_type in df_.dtypes.iteritems():
62 | if col_type == 'O':
63 | categoricals.append(col)
64 | else:
65 | df_[col].fillna(0, inplace=True) # fill NA's with 0 for ints/floats, too generic
66 |
67 | # get_dummies effectively creates one-hot encoded variables
68 | df_ohe = pd.get_dummies(df_, columns=categoricals, dummy_na=True)
69 |
70 | x = df_ohe[df_ohe.columns.difference([dependent_variable])]
71 | y = df_ohe[dependent_variable]
72 |
73 | # capture a list of columns that will be used for prediction
74 | global model_columns
75 | model_columns = list(x.columns)
76 | joblib.dump(model_columns, model_columns_file_name)
77 |
78 | global clf
79 | clf = rf()
80 | start = time.time()
81 | clf.fit(x, y)
82 | print 'Trained in %.1f seconds' % (time.time() - start)
83 | print 'Model training score: %s' % clf.score(x, y)
84 |
85 | joblib.dump(clf, model_file_name)
86 |
87 | return 'Success'
88 |
89 |
90 | @app.route('/wipe', methods=['GET'])
91 | def wipe():
92 | try:
93 | shutil.rmtree('model')
94 | os.makedirs(model_directory)
95 | return 'Model wiped'
96 |
97 | except Exception, e:
98 | print str(e)
99 | return 'Could not remove and recreate the model directory'
100 |
101 |
102 | if __name__ == '__main__':
103 | try:
104 | port = int(sys.argv[1])
105 | except Exception, e:
106 | port = 80
107 |
108 | try:
109 | clf = joblib.load(model_file_name)
110 | print 'model loaded'
111 | model_columns = joblib.load(model_columns_file_name)
112 | print 'model columns loaded'
113 |
114 | except Exception, e:
115 | print 'No model here'
116 | print 'Train first'
117 | print str(e)
118 | clf = None
119 |
120 | app.run(host='0.0.0.0', port=port, debug=True)
121 |
--------------------------------------------------------------------------------
/flaskapi/model/model.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/flaskapi/model/model.pkl
--------------------------------------------------------------------------------
/flaskapi/model/model_columns.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/flaskapi/model/model_columns.pkl
--------------------------------------------------------------------------------
/flaskapi/requirements.txt:
--------------------------------------------------------------------------------
1 | Flask==0.10.1
2 | numpy==1.10.4
3 | pandas==0.17.1
4 | scikit-learn==0.17
--------------------------------------------------------------------------------
/flaskapi/sendrequest.py:
--------------------------------------------------------------------------------
1 | import requests
2 | dictToSend = {'question':'what is the answer?'}
3 | dictToSend=[
4 | {'Age': 85, 'Sex': 'male', 'Embarked': 'S'},
5 | {'Age': 24, 'Sex': 'female', 'Embarked': 'C'},
6 | {'Age': 3, 'Sex': 'male', 'Embarked': 'C'},
7 | {'Age': 21, 'Sex': 'male', 'Embarked': 'S'}]
8 | res = requests.post('http://0.0.0.0:80/predict', json=dictToSend)
9 | print 'response from server:',res.text
10 | dictFromServer = res.json()
11 |
--------------------------------------------------------------------------------
/flaskapi/tests.py:
--------------------------------------------------------------------------------
1 | import unittest
2 |
3 |
4 | class MyTestCase(unittest.TestCase):
5 | def test_something(self):
6 | self.assertEqual(True, False)
7 |
8 |
9 | if __name__ == '__main__':
10 | unittest.main()
11 |
--------------------------------------------------------------------------------
/html/Makefile:
--------------------------------------------------------------------------------
1 | PY?=python
2 | PELICAN?=pelican
3 | PELICANOPTS=
4 |
5 | BASEDIR=$(CURDIR)
6 | INPUTDIR=$(BASEDIR)/content
7 | OUTPUTDIR=$(BASEDIR)/output
8 | CONFFILE=$(BASEDIR)/pelicanconf.py
9 | PUBLISHCONF=$(BASEDIR)/publishconf.py
10 |
11 | FTP_HOST=localhost
12 | FTP_USER=anonymous
13 | FTP_TARGET_DIR=/
14 |
15 | SSH_HOST=localhost
16 | SSH_PORT=22
17 | SSH_USER=root
18 | SSH_TARGET_DIR=n
19 |
20 | S3_BUCKET=my_s3_bucket
21 |
22 | CLOUDFILES_USERNAME=my_rackspace_username
23 | CLOUDFILES_API_KEY=my_rackspace_api_key
24 | CLOUDFILES_CONTAINER=my_cloudfiles_container
25 |
26 | DROPBOX_DIR=~/Dropbox/Public/
27 |
28 | GITHUB_PAGES_BRANCH=gh-pages
29 |
30 | DEBUG ?= 0
31 | ifeq ($(DEBUG), 1)
32 | PELICANOPTS += -D
33 | endif
34 |
35 | RELATIVE ?= 0
36 | ifeq ($(RELATIVE), 1)
37 | PELICANOPTS += --relative-urls
38 | endif
39 |
40 | help:
41 | @echo 'Makefile for a pelican Web site '
42 | @echo ' '
43 | @echo 'Usage: '
44 | @echo ' make html (re)generate the web site '
45 | @echo ' make clean remove the generated files '
46 | @echo ' make regenerate regenerate files upon modification '
47 | @echo ' make publish generate using production settings '
48 | @echo ' make serve [PORT=8000] serve site at http://localhost:8000'
49 | @echo ' make serve-global [SERVER=0.0.0.0] serve (as root) to $(SERVER):80 '
50 | @echo ' make devserver [PORT=8000] start/restart develop_server.sh '
51 | @echo ' make stopserver stop local server '
52 | @echo ' make ssh_upload upload the web site via SSH '
53 | @echo ' make rsync_upload upload the web site via rsync+ssh '
54 | @echo ' make dropbox_upload upload the web site via Dropbox '
55 | @echo ' make ftp_upload upload the web site via FTP '
56 | @echo ' make s3_upload upload the web site via S3 '
57 | @echo ' make cf_upload upload the web site via Cloud Files'
58 | @echo ' make github upload the web site via gh-pages '
59 | @echo ' '
60 | @echo 'Set the DEBUG variable to 1 to enable debugging, e.g. make DEBUG=1 html '
61 | @echo 'Set the RELATIVE variable to 1 to enable relative urls '
62 | @echo ' '
63 |
64 | html:
65 | $(PELICAN) $(INPUTDIR) -o $(OUTPUTDIR) -s $(CONFFILE) $(PELICANOPTS)
66 |
67 | clean:
68 | [ ! -d $(OUTPUTDIR) ] || rm -rf $(OUTPUTDIR)
69 |
70 | regenerate:
71 | $(PELICAN) -r $(INPUTDIR) -o $(OUTPUTDIR) -s $(CONFFILE) $(PELICANOPTS)
72 |
73 | serve:
74 | ifdef PORT
75 | cd $(OUTPUTDIR) && $(PY) -m pelican.server $(PORT)
76 | else
77 | cd $(OUTPUTDIR) && $(PY) -m pelican.server
78 | endif
79 |
80 | serve-global:
81 | ifdef SERVER
82 | cd $(OUTPUTDIR) && $(PY) -m pelican.server 80 $(SERVER)
83 | else
84 | cd $(OUTPUTDIR) && $(PY) -m pelican.server 80 0.0.0.0
85 | endif
86 |
87 |
88 | devserver:
89 | ifdef PORT
90 | $(BASEDIR)/develop_server.sh restart $(PORT)
91 | else
92 | $(BASEDIR)/develop_server.sh restart
93 | endif
94 |
95 | stopserver:
96 | $(BASEDIR)/develop_server.sh stop
97 | @echo 'Stopped Pelican and SimpleHTTPServer processes running in background.'
98 |
99 | publish:
100 | $(PELICAN) $(INPUTDIR) -o $(OUTPUTDIR) -s $(PUBLISHCONF) $(PELICANOPTS)
101 |
102 | ssh_upload: publish
103 | scp -P $(SSH_PORT) -r $(OUTPUTDIR)/* $(SSH_USER)@$(SSH_HOST):$(SSH_TARGET_DIR)
104 |
105 | rsync_upload: publish
106 | rsync -e "ssh -p $(SSH_PORT)" -P -rvzc --delete $(OUTPUTDIR)/ $(SSH_USER)@$(SSH_HOST):$(SSH_TARGET_DIR) --cvs-exclude
107 |
108 | dropbox_upload: publish
109 | cp -r $(OUTPUTDIR)/* $(DROPBOX_DIR)
110 |
111 | ftp_upload: publish
112 | lftp ftp://$(FTP_USER)@$(FTP_HOST) -e "mirror -R $(OUTPUTDIR) $(FTP_TARGET_DIR) ; quit"
113 |
114 | s3_upload: publish
115 | s3cmd sync $(OUTPUTDIR)/ s3://$(S3_BUCKET) --acl-public --delete-removed --guess-mime-type --no-mime-magic --no-preserve
116 |
117 | cf_upload: publish
118 | cd $(OUTPUTDIR) && swift -v -A https://auth.api.rackspacecloud.com/v1.0 -U $(CLOUDFILES_USERNAME) -K $(CLOUDFILES_API_KEY) upload -c $(CLOUDFILES_CONTAINER) .
119 |
120 | github: publish
121 | ghp-import -m "Generate Pelican site" -b $(GITHUB_PAGES_BRANCH) $(OUTPUTDIR)
122 | git push origin $(GITHUB_PAGES_BRANCH)
123 |
124 | .PHONY: html help clean regenerate serve serve-global devserver stopserver publish ssh_upload rsync_upload dropbox_upload ftp_upload s3_upload cf_upload github
125 |
--------------------------------------------------------------------------------
/html/content/keyboard-review.md:
--------------------------------------------------------------------------------
1 | Title: My First Review
2 | Date: 2010-12-03 10:20
3 | Category: Review
4 |
5 | Following is a review of my favorite mechanical keyboard.
6 |
--------------------------------------------------------------------------------
/html/develop_server.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 | ##
3 | # This section should match your Makefile
4 | ##
5 | PY=${PY:-python}
6 | PELICAN=${PELICAN:-pelican}
7 | PELICANOPTS=
8 |
9 | BASEDIR=$(pwd)
10 | INPUTDIR=$BASEDIR/content
11 | OUTPUTDIR=$BASEDIR/output
12 | CONFFILE=$BASEDIR/pelicanconf.py
13 |
14 | ###
15 | # Don't change stuff below here unless you are sure
16 | ###
17 |
18 | SRV_PID=$BASEDIR/srv.pid
19 | PELICAN_PID=$BASEDIR/pelican.pid
20 |
21 | function usage(){
22 | echo "usage: $0 (stop) (start) (restart) [port]"
23 | echo "This starts Pelican in debug and reload mode and then launches"
24 | echo "an HTTP server to help site development. It doesn't read"
25 | echo "your Pelican settings, so if you edit any paths in your Makefile"
26 | echo "you will need to edit your settings as well."
