├── LICENSE
├── README.md
├── commons.py
├── configs
├── cvc-eng-ppgs-three-emo-cycleloss.json
├── cvc-eng-ppgs-three-emo.json
├── cvc-whispers-multi.json
└── cvc-whispers-three-emo.json
├── cvc627.png
├── data_utils_engppg.py
├── data_utils_whisper.py
├── losses.py
├── mel_processing.py
├── models.py
├── modules.py
├── ppg.py
├── ppgemoconvert_exp.py
├── preprocess_ppg.py
├── train_eng_ppg_emo_loss.py
├── train_whisper_emo.py
├── utils.py
├── whisper
├── LICENSE
├── README.md
├── __init__.py
├── __pycache__
│ ├── __init__.cpython-37.pyc
│ ├── audio.cpython-37.pyc
│ ├── decoding.cpython-37.pyc
│ ├── model.cpython-37.pyc
│ ├── tokenizer.cpython-37.pyc
│ └── utils.cpython-37.pyc
├── assets
│ ├── gpt2
│ │ ├── merges.txt
│ │ ├── special_tokens_map.json
│ │ ├── tokenizer_config.json
│ │ └── vocab.json
│ ├── mel_filters.npz
│ └── multilingual
│ │ ├── added_tokens.json
│ │ ├── merges.txt
│ │ ├── special_tokens_map.json
│ │ ├── tokenizer_config.json
│ │ └── vocab.json
├── audio.py
├── decoding.py
├── model.py
├── normalizers
│ ├── __init__.py
│ ├── basic.py
│ ├── english.json
│ └── english.py
├── tokenizer.py
└── utils.py
├── whisperconvert_exp.py
└── whisperconvert_longaudio.py
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2023 ConsistencyVC
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ConsistencyVC-voive-conversion
2 |
3 | ## Using joint training speaker encoder with consistency loss to achieve cross-lingual voice conversion and expressive voice conversion
4 |
5 | Demo page: https://consistencyvc.github.io/ConsistencyVC-demo-page
6 |
7 | The whisper medium model can be downloaded here: https://drive.google.com/file/d/1PZsfQg3PUZuu1k6nHvavd6OcOB_8m1Aa/view?usp=drive_link
8 |
9 | The pre-trained models are available here:https://drive.google.com/drive/folders/1KvMN1V8BWCzJd-N8hfyP283rLQBKIbig?usp=sharing
10 |
11 | Note: The audio needs to be 16KHz for train and inference.
12 |
13 |
14 |
15 |
16 |
17 |
18 | # Inference with the pre-trained models (use WEO as example)
19 |
20 | Generate the WEO of the source speech in [src](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/467ed5e632b2b328d01c87cb73e92b26b36deb05/whisperconvert_exp.py#L39C1-L39C1) by preprocess_ppg.py.
21 |
22 | Copy the root of the reference speech to [tgt](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/467ed5e632b2b328d01c87cb73e92b26b36deb05/whisperconvert_exp.py#L47)
23 |
24 | Use whisperconvert_exp.py to achieve voice conversion using WEO as content information.
25 |
26 | For ConsistencyEVC, use ppgemoconvert_exp.py to achieve voice conversion using ppg as content information.
27 |
28 | # Inference for the long audio
29 | I uploaded a new py file for the inference of long audio.
30 | You don't need to run the whisper by another file, just change [this part](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/83f72b0801240e7d932c9314431df6e75f2d1c22/whisperconvert_longaudio.py#L41) and run this py file.
31 |
32 | # Train models by your dataset
33 |
34 | Use ppg.py to generate the PPG.
35 |
36 | Use preprocess_ppg.py to generate the WEO.
37 |
38 | ## If you want to use WEO to train a cross-lingual voice conversion model:
39 |
40 | First you need to train the model without speaker consistency loss for 100k steps:
41 |
42 | change [this line](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/b5e8e984dffd5a12910d1846e25b128298933e40/train_whisper_emo.py#L214C11-L214C11) to
43 |
44 | ```python
45 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl# + loss_emo
46 | ```
47 |
48 | run the py file:
49 |
50 | ```python
51 | python train_whisper_emo.py -c configs/cvc-whispers-multi.json -m cvc-whispers-three
52 | ```
53 |
54 | Then change [this line](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/71cf17a5b65c12987ea7fba74d1d173ea1aae5cb/train_whisper_emo.py#L214) back to finetune this model with speaker consistency loss
55 |
56 | ```python
57 | python train_whisper_emo.py -c configs/cvc-whispers-three-emo.json -m cvc-whispers-three
58 | ```
59 |
60 | ## If you want to use PPG to train an expressive voice conversion model:
61 |
62 | First you need to train the model without speaker consistency loss for 100k steps:
63 |
64 | change [this line](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/71cf17a5b65c12987ea7fba74d1d173ea1aae5cb/train_eng_ppg_emo_loss.py#L311) to
65 |
66 | ```python
67 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl# + loss_emo
68 | ```
69 |
70 | run the py file:
71 |
72 | ```python
73 | python train_eng_ppg_emo_loss.py -c configs/cvc-eng-ppgs-three-emo.json -m cvc-eng-ppgs-three-emo
74 | ```
75 |
76 | Then change [this line](https://github.com/ConsistencyVC/ConsistencyVC-voive-conversion/blob/71cf17a5b65c12987ea7fba74d1d173ea1aae5cb/train_eng_ppg_emo_loss.py#L311) back to finetune this model with speaker consistency loss
77 |
78 | ```python
79 | python train_eng_ppg_emo_loss.py -c configs/cvc-eng-ppgs-three-emo-cycleloss.json -m cvc-eng-ppgs-three-emo
80 | ```
81 |
82 |
83 | # Reference
84 |
85 | The code structure is based on [FreeVC-s](https://github.com/OlaWod/FreeVC). Suggestion: please follow the instruction of FreeVC to install python requirements.
86 |
87 | The WEO content feature is based on [LoraSVC](https://github.com/PlayVoice/lora-svc).
88 |
89 | The PPG is from the [phoneme recognition model](https://huggingface.co/speech31/wav2vec2-large-english-TIMIT-phoneme_v3).
90 |
91 |
92 |
--------------------------------------------------------------------------------
/commons.py:
--------------------------------------------------------------------------------
1 | import math
2 | import numpy as np
3 | import torch
4 | from torch import nn
5 | from torch.nn import functional as F
6 |
7 |
8 | def init_weights(m, mean=0.0, std=0.01):
9 | classname = m.__class__.__name__
10 | if classname.find("Conv") != -1:
11 | m.weight.data.normal_(mean, std)
12 |
13 |
14 | def get_padding(kernel_size, dilation=1):
15 | return int((kernel_size*dilation - dilation)/2)
16 |
17 |
18 | def convert_pad_shape(pad_shape):
19 | l = pad_shape[::-1]
20 | pad_shape = [item for sublist in l for item in sublist]
21 | return pad_shape
22 |
23 |
24 | def intersperse(lst, item):
25 | result = [item] * (len(lst) * 2 + 1)
26 | result[1::2] = lst
27 | return result
28 |
29 |
30 | def kl_divergence(m_p, logs_p, m_q, logs_q):
31 | """KL(P||Q)"""
32 | kl = (logs_q - logs_p) - 0.5
33 | kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34 | return kl
35 |
36 |
37 | def rand_gumbel(shape):
38 | """Sample from the Gumbel distribution, protect from overflows."""
39 | uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40 | return -torch.log(-torch.log(uniform_samples))
41 |
42 |
43 | def rand_gumbel_like(x):
44 | g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45 | return g
46 |
47 |
48 | def slice_segments(x, ids_str, segment_size=4):
49 | ret = torch.zeros_like(x[:, :, :segment_size])
50 | for i in range(x.size(0)):
51 | idx_str = ids_str[i]
52 | idx_end = idx_str + segment_size
53 | ret[i] = x[i, :, idx_str:idx_end]
54 | return ret
55 |
56 |
57 | def rand_slice_segments(x, x_lengths=None, segment_size=4):
58 | b, d, t = x.size()
59 | if x_lengths is None:
60 | x_lengths = t
61 | ids_str_max = x_lengths - segment_size + 1
62 | ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63 | ret = slice_segments(x, ids_str, segment_size)
64 | return ret, ids_str
65 |
66 |
67 | def rand_spec_segments(x, x_lengths=None, segment_size=4):
68 | b, d, t = x.size()
69 | if x_lengths is None:
70 | x_lengths = t
71 | ids_str_max = x_lengths - segment_size
72 | ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
73 | ret = slice_segments(x, ids_str, segment_size)
74 | return ret, ids_str
75 |
76 |
77 | def get_timing_signal_1d(
78 | length, channels, min_timescale=1.0, max_timescale=1.0e4):
79 | position = torch.arange(length, dtype=torch.float)
80 | num_timescales = channels // 2
81 | log_timescale_increment = (
82 | math.log(float(max_timescale) / float(min_timescale)) /
83 | (num_timescales - 1))
84 | inv_timescales = min_timescale * torch.exp(
85 | torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
86 | scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
87 | signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
88 | signal = F.pad(signal, [0, 0, 0, channels % 2])
89 | signal = signal.view(1, channels, length)
90 | return signal
91 |
92 |
93 | def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
94 | b, channels, length = x.size()
95 | signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
96 | return x + signal.to(dtype=x.dtype, device=x.device)
97 |
98 |
99 | def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
100 | b, channels, length = x.size()
101 | signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
102 | return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
103 |
104 |
105 | def subsequent_mask(length):
106 | mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
107 | return mask
108 |
109 |
110 | @torch.jit.script
111 | def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
112 | n_channels_int = n_channels[0]
113 | in_act = input_a + input_b
114 | t_act = torch.tanh(in_act[:, :n_channels_int, :])
115 | s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
116 | acts = t_act * s_act
117 | return acts
118 |
119 |
120 | def convert_pad_shape(pad_shape):
121 | l = pad_shape[::-1]
122 | pad_shape = [item for sublist in l for item in sublist]
123 | return pad_shape
124 |
125 |
126 | def shift_1d(x):
127 | x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
128 | return x
129 |
130 |
131 | def sequence_mask(length, max_length=None):
132 | if max_length is None:
133 | max_length = length.max()
134 | x = torch.arange(max_length, dtype=length.dtype, device=length.device)
135 | return x.unsqueeze(0) < length.unsqueeze(1)
136 |
137 |
138 | def generate_path(duration, mask):
139 | """
140 | duration: [b, 1, t_x]
141 | mask: [b, 1, t_y, t_x]
142 | """
143 | device = duration.device
144 |
145 | b, _, t_y, t_x = mask.shape
146 | cum_duration = torch.cumsum(duration, -1)
147 |
148 | cum_duration_flat = cum_duration.view(b * t_x)
149 | path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
150 | path = path.view(b, t_x, t_y)
151 | path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
152 | path = path.unsqueeze(1).transpose(2,3) * mask
153 | return path
154 |
155 |
156 | def clip_grad_value_(parameters, clip_value, norm_type=2):
157 | if isinstance(parameters, torch.Tensor):
158 | parameters = [parameters]
159 | parameters = list(filter(lambda p: p.grad is not None, parameters))
160 | norm_type = float(norm_type)
161 | if clip_value is not None:
162 | clip_value = float(clip_value)
163 |
164 | total_norm = 0
165 | for p in parameters:
166 | param_norm = p.grad.data.norm(norm_type)
167 | total_norm += param_norm.item() ** norm_type
168 | if clip_value is not None:
169 | p.grad.data.clamp_(min=-clip_value, max=clip_value)
170 | total_norm = total_norm ** (1. / norm_type)
171 | return total_norm
172 |
--------------------------------------------------------------------------------
/configs/cvc-eng-ppgs-three-emo-cycleloss.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 6000,
5 | "seed": 1235,
6 | "epochs": 10000,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 42,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 24000,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0,
18 | "use_sr": false,
19 | "max_speclen": 300,
20 | "port": "8006"
21 | },
22 | "data": {
23 | "training_files":"train.txt",
24 | "validation_files":"test.txt",
25 | "max_wav_value": 32768.0,
26 | "sampling_rate": 16000,
27 | "filter_length": 1024,
28 | "hop_length": 320,
29 | "win_length": 1024,
30 | "n_mel_channels": 80,
31 | "mel_fmin": 0.0,
32 | "mel_fmax": null
33 | },
34 | "model": {
35 | "inter_channels": 192,
36 | "hidden_channels": 192,
37 | "filter_channels": 768,
38 | "n_heads": 2,
39 | "n_layers": 6,
40 | "kernel_size": 3,
41 | "p_dropout": 0.1,
42 | "resblock": "1",
43 | "resblock_kernel_sizes": [3,7,11],
44 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
45 | "upsample_rates": [10,8,2,2],
46 | "upsample_initial_channel": 512,
47 | "upsample_kernel_sizes": [20,16,4,4],
48 | "n_layers_q": 3,
49 | "use_spectral_norm": false,
50 | "gin_channels": 256,
51 | "ssl_dim": 44,
52 | "use_spk": false
53 | }
54 | }
55 |
--------------------------------------------------------------------------------
/configs/cvc-eng-ppgs-three-emo.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 6000,
5 | "seed": 1235,
6 | "epochs": 10000,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 108,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 8960,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0,
18 | "use_sr": false,
19 | "max_speclen": 300,
20 | "port": "8006"
21 | },
22 | "data": {
23 | "training_files":"train.txt",
24 | "validation_files":"test.txt",
25 | "max_wav_value": 32768.0,
26 | "sampling_rate": 16000,
27 | "filter_length": 1024,
28 | "hop_length": 320,
29 | "win_length": 1024,
30 | "n_mel_channels": 80,
31 | "mel_fmin": 0.0,
32 | "mel_fmax": null
33 | },
34 | "model": {
35 | "inter_channels": 192,
36 | "hidden_channels": 192,
37 | "filter_channels": 768,
38 | "n_heads": 2,
39 | "n_layers": 6,
40 | "kernel_size": 3,
41 | "p_dropout": 0.1,
42 | "resblock": "1",
43 | "resblock_kernel_sizes": [3,7,11],
44 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
45 | "upsample_rates": [10,8,2,2],
46 | "upsample_initial_channel": 512,
47 | "upsample_kernel_sizes": [20,16,4,4],
48 | "n_layers_q": 3,
49 | "use_spectral_norm": false,
50 | "gin_channels": 256,
51 | "ssl_dim": 44,
52 | "use_spk": false
53 | }
54 | }
55 |
--------------------------------------------------------------------------------
/configs/cvc-whispers-multi.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 6000,
5 | "seed": 1235,
6 | "epochs": 10000,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 108,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 8960,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0,
18 | "use_sr": false,
19 | "max_speclen": 300,
20 | "port": "8001"
21 | },
22 | "data": {
23 | "training_files":"train.txt",
24 | "validation_files":"test.txt",
25 | "max_wav_value": 32768.0,
26 | "sampling_rate": 16000,
27 | "filter_length": 1024,
28 | "hop_length": 320,
29 | "win_length": 1024,
30 | "n_mel_channels": 80,
31 | "mel_fmin": 0.0,
32 | "mel_fmax": null
33 | },
34 | "model": {
35 | "inter_channels": 192,
36 | "hidden_channels": 192,
37 | "filter_channels": 768,
38 | "n_heads": 2,
39 | "n_layers": 6,
40 | "kernel_size": 3,
41 | "p_dropout": 0.1,
42 | "resblock": "1",
43 | "resblock_kernel_sizes": [3,7,11],
44 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
45 | "upsample_rates": [10,8,2,2],
46 | "upsample_initial_channel": 512,
47 | "upsample_kernel_sizes": [20,16,4,4],
48 | "n_layers_q": 3,
49 | "use_spectral_norm": false,
50 | "gin_channels": 256,
51 | "ssl_dim": 1024,
52 | "use_spk": false
53 | }
54 | }
55 |
--------------------------------------------------------------------------------
/configs/cvc-whispers-three-emo.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 2500,
5 | "seed": 1235,
6 | "epochs": 10000,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 42,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 24000,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0,
18 | "use_sr": false,
19 | "max_speclen": 300,
20 | "port": "8006"
21 | },
22 | "data": {
23 | "training_files":"train.txt",
24 | "validation_files":"test.txt",
25 | "max_wav_value": 32768.0,
26 | "sampling_rate": 16000,
27 | "filter_length": 1024,
28 | "hop_length": 320,
29 | "win_length": 1024,
30 | "n_mel_channels": 80,
31 | "mel_fmin": 0.0,
32 | "mel_fmax": null
33 | },
34 | "model": {
35 | "inter_channels": 192,
36 | "hidden_channels": 192,
37 | "filter_channels": 768,
38 | "n_heads": 2,
39 | "n_layers": 6,
40 | "kernel_size": 3,
41 | "p_dropout": 0.1,
42 | "resblock": "1",
43 | "resblock_kernel_sizes": [3,7,11],
44 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
45 | "upsample_rates": [10,8,2,2],
46 | "upsample_initial_channel": 512,
47 | "upsample_kernel_sizes": [20,16,4,4],
48 | "n_layers_q": 3,
49 | "use_spectral_norm": false,
50 | "gin_channels": 256,
51 | "ssl_dim": 1024,
52 | "use_spk": false
53 | }
54 | }
55 |
--------------------------------------------------------------------------------
/cvc627.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/cvc627.png
--------------------------------------------------------------------------------
/data_utils_engppg.py:
--------------------------------------------------------------------------------
1 | import time
2 | import os
3 | import random
4 | import numpy as np
5 | import torch
6 | import torch.utils.data
7 |
8 | import commons
9 | from mel_processing import spectrogram_torch, spec_to_mel_torch
10 | from utils import load_wav_to_torch, load_filepaths_and_text, transform
11 | #import h5py
12 |
13 |
14 | """Multi speaker version"""
15 | class TextAudioSpeakerLoader(torch.utils.data.Dataset):
16 | """
17 | 1) loads audio, speaker_id, text pairs
18 | 2) normalizes text and converts them to sequences of integers
19 | 3) computes spectrograms from audio files.
20 | """
21 | def __init__(self, audiopaths, hparams):
22 | self.audiopaths = load_filepaths_and_text(audiopaths)
23 | self.max_wav_value = hparams.data.max_wav_value
24 | self.sampling_rate = hparams.data.sampling_rate
25 | self.filter_length = hparams.data.filter_length
26 | self.hop_length = hparams.data.hop_length
27 | self.win_length = hparams.data.win_length
28 | self.sampling_rate = hparams.data.sampling_rate
29 | self.use_sr = hparams.train.use_sr
30 | self.use_spk = hparams.model.use_spk
31 | self.spec_len = hparams.train.max_speclen
32 |
33 | random.seed(1235)
34 | random.shuffle(self.audiopaths)
35 | self._filter()
36 |
37 | def _filter(self):
38 | """
39 | Filter text & store spec lengths
40 | """
41 | # Store spectrogram lengths for Bucketing
42 | # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
43 | # spec_length = wav_length // hop_length
44 |
45 | lengths = []
46 | for audiopath in self.audiopaths:
47 | lengths.append(os.path.getsize(audiopath[0]) // (2 * self.hop_length))
48 | self.lengths = lengths
49 |
50 | def get_audio(self, filename):
51 | audio, sampling_rate = load_wav_to_torch(filename)
52 | if sampling_rate != self.sampling_rate:
53 | raise ValueError("{} SR doesn't match target {} SR,the audio is{}".format(
54 | sampling_rate, self.sampling_rate,filename))
55 | audio_norm = audio / self.max_wav_value
56 | audio_norm = audio_norm.unsqueeze(0)
57 | spec_filename = filename.replace(".wav", ".f{}h{}w{}spec.pt".format(self.filter_length, self.hop_length, self.win_length))
58 | if os.path.exists(spec_filename):
59 | try:
60 | spec = torch.load(spec_filename)
61 | except:
62 | print(spec_filename,"不存在")
63 | spec = spectrogram_torch(audio_norm, self.filter_length,
64 | self.sampling_rate, self.hop_length, self.win_length,
65 | center=False)
66 | spec = torch.squeeze(spec, 0)
67 | torch.save(spec, spec_filename)
68 | else:
69 | #import sys
70 | #print(spec_filename,"不存在")
71 | #sys.exit()
72 | spec = spectrogram_torch(audio_norm, self.filter_length,
73 | self.sampling_rate, self.hop_length, self.win_length,
74 | center=False)
75 | spec = torch.squeeze(spec, 0)
76 | torch.save(spec, spec_filename)
77 |
78 | if self.use_spk:
79 | spk_filename = filename.replace(".wav", ".npy")
80 | spk_filename = spk_filename.replace("DUMMY", "dataset/spk")
81 | spk = torch.from_numpy(np.load(spk_filename))
82 |
83 | if not self.use_sr:
84 | c_filename = filename.replace(".wav", "_eng_ppg.pt")
85 | #c_filename = c_filename.replace("DUMMY", "dataset/wavlm")
86 | c = torch.load(c_filename).squeeze(0)
87 |
88 | else:
89 | i = random.randint(68,92)
90 | '''
91 | basename = os.path.basename(filename)[:-4]
92 | spkname = basename[:4]
93 | #print(basename, spkname)
94 | with h5py.File(f"dataset/rs/wavlm/{spkname}/{i}.hdf5","r") as f:
95 | c = torch.from_numpy(f[basename][()]).squeeze(0)
96 | #print(c)
97 | '''
98 | import sys
99 | sys.exit()
100 | c_filename = filename.replace(".wav", f"_{i}.pt")
101 | c_filename = c_filename.replace("DUMMY", "dataset/sr/wavlm")
102 | c = torch.load(c_filename).squeeze(0)
103 |
104 | # 2023.01.10 update: code below can deteriorate model performance
105 | # I added these code during cleaning up, thinking that it can offer better performance than my provided checkpoints, but actually it does the opposite.
