The response has been limited to 50k tokens of the smallest files in the repo. You can remove this limitation by removing the max tokens filter.
├── LICENSE
├── README.md
├── commons.py
├── configs
    ├── cvc-eng-ppgs-three-emo-cycleloss.json
    ├── cvc-eng-ppgs-three-emo.json
    ├── cvc-whispers-multi.json
    └── cvc-whispers-three-emo.json
├── cvc627.png
├── data_utils_engppg.py
├── data_utils_whisper.py
├── losses.py
├── mel_processing.py
├── models.py
├── modules.py
├── ppg.py
├── ppgemoconvert_exp.py
├── preprocess_ppg.py
├── train_eng_ppg_emo_loss.py
├── train_whisper_emo.py
├── utils.py
├── whisper
    ├── LICENSE
    ├── README.md
    ├── __init__.py
    ├── __pycache__
    │   ├── __init__.cpython-37.pyc
    │   ├── audio.cpython-37.pyc
    │   ├── decoding.cpython-37.pyc
    │   ├── model.cpython-37.pyc
    │   ├── tokenizer.cpython-37.pyc
    │   └── utils.cpython-37.pyc
    ├── assets
    │   ├── gpt2
    │   │   ├── merges.txt
    │   │   ├── special_tokens_map.json
    │   │   ├── tokenizer_config.json
    │   │   └── vocab.json
    │   ├── mel_filters.npz
    │   └── multilingual
    │   │   ├── added_tokens.json
    │   │   ├── merges.txt
    │   │   ├── special_tokens_map.json
    │   │   ├── tokenizer_config.json
    │   │   └── vocab.json
    ├── audio.py
    ├── decoding.py
    ├── model.py
    ├── normalizers
    │   ├── __init__.py
    │   ├── basic.py
    │   ├── english.json
    │   └── english.py
    ├── tokenizer.py
    └── utils.py
├── whisperconvert_exp.py
└── whisperconvert_longaudio.py


/LICENSE:
--------------------------------------------------------------------------------
 1 | MIT License
 2 | 
 3 | Copyright (c) 2023 ConsistencyVC
 4 | 
 5 | Permission is hereby granted, free of charge, to any person obtaining a copy
 6 | of this software and associated documentation files (the "Software"), to deal
 7 | in the Software without restriction, including without limitation the rights
 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 | 
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 | 
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 | 


--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
 1 | # ConsistencyVC-voive-conversion
 2 | 
 3 | ## Using joint training speaker encoder with consistency loss to achieve cross-lingual voice conversion and expressive voice conversion
 4 | 
 5 | Demo page: https://consistencyvc.github.io/ConsistencyVC-demo-page
 6 | 
 7 | The whisper medium model can be downloaded here: https://drive.google.com/file/d/1PZsfQg3PUZuu1k6nHvavd6OcOB_8m1Aa/view?usp=drive_link
 8 | 
 9 | The pre-trained models are available here:https://drive.google.com/drive/folders/1KvMN1V8BWCzJd-N8hfyP283rLQBKIbig?usp=sharing
10 | 
11 | Note: The audio needs to be 16KHz for train and inference.
12 | 
13 | <img src="cvc627.png" alt="cvc" width="100%">
14 | 
15 | 
16 | <!-- 科研好累。 -->
17 | 
18 | # Inference with the pre-trained models (use WEO as example)
19 | 
20 | Generate the WEO of the source speech in [src](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/467ed5e632b2b328d01c87cb73e92b26b36deb05/whisperconvert_exp.py#L39C1-L39C1) by preprocess_ppg.py.
21 | 
22 | Copy the root of the reference speech to [tgt](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/467ed5e632b2b328d01c87cb73e92b26b36deb05/whisperconvert_exp.py#L47)
23 | 
24 | Use whisperconvert_exp.py to achieve voice conversion using WEO as content information.
25 | 
26 | For ConsistencyEVC, use ppgemoconvert_exp.py to achieve voice conversion using ppg as content information.
27 | 
28 | # Inference for the long audio
29 | I uploaded a new py file for the inference of long audio. 
30 | You don't need to run the whisper by another file, just change [this part](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/83f72b0801240e7d932c9314431df6e75f2d1c22/whisperconvert_longaudio.py#L41) and run this py file.
31 | 
32 | # Train models by your dataset
33 | 
34 | Use ppg.py to generate the PPG.
35 | 
36 | Use preprocess_ppg.py to generate the WEO.
37 | 
38 | ## If you want to use WEO to train a cross-lingual voice conversion model:
39 | 
40 | First you need to train the model without speaker consistency loss for 100k steps:
41 | 
42 | change [this line](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/b5e8e984dffd5a12910d1846e25b128298933e40/train_whisper_emo.py#L214C11-L214C11) to 
43 | 
44 | ```python
45 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl# + loss_emo
46 | ```
47 | 
48 | run the py file:
49 | 
50 | ```python
51 | python train_whisper_emo.py -c configs/cvc-whispers-multi.json -m cvc-whispers-three
52 | ```
53 | 
54 | Then change [this line](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/71cf17a5b65c12987ea7fba74d1d173ea1aae5cb/train_whisper_emo.py#L214) back to finetune this model with speaker consistency loss
55 | 
56 | ```python
57 | python train_whisper_emo.py -c configs/cvc-whispers-three-emo.json -m cvc-whispers-three
58 | ```
59 | 
60 | ## If you want to use PPG to train an expressive voice conversion model:
61 | 
62 | First you need to train the model without speaker consistency loss for 100k steps:
63 | 
64 | change [this line](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/71cf17a5b65c12987ea7fba74d1d173ea1aae5cb/train_eng_ppg_emo_loss.py#L311) to 
65 | 
66 | ```python
67 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl# + loss_emo
68 | ```
69 | 
70 | run the py file:
71 | 
72 | ```python
73 | python train_eng_ppg_emo_loss.py -c configs/cvc-eng-ppgs-three-emo.json -m cvc-eng-ppgs-three-emo
74 | ```
75 | 
76 | Then change [this line](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/71cf17a5b65c12987ea7fba74d1d173ea1aae5cb/train_eng_ppg_emo_loss.py#L311) back to finetune this model with speaker consistency loss
77 | 
78 | ```python
79 | python train_eng_ppg_emo_loss.py -c configs/cvc-eng-ppgs-three-emo-cycleloss.json -m cvc-eng-ppgs-three-emo
80 | ```
81 | 
82 | 
83 | # Reference
84 | 
85 | The code structure is based on [FreeVC-s](https://github.com/OlaWod/FreeVC). Suggestion: please follow the instruction of FreeVC to install python requirements.
86 | 
87 | The WEO content feature is based on [LoraSVC](https://github.com/PlayVoice/lora-svc).
88 | 
89 | The PPG is from the [phoneme recognition model](https://huggingface.co/speech31/wav2vec2-large-english-TIMIT-phoneme_v3).
90 | 
91 | 
92 | 


--------------------------------------------------------------------------------
/commons.py:
--------------------------------------------------------------------------------
  1 | import math
  2 | import numpy as np
  3 | import torch
  4 | from torch import nn
  5 | from torch.nn import functional as F
  6 | 
  7 | 
  8 | def init_weights(m, mean=0.0, std=0.01):
  9 |   classname = m.__class__.__name__
 10 |   if classname.find("Conv") != -1:
 11 |     m.weight.data.normal_(mean, std)
 12 | 
 13 | 
 14 | def get_padding(kernel_size, dilation=1):
 15 |   return int((kernel_size*dilation - dilation)/2)
 16 | 
 17 | 
 18 | def convert_pad_shape(pad_shape):
 19 |   l = pad_shape[::-1]
 20 |   pad_shape = [item for sublist in l for item in sublist]
 21 |   return pad_shape
 22 | 
 23 | 
 24 | def intersperse(lst, item):
 25 |   result = [item] * (len(lst) * 2 + 1)
 26 |   result[1::2] = lst
 27 |   return result
 28 | 
 29 | 
 30 | def kl_divergence(m_p, logs_p, m_q, logs_q):
 31 |   """KL(P||Q)"""
 32 |   kl = (logs_q - logs_p) - 0.5
 33 |   kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
 34 |   return kl
 35 | 
 36 | 
 37 | def rand_gumbel(shape):
 38 |   """Sample from the Gumbel distribution, protect from overflows."""
 39 |   uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
 40 |   return -torch.log(-torch.log(uniform_samples))
 41 | 
 42 | 
 43 | def rand_gumbel_like(x):
 44 |   g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
 45 |   return g
 46 | 
 47 | 
 48 | def slice_segments(x, ids_str, segment_size=4):
 49 |   ret = torch.zeros_like(x[:, :, :segment_size])
 50 |   for i in range(x.size(0)):
 51 |     idx_str = ids_str[i]
 52 |     idx_end = idx_str + segment_size
 53 |     ret[i] = x[i, :, idx_str:idx_end]
 54 |   return ret
 55 | 
 56 | 
 57 | def rand_slice_segments(x, x_lengths=None, segment_size=4):
 58 |   b, d, t = x.size()
 59 |   if x_lengths is None:
 60 |     x_lengths = t
 61 |   ids_str_max = x_lengths - segment_size + 1
 62 |   ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
 63 |   ret = slice_segments(x, ids_str, segment_size)
 64 |   return ret, ids_str
 65 | 
 66 | 
 67 | def rand_spec_segments(x, x_lengths=None, segment_size=4):
 68 |   b, d, t = x.size()
 69 |   if x_lengths is None:
 70 |     x_lengths = t
 71 |   ids_str_max = x_lengths - segment_size
 72 |   ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
 73 |   ret = slice_segments(x, ids_str, segment_size)
 74 |   return ret, ids_str
 75 | 
 76 | 
 77 | def get_timing_signal_1d(
 78 |     length, channels, min_timescale=1.0, max_timescale=1.0e4):
 79 |   position = torch.arange(length, dtype=torch.float)
 80 |   num_timescales = channels // 2
 81 |   log_timescale_increment = (
 82 |       math.log(float(max_timescale) / float(min_timescale)) /
 83 |       (num_timescales - 1))
 84 |   inv_timescales = min_timescale * torch.exp(
 85 |       torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
 86 |   scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
 87 |   signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
 88 |   signal = F.pad(signal, [0, 0, 0, channels % 2])
 89 |   signal = signal.view(1, channels, length)
 90 |   return signal
 91 | 
 92 | 
 93 | def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
 94 |   b, channels, length = x.size()
 95 |   signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
 96 |   return x + signal.to(dtype=x.dtype, device=x.device)
 97 | 
 98 | 
 99 | def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
100 |   b, channels, length = x.size()
101 |   signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
102 |   return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
103 | 
104 | 
105 | def subsequent_mask(length):
106 |   mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
107 |   return mask
108 | 
109 | 
110 | @torch.jit.script
111 | def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
112 |   n_channels_int = n_channels[0]
113 |   in_act = input_a + input_b
114 |   t_act = torch.tanh(in_act[:, :n_channels_int, :])
115 |   s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
116 |   acts = t_act * s_act
117 |   return acts
118 | 
119 | 
120 | def convert_pad_shape(pad_shape):
121 |   l = pad_shape[::-1]
122 |   pad_shape = [item for sublist in l for item in sublist]
123 |   return pad_shape
124 | 
125 | 
126 | def shift_1d(x):
127 |   x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
128 |   return x
129 | 
130 | 
131 | def sequence_mask(length, max_length=None):
132 |   if max_length is None:
133 |     max_length = length.max()
134 |   x = torch.arange(max_length, dtype=length.dtype, device=length.device)
135 |   return x.unsqueeze(0) < length.unsqueeze(1)
136 | 
137 | 
138 | def generate_path(duration, mask):
139 |   """
140 |   duration: [b, 1, t_x]
141 |   mask: [b, 1, t_y, t_x]
142 |   """
143 |   device = duration.device
144 |   
145 |   b, _, t_y, t_x = mask.shape
146 |   cum_duration = torch.cumsum(duration, -1)
147 |   
148 |   cum_duration_flat = cum_duration.view(b * t_x)
149 |   path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
150 |   path = path.view(b, t_x, t_y)
151 |   path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
152 |   path = path.unsqueeze(1).transpose(2,3) * mask
153 |   return path
154 | 
155 | 
156 | def clip_grad_value_(parameters, clip_value, norm_type=2):
157 |   if isinstance(parameters, torch.Tensor):
158 |     parameters = [parameters]
159 |   parameters = list(filter(lambda p: p.grad is not None, parameters))
160 |   norm_type = float(norm_type)
161 |   if clip_value is not None:
162 |     clip_value = float(clip_value)
163 | 
164 |   total_norm = 0
165 |   for p in parameters:
166 |     param_norm = p.grad.data.norm(norm_type)
167 |     total_norm += param_norm.item() ** norm_type
168 |     if clip_value is not None:
169 |       p.grad.data.clamp_(min=-clip_value, max=clip_value)
170 |   total_norm = total_norm ** (1. / norm_type)
171 |   return total_norm
172 | 


--------------------------------------------------------------------------------
/configs/cvc-eng-ppgs-three-emo-cycleloss.json:
--------------------------------------------------------------------------------
 1 | {
 2 |   "train": {
 3 |     "log_interval": 200,
 4 |     "eval_interval": 6000,
 5 |     "seed": 1235,
 6 |     "epochs": 10000,
 7 |     "learning_rate": 2e-4,
 8 |     "betas": [0.8, 0.99],
 9 |     "eps": 1e-9,
10 |     "batch_size": 42,
11 |     "fp16_run": true,
12 |     "lr_decay": 0.999875,
13 |     "segment_size": 24000,
14 |     "init_lr_ratio": 1,
15 |     "warmup_epochs": 0,
16 |     "c_mel": 45,
17 |     "c_kl": 1.0,
18 |     "use_sr": false,
19 |     "max_speclen": 300,
20 |     "port": "8006"
21 |   },
22 |   "data": {
23 |     "training_files":"train.txt",
24 |     "validation_files":"test.txt",
25 |     "max_wav_value": 32768.0,
26 |     "sampling_rate": 16000,
27 |     "filter_length": 1024,
28 |     "hop_length": 320,
29 |     "win_length": 1024,
30 |     "n_mel_channels": 80,
31 |     "mel_fmin": 0.0,
32 |     "mel_fmax": null
33 |   },
34 |   "model": {
35 |     "inter_channels": 192,
36 |     "hidden_channels": 192,
37 |     "filter_channels": 768,
38 |     "n_heads": 2,
39 |     "n_layers": 6,
40 |     "kernel_size": 3,
41 |     "p_dropout": 0.1,
42 |     "resblock": "1",
43 |     "resblock_kernel_sizes": [3,7,11],
44 |     "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
45 |     "upsample_rates": [10,8,2,2],
46 |     "upsample_initial_channel": 512,
47 |     "upsample_kernel_sizes": [20,16,4,4],
48 |     "n_layers_q": 3,
49 |     "use_spectral_norm": false,
50 |     "gin_channels": 256,
51 |     "ssl_dim": 44,
52 |     "use_spk": false
53 |   }
54 | }
55 | 


--------------------------------------------------------------------------------
/configs/cvc-eng-ppgs-three-emo.json:
--------------------------------------------------------------------------------
 1 | {
 2 |   "train": {
 3 |     "log_interval": 200,
 4 |     "eval_interval": 6000,
 5 |     "seed": 1235,
 6 |     "epochs": 10000,
 7 |     "learning_rate": 2e-4,
 8 |     "betas": [0.8, 0.99],
 9 |     "eps": 1e-9,
10 |     "batch_size": 108,
11 |     "fp16_run": true,
12 |     "lr_decay": 0.999875,
13 |     "segment_size": 8960,
14 |     "init_lr_ratio": 1,
15 |     "warmup_epochs": 0,
16 |     "c_mel": 45,
17 |     "c_kl": 1.0,
18 |     "use_sr": false,
19 |     "max_speclen": 300,
20 |     "port": "8006"
21 |   },
22 |   "data": {
23 |     "training_files":"train.txt",
24 |     "validation_files":"test.txt",
25 |     "max_wav_value": 32768.0,
26 |     "sampling_rate": 16000,
27 |     "filter_length": 1024,
28 |     "hop_length": 320,
29 |     "win_length": 1024,
30 |     "n_mel_channels": 80,
31 |     "mel_fmin": 0.0,
32 |     "mel_fmax": null
33 |   },
34 |   "model": {
35 |     "inter_channels": 192,
36 |     "hidden_channels": 192,
37 |     "filter_channels": 768,
38 |     "n_heads": 2,
39 |     "n_layers": 6,
40 |     "kernel_size": 3,
41 |     "p_dropout": 0.1,
42 |     "resblock": "1",
43 |     "resblock_kernel_sizes": [3,7,11],
44 |     "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
45 |     "upsample_rates": [10,8,2,2],
46 |     "upsample_initial_channel": 512,
47 |     "upsample_kernel_sizes": [20,16,4,4],
48 |     "n_layers_q": 3,
49 |     "use_spectral_norm": false,
50 |     "gin_channels": 256,
51 |     "ssl_dim": 44,
52 |     "use_spk": false
53 |   }
54 | }
55 | 


--------------------------------------------------------------------------------
/configs/cvc-whispers-multi.json:
--------------------------------------------------------------------------------
 1 | {
 2 |   "train": {
 3 |     "log_interval": 200,
 4 |     "eval_interval": 6000,
 5 |     "seed": 1235,
 6 |     "epochs": 10000,
 7 |     "learning_rate": 2e-4,
 8 |     "betas": [0.8, 0.99],
 9 |     "eps": 1e-9,
10 |     "batch_size": 108,
11 |     "fp16_run": true,
12 |     "lr_decay": 0.999875,
13 |     "segment_size": 8960,
14 |     "init_lr_ratio": 1,
15 |     "warmup_epochs": 0,
16 |     "c_mel": 45,
17 |     "c_kl": 1.0,
18 |     "use_sr": false,
19 |     "max_speclen": 300,
20 |     "port": "8001"
21 |   },
22 |   "data": {
23 |     "training_files":"train.txt",
24 |     "validation_files":"test.txt",
25 |     "max_wav_value": 32768.0,
26 |     "sampling_rate": 16000,
27 |     "filter_length": 1024,
28 |     "hop_length": 320,
29 |     "win_length": 1024,
30 |     "n_mel_channels": 80,
31 |     "mel_fmin": 0.0,
32 |     "mel_fmax": null
33 |   },
34 |   "model": {
35 |     "inter_channels": 192,
36 |     "hidden_channels": 192,
37 |     "filter_channels": 768,
38 |     "n_heads": 2,
39 |     "n_layers": 6,
40 |     "kernel_size": 3,
41 |     "p_dropout": 0.1,
42 |     "resblock": "1",
43 |     "resblock_kernel_sizes": [3,7,11],
44 |     "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
45 |     "upsample_rates": [10,8,2,2],
46 |     "upsample_initial_channel": 512,
47 |     "upsample_kernel_sizes": [20,16,4,4],
48 |     "n_layers_q": 3,
49 |     "use_spectral_norm": false,
50 |     "gin_channels": 256,
51 |     "ssl_dim": 1024,
52 |     "use_spk": false
53 |   }
54 | }
55 | 


--------------------------------------------------------------------------------
/configs/cvc-whispers-three-emo.json:
--------------------------------------------------------------------------------
 1 | {
 2 |   "train": {
 3 |     "log_interval": 200,
 4 |     "eval_interval": 2500,
 5 |     "seed": 1235,
 6 |     "epochs": 10000,
 7 |     "learning_rate": 2e-4,
 8 |     "betas": [0.8, 0.99],
 9 |     "eps": 1e-9,
10 |     "batch_size": 42,
11 |     "fp16_run": true,
12 |     "lr_decay": 0.999875,
13 |     "segment_size": 24000,
14 |     "init_lr_ratio": 1,
15 |     "warmup_epochs": 0,
16 |     "c_mel": 45,
17 |     "c_kl": 1.0,
18 |     "use_sr": false,
19 |     "max_speclen": 300,
20 |     "port": "8006"
21 |   },
22 |   "data": {
23 |     "training_files":"train.txt",
24 |     "validation_files":"test.txt",
25 |     "max_wav_value": 32768.0,
26 |     "sampling_rate": 16000,
27 |     "filter_length": 1024,
28 |     "hop_length": 320,
29 |     "win_length": 1024,
30 |     "n_mel_channels": 80,
31 |     "mel_fmin": 0.0,
32 |     "mel_fmax": null
33 |   },
34 |   "model": {
35 |     "inter_channels": 192,
36 |     "hidden_channels": 192,
37 |     "filter_channels": 768,
38 |     "n_heads": 2,
39 |     "n_layers": 6,
40 |     "kernel_size": 3,
41 |     "p_dropout": 0.1,
42 |     "resblock": "1",
43 |     "resblock_kernel_sizes": [3,7,11],
44 |     "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
45 |     "upsample_rates": [10,8,2,2],
46 |     "upsample_initial_channel": 512,
47 |     "upsample_kernel_sizes": [20,16,4,4],
48 |     "n_layers_q": 3,
49 |     "use_spectral_norm": false,
50 |     "gin_channels": 256,
51 |     "ssl_dim": 1024,
52 |     "use_spk": false
53 |   }
54 | }
55 | 


--------------------------------------------------------------------------------
/cvc627.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/cvc627.png


