├── .gitignore
├── LICENSE
├── README.md
├── download_hgb_datasets.sh
├── main_rphgnn.py
├── rphgnn
├── __init__.py
├── callbacks.py
├── configs
│ └── default_param_config.py
├── datasets
│ ├── hgb.py
│ └── load_data.py
├── global_configuration.py
├── layers
│ ├── __init__.py
│ ├── rphgnn_encoder.py
│ ├── rphgnn_pre.py
│ └── torch_train_model.py
├── losses.py
└── utils
│ ├── __init__.py
│ ├── argparse_utils.py
│ ├── graph_utils.py
│ ├── metrics_utils.py
│ ├── nested_data_utils.py
│ ├── random_project_utils.py
│ ├── random_utils.py
│ └── torch_data_utils.py
└── scripts
├── run_ACM.sh
├── run_DBLP.sh
├── run_Freebase.sh
├── run_IMDB.sh
├── run_OAG-L1-Field.sh
├── run_OAG-Venue.sh
├── run_OGBN-MAG.sh
└── run_leaderboard_OGBN-MAG.sh
/.gitignore:
--------------------------------------------------------------------------------
1 | /datasets/
2 | /downloads/
3 | /outputs/
4 | /logs/
5 | /cache/
6 | /saved_models/
7 | *.p
8 | *.pt
9 | *.out
10 |
11 | # Byte-compiled / optimized / DLL files
12 | __pycache__/
13 | *.py[cod]
14 | *$py.class
15 |
16 | # C extensions
17 | *.so
18 |
19 | # Distribution / packaging
20 | .Python
21 | build/
22 | develop-eggs/
23 | dist/
24 | downloads/
25 | eggs/
26 | .eggs/
27 | lib/
28 | lib64/
29 | parts/
30 | sdist/
31 | var/
32 | wheels/
33 | share/python-wheels/
34 | *.egg-info/
35 | .installed.cfg
36 | *.egg
37 | MANIFEST
38 |
39 | # PyInstaller
40 | # Usually these files are written by a python script from a template
41 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
42 | *.manifest
43 | *.spec
44 |
45 | # Installer logs
46 | pip-log.txt
47 | pip-delete-this-directory.txt
48 |
49 | # Unit test / coverage reports
50 | htmlcov/
51 | .tox/
52 | .nox/
53 | .coverage
54 | .coverage.*
55 | .cache
56 | nosetests.xml
57 | coverage.xml
58 | *.cover
59 | *.py,cover
60 | .hypothesis/
61 | .pytest_cache/
62 | cover/
63 |
64 | # Translations
65 | *.mo
66 | *.pot
67 |
68 | # Django stuff:
69 | *.log
70 | local_settings.py
71 | db.sqlite3
72 | db.sqlite3-journal
73 |
74 | # Flask stuff:
75 | instance/
76 | .webassets-cache
77 |
78 | # Scrapy stuff:
79 | .scrapy
80 |
81 | # Sphinx documentation
82 | docs/_build/
83 |
84 | # PyBuilder
85 | .pybuilder/
86 | target/
87 |
88 | # Jupyter Notebook
89 | .ipynb_checkpoints
90 |
91 | # IPython
92 | profile_default/
93 | ipython_config.py
94 |
95 | # pyenv
96 | # For a library or package, you might want to ignore these files since the code is
97 | # intended to run in multiple environments; otherwise, check them in:
98 | # .python-version
99 |
100 | # pipenv
101 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
102 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
103 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
104 | # install all needed dependencies.
105 | #Pipfile.lock
106 |
107 | # poetry
108 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
109 | # This is especially recommended for binary packages to ensure reproducibility, and is more
110 | # commonly ignored for libraries.
111 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
112 | #poetry.lock
113 |
114 | # pdm
115 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
116 | #pdm.lock
117 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
118 | # in version control.
119 | # https://pdm.fming.dev/#use-with-ide
120 | .pdm.toml
121 |
122 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
123 | __pypackages__/
124 |
125 | # Celery stuff
126 | celerybeat-schedule
127 | celerybeat.pid
128 |
129 | # SageMath parsed files
130 | *.sage.py
131 |
132 | # Environments
133 | .env
134 | .venv
135 | env/
136 | venv/
137 | ENV/
138 | env.bak/
139 | venv.bak/
140 |
141 | # Spyder project settings
142 | .spyderproject
143 | .spyproject
144 |
145 | # Rope project settings
146 | .ropeproject
147 |
148 | # mkdocs documentation
149 | /site
150 |
151 | # mypy
152 | .mypy_cache/
153 | .dmypy.json
154 | dmypy.json
155 |
156 | # Pyre type checker
157 | .pyre/
158 |
159 | # pytype static type analyzer
160 | .pytype/
161 |
162 | # Cython debug symbols
163 | cython_debug/
164 |
165 | # PyCharm
166 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
167 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
168 | # and can be added to the global gitignore or merged into this file. For a more nuclear
169 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
170 | #.idea/
171 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # RpHGNN
2 | Source code and dataset of the paper "[Efficient Heterogeneous Graph Learning via Random Projection](https://arxiv.org/abs/2310.14481)", which is accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE 2024).