106 | # What an act of 'adding legs to a snake'!
107 | '''
108 | lmin = min(c.size(-1), spec.size(-1))
109 | spec, c = spec[:, :lmin], c[:, :lmin]
110 | audio_norm = audio_norm[:, :lmin*self.hop_length]
111 | _spec, _c, _audio_norm = spec, c, audio_norm
112 | while spec.size(-1) < self.spec_len:
113 | spec = torch.cat((spec, _spec), -1)
114 | c = torch.cat((c, _c), -1)
115 | audio_norm = torch.cat((audio_norm, _audio_norm), -1)
116 | start = random.randint(0, spec.size(-1) - self.spec_len)
117 | end = start + self.spec_len
118 | spec = spec[:, start:end]
119 | c = c[:, start:end]
120 | audio_norm = audio_norm[:, start*self.hop_length:end*self.hop_length]
121 | '''
122 |
123 | #if self.use_spk:
124 | # return c, spec, audio_norm, spk
125 | #else:
126 | return c, spec, audio_norm
127 |
128 | def __getitem__(self, index):
129 | return self.get_audio(self.audiopaths[index][0])
130 |
131 | def __len__(self):
132 | return len(self.audiopaths)
133 |
134 |
135 | class TextAudioSpeakerCollate():
136 | """ Zero-pads model inputs and targets
137 | """
138 | def __init__(self, hps):
139 | self.hps = hps
140 | self.use_sr = hps.train.use_sr
141 | self.use_spk = hps.model.use_spk
142 |
143 | def __call__(self, batch):
144 | """Collate's training batch from normalized text, audio and speaker identities
145 | PARAMS
146 | ------
147 | batch: [text_normalized, spec_normalized, wav_normalized, sid]
148 | """
149 | # Right zero-pad all one-hot text sequences to max input length
150 | _, ids_sorted_decreasing = torch.sort(
151 | torch.LongTensor([x[0].size(1) for x in batch]),
152 | dim=0, descending=True)
153 |
154 | max_spec_len = max([x[1].size(1) for x in batch])
155 | max_wav_len = max([x[2].size(1) for x in batch])
156 |
157 | spec_lengths = torch.LongTensor(len(batch))
158 | wav_lengths = torch.LongTensor(len(batch))
159 | if self.use_spk:
160 | spks = torch.FloatTensor(len(batch), batch[0][3].size(0))
161 | else:
162 | spks = None
163 |
164 | c_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
165 | spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
166 | wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
167 | c_padded.zero_()
168 | spec_padded.zero_()
169 | wav_padded.zero_()
170 |
171 | for i in range(len(ids_sorted_decreasing)):
172 | row = batch[ids_sorted_decreasing[i]]
173 |
174 | c = row[0]
175 | c_padded[i, :, :c.size(1)] = c
176 |
177 | spec = row[1]
178 | spec_padded[i, :, :spec.size(1)] = spec
179 | spec_lengths[i] = spec.size(1)
180 |
181 | wav = row[2]
182 | wav_padded[i, :, :wav.size(1)] = wav
183 | wav_lengths[i] = wav.size(1)
184 |
185 | if self.use_spk:
186 | spks[i] = row[3]
187 |
188 | spec_seglen = spec_lengths[-1] if spec_lengths[-1] < self.hps.train.max_speclen + 1 else self.hps.train.max_speclen + 1
189 | wav_seglen = spec_seglen * self.hps.data.hop_length
190 |
191 | spec_padded, ids_slice = commons.rand_spec_segments(spec_padded, spec_lengths, spec_seglen)
192 | wav_padded = commons.slice_segments(wav_padded, ids_slice * self.hps.data.hop_length, wav_seglen)
193 |
194 | c_padded = commons.slice_segments(c_padded, ids_slice, spec_seglen)[:,:,:-1]
195 |
196 | spec_padded = spec_padded[:,:,:-1]
197 | wav_padded = wav_padded[:,:,:-self.hps.data.hop_length]
198 |
199 | if self.use_spk:
200 | return c_padded, spec_padded, wav_padded, spks
201 | else:
202 | return c_padded, spec_padded, wav_padded
203 |
204 |
205 | class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
206 | """
207 | Maintain similar input lengths in a batch.
208 | Length groups are specified by boundaries.
209 | Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
210 |
211 | It removes samples which are not included in the boundaries.
212 | Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
213 | """
214 | def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
215 | super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
216 | self.lengths = dataset.lengths
217 | self.batch_size = batch_size
218 | self.boundaries = boundaries
219 |
220 | self.buckets, self.num_samples_per_bucket = self._create_buckets()
221 | print(self.num_samples_per_bucket)
222 | self.total_size = sum(self.num_samples_per_bucket)
223 | self.num_samples = self.total_size // self.num_replicas
224 |
225 | def _create_buckets(self):
226 | buckets = [[] for _ in range(len(self.boundaries) - 1)]
227 | for i in range(len(self.lengths)):
228 | length = self.lengths[i]
229 | idx_bucket = self._bisect(length)
230 | if idx_bucket != -1:
231 | buckets[idx_bucket].append(i)
232 |
233 | for i in range(len(buckets) - 1, 0, -1):
234 | if len(buckets[i]) == 0:
235 | buckets.pop(i)
236 | self.boundaries.pop(i+1)
237 |
238 | num_samples_per_bucket = []
239 | for i in range(len(buckets)):
240 | len_bucket = len(buckets[i])
241 | total_batch_size = self.num_replicas * self.batch_size
242 | rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
243 | num_samples_per_bucket.append(len_bucket + rem)
244 | return buckets, num_samples_per_bucket
245 |
246 | def __iter__(self):
247 | # deterministically shuffle based on epoch
248 | g = torch.Generator()
249 | g.manual_seed(self.epoch)
250 |
251 | indices = []
252 | if self.shuffle:
253 | for bucket in self.buckets:
254 | indices.append(torch.randperm(len(bucket), generator=g).tolist())
255 | else:
256 | for bucket in self.buckets:
257 | indices.append(list(range(len(bucket))))
258 |
259 | batches = []
260 | for i in range(len(self.buckets)):
261 | bucket = self.buckets[i]
262 | len_bucket = len(bucket)
263 | ids_bucket = indices[i]
264 | num_samples_bucket = self.num_samples_per_bucket[i]
265 |
266 | # add extra samples to make it evenly divisible
267 | rem = num_samples_bucket - len_bucket
268 | ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
269 |
270 | # subsample
271 | ids_bucket = ids_bucket[self.rank::self.num_replicas]
272 |
273 | # batching
274 | for j in range(len(ids_bucket) // self.batch_size):
275 | batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
276 | batches.append(batch)
277 |
278 | if self.shuffle:
279 | batch_ids = torch.randperm(len(batches), generator=g).tolist()
280 | batches = [batches[i] for i in batch_ids]
281 | self.batches = batches
282 |
283 | assert len(self.batches) * self.batch_size == self.num_samples
284 | return iter(self.batches)
285 |
286 | def _bisect(self, x, lo=0, hi=None):
287 | if hi is None:
288 | hi = len(self.boundaries) - 1
289 |
290 | if hi > lo:
291 | mid = (hi + lo) // 2
292 | if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
293 | return mid
294 | elif x <= self.boundaries[mid]:
295 | return self._bisect(x, lo, mid)
296 | else:
297 | return self._bisect(x, mid + 1, hi)
298 | else:
299 | return -1
300 |
301 | def __len__(self):
302 | return self.num_samples // self.batch_size
303 |
--------------------------------------------------------------------------------
/data_utils_whisper.py:
--------------------------------------------------------------------------------
1 | import time
2 | import os
3 | import random
4 | import numpy as np
5 | import torch
6 | import torch.utils.data
7 |
8 | import commons
9 | from mel_processing import spectrogram_torch, spec_to_mel_torch
10 | from utils import load_wav_to_torch, load_filepaths_and_text, transform
11 | #import h5py
12 |
13 |
14 | """Multi speaker version"""
15 | class TextAudioSpeakerLoader(torch.utils.data.Dataset):
16 | """
17 | 1) loads audio, speaker_id, text pairs
18 | 2) normalizes text and converts them to sequences of integers
19 | 3) computes spectrograms from audio files.
20 | """
21 | def __init__(self, audiopaths, hparams):
22 | self.audiopaths = load_filepaths_and_text(audiopaths)
23 | self.max_wav_value = hparams.data.max_wav_value
24 | self.sampling_rate = hparams.data.sampling_rate
25 | self.filter_length = hparams.data.filter_length
26 | self.hop_length = hparams.data.hop_length
27 | self.win_length = hparams.data.win_length
28 | self.sampling_rate = hparams.data.sampling_rate
29 | self.use_sr = hparams.train.use_sr
30 | self.use_spk = hparams.model.use_spk
31 | self.spec_len = hparams.train.max_speclen
32 |
33 | random.seed(1235)
34 | random.shuffle(self.audiopaths)
35 | self._filter()
36 |
37 | def _filter(self):
38 | """
39 | Filter text & store spec lengths
40 | """
41 | # Store spectrogram lengths for Bucketing
42 | # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
43 | # spec_length = wav_length // hop_length
44 |
45 | lengths = []
46 | for audiopath in self.audiopaths:
47 | lengths.append(os.path.getsize(audiopath[0]) // (2 * self.hop_length))
48 | self.lengths = lengths
49 |
50 | def get_audio(self, filename):
51 | audio, sampling_rate = load_wav_to_torch(filename)
52 | if sampling_rate != self.sampling_rate:
53 | raise ValueError("{} SR doesn't match target {} SR,the audio is{}".format(
54 | sampling_rate, self.sampling_rate,filename))
55 | audio_norm = audio / self.max_wav_value
56 | audio_norm = audio_norm.unsqueeze(0)
57 | #spec_filename = filename.replace(".wav", ".spec.pt")
58 | spec_filename = filename.replace(".wav", ".f{}h{}w{}spec.pt".format(self.filter_length, self.hop_length, self.win_length))
59 | if os.path.exists(spec_filename):
60 | try:
61 | spec = torch.load(spec_filename)
62 | except:
63 | print(spec_filename)
64 | spec = spectrogram_torch(audio_norm, self.filter_length,
65 | self.sampling_rate, self.hop_length, self.win_length,
66 | center=False)
67 | spec = torch.squeeze(spec, 0)
68 | torch.save(spec, spec_filename)
69 | else:
70 | print(spec_filename)
71 | spec = spectrogram_torch(audio_norm, self.filter_length,
72 | self.sampling_rate, self.hop_length, self.win_length,
73 | center=False)
74 | spec = torch.squeeze(spec, 0)
75 | torch.save(spec, spec_filename)
76 |
77 | if self.use_spk:
78 | spk_filename = filename.replace(".wav", ".npy")
79 | spk_filename = spk_filename.replace("DUMMY", "dataset/spk")
80 | spk = torch.from_numpy(np.load(spk_filename))
81 |
82 | if not self.use_sr:
83 | c_filename = filename.replace(".wav", "whisper.pt.npy")
84 | #c_filename = c_filename.replace("DUMMY", "dataset/wavlm")
85 | #c = torch.load(c_filename).squeeze(0)
86 | c=torch.from_numpy(np.load(c_filename))
87 | c=c.transpose(1,0)
88 | else:
89 | i = random.randint(68,92)
90 | '''
91 | basename = os.path.basename(filename)[:-4]
92 | spkname = basename[:4]
93 | #print(basename, spkname)
94 | with h5py.File(f"dataset/rs/wavlm/{spkname}/{i}.hdf5","r") as f:
95 | c = torch.from_numpy(f[basename][()]).squeeze(0)
96 | #print(c)
97 | '''
98 | c_filename = filename.replace(".wav", f"_{i}.pt")
99 | c_filename = c_filename.replace("DUMMY", "dataset/sr/wavlm")
100 | c = torch.load(c_filename).squeeze(0)
101 |
102 | # 2023.01.10 update: code below can deteriorate model performance
103 | # I added these code during cleaning up, thinking that it can offer better performance than my provided checkpoints, but actually it does the opposite.
104 | # What an act of 'adding legs to a snake'!
105 | '''
106 | lmin = min(c.size(-1), spec.size(-1))
107 | spec, c = spec[:, :lmin], c[:, :lmin]
108 | audio_norm = audio_norm[:, :lmin*self.hop_length]
109 | _spec, _c, _audio_norm = spec, c, audio_norm
110 | while spec.size(-1) < self.spec_len:
111 | spec = torch.cat((spec, _spec), -1)
112 | c = torch.cat((c, _c), -1)
113 | audio_norm = torch.cat((audio_norm, _audio_norm), -1)
114 | start = random.randint(0, spec.size(-1) - self.spec_len)
115 | end = start + self.spec_len
116 | spec = spec[:, start:end]
117 | c = c[:, start:end]
118 | audio_norm = audio_norm[:, start*self.hop_length:end*self.hop_length]
119 | '''
120 |
121 | #if self.use_spk:
122 | # return c, spec, audio_norm, spk
123 | #else:
124 | return c, spec, audio_norm
125 |
126 | def __getitem__(self, index):
127 | return self.get_audio(self.audiopaths[index][0])
128 |
129 | def __len__(self):
130 | return len(self.audiopaths)
131 |
132 |
133 | class TextAudioSpeakerCollate():
134 | """ Zero-pads model inputs and targets
135 | """
136 | def __init__(self, hps):
137 | self.hps = hps
138 | self.use_sr = hps.train.use_sr
139 | self.use_spk = hps.model.use_spk
140 |
141 | def __call__(self, batch):
142 | """Collate's training batch from normalized text, audio and speaker identities
143 | PARAMS
144 | ------
145 | batch: [text_normalized, spec_normalized, wav_normalized, sid]
146 | """
147 | # Right zero-pad all one-hot text sequences to max input length
148 | _, ids_sorted_decreasing = torch.sort(
149 | torch.LongTensor([x[0].size(1) for x in batch]),
150 | dim=0, descending=True)
151 |
152 | max_spec_len = max([x[1].size(1) for x in batch])
153 | max_wav_len = max([x[2].size(1) for x in batch])
154 |
155 | spec_lengths = torch.LongTensor(len(batch))
156 | wav_lengths = torch.LongTensor(len(batch))
157 | if self.use_spk:
158 | spks = torch.FloatTensor(len(batch), batch[0][3].size(0))
159 | else:
160 | spks = None
161 |
162 | c_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
163 | spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
164 | wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
165 | c_padded.zero_()
166 | spec_padded.zero_()
167 | wav_padded.zero_()
168 |
169 | for i in range(len(ids_sorted_decreasing)):
170 | row = batch[ids_sorted_decreasing[i]]
171 |
172 | c = row[0]
173 | c_padded[i, :, :c.size(1)] = c
174 |
175 | spec = row[1]
176 | spec_padded[i, :, :spec.size(1)] = spec
177 | spec_lengths[i] = spec.size(1)
178 |
179 | wav = row[2]
180 | wav_padded[i, :, :wav.size(1)] = wav
181 | wav_lengths[i] = wav.size(1)
182 |
183 | if self.use_spk:
184 | spks[i] = row[3]
185 |
186 | spec_seglen = spec_lengths[-1] if spec_lengths[-1] < self.hps.train.max_speclen + 1 else self.hps.train.max_speclen + 1
187 | wav_seglen = spec_seglen * self.hps.data.hop_length
188 |
189 | spec_padded, ids_slice = commons.rand_spec_segments(spec_padded, spec_lengths, spec_seglen)
190 | wav_padded = commons.slice_segments(wav_padded, ids_slice * self.hps.data.hop_length, wav_seglen)
191 |
192 | c_padded = commons.slice_segments(c_padded, ids_slice, spec_seglen)[:,:,:-1]
193 |
194 | spec_padded = spec_padded[:,:,:-1]
195 | wav_padded = wav_padded[:,:,:-self.hps.data.hop_length]
196 |
197 | if self.use_spk:
198 | return c_padded, spec_padded, wav_padded, spks
199 | else:
200 | return c_padded, spec_padded, wav_padded
201 |
202 |
203 | class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
204 | """
205 | Maintain similar input lengths in a batch.
206 | Length groups are specified by boundaries.
207 | Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
208 |
209 | It removes samples which are not included in the boundaries.