--------------------------------------------------------------------------------
/data_utils_engppg.py:
--------------------------------------------------------------------------------
  1 | import time
  2 | import os
  3 | import random
  4 | import numpy as np
  5 | import torch
  6 | import torch.utils.data
  7 | 
  8 | import commons 
  9 | from mel_processing import spectrogram_torch, spec_to_mel_torch
 10 | from utils import load_wav_to_torch, load_filepaths_and_text, transform
 11 | #import h5py
 12 | 
 13 | 
 14 | """Multi speaker version"""
 15 | class TextAudioSpeakerLoader(torch.utils.data.Dataset):
 16 |     """
 17 |         1) loads audio, speaker_id, text pairs
 18 |         2) normalizes text and converts them to sequences of integers
 19 |         3) computes spectrograms from audio files.
 20 |     """
 21 |     def __init__(self, audiopaths, hparams):
 22 |         self.audiopaths = load_filepaths_and_text(audiopaths)
 23 |         self.max_wav_value = hparams.data.max_wav_value
 24 |         self.sampling_rate = hparams.data.sampling_rate
 25 |         self.filter_length  = hparams.data.filter_length
 26 |         self.hop_length     = hparams.data.hop_length
 27 |         self.win_length     = hparams.data.win_length
 28 |         self.sampling_rate  = hparams.data.sampling_rate
 29 |         self.use_sr = hparams.train.use_sr
 30 |         self.use_spk = hparams.model.use_spk
 31 |         self.spec_len = hparams.train.max_speclen
 32 | 
 33 |         random.seed(1235)
 34 |         random.shuffle(self.audiopaths)
 35 |         self._filter()
 36 | 
 37 |     def _filter(self):
 38 |         """
 39 |         Filter text & store spec lengths
 40 |         """
 41 |         # Store spectrogram lengths for Bucketing
 42 |         # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
 43 |         # spec_length = wav_length // hop_length
 44 | 
 45 |         lengths = []
 46 |         for audiopath in self.audiopaths:
 47 |             lengths.append(os.path.getsize(audiopath[0]) // (2 * self.hop_length))
 48 |         self.lengths = lengths
 49 | 
 50 |     def get_audio(self, filename):
 51 |         audio, sampling_rate = load_wav_to_torch(filename)
 52 |         if sampling_rate != self.sampling_rate:
 53 |             raise ValueError("{} SR doesn't match target {} SR,the audio is{}".format(
 54 |                 sampling_rate, self.sampling_rate,filename))
 55 |         audio_norm = audio / self.max_wav_value
 56 |         audio_norm = audio_norm.unsqueeze(0)
 57 |         spec_filename = filename.replace(".wav", ".f{}h{}w{}spec.pt".format(self.filter_length, self.hop_length, self.win_length))
 58 |         if os.path.exists(spec_filename):
 59 |             try:
 60 |                 spec = torch.load(spec_filename)
 61 |             except:
 62 |                 print(spec_filename,"不存在")
 63 |                 spec = spectrogram_torch(audio_norm, self.filter_length,
 64 |                     self.sampling_rate, self.hop_length, self.win_length,
 65 |                     center=False)
 66 |                 spec = torch.squeeze(spec, 0)
 67 |                 torch.save(spec, spec_filename)
 68 |         else:
 69 |             #import sys
 70 |             #print(spec_filename,"不存在")
 71 |             #sys.exit()
 72 |             spec = spectrogram_torch(audio_norm, self.filter_length,
 73 |                 self.sampling_rate, self.hop_length, self.win_length,
 74 |                 center=False)
 75 |             spec = torch.squeeze(spec, 0)
 76 |             torch.save(spec, spec_filename)
 77 |             
 78 |         if self.use_spk:
 79 |             spk_filename = filename.replace(".wav", ".npy")
 80 |             spk_filename = spk_filename.replace("DUMMY", "dataset/spk")
 81 |             spk = torch.from_numpy(np.load(spk_filename))
 82 |         
 83 |         if not self.use_sr:
 84 |             c_filename = filename.replace(".wav", "_eng_ppg.pt")
 85 |             #c_filename = c_filename.replace("DUMMY", "dataset/wavlm")
 86 |             c = torch.load(c_filename).squeeze(0)
 87 |            
 88 |         else:
 89 |             i = random.randint(68,92)
 90 |             '''
 91 |             basename = os.path.basename(filename)[:-4]
 92 |             spkname = basename[:4]
 93 |             #print(basename, spkname)
 94 |             with h5py.File(f"dataset/rs/wavlm/{spkname}/{i}.hdf5","r") as f:
 95 |                 c = torch.from_numpy(f[basename][()]).squeeze(0)
 96 |             #print(c)
 97 |             '''
 98 |             import sys
 99 |             sys.exit()
100 |             c_filename = filename.replace(".wav", f"_{i}.pt")
101 |             c_filename = c_filename.replace("DUMMY", "dataset/sr/wavlm")
102 |             c = torch.load(c_filename).squeeze(0)
103 |             
104 |         # 2023.01.10 update: code below can deteriorate model performance
105 |         # I added these code during cleaning up, thinking that it can offer better performance than my provided checkpoints, but actually it does the opposite.
106 |         # What an act of 'adding legs to a snake'!
107 |         '''
108 |         lmin = min(c.size(-1), spec.size(-1))
109 |         spec, c = spec[:, :lmin], c[:, :lmin]
110 |         audio_norm = audio_norm[:, :lmin*self.hop_length]
111 |         _spec, _c, _audio_norm = spec, c, audio_norm
112 |         while spec.size(-1) < self.spec_len:
113 |             spec = torch.cat((spec, _spec), -1)
114 |             c = torch.cat((c, _c), -1)
115 |             audio_norm = torch.cat((audio_norm, _audio_norm), -1)
116 |         start = random.randint(0, spec.size(-1) - self.spec_len)
117 |         end = start + self.spec_len
118 |         spec = spec[:, start:end]
119 |         c = c[:, start:end]
120 |         audio_norm = audio_norm[:, start*self.hop_length:end*self.hop_length]
121 |         '''
122 |         
123 |         #if self.use_spk:
124 |         #    return c, spec, audio_norm, spk
125 |         #else:
126 |         return c, spec, audio_norm
127 | 
128 |     def __getitem__(self, index):
129 |         return self.get_audio(self.audiopaths[index][0])
130 | 
131 |     def __len__(self):
132 |         return len(self.audiopaths)
133 | 
134 | 
135 | class TextAudioSpeakerCollate():
136 |     """ Zero-pads model inputs and targets
137 |     """
138 |     def __init__(self, hps):
139 |         self.hps = hps
140 |         self.use_sr = hps.train.use_sr
141 |         self.use_spk = hps.model.use_spk
142 | 
143 |     def __call__(self, batch):
144 |         """Collate's training batch from normalized text, audio and speaker identities
145 |         PARAMS
146 |         ------
147 |         batch: [text_normalized, spec_normalized, wav_normalized, sid]
148 |         """
149 |         # Right zero-pad all one-hot text sequences to max input length
150 |         _, ids_sorted_decreasing = torch.sort(
151 |             torch.LongTensor([x[0].size(1) for x in batch]),
152 |             dim=0, descending=True)
153 | 
154 |         max_spec_len = max([x[1].size(1) for x in batch])
155 |         max_wav_len = max([x[2].size(1) for x in batch])
156 | 
157 |         spec_lengths = torch.LongTensor(len(batch))
158 |         wav_lengths = torch.LongTensor(len(batch))
159 |         if self.use_spk:
160 |             spks = torch.FloatTensor(len(batch), batch[0][3].size(0))
161 |         else:
162 |             spks = None
163 |         
164 |         c_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
165 |         spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
166 |         wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
167 |         c_padded.zero_()
168 |         spec_padded.zero_()
169 |         wav_padded.zero_()
170 |         
171 |         for i in range(len(ids_sorted_decreasing)):
172 |             row = batch[ids_sorted_decreasing[i]]
173 |             
174 |             c = row[0]
175 |             c_padded[i, :, :c.size(1)] = c
176 | 
177 |             spec = row[1]
178 |             spec_padded[i, :, :spec.size(1)] = spec
179 |             spec_lengths[i] = spec.size(1)
180 | 
181 |             wav = row[2]
182 |             wav_padded[i, :, :wav.size(1)] = wav
183 |             wav_lengths[i] = wav.size(1)
184 |             
185 |             if self.use_spk:
186 |                 spks[i] = row[3]
187 |         
188 |         spec_seglen = spec_lengths[-1] if spec_lengths[-1] < self.hps.train.max_speclen + 1 else self.hps.train.max_speclen + 1
189 |         wav_seglen = spec_seglen * self.hps.data.hop_length 
190 | 
191 |         spec_padded, ids_slice = commons.rand_spec_segments(spec_padded, spec_lengths, spec_seglen)
192 |         wav_padded = commons.slice_segments(wav_padded, ids_slice * self.hps.data.hop_length, wav_seglen)
193 |         
194 |         c_padded = commons.slice_segments(c_padded, ids_slice, spec_seglen)[:,:,:-1]
195 |     
196 |         spec_padded = spec_padded[:,:,:-1]
197 |         wav_padded = wav_padded[:,:,:-self.hps.data.hop_length]
198 | 
199 |         if self.use_spk:
200 |           return c_padded, spec_padded, wav_padded, spks
201 |         else:
202 |           return c_padded, spec_padded, wav_padded
203 | 
204 | 
205 | class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
206 |     """
207 |     Maintain similar input lengths in a batch.
208 |     Length groups are specified by boundaries.
209 |     Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
210 |   
211 |     It removes samples which are not included in the boundaries.
212 |     Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
213 |     """
214 |     def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
215 |         super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
216 |         self.lengths = dataset.lengths
217 |         self.batch_size = batch_size
218 |         self.boundaries = boundaries
219 |   
220 |         self.buckets, self.num_samples_per_bucket = self._create_buckets()
221 |         print(self.num_samples_per_bucket)
222 |         self.total_size = sum(self.num_samples_per_bucket)
223 |         self.num_samples = self.total_size // self.num_replicas
224 |   
225 |     def _create_buckets(self):
226 |         buckets = [[] for _ in range(len(self.boundaries) - 1)]
227 |         for i in range(len(self.lengths)):
228 |             length = self.lengths[i]
229 |             idx_bucket = self._bisect(length)
230 |             if idx_bucket != -1:
231 |                 buckets[idx_bucket].append(i)
232 |   
233 |         for i in range(len(buckets) - 1, 0, -1):
234 |             if len(buckets[i]) == 0:
235 |                 buckets.pop(i)
236 |                 self.boundaries.pop(i+1)
237 |   
238 |         num_samples_per_bucket = []
239 |         for i in range(len(buckets)):
240 |             len_bucket = len(buckets[i])
241 |             total_batch_size = self.num_replicas * self.batch_size
242 |             rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
243 |             num_samples_per_bucket.append(len_bucket + rem)
244 |         return buckets, num_samples_per_bucket
245 |   
246 |     def __iter__(self):
247 |       # deterministically shuffle based on epoch
248 |       g = torch.Generator()
249 |       g.manual_seed(self.epoch)
250 |   
251 |       indices = []
252 |       if self.shuffle:
253 |           for bucket in self.buckets:
254 |               indices.append(torch.randperm(len(bucket), generator=g).tolist())
255 |       else:
256 |           for bucket in self.buckets:
257 |               indices.append(list(range(len(bucket))))
258 |   
259 |       batches = []
260 |       for i in range(len(self.buckets)):
261 |           bucket = self.buckets[i]
262 |           len_bucket = len(bucket)
263 |           ids_bucket = indices[i]
264 |           num_samples_bucket = self.num_samples_per_bucket[i]
265 |   
266 |           # add extra samples to make it evenly divisible
267 |           rem = num_samples_bucket - len_bucket
268 |           ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
269 |   
270 |           # subsample
271 |           ids_bucket = ids_bucket[self.rank::self.num_replicas]
272 |   
273 |           # batching
274 |           for j in range(len(ids_bucket) // self.batch_size):
275 |               batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
276 |               batches.append(batch)
277 |   
278 |       if self.shuffle:
279 |           batch_ids = torch.randperm(len(batches), generator=g).tolist()
280 |           batches = [batches[i] for i in batch_ids]
281 |       self.batches = batches
282 |   
283 |       assert len(self.batches) * self.batch_size == self.num_samples
284 |       return iter(self.batches)
285 |   
286 |     def _bisect(self, x, lo=0, hi=None):
287 |       if hi is None:
288 |           hi = len(self.boundaries) - 1
289 |   
290 |       if hi > lo:
291 |           mid = (hi + lo) // 2
292 |           if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
293 |               return mid
294 |           elif x <= self.boundaries[mid]:
295 |               return self._bisect(x, lo, mid)
296 |           else:
297 |               return self._bisect(x, mid + 1, hi)
298 |       else:
299 |           return -1
300 | 
301 |     def __len__(self):
302 |         return self.num_samples // self.batch_size
303 | 


--------------------------------------------------------------------------------
/data_utils_whisper.py:
--------------------------------------------------------------------------------
  1 | import time
  2 | import os
  3 | import random
  4 | import numpy as np
  5 | import torch
  6 | import torch.utils.data
  7 | 
  8 | import commons 
  9 | from mel_processing import spectrogram_torch, spec_to_mel_torch
 10 | from utils import load_wav_to_torch, load_filepaths_and_text, transform
 11 | #import h5py
 12 | 
 13 | 
 14 | """Multi speaker version"""
 15 | class TextAudioSpeakerLoader(torch.utils.data.Dataset):
 16 |     """
 17 |         1) loads audio, speaker_id, text pairs
 18 |         2) normalizes text and converts them to sequences of integers
 19 |         3) computes spectrograms from audio files.
 20 |     """
 21 |     def __init__(self, audiopaths, hparams):
 22 |         self.audiopaths = load_filepaths_and_text(audiopaths)
 23 |         self.max_wav_value = hparams.data.max_wav_value
 24 |         self.sampling_rate = hparams.data.sampling_rate
 25 |         self.filter_length  = hparams.data.filter_length
 26 |         self.hop_length     = hparams.data.hop_length
 27 |         self.win_length     = hparams.data.win_length
 28 |         self.sampling_rate  = hparams.data.sampling_rate
 29 |         self.use_sr = hparams.train.use_sr
 30 |         self.use_spk = hparams.model.use_spk
 31 |         self.spec_len = hparams.train.max_speclen
 32 | 
 33 |         random.seed(1235)
 34 |         random.shuffle(self.audiopaths)
 35 |         self._filter()
 36 | 
 37 |     def _filter(self):
 38 |         """
 39 |         Filter text & store spec lengths
 40 |         """
 41 |         # Store spectrogram lengths for Bucketing
 42 |         # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
 43 |         # spec_length = wav_length // hop_length
 44 | 
 45 |         lengths = []
 46 |         for audiopath in self.audiopaths:
 47 |             lengths.append(os.path.getsize(audiopath[0]) // (2 * self.hop_length))
 48 |         self.lengths = lengths
 49 | 
 50 |     def get_audio(self, filename):
 51 |         audio, sampling_rate = load_wav_to_torch(filename)
 52 |         if sampling_rate != self.sampling_rate:
 53 |             raise ValueError("{} SR doesn't match target {} SR,the audio is{}".format(
 54 |                 sampling_rate, self.sampling_rate,filename))
 55 |         audio_norm = audio / self.max_wav_value
 56 |         audio_norm = audio_norm.unsqueeze(0)
 57 |         #spec_filename = filename.replace(".wav", ".spec.pt")
 58 |         spec_filename = filename.replace(".wav", ".f{}h{}w{}spec.pt".format(self.filter_length, self.hop_length, self.win_length))
 59 |         if os.path.exists(spec_filename):
 60 |             try:
 61 |                 spec = torch.load(spec_filename)
 62 |             except:
 63 |                 print(spec_filename)
 64 |                 spec = spectrogram_torch(audio_norm, self.filter_length,
 65 |                     self.sampling_rate, self.hop_length, self.win_length,
 66 |                     center=False)
 67 |                 spec = torch.squeeze(spec, 0)
 68 |                 torch.save(spec, spec_filename)
 69 |         else:
 70 |             print(spec_filename)
 71 |             spec = spectrogram_torch(audio_norm, self.filter_length,
 72 |                 self.sampling_rate, self.hop_length, self.win_length,
 73 |                 center=False)
 74 |             spec = torch.squeeze(spec, 0)
 75 |             torch.save(spec, spec_filename)
 76 |             
 77 |         if self.use_spk:
 78 |             spk_filename = filename.replace(".wav", ".npy")
 79 |             spk_filename = spk_filename.replace("DUMMY", "dataset/spk")
 80 |             spk = torch.from_numpy(np.load(spk_filename))
 81 |         
 82 |         if not self.use_sr:
 83 |             c_filename = filename.replace(".wav", "whisper.pt.npy")
 84 |             #c_filename = c_filename.replace("DUMMY", "dataset/wavlm")
 85 |             #c = torch.load(c_filename).squeeze(0)
 86 |             c=torch.from_numpy(np.load(c_filename))
 87 |             c=c.transpose(1,0)
 88 |         else:
 89 |             i = random.randint(68,92)
 90 |             '''
 91 |             basename = os.path.basename(filename)[:-4]
 92 |             spkname = basename[:4]
 93 |             #print(basename, spkname)
 94 |             with h5py.File(f"dataset/rs/wavlm/{spkname}/{i}.hdf5","r") as f:
 95 |                 c = torch.from_numpy(f[basename][()]).squeeze(0)
 96 |             #print(c)
 97 |             '''
 98 |             c_filename = filename.replace(".wav", f"_{i}.pt")
 99 |             c_filename = c_filename.replace("DUMMY", "dataset/sr/wavlm")
100 |             c = torch.load(c_filename).squeeze(0)
101 |             
102 |         # 2023.01.10 update: code below can deteriorate model performance
103 |         # I added these code during cleaning up, thinking that it can offer better performance than my provided checkpoints, but actually it does the opposite.
104 |         # What an act of 'adding legs to a snake'!
105 |         '''
106 |         lmin = min(c.size(-1), spec.size(-1))
107 |         spec, c = spec[:, :lmin], c[:, :lmin]
108 |         audio_norm = audio_norm[:, :lmin*self.hop_length]
109 |         _spec, _c, _audio_norm = spec, c, audio_norm
110 |         while spec.size(-1) < self.spec_len:
111 |             spec = torch.cat((spec, _spec), -1)
112 |             c = torch.cat((c, _c), -1)
113 |             audio_norm = torch.cat((audio_norm, _audio_norm), -1)
114 |         start = random.randint(0, spec.size(-1) - self.spec_len)
115 |         end = start + self.spec_len
116 |         spec = spec[:, start:end]
117 |         c = c[:, start:end]
118 |         audio_norm = audio_norm[:, start*self.hop_length:end*self.hop_length]
119 |         '''
120 |         
121 |         #if self.use_spk:
122 |         #    return c, spec, audio_norm, spk
123 |         #else:
124 |         return c, spec, audio_norm
125 | 
126 |     def __getitem__(self, index):
127 |         return self.get_audio(self.audiopaths[index][0])
128 | 
129 |     def __len__(self):
130 |         return len(self.audiopaths)
131 | 
132 | 
133 | class TextAudioSpeakerCollate():
134 |     """ Zero-pads model inputs and targets
135 |     """
136 |     def __init__(self, hps):
137 |         self.hps = hps
138 |         self.use_sr = hps.train.use_sr
139 |         self.use_spk = hps.model.use_spk
140 | 
141 |     def __call__(self, batch):
142 |         """Collate's training batch from normalized text, audio and speaker identities
143 |         PARAMS
144 |         ------
145 |         batch: [text_normalized, spec_normalized, wav_normalized, sid]
146 |         """
147 |         # Right zero-pad all one-hot text sequences to max input length
148 |         _, ids_sorted_decreasing = torch.sort(
149 |             torch.LongTensor([x[0].size(1) for x in batch]),
150 |             dim=0, descending=True)
151 | 
152 |         max_spec_len = max([x[1].size(1) for x in batch])
153 |         max_wav_len = max([x[2].size(1) for x in batch])
154 | 
155 |         spec_lengths = torch.LongTensor(len(batch))
156 |         wav_lengths = torch.LongTensor(len(batch))
157 |         if self.use_spk:
158 |             spks = torch.FloatTensor(len(batch), batch[0][3].size(0))
159 |         else:
160 |             spks = None
161 |         
162 |         c_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
163 |         spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
164 |         wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
165 |         c_padded.zero_()
166 |         spec_padded.zero_()
167 |         wav_padded.zero_()
168 |         
169 |         for i in range(len(ids_sorted_decreasing)):
170 |             row = batch[ids_sorted_decreasing[i]]
171 |             
172 |             c = row[0]
173 |             c_padded[i, :, :c.size(1)] = c
174 | 
175 |             spec = row[1]
176 |             spec_padded[i, :, :spec.size(1)] = spec
177 |             spec_lengths[i] = spec.size(1)
178 | 
179 |             wav = row[2]
180 |             wav_padded[i, :, :wav.size(1)] = wav
181 |             wav_lengths[i] = wav.size(1)
182 |             
183 |             if self.use_spk:
184 |                 spks[i] = row[3]
185 |         
186 |         spec_seglen = spec_lengths[-1] if spec_lengths[-1] < self.hps.train.max_speclen + 1 else self.hps.train.max_speclen + 1
187 |         wav_seglen = spec_seglen * self.hps.data.hop_length 
188 | 
189 |         spec_padded, ids_slice = commons.rand_spec_segments(spec_padded, spec_lengths, spec_seglen)
190 |         wav_padded = commons.slice_segments(wav_padded, ids_slice * self.hps.data.hop_length, wav_seglen)
191 |         
192 |         c_padded = commons.slice_segments(c_padded, ids_slice, spec_seglen)[:,:,:-1]
193 |     
194 |         spec_padded = spec_padded[:,:,:-1]
195 |         wav_padded = wav_padded[:,:,:-self.hps.data.hop_length]
196 | 
197 |         if self.use_spk:
198 |           return c_padded, spec_padded, wav_padded, spks
199 |         else:
200 |           return c_padded, spec_padded, wav_padded
201 | 
202 | 
203 | class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
204 |     """
205 |     Maintain similar input lengths in a batch.
206 |     Length groups are specified by boundaries.
207 |     Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
208 |   
209 |     It removes samples which are not included in the boundaries.
210 |     Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
211 |     """
212 |     def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
213 |         super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
214 |         self.lengths = dataset.lengths
215 |         self.batch_size = batch_size
216 |         self.boundaries = boundaries
217 |   
218 |         self.buckets, self.num_samples_per_bucket = self._create_buckets()
219 |         print(self.num_samples_per_bucket)
220 |         self.total_size = sum(self.num_samples_per_bucket)
221 |         self.num_samples = self.total_size // self.num_replicas
222 |   
223 |     def _create_buckets(self):
224 |         buckets = [[] for _ in range(len(self.boundaries) - 1)]
225 |         for i in range(len(self.lengths)):
226 |             length = self.lengths[i]
227 |             idx_bucket = self._bisect(length)
228 |             if idx_bucket != -1:
229 |                 buckets[idx_bucket].append(i)
230 |   
231 |         for i in range(len(buckets) - 1, 0, -1):
232 |             if len(buckets[i]) == 0:
233 |                 buckets.pop(i)
234 |                 self.boundaries.pop(i+1)
235 |   
236 |         num_samples_per_bucket = []
237 |         for i in range(len(buckets)):
238 |             len_bucket = len(buckets[i])
239 |             total_batch_size = self.num_replicas * self.batch_size
240 |             rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
241 |             num_samples_per_bucket.append(len_bucket + rem)
242 |         return buckets, num_samples_per_bucket
243 |   
244 |     def __iter__(self):
245 |       # deterministically shuffle based on epoch
246 |       g = torch.Generator()
247 |       g.manual_seed(self.epoch)
248 |   
249 |       indices = []
250 |       if self.shuffle:
251 |           for bucket in self.buckets:
252 |               indices.append(torch.randperm(len(bucket), generator=g).tolist())
253 |       else:
254 |           for bucket in self.buckets:
255 |               indices.append(list(range(len(bucket))))
256 |   
257 |       batches = []
258 |       for i in range(len(self.buckets)):
259 |           bucket = self.buckets[i]
260 |           len_bucket = len(bucket)
261 |           ids_bucket = indices[i]
262 |           num_samples_bucket = self.num_samples_per_bucket[i]
263 |   
264 |           # add extra samples to make it evenly divisible
265 |           rem = num_samples_bucket - len_bucket
266 |           ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
267 |   
268 |           # subsample
269 |           ids_bucket = ids_bucket[self.rank::self.num_replicas]
270 |   
271 |           # batching
272 |           for j in range(len(ids_bucket) // self.batch_size):
273 |               batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
274 |               batches.append(batch)
275 |   
276 |       if self.shuffle:
277 |           batch_ids = torch.randperm(len(batches), generator=g).tolist()
278 |           batches = [batches[i] for i in batch_ids]
279 |       self.batches = batches
280 |   
281 |       assert len(self.batches) * self.batch_size == self.num_samples
282 |       return iter(self.batches)
283 |   
284 |     def _bisect(self, x, lo=0, hi=None):
285 |       if hi is None:
286 |           hi = len(self.boundaries) - 1
287 |   
288 |       if hi > lo:
289 |           mid = (hi + lo) // 2
290 |           if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
291 |               return mid
292 |           elif x <= self.boundaries[mid]:
293 |               return self._bisect(x, lo, mid)
294 |           else:
295 |               return self._bisect(x, mid + 1, hi)
296 |       else:
297 |           return -1
298 | 
299 |     def __len__(self):
300 |         return self.num_samples // self.batch_size
301 | 


--------------------------------------------------------------------------------
/losses.py:
--------------------------------------------------------------------------------
 1 | import torch 
 2 | from torch.nn import functional as F
 3 | 
 4 | import commons
 5 | 
 6 | 
 7 | def feature_loss(fmap_r, fmap_g):
 8 |   loss = 0
 9 |   for dr, dg in zip(fmap_r, fmap_g):
10 |     for rl, gl in zip(dr, dg):
11 |       rl = rl.float().detach()
12 |       gl = gl.float()
13 |       loss += torch.mean(torch.abs(rl - gl))
14 | 
15 |   return loss * 2 
16 | 
17 | 
18 | def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19 |   loss = 0
20 |   r_losses = []
21 |   g_losses = []
22 |   for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23 |     dr = dr.float()
24 |     dg = dg.float()
25 |     r_loss = torch.mean((1-dr)**2)
26 |     g_loss = torch.mean(dg**2)
27 |     loss += (r_loss + g_loss)
28 |     r_losses.append(r_loss.item())
29 |     g_losses.append(g_loss.item())
30 | 
31 |   return loss, r_losses, g_losses
32 | 
33 | 
34 | def generator_loss(disc_outputs):
35 |   loss = 0
36 |   gen_losses = []
37 |   for dg in disc_outputs:
38 |     dg = dg.float()
39 |     l = torch.mean((1-dg)**2)
40 |     gen_losses.append(l)
41 |     loss += l
42 | 
43 |   return loss, gen_losses
44 | 
45 | 
46 | def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47 |   """
48 |   z_p, logs_q: [b, h, t_t]
49 |   m_p, logs_p: [b, h, t_t]
50 |   """
51 |   z_p = z_p.float()
52 |   logs_q = logs_q.float()
53 |   m_p = m_p.float()
54 |   logs_p = logs_p.float()
55 |   z_mask = z_mask.float()
56 |   #print(logs_p)
57 |   kl = logs_p - logs_q - 0.5
58 |   kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59 |   kl = torch.sum(kl * z_mask)
60 |   l = kl / torch.sum(z_mask)
61 |   return l
62 | 


--------------------------------------------------------------------------------
/mel_processing.py:
--------------------------------------------------------------------------------
  1 | import math
  2 | import os
  3 | import random
  4 | import torch
  5 | from torch import nn
  6 | import torch.nn.functional as F
  7 | import torch.utils.data
  8 | import numpy as np
  9 | import librosa
 10 | import librosa.util as librosa_util
 11 | from librosa.util import normalize, pad_center, tiny
 12 | from scipy.signal import get_window
 13 | from scipy.io.wavfile import read
 14 | from librosa.filters import mel as librosa_mel_fn
 15 | 
 16 | MAX_WAV_VALUE = 32768.0
 17 | 
 18 | 
 19 | def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
 20 |     """
 21 |     PARAMS
 22 |     ------
 23 |     C: compression factor
 24 |     """
 25 |     return torch.log(torch.clamp(x, min=clip_val) * C)
 26 | 
 27 | 
 28 | def dynamic_range_decompression_torch(x, C=1):
 29 |     """
 30 |     PARAMS
 31 |     ------
 32 |     C: compression factor used to compress
 33 |     """
 34 |     return torch.exp(x) / C
 35 | 
 36 | 
 37 | def spectral_normalize_torch(magnitudes):
 38 |     output = dynamic_range_compression_torch(magnitudes)
 39 |     return output
 40 | 
 41 | 
 42 | def spectral_de_normalize_torch(magnitudes):
 43 |     output = dynamic_range_decompression_torch(magnitudes)
 44 |     return output
 45 | 
 46 | 
 47 | mel_basis = {}
 48 | hann_window = {}
 49 | 
 50 | 
 51 | def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
 52 |     if torch.min(y) < -1.:
 53 |         print('min value is ', torch.min(y))
 54 |     if torch.max(y) > 1.:
 55 |         print('max value is ', torch.max(y))
 56 | 
 57 |     global hann_window
 58 |     dtype_device = str(y.dtype) + '_' + str(y.device)
 59 |     wnsize_dtype_device = str(win_size) + '_' + dtype_device
 60 |     if wnsize_dtype_device not in hann_window:
 61 |         hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
 62 | 
 63 |     y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
 64 |     y = y.squeeze(1)
 65 | 
 66 |     spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
 67 |                       center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
 68 | 
 69 |     spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
 70 |     return spec
 71 | 
 72 | 
 73 | def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
 74 |     global mel_basis
 75 |     dtype_device = str(spec.dtype) + '_' + str(spec.device)
 76 |     fmax_dtype_device = str(fmax) + '_' + dtype_device
 77 |     if fmax_dtype_device not in mel_basis:
 78 |         mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
 79 |         mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
 80 |     spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
 81 |     spec = spectral_normalize_torch(spec)
 82 |     return spec
 83 | 
 84 | 
 85 | def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
 86 |     if torch.min(y) < -1.:
 87 |         print('min value is ', torch.min(y))
 88 |     if torch.max(y) > 1.:
 89 |         print('max value is ', torch.max(y))
 90 | 
 91 |     global mel_basis, hann_window
 92 |     dtype_device = str(y.dtype) + '_' + str(y.device)
 93 |     fmax_dtype_device = str(fmax) + '_' + dtype_device
 94 |     wnsize_dtype_device = str(win_size) + '_' + dtype_device
 95 |     if fmax_dtype_device not in mel_basis:
 96 |         mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
 97 |         mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
 98 |     if wnsize_dtype_device not in hann_window:
 99 |         hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100 | 
101 |     y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102 |     y = y.squeeze(1)
103 | 
104 |     spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105 |                       center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
106 | 
107 |     spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108 | 
109 |     spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110 |     spec = spectral_normalize_torch(spec)
111 | 
112 |     return spec
113 | 