27 | exit 3
28 | }
29 |
30 | function alive() {
31 | kill -0 $1 >/dev/null 2>&1
32 | }
33 |
34 | function shut_down(){
35 | PID=$(cat $SRV_PID)
36 | if [[ $? -eq 0 ]]; then
37 | if alive $PID; then
38 | echo "Stopping HTTP server"
39 | kill $PID
40 | else
41 | echo "Stale PID, deleting"
42 | fi
43 | rm $SRV_PID
44 | else
45 | echo "HTTP server PIDFile not found"
46 | fi
47 |
48 | PID=$(cat $PELICAN_PID)
49 | if [[ $? -eq 0 ]]; then
50 | if alive $PID; then
51 | echo "Killing Pelican"
52 | kill $PID
53 | else
54 | echo "Stale PID, deleting"
55 | fi
56 | rm $PELICAN_PID
57 | else
58 | echo "Pelican PIDFile not found"
59 | fi
60 | }
61 |
62 | function start_up(){
63 | local port=$1
64 | echo "Starting up Pelican and HTTP server"
65 | shift
66 | $PELICAN --debug --autoreload -r $INPUTDIR -o $OUTPUTDIR -s $CONFFILE $PELICANOPTS &
67 | pelican_pid=$!
68 | echo $pelican_pid > $PELICAN_PID
69 | mkdir -p $OUTPUTDIR && cd $OUTPUTDIR
70 | $PY -m pelican.server $port &
71 | srv_pid=$!
72 | echo $srv_pid > $SRV_PID
73 | cd $BASEDIR
74 | sleep 1
75 | if ! alive $pelican_pid ; then
76 | echo "Pelican didn't start. Is the Pelican package installed?"
77 | return 1
78 | elif ! alive $srv_pid ; then
79 | echo "The HTTP server didn't start. Is there another service using port" $port "?"
80 | return 1
81 | fi
82 | echo 'Pelican and HTTP server processes now running in background.'
83 | }
84 |
85 | ###
86 | # MAIN
87 | ###
88 | [[ ($# -eq 0) || ($# -gt 2) ]] && usage
89 | port=''
90 | [[ $# -eq 2 ]] && port=$2
91 |
92 | if [[ $1 == "stop" ]]; then
93 | shut_down
94 | elif [[ $1 == "restart" ]]; then
95 | shut_down
96 | start_up $port
97 | elif [[ $1 == "start" ]]; then
98 | if ! start_up $port; then
99 | shut_down
100 | fi
101 | else
102 | usage
103 | fi
104 |
--------------------------------------------------------------------------------
/html/fabfile.py:
--------------------------------------------------------------------------------
1 | from fabric.api import *
2 | import fabric.contrib.project as project
3 | import os
4 | import shutil
5 | import sys
6 | import SocketServer
7 |
8 | from pelican.server import ComplexHTTPRequestHandler
9 |
10 | # Local path configuration (can be absolute or relative to fabfile)
11 | env.deploy_path = 'output'
12 | DEPLOY_PATH = env.deploy_path
13 |
14 | # Remote server configuration
15 | production = 'root@localhost:22'
16 | dest_path = 'n'
17 |
18 | # Rackspace Cloud Files configuration settings
19 | env.cloudfiles_username = 'my_rackspace_username'
20 | env.cloudfiles_api_key = 'my_rackspace_api_key'
21 | env.cloudfiles_container = 'my_cloudfiles_container'
22 |
23 | # Github Pages configuration
24 | env.github_pages_branch = "gh-pages"
25 |
26 | # Port for `serve`
27 | PORT = 8000
28 |
29 | def clean():
30 | """Remove generated files"""
31 | if os.path.isdir(DEPLOY_PATH):
32 | shutil.rmtree(DEPLOY_PATH)
33 | os.makedirs(DEPLOY_PATH)
34 |
35 | def build():
36 | """Build local version of site"""
37 | local('pelican -s pelicanconf.py')
38 |
39 | def rebuild():
40 | """`build` with the delete switch"""
41 | local('pelican -d -s pelicanconf.py')
42 |
43 | def regenerate():
44 | """Automatically regenerate site upon file modification"""
45 | local('pelican -r -s pelicanconf.py')
46 |
47 | def serve():
48 | """Serve site at http://localhost:8000/"""
49 | os.chdir(env.deploy_path)
50 |
51 | class AddressReuseTCPServer(SocketServer.TCPServer):
52 | allow_reuse_address = True
53 |
54 | server = AddressReuseTCPServer(('', PORT), ComplexHTTPRequestHandler)
55 |
56 | sys.stderr.write('Serving on port {0} ...\n'.format(PORT))
57 | server.serve_forever()
58 |
59 | def reserve():
60 | """`build`, then `serve`"""
61 | build()
62 | serve()
63 |
64 | def preview():
65 | """Build production version of site"""
66 | local('pelican -s publishconf.py')
67 |
68 | def cf_upload():
69 | """Publish to Rackspace Cloud Files"""
70 | rebuild()
71 | with lcd(DEPLOY_PATH):
72 | local('swift -v -A https://auth.api.rackspacecloud.com/v1.0 '
73 | '-U {cloudfiles_username} '
74 | '-K {cloudfiles_api_key} '
75 | 'upload -c {cloudfiles_container} .'.format(**env))
76 |
77 | @hosts(production)
78 | def publish():
79 | """Publish to production via rsync"""
80 | local('pelican -s publishconf.py')
81 | project.rsync_project(
82 | remote_dir=dest_path,
83 | exclude=".DS_Store",
84 | local_dir=DEPLOY_PATH.rstrip('/') + '/',
85 | delete=True,
86 | extra_opts='-c',
87 | )
88 |
89 | def gh_pages():
90 | """Publish to GitHub Pages"""
91 | rebuild()
92 | local("ghp-import -b {github_pages_branch} {deploy_path} -p".format(**env))
93 |
--------------------------------------------------------------------------------
/html/output/archives.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Introduction to Data Science in Industry
6 |
7 |
8 |
11 |
12 |
13 |
14 |
20 |
21 | Archives for Introduction to Data Science in Industry
22 |
23 |
24 | - Fri 03 December 2010
25 | - My First Review
26 |
27 |
28 |
47 |
48 |
55 |
56 |
57 |
--------------------------------------------------------------------------------
/html/output/author/dorian-goldman.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Introduction to Data Science in Industry - Dorian Goldman
6 |
7 |
8 |
11 |
12 |
13 |
14 |
20 |
21 |
36 |
55 |
56 |
63 |
64 |
65 |
--------------------------------------------------------------------------------
/html/output/authors.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Introduction to Data Science in Industry - Authors
6 |
7 |
8 |
11 |
12 |
13 |
14 |
20 |
21 |
22 | Authors on Introduction to Data Science in Industry
23 |
26 |
27 |
28 |
47 |
48 |
55 |
56 |
57 |
--------------------------------------------------------------------------------
/html/output/categories.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Introduction to Data Science in Industry
6 |
7 |
8 |
11 |
12 |
13 |
14 |
20 |
23 |
42 |
43 |
50 |
51 |
52 |
--------------------------------------------------------------------------------
/html/output/category/review.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Introduction to Data Science in Industry - Review
6 |
7 |
8 |
11 |
12 |
13 |
14 |
20 |
21 |
36 |
55 |
56 |
63 |
64 |
65 |
--------------------------------------------------------------------------------
/html/output/index.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Introduction to Data Science in Industry
6 |
7 |
8 |
11 |
12 |
13 |
14 |
20 |
21 |
36 |
55 |
56 |
63 |
64 |
65 |
--------------------------------------------------------------------------------
/html/output/my-first-review.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | My First Review
6 |
7 |
8 |
11 |
12 |
13 |
14 |
20 |
21 |
22 |
27 |
28 |
29 |
Following is a review of my favorite mechanical keyboard.
40 |
41 |
42 |
43 |
44 |
63 |
64 |
71 |
72 |
73 |
--------------------------------------------------------------------------------
/html/output/tags.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Introduction to Data Science in Industry - Tags
6 |
7 |
8 |
11 |
12 |
13 |
14 |
20 |
21 |
22 | Tags for Introduction to Data Science in Industry
23 |
25 |
26 |
27 |
46 |
47 |
54 |
55 |
56 |
--------------------------------------------------------------------------------
/html/output/theme/css/main.css:
--------------------------------------------------------------------------------
1 | /*
2 | Name: Smashing HTML5
3 | Date: July 2009
4 | Description: Sample layout for HTML5 and CSS3 goodness.
