The Knapsack optimization is a classical algorithm problem. You have two things: a bag with a size (the weight it can hold) and a set of boxes with different weights and different values. The goal is to fill the bag to make it as valuable as possible without exceeding the maximum weight. It is a famous mathematical problem since 1972. The genetic algorithm is well suited to solve that because it’s an optimization problem with a lot of possible solutions(1).
" 56 | ] 57 | }, 58 | { 59 | "cell_type": "markdown", 60 | "metadata": { 61 | "slideshow": { 62 | "slide_type": "-" 63 | } 64 | }, 65 | "source": [ 66 | "" 67 | ] 68 | }, 69 | { 70 | "cell_type": "markdown", 71 | "metadata": {}, 72 | "source": [ 73 | "# Simple Genetic Algorithm Architecture" 74 | ] 75 | }, 76 | { 77 | "cell_type": "markdown", 78 | "metadata": {}, 79 | "source": [ 80 | "The overall Architecture of the genetic algorithm, that we will implement is as follow :" 81 | ] 82 | }, 83 | { 84 | "cell_type": "markdown", 85 | "metadata": {}, 86 | "source": [ 87 | "" 88 | ] 89 | }, 90 | { 91 | "cell_type": "markdown", 92 | "metadata": { 93 | "slideshow": { 94 | "slide_type": "slide" 95 | } 96 | }, 97 | "source": [ 98 | "# Knapsack Sample Generator\n", 99 | "First we should implement 2 classes as follow :\n", 100 | "* First class called Item represent an item which a have two features :\n", 101 | " * Value\n", 102 | " * Weight\n", 103 | "* Second class called Bag represent a bag which have one feature, capacity." 104 | ] 105 | }, 106 | { 107 | "cell_type": "code", 108 | "execution_count": 2, 109 | "metadata": {}, 110 | "outputs": [], 111 | "source": [ 112 | "class Item:\n", 113 | " def __init__(self, value, weight) :\n", 114 | " self.value = value\n", 115 | " self.weight = weight\n", 116 | "\n", 117 | "class Bag:\n", 118 | " def __init__(self, capacity) :\n", 119 | " self.capacity = capacity" 120 | ] 121 | }, 122 | { 123 | "cell_type": "markdown", 124 | "metadata": {}, 125 | "source": [ 126 | "Now we should generate two things :\n", 127 | "* A Bag with randomly chosen capacity\n", 128 | "* A random number of Items initialized with randomly chosen weights and values " 129 | ] 130 | }, 131 | { 132 | "cell_type": "code", 133 | "execution_count": 3, 134 | "metadata": {}, 135 | "outputs": [ 136 | { 137 | "name": "stdout", 138 | "output_type": "stream", 139 | "text": [ 140 | "We have 12 items with weight and values of :\n", 141 | "item 0: Weight=>33.77062994324069 Value=>17.78533854675055\n", 142 | "item 1: Weight=>33.890069551365016 Value=>25.738368528682702\n", 143 | "item 2: Weight=>15.375268291707993 Value=>18.70691090357917\n", 144 | "item 3: Weight=>2.2685190926977272 Value=>8.926038196334169\n", 145 | "item 4: Weight=>19.106604692853995 Value=>8.179688837403397\n", 146 | "item 5: Weight=>19.199086895002292 Value=>24.365061863264796\n", 147 | "item 6: Weight=>33.4431505414951 Value=>11.783543883024892\n", 148 | "item 7: Weight=>25.926874882047887 Value=>10.12188481251805\n", 149 | "item 8: Weight=>38.28620635812185 Value=>11.04724619521644\n", 150 | "item 9: Weight=>34.803490334337454 Value=>4.210523412379354\n", 151 | "item 10: Weight=>32.03643007918577 Value=>14.208241358211314\n", 152 | "item 11: Weight=>27.155181204758414 Value=>15.614324386536145\n", 153 | "We have a bag with capacity of 385.90367426844006\n" 154 | ] 155 | } 156 | ], 157 | "source": [ 158 | "np.random.seed(0)\n", 159 | "items_number = np.random.randint(30)\n", 160 | "max_value = 30\n", 161 | "max_weight = 40\n", 162 | "# List Comprehensions, for more details see : https://www.pythonforbeginners.com/basics/list-comprehensions-in-python\n", 163 | "items = np.array([Item(np.random.rand()*max_value, np.random.rand()*max_weight) for _ in range(items_number)])\n", 164 | "bag = Bag(np.random.rand()*(max_weight*len(items)) + max_weight)\n", 165 | "print('We have {} items with weight and values of :'.format(len(items)))\n", 166 | "for i,item in enumerate(items) :\n", 167 | " print('item {}: Weight=>{} Value=>{}'.format(i, item.weight, item.value))\n", 168 | "print('We have a bag with capacity of {}'.format(bag.capacity))" 169 | ] 170 | }, 171 | { 172 | "cell_type": "markdown", 173 | "metadata": {}, 174 | "source": [ 175 | "# Chromosome Design" 176 | ] 177 | }, 178 | { 179 | "cell_type": "markdown", 180 | "metadata": {}, 181 | "source": [ 182 | "For solving a problem using Genetic Algorithms, the first step we should take is to find a good structure that represents our search space as best as possible" 183 | ] 184 | }, 185 | { 186 | "cell_type": "markdown", 187 | "metadata": {}, 188 | "source": [ 189 | "In knapsack problem, every item can be two different states, Selected and not Selected, So we can represent a binary chromosome which its number of genes is equal to the number of items we have." 190 | ] 191 | }, 192 | { 193 | "cell_type": "markdown", 194 | "metadata": {}, 195 | "source": [ 196 | "" 197 | ] 198 | }, 199 | { 200 | "cell_type": "code", 201 | "execution_count": 4, 202 | "metadata": {}, 203 | "outputs": [], 204 | "source": [ 205 | "class Chromosome :\n", 206 | " def __init__(self, length) :\n", 207 | " self.genes = np.random.rand(length) > .5\n", 208 | " self.fitness = float('-inf')\n", 209 | " \n", 210 | " def __len__(self) :\n", 211 | " return len(self.genes)\n", 212 | " \n", 213 | " def reset(self) :\n", 214 | " self.fitness = float('-inf')" 215 | ] 216 | }, 217 | { 218 | "cell_type": "markdown", 219 | "metadata": {}, 220 | "source": [ 221 | "# Initialization" 222 | ] 223 | }, 224 | { 225 | "cell_type": "markdown", 226 | "metadata": {}, 227 | "source": [ 228 | "In this step we will initialize the First Generation :" 229 | ] 230 | }, 231 | { 232 | "cell_type": "code", 233 | "execution_count": 5, 234 | "metadata": {}, 235 | "outputs": [], 236 | "source": [ 237 | "population_init = lambda size, chrom_size : np.array([Chromosome(chrom_size) for _ in range(size)])" 238 | ] 239 | }, 240 | { 241 | "cell_type": "markdown", 242 | "metadata": {}, 243 | "source": [ 244 | "# Fitness Calculation" 245 | ] 246 | }, 247 | { 248 | "cell_type": "markdown", 249 | "metadata": {}, 250 | "source": [ 251 | "Calculating fitness is as follow :\n", 252 | "* If weights of selected items were more than the capacity of the bag, the fitness will be -1\n", 253 | "* Otherwise, the fitness will be equal to the sum of the value of the selected items" 254 | ] 255 | }, 256 | { 257 | "cell_type": "code", 258 | "execution_count": 10, 259 | "metadata": {}, 260 | "outputs": [], 261 | "source": [ 262 | "def fitness_eval(chrom, items, bag, epsilon=2) :\n", 263 | " selected_items = items[chrom.genes]\n", 264 | " capacity_full = 0\n", 265 | " fitness = 0\n", 266 | " for item in selected_items :\n", 267 | " capacity_full += item.weight\n", 268 | " if capacity_full > bag.capacity :\n", 269 | " fitness = epsilon\n", 270 | " break\n", 271 | " fitness += item.value\n", 272 | " return fitness" 273 | ] 274 | }, 275 | { 276 | "cell_type": "markdown", 277 | "metadata": {}, 278 | "source": [ 279 | "# Selection" 280 | ] 281 | }, 282 | { 283 | "cell_type": "markdown", 284 | "metadata": {}, 285 | "source": [ 286 | "There are various selection methods out there including :\n", 287 | "* Random Selection\n", 288 | "* Proportional Selection\n", 289 | " * Roulette wheel selection\n", 290 | " * Stochastic Universal Sampling\n", 291 | "* Tournament Selection\n", 292 | "* Rank-Based Selection\n", 293 | "* Boltzmann Selection\n", 294 | "But in this session, we will implement roulette wheel selection and tournament selection." 