210 | Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
211 | """
212 | def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
213 | super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
214 | self.lengths = dataset.lengths
215 | self.batch_size = batch_size
216 | self.boundaries = boundaries
217 |
218 | self.buckets, self.num_samples_per_bucket = self._create_buckets()
219 | print(self.num_samples_per_bucket)
220 | self.total_size = sum(self.num_samples_per_bucket)
221 | self.num_samples = self.total_size // self.num_replicas
222 |
223 | def _create_buckets(self):
224 | buckets = [[] for _ in range(len(self.boundaries) - 1)]
225 | for i in range(len(self.lengths)):
226 | length = self.lengths[i]
227 | idx_bucket = self._bisect(length)
228 | if idx_bucket != -1:
229 | buckets[idx_bucket].append(i)
230 |
231 | for i in range(len(buckets) - 1, 0, -1):
232 | if len(buckets[i]) == 0:
233 | buckets.pop(i)
234 | self.boundaries.pop(i+1)
235 |
236 | num_samples_per_bucket = []
237 | for i in range(len(buckets)):
238 | len_bucket = len(buckets[i])
239 | total_batch_size = self.num_replicas * self.batch_size
240 | rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
241 | num_samples_per_bucket.append(len_bucket + rem)
242 | return buckets, num_samples_per_bucket
243 |
244 | def __iter__(self):
245 | # deterministically shuffle based on epoch
246 | g = torch.Generator()
247 | g.manual_seed(self.epoch)
248 |
249 | indices = []
250 | if self.shuffle:
251 | for bucket in self.buckets:
252 | indices.append(torch.randperm(len(bucket), generator=g).tolist())
253 | else:
254 | for bucket in self.buckets:
255 | indices.append(list(range(len(bucket))))
256 |
257 | batches = []
258 | for i in range(len(self.buckets)):
259 | bucket = self.buckets[i]
260 | len_bucket = len(bucket)
261 | ids_bucket = indices[i]
262 | num_samples_bucket = self.num_samples_per_bucket[i]
263 |
264 | # add extra samples to make it evenly divisible
265 | rem = num_samples_bucket - len_bucket
266 | ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
267 |
268 | # subsample
269 | ids_bucket = ids_bucket[self.rank::self.num_replicas]
270 |
271 | # batching
272 | for j in range(len(ids_bucket) // self.batch_size):
273 | batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
274 | batches.append(batch)
275 |
276 | if self.shuffle:
277 | batch_ids = torch.randperm(len(batches), generator=g).tolist()
278 | batches = [batches[i] for i in batch_ids]
279 | self.batches = batches
280 |
281 | assert len(self.batches) * self.batch_size == self.num_samples
282 | return iter(self.batches)
283 |
284 | def _bisect(self, x, lo=0, hi=None):
285 | if hi is None:
286 | hi = len(self.boundaries) - 1
287 |
288 | if hi > lo:
289 | mid = (hi + lo) // 2
290 | if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
291 | return mid
292 | elif x <= self.boundaries[mid]:
293 | return self._bisect(x, lo, mid)
294 | else:
295 | return self._bisect(x, mid + 1, hi)
296 | else:
297 | return -1
298 |
299 | def __len__(self):
300 | return self.num_samples // self.batch_size
301 |
--------------------------------------------------------------------------------
/losses.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.nn import functional as F
3 |
4 | import commons
5 |
6 |
7 | def feature_loss(fmap_r, fmap_g):
8 | loss = 0
9 | for dr, dg in zip(fmap_r, fmap_g):
10 | for rl, gl in zip(dr, dg):
11 | rl = rl.float().detach()
12 | gl = gl.float()
13 | loss += torch.mean(torch.abs(rl - gl))
14 |
15 | return loss * 2
16 |
17 |
18 | def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19 | loss = 0
20 | r_losses = []
21 | g_losses = []
22 | for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23 | dr = dr.float()
24 | dg = dg.float()
25 | r_loss = torch.mean((1-dr)**2)
26 | g_loss = torch.mean(dg**2)
27 | loss += (r_loss + g_loss)
28 | r_losses.append(r_loss.item())
29 | g_losses.append(g_loss.item())
30 |
31 | return loss, r_losses, g_losses
32 |
33 |
34 | def generator_loss(disc_outputs):
35 | loss = 0
36 | gen_losses = []
37 | for dg in disc_outputs:
38 | dg = dg.float()
39 | l = torch.mean((1-dg)**2)
40 | gen_losses.append(l)
41 | loss += l
42 |
43 | return loss, gen_losses
44 |
45 |
46 | def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47 | """
48 | z_p, logs_q: [b, h, t_t]
49 | m_p, logs_p: [b, h, t_t]
50 | """
51 | z_p = z_p.float()
52 | logs_q = logs_q.float()
53 | m_p = m_p.float()
54 | logs_p = logs_p.float()
55 | z_mask = z_mask.float()
56 | #print(logs_p)
57 | kl = logs_p - logs_q - 0.5
58 | kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59 | kl = torch.sum(kl * z_mask)
60 | l = kl / torch.sum(z_mask)
61 | return l
62 |
--------------------------------------------------------------------------------
/mel_processing.py:
--------------------------------------------------------------------------------
1 | import math
2 | import os
3 | import random
4 | import torch
5 | from torch import nn
6 | import torch.nn.functional as F
7 | import torch.utils.data
8 | import numpy as np
9 | import librosa
10 | import librosa.util as librosa_util
11 | from librosa.util import normalize, pad_center, tiny
12 | from scipy.signal import get_window
13 | from scipy.io.wavfile import read
14 | from librosa.filters import mel as librosa_mel_fn
15 |
16 | MAX_WAV_VALUE = 32768.0
17 |
18 |
19 | def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20 | """
21 | PARAMS
22 | ------
23 | C: compression factor
24 | """
25 | return torch.log(torch.clamp(x, min=clip_val) * C)
26 |
27 |
28 | def dynamic_range_decompression_torch(x, C=1):
29 | """
30 | PARAMS
31 | ------
32 | C: compression factor used to compress
33 | """
34 | return torch.exp(x) / C
35 |
36 |
37 | def spectral_normalize_torch(magnitudes):
38 | output = dynamic_range_compression_torch(magnitudes)
39 | return output
40 |
41 |
42 | def spectral_de_normalize_torch(magnitudes):
43 | output = dynamic_range_decompression_torch(magnitudes)
44 | return output
45 |
46 |
47 | mel_basis = {}
48 | hann_window = {}
49 |
50 |
51 | def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52 | if torch.min(y) < -1.:
53 | print('min value is ', torch.min(y))
54 | if torch.max(y) > 1.:
55 | print('max value is ', torch.max(y))
56 |
57 | global hann_window
58 | dtype_device = str(y.dtype) + '_' + str(y.device)
59 | wnsize_dtype_device = str(win_size) + '_' + dtype_device
60 | if wnsize_dtype_device not in hann_window:
61 | hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62 |
63 | y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64 | y = y.squeeze(1)
65 |
66 | spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67 | center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
68 |
69 | spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70 | return spec
71 |
72 |
73 | def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74 | global mel_basis
75 | dtype_device = str(spec.dtype) + '_' + str(spec.device)
76 | fmax_dtype_device = str(fmax) + '_' + dtype_device
77 | if fmax_dtype_device not in mel_basis:
78 | mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
79 | mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80 | spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81 | spec = spectral_normalize_torch(spec)
82 | return spec
83 |
84 |
85 | def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86 | if torch.min(y) < -1.:
87 | print('min value is ', torch.min(y))
88 | if torch.max(y) > 1.:
89 | print('max value is ', torch.max(y))
90 |
91 | global mel_basis, hann_window
92 | dtype_device = str(y.dtype) + '_' + str(y.device)
93 | fmax_dtype_device = str(fmax) + '_' + dtype_device
94 | wnsize_dtype_device = str(win_size) + '_' + dtype_device
95 | if fmax_dtype_device not in mel_basis:
96 | mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
97 | mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98 | if wnsize_dtype_device not in hann_window:
99 | hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100 |
101 | y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102 | y = y.squeeze(1)
103 |
104 | spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105 | center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
106 |
107 | spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108 |
109 | spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110 | spec = spectral_normalize_torch(spec)
111 |
112 | return spec
113 |
--------------------------------------------------------------------------------
/models.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import math
3 | import torch
4 | from torch import nn
5 | from torch.nn import functional as F
6 |
7 | import commons
8 | import modules
9 |
10 | from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11 | from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12 | from commons import init_weights, get_padding
13 |
14 |
15 | class ResidualCouplingBlock(nn.Module):
16 | def __init__(self,
17 | channels,
18 | hidden_channels,
19 | kernel_size,
20 | dilation_rate,
21 | n_layers,
22 | n_flows=4,
23 | gin_channels=0):
24 | super().__init__()
25 | self.channels = channels
26 | self.hidden_channels = hidden_channels
27 | self.kernel_size = kernel_size
28 | self.dilation_rate = dilation_rate
29 | self.n_layers = n_layers
30 | self.n_flows = n_flows
31 | self.gin_channels = gin_channels
32 |
33 | self.flows = nn.ModuleList()
34 | for i in range(n_flows):
35 | self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
36 | self.flows.append(modules.Flip())
37 |
38 | def forward(self, x, x_mask, g=None, reverse=False):
39 | if not reverse:
40 | for flow in self.flows:
41 | x, _ = flow(x, x_mask, g=g, reverse=reverse)
42 | else:
43 | for flow in reversed(self.flows):
44 | x = flow(x, x_mask, g=g, reverse=reverse)
45 | return x
46 |
47 |
48 | class Encoder(nn.Module):
49 | def __init__(self,
50 | in_channels,
51 | out_channels,
52 | hidden_channels,
53 | kernel_size,
54 | dilation_rate,
55 | n_layers,
56 | gin_channels=0):
57 | super().__init__()
58 | self.in_channels = in_channels
59 | self.out_channels = out_channels
60 | self.hidden_channels = hidden_channels
61 | self.kernel_size = kernel_size
62 | self.dilation_rate = dilation_rate
63 | self.n_layers = n_layers
64 | self.gin_channels = gin_channels
65 |
66 | self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
67 | self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
68 | self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
69 |
70 | def forward(self, x, x_lengths, g=None):
71 | x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
72 | x = self.pre(x) * x_mask
73 | x = self.enc(x, x_mask, g=g)
74 | stats = self.proj(x) * x_mask
75 | m, logs = torch.split(stats, self.out_channels, dim=1)
76 | z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
77 | return z, m, logs, x_mask
78 |
79 |
80 | class Generator(torch.nn.Module):
81 | def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
82 | super(Generator, self).__init__()
83 | self.num_kernels = len(resblock_kernel_sizes)
84 | self.num_upsamples = len(upsample_rates)
85 | self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
86 | resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
87 |
88 | self.ups = nn.ModuleList()
89 | for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
90 | self.ups.append(weight_norm(
91 | ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
92 | k, u, padding=(k-u)//2)))
93 |
94 | self.resblocks = nn.ModuleList()
95 | for i in range(len(self.ups)):
96 | ch = upsample_initial_channel//(2**(i+1))
97 | for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
98 | self.resblocks.append(resblock(ch, k, d))
99 |
100 | self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
101 | self.ups.apply(init_weights)
102 |
103 | if gin_channels != 0:
104 | self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
105 |
106 | def forward(self, x, g=None):
107 | x = self.conv_pre(x)
108 | if g is not None:
109 | x = x + self.cond(g)
110 |
111 | for i in range(self.num_upsamples):
112 | x = F.leaky_relu(x, modules.LRELU_SLOPE)
113 | x = self.ups[i](x)
114 | xs = None
115 | for j in range(self.num_kernels):
116 | if xs is None:
117 | xs = self.resblocks[i*self.num_kernels+j](x)
118 | else:
119 | xs += self.resblocks[i*self.num_kernels+j](x)
120 | x = xs / self.num_kernels
121 | x = F.leaky_relu(x)
122 | x = self.conv_post(x)
123 | x = torch.tanh(x)
124 |
125 | return x
126 |
127 | def remove_weight_norm(self):
128 | print('Removing weight norm...')
129 | for l in self.ups:
130 | remove_weight_norm(l)
131 | for l in self.resblocks:
132 | l.remove_weight_norm()
133 |
134 |
135 | class DiscriminatorP(torch.nn.Module):
136 | def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
137 | super(DiscriminatorP, self).__init__()
138 | self.period = period
139 | self.use_spectral_norm = use_spectral_norm
140 | norm_f = weight_norm if use_spectral_norm == False else spectral_norm
141 | self.convs = nn.ModuleList([
142 | norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
143 | norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
144 | norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
145 | norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
146 | norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
147 | ])
148 | self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
149 |
150 | def forward(self, x):
151 | fmap = []
152 |
153 | # 1d to 2d
154 | b, c, t = x.shape
155 | if t % self.period != 0: # pad first
156 | n_pad = self.period - (t % self.period)
157 | x = F.pad(x, (0, n_pad), "reflect")
158 | t = t + n_pad
159 | x = x.view(b, c, t // self.period, self.period)
160 |
161 | for l in self.convs:
162 | x = l(x)
163 | x = F.leaky_relu(x, modules.LRELU_SLOPE)
164 | fmap.append(x)
165 | x = self.conv_post(x)
166 | fmap.append(x)
167 | x = torch.flatten(x, 1, -1)
168 |
169 | return x, fmap
170 |
171 |
172 | class DiscriminatorS(torch.nn.Module):
173 | def __init__(self, use_spectral_norm=False):
174 | super(DiscriminatorS, self).__init__()
175 | norm_f = weight_norm if use_spectral_norm == False else spectral_norm
176 | self.convs = nn.ModuleList([
177 | norm_f(Conv1d(1, 16, 15, 1, padding=7)),
178 | norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
179 | norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
180 | norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
181 | norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
182 | norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
183 | ])
184 | self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
185 |
186 | def forward(self, x):
187 | fmap = []
188 |
189 | for l in self.convs:
190 | x = l(x)
191 | x = F.leaky_relu(x, modules.LRELU_SLOPE)
192 | fmap.append(x)
193 | x = self.conv_post(x)
194 | fmap.append(x)
195 | x = torch.flatten(x, 1, -1)
196 |
197 | return x, fmap
198 |
199 |
200 | class MultiPeriodDiscriminator(torch.nn.Module):
201 | def __init__(self, use_spectral_norm=False):
202 | super(MultiPeriodDiscriminator, self).__init__()
203 | periods = [2,3,5,7,11]
204 |
205 | discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
206 | discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
207 | self.discriminators = nn.ModuleList(discs)
208 |
209 | def forward(self, y, y_hat):
210 | y_d_rs = []
211 | y_d_gs = []
212 | fmap_rs = []
213 | fmap_gs = []
214 | for i, d in enumerate(self.discriminators):
215 | y_d_r, fmap_r = d(y)
216 | y_d_g, fmap_g = d(y_hat)
217 | y_d_rs.append(y_d_r)
218 | y_d_gs.append(y_d_g)
219 | fmap_rs.append(fmap_r)
220 | fmap_gs.append(fmap_g)
221 |
222 | return y_d_rs, y_d_gs, fmap_rs, fmap_gs
223 |
224 |
225 | class SpeakerEncoder(torch.nn.Module):
226 | def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
227 | super(SpeakerEncoder, self).__init__()
228 | self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
229 | self.linear = nn.Linear(model_hidden_size, model_embedding_size)
230 | self.relu = nn.ReLU()
231 |
232 | def forward(self, mels):
233 | self.lstm.flatten_parameters()
234 | _, (hidden, _) = self.lstm(mels)
235 | embeds_raw = self.relu(self.linear(hidden[-1]))
236 | return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
237 |
238 | def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
239 | mel_slices = []
240 | for i in range(0, total_frames-partial_frames, partial_hop):
241 | mel_range = torch.arange(i, i+partial_frames)
242 | mel_slices.append(mel_range)
243 |
244 | return mel_slices
245 |
246 | def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
247 | mel_len = mel.size(1)
248 | last_mel = mel[:,-partial_frames:]
249 |
250 | if mel_len > partial_frames:
251 | mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
252 | mels = list(mel[:,s] for s in mel_slices)
253 | mels.append(last_mel)
254 | mels = torch.stack(tuple(mels), 0).squeeze(1)
255 |
256 | with torch.no_grad():
257 | partial_embeds = self(mels)
258 | embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
259 | #embed = embed / torch.linalg.norm(embed, 2)
260 | else:
261 | with torch.no_grad():
262 | embed = self(last_mel)
263 |
264 | return embed
265 |
266 |
267 | class SynthesizerTrn(nn.Module):
268 | """
269 | Synthesizer for Training
270 | """
271 |
272 | def __init__(self,
273 | spec_channels,
274 | segment_size,
275 | inter_channels,
276 | hidden_channels,
277 | filter_channels,
278 | n_heads,
279 | n_layers,
280 | kernel_size,
281 | p_dropout,
282 | resblock,
283 | resblock_kernel_sizes,
284 | resblock_dilation_sizes,
285 | upsample_rates,
286 | upsample_initial_channel,
287 | upsample_kernel_sizes,
288 | gin_channels,
289 | ssl_dim,
290 | use_spk,
291 | **kwargs):
292 |
293 | super().__init__()
294 | self.spec_channels = spec_channels
295 | self.inter_channels = inter_channels
296 | self.hidden_channels = hidden_channels
297 | self.filter_channels = filter_channels
298 | self.n_heads = n_heads
299 | self.n_layers = n_layers
300 | self.kernel_size = kernel_size
301 | self.p_dropout = p_dropout
302 | self.resblock = resblock
303 | self.resblock_kernel_sizes = resblock_kernel_sizes
304 | self.resblock_dilation_sizes = resblock_dilation_sizes
305 | self.upsample_rates = upsample_rates
306 | self.upsample_initial_channel = upsample_initial_channel
307 | self.upsample_kernel_sizes = upsample_kernel_sizes
308 | self.segment_size = segment_size
309 | self.gin_channels = gin_channels
310 | self.ssl_dim = ssl_dim
311 | self.use_spk = use_spk
312 |
313 | self.enc_p = Encoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16)
314 | self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
315 | self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
316 | self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
317 |
318 | if not self.use_spk:
319 | self.enc_spk = SpeakerEncoder(model_hidden_size=gin_channels, model_embedding_size=gin_channels)
320 |
321 | def forward(self, c, spec, g=None, mel=None, c_lengths=None, spec_lengths=None):
322 | if c_lengths == None:
323 | c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
324 | if spec_lengths == None:
325 | spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device)
326 |
327 | if not self.use_spk:
328 | #print(torch.max(mel),torch.min(mel),mel.size())
329 | g_raw = self.enc_spk(mel.transpose(1,2))
330 | g = g_raw.unsqueeze(-1)
331 |
332 | _, m_p, logs_p, _ = self.enc_p(c, c_lengths)#这里也输入一下g会不会更好?models_g_content.py里面有模型代码
333 | z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
334 | z_p = self.flow(z, spec_mask, g=g)
335 | #print(z.size(),spec_lengths, self.segment_size)
336 | z_slice, ids_slice = commons.rand_slice_segments(z, spec_lengths, self.segment_size)
337 | #print(z_slice.size())
338 | o = self.dec(z_slice, g=g)
339 | #with torch.no_grad():
340 | # g_hat = self.enc_spk(mel.transpose(1,2))
341 |
342 | return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q),g_raw#,g_hat
343 |
344 | def infer(self, c, g=None, mel=None, c_lengths=None):
345 | if c_lengths == None:
346 | c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
347 | if not self.use_spk:
348 | #g = self.enc_spk.embed_utterance(mel.transpose(1,2))
349 | g = self.enc_spk(mel.transpose(1,2))
350 | g = g.unsqueeze(-1)
351 |
352 | z_p, m_p, logs_p, c_mask = self.enc_p(c, c_lengths)
353 | z = self.flow(z_p, c_mask, g=g, reverse=True)
354 | o = self.dec(z * c_mask, g=g)
355 |
356 | return o
357 |
--------------------------------------------------------------------------------
/modules.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import math
3 | import numpy as np
4 | import scipy
5 | import torch
6 | from torch import nn
7 | from torch.nn import functional as F
8 |
9 | from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10 | from torch.nn.utils import weight_norm, remove_weight_norm
11 |
12 | import commons
13 | from commons import init_weights, get_padding
14 |
15 |
16 | LRELU_SLOPE = 0.1
17 |
18 |
19 | class LayerNorm(nn.Module):
20 | def __init__(self, channels, eps=1e-5):
21 | super().__init__()
22 | self.channels = channels
23 | self.eps = eps
24 |
25 | self.gamma = nn.Parameter(torch.ones(channels))
26 | self.beta = nn.Parameter(torch.zeros(channels))
27 |
28 | def forward(self, x):
29 | x = x.transpose(1, -1)
30 | x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
31 | return x.transpose(1, -1)
32 |
33 |
34 | class ConvReluNorm(nn.Module):
35 | def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
36 | super().__init__()
37 | self.in_channels = in_channels
38 | self.hidden_channels = hidden_channels
39 | self.out_channels = out_channels
40 | self.kernel_size = kernel_size
41 | self.n_layers = n_layers
42 | self.p_dropout = p_dropout
43 | assert n_layers > 1, "Number of layers should be larger than 0."