5 | Version: 1.0
6 | License: MIT
7 | Licensed by: Smashing Media GmbH
8 | Original author: Enrique Ramírez
9 | */
10 |
11 | /* Imports */
12 | @import url("reset.css");
13 | @import url("pygment.css");
14 | @import url("typogrify.css");
15 | @import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz&subset=latin);
16 |
17 | /***** Global *****/
18 | /* Body */
19 | body {
20 | background: #F5F4EF;
21 | color: #000305;
22 | font-size: 87.5%; /* Base font size: 14px */
23 | font-family: 'Trebuchet MS', Trebuchet, 'Lucida Sans Unicode', 'Lucida Grande', 'Lucida Sans', Arial, sans-serif;
24 | line-height: 1.429;
25 | margin: 0;
26 | padding: 0;
27 | text-align: left;
28 | }
29 |
30 | /* Headings */
31 | h1 {font-size: 2em }
32 | h2 {font-size: 1.571em} /* 22px */
33 | h3 {font-size: 1.429em} /* 20px */
34 | h4 {font-size: 1.286em} /* 18px */
35 | h5 {font-size: 1.143em} /* 16px */
36 | h6 {font-size: 1em} /* 14px */
37 |
38 | h1, h2, h3, h4, h5, h6 {
39 | font-weight: 400;
40 | line-height: 1.1;
41 | margin-bottom: .8em;
42 | font-family: 'Yanone Kaffeesatz', arial, serif;
43 | }
44 |
45 | h3, h4, h5, h6 { margin-top: .8em; }
46 |
47 | hr { border: 2px solid #EEEEEE; }
48 |
49 | /* Anchors */
50 | a {outline: 0;}
51 | a img {border: 0px; text-decoration: none;}
52 | a:link, a:visited {
53 | color: #C74350;
54 | padding: 0 1px;
55 | text-decoration: underline;
56 | }
57 | a:hover, a:active {
58 | background-color: #C74350;
59 | color: #fff;
60 | text-decoration: none;
61 | text-shadow: 1px 1px 1px #333;
62 | }
63 |
64 | h1 a:hover {
65 | background-color: inherit
66 | }
67 |
68 | /* Paragraphs */
69 | div.line-block,
70 | p { margin-top: 1em;
71 | margin-bottom: 1em;}
72 |
73 | strong, b {font-weight: bold;}
74 | em, i {font-style: italic;}
75 |
76 | /* Lists */
77 | ul {
78 | list-style: outside disc;
79 | margin: 0em 0 0 1.5em;
80 | }
81 |
82 | ol {
83 | list-style: outside decimal;
84 | margin: 0em 0 0 1.5em;
85 | }
86 |
87 | li { margin-top: 0.5em;
88 | margin-bottom: 1em; }
89 |
90 | .post-info {
91 | float:right;
92 | margin:10px;
93 | padding:5px;
94 | }
95 |
96 | .post-info p{
97 | margin-top: 1px;
98 | margin-bottom: 1px;
99 | }
100 |
101 | .readmore { float: right }
102 |
103 | dl {margin: 0 0 1.5em 0;}
104 | dt {font-weight: bold;}
105 | dd {margin-left: 1.5em;}
106 |
107 | pre{background-color: rgb(238, 238, 238); padding: 10px; margin: 10px; overflow: auto;}
108 |
109 | /* Quotes */
110 | blockquote {
111 | margin: 20px;
112 | font-style: italic;
113 | }
114 | cite {}
115 |
116 | q {}
117 |
118 | div.note {
119 | float: right;
120 | margin: 5px;
121 | font-size: 85%;
122 | max-width: 300px;
123 | }
124 |
125 | /* Tables */
126 | table {margin: .5em auto 1.5em auto; width: 98%;}
127 |
128 | /* Thead */
129 | thead th {padding: .5em .4em; text-align: left;}
130 | thead td {}
131 |
132 | /* Tbody */
133 | tbody td {padding: .5em .4em;}
134 | tbody th {}
135 |
136 | tbody .alt td {}
137 | tbody .alt th {}
138 |
139 | /* Tfoot */
140 | tfoot th {}
141 | tfoot td {}
142 |
143 | /* HTML5 tags */
144 | header, section, footer,
145 | aside, nav, article, figure {
146 | display: block;
147 | }
148 |
149 | /***** Layout *****/
150 | .body {clear: both; margin: 0 auto; width: 800px;}
151 | img.right, figure.right {float: right; margin: 0 0 2em 2em;}
152 | img.left, figure.left {float: left; margin: 0 2em 2em 0;}
153 |
154 | /*
155 | Header
156 | *****************/
157 | #banner {
158 | margin: 0 auto;
159 | padding: 2.5em 0 0 0;
160 | }
161 |
162 | /* Banner */
163 | #banner h1 {font-size: 3.571em; line-height: 0;}
164 | #banner h1 a:link, #banner h1 a:visited {
165 | color: #000305;
166 | display: block;
167 | font-weight: bold;
168 | margin: 0 0 .6em .2em;
169 | text-decoration: none;
170 | }
171 | #banner h1 a:hover, #banner h1 a:active {
172 | background: none;
173 | color: #C74350;
174 | text-shadow: none;
175 | }
176 |
177 | #banner h1 strong {font-size: 0.36em; font-weight: normal;}
178 |
179 | /* Main Nav */
180 | #banner nav {
181 | background: #000305;
182 | font-size: 1.143em;
183 | height: 40px;
184 | line-height: 30px;
185 | margin: 0 auto 2em auto;
186 | padding: 0;
187 | text-align: center;
188 | width: 800px;
189 |
190 | border-radius: 5px;
191 | -moz-border-radius: 5px;
192 | -webkit-border-radius: 5px;
193 | }
194 |
195 | #banner nav ul {list-style: none; margin: 0 auto; width: 800px;}
196 | #banner nav li {float: left; display: inline; margin: 0;}
197 |
198 | #banner nav a:link, #banner nav a:visited {
199 | color: #fff;
200 | display: inline-block;
201 | height: 30px;
202 | padding: 5px 1.5em;
203 | text-decoration: none;
204 | }
205 | #banner nav a:hover, #banner nav a:active,
206 | #banner nav .active a:link, #banner nav .active a:visited {
207 | background: #C74451;
208 | color: #fff;
209 | text-shadow: none !important;
210 | }
211 |
212 | #banner nav li:first-child a {
213 | border-top-left-radius: 5px;
214 | -moz-border-radius-topleft: 5px;
215 | -webkit-border-top-left-radius: 5px;
216 |
217 | border-bottom-left-radius: 5px;
218 | -moz-border-radius-bottomleft: 5px;
219 | -webkit-border-bottom-left-radius: 5px;
220 | }
221 |
222 | /*
223 | Featured
224 | *****************/
225 | #featured {
226 | background: #fff;
227 | margin-bottom: 2em;
228 | overflow: hidden;
229 | padding: 20px;
230 | width: 760px;
231 |
232 | border-radius: 10px;
233 | -moz-border-radius: 10px;
234 | -webkit-border-radius: 10px;
235 | }
236 |
237 | #featured figure {
238 | border: 2px solid #eee;
239 | float: right;
240 | margin: 0.786em 2em 0 5em;
241 | width: 248px;
242 | }
243 | #featured figure img {display: block; float: right;}
244 |
245 | #featured h2 {color: #C74451; font-size: 1.714em; margin-bottom: 0.333em;}
246 | #featured h3 {font-size: 1.429em; margin-bottom: .5em;}
247 |
248 | #featured h3 a:link, #featured h3 a:visited {color: #000305; text-decoration: none;}
249 | #featured h3 a:hover, #featured h3 a:active {color: #fff;}
250 |
251 | /*
252 | Body
253 | *****************/
254 | #content {
255 | background: #fff;
256 | margin-bottom: 2em;
257 | overflow: hidden;
258 | padding: 20px 20px;
259 | width: 760px;
260 |
261 | border-radius: 10px;
262 | -moz-border-radius: 10px;
263 | -webkit-border-radius: 10px;
264 | }
265 |
266 | /*
267 | Extras
268 | *****************/
269 | #extras {margin: 0 auto 3em auto; overflow: hidden;}
270 |
271 | #extras ul {list-style: none; margin: 0;}
272 | #extras li {border-bottom: 1px solid #fff;}
273 | #extras h2 {
274 | color: #C74350;
275 | font-size: 1.429em;
276 | margin-bottom: .25em;
277 | padding: 0 3px;
278 | }
279 |
280 | #extras a:link, #extras a:visited {
281 | color: #444;
282 | display: block;
283 | border-bottom: 1px solid #F4E3E3;
284 | text-decoration: none;
285 | padding: .3em .25em;
286 | }
287 |
288 | #extras a:hover, #extras a:active {color: #fff;}
289 |
290 | /* Blogroll */
291 | #extras .blogroll {
292 | float: left;
293 | width: 615px;
294 | }
295 |
296 | #extras .blogroll li {float: left; margin: 0 20px 0 0; width: 185px;}
297 |
298 | /* Social */
299 | #extras .social {
300 | float: right;
301 | width: 175px;
302 | }
303 |
304 | #extras div[class='social'] a {
305 | background-repeat: no-repeat;
306 | background-position: 3px 6px;
307 | padding-left: 25px;
308 | }
309 |
310 | /* Icons */
311 | .social a[href*='about.me'] {background-image: url('../images/icons/aboutme.png');}
312 | .social a[href*='bitbucket.org'] {background-image: url('../images/icons/bitbucket.png');}
313 | .social a[href*='delicious.com'] {background-image: url('../images/icons/delicious.png');}
314 | .social a[href*='digg.com'] {background-image: url('../images/icons/digg.png');}
315 | .social a[href*='facebook.com'] {background-image: url('../images/icons/facebook.png');}
316 | .social a[href*='gitorious.org'] {background-image: url('../images/icons/gitorious.png');}
317 | .social a[href*='github.com'],
318 | .social a[href*='git.io'] {
319 | background-image: url('../images/icons/github.png');
320 | background-size: 16px 16px;
321 | }
322 | .social a[href*='gittip.com'] {background-image: url('../images/icons/gittip.png');}
323 | .social a[href*='plus.google.com'] {background-image: url('../images/icons/google-plus.png');}
324 | .social a[href*='groups.google.com'] {background-image: url('../images/icons/google-groups.png');}
325 | .social a[href*='news.ycombinator.com'],
326 | .social a[href*='hackernewsers.com'] {background-image: url('../images/icons/hackernews.png');}
327 | .social a[href*='last.fm'], .social a[href*='lastfm.'] {background-image: url('../images/icons/lastfm.png');}
328 | .social a[href*='linkedin.com'] {background-image: url('../images/icons/linkedin.png');}
329 | .social a[href*='reddit.com'] {background-image: url('../images/icons/reddit.png');}
330 | .social a[type$='atom+xml'], .social a[type$='rss+xml'] {background-image: url('../images/icons/rss.png');}
331 | .social a[href*='slideshare.net'] {background-image: url('../images/icons/slideshare.png');}
332 | .social a[href*='speakerdeck.com'] {background-image: url('../images/icons/speakerdeck.png');}
333 | .social a[href*='stackoverflow.com'] {background-image: url('../images/icons/stackoverflow.png');}
334 | .social a[href*='twitter.com'] {background-image: url('../images/icons/twitter.png');}
335 | .social a[href*='vimeo.com'] {background-image: url('../images/icons/vimeo.png');}
336 | .social a[href*='youtube.com'] {background-image: url('../images/icons/youtube.png');}
337 |
338 | /*
339 | About
340 | *****************/
341 | #about {
342 | background: #fff;
343 | font-style: normal;
344 | margin-bottom: 2em;
345 | overflow: hidden;
346 | padding: 20px;
347 | text-align: left;
348 | width: 760px;
349 |
350 | border-radius: 10px;
351 | -moz-border-radius: 10px;
352 | -webkit-border-radius: 10px;
353 | }
354 |
355 | #about .primary {float: left; width: 165px;}
356 | #about .primary strong {color: #C64350; display: block; font-size: 1.286em;}
357 | #about .photo {float: left; margin: 5px 20px;}
358 |
359 | #about .url:link, #about .url:visited {text-decoration: none;}
360 |
361 | #about .bio {float: right; width: 500px;}
362 |
363 | /*
364 | Footer
365 | *****************/
366 | #contentinfo {padding-bottom: 2em; text-align: right;}
367 |
368 | /***** Sections *****/
369 | /* Blog */
370 | .hentry {
371 | display: block;
372 | clear: both;
373 | border-bottom: 1px solid #eee;
374 | padding: 1.5em 0;
375 | }
376 | li:last-child .hentry, #content > .hentry {border: 0; margin: 0;}
377 | #content > .hentry {padding: 1em 0;}
378 | .hentry img{display : none ;}
379 | .entry-title {font-size: 3em; margin-bottom: 10px; margin-top: 0;}
380 | .entry-title a:link, .entry-title a:visited {text-decoration: none; color: #333;}
381 | .entry-title a:visited {background-color: #fff;}
382 |
383 | .hentry .post-info * {font-style: normal;}
384 |
385 | /* Content */
386 | .hentry footer {margin-bottom: 2em;}
387 | .hentry footer address {display: inline;}
388 | #posts-list footer address {display: block;}
389 |
390 | /* Blog Index */
391 | #posts-list {list-style: none; margin: 0;}
392 | #posts-list .hentry {padding-left: 10px; position: relative;}
393 |
394 | #posts-list footer {
395 | left: 10px;
396 | position: relative;
397 | float: left;
398 | top: 0.5em;
399 | width: 190px;
400 | }
401 |
402 | /* About the Author */
403 | #about-author {
404 | background: #f9f9f9;
405 | clear: both;
406 | font-style: normal;
407 | margin: 2em 0;
408 | padding: 10px 20px 15px 20px;
409 |
410 | border-radius: 5px;
411 | -moz-border-radius: 5px;
412 | -webkit-border-radius: 5px;
413 | }
414 |
415 | #about-author strong {