--------------------------------------------------------------------------------
/models.py:
--------------------------------------------------------------------------------
  1 | import copy
  2 | import math
  3 | import torch
  4 | from torch import nn
  5 | from torch.nn import functional as F
  6 | 
  7 | import commons
  8 | import modules
  9 | 
 10 | from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
 11 | from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
 12 | from commons import init_weights, get_padding
 13 | 
 14 | 
 15 | class ResidualCouplingBlock(nn.Module):
 16 |   def __init__(self,
 17 |       channels,
 18 |       hidden_channels,
 19 |       kernel_size,
 20 |       dilation_rate,
 21 |       n_layers,
 22 |       n_flows=4,
 23 |       gin_channels=0):
 24 |     super().__init__()
 25 |     self.channels = channels
 26 |     self.hidden_channels = hidden_channels
 27 |     self.kernel_size = kernel_size
 28 |     self.dilation_rate = dilation_rate
 29 |     self.n_layers = n_layers
 30 |     self.n_flows = n_flows
 31 |     self.gin_channels = gin_channels
 32 | 
 33 |     self.flows = nn.ModuleList()
 34 |     for i in range(n_flows):
 35 |       self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
 36 |       self.flows.append(modules.Flip())
 37 | 
 38 |   def forward(self, x, x_mask, g=None, reverse=False):
 39 |     if not reverse:
 40 |       for flow in self.flows:
 41 |         x, _ = flow(x, x_mask, g=g, reverse=reverse)
 42 |     else:
 43 |       for flow in reversed(self.flows):
 44 |         x = flow(x, x_mask, g=g, reverse=reverse)
 45 |     return x
 46 | 
 47 | 
 48 | class Encoder(nn.Module):
 49 |   def __init__(self,
 50 |       in_channels,
 51 |       out_channels,
 52 |       hidden_channels,
 53 |       kernel_size,
 54 |       dilation_rate,
 55 |       n_layers,
 56 |       gin_channels=0):
 57 |     super().__init__()
 58 |     self.in_channels = in_channels
 59 |     self.out_channels = out_channels
 60 |     self.hidden_channels = hidden_channels
 61 |     self.kernel_size = kernel_size
 62 |     self.dilation_rate = dilation_rate
 63 |     self.n_layers = n_layers
 64 |     self.gin_channels = gin_channels
 65 | 
 66 |     self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
 67 |     self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
 68 |     self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
 69 | 
 70 |   def forward(self, x, x_lengths, g=None):
 71 |     x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
 72 |     x = self.pre(x) * x_mask
 73 |     x = self.enc(x, x_mask, g=g)
 74 |     stats = self.proj(x) * x_mask
 75 |     m, logs = torch.split(stats, self.out_channels, dim=1)
 76 |     z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
 77 |     return z, m, logs, x_mask
 78 | 
 79 | 
 80 | class Generator(torch.nn.Module):
 81 |     def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
 82 |         super(Generator, self).__init__()
 83 |         self.num_kernels = len(resblock_kernel_sizes)
 84 |         self.num_upsamples = len(upsample_rates)
 85 |         self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
 86 |         resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
 87 | 
 88 |         self.ups = nn.ModuleList()
 89 |         for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
 90 |             self.ups.append(weight_norm(
 91 |                 ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
 92 |                                 k, u, padding=(k-u)//2)))
 93 | 
 94 |         self.resblocks = nn.ModuleList()
 95 |         for i in range(len(self.ups)):
 96 |             ch = upsample_initial_channel//(2**(i+1))
 97 |             for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
 98 |                 self.resblocks.append(resblock(ch, k, d))
 99 | 
100 |         self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
101 |         self.ups.apply(init_weights)
102 | 
103 |         if gin_channels != 0:
104 |             self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
105 | 
106 |     def forward(self, x, g=None):
107 |         x = self.conv_pre(x)
108 |         if g is not None:
109 |           x = x + self.cond(g)
110 | 
111 |         for i in range(self.num_upsamples):
112 |             x = F.leaky_relu(x, modules.LRELU_SLOPE)
113 |             x = self.ups[i](x)
114 |             xs = None
115 |             for j in range(self.num_kernels):
116 |                 if xs is None:
117 |                     xs = self.resblocks[i*self.num_kernels+j](x)
118 |                 else:
119 |                     xs += self.resblocks[i*self.num_kernels+j](x)
120 |             x = xs / self.num_kernels
121 |         x = F.leaky_relu(x)
122 |         x = self.conv_post(x)
123 |         x = torch.tanh(x)
124 | 
125 |         return x
126 | 
127 |     def remove_weight_norm(self):
128 |         print('Removing weight norm...')
129 |         for l in self.ups:
130 |             remove_weight_norm(l)
131 |         for l in self.resblocks:
132 |             l.remove_weight_norm()
133 | 
134 | 
135 | class DiscriminatorP(torch.nn.Module):
136 |     def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
137 |         super(DiscriminatorP, self).__init__()
138 |         self.period = period
139 |         self.use_spectral_norm = use_spectral_norm
140 |         norm_f = weight_norm if use_spectral_norm == False else spectral_norm
141 |         self.convs = nn.ModuleList([
142 |             norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
143 |             norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
144 |             norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
145 |             norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
146 |             norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
147 |         ])
148 |         self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
149 | 
150 |     def forward(self, x):
151 |         fmap = []
152 | 
153 |         # 1d to 2d
154 |         b, c, t = x.shape
155 |         if t % self.period != 0: # pad first
156 |             n_pad = self.period - (t % self.period)
157 |             x = F.pad(x, (0, n_pad), "reflect")
158 |             t = t + n_pad
159 |         x = x.view(b, c, t // self.period, self.period)
160 | 
161 |         for l in self.convs:
162 |             x = l(x)
163 |             x = F.leaky_relu(x, modules.LRELU_SLOPE)
164 |             fmap.append(x)
165 |         x = self.conv_post(x)
166 |         fmap.append(x)
167 |         x = torch.flatten(x, 1, -1)
168 | 
169 |         return x, fmap
170 | 
171 | 
172 | class DiscriminatorS(torch.nn.Module):
173 |     def __init__(self, use_spectral_norm=False):
174 |         super(DiscriminatorS, self).__init__()
175 |         norm_f = weight_norm if use_spectral_norm == False else spectral_norm
176 |         self.convs = nn.ModuleList([
177 |             norm_f(Conv1d(1, 16, 15, 1, padding=7)),
178 |             norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
179 |             norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
180 |             norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
181 |             norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
182 |             norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
183 |         ])
184 |         self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
185 | 
186 |     def forward(self, x):
187 |         fmap = []
188 | 
189 |         for l in self.convs:
190 |             x = l(x)
191 |             x = F.leaky_relu(x, modules.LRELU_SLOPE)
192 |             fmap.append(x)
193 |         x = self.conv_post(x)
194 |         fmap.append(x)
195 |         x = torch.flatten(x, 1, -1)
196 | 
197 |         return x, fmap
198 | 
199 | 
200 | class MultiPeriodDiscriminator(torch.nn.Module):
201 |     def __init__(self, use_spectral_norm=False):
202 |         super(MultiPeriodDiscriminator, self).__init__()
203 |         periods = [2,3,5,7,11]
204 | 
205 |         discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
206 |         discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
207 |         self.discriminators = nn.ModuleList(discs)
208 | 
209 |     def forward(self, y, y_hat):
210 |         y_d_rs = []
211 |         y_d_gs = []
212 |         fmap_rs = []
213 |         fmap_gs = []
214 |         for i, d in enumerate(self.discriminators):
215 |             y_d_r, fmap_r = d(y)
216 |             y_d_g, fmap_g = d(y_hat)
217 |             y_d_rs.append(y_d_r)
218 |             y_d_gs.append(y_d_g)
219 |             fmap_rs.append(fmap_r)
220 |             fmap_gs.append(fmap_g)
221 | 
222 |         return y_d_rs, y_d_gs, fmap_rs, fmap_gs
223 |         
224 |         
225 | class SpeakerEncoder(torch.nn.Module):
226 |     def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
227 |         super(SpeakerEncoder, self).__init__()
228 |         self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
229 |         self.linear = nn.Linear(model_hidden_size, model_embedding_size)
230 |         self.relu = nn.ReLU()
231 | 
232 |     def forward(self, mels):
233 |         self.lstm.flatten_parameters()
234 |         _, (hidden, _) = self.lstm(mels)
235 |         embeds_raw = self.relu(self.linear(hidden[-1]))
236 |         return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
237 |         
238 |     def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
239 |         mel_slices = []
240 |         for i in range(0, total_frames-partial_frames, partial_hop):
241 |             mel_range = torch.arange(i, i+partial_frames)
242 |             mel_slices.append(mel_range)
243 |             
244 |         return mel_slices
245 |     
246 |     def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
247 |         mel_len = mel.size(1)
248 |         last_mel = mel[:,-partial_frames:]
249 |         
250 |         if mel_len > partial_frames:
251 |             mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
252 |             mels = list(mel[:,s] for s in mel_slices)
253 |             mels.append(last_mel)
254 |             mels = torch.stack(tuple(mels), 0).squeeze(1)
255 |         
256 |             with torch.no_grad():
257 |                 partial_embeds = self(mels)
258 |             embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
259 |             #embed = embed / torch.linalg.norm(embed, 2)
260 |         else:
261 |             with torch.no_grad():
262 |                 embed = self(last_mel)
263 |         
264 |         return embed
265 | 
266 | 
267 | class SynthesizerTrn(nn.Module):
268 |   """
269 |   Synthesizer for Training
270 |   """
271 | 
272 |   def __init__(self, 
273 |     spec_channels,
274 |     segment_size,
275 |     inter_channels,
276 |     hidden_channels,
277 |     filter_channels,
278 |     n_heads,
279 |     n_layers,
280 |     kernel_size,
281 |     p_dropout,
282 |     resblock, 
283 |     resblock_kernel_sizes, 
284 |     resblock_dilation_sizes, 
285 |     upsample_rates, 
286 |     upsample_initial_channel, 
287 |     upsample_kernel_sizes,
288 |     gin_channels,
289 |     ssl_dim,
290 |     use_spk,
291 |     **kwargs):
292 | 
293 |     super().__init__()
294 |     self.spec_channels = spec_channels
295 |     self.inter_channels = inter_channels
296 |     self.hidden_channels = hidden_channels
297 |     self.filter_channels = filter_channels
298 |     self.n_heads = n_heads
299 |     self.n_layers = n_layers
300 |     self.kernel_size = kernel_size
301 |     self.p_dropout = p_dropout
302 |     self.resblock = resblock
303 |     self.resblock_kernel_sizes = resblock_kernel_sizes
304 |     self.resblock_dilation_sizes = resblock_dilation_sizes
305 |     self.upsample_rates = upsample_rates
306 |     self.upsample_initial_channel = upsample_initial_channel
307 |     self.upsample_kernel_sizes = upsample_kernel_sizes
308 |     self.segment_size = segment_size
309 |     self.gin_channels = gin_channels
310 |     self.ssl_dim = ssl_dim
311 |     self.use_spk = use_spk
312 | 
313 |     self.enc_p = Encoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16)
314 |     self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
315 |     self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) 
316 |     self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
317 |     
318 |     if not self.use_spk:
319 |       self.enc_spk = SpeakerEncoder(model_hidden_size=gin_channels, model_embedding_size=gin_channels)
320 | 
321 |   def forward(self, c, spec, g=None, mel=None, c_lengths=None, spec_lengths=None):
322 |     if c_lengths == None:
323 |       c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
324 |     if spec_lengths == None:
325 |       spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device)
326 |       
327 |     if not self.use_spk:
328 |       #print(torch.max(mel),torch.min(mel),mel.size())
329 |       g_raw = self.enc_spk(mel.transpose(1,2))
330 |     g = g_raw.unsqueeze(-1)
331 |       
332 |     _, m_p, logs_p, _ = self.enc_p(c, c_lengths)#这里也输入一下g会不会更好?models_g_content.py里面有模型代码
333 |     z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g) 
334 |     z_p = self.flow(z, spec_mask, g=g)
335 |     #print(z.size(),spec_lengths, self.segment_size)
336 |     z_slice, ids_slice = commons.rand_slice_segments(z, spec_lengths, self.segment_size)
337 |     #print(z_slice.size())
338 |     o = self.dec(z_slice, g=g)
339 |     #with torch.no_grad():
340 |     #   g_hat = self.enc_spk(mel.transpose(1,2))
341 |     
342 |     return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q),g_raw#,g_hat
343 | 
344 |   def infer(self, c, g=None, mel=None, c_lengths=None):
345 |     if c_lengths == None:
346 |       c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
347 |     if not self.use_spk:
348 |       #g = self.enc_spk.embed_utterance(mel.transpose(1,2))
349 |       g = self.enc_spk(mel.transpose(1,2))
350 |     g = g.unsqueeze(-1)
351 | 
352 |     z_p, m_p, logs_p, c_mask = self.enc_p(c, c_lengths)
353 |     z = self.flow(z_p, c_mask, g=g, reverse=True)
354 |     o = self.dec(z * c_mask, g=g)
355 |     
356 |     return o
357 | 


--------------------------------------------------------------------------------
/modules.py:
--------------------------------------------------------------------------------
  1 | import copy
  2 | import math
  3 | import numpy as np
  4 | import scipy
  5 | import torch
  6 | from torch import nn
  7 | from torch.nn import functional as F
  8 | 
  9 | from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
 10 | from torch.nn.utils import weight_norm, remove_weight_norm
 11 | 
 12 | import commons
 13 | from commons import init_weights, get_padding
 14 | 
 15 | 
 16 | LRELU_SLOPE = 0.1
 17 | 
 18 | 
 19 | class LayerNorm(nn.Module):
 20 |   def __init__(self, channels, eps=1e-5):
 21 |     super().__init__()
 22 |     self.channels = channels
 23 |     self.eps = eps
 24 | 
 25 |     self.gamma = nn.Parameter(torch.ones(channels))
 26 |     self.beta = nn.Parameter(torch.zeros(channels))
 27 | 
 28 |   def forward(self, x):
 29 |     x = x.transpose(1, -1)
 30 |     x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
 31 |     return x.transpose(1, -1)
 32 | 
 33 |  
 34 | class ConvReluNorm(nn.Module):
 35 |   def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
 36 |     super().__init__()
 37 |     self.in_channels = in_channels
 38 |     self.hidden_channels = hidden_channels
 39 |     self.out_channels = out_channels
 40 |     self.kernel_size = kernel_size
 41 |     self.n_layers = n_layers
 42 |     self.p_dropout = p_dropout
 43 |     assert n_layers > 1, "Number of layers should be larger than 0."
 44 | 
 45 |     self.conv_layers = nn.ModuleList()
 46 |     self.norm_layers = nn.ModuleList()
 47 |     self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
 48 |     self.norm_layers.append(LayerNorm(hidden_channels))
 49 |     self.relu_drop = nn.Sequential(
 50 |         nn.ReLU(),
 51 |         nn.Dropout(p_dropout))
 52 |     for _ in range(n_layers-1):
 53 |       self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
 54 |       self.norm_layers.append(LayerNorm(hidden_channels))
 55 |     self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
 56 |     self.proj.weight.data.zero_()
 57 |     self.proj.bias.data.zero_()
 58 | 
 59 |   def forward(self, x, x_mask):
 60 |     x_org = x
 61 |     for i in range(self.n_layers):
 62 |       x = self.conv_layers[i](x * x_mask)
 63 |       x = self.norm_layers[i](x)
 64 |       x = self.relu_drop(x)
 65 |     x = x_org + self.proj(x)
 66 |     return x * x_mask
 67 | 
 68 | 
 69 | class DDSConv(nn.Module):
 70 |   """
 71 |   Dialted and Depth-Separable Convolution
 72 |   """
 73 |   def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
 74 |     super().__init__()
 75 |     self.channels = channels
 76 |     self.kernel_size = kernel_size
 77 |     self.n_layers = n_layers
 78 |     self.p_dropout = p_dropout
 79 | 
 80 |     self.drop = nn.Dropout(p_dropout)
 81 |     self.convs_sep = nn.ModuleList()
 82 |     self.convs_1x1 = nn.ModuleList()
 83 |     self.norms_1 = nn.ModuleList()
 84 |     self.norms_2 = nn.ModuleList()
 85 |     for i in range(n_layers):
 86 |       dilation = kernel_size ** i
 87 |       padding = (kernel_size * dilation - dilation) // 2
 88 |       self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, 
 89 |           groups=channels, dilation=dilation, padding=padding
 90 |       ))
 91 |       self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
 92 |       self.norms_1.append(LayerNorm(channels))
 93 |       self.norms_2.append(LayerNorm(channels))
 94 | 
 95 |   def forward(self, x, x_mask, g=None):
 96 |     if g is not None:
 97 |       x = x + g
 98 |     for i in range(self.n_layers):
 99 |       y = self.convs_sep[i](x * x_mask)
100 |       y = self.norms_1[i](y)
101 |       y = F.gelu(y)
102 |       y = self.convs_1x1[i](y)
103 |       y = self.norms_2[i](y)
104 |       y = F.gelu(y)
105 |       y = self.drop(y)
106 |       x = x + y
107 |     return x * x_mask
108 | 
109 | 
110 | class WN(torch.nn.Module):
111 |   def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
112 |     super(WN, self).__init__()
113 |     assert(kernel_size % 2 == 1)
114 |     self.hidden_channels =hidden_channels
115 |     self.kernel_size = kernel_size,
116 |     self.dilation_rate = dilation_rate
117 |     self.n_layers = n_layers
118 |     self.gin_channels = gin_channels
119 |     self.p_dropout = p_dropout
120 | 
121 |     self.in_layers = torch.nn.ModuleList()
122 |     self.res_skip_layers = torch.nn.ModuleList()
123 |     self.drop = nn.Dropout(p_dropout)
124 | 
125 |     if gin_channels != 0:
126 |       cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
127 |       self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
128 | 
129 |     for i in range(n_layers):
130 |       dilation = dilation_rate ** i
131 |       padding = int((kernel_size * dilation - dilation) / 2)
132 |       in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
133 |                                  dilation=dilation, padding=padding)
134 |       in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
135 |       self.in_layers.append(in_layer)
136 | 
137 |       # last one is not necessary
138 |       if i < n_layers - 1:
139 |         res_skip_channels = 2 * hidden_channels
140 |       else:
141 |         res_skip_channels = hidden_channels
142 | 
143 |       res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
144 |       res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
145 |       self.res_skip_layers.append(res_skip_layer)
146 | 
147 |   def forward(self, x, x_mask, g=None, **kwargs):
148 |     output = torch.zeros_like(x)
149 |     n_channels_tensor = torch.IntTensor([self.hidden_channels])
150 | 
151 |     if g is not None:
152 |       g = self.cond_layer(g)
153 | 
154 |     for i in range(self.n_layers):
155 |       x_in = self.in_layers[i](x)
156 |       if g is not None:
157 |         cond_offset = i * 2 * self.hidden_channels
158 |         g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
159 |       else:
160 |         g_l = torch.zeros_like(x_in)
161 | 
162 |       acts = commons.fused_add_tanh_sigmoid_multiply(
163 |           x_in,
164 |           g_l,
165 |           n_channels_tensor)
166 |       acts = self.drop(acts)
167 | 
168 |       res_skip_acts = self.res_skip_layers[i](acts)
169 |       if i < self.n_layers - 1:
170 |         res_acts = res_skip_acts[:,:self.hidden_channels,:]
171 |         x = (x + res_acts) * x_mask
172 |         output = output + res_skip_acts[:,self.hidden_channels:,:]
173 |       else:
174 |         output = output + res_skip_acts
175 |     return output * x_mask
176 | 
177 |   def remove_weight_norm(self):
178 |     if self.gin_channels != 0:
179 |       torch.nn.utils.remove_weight_norm(self.cond_layer)
180 |     for l in self.in_layers:
181 |       torch.nn.utils.remove_weight_norm(l)
182 |     for l in self.res_skip_layers:
183 |      torch.nn.utils.remove_weight_norm(l)
184 | 
185 | 
186 | class ResBlock1(torch.nn.Module):
187 |     def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
188 |         super(ResBlock1, self).__init__()
189 |         self.convs1 = nn.ModuleList([
190 |             weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
191 |                                padding=get_padding(kernel_size, dilation[0]))),
192 |             weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
193 |                                padding=get_padding(kernel_size, dilation[1]))),
194 |             weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
195 |                                padding=get_padding(kernel_size, dilation[2])))
196 |         ])
197 |         self.convs1.apply(init_weights)
198 | 
199 |         self.convs2 = nn.ModuleList([
200 |             weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
201 |                                padding=get_padding(kernel_size, 1))),
202 |             weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
203 |                                padding=get_padding(kernel_size, 1))),
204 |             weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
205 |                                padding=get_padding(kernel_size, 1)))
206 |         ])
207 |         self.convs2.apply(init_weights)
208 | 
209 |     def forward(self, x, x_mask=None):
210 |         for c1, c2 in zip(self.convs1, self.convs2):
211 |             xt = F.leaky_relu(x, LRELU_SLOPE)
212 |             if x_mask is not None:
213 |                 xt = xt * x_mask
214 |             xt = c1(xt)
215 |             xt = F.leaky_relu(xt, LRELU_SLOPE)
216 |             if x_mask is not None:
217 |                 xt = xt * x_mask
218 |             xt = c2(xt)
219 |             x = xt + x
220 |         if x_mask is not None:
221 |             x = x * x_mask
222 |         return x
223 | 
224 |     def remove_weight_norm(self):
225 |         for l in self.convs1:
226 |             remove_weight_norm(l)
227 |         for l in self.convs2:
228 |             remove_weight_norm(l)
229 | 
230 | 
231 | class ResBlock2(torch.nn.Module):
232 |     def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
233 |         super(ResBlock2, self).__init__()
234 |         self.convs = nn.ModuleList([
235 |             weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
236 |                                padding=get_padding(kernel_size, dilation[0]))),
237 |             weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
238 |                                padding=get_padding(kernel_size, dilation[1])))
239 |         ])
240 |         self.convs.apply(init_weights)
241 | 
242 |     def forward(self, x, x_mask=None):
243 |         for c in self.convs:
244 |             xt = F.leaky_relu(x, LRELU_SLOPE)
245 |             if x_mask is not None:
246 |                 xt = xt * x_mask
247 |             xt = c(xt)
248 |             x = xt + x
249 |         if x_mask is not None:
250 |             x = x * x_mask
251 |         return x
252 | 
253 |     def remove_weight_norm(self):
254 |         for l in self.convs:
255 |             remove_weight_norm(l)
256 | 
257 | 
258 | class Log(nn.Module):
259 |   def forward(self, x, x_mask, reverse=False, **kwargs):
260 |     if not reverse:
261 |       y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
262 |       logdet = torch.sum(-y, [1, 2])
263 |       return y, logdet
264 |     else:
265 |       x = torch.exp(x) * x_mask
266 |       return x
267 |     
268 | 
269 | class Flip(nn.Module):
270 |   def forward(self, x, *args, reverse=False, **kwargs):
271 |     x = torch.flip(x, [1])
272 |     if not reverse:
273 |       logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
274 |       return x, logdet
275 |     else:
276 |       return x
277 | 
278 | 
279 | class ElementwiseAffine(nn.Module):
280 |   def __init__(self, channels):
281 |     super().__init__()
282 |     self.channels = channels
283 |     self.m = nn.Parameter(torch.zeros(channels,1))
284 |     self.logs = nn.Parameter(torch.zeros(channels,1))
285 | 
286 |   def forward(self, x, x_mask, reverse=False, **kwargs):
287 |     if not reverse:
288 |       y = self.m + torch.exp(self.logs) * x
289 |       y = y * x_mask
290 |       logdet = torch.sum(self.logs * x_mask, [1,2])
291 |       return y, logdet
292 |     else:
293 |       x = (x - self.m) * torch.exp(-self.logs) * x_mask
294 |       return x
295 | 
296 | 
297 | class ResidualCouplingLayer(nn.Module):
298 |   def __init__(self,
299 |       channels,
300 |       hidden_channels,
301 |       kernel_size,
302 |       dilation_rate,
303 |       n_layers,
304 |       p_dropout=0,
305 |       gin_channels=0,
306 |       mean_only=False):
307 |     assert channels % 2 == 0, "channels should be divisible by 2"
308 |     super().__init__()
309 |     self.channels = channels
310 |     self.hidden_channels = hidden_channels
311 |     self.kernel_size = kernel_size
312 |     self.dilation_rate = dilation_rate
313 |     self.n_layers = n_layers
314 |     self.half_channels = channels // 2
315 |     self.mean_only = mean_only
316 | 
317 |     self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
318 |     self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
319 |     self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
320 |     self.post.weight.data.zero_()
321 |     self.post.bias.data.zero_()
322 | 
323 |   def forward(self, x, x_mask, g=None, reverse=False):
324 |     x0, x1 = torch.split(x, [self.half_channels]*2, 1)
325 |     h = self.pre(x0) * x_mask
326 |     h = self.enc(h, x_mask, g=g)
327 |     stats = self.post(h) * x_mask
328 |     if not self.mean_only:
329 |       m, logs = torch.split(stats, [self.half_channels]*2, 1)
330 |     else:
331 |       m = stats
332 |       logs = torch.zeros_like(m)
333 | 
334 |     if not reverse:
335 |       x1 = m + x1 * torch.exp(logs) * x_mask
336 |       x = torch.cat([x0, x1], 1)
337 |       logdet = torch.sum(logs, [1,2])
338 |       return x, logdet
339 |     else:
340 |       x1 = (x1 - m) * torch.exp(-logs) * x_mask
341 |       x = torch.cat([x0, x1], 1)
342 |       return x
343 | 