3 |
4 |
5 |
6 | ## Homepage and Paper
7 |
8 | + Homepage (RpHGNN): [https://github.com/CrawlScript/RpHGNN](https://github.com/CrawlScript/RpHGNN)
9 | + Paper Access:
10 | - **IEEE Xplore**: [https://ieeexplore.ieee.org/document/10643347](https://ieeexplore.ieee.org/document/10643347)
11 | - **ArXiv**: [https://arxiv.org/abs/2310.14481](https://arxiv.org/abs/2310.14481)
12 |
13 |
14 |
15 |
16 | ## Requirements
17 |
18 | + Linux
19 | + Python 3.7
20 | + torch==1.12.1+cu113
21 | + torchmetrics==0.11.4
22 | + dgl==1.0.2+cu113
23 | + ogb==1.3.5
24 | + shortuuid==1.0.11
25 | + pandas==1.3.5
26 | + gensim==4.2.0
27 | + numpy==1.21.6
28 | + tqdm==4.64.1
29 |
30 |
31 | ## Download Preparation
32 |
33 | For HGB datasets (ACM, DBLP, Freebase, and IMDB):
34 |
35 | ```shell
36 | sh download_hgb_datasets.sh
37 | ```
38 |
39 | For OAG-Venue and OAG-L1-Field, we follow NARS' data prepatation in [https://github.com/facebookresearch/NARS/tree/main/oag_dataset](https://github.com/facebookresearch/NARS/tree/main/oag_dataset).
40 | After generating *.pk and *.npy files, you have to:
41 | - put these files in the directory
42 | - rename graph_field.pk to graph_L1.pk
43 |
44 |
45 | For OGBN-MAG, the code will automatically download it via the ogb package.
46 |
47 |
48 | For OAG-Venue and OAG-L1-Field, we adhere to NARS' data preparation instructions found at [https://github.com/facebookresearch/NARS/tree/main/oag_dataset](https://github.com/facebookresearch/NARS/tree/main/oag_dataset).
49 | After generating *.pk and *.npy files, you should:
50 | - Place these files in the directory `./datasets/nars_academic_oag/`.
51 | - Rename graph_field.pk to graph_L1.pk.
52 |
53 |
54 |
55 | ## Run RpHGNN
56 |
57 | You can run RpHGNN with the following command:
58 | ```shell
59 | sh scripts/run_ACM.sh
60 |
61 | sh scripts/run_DBLP.sh
62 |
63 | sh scripts/run_Freebase.sh
64 |
65 | sh scripts/run_IMDB.sh
66 |
67 | sh scripts/run_OGBN-MAG.sh
68 |
69 | sh scripts/run_OAG-Venue.sh
70 |
71 | sh scripts/run_OAG-L1-Field.sh
72 | ```
73 |
74 |
75 | ## Run RpHGNN for OGB Leaderboards (ogbn-mag)
76 |
77 | To reproduce the results on the OGB Leaderboards (ogbn-mag), follow the steps below:
78 |
79 | - Preparing Pre-trained Embeddings (Optional):
80 | - If the cache/mag.p file does not exist (embeddings pre-trained via LINE [1]), our code will automatically pre-train it and save the pre-trained embeddings in the specified path.
81 | - Alternatively, if you'd prefer to skip the pre-training step, download the pre-trained embeddings mag.p directly from [Google Drive](https://drive.google.com/file/d/1Q7gD1xpmLeFJu5xWWY3nwa46cM8xYClH/view?usp=sharing) and place it in the `cache` directory.
82 |
83 |
84 | - Execute the script:
85 |
86 | ```shell
87 | sh scripts/run_leaderboard_OGBN-MAG.sh
88 | ```
89 |
90 | This script will run the training and evaluation using random seeds from 0 to 9. The output for seed i will be saved in the file nohup_leaderboard_mag_i.out.
91 |
92 |
93 | References:
94 | - [1] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. "Line: Large-scale information network embedding." In Proceedings of the 24th international conference on world wide web, pp. 1067-1077. 2015.
95 |
96 |
97 |
98 | ## Cite
99 |
100 | If you use RpHGNN in a scientific publication, we would appreciate citations to the following paper:
101 |
102 | ```
103 | @ARTICLE{10643347,
104 | author={Hu, Jun and Hooi, Bryan and He, Bingsheng},
105 | journal={IEEE Transactions on Knowledge and Data Engineering},
106 | title={Efficient Heterogeneous Graph Learning via Random Projection},
107 | year={2024},
108 | volume={},
109 | number={},
110 | pages={1-14},
111 | doi={10.1109/TKDE.2024.3434956}}
112 | ```
113 |
114 |
115 |
116 |
117 |
118 | __License:__ [GPLv3](https://www.gnu.org/licenses/gpl-3.0.en.html)
119 |
120 | Copyright (c) 2023-2024 Xtra Computing Group, NUS, Singapore.