416 | color: #C64350;
417 | clear: both;
418 | display: block;
419 | font-size: 1.429em;
420 | }
421 |
422 | #about-author .photo {border: 1px solid #ddd; float: left; margin: 5px 1em 0 0;}
423 |
424 | /* Comments */
425 | #comments-list {list-style: none; margin: 0 1em;}
426 | #comments-list blockquote {
427 | background: #f8f8f8;
428 | clear: both;
429 | font-style: normal;
430 | margin: 0;
431 | padding: 15px 20px;
432 |
433 | border-radius: 5px;
434 | -moz-border-radius: 5px;
435 | -webkit-border-radius: 5px;
436 | }
437 | #comments-list footer {color: #888; padding: .5em 1em 0 0; text-align: right;}
438 |
439 | #comments-list li:nth-child(2n) blockquote {background: #F5f5f5;}
440 |
441 | /* Add a Comment */
442 | #add-comment label {clear: left; float: left; text-align: left; width: 150px;}
443 | #add-comment input[type='text'],
444 | #add-comment input[type='email'],
445 | #add-comment input[type='url'] {float: left; width: 200px;}
446 |
447 | #add-comment textarea {float: left; height: 150px; width: 495px;}
448 |
449 | #add-comment p.req {clear: both; margin: 0 .5em 1em 0; text-align: right;}
450 |
451 | #add-comment input[type='submit'] {float: right; margin: 0 .5em;}
452 | #add-comment * {margin-bottom: .5em;}
453 |
--------------------------------------------------------------------------------
/html/output/theme/css/pygment.css:
--------------------------------------------------------------------------------
1 | .hll {
2 | background-color:#eee;
3 | }
4 | .c {
5 | color:#408090;
6 | font-style:italic;
7 | }
8 | .err {
9 | border:1px solid #FF0000;
10 | }
11 | .k {
12 | color:#007020;
13 | font-weight:bold;
14 | }
15 | .o {
16 | color:#666666;
17 | }
18 | .cm {
19 | color:#408090;
20 | font-style:italic;
21 | }
22 | .cp {
23 | color:#007020;
24 | }
25 | .c1 {
26 | color:#408090;
27 | font-style:italic;
28 | }
29 | .cs {
30 | background-color:#FFF0F0;
31 | color:#408090;
32 | }
33 | .gd {
34 | color:#A00000;
35 | }
36 | .ge {
37 | font-style:italic;
38 | }
39 | .gr {
40 | color:#FF0000;
41 | }
42 | .gh {
43 | color:#000080;
44 | font-weight:bold;
45 | }
46 | .gi {
47 | color:#00A000;
48 | }
49 | .go {
50 | color:#303030;
51 | }
52 | .gp {
53 | color:#C65D09;
54 | font-weight:bold;
55 | }
56 | .gs {
57 | font-weight:bold;
58 | }
59 | .gu {
60 | color:#800080;
61 | font-weight:bold;
62 | }
63 | .gt {
64 | color:#0040D0;
65 | }
66 | .kc {
67 | color:#007020;
68 | font-weight:bold;
69 | }
70 | .kd {
71 | color:#007020;
72 | font-weight:bold;
73 | }
74 | .kn {
75 | color:#007020;
76 | font-weight:bold;
77 | }
78 | .kp {
79 | color:#007020;
80 | }
81 | .kr {
82 | color:#007020;
83 | font-weight:bold;
84 | }
85 | .kt {
86 | color:#902000;
87 | }
88 | .m {
89 | color:#208050;
90 | }
91 | .s {
92 | color:#4070A0;
93 | }
94 | .na {
95 | color:#4070A0;
96 | }
97 | .nb {
98 | color:#007020;
99 | }
100 | .nc {
101 | color:#0E84B5;
102 | font-weight:bold;
103 | }
104 | .no {
105 | color:#60ADD5;
106 | }
107 | .nd {
108 | color:#555555;
109 | font-weight:bold;
110 | }
111 | .ni {
112 | color:#D55537;
113 | font-weight:bold;
114 | }
115 | .ne {
116 | color:#007020;
117 | }
118 | .nf {
119 | color:#06287E;
120 | }
121 | .nl {
122 | color:#002070;
123 | font-weight:bold;
124 | }
125 | .nn {
126 | color:#0E84B5;
127 | font-weight:bold;
128 | }
129 | .nt {
130 | color:#062873;
131 | font-weight:bold;
132 | }
133 | .nv {
134 | color:#BB60D5;
135 | }
136 | .ow {
137 | color:#007020;
138 | font-weight:bold;
139 | }
140 | .w {
141 | color:#BBBBBB;
142 | }
143 | .mf {
144 | color:#208050;
145 | }
146 | .mh {
147 | color:#208050;
148 | }
149 | .mi {
150 | color:#208050;
151 | }
152 | .mo {
153 | color:#208050;
154 | }
155 | .sb {
156 | color:#4070A0;
157 | }
158 | .sc {
159 | color:#4070A0;
160 | }
161 | .sd {
162 | color:#4070A0;
163 | font-style:italic;
164 | }
165 | .s2 {
166 | color:#4070A0;
167 | }
168 | .se {
169 | color:#4070A0;
170 | font-weight:bold;
171 | }
172 | .sh {
173 | color:#4070A0;
174 | }
175 | .si {
176 | color:#70A0D0;
177 | font-style:italic;
178 | }
179 | .sx {
180 | color:#C65D09;
181 | }
182 | .sr {
183 | color:#235388;
184 | }
185 | .s1 {
186 | color:#4070A0;
187 | }
188 | .ss {
189 | color:#517918;
190 | }
191 | .bp {
192 | color:#007020;
193 | }
194 | .vc {
195 | color:#BB60D5;
196 | }
197 | .vg {
198 | color:#BB60D5;
199 | }
200 | .vi {
201 | color:#BB60D5;
202 | }
203 | .il {
204 | color:#208050;
205 | }
206 |
--------------------------------------------------------------------------------
/html/output/theme/css/reset.css:
--------------------------------------------------------------------------------
1 | /*
2 | Name: Reset Stylesheet
3 | Description: Resets browser's default CSS
4 | Author: Eric Meyer
5 | Author URI: http://meyerweb.com/eric/tools/css/reset/
6 | */
7 |
8 | /* v1.0 | 20080212 */
9 | html, body, div, span, applet, object, iframe,
10 | h1, h2, h3, h4, h5, h6, p, blockquote, pre,
11 | a, abbr, acronym, address, big, cite, code,
12 | del, dfn, em, font, img, ins, kbd, q, s, samp,
13 | small, strike, strong, sub, sup, tt, var,
14 | b, u, i, center,
15 | dl, dt, dd, ol, ul, li,
16 | fieldset, form, label, legend,
17 | table, caption, tbody, tfoot, thead, tr, th, td {
18 | background: transparent;
19 | border: 0;
20 | font-size: 100%;
21 | margin: 0;
22 | outline: 0;
23 | padding: 0;
24 | vertical-align: baseline;
25 | }
26 |
27 | body {line-height: 1;}
28 |
29 | ol, ul {list-style: none;}
30 |
31 | blockquote, q {quotes: none;}
32 |
33 | blockquote:before, blockquote:after,
34 | q:before, q:after {
35 | content: '';
36 | content: none;
37 | }
38 |
39 | /* remember to define focus styles! */
40 | :focus {
41 | outline: 0;
42 | }
43 |
44 | /* remember to highlight inserts somehow! */
45 | ins {text-decoration: none;}
46 | del {text-decoration: line-through;}
47 |
48 | /* tables still need 'cellspacing="0"' in the markup */
49 | table {
50 | border-collapse: collapse;
51 | border-spacing: 0;
52 | }
--------------------------------------------------------------------------------
/html/output/theme/css/typogrify.css:
--------------------------------------------------------------------------------
1 | .caps {font-size:.92em;}
2 | .amp {color:#666; font-size:1.05em;font-family:"Warnock Pro", "Goudy Old Style","Palatino","Book Antiqua",serif; font-style:italic;}
3 | .dquo {margin-left:-.38em;}
4 |
--------------------------------------------------------------------------------
/html/output/theme/css/wide.css:
--------------------------------------------------------------------------------
1 | @import url("main.css");
2 |
3 | body {
4 | font:1.3em/1.3 "Hoefler Text","Georgia",Georgia,serif,sans-serif;
5 | }
6 |
7 | .post-info{
8 | display: none;
9 | }
10 |
11 | #banner nav {
12 | display: none;
13 | -moz-border-radius: 0px;
14 | margin-bottom: 20px;
15 | overflow: hidden;
16 | font-size: 1em;
17 | background: #F5F4EF;
18 | }
19 |
20 | #banner nav ul{
21 | padding-right: 50px;
22 | }
23 |
24 | #banner nav li{
25 | float: right;
26 | color: #000;
27 | }
28 |
29 | #banner nav li a {
30 | color: #000;
31 | }
32 |
33 | #banner h1 {
34 | margin-bottom: -18px;
35 | }
36 |
37 | #featured, #extras {
38 | padding: 50px;
39 | }
40 |
41 | #featured {
42 | padding-top: 20px;
43 | }
44 |
45 | #extras {
46 | padding-top: 0px;
47 | padding-bottom: 0px;
48 | }
49 |
--------------------------------------------------------------------------------
/html/output/theme/images/icons/aboutme.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/aboutme.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/bitbucket.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/bitbucket.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/delicious.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/delicious.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/facebook.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/facebook.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/github.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/github.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/gitorious.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/gitorious.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/gittip.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/gittip.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/google-groups.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/google-groups.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/google-plus.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/google-plus.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/hackernews.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/hackernews.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/lastfm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/lastfm.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/linkedin.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/linkedin.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/reddit.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/reddit.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/rss.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/rss.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/slideshare.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/slideshare.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/speakerdeck.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/speakerdeck.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/stackoverflow.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/stackoverflow.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/twitter.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/twitter.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/vimeo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/vimeo.png
--------------------------------------------------------------------------------
/html/output/theme/images/icons/youtube.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/output/theme/images/icons/youtube.png
--------------------------------------------------------------------------------
/html/pelicanconf.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # -*- coding: utf-8 -*- #
3 | from __future__ import unicode_literals
4 |
5 | AUTHOR = u'Dorian Goldman'
6 | SITENAME = u'Introduction to Data Science in Industry'
7 | SITEURL = ''
8 |
9 | PATH = 'content'
10 |
11 | TIMEZONE = 'America/New_York'
12 |
13 | DEFAULT_LANG = u'EN'
14 |
15 | # Feed generation is usually not desired when developing
16 | FEED_ALL_ATOM = None
17 | CATEGORY_FEED_ATOM = None
18 | TRANSLATION_FEED_ATOM = None
19 | AUTHOR_FEED_ATOM = None
20 | AUTHOR_FEED_RSS = None
21 |
22 | # Blogroll
23 | LINKS = (('Pelican', 'http://getpelican.com/'),
24 | ('Python.org', 'http://python.org/'),
25 | ('Jinja2', 'http://jinja.pocoo.org/'),
26 | ('You can modify those links in your config file', '#'),)
27 |
28 | # Social widget
29 | SOCIAL = (('You can add links in your config file', '#'),
30 | ('Another social link', '#'),)
31 |
32 | DEFAULT_PAGINATION = 10
33 |
34 | # Uncomment following line if you want document-relative URLs when developing
35 | #RELATIVE_URLS = True
36 |
--------------------------------------------------------------------------------
/html/pelicanconf.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/html/pelicanconf.pyc
--------------------------------------------------------------------------------
/html/publishconf.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # -*- coding: utf-8 -*- #
3 | from __future__ import unicode_literals
4 |
5 | # This file is only used if you use `make publish` or
6 | # explicitly specify it as your config file.