44 |
45 | self.conv_layers = nn.ModuleList()
46 | self.norm_layers = nn.ModuleList()
47 | self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
48 | self.norm_layers.append(LayerNorm(hidden_channels))
49 | self.relu_drop = nn.Sequential(
50 | nn.ReLU(),
51 | nn.Dropout(p_dropout))
52 | for _ in range(n_layers-1):
53 | self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
54 | self.norm_layers.append(LayerNorm(hidden_channels))
55 | self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
56 | self.proj.weight.data.zero_()
57 | self.proj.bias.data.zero_()
58 |
59 | def forward(self, x, x_mask):
60 | x_org = x
61 | for i in range(self.n_layers):
62 | x = self.conv_layers[i](x * x_mask)
63 | x = self.norm_layers[i](x)
64 | x = self.relu_drop(x)
65 | x = x_org + self.proj(x)
66 | return x * x_mask
67 |
68 |
69 | class DDSConv(nn.Module):
70 | """
71 | Dialted and Depth-Separable Convolution
72 | """
73 | def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
74 | super().__init__()
75 | self.channels = channels
76 | self.kernel_size = kernel_size
77 | self.n_layers = n_layers
78 | self.p_dropout = p_dropout
79 |
80 | self.drop = nn.Dropout(p_dropout)
81 | self.convs_sep = nn.ModuleList()
82 | self.convs_1x1 = nn.ModuleList()
83 | self.norms_1 = nn.ModuleList()
84 | self.norms_2 = nn.ModuleList()
85 | for i in range(n_layers):
86 | dilation = kernel_size ** i
87 | padding = (kernel_size * dilation - dilation) // 2
88 | self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
89 | groups=channels, dilation=dilation, padding=padding
90 | ))
91 | self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
92 | self.norms_1.append(LayerNorm(channels))
93 | self.norms_2.append(LayerNorm(channels))
94 |
95 | def forward(self, x, x_mask, g=None):
96 | if g is not None:
97 | x = x + g
98 | for i in range(self.n_layers):
99 | y = self.convs_sep[i](x * x_mask)
100 | y = self.norms_1[i](y)
101 | y = F.gelu(y)
102 | y = self.convs_1x1[i](y)
103 | y = self.norms_2[i](y)
104 | y = F.gelu(y)
105 | y = self.drop(y)
106 | x = x + y
107 | return x * x_mask
108 |
109 |
110 | class WN(torch.nn.Module):
111 | def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
112 | super(WN, self).__init__()
113 | assert(kernel_size % 2 == 1)
114 | self.hidden_channels =hidden_channels
115 | self.kernel_size = kernel_size,
116 | self.dilation_rate = dilation_rate
117 | self.n_layers = n_layers
118 | self.gin_channels = gin_channels
119 | self.p_dropout = p_dropout
120 |
121 | self.in_layers = torch.nn.ModuleList()
122 | self.res_skip_layers = torch.nn.ModuleList()
123 | self.drop = nn.Dropout(p_dropout)
124 |
125 | if gin_channels != 0:
126 | cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
127 | self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
128 |
129 | for i in range(n_layers):
130 | dilation = dilation_rate ** i
131 | padding = int((kernel_size * dilation - dilation) / 2)
132 | in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
133 | dilation=dilation, padding=padding)
134 | in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
135 | self.in_layers.append(in_layer)
136 |
137 | # last one is not necessary
138 | if i < n_layers - 1:
139 | res_skip_channels = 2 * hidden_channels
140 | else:
141 | res_skip_channels = hidden_channels
142 |
143 | res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
144 | res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
145 | self.res_skip_layers.append(res_skip_layer)
146 |
147 | def forward(self, x, x_mask, g=None, **kwargs):
148 | output = torch.zeros_like(x)
149 | n_channels_tensor = torch.IntTensor([self.hidden_channels])
150 |
151 | if g is not None:
152 | g = self.cond_layer(g)
153 |
154 | for i in range(self.n_layers):
155 | x_in = self.in_layers[i](x)
156 | if g is not None:
157 | cond_offset = i * 2 * self.hidden_channels
158 | g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
159 | else:
160 | g_l = torch.zeros_like(x_in)
161 |
162 | acts = commons.fused_add_tanh_sigmoid_multiply(
163 | x_in,
164 | g_l,
165 | n_channels_tensor)
166 | acts = self.drop(acts)
167 |
168 | res_skip_acts = self.res_skip_layers[i](acts)
169 | if i < self.n_layers - 1:
170 | res_acts = res_skip_acts[:,:self.hidden_channels,:]
171 | x = (x + res_acts) * x_mask
172 | output = output + res_skip_acts[:,self.hidden_channels:,:]
173 | else:
174 | output = output + res_skip_acts
175 | return output * x_mask
176 |
177 | def remove_weight_norm(self):
178 | if self.gin_channels != 0:
179 | torch.nn.utils.remove_weight_norm(self.cond_layer)
180 | for l in self.in_layers:
181 | torch.nn.utils.remove_weight_norm(l)
182 | for l in self.res_skip_layers:
183 | torch.nn.utils.remove_weight_norm(l)
184 |
185 |
186 | class ResBlock1(torch.nn.Module):
187 | def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
188 | super(ResBlock1, self).__init__()
189 | self.convs1 = nn.ModuleList([
190 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
191 | padding=get_padding(kernel_size, dilation[0]))),
192 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
193 | padding=get_padding(kernel_size, dilation[1]))),
194 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
195 | padding=get_padding(kernel_size, dilation[2])))
196 | ])
197 | self.convs1.apply(init_weights)
198 |
199 | self.convs2 = nn.ModuleList([
200 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
201 | padding=get_padding(kernel_size, 1))),
202 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
203 | padding=get_padding(kernel_size, 1))),
204 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
205 | padding=get_padding(kernel_size, 1)))
206 | ])
207 | self.convs2.apply(init_weights)
208 |
209 | def forward(self, x, x_mask=None):
210 | for c1, c2 in zip(self.convs1, self.convs2):
211 | xt = F.leaky_relu(x, LRELU_SLOPE)
212 | if x_mask is not None:
213 | xt = xt * x_mask
214 | xt = c1(xt)
215 | xt = F.leaky_relu(xt, LRELU_SLOPE)
216 | if x_mask is not None:
217 | xt = xt * x_mask
218 | xt = c2(xt)
219 | x = xt + x
220 | if x_mask is not None:
221 | x = x * x_mask
222 | return x
223 |
224 | def remove_weight_norm(self):
225 | for l in self.convs1:
226 | remove_weight_norm(l)
227 | for l in self.convs2:
228 | remove_weight_norm(l)
229 |
230 |
231 | class ResBlock2(torch.nn.Module):
232 | def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
233 | super(ResBlock2, self).__init__()
234 | self.convs = nn.ModuleList([
235 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
236 | padding=get_padding(kernel_size, dilation[0]))),
237 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
238 | padding=get_padding(kernel_size, dilation[1])))
239 | ])
240 | self.convs.apply(init_weights)
241 |
242 | def forward(self, x, x_mask=None):
243 | for c in self.convs:
244 | xt = F.leaky_relu(x, LRELU_SLOPE)
245 | if x_mask is not None:
246 | xt = xt * x_mask
247 | xt = c(xt)
248 | x = xt + x
249 | if x_mask is not None:
250 | x = x * x_mask
251 | return x
252 |
253 | def remove_weight_norm(self):
254 | for l in self.convs:
255 | remove_weight_norm(l)
256 |
257 |
258 | class Log(nn.Module):
259 | def forward(self, x, x_mask, reverse=False, **kwargs):
260 | if not reverse:
261 | y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
262 | logdet = torch.sum(-y, [1, 2])
263 | return y, logdet
264 | else:
265 | x = torch.exp(x) * x_mask
266 | return x
267 |
268 |
269 | class Flip(nn.Module):
270 | def forward(self, x, *args, reverse=False, **kwargs):
271 | x = torch.flip(x, [1])
272 | if not reverse:
273 | logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
274 | return x, logdet
275 | else:
276 | return x
277 |
278 |
279 | class ElementwiseAffine(nn.Module):
280 | def __init__(self, channels):
281 | super().__init__()
282 | self.channels = channels
283 | self.m = nn.Parameter(torch.zeros(channels,1))
284 | self.logs = nn.Parameter(torch.zeros(channels,1))
285 |
286 | def forward(self, x, x_mask, reverse=False, **kwargs):
287 | if not reverse:
288 | y = self.m + torch.exp(self.logs) * x
289 | y = y * x_mask
290 | logdet = torch.sum(self.logs * x_mask, [1,2])
291 | return y, logdet
292 | else:
293 | x = (x - self.m) * torch.exp(-self.logs) * x_mask
294 | return x
295 |
296 |
297 | class ResidualCouplingLayer(nn.Module):
298 | def __init__(self,
299 | channels,
300 | hidden_channels,
301 | kernel_size,
302 | dilation_rate,
303 | n_layers,
304 | p_dropout=0,
305 | gin_channels=0,
306 | mean_only=False):
307 | assert channels % 2 == 0, "channels should be divisible by 2"
308 | super().__init__()
309 | self.channels = channels
310 | self.hidden_channels = hidden_channels
311 | self.kernel_size = kernel_size
312 | self.dilation_rate = dilation_rate
313 | self.n_layers = n_layers
314 | self.half_channels = channels // 2
315 | self.mean_only = mean_only
316 |
317 | self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
318 | self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
319 | self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
320 | self.post.weight.data.zero_()
321 | self.post.bias.data.zero_()
322 |
323 | def forward(self, x, x_mask, g=None, reverse=False):
324 | x0, x1 = torch.split(x, [self.half_channels]*2, 1)
325 | h = self.pre(x0) * x_mask
326 | h = self.enc(h, x_mask, g=g)
327 | stats = self.post(h) * x_mask
328 | if not self.mean_only:
329 | m, logs = torch.split(stats, [self.half_channels]*2, 1)
330 | else:
331 | m = stats
332 | logs = torch.zeros_like(m)
333 |
334 | if not reverse:
335 | x1 = m + x1 * torch.exp(logs) * x_mask
336 | x = torch.cat([x0, x1], 1)
337 | logdet = torch.sum(logs, [1,2])
338 | return x, logdet
339 | else:
340 | x1 = (x1 - m) * torch.exp(-logs) * x_mask
341 | x = torch.cat([x0, x1], 1)
342 | return x
343 |
--------------------------------------------------------------------------------
/ppg.py:
--------------------------------------------------------------------------------
1 | from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
2 | #from datasets import load_dataset
3 | import torch
4 | import soundfile as sf
5 | from glob import glob
6 | import glob2
7 | from tqdm import tqdm
8 | import matplotlib.pyplot as plt
9 | # load model and processor
10 | processor = Wav2Vec2Processor.from_pretrained("speech31/wav2vec2-large-english-TIMIT-phoneme_v3")
11 | model = Wav2Vec2ForCTC.from_pretrained("speech31/wav2vec2-large-english-TIMIT-phoneme_v3").cuda().eval()
12 | files=glob2.glob(r".\dataset\crosslingual_emo_dataset\**\*.wav")
13 | files=sorted(files)
14 | print(len(files))
15 | for file in tqdm(files):
16 | ppg_file=file.replace(r".wav",r"_eng_ppg.pt")
17 | # Read and process the input
18 | audio_input, sample_rate = sf.read(file)
19 | #audio_input=audio_input[:25000]
20 | #sf.write('3752_slice.wav',audio_input,sample_rate)
21 | inputs = processor(audio_input, sampling_rate=16_000, return_tensors="pt", padding=True)
22 | #print(inputs)
23 | #import matplotlib.pyplot as plt
24 | with torch.no_grad():
25 | logits = model(inputs.input_values.cuda()).logits
26 | logits_trans=logits.transpose(2,1)
27 | #print(logits_trans.size())
28 | #print(file,ppg_file)
29 |
30 | torch.save(logits_trans.cpu(),ppg_file)
31 |
32 | #lo=logits.squeeze(0).numpy()
33 | #print(lo)
34 | #lo=lo.transpose(1,0)
35 | #plt.imshow(lo)
36 | #plt.show()
37 | #hidden_states=model(inputs.input_values).hidden_states
38 | #print(hidden_states)
39 | #hidden=hidden_states.squeeze(0).numpy()
40 | #print(hidden)
41 | #plt.imshow(hidden)
42 | #plt.show()
43 | # Decode id into string
44 | #print(logits)
45 | ##predicted_ids = torch.argmax(logits, axis=-1)
46 | ##print(predicted_ids)
47 | ##predicted_sentences = processor.batch_decode(predicted_ids)
48 | ##print(predicted_sentences)
49 |
--------------------------------------------------------------------------------
/ppgemoconvert_exp.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | import torch
4 | import librosa
5 | import time
6 | from scipy.io.wavfile import write
7 | from tqdm import tqdm
8 | import soundfile as sf
9 | import utils
10 | from models import SynthesizerTrn
11 | from mel_processing import mel_spectrogram_torch
12 | import logging
13 | logging.getLogger('numba').setLevel(logging.WARNING)
14 |
15 |
16 | if __name__ == "__main__":
17 | parser = argparse.ArgumentParser()
18 | parser.add_argument("--hpfile", type=str, default="./logs/cvc-44ppg-emoloss/config.json", help="path to json config file")
19 | parser.add_argument("--ptfile", type=str, default="./logs/cvc-44ppg-emoloss/G_cvc-44ppg-emoloss.pth", help="path to pth file")
20 | parser.add_argument("--outdir", type=str, default="output_exp/20_exp_cvc-44ppg-emoloss", help="path to output dir")
21 | parser.add_argument("--use_timestamp", default=False, action="store_true")
22 | args = parser.parse_args()
23 |
24 | os.makedirs(args.outdir, exist_ok=True)
25 | hps = utils.get_hparams_from_file(args.hpfile)
26 |
27 | print("Loading model...")
28 | net_g = SynthesizerTrn(
29 | hps.data.filter_length // 2 + 1,
30 | hps.train.segment_size // hps.data.hop_length,
31 | **hps.model).cuda()
32 | _ = net_g.eval()
33 | print("Loading checkpoint...")
34 | _ = utils.load_checkpoint(args.ptfile, net_g, None, True)
35 |
36 | src_wavs=[r".\dataset\ESD16k\0011\Neutral\evaluation\0011_000004.wav",
37 | r".\dataset\ESD16k\0016\Neutral\test\0016_000031.wav"]
38 |
39 |
40 | tgt_wavs=[r".\dataset\ESD16k\0012\Happy\train\0012_000897.wav",
41 | r".\dataset\ESD16k\0012\Angry\test\0012_000374.wav",
42 | r".\dataset\ESD16k\0012\Sad\train\0012_001188.wav",
43 | r".\dataset\ESD16k\0012\Surprise\train\0012_001504.wav",
44 | r".\dataset\ESD16k\0015\Happy\train\0015_000875.wav",
45 | r".\dataset\ESD16k\0015\Angry\train\0015_000619.wav",
46 | r".\dataset\ESD16k\0015\Sad\train\0015_001233.wav",
47 | r".\dataset\ESD16k\0015\Surprise\train\0015_001656.wav",
48 | r".\ravdess_ref\act_11_03-01-05-02-01-01-11_man_angry.wav",
49 | r".\ravdess_ref\act2-03-01-05-01-02-02-02-womanangry.wav"]
50 | print("Processing text...")
51 | titles, srcs, tgts = [], [], []
52 | for src_wav in src_wavs:
53 | for tgt_wav in tgt_wavs:
54 | src_wav_name=os.path.basename(src_wav)[:-4]
55 | tgt_wav_name=os.path.basename(tgt_wav)[:-4]
56 | title="{}_to_{}".format(src_wav_name,tgt_wav_name)
57 | titles.append(title)
58 | srcs.append(src_wav)
59 | tgts.append(tgt_wav)
60 | print(srcs)
61 | print(tgts)
62 | print(titles)
63 | #import sys
64 | #sys.exit()
65 | """
66 | with open(args.txtpath, "r") as f:
67 | for rawline in f.readlines():
68 | print(rawline)
69 | title, src, tgt = rawline.strip().split("|")
70 | titles.append(title)
71 | srcs.append(src)
72 | tgts.append(tgt)
73 | """
74 |
75 | print("Synthesizing...")
76 | with torch.no_grad():
77 | for line in tqdm(zip(titles, srcs, tgts)):
78 | title, src, tgt = line
79 | srcname,tgtname=title.split("to")
80 | # tgt
81 | wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
82 | sf.write(os.path.join(args.outdir, f"{tgtname}.wav"), wav_tgt, hps.data.sampling_rate)
83 | #wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
84 |
85 | wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).cuda()
86 | mel_tgt = mel_spectrogram_torch(
87 | wav_tgt,
88 | hps.data.filter_length,
89 | hps.data.n_mel_channels,
90 | hps.data.sampling_rate,
91 | hps.data.hop_length,
92 | hps.data.win_length,
93 | hps.data.mel_fmin,
94 | hps.data.mel_fmax
95 | )
96 | # src
97 | wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate)
98 | sf.write(os.path.join(args.outdir, f"{srcname}.wav"), wav_src, hps.data.sampling_rate)
99 | wav_src = torch.from_numpy(wav_src).unsqueeze(0).cuda()
100 | #c = utils.get_content(cmodel, wav_src)
101 | c_filename = src.replace(".wav", "ppg.pt")
102 | print(src, tgt,c_filename)
103 | c = torch.load(c_filename)#.squeeze(0)
104 |
105 | print(c.size(),mel_tgt.size())
106 | audio = net_g.infer(c.cuda(), mel=mel_tgt)
107 | audio = audio[0][0].data.cpu().float().numpy()
108 | if args.use_timestamp:
109 | timestamp = time.strftime("%m-%d_%H-%M", time.localtime())
110 | write(os.path.join(args.outdir, "{}.wav".format(timestamp+"_"+title)), hps.data.sampling_rate, audio)
111 | else:
112 | write(os.path.join(args.outdir, f"{title}.wav"), hps.data.sampling_rate, audio)
113 |
114 |
--------------------------------------------------------------------------------
/preprocess_ppg.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | import argparse
4 | import torch
5 | from glob import glob
6 | from tqdm import tqdm
7 | from whisper.model import Whisper, ModelDimensions
8 | from whisper.audio import load_audio, pad_or_trim, log_mel_spectrogram
9 | import librosa
10 | import soundfile as sf
11 | def load_model(path) -> Whisper:
12 | device = "cuda" if torch.cuda.is_available() else "cpu"
13 | checkpoint = torch.load(path, map_location=device)
14 | dims = ModelDimensions(**checkpoint["dims"])
15 | model = Whisper(dims)
16 | model.load_state_dict(checkpoint["model_state_dict"])
17 | return model.to(device)
18 |
19 |
20 | def pred_ppg(whisper: Whisper, wavPath, ppgPath):
21 | audio, sr = librosa.load(wavPath,sr=None)
22 | if len(audio) >= sr * 29:
23 | print(wavPath,"cut to 29s")
24 | audio = audio[:sr * 29]
25 | #librosa.output.write_wav("your_audio_file.wav", audio, sr)
26 | sf.write(wavPath, audio, sr)
27 | audio = load_audio(wavPath)
28 | audln = audio.shape[0]
29 | ppgln = audln // 320
30 | # audio = pad_or_trim(audio)
31 | mel = log_mel_spectrogram(audio).to(whisper.device)
32 | with torch.no_grad():
33 | ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy()
34 |
35 | if ppgln>ppg.shape[0]:
36 | print("ppgln>ppg.shape[0]")
37 | ppg = ppg[:ppgln,] # [length, dim=1024]
38 | #if audln // 320 Epoch: {}'.format(epoch))
353 |
354 |
355 | def evaluate(hps, generator, eval_loader, writer_eval):
356 | generator.eval()
357 | with torch.no_grad():
358 | for batch_idx, items in enumerate(eval_loader):
359 | if hps.model.use_spk:
360 | c, spec, y, spk = items
361 | g = spk[:1].cuda(0)
362 | else:
363 | c, spec, y = items
364 | g = None
365 | spec, y = spec[:1].cuda(0), y[:1].cuda(0)
366 | c = c[:1].cuda(0)
367 | break
368 | mel = spec_to_mel_torch(
369 | spec,
370 | hps.data.filter_length,
371 | hps.data.n_mel_channels,
372 | hps.data.sampling_rate,
373 | hps.data.mel_fmin,
374 | hps.data.mel_fmax)
375 | y_hat = generator.infer(c, g=g, mel=mel)#generator.module.infer(c, g=g, mel=mel)
376 | print(torch.max(y_hat),torch.min(y_hat))
377 | y_hat_mel = mel_spectrogram_torch(
378 | y_hat.squeeze(1).float(),
379 | hps.data.filter_length,
380 | hps.data.n_mel_channels,
381 | hps.data.sampling_rate,
382 | hps.data.hop_length,
383 | hps.data.win_length,
384 | hps.data.mel_fmin,
385 | hps.data.mel_fmax
386 | )
387 | image_dict = {
388 | "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
389 | "gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
390 | }
391 | audio_dict = {
392 | "gen/audio": y_hat[0],
393 | "gt/audio": y[0]
394 | }
395 | utils.summarize(
396 | writer=writer_eval,
397 | global_step=global_step,
398 | images=image_dict,
399 | audios=audio_dict,
400 | audio_sampling_rate=hps.data.sampling_rate
401 | )
402 | generator.train()
403 |
404 |
405 | if __name__ == "__main__":
406 | main()
407 |
--------------------------------------------------------------------------------
/train_whisper_emo.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import argparse
4 | import itertools
5 | import math
6 | import torch
7 | from torch import nn, optim
8 | from torch.nn import functional as F
9 | from torch.utils.data import DataLoader
10 | print("import tensorboard")
11 | from torch.utils.tensorboard import SummaryWriter
12 | #import torch.multiprocessing as mp
13 | #import torch.distributed as dist
14 | #from torch.nn.parallel import DistributedDataParallel as DDP
15 | from torch.cuda.amp import autocast, GradScaler
16 | #带情感loss,用whisper作为内容特征#python train_whisper_emo.py -c configs/freevc-whispers-three-emo.json -m freevc-whispers-three-emo
17 | import commons
18 | import utils
19 | from data_utils_whisper import (
20 | TextAudioSpeakerLoader,
21 | TextAudioSpeakerCollate,
22 | DistributedBucketSampler
23 | )
24 | from models import (
25 | SynthesizerTrn,
26 | MultiPeriodDiscriminator,
27 | )
28 | from losses import (
29 | generator_loss,
30 | discriminator_loss,
31 | feature_loss,
32 | kl_loss
33 | )
34 | from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
35 |
36 | torch.backends.cudnn.benchmark = True
37 | global_step = 0
38 | #os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
39 |
40 |
41 | def main():
42 | """Assume Single Node Multi GPUs Training Only"""
43 | assert torch.cuda.is_available(), "CPU training is not allowed."