121 |
122 |
--------------------------------------------------------------------------------
/download_hgb_datasets.sh:
--------------------------------------------------------------------------------
1 | # Directories
2 | DOWNLOADS_DIR="./downloads"
3 | DATASETS_DIR="./datasets"
4 |
5 | mkdir $DOWNLOADS_DIR
6 | mkdir $DATASETS_DIR
7 |
8 | wget -P $DOWNLOADS_DIR https://github.com/CrawlScript/gnn_datasets/raw/master/HGB/ACM.zip
9 | wget -P $DOWNLOADS_DIR https://github.com/CrawlScript/gnn_datasets/raw/master/HGB/DBLP.zip
10 | wget -P $DOWNLOADS_DIR https://github.com/CrawlScript/gnn_datasets/raw/master/HGB/Freebase.zip
11 | wget -P $DOWNLOADS_DIR https://github.com/CrawlScript/gnn_datasets/raw/master/HGB/IMDB.zip
12 |
13 |
14 | # Ensure the datasets directory exists
15 | mkdir -p $DATASETS_DIR
16 |
17 | # Unzip each file
18 | unzip $DOWNLOADS_DIR/ACM.zip -d $DATASETS_DIR
19 | unzip $DOWNLOADS_DIR/DBLP.zip -d $DATASETS_DIR
20 | unzip $DOWNLOADS_DIR/Freebase.zip -d $DATASETS_DIR
21 | unzip $DOWNLOADS_DIR/IMDB.zip -d $DATASETS_DIR
22 |
--------------------------------------------------------------------------------
/main_rphgnn.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | import numpy as np
4 | import torch
5 | import torch.nn.functional as F
6 | import torchmetrics
7 |
8 | import shutil
9 | import logging
10 | import sys
11 | import time
12 | import os
13 | import json
14 | import datetime
15 | import shortuuid
16 | from argparse import ArgumentParser
17 |
18 | from rphgnn.callbacks import EarlyStoppingCallback, LoggingCallback, TensorBoardCallback
19 | from rphgnn.layers.rphgnn_encoder import RpHGNNEncoder
20 | from rphgnn.losses import kl_loss
21 | from rphgnn.utils.metrics_utils import MRR, NDCG
22 | from rphgnn.utils.random_project_utils import create_func_torch_random_project_create_kernel_sparse, torch_random_project_common, torch_random_project_create_kernel_xavier, torch_random_project_create_kernel_xavier_no_norm
23 | from rphgnn.utils.torch_data_utils import NestedDataLoader
24 | from rphgnn.global_configuration import global_config
25 | from rphgnn.utils.argparse_utils import parse_bool
26 | from rphgnn.utils.random_utils import reset_seed
27 | from rphgnn.configs.default_param_config import load_default_param_config
28 | from rphgnn.datasets.load_data import load_dgl_data
29 | from rphgnn.utils.nested_data_utils import gather_h_y, nested_gather, nested_map
30 | from rphgnn.layers.rphgnn_pre import rphgnn_propagate_and_collect, rphgnn_propagate_and_collect_label
31 |
32 |
33 | np.set_printoptions(precision=4, suppress=True)
34 |
35 | logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
36 | logger = logging.getLogger()
37 |
38 |
39 | parser = ArgumentParser()
40 |
41 | parser.add_argument("--dataset", type=str, required=True)
42 | parser.add_argument("--method", type=str, required=True)
43 | parser.add_argument("--use_nrl", type=parse_bool, required=True)
44 | parser.add_argument("--use_input", type=parse_bool, required=True)
45 | parser.add_argument("--use_label", type=parse_bool, required=True)
46 | parser.add_argument("--even_odd", type=str, required=False, default="all")
47 | parser.add_argument("--use_all_feat", type=parse_bool, required=True)
48 | parser.add_argument("--train_strategy", type=str, required=True)
49 | parser.add_argument("--output_dir", type=str, required=True)
50 | parser.add_argument("--gpus", type=str, required=True)
51 | parser.add_argument("--input_drop_rate", type=float, required=False, default=None)
52 | parser.add_argument("--drop_rate", type=float, required=False, default=None)
53 | parser.add_argument("--hidden_size", type=int, required=False, default=None)
54 | parser.add_argument("--squash_k", type=int, required=False, default=None)
55 | parser.add_argument("--num_epochs", type=int, required=False, default=None)
56 | parser.add_argument("--max_patience", type=int, required=False, default=None)
57 | parser.add_argument("--embedding_size", type=int, required=False, default=None)
58 | parser.add_argument("--rps", type=str, required=False, default="sp_3.0", help="random projection strategies")
59 | parser.add_argument("--seed", type=int, required=True)
60 |
61 |
62 | # sys.argv += cmd.split()
63 | args = parser.parse_args()
64 |
65 | method = args.method
66 | dataset = args.dataset
67 | use_all_feat = args.use_all_feat
68 | use_nrl = args.use_nrl
69 | use_label = args.use_label
70 | train_strategy = args.train_strategy
71 | use_input_features = args.use_input
72 | output_dir = args.output_dir
73 | gpu_ids = args.gpus
74 | device = "cuda"
75 | data_loader_device = device
76 | even_odd = args.even_odd
77 | random_projection_strategy = args.rps
78 | seed = args.seed
79 |
80 | os.environ["CUDA_VISIBLE_DEVICES"] = gpu_ids
81 | reset_seed(seed)
82 | print("seed = ", seed)
83 |
84 |
85 | global_config.torch_random_project = torch_random_project_common
86 | if random_projection_strategy.startswith("sp"):
87 | random_projection_sparsity = float(random_projection_strategy.split("_")[1])
88 | global_config.torch_random_project_create_kernel = create_func_torch_random_project_create_kernel_sparse(s=random_projection_sparsity)
89 | print("setting random projection strategy: sparse({} ...)".format(random_projection_sparsity))
90 | elif random_projection_strategy == "gaussian":
91 | global_config.torch_random_project_create_kernel = torch_random_project_create_kernel_xavier
92 | print("setting random projection strategy: gaussian ...")
93 |
94 | elif random_projection_strategy == "gaussian_no_norm":
95 | global_config.torch_random_project_create_kernel = torch_random_project_create_kernel_xavier_no_norm
96 | print("setting random projection strategy: gaussian ...")