7 |
8 | import os
9 | import sys
10 | sys.path.append(os.curdir)
11 | from pelicanconf import *
12 |
13 | SITEURL = ''
14 | RELATIVE_URLS = False
15 |
16 | FEED_ALL_ATOM = 'feeds/all.atom.xml'
17 | CATEGORY_FEED_ATOM = 'feeds/%s.atom.xml'
18 |
19 | DELETE_OUTPUT_DIRECTORY = True
20 |
21 | # Following items are often useful when publishing
22 |
23 | #DISQUS_SITENAME = ""
24 | #GOOGLE_ANALYTICS = ""
25 |
--------------------------------------------------------------------------------
/img/levelsets.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/img/levelsets.png
--------------------------------------------------------------------------------
/img/overfitting.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/img/overfitting.png
--------------------------------------------------------------------------------
/img/regression.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/img/regression.png
--------------------------------------------------------------------------------
/img/regressionexample:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/img/regressionexample
--------------------------------------------------------------------------------
/img/regularization.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/img/regularization.png
--------------------------------------------------------------------------------
/lectures/Lecture 1. What is Data Science_.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/lectures/Lecture 1. What is Data Science_.pdf
--------------------------------------------------------------------------------
/lectures/Lecture 2 - Mathematics Review.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/lectures/Lecture 2 - Mathematics Review.pdf
--------------------------------------------------------------------------------
/lectures/Lecture 2. Introduction to Supervised Learning (1).pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/lectures/Lecture 2. Introduction to Supervised Learning (1).pdf
--------------------------------------------------------------------------------
/lectures/Lecture 3 - Model Selection, Evaluation and Regularization.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/lectures/Lecture 3 - Model Selection, Evaluation and Regularization.pdf
--------------------------------------------------------------------------------
/lectures/Lecture 4 - Classification (1).pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/lectures/Lecture 4 - Classification (1).pdf
--------------------------------------------------------------------------------
/lectures/Lecture 5 - Decision Trees and Non-Parametric Models.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/lectures/Lecture 5 - Decision Trees and Non-Parametric Models.pdf
--------------------------------------------------------------------------------
/notebooks/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/notebooks/.DS_Store
--------------------------------------------------------------------------------
/notebooks/.ipynb_checkpoints/Cleaning and Featurizing Data-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [],
3 | "metadata": {},
4 | "nbformat": 4,
5 | "nbformat_minor": 1
6 | }
7 |
--------------------------------------------------------------------------------
/notebooks/.ipynb_checkpoints/Lecture 6 - Decision Trees-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [],
3 | "metadata": {},
4 | "nbformat": 4,
5 | "nbformat_minor": 1
6 | }
7 |
--------------------------------------------------------------------------------
/notebooks/.ipynb_checkpoints/PCA - MNIST example-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [],
3 | "metadata": {},
4 | "nbformat": 4,
5 | "nbformat_minor": 1
6 | }
7 |
--------------------------------------------------------------------------------
/notebooks/.ipynb_checkpoints/Untitled-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [],
3 | "metadata": {},
4 | "nbformat": 4,
5 | "nbformat_minor": 1
6 | }
7 |
--------------------------------------------------------------------------------
/notebooks/Lecture 5 - Cleaning and Featurizing Data.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {
7 | "collapsed": true
8 | },
9 | "outputs": [],
10 | "source": [
11 | "#https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
12 | ]
13 | }
14 | ],
15 | "metadata": {
16 | "anaconda-cloud": {},
17 | "kernelspec": {
18 | "display_name": "Python [conda root]",
19 | "language": "python",
20 | "name": "conda-root-py"
21 | },
22 | "language_info": {
23 | "codemirror_mode": {
24 | "name": "ipython",
25 | "version": 2
26 | },
27 | "file_extension": ".py",
28 | "mimetype": "text/x-python",
29 | "name": "python",
30 | "nbconvert_exporter": "python",
31 | "pygments_lexer": "ipython2",
32 | "version": "2.7.12"
33 | }
34 | },
35 | "nbformat": 4,
36 | "nbformat_minor": 1
37 | }
38 |
--------------------------------------------------------------------------------
/notebooks/Lecture 6 - Decision Trees.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {
7 | "collapsed": true
8 | },
9 | "outputs": [],
10 | "source": [
11 | "print(__doc__)\n",
12 | "\n",
13 | "# Import the necessary modules and libraries\n",
14 | "import numpy as np\n",
15 | "from sklearn.tree import DecisionTreeRegressor\n",
16 | "import matplotlib.pyplot as plt\n",
17 | "\n",
18 | "# Create a random dataset\n",
19 | "rng = np.random.RandomState(1)\n",
20 | "X = np.sort(5 * rng.rand(80, 1), axis=0)\n",
21 | "y = np.sin(X).ravel()\n",
22 | "y[::5] += 3 * (0.5 - rng.rand(16))\n",
23 | "\n",
24 | "# Fit regression model\n",
25 | "regr_0 = DecisionTreeRegressor(max_depth=1)\n",
26 | "regr_1 = DecisionTreeRegressor(max_depth=2)\n",
27 | "regr_2 = DecisionTreeRegressor(max_depth=5)\n",
28 | "regr_0.fit(X, y)\n",
29 | "regr_1.fit(X, y)\n",
30 | "regr_2.fit(X, y)\n",
31 | "\n",
32 | "# Predict\n",
33 | "X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]\n",
34 | "y_0 = regr_0.predict(X_test)\n",
35 | "y_1 = regr_1.predict(X_test)\n",
36 | "y_2 = regr_2.predict(X_test)\n",
37 | "\n",
38 | "# Plot the results\n",
39 | "plt.figure()\n",
40 | "plt.scatter(X, y, c=\"darkorange\", label=\"data\")\n",
41 | "#plt.plot(X_test, y_0, color=\"red\", label=\"max_depth=1\", linewidth=2)\n",
42 | "plt.plot(X_test, y_1, color=\"cornflowerblue\", label=\"max_depth=2\", linewidth=2)\n",
43 | "plt.plot(X_test, y_2, color=\"yellowgreen\", label=\"max_depth=5\", linewidth=2)\n",
44 | "plt.xlabel(\"data\")\n",
45 | "plt.ylabel(\"target\")\n",
46 | "plt.title(\"Decision Tree Regression\")\n",
47 | "plt.legend()\n",
48 | "plt.show()"
49 | ]
50 | }
51 | ],
52 | "metadata": {
53 | "anaconda-cloud": {},
54 | "kernelspec": {
55 | "display_name": "Python [default]",
56 | "language": "python",
57 | "name": "python2"
58 | },
59 | "language_info": {
60 | "codemirror_mode": {
61 | "name": "ipython",
62 | "version": 2
63 | },
64 | "file_extension": ".py",
65 | "mimetype": "text/x-python",
66 | "name": "python",
67 | "nbconvert_exporter": "python",
68 | "pygments_lexer": "ipython2",
69 | "version": "2.7.12"
70 | }
71 | },
72 | "nbformat": 4,
73 | "nbformat_minor": 1
74 | }
75 |
--------------------------------------------------------------------------------
/notebooks/Untitled.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {
7 | "collapsed": false
8 | },
9 | "outputs": [
10 | {
11 | "name": "stderr",
12 | "output_type": "stream",
13 | "text": [
14 | "//anaconda/lib/python2.7/site-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.\n",
15 | " \"This module will be removed in 0.20.\", DeprecationWarning)\n"
16 | ]
17 | }
18 | ],
19 | "source": [
20 | "# Necssary libraries\n",
21 | "import pandas as pd\n",
22 | "import statsmodels.api as sm\n",
23 | "from sklearn.cross_validation import KFold\n",
24 | "from sklearn.metrics import confusion_matrix\n",
25 | "from sklearn.preprocessing import StandardScaler\n",
26 | "from sklearn.linear_model import LogisticRegression\n",
27 | "from sklearn.linear_model import Ridge\n",
28 | "from sklearn.svm import SVC\n",
29 | "from sklearn.ensemble import RandomForestClassifier as RF\n",
30 | "from sklearn.neighbors import KNeighborsClassifier as KNN\n",
31 | "import numpy as np\n",
32 | "import matplotlib.pyplot as plt\n",
33 | "from sklearn.metrics import roc_curve, auc\n",
34 | "from sklearn.utils import shuffle\n",
35 | "from sklearn.metrics import roc_curve, auc\n",
36 | "import pylab\n",
37 | "from sklearn import svm\n",
38 | "from sklearn.linear_model import LogisticRegression\n",
39 | "from sklearn.ensemble import RandomForestClassifier\n",
40 | "from mpl_toolkits.basemap import Basemap\n",
41 | "import re\n",
42 | "import pylab as plt\n",
43 | "import seaborn\n",
44 | "from sklearn.linear_model import LinearRegression\n",
45 | "import numpy.random as nprnd\n",
46 | "import random\n",
47 | "pd.set_option('display.max_columns', 500)\n",
48 | "%matplotlib inline"
49 | ]
50 | },
51 | {
52 | "cell_type": "code",
53 | "execution_count": 2,
54 | "metadata": {
55 | "collapsed": false
56 | },
57 | "outputs": [
58 | {
59 | "ename": "IOError",
60 | "evalue": "File expected_ts_pred.csv does not exist",
61 | "output_type": "error",
62 | "traceback": [
63 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
64 | "\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)",
65 | "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'expected_ts_pred.csv'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
66 | "\u001b[0;32m//anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc\u001b[0m in \u001b[0;36mparser_f\u001b[0;34m(filepath_or_buffer, sep, dialect, compression, doublequote, escapechar, quotechar, quoting, skipinitialspace, lineterminator, header, index_col, names, prefix, skiprows, skipfooter, skip_footer, na_values, na_fvalues, true_values, false_values, delimiter, converters, dtype, usecols, engine, delim_whitespace, as_recarray, na_filter, compact_ints, use_unsigned, low_memory, buffer_lines, warn_bad_lines, error_bad_lines, keep_default_na, thousands, comment, decimal, parse_dates, keep_date_col, dayfirst, date_parser, memory_map, float_precision, nrows, iterator, chunksize, verbose, encoding, squeeze, mangle_dupe_cols, tupleize_cols, infer_datetime_format, skip_blank_lines)\u001b[0m\n\u001b[1;32m 472\u001b[0m skip_blank_lines=skip_blank_lines)\n\u001b[1;32m 473\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 474\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 475\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 476\u001b[0m \u001b[0mparser_f\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
67 | "\u001b[0;32m//anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mchunksize\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