295 | ] 296 | }, 297 | { 298 | "cell_type": "markdown", 299 | "metadata": {}, 300 | "source": [ 301 | "## Roulette Selection\n", 302 | "" 303 | ] 304 | }, 305 | { 306 | "cell_type": "markdown", 307 | "metadata": {}, 308 | "source": [ 309 | "You can read more about Roulette Selection and other Selection Algorithms here." 310 | ] 311 | }, 312 | { 313 | "cell_type": "code", 314 | "execution_count": 7, 315 | "metadata": {}, 316 | "outputs": [], 317 | "source": [ 318 | "def roulette_selection(pop) :\n", 319 | " i = 0\n", 320 | " fitnesses = np.array(list(map(lambda c: c.fitness, pop)))\n", 321 | " sum_of_fitnesses = np.sum(fitnesses)\n", 322 | " sel_prob = fitnesses/sum_of_fitnesses\n", 323 | " pie(sel_prob) # Ploting pie chart of probablity of each individual\n", 324 | " sum_prob = sel_prob[i]\n", 325 | " pointer = np.random.rand()\n", 326 | " while sum_prob < pointer :\n", 327 | " i += 1\n", 328 | " sum_prob += sel_prob[i] \n", 329 | " return pop[i]" 330 | ] 331 | }, 332 | { 333 | "cell_type": "markdown", 334 | "metadata": {}, 335 | "source": [ 336 | "## Tournament Selection" 337 | ] 338 | }, 339 | { 340 | "cell_type": "markdown", 341 | "metadata": {}, 342 | "source": [ 343 | "" 344 | ] 345 | }, 346 | { 347 | "cell_type": "markdown", 348 | "metadata": {}, 349 | "source": [ 350 | "You can read more about Tournament Selection here." 351 | ] 352 | }, 353 | { 354 | "cell_type": "code", 355 | "execution_count": 8, 356 | "metadata": {}, 357 | "outputs": [], 358 | "source": [ 359 | "tournament_selection = lambda pop, sel_pressure: max(np.random.choice(pop, sel_pressure),key=lambda c: c.fitness)" 360 | ] 361 | }, 362 | { 363 | "cell_type": "markdown", 364 | "metadata": {}, 365 | "source": [ 366 | "# Implemented Functions Test" 367 | ] 368 | }, 369 | { 370 | "cell_type": "code", 371 | "execution_count": 9, 372 | "metadata": {}, 373 | "outputs": [ 374 | { 375 | "name": "stdout", 376 | "output_type": "stream", 377 | "text": [ 378 | "Selected Individual Fitness: 85.7276106440008\n", 379 | "Genes: [False False True False False True True False True True False True]\n" 380 | ] 381 | }, 382 | { 383 | "data": { 384 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXdYXNeZ/7/n3ikMDAwdhApISAIkIVBDqCCwZSe2JfcixylKNk3JZp2yTqJUTxJv1tmsktixnbZJ7PyyJYnjGiVxHBVAQoUqIYEEQvReh6m3vr8/kBQQU2EkIft+nmcePcC555wBzfe+9z1vYUQEDQ0NDY0bD3ejN6ChoaGhMYEmyBoaGhpzBE2QNTQ0NOYImiBraGhozBE0QdbQ0NCYI2iCrKGhoTFH0ARZQ0NDY46gCbKGhobGHEETZA0NDY05gibIGhoaGnMETZA1NDQ05giaIGtoaGjMETRB1tDQ0JgjaIKsoaGhMUfQBFlDQ0NjjqAJsoaGhsYcQRNkDQ0NjTmCJsgaGhoacwRNkDU0NDTmCJoga2hoaMwRNEHW0NDQmCNogqyhoaExR9AEWUNDQ2OOoAmyhoaGxhxBE2QNDQ2NOYImyBoaGhpzBE2QNTQ0NOYImiBraGhozBE0QdbQ0NCYI2iCrKGhoTFH0N3oDWhoXM3zew5yAKJvPfzPsQCiAJgn/RuJif+33KUXj38YFupVLxmAG4ADgPPyv3s+w9tGopm9fne9dN3elIZGEGiCrHFdeH7PwQgACwAsBJAGYB6A1En/JgKIvfSKBsAUTu/mVckUzn0QQHYTBAARuS/lugGMARgCMHjpNQCgH0AfgB4AnQA66nfXj4dzHxoa3tAEWSNsPL/nYAqA5QCWTfp3MSaEOCnU+Vym5N5oZ/eScO6RGAYkHUu59KXp0mteoOv+64cL//4x23gygDYAFwFcANAMoAlAB6w2NZz71Hh3ogmyRsjs27UzBcAaACsB5ABYASDbEPMRB8fHLQzXOk5z2ki4BdltwCCAlIADJ0NE99sd+Ziw4ld7GeGB1XIewNlONelkkfjMRQCn257e0T7rDWu8q9AEWcMv+3btTAZQAGADgLWXXmnexsruo6cN5p1hE2S7eYErtb8yXNMBAEbNsIV6TRRRY4KqrvAzJAJAHoC8SsqaD6AYADL27rcBqAVQDaASQGXb0zsuhr5rjXcLmiBrXGHfrp08JgS3CEAhJoQ4PdjrVelCRjj344xKo3DOBwC98UwO9ZpNbs8AJp4C/EIE8bvSY5PHWQCUXHoBADL27h8CcBJABYAjAE60Pb3DE+qeNN6ZaIL8LqZrbzkHYN3LbT/YppC0HcBWTByozRA1XZHa6nl9Rm449uc2JRnDMc9kOpJCD/XcNW5PDGZcC6VVDSF2c4BhiQDuuvSCtCL2aOqhOgAoBXAIwJG+W/I1gX6Xognyu4yuveUZmBCD2zFhucWuS7i99OTQn4vDMb/srhjj9RnhmAqiIcYSlokm0Z7CzKGMZ0QjBR4hoHUMAN+RPxDSzYwMXI2yMGrLpS+3APgqAE/qobqjAP4G4K99t+SfDmVOjZsbTZDf4XTtLecx8WG/G8AOTBzCTSHDvGrD2bGj3U7ZNn+265HSt5pI9jCmi5jtXApnCBj9ECodSSw+lPEZknyOAwJZvXCToalUzQ/6yYAARVyb4E3AIwBsv/T6XurB2rYf4DOvpaDvEIC/b7+1xRX05jVuOjRBfgfStbc8AsAdAB7AhDWc4G88YyyyJPXR+v1dP5u1IAOwKMLpY7qItZtmPRNjsRJvsukVd1gsZQLU/ljvB5K+uNvhDMqP/aLy3n5MhPoFtxeLvoIshqJA4zbhSHsK+j4H4HMA3AcOZr4N4BUAb2y/tWU02PU0bg40QX6HYLVaDSmqZfvd4voPAtiJEH3BZn3sxnTzysp2x9kNs92L7KnS6SLWznYaAIArKrXPMt4aFkFWGfoUngUvyER0v8MRUGSJMP6cfN+aoKcFxsU1CdmBxkWSs/7TeHbrpG+ZANxz6SUdOJh5AMDvAby6/daWsWDX15i7aIJ8E2O1WhkmQqzeD+DBfs4WV8e3HslXFs/oYK4g8c6UTuc5j0rK7NwN5FhDqmOQceaQk0GuxhE1f9Qy3jrbaQAALiOG4CNkzxuRRI2Jit9wNwBAFWXVOWHaFuy8yvzIWhh5/z57Iue3sDeGg8r7GKHHxFPQHQB+cuBg5p97e5f+14XmTX+3Wq1isHvRmFtoxYVuQqxWa7rVav02gHZMnMx/DEAcAFTpLq7v4UbOzmRejvGLCpN2ngjDFnWy50RDGOaB3bxACMc8ADASjZDSny+FuwXkSWl30K4eYmiXV8QGdOfcg1dq0tATbMihUVF02Rdb1v8eQI/Vav2x1WpdF+yeNOYOmoV8k2C1WnUA7gXwcUxESHi/mTJE/EVfm/CosKU/ChGhZaQBWBCZVRitT2i3S8NBxx97QxHOpuojt89mCgCAMyp853q98UwJZfwj4w6/vncAGCHzqQbKyAt2Tjnb0geO+f3dJtDgyV34n4D+5csQsZ6qynvjVVUfhYkiTJ8B8Bmr1VoP4KcA/p/VarUHO5/GjUOzkOc4Vqs1zWq1WgF0AHgZwHsR4O9GDKkvG48PKlBDti4ZY8ZbUncNzmizU5CzVLm3abazeCISIme/lwnak5mvx/9pMKLRQo9nZaBxz8oPBB31QHquTllk3uh/XXXo29i7OOg5CeN1tXc4RTHS2803F8DzALqtVusLVqs14PvRuLFoFvIcxWq1bgLwBQD3YQZ/J4kpq94wVJXfLxYEbWldxqSLXr80es3xC/bawlCvnYzsrug1RD8YdOSBNyR9VNxsrp9Me3LwB53pktwYKNxNITbwW+W29cHMR4Aqrk0IWLnuo/hZSyzG/Ir2lTkJ8rlzRc0OR2Ig90Q0gE8B+JTVav07gGcA7LdarWHPhNSYHZogzyEuHdLtBPAlTGTNzYphzl50TNdUtkleHvSB02XWJNyW3uY445BJCimRYjKq3JFDpCqMcUFbptPm4PRh81l0JrGALojL3O1wBqze9ra6rlGGLqiEGorRV1Cswe/fNINaym/B34O+gXZ2rjo2NJgR6g33tkuvC1ar9QcAfm21WrXMwDmC5rKYAxw4mMkfOJj5wcylJ/4XwBsIgxhf5izfubmNG6gN9TqOcfM2J99XNbvVKVkVz4e89hQYixL00bN2oRAgD1oCl9mcGEz0gMOR5X8IlO9IHwzK+ifALq5N8DsfT3LH1/HNoEPnRkbSStvb1oT89DOJpQBeANBqtVq/aLVaZ3zj1QgfmiDfQA4czNQfOJj5MQDnAfwmLa1p14oVh0rDugiD7u/6+nQbc3WFemmqafGWOEPKhdksL3uOzzoEyxk1L6hoB38oHHpVLjgfciTRuURF9Ruy10VJVd1ICkrglbTIGhh53/MRKU/guzYTPEGJotsdfezsmVtDfurxQSoIT6+WF/2ha2/517v2ls+ilonGbNEE+QZw4GAmd+Bg5gcBnAPwCwCZl3+WkNhVvGbtm0cANeSqZD5hiH/FcMIlQXaGdBlj+uLURxyzWZrU0TVEwqy6bTjMC0IumXk1LiOGgx1b6Pb0BxrztPw+fTBzEUOnvCLWry9+LarKV+NUUGnXsqyvr67euQZgLJjxgTcIZ5GcU1UgL7sDwHcAtHXtLf9K197ysB2magSPJsjXmQMHM+8BcBrAbwB4Lb5uNo9tLdj4Sh3PS7MSw8koTF3+quFkyIVqjHxkfo6l8OgsljbJnupTs7geDvOCWVvZQzEIOuzrEbv/cDeRdK371Y1BuRfkLEs3eOazap2R3I2fxfe3+Pr5ZFSVdVRV3juP1NnXCQEARujfKa7ryFLSCiZ9Ox7AdwG0dO0t/1TX3nLtnOk6ognydeLAwczCAwczjwB4HROdNvxiNLrXbyx8uVNvcIUhBG2Ccc696ZD+TMgukdy4ouV6zjhjK1UR6maV+uyMTJ3xoeBlehJYUC2WGNFYodvjNzvvd0pJRzAWKunZKSXd7Ns6JvI8ia8bdFACWttEGK2t2aFIkimoUqCB4IlrfkTcrKRS7LRiU5dIxYSP+WzX3vIHw7GmRmA0Qb7GHDiYOf/AwczfYqIgeVCW0GV4Xs4pKHjFHRk51hau/bRw/dvO8z0nQ7mGMS6pKOXBmVu55MlVldHOmV7uiYiLmvHal2hPZkFZeotkuYGf6GTtFSK4vi8/kh9oHgJUcU2Cwd+Y9+AvJ9PRlulvzKU1xYazJe0uV1zQ8cn+MJGh6v1CUWo0mYJJI18O4OWuveWlXXvLg06A0ZgZmiBfI1IP1RlSD9V9+bt48tcydA8DmJHPj+No0dp1b0ZbYntnlA49DQZWrmvMHmb2llAuSzQu2JponN8401Vl99GQ1puMrIsMOlzNF+3JiAlmXKBwt7OUUTMOc0CLn6L1FRRn9GV9IobGaj6EXwYVJdHWll85MrIw4E0gGJLUmLL3CVvyDdCFeni3TVal37/w2KP79u3aGRuOvWhMRxPka0DqobpbMOEnfvosW337J/DSxU4smnGFHMaQkJv798XJKRdCsmx9T4iY1w2VvAApaDcEY4zblvqwCmBG3ZVV6cKMrTtifBohOJeDLzoTWeBHfSJ6wO4/3M0q7Q54cyDAIa5NWOZnnbHv4MvzWBA36cHB9MNdnbkhPVn52BRlyWml94obtnHgQvYLD3m6yl7reHahW3F8AcD5fbt27p71njSmoQlyGEk9VBefeqju1wAOArjywRZYRPZe/CDld3isfKZzM4bI5cuPrUvPqJ3xHJNRGWW8bDzerIKCru+g54wrc+O2zfCAb6K904wuZUzviYjvndm6AAHicAxSA40zEZ1L8hPuZifT2SrK8mn1XkadZ6pGBO+zjsgH8GJDIoYChsw5HbFHzjVuKwk0LiAE92Y560SRnBNyVxgiGjoxuP/kgd7/3qaQfDnTMBnAi/t27Szbt2unlo4dRjRBDhOph+oeAtAA4MNeBzAW+QZ7sOhzeOG4HdEzKizOGPhFi84U5eSUHp7xRifhZuL6v+nrQhL4HEvhKiMXGXQI2WRkd8WMa/Y6o9KGZnqtzKEHLPAhXKBwt5/JOwPunxi6pJVxPlOf06jz6J34U8AOJJJkrKutvasg0LiAEAbvktZcXKEsCDkN3i3bq97ofJ7aHGd87aMIQPW+XTu/vG/XTk1LwoD2S5wll6zi3wH4A4CA1dUGWUrhp/FLTyU2zjiDLTGpoyR/zf7ycMQqd/EjJaf59qCtXsZY3LbUh2fkS77c3mkm19rN82dcrcxpwkgw4x6xO3y2d1KJjfxC2RGwpKW83NIJnnkNS+NI6bHia6sCzaGq3MWqynsziHi/h4KB4IlreVjcJKSp8SFZsUQkNNmqSt/ofGGdR3EGqmltBPA0gPJ9u3YunfFmNQBogjwr0r+6/3ZmE/cDeCSU61TGz/sRvpj3H/jaYRm8NJO1o6NHigo2vlLLcVJIyR7eOKm7sLaPjQUtsnGGlC0ppoyZuB8sinB6RjciR9T8Gd98hmIQ8HfEiMY2uX1XdytXc+sFGPzG/5KOnVYyzN5rHRPR49jXHwWn3wNBIgzVVO/UybJxVgdnEaSveUzYmmihyAWhXCerUvPbPb/pqB05UIzQDqI3Azi1b9fOT4W0UY0paII8AzL27jdk7N2/j6l4y3B8cJ2+eqgUshqaMDLGnWJrSz6Jl5o7sXBGB35Go3vDxsKX2/V694wf5yf2AtN+Q7XFBSGomGfGGNua/ICBIbT6wsBEe6fQNwi4IlNmnKDQHUQM8iJZbvQV7kYE+pb8oQx/1xNA4poEn3tcifqyDTjhN5mECJ4z9bf1ud2WRYH2648ENbr8MWFrrhH6kOK/B9wdZa92PLNwVOzzfSDpn0gAL+zbtfO1fbt2zjoy5t2IJsghkrF3/3IAxzBRGpMxQM8PCcXGA73jfLvjWKjzeZhpxV78MPll7JrRYZ1OJ68o2PiK02Sytc/k+ssQQ9rLxuO9KtSgLHYdp89ak7D9SOgLTbR3CvUywRg74xoLbSksYOLFTofT581lALE1FynNb1F5MuuOUrzRa0KJnsQLX8S/+fXhEoFaWjbUjo3NC+jS8D0JaJmSWnq/WFDEgQsqtXtibXXw+MCbVYf6/nfbrNt3TXAvgNP7du28NQxzvavQBDkEMvbufxRADYBpHTwZME9/zrbJeKi3html0CxexqJeZY8UfR7PH3fAHPLBF8ep6evWvxFpsfTNqm2SyOTVbxqqjwc7fmn02jUm3hyw7sNVzKi9k6yLSA71msu0J8O/pUhED9idPiu37ZMf9vskQIBTXJvgPcGDSPwanlT0kH2mTwNAf39maW9P9sw7dRM8hfKy48XSypAiKVzyeOUbnS+g3dkQVF3nEEgD8Pd9u3Z+c9+uneGpu/EuQBPkIMjYu5/L2Lv/aQD/i4kWOT5horrWUDEwfyZujAGWWvgp/MpdjQ11oe6RMSTlrn47PTn5YmWo105mkBsvOqFrDspaZ4zFlKQ+GnLChyKcDRiCNh0uRWX8jGpadCUyv2JuIjqfrChex8jEdf1BKfYrVmqqqQomndcwtm04VLEMTX5jm+3jCeXNTZtL/I3xC2HoDim/eZWyKGhBJyLPeVtl2ZudP9kQxMHdTGEAvgXgj/t27dTKewaBJsgByNi73wLgTQBfDvYaBhj4IaHYeLDXxnc4grY4gYkDvx/gy6v/E3tDPvBjDFHLs46uWZR+alaxyvV8R2EHNxRUqnSMIWHz/MjlIR7UyVmq3Ncc0iWMcW5TUk9o6wAEuMfMzK/gbHR7+nz97A11cwuB8/k5IYYeaVWc17CwKLKf+jhe8FsmUxRMVXV1d8zYMuaItT4kFroWqAlBVYsDAFmVmt7ueamrbuRguEp4BuJ+AMf37brfazEtjX+gCbIfMvbuzwRwHMBdM7meEdL0jbZC46He6pDcGIxxtWxDySfxYnM35ofkG2YMuvT000XZ2WUzr6vMoP+b/lTaOHN3BzN8U/LdFg5cSNar7D4asrg6ouaHHP8s8Qi4jq9wNyKI35Ue81toSF4W0waeTW/NRGT/NvYmcCCfnzFF4Zuqqu7Nwgwy5wDASPq6x4SiuFiKCuoQkIio391e+mr7M+mjYv91DFFjfbxx7bAx9tNHnt9zsOT6rXvzoQmyDzL27t+ECTHOnu1cTFTXGSoG5utrhkuhqEE3xfSwyBVfwjMJf8TDIR+eJSW3F+fn/7kcUEOOhAAAMCS9Yjhul6G4Aw3lmW7J+sQ7QjrQVOWObKLQ9maPXhByiJ/DBP9JOES2zT7C3VoorWoIsT6ta9KxemVxtNckjwfxu1Op6PMZckbE+qqr7olWFP2MDivj1KgjjwlbV0RAH1R4HJE6cHzwzerDff9XrELx688OH2yQN+aVGWP/JVYfWbKNMX4egL89v+fgR6/P+jcfmiB7IWPv/ocxkf4cllKHwCU3xqCn2Higd5TvcJwI/kJmfoU9uvVf8eNjTkSFVAIzOma4aEPBq9UcJwd9E5iMzNTsVw0ng3JHZJhXbYjSxYbQlYRSQm3v5IxKC7mexaAFft+7v+pu35E/4FMsCSApP97r5yeJ+o4/gD/4bMNFBOfpU+8ZFQTzjPoFLlGSDz8oFm7lwQWVOOKUx0++3vE83+FsDPfBnS+GecOqUmPsZ6L0kdu3MTalfrMewH89v+fgN6/TXm4qNEG+ioy9+z8L4HcAwlIE/GoYYb6+0bbReLi3ijmkoN0RfSxt0x782lGDdSGVwYyIcBVsLHz5ol7vmVG6s41zbS7TNQR0fzDGIm9JfTQkN0So7Z1cpuSQLbuuROa3s7KvcDc3GZpK1XyfflmK0h1TEyKmWdaM1IFv4ys+43iJoDQ1bTo7Pp4csCbG9IshbpCWHr1Vyi0JajiR+9zYifI/df6kQFBd1yMueJQz5JQaYz9j1Ee9p5gxvb+uI996fs/B557fc1CLwJiEJsiTyNi7/0sAfoQZlsoMBSao6w1HB1L1tcOlUCigWwAAVMbP34ev5P4AXz6sgAs6c02nk1YVbPzjeIRpfEY1iZv43qILXG/AhqdRektBhnlV0FEeobZ3Eg0xIRe6b0tmvq3IiXA3r+L5ovJen+F8BLjEdQleq9d9Es+1x2Dcp/j1dGcfGehfGnqNCsLIe6S8xjwlPajKb7Iqnn+r+9e9p0YPz6YRarDYOH1WqTH2n3lD1J3FjBmCjaj4ZwAvPb/n4KwbELxT0AT5Ehl7938dwPeu55oMMPIDnmLjgZ5hvtMZXGlNxrhqVlDySbx0vhdpHcGuxXHq4vXrX4+IiRkIvQ4FA3dY37BshDkCHkxuSLwjlWe6oG4wCLG9k8IbQo5F7khmPn2sEURNKYoyrf4IEcafk+/zmVWnppgqvYW5LaXz5UUo3eDrurGxlLKLFzeEXHGNI9b+oLhxfJGaGLBAPBFRn6u19NX2ZxbbpMFrHdVg5/RLS42WT8Ng3lHMmDGomtNX8UEAf3h+z8GgE1neyWiCDOBv37j1s3EY//yNWp8RFugbxgqMh3srg3VjuFnkyifwbNxreDDoAz/GkLQ6762FSUmtAa3d6RfD8prhJImQ/Vq0HOMXFibtDNpHHlJ7J8YlKpwhpIO9rkTfBZ82ejxeS3pWUVadEyavVh4BvVJu7DTR1ZHU9lV8y2fxIY8n6kT96dt9+pV9YSDd6fcJW6PjyJwRaKxKal/FwOu1pf2/L1ahzqowUQCcnH7xYaNlj2Qw31PMuIhZtejCRFjc/z2/5+C7vn+fJshWy9738NU/qjHuifyzYe/RjaxhVtlus4EJ6oaQ3BiMRf+BPbb1CTxb4URkUAd+jMGclX0kb+HC+pAjN1RGS/5oPH6OQH4P1+ZHLt8Uo09oC2rSENs7OSNTgvZTE2C3RzKfFdweGXfEefv+k9Lu+b6ukZfFXATPTfWNEslfxnecRghefaayrGuorronF2Ahfd4samTF+4WiLBMMPt/DZZzS2InXO54zdLnOT8siDSNuTreo1Gj5pNtgvr+EcZEB9xU0RPfFjZ7/j8bsnHe1++LdLchWy+MA/h0AGEPECq5jy++MT604Y/ynhs/wrx4xQpxRqcjZMMmNMcR3BefG6GXzN+/Bi/Y6rAmqqzRj0Gcsrtu6POtIyLHKTiYUvK0/7TfxhDFmLEl9NNhDRCa7Ky4Gu77DPD/oWtKiDj4TPnyFu42Sua6BMrymQRPPziqLzdPC3Dbi2NEVOOs1dE5VWVd11b2Jqqrzd8A1jXQl6fBDYuEmHpzfg0wicjWMVZT/qetnG0XVHT6BnIrAdAvKjJZP2A3RDxUzLips0UcgdTBhqP5w4clvda859eznAfwsbHPfhLx7Bdlq+QgmDvCmYWaeFU/o/7C10fgR16/13zuczvpCCOcKD4ywUH92rMBY2neSOaWAvmKV8Qu+j6+t/BGeOKyCCyq+NyWltTgv769lCGDxXk0HP1R8hu/wG3ds0pnXLY1eG1Rssio1ZwS7tsO8MFj/NMYjfccgL5TlBh0w7RH5x/L9PueX8uPVqwvdm8h19p/xQ68HbUSw1dXd6RHFyOB93wRprbTkyO3S6hIWoLO1pIqNb3X/qr9+tPxaHdyJjE8rM1o+NmKMfmQb48wzricyBSLSi/baZc2/P1ZS9tnYvDM/LYl0Dy689NOPNmbnfD8s69yEvDsF2WrZDuDnCBBNwTGKv4U/VXLY8IW0CuNnTt7LHa0CyG8YVbhhHqXAcGQgWV83chgK+bfYGeMr2aaST+LFhl7MC8oNEGMZ3Lah4NVKjgutcPxxXXPeALOd9zdmTcL2DB3TOwLPFnx7J0dU8KG7Axb4FNcdDte0KBWF2MBvlNu9xuqqUboKNTFiahgcketJfDWShzpN2Ikgn2vc1uJ0JASfEUew3SblnlmrLPbrayYitcfVUvpq+zNLbdJQWDpRX4XM+JRyQ8xHB40xj25jXMyM4qWnQTQSP9JYurHyqfaiir1rFnaXbuJI9XaY90Rjds6XwrLmTca7T5CtliwAL8OLdeQLxsClsZGCZwzPr28yfqjjKd0vSy1wzLgdUagwIILvd5cYD/QMcN3OgGFlLhaV+wR+bHkD91UEM39EhHPjxsKXm3U6T/CtpRgi3zRUR7kh+nRNcIybtzn5/upgpgu2vZPHlBh0fHhXku/77YN2x7Rwt7fVdY0ydNMEggC3tDZhWvnNHXi9eiE6vQpiZ0fusaGh9KD9uYxY5/1iwXCGmuy3ZrJKau/RgVdPlfe/XEzwKmazQWF80hFDzId7jDHvL+J4i09feijoJOfpzJZXj5aUfS4q//RzxVGuvowgLnu6MTvn3nCsfzPB6PoafDcWqyUewAkAs87jJ4L7DGVUPSl9OKmGls86vTqktSP4k+L6xDSK0gXsBjGfOo9a8dXcSLgChiSpKnexuuoeg8cTHXSXCSPp694vbF3lq5MxEclv97zUFkTtBJsx9nHjVVld0+AUsamk/PM+S2VO5md3cCcOrOGm9beLUNXzle1dUyqwEUHZKjwz0I2kadagkhxRKq1JmBKuFkcjVc/h416t6eHh+Ycbzt5aEsweAUBP/JmHhU0pkTD6LYLkkEaPv93zmyxR9Xg9jJwFKuMSjuvNO9M4PiEjLDMS2WJtF04tu/Dy/GhHl/fSpIFxANicc65xZs1xb0LePRay1cID+D+EQYwBgDGYcrm2oleM1uzTxo/V7+HfqNBDnlF5yJDX9igFhiP9CfpTI4ehkOBvbDdbuGUPfm07jbyA/6k5Tl2yfsPr+ujoQb+uiMkITMrfb6jxaYkzxnTFqbuCCVULqr2TyumDfnzuSGZehavAI0wLd+uipCpvYkxAn5QbN0V4GanD38GXvBb0cbliKhrO3hJ0rHGMajr2fqFoqT8xJiLnmdEj5fu7fl4YZjEmxsVVGKI/0Gq07N4cDjHmZffZxa1/OlJc/nnD2rofbZuFGAOAGcAbjdk575ruI+8eQQb+DcDt12LiGObK3av/v83njbvH/0v//cML2UBQVdJmAwNMfJ+7xHigp4/rcfmNK1aYbuH38I0Vz+ILAQ/8GKOUvPy/piUmttc5EI4GAAAgAElEQVQEu5d+zratStfiM/LCyJvyciyFARupBtXeibFoUR8VVNPS7gTvMciPjNunidrT8vu8Pv7LS6NboOOm1MD+CH7RHIfRaQdckmQ4XVO9cx0CHMZdZqGScPhhcVOhDrzPpwJJFRr+2v3LwbNjR8N5cEeMsxw3RL//gtHykc2cLnk2ogkQ2WNsrWXrav7zfPGRJ1Yubv/LVl6VplfAmxkZAP67MTvnXaFV7w6XhdXyECa6Ql8XiKB0I7Hq36XHdPvVjWuD/YDOBtXEn5DWJ86nSP9ujEhynP4OvhzvrxIZABBBamtbc7Krc1VQqbogiHdI+ed91eUlUgdf7XjWIKmCvyQC2Wj55Cjjovw+uq+p/WFDnO2C37KYBNh2fUU3fS0iW21bZ9TkCAuRdK3LhZcyrv47Ec8ahO3zciZHViyitqP/jn+d9jtRVa795IkHzZIUEdiaI8j5Ssax9XKmT5ElIrXHfaH8aP9rm8PqK+aiTxqidlg4XZrfovlBTaUI5xZ2HR5M73hrjU4RrnUBemvOucZvXeM1bjjv/LuO1bIIwC+v55KMgV/AhjY+b3h2XZNxd9u3dC+WRsMZUqW2UOHcykZDeX+C/vRIqT83houZV/8rnovej3v8HvgxBn1GRu3mZcsrgotVZjC8pa9LscPtNfuNMS6pKOWhQGnSOtlzPGBijsM8P2D9C0EPr/tYIMuNV4e7/U4p6fB205Ty4+XJYsyR3PUNfGPaDYcIo7U1O9QgxXj8VmnVKX9irJLaU97/x/oj/a+E7+CORVUZzA83RFg+XjArMSZyme0dR9bU/qihpPwL2ZmtbxRdBzEGgG82Zue85zqsc0N5Zwuy1cIAvAhgJjn2YcHA5MW7dX8rPm38uO41wzfK89iFpmu1FgNMfK+72Higp5fr9ePGYMzyP2z35i/jB0fdMNl9DwNLTW0pXr36rdJgYpWJIfkV44lRGYrXELpE4/yticYFfmtpBNPeyWGeHzBEzxYJrzfAHQ7XlC4sRHB9X34k/+pxaiR/TE2MWD1poPoFfG/46sNRIghnz97S4XLFBgw/Y8S67hM3DCxRU3ymWNulkWOvdTwb1etuCVi3IihYZI3e/GB9ROwn13P6hX6fKvzBKWLzws6DZUVHvigVVH9va5ytecZzzXQLAH7VmJ0TVP3nm5V3tiADjwO45UZvAphor5TPtRS9bvzm8jrjx09/lP9zhQ5ySC2agl6LkGE4PbreUNZ3nLlkn/7sLpa+5ZN4cfQMcs/4m88SO1C8fsNrJ1kQscoSU1a8bqj0GurGGOO2pT6kAvAj7oHbOzkj5wX8f9sfx7zu9UG7Y8qh7lnKqBmHeYprgwCPtDZx4eTv5aG2fA1qpogkEai1dW3V6MiCgOKpJ77hUWGLIZFivB4qE5GjfrTsyJ+7frEpgFsnOFhEnT7qvlMRsXvW8vr0oNs7XbUpT5Sj52jeqefqS8o/v2xZyx+36RX37Pc2c+YDeOYGrn/Necf6kHNfyl22ShB++uC4I+oOp2uFmWjGbeSvFQqxgbfV9Q3flj6Y1YPE8ATfXwUBLjXNdFJaGbcZnI9SlETyZpQf+RSe3eav5ZAkGU5VVd6XLsvGgFZKtjy/dKuc7TXaoHHseNnp0VKf/dw4XXqpIfpBn5EKBmGsauuxr/kttr5/PSt76XZ+yhoRqtpU2d41JWTuIeHJxirKmlKbWEmKKJXW/iPMzUie8z/H7sU6yFN+fwMDGaXnzxUFjKgwqxEnHhQLc/XgvaZPS6pw9u2e35jt0si0WOeQYcbT+sj3qLxh2TSrP+gpVKk1rfdYx5LWP63Wy85wh9jNCgKoZR523H2o8S83ei/XgnekIOe+lMsAHAIw8WEhkiyq2rDN5R592O5IzRfELHYdah4HCxHkDkqu+q78mPEttcBvYsCM12BolVbHjaipkT4fl6PIfuopfCkxGQM+EwJUlWupqrzXJAjmNP8LQrlFWlWX6eXxnIhGX+94ThFUl4+aCKzfGPvZRMY4r4VmmCq13lL2Ob8ughd2cCcPr+am1B0ucrkPv9A/WHL5azuZzuYKv5xSg4KAAWH7vEjoOPOlzQpP