--------------------------------------------------------------------------------
/ppg.py:
--------------------------------------------------------------------------------
 1 | from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC 
 2 | #from datasets import load_dataset
 3 | import torch
 4 | import soundfile as sf
 5 | from glob import glob
 6 | import glob2
 7 | from tqdm import tqdm
 8 | import matplotlib.pyplot as plt
 9 | # load model and processor
10 | processor = Wav2Vec2Processor.from_pretrained("speech31/wav2vec2-large-english-TIMIT-phoneme_v3")
11 | model = Wav2Vec2ForCTC.from_pretrained("speech31/wav2vec2-large-english-TIMIT-phoneme_v3").cuda().eval()
12 | files=glob2.glob(r".\dataset\crosslingual_emo_dataset\**\*.wav")
13 | files=sorted(files)
14 | print(len(files))
15 | for file in tqdm(files):
16 |     ppg_file=file.replace(r".wav",r"_eng_ppg.pt")
17 |     # Read and process the input
18 |     audio_input, sample_rate = sf.read(file)
19 |     #audio_input=audio_input[:25000]
20 |     #sf.write('3752_slice.wav',audio_input,sample_rate)
21 |     inputs = processor(audio_input, sampling_rate=16_000, return_tensors="pt", padding=True)
22 |     #print(inputs)
23 |     #import matplotlib.pyplot as plt
24 |     with torch.no_grad():
25 |         logits = model(inputs.input_values.cuda()).logits
26 |         logits_trans=logits.transpose(2,1)
27 |         #print(logits_trans.size())
28 |         #print(file,ppg_file)
29 | 
30 |         torch.save(logits_trans.cpu(),ppg_file)
31 | 
32 |         #lo=logits.squeeze(0).numpy()
33 |         #print(lo)
34 |         #lo=lo.transpose(1,0)
35 |         #plt.imshow(lo)
36 |         #plt.show()
37 |         #hidden_states=model(inputs.input_values).hidden_states
38 |         #print(hidden_states)
39 |         #hidden=hidden_states.squeeze(0).numpy()
40 |         #print(hidden)
41 |         #plt.imshow(hidden)
42 |         #plt.show()
43 |     # Decode id into string
44 |     #print(logits)
45 |     ##predicted_ids = torch.argmax(logits, axis=-1)
46 |     ##print(predicted_ids)      
47 |     ##predicted_sentences = processor.batch_decode(predicted_ids)
48 |     ##print(predicted_sentences)
49 | 


--------------------------------------------------------------------------------
/ppgemoconvert_exp.py:
--------------------------------------------------------------------------------
  1 | import os
  2 | import argparse
  3 | import torch
  4 | import librosa
  5 | import time
  6 | from scipy.io.wavfile import write
  7 | from tqdm import tqdm
  8 | import soundfile as sf
  9 | import utils
 10 | from models import SynthesizerTrn
 11 | from mel_processing import mel_spectrogram_torch
 12 | import logging
 13 | logging.getLogger('numba').setLevel(logging.WARNING)
 14 | 
 15 | 
 16 | if __name__ == "__main__":
 17 |     parser = argparse.ArgumentParser()
 18 |     parser.add_argument("--hpfile", type=str, default="./logs/cvc-44ppg-emoloss/config.json", help="path to json config file")
 19 |     parser.add_argument("--ptfile", type=str, default="./logs/cvc-44ppg-emoloss/G_cvc-44ppg-emoloss.pth", help="path to pth file")
 20 |     parser.add_argument("--outdir", type=str, default="output_exp/20_exp_cvc-44ppg-emoloss", help="path to output dir")
 21 |     parser.add_argument("--use_timestamp", default=False, action="store_true")
 22 |     args = parser.parse_args()
 23 |     
 24 |     os.makedirs(args.outdir, exist_ok=True)
 25 |     hps = utils.get_hparams_from_file(args.hpfile)
 26 | 
 27 |     print("Loading model...")
 28 |     net_g = SynthesizerTrn(
 29 |         hps.data.filter_length // 2 + 1,
 30 |         hps.train.segment_size // hps.data.hop_length,
 31 |         **hps.model).cuda()
 32 |     _ = net_g.eval()
 33 |     print("Loading checkpoint...")
 34 |     _ = utils.load_checkpoint(args.ptfile, net_g, None, True)
 35 | 
 36 |     src_wavs=[r".\dataset\ESD16k\0011\Neutral\evaluation\0011_000004.wav",
 37 |              r".\dataset\ESD16k\0016\Neutral\test\0016_000031.wav"]
 38 |     
 39 | 
 40 |     tgt_wavs=[r".\dataset\ESD16k\0012\Happy\train\0012_000897.wav",
 41 |              r".\dataset\ESD16k\0012\Angry\test\0012_000374.wav",
 42 |              r".\dataset\ESD16k\0012\Sad\train\0012_001188.wav",
 43 |              r".\dataset\ESD16k\0012\Surprise\train\0012_001504.wav",
 44 |              r".\dataset\ESD16k\0015\Happy\train\0015_000875.wav",
 45 |              r".\dataset\ESD16k\0015\Angry\train\0015_000619.wav",
 46 |              r".\dataset\ESD16k\0015\Sad\train\0015_001233.wav",
 47 |              r".\dataset\ESD16k\0015\Surprise\train\0015_001656.wav",
 48 |              r".\ravdess_ref\act_11_03-01-05-02-01-01-11_man_angry.wav",
 49 |              r".\ravdess_ref\act2-03-01-05-01-02-02-02-womanangry.wav"]
 50 |     print("Processing text...")
 51 |     titles, srcs, tgts = [], [], []
 52 |     for src_wav in src_wavs:
 53 |         for tgt_wav in tgt_wavs:
 54 |             src_wav_name=os.path.basename(src_wav)[:-4]
 55 |             tgt_wav_name=os.path.basename(tgt_wav)[:-4]
 56 |             title="{}_to_{}".format(src_wav_name,tgt_wav_name)
 57 |             titles.append(title)
 58 |             srcs.append(src_wav)
 59 |             tgts.append(tgt_wav)
 60 |     print(srcs)
 61 |     print(tgts)
 62 |     print(titles)
 63 |     #import sys
 64 |     #sys.exit()
 65 |     """
 66 |     with open(args.txtpath, "r") as f:
 67 |         for rawline in f.readlines():
 68 |             print(rawline)
 69 |             title, src, tgt = rawline.strip().split("|")
 70 |             titles.append(title)
 71 |             srcs.append(src)
 72 |             tgts.append(tgt)
 73 |     """
 74 | 
 75 |     print("Synthesizing...")
 76 |     with torch.no_grad():
 77 |         for line in tqdm(zip(titles, srcs, tgts)):
 78 |             title, src, tgt = line
 79 |             srcname,tgtname=title.split("to")
 80 |             # tgt
 81 |             wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
 82 |             sf.write(os.path.join(args.outdir, f"{tgtname}.wav"), wav_tgt, hps.data.sampling_rate)
 83 |             #wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
 84 |      
 85 |             wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).cuda()
 86 |             mel_tgt = mel_spectrogram_torch(
 87 |                 wav_tgt, 
 88 |                 hps.data.filter_length,
 89 |                 hps.data.n_mel_channels,
 90 |                 hps.data.sampling_rate,
 91 |                 hps.data.hop_length,
 92 |                 hps.data.win_length,
 93 |                 hps.data.mel_fmin,
 94 |                 hps.data.mel_fmax
 95 |             )
 96 |             # src
 97 |             wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate)
 98 |             sf.write(os.path.join(args.outdir, f"{srcname}.wav"), wav_src, hps.data.sampling_rate)
 99 |             wav_src = torch.from_numpy(wav_src).unsqueeze(0).cuda()
100 |             #c = utils.get_content(cmodel, wav_src)
101 |             c_filename = src.replace(".wav", "ppg.pt")
102 |             print(src, tgt,c_filename)
103 |             c = torch.load(c_filename)#.squeeze(0)
104 | 
105 |             print(c.size(),mel_tgt.size())
106 |             audio = net_g.infer(c.cuda(), mel=mel_tgt)
107 |             audio = audio[0][0].data.cpu().float().numpy()
108 |             if args.use_timestamp:
109 |                 timestamp = time.strftime("%m-%d_%H-%M", time.localtime())
110 |                 write(os.path.join(args.outdir, "{}.wav".format(timestamp+"_"+title)), hps.data.sampling_rate, audio)
111 |             else:
112 |                 write(os.path.join(args.outdir, f"{title}.wav"), hps.data.sampling_rate, audio)
113 |             
114 | 


--------------------------------------------------------------------------------
/preprocess_ppg.py:
--------------------------------------------------------------------------------
 1 | import os
 2 | import numpy as np
 3 | import argparse
 4 | import torch
 5 | from glob import glob
 6 | from tqdm import tqdm
 7 | from whisper.model import Whisper, ModelDimensions
 8 | from whisper.audio import load_audio, pad_or_trim, log_mel_spectrogram
 9 | import librosa
10 | import soundfile as sf
11 | def load_model(path) -> Whisper:
12 |     device = "cuda" if torch.cuda.is_available() else "cpu"
13 |     checkpoint = torch.load(path, map_location=device)
14 |     dims = ModelDimensions(**checkpoint["dims"])
15 |     model = Whisper(dims)
16 |     model.load_state_dict(checkpoint["model_state_dict"])
17 |     return model.to(device)
18 | 
19 | 
20 | def pred_ppg(whisper: Whisper, wavPath, ppgPath):
21 |     audio, sr = librosa.load(wavPath,sr=None)
22 |     if len(audio) >= sr * 29:
23 |         print(wavPath,"cut to 29s")
24 |         audio = audio[:sr * 29]
25 |         #librosa.output.write_wav("your_audio_file.wav", audio, sr)
26 |         sf.write(wavPath, audio, sr)
27 |     audio = load_audio(wavPath)
28 |     audln = audio.shape[0]
29 |     ppgln = audln // 320
30 |     # audio = pad_or_trim(audio)
31 |     mel = log_mel_spectrogram(audio).to(whisper.device)
32 |     with torch.no_grad():
33 |         ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy()
34 |         
35 |         if ppgln>ppg.shape[0]:
36 |             print("ppgln>ppg.shape[0]")
37 |         ppg = ppg[:ppgln,] # [length, dim=1024]
38 |         #if audln // 320<ppg.shape[0]:
39 |         #    print("audln // 320<ppg.shape[0]")
40 |         np.save(ppgPath, ppg, allow_pickle=False)
41 | 
42 | 
43 | if __name__ == "__main__":
44 |     # 读取所有 .wav 文件
45 |     data_dir = r".\dataset\crosslingual_emo_dataset\jvs"
46 |     wav_files = glob(os.path.join(data_dir, '**', '*.wav'), recursive=True)
47 |     wav_files=sorted(wav_files)
48 |     whisper = load_model(os.path.join("whisper_pretrain", "medium.pt"))
49 | 
50 |     for wav in tqdm(wav_files):
51 |         ppg_path=wav.replace(r".wav",r"whisper.pt.npy")
52 |         #print(wav,ppg_path)
53 |         if not os.path.exists(ppg_path):
54 |             pred_ppg(whisper, wav, ppg_path)
55 | 


--------------------------------------------------------------------------------
/train_eng_ppg_emo_loss.py:
--------------------------------------------------------------------------------
  1 | import os
  2 | import json
  3 | import argparse
  4 | import itertools
  5 | import math
  6 | import torch
  7 | from torch import nn, optim
  8 | from torch.nn import functional as F
  9 | from torch.utils.data import DataLoader
 10 | print("import tensorboard")
 11 | from torch.utils.tensorboard import SummaryWriter
 12 | #import torch.multiprocessing as mp
 13 | #import torch.distributed as dist
 14 | #from torch.nn.parallel import DistributedDataParallel as DDP
 15 | from torch.cuda.amp import autocast, GradScaler
 16 | 
 17 | #有speaker consistency loss#python train_eng_ppg_emo_loss.py -c configs/freevc-eng-ppgs-three-emo.json -m freevc-eng-ppgs-three-emo#-cycleloss  
 18 | import commons
 19 | import utils
 20 | from data_utils_engppg import (
 21 |   TextAudioSpeakerLoader,
 22 |   TextAudioSpeakerCollate,
 23 |   DistributedBucketSampler
 24 | )
 25 | from models import (
 26 |   SynthesizerTrn,
 27 |   MultiPeriodDiscriminator,
 28 | )
 29 | from losses import (
 30 |   generator_loss,
 31 |   discriminator_loss,
 32 |   feature_loss,
 33 |   kl_loss
 34 | )
 35 | from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
 36 | """
 37 | from transformers import Wav2Vec2Processor
 38 | from transformers.models.wav2vec2.modeling_wav2vec2 import (
 39 |     Wav2Vec2Model,
 40 |     Wav2Vec2PreTrainedModel,
 41 | )
 42 | class RegressionHead(nn.Module):
 43 |     
 44 | 
 45 |     def __init__(self, config):
 46 |         super().__init__()
 47 | 
 48 |         self.dense = nn.Linear(config.hidden_size, config.hidden_size)
 49 |         self.dropout = nn.Dropout(config.final_dropout)
 50 |         self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
 51 | 
 52 |     def forward(self, features, **kwargs):
 53 |         x = features
 54 |         x = self.dropout(x)
 55 |         x = self.dense(x)
 56 |         x = torch.tanh(x)
 57 |         x = self.dropout(x)
 58 |         x = self.out_proj(x)
 59 | 
 60 |         return x
 61 | 
 62 | 
 63 | class EmotionModel(Wav2Vec2PreTrainedModel):
 64 |     
 65 | 
 66 |     def __init__(self, config):
 67 |         super().__init__(config)
 68 | 
 69 |         self.config = config
 70 |         self.wav2vec2 = Wav2Vec2Model(config)
 71 |         self.classifier = RegressionHead(config)
 72 |         self.init_weights()
 73 | 
 74 |     def forward(
 75 |             self,
 76 |             input_values,
 77 |     ):
 78 |         outputs = self.wav2vec2(input_values)
 79 |         hidden_states = outputs[0]
 80 |         hidden_states = torch.mean(hidden_states, dim=1)
 81 |         logits = self.classifier(hidden_states)
 82 | 
 83 |         return hidden_states, logits
 84 | import torchvision
 85 | print("load emotion model")
 86 | device = 'cuda' if torch.cuda.is_available() else "cpu"
 87 | model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim'
 88 | processor = Wav2Vec2Processor.from_pretrained(model_name)
 89 | model = EmotionModel.from_pretrained(model_name).to(device)
 90 | # 方法1: 设置requires_grad = False
 91 | for param in model.parameters():
 92 |     param.requires_grad = False
 93 | print("模型参数冻结")
 94 | 
 95 | def process_func(y_input,embeddings):
 96 |     
 97 | 
 98 |     # run through processor to normalize signal
 99 |     # always returns a batch, so we just get the first entry
100 |     # then we put it on the device
101 |     #print(torch.max(y_input),torch.min(y_input),y_input.size())
102 |     #y = processor(y_input, sampling_rate=16000,return_tensors='pt' )
103 |     #print(y)
104 |     #print(y['input_values'])
105 |     #y = y['input_values'][0]
106 |     #y = torch.from_numpy(y).to(device)
107 |     #print(torch.max(y),torch.min(y),y.size())
108 |     #srd=torch.std(y_input, dim=-1, keepdim=True)
109 |     #print(srd.size())
110 |     y = (y_input - torch.mean(y_input, dim=-1, keepdim=True))/(torch.std(y_input, dim=-1, keepdim=True)+ 1e-7)
111 |     #print(torch.max(y),torch.min(y),y.size())
112 |     #preprocess = torchvision.transforms.Normalize(mean=torch.mean(y_input, dim=0), std=torch.std(y_input, dim=0))
113 |     #y = preprocess(y_input)
114 |     #print(torch.max(y),torch.min(y),y.size())
115 |     # run through model
116 |     #y=y_input.squeeze()
117 |     y=y.squeeze()
118 |     #print("input",y.size())
119 |     #with torch.no_grad():
120 |     for param in model.parameters():
121 |       if param.requires_grad == False:
122 |         print("依旧冻结")
123 |       else:
124 |         print("不冻结")
125 |     y = model(y)[0 if embeddings else 1]
126 | 
127 |     #print("emo embedding",torch.max(y),torch.min(y),y.size())
128 |     # convert to numpy
129 |     #y = y.detach().cpu().numpy()
130 | 
131 |     return y
132 | """
133 | torch.backends.cudnn.benchmark = True
134 | global_step = 0
135 | #os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
136 | 
137 | 
138 | def main():
139 |   """Assume Single Node Multi GPUs Training Only"""
140 |   assert torch.cuda.is_available(), "CPU training is not allowed."
141 |   hps = utils.get_hparams()
142 | 
143 |   n_gpus = torch.cuda.device_count()
144 |   #os.environ['MASTER_ADDR'] = 'localhost'
145 |   #os.environ['MASTER_PORT'] = hps.train.port
146 |   print("start run")
147 |   run(0,n_gpus, hps)
148 |   #mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
149 | 
150 | 
151 | def run(rank, n_gpus, hps):
152 |   global global_step
153 |   if rank == 0:
154 |     logger = utils.get_logger(hps.model_dir)
155 |     logger.info(hps)
156 |     utils.check_git_hash(hps.model_dir)
157 |     writer = SummaryWriter(log_dir=hps.model_dir)
158 |     writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
159 | 
160 |   #dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
161 |   torch.manual_seed(hps.train.seed)
162 |   torch.cuda.set_device(rank)
163 | 
164 |   train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps)
165 |   train_sampler = DistributedBucketSampler(
166 |       train_dataset,
167 |       hps.train.batch_size,
168 |       [75,100,150,200,250,300,350,400,450,500,550,600,650,700,750,800,850,900,950,1000,1100,1200,1300,1400,1500,2000,3000,4000,5000],
169 |       num_replicas=n_gpus,
170 |       rank=rank,
171 |       shuffle=True)
172 |   collate_fn = TextAudioSpeakerCollate(hps)
173 |   train_loader = DataLoader(train_dataset, num_workers=12, shuffle=False, pin_memory=True,
174 |       collate_fn=collate_fn, batch_sampler=train_sampler)
175 |   if rank == 0:
176 |     eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps)
177 |     eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=True,
178 |         batch_size=hps.train.batch_size, pin_memory=False,
179 |         drop_last=False, collate_fn=collate_fn)
180 | 
181 |   net_g = SynthesizerTrn(
182 |       hps.data.filter_length // 2 + 1,
183 |       hps.train.segment_size // hps.data.hop_length,
184 |       **hps.model).cuda(rank)
185 |   net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
186 |   optim_g = torch.optim.AdamW(
187 |       net_g.parameters(), 
188 |       hps.train.learning_rate, 
189 |       betas=hps.train.betas, 
190 |       eps=hps.train.eps)
191 |   optim_d = torch.optim.AdamW(
192 |       net_d.parameters(),
193 |       hps.train.learning_rate, 
194 |       betas=hps.train.betas, 
195 |       eps=hps.train.eps)
196 |   #net_g = DDP(net_g, device_ids=[rank])#, find_unused_parameters=True)
197 |   #net_d = DDP(net_d, device_ids=[rank])
198 | 
199 |   try:
200 |     _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
201 |     _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
202 |     global_step = (epoch_str - 1) * len(train_loader)
203 |   except:
204 |     epoch_str = 1
205 |     global_step = 0
206 | 
207 |   scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
208 |   scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
209 | 
210 |   scaler = GradScaler(enabled=hps.train.fp16_run)
211 | 
212 |   for epoch in range(epoch_str, hps.train.epochs + 1):
213 |     if rank==0:
214 |       train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
215 |     else:
216 |       train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
217 |     scheduler_g.step()
218 |     scheduler_d.step()
219 | 
220 | 
221 | def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
222 |   
223 |   net_g, net_d = nets
224 |   optim_g, optim_d = optims
225 |   scheduler_g, scheduler_d = schedulers
226 |   train_loader, eval_loader = loaders
227 |   if writers is not None:
228 |     writer, writer_eval = writers
229 | 
230 |   train_loader.batch_sampler.set_epoch(epoch)
231 |   global global_step
232 | 
233 |   net_g.train()
234 |   net_d.train()
235 |   for batch_idx, items in enumerate(train_loader):
236 |     if hps.model.use_spk:
237 |       c, spec, y, spk = items
238 |       g = spk.cuda(rank, non_blocking=True)
239 |     else:
240 |       c, spec, y = items
241 |       g = None
242 |     spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
243 |     c = c.cuda(rank, non_blocking=True)
244 |     mel = spec_to_mel_torch(
245 |           spec, 
246 |           hps.data.filter_length, 
247 |           hps.data.n_mel_channels, 
248 |           hps.data.sampling_rate,
249 |           hps.data.mel_fmin, 
250 |           hps.data.mel_fmax)
251 |     real_mel = mel_spectrogram_torch(
252 |           y.squeeze(1), 
253 |           hps.data.filter_length, 
254 |           hps.data.n_mel_channels, 
255 |           hps.data.sampling_rate, 
256 |           hps.data.hop_length, 
257 |           hps.data.win_length, 
258 |           hps.data.mel_fmin, 
259 |           hps.data.mel_fmax
260 |       )
261 |     #print(torch.max(mel),torch.min(mel),torch.max(real_mel),torch.min(real_mel))
262 |     with autocast(enabled=hps.train.fp16_run):
263 |       y_hat, ids_slice, z_mask,\
264 |       (z, z_p, m_p, logs_p, m_q, logs_q),emo_y = net_g(c, spec, g=g, mel=mel)
265 |       #print(torch.max(y),torch.min(y),torch.max(y_hat),torch.min(y_hat))
266 |       y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
267 |       y_hat_mel = mel_spectrogram_torch(
268 |           y_hat.squeeze(1), 
269 |           hps.data.filter_length, 
270 |           hps.data.n_mel_channels, 
271 |           hps.data.sampling_rate, 
272 |           hps.data.hop_length, 
273 |           hps.data.win_length, 
274 |           hps.data.mel_fmin, 
275 |           hps.data.mel_fmax
276 |       )
277 |       y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice 
278 | 
279 |       # Discriminator
280 |       y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
281 |       with autocast(enabled=False):
282 |         loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
283 |         loss_disc_all = loss_disc
284 |     optim_d.zero_grad()
285 |     scaler.scale(loss_disc_all).backward()
286 |     scaler.unscale_(optim_d)
287 |     grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
288 |     scaler.step(optim_d)
289 | 
290 |     with autocast(enabled=hps.train.fp16_run):
291 |       # Generator
292 |       y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
293 |       #print(torch.max(mel),torch.min(mel),mel.size(),torch.max(y_hat_mel),torch.min(y_hat_mel),y_hat_mel.size())
294 |       #y_hat_mel=torch.rand_like(y_hat_mel)
295 |       #emo_y_hat=net_g.enc_spk(y_hat_mel.transpose(1,2))#process_func(y_input=y_hat,embeddings=True)
296 |       #y=torch.rand_like(y)
297 |       emo_y_hat=net_g.enc_spk(y_hat_mel.transpose(1,2))#process_func(y_input=y,embeddings=True)
298 |       #print(torch.max(emo_y),torch.min(emo_y),emo_y.size(),torch.max(emo_y_hat),torch.min(emo_y_hat),emo_y_hat.size())
299 |       #print(emo_y_hat.size(),emo_y.size())
300 |       with autocast(enabled=False):
301 |         loss_mel = F.l1_loss(y_hat_mel, y_mel) * hps.train.c_mel
302 |         #print("loss_mel",loss_mel)
303 |         loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl# * 1.5
304 |         #print("loss_kl",loss_kl)
305 |         loss_fm = feature_loss(fmap_r, fmap_g) * 0.5
306 |         #print("loss_fm",loss_fm)
307 |         loss_gen, losses_gen = generator_loss(y_d_hat_g)
308 |         #print("loss_gen, losses_gen",loss_gen, losses_gen)
309 |         loss_emo=F.l1_loss(emo_y_hat.detach(),emo_y.detach()) * hps.train.c_mel * 0.5
310 |         #print("loss_emo",loss_emo)
311 |         loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_emo
312 |     optim_g.zero_grad()
313 |     scaler.scale(loss_gen_all).backward()
314 |     scaler.unscale_(optim_g)
315 |     grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
316 |     scaler.step(optim_g)
317 |     scaler.update()
318 | 
319 |     if rank==0:
320 |       if global_step % hps.train.log_interval == 0:
321 |         lr = optim_g.param_groups[0]['lr']
322 |         losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl,loss_emo]
323 |         logger.info('Train Epoch: {} [{:.0f}%]'.format(
324 |           epoch,
325 |           100. * batch_idx / len(train_loader)))
326 |         logger.info([x.item() for x in losses] + [global_step, lr])
327 |         
328 |         scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
329 |         scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl, "loss/g/emo": loss_emo})
330 | 
331 |         scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
332 |         scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
333 |         scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
334 |         image_dict = { 
335 |             "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
336 |             "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), 
337 |             "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
338 |         }
339 |         utils.summarize(
340 |           writer=writer,
341 |           global_step=global_step, 
342 |           images=image_dict,
343 |           scalars=scalar_dict)
344 | 
345 |       if global_step % hps.train.eval_interval == 0:
346 |         evaluate(hps, net_g, eval_loader, writer_eval)
347 |         utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
348 |         utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
349 |     global_step += 1
350 |   
351 |   if rank == 0:
352 |     logger.info('====> Epoch: {}'.format(epoch))
353 | 
354 |  
355 | def evaluate(hps, generator, eval_loader, writer_eval):
356 |     generator.eval()
357 |     with torch.no_grad():
358 |       for batch_idx, items in enumerate(eval_loader):
359 |         if hps.model.use_spk:
360 |           c, spec, y, spk = items
361 |           g = spk[:1].cuda(0)
362 |         else:
363 |           c, spec, y = items
364 |           g = None
365 |         spec, y = spec[:1].cuda(0), y[:1].cuda(0)
366 |         c = c[:1].cuda(0)
367 |         break
368 |       mel = spec_to_mel_torch(
369 |         spec, 
370 |         hps.data.filter_length, 
371 |         hps.data.n_mel_channels, 
372 |         hps.data.sampling_rate,
373 |         hps.data.mel_fmin, 
374 |         hps.data.mel_fmax)
375 |       y_hat = generator.infer(c, g=g, mel=mel)#generator.module.infer(c, g=g, mel=mel)
376 |       print(torch.max(y_hat),torch.min(y_hat))
377 |       y_hat_mel = mel_spectrogram_torch(
378 |         y_hat.squeeze(1).float(),
379 |         hps.data.filter_length,
380 |         hps.data.n_mel_channels,
381 |         hps.data.sampling_rate,
382 |         hps.data.hop_length,
383 |         hps.data.win_length,
384 |         hps.data.mel_fmin,
385 |         hps.data.mel_fmax
386 |       )
387 |     image_dict = {
388 |       "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
389 |       "gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
390 |     }
391 |     audio_dict = {
392 |       "gen/audio": y_hat[0],
393 |       "gt/audio": y[0]
394 |     }
395 |     utils.summarize(
396 |       writer=writer_eval,
397 |       global_step=global_step, 
398 |       images=image_dict,
399 |       audios=audio_dict,
400 |       audio_sampling_rate=hps.data.sampling_rate
401 |     )
402 |     generator.train()
403 | 
404 |                            
405 | if __name__ == "__main__":
406 |   main()
407 | 