68 | "\u001b[0;32m//anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 564\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 565\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 566\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 567\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 568\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_options_with_defaults\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
69 | "\u001b[0;32m//anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 703\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'c'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 704\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'c'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 705\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCParserWrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 706\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 707\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'python'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
70 | "\u001b[0;32m//anaconda/lib/python2.7/site-packages/pandas/io/parsers.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 1070\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'allow_leading_cols'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex_col\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1071\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1072\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_parser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTextReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1073\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1074\u001b[0m \u001b[0;31m# XXX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
71 | "\u001b[0;32mpandas/parser.pyx\u001b[0m in \u001b[0;36mpandas.parser.TextReader.__cinit__ (pandas/parser.c:3173)\u001b[0;34m()\u001b[0m\n",
72 | "\u001b[0;32mpandas/parser.pyx\u001b[0m in \u001b[0;36mpandas.parser.TextReader._setup_parser_source (pandas/parser.c:5912)\u001b[0;34m()\u001b[0m\n",
73 | "\u001b[0;31mIOError\u001b[0m: File expected_ts_pred.csv does not exist"
74 | ]
75 | }
76 | ],
77 | "source": [
78 | "df = pd.read_csv('expected_ts_pred.csv')"
79 | ]
80 | },
81 | {
82 | "cell_type": "code",
83 | "execution_count": null,
84 | "metadata": {
85 | "collapsed": true
86 | },
87 | "outputs": [],
88 | "source": []
89 | }
90 | ],
91 | "metadata": {
92 | "kernelspec": {
93 | "display_name": "Python [conda root]",
94 | "language": "python",
95 | "name": "conda-root-py"
96 | },
97 | "language_info": {
98 | "codemirror_mode": {
99 | "name": "ipython",
100 | "version": 2
101 | },
102 | "file_extension": ".py",
103 | "mimetype": "text/x-python",
104 | "name": "python",
105 | "nbconvert_exporter": "python",
106 | "pygments_lexer": "ipython2",
107 | "version": "2.7.12"
108 | }
109 | },
110 | "nbformat": 4,
111 | "nbformat_minor": 1
112 | }
113 |
--------------------------------------------------------------------------------
/notebooks/Untitled1.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {
7 | "collapsed": true
8 | },
9 | "outputs": [],
10 | "source": [
11 | "# read data into a DataFrame\n",
12 | "import pandas as pd\n",
13 | "import pylab as plt\n",
14 | "import seaborn\n",
15 | "from sklearn.linear_model import LinearRegression\n",
16 | "import numpy.random as nprnd\n",
17 | "import random\n",
18 | "import json\n",
19 | "import numpy as np\n",
20 | "from sklearn.model_selection import train_test_split\n",
21 | "from scipy.spatial.distance import cosine\n",
22 | "from sklearn.metrics import pairwise_distances\n",
23 | "pd.set_option('display.max_columns', 500)\n",
24 | "%matplotlib inline"
25 | ]
26 | }
27 | ],
28 | "metadata": {
29 | "anaconda-cloud": {},
30 | "kernelspec": {
31 | "display_name": "Python [conda root]",
32 | "language": "python",
33 | "name": "conda-root-py"
34 | }
35 | },
36 | "nbformat": 4,
37 | "nbformat_minor": 2
38 | }
39 |
--------------------------------------------------------------------------------
/notebooks/Untitled2.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 4,
6 | "metadata": {
7 | "collapsed": false
8 | },
9 | "outputs": [
10 | {
11 | "data": {
12 | "text/plain": [
13 | "array(['three', 'one', 'two'],\n",
14 | " dtype=' 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;
6 | 2 [label="mse = 0.1919\nsamples = 11\nvalue = 0.0524"] ;
7 | 1 -> 2 ;
8 | 3 [label="mse = 0.1479\nsamples = 40\nvalue = 0.7138"] ;
9 | 1 -> 3 ;
10 | 4 [label="X[0] <= 3.8502\nmse = 0.1244\nsamples = 29\nvalue = -0.6675"] ;
11 | 0 -> 4 [labeldistance=2.5, labelangle=-45, headlabel="False"] ;
12 | 5 [label="mse = 0.1241\nsamples = 14\nvalue = -0.4519"] ;
13 | 4 -> 5 ;
14 | 6 [label="mse = 0.0407\nsamples = 15\nvalue = -0.8686"] ;
15 | 4 -> 6 ;
16 | }
--------------------------------------------------------------------------------
/notebooks/dt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/notebooks/dt.png
--------------------------------------------------------------------------------
/notebooks/mnist_pca.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/notebooks/mnist_pca.png
--------------------------------------------------------------------------------
/pdfs/AllofStatistics.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/pdfs/AllofStatistics.pdf
--------------------------------------------------------------------------------
/pdfs/Conditional-Probability.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/pdfs/Conditional-Probability.pdf
--------------------------------------------------------------------------------
/pdfs/Discrete-Probabilities.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/pdfs/Discrete-Probabilities.pdf
--------------------------------------------------------------------------------
/pdfs/Effective Computation in Physics.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/pdfs/Effective Computation in Physics.pdf
--------------------------------------------------------------------------------
/pdfs/ISLR_First_Printing.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/pdfs/ISLR_First_Printing.pdf
--------------------------------------------------------------------------------
/pdfs/MachineLearningMethodsGraph.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/pdfs/MachineLearningMethodsGraph.pdf
--------------------------------------------------------------------------------
/pdfs/Scikit_Learn_Cheat_Sheet_Python.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/pdfs/Scikit_Learn_Cheat_Sheet_Python.pdf
--------------------------------------------------------------------------------
/pdfs/[Mark Joshi]Quant Job Interview Questions And Answers (1).pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/pdfs/[Mark Joshi]Quant Job Interview Questions And Answers (1).pdf
--------------------------------------------------------------------------------
/pdfs/coinbias.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/pdfs/coinbias.pdf
--------------------------------------------------------------------------------
/pdfs/eigenvaluenotes.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Columbia-Intro-Data-Science/APMAE4990-/3b85ce52a29355353f10d13c70b973388e41496d/pdfs/eigenvaluenotes.pdf
--------------------------------------------------------------------------------
/pdfs/lagrangemultipliers.aux:
--------------------------------------------------------------------------------
1 | \relax
2 | \providecommand\hyper@newdestlabel[2]{}
3 | \providecommand*\new@tpo@label[2]{}
4 | \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
5 | \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
6 | \global\let\oldcontentsline\contentsline
7 | \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
8 | \global\let\oldnewlabel\newlabel
9 | \gdef\newlabel#1#2{\newlabelxx{#1}#2}
10 | \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
11 | \AtEndDocument{\ifx\hyper@anchor\@undefined
12 | \let\contentsline\oldcontentsline
13 | \let\newlabel\oldnewlabel
14 | \fi}
15 | \fi}
16 | \global\let\hyper@last\relax
17 | \gdef\HyperFirstAtBeginDocument#1{#1}
18 | \providecommand\HyField@AuxAddToFields[1]{}
19 | \providecommand\HyField@AuxAddToCoFields[2]{}
20 | \select@language{english}
21 | \@writefile{toc}{\select@language{english}}
22 | \@writefile{lof}{\select@language{english}}
23 | \@writefile{lot}{\select@language{english}}
24 | \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction to Constrained Optimization}{1}{section.1}}
25 | \@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces $L^1$ and $L^2$ regularizaiton.}}{2}{figure.1.1}}
26 | \newlabel{reg}{{1.1}{2}{$L^1$ and $L^2$ regularizaiton}{figure.1.1}{}}
27 | \@writefile{toc}{\contentsline {section}{\numberline {2}Derivation of Lagrange Multipliers}{3}{section.2}}
28 | \@writefile{toc}{\contentsline {section}{\numberline {3}Interpreting Lasso and Ridge regression}{4}{section.3}}
29 | \@writefile{toc}{\contentsline {section}{\numberline {4}How much of a constraint do we use?}{4}{section.4}}
30 |
--------------------------------------------------------------------------------
/pdfs/lagrangemultipliers.log:
--------------------------------------------------------------------------------
1 | This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016) (preloaded format=pdflatex 2016.5.22) 22 FEB 2017 10:02
2 | entering extended mode
3 | restricted \write18 enabled.
4 | file:line:error style messages enabled.
5 | %&-line parsing enabled.
6 | **lagrangemultipliers.tex
7 | (./lagrangemultipliers.tex
8 | LaTeX2e <2016/03/31>
9 | Babel <3.9r> and hyphenation patterns for 83 language(s) loaded.
10 | (/usr/local/texlive/2016/texmf-dist/tex/latex/koma-script/scrartcl.cls
11 | Document Class: scrartcl 2016/05/10 v3.20 KOMA-Script document class (article)
12 | (/usr/local/texlive/2016/texmf-dist/tex/latex/koma-script/scrkbase.sty
13 | Package: scrkbase 2016/05/10 v3.20 KOMA-Script package (KOMA-Script-dependent b
14 | asics and keyval usage)
15 |
16 | (/usr/local/texlive/2016/texmf-dist/tex/latex/koma-script/scrbase.sty
17 | Package: scrbase 2016/05/10 v3.20 KOMA-Script package (KOMA-Script-independent
18 | basics and keyval usage)
19 |
20 | (/usr/local/texlive/2016/texmf-dist/tex/latex/graphics/keyval.sty
21 | Package: keyval 2014/10/28 v1.15 key=value parser (DPC)
22 | \KV@toks@=\toks14
23 | )
24 | (/usr/local/texlive/2016/texmf-dist/tex/latex/koma-script/scrlfile.sty
25 | Package: scrlfile 2016/05/10 v3.20 KOMA-Script package (loading files)
26 |
27 | Package scrlfile, 2016/05/10 v3.20 KOMA-Script package (loading files)
28 | Copyright (C) Markus Kohm
29 |
30 | ))) (/usr/local/texlive/2016/texmf-dist/tex/latex/koma-script/tocbasic.sty
31 | Package: tocbasic 2016/05/10 v3.20 KOMA-Script package (handling toc-files)
32 | \scr@dte@tocline@numberwidth=\skip41
33 | \scr@dte@tocline@numbox=\box26
34 | )
35 | Package tocbasic Info: omitting babel extension for `toc'
36 | (tocbasic) because of feature `nobabel' available
37 | (tocbasic) for `toc' on input line 130.