4Yudi9E6xbJ1OOKO1NbsDFi9LU2JK71TWlPEvBQWIiKl29VUXjHw+lYCzbLSmeGsPuo2D2/I9vn39QuRGOkeqM5sec2UNHx6xmJ+LVAYejuT0FK2iuPKVrGs8SjmBrCifne9T3fbzco7tdzdblwWYwBgTG/j+bw3o814M9oMRjS4RJKa7na42H12x/IEVQ1fsZQZwBh06Wyg8GeGH0Egfctvldu6fiA/tNYJU9isekZYbDg1ulhtGj8mbkjM8FbP18mi8z5PL9g+gBcr7sSfvPaK4zg1c0PBa711dXc0OeyJvhM0GPhD+jOZCaK5PZaiplh+jLG44tRHjvyt50UfgkYpqnS+mjfkeBUXYro0AsjfTbUjaXqVt0fsjimW/c/kndOyA5XM6CbouCv72o6/HV+M1ilWsCgaa+tq75qWcDJ1k1BylUVHN8rLvFrQKild5f2vjPS5L5b4nScg+kZd5K0OnXGlzzrM/mCq3JHaX9maefH1lQbJPuPu1+GEAPeoGWcrlzPnwTxuQWsqywRw9f/Xf8OES/IdxTvOQs59KTcWQBMAv6FTVyAiE9G5Ao+n/6FxZ9wWt3uFfqLv1w2FCI4aWlbzTenDaWdpcVg7BBPgVNIiK+WVsVvAMa/vdRG1HfkmvpZvgsd7XWDCeGNDccvw8CK/Fj1PXMv7haJkA3RTbi5ERGX9f6jvc7eu9nYd4+IrjJYPe70pAMDmY1/rixDGfB4AfvBfeadgYP+IHyYar23rjLwcYaESRnOEF00CDFdigIlnjcL2eVlgE9ZsNNlqf4J/yp8s/KrKtZw4/lCiLBt9+1IJ9hJpxfml6jyvbpVxcbji773/b+XsfMW6Jl1kyajOuNr/jcHr/kiO8AxXZ158Q5c8WL32Rj8tEkCCHs2NC1nvoTwWU7WUrZB1LFC7LhVAYf3u+qA71NwMvOME+d6nV33r4jw28waKRPY0WWl8r9PledDuWJwuywsDX3RtGSVz3Y/kB9y/VW7foIAP21MNcbgo5caPqakmrzUXeJLa9+I7Dl+lJYkgtl5cV9XdvcKncAKAmSJO7BI2F1xdvUxWpaZX2n+YSSBvrgm3MfafJV9dKPJOPXc6YbTRq5irwPCjX9FNCUFbIMnH/9LVU3j56zIlt/RD0lemWr5r4k+pyaa8S2/O9iN8ypmEwSuuGSIMVlXeK3g8MT5juBmh925x/XgyWaaFlhHReP1oWX2j7Xhwsd1e4Vt0pm2DvDF/I2OhxbczVelOHqy5kNnyWnaEOOazcP/1QGUY6EpEc/lKjpXmsmVjZhacATWV8vrd9T7PIm5G3lGC3JidswRAowrYhyxoObWYuStWsMTGhSxL5diMhExP1LbaI7Tf73BG3u50rYgkigp81bVBIdb3F7Xg3FPSB3P6EB+2D5QaqTsmrk/w6sYAkbwFZUf24MdeD/yIQH19y8ouNBf6PdzKUJIO3yatLrn6+83jNaU1w297vZaPKDyiN2326tbIbHntaHrn216FzW1Aw+5/1U0Jy/rEqK38X8ZsRZf3vF38z46LlHbFlaKa+OPittQrgv0o/abibrx+5UZDBHf96dsv2mypXm9OAKAj7txDwqZYMyKmWe6i4ql/u+c3sQ55dIY3eL5VZ9rSyxvXFTIWQqF7ItUojFUtaXuTpfadXMf8HNpeSwjw2KLQULWM2Q/kcWktacxnI9gQuad+d/2bYZrrhvNOE+T/BfDo1d8nwDUeifONC9l4RQ6Lrs1kWVMeZ4OFSIhX1bMlLvf4Q+OOtFxRDKrITbghgtRKqVVPyR+IPKiuDUu8KgEOZX5ktbwidrM3N4aZxuuewpeSJ1uMkxkbSymtP337Np9ZiQTaLGedWKEsKJzybSL7m50/cboV+3T3A4s4FRH7aa/vL7m/6vCqxl+XePtZbxyOfXaPboo/9K2O7r40RUkFgH6Krd4ovHDFP02AIG5NGaAo3UIASKXuin14fLIYqy0XCk729mZN2ftkosh48iGhcIUeuikuHiJSulznjxwbeGOrjyeBAHDtuohNnXzEhk2+Djm9Qmpf0tDpc0tbXllm8gyHpWpbqAg6NJ9byHoOrWbRlcvZCknHrkUn9wYAufW760Oq6T1XeccIcmN2zkoApxFEbDUBsseApgvz2OCxbGaszGJLbVEs5IM9jqhvmShduMfh5O9xOLNjVfW6hwh5SN/8ovLe3h/L96/11QcuFIhDi7Q6flxNMU33DRON7cYvG9+Dv3g9/HG7oo9VV9+9loj37v8jOO4VN/QmUcwU62hcHK74S/d/eXN7kCHmI10cHzfNqjTbO48UVD/t1XquXcIO//suvuTy10ZVba5q77qy5pekj5/8vXLLlQgMJdFYKq1LLAYAjpTen+CfTGb84wCwt3dZqb8ngFQ1tvQuce1WDmyKYKqkdJb1vzzW726bQRww18VHFLTpIgoLGfNeSW8aRGQQx2sWt/1ZmtdXsZ6j6XWaryUqw2BPPJrLV3JqaS5bNhLDrpdb5AP1u+v/+zqtdU15JwmyV+s4WCQerR1J6K5czuF4NlvUk8C8VvPyCZEaRdS4ye0ZesjuiC90e1bwwHXrD0aE8UrKqv2m9JGF52jRrLsNq1G6CnF9whJE6KZZrhl0sfwb+PraCAjTnjIkyVhXVXnvYl+HXhyxjseErdERMEy5eR3tf7Wmy9U0zZfN6bNKDeYd08RQLzrqiiq+7DU86/WNrPy/b+WvpCZvdbkP/+RSuJtMXNcy4TdpBI4DAAIGhe3zIqDjokFEj2Nf7UYcu7KP8fHEslN1d3r3UxLUFcqC8s1y1rT92cTBowd6fpsrkRhilijr5Y3rLuhMWwoZ44M7XCZ1MGGkoWHZhT8ujnQPhPb/dhYQIIxHoqFmKRs/kMelNs3H8qs7qlwnzmMiDO6mt5LfEYLcmJ2zDMA5hDHzUGHo649Fa20mkypWcCkX0rCMQvPd2RbKcuOdDpf0gMOROV9W/MfthpFhiq79ofyQ8D/K9g0qQnjMvQoC7MqCyBo5J3YLrvLB60hq24tvu3LQMC2FVlH45uqqe8yCYPaa7BJB+prHhKK8yRalQnLrK20/nD+9WzLXHhH3uWkJE0xVum8pe9zro/iz93BVR1ZyVyIcnukfrLvV5c4HgFeUraVfkD59RUDlJdHl8rKYIgDIprOl38A3r/xMEExVJ088sAbefocEZ5GcczZLSZsS60xEtlMjh86eH6/0e9A5HdbPG9ec05m2FjKmCxRhAGDippTR8Vf3/O6ydRwp17LL9BVEHi1NC1jXwdUs6mQWWyHqWUi9Aq8hj9Xvrv/fG72J2fJOEeQXAHzqWq5BgG3UjOYz6cxRsYLF12ew5aH4xAwqtawRhK4H7I6o7S7XKiPhWvjTpiAT17tfLTz/b9L7Vw4gbian2AAA4nBByot3qMmmqRYpkbQNhyo+jheKrj7wI2K9dbV3OhyOBK+HN/OUuLId0toplmeb/UzpiaH9061h8wP1vD7j6vZJSknZ4+TtsfyJj/KtHcls8aVx9pq2zgg9oCeCuEF4wTaE2KSJ98XOC7fNWwbGOD2JLT/Hh+YbIEUAgKLw508cfzhNUfTTYsEZoX+HuG4klWKnZPiJivv033p+E++Ux4Iu8A+wQd64ukFnKt4YqDj/pfczGjd2/vSyC39cZHb2XIv2TVNQgeHeeJw/upJTD+WyzGELuyYZpWHgZP3u+tBDAOcYN70gP7/noGVx659eiR9pXBDt6My4XpYCAYLTiPNNC9josRwWWbWULXeaWHBxpUTuREU9u93lcj5odyzIEaXZ1aMNuBzEFkqr+rb8QXOZmuc1VCwYJtwYiZmI4Kf4BqPJVvsUvpSaiKEpH1Yi2BrOlrSOjCz06lpYKy05Mrl/HBG59nf9fORqQWN8arkx5rFp1dEKT1g7JzXHnJgDoA98kRcu3yznS/Lxv14Kd7ugplXcJv7nFctVXBNfpyab8kEkfRNfv5CFczkT+2C9lSfvhyBMb+DHE9f0kFhojibTpHA4kjucjUdPDP4plIO7Yd6w6owu8pYNjOkDWpk6yXV6Uefb9oVdB9fxqnzNbuYESHYTGmoz2diBfC753AJk3yA3xEzYUL+73m9t8LnOO0GQH8flgiNEEqdK7RGekYEYe5sYN9oUFWtrXmDyjFzzuzoBqqhDS1sKek9kcbrj2WzxUJDWBE/UkyWKLffZnfq7nM4ci0rXrICLiwznf6XcOfC8fN86N4whP24SMK4sjKqVsy1T3RhEox/BL87fhreuiqKAcLFlQ01PT/b0g0CCcJe05kKaGn8llMwp207+qfOnBVeN9NreadWZn9cmD52acvioMgw8uld3pXj8x8ds5Y+PToS77Ra/VF+q5ucCE/WjxW2pGwFgC5Ue/jSeLbm0X8epuju67fakaXHEJjJUPSxsypqc5KKS0l7a93vHgKfDZzjcVYxxhpxT+sjt6xgz+D+EJbJZbC11yy68nBbj6AxXmNg0JB6tzWnoPLSaM53IZjkeA7se5TTDC9F4hiT/4s2Pn3viRm9lNrwTBLkBQI7fQUQ2nexqj3L2jsXaWljcWFNczHhrxrWu46pw6O6JR1vVMqYey+bS2lKwJKC1QaREq9Swxe0eedjuSFzvEXK4a1CVjwi2Y+qKuiflD6c304KMkK/nWLOUH+9SkyKmhKUtpgvlX8c310VAuCL2RKDenqyylpaCae4IRuh7VNjCohBxxeo+Mbj/ZJvjzBRR1plKjuki1k4R9Yy2P5cvads/xXJ2GlH/kS/orrg33urs7k2TlXluMjTlCC8uBwACRHFLci+Z9emR5Dj9M3xkJQeVJ4LSdH5LzcDAkmlpyMlqTNlOcd3myb0Dx4SBowd6/3u1TGIwKe42Tr+8Th91+xpfyS6X4WVPw8KuA8PpHX9fx6ti2H20BIz2xeFcRQ5TDuVxiwdi2Q0Ji5sRRPYooo5FkjyyShDU9R4hKl8Q5qfJyjwALgDzYLUFrJc9V7mpBfn5PQfXA5hZ6iQRMVI6jaKtL9re4Y4bazLEjl1IjXL2pl+r4HkVGB6OwYVTS5inIoclNi5kyxXee+ryZRjRSLokn9/hdCr3253LUhQlrKFERKBBWGr+U35E+YNSvP5y9EGwqGbdUXF94nIY+Ss+ah1JrV+F1XPZBXCZ0dF5pWfqt0+LVdYTf+YDwrZlPDgjMBEu9kr7jxIVkv/RBoiZKyNiPzFFKBOHTh1efebnJZO/15WAii98QrcZmBru9hP57vLvye8rAgAlwVgqrU8sBpHjP/H4yDz0LAKArs4VZa2t66ZGVBAoS0krK5JzrtxMiMhWO3KgoXm8OpjaD3ZOn1mjj3xPHuNMvqvkETli7O21Sy+8nBQ73hrWprkESI4INNYtYaMH81lSwyKWHdIB9Y2AyBVJ1LZAkkdWiaK8zuOJWuMR5y2Q5fkBUr0/AavtF9dtn2HmZhfkfQC+ENZJidy8IrSa3IMjlvGLatzo+ehYW8sig+QIe6NFAlx2E843LGK2YzkspjaTLQ/0uGhU1eb1HqH7QbvDUuxyrzQAYfOZy8R1vaZuvfBd6X25I7AE/X4JsCmLok7J2ZYtYJciJ4jEEhyo+Bh+Ujz5A+RyxVTUVO9cT8RP2XeCaj5yv7jxij+5y9l0+OjAqyWTt3d1e6dIZ+/RwsqnpmTrVS5jh7//0EQM8haX+/BP+wdLiDC+Svgl54TJTMCgcOs8I/RczP30+/KH8LsiABgdTS09U3/7VAue4N4sZ52anMwiKO5Tf+t5Kckl2wJFzTg53eJKfdR7VzMuclqho8twinB+QXfpQEb7X/N1ihC2YlISh/aWeWg/vJqLOJbDctxGNufKzwIAiDwmorY0WR5eKYjSeo8QucYjzEuX5QUzrLFxDFZbiBEuc4ebVpCf33OQAWgHcH1qTZA6YBDtnWZnjyN2rFkXN9aUGG3vzOBIDipEKaglANmjR3NLGhs4ls2MJ5ezTJu/HH8iZ4qiNNzudLkfsjsWZUpyRlj2QRCaaEHVt+UPxR5VVwXrGwVxrEnKj/eoSf/otBFDtpqn8MW0BAxfiWcWRWNtVeV9mYpimPLovlJeULZJzto2sQcS/tr9q55xaehKJAFvzCvVR26/Ipo62VW/7cgXp0RfvLKZlf9f8UQM8o/6B2u3u9xrKtWssofFJ7cBgLzYXC4vtxQl0sCJZ/CpjQDgdpuPV1XeV4DJJTIJg3dJawYu+7eJSGp3nK04MbS/CP5dSG5Ot+ikPurOFT57AxK5zY7u6qUtf4yLH2sK+vfrDwJsA7FoPJbNpIN5XEZfPLvhNVimQCREELXPk5WhFaIorvd4Itd6hJQMSV4YZpccAVgAq60njHNeN25mQS4AcOKGboJI5lS5PUIY7o8Zb5fixs5Hxo5dSAtnqqrEo7UzCV2VyzjuWA5b0JPAfBYx1xF1rhDEtvvtDkO4ivI7ydj4C2XH0E/lu9d7YAzYSZgAIrOuYrIbg5E68k/4efOtePtKWJKi8E1VlffGiGJU6qSL5duk3PoMNXkNALhlZ/Ubnc9NKsGpOx8R9/g/DttIHbi19F+mdH/+wX1czfEcbu3kcLe7hO+2NFBGJnGsSbhtXiYDjTyPjzELbImyrD974vhDS1RVd+W98cS1PChuNMZQ5AIAUEhpK+37nWvQ0+mvbZHAdPNPGKLuymJctFe3EqdILWm9R7oXt+3P08uz67xBgOIyouHUYjZyIJ8lnE1nOSrHrlsiku+NkWQkak9VlMEVgiis8wgRazxCSqYkLbqOiVJ7YLX97DqtFVZuZkH+NwBfvdH78MrlQ0RX35jF1sLiRs/HWcZb08PxSKoy9PfH4mJtJhMrcrjU5vk+ElYmFeV/yO5IWSOI2bMps6gSRo+quaeflHdnTC7K4wtvboxMair7GqzrjZcO/IhYd23NXR6nMz5z0oUjD4ubnBaKXAgANcN/PzbZV2uIfqyZ06VeiTgoLvuce3LL+c9/nO/oTmSL0iT5xFtdPRtHyXxqjfDzPAAQ8+Nr1RTTmk/QcyeLcahAVVnXyZMPGCUx8oolG0H6moeFTZlG6C0AMCL0HTnY+z9rFJJ81T4RGT/vhCFqx1LGx3grziREuvqqlra8Gp04cnbGIYcAIHPovJiK1sOrOWNFDst2RQQZZnktIJINhPYURR7IFiVhncdjXOsRkpeK0qI5UL52P6y2nTd4DzPiZhbkkwBmVJT7hkBEjNRugzjWE23vdMWNNRvjxppSo5y9i9iMis5cmhYYH4tC85kMZj+aw+LqF7Msbwkrk4ry416HY3mios4oUYQI1I+46u9Lu+gVdeu6QIeAxLPzUn68qCZG5AKAjsSLX8eT0jI0ZV2ab+zsmVs7RkfnXxErnrjmDwhFaXroolRSe19t/1G0TJIZmN7eaUPld1uind2Zl34X6vu/xMsyzwwfG7OVf3bUVvRt6YPHfqXcuYki+JNCcWrBEmou/w72FhHBVluzY2jyzSBBjS6/V1xfyIHTE9FYzfDfGy/Ya3wd3MmMTzmmj9qxmONjpyWCMFVum9d3vH1J6xu5Bsnp04fs93cHjA9acO54FvMcyuMyuhNDTOcPB0SKHuhIlpX+LFH0rPMIhrUeIWm5KKaH8/wizDgBxMNqE2/0RkLlphTkH37gczG8cXUZ4+ISGWdODjrnfy5C5OEVoc3kHhqyjF9U4saaYmLHLiw0SPYZdTEhQHQZcb5pPhs5lsNMVcvYcoeJTT3dD1NRfon4zj8qRS3fkx/NG0WMz8JKBBBF64+K6xKyYeQTQSTeireP/RN+to0BjAielgsFdZOrqcWopmMPi5sKGRjrc7eVlvb97pIIT23vlNP4UuW8/pMbgIlWP+/bO1FC9K+d3T2pkqrLEl6Kk6CDuCW5m4ti7Of4UKKRBENjQ/GZK8X1CbRMTS0rllYWA4BHcdW+3fNSqkse9xZHrjA+8bg+audCjo+fKpBEksk9WJV58bWIpKFT+aE+kRCguA04V7+YDR3IY/GnF7OcmZaNDRkiVQd0JilK/3JRdK31CPp1HiEpWxQXXY+s0mtACay20hu9iVC5KQV5366ddwL486UvCWBDgG4ILMLBuCg34ywq4+N4jo83MS7OwriYJL8hR3MRUgf1kqPT7Oixx9qa+bjRpsQYe8fiUA8RCSBRhwt+E1aI7PNkpeG9Tpf4kN2REWpRfiJ4GmlRlVXaHX+Scnz6WQmwKenmU3JWzFYwxllotOYpfGl+PEZSiKD2dGeXX7y44Yr1u0RJKb1VWlVMRPLbPS+1jor9ywBAH3XnlfZOCzsPlC1reWUbANgjcOqjn9flGVX1QlV719K/KutL90hfKFbijaXS+oSte/Hthlyczm1ryzvS2bF666VNeQrlZbWrlEWbiEhqddQfrRz6yzZMP2hSGRd/TG++ez7HJ2RM/gFTlc6UgcqLmRdfX2EUx0N68lA4dLWmoLU0l9MfXcGyp908ww0R8UB3oqL0LhMl11qPoFvn8cSvEKWMCKKAZwQ3Ed+B1TbzRhU3iJtVkJ8C8LUQL3MD3ACYYYyxSCfjoiXGx4JxcQbGx0UxLjaecTHJjPFz9TEMIFI4ktuMnpGBGHu7EDfaFBk71jw/0jMU0iGiwqGrJx4d1UuZXJHDzb86YUVP1JYrCB0P2J2mUIvy28l09qfy3aO/UHZsEKH3evMgnjVKa+IVNSFiFSN1+GP4SUsJDhYAwMjw/MNnz95SDDAGAhXJOZVZSlqBoLhPvdbxbB4wtb1T/EhDaf7p54sBoCMJR5/4mG7LZpe79Kd9g1u3Cs8MdCHJINw6T7deV1n7efxHydDQwtLGhpJLzW8xdIeU37tATchVSG493Ps7YUjoujoGmJqzqIMAACAASURBVBgXe1wftTOZ0yVP8nWTEiGMVC+5+AaXMlC9NtjYdQIcw9FoPJHNXAfyuPSuJJYR7O82VHiinnhF6VkmSs41gsCv8wjxKwRxURTRzZeJFzpvw2p7z43eRKjcrIJ8CEDJNZiaAAwDumGwiHHGRXkYZ1EYH8dzXLyJ8bExjLMk+osrvSEQjetkd3ukq28s1tZCcWNNcRbbxXSd4gmq9KMKjAzH4MLpxcxdkcMSGhaxrCsJK0RinKqevcXltoVSlF8lNlyqrq63yruXtlPqNB/rJDdGDox8wjI6X/YVWDcYIZqcTsvR2pqdBUScHgT7fWLBQCJFZ9aPlB1tsB3bgkntnUzuweObTlgLAeB4Fjv8gwf4kh/2D9ZmOcxikfjMRjnDXKZbbkj8OT60XHCZT1ZX3bMJYIwjdvEBcaMulqIWDQu95Yd6/2edQvLkrDhiXMxJfdTO+MmHiCClN3mwrmlpy6vLI4TRgKnxBKgeA86dSWeDB/NYbN0StiJQMlCocES98YrakylJjnyPwK33eOJWCuKiaKIQS3++oxiE1ZYceNjc4mYV5GEAN1IUhQlrWz/KWKSDcdES42LB+DgD4+MiGRcbx7iYlGDLKF4rmKp0GURbb7SjyxU71qSPG2tOMTu6MwIdIl5KWGlqXMjGjuWwmJql/0hYmVSUn7vb4cyOU1W/fwciqL2Ir/qe9D7udXXzuquz9AgYUzLM9fLymC16SK1fxzflpWjOEsWI6qrK+5Yrij6aI9b+mFBkMRIvvdrxrEFSBcvl9k68IjQWl38hBwB+X8QdeXkLy69u6zR8Xnz8zJ9QGCNsn5fy7+yJwXlSr+PE8YeyiHijkfR1DwubMoykU6uH/9bUYq+b2gmERVcazDuiOV1a9qU3oRpFW/Xi1j/RvL7j6wL9/hSG3vZktJSt4vjyVSzLHjm9A/ZM4IgGYlW1a4ko2fMFgVvnESy5gpB+LWuf3KwQwdlBycvTv918U8Uj33SCvG/XzkQAgzd6H0EyMuHbNl62tuUJazsugvFxMYyzJIBFJoTarHJWEHk4VWwzuYeGLeMX5bjRJnOsrWWRUbT59H0SoHj0aGqZxwaPZzPDiaxLCSshFuUXiW//vVLS9n15V54N5im+0gk3RoKqxhuW3oa/Hv8w/mubqvBNVZX3xYliZLKJDNXvE7bmj3h6jh7o/e22K+2diMZuLf1MLAD8x4NcXfdiVfhT50DycuGlDDEvvuY9KQcc71d/k37i+IMxshwRH6dGHblPLCiQFPeZv3W/lDaldRSLqjJE3RXJ6RdO+MFJHUgcrm9YduGVpSbPkM+SmgQ4R6LRcHI5cx/M4xa0p7BZNQhgREMWVe1aLEnjeR4R6z2e2DxBXHgjOtLcaIggqGBjEnTjbhhddjK5x2CWhilGHaBY6kecro/idX0Ubxqg2Kghio0eQXTsJXfZHW1P73jrRr+HULgZBXkLgCM3eh9hRATYAJhhlDGTg3HR4iVrW8+4uEjGx8ZN+Lb11/bAhdRBveTsNDt77LFjzXzcWFNCtL19sa9SjxKPts5EdFYt59ixbLawO5GlB1uUnwjuM5RR9aT04aQaWn7FZ0sAUYz+iLguYWWsfvziU/jiIos6JtbW7JBcrrjF85X40jvE/KJDff9zbtDTlXO5vVNR+RM2veK2/MsevnsHG29JHNxAX+c/HmkqNrIf08cW11Td43C7LelLlJTSW8SVhRftp45XDb+1DZejIJipVh91p47XZ+SCiPSSvXZx21/EtN4jXtsgEUAePc43pLP+g3nMUpvJVsg8C/nsgRGNRqtqR4Ykj+cLAq3zCDF5HmFBgqrOKMJmLkMEhcBGJfB2DwwOB0xuG0VJIxQjD8KCfopjvRSv76f4iH6KixyCJXqYYiwuRMymqfDn2/4/e+cdH0d19f3fnZnd2V7Uu+ReZcu9yjWBEAdIL08KCZBAMDWUQAqPgLxP/IRUEgihBggtgRB4UmjGki132aousqwua1e7Ktt3Z6fc9w8VZLXdlVYWMv7ywZZm79y5WmvPnDn3d87ZteO3cfshLgDT0SB/C8BzU72OKcAFcE4Q3k0YXa+3zVgYwiZoGNZqJIw5CUSfFFdvm1KZUKlFE+qxm7zNYavrjNbiqkvXBp3D6gwoBA6HGfV9CSupdZmYwwFNBYLQ9oUxivJ7qK76UelqzzPyFatEcGqgtxqZPMNQI882zPseeay5kBbPqqnefs7lyshfJc7ev1BMs/69+bfzGdW8fWrDjs0rjv+y1uRpnPW1H7J4q83WfKX/MVPXuhz7rw23m+w1S9w93ZnzV0mzjy6WMtP32F4Jdwnnem8CRFOp0l0OVj1rKajSldB9qmZO/et5+kDHsMQXmcDemoz6fYsYsjefzI2pByOlbqNCm3Ml0b0kFFZWhkLGpUI4K0WWp12Mk1JQCnhksC4BKr8fmoCb6oUeGGUnNSsOamXsNIG10QTeQS06ByyGTmo2e6EzjdoAd/J4rGnXjp0X+JoTYjoa5J8AeGiq1/ERRQSIE0TVTYjWB8YoMIyZEjZBRRirnrAWc6+3rZ6I1wFQ6uXkYLMu0NFtdjfA2lNrMbsbclXyh+nAfQkrZ2pyif/AQmKuykWumaEN2wMB30hF+RVKnLuVZScekK6Z20aTMwCAsuRkeHki5lrrnT+kDy5pqVtxxm6bs/Qz4RWNPT2nnVU9+3I11ttz59W+fCi1ozTr23ezwnONrO0K/S/lr658SzW3oQPn2hbOv0xc2qoLCJ5i+ysrZSppQfhqle4yiVXPWcaJvsq85nf9WeeKVw5ubkCBoEuPk0fnEt8HS5nMhnQyO5r3xUBpc7Yo9SwRBGVFSDAUhISMdFn+SHbZoBQ+GYw7DJU3AD7goTqhB0axk5qog1phpwlsB6y8nSZonNRscFKzyQWjZSJtwS4wbzbt2vHZqV5ELExHg/wnAN+b6nVMc9wA2wnCu3q9bZNIGCtD2ASeYaxGwpoTQQzJJMYSjYTK7WrBc87ga/NbXWfUVlddqt5/LpehCjcoYaXr4Hyir5wNYzonOocW5acUchtNKtsl/ZfqX8qaZRSEUrNqP1OgM9ynfkjLt/GO5oblc74cWu/f3fKURdF9ypbtaO3OaHvF9PQNosfVcqOupTDHe6vrCebs6cIZVwkrXA3OA0Kjr2o1oD6h0m8Psar5syyuuqo5Z1/LHJTlRwUV6k5lE9uepcRUNpsslDgySvds6tdT2pwlSt2LhbC8MhTSFwhCRtYF7Jt4/nIgKCA9Yai8QagDPqoLuqAXO6lZdlAL+uKsqg5q1XZQq66Tmk3dMFn6n0guYo407doxrdo6TUeD/CaAq6Z6HR8DZIA4AFU3YTReMEaBMGbKMFYVYRN0hLGYCWtKJoQfuz4HpQKjhJu1wU6n2dMkWV21BrPrbDYfdieHOZxtToH9yFxCGmZRmqUTlMFF+QXKNb4ib2v5pfSlAg/0sjJDV7Vt9n7s6HoPZ098MuEKz5yePR3vMSnKaiXB9hv23A7i/1/9r3B/5q9UbeVbkq7wL3QdaP/r/JAsdHO6bR4NO0Ob07Lbk922ezmriFqFwNGWhLp9ixhSkk/muIZW1qM0qKW0KVOSuhcLYXFFSNAvDwnp2ZFr8o4LSiFREJcI1tMXZw25qT7cRc1yf5zVThPUdmrlO2iCrhNmUxc1mcfT+eVjQkPTrh2T2h4t3kxHg/w+gO1TvY5LDOAFWCeI2kUYfYAwRpkwVhDWyhMmwciw5gQQQ0p/qvMAVOlSif5Wvd/msbjriLXnTKLO38I7zeGOEzMQ6JkhSRkJIf1nff65KZJsqKSzjv+3eE1qBTtHTFoSbP2+6mlOqNjKJTS3a/3KalnleTDYsXxtyFWgIcnHsg2LHGq5urs0U6XZYLcKZjq3/u/pRm9zjluHk8fmEO/upUz62QzMASGkrzRkU4Ykdy0ShPDKkKBbJgipueMsDdkXZ3VLYN0C1D4/NEEP1YW7YRKd1Ew7qJXpoAlcr2G1ah2wGLuoyeyFzjgFcdaLGVfTrh3TSpkyHQ3yAQDRdGq4xEcHuS+9vQuM1kuIQSCsWWEYK9er27aaCWNKIoQ3Eio3a4SeDqOnWdD76iGgPiwaWkWaE0ZqaiBtXpijT4tXB1/UfzK0Y+7e4IqKDLga/CoD+Wv4H1uuF69o8/Nck9McDOt92T1hfap9d0JDWrjrg6XEUDYbswkHR7okOxeGw+EVIUGzPCSkzhijNCSl8MpgPAJUngA0QS/VhbphlPrjrB3UytlpgtqOBO2HcVaDJdbOK5eYFJSmXTumS7wbwDQ0yEdu/fOLLOEyKRRQStH738DXlFKF9B+lVBl6jPQd63+N9J1LKBQolIJCYfpeJ4P+JgN/941XoBBKKUPR//rAa4OP9X497BglfcfZvq8ZUEoUUAagTN94hvZ+TXo7Gfcf7xszSW2mphh/b8IN7yJEFyCMUSKsBQwxEbXECBpJlCUuIFrUZyUrf5qrTsqmZ1IKwitb1Eq3sF+2mgpYUuvgCO1SBwynuZpFikqvl9jlIYFfGgpbZoUlAwUXCoL3e6k25IJB7KRm2UktxA4rY6cJ6r44q76Tmkw9MJk/BnHWi5qmXTum1RPHtDPIbffuqwQwobqyFwu09x9PGfS/POhr+uGx3nF04BhVPvye9o6loLT/a9D+13qP0f6n8A+P9f3e9B2ntG9I7x8Dq+v/nvaOHLiFKrT/BooPj9IIN1kapEElAEEKQA5LKims0jnDDj2RukI0oPUjHEyXzPYMllfkVNU5kqVyUyProTrGS7XqMFUxmIS47yU+2jCu8NbWO7YpU72OaLkwpf0uMSn0aY5ZROzEQAb9OeaQSUEBlcMQvQKRfAJEf4iIQoiEQ0FIYoiE5RARlRDCEIjEhCGxrNon8TqXyOtcslrrhkrrZlW8T23jUpST3GKllsxWezp0uKyzg4g9tdy84BauPNHOFJYxZGH6bKLLtBEx8X3qMAXh1apZL69XdTOJpANpUieS0YMElRdGfQhakwQuEYR8nGs+XNSc21owbYwxMD0NcmiqF/BxQoIcFCB5BSL6BYjBIAmHQkQMhxCWgkSUQyQMASIEIjEiJJVIZJUEWSND0VJQPQUMINADsBCi6Hne79BovWGd1iNrdW5Jq/XCxPvViaqQnmXFBEJoCgjU7chsrcbSc1XYJDRilskrG9MYW6gt41yr98fB56nNUqtpajPz83uuE9lFjfK/rJ/h14g/lKwltXyr4wrFqEsQVxqyNYJWY2jgHH6XtoUstJRzZqtdMho7odH4DIQoOYSAFag62IPELieSXQ6k+juQFnYgVe5CEuuGhfdDbwiDtyhgkkBiz8i7xJQhTfUCYmU6GmT/VC9gOkBBlTAkn0AkrwAxECLhUAhiKEjCYoiIcghhOURECERkwpDYcK8hVcuQtQqoVgE1ADCCQAsgYto2y4pejcbr0Gu9bq3O7dJpPU6N1suo1UGNSiWYGEZKBJBECDIBDJQLVUCUNuQ0V2GprRoFrmbM6PLCOAOE5EBUzGyb/wTb6g8XhsocRarnREljT7s5L1n40rtm10ztvfp8C+upMJXqw5lGyzNnv6//7uU/s8168xwrGC9XDmbnWeTO950ztancavNGjdqtW9Te1lNXx9pc7Uy3X2RCPoOxq91itXeazR3KfH2tZTFXNY8QjFiTmALUS409XUjqdiLV04G0QL/X3Y0ElRcmbRA6owguEYSZVrv7FyniVC8gVqajQXZN9QImGxmKIED0CEQMCJACIRIOBUk4HIIoBkmfIcWAMeVEIqtlKGoZik6BoqeAHr2eqQnABB/HqaJWBzs1Gm+XVufx6rSekFbnUTS8T6VSh7QcF7YQoiQTAiOAMTXJChi5EXmN1SjoqMZSqQW5Vj8MM0HIDAC93aUF2cm1eKrYcwEtJ4TnX8e+TW/m3jBQrZB1S2pS1UkmJfuhP6vKW+cUJRjI6Xa7Lt2kM3RKVM1qzrA5Qat/jnzwq43ywv97hyk8ciCtvOA2TzMxzj5r+89JnnbaF1nWuzYbFmVwjGqOCDnQKnQG63psymnGlSRCng8Clud97WZLxzmLxeY3GTt5XuNPI0TJJQSMCV6rCV7rDDSO+a5JlAv3wNrlREqPA6m+DqQJDqQqXUgiLljVPhgMYfAWGWwSyPCWW5eIC11TvYBYmY6bek8BuG6q1zESFJSKkH0CRJ9ARH+IiKEQxFCIhMNBEpZDEJUQEalARCJA4kRInERktQRFq0DRKqB6ACaQC9OrjBBZ0Gh8HVqt16XVenxanVvUar2E5wMqlSpkYFkpAaAphMTe3kkCKzZiVmMVChw1WKK0IichCN1MEDIsiYEEpHNsk6+etQcsEOnidHQ771c9f+py5uhCEJr4W6tl/3Nm4+JkN4I/f5brrFj+gBKiLeJnkuZr/6Y7Gp6//I3AbcZHEuXqoFNvc62u5q/vuiE9sX7duyq68STd0pGyouzk/GtSFYgmMVhcroRPLkriszrzrZscyZqsfEJ6y2OGIXmaWEftWcYecDDuNAnKXJDe6DrDSEGjsbPRYrF3m80dsk7vsnBcOI8QTLj0pR86TzeSuhxI9XQgNeBAmuhAitKNRJUHZk2v161KoCAJiDF78mNOmX1rwfTpu4np6SHbJmNSBYooQPL0xUoDISIOeKUhEpaCvV4pHeyV9j7i9xpS2mtMjYjCU7wQcJzg0mi8Tq3W69bp3EGtzqNoND5GrQ5oOC5sYhg5mRAkAMjp+3/cSODCZzGnvhLLOk8gn55DdlIImlkgZC6AEQvaE6/YwDV6WxhHKJXIdAGAzE1MZVWR+vlDM4htFSHYUqzTVtydnNgTYphNBfVK1V2vs9bDax5QwhybM4cEKgSWZgcRTuU1vmoGsizkGNJDtqD2x9K17U/Znyzc8en0I50mZu/Vh45tTOqsDlUv/u7RbuvlhVT3CbEnuP/UHvsrsxjAMMO45NACy1pGx5qWzZUzVs3ty4AOItzdyDrO1LP2cCf1ZrrdaQvd7rTzfg6NxnvObO44Z7HagkZjl5rnP/Smo33/9AiY9GgxZaNlzHEyGMlFrc5OJPc4kOJzIC3UFzJh+rxuXQgas9y7Uflx6AoSiY6pXkCsTEcP+XoATw4+JkLy9288jeCVyiESpgJEIhCJFT98xNf0GdP+WOk0eWxUZJ4PODVab5dO6/FqdZ6wVutReN6vUqtDBpYVLYQoKYREjvuOhzBUoTrMq6/A8q6TWExsyEwRwM8EidwFg/QIp7lGXwfTFcomCmYCAI9w6PvcW0e/x/4rWUeE+QDQxrHnbkhLaWlRqdYBwFdL5H1XHeKWHFz7UL2oNi5XPC/tuzr7m3P2qU+frmNtWzYWvuC4kTzb7iOmAv6dc3YCpB3gbz6SyHQv2ZqddWZtJQLXv6MsIwDvMs04Xbn0Fiqz/AJKFUkWjh2WggdTAGkOz+g6F1k3nJxhWJzKMep5Q9fvh+CoZ+1nG9gOuZv4chVCR7yRMYwUMBo7Gy1WW7fZ3EF1Orc5Xt50tASh8XcjscuJFLcDab6OXq+bdiOJdcPMB6AzhMEnUJAkEDKtkidi4I/2rQU3TfUiYmHaGeRH7//1pm7ie3KIV3pR/EIxjOjXaPwOrdbj0uo8AZ3WLWq0PsLzfg3HCUaWlRMAmkwu0M8bAu+vxYL6Six3ncIixob0VBHqGSBRdkKmVGGcoRq22ediesIzCcVAkfcc0tH2APfns5uZqiUMoQkAECIk+JOkhMPv6HVrQIiWUahU9KJ8YE47t/rg2odOhNWmFVLw8P515jQpQzd78zP8Bw2ECyev3/CK8SY8ddxNrMvVBx2ljEfcmEdsrXvUdya5WCa4PSfTvbSOuu9+XZlJABMFkWvnfqW0PX3jKhCio5RSOXzyqBQs1oIK+QCQwKfXLrFusqdochYSwoxYvN9DgufqGXtTA9sBF/HPpARjVnXTaDznemPT9oDR2Knh+UB6n9JjyvTRCojigbm7C0ndHUjzOpAauojkgXfbtxb8cqoXEQvTziAXFRVlAxGe7T5yUKpShbo0Gl+XVufx6LQDIQROrQ5qWVY0M4ycQshEN+DGTwA6zyksbKjEcvdpLOQ6kJouQZUXc8xSoWHGHqzimn1B4hHnE+A8Y3YFc7j8x6oXw5noXDX4sf5Fk+HgwwnWbJmQLAAwBmj3b56Qm/UCt+DgmgdPhHnzCkV2t2uCb7o+lXntLBvbc/bf6vJFJpPj9NKCd+bfgj8d7SZJq9gW32HVKfcaAPid6vclV7MHNzdzXOuVWema2e3ofugF2cpQpABAQJvUdrzgDnuYt6zsX4csNlSK/vdEUP9KACAgUp5hcflCyzpZz1mWkzFkbz3E13SWtbc2Mg7OQ4KzQRCxAzXDiH6TqbPRYrH1mM0OqtW5LRwXntG3SfqRIgxVqBuJnU6kTBd54BftWwten+pFxMJ0NMgEvUqLj8TdmhBF5Hl/h1br6endGPOEtVoPPtwY69XWkgu0URcNPhhcJ7G4oQLLvbWYr3IiJVMGl4PxFreXlQB7LlDFtvgV4pcWEZz/aK5H0Hcb9/rxa9j3Mnlyfh3karX6zE1pyQEXyxb0H5tpo3U/e17WMJRLObD2wZowb15BKaWC+/GKz2RdI+o58+q31GV7HYx7U0bmqQOzZpWtvx2PHXaS1DWQFC+/26YhgEoNUajhr7OpiZRXpuFPfictJTe9G12/ekqmnIKBIvTN2Z/YXz/z6nkgzEDReUWy1Yr+t7uo0rMGfYk3akbTs9CyrnqmcWmSiuEXRnpbnMRz9ixra29mOnkfCc3DKHK64VCq0XrbLGZ7u8VqDxkMXfxHwZuOFgpQL4yuD+WBqUEH0kQnUi60PHCBfWvB6UmcP+5MO4MMAEVFRXsBFE72dVg27NFofM6+EEJQp3PLGo2PqNUBjUoVHqyt/ch+SDwwddVgSWMllvnPYD7fhaQsmXCj9oeLGlFxs63+GrbNz5GgvISMoFWeS1obH1T9uWUNObVsqPfvYpieW1KTqyt49YbBMcxPHFcOffcdZTElnOrA2geq+71XMbB7byYX1q1LuWqlDCX8LL/HDwLrvPn7ilNSmrbcid8ftJOMdQDAf2CrIKJSAACfYQ4e+4P69ysA4C2D7uiPkxKXW/zofuRxuUsjYqB9lMjpe8oLbj3hM2RtHLxORe5uFv1vN1PZvgbAQH1kizqlfol1c1uaNm8+IUxqpLeLgiodxH2mjrV1tLJd+gCE+SCIaeONZUWv0eRs7lN6QKdzJ7CsmEdinOejhIReeWAnkns6emPdg+WBvB8GnQDeOg55oAeAxb61YFoZuOlqkH8D4Pbxz0AVtTrYtzHm9ml1npBW61E0vJ9TqYN6jhP7tbXT6he9B1ZHNZY2V2JZ4CzmarqRmKMQNn7dKkKyg2v21bLtAT3CSj7BcDkcgaJ8gd137B7uVZIM14qhNysZkH+dYNn/gsmYTwn50DuilN72plKy/hTdTAkrHlz7YKXAW1YBgCI56kXvS8lfyLujkyXczJNs26EDqtq1ALB8+f+V6g2ujT/Eb/a3kZwNAMCd6Cnh2gKb+6cuVt9xKI/pWAsAj1jN+560mAu1Ier5/eNyvSmIZYPX50gqOH5i4XcSKcOd18aJKj6H6H/3pCI1rcAgFQ0BkXP0C8oXWjeEjZx1OYnSaChQpHam51Qda+8+x3SZQhAXjG9jmVKt1tNittjtFos9aDR2adXqQAYhNOuj7CiMh5HkgU6k0G4ksm6YtUPkgSX2rQXbpnrNsTJdDfKXAPx1pNcII4U0vSEEl1bn8em0HlGj9TI871erVMJgbe10lPwN4ESyrQZLWyqxLFSP2boeJOTQKDy1WCF+qZVt8jaw9qAVEl1MRqkPbILPfQ/3asVX2OI8FZGH9aQDgN06bfkPkxMNAsPMGXycD1P/w0/LVWkurFMIGz645oEKQWNdDQCUyqLgeuzsisStjtmmZZsB4GW+9IifCKsBYN36V6o5Tsz/ER4ubSYzNwIA8YgN/EHHQOfnDHTa9vO3GvtvsLemJJXs0es2cxIVfv2kXJ7mwtrB65EZVbBm0XWHuxIWbxy6gUmVkFsM7qlQwqcWATivr56K4d0LzGurZhkLLGpWkx/VG9x/TShCG9N1qo61uduZnoQwpPkYh/67H5YNe0wmZ5PFYneZzI5+b3oG6U1jv6hRwMhumB/64rayB6Z6LbEyLQ3ygw/+OCU7+8RrvRtjXkatDmoHaWsvupRVO9LbqrG0rRIFQiNmGdyw5NJB8c54Qzzheq7R18Y4Q2lEpsPkX4NZQurrHlT92b6U1K8gBCN2rmjluLYb0pLbWlWqtUNfS+2hbb98SvbzEub1GuOiCkGTsLr/9bDvrWK1Ylt0VfZOnhBiCkBwvsSXWtF3Q91Y+EIXIUi8Hz/fV0/mDoSx+HfPtRKK7P7vf849WfI1bs+A1/z5zLTSOrV6I6FUeeh5uXRuOzYNXZvHmHumfOktosxpFw19jVIxKAX3H5WF8pkAHRYCMqmSGpdYNzWn62bNZQgTc2snEZK/hek8XcfafR2MK1mEPG/iaqJeb9pisdssFrtgMHZp1OpAJsMMX/9FwKe3b6v/z1QvIlampUEGgN0fzKoBMOyDMp2hAD2HrJZqFJyrQoHYhBkmD8x5GPxoP0kw3cJJtsnrYDqFXEL70phHgYUsfZ3dXXYH95rGSnwFo40LEhL4UXLikfd12jUgZFiMeXmdUnnPa0omAyQphBEPrSk6HtIkDvRAk8WWE6LvtfmXZVxzwMqnFQLAfq625BTXthnoTX5Zt/6vFgB4CA+WnCaLBgyu+rBzL+MKDxhZFrJ0gr+2SUPE2QAgAuIncjKru1l2OQDc8YZcsu40HTi/Hwqi1M3+4r62zM0rRkq2oFSR5FDZYSl0MBWQR2qEqmTp5lUstm4MmVSJBWSETMVoF3eMsgAAIABJREFUECC6m1hn7VnGHnQw7nQZyhzEKSTBsmG3yeRstlhtLrPZQbRaT783PV1bQ8kAErZvq/dM9UJiZTob5F8DuGOq1zFeFBClFblNVSiwVWOp1Iw8sw/GmRdM60mpzDhDNVyTz01c4dmEIqIXlwh3509UfzlxJXNwLkeUMWPTL5iMB36VYMmTCRlx3q/vkfdedYiuI4BKIYx4aHXR8ZD2Q2NMqRgQXI92JGsyg1vTvragr9Qo/szvqZWIMg8AzGb7iSVL31sEAD/H/SU1ZOmAQWXOBY6qa3rOS5vdxhyvfEb9y6X933sJ8WzLybSHGGYuAHzjA3nvlYfpxpHCMkFN4rnjBXe0CxrriKm4vVrmmqNSsEQLGh4xXMERtXe+eXXlbNNyI89ql440JlqCCHc1sB1n6tkOsZN4shVCx7yJxg5VdDp3s8Vi7zBb7CGDoUunVgczGYZmRj53yindvq1+0jf9J4PpbJAvB/D2VK8jGhQwchNmNFRiWUdvXYdcqx/6GRc8vVWhYcYWrORafCHiEReQITHQ0VhNTp18UPXn7nmkdRUhGLkTcx9VvLr2ptTkkJtlRzQ4rEzFB/4iH+wPESiEkQ6t/u+ykDbpvHCG4HllL5XbCz+Xe9sJNaNZDAAO4j7zFl82kIqdlVWzf8bM8g0A8DDuK64gK7cMTCDTIP9+OyE4f6PsHfU9++cxbRv6v7exrO2K7Azaf+P4VJly8DvvKSsIRpYptmZuOVg3+wuzMUqyCADI4fpKMfD+gJZ5JIyctSU/YVNjpm7OLIawEw4Z+BCy17MdDQ1sh9JNfHmUTE4YguMEd29s2uY29XrTiSwrzZiszNBxctf2bfW/mupFjIfpbJBVAOwAEqZ6LYORwIoNmN3QV1SHtiEnMQjtzJEe2S/MghQ/ey5Qzbb6FeKXFpMo9dsqSOHr2H+X7eTeNBtJMGJoqIdhum9OTa6pGiJjG4zJT7t+84TcZgxhKdBrjA+vvv9oUJt8Xo9EOXz6mOj/9/IF5rUHliRsHjCe/1YdL2lnewa84PkLSoqTk1u2AMBvcXfJUbL2vJADX2wrI4JynlFMQY/zML9TPTiN+YRaXffVjNQUEGIGgNW1Svmdf1dmk1FqkoiczlWx5OZqrzFn41jabUVqrxX973RRpWctRm+WSjN0s6sWWzZ6LeqUAhKnm7SbBNrOsvamRsbBuHuzCNMinzVeqKLTuZotvUqPsMHQrVXzwSxCaMyx8zgxZ/u2+rNTdO0JMW0NMgDs/mDWkwCun6rri+CEs5hbX4llXSeQj3ZkJYWgmQlCxvQiJ52w3MO2+k9ybQEVQvKSoV7iWGSg03a/6vkzn2SOLWQJjZhpJgHSLxMs+18yGZdSQkZNfJjVTs889IKs45Te9GmFMNLhVT89GtSlnGeMqRJ0Ce7HgxzhjJ/Pvd3fr/FVoEjP8Ht6Bme/rVjx1n6d3r0BAB7FbSUHyKbzDDJ3yrWXa/EP26z7CffC3uu5/5x3fLdOW357StKi/gyzea301AMvykkMHT3bzpmYX1Gz6DozZVRjhgsUuatZ9L/dQuWO1cDoTxgsUfnnmlaWzzWvNPCMdikZb6LOCHQTX2Mda2trZpychwTngET3dDQROC7UYzI7WywWm8tscjIarSepz5uezLox5du31S+fxPknlelukLcC+OBCXEuAOngG8+srsaz7FBaTdmSkhsHPiKaozgUhJHf0aYSNfRrhmGR9W5nyyvu5FwJ5xL4qWkngezrt8fuSE00Cw4y0mTXAZceUQ9e9q+ST3jrNoCDyodU/PRzUpa4fOlZw//kAVbrXF6Z+sSRDN2vAwJ5hbEf3qk+eF79dt/7lkxwnLQSAJ3BTcQnZvmXw68QnNvP7HcMkeASKUsNfV6snwoLBx581G/f/2mpZ3+/1ZnbS5oeflhlO+VCtMRSFcELNwu8c6kxauj7S7wJVvB2i/93TitS8HBEqAuo5S1u+tfBsln7eDJawI8oIxwsFpb1ZhPb2FrZT60NoHi5Y4SNF1utdTRaL3WG22AWDoVuvVoeyCaHx8uB/uH1b/S/iNNcFZ7obZAKgEUBcf2GD0PhOY2FDFZa5TmERY0d6mgjVjI9aVSziE5vZJl8T2xFMhEQXkRg742kgBG/i3jx2PfufZB0RxpS3DaaF49puSEtpa1Nxw2Rs50Ep/cEbSsmaWrq5f20URD686ieHA/q0YcZYCh07IAVL1ptUiU2fyrwuY3DdiL+qDxz0MMHzvOmNhS+4+0MPz+K7Je+TTw1TSfDvnmscSTWynqk58aLqfxYOTZ74SVJCyZtGw8A8Vi91PPK43MNLGPP98Rqyz5YX3BqUOF1E/TFVgn1a5tPDtMwjkaadUZVvLXRb1WlLySRs+iqgcgdx1daxNmcr22UIIjwfF1ivzHGhbrPZ0Wyx2L0ms4PRar2JDCPNjLRnMQQFQN72bfWtk7XOyWZaG2QA2P3BrAcB/HS85/uhc5/C4sZKLHOfxkKVA6npErjcj2ohcOIO13FNvnbGEUonCh2x1nAk8oit9QHuuYZCpmoJE4NuO0hI4N7kxCMf6LRrI6WxasLU9/BTck2q+8Oki15j/ONDAX36hqHjqeK1C+4neQDWK7O/f1THmQa84RBE11/4vVoM+nCqVMHOteteGzBmf8E1e/9DrhoWnlAddZaw3eFhhhoA3lT/ZN9SpmHYbvw301P3Vmj4gbm0Ier5w+NygzGIUSV+fT+fcnbW50pbs7YVRKOWoVQMSMHSMlmoGFHLPBSWcMHZpuXl80yreA2rX0Ym6XdUgSKeY3pO17G27namewJZhBNeiaTXu5otFnuHxWIX9b3edNYY3vRb27fVX31BlxhnLgaDnA2gAVE8onth7DmB/MZKLPOewXx1b1EdNnvcRXUuBJTSXo2wr5PpEvIIHe/TAKU7mMPHf6R6Uc5A18pYCqgDwHMm44