97 |
98 | else:
99 | raise ValueError("unknown random projection strategy: {}".format(random_projection_strategy))
100 |
101 |
102 | pre_device = "cpu"
103 | learning_rate = 3e-3
104 | l2_coef = None
105 | norm = "mean"
106 | squash_strategy = "project_norm_sum"
107 | target_h_dtype = torch.float16
108 |
109 | timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
110 |
111 | running_leaderboard_mag = dataset == "mag" and use_label
112 |
113 | # hyper-parameters for ogbn-mag learderboard (lp+cl)
114 | if running_leaderboard_mag:
115 | scheduler_gamma = 0.99
116 | num_views = 3
117 | cl_rate = 0.6
118 | model_save_dir = "saved_models"
119 | if not os.path.exists(model_save_dir):
120 | os.makedirs(model_save_dir)
121 | model_save_path = os.path.join(model_save_dir, "leaderboard_mag_seed_{}.pt".format(seed))
122 | else:
123 | scheduler_gamma = None
124 | num_views = 1
125 | cl_rate = None
126 | model_save_path = None
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 | arg_dict = {**vars(args)}
135 | arg_dict["date"] = timestamp
136 | del arg_dict["output_dir"]
137 | del arg_dict["gpus"]
138 |
139 | args_desc_items = []
140 | for key, value in arg_dict.items():
141 | args_desc_items.append(key)
142 | args_desc_items.append(str(value))
143 | args_desc = "_".join(args_desc_items)
144 |
145 | uuid = "{}_{}".format(timestamp, shortuuid.uuid())
146 |
147 | tmp_output_fname = "{}.json.tmp".format(uuid)
148 | tmp_output_fpath = os.path.join(output_dir, tmp_output_fname)
149 |
150 | output_fname = "{}.json".format(uuid)
151 | output_fpath = os.path.join(output_dir, output_fname)
152 |
153 |
154 | print(output_dir)
155 | print(os.path.exists(output_dir))
156 | if not os.path.exists(output_dir):
157 | os.makedirs(output_dir)
158 |
159 | with open(tmp_output_fpath, "a", encoding="utf-8") as f:
160 | f.write("{}\n".format(json.dumps(arg_dict)))
161 |
162 |
163 | time_dict = {
164 | "start": time.time()
165 | }
166 |
167 | squash_k, inner_k, conv_filters, num_layers_list, hidden_size, merge_mode, input_drop_rate, drop_rate, \
168 | use_pretrain_features, random_projection_align, input_random_projection_size, target_feat_random_project_size, add_self_group = load_default_param_config(dataset)
169 |
170 |
171 | embedding_size = None
172 |
173 | if args.embedding_size is not None:
174 | embedding_size = args.embedding_size
175 | print("reset embedding_size => {}".format(embedding_size))
176 |
177 | with torch.no_grad():
178 | hetero_graph, target_node_type, feature_node_types, (train_index, valid_index, test_index), \
179 | batch_size, num_epochs, patience, validation_freq, convert_to_tensor = load_dgl_data(
180 | dataset,
181 | use_all_feat=use_all_feat,
182 | embedding_size=embedding_size,
183 | use_nrl=use_nrl
184 | )
185 |
186 |
187 | if args.input_drop_rate is not None:
188 | input_drop_rate = args.input_drop_rate
189 | print("reset input_drop_rate => {}".format(input_drop_rate))
190 |
191 | if args.drop_rate is not None:
192 | drop_rate = args.drop_rate
193 | print("reset drop_rate => {}".format(drop_rate))
194 |
195 | if args.hidden_size is not None:
196 | hidden_size = args.hidden_size
197 | print("reset hidden_size => {}".format(hidden_size))
198 |
199 | if args.squash_k is not None:
200 | squash_k = args.squash_k
201 | print("reset squash_k => {}".format(squash_k))
202 |
203 | if args.num_epochs is not None:
204 | num_epochs = args.num_epochs
205 | print("reset num_epochs => {}".format(num_epochs))
206 |
207 | if args.max_patience is not None:
208 | patience = args.max_patience
209 | print("reset patience => {}".format(patience))
210 |
211 | y = hetero_graph.ndata["label"][target_node_type].detach().cpu().numpy()
212 |
213 | print("train_rate = {}\tvalid_rate = {}\ttest_rate = {}".format(len(train_index) / len(y), len(valid_index) / len(y), len(test_index) / len(y)))
214 |
215 | multi_label = len(y.shape) > 1
216 |
217 | if multi_label:
218 | num_classes = y.shape[-1]
219 | else:
220 | num_classes = y.max() + 1
221 |
222 |
223 | stage_output_dict = {
224 | "last": None
225 | }
226 |
227 |
228 | print("start pre-computation ...")