38 | Package tocbasic Info: omitting babel extension for `lof'
39 | (tocbasic) because of feature `nobabel' available
40 | (tocbasic) for `lof' on input line 131.
41 | Package tocbasic Info: omitting babel extension for `lot'
42 | (tocbasic) because of feature `nobabel' available
43 | (tocbasic) for `lot' on input line 132.
44 | Class scrartcl Info: File `scrsize11pt.clo' used to setup font sizes on input l
45 | ine 2051.
46 |
47 | (/usr/local/texlive/2016/texmf-dist/tex/latex/koma-script/scrsize11pt.clo
48 | File: scrsize11pt.clo 2016/05/10 v3.20 KOMA-Script font size class option (11pt
49 | )
50 | )
51 | (/usr/local/texlive/2016/texmf-dist/tex/latex/koma-script/typearea.sty
52 | Package: typearea 2016/05/10 v3.20 KOMA-Script package (type area)
53 |
54 | Package typearea, 2016/05/10 v3.20 KOMA-Script package (type area)
55 | Copyright (C) Frank Neukam, 1992-1994
56 | Copyright (C) Markus Kohm, 1994-
57 |
58 | \ta@bcor=\skip42
59 | \ta@div=\count79
60 | \ta@hblk=\skip43
61 | \ta@vblk=\skip44
62 | \ta@temp=\skip45
63 | \footheight=\skip46
64 | Package typearea Info: These are the values describing the layout:
65 | (typearea) DIV = 10
66 | (typearea) BCOR = 0.0pt
67 | (typearea) \paperwidth = 597.50793pt
68 | (typearea) \textwidth = 418.25555pt
69 | (typearea) DIV departure = -6%
70 | (typearea) \evensidemargin = 17.3562pt
71 | (typearea) \oddsidemargin = 17.3562pt
72 | (typearea) \paperheight = 845.04694pt
73 | (typearea) \textheight = 595.80026pt
74 | (typearea) \topmargin = -25.16531pt
75 | (typearea) \headheight = 17.0pt
76 | (typearea) \headsep = 20.40001pt
77 | (typearea) \topskip = 11.0pt
78 | (typearea) \footskip = 47.6pt
79 | (typearea) \baselineskip = 13.6pt
80 | (typearea) on input line 1528.
81 | )
82 | \c@part=\count80
83 | \c@section=\count81
84 | \c@subsection=\count82
85 | \c@subsubsection=\count83
86 | \c@paragraph=\count84
87 | \c@subparagraph=\count85
88 | \scr@dte@part@maxnumwidth=\skip47
89 | \scr@dte@section@maxnumwidth=\skip48
90 | \scr@dte@subsection@maxnumwidth=\skip49
91 | \scr@dte@subsubsection@maxnumwidth=\skip50
92 | \scr@dte@paragraph@maxnumwidth=\skip51
93 | \scr@dte@subparagraph@maxnumwidth=\skip52
94 | LaTeX Info: Redefining \textsubscript on input line 4025.
95 | \abovecaptionskip=\skip53
96 | \belowcaptionskip=\skip54
97 | \c@pti@nb@sid@b@x=\box27
98 | \c@figure=\count86
99 | \c@table=\count87
100 | Class scrartcl Info: Redefining `\numberline' on input line 5012.
101 | \bibindent=\dimen102
102 | ) (/usr/local/texlive/2016/texmf-dist/tex/latex/base/fontenc.sty
103 | Package: fontenc 2005/09/27 v1.99g Standard LaTeX package
104 |
105 | (/usr/local/texlive/2016/texmf-dist/tex/latex/base/t1enc.def
106 | File: t1enc.def 2005/09/27 v1.99g Standard LaTeX file
107 | LaTeX Font Info: Redeclaring font encoding T1 on input line 48.
108 | ))
109 | (/usr/local/texlive/2016/texmf-dist/tex/generic/babel/babel.sty
110 | Package: babel 2016/04/23 3.9r The Babel package
111 |
112 | (/usr/local/texlive/2016/texmf-dist/tex/generic/babel-english/english.ldf
113 | Language: english 2012/08/20 v3.3p English support from the babel system
114 |
115 | (/usr/local/texlive/2016/texmf-dist/tex/generic/babel/babel.def
116 | File: babel.def 2016/04/23 3.9r Babel common definitions
117 | \babel@savecnt=\count88
118 | \U@D=\dimen103
119 | )
120 | \l@canadian = a dialect from \language\l@american
121 | \l@australian = a dialect from \language\l@british
122 | \l@newzealand = a dialect from \language\l@british
123 | ))
124 | (/usr/local/texlive/2016/texmf-dist/tex/latex/amsmath/amsmath.sty
125 | Package: amsmath 2016/03/10 v2.15b AMS math features
126 | \@mathmargin=\skip55
127 |
128 | For additional information on amsmath, use the `?' option.
129 | (/usr/local/texlive/2016/texmf-dist/tex/latex/amsmath/amstext.sty
130 | Package: amstext 2000/06/29 v2.01 AMS text
131 |
132 | (/usr/local/texlive/2016/texmf-dist/tex/latex/amsmath/amsgen.sty
133 | File: amsgen.sty 1999/11/30 v2.0 generic functions
134 | \@emptytoks=\toks15
135 | \ex@=\dimen104
136 | ))
137 | (/usr/local/texlive/2016/texmf-dist/tex/latex/amsmath/amsbsy.sty
138 | Package: amsbsy 1999/11/29 v1.2d Bold Symbols
139 | \pmbraise@=\dimen105
140 | )
141 | (/usr/local/texlive/2016/texmf-dist/tex/latex/amsmath/amsopn.sty
142 | Package: amsopn 2016/03/08 v2.02 operator names
143 | )
144 | \inf@bad=\count89
145 | LaTeX Info: Redefining \frac on input line 199.
146 | \uproot@=\count90
147 | \leftroot@=\count91
148 | LaTeX Info: Redefining \overline on input line 297.
149 | \classnum@=\count92
150 | \DOTSCASE@=\count93
151 | LaTeX Info: Redefining \ldots on input line 394.
152 | LaTeX Info: Redefining \dots on input line 397.
153 | LaTeX Info: Redefining \cdots on input line 518.
154 | \Mathstrutbox@=\box28
155 | \strutbox@=\box29
156 | \big@size=\dimen106
157 | LaTeX Font Info: Redeclaring font encoding OML on input line 634.
158 | LaTeX Font Info: Redeclaring font encoding OMS on input line 635.
159 | \macc@depth=\count94
160 | \c@MaxMatrixCols=\count95
161 | \dotsspace@=\muskip10
162 | \c@parentequation=\count96
163 | \dspbrk@lvl=\count97
164 | \tag@help=\toks16
165 | \row@=\count98
166 | \column@=\count99
167 | \maxfields@=\count100
168 | \andhelp@=\toks17
169 | \eqnshift@=\dimen107
170 | \alignsep@=\dimen108
171 | \tagshift@=\dimen109
172 | \tagwidth@=\dimen110
173 | \totwidth@=\dimen111
174 | \lineht@=\dimen112
175 | \@envbody=\toks18
176 | \multlinegap=\skip56
177 | \multlinetaggap=\skip57
178 | \mathdisplay@stack=\toks19
179 | LaTeX Info: Redefining \[ on input line 2739.
180 | LaTeX Info: Redefining \] on input line 2740.
181 | )
182 | (/usr/local/texlive/2016/texmf-dist/tex/latex/amsfonts/amsfonts.sty
183 | Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
184 | \symAMSa=\mathgroup4
185 | \symAMSb=\mathgroup5
186 | LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
187 | (Font) U/euf/m/n --> U/euf/b/n on input line 106.
188 | )
189 | (/usr/local/texlive/2016/texmf-dist/tex/latex/amscls/amsthm.sty
190 | Package: amsthm 2015/03/04 v2.20.2
191 | \thm@style=\toks20
192 | \thm@bodyfont=\toks21
193 | \thm@headfont=\toks22
194 | \thm@notefont=\toks23
195 | \thm@headpunct=\toks24
196 | \thm@preskip=\skip58
197 | \thm@postskip=\skip59
198 | \thm@headsep=\skip60
199 | \dth@everypar=\toks25
200 | )
201 | (/usr/local/texlive/2016/texmf-dist/tex/latex/hyperref/hyperref.sty
202 | Package: hyperref 2016/05/05 v6.83n Hypertext links for LaTeX
203 |
204 | (/usr/local/texlive/2016/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
205 | Package: hobsub-hyperref 2016/05/16 v1.14 Bundle oberdiek, subset hyperref (HO)
206 |
207 |
208 | (/usr/local/texlive/2016/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
209 | Package: hobsub-generic 2016/05/16 v1.14 Bundle oberdiek, subset generic (HO)
210 | Package: hobsub 2016/05/16 v1.14 Construct package bundles (HO)
211 | Package: infwarerr 2016/05/16 v1.4 Providing info/warning/error messages (HO)
212 | Package: ltxcmds 2016/05/16 v1.23 LaTeX kernel commands for general use (HO)
213 | Package: ifluatex 2016/05/16 v1.4 Provides the ifluatex switch (HO)
214 | Package ifluatex Info: LuaTeX not detected.
215 | Package: ifvtex 2016/05/16 v1.6 Detect VTeX and its facilities (HO)
216 | Package ifvtex Info: VTeX not detected.
217 | Package: intcalc 2016/05/16 v1.2 Expandable calculations with integers (HO)
218 | Package: ifpdf 2016/05/14 v3.1 Provides the ifpdf switch
219 | Package: etexcmds 2016/05/16 v1.6 Avoid name clashes with e-TeX commands (HO)
220 | Package etexcmds Info: Could not find \expanded.
221 | (etexcmds) That can mean that you are not using pdfTeX 1.50 or
222 | (etexcmds) that some package has redefined \expanded.
223 | (etexcmds) In the latter case, load this package earlier.
224 | Package: kvsetkeys 2016/05/16 v1.17 Key value parser (HO)
225 | Package: kvdefinekeys 2016/05/16 v1.4 Define keys (HO)
226 | Package: pdftexcmds 2016/05/10 v0.21 Utility functions of pdfTeX for LuaTeX (HO
227 | )
228 | Package pdftexcmds Info: LuaTeX not detected.
229 | Package pdftexcmds Info: \pdf@primitive is available.
230 | Package pdftexcmds Info: \pdf@ifprimitive is available.
231 | Package pdftexcmds Info: \pdfdraftmode found.