44 | hps = utils.get_hparams()
45 |
46 | n_gpus = torch.cuda.device_count()
47 | #os.environ['MASTER_ADDR'] = 'localhost'
48 | #os.environ['MASTER_PORT'] = hps.train.port
49 | print("start run")
50 | run(0,n_gpus, hps)
51 | #mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
52 |
53 |
54 | def run(rank, n_gpus, hps):
55 | global global_step
56 | if rank == 0:
57 | logger = utils.get_logger(hps.model_dir)
58 | logger.info(hps)
59 | utils.check_git_hash(hps.model_dir)
60 | writer = SummaryWriter(log_dir=hps.model_dir)
61 | writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
62 |
63 | #dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
64 | torch.manual_seed(hps.train.seed)
65 | torch.cuda.set_device(rank)
66 |
67 | train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps)
68 | train_sampler = DistributedBucketSampler(
69 | train_dataset,
70 | hps.train.batch_size,
71 | [75,100,125,150,175,200,225,250,300,350,400,450,500,550,600,650,700,750,800,850,900,950,1000,1100,1200,1300,1400,1500,2000,3000,4000,5000],
72 | num_replicas=n_gpus,
73 | rank=rank,
74 | shuffle=True)
75 | collate_fn = TextAudioSpeakerCollate(hps)
76 | train_loader = DataLoader(train_dataset, num_workers=12, shuffle=False, pin_memory=True,
77 | collate_fn=collate_fn, batch_sampler=train_sampler)
78 | if rank == 0:
79 | eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps)
80 | eval_loader = DataLoader(eval_dataset, num_workers=2, shuffle=True,
81 | batch_size=hps.train.batch_size, pin_memory=False,
82 | drop_last=False, collate_fn=collate_fn)
83 |
84 | net_g = SynthesizerTrn(
85 | hps.data.filter_length // 2 + 1,
86 | hps.train.segment_size // hps.data.hop_length,
87 | **hps.model).cuda(rank)
88 | net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
89 | optim_g = torch.optim.AdamW(
90 | net_g.parameters(),
91 | hps.train.learning_rate,
92 | betas=hps.train.betas,
93 | eps=hps.train.eps)
94 | optim_d = torch.optim.AdamW(
95 | net_d.parameters(),
96 | hps.train.learning_rate,
97 | betas=hps.train.betas,
98 | eps=hps.train.eps)
99 | #net_g = DDP(net_g, device_ids=[rank])#, find_unused_parameters=True)
100 | #net_d = DDP(net_d, device_ids=[rank])
101 |
102 | try:
103 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
104 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
105 | global_step = (epoch_str - 1) * len(train_loader)
106 | except:
107 | epoch_str = 1
108 | global_step = 0
109 |
110 | scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
111 | scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
112 |
113 | scaler = GradScaler(enabled=hps.train.fp16_run)
114 |
115 | for epoch in range(epoch_str, hps.train.epochs + 1):
116 | if rank==0:
117 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
118 | else:
119 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
120 | scheduler_g.step()
121 | scheduler_d.step()
122 |
123 |
124 | def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
125 |
126 | net_g, net_d = nets
127 | optim_g, optim_d = optims
128 | scheduler_g, scheduler_d = schedulers
129 | train_loader, eval_loader = loaders
130 | if writers is not None:
131 | writer, writer_eval = writers
132 |
133 | train_loader.batch_sampler.set_epoch(epoch)
134 | global global_step
135 |
136 | net_g.train()
137 | net_d.train()
138 | for batch_idx, items in enumerate(train_loader):
139 | if hps.model.use_spk:
140 | c, spec, y, spk = items
141 | g = spk.cuda(rank, non_blocking=True)
142 | else:
143 | c, spec, y = items
144 | g = None
145 | spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
146 | c = c.cuda(rank, non_blocking=True)
147 | mel = spec_to_mel_torch(
148 | spec,
149 | hps.data.filter_length,
150 | hps.data.n_mel_channels,
151 | hps.data.sampling_rate,
152 | hps.data.mel_fmin,
153 | hps.data.mel_fmax)
154 | real_mel = mel_spectrogram_torch(
155 | y.squeeze(1),
156 | hps.data.filter_length,
157 | hps.data.n_mel_channels,
158 | hps.data.sampling_rate,
159 | hps.data.hop_length,
160 | hps.data.win_length,
161 | hps.data.mel_fmin,
162 | hps.data.mel_fmax
163 | )
164 | #print(torch.max(mel),torch.min(mel),torch.max(real_mel),torch.min(real_mel))
165 | with autocast(enabled=hps.train.fp16_run):
166 | y_hat, ids_slice, z_mask,\
167 | (z, z_p, m_p, logs_p, m_q, logs_q),emo_y = net_g(c, spec, g=g, mel=mel)
168 | #print(torch.max(y),torch.min(y),torch.max(y_hat),torch.min(y_hat))
169 | y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
170 | y_hat_mel = mel_spectrogram_torch(
171 | y_hat.squeeze(1),
172 | hps.data.filter_length,
173 | hps.data.n_mel_channels,
174 | hps.data.sampling_rate,
175 | hps.data.hop_length,
176 | hps.data.win_length,
177 | hps.data.mel_fmin,
178 | hps.data.mel_fmax
179 | )
180 | y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
181 |
182 | # Discriminator
183 | y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
184 | with autocast(enabled=False):
185 | loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
186 | loss_disc_all = loss_disc
187 | optim_d.zero_grad()
188 | scaler.scale(loss_disc_all).backward()
189 | scaler.unscale_(optim_d)
190 | grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
191 | scaler.step(optim_d)
192 |
193 | with autocast(enabled=hps.train.fp16_run):
194 | # Generator
195 | y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
196 | #print(torch.max(mel),torch.min(mel),mel.size(),torch.max(y_hat_mel),torch.min(y_hat_mel),y_hat_mel.size())
197 | #y_hat_mel=torch.rand_like(y_hat_mel)
198 | #emo_y_hat=net_g.enc_spk(y_hat_mel.transpose(1,2))#process_func(y_input=y_hat,embeddings=True)
199 | #y=torch.rand_like(y)
200 | emo_y_hat=net_g.enc_spk(y_hat_mel.transpose(1,2))#process_func(y_input=y,embeddings=True)
201 | #print(torch.max(emo_y),torch.min(emo_y),emo_y.size(),torch.max(emo_y_hat),torch.min(emo_y_hat),emo_y_hat.size())
202 | #print(emo_y_hat.size(),emo_y.size())
203 | with autocast(enabled=False):
204 | loss_mel = F.l1_loss(y_hat_mel, y_mel) * hps.train.c_mel
205 | #print("loss_mel",loss_mel)
206 | loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
207 | #print("loss_kl",loss_kl)
208 | loss_fm = feature_loss(fmap_r, fmap_g) * 0.5
209 | #print("loss_fm",loss_fm)
210 | loss_gen, losses_gen = generator_loss(y_d_hat_g)
211 | #print("loss_gen, losses_gen",loss_gen, losses_gen)
212 | loss_emo=F.l1_loss(emo_y_hat,emo_y) * hps.train.c_mel * 0.5
213 | #print("loss_emo",loss_emo)
214 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_emo
215 | optim_g.zero_grad()
216 | scaler.scale(loss_gen_all).backward()
217 | scaler.unscale_(optim_g)
218 | grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
219 | scaler.step(optim_g)
220 | scaler.update()
221 |
222 | if rank==0:
223 | if global_step % hps.train.log_interval == 0:
224 | lr = optim_g.param_groups[0]['lr']
225 | losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl,loss_emo]
226 | logger.info('Train Epoch: {} [{:.0f}%]'.format(
227 | epoch,
228 | 100. * batch_idx / len(train_loader)))
229 | logger.info([x.item() for x in losses] + [global_step, lr])
230 |
231 | scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
232 | scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl, "loss/g/emo": loss_emo})
233 |
234 | scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
235 | scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
236 | scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
237 | image_dict = {
238 | "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
239 | "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
240 | "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
241 | }
242 | utils.summarize(
243 | writer=writer,
244 | global_step=global_step,
245 | images=image_dict,
246 | scalars=scalar_dict)
247 |
248 | if global_step % hps.train.eval_interval == 0:
249 | evaluate(hps, net_g, eval_loader, writer_eval)
250 | utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
251 | utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
252 | global_step += 1
253 |
254 | if rank == 0:
255 | logger.info('====> Epoch: {}'.format(epoch))
256 |
257 |
258 | def evaluate(hps, generator, eval_loader, writer_eval):
259 | generator.eval()
260 | with torch.no_grad():
261 | for batch_idx, items in enumerate(eval_loader):
262 | if hps.model.use_spk:
263 | c, spec, y, spk = items
264 | g = spk[:1].cuda(0)
265 | else:
266 | c, spec, y = items
267 | g = None
268 | spec, y = spec[:1].cuda(0), y[:1].cuda(0)
269 | c = c[:1].cuda(0)
270 | break
271 | mel = spec_to_mel_torch(
272 | spec,
273 | hps.data.filter_length,
274 | hps.data.n_mel_channels,
275 | hps.data.sampling_rate,
276 | hps.data.mel_fmin,
277 | hps.data.mel_fmax)
278 | y_hat = generator.infer(c, g=g, mel=mel)#generator.module.infer(c, g=g, mel=mel)
279 | print(torch.max(y_hat),torch.min(y_hat))
280 | y_hat_mel = mel_spectrogram_torch(
281 | y_hat.squeeze(1).float(),
282 | hps.data.filter_length,
283 | hps.data.n_mel_channels,
284 | hps.data.sampling_rate,
285 | hps.data.hop_length,
286 | hps.data.win_length,
287 | hps.data.mel_fmin,
288 | hps.data.mel_fmax
289 | )
290 | image_dict = {
291 | "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
292 | "gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
293 | }
294 | audio_dict = {
295 | "gen/audio": y_hat[0],
296 | "gt/audio": y[0]
297 | }
298 | utils.summarize(
299 | writer=writer_eval,
300 | global_step=global_step,
301 | images=image_dict,
302 | audios=audio_dict,
303 | audio_sampling_rate=hps.data.sampling_rate
304 | )
305 | generator.train()
306 |
307 |
308 | if __name__ == "__main__":
309 | main()
310 |
--------------------------------------------------------------------------------
/utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | import glob
3 | import sys
4 | import argparse
5 | import logging
6 | import json
7 | import subprocess
8 | import numpy as np
9 | from scipy.io.wavfile import read
10 | import torch
11 | import torchvision
12 | from torch.nn import functional as F
13 | from commons import sequence_mask
14 |
15 |
16 | MATPLOTLIB_FLAG = False
17 |
18 | logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
19 | logger = logging
20 |
21 |
22 |
23 |
24 |
25 | def get_content(cmodel, y):
26 | with torch.no_grad():
27 | c = cmodel.extract_features(y.squeeze(1))[0]
28 | c = c.transpose(1, 2)
29 | return c
30 |
31 |
32 |
33 |
34 |
35 | def transform(mel, height): # 68-92
36 | #r = np.random.random()
37 | #rate = r * 0.3 + 0.85 # 0.85-1.15
38 | #height = int(mel.size(-2) * rate)
39 | tgt = torchvision.transforms.functional.resize(mel, (height, mel.size(-1)))
40 | if height >= mel.size(-2):
41 | return tgt[:, :mel.size(-2), :]
42 | else:
43 | silence = tgt[:,-1:,:].repeat(1,mel.size(-2)-height,1)
44 | silence += torch.randn_like(silence) / 10
45 | return torch.cat((tgt, silence), 1)
46 |
47 |
48 | def stretch(mel, width): # 0.5-2
49 | return torchvision.transforms.functional.resize(mel, (mel.size(-2), width))
50 |
51 |
52 | def load_checkpoint(checkpoint_path, model, optimizer=None, strict=False):
53 | assert os.path.isfile(checkpoint_path)
54 | checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
55 | iteration = checkpoint_dict['iteration']
56 | learning_rate = checkpoint_dict['learning_rate']
57 | if optimizer is not None:
58 | optimizer.load_state_dict(checkpoint_dict['optimizer'])
59 | saved_state_dict = checkpoint_dict['model']
60 | if hasattr(model, 'module'):
61 | state_dict = model.module.state_dict()
62 | else:
63 | state_dict = model.state_dict()
64 | if strict:
65 | assert state_dict.keys() == saved_state_dict.keys(), "Mismatched model config and checkpoint."
66 | new_state_dict= {}
67 | for k, v in state_dict.items():
68 | try:
69 | new_state_dict[k] = saved_state_dict[k]
70 | except:
71 | logger.info("%s is not in the checkpoint" % k)
72 | new_state_dict[k] = v
73 | if hasattr(model, 'module'):
74 | model.module.load_state_dict(new_state_dict)
75 | else:
76 | model.load_state_dict(new_state_dict)
77 | logger.info("Loaded checkpoint '{}' (iteration {})" .format(
78 | checkpoint_path, iteration))
79 | return model, optimizer, learning_rate, iteration
80 |
81 |
82 | def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
83 | logger.info("Saving model and optimizer state at iteration {} to {}".format(
84 | iteration, checkpoint_path))
85 | if hasattr(model, 'module'):
86 | state_dict = model.module.state_dict()
87 | else:
88 | state_dict = model.state_dict()
89 | torch.save({'model': state_dict,
90 | 'iteration': iteration,
91 | 'optimizer': optimizer.state_dict(),
92 | 'learning_rate': learning_rate}, checkpoint_path)
93 |
94 |
95 | def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
96 | for k, v in scalars.items():
97 | writer.add_scalar(k, v, global_step)
98 | for k, v in histograms.items():
99 | writer.add_histogram(k, v, global_step)
100 | for k, v in images.items():
101 | writer.add_image(k, v, global_step, dataformats='HWC')
102 | for k, v in audios.items():
103 | writer.add_audio(k, v, global_step, audio_sampling_rate)
104 |
105 |
106 | def latest_checkpoint_path(dir_path, regex="G_*.pth"):
107 | f_list = glob.glob(os.path.join(dir_path, regex))
108 | f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
109 | x = f_list[-1]
110 | print(x)
111 | return x
112 |
113 |
114 | def plot_spectrogram_to_numpy(spectrogram):
115 | global MATPLOTLIB_FLAG
116 | if not MATPLOTLIB_FLAG:
117 | import matplotlib
118 | matplotlib.use("Agg")
119 | MATPLOTLIB_FLAG = True
120 | mpl_logger = logging.getLogger('matplotlib')
121 | mpl_logger.setLevel(logging.WARNING)
122 | import matplotlib.pylab as plt
123 | import numpy as np
124 |
125 | fig, ax = plt.subplots(figsize=(10,2))
126 | im = ax.imshow(spectrogram, aspect="auto", origin="lower",
127 | interpolation='none')
128 | plt.colorbar(im, ax=ax)
129 | plt.xlabel("Frames")
130 | plt.ylabel("Channels")
131 | plt.tight_layout()
132 |
133 | fig.canvas.draw()
134 | data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
135 | data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
136 | plt.close()
137 | return data
138 |
139 |
140 | def plot_alignment_to_numpy(alignment, info=None):
141 | global MATPLOTLIB_FLAG
142 | if not MATPLOTLIB_FLAG:
143 | import matplotlib
144 | matplotlib.use("Agg")
145 | MATPLOTLIB_FLAG = True
146 | mpl_logger = logging.getLogger('matplotlib')
147 | mpl_logger.setLevel(logging.WARNING)
148 | import matplotlib.pylab as plt
149 | import numpy as np
150 |
151 | fig, ax = plt.subplots(figsize=(6, 4))
152 | im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
153 | interpolation='none')
154 | fig.colorbar(im, ax=ax)
155 | xlabel = 'Decoder timestep'
156 | if info is not None:
157 | xlabel += '\n\n' + info
158 | plt.xlabel(xlabel)
159 | plt.ylabel('Encoder timestep')
160 | plt.tight_layout()
161 |
162 | fig.canvas.draw()
163 | data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
164 | data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
165 | plt.close()
166 | return data
167 |
168 |
169 | def load_wav_to_torch(full_path):
170 | sampling_rate, data = read(full_path)
171 | return torch.FloatTensor(data.astype(np.float32)), sampling_rate
172 |
173 |
174 | def load_filepaths_and_text(filename, split="|"):
175 | with open(filename, encoding='utf-8') as f:
176 | filepaths_and_text = [line.strip().split(split) for line in f]
177 | return filepaths_and_text
178 |
179 |
180 | def get_hparams(init=True):
181 | parser = argparse.ArgumentParser()
182 | parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
183 | help='JSON file for configuration')
184 | parser.add_argument('-m', '--model', type=str, required=True,
185 | help='Model name')
186 |
187 | args = parser.parse_args()
188 | model_dir = os.path.join("./logs", args.model)
189 |
190 | if not os.path.exists(model_dir):
191 | os.makedirs(model_dir)
192 |
193 | config_path = args.config
194 | config_save_path = os.path.join(model_dir, "config.json")
195 | if init:
196 | with open(config_path, "r") as f:
197 | data = f.read()
198 | with open(config_save_path, "w") as f:
199 | f.write(data)
200 | else:
201 | with open(config_save_path, "r") as f:
202 | data = f.read()
203 | config = json.loads(data)
204 |
205 | hparams = HParams(**config)
206 | hparams.model_dir = model_dir
207 | return hparams
208 |
209 |
210 | def get_hparams_from_dir(model_dir):
211 | config_save_path = os.path.join(model_dir, "config.json")
212 | with open(config_save_path, "r") as f:
213 | data = f.read()
214 | config = json.loads(data)
215 |
216 | hparams =HParams(**config)
217 | hparams.model_dir = model_dir
218 | return hparams
219 |
220 |
221 | def get_hparams_from_file(config_path):
222 | with open(config_path, "r") as f:
223 | data = f.read()
224 | config = json.loads(data)
225 |
226 | hparams =HParams(**config)
227 | return hparams
228 |
229 |
230 | def check_git_hash(model_dir):
231 | source_dir = os.path.dirname(os.path.realpath(__file__))
232 | if not os.path.exists(os.path.join(source_dir, ".git")):
233 | logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
234 | source_dir
235 | ))
236 | return
237 |
238 | cur_hash = subprocess.getoutput("git rev-parse HEAD")
239 |
240 | path = os.path.join(model_dir, "githash")
241 | if os.path.exists(path):
242 | saved_hash = open(path).read()
243 | if saved_hash != cur_hash:
244 | logger.warn("git hash values are different. {}(saved) != {}(current)".format(
245 | saved_hash[:8], cur_hash[:8]))
246 | else:
247 | open(path, "w").write(cur_hash)
248 |
249 |
250 | def get_logger(model_dir, filename="train.log"):
251 | global logger
252 | logger = logging.getLogger(os.path.basename(model_dir))
253 | logger.setLevel(logging.DEBUG)
254 |
255 | formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
256 | if not os.path.exists(model_dir):
257 | os.makedirs(model_dir)
258 | h = logging.FileHandler(os.path.join(model_dir, filename))
259 | h.setLevel(logging.DEBUG)
260 | h.setFormatter(formatter)
261 | logger.addHandler(h)
262 | return logger
263 |
264 |
265 | class HParams():
266 | def __init__(self, **kwargs):
267 | for k, v in kwargs.items():
268 | if type(v) == dict:
269 | v = HParams(**v)
270 | self[k] = v
271 |
272 | def keys(self):
273 | return self.__dict__.keys()
274 |
275 | def items(self):
276 | return self.__dict__.items()
277 |
278 | def values(self):
279 | return self.__dict__.values()
280 |
281 | def __len__(self):
282 | return len(self.__dict__)
283 |
284 | def __getitem__(self, key):
285 | return getattr(self, key)
286 |
287 | def __setitem__(self, key, value):
288 | return setattr(self, key, value)
289 |
290 | def __contains__(self, key):
291 | return key in self.__dict__
292 |
293 | def __repr__(self):
294 | return self.__dict__.__repr__()
295 |
--------------------------------------------------------------------------------
/whisper/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2022 OpenAI
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/whisper/README.md:
--------------------------------------------------------------------------------
1 | # Whisper
2 |
3 | [[Blog]](https://openai.com/blog/whisper)
4 | [[Paper]](https://arxiv.org/abs/2212.04356)
5 | [[Model card]](https://github.com/openai/whisper/blob/main/model-card.md)
6 | [[Colab example]](https://colab.research.google.com/github/openai/whisper/blob/master/notebooks/LibriSpeech.ipynb)
7 |
8 | Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multitasking model that can perform multilingual speech recognition, speech translation, and language identification.
9 |
10 |
11 | ## Approach
12 |
13 | 
14 |
15 | A Transformer sequence-to-sequence model is trained on various speech processing tasks, including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. These tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing a single model to replace many stages of a traditional speech-processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or classification targets.
16 |
17 |
18 | ## Setup
19 |
20 | We used Python 3.9.9 and [PyTorch](https://pytorch.org/) 1.10.1 to train and test our models, but the codebase is expected to be compatible with Python 3.8-3.10 and recent PyTorch versions. The codebase also depends on a few Python packages, most notably [HuggingFace Transformers](https://huggingface.co/docs/transformers/index) for their fast tokenizer implementation and [ffmpeg-python](https://github.com/kkroening/ffmpeg-python) for reading audio files. You can download and install (or update to) the latest release of Whisper with the following command:
21 |
22 | pip install -U openai-whisper
23 |
24 | Alternatively, the following command will pull and install the latest commit from this repository, along with its Python dependencies:
25 |
26 | pip install git+https://github.com/openai/whisper.git
27 |
28 | To update the package to the latest version of this repository, please run:
29 |
30 | pip install --upgrade --no-deps --force-reinstall git+https://github.com/openai/whisper.git
31 |
32 | It also requires the command-line tool [`ffmpeg`](https://ffmpeg.org/) to be installed on your system, which is available from most package managers:
33 |
34 | ```bash
35 | # on Ubuntu or Debian
36 | sudo apt update && sudo apt install ffmpeg
37 |
38 | # on Arch Linux
39 | sudo pacman -S ffmpeg
40 |
41 | # on MacOS using Homebrew (https://brew.sh/)
42 | brew install ffmpeg
43 |
44 | # on Windows using Chocolatey (https://chocolatey.org/)
45 | choco install ffmpeg
46 |
47 | # on Windows using Scoop (https://scoop.sh/)
48 | scoop install ffmpeg
49 | ```
50 |
51 | You may need [`rust`](http://rust-lang.org) installed as well, in case [tokenizers](https://pypi.org/project/tokenizers/) does not provide a pre-built wheel for your platform. If you see installation errors during the `pip install` command above, please follow the [Getting started page](https://www.rust-lang.org/learn/get-started) to install Rust development environment. Additionally, you may need to configure the `PATH` environment variable, e.g. `export PATH="$HOME/.cargo/bin:$PATH"`. If the installation fails with `No module named 'setuptools_rust'`, you need to install `setuptools_rust`, e.g. by running:
52 |
53 | ```bash
54 | pip install setuptools-rust
55 | ```
56 |
57 |
58 | ## Available models and languages
59 |
60 | There are five model sizes, four with English-only versions, offering speed and accuracy tradeoffs. Below are the names of the available models and their approximate memory requirements and relative speed.
61 |
62 |
63 | | Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
64 | |:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
65 | | tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~32x |
66 | | base | 74 M | `base.en` | `base` | ~1 GB | ~16x |
67 | | small | 244 M | `small.en` | `small` | ~2 GB | ~6x |
68 | | medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x |
69 | | large | 1550 M | N/A | `large` | ~10 GB | 1x |
70 |
71 | The `.en` models for English-only applications tend to perform better, especially for the `tiny.en` and `base.en` models. We observed that the difference becomes less significant for the `small.en` and `medium.en` models.
72 |
73 | Whisper's performance varies widely depending on the language. The figure below shows a WER (Word Error Rate) breakdown by languages of the Fleurs dataset using the `large-v2` model. More WER and BLEU scores corresponding to the other models and datasets can be found in Appendix D in [the paper](https://arxiv.org/abs/2212.04356). The smaller, the better.
74 |
75 | 
76 |
77 |
78 |
79 | ## Command-line usage
80 |
81 | The following command will transcribe speech in audio files, using the `medium` model:
82 |
83 | whisper audio.flac audio.mp3 audio.wav --model medium
84 |
85 | The default setting (which selects the `small` model) works well for transcribing English. To transcribe an audio file containing non-English speech, you can specify the language using the `--language` option:
86 |
87 | whisper japanese.wav --language Japanese
88 |
89 | Adding `--task translate` will translate the speech into English:
90 |
91 | whisper japanese.wav --language Japanese --task translate
92 |
93 | Run the following to view all available options:
94 |
95 | whisper --help
96 |
97 | See [tokenizer.py](https://github.com/openai/whisper/blob/main/whisper/tokenizer.py) for the list of all available languages.
98 |
99 |
100 | ## Python usage
101 |
102 | Transcription can also be performed within Python:
103 |
104 | ```python
105 | import whisper
106 |
107 | model = whisper.load_model("base")
108 | result = model.transcribe("audio.mp3")
109 | print(result["text"])
110 | ```
111 |
112 | Internally, the `transcribe()` method reads the entire file and processes the audio with a sliding 30-second window, performing autoregressive sequence-to-sequence predictions on each window.
113 |
114 | Below is an example usage of `whisper.detect_language()` and `whisper.decode()` which provide lower-level access to the model.
115 |
116 | ```python
117 | import whisper
118 |
119 | model = whisper.load_model("base")
120 |
121 | # load audio and pad/trim it to fit 30 seconds
122 | audio = whisper.load_audio("audio.mp3")
123 | audio = whisper.pad_or_trim(audio)
124 |
125 | # make log-Mel spectrogram and move to the same device as the model
126 | mel = whisper.log_mel_spectrogram(audio).to(model.device)
127 |
128 | # detect the spoken language
129 | _, probs = model.detect_language(mel)
130 | print(f"Detected language: {max(probs, key=probs.get)}")
131 |
132 | # decode the audio
133 | options = whisper.DecodingOptions()
134 | result = whisper.decode(model, mel, options)
135 |
136 | # print the recognized text
137 | print(result.text)
138 | ```
139 |
140 | ## More examples
141 |
142 | Please use the [🙌 Show and tell](https://github.com/openai/whisper/discussions/categories/show-and-tell) category in Discussions for sharing more example usages of Whisper and third-party extensions such as web demos, integrations with other tools, ports for different platforms, etc.