--------------------------------------------------------------------------------
/train_whisper_emo.py:
--------------------------------------------------------------------------------
  1 | import os
  2 | import json
  3 | import argparse
  4 | import itertools
  5 | import math
  6 | import torch
  7 | from torch import nn, optim
  8 | from torch.nn import functional as F
  9 | from torch.utils.data import DataLoader
 10 | print("import tensorboard")
 11 | from torch.utils.tensorboard import SummaryWriter
 12 | #import torch.multiprocessing as mp
 13 | #import torch.distributed as dist
 14 | #from torch.nn.parallel import DistributedDataParallel as DDP
 15 | from torch.cuda.amp import autocast, GradScaler
 16 | #带情感loss,用whisper作为内容特征#python train_whisper_emo.py -c configs/freevc-whispers-three-emo.json -m freevc-whispers-three-emo
 17 | import commons
 18 | import utils
 19 | from data_utils_whisper import (
 20 |   TextAudioSpeakerLoader,
 21 |   TextAudioSpeakerCollate,
 22 |   DistributedBucketSampler
 23 | )
 24 | from models import (
 25 |   SynthesizerTrn,
 26 |   MultiPeriodDiscriminator,
 27 | )
 28 | from losses import (
 29 |   generator_loss,
 30 |   discriminator_loss,
 31 |   feature_loss,
 32 |   kl_loss
 33 | )
 34 | from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
 35 | 
 36 | torch.backends.cudnn.benchmark = True
 37 | global_step = 0
 38 | #os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
 39 | 
 40 | 
 41 | def main():
 42 |   """Assume Single Node Multi GPUs Training Only"""
 43 |   assert torch.cuda.is_available(), "CPU training is not allowed."
 44 |   hps = utils.get_hparams()
 45 | 
 46 |   n_gpus = torch.cuda.device_count()
 47 |   #os.environ['MASTER_ADDR'] = 'localhost'
 48 |   #os.environ['MASTER_PORT'] = hps.train.port
 49 |   print("start run")
 50 |   run(0,n_gpus, hps)
 51 |   #mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
 52 | 
 53 | 
 54 | def run(rank, n_gpus, hps):
 55 |   global global_step
 56 |   if rank == 0:
 57 |     logger = utils.get_logger(hps.model_dir)
 58 |     logger.info(hps)
 59 |     utils.check_git_hash(hps.model_dir)
 60 |     writer = SummaryWriter(log_dir=hps.model_dir)
 61 |     writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
 62 | 
 63 |   #dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
 64 |   torch.manual_seed(hps.train.seed)
 65 |   torch.cuda.set_device(rank)
 66 | 
 67 |   train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps)
 68 |   train_sampler = DistributedBucketSampler(
 69 |       train_dataset,
 70 |       hps.train.batch_size,
 71 |       [75,100,125,150,175,200,225,250,300,350,400,450,500,550,600,650,700,750,800,850,900,950,1000,1100,1200,1300,1400,1500,2000,3000,4000,5000],
 72 |       num_replicas=n_gpus,
 73 |       rank=rank,
 74 |       shuffle=True)
 75 |   collate_fn = TextAudioSpeakerCollate(hps)
 76 |   train_loader = DataLoader(train_dataset, num_workers=12, shuffle=False, pin_memory=True,
 77 |       collate_fn=collate_fn, batch_sampler=train_sampler)
 78 |   if rank == 0:
 79 |     eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps)
 80 |     eval_loader = DataLoader(eval_dataset, num_workers=2, shuffle=True,
 81 |         batch_size=hps.train.batch_size, pin_memory=False,
 82 |         drop_last=False, collate_fn=collate_fn)
 83 | 
 84 |   net_g = SynthesizerTrn(
 85 |       hps.data.filter_length // 2 + 1,
 86 |       hps.train.segment_size // hps.data.hop_length,
 87 |       **hps.model).cuda(rank)
 88 |   net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
 89 |   optim_g = torch.optim.AdamW(
 90 |       net_g.parameters(), 
 91 |       hps.train.learning_rate, 
 92 |       betas=hps.train.betas, 
 93 |       eps=hps.train.eps)
 94 |   optim_d = torch.optim.AdamW(
 95 |       net_d.parameters(),
 96 |       hps.train.learning_rate, 
 97 |       betas=hps.train.betas, 
 98 |       eps=hps.train.eps)
 99 |   #net_g = DDP(net_g, device_ids=[rank])#, find_unused_parameters=True)
100 |   #net_d = DDP(net_d, device_ids=[rank])
101 | 
102 |   try:
103 |     _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
104 |     _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
105 |     global_step = (epoch_str - 1) * len(train_loader)
106 |   except:
107 |     epoch_str = 1
108 |     global_step = 0
109 | 
110 |   scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
111 |   scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
112 | 
113 |   scaler = GradScaler(enabled=hps.train.fp16_run)
114 | 
115 |   for epoch in range(epoch_str, hps.train.epochs + 1):
116 |     if rank==0:
117 |       train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
118 |     else:
119 |       train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
120 |     scheduler_g.step()
121 |     scheduler_d.step()
122 | 
123 | 
124 | def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
125 |   
126 |   net_g, net_d = nets
127 |   optim_g, optim_d = optims
128 |   scheduler_g, scheduler_d = schedulers
129 |   train_loader, eval_loader = loaders
130 |   if writers is not None:
131 |     writer, writer_eval = writers
132 | 
133 |   train_loader.batch_sampler.set_epoch(epoch)
134 |   global global_step
135 | 
136 |   net_g.train()
137 |   net_d.train()
138 |   for batch_idx, items in enumerate(train_loader):
139 |     if hps.model.use_spk:
140 |       c, spec, y, spk = items
141 |       g = spk.cuda(rank, non_blocking=True)
142 |     else:
143 |       c, spec, y = items
144 |       g = None
145 |     spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
146 |     c = c.cuda(rank, non_blocking=True)
147 |     mel = spec_to_mel_torch(
148 |           spec, 
149 |           hps.data.filter_length, 
150 |           hps.data.n_mel_channels, 
151 |           hps.data.sampling_rate,
152 |           hps.data.mel_fmin, 
153 |           hps.data.mel_fmax)
154 |     real_mel = mel_spectrogram_torch(
155 |           y.squeeze(1), 
156 |           hps.data.filter_length, 
157 |           hps.data.n_mel_channels, 
158 |           hps.data.sampling_rate, 
159 |           hps.data.hop_length, 
160 |           hps.data.win_length, 
161 |           hps.data.mel_fmin, 
162 |           hps.data.mel_fmax
163 |       )
164 |     #print(torch.max(mel),torch.min(mel),torch.max(real_mel),torch.min(real_mel))
165 |     with autocast(enabled=hps.train.fp16_run):
166 |       y_hat, ids_slice, z_mask,\
167 |       (z, z_p, m_p, logs_p, m_q, logs_q),emo_y = net_g(c, spec, g=g, mel=mel)
168 |       #print(torch.max(y),torch.min(y),torch.max(y_hat),torch.min(y_hat))
169 |       y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
170 |       y_hat_mel = mel_spectrogram_torch(
171 |           y_hat.squeeze(1), 
172 |           hps.data.filter_length, 
173 |           hps.data.n_mel_channels, 
174 |           hps.data.sampling_rate, 
175 |           hps.data.hop_length, 
176 |           hps.data.win_length, 
177 |           hps.data.mel_fmin, 
178 |           hps.data.mel_fmax
179 |       )
180 |       y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice 
181 | 
182 |       # Discriminator
183 |       y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
184 |       with autocast(enabled=False):
185 |         loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
186 |         loss_disc_all = loss_disc
187 |     optim_d.zero_grad()
188 |     scaler.scale(loss_disc_all).backward()
189 |     scaler.unscale_(optim_d)
190 |     grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
191 |     scaler.step(optim_d)
192 | 
193 |     with autocast(enabled=hps.train.fp16_run):
194 |       # Generator
195 |       y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
196 |       #print(torch.max(mel),torch.min(mel),mel.size(),torch.max(y_hat_mel),torch.min(y_hat_mel),y_hat_mel.size())
197 |       #y_hat_mel=torch.rand_like(y_hat_mel)
198 |       #emo_y_hat=net_g.enc_spk(y_hat_mel.transpose(1,2))#process_func(y_input=y_hat,embeddings=True)
199 |       #y=torch.rand_like(y)
200 |       emo_y_hat=net_g.enc_spk(y_hat_mel.transpose(1,2))#process_func(y_input=y,embeddings=True)
201 |       #print(torch.max(emo_y),torch.min(emo_y),emo_y.size(),torch.max(emo_y_hat),torch.min(emo_y_hat),emo_y_hat.size())
202 |       #print(emo_y_hat.size(),emo_y.size())
203 |       with autocast(enabled=False):
204 |         loss_mel = F.l1_loss(y_hat_mel, y_mel) * hps.train.c_mel
205 |         #print("loss_mel",loss_mel)
206 |         loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
207 |         #print("loss_kl",loss_kl)
208 |         loss_fm = feature_loss(fmap_r, fmap_g) * 0.5
209 |         #print("loss_fm",loss_fm)
210 |         loss_gen, losses_gen = generator_loss(y_d_hat_g)
211 |         #print("loss_gen, losses_gen",loss_gen, losses_gen)
212 |         loss_emo=F.l1_loss(emo_y_hat,emo_y) * hps.train.c_mel * 0.5
213 |         #print("loss_emo",loss_emo)
214 |         loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_emo
215 |     optim_g.zero_grad()
216 |     scaler.scale(loss_gen_all).backward()
217 |     scaler.unscale_(optim_g)
218 |     grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
219 |     scaler.step(optim_g)
220 |     scaler.update()
221 | 
222 |     if rank==0:
223 |       if global_step % hps.train.log_interval == 0:
224 |         lr = optim_g.param_groups[0]['lr']
225 |         losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl,loss_emo]
226 |         logger.info('Train Epoch: {} [{:.0f}%]'.format(
227 |           epoch,
228 |           100. * batch_idx / len(train_loader)))
229 |         logger.info([x.item() for x in losses] + [global_step, lr])
230 |         
231 |         scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
232 |         scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl, "loss/g/emo": loss_emo})
233 | 
234 |         scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
235 |         scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
236 |         scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
237 |         image_dict = { 
238 |             "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
239 |             "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), 
240 |             "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
241 |         }
242 |         utils.summarize(
243 |           writer=writer,
244 |           global_step=global_step, 
245 |           images=image_dict,
246 |           scalars=scalar_dict)
247 | 
248 |       if global_step % hps.train.eval_interval == 0:
249 |         evaluate(hps, net_g, eval_loader, writer_eval)
250 |         utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
251 |         utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
252 |     global_step += 1
253 |   
254 |   if rank == 0:
255 |     logger.info('====> Epoch: {}'.format(epoch))
256 | 
257 |  
258 | def evaluate(hps, generator, eval_loader, writer_eval):
259 |     generator.eval()
260 |     with torch.no_grad():
261 |       for batch_idx, items in enumerate(eval_loader):
262 |         if hps.model.use_spk:
263 |           c, spec, y, spk = items
264 |           g = spk[:1].cuda(0)
265 |         else:
266 |           c, spec, y = items
267 |           g = None
268 |         spec, y = spec[:1].cuda(0), y[:1].cuda(0)
269 |         c = c[:1].cuda(0)
270 |         break
271 |       mel = spec_to_mel_torch(
272 |         spec, 
273 |         hps.data.filter_length, 
274 |         hps.data.n_mel_channels, 
275 |         hps.data.sampling_rate,
276 |         hps.data.mel_fmin, 
277 |         hps.data.mel_fmax)
278 |       y_hat = generator.infer(c, g=g, mel=mel)#generator.module.infer(c, g=g, mel=mel)
279 |       print(torch.max(y_hat),torch.min(y_hat))
280 |       y_hat_mel = mel_spectrogram_torch(
281 |         y_hat.squeeze(1).float(),
282 |         hps.data.filter_length,
283 |         hps.data.n_mel_channels,
284 |         hps.data.sampling_rate,
285 |         hps.data.hop_length,
286 |         hps.data.win_length,
287 |         hps.data.mel_fmin,
288 |         hps.data.mel_fmax
289 |       )
290 |     image_dict = {
291 |       "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
292 |       "gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
293 |     }
294 |     audio_dict = {
295 |       "gen/audio": y_hat[0],
296 |       "gt/audio": y[0]
297 |     }
298 |     utils.summarize(
299 |       writer=writer_eval,
300 |       global_step=global_step, 
301 |       images=image_dict,
302 |       audios=audio_dict,
303 |       audio_sampling_rate=hps.data.sampling_rate
304 |     )
305 |     generator.train()
306 | 
307 |                            
308 | if __name__ == "__main__":
309 |   main()
310 | 


--------------------------------------------------------------------------------
/utils.py:
--------------------------------------------------------------------------------
  1 | import os
  2 | import glob
  3 | import sys
  4 | import argparse
  5 | import logging
  6 | import json
  7 | import subprocess
  8 | import numpy as np
  9 | from scipy.io.wavfile import read
 10 | import torch
 11 | import torchvision
 12 | from torch.nn import functional as F
 13 | from commons import sequence_mask
 14 | 
 15 | 
 16 | MATPLOTLIB_FLAG = False
 17 | 
 18 | logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
 19 | logger = logging
 20 | 
 21 | 
 22 | 
 23 |     
 24 |     
 25 | def get_content(cmodel, y):
 26 |     with torch.no_grad():
 27 |         c = cmodel.extract_features(y.squeeze(1))[0]
 28 |     c = c.transpose(1, 2)
 29 |     return c
 30 | 
 31 | 
 32 | 
 33 |     
 34 |     
 35 | def transform(mel, height): # 68-92
 36 |     #r = np.random.random()
 37 |     #rate = r * 0.3 + 0.85 # 0.85-1.15
 38 |     #height = int(mel.size(-2) * rate)
 39 |     tgt = torchvision.transforms.functional.resize(mel, (height, mel.size(-1)))
 40 |     if height >= mel.size(-2):
 41 |         return tgt[:, :mel.size(-2), :]
 42 |     else:
 43 |         silence = tgt[:,-1:,:].repeat(1,mel.size(-2)-height,1) 
 44 |         silence += torch.randn_like(silence) / 10
 45 |         return torch.cat((tgt, silence), 1)
 46 |         
 47 |         
 48 | def stretch(mel, width): # 0.5-2
 49 |     return torchvision.transforms.functional.resize(mel, (mel.size(-2), width))
 50 | 
 51 | 
 52 | def load_checkpoint(checkpoint_path, model, optimizer=None, strict=False):
 53 |   assert os.path.isfile(checkpoint_path)
 54 |   checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
 55 |   iteration = checkpoint_dict['iteration']
 56 |   learning_rate = checkpoint_dict['learning_rate']
 57 |   if optimizer is not None:
 58 |     optimizer.load_state_dict(checkpoint_dict['optimizer'])
 59 |   saved_state_dict = checkpoint_dict['model']
 60 |   if hasattr(model, 'module'):
 61 |     state_dict = model.module.state_dict()
 62 |   else:
 63 |     state_dict = model.state_dict()
 64 |   if strict:
 65 |     assert state_dict.keys() == saved_state_dict.keys(), "Mismatched model config and checkpoint."
 66 |   new_state_dict= {}
 67 |   for k, v in state_dict.items():
 68 |     try:
 69 |       new_state_dict[k] = saved_state_dict[k]
 70 |     except:
 71 |       logger.info("%s is not in the checkpoint" % k)
 72 |       new_state_dict[k] = v
 73 |   if hasattr(model, 'module'):
 74 |     model.module.load_state_dict(new_state_dict)
 75 |   else:
 76 |     model.load_state_dict(new_state_dict)
 77 |   logger.info("Loaded checkpoint '{}' (iteration {})" .format(
 78 |     checkpoint_path, iteration))
 79 |   return model, optimizer, learning_rate, iteration
 80 | 
 81 | 
 82 | def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
 83 |   logger.info("Saving model and optimizer state at iteration {} to {}".format(
 84 |     iteration, checkpoint_path))
 85 |   if hasattr(model, 'module'):
 86 |     state_dict = model.module.state_dict()
 87 |   else:
 88 |     state_dict = model.state_dict()
 89 |   torch.save({'model': state_dict,
 90 |               'iteration': iteration,
 91 |               'optimizer': optimizer.state_dict(),
 92 |               'learning_rate': learning_rate}, checkpoint_path)
 93 | 
 94 | 
 95 | def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
 96 |   for k, v in scalars.items():
 97 |     writer.add_scalar(k, v, global_step)
 98 |   for k, v in histograms.items():
 99 |     writer.add_histogram(k, v, global_step)
100 |   for k, v in images.items():
101 |     writer.add_image(k, v, global_step, dataformats='HWC')
102 |   for k, v in audios.items():
103 |     writer.add_audio(k, v, global_step, audio_sampling_rate)
104 | 
105 | 
106 | def latest_checkpoint_path(dir_path, regex="G_*.pth"):
107 |   f_list = glob.glob(os.path.join(dir_path, regex))
108 |   f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
109 |   x = f_list[-1]
110 |   print(x)
111 |   return x
112 | 
113 | 
114 | def plot_spectrogram_to_numpy(spectrogram):
115 |   global MATPLOTLIB_FLAG
116 |   if not MATPLOTLIB_FLAG:
117 |     import matplotlib
118 |     matplotlib.use("Agg")
119 |     MATPLOTLIB_FLAG = True
120 |     mpl_logger = logging.getLogger('matplotlib')
121 |     mpl_logger.setLevel(logging.WARNING)
122 |   import matplotlib.pylab as plt
123 |   import numpy as np
124 |   
125 |   fig, ax = plt.subplots(figsize=(10,2))
126 |   im = ax.imshow(spectrogram, aspect="auto", origin="lower",
127 |                   interpolation='none')
128 |   plt.colorbar(im, ax=ax)
129 |   plt.xlabel("Frames")
130 |   plt.ylabel("Channels")
131 |   plt.tight_layout()
132 | 
133 |   fig.canvas.draw()
134 |   data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
135 |   data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
136 |   plt.close()
137 |   return data
138 | 
139 | 
140 | def plot_alignment_to_numpy(alignment, info=None):
141 |   global MATPLOTLIB_FLAG
142 |   if not MATPLOTLIB_FLAG:
143 |     import matplotlib
144 |     matplotlib.use("Agg")
145 |     MATPLOTLIB_FLAG = True
146 |     mpl_logger = logging.getLogger('matplotlib')
147 |     mpl_logger.setLevel(logging.WARNING)
148 |   import matplotlib.pylab as plt
149 |   import numpy as np
150 | 
151 |   fig, ax = plt.subplots(figsize=(6, 4))
152 |   im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
153 |                   interpolation='none')
154 |   fig.colorbar(im, ax=ax)
155 |   xlabel = 'Decoder timestep'
156 |   if info is not None:
157 |       xlabel += '\n\n' + info
158 |   plt.xlabel(xlabel)
159 |   plt.ylabel('Encoder timestep')
160 |   plt.tight_layout()
161 | 
162 |   fig.canvas.draw()
163 |   data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
164 |   data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
165 |   plt.close()
166 |   return data
167 | 
168 | 
169 | def load_wav_to_torch(full_path):
170 |   sampling_rate, data = read(full_path)
171 |   return torch.FloatTensor(data.astype(np.float32)), sampling_rate
172 | 
173 | 
174 | def load_filepaths_and_text(filename, split="|"):
175 |   with open(filename, encoding='utf-8') as f:
176 |     filepaths_and_text = [line.strip().split(split) for line in f]
177 |   return filepaths_and_text
178 | 
179 | 
180 | def get_hparams(init=True):
181 |   parser = argparse.ArgumentParser()
182 |   parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
183 |                       help='JSON file for configuration')
184 |   parser.add_argument('-m', '--model', type=str, required=True,
185 |                       help='Model name')
186 |   
187 |   args = parser.parse_args()
188 |   model_dir = os.path.join("./logs", args.model)
189 | 
190 |   if not os.path.exists(model_dir):
191 |     os.makedirs(model_dir)
192 | 
193 |   config_path = args.config
194 |   config_save_path = os.path.join(model_dir, "config.json")
195 |   if init:
196 |     with open(config_path, "r") as f:
197 |       data = f.read()
198 |     with open(config_save_path, "w") as f:
199 |       f.write(data)
200 |   else:
201 |     with open(config_save_path, "r") as f:
202 |       data = f.read()
203 |   config = json.loads(data)
204 |   
205 |   hparams = HParams(**config)
206 |   hparams.model_dir = model_dir
207 |   return hparams
208 | 
209 | 
210 | def get_hparams_from_dir(model_dir):
211 |   config_save_path = os.path.join(model_dir, "config.json")
212 |   with open(config_save_path, "r") as f:
213 |     data = f.read()
214 |   config = json.loads(data)
215 | 
216 |   hparams =HParams(**config)
217 |   hparams.model_dir = model_dir
218 |   return hparams
219 | 
220 | 
221 | def get_hparams_from_file(config_path):
222 |   with open(config_path, "r") as f:
223 |     data = f.read()
224 |   config = json.loads(data)
225 | 
226 |   hparams =HParams(**config)
227 |   return hparams
228 | 
229 | 
230 | def check_git_hash(model_dir):
231 |   source_dir = os.path.dirname(os.path.realpath(__file__))
232 |   if not os.path.exists(os.path.join(source_dir, ".git")):
233 |     logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
234 |       source_dir
235 |     ))
236 |     return
237 | 
238 |   cur_hash = subprocess.getoutput("git rev-parse HEAD")
239 | 
240 |   path = os.path.join(model_dir, "githash")
241 |   if os.path.exists(path):
242 |     saved_hash = open(path).read()
243 |     if saved_hash != cur_hash:
244 |       logger.warn("git hash values are different. {}(saved) != {}(current)".format(
245 |         saved_hash[:8], cur_hash[:8]))
246 |   else:
247 |     open(path, "w").write(cur_hash)
248 | 
249 | 
250 | def get_logger(model_dir, filename="train.log"):
251 |   global logger
252 |   logger = logging.getLogger(os.path.basename(model_dir))
253 |   logger.setLevel(logging.DEBUG)
254 |   
255 |   formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
256 |   if not os.path.exists(model_dir):
257 |     os.makedirs(model_dir)
258 |   h = logging.FileHandler(os.path.join(model_dir, filename))
259 |   h.setLevel(logging.DEBUG)
260 |   h.setFormatter(formatter)
261 |   logger.addHandler(h)
262 |   return logger
263 | 
264 | 
265 | class HParams():
266 |   def __init__(self, **kwargs):
267 |     for k, v in kwargs.items():
268 |       if type(v) == dict:
269 |         v = HParams(**v)
270 |       self[k] = v
271 |     
272 |   def keys(self):
273 |     return self.__dict__.keys()
274 | 
275 |   def items(self):
276 |     return self.__dict__.items()
277 | 
278 |   def values(self):
279 |     return self.__dict__.values()
280 | 
281 |   def __len__(self):
282 |     return len(self.__dict__)
283 | 
284 |   def __getitem__(self, key):
285 |     return getattr(self, key)
286 | 
287 |   def __setitem__(self, key, value):
288 |     return setattr(self, key, value)
289 | 
290 |   def __contains__(self, key):
291 |     return key in self.__dict__
292 | 
293 |   def __repr__(self):
294 |     return self.__dict__.__repr__()
295 | 


--------------------------------------------------------------------------------
/whisper/LICENSE:
--------------------------------------------------------------------------------
 1 | MIT License
 2 | 
 3 | Copyright (c) 2022 OpenAI
 4 | 
 5 | Permission is hereby granted, free of charge, to any person obtaining a copy
 6 | of this software and associated documentation files (the "Software"), to deal
 7 | in the Software without restriction, including without limitation the rights
 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 | 
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 | 
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 | 