229 |
230 | log_dir = "logs/{}".format(args_desc)
231 |
232 | torch_y = torch.tensor(y).long()
233 |
234 | if multi_label:
235 | torch_y = torch_y.float()
236 |
237 | train_mask = np.zeros([len(y)])
238 | train_mask[train_index] = 1.0
239 | torch_train_mask = torch.tensor(train_mask).bool()
240 |
241 | if even_odd == "odd":
242 | squash_k *= 2
243 | print("odd mode, squash_k =", squash_k)
244 |
245 |
246 |
247 | def create_label_target_h_list_list():
248 | print("using new train_label_feat")
249 | train_label_feat = torch.ones([len(y), num_classes]).float() / num_classes
250 | train_label_feat[train_index] = F.one_hot(torch.tensor(y[train_index]), num_classes).float()
251 |
252 | label_target_h_list_list = rphgnn_propagate_and_collect_label(hetero_graph, target_node_type, y, train_label_feat)
253 | label_target_h_list_list = nested_map(label_target_h_list_list, lambda x: x.to(target_h_dtype).to(pre_device))
254 | return label_target_h_list_list
255 |
256 | if use_label:
257 | if dataset != "mag":
258 | raise Exception("use_label is only supported for mag dataset")
259 | label_target_h_list_list = create_label_target_h_list_list()
260 | else:
261 | label_target_h_list_list = []
262 |
263 |
264 | feat_target_h_list_list, target_sorted_keys = rphgnn_propagate_and_collect(hetero_graph,
265 | squash_k,
266 | inner_k,
267 | 0.0,
268 | target_node_type,
269 | use_input_features=use_input_features, squash_strategy=squash_strategy,
270 | train_label_feat=None,
271 | norm=norm,
272 | squash_even_odd=even_odd,
273 | collect_even_odd=even_odd,
274 | squash_self=False,
275 | target_feat_random_project_size=target_feat_random_project_size,
276 | add_self_group=add_self_group
277 | )
278 |
279 | feat_target_h_list_list = nested_map(feat_target_h_list_list, lambda x: x.to(target_h_dtype).to(pre_device))
280 | target_h_list_list = feat_target_h_list_list + label_target_h_list_list
281 |
282 |
283 | time_dict["pre_compute"] = time.time()
284 | pre_compute_time = time_dict["pre_compute"] - time_dict["start"]
285 | print("pre_compute time: ", pre_compute_time)
286 |
287 |
288 | accuracy_metric = torchmetrics.Accuracy("multilabel", num_labels=int(num_classes)) if multi_label else torchmetrics.Accuracy("multiclass" if multi_label else "multiclass", num_classes=int(num_classes))
289 | if dataset in ["oag_L1", "oag_venue"]:
290 | metrics_dict = {
291 | "accuracy": accuracy_metric,
292 | "ndcg": NDCG(),
293 | "mrr": MRR()
294 | }
295 | else:
296 | metrics_dict = {
297 | "accuracy": accuracy_metric,
298 | "micro_f1": torchmetrics.F1Score(task="multilabel", num_labels=int(num_classes), average="micro") if multi_label else torchmetrics.F1Score(task="multiclass", num_classes=int(num_classes), average="micro"),
299 | "macro_f1": torchmetrics.F1Score(task="multilabel", num_labels=int(num_classes), average="macro") if multi_label else torchmetrics.F1Score(task="multiclass", num_classes=int(num_classes), average="macro"),
300 | }
301 | metrics_dict = {metric_name: metric.to(device) for metric_name, metric in metrics_dict.items()}
302 |
303 |
304 | print("create model ====")
305 | model = RpHGNNEncoder(
306 | conv_filters,
307 | [hidden_size] * num_layers_list[0],
308 | [hidden_size] * (num_layers_list[2] - 1) + [num_classes],
309 | merge_mode,
310 | input_shape=nested_map(target_h_list_list, lambda x: list(x.size())),
311 | input_drop_rate=input_drop_rate,
312 | drop_rate=drop_rate,
313 | activation="prelu",
314 | output_activation="identity",
315 | metrics_dict=metrics_dict,
316 | multi_label=multi_label,
317 | loss_func=kl_loss if dataset == "oag_L1" else None,
318 | learning_rate=learning_rate,
319 | scheduler_gamma=scheduler_gamma,
320 | train_strategy=train_strategy,
321 | num_views=num_views,
322 | cl_rate=cl_rate
323 |
324 | ).to(device)
325 |
326 | print(model)
327 |
328 | print("number of params:", sum(p.numel() for p in model.parameters()))
329 | logging_callback = LoggingCallback(tmp_output_fpath, {"pre_compute_time": pre_compute_time})
330 | tensor_board_callback = TensorBoardCallback(
331 | "logs/{}/{}".format(dataset, timestamp)
332 | )
333 |
334 |
335 |
336 | def train_and_eval():
337 |
338 | train_h_list_list, train_y = nested_gather([target_h_list_list, torch_y], train_index)
339 | valid_h_list_list, valid_y = nested_gather([target_h_list_list, torch_y], valid_index)
340 | test_h_list_list, test_y = nested_gather([target_h_list_list, torch_y], test_index)
341 |
342 |
343 | if train_strategy == "common":
344 | train_data_loader = NestedDataLoader(
345 | [train_h_list_list, train_y],
346 | batch_size=batch_size, shuffle=True, device=data_loader_device
347 | )
348 |
349 | elif train_strategy == "cl":
350 |
351 | seen_mask = torch.zeros_like(torch_y, dtype=torch.bool)
352 | seen_mask[train_index] = True
353 | seen_mask[valid_index] = True
354 | seen_mask[test_index] = True
355 |
356 | def get_seen(x):
357 | print("get seen ...")
358 | with torch.no_grad():
359 | return nested_map(x, lambda x: x[seen_mask])
360 |
361 | train_data_loader = NestedDataLoader(
362 | [get_seen(target_h_list_list), get_seen(torch_y), get_seen(torch_train_mask)],
363 | batch_size=batch_size, shuffle=True, device=data_loader_device
364 | )
365 |
366 | else:
367 | raise Exception("invalid train strategy: {}".format(train_strategy))
368 |
369 |
370 |
371 | valid_data_loader =NestedDataLoader(
372 | [valid_h_list_list, valid_y],
373 | batch_size=batch_size, shuffle=False, device=data_loader_device
374 | )
375 | test_data_loader = NestedDataLoader(
376 | [test_h_list_list, test_y],
377 | batch_size=batch_size, shuffle=False, device=data_loader_device
378 | )
379 |
380 | if dataset in ["oag_L1", "oag_venue"]:
381 | early_stop_strategy = "score"
382 | early_stop_metric_names = ["ndcg"]
383 | elif dataset in ["mag"]:
384 | early_stop_strategy = "score"
385 | early_stop_metric_names = ["accuracy"]
386 | elif dataset in ["dblp"]:
387 | early_stop_strategy = "loss"
388 | early_stop_metric_names = ["macro_f1", "micro_f1"]
389 | else:
390 | early_stop_strategy = "score"
391 | early_stop_metric_names = ["macro_f1", "micro_f1"]
392 |
393 | print("early_stop_metric_names = {}".format(early_stop_metric_names))
394 |
395 | early_stopping_callback = EarlyStoppingCallback(
396 | early_stop_strategy, early_stop_metric_names, validation_freq, patience, test_data_loader,
397 | model_save_path=model_save_path
398 | )
399 |
400 |
401 | model.fit(
402 | train_data=train_data_loader,
403 | epochs=num_epochs,
404 | validation_data=valid_data_loader,
405 | validation_freq=validation_freq,
406 | callbacks=[early_stopping_callback, logging_callback, tensor_board_callback],
407 | )
408 |
409 |
410 | # For ogbn-mag leaderboard, we also evaluate it via OGB's official evaluator
411 | if running_leaderboard_mag:
412 | from ogb.nodeproppred import Evaluator
413 | evaluator = Evaluator("ogbn-mag")
414 |
415 | print("loading saved model ...")
416 | model.load_state_dict(torch.load(model_save_path))
417 | model.eval()
418 |
419 |
420 | with torch.no_grad():
421 | valid_y_pred = model.predict(valid_data_loader).argmax(dim=-1, keepdim=True)
422 | test_y_pred = model.predict(test_data_loader).argmax(dim=-1, keepdim=True)
423 | ogb_valid_acc = evaluator.eval({
424 | 'y_true': torch_y[valid_index].unsqueeze(-1),
425 | 'y_pred': valid_y_pred
426 | })['acc']
427 | ogb_test_acc = evaluator.eval({
428 | 'y_true': torch_y[test_index].unsqueeze(-1),
429 | 'y_pred': test_y_pred
430 | })['acc']
431 |
432 | print("Results of OGB Evaluator: valid_acc = {}, test_acc = {}".format(ogb_valid_acc, ogb_test_acc))
433 |
434 | train_and_eval()
435 |
436 | shutil.move(tmp_output_fpath, output_fpath)
437 | print("move tmp file {} => {}".format(tmp_output_fpath, output_fpath))
438 |
439 |
440 |
441 |
--------------------------------------------------------------------------------
/rphgnn/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrawlScript/RpHGNN/1a1779a747a28ac8d936280a6b96951636183965/rphgnn/__init__.py
--------------------------------------------------------------------------------
/rphgnn/callbacks.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | import torch
4 | import json
5 | import numpy as np
6 | import time
7 |
8 |
9 | class Callback(object):
10 | def __init__(self) -> None:
11 | self.model = None
12 |
13 |
14 | def on_train_begin(self):
15 | pass
16 |
17 | def on_epoch_end(self, epoch, logs=None):
18 | pass
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 | class EarlyStoppingCallback(Callback):
27 |
28 | def __init__(self, strategy, metric_names, validation_freq, patience, test_data,
29 | model_save_path=None,
30 | update_callback=None
31 | # use_lp, label_prop_func
32 | ):
33 | super().__init__()
34 | # self.metric_name = metric_name
35 |
36 | # self.use_lp = use_lp
37 | self.strategy = strategy
38 | self.model_save_path = model_save_path
39 |
40 | # if self.use_lp:
41 | # self.label_prop_func = label_prop_func
42 |
43 | if isinstance(metric_names, str):
44 | metric_names = [metric_names]
45 | self.val_metric_names = ["val_{}".format(metric_name) for metric_name in metric_names]
46 |
47 | self.validation_freq = validation_freq
48 | self.patience = patience
49 | self.patience_counter = 0
50 |
51 | self.min_val_loss = 1000000.0
52 | self.max_val_score = 0.0
53 |
54 |
55 | self.early_stop_logs = None
56 | self.early_stop_epoch = -1
57 |
58 | self.test_data = test_data
59 |
60 | self.update_callback = update_callback
61 |
62 |
63 |
64 | def on_epoch_end(self, epoch, logs):
65 | if "val_loss" not in logs:
66 | return
67 |
68 |
69 | val_loss = logs["val_loss"]
70 | # val_score = logs[self.val_metric_name]
71 |
72 | val_scores = [logs[val_metric_name] for val_metric_name in self.val_metric_names]
73 | val_score = np.mean(val_scores)
74 |
75 |
76 | stop = False
77 | if self.strategy == "common":
78 | reset_patience_counter = val_score > self.max_val_score or val_loss < self.min_val_loss