143 |
144 |
145 | ## License
146 |
147 | Whisper's code and model weights are released under the MIT License. See [LICENSE](https://github.com/openai/whisper/blob/main/LICENSE) for further details.
--------------------------------------------------------------------------------
/whisper/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__init__.py
--------------------------------------------------------------------------------
/whisper/__pycache__/__init__.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__pycache__/__init__.cpython-37.pyc
--------------------------------------------------------------------------------
/whisper/__pycache__/audio.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__pycache__/audio.cpython-37.pyc
--------------------------------------------------------------------------------
/whisper/__pycache__/decoding.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__pycache__/decoding.cpython-37.pyc
--------------------------------------------------------------------------------
/whisper/__pycache__/model.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__pycache__/model.cpython-37.pyc
--------------------------------------------------------------------------------
/whisper/__pycache__/tokenizer.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__pycache__/tokenizer.cpython-37.pyc
--------------------------------------------------------------------------------
/whisper/__pycache__/utils.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/__pycache__/utils.cpython-37.pyc
--------------------------------------------------------------------------------
/whisper/assets/gpt2/special_tokens_map.json:
--------------------------------------------------------------------------------
1 | {"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}
--------------------------------------------------------------------------------
/whisper/assets/gpt2/tokenizer_config.json:
--------------------------------------------------------------------------------
1 | {"unk_token": "<|endoftext|>", "bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "gpt2", "tokenizer_class": "GPT2Tokenizer"}
--------------------------------------------------------------------------------
/whisper/assets/mel_filters.npz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ConsistencyVC/ConsistencyVC-voive-conversion/b1506a2c4c68337de922b624c0df1a1dd034419d/whisper/assets/mel_filters.npz
--------------------------------------------------------------------------------
/whisper/assets/multilingual/added_tokens.json:
--------------------------------------------------------------------------------
1 | {"<|endoftext|>": 50257}
2 |
--------------------------------------------------------------------------------
/whisper/assets/multilingual/special_tokens_map.json:
--------------------------------------------------------------------------------
1 | {"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}
--------------------------------------------------------------------------------
/whisper/assets/multilingual/tokenizer_config.json:
--------------------------------------------------------------------------------
1 | {"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "multilingual", "errors": "replace", "tokenizer_class": "GPT2Tokenizer"}
--------------------------------------------------------------------------------
/whisper/audio.py:
--------------------------------------------------------------------------------
1 | import os
2 | from functools import lru_cache
3 | from typing import Union
4 |
5 | import ffmpeg
6 | import numpy as np
7 | import torch
8 | import torch.nn.functional as F
9 |
10 | from .utils import exact_div
11 |
12 | # hard-coded audio hyperparameters
13 | SAMPLE_RATE = 16000
14 | N_FFT = 400
15 | N_MELS = 80
16 | HOP_LENGTH = 160
17 | CHUNK_LENGTH = 30
18 | N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk
19 | N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000: number of frames in a mel spectrogram input
20 |
21 |
22 | def load_audio(file: str, sr: int = SAMPLE_RATE):
23 | """
24 | Open an audio file and read as mono waveform, resampling as necessary
25 |
26 | Parameters
27 | ----------
28 | file: str
29 | The audio file to open
30 |
31 | sr: int
32 | The sample rate to resample the audio if necessary
33 |
34 | Returns
35 | -------
36 | A NumPy array containing the audio waveform, in float32 dtype.
37 | """
38 | try:
39 | # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
40 | # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
41 | out, _ = (
42 | ffmpeg.input(file, threads=0)
43 | .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
44 | .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
45 | )
46 | except ffmpeg.Error as e:
47 | raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
48 |
49 | return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
50 |
51 |
52 | def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
53 | """
54 | Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
55 | """
56 | if torch.is_tensor(array):
57 | if array.shape[axis] > length:
58 | array = array.index_select(dim=axis, index=torch.arange(length, device=array.device))
59 |
60 | if array.shape[axis] < length:
61 | pad_widths = [(0, 0)] * array.ndim
62 | pad_widths[axis] = (0, length - array.shape[axis])
63 | array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
64 | else:
65 | if array.shape[axis] > length:
66 | array = array.take(indices=range(length), axis=axis)
67 |
68 | if array.shape[axis] < length:
69 | pad_widths = [(0, 0)] * array.ndim
70 | pad_widths[axis] = (0, length - array.shape[axis])
71 | array = np.pad(array, pad_widths)
72 |
73 | return array
74 |
75 |
76 | @lru_cache(maxsize=None)
77 | def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
78 | """
79 | load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
80 | Allows decoupling librosa dependency; saved using:
81 |
82 | np.savez_compressed(
83 | "mel_filters.npz",
84 | mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
85 | )
86 | """
87 | assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
88 | with np.load(os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")) as f:
89 | return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
90 |
91 |
92 | def log_mel_spectrogram(audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS):
93 | """
94 | Compute the log-Mel spectrogram of
95 |
96 | Parameters
97 | ----------
98 | audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
99 | The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
100 |
101 | n_mels: int
102 | The number of Mel-frequency filters, only 80 is supported
103 |
104 | Returns
105 | -------
106 | torch.Tensor, shape = (80, n_frames)
107 | A Tensor that contains the Mel spectrogram
108 | """
109 | if not torch.is_tensor(audio):
110 | if isinstance(audio, str):
111 | audio = load_audio(audio)
112 | audio = torch.from_numpy(audio)
113 |
114 | window = torch.hann_window(N_FFT).to(audio.device)
115 | stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
116 | magnitudes = stft[..., :-1].abs() ** 2
117 |
118 | filters = mel_filters(audio.device, n_mels)
119 | mel_spec = filters @ magnitudes
120 |
121 | log_spec = torch.clamp(mel_spec, min=1e-10).log10()
122 | log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
123 | log_spec = (log_spec + 4.0) / 4.0
124 | return log_spec
125 |
--------------------------------------------------------------------------------
/whisper/model.py:
--------------------------------------------------------------------------------
1 | from dataclasses import dataclass
2 | from typing import Dict
3 | from typing import Iterable, Optional
4 |
5 | import numpy as np
6 | import torch
7 | import torch.nn.functional as F
8 | from torch import Tensor
9 | from torch import nn
10 |
11 | from .decoding import detect_language as detect_language_function, decode as decode_function
12 |
13 |
14 | @dataclass
15 | class ModelDimensions:
16 | n_mels: int
17 | n_audio_ctx: int
18 | n_audio_state: int
19 | n_audio_head: int
20 | n_audio_layer: int
21 | n_vocab: int
22 | n_text_ctx: int
23 | n_text_state: int
24 | n_text_head: int
25 | n_text_layer: int
26 |
27 |
28 | class LayerNorm(nn.LayerNorm):
29 | def forward(self, x: Tensor) -> Tensor:
30 | return super().forward(x.float()).type(x.dtype)
31 |
32 |
33 | class Linear(nn.Linear):
34 | def forward(self, x: Tensor) -> Tensor:
35 | return F.linear(
36 | x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype)
37 | )
38 |
39 |
40 | class Conv1d(nn.Conv1d):
41 | def _conv_forward(self, x: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor:
42 | return super()._conv_forward(
43 | x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
44 | )
45 |
46 |
47 | def sinusoids(length, channels, max_timescale=10000):
48 | """Returns sinusoids for positional embedding"""
49 | assert channels % 2 == 0
50 | log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
51 | inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
52 | scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
53 | return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
54 |
55 |
56 | class MultiHeadAttention(nn.Module):
57 | def __init__(self, n_state: int, n_head: int):
58 | super().__init__()
59 | self.n_head = n_head
60 | self.query = Linear(n_state, n_state)
61 | self.key = Linear(n_state, n_state, bias=False)
62 | self.value = Linear(n_state, n_state)
63 | self.out = Linear(n_state, n_state)
64 |
65 | def forward(
66 | self,
67 | x: Tensor,
68 | xa: Optional[Tensor] = None,
69 | mask: Optional[Tensor] = None,
70 | kv_cache: Optional[dict] = None,
71 | ):
72 | q = self.query(x)
73 |
74 | if kv_cache is None or xa is None or self.key not in kv_cache:
75 | # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
76 | # otherwise, perform key/value projections for self- or cross-attention as usual.
77 | k = self.key(x if xa is None else xa)
78 | v = self.value(x if xa is None else xa)
79 | else:
80 | # for cross-attention, calculate keys and values once and reuse in subsequent calls.
81 | k = kv_cache[self.key]
82 | v = kv_cache[self.value]
83 |
84 | wv, qk = self.qkv_attention(q, k, v, mask)
85 | return self.out(wv), qk
86 |
87 | def qkv_attention(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):
88 | n_batch, n_ctx, n_state = q.shape
89 | scale = (n_state // self.n_head) ** -0.25
90 | q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
91 | k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
92 | v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
93 |
94 | qk = q @ k
95 | if mask is not None:
96 | qk = qk + mask[:n_ctx, :n_ctx]
97 | qk = qk.float()
98 |
99 | w = F.softmax(qk, dim=-1).to(q.dtype)
100 | return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
101 |
102 |
103 | class ResidualAttentionBlock(nn.Module):
104 | def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
105 | super().__init__()
106 |
107 | self.attn = MultiHeadAttention(n_state, n_head)
108 | self.attn_ln = LayerNorm(n_state)
109 |
110 | self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None
111 | self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
112 |
113 | n_mlp = n_state * 4
114 | self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state))
115 | self.mlp_ln = LayerNorm(n_state)
116 |
117 | def forward(
118 | self,
119 | x: Tensor,
120 | xa: Optional[Tensor] = None,
121 | mask: Optional[Tensor] = None,
122 | kv_cache: Optional[dict] = None,
123 | ):
124 | x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
125 | if self.cross_attn:
126 | x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
127 | x = x + self.mlp(self.mlp_ln(x))
128 | return x
129 |
130 |
131 | class AudioEncoder(nn.Module):
132 | def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
133 | super().__init__()
134 | self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
135 | self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
136 | self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))
137 |
138 | self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
139 | [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
140 | )
141 | self.ln_post = LayerNorm(n_state)
142 |
143 | def forward(self, x: Tensor):
144 | """
145 | x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
146 | the mel spectrogram of the audio
147 | """
148 | x = F.gelu(self.conv1(x))
149 | x = F.gelu(self.conv2(x))
150 | x = x.permute(0, 2, 1)
151 |
152 | len_x = x.shape[1]
153 | len_e = self.positional_embedding.shape[0]
154 | assert len_x <= len_e, "incorrect audio shape"
155 | pos_e = self.positional_embedding[:len_x, :]
156 | x = (x + pos_e).to(x.dtype)
157 |
158 | for block in self.blocks:
159 | x = block(x)
160 |
161 | x = self.ln_post(x)
162 | return x
163 |
164 |
165 | class TextDecoder(nn.Module):
166 | def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
167 | super().__init__()
168 |
169 | self.token_embedding = nn.Embedding(n_vocab, n_state)
170 | self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state))
171 |
172 | self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
173 | [ResidualAttentionBlock(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
174 | )
175 | self.ln = LayerNorm(n_state)
176 |
177 | mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1)
178 | self.register_buffer("mask", mask, persistent=False)
179 |
180 | def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
181 | """
182 | x : torch.LongTensor, shape = (batch_size, <= n_ctx)
183 | the text tokens
184 | xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
185 | the encoded audio features to be attended on
186 | """
187 | offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
188 | x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]
189 | x = x.to(xa.dtype)
190 |
191 | for block in self.blocks:
192 | x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
193 |
194 | x = self.ln(x)
195 | logits = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float()
196 |
197 | return logits
198 |
199 |
200 | class Whisper(nn.Module):
201 | def __init__(self, dims: ModelDimensions):
202 | super().__init__()
203 | self.dims = dims
204 | self.encoder = AudioEncoder(
205 | self.dims.n_mels,
206 | self.dims.n_audio_ctx,
207 | self.dims.n_audio_state,
208 | self.dims.n_audio_head,
209 | self.dims.n_audio_layer,
210 | )
211 | self.decoder = TextDecoder(
212 | self.dims.n_vocab,
213 | self.dims.n_text_ctx,
214 | self.dims.n_text_state,
215 | self.dims.n_text_head,
216 | self.dims.n_text_layer,
217 | )
218 |
219 | def embed_audio(self, mel: torch.Tensor):
220 | return self.encoder(mel)
221 |
222 | def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor):
223 | return self.decoder(tokens, audio_features)
224 |
225 | def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]:
226 | return self.decoder(tokens, self.encoder(mel))
227 |
228 | @property
229 | def device(self):
230 | return next(self.parameters()).device
231 |
232 | @property
233 | def is_multilingual(self):
234 | return self.dims.n_vocab == 51865
235 |
236 | def install_kv_cache_hooks(self, cache: Optional[dict] = None):
237 | """
238 | The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value
239 | tensors calculated for the previous positions. This method returns a dictionary that stores
240 | all caches, and the necessary hooks for the key and value projection modules that save the
241 | intermediate tensors to be reused during later calculations.
242 |
243 | Returns
244 | -------
245 | cache : Dict[nn.Module, torch.Tensor]
246 | A dictionary object mapping the key/value projection modules to its cache
247 | hooks : List[RemovableHandle]
248 | List of PyTorch RemovableHandle objects to stop the hooks to be called
249 | """
250 | cache = {**cache} if cache is not None else {}
251 | hooks = []
252 |
253 | def save_to_cache(module, _, output):
254 | if module not in cache or output.shape[1] > self.decoder.positional_embedding.shape[0]:
255 | cache[module] = output # save as-is, for the first token or cross attention
256 | else:
257 | cache[module] = torch.cat([cache[module], output], dim=1).detach()
258 | return cache[module]
259 |
260 | def install_hooks(layer: nn.Module):
261 | if isinstance(layer, MultiHeadAttention):
262 | hooks.append(layer.key.register_forward_hook(save_to_cache))
263 | hooks.append(layer.value.register_forward_hook(save_to_cache))
264 |
265 | self.decoder.apply(install_hooks)
266 | return cache, hooks
267 |
268 | detect_language = detect_language_function
269 | decode = decode_function
270 |
--------------------------------------------------------------------------------
/whisper/normalizers/__init__.py:
--------------------------------------------------------------------------------
1 | from .basic import BasicTextNormalizer
2 | from .english import EnglishTextNormalizer
3 |
--------------------------------------------------------------------------------
/whisper/normalizers/basic.py:
--------------------------------------------------------------------------------
1 | import re
2 | import unicodedata
3 |
4 | import regex
5 |
6 | # non-ASCII letters that are not separated by "NFKD" normalization
7 | ADDITIONAL_DIACRITICS = {
8 | "œ": "oe",
9 | "Œ": "OE",
10 | "ø": "o",
11 | "Ø": "O",
12 | "æ": "ae",
13 | "Æ": "AE",
14 | "ß": "ss",
15 | "ẞ": "SS",
16 | "đ": "d",
17 | "Đ": "D",
18 | "ð": "d",
19 | "Ð": "D",
20 | "þ": "th",
21 | "Þ": "th",
22 | "ł": "l",
23 | "Ł": "L",
24 | }
25 |
26 |
27 | def remove_symbols_and_diacritics(s: str, keep=""):
28 | """
29 | Replace any other markers, symbols, and punctuations with a space,
30 | and drop any diacritics (category 'Mn' and some manual mappings)
31 | """
32 | return "".join(
33 | c
34 | if c in keep
35 | else ADDITIONAL_DIACRITICS[c]
36 | if c in ADDITIONAL_DIACRITICS
37 | else ""
38 | if unicodedata.category(c) == "Mn"
39 | else " "
40 | if unicodedata.category(c)[0] in "MSP"
41 | else c
42 | for c in unicodedata.normalize("NFKD", s)
43 | )
44 |
45 |
46 | def remove_symbols(s: str):
47 | """
48 | Replace any other markers, symbols, punctuations with a space, keeping diacritics
49 | """
50 | return "".join(
51 | " " if unicodedata.category(c)[0] in "MSP" else c for c in unicodedata.normalize("NFKC", s)
52 | )
53 |
54 |
55 | class BasicTextNormalizer:
56 | def __init__(self, remove_diacritics: bool = False, split_letters: bool = False):
57 | self.clean = remove_symbols_and_diacritics if remove_diacritics else remove_symbols
58 | self.split_letters = split_letters
59 |
60 | def __call__(self, s: str):
61 | s = s.lower()
62 | s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets
63 | s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis
64 | s = self.clean(s).lower()
65 |
66 | if self.split_letters:
67 | s = " ".join(regex.findall(r"\X", s, regex.U))
68 |
69 | s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space
70 |
71 | return s
72 |
--------------------------------------------------------------------------------
/whisper/normalizers/english.py:
--------------------------------------------------------------------------------
1 | import json
2 | import os
3 | import re
4 | from fractions import Fraction
5 | from typing import Iterator, List, Match, Optional, Union
6 |
7 | from more_itertools import windowed
8 |
9 | from .basic import remove_symbols_and_diacritics
10 |
11 |
12 | class EnglishNumberNormalizer:
13 | """
14 | Convert any spelled-out numbers into arabic numbers, while handling:
15 |
16 | - remove any commas
17 | - keep the suffixes such as: `1960s`, `274th`, `32nd`, etc.