--------------------------------------------------------------------------------
/whisper/README.md:
--------------------------------------------------------------------------------
  1 | # Whisper
  2 | 
  3 | [[Blog]](https://openai.com/blog/whisper)
  4 | [[Paper]](https://arxiv.org/abs/2212.04356)
  5 | [[Model card]](https://github.com/openai/whisper/blob/main/model-card.md)
  6 | [[Colab example]](https://colab.research.google.com/github/openai/whisper/blob/master/notebooks/LibriSpeech.ipynb)
  7 | 
  8 | Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multitasking model that can perform multilingual speech recognition, speech translation, and language identification.
  9 | 
 10 | 
 11 | ## Approach
 12 | 
 13 | ![Approach](https://raw.githubusercontent.com/openai/whisper/main/approach.png)
 14 | 
 15 | A Transformer sequence-to-sequence model is trained on various speech processing tasks, including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. These tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing a single model to replace many stages of a traditional speech-processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or classification targets.
 16 | 
 17 | 
 18 | ## Setup
 19 | 
 20 | We used Python 3.9.9 and [PyTorch](https://pytorch.org/) 1.10.1 to train and test our models, but the codebase is expected to be compatible with Python 3.8-3.10 and recent PyTorch versions. The codebase also depends on a few Python packages, most notably [HuggingFace Transformers](https://huggingface.co/docs/transformers/index) for their fast tokenizer implementation and [ffmpeg-python](https://github.com/kkroening/ffmpeg-python) for reading audio files. You can download and install (or update to) the latest release of Whisper with the following command:
 21 | 
 22 |     pip install -U openai-whisper
 23 | 
 24 | Alternatively, the following command will pull and install the latest commit from this repository, along with its Python dependencies:
 25 | 
 26 |     pip install git+https://github.com/openai/whisper.git 
 27 | 
 28 | To update the package to the latest version of this repository, please run:
 29 | 
 30 |     pip install --upgrade --no-deps --force-reinstall git+https://github.com/openai/whisper.git
 31 | 
 32 | It also requires the command-line tool [`ffmpeg`](https://ffmpeg.org/) to be installed on your system, which is available from most package managers:
 33 | 
 34 | ```bash
 35 | # on Ubuntu or Debian
 36 | sudo apt update && sudo apt install ffmpeg
 37 | 
 38 | # on Arch Linux
 39 | sudo pacman -S ffmpeg
 40 | 
 41 | # on MacOS using Homebrew (https://brew.sh/)
 42 | brew install ffmpeg
 43 | 
 44 | # on Windows using Chocolatey (https://chocolatey.org/)
 45 | choco install ffmpeg
 46 | 
 47 | # on Windows using Scoop (https://scoop.sh/)
 48 | scoop install ffmpeg
 49 | ```
 50 | 
 51 | You may need [`rust`](http://rust-lang.org) installed as well, in case [tokenizers](https://pypi.org/project/tokenizers/) does not provide a pre-built wheel for your platform. If you see installation errors during the `pip install` command above, please follow the [Getting started page](https://www.rust-lang.org/learn/get-started) to install Rust development environment. Additionally, you may need to configure the `PATH` environment variable, e.g. `export PATH="$HOME/.cargo/bin:$PATH"`. If the installation fails with `No module named 'setuptools_rust'`, you need to install `setuptools_rust`, e.g. by running:
 52 | 
 53 | ```bash
 54 | pip install setuptools-rust
 55 | ```
 56 | 
 57 | 
 58 | ## Available models and languages
 59 | 
 60 | There are five model sizes, four with English-only versions, offering speed and accuracy tradeoffs. Below are the names of the available models and their approximate memory requirements and relative speed. 
 61 | 
 62 | 
 63 | |  Size  | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
 64 | |:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
 65 | |  tiny  |    39 M    |     `tiny.en`      |       `tiny`       |     ~1 GB     |      ~32x      |
 66 | |  base  |    74 M    |     `base.en`      |       `base`       |     ~1 GB     |      ~16x      |
 67 | | small  |   244 M    |     `small.en`     |      `small`       |     ~2 GB     |      ~6x       |
 68 | | medium |   769 M    |    `medium.en`     |      `medium`      |     ~5 GB     |      ~2x       |
 69 | | large  |   1550 M   |        N/A         |      `large`       |    ~10 GB     |       1x       |
 70 | 
 71 | The `.en` models for English-only applications tend to perform better, especially for the `tiny.en` and `base.en` models. We observed that the difference becomes less significant for the `small.en` and `medium.en` models.
 72 | 
 73 | Whisper's performance varies widely depending on the language. The figure below shows a WER (Word Error Rate) breakdown by languages of the Fleurs dataset using the `large-v2` model. More WER and BLEU scores corresponding to the other models and datasets can be found in Appendix D in [the paper](https://arxiv.org/abs/2212.04356). The smaller, the better.
 74 | 
 75 | ![WER breakdown by language](https://raw.githubusercontent.com/openai/whisper/main/language-breakdown.svg)
 76 | 
 77 | 
 78 | 
 79 | ## Command-line usage
 80 | 
 81 | The following command will transcribe speech in audio files, using the `medium` model:
 82 | 
 83 |     whisper audio.flac audio.mp3 audio.wav --model medium
 84 | 
 85 | The default setting (which selects the `small` model) works well for transcribing English. To transcribe an audio file containing non-English speech, you can specify the language using the `--language` option:
 86 | 
 87 |     whisper japanese.wav --language Japanese
 88 | 
 89 | Adding `--task translate` will translate the speech into English:
 90 | 
 91 |     whisper japanese.wav --language Japanese --task translate
 92 | 
 93 | Run the following to view all available options:
 94 | 
 95 |     whisper --help
 96 | 
 97 | See [tokenizer.py](https://github.com/openai/whisper/blob/main/whisper/tokenizer.py) for the list of all available languages.
 98 | 
 99 | 
100 | ## Python usage
101 | 
102 | Transcription can also be performed within Python: 
103 | 
104 | ```python
105 | import whisper
106 | 
107 | model = whisper.load_model("base")
108 | result = model.transcribe("audio.mp3")
109 | print(result["text"])
110 | ```
111 | 
112 | Internally, the `transcribe()` method reads the entire file and processes the audio with a sliding 30-second window, performing autoregressive sequence-to-sequence predictions on each window.
113 | 
114 | Below is an example usage of `whisper.detect_language()` and `whisper.decode()` which provide lower-level access to the model.
115 | 
116 | ```python
117 | import whisper
118 | 
119 | model = whisper.load_model("base")
120 | 
121 | # load audio and pad/trim it to fit 30 seconds
122 | audio = whisper.load_audio("audio.mp3")
123 | audio = whisper.pad_or_trim(audio)
124 | 
125 | # make log-Mel spectrogram and move to the same device as the model
126 | mel = whisper.log_mel_spectrogram(audio).to(model.device)
127 | 
128 | # detect the spoken language
129 | _, probs = model.detect_language(mel)
130 | print(f"Detected language: {max(probs, key=probs.get)}")
131 | 
132 | # decode the audio
133 | options = whisper.DecodingOptions()
134 | result = whisper.decode(model, mel, options)
135 | 
136 | # print the recognized text
137 | print(result.text)
138 | ```
139 | 
140 | ## More examples
141 | 
142 | Please use the [🙌 Show and tell](https://github.com/openai/whisper/discussions/categories/show-and-tell) category in Discussions for sharing more example usages of Whisper and third-party extensions such as web demos, integrations with other tools, ports for different platforms, etc.
143 | 
144 | 
145 | ## License
146 | 
147 | Whisper's code and model weights are released under the MIT License. See [LICENSE](https://github.com/openai/whisper/blob/main/LICENSE) for further details.


--------------------------------------------------------------------------------
/whisper/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__init__.py


--------------------------------------------------------------------------------
/whisper/__pycache__/__init__.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__pycache__/__init__.cpython-37.pyc


--------------------------------------------------------------------------------
/whisper/__pycache__/audio.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__pycache__/audio.cpython-37.pyc


--------------------------------------------------------------------------------
/whisper/__pycache__/decoding.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__pycache__/decoding.cpython-37.pyc


--------------------------------------------------------------------------------
/whisper/__pycache__/model.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__pycache__/model.cpython-37.pyc


--------------------------------------------------------------------------------
/whisper/__pycache__/tokenizer.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__pycache__/tokenizer.cpython-37.pyc


--------------------------------------------------------------------------------
/whisper/__pycache__/utils.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__pycache__/utils.cpython-37.pyc


--------------------------------------------------------------------------------
/whisper/assets/gpt2/special_tokens_map.json:
--------------------------------------------------------------------------------
1 | {"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}


--------------------------------------------------------------------------------
/whisper/assets/gpt2/tokenizer_config.json:
--------------------------------------------------------------------------------
1 | {"unk_token": "<|endoftext|>", "bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "gpt2", "tokenizer_class": "GPT2Tokenizer"}


--------------------------------------------------------------------------------
/whisper/assets/mel_filters.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/assets/mel_filters.npz


--------------------------------------------------------------------------------
/whisper/assets/multilingual/added_tokens.json:
--------------------------------------------------------------------------------
1 | {"<|endoftext|>": 50257}
2 | 


--------------------------------------------------------------------------------
/whisper/assets/multilingual/special_tokens_map.json:
--------------------------------------------------------------------------------
1 | {"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}


--------------------------------------------------------------------------------
/whisper/assets/multilingual/tokenizer_config.json:
--------------------------------------------------------------------------------
1 | {"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "multilingual", "errors": "replace", "tokenizer_class": "GPT2Tokenizer"}


--------------------------------------------------------------------------------
/whisper/audio.py:
--------------------------------------------------------------------------------
  1 | import os
  2 | from functools import lru_cache
  3 | from typing import Union
  4 | 
  5 | import ffmpeg
  6 | import numpy as np
  7 | import torch
  8 | import torch.nn.functional as F
  9 | 
 10 | from .utils import exact_div
 11 | 
 12 | # hard-coded audio hyperparameters
 13 | SAMPLE_RATE = 16000
 14 | N_FFT = 400
 15 | N_MELS = 80
 16 | HOP_LENGTH = 160
 17 | CHUNK_LENGTH = 30
 18 | N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE  # 480000: number of samples in a chunk
 19 | N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH)  # 3000: number of frames in a mel spectrogram input
 20 | 
 21 | 
 22 | def load_audio(file: str, sr: int = SAMPLE_RATE):
 23 |     """
 24 |     Open an audio file and read as mono waveform, resampling as necessary
 25 | 
 26 |     Parameters
 27 |     ----------
 28 |     file: str
 29 |         The audio file to open
 30 | 
 31 |     sr: int
 32 |         The sample rate to resample the audio if necessary
 33 | 
 34 |     Returns
 35 |     -------
 36 |     A NumPy array containing the audio waveform, in float32 dtype.
 37 |     """
 38 |     try:
 39 |         # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
 40 |         # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
 41 |         out, _ = (
 42 |             ffmpeg.input(file, threads=0)
 43 |             .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
 44 |             .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
 45 |         )
 46 |     except ffmpeg.Error as e:
 47 |         raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
 48 | 
 49 |     return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
 50 | 
 51 | 
 52 | def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
 53 |     """
 54 |     Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
 55 |     """
 56 |     if torch.is_tensor(array):
 57 |         if array.shape[axis] > length:
 58 |             array = array.index_select(dim=axis, index=torch.arange(length, device=array.device))
 59 | 
 60 |         if array.shape[axis] < length:
 61 |             pad_widths = [(0, 0)] * array.ndim
 62 |             pad_widths[axis] = (0, length - array.shape[axis])
 63 |             array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
 64 |     else:
 65 |         if array.shape[axis] > length:
 66 |             array = array.take(indices=range(length), axis=axis)
 67 | 
 68 |         if array.shape[axis] < length:
 69 |             pad_widths = [(0, 0)] * array.ndim
 70 |             pad_widths[axis] = (0, length - array.shape[axis])
 71 |             array = np.pad(array, pad_widths)
 72 | 
 73 |     return array
 74 | 
 75 | 
 76 | @lru_cache(maxsize=None)
 77 | def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
 78 |     """
 79 |     load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
 80 |     Allows decoupling librosa dependency; saved using:
 81 | 
 82 |         np.savez_compressed(
 83 |             "mel_filters.npz",
 84 |             mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
 85 |         )
 86 |     """
 87 |     assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
 88 |     with np.load(os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")) as f:
 89 |         return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
 90 | 
 91 | 
 92 | def log_mel_spectrogram(audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS):
 93 |     """
 94 |     Compute the log-Mel spectrogram of
 95 | 
 96 |     Parameters
 97 |     ----------
 98 |     audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
 99 |         The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
100 | 
101 |     n_mels: int
102 |         The number of Mel-frequency filters, only 80 is supported
103 | 
104 |     Returns
105 |     -------
106 |     torch.Tensor, shape = (80, n_frames)
107 |         A Tensor that contains the Mel spectrogram
108 |     """
109 |     if not torch.is_tensor(audio):
110 |         if isinstance(audio, str):
111 |             audio = load_audio(audio)
112 |         audio = torch.from_numpy(audio)
113 | 
114 |     window = torch.hann_window(N_FFT).to(audio.device)
115 |     stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
116 |     magnitudes = stft[..., :-1].abs() ** 2
117 | 
118 |     filters = mel_filters(audio.device, n_mels)
119 |     mel_spec = filters @ magnitudes
120 | 
121 |     log_spec = torch.clamp(mel_spec, min=1e-10).log10()
122 |     log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
123 |     log_spec = (log_spec + 4.0) / 4.0
124 |     return log_spec
125 | 


--------------------------------------------------------------------------------
/whisper/model.py:
--------------------------------------------------------------------------------
  1 | from dataclasses import dataclass
  2 | from typing import Dict
  3 | from typing import Iterable, Optional
  4 | 
  5 | import numpy as np
  6 | import torch
  7 | import torch.nn.functional as F
  8 | from torch import Tensor
  9 | from torch import nn
 10 | 
 11 | from .decoding import detect_language as detect_language_function, decode as decode_function
 12 | 
 13 | 
 14 | @dataclass
 15 | class ModelDimensions:
 16 |     n_mels: int
 17 |     n_audio_ctx: int
 18 |     n_audio_state: int
 19 |     n_audio_head: int
 20 |     n_audio_layer: int
 21 |     n_vocab: int
 22 |     n_text_ctx: int
 23 |     n_text_state: int
 24 |     n_text_head: int
 25 |     n_text_layer: int
 26 | 
 27 | 
 28 | class LayerNorm(nn.LayerNorm):
 29 |     def forward(self, x: Tensor) -> Tensor:
 30 |         return super().forward(x.float()).type(x.dtype)
 31 | 
 32 | 
 33 | class Linear(nn.Linear):
 34 |     def forward(self, x: Tensor) -> Tensor:
 35 |         return F.linear(
 36 |             x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype)
 37 |         )
 38 | 
 39 | 
 40 | class Conv1d(nn.Conv1d):
 41 |     def _conv_forward(self, x: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor:
 42 |         return super()._conv_forward(
 43 |             x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
 44 |         )
 45 | 
 46 | 
 47 | def sinusoids(length, channels, max_timescale=10000):
 48 |     """Returns sinusoids for positional embedding"""
 49 |     assert channels % 2 == 0
 50 |     log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
 51 |     inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
 52 |     scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
 53 |     return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
 54 | 
 55 | 
 56 | class MultiHeadAttention(nn.Module):
 57 |     def __init__(self, n_state: int, n_head: int):
 58 |         super().__init__()
 59 |         self.n_head = n_head
 60 |         self.query = Linear(n_state, n_state)
 61 |         self.key = Linear(n_state, n_state, bias=False)
 62 |         self.value = Linear(n_state, n_state)
 63 |         self.out = Linear(n_state, n_state)
 64 | 
 65 |     def forward(
 66 |         self,
 67 |         x: Tensor,
 68 |         xa: Optional[Tensor] = None,
 69 |         mask: Optional[Tensor] = None,
 70 |         kv_cache: Optional[dict] = None,
 71 |     ):
 72 |         q = self.query(x)
 73 | 
 74 |         if kv_cache is None or xa is None or self.key not in kv_cache:
 75 |             # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
 76 |             # otherwise, perform key/value projections for self- or cross-attention as usual.
 77 |             k = self.key(x if xa is None else xa)
 78 |             v = self.value(x if xa is None else xa)
 79 |         else:
 80 |             # for cross-attention, calculate keys and values once and reuse in subsequent calls.
 81 |             k = kv_cache[self.key]
 82 |             v = kv_cache[self.value]
 83 | 
 84 |         wv, qk = self.qkv_attention(q, k, v, mask)
 85 |         return self.out(wv), qk
 86 | 
 87 |     def qkv_attention(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):
 88 |         n_batch, n_ctx, n_state = q.shape
 89 |         scale = (n_state // self.n_head) ** -0.25
 90 |         q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
 91 |         k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
 92 |         v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
 93 | 
 94 |         qk = q @ k
 95 |         if mask is not None:
 96 |             qk = qk + mask[:n_ctx, :n_ctx]
 97 |         qk = qk.float()
 98 | 
 99 |         w = F.softmax(qk, dim=-1).to(q.dtype)
100 |         return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
101 | 
102 | 
103 | class ResidualAttentionBlock(nn.Module):
104 |     def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
105 |         super().__init__()
106 | 
107 |         self.attn = MultiHeadAttention(n_state, n_head)
108 |         self.attn_ln = LayerNorm(n_state)
109 | 
110 |         self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None
111 |         self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
112 | 
113 |         n_mlp = n_state * 4
114 |         self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state))
115 |         self.mlp_ln = LayerNorm(n_state)
116 | 
117 |     def forward(
118 |         self,
119 |         x: Tensor,
120 |         xa: Optional[Tensor] = None,
121 |         mask: Optional[Tensor] = None,
122 |         kv_cache: Optional[dict] = None,
123 |     ):
124 |         x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
125 |         if self.cross_attn:
126 |             x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
127 |         x = x + self.mlp(self.mlp_ln(x))
128 |         return x
129 | 
130 | 
131 | class AudioEncoder(nn.Module):
132 |     def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
133 |         super().__init__()
134 |         self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
135 |         self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
136 |         self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))
137 | 
138 |         self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
139 |             [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
140 |         )
141 |         self.ln_post = LayerNorm(n_state)
142 | 
143 |     def forward(self, x: Tensor):
144 |         """
145 |         x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
146 |             the mel spectrogram of the audio
147 |         """
148 |         x = F.gelu(self.conv1(x))
149 |         x = F.gelu(self.conv2(x))
150 |         x = x.permute(0, 2, 1)
151 | 
152 |         len_x = x.shape[1]
153 |         len_e = self.positional_embedding.shape[0]
154 |         assert len_x <= len_e, "incorrect audio shape"
155 |         pos_e = self.positional_embedding[:len_x, :]
156 |         x = (x + pos_e).to(x.dtype)
157 | 
158 |         for block in self.blocks:
159 |             x = block(x)
160 | 
161 |         x = self.ln_post(x)
162 |         return x
163 | 
164 | 
165 | class TextDecoder(nn.Module):
166 |     def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
167 |         super().__init__()
168 | 
169 |         self.token_embedding = nn.Embedding(n_vocab, n_state)
170 |         self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state))
171 | 
172 |         self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
173 |             [ResidualAttentionBlock(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
174 |         )
175 |         self.ln = LayerNorm(n_state)
176 | 
177 |         mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1)
178 |         self.register_buffer("mask", mask, persistent=False)
179 | 
180 |     def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
181 |         """
182 |         x : torch.LongTensor, shape = (batch_size, <= n_ctx)
183 |             the text tokens
184 |         xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
185 |             the encoded audio features to be attended on
186 |         """
187 |         offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
188 |         x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]
189 |         x = x.to(xa.dtype)
190 | 
191 |         for block in self.blocks:
192 |             x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
193 | 
194 |         x = self.ln(x)
195 |         logits = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float()
196 | 
197 |         return logits
198 | 
199 | 
200 | class Whisper(nn.Module):
201 |     def __init__(self, dims: ModelDimensions):
202 |         super().__init__()
203 |         self.dims = dims
204 |         self.encoder = AudioEncoder(
205 |             self.dims.n_mels,
206 |             self.dims.n_audio_ctx,
207 |             self.dims.n_audio_state,
208 |             self.dims.n_audio_head,
209 |             self.dims.n_audio_layer,
210 |         )
211 |         self.decoder = TextDecoder(
212 |             self.dims.n_vocab,
213 |             self.dims.n_text_ctx,
214 |             self.dims.n_text_state,
215 |             self.dims.n_text_head,
216 |             self.dims.n_text_layer,
217 |         )
218 | 
219 |     def embed_audio(self, mel: torch.Tensor):
220 |         return self.encoder(mel)
221 | 
222 |     def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor):
223 |         return self.decoder(tokens, audio_features)
224 | 
225 |     def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]:
226 |         return self.decoder(tokens, self.encoder(mel))
227 | 
228 |     @property
229 |     def device(self):
230 |         return next(self.parameters()).device
231 | 
232 |     @property
233 |     def is_multilingual(self):
234 |         return self.dims.n_vocab == 51865
235 | 
236 |     def install_kv_cache_hooks(self, cache: Optional[dict] = None):
237 |         """
238 |         The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value
239 |         tensors calculated for the previous positions. This method returns a dictionary that stores
240 |         all caches, and the necessary hooks for the key and value projection modules that save the
241 |         intermediate tensors to be reused during later calculations.
242 | 
243 |         Returns
244 |         -------
245 |         cache : Dict[nn.Module, torch.Tensor]
246 |             A dictionary object mapping the key/value projection modules to its cache
247 |         hooks : List[RemovableHandle]
248 |             List of PyTorch RemovableHandle objects to stop the hooks to be called
249 |         """
250 |         cache = {**cache} if cache is not None else {}
251 |         hooks = []
252 | 
253 |         def save_to_cache(module, _, output):
254 |             if module not in cache or output.shape[1] > self.decoder.positional_embedding.shape[0]:
255 |                 cache[module] = output  # save as-is, for the first token or cross attention
256 |             else:
257 |                 cache[module] = torch.cat([cache[module], output], dim=1).detach()
258 |             return cache[module]
259 | 
260 |         def install_hooks(layer: nn.Module):
261 |             if isinstance(layer, MultiHeadAttention):
262 |                 hooks.append(layer.key.register_forward_hook(save_to_cache))
263 |                 hooks.append(layer.value.register_forward_hook(save_to_cache))
264 | 
265 |         self.decoder.apply(install_hooks)
266 |         return cache, hooks
267 | 
268 |     detect_language = detect_language_function
269 |     decode = decode_function
270 | 


--------------------------------------------------------------------------------
/whisper/normalizers/__init__.py:
--------------------------------------------------------------------------------
1 | from .basic import BasicTextNormalizer
2 | from .english import EnglishTextNormalizer
3 | 


--------------------------------------------------------------------------------
/whisper/normalizers/basic.py:
--------------------------------------------------------------------------------
 1 | import re
 2 | import unicodedata
 3 | 
 4 | import regex
 5 | 
 6 | # non-ASCII letters that are not separated by "NFKD" normalization
 7 | ADDITIONAL_DIACRITICS = {
 8 |     "œ": "oe",
 9 |     "Œ": "OE",
10 |     "ø": "o",
11 |     "Ø": "O",
12 |     "æ": "ae",
13 |     "Æ": "AE",
14 |     "ß": "ss",
15 |     "ẞ": "SS",
16 |     "đ": "d",
17 |     "Đ": "D",
18 |     "ð": "d",
19 |     "Ð": "D",
20 |     "þ": "th",
21 |     "Þ": "th",
22 |     "ł": "l",
23 |     "Ł": "L",
24 | }
25 | 
26 | 
27 | def remove_symbols_and_diacritics(s: str, keep=""):
28 |     """
29 |     Replace any other markers, symbols, and punctuations with a space,
30 |     and drop any diacritics (category 'Mn' and some manual mappings)
31 |     """
32 |     return "".join(
33 |         c
34 |         if c in keep
35 |         else ADDITIONAL_DIACRITICS[c]
36 |         if c in ADDITIONAL_DIACRITICS
37 |         else ""
38 |         if unicodedata.category(c) == "Mn"
39 |         else " "
40 |         if unicodedata.category(c)[0] in "MSP"
41 |         else c
42 |         for c in unicodedata.normalize("NFKD", s)
43 |     )
44 | 
45 | 
46 | def remove_symbols(s: str):
47 |     """
48 |     Replace any other markers, symbols, punctuations with a space, keeping diacritics
49 |     """
50 |     return "".join(
51 |         " " if unicodedata.category(c)[0] in "MSP" else c for c in unicodedata.normalize("NFKC", s)
52 |     )
53 | 
54 | 
55 | class BasicTextNormalizer:
56 |     def __init__(self, remove_diacritics: bool = False, split_letters: bool = False):
57 |         self.clean = remove_symbols_and_diacritics if remove_diacritics else remove_symbols
58 |         self.split_letters = split_letters
59 | 
60 |     def __call__(self, s: str):
61 |         s = s.lower()
62 |         s = re.sub(r"[<\[][^>\]]*[>\]]", "", s)  # remove words between brackets
63 |         s = re.sub(r"\(([^)]+?)\)", "", s)  # remove words between parenthesis
64 |         s = self.clean(s).lower()
65 | 
66 |         if self.split_letters:
67 |             s = " ".join(regex.findall(r"\X", s, regex.U))
68 | 
69 |         s = re.sub(r"\s+", " ", s)  # replace any successive whitespace characters with a space
70 | 
71 |         return s
72 | 