FfJ1hmKIRETMVO66atDz8th3gJAxl5FEQ5vOrHB0cyxgAQcv2pDNS/Mle/sGxtypXnbcQd4c7ureKazzO2Fmt7dX7+7gFv9K/42r43yReHGVfGHjiuruwZMaZogbfnOH+jwhCaOPi4DMhXZGccs3HcQIIKJ1HhN0/I5YNvMKMR4q2248vuaBmsqR6LXi3z0UNS6FA6IM+KfAagY422xdbC2hzDghyWcDMjnzF+JMihNqbrdB1rd9mYnsSJZhFOFJUq1GUyOVosVpvHZHKwWq0vmWGkPEJw9fZt9e9M1briwbQ3yACw+4NZLwH42uBjLlicNchvrsIy/xnM47uQlK0QbjpoKAGFSowjVM01+7zEFZ5DMHad3bHQI+j9Affa8W+w72XzRIr5g1vZJ2PzjCJjG8qqXoVCLjNI/UJBlCMrf3TQb8gY0RiLgb37ZKGskIARv5B3RxtLuPNCDM/xxTUikRcPPpadU1Wal1c5UAjoDXxx/2vka8PnV2iYf69d7I9fD+UO7m/7buPeGGbIg4QEtuZkNvoZZkBhwihU/tnz8oHZtugKW7VlFB4+M+fLuSBMVPHRPi3zESlQYgDCUSc9pWhyTuRbN3Ul8hlLyBgbq/FChORrZjpPn2VtPjvjTpV6swin9ImSEKVmY+GLS7Zvq5/WBu1iMcjLS7D1j5VYFjyLudoeJOQohJ1Emc8kIFOBtQWq2Ba/QLziQjJBOd880tL4kOrZ1lWkdtl4aut2M0zXzrTkkzVq9YZowzffel/eu+MoXT94Q7HXGN93wG/I3DjSOYrc1Rz2PJcEQL8y8fKSWaaC88IL3cTX+Hf+8LAY8MKFe4oTk9q29H//T1y9/2XyrRENPl9iP0JC8uqRXgMoreK/W2MigWGx3y6G6fxETqZfIuS8p5I7X5eL15yhW4aOHwmR1borl+ys9JjyCmN5EpPDZyvEwPsyaGBFtOcwYIVZpqXH55vXclrWsJxcoD0PAaK7kXWcPsvaBSfxpMtQZscrizAGbiwqKvrTBb5m3LkoDDIApO2peAfAZVO9jpiQFC/bFqhhW30gATmfYGLV5QgU5Yvs3rJ7uFe5JLiXjafalwRIv0i07n/ZaCjo1+VGgpWp+NAL8qGhniMFUY6uvPfA0JKWA69TRRbcj50CDS/WsAbHVdk3aQkh59083lVVFrewnVuGnrty5T8OanXegU2+d3DFoefJ9SOGE7gz7n1co29Ur3YZqav9u/q/Z4/UiaVBxTV/NjPdQAk5L6xxzftyyaeP0sLRii0Npcu6oKo6/wa9wqiiCkn0o0jnTon+d1xUca1BlNcCAA1rcCy2bDiV29dhO5ZrTpQgwp31bEddPWuXuog3K/5ZhMOwA5hZVFQUnOTrTDoXk0HeCGDfVK8jImG5m2vxn2TbAjwEeQkZQ5caLWb4XPdyL1d+kd07U0XkUSVakXhXpz1+X3KSOcyQqI2G2Uedv3lSthlCWDL4OAXo0RX3lvqM2aMawrD/PyVK+NRmALgs49ulVj71PMNNQZVn+A/slAxP616/4eValpUGlA97sP3IU+SmEb1gEpTa+b0dYyYpvKJ+qGQtc2rEzb/DGv7E9Wkpw5J7Pn1EOXDNbmXlaFl9Q1EIGz654JqDjuTla2PVqityV5Pof7uVyh1rEOX1+knis07nWzd1DO6wfSHxIWQ7y9obGtkO2k38k5FFeHtRUdHv4jznlHDRGGQASNtTsQfAlqlexzCCko1r8tWxtqAJopJPEJ+eeEvJ2TMPqZ7tyCeNo1Zai4Ymjmu5IS3F1q7iotqE6mduGz39wF9kI0txXmyeArRsxT2lXmPuqMZYkdpPh72vzAKgStHknNiS9tWFQxMhGhnH8d3q6hE35DYWvuAbXK+6FJvK/khuGzVVmX+vvY4odFRP0YCAp5L/boglNGWk118z6A8/kJSwamj4Zu0p5fgd/1DmxvJ049NnNBwvuN0rqfQx17Ogitcu+t+tVaTmFYjxiYqAEWcalxxfYFlLdKxpGZkiDb2L+FvPsvbmJsZB3CQwmxJMpGzsOQCzi4qKQvFa31RysRnk9QD2T/U6AID4xCa2ydfM2oNJkOnCWDXCo8FClr7Bvnf0du51vZX4l0Q+Y3QChPh/mJx4tFinXRerx3bFUeXgt99XlhKcfyOgAC1bfk+p1zS6MaZUEgTXo6191dHo53NvP6li+GGbWK+rD+3vYfzD4sJqdaBjzdrXz/sQH8a68kfIXcuGju1HdayzhO0URvSA+7mB/b8D96leHqaP7ufhBMve582mYdK6+a30VNFf5GQmytogQO/71DDjqtLmnMuWRBsaOu98JegSAx9UKGJtPoDEiCcMobfD9voTMwz5aSN12L6QdBFvw1nW3tbEONVeEpwLEtP+yfeKioqejDxsenBRGWQASNtT8SKA/5qKaxNX+AzX6LUxnaFMomDM7LVYSYLL+VPVX058hjk0j41QaS0anjEbD/zOGp2M7TwopXe9ruxdXTdSqUrQY8vv2ucxzRhmtAYT9r5WokgtmwFgoWX9/nxr4TCjK0LyPceXkJESFBIS2ioXLd5znndZjhVVvyQ/GvUGxTiCVery7og3sGP8DeWJxDuqYb8xNblkv0477GfPctKmXzwjc/2p4dESUls6ypfd3jC0nke09GqZ9x2Vhco5wPhqRySo088sSdhkG6vD9oWiL4vwTB1rs7ewnTo/hHkYvfnvKQD5RUVF8oVc42RyMRrkTAC1GEXmFFcopUyXcIJt8nUx3cIMQpET70usZU6ceIB7zjWXtK2KR6PU47z61M2pKaKXZWL2rrUC9f7yKflUsgcjxmrLlt2512OeOaYxlsP1FaL/zSUAGI6ovZ/PvS1ICDMsTHCcbSw9rmoYcTMwN7diX05u9XkeeA3ya35OihaPNB4AoFCJf6/dP7QB61AWkOb6f6vvyyGj6GwpQK/OTD/YqFYN86QTPLTjd3+S3byEmBN22tPWHTk972vZGGfLLUplUQ4dPSyFDketZR5KLB22LxQKqGxnXLV1jM3Z1ptFuAAfhuc+WVRU9P6ULjDOXHQGGQDS9lTcC+DnkzK5QiXGEazimnx+4hbnEkwo/jUiaojC9ey/y27i3rQaSChid+No6GKYzpvSkk+djEHGNpiMLtr8i2dkUS2N7PkfW/aDvW7zrDGNMaWCR3A95unPStuU+qWSdN3MEcMIL/B7KwQijpgZt2jRB8UJiee2DD52GgtOP0R+Nn+k8f2o99kPMgE5oif6rOp/S7aylaOGN8JAeHtO5snBnbL70YWo+/d/lJv6K9rFgsTy3sr8m8rd5lkbx5sp2qtlrjoiBfbFpGUeSqwdti8UMpTwOab79Bm2ffe3H9r5g6leT7y5WA2yCsBxAKN7TLEg0yBrC1SxzT6J+KRFBNG2c4+NTDht/616vvYTzPFFTBSV1qJBAqRdidb9r8YgYxvKmtPK8R+8ocwgGDnN+njB7SUuy5wx47MAIHheKKWycyPQ2+LoU5nXZo20seQmgba/qQ9mjqZlXbnqjcNare+8Dch6zKq7n/xiTHkXW+/ZrzrrHVGrPBgdQv4q/no3R5RRQwBuhri3Z2c6RyqspJJo6Ld/kiuTPYhpk7Sfbsu8mqr8G3mFVU9IriaH6yrEwO6YtMwj0dthe1NrqnbGfCbKJJdJxgNgQdauwvapXki8uSgNMgCk7alYi94NvvFlEImKh23z17CtfoYE5fzRMr3iwXbmWOVPub8EcklH1JXWouE/et2xnyQlWmKRsQ3lO+/KJZ86RjeMVj0uWmMsCdWHpcB7AwbqyuybynSccURVxAeqmuIGtmPLaHOt3/BSHcvK5xmrFuQ23kd+PbbeVZCdfLE9KZoN1m+w7x36merZMdOk2zj23I6sDFYhZJiRYhQq/89z8oGZ9uiy+oaiEEY8Ne8b+ztSV0esGxJxLrHtlBh4x0UVd0xa5qEQEDlbv6B8kWW9aFQlLIu2w/YksDNrV+FjU3TtSeWiNcgAkLan4g8AdkZ9giB3ci3+U+w5vxaCsiRafel40EII3Mz949i17H9StSQ8riJBo9Go4ppvSEvpGFyLIVY4mYZ/9px8eGbH6Abl+NJbS1zWeRGNMVX8TsH9J4I+FUKeYfHRNck7RmyFBADP8B80K4SOUrOD0o2FfwkN7VBhQ3rrXeQPETXY/Pvtp4hMF0QaBwCH+ZvKUolrVCkd0Nsh5evpqRkYktDSz92vycWr6qLL6hsJvy6t6XjBHS5RbRizsFE0KHJno+h/u43Kjpi1zEOZSIftCVIKYFPWrsKL0nBd7AZZB6AMwKgfQBKU2tkm31nWFjRDVBbHSyM8GjNIe8uD3J8bNzA1SxkS39CHnxDfPSlJZXu1mphlbIOx+KjzN0/Idr2AUT9o5UtvLemJwhgDQMj95BEo3tUAwIAJfz7vB+0sYfNGGtvKdFW9o64YdcOR533tq9e8MSyU4ESy7XbyeMQNMVV5VwnrCEW17pmkvXm3+q7USAXV39brjt2dnLhktHrIfU8ZmyYifWzI+/S+ptxP5yMOtSqo4rGJ/nfPKFJLzFrmkZhoh+0YcANYmrWrsHkSrzGlXNQGGQDS9lTkAziCQV0ziFds5Bq9LYwjlExkegE2LCi9kjl47Eeql2gaulfEWmkt4uwAfcZsOvCI1TxrpMfnWJjXSk8VvSib2TGanpYvubmkJ2FBVEZNCh4slUIHB9QSq5KuKJ5pXLJltPH/UB/Z18l4R/XKExNbyhcuKhkmS+uBpfNm8nREHTDTFTqhLuuKerPrUdXvinewh0ddbz9/sphK/2C1jKgKAYDPHFYOfPMDZRXB+KukCWqTs7zgtrqAbngt6fFAlWCPGNhdqYhnliA+rdCULN28ysXWDQGTKmnZeDtsj8FXs3YVvhrnOT9SXPQGGQDS9lR8n/QIt3JNvg6mM5RFFIw7phoLBgQ8d3J/q/g6uztbTaRJyecv0/Anb0lJln0sM+HHxh1HlAPf2q0sIxi9YWXFkp3F3QkLt0QznyL3tIU9z5rR1x1Dyxo6rsy+STe0XkU/EuTQn/liYazuFXl5x/dm55wYpubwweC+gTwXedOSUoV/t72HRJlMwSMcquGvc6iIHFHSeHdyYsnbBv2oN6r1J5Vjt72pzJtozRJb6uqjp+d9I50yE2+OCgCUhv1ScN8xWaiaPV4t81A4ovbOM6+qmGNaYVYzmvw4tKN6JmtX4XXxWNtHmY+FQQaAvHv/9TKAr16Iay0gzfUPqZ49t4KcGVeltWjoZBnnTakpp0+pVWM22owGQqlyz9+UvSvqx451VuZ/v7grcfGYY/qhlCqC+4/VoKEB+dflmd8ptahTRvUiq9mWA4dVdWN6f4vz3y+xWm3DjF4IvP868lJUG6/q0o4DjF+K2sv8LFNa9lv1Y2PGkvv5SkbqvpM8P6qHv7CZnrz/JTmVGUd23WBkRu2vyr+xrMcyd2O8Otn0apmPHJZCRzIAOW41luPQYbsSwLqsXYXTvnhQJD5OBlmP3tDFpIQoCBTlK2zx0bu4v6qTiGfUTK+JIgLizxOtB/42ARnbYLQh6vnVU/LpJO/IyR79VC6+sbgrKX9L1Ov0v1cih6sHDGeqJrdmc9pXFo3lKb3E7ysLkPCYhm/V6tePaDSBYWuVwInXkFejCgewjd4DqjOemB7796pvO5TDOCMWp5cA6bLsjAonx436c2Q7aOMvnpVVbIxZfSPRY559snLJTazC8nFLf6aUKnK46qgU2GsExHh+XmiGbnblYstGXwwdtj0AVmTtKpyWXaRj5WNjkAEg795/zQNwCHHUEVvg7bmPe7nq8+y+WSoix7uK1Xn8S68ruz85MSFMSFy8l8xO2vy/z8iSWh47hFO1+HvFnUlLt0Q7ryJ11IW9L+bgw0p29PO5t58aK8HAj1DHy/z+JIxQAnMwGza+2MAwyog//9fJ69EtMCz38Hvs5mhLZwJANnGc26u+3RpNEacAIf6tOZktAYYZdTM50UPtv/2T7B3cVWW8KISRauf+135b2trVQyvSTRQ5fOa4GNhNQINxdTJ6O2yvqJhrXqXjGW3BKDdqBcDVWbsK/xnPa3+U+VgZZADIu/dfWwG8gwlsrgC9NXQfUj3rXESaVgyVYMWbBhXX/L20lI6OCcjYhrLulHLs9n8osyIluVQv+m6xM7lgS7TzUiqLguvRBuDD0piLLBtKF1s3jhqqAIB93KniWq49wnUUeWPhi/JoKeRfx2sSCIlKx83vbq8hEo0pcehh7vGSL3F7o9rMdLKM85PZmYJMyKg3aUOQuh75o9xiEDChIlH9BLQpLceW3dEpqk0jVsibCIrYdlIMvOOhins1JqBlHokxOmzflrWr8JF4XuujzsfOIANA3r3/+g6AZ2I9j4UsXcO+e+Q27u9GM/FPuvbST4jvrpSkY6W9Mra4aaKve1suuaycbowk8atZeF2JI2V5VAaon7DvH8WK2LCl/3sVUXs+l3ubEKlozbP8nrMyUcYsyKTRelpXrXpzVK3x1/FaAFHu7KuquktYWzCmn42DJJ7gr2vhiRjVpnCtStXwpcw0KyVk1EayapEGf/uEXJ00Sn2Q8dCUc/n+hhlXLsAk1D5WJGeDGHi7ncrONZigUzMSadoZVYuthW6LOvlI7v9uvSve83/U+Uh2Vp5smnbteBbA/dGOT0GP8/eqR4rP8N/qvF/1wvrJNsYUoE+YTaXrc7P8pTrt5ngZY06iwi+elkovL6ebIxvja4tjNcay2FytiOd3cV6f+rnySMbYTlynIhljADAYuh0RhohRLBMAIGXrY65BIoFT3SLe7Il2/DxRnPloh7MVlI5aqzesItqbv8+uaExFaazrGY28lnc2bDxwL9X72+Neipbhkmfypm9u5E3XdzJcdgkAfzzntwcbl7zf/rzjtaZf3RPPeacLH0uDDABNu3Y8BOCPY43ZwNTUvKe+a/9hfqf5SvbQFnb09uNx46iGP7kuN+vk7xMsGxVC4la4KMFDO558RK7Lc2DM0AEAnFjw7WJHyootscxPadgv+t4wYZChN6uSG1I1uRE3z8pU9ZEMLQDAaOwc88NPQKM2yNTKz6e9rX9i4l1l1bKzSsaBaMcXBkNL7uvqKccYj6IKQ9gfXsttPD6LFMe6ntFQi77ENUf/34ZFJ545RhS5NV7z9kNYU7ra+KXNvPlGgVHNKQbQE6epSwB8/c5X/6nEab5pxcfWIPdxM4DnBx9QQxRuZt8oreGvPfmi+n8Wz2HaN8Sj7GUknCzj/GJGWum1aSkLBnc6jgcLWujJRx+TFb0QudjSiQXXFHekrtoS6zXC3tePAcp56c6b077cHakrhQJFtBNXVLFcg6F7zNcJqBTNPP1Qo2pcO/ffCP9oFqWI2lP+L69v3Ve8vr2Rxu36MrvlnWWkhAJxiyOmOo+t2FR6V2JC98kSUBr3usGE0SWoDVdu4S03q1l+aQlAbBOY7hCAK+989Z9CvNY33fhYG+SmXTsUAN8B8GIWcbY/pXq4+DT/bd9dqr9tjFfZy0iIgFiUmFCyLTuTr+XVE9YUD+WqQ8r+ohflmSxFxLTik/O/VdyRunpLrNeQhVNlVLadl6wxw5B/RMsZImp3z7C24yDRaXK1Ws+Y8eFYPGQAkLN04yrkZEdC6vPyZeWxnPOTrp7Nq4Ohkkjjnv4Uu/nFrcwBGkP4JRKsEtYVVD26eXn5r+pYKXQqXvMOhhC1XqXbvpm33JrIatbuA9jGGKcoA/CpO1/9p3cy1jdd+Fhu6g0l795/sQ38159mCL3mQl73LYPuaFFSYpJISNyz+Ailyn2vKnsLGqMrbHNq3jeKbenroho7GKoEugX3n0SADoRXGLDCF/LusDPn75iPyCvq/Yd9TCiqMpUbNr7YzDDKqHNeg1caJaKK/r0UFQ//gU07nnRmBopcw197VkfCUet/FUDZkZV+pE2liqhn3nhCKbvlLWVBvKsMUhC5ds5XStszNq4EIZNWwZDC2F1xAAAVVUlEQVRSqshC5REpuM8MiJGKOR0BcPmdr/7TNVnrmS58rD3kfpp27ZAZQq8F8PSFuN5Zlapxe3bG0R8nJ62aDGOsC1H3H/8gH4/eGP/XuIwxAIS9r9QONsYAsDLp8oPRGOMgwl0+EopSoqVIhCiZY40gUGIKWUDFmKBiTsR0Tv9qwLA3iD8IUxp9eIEBmH+csxUYZaUq0tjSRczKh77GNCnA2HGaGCGg7Py6VzavPVLUoxZcZfGc+7zrEMJwmoK1GustC1T6zxwH0Y72RHEQwCcvGeNeLhnkforcCoDvAnh0si7hI8R7Y2py8ecy0zIdHDdq+cmJkOWkjU8+Incn+BBVqu/puV8rsaVv2DKea0mho/up4jqvA4eWNdrzDIujunYF11SDUVolDUWn87RFqhXNIPYYqZyiccd6Tj/7lCX5J2heTOoInkLz77b2bBWlER/pa/KYRfdcx7pkgnPjXeNo6IKdWRsP/njlrPq/HwBVnPGefzCseu5yjeX7y1SGL50gjOkQPoyRvw3gE3e++s+o4/EXO5cM8mCK3BRF7psB/DSe01KAPm4xlW7IzQru12m3xFNTPJiNJ5SyXz0lJ6hkROV11875Skl7xsaYpG39UNljk4L7hm3GbU77Un2UKbGoZduH9dIbDYOhO6LRYKDEbpBz9BPKrvxW+IcLFRqbwsCiKNY32mwcoTTiz9SSQmbe8n2WCbOoH/8qRye3dff6wv33cgZvW9xkd6PBqrIX8ebr16qN32wkTOJvAFx156v/DEz2dacTlwzySBS5fwbgGwDCE53qsIY/sS436+SjVstGhZCoDVCsfO/fcsktbynLIzXx7Kd29pdKzmVuGp8xppQK3pdsGHKtVG1etUmVFFWNiE7iOSsROapC8QBgNHZGLCzDQI4tZAGAmtSzKEFbrOf10w1z4uPyVTWxnpcrSdnP2hydoDSijrfTTNJvvJlN8POoHt8qx0Yl+a2rj/184+KaJ8qJIk16rWGGS36FN19z552v/jNuG5cXC5cM8mgUuV8E8EkAXeM5vYNlOz6fmVZ6fVrKwnjL2Aajkmjol09J+z9RSTdHW5vhzOwvlpzL2jIuYwwAUrBkL2hgaOxX2ZDyOS7aMotlXH1MRjCS5A0AWCjj0q5SkypWRcB5PCx9eYOXamOORa8QhAX/r7PrZDRyNJ+OWG+4hZ3VZcTR8a0yMimdlcs2ld6ZmthZXQwam4QwSiQA39v5+LYf73x82yU1wQhcMshjUeTeC2A1gJPRnhIGwj9NSij5RHaGrk4dfxnbYBI91P7k7+T6HCciNu7sp27W5/e2ZW0dtzFWZGejLBwflua72FJ4QMWoo/J4FVD5HNMdtXcMABqtN6IigIE8Lp2tnKWfUG84Coa5Nnw3QyliviFc5Qus+q7bE1WiSVhFdDtvYpc1p8Qvq28orCJpltY8vmXl8YcbWCk4rg3PUegC8Omdj297Mo5zXnRcMsiRKHI3AFgLIGLFqX8Y9EfW5mW3/8No2Dxaj7V4sbhJOfHoYzLRhRG1910363N7W7O3DyvuHi2UKlLY80oQQwrYqxjevdCybn608zQwHeWUIKYsRI4TIo5nIY/LQ5bTtYsoMKFkhKN0/oJjdO64DOWtPe7Crf5ARI0yACgM4e6+lt1QMYNENX68mLzNczeV3r0gq624BJT6JjhdOYCVOx/f9l481nYxc8kgR0OR2wvgagBFwHAv6IxK1bgtO6Psp8mJq0VC8iZ7OZ/br5T+9GVlNkOjN2pnZ352b2vW9nF1QO5H9P+7dKT6uBtSPldBCInYPqmfcq4xptg8IbJASOROFuM1yGAZHdRMzHHgoVwbvmupQsm4FAuPODo3zxXC0Rl0Qsj/fJXd/H5BfLP6hl0GlJl79m+b1x2+38OHeo6Mc5rnAGzY+fi2pjgu7aLlkkGOliK3giL3AwC2A2gHAC8hnu+lJZd8ITMta6yC5PGCUaj8k5flkq/tVTaSD2sNR6R+xlX7WrI/UTiR8Ikitp1UxDPD6mBY1Cn1KZqcqEMmAkS3mwyLP4+JTudui6YPIQdp3PUP5DTthIvkeGAw/0r6Uu14z3+l3b4mUZKPRTv+iSvYzS9vZg7Q3tjspKENdWdsOPST1XPq/nYQVImq7giAIIBrdz6+7ds7H9920Xf6iBeXDHKsFLmLART8W697ckNulnBQq908WrfheKIPUvcf/yCXL2miMcV/62dcua8557IJxbIplUJh3+saYLgOeFPql10kyhrEAFDNtVQhQhfnoRiMXVFtrLKQxu0tytn6iIks0fCo/NmNLqqvHM+5KkD1f23tczSKErVR/8d6ZsOjn2HKKTDp8rHsc8XrCvffwxs9zfvGKpYE4BSA1Tsf3/bsZK/pYuOSQR4PRW7np++2fY8S8iB6PYFJJcdBG554RO6x+qNL9uinIW/Hvuacyye8sSj6/n54pB5rMw1LDms5/YpY5jrJtsXcdioayRswMQ+ZGlS5lKBpvOcP5pvh+3SUjs9rNVJq+r82m5mltD3ac/bmM6t+9lWmnsav4tqoqKSgedXxXxTm1/ypkijiUHUKBfAYgFU7H9824RDQx5FLBnkCVF9T/QcAK9G7aTEpbKpWjj78tJykUpAXy3mNuZ8ubcq9YsLGWA6fOa5IbcM2AhmwwoqkyyIWLBpMD/E3h4kUc3cMg74nqt9TbgIeMgAoVnXLRM7vp5rOnFOq5I+7FnGaLKe91G4PgNKoswirZzD5P/wO2y0TTKTaWtQkd1UXbN53V0aSs6IElIoAWgFcvvPxbTt3Pr4trjWSP05cMsgTpPqa6pPoVWH8DHGs0AUA3/+XXLLzn8oKAphiOa8x94rSxrxPr5+oMaZKyC36/5UGYNg8q5I/dZAhbE4s85Vx9ePS+2o0vqgy/7gJhlLlLH1U14mGG8XbV8iUGbdxXBgWZ//O0dkISqPeAG1KI7NuvZGlk5XVNxSGSvySE09uXlL9x98AyL+kopg4lwxyHKi+pjpcfU31TwEUAJhwlwa1SIO/fkLav7Uq+mSPfppyLi9tzNuxHoRM+N827H21BhiubtCxRluuflFMtTgoKG1hOiN2BRkJThWOqjGACuKEiporKdpFNE4dMPzQGn4mfb1pInNsCwQL7ux2lUWI156H00Iyvn8za/XzuBAhg3oA2wsPvPbDnY9vG3dNkEt8yCWDHEf6vOVCADcCGFf1qkQ3tT35iNyY1RV9skc/zdmf3N8w48q4GGMpVHGIKl0jrmFT2pcbSIylG5sZZ8X/b+/Og6Os7ziOv3/7bDbHErmi4Ui4BVYUwQvkhjqdVuxoFbGKzta2Vmp62NFaPKrptHXSWjvTA03VGe2MRx3FqaN2rFWqggi2CPJg9zGoARKuECAnSXb3eZ7+sRsaYRf22X0WHuD7mvlN/lj22YVZPnn2d3y/trId143w+eJdkFmnFj+x3A7haKqQIs21wxBPml+9dK/dP+NdE6l8s619xlUdnY72HLeXqEG3/kAbs78f+armZgIPA5NDRmRlnl7jtCSB7DI9rNt6WP8zMAF4Egf7RM+rt/Tlj5pacRTHxfG3VV723mdjrrzUjTC2rY6meNfKlO3phxSP3tQ/UOb4l8WH/vqs7jxLgi2NSh05ZZJKgQszRuaQYle7VSyJ3jPItnOrifKL5v3zpnT3HLPjSF/RAlVyW5U2paEs929sh3kXuDhkRO4MGREpDOQyCeQ80cN6kx7WvwXMAI55l7RolbX6vr9a4302jgsQba/40prPxlw13Y0wBuhpe3YbpOziYc086yrHlepixDv3q44p2byX0n6ZbXkDKCCW8yEJszJ4xG6SXNTZlaP/aV2YcQ++dJ7atWfm0Hjc0eEMy6f8d3xHm7FplCun+uqBRSEjMjdkRPK2iH26k0DOMz2sryVRD+MWOLKurc+yzQeeMd9ZvNrZYY9e2yvmr/l07NenodRRu0hnKta1ehV2R8r54fMGznnP7wtkfES618dawwYUWS2YlZY2p+3YfLiCXKcsALvEP9z2kVWvvXR+GPv+tJitZV1RDkAD7eXGXecGLcvZlIpS6pfXa3NXTs66gWobcDcQChmRFVleQ2RIAvk40MO6pYf1J4BxwF0ku0D067Jbav9kbpy03dlhj14Nw+e9/+nYa1wLY8vcv93s/mBqqscKfIWtof7Ts+ozuNnfkHWroGCwJeO/W4CoK4WcrEGFrhaE76aw+J74tzPeV5xOsW2XvNaws9xv245LZNYu1OY9P9u32sGpvijwe2BsyIjUhIzIadt49HiSQD6O9LDerYf1h4AxJd32z2v/aO4c0ImjgxW9GofPeX/LuEUXuxXGtm1b0fbnWiD1neyss67+SCmVUTPSvtpU145uYllNVwAUFnVkvOWvIPfy1QCYlcEBrlyojxfMeZfssAdnWw/ikMGWVbZixy6UbTsuC7tilm/Wowt9H9pHP8xkA88AE0JG5PaQEWnO+s0KxySQTwA9rLeuu3VzdcBkHvBbHJ72axw2Z23duMUX4+DI8rHED77xLnZPykMbAwPln55ZVJlR4fnDrfd/toUMF+VS8fujGR8+KSDmyufZKiuaZCe+qrvqhui9w2w795OdY2LxkY/vbtqNbTu+1tuTfZc8uNi3xT5yF5AJPAecHzIiN4aMyNZc36dwTgL5BAoZkb0hI/ITYBTwIHDMvZyNw2avrTt78UVuhrEV31VnRj9OG7hzhlzb5qReRV/1vqasa0RoWqxdqcwXOd2YQwbAp/x2sZZxDexMbbOHVPzNmrnOjWtN6+6Z9EDz/k3YtuO91x+N9U1edrPWnDzVFwWeACaGjMgNISOSl64kIjMSyB4QMiJNISNyLzAC+CnJanKH2zF05rq6s6+70M0wtm0zGm1/ASDl7omxpVPWFmlBR9XZejX69umWsrPuqh0MHnC0EFZA1LXPszWsJC8V1O6K3Tojavtz6lDSa1FH57RwW3tWNZjrh6jy+2/SHiMxR3xLyIi4upApsiOB7CEhI9IWMiK/AUYDNwMbex/bOeTSDz4Zf/0FbleWi3W8vAbi41M95lNa9wWDLxue7bXX+z/PqdhNv9J9jp4fcDGQ4xXBs/NRaziGP/Dj2G3H7keVoTv3t8yZdbDrbQdPaQCWAZUv3bO5OmREctr9IdwlgexBISMSDRmRp0JGZCow+0D/cY8YE5ZMcjuMzVj9Jiu+NW0HkUvKLl/rU1plNteOY3bvVW3nZ//uoLS02dEqnWtTFgBFWjmayrq28dG8Zk2/sN4a8r5b13tkz965o6OxY+11fhu4Bhith/Vf62Fdjjp7kASyx4WMyOoZ616pQqlxwH2AK12BbTvaEet4eQBpPgMl/jN2jQiGjuidlylD27EBlVkH7HSCJS2OpmYKiLmy46SXNbhwj5vX62tJ9J5Rtk2urZEAUKBe3LHrogGmufGwh1qAPwDn6GF9vh7WX9LDelZ9B8XxIYF8kqiqXbC7qnbBr4AxwBXAi+TQBy7a/sIGsNJWa5tbvrheKVWS7fU3+bfnPM9dWNTpKNADRF0NZLMyOMjN6/W1k7Khz5kLcqpz0VcAAq827hxdaFl1wJvAEmCYHtZ/pIf1iFuvI/LLtcUhcXxU1S6wgNeA15YvXTkAuBa4CZhFijKZqcR7Pv7ANvek7a83tHjMR2cEBme1zQ2gk56mg/RktRDYl6bFjtlHry83F/UArMGFk2zYryAvwfyz+M0zr9ZWbSlSsZR1Qxz6uL9lP/1Ww86n+9/vbDFUeIcE8kmsqnZBC/A48PjypStHAouBbwBpw9C2Du6LH3zjaDsfrBlnXemoxdLhNvg/j6DI6vRhL7+/p0WplPU00iog5u7nWSmfHfQbqjOe9S+nozHR/N+L3X7wycBD2V5iG7ACeJrq1g1AbnNE4oSTQD5FVNUu2AY8BDy0fOnKs4HrgKtIhPOhO+do+3NbwJ6e7jqTB859z+8L5NSdeou229GdbSrB4IEdgKMTc27PIQOYw0vw1bl+RuSQf1lTzzesytUTfQ1HNJBN4xPgJWAF1a2uTXkIb5BAPgVV1S7YQqKDyS+XL105jMSc89fiXWuDttU6P93zAr6ilon9p03K5bX3qBbDVJbjAkSHKy1tdlxP2u/2HTJgDi+Z6K9rs5w2CnDixujdE/5deFurSr0IagJrgFeAV6huNfL1PsSJJ4F8iquqXbATeAx47OHrflcMzAW+AnwZCPX9s7PKr96klEq7DS4T//F/tgfIOZD7le5zXNzY9SkLgIA2CL/aTNw+1/VrJzUz4MzHzcvf/a7/773/9o0kFubeBF6nutVx3QpxcpJAPo3c8fyrXcDrycHD110xHLgMmD8gUD62rLDCceH5viys2C5fS0532L2CJa2O91znY8oCwCor2qftzmtz8T018Rt2LtHeujWoet6hujUv+5+F90kgn8bueP7VHcBfkoPGZasqSbSgmk1i18Y5OPiqvkXbvQFF1nuX+woUdg50+hw/cVcPzvSKjwiWuxzIjSQ6b7wDvLu1ZmFyGqLJzdcQJyEJZHFIRc3sBuDZ5KBx2ap+wIXAxclxATCWNNvrNmr1OTUZ7UvT4o6PbBcQy0sg2wMCE2xoUjjv5kKiKcH65PgQWL+1ZmHW3ajFqU0CWaRVUTO7g8Rd3KEWQI3LVp1Borv2VOBcEnfRoW6itKvunPceAxQUdDUrRZnT5/mJ5+fzrJSySwvqVHvsaIHcDfwX0IFNvT+31izM22k/ceqRQBaOVNTMbiPxdfsLTTf/ce+z5SgmAuP7jHHASMBRx5BgvwO7wHkga8Qd9/vLlDm8xO8zWruArcDnh41PgE+31iyUY8kiJ8q2XS9oJcQXVFdXDyJRWrQSqACGJcfQ5M8yEqfhigEqR2xaPWrUR5nuyz3EwmfepF7IZmGvG9jXZzSRqIr2/9Fjbi96e/ferTUL5T+MyBsJZOEZ1dXVhcCgkaM29B8xYvNA4Izk6EcirIuSIwAUJIefRJlMG7CXqBUmib5xsT4/Y0AniQYAbcnRmhz7ds+fIu3shSdIIAshhEdItTchhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPAICWQhhPCI/wHSVzEH/M9DtQAAAABJRU5ErkJggg==\n", 385 | "text/plain": [ 386 | "