18 | - spell out currency symbols after the number. e.g. `$20 million` -> `20000000 dollars`
19 | - spell out `one` and `ones`
20 | - interpret successive single-digit numbers as nominal: `one oh one` -> `101`
21 | """
22 |
23 | def __init__(self):
24 | super().__init__()
25 |
26 | self.zeros = {"o", "oh", "zero"}
27 | self.ones = {
28 | name: i
29 | for i, name in enumerate(
30 | [
31 | "one",
32 | "two",
33 | "three",
34 | "four",
35 | "five",
36 | "six",
37 | "seven",
38 | "eight",
39 | "nine",
40 | "ten",
41 | "eleven",
42 | "twelve",
43 | "thirteen",
44 | "fourteen",
45 | "fifteen",
46 | "sixteen",
47 | "seventeen",
48 | "eighteen",
49 | "nineteen",
50 | ],
51 | start=1,
52 | )
53 | }
54 | self.ones_plural = {
55 | "sixes" if name == "six" else name + "s": (value, "s")
56 | for name, value in self.ones.items()
57 | }
58 | self.ones_ordinal = {
59 | "zeroth": (0, "th"),
60 | "first": (1, "st"),
61 | "second": (2, "nd"),
62 | "third": (3, "rd"),
63 | "fifth": (5, "th"),
64 | "twelfth": (12, "th"),
65 | **{
66 | name + ("h" if name.endswith("t") else "th"): (value, "th")
67 | for name, value in self.ones.items()
68 | if value > 3 and value != 5 and value != 12
69 | },
70 | }
71 | self.ones_suffixed = {**self.ones_plural, **self.ones_ordinal}
72 |
73 | self.tens = {
74 | "twenty": 20,
75 | "thirty": 30,
76 | "forty": 40,
77 | "fifty": 50,
78 | "sixty": 60,
79 | "seventy": 70,
80 | "eighty": 80,
81 | "ninety": 90,
82 | }
83 | self.tens_plural = {
84 | name.replace("y", "ies"): (value, "s") for name, value in self.tens.items()
85 | }
86 | self.tens_ordinal = {
87 | name.replace("y", "ieth"): (value, "th") for name, value in self.tens.items()
88 | }
89 | self.tens_suffixed = {**self.tens_plural, **self.tens_ordinal}
90 |
91 | self.multipliers = {
92 | "hundred": 100,
93 | "thousand": 1_000,
94 | "million": 1_000_000,
95 | "billion": 1_000_000_000,
96 | "trillion": 1_000_000_000_000,
97 | "quadrillion": 1_000_000_000_000_000,
98 | "quintillion": 1_000_000_000_000_000_000,
99 | "sextillion": 1_000_000_000_000_000_000_000,
100 | "septillion": 1_000_000_000_000_000_000_000_000,
101 | "octillion": 1_000_000_000_000_000_000_000_000_000,
102 | "nonillion": 1_000_000_000_000_000_000_000_000_000_000,
103 | "decillion": 1_000_000_000_000_000_000_000_000_000_000_000,
104 | }
105 | self.multipliers_plural = {
106 | name + "s": (value, "s") for name, value in self.multipliers.items()
107 | }
108 | self.multipliers_ordinal = {
109 | name + "th": (value, "th") for name, value in self.multipliers.items()
110 | }
111 | self.multipliers_suffixed = {**self.multipliers_plural, **self.multipliers_ordinal}
112 | self.decimals = {*self.ones, *self.tens, *self.zeros}
113 |
114 | self.preceding_prefixers = {
115 | "minus": "-",
116 | "negative": "-",
117 | "plus": "+",
118 | "positive": "+",
119 | }
120 | self.following_prefixers = {
121 | "pound": "£",
122 | "pounds": "£",
123 | "euro": "€",
124 | "euros": "€",
125 | "dollar": "$",
126 | "dollars": "$",
127 | "cent": "¢",
128 | "cents": "¢",
129 | }
130 | self.prefixes = set(
131 | list(self.preceding_prefixers.values()) + list(self.following_prefixers.values())
132 | )
133 | self.suffixers = {
134 | "per": {"cent": "%"},
135 | "percent": "%",
136 | }
137 | self.specials = {"and", "double", "triple", "point"}
138 |
139 | self.words = set(
140 | [
141 | key
142 | for mapping in [
143 | self.zeros,
144 | self.ones,
145 | self.ones_suffixed,
146 | self.tens,
147 | self.tens_suffixed,
148 | self.multipliers,
149 | self.multipliers_suffixed,
150 | self.preceding_prefixers,
151 | self.following_prefixers,
152 | self.suffixers,
153 | self.specials,
154 | ]
155 | for key in mapping
156 | ]
157 | )
158 | self.literal_words = {"one", "ones"}
159 |
160 | def process_words(self, words: List[str]) -> Iterator[str]:
161 | prefix: Optional[str] = None
162 | value: Optional[Union[str, int]] = None
163 | skip = False
164 |
165 | def to_fraction(s: str):
166 | try:
167 | return Fraction(s)
168 | except ValueError:
169 | return None
170 |
171 | def output(result: Union[str, int]):
172 | nonlocal prefix, value
173 | result = str(result)
174 | if prefix is not None:
175 | result = prefix + result
176 | value = None
177 | prefix = None
178 | return result
179 |
180 | if len(words) == 0:
181 | return
182 |
183 | for prev, current, next in windowed([None] + words + [None], 3):
184 | if skip:
185 | skip = False
186 | continue
187 |
188 | next_is_numeric = next is not None and re.match(r"^\d+(\.\d+)?$", next)
189 | has_prefix = current[0] in self.prefixes
190 | current_without_prefix = current[1:] if has_prefix else current
191 | if re.match(r"^\d+(\.\d+)?$", current_without_prefix):
192 | # arabic numbers (potentially with signs and fractions)
193 | f = to_fraction(current_without_prefix)
194 | assert f is not None
195 | if value is not None:
196 | if isinstance(value, str) and value.endswith("."):
197 | # concatenate decimals / ip address components
198 | value = str(value) + str(current)
199 | continue
200 | else:
201 | yield output(value)
202 |
203 | prefix = current[0] if has_prefix else prefix
204 | if f.denominator == 1:
205 | value = f.numerator # store integers as int
206 | else:
207 | value = current_without_prefix
208 | elif current not in self.words:
209 | # non-numeric words
210 | if value is not None:
211 | yield output(value)
212 | yield output(current)
213 | elif current in self.zeros:
214 | value = str(value or "") + "0"
215 | elif current in self.ones:
216 | ones = self.ones[current]
217 |
218 | if value is None:
219 | value = ones
220 | elif isinstance(value, str) or prev in self.ones:
221 | if prev in self.tens and ones < 10: # replace the last zero with the digit
222 | assert value[-1] == "0"
223 | value = value[:-1] + str(ones)
224 | else:
225 | value = str(value) + str(ones)
226 | elif ones < 10:
227 | if value % 10 == 0:
228 | value += ones
229 | else:
230 | value = str(value) + str(ones)
231 | else: # eleven to nineteen
232 | if value % 100 == 0:
233 | value += ones
234 | else:
235 | value = str(value) + str(ones)
236 | elif current in self.ones_suffixed:
237 | # ordinal or cardinal; yield the number right away
238 | ones, suffix = self.ones_suffixed[current]
239 | if value is None:
240 | yield output(str(ones) + suffix)
241 | elif isinstance(value, str) or prev in self.ones:
242 | if prev in self.tens and ones < 10:
243 | assert value[-1] == "0"
244 | yield output(value[:-1] + str(ones) + suffix)
245 | else:
246 | yield output(str(value) + str(ones) + suffix)
247 | elif ones < 10:
248 | if value % 10 == 0:
249 | yield output(str(value + ones) + suffix)
250 | else:
251 | yield output(str(value) + str(ones) + suffix)
252 | else: # eleven to nineteen
253 | if value % 100 == 0:
254 | yield output(str(value + ones) + suffix)
255 | else:
256 | yield output(str(value) + str(ones) + suffix)
257 | value = None
258 | elif current in self.tens:
259 | tens = self.tens[current]
260 | if value is None:
261 | value = tens
262 | elif isinstance(value, str):
263 | value = str(value) + str(tens)
264 | else:
265 | if value % 100 == 0:
266 | value += tens
267 | else:
268 | value = str(value) + str(tens)
269 | elif current in self.tens_suffixed:
270 | # ordinal or cardinal; yield the number right away
271 | tens, suffix = self.tens_suffixed[current]
272 | if value is None:
273 | yield output(str(tens) + suffix)
274 | elif isinstance(value, str):
275 | yield output(str(value) + str(tens) + suffix)
276 | else:
277 | if value % 100 == 0:
278 | yield output(str(value + tens) + suffix)
279 | else:
280 | yield output(str(value) + str(tens) + suffix)
281 | elif current in self.multipliers:
282 | multiplier = self.multipliers[current]
283 | if value is None:
284 | value = multiplier
285 | elif isinstance(value, str) or value == 0:
286 | f = to_fraction(value)
287 | p = f * multiplier if f is not None else None
288 | if f is not None and p.denominator == 1:
289 | value = p.numerator
290 | else:
291 | yield output(value)
292 | value = multiplier
293 | else:
294 | before = value // 1000 * 1000
295 | residual = value % 1000
296 | value = before + residual * multiplier
297 | elif current in self.multipliers_suffixed:
298 | multiplier, suffix = self.multipliers_suffixed[current]
299 | if value is None:
300 | yield output(str(multiplier) + suffix)
301 | elif isinstance(value, str):
302 | f = to_fraction(value)
303 | p = f * multiplier if f is not None else None
304 | if f is not None and p.denominator == 1:
305 | yield output(str(p.numerator) + suffix)
306 | else:
307 | yield output(value)
308 | yield output(str(multiplier) + suffix)
309 | else: # int
310 | before = value // 1000 * 1000
311 | residual = value % 1000
312 | value = before + residual * multiplier
313 | yield output(str(value) + suffix)
314 | value = None
315 | elif current in self.preceding_prefixers:
316 | # apply prefix (positive, minus, etc.) if it precedes a number
317 | if value is not None:
318 | yield output(value)
319 |
320 | if next in self.words or next_is_numeric:
321 | prefix = self.preceding_prefixers[current]
322 | else:
323 | yield output(current)
324 | elif current in self.following_prefixers:
325 | # apply prefix (dollars, cents, etc.) only after a number
326 | if value is not None:
327 | prefix = self.following_prefixers[current]
328 | yield output(value)
329 | else:
330 | yield output(current)
331 | elif current in self.suffixers:
332 | # apply suffix symbols (percent -> '%')
333 | if value is not None:
334 | suffix = self.suffixers[current]
335 | if isinstance(suffix, dict):
336 | if next in suffix:
337 | yield output(str(value) + suffix[next])
338 | skip = True
339 | else:
340 | yield output(value)
341 | yield output(current)
342 | else:
343 | yield output(str(value) + suffix)
344 | else:
345 | yield output(current)
346 | elif current in self.specials:
347 | if next not in self.words and not next_is_numeric:
348 | # apply special handling only if the next word can be numeric
349 | if value is not None:
350 | yield output(value)
351 | yield output(current)
352 | elif current == "and":
353 | # ignore "and" after hundreds, thousands, etc.
354 | if prev not in self.multipliers:
355 | if value is not None:
356 | yield output(value)
357 | yield output(current)
358 | elif current == "double" or current == "triple":
359 | if next in self.ones or next in self.zeros:
360 | repeats = 2 if current == "double" else 3
361 | ones = self.ones.get(next, 0)
362 | value = str(value or "") + str(ones) * repeats
363 | skip = True
364 | else:
365 | if value is not None:
366 | yield output(value)
367 | yield output(current)
368 | elif current == "point":
369 | if next in self.decimals or next_is_numeric:
370 | value = str(value or "") + "."
371 | else:
372 | # should all have been covered at this point
373 | raise ValueError(f"Unexpected token: {current}")
374 | else:
375 | # all should have been covered at this point
376 | raise ValueError(f"Unexpected token: {current}")
377 |
378 | if value is not None:
379 | yield output(value)
380 |
381 | def preprocess(self, s: str):
382 | # replace " and a half" with " point five"
383 | results = []
384 |
385 | segments = re.split(r"\band\s+a\s+half\b", s)
386 | for i, segment in enumerate(segments):
387 | if len(segment.strip()) == 0:
388 | continue
389 | if i == len(segments) - 1:
390 | results.append(segment)
391 | else:
392 | results.append(segment)
393 | last_word = segment.rsplit(maxsplit=2)[-1]
394 | if last_word in self.decimals or last_word in self.multipliers:
395 | results.append("point five")
396 | else:
397 | results.append("and a half")
398 |
399 | s = " ".join(results)
400 |
401 | # put a space at number/letter boundary
402 | s = re.sub(r"([a-z])([0-9])", r"\1 \2", s)
403 | s = re.sub(r"([0-9])([a-z])", r"\1 \2", s)
404 |
405 | # but remove spaces which could be a suffix
406 | s = re.sub(r"([0-9])\s+(st|nd|rd|th|s)\b", r"\1\2", s)
407 |
408 | return s
409 |
410 | def postprocess(self, s: str):
411 | def combine_cents(m: Match):
412 | try:
413 | currency = m.group(1)
414 | integer = m.group(2)
415 | cents = int(m.group(3))
416 | return f"{currency}{integer}.{cents:02d}"
417 | except ValueError:
418 | return m.string
419 |
420 | def extract_cents(m: Match):
421 | try:
422 | return f"¢{int(m.group(1))}"
423 | except ValueError:
424 | return m.string
425 |
426 | # apply currency postprocessing; "$2 and ¢7" -> "$2.07"
427 | s = re.sub(r"([€£$])([0-9]+) (?:and )?¢([0-9]{1,2})\b", combine_cents, s)
428 | s = re.sub(r"[€£$]0.([0-9]{1,2})\b", extract_cents, s)
429 |
430 | # write "one(s)" instead of "1(s)", just for the readability
431 | s = re.sub(r"\b1(s?)\b", r"one\1", s)
432 |
433 | return s
434 |
435 | def __call__(self, s: str):
436 | s = self.preprocess(s)
437 | s = " ".join(word for word in self.process_words(s.split()) if word is not None)
438 | s = self.postprocess(s)
439 |
440 | return s
441 |
442 |
443 | class EnglishSpellingNormalizer:
444 | """
445 | Applies British-American spelling mappings as listed in [1].
446 |
447 | [1] https://www.tysto.com/uk-us-spelling-list.html
448 | """
449 |
450 | def __init__(self):
451 | mapping_path = os.path.join(os.path.dirname(__file__), "english.json")
452 | self.mapping = json.load(open(mapping_path))
453 |
454 | def __call__(self, s: str):
455 | return " ".join(self.mapping.get(word, word) for word in s.split())
456 |
457 |
458 | class EnglishTextNormalizer:
459 | def __init__(self):
460 | self.ignore_patterns = r"\b(hmm|mm|mhm|mmm|uh|um)\b"
461 | self.replacers = {
462 | # common contractions
463 | r"\bwon't\b": "will not",
464 | r"\bcan't\b": "can not",
465 | r"\blet's\b": "let us",
466 | r"\bain't\b": "aint",
467 | r"\by'all\b": "you all",
468 | r"\bwanna\b": "want to",
469 | r"\bgotta\b": "got to",
470 | r"\bgonna\b": "going to",
471 | r"\bi'ma\b": "i am going to",
472 | r"\bimma\b": "i am going to",
473 | r"\bwoulda\b": "would have",
474 | r"\bcoulda\b": "could have",
475 | r"\bshoulda\b": "should have",
476 | r"\bma'am\b": "madam",
477 | # contractions in titles/prefixes
478 | r"\bmr\b": "mister ",
479 | r"\bmrs\b": "missus ",
480 | r"\bst\b": "saint ",
481 | r"\bdr\b": "doctor ",
482 | r"\bprof\b": "professor ",
483 | r"\bcapt\b": "captain ",
484 | r"\bgov\b": "governor ",
485 | r"\bald\b": "alderman ",
486 | r"\bgen\b": "general ",
487 | r"\bsen\b": "senator ",
488 | r"\brep\b": "representative ",
489 | r"\bpres\b": "president ",
490 | r"\brev\b": "reverend ",
491 | r"\bhon\b": "honorable ",
492 | r"\basst\b": "assistant ",
493 | r"\bassoc\b": "associate ",
494 | r"\blt\b": "lieutenant ",
495 | r"\bcol\b": "colonel ",
496 | r"\bjr\b": "junior ",
497 | r"\bsr\b": "senior ",
498 | r"\besq\b": "esquire ",
499 | # prefect tenses, ideally it should be any past participles, but it's harder..
500 | r"'d been\b": " had been",
501 | r"'s been\b": " has been",
502 | r"'d gone\b": " had gone",
503 | r"'s gone\b": " has gone",
504 | r"'d done\b": " had done", # "'s done" is ambiguous
505 | r"'s got\b": " has got",
506 | # general contractions
507 | r"n't\b": " not",
508 | r"'re\b": " are",
509 | r"'s\b": " is",
510 | r"'d\b": " would",
511 | r"'ll\b": " will",
512 | r"'t\b": " not",
513 | r"'ve\b": " have",
514 | r"'m\b": " am",
515 | }
516 | self.standardize_numbers = EnglishNumberNormalizer()
517 | self.standardize_spellings = EnglishSpellingNormalizer()
518 |
519 | def __call__(self, s: str):
520 | s = s.lower()
521 |
522 | s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets
523 | s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis
524 | s = re.sub(self.ignore_patterns, "", s)
525 | s = re.sub(r"\s+'", "'", s) # standardize when there's a space before an apostrophe
526 |
527 | for pattern, replacement in self.replacers.items():
528 | s = re.sub(pattern, replacement, s)
529 |
530 | s = re.sub(r"(\d),(\d)", r"\1\2", s) # remove commas between digits
531 | s = re.sub(r"\.([^0-9]|$)", r" \1", s) # remove periods not followed by numbers
532 | s = remove_symbols_and_diacritics(s, keep=".%$¢€£") # keep some symbols for numerics
533 |
534 | s = self.standardize_numbers(s)
535 | s = self.standardize_spellings(s)
536 |
537 | # now remove prefix/suffix symbols that are not preceded/followed by numbers
538 | s = re.sub(r"[.$¢€£]([^0-9])", r" \1", s)
539 | s = re.sub(r"([^0-9])%", r"\1 ", s)
540 |
541 | s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space
542 |
543 | return s
544 |
--------------------------------------------------------------------------------
/whisper/tokenizer.py:
--------------------------------------------------------------------------------
1 | import os
2 | from dataclasses import dataclass
3 | from functools import lru_cache
4 | from typing import List, Optional, Tuple, Union
5 |
6 | import numpy as np
7 | import torch
8 | from transformers import GPT2TokenizerFast
9 |
10 | LANGUAGES = {
11 | "en": "english",
12 | "zh": "chinese",
13 | "de": "german",
14 | "es": "spanish",
15 | "ru": "russian",
16 | "ko": "korean",
17 | "fr": "french",
18 | "ja": "japanese",
19 | "pt": "portuguese",
20 | "tr": "turkish",
21 | "pl": "polish",
22 | "ca": "catalan",
23 | "nl": "dutch",
24 | "ar": "arabic",
25 | "sv": "swedish",
26 | "it": "italian",
27 | "id": "indonesian",
28 | "hi": "hindi",
29 | "fi": "finnish",
30 | "vi": "vietnamese",
31 | "he": "hebrew",
32 | "uk": "ukrainian",
33 | "el": "greek",
34 | "ms": "malay",
35 | "cs": "czech",
36 | "ro": "romanian",
37 | "da": "danish",
38 | "hu": "hungarian",
39 | "ta": "tamil",
40 | "no": "norwegian",
41 | "th": "thai",
42 | "ur": "urdu",
43 | "hr": "croatian",
44 | "bg": "bulgarian",
45 | "lt": "lithuanian",
46 | "la": "latin",
47 | "mi": "maori",
48 | "ml": "malayalam",
49 | "cy": "welsh",
50 | "sk": "slovak",
51 | "te": "telugu",
52 | "fa": "persian",
53 | "lv": "latvian",
54 | "bn": "bengali",
55 | "sr": "serbian",
56 | "az": "azerbaijani",
57 | "sl": "slovenian",
58 | "kn": "kannada",
59 | "et": "estonian",
60 | "mk": "macedonian",
61 | "br": "breton",
62 | "eu": "basque",
63 | "is": "icelandic",
64 | "hy": "armenian",
65 | "ne": "nepali",
66 | "mn": "mongolian",
67 | "bs": "bosnian",
68 | "kk": "kazakh",
69 | "sq": "albanian",
70 | "sw": "swahili",
71 | "gl": "galician",
72 | "mr": "marathi",
73 | "pa": "punjabi",
74 | "si": "sinhala",
75 | "km": "khmer",
76 | "sn": "shona",
77 | "yo": "yoruba",
78 | "so": "somali",
79 | "af": "afrikaans",
80 | "oc": "occitan",
81 | "ka": "georgian",
82 | "be": "belarusian",
83 | "tg": "tajik",
84 | "sd": "sindhi",
85 | "gu": "gujarati",
86 | "am": "amharic",
87 | "yi": "yiddish",
88 | "lo": "lao",
89 | "uz": "uzbek",
90 | "fo": "faroese",
91 | "ht": "haitian creole",
92 | "ps": "pashto",
93 | "tk": "turkmen",
94 | "nn": "nynorsk",
95 | "mt": "maltese",
96 | "sa": "sanskrit",
97 | "lb": "luxembourgish",
98 | "my": "myanmar",
99 | "bo": "tibetan",
100 | "tl": "tagalog",
101 | "mg": "malagasy",
102 | "as": "assamese",
103 | "tt": "tatar",
104 | "haw": "hawaiian",
105 | "ln": "lingala",
106 | "ha": "hausa",
107 | "ba": "bashkir",
108 | "jw": "javanese",
109 | "su": "sundanese",
110 | }
111 |
112 | # language code lookup by name, with a few language aliases
113 | TO_LANGUAGE_CODE = {
114 | **{language: code for code, language in LANGUAGES.items()},
115 | "burmese": "my",
116 | "valencian": "ca",
117 | "flemish": "nl",
118 | "haitian": "ht",
119 | "letzeburgesch": "lb",
120 | "pushto": "ps",
121 | "panjabi": "pa",
122 | "moldavian": "ro",
123 | "moldovan": "ro",
124 | "sinhalese": "si",
125 | "castilian": "es",
126 | }
127 |
128 |
129 | @dataclass(frozen=True)
130 | class Tokenizer:
131 | """A thin wrapper around `GPT2TokenizerFast` providing quick access to special tokens"""
132 |
133 | tokenizer: "GPT2TokenizerFast"
134 | language: Optional[str]
135 | sot_sequence: Tuple[int]
136 |
137 | def encode(self, text, **kwargs):
138 | return self.tokenizer.encode(text, **kwargs)
139 |
140 | def decode(self, token_ids: Union[int, List[int], np.ndarray, torch.Tensor], **kwargs):
141 | return self.tokenizer.decode(token_ids, **kwargs)
142 |
143 | def decode_with_timestamps(self, tokens) -> str:
144 | """
145 | Timestamp tokens are above the special tokens' id range and are ignored by `decode()`.
146 | This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
147 | """
148 | outputs = [[]]
149 | for token in tokens:
150 | if token >= self.timestamp_begin:
151 | timestamp = f"<|{(token - self.timestamp_begin) * 0.02:.2f}|>"
152 | outputs.append(timestamp)
153 | outputs.append([])
154 | else:
155 | outputs[-1].append(token)
156 | outputs = [s if isinstance(s, str) else self.tokenizer.decode(s) for s in outputs]
157 | return "".join(outputs)
158 |
159 | @property
160 | @lru_cache()
161 | def eot(self) -> int:
162 | return self.tokenizer.eos_token_id
163 |
164 | @property
165 | @lru_cache()
166 | def sot(self) -> int:
167 | return self._get_single_token_id("<|startoftranscript|>")
168 |
169 | @property
170 | @lru_cache()
171 | def sot_lm(self) -> int:
172 | return self._get_single_token_id("<|startoflm|>")
173 |
174 | @property
175 | @lru_cache()
176 | def sot_prev(self) -> int:
177 | return self._get_single_token_id("<|startofprev|>")
178 |
179 | @property
180 | @lru_cache()
181 | def no_speech(self) -> int:
182 | return self._get_single_token_id("<|nospeech|>")
183 |
184 | @property
185 | @lru_cache()
186 | def no_timestamps(self) -> int:
187 | return self._get_single_token_id("<|notimestamps|>")
188 |
189 | @property
190 | @lru_cache()
191 | def timestamp_begin(self) -> int:
192 | return self.tokenizer.all_special_ids[-1] + 1
193 |
194 | @property
195 | @lru_cache()
196 | def language_token(self) -> int:
197 | """Returns the token id corresponding to the value of the `language` field"""
198 | if self.language is None:
199 | raise ValueError(f"This tokenizer does not have language token configured")
200 |
201 | additional_tokens = dict(
202 | zip(
203 | self.tokenizer.additional_special_tokens,
204 | self.tokenizer.additional_special_tokens_ids,
205 | )
206 | )
207 | candidate = f"<|{self.language}|>"
208 | if candidate in additional_tokens:
209 | return additional_tokens[candidate]
210 |
211 | raise KeyError(f"Language {self.language} not found in tokenizer.")