--------------------------------------------------------------------------------
/whisper/normalizers/english.py:
--------------------------------------------------------------------------------
  1 | import json
  2 | import os
  3 | import re
  4 | from fractions import Fraction
  5 | from typing import Iterator, List, Match, Optional, Union
  6 | 
  7 | from more_itertools import windowed
  8 | 
  9 | from .basic import remove_symbols_and_diacritics
 10 | 
 11 | 
 12 | class EnglishNumberNormalizer:
 13 |     """
 14 |     Convert any spelled-out numbers into arabic numbers, while handling:
 15 | 
 16 |     - remove any commas
 17 |     - keep the suffixes such as: `1960s`, `274th`, `32nd`, etc.
 18 |     - spell out currency symbols after the number. e.g. `$20 million` -> `20000000 dollars`
 19 |     - spell out `one` and `ones`
 20 |     - interpret successive single-digit numbers as nominal: `one oh one` -> `101`
 21 |     """
 22 | 
 23 |     def __init__(self):
 24 |         super().__init__()
 25 | 
 26 |         self.zeros = {"o", "oh", "zero"}
 27 |         self.ones = {
 28 |             name: i
 29 |             for i, name in enumerate(
 30 |                 [
 31 |                     "one",
 32 |                     "two",
 33 |                     "three",
 34 |                     "four",
 35 |                     "five",
 36 |                     "six",
 37 |                     "seven",
 38 |                     "eight",
 39 |                     "nine",
 40 |                     "ten",
 41 |                     "eleven",
 42 |                     "twelve",
 43 |                     "thirteen",
 44 |                     "fourteen",
 45 |                     "fifteen",
 46 |                     "sixteen",
 47 |                     "seventeen",
 48 |                     "eighteen",
 49 |                     "nineteen",
 50 |                 ],
 51 |                 start=1,
 52 |             )
 53 |         }
 54 |         self.ones_plural = {
 55 |             "sixes" if name == "six" else name + "s": (value, "s")
 56 |             for name, value in self.ones.items()
 57 |         }
 58 |         self.ones_ordinal = {
 59 |             "zeroth": (0, "th"),
 60 |             "first": (1, "st"),
 61 |             "second": (2, "nd"),
 62 |             "third": (3, "rd"),
 63 |             "fifth": (5, "th"),
 64 |             "twelfth": (12, "th"),
 65 |             **{
 66 |                 name + ("h" if name.endswith("t") else "th"): (value, "th")
 67 |                 for name, value in self.ones.items()
 68 |                 if value > 3 and value != 5 and value != 12
 69 |             },
 70 |         }
 71 |         self.ones_suffixed = {**self.ones_plural, **self.ones_ordinal}
 72 | 
 73 |         self.tens = {
 74 |             "twenty": 20,
 75 |             "thirty": 30,
 76 |             "forty": 40,
 77 |             "fifty": 50,
 78 |             "sixty": 60,
 79 |             "seventy": 70,
 80 |             "eighty": 80,
 81 |             "ninety": 90,
 82 |         }
 83 |         self.tens_plural = {
 84 |             name.replace("y", "ies"): (value, "s") for name, value in self.tens.items()
 85 |         }
 86 |         self.tens_ordinal = {
 87 |             name.replace("y", "ieth"): (value, "th") for name, value in self.tens.items()
 88 |         }
 89 |         self.tens_suffixed = {**self.tens_plural, **self.tens_ordinal}
 90 | 
 91 |         self.multipliers = {
 92 |             "hundred": 100,
 93 |             "thousand": 1_000,
 94 |             "million": 1_000_000,
 95 |             "billion": 1_000_000_000,
 96 |             "trillion": 1_000_000_000_000,
 97 |             "quadrillion": 1_000_000_000_000_000,
 98 |             "quintillion": 1_000_000_000_000_000_000,
 99 |             "sextillion": 1_000_000_000_000_000_000_000,
100 |             "septillion": 1_000_000_000_000_000_000_000_000,
101 |             "octillion": 1_000_000_000_000_000_000_000_000_000,
102 |             "nonillion": 1_000_000_000_000_000_000_000_000_000_000,
103 |             "decillion": 1_000_000_000_000_000_000_000_000_000_000_000,
104 |         }
105 |         self.multipliers_plural = {
106 |             name + "s": (value, "s") for name, value in self.multipliers.items()
107 |         }
108 |         self.multipliers_ordinal = {
109 |             name + "th": (value, "th") for name, value in self.multipliers.items()
110 |         }
111 |         self.multipliers_suffixed = {**self.multipliers_plural, **self.multipliers_ordinal}
112 |         self.decimals = {*self.ones, *self.tens, *self.zeros}
113 | 
114 |         self.preceding_prefixers = {
115 |             "minus": "-",
116 |             "negative": "-",
117 |             "plus": "+",
118 |             "positive": "+",
119 |         }
120 |         self.following_prefixers = {
121 |             "pound": "£",
122 |             "pounds": "£",
123 |             "euro": "€",
124 |             "euros": "€",
125 |             "dollar": "
quot;,
126 |             "dollars": "
quot;,
127 |             "cent": "¢",
128 |             "cents": "¢",
129 |         }
130 |         self.prefixes = set(
131 |             list(self.preceding_prefixers.values()) + list(self.following_prefixers.values())
132 |         )
133 |         self.suffixers = {
134 |             "per": {"cent": "%"},
135 |             "percent": "%",
136 |         }
137 |         self.specials = {"and", "double", "triple", "point"}
138 | 
139 |         self.words = set(
140 |             [
141 |                 key
142 |                 for mapping in [
143 |                     self.zeros,
144 |                     self.ones,
145 |                     self.ones_suffixed,
146 |                     self.tens,
147 |                     self.tens_suffixed,
148 |                     self.multipliers,
149 |                     self.multipliers_suffixed,
150 |                     self.preceding_prefixers,
151 |                     self.following_prefixers,
152 |                     self.suffixers,
153 |                     self.specials,
154 |                 ]
155 |                 for key in mapping
156 |             ]
157 |         )
158 |         self.literal_words = {"one", "ones"}
159 | 
160 |     def process_words(self, words: List[str]) -> Iterator[str]:
161 |         prefix: Optional[str] = None
162 |         value: Optional[Union[str, int]] = None
163 |         skip = False
164 | 
165 |         def to_fraction(s: str):
166 |             try:
167 |                 return Fraction(s)
168 |             except ValueError:
169 |                 return None
170 | 
171 |         def output(result: Union[str, int]):
172 |             nonlocal prefix, value
173 |             result = str(result)
174 |             if prefix is not None:
175 |                 result = prefix + result
176 |             value = None
177 |             prefix = None
178 |             return result
179 | 
180 |         if len(words) == 0:
181 |             return
182 | 
183 |         for prev, current, next in windowed([None] + words + [None], 3):
184 |             if skip:
185 |                 skip = False
186 |                 continue
187 | 
188 |             next_is_numeric = next is not None and re.match(r"^\d+(\.\d+)?
quot;, next)
189 |             has_prefix = current[0] in self.prefixes
190 |             current_without_prefix = current[1:] if has_prefix else current
191 |             if re.match(r"^\d+(\.\d+)?
quot;, current_without_prefix):
192 |                 # arabic numbers (potentially with signs and fractions)
193 |                 f = to_fraction(current_without_prefix)
194 |                 assert f is not None
195 |                 if value is not None:
196 |                     if isinstance(value, str) and value.endswith("."):
197 |                         # concatenate decimals / ip address components
198 |                         value = str(value) + str(current)
199 |                         continue
200 |                     else:
201 |                         yield output(value)
202 | 
203 |                 prefix = current[0] if has_prefix else prefix
204 |                 if f.denominator == 1:
205 |                     value = f.numerator  # store integers as int
206 |                 else:
207 |                     value = current_without_prefix
208 |             elif current not in self.words:
209 |                 # non-numeric words
210 |                 if value is not None:
211 |                     yield output(value)
212 |                 yield output(current)
213 |             elif current in self.zeros:
214 |                 value = str(value or "") + "0"
215 |             elif current in self.ones:
216 |                 ones = self.ones[current]
217 | 
218 |                 if value is None:
219 |                     value = ones
220 |                 elif isinstance(value, str) or prev in self.ones:
221 |                     if prev in self.tens and ones < 10:  # replace the last zero with the digit
222 |                         assert value[-1] == "0"
223 |                         value = value[:-1] + str(ones)
224 |                     else:
225 |                         value = str(value) + str(ones)
226 |                 elif ones < 10:
227 |                     if value % 10 == 0:
228 |                         value += ones
229 |                     else:
230 |                         value = str(value) + str(ones)
231 |                 else:  # eleven to nineteen
232 |                     if value % 100 == 0:
233 |                         value += ones
234 |                     else:
235 |                         value = str(value) + str(ones)
236 |             elif current in self.ones_suffixed:
237 |                 # ordinal or cardinal; yield the number right away
238 |                 ones, suffix = self.ones_suffixed[current]
239 |                 if value is None:
240 |                     yield output(str(ones) + suffix)
241 |                 elif isinstance(value, str) or prev in self.ones:
242 |                     if prev in self.tens and ones < 10:
243 |                         assert value[-1] == "0"
244 |                         yield output(value[:-1] + str(ones) + suffix)
245 |                     else:
246 |                         yield output(str(value) + str(ones) + suffix)
247 |                 elif ones < 10:
248 |                     if value % 10 == 0:
249 |                         yield output(str(value + ones) + suffix)
250 |                     else:
251 |                         yield output(str(value) + str(ones) + suffix)
252 |                 else:  # eleven to nineteen
253 |                     if value % 100 == 0:
254 |                         yield output(str(value + ones) + suffix)
255 |                     else:
256 |                         yield output(str(value) + str(ones) + suffix)
257 |                 value = None
258 |             elif current in self.tens:
259 |                 tens = self.tens[current]
260 |                 if value is None:
261 |                     value = tens
262 |                 elif isinstance(value, str):
263 |                     value = str(value) + str(tens)
264 |                 else:
265 |                     if value % 100 == 0:
266 |                         value += tens
267 |                     else:
268 |                         value = str(value) + str(tens)
269 |             elif current in self.tens_suffixed:
270 |                 # ordinal or cardinal; yield the number right away
271 |                 tens, suffix = self.tens_suffixed[current]
272 |                 if value is None:
273 |                     yield output(str(tens) + suffix)
274 |                 elif isinstance(value, str):
275 |                     yield output(str(value) + str(tens) + suffix)
276 |                 else:
277 |                     if value % 100 == 0:
278 |                         yield output(str(value + tens) + suffix)
279 |                     else:
280 |                         yield output(str(value) + str(tens) + suffix)
281 |             elif current in self.multipliers:
282 |                 multiplier = self.multipliers[current]
283 |                 if value is None:
284 |                     value = multiplier
285 |                 elif isinstance(value, str) or value == 0:
286 |                     f = to_fraction(value)
287 |                     p = f * multiplier if f is not None else None
288 |                     if f is not None and p.denominator == 1:
289 |                         value = p.numerator
290 |                     else:
291 |                         yield output(value)
292 |                         value = multiplier
293 |                 else:
294 |                     before = value // 1000 * 1000
295 |                     residual = value % 1000
296 |                     value = before + residual * multiplier
297 |             elif current in self.multipliers_suffixed:
298 |                 multiplier, suffix = self.multipliers_suffixed[current]
299 |                 if value is None:
300 |                     yield output(str(multiplier) + suffix)
301 |                 elif isinstance(value, str):
302 |                     f = to_fraction(value)
303 |                     p = f * multiplier if f is not None else None
304 |                     if f is not None and p.denominator == 1:
305 |                         yield output(str(p.numerator) + suffix)
306 |                     else:
307 |                         yield output(value)
308 |                         yield output(str(multiplier) + suffix)
309 |                 else:  # int
310 |                     before = value // 1000 * 1000
311 |                     residual = value % 1000
312 |                     value = before + residual * multiplier
313 |                     yield output(str(value) + suffix)
314 |                 value = None
315 |             elif current in self.preceding_prefixers:
316 |                 # apply prefix (positive, minus, etc.) if it precedes a number
317 |                 if value is not None:
318 |                     yield output(value)
319 | 
320 |                 if next in self.words or next_is_numeric:
321 |                     prefix = self.preceding_prefixers[current]
322 |                 else:
323 |                     yield output(current)
324 |             elif current in self.following_prefixers:
325 |                 # apply prefix (dollars, cents, etc.) only after a number
326 |                 if value is not None:
327 |                     prefix = self.following_prefixers[current]
328 |                     yield output(value)
329 |                 else:
330 |                     yield output(current)
331 |             elif current in self.suffixers:
332 |                 # apply suffix symbols (percent -> '%')
333 |                 if value is not None:
334 |                     suffix = self.suffixers[current]
335 |                     if isinstance(suffix, dict):
336 |                         if next in suffix:
337 |                             yield output(str(value) + suffix[next])
338 |                             skip = True
339 |                         else:
340 |                             yield output(value)
341 |                             yield output(current)
342 |                     else:
343 |                         yield output(str(value) + suffix)
344 |                 else:
345 |                     yield output(current)
346 |             elif current in self.specials:
347 |                 if next not in self.words and not next_is_numeric:
348 |                     # apply special handling only if the next word can be numeric
349 |                     if value is not None:
350 |                         yield output(value)
351 |                     yield output(current)
352 |                 elif current == "and":
353 |                     # ignore "and" after hundreds, thousands, etc.
354 |                     if prev not in self.multipliers:
355 |                         if value is not None:
356 |                             yield output(value)
357 |                         yield output(current)
358 |                 elif current == "double" or current == "triple":
359 |                     if next in self.ones or next in self.zeros:
360 |                         repeats = 2 if current == "double" else 3
361 |                         ones = self.ones.get(next, 0)
362 |                         value = str(value or "") + str(ones) * repeats
363 |                         skip = True
364 |                     else:
365 |                         if value is not None:
366 |                             yield output(value)
367 |                         yield output(current)
368 |                 elif current == "point":
369 |                     if next in self.decimals or next_is_numeric:
370 |                         value = str(value or "") + "."
371 |                 else:
372 |                     # should all have been covered at this point
373 |                     raise ValueError(f"Unexpected token: {current}")
374 |             else:
375 |                 # all should have been covered at this point
376 |                 raise ValueError(f"Unexpected token: {current}")
377 | 
378 |         if value is not None:
379 |             yield output(value)
380 | 
381 |     def preprocess(self, s: str):
382 |         # replace "<number> and a half" with "<number> point five"
383 |         results = []
384 | 
385 |         segments = re.split(r"\band\s+a\s+half\b", s)
386 |         for i, segment in enumerate(segments):
387 |             if len(segment.strip()) == 0:
388 |                 continue
389 |             if i == len(segments) - 1:
390 |                 results.append(segment)
391 |             else:
392 |                 results.append(segment)
393 |                 last_word = segment.rsplit(maxsplit=2)[-1]
394 |                 if last_word in self.decimals or last_word in self.multipliers:
395 |                     results.append("point five")
396 |                 else:
397 |                     results.append("and a half")
398 | 
399 |         s = " ".join(results)
400 | 
401 |         # put a space at number/letter boundary
402 |         s = re.sub(r"([a-z])([0-9])", r"\1 \2", s)
403 |         s = re.sub(r"([0-9])([a-z])", r"\1 \2", s)
404 | 
405 |         # but remove spaces which could be a suffix
406 |         s = re.sub(r"([0-9])\s+(st|nd|rd|th|s)\b", r"\1\2", s)
407 | 
408 |         return s
409 | 
410 |     def postprocess(self, s: str):
411 |         def combine_cents(m: Match):
412 |             try:
413 |                 currency = m.group(1)
414 |                 integer = m.group(2)
415 |                 cents = int(m.group(3))
416 |                 return f"{currency}{integer}.{cents:02d}"
417 |             except ValueError:
418 |                 return m.string
419 | 
420 |         def extract_cents(m: Match):
421 |             try:
422 |                 return f"¢{int(m.group(1))}"
423 |             except ValueError:
424 |                 return m.string
425 | 
426 |         # apply currency postprocessing; "$2 and ¢7" -> "$2.07"
427 |         s = re.sub(r"([€£$])([0-9]+) (?:and )?¢([0-9]{1,2})\b", combine_cents, s)
428 |         s = re.sub(r"[€£$]0.([0-9]{1,2})\b", extract_cents, s)
429 | 
430 |         # write "one(s)" instead of "1(s)", just for the readability
431 |         s = re.sub(r"\b1(s?)\b", r"one\1", s)
432 | 
433 |         return s
434 | 
435 |     def __call__(self, s: str):
436 |         s = self.preprocess(s)
437 |         s = " ".join(word for word in self.process_words(s.split()) if word is not None)
438 |         s = self.postprocess(s)
439 | 
440 |         return s
441 | 
442 | 
443 | class EnglishSpellingNormalizer:
444 |     """
445 |     Applies British-American spelling mappings as listed in [1].
446 | 
447 |     [1] https://www.tysto.com/uk-us-spelling-list.html
448 |     """
449 | 
450 |     def __init__(self):
451 |         mapping_path = os.path.join(os.path.dirname(__file__), "english.json")
452 |         self.mapping = json.load(open(mapping_path))
453 | 
454 |     def __call__(self, s: str):
455 |         return " ".join(self.mapping.get(word, word) for word in s.split())
456 | 
457 | 
458 | class EnglishTextNormalizer:
459 |     def __init__(self):
460 |         self.ignore_patterns = r"\b(hmm|mm|mhm|mmm|uh|um)\b"
461 |         self.replacers = {
462 |             # common contractions
463 |             r"\bwon't\b": "will not",
464 |             r"\bcan't\b": "can not",
465 |             r"\blet's\b": "let us",
466 |             r"\bain't\b": "aint",
467 |             r"\by'all\b": "you all",
468 |             r"\bwanna\b": "want to",
469 |             r"\bgotta\b": "got to",
470 |             r"\bgonna\b": "going to",
471 |             r"\bi'ma\b": "i am going to",
472 |             r"\bimma\b": "i am going to",
473 |             r"\bwoulda\b": "would have",
474 |             r"\bcoulda\b": "could have",
475 |             r"\bshoulda\b": "should have",
476 |             r"\bma'am\b": "madam",
477 |             # contractions in titles/prefixes
478 |             r"\bmr\b": "mister ",
479 |             r"\bmrs\b": "missus ",
480 |             r"\bst\b": "saint ",
481 |             r"\bdr\b": "doctor ",
482 |             r"\bprof\b": "professor ",
483 |             r"\bcapt\b": "captain ",
484 |             r"\bgov\b": "governor ",
485 |             r"\bald\b": "alderman ",
486 |             r"\bgen\b": "general ",
487 |             r"\bsen\b": "senator ",
488 |             r"\brep\b": "representative ",
489 |             r"\bpres\b": "president ",
490 |             r"\brev\b": "reverend ",
491 |             r"\bhon\b": "honorable ",
492 |             r"\basst\b": "assistant ",
493 |             r"\bassoc\b": "associate ",
494 |             r"\blt\b": "lieutenant ",
495 |             r"\bcol\b": "colonel ",
496 |             r"\bjr\b": "junior ",
497 |             r"\bsr\b": "senior ",
498 |             r"\besq\b": "esquire ",
499 |             # prefect tenses, ideally it should be any past participles, but it's harder..
500 |             r"'d been\b": " had been",
501 |             r"'s been\b": " has been",
502 |             r"'d gone\b": " had gone",
503 |             r"'s gone\b": " has gone",
504 |             r"'d done\b": " had done",  # "'s done" is ambiguous
505 |             r"'s got\b": " has got",
506 |             # general contractions
507 |             r"n't\b": " not",
508 |             r"'re\b": " are",
509 |             r"'s\b": " is",
510 |             r"'d\b": " would",
511 |             r"'ll\b": " will",
512 |             r"'t\b": " not",
513 |             r"'ve\b": " have",
514 |             r"'m\b": " am",
515 |         }
516 |         self.standardize_numbers = EnglishNumberNormalizer()
517 |         self.standardize_spellings = EnglishSpellingNormalizer()
518 | 
519 |     def __call__(self, s: str):
520 |         s = s.lower()
521 | 
522 |         s = re.sub(r"[<\[][^>\]]*[>\]]", "", s)  # remove words between brackets
523 |         s = re.sub(r"\(([^)]+?)\)", "", s)  # remove words between parenthesis
524 |         s = re.sub(self.ignore_patterns, "", s)
525 |         s = re.sub(r"\s+'", "'", s)  # standardize when there's a space before an apostrophe
526 | 
527 |         for pattern, replacement in self.replacers.items():
528 |             s = re.sub(pattern, replacement, s)
529 | 
530 |         s = re.sub(r"(\d),(\d)", r"\1\2", s)  # remove commas between digits
531 |         s = re.sub(r"\.([^0-9]|$)", r" \1", s)  # remove periods not followed by numbers
532 |         s = remove_symbols_and_diacritics(s, keep=".%$¢€£")  # keep some symbols for numerics
533 | 
534 |         s = self.standardize_numbers(s)
535 |         s = self.standardize_spellings(s)
536 | 
537 |         # now remove prefix/suffix symbols that are not preceded/followed by numbers
538 |         s = re.sub(r"[.$¢€£]([^0-9])", r" \1", s)
539 |         s = re.sub(r"([^0-9])%", r"\1 ", s)
540 | 
541 |         s = re.sub(r"\s+", " ", s)  # replace any successive whitespace characters with a space
542 | 
543 |         return s
544 | 