79 | elif self.strategy == "loss":
80 | reset_patience_counter = val_loss < self.min_val_loss
81 | elif self.strategy == "score":
82 | reset_patience_counter = val_score > self.max_val_score
83 | else:
84 | raise ValueError("Unknown strategy: {}".format(self.strategy))
85 |
86 | # if val_score > self.max_val_score or val_loss < self.min_val_loss:
87 | if reset_patience_counter:
88 | self.patience_counter = 0
89 | else:
90 | self.patience_counter += self.validation_freq
91 | if self.patience_counter > self.patience:
92 | stop = True
93 | self.model.stop_training = True
94 |
95 |
96 | if not stop:
97 | if self.strategy == "common":
98 | should_update = val_score > self.max_val_score and val_loss < self.min_val_loss
99 | elif self.strategy == "loss":
100 | should_update = val_loss < self.min_val_loss
101 | elif self.strategy == "score":
102 | should_update = val_score > self.max_val_score
103 | else:
104 | raise ValueError("Unknown strategy: {}".format(self.strategy))
105 |
106 | # if val_score > self.max_val_score and val_loss < self.min_val_loss:
107 | if should_update:
108 | # if True:
109 | self.early_stop_logs = {
110 | "es_{}".format(key): value
111 | for key, value in logs.items() if key.startswith("val_")
112 | }
113 |
114 |
115 | self.max_val_score = val_score
116 | self.min_val_loss = val_loss
117 | self.early_stop_epoch = epoch
118 | if self.test_data is not None:
119 | self.early_stop_logs = {
120 | **self.early_stop_logs,
121 | **self.model.evaluate(self.test_data, log_prefix="es_eval")
122 | }
123 |
124 | if self.update_callback is not None:
125 | self.update_callback(epoch, logs, self.early_stop_logs, self)
126 |
127 | if self.model_save_path is not None:
128 | torch.save(self.model.state_dict(), self.model_save_path)
129 |
130 |
131 | # if self.use_lp:
132 | # label_prop_logs = self.label_prop_func(model, all_data_loader)
133 | # self.early_stop_logs = {
134 | # **self.early_stop_logs,
135 | # **label_prop_logs
136 | # }
137 |
138 | # for key, value in self.early_stop_logs.items():
139 | # logs[key] = value
140 |
141 | logs["patience"] = self.patience_counter
142 | logs["early_stop_epoch"] = self.early_stop_epoch
143 |
144 | if self.early_stop_logs is not None:
145 | for key, value in self.early_stop_logs.items():
146 | logs[key] = value
147 |
148 |
149 |
150 |
151 |
152 |
153 | class NumpyFloatValuesEncoder(json.JSONEncoder):
154 | def default(self, obj):
155 | if isinstance(obj, np.float32):
156 | return float(obj)
157 | return json.JSONEncoder.default(self, obj)
158 |
159 |
160 |
161 | class LoggingCallback(Callback):
162 |
163 | def __init__(self, log_path, extra_logs=None):
164 | super().__init__()
165 |
166 | self.log_path = log_path
167 | self.extra_logs = extra_logs if extra_logs is not None else {}
168 | self.start_time = None
169 |
170 | def on_train_begin(self):
171 | if self.start_time is None:
172 | self.start_time = time.time()
173 |
174 | def on_epoch_end(self, epoch, logs=None):
175 |
176 | # if "val_loss" not in logs:
177 | # return
178 |
179 | has_eval = False
180 | for key in logs:
181 | if key.startswith("es_eval_"):
182 | has_eval = True
183 | break
184 |
185 | if not has_eval:
186 | return
187 |
188 | train_time = time.time() - self.start_time
189 |
190 | logs.update({
191 | **self.extra_logs,
192 | "epoch": epoch,
193 | "train_time": train_time
194 | })
195 |
196 | # if "early_stop_epoch" in self.extra_logs:
197 | # early_stop_epoch = self.extra_logs[early_stop_epoch]
198 | # if early_stop_epoch == epoch:
199 | # pass
200 |
201 | if "pre_compute_time" in self.extra_logs:
202 | logs["all_time"] = self.extra_logs["pre_compute_time"] + train_time
203 |
204 | with open(self.log_path, "a", encoding="utf-8") as f:
205 | f.write("{}\n".format(json.dumps(logs, cls=NumpyFloatValuesEncoder)))
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 | import torchvision.utils as vutils
215 | import torchvision.models as models
216 | from torchvision import datasets
217 | from tensorboardX import SummaryWriter
218 |
219 |
220 |
221 | class TensorBoardCallback(Callback):
222 |
223 | def __init__(self, log_dir='logs'):
224 | super().__init__()
225 | self.log_dir = log_dir
226 | self.writer = None
227 |
228 | def on_train_begin(self):
229 | if self.writer is None:
230 | self.writer = SummaryWriter(self.log_dir, flush_secs=1)
231 |
232 | def on_epoch_end(self, epoch, logs=None):
233 |
234 | for key, value in logs.items():
235 | if key == "epoch":
236 | continue
237 | self.writer.add_scalar(key, value, epoch)
238 |
239 |
240 |
241 |
242 |
--------------------------------------------------------------------------------
/rphgnn/configs/default_param_config.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | def load_default_param_config(dataset):
4 |
5 | use_pretrain_features = False
6 |
7 | random_projection_align = False
8 | input_random_projection_size = None
9 |
10 | merge_mode = "concat"
11 | target_feat_random_project_size = None