212 |
213 | @property
214 | @lru_cache()
215 | def all_language_tokens(self) -> Tuple[int]:
216 | result = []
217 | for token, token_id in zip(
218 | self.tokenizer.additional_special_tokens,
219 | self.tokenizer.additional_special_tokens_ids,
220 | ):
221 | if token.strip("<|>") in LANGUAGES:
222 | result.append(token_id)
223 | return tuple(result)
224 |
225 | @property
226 | @lru_cache()
227 | def all_language_codes(self) -> Tuple[str]:
228 | return tuple(self.decode([l]).strip("<|>") for l in self.all_language_tokens)
229 |
230 | @property
231 | @lru_cache()
232 | def sot_sequence_including_notimestamps(self) -> Tuple[int]:
233 | return tuple(list(self.sot_sequence) + [self.no_timestamps])
234 |
235 | @property
236 | @lru_cache()
237 | def non_speech_tokens(self) -> Tuple[int]:
238 | """
239 | Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
240 | annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
241 |
242 | - ♪♪♪
243 | - ( SPEAKING FOREIGN LANGUAGE )
244 | - [DAVID] Hey there,
245 |
246 | keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
247 | """
248 | symbols = list("\"#()*+/:;<=>@[\\]^_`{|}~「」『』")
249 | symbols += "<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
250 |
251 | # symbols that may be a single token or multiple tokens depending on the tokenizer.
252 | # In case they're multiple tokens, suppress the first token, which is safe because:
253 | # These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
254 | # in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
255 | miscellaneous = set("♩♪♫♬♭♮♯")
256 | assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
257 |
258 | # allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
259 | result = {self.tokenizer.encode(" -")[0], self.tokenizer.encode(" '")[0]}
260 | for symbol in symbols + list(miscellaneous):
261 | for tokens in [self.tokenizer.encode(symbol), self.tokenizer.encode(" " + symbol)]:
262 | if len(tokens) == 1 or symbol in miscellaneous:
263 | result.add(tokens[0])
264 |
265 | return tuple(sorted(result))
266 |
267 | def _get_single_token_id(self, text) -> int:
268 | tokens = self.tokenizer.encode(text)
269 | assert len(tokens) == 1, f"{text} is not encoded as a single token"
270 | return tokens[0]
271 |
272 |
273 | @lru_cache(maxsize=None)
274 | def build_tokenizer(name: str = "gpt2"):
275 | os.environ["TOKENIZERS_PARALLELISM"] = "false"
276 | path = os.path.join(os.path.dirname(__file__), "assets", name)
277 | tokenizer = GPT2TokenizerFast.from_pretrained(path)
278 |
279 | specials = [
280 | "<|startoftranscript|>",
281 | *[f"<|{lang}|>" for lang in LANGUAGES.keys()],
282 | "<|translate|>",
283 | "<|transcribe|>",
284 | "<|startoflm|>",
285 | "<|startofprev|>",
286 | "<|nospeech|>",
287 | "<|notimestamps|>",
288 | ]
289 |
290 | tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
291 | return tokenizer
292 |
293 |
294 | @lru_cache(maxsize=None)
295 | def get_tokenizer(
296 | multilingual: bool,
297 | *,
298 | task: Optional[str] = None, # Literal["transcribe", "translate", None]
299 | language: Optional[str] = None,
300 | ) -> Tokenizer:
301 | if language is not None:
302 | language = language.lower()
303 | if language not in LANGUAGES:
304 | if language in TO_LANGUAGE_CODE:
305 | language = TO_LANGUAGE_CODE[language]
306 | else:
307 | raise ValueError(f"Unsupported language: {language}")
308 |
309 | if multilingual:
310 | tokenizer_name = "multilingual"
311 | task = task or "transcribe"
312 | language = language or "en"
313 | else:
314 | tokenizer_name = "gpt2"
315 | task = None
316 | language = None
317 |
318 | tokenizer = build_tokenizer(name=tokenizer_name)
319 | all_special_ids: List[int] = tokenizer.all_special_ids
320 | sot: int = all_special_ids[1]
321 | translate: int = all_special_ids[-6]
322 | transcribe: int = all_special_ids[-5]
323 |
324 | langs = tuple(LANGUAGES.keys())
325 | sot_sequence = [sot]
326 | if language is not None:
327 | sot_sequence.append(sot + 1 + langs.index(language))
328 | if task is not None:
329 | sot_sequence.append(transcribe if task == "transcribe" else translate)
330 |
331 | return Tokenizer(tokenizer=tokenizer, language=language, sot_sequence=tuple(sot_sequence))
332 |
--------------------------------------------------------------------------------
/whisper/utils.py:
--------------------------------------------------------------------------------
1 | import json
2 | import os
3 | import sys
4 | import zlib
5 | from typing import Callable, TextIO
6 |
7 | system_encoding = sys.getdefaultencoding()
8 |
9 | if system_encoding != "utf-8":
10 | def make_safe(string):
11 | # replaces any character not representable using the system default encoding with an '?',
12 | # avoiding UnicodeEncodeError (https://github.com/openai/whisper/discussions/729).
13 | return string.encode(system_encoding, errors="replace").decode(system_encoding)
14 | else:
15 | def make_safe(string):
16 | # utf-8 can encode any Unicode code point, so no need to do the round-trip encoding
17 | return string
18 |
19 |
20 | def exact_div(x, y):
21 | assert x % y == 0
22 | return x // y
23 |
24 |
25 | def str2bool(string):
26 | str2val = {"True": True, "False": False}
27 | if string in str2val:
28 | return str2val[string]
29 | else:
30 | raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}")
31 |
32 |
33 | def optional_int(string):
34 | return None if string == "None" else int(string)
35 |
36 |
37 | def optional_float(string):
38 | return None if string == "None" else float(string)
39 |
40 |
41 | def compression_ratio(text) -> float:
42 | text_bytes = text.encode("utf-8")
43 | return len(text_bytes) / len(zlib.compress(text_bytes))
44 |
45 |
46 | def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = '.'):
47 | assert seconds >= 0, "non-negative timestamp expected"
48 | milliseconds = round(seconds * 1000.0)
49 |
50 | hours = milliseconds // 3_600_000
51 | milliseconds -= hours * 3_600_000
52 |
53 | minutes = milliseconds // 60_000
54 | milliseconds -= minutes * 60_000
55 |
56 | seconds = milliseconds // 1_000
57 | milliseconds -= seconds * 1_000
58 |
59 | hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
60 | return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
61 |
62 |
63 | class ResultWriter:
64 | extension: str
65 |
66 | def __init__(self, output_dir: str):
67 | self.output_dir = output_dir
68 |
69 | def __call__(self, result: dict, audio_path: str):
70 | audio_basename = os.path.basename(audio_path)
71 | output_path = os.path.join(self.output_dir, audio_basename + "." + self.extension)
72 |
73 | with open(output_path, "w", encoding="utf-8") as f:
74 | self.write_result(result, file=f)
75 |
76 | def write_result(self, result: dict, file: TextIO):
77 | raise NotImplementedError
78 |
79 |
80 | class WriteTXT(ResultWriter):
81 | extension: str = "txt"
82 |
83 | def write_result(self, result: dict, file: TextIO):
84 | for segment in result["segments"]:
85 | print(segment['text'].strip(), file=file, flush=True)
86 |
87 |
88 | class WriteVTT(ResultWriter):
89 | extension: str = "vtt"
90 |
91 | def write_result(self, result: dict, file: TextIO):
92 | print("WEBVTT\n", file=file)
93 | for segment in result["segments"]:
94 | print(
95 | f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
96 | f"{segment['text'].strip().replace('-->', '->')}\n",
97 | file=file,
98 | flush=True,
99 | )
100 |
101 |
102 | class WriteSRT(ResultWriter):
103 | extension: str = "srt"
104 |
105 | def write_result(self, result: dict, file: TextIO):
106 | for i, segment in enumerate(result["segments"], start=1):
107 | # write srt lines
108 | print(
109 | f"{i}\n"
110 | f"{format_timestamp(segment['start'], always_include_hours=True, decimal_marker=',')} --> "
111 | f"{format_timestamp(segment['end'], always_include_hours=True, decimal_marker=',')}\n"
112 | f"{segment['text'].strip().replace('-->', '->')}\n",
113 | file=file,
114 | flush=True,
115 | )
116 |
117 |
118 | class WriteTSV(ResultWriter):
119 | """
120 | Write a transcript to a file in TSV (tab-separated values) format containing lines like:
121 | \t\t
122 |
123 | Using integer milliseconds as start and end times means there's no chance of interference from
124 | an environment setting a language encoding that causes the decimal in a floating point number
125 | to appear as a comma; also is faster and more efficient to parse & store, e.g., in C++.
126 | """
127 | extension: str = "tsv"
128 |
129 | def write_result(self, result: dict, file: TextIO):
130 | print("start", "end", "text", sep="\t", file=file)
131 | for segment in result["segments"]:
132 | print(round(1000 * segment['start']), file=file, end="\t")
133 | print(round(1000 * segment['end']), file=file, end="\t")
134 | print(segment['text'].strip().replace("\t", " "), file=file, flush=True)
135 |
136 |
137 | class WriteJSON(ResultWriter):
138 | extension: str = "json"
139 |
140 | def write_result(self, result: dict, file: TextIO):
141 | json.dump(result, file)
142 |
143 |
144 | def get_writer(output_format: str, output_dir: str) -> Callable[[dict, TextIO], None]:
145 | writers = {
146 | "txt": WriteTXT,
147 | "vtt": WriteVTT,
148 | "srt": WriteSRT,
149 | "tsv": WriteTSV,
150 | "json": WriteJSON,
151 | }
152 |
153 | if output_format == "all":
154 | all_writers = [writer(output_dir) for writer in writers.values()]
155 |
156 | def write_all(result: dict, file: TextIO):
157 | for writer in all_writers:
158 | writer(result, file)
159 |
160 | return write_all
161 |
162 | return writers[output_format](output_dir)
163 |
164 |
--------------------------------------------------------------------------------
/whisperconvert_exp.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | import torch
4 | import librosa
5 | import time
6 | from scipy.io.wavfile import write
7 | from tqdm import tqdm
8 | import soundfile as sf
9 | import utils
10 | from models import SynthesizerTrn
11 | from mel_processing import mel_spectrogram_torch
12 | import logging
13 | logging.getLogger('numba').setLevel(logging.WARNING)
14 |
15 |
16 | if __name__ == "__main__":
17 |
18 | parser = argparse.ArgumentParser()
19 | parser.add_argument("--hpfile", type=str, default="./logs/cvc-whispers-three-emo-loss/config.json", help="path to json config file")
20 | parser.add_argument("--ptfile", type=str, default="./logs/cvc-whispers-three-emo-loss/G_cvc-whispers-three-emo-loss.pth", help="path to pth file")
21 | parser.add_argument("--outdir", type=str, default="output/60_exp_crosslingual_whispers-three-emo-loss", help="path to output dir")
22 | parser.add_argument("--use_timestamp", default=False, action="store_true")
23 | args = parser.parse_args()
24 |
25 | os.makedirs(args.outdir, exist_ok=True)
26 | hps = utils.get_hparams_from_file(args.hpfile)
27 |
28 | print("Loading model...")
29 | net_g = SynthesizerTrn(
30 | hps.data.filter_length // 2 + 1,
31 | hps.train.segment_size // hps.data.hop_length,
32 | **hps.model).cuda()
33 | _ = net_g.eval()
34 | print("Loading checkpoint...")
35 | _ = utils.load_checkpoint(args.ptfile, net_g, None, True)
36 |
37 |
38 |
39 | src_wavs=[r".\dataset\crosslingual_emo_dataset\LibriTTS100\911\128684\911_128684_000004_000001.wav",
40 | r".\dataset\crosslingual_emo_dataset\LibriTTS100\730\359\730_359_000004_000001.wav",
41 | r".\dataset\crosslingual_emo_dataset\aishell3\wav\SSB0246\SSB02460001.wav",
42 | r".\dataset\crosslingual_emo_dataset\aishell3\wav\SSB1863\SSB18630001.wav",
43 | r".\dataset\crosslingual_emo_dataset\jvs\jvs003\nonpara30\wav24kHz16bit\BASIC5000_0440.wav",
44 | r".\dataset\crosslingual_emo_dataset\jvs\jvs014\nonpara30\wav24kHz16bit\BASIC5000_0318.wav"]
45 |
46 |
47 | tgt_wavs=[r".\dataset\crosslingual_emo_dataset\LibriTTS100\27\123349\27_123349_000003_000002.wav",
48 | r".\dataset\crosslingual_emo_dataset\LibriTTS100\87\121553\87_121553_000254_000000.wav",
49 | r".\dataset\crosslingual_emo_dataset\aishell3\wav\SSB1935\SSB19350001.wav",
50 | r".\dataset\crosslingual_emo_dataset\aishell3\wav\SSB1759\SSB17590008.wav",
51 | r".\dataset\crosslingual_emo_dataset\jvs\jvs009\nonpara30\wav24kHz16bit\BASIC5000_0155.wav",
52 | r".\dataset\crosslingual_emo_dataset\jvs\jvs010\nonpara30\wav24kHz16bit\BASIC5000_0113.wav",
53 | r".\dataset\vctk-16k\p304\p304_007.wav",
54 | r".\jecs_ref\JECS0000_JA.wav",
55 | r".\aishell1_ref\BAC009S0655W0493.wav"]
56 | print("Processing text...")
57 | titles, srcs, tgts = [], [], []
58 | for src_wav in src_wavs:
59 | for tgt_wav in tgt_wavs:
60 | src_wav_name=os.path.basename(src_wav)[:-4]
61 | tgt_wav_name=os.path.basename(tgt_wav)[:-4]
62 | title="{}_to_{}".format(src_wav_name,tgt_wav_name)
63 | titles.append(title)
64 | srcs.append(src_wav)
65 | tgts.append(tgt_wav)
66 | print(srcs)
67 | print(tgts)
68 | print(titles)
69 | #import sys
70 | #sys.exit()
71 | """
72 | with open(args.txtpath, "r") as f:
73 | for rawline in f.readlines():
74 | print(rawline)
75 | title, src, tgt = rawline.strip().split("|")
76 | titles.append(title)
77 | srcs.append(src)
78 | tgts.append(tgt)
79 | """
80 |
81 | print("Synthesizing...")
82 | with torch.no_grad():
83 | for line in tqdm(zip(titles, srcs, tgts)):
84 | title, src, tgt = line
85 | srcname,tgtname=title.split("to")
86 | # tgt
87 | wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
88 | sf.write(os.path.join(args.outdir, f"{tgtname}.wav"), wav_tgt, hps.data.sampling_rate)
89 | #wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
90 |
91 | wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).cuda()
92 | mel_tgt = mel_spectrogram_torch(
93 | wav_tgt,
94 | hps.data.filter_length,
95 | hps.data.n_mel_channels,
96 | hps.data.sampling_rate,
97 | hps.data.hop_length,
98 | hps.data.win_length,
99 | hps.data.mel_fmin,
100 | hps.data.mel_fmax
101 | )
102 | # src
103 | wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate)
104 | sf.write(os.path.join(args.outdir, f"{srcname}.wav"), wav_src, hps.data.sampling_rate)
105 | wav_src = torch.from_numpy(wav_src).unsqueeze(0).cuda()
106 | #c = utils.get_content(cmodel, wav_src)
107 | c_filename = src.replace(".wav", "whisper.pt.npy")
108 | #print(src, tgt,c_filename)
109 | #c = torch.load(c_filename)#.squeeze(0)
110 | import numpy as np
111 | c=torch.from_numpy(np.load(c_filename))
112 | c=c.transpose(1,0)
113 | c=c.unsqueeze(0)
114 |
115 | print(c.size(),mel_tgt.size())
116 | audio = net_g.infer(c.cuda(), mel=mel_tgt)
117 | audio = audio[0][0].data.cpu().float().numpy()
118 | if args.use_timestamp:
119 | timestamp = time.strftime("%m-%d_%H-%M", time.localtime())
120 | write(os.path.join(args.outdir, "{}.wav".format(timestamp+"_"+title)), hps.data.sampling_rate, audio)
121 | else:
122 | write(os.path.join(args.outdir, f"{title}.wav"), hps.data.sampling_rate, audio)
123 |
124 |
--------------------------------------------------------------------------------
/whisperconvert_longaudio.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | import torch
4 | import librosa
5 | import time
6 | from scipy.io.wavfile import write
7 | from tqdm import tqdm
8 | import soundfile as sf
9 | import utils
10 | from models import SynthesizerTrn
11 | from mel_processing import mel_spectrogram_torch
12 | import logging
13 | logging.getLogger('numba').setLevel(logging.WARNING)
14 | import librosa # Optional. Use any library you like to read audio files.
15 | import soundfile # Optional. Use any library you like to write audio files.
16 | from preprocess_ppg import pred_ppg_c,load_model
17 |
18 | if __name__ == "__main__":
19 |
20 | parser = argparse.ArgumentParser()
21 | parser.add_argument("--hpfile", type=str, default="ConsistencyVC-voive-conversion/logs/config.json", help="path to json config file")
22 | parser.add_argument("--ptfile", type=str, default="ConsistencyVC-voive-conversion/logs/G_cvc-whispers-three-emo-loss.pth", help="path to pth file")
23 | parser.add_argument("--outdir", type=str, default="output/long", help="path to output dir")
24 | parser.add_argument("--use_timestamp", default=False, action="store_true")
25 | args = parser.parse_args()
26 |
27 | os.makedirs(args.outdir, exist_ok=True)
28 | hps = utils.get_hparams_from_file(args.hpfile)
29 |
30 | print("Loading model...")
31 | net_g = SynthesizerTrn(
32 | hps.data.filter_length // 2 + 1,
33 | hps.train.segment_size // hps.data.hop_length,
34 | **hps.model).cuda()
35 | _ = net_g.eval()
36 | print("Loading checkpoint...")
37 | _ = utils.load_checkpoint(args.ptfile, net_g, None, True)
38 |
39 |
40 |
41 | src_wavs=[r"longaudio1.wav",
42 | r"longaudio2.wav"]
43 |
44 |
45 | tgt_wavs=["tgt_slice/20230712-092103-296_1.wav"]
46 | print("Processing text...")
47 | titles, srcs, tgts = [], [], []
48 | for src_wav in src_wavs:
49 |
50 | for tgt_wav in tgt_wavs:
51 | src_wav_name=os.path.basename(src_wav)[:-4]
52 | tgt_wav_name=os.path.basename(tgt_wav)[:-4]
53 | title="{}_to_{}".format(src_wav_name,tgt_wav_name)
54 | titles.append(title)
55 | srcs.append(src_wav)
56 | tgts.append(tgt_wav)
57 | #print(srcs)
58 | #print(tgts)
59 | #print(titles)
60 | #import sys
61 | #sys.exit()
62 | """
63 | with open(args.txtpath, "r") as f:
64 | for rawline in f.readlines():
65 | print(rawline)
66 | title, src, tgt = rawline.strip().split("|")
67 | titles.append(title)
68 | srcs.append(src)
69 | tgts.append(tgt)
70 | """
71 |
72 | print("Synthesizing...")
73 | with torch.no_grad():
74 | for line in tqdm(zip(titles, srcs, tgts)):
75 | title, src, tgt = line
76 | srcname,tgtname=title.split("to")
77 | # tgt
78 | wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
79 | sf.write(os.path.join(args.outdir, f"{tgtname}.wav"), wav_tgt, hps.data.sampling_rate)
80 | #wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
81 |
82 | wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).cuda()
83 | mel_tgt = mel_spectrogram_torch(
84 | wav_tgt,
85 | hps.data.filter_length,
86 | hps.data.n_mel_channels,
87 | hps.data.sampling_rate,
88 | hps.data.hop_length,
89 | hps.data.win_length,
90 | hps.data.mel_fmin,
91 | hps.data.mel_fmax
92 | )
93 | # src
94 | audio, sr = librosa.load(src, sr=hps.data.sampling_rate)
95 | import numpy as np
96 | audio_result_sum=np.float32(np.zeros(len(audio)))
97 | #audio, sr = librosa.load(src_wav,sr=None)
98 | audiolen=audio.shape[0]
99 | print(audiolen)
100 | src_wav_wavs=[]
101 | num=int(audiolen/(sr*20))
102 | print(num)
103 | whisper = load_model(os.path.join("whisper_pretrain", "medium.pt"))
104 | for i in range(0,num+1):
105 |
106 | #print(i*20*sr,(i*20*sr+25*sr))
107 | tmp=audio[i*20*sr:(i*20*sr+25*sr)]
108 | sf.write(os.path.join(args.outdir, f"{srcname}_{i}.wav"), tmp, hps.data.sampling_rate)
109 |
110 |
111 | c=pred_ppg_c(whisper,os.path.join(args.outdir, f"{srcname}_{i}.wav"))#torch.from_numpy(np.load(c_filename))
112 | c=torch.from_numpy(c)
113 | c=c.transpose(1,0)
114 | c=c.unsqueeze(0)
115 |
116 | #print(c.size(),mel_tgt.size())
117 | audio_result = net_g.infer(c.cuda(), mel=mel_tgt)
118 | audio_result = audio_result[0][0].data.cpu().float().numpy()
119 | audio_result_sum[i*20*sr:(i*20*sr+audio_result.shape[0])]=audio_result
120 | #print(audio_result.dtype)
121 | #print(audio_result_sum.dtype)
122 | """
123 | if args.use_timestamp:
124 | timestamp = time.strftime("%m-%d_%H-%M", time.localtime())
125 | write(os.path.join(args.outdir, "{}.wav".format(timestamp+"_"+title)), hps.data.sampling_rate, audio_result)
126 | else:
127 | write(os.path.join(args.outdir, f"{title}_{i}.wav"), hps.data.sampling_rate, audio_result)
128 | """
129 | write(os.path.join(args.outdir, f"{title}_sum.wav"), hps.data.sampling_rate, audio_result_sum)
130 |
--------------------------------------------------------------------------------