--------------------------------------------------------------------------------
/whisper/tokenizer.py:
--------------------------------------------------------------------------------
  1 | import os
  2 | from dataclasses import dataclass
  3 | from functools import lru_cache
  4 | from typing import List, Optional, Tuple, Union
  5 | 
  6 | import numpy as np
  7 | import torch
  8 | from transformers import GPT2TokenizerFast
  9 | 
 10 | LANGUAGES = {
 11 |     "en": "english",
 12 |     "zh": "chinese",
 13 |     "de": "german",
 14 |     "es": "spanish",
 15 |     "ru": "russian",
 16 |     "ko": "korean",
 17 |     "fr": "french",
 18 |     "ja": "japanese",
 19 |     "pt": "portuguese",
 20 |     "tr": "turkish",
 21 |     "pl": "polish",
 22 |     "ca": "catalan",
 23 |     "nl": "dutch",
 24 |     "ar": "arabic",
 25 |     "sv": "swedish",
 26 |     "it": "italian",
 27 |     "id": "indonesian",
 28 |     "hi": "hindi",
 29 |     "fi": "finnish",
 30 |     "vi": "vietnamese",
 31 |     "he": "hebrew",
 32 |     "uk": "ukrainian",
 33 |     "el": "greek",
 34 |     "ms": "malay",
 35 |     "cs": "czech",
 36 |     "ro": "romanian",
 37 |     "da": "danish",
 38 |     "hu": "hungarian",
 39 |     "ta": "tamil",
 40 |     "no": "norwegian",
 41 |     "th": "thai",
 42 |     "ur": "urdu",
 43 |     "hr": "croatian",
 44 |     "bg": "bulgarian",
 45 |     "lt": "lithuanian",
 46 |     "la": "latin",
 47 |     "mi": "maori",
 48 |     "ml": "malayalam",
 49 |     "cy": "welsh",
 50 |     "sk": "slovak",
 51 |     "te": "telugu",
 52 |     "fa": "persian",
 53 |     "lv": "latvian",
 54 |     "bn": "bengali",
 55 |     "sr": "serbian",
 56 |     "az": "azerbaijani",
 57 |     "sl": "slovenian",
 58 |     "kn": "kannada",
 59 |     "et": "estonian",
 60 |     "mk": "macedonian",
 61 |     "br": "breton",
 62 |     "eu": "basque",
 63 |     "is": "icelandic",
 64 |     "hy": "armenian",
 65 |     "ne": "nepali",
 66 |     "mn": "mongolian",
 67 |     "bs": "bosnian",
 68 |     "kk": "kazakh",
 69 |     "sq": "albanian",
 70 |     "sw": "swahili",
 71 |     "gl": "galician",
 72 |     "mr": "marathi",
 73 |     "pa": "punjabi",
 74 |     "si": "sinhala",
 75 |     "km": "khmer",
 76 |     "sn": "shona",
 77 |     "yo": "yoruba",
 78 |     "so": "somali",
 79 |     "af": "afrikaans",
 80 |     "oc": "occitan",
 81 |     "ka": "georgian",
 82 |     "be": "belarusian",
 83 |     "tg": "tajik",
 84 |     "sd": "sindhi",
 85 |     "gu": "gujarati",
 86 |     "am": "amharic",
 87 |     "yi": "yiddish",
 88 |     "lo": "lao",
 89 |     "uz": "uzbek",
 90 |     "fo": "faroese",
 91 |     "ht": "haitian creole",
 92 |     "ps": "pashto",
 93 |     "tk": "turkmen",
 94 |     "nn": "nynorsk",
 95 |     "mt": "maltese",
 96 |     "sa": "sanskrit",
 97 |     "lb": "luxembourgish",
 98 |     "my": "myanmar",
 99 |     "bo": "tibetan",
100 |     "tl": "tagalog",
101 |     "mg": "malagasy",
102 |     "as": "assamese",
103 |     "tt": "tatar",
104 |     "haw": "hawaiian",
105 |     "ln": "lingala",
106 |     "ha": "hausa",
107 |     "ba": "bashkir",
108 |     "jw": "javanese",
109 |     "su": "sundanese",
110 | }
111 | 
112 | # language code lookup by name, with a few language aliases
113 | TO_LANGUAGE_CODE = {
114 |     **{language: code for code, language in LANGUAGES.items()},
115 |     "burmese": "my",
116 |     "valencian": "ca",
117 |     "flemish": "nl",
118 |     "haitian": "ht",
119 |     "letzeburgesch": "lb",
120 |     "pushto": "ps",
121 |     "panjabi": "pa",
122 |     "moldavian": "ro",
123 |     "moldovan": "ro",
124 |     "sinhalese": "si",
125 |     "castilian": "es",
126 | }
127 | 
128 | 
129 | @dataclass(frozen=True)
130 | class Tokenizer:
131 |     """A thin wrapper around `GPT2TokenizerFast` providing quick access to special tokens"""
132 | 
133 |     tokenizer: "GPT2TokenizerFast"
134 |     language: Optional[str]
135 |     sot_sequence: Tuple[int]
136 | 
137 |     def encode(self, text, **kwargs):
138 |         return self.tokenizer.encode(text, **kwargs)
139 | 
140 |     def decode(self, token_ids: Union[int, List[int], np.ndarray, torch.Tensor], **kwargs):
141 |         return self.tokenizer.decode(token_ids, **kwargs)
142 | 
143 |     def decode_with_timestamps(self, tokens) -> str:
144 |         """
145 |         Timestamp tokens are above the special tokens' id range and are ignored by `decode()`.
146 |         This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
147 |         """
148 |         outputs = [[]]
149 |         for token in tokens:
150 |             if token >= self.timestamp_begin:
151 |                 timestamp = f"<|{(token - self.timestamp_begin) * 0.02:.2f}|>"
152 |                 outputs.append(timestamp)
153 |                 outputs.append([])
154 |             else:
155 |                 outputs[-1].append(token)
156 |         outputs = [s if isinstance(s, str) else self.tokenizer.decode(s) for s in outputs]
157 |         return "".join(outputs)
158 | 
159 |     @property
160 |     @lru_cache()
161 |     def eot(self) -> int:
162 |         return self.tokenizer.eos_token_id
163 | 
164 |     @property
165 |     @lru_cache()
166 |     def sot(self) -> int:
167 |         return self._get_single_token_id("<|startoftranscript|>")
168 | 
169 |     @property
170 |     @lru_cache()
171 |     def sot_lm(self) -> int:
172 |         return self._get_single_token_id("<|startoflm|>")
173 | 
174 |     @property
175 |     @lru_cache()
176 |     def sot_prev(self) -> int:
177 |         return self._get_single_token_id("<|startofprev|>")
178 | 
179 |     @property
180 |     @lru_cache()
181 |     def no_speech(self) -> int:
182 |         return self._get_single_token_id("<|nospeech|>")
183 | 
184 |     @property
185 |     @lru_cache()
186 |     def no_timestamps(self) -> int:
187 |         return self._get_single_token_id("<|notimestamps|>")
188 | 
189 |     @property
190 |     @lru_cache()
191 |     def timestamp_begin(self) -> int:
192 |         return self.tokenizer.all_special_ids[-1] + 1
193 | 
194 |     @property
195 |     @lru_cache()
196 |     def language_token(self) -> int:
197 |         """Returns the token id corresponding to the value of the `language` field"""
198 |         if self.language is None:
199 |             raise ValueError(f"This tokenizer does not have language token configured")
200 | 
201 |         additional_tokens = dict(
202 |             zip(
203 |                 self.tokenizer.additional_special_tokens,
204 |                 self.tokenizer.additional_special_tokens_ids,
205 |             )
206 |         )
207 |         candidate = f"<|{self.language}|>"
208 |         if candidate in additional_tokens:
209 |             return additional_tokens[candidate]
210 | 
211 |         raise KeyError(f"Language {self.language} not found in tokenizer.")
212 | 
213 |     @property
214 |     @lru_cache()
215 |     def all_language_tokens(self) -> Tuple[int]:
216 |         result = []
217 |         for token, token_id in zip(
218 |             self.tokenizer.additional_special_tokens,
219 |             self.tokenizer.additional_special_tokens_ids,
220 |         ):
221 |             if token.strip("<|>") in LANGUAGES:
222 |                 result.append(token_id)
223 |         return tuple(result)
224 | 
225 |     @property
226 |     @lru_cache()
227 |     def all_language_codes(self) -> Tuple[str]:
228 |         return tuple(self.decode([l]).strip("<|>") for l in self.all_language_tokens)
229 | 
230 |     @property
231 |     @lru_cache()
232 |     def sot_sequence_including_notimestamps(self) -> Tuple[int]:
233 |         return tuple(list(self.sot_sequence) + [self.no_timestamps])
234 | 
235 |     @property
236 |     @lru_cache()
237 |     def non_speech_tokens(self) -> Tuple[int]:
238 |         """
239 |         Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
240 |         annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
241 | 
242 |         - ♪♪♪
243 |         - ( SPEAKING FOREIGN LANGUAGE )
244 |         - [DAVID] Hey there,
245 | 
246 |         keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
247 |         """
248 |         symbols = list("\"#()*+/:;<=>@[\\]^_`{|}~「」『』")
249 |         symbols += "<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
250 | 
251 |         # symbols that may be a single token or multiple tokens depending on the tokenizer.
252 |         # In case they're multiple tokens, suppress the first token, which is safe because:
253 |         # These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
254 |         # in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
255 |         miscellaneous = set("♩♪♫♬♭♮♯")
256 |         assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
257 | 
258 |         # allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
259 |         result = {self.tokenizer.encode(" -")[0], self.tokenizer.encode(" '")[0]}
260 |         for symbol in symbols + list(miscellaneous):
261 |             for tokens in [self.tokenizer.encode(symbol), self.tokenizer.encode(" " + symbol)]:
262 |                 if len(tokens) == 1 or symbol in miscellaneous:
263 |                     result.add(tokens[0])
264 | 
265 |         return tuple(sorted(result))
266 | 
267 |     def _get_single_token_id(self, text) -> int:
268 |         tokens = self.tokenizer.encode(text)
269 |         assert len(tokens) == 1, f"{text} is not encoded as a single token"
270 |         return tokens[0]
271 | 
272 | 
273 | @lru_cache(maxsize=None)
274 | def build_tokenizer(name: str = "gpt2"):
275 |     os.environ["TOKENIZERS_PARALLELISM"] = "false"
276 |     path = os.path.join(os.path.dirname(__file__), "assets", name)
277 |     tokenizer = GPT2TokenizerFast.from_pretrained(path)
278 | 
279 |     specials = [
280 |         "<|startoftranscript|>",
281 |         *[f"<|{lang}|>" for lang in LANGUAGES.keys()],
282 |         "<|translate|>",
283 |         "<|transcribe|>",
284 |         "<|startoflm|>",
285 |         "<|startofprev|>",
286 |         "<|nospeech|>",
287 |         "<|notimestamps|>",
288 |     ]
289 | 
290 |     tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
291 |     return tokenizer
292 | 
293 | 
294 | @lru_cache(maxsize=None)
295 | def get_tokenizer(
296 |     multilingual: bool,
297 |     *,
298 |     task: Optional[str] = None,  # Literal["transcribe", "translate", None]
299 |     language: Optional[str] = None,
300 | ) -> Tokenizer:
301 |     if language is not None:
302 |         language = language.lower()
303 |         if language not in LANGUAGES:
304 |             if language in TO_LANGUAGE_CODE:
305 |                 language = TO_LANGUAGE_CODE[language]
306 |             else:
307 |                 raise ValueError(f"Unsupported language: {language}")
308 | 
309 |     if multilingual:
310 |         tokenizer_name = "multilingual"
311 |         task = task or "transcribe"
312 |         language = language or "en"
313 |     else:
314 |         tokenizer_name = "gpt2"
315 |         task = None
316 |         language = None
317 | 
318 |     tokenizer = build_tokenizer(name=tokenizer_name)
319 |     all_special_ids: List[int] = tokenizer.all_special_ids
320 |     sot: int = all_special_ids[1]
321 |     translate: int = all_special_ids[-6]
322 |     transcribe: int = all_special_ids[-5]
323 | 
324 |     langs = tuple(LANGUAGES.keys())
325 |     sot_sequence = [sot]
326 |     if language is not None:
327 |         sot_sequence.append(sot + 1 + langs.index(language))
328 |     if task is not None:
329 |         sot_sequence.append(transcribe if task == "transcribe" else translate)
330 | 
331 |     return Tokenizer(tokenizer=tokenizer, language=language, sot_sequence=tuple(sot_sequence))
332 | 


--------------------------------------------------------------------------------
/whisper/utils.py:
--------------------------------------------------------------------------------
  1 | import json
  2 | import os
  3 | import sys
  4 | import zlib
  5 | from typing import Callable, TextIO
  6 | 
  7 | system_encoding = sys.getdefaultencoding()
  8 | 
  9 | if system_encoding != "utf-8":
 10 |     def make_safe(string):
 11 |         # replaces any character not representable using the system default encoding with an '?',
 12 |         # avoiding UnicodeEncodeError (https://github.com/openai/whisper/discussions/729).
 13 |         return string.encode(system_encoding, errors="replace").decode(system_encoding)
 14 | else:
 15 |     def make_safe(string):
 16 |         # utf-8 can encode any Unicode code point, so no need to do the round-trip encoding
 17 |         return string
 18 | 
 19 | 
 20 | def exact_div(x, y):
 21 |     assert x % y == 0
 22 |     return x // y
 23 | 
 24 | 
 25 | def str2bool(string):
 26 |     str2val = {"True": True, "False": False}
 27 |     if string in str2val:
 28 |         return str2val[string]
 29 |     else:
 30 |         raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}")
 31 | 
 32 | 
 33 | def optional_int(string):
 34 |     return None if string == "None" else int(string)
 35 | 
 36 | 
 37 | def optional_float(string):
 38 |     return None if string == "None" else float(string)
 39 | 
 40 | 
 41 | def compression_ratio(text) -> float:
 42 |     text_bytes = text.encode("utf-8")
 43 |     return len(text_bytes) / len(zlib.compress(text_bytes))
 44 | 
 45 | 
 46 | def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = '.'):
 47 |     assert seconds >= 0, "non-negative timestamp expected"
 48 |     milliseconds = round(seconds * 1000.0)
 49 | 
 50 |     hours = milliseconds // 3_600_000
 51 |     milliseconds -= hours * 3_600_000
 52 | 
 53 |     minutes = milliseconds // 60_000
 54 |     milliseconds -= minutes * 60_000
 55 | 
 56 |     seconds = milliseconds // 1_000
 57 |     milliseconds -= seconds * 1_000
 58 | 
 59 |     hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
 60 |     return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
 61 | 
 62 | 
 63 | class ResultWriter:
 64 |     extension: str
 65 | 
 66 |     def __init__(self, output_dir: str):
 67 |         self.output_dir = output_dir
 68 | 
 69 |     def __call__(self, result: dict, audio_path: str):
 70 |         audio_basename = os.path.basename(audio_path)
 71 |         output_path = os.path.join(self.output_dir, audio_basename + "." + self.extension)
 72 | 
 73 |         with open(output_path, "w", encoding="utf-8") as f:
 74 |             self.write_result(result, file=f)
 75 | 
 76 |     def write_result(self, result: dict, file: TextIO):
 77 |         raise NotImplementedError
 78 | 
 79 | 
 80 | class WriteTXT(ResultWriter):
 81 |     extension: str = "txt"
 82 | 
 83 |     def write_result(self, result: dict, file: TextIO):
 84 |         for segment in result["segments"]:
 85 |             print(segment['text'].strip(), file=file, flush=True)
 86 | 
 87 | 
 88 | class WriteVTT(ResultWriter):
 89 |     extension: str = "vtt"
 90 | 
 91 |     def write_result(self, result: dict, file: TextIO):
 92 |         print("WEBVTT\n", file=file)
 93 |         for segment in result["segments"]:
 94 |             print(
 95 |                 f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
 96 |                 f"{segment['text'].strip().replace('-->', '->')}\n",
 97 |                 file=file,
 98 |                 flush=True,
 99 |             )
100 | 
101 | 
102 | class WriteSRT(ResultWriter):
103 |     extension: str = "srt"
104 | 
105 |     def write_result(self, result: dict, file: TextIO):
106 |         for i, segment in enumerate(result["segments"], start=1):
107 |             # write srt lines
108 |             print(
109 |                 f"{i}\n"
110 |                 f"{format_timestamp(segment['start'], always_include_hours=True, decimal_marker=',')} --> "
111 |                 f"{format_timestamp(segment['end'], always_include_hours=True, decimal_marker=',')}\n"
112 |                 f"{segment['text'].strip().replace('-->', '->')}\n",
113 |                 file=file,
114 |                 flush=True,
115 |             )
116 | 
117 | 
118 | class WriteTSV(ResultWriter):
119 |     """
120 |     Write a transcript to a file in TSV (tab-separated values) format containing lines like:
121 |     <start time in integer milliseconds>\t<end time in integer milliseconds>\t<transcript text>
122 | 
123 |     Using integer milliseconds as start and end times means there's no chance of interference from
124 |     an environment setting a language encoding that causes the decimal in a floating point number
125 |     to appear as a comma; also is faster and more efficient to parse & store, e.g., in C++.
126 |     """
127 |     extension: str = "tsv"
128 | 
129 |     def write_result(self, result: dict, file: TextIO):
130 |         print("start", "end", "text", sep="\t", file=file)
131 |         for segment in result["segments"]:
132 |             print(round(1000 * segment['start']), file=file, end="\t")
133 |             print(round(1000 * segment['end']), file=file, end="\t")
134 |             print(segment['text'].strip().replace("\t", " "), file=file, flush=True)
135 | 
136 | 
137 | class WriteJSON(ResultWriter):
138 |     extension: str = "json"
139 | 
140 |     def write_result(self, result: dict, file: TextIO):
141 |         json.dump(result, file)
142 | 
143 | 
144 | def get_writer(output_format: str, output_dir: str) -> Callable[[dict, TextIO], None]:
145 |     writers = {
146 |         "txt": WriteTXT,
147 |         "vtt": WriteVTT,
148 |         "srt": WriteSRT,
149 |         "tsv": WriteTSV,
150 |         "json": WriteJSON,
151 |     }
152 | 
153 |     if output_format == "all":
154 |         all_writers = [writer(output_dir) for writer in writers.values()]
155 | 
156 |         def write_all(result: dict, file: TextIO):
157 |             for writer in all_writers:
158 |                 writer(result, file)
159 | 
160 |         return write_all
161 | 
162 |     return writers[output_format](output_dir)
163 | 
164 | 


--------------------------------------------------------------------------------
/whisperconvert_exp.py:
--------------------------------------------------------------------------------
  1 | import os
  2 | import argparse
  3 | import torch
  4 | import librosa
  5 | import time
  6 | from scipy.io.wavfile import write
  7 | from tqdm import tqdm
  8 | import soundfile as sf
  9 | import utils
 10 | from models import SynthesizerTrn
 11 | from mel_processing import mel_spectrogram_torch
 12 | import logging
 13 | logging.getLogger('numba').setLevel(logging.WARNING)
 14 | 
 15 | 
 16 | if __name__ == "__main__":
 17 | 
 18 |     parser = argparse.ArgumentParser()
 19 |     parser.add_argument("--hpfile", type=str, default="./logs/cvc-whispers-three-emo-loss/config.json", help="path to json config file")
 20 |     parser.add_argument("--ptfile", type=str, default="./logs/cvc-whispers-three-emo-loss/G_cvc-whispers-three-emo-loss.pth", help="path to pth file")
 21 |     parser.add_argument("--outdir", type=str, default="output/60_exp_crosslingual_whispers-three-emo-loss", help="path to output dir")
 22 |     parser.add_argument("--use_timestamp", default=False, action="store_true")
 23 |     args = parser.parse_args()
 24 |     
 25 |     os.makedirs(args.outdir, exist_ok=True)
 26 |     hps = utils.get_hparams_from_file(args.hpfile)
 27 | 
 28 |     print("Loading model...")
 29 |     net_g = SynthesizerTrn(
 30 |         hps.data.filter_length // 2 + 1,
 31 |         hps.train.segment_size // hps.data.hop_length,
 32 |         **hps.model).cuda()
 33 |     _ = net_g.eval()
 34 |     print("Loading checkpoint...")
 35 |     _ = utils.load_checkpoint(args.ptfile, net_g, None, True)
 36 | 
 37 | 
 38 | 
 39 |     src_wavs=[r".\dataset\crosslingual_emo_dataset\LibriTTS100\911\128684\911_128684_000004_000001.wav",
 40 |              r".\dataset\crosslingual_emo_dataset\LibriTTS100\730\359\730_359_000004_000001.wav",
 41 |              r".\dataset\crosslingual_emo_dataset\aishell3\wav\SSB0246\SSB02460001.wav",
 42 |              r".\dataset\crosslingual_emo_dataset\aishell3\wav\SSB1863\SSB18630001.wav",
 43 |              r".\dataset\crosslingual_emo_dataset\jvs\jvs003\nonpara30\wav24kHz16bit\BASIC5000_0440.wav",
 44 |              r".\dataset\crosslingual_emo_dataset\jvs\jvs014\nonpara30\wav24kHz16bit\BASIC5000_0318.wav"]
 45 |     
 46 | 
 47 |     tgt_wavs=[r".\dataset\crosslingual_emo_dataset\LibriTTS100\27\123349\27_123349_000003_000002.wav",
 48 |              r".\dataset\crosslingual_emo_dataset\LibriTTS100\87\121553\87_121553_000254_000000.wav",
 49 |              r".\dataset\crosslingual_emo_dataset\aishell3\wav\SSB1935\SSB19350001.wav",
 50 |              r".\dataset\crosslingual_emo_dataset\aishell3\wav\SSB1759\SSB17590008.wav",
 51 |              r".\dataset\crosslingual_emo_dataset\jvs\jvs009\nonpara30\wav24kHz16bit\BASIC5000_0155.wav",
 52 |              r".\dataset\crosslingual_emo_dataset\jvs\jvs010\nonpara30\wav24kHz16bit\BASIC5000_0113.wav",
 53 |              r".\dataset\vctk-16k\p304\p304_007.wav",
 54 |              r".\jecs_ref\JECS0000_JA.wav",
 55 |              r".\aishell1_ref\BAC009S0655W0493.wav"]
 56 |     print("Processing text...")
 57 |     titles, srcs, tgts = [], [], []
 58 |     for src_wav in src_wavs:
 59 |         for tgt_wav in tgt_wavs:
 60 |             src_wav_name=os.path.basename(src_wav)[:-4]
 61 |             tgt_wav_name=os.path.basename(tgt_wav)[:-4]
 62 |             title="{}_to_{}".format(src_wav_name,tgt_wav_name)
 63 |             titles.append(title)
 64 |             srcs.append(src_wav)
 65 |             tgts.append(tgt_wav)
 66 |     print(srcs)
 67 |     print(tgts)
 68 |     print(titles)
 69 |     #import sys
 70 |     #sys.exit()
 71 |     """
 72 |     with open(args.txtpath, "r") as f:
 73 |         for rawline in f.readlines():
 74 |             print(rawline)
 75 |             title, src, tgt = rawline.strip().split("|")
 76 |             titles.append(title)
 77 |             srcs.append(src)
 78 |             tgts.append(tgt)
 79 |     """
 80 | 
 81 |     print("Synthesizing...")
 82 |     with torch.no_grad():
 83 |         for line in tqdm(zip(titles, srcs, tgts)):
 84 |             title, src, tgt = line
 85 |             srcname,tgtname=title.split("to")
 86 |             # tgt
 87 |             wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
 88 |             sf.write(os.path.join(args.outdir, f"{tgtname}.wav"), wav_tgt, hps.data.sampling_rate)
 89 |             #wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
 90 |      
 91 |             wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).cuda()
 92 |             mel_tgt = mel_spectrogram_torch(
 93 |                 wav_tgt, 
 94 |                 hps.data.filter_length,
 95 |                 hps.data.n_mel_channels,
 96 |                 hps.data.sampling_rate,
 97 |                 hps.data.hop_length,
 98 |                 hps.data.win_length,
 99 |                 hps.data.mel_fmin,
100 |                 hps.data.mel_fmax
101 |             )
102 |             # src
103 |             wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate)
104 |             sf.write(os.path.join(args.outdir, f"{srcname}.wav"), wav_src, hps.data.sampling_rate)
105 |             wav_src = torch.from_numpy(wav_src).unsqueeze(0).cuda()
106 |             #c = utils.get_content(cmodel, wav_src)
107 |             c_filename = src.replace(".wav", "whisper.pt.npy")
108 |             #print(src, tgt,c_filename)
109 |             #c = torch.load(c_filename)#.squeeze(0)
110 |             import numpy as np
111 |             c=torch.from_numpy(np.load(c_filename))
112 |             c=c.transpose(1,0)
113 |             c=c.unsqueeze(0)
114 | 
115 |             print(c.size(),mel_tgt.size())
116 |             audio = net_g.infer(c.cuda(), mel=mel_tgt)
117 |             audio = audio[0][0].data.cpu().float().numpy()
118 |             if args.use_timestamp:
119 |                 timestamp = time.strftime("%m-%d_%H-%M", time.localtime())
120 |                 write(os.path.join(args.outdir, "{}.wav".format(timestamp+"_"+title)), hps.data.sampling_rate, audio)
121 |             else:
122 |                 write(os.path.join(args.outdir, f"{title}.wav"), hps.data.sampling_rate, audio)
123 |             
124 | 


--------------------------------------------------------------------------------
/whisperconvert_longaudio.py:
--------------------------------------------------------------------------------
  1 | import os
  2 | import argparse
  3 | import torch
  4 | import librosa
  5 | import time
  6 | from scipy.io.wavfile import write
  7 | from tqdm import tqdm
  8 | import soundfile as sf
  9 | import utils
 10 | from models import SynthesizerTrn
 11 | from mel_processing import mel_spectrogram_torch
 12 | import logging
 13 | logging.getLogger('numba').setLevel(logging.WARNING)
 14 | import librosa  # Optional. Use any library you like to read audio files.
 15 | import soundfile  # Optional. Use any library you like to write audio files.
 16 | from preprocess_ppg import pred_ppg_c,load_model
 17 | 
 18 | if __name__ == "__main__":
 19 | 
 20 |     parser = argparse.ArgumentParser()
 21 |     parser.add_argument("--hpfile", type=str, default="ConsistencyVC-voive-conversion/logs/config.json", help="path to json config file")
 22 |     parser.add_argument("--ptfile", type=str, default="ConsistencyVC-voive-conversion/logs/G_cvc-whispers-three-emo-loss.pth", help="path to pth file")
 23 |     parser.add_argument("--outdir", type=str, default="output/long", help="path to output dir")
 24 |     parser.add_argument("--use_timestamp", default=False, action="store_true")
 25 |     args = parser.parse_args()
 26 |     
 27 |     os.makedirs(args.outdir, exist_ok=True)
 28 |     hps = utils.get_hparams_from_file(args.hpfile)
 29 | 
 30 |     print("Loading model...")
 31 |     net_g = SynthesizerTrn(
 32 |         hps.data.filter_length // 2 + 1,
 33 |         hps.train.segment_size // hps.data.hop_length,
 34 |         **hps.model).cuda()
 35 |     _ = net_g.eval()
 36 |     print("Loading checkpoint...")
 37 |     _ = utils.load_checkpoint(args.ptfile, net_g, None, True)
 38 | 
 39 | 
 40 |     
 41 |     src_wavs=[r"longaudio1.wav",
 42 |              r"longaudio2.wav"]
 43 |     
 44 | 
 45 |     tgt_wavs=["tgt_slice/20230712-092103-296_1.wav"]
 46 |     print("Processing text...")
 47 |     titles, srcs, tgts = [], [], []
 48 |     for src_wav in src_wavs:
 49 |         
 50 |         for tgt_wav in tgt_wavs:
 51 |             src_wav_name=os.path.basename(src_wav)[:-4]
 52 |             tgt_wav_name=os.path.basename(tgt_wav)[:-4]
 53 |             title="{}_to_{}".format(src_wav_name,tgt_wav_name)
 54 |             titles.append(title)
 55 |             srcs.append(src_wav)
 56 |             tgts.append(tgt_wav)
 57 |     #print(srcs)
 58 |     #print(tgts)
 59 |     #print(titles)
 60 |     #import sys
 61 |     #sys.exit()
 62 |     """
 63 |     with open(args.txtpath, "r") as f:
 64 |         for rawline in f.readlines():
 65 |             print(rawline)
 66 |             title, src, tgt = rawline.strip().split("|")
 67 |             titles.append(title)
 68 |             srcs.append(src)
 69 |             tgts.append(tgt)
 70 |     """
 71 | 
 72 |     print("Synthesizing...")
 73 |     with torch.no_grad():
 74 |         for line in tqdm(zip(titles, srcs, tgts)):
 75 |             title, src, tgt = line
 76 |             srcname,tgtname=title.split("to")
 77 |             # tgt
 78 |             wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
 79 |             sf.write(os.path.join(args.outdir, f"{tgtname}.wav"), wav_tgt, hps.data.sampling_rate)
 80 |             #wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
 81 |      
 82 |             wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).cuda()
 83 |             mel_tgt = mel_spectrogram_torch(
 84 |                 wav_tgt, 
 85 |                 hps.data.filter_length,
 86 |                 hps.data.n_mel_channels,
 87 |                 hps.data.sampling_rate,
 88 |                 hps.data.hop_length,
 89 |                 hps.data.win_length,
 90 |                 hps.data.mel_fmin,
 91 |                 hps.data.mel_fmax
 92 |             )
 93 |             # src
 94 |             audio, sr = librosa.load(src, sr=hps.data.sampling_rate)
 95 |             import numpy as np
 96 |             audio_result_sum=np.float32(np.zeros(len(audio)))
 97 |             #audio, sr = librosa.load(src_wav,sr=None)
 98 |             audiolen=audio.shape[0]
 99 |             print(audiolen)
100 |             src_wav_wavs=[]
101 |             num=int(audiolen/(sr*20))
102 |             print(num)
103 |             whisper = load_model(os.path.join("whisper_pretrain", "medium.pt"))
104 |             for i in range(0,num+1):
105 | 
106 |                 #print(i*20*sr,(i*20*sr+25*sr))
107 |                 tmp=audio[i*20*sr:(i*20*sr+25*sr)]
108 |                 sf.write(os.path.join(args.outdir, f"{srcname}_{i}.wav"), tmp, hps.data.sampling_rate)
109 |         
110 |                 
111 |                 c=pred_ppg_c(whisper,os.path.join(args.outdir, f"{srcname}_{i}.wav"))#torch.from_numpy(np.load(c_filename))
112 |                 c=torch.from_numpy(c)
113 |                 c=c.transpose(1,0)
114 |                 c=c.unsqueeze(0)
115 | 
116 |                 #print(c.size(),mel_tgt.size())
117 |                 audio_result = net_g.infer(c.cuda(), mel=mel_tgt)
118 |                 audio_result = audio_result[0][0].data.cpu().float().numpy()
119 |                 audio_result_sum[i*20*sr:(i*20*sr+audio_result.shape[0])]=audio_result
120 |                 #print(audio_result.dtype)
121 |                 #print(audio_result_sum.dtype)
122 |                 """
123 |                 if args.use_timestamp:
124 |                     timestamp = time.strftime("%m-%d_%H-%M", time.localtime())
125 |                     write(os.path.join(args.outdir, "{}.wav".format(timestamp+"_"+title)), hps.data.sampling_rate, audio_result)
126 |                 else:
127 |                     write(os.path.join(args.outdir, f"{title}_{i}.wav"), hps.data.sampling_rate, audio_result)
128 |                 """
129 |             write(os.path.join(args.outdir, f"{title}_sum.wav"), hps.data.sampling_rate, audio_result_sum)
130 | 


--------------------------------------------------------------------------------