232 | Package: pdfescape 2016/05/16 v1.14 Implements pdfTeX's escape features (HO)
233 | Package: bigintcalc 2016/05/16 v1.4 Expandable calculations on big integers (HO
234 | )
235 | Package: bitset 2016/05/16 v1.2 Handle bit-vector datatype (HO)
236 | Package: uniquecounter 2016/05/16 v1.3 Provide unlimited unique counter (HO)
237 | )
238 | Package hobsub Info: Skipping package `hobsub' (already loaded).
239 | Package: letltxmacro 2016/05/16 v1.5 Let assignment for LaTeX macros (HO)
240 | Package: hopatch 2016/05/16 v1.3 Wrapper for package hooks (HO)
241 | Package: xcolor-patch 2016/05/16 xcolor patch
242 | Package: atveryend 2016/05/16 v1.9 Hooks at the very end of document (HO)
243 | Package atveryend Info: \enddocument detected (standard20110627).
244 | Package: atbegshi 2016/05/16 v1.17 At begin shipout hook (HO)
245 | Package: refcount 2016/05/16 v3.5 Data extraction from label references (HO)
246 | Package: hycolor 2016/05/16 v1.8 Color options for hyperref/bookmark (HO)
247 | )
248 | (/usr/local/texlive/2016/texmf-dist/tex/generic/ifxetex/ifxetex.sty
249 | Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
250 | )
251 | (/usr/local/texlive/2016/texmf-dist/tex/latex/oberdiek/auxhook.sty
252 | Package: auxhook 2016/05/16 v1.4 Hooks for auxiliary files (HO)
253 | )
254 | (/usr/local/texlive/2016/texmf-dist/tex/latex/oberdiek/kvoptions.sty
255 | Package: kvoptions 2016/05/16 v3.12 Key value format for package options (HO)
256 | )
257 | \@linkdim=\dimen113
258 | \Hy@linkcounter=\count101
259 | \Hy@pagecounter=\count102
260 |
261 | (/usr/local/texlive/2016/texmf-dist/tex/latex/hyperref/pd1enc.def
262 | File: pd1enc.def 2016/05/05 v6.83n Hyperref: PDFDocEncoding definition (HO)
263 | )
264 | \Hy@SavedSpaceFactor=\count103
265 |
266 | (/usr/local/texlive/2016/texmf-dist/tex/latex/latexconfig/hyperref.cfg
267 | File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
268 | )
269 | Package hyperref Info: Hyper figures OFF on input line 4446.
270 | Package hyperref Info: Link nesting OFF on input line 4451.
271 | Package hyperref Info: Hyper index ON on input line 4454.
272 | Package hyperref Info: Plain pages OFF on input line 4461.
273 | Package hyperref Info: Backreferencing OFF on input line 4466.
274 | Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
275 | Package hyperref Info: Bookmarks ON on input line 4691.
276 | \c@Hy@tempcnt=\count104
277 |
278 | (/usr/local/texlive/2016/texmf-dist/tex/latex/url/url.sty
279 | \Urlmuskip=\muskip11
280 | Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc.
281 | )
282 | LaTeX Info: Redefining \url on input line 5044.
283 | \XeTeXLinkMargin=\dimen114
284 | \Fld@menulength=\count105
285 | \Field@Width=\dimen115
286 | \Fld@charsize=\dimen116
287 | Package hyperref Info: Hyper figures OFF on input line 6298.
288 | Package hyperref Info: Link nesting OFF on input line 6303.
289 | Package hyperref Info: Hyper index ON on input line 6306.
290 | Package hyperref Info: backreferencing OFF on input line 6313.
291 | Package hyperref Info: Link coloring OFF on input line 6318.
292 | Package hyperref Info: Link coloring with OCG OFF on input line 6323.
293 | Package hyperref Info: PDF/A mode OFF on input line 6328.
294 | LaTeX Info: Redefining \ref on input line 6368.
295 | LaTeX Info: Redefining \pageref on input line 6372.
296 | \Hy@abspage=\count106
297 | \c@Item=\count107
298 | \c@Hfootnote=\count108
299 | )
300 |
301 | Package hyperref Message: Driver (autodetected): hpdftex.
302 |
303 | (/usr/local/texlive/2016/texmf-dist/tex/latex/hyperref/hpdftex.def
304 | File: hpdftex.def 2016/05/05 v6.83n Hyperref driver for pdfTeX
305 | \Fld@listcount=\count109
306 | \c@bookmark@seq@number=\count110
307 |
308 | (/usr/local/texlive/2016/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
309 | Package: rerunfilecheck 2016/05/16 v1.8 Rerun checks for auxiliary files (HO)
310 | Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
311 | 82.
312 | )
313 | \Hy@SectionHShift=\skip61
314 | )
315 | (/usr/local/texlive/2016/texmf-dist/tex/latex/lipsum/lipsum.sty
316 | Package: lipsum 2014/07/27 v1.3 150 paragraphs of Lorem Ipsum dummy text
317 | \c@lips@count=\count111
318 | )
319 | (/usr/local/texlive/2016/texmf-dist/tex/latex/graphics/graphicx.sty
320 | Package: graphicx 2014/10/28 v1.0g Enhanced LaTeX Graphics (DPC,SPQR)
321 |
322 | (/usr/local/texlive/2016/texmf-dist/tex/latex/graphics/graphics.sty
323 | Package: graphics 2016/05/09 v1.0r Standard LaTeX Graphics (DPC,SPQR)
324 |
325 | (/usr/local/texlive/2016/texmf-dist/tex/latex/graphics/trig.sty
326 | Package: trig 2016/01/03 v1.10 sin cos tan (DPC)
327 | )
328 | (/usr/local/texlive/2016/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
329 | File: graphics.cfg 2016/01/02 v1.10 sample graphics configuration
330 | )
331 | Package graphics Info: Driver file: pdftex.def on input line 96.
332 |
333 | (/usr/local/texlive/2016/texmf-dist/tex/latex/pdftex-def/pdftex.def
334 | File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX
335 | \Gread@gobject=\count112
336 | ))
337 | \Gin@req@height=\dimen117
338 | \Gin@req@width=\dimen118
339 | )
340 | (/usr/local/texlive/2016/texmf-dist/tex/latex/sectsty/sectsty.sty
341 | Package: sectsty 2002/02/25 v2.0.2 Commands to change all sectional heading sty
342 | les
343 | )
344 |
345 | Class scrartcl Warning: Usage of package `fancyhdr' together
346 | (scrartcl) with a KOMA-Script class is not recommended.
347 | (scrartcl) I'd suggest to use
348 | (scrartcl) package `scrlayer-scrpage'.
349 | (scrartcl) Nevertheless, using requested
350 | (scrartcl) package `fancyhdr' on input line 34.
351 |
352 | (/usr/local/texlive/2016/texmf-dist/tex/latex/fancyhdr/fancyhdr.sty
353 | \fancy@headwidth=\skip62
354 | \f@ncyO@elh=\skip63
355 | \f@ncyO@erh=\skip64
356 | \f@ncyO@olh=\skip65
357 | \f@ncyO@orh=\skip66
358 | \f@ncyO@elf=\skip67
359 | \f@ncyO@erf=\skip68
360 | \f@ncyO@olf=\skip69
361 | \f@ncyO@orf=\skip70
362 | )
363 | (./lagrangemultipliers.aux)
364 | \openout1 = `lagrangemultipliers.aux'.
365 |
366 | LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 67.
367 | LaTeX Font Info: ... okay on input line 67.
368 | LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 67.
369 | LaTeX Font Info: ... okay on input line 67.
370 | LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 67.
371 | LaTeX Font Info: ... okay on input line 67.
372 | LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 67.
373 | LaTeX Font Info: ... okay on input line 67.
374 | LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 67.
375 | LaTeX Font Info: ... okay on input line 67.
376 | LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 67.
377 | LaTeX Font Info: ... okay on input line 67.
378 | LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 67.
379 | LaTeX Font Info: ... okay on input line 67.
380 | \AtBeginShipoutBox=\box30
381 | Package hyperref Info: Link coloring OFF on input line 67.
382 |
383 | (/usr/local/texlive/2016/texmf-dist/tex/latex/hyperref/nameref.sty
384 | Package: nameref 2012/10/27 v2.43 Cross-referencing by name of section
385 |
386 | (/usr/local/texlive/2016/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
387 | Package: gettitlestring 2016/05/16 v1.5 Cleanup title references (HO)
388 | )
389 | \c@section@level=\count113
390 | )
391 | LaTeX Info: Redefining \ref on input line 67.
392 | LaTeX Info: Redefining \pageref on input line 67.
393 | LaTeX Info: Redefining \nameref on input line 67.
394 |
395 | (./lagrangemultipliers.out) (./lagrangemultipliers.out)
396 | \@outlinefile=\write3
397 | \openout3 = `lagrangemultipliers.out'.
398 |
399 |
400 | (/usr/local/texlive/2016/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
401 | [Loading MPS to PDF converter (version 2006.09.02).]
402 | \scratchcounter=\count114
403 | \scratchdimen=\dimen119
404 | \scratchbox=\box31
405 | \nofMPsegments=\count115
406 | \nofMParguments=\count116
407 | \everyMPshowfont=\toks26
408 | \MPscratchCnt=\count117
409 | \MPscratchDim=\dimen120
410 | \MPnumerator=\count118
411 | \makeMPintoPDFobject=\count119
412 | \everyMPtoPDFconversion=\toks27
413 | ) (/usr/local/texlive/2016/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
414 | Package: epstopdf-base 2016/05/15 v2.6 Base part for package epstopdf
415 |
416 | (/usr/local/texlive/2016/texmf-dist/tex/latex/oberdiek/grfext.sty
417 | Package: grfext 2016/05/16 v1.2 Manage graphics extensions (HO)
418 | )
419 | Package grfext Info: Graphics extension search list:
420 | (grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE
421 | G,.JBIG2,.JB2,.eps]
422 | (grfext) \AppendGraphicsExtensions on input line 456.
423 |
424 | (/usr/local/texlive/2016/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
425 | File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
426 | e
427 | ))
428 | LaTeX Font Info: Try loading font information for T1+cmss on input line 70.
429 |
430 | (/usr/local/texlive/2016/texmf-dist/tex/latex/base/t1cmss.fd
431 | File: t1cmss.fd 2014/09/29 v2.5h Standard LaTeX font definitions
432 | )
433 | LaTeX Font Info: Try loading font information for U+msa on input line 70.
434 |
435 | (/usr/local/texlive/2016/texmf-dist/tex/latex/amsfonts/umsa.fd
436 | File: umsa.fd 2013/01/14 v3.01 AMS symbols A
437 | )
438 | LaTeX Font Info: Try loading font information for U+msb on input line 70.
439 |
440 | (/usr/local/texlive/2016/texmf-dist/tex/latex/amsfonts/umsb.fd
441 | File: umsb.fd 2013/01/14 v3.01 AMS symbols B
442 | )
443 | <../img/regularization.png, id=20, 706.64pt x 527.9725pt>
444 | File: ../img/regularization.png Graphic file (type png)
445 |
446 |