12 | add_self_group = False
13 |
14 | if dataset == "mag":
15 |
16 | input_drop_rate = 0.1
17 | drop_rate = 0.4
18 |
19 | hidden_size = 512
20 |
21 | inner_k = 2
22 | squash_k = 3
23 |
24 |
25 | conv_filters = 2
26 | num_layers_list = [2, 0, 2]
27 |
28 |
29 | elif dataset == "oag_venue":
30 |
31 | input_drop_rate = 0.5
32 | drop_rate = 0.5
33 | hidden_size = 512
34 |
35 | inner_k = 2
36 | squash_k = 3
37 |
38 | conv_filters = 2
39 | num_layers_list = [2, 0, 2]
40 |
41 | merge_mode = "mean"
42 |
43 | target_feat_random_project_size = 256
44 | add_self_group = True
45 |
46 | elif dataset == "oag_L1":
47 |
48 | input_drop_rate = 0.5
49 | drop_rate = 0.5
50 | hidden_size = 512
51 |
52 | inner_k = 2
53 | squash_k = 3
54 |
55 | conv_filters = 2
56 | num_layers_list = [2, 0, 2]
57 |
58 | merge_mode = "mean"
59 | target_feat_random_project_size = 256
60 | add_self_group = True
61 |
62 |
63 | elif dataset == "imdb":
64 |
65 |
66 | input_drop_rate = 0.8
67 | drop_rate = 0.8
68 |
69 | hidden_size = 512
70 |
71 | inner_k = 2
72 | squash_k = 4
73 |
74 | conv_filters = 2
75 | num_layers_list = [2, 0, 2]
76 |
77 | elif dataset == "dblp":
78 |
79 |
80 | input_drop_rate = 0.8
81 | drop_rate = 0.7
82 |
83 | input_random_projection_size = None
84 |
85 |
86 | hidden_size = 256
87 |
88 | inner_k = 2
89 |
90 | squash_k = 5
91 |
92 |
93 | conv_filters = 2
94 | num_layers_list = [2, 0, 2]
95 |
96 |
97 | elif dataset == "hgb_acm":
98 |
99 |
100 |
101 | input_drop_rate = 0.7
102 | drop_rate = 0.7
103 |
104 | input_random_projection_size = None
105 |
106 | hidden_size = 64
107 |
108 |
109 | inner_k = 2
110 |
111 | squash_k = 1
112 |
113 |
114 | conv_filters = 2
115 | num_layers_list = [2, 0, 2]
116 | merge_mode = "mean"
117 |
118 |
119 | elif dataset == "freebase":
120 |
121 |
122 | input_drop_rate = 0.7
123 | drop_rate = 0.7
124 | hidden_size = 128
125 |
126 | inner_k = 2
127 |
128 | squash_k = 5
129 |
130 | # k = 3
131 | validation_freq = 10
132 | conv_filters = 2
133 | num_layers_list = [1, 0, 1]
134 |
135 |
136 | return squash_k, inner_k, conv_filters, num_layers_list, hidden_size, merge_mode, input_drop_rate, drop_rate, \
137 | use_pretrain_features, random_projection_align, input_random_projection_size, target_feat_random_project_size, add_self_group
138 |
139 |
140 |
141 |
142 |
--------------------------------------------------------------------------------
/rphgnn/datasets/hgb.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | import scipy.sparse as sp
4 | from collections import Counter, defaultdict
5 | from sklearn.metrics import f1_score
6 | import time
7 |
8 | import datetime
9 | import dgl
10 | import errno
11 | import numpy as np
12 | import os
13 | import pickle
14 | import random
15 | import torch
16 | import copy
17 | import torch as th
18 |
19 | from dgl.data.utils import download, get_download_dir, _get_dgl_url
20 | from pprint import pprint
21 | from scipy import sparse
22 | from scipy import io as sio
23 | from sklearn.model_selection import train_test_split
24 |
25 | import sys
26 |
27 | class data_loader:
28 | def __init__(self, path):
29 | self.path = path
30 | self.nodes = self.load_nodes()
31 | self.links = self.load_links()
32 | self.labels_train = self.load_labels('label.dat')
33 | self.labels_test = self.load_labels('label.dat.test')
34 |
35 | # my
36 |
37 | new_data = {}
38 | for link_type, adj in self.links['data'].items():
39 | # src_type = str(self.links['meta'][link_type][0])
40 | # dst_type = str(self.links['meta'][link_type][1])
41 |
42 | adj = adj.tocoo()
43 |
44 | src_type = self.links['meta'][link_type][0]
45 | dst_type = self.links['meta'][link_type][1]
46 | src_shift = self.nodes["shift"][src_type]
47 | dst_shift = self.nodes["shift"][dst_type]
48 |
49 |
50 | row, col = adj.row, adj.col
51 |
52 | # print("link_type: ", link_type, "min_src: ", row.min(), "min_dst: ", col.min(), "src_shift: ", src_shift, "dst_shift: ", dst_shift)
53 |
54 | row -= src_shift
55 | col -= dst_shift
56 | shape = [self.nodes["count"][src_type], self.nodes["count"][dst_type]]
57 | adj = sparse.csr_matrix((adj.data, (row, col)), shape=shape)
58 | new_data[link_type] = adj
59 |
60 | self.links['data'] = new_data
61 |
62 |
63 |
64 |
65 | def get_sub_graph(self, node_types_tokeep):
66 | """
67 | node_types_tokeep is a list or set of node types that you want to keep in the sub-graph
68 | We only support whole type sub-graph for now.
69 | This is an in-place update function!
70 | return: old node type id to new node type id dict, old edge type id to new edge type id dict
71 | """
72 | keep = set(node_types_tokeep)
73 | new_node_type = 0
74 | new_node_id = 0
75 | new_nodes = {'total': 0, 'count': Counter(), 'attr': {}, 'shift': {}}
76 | new_links = {'total': 0, 'count': Counter(), 'meta': {}, 'data': defaultdict(list)}
77 | new_labels_train = {'num_classes': 0, 'total': 0, 'count': Counter(), 'data': None, 'mask': None}
78 | new_labels_test = {'num_classes': 0, 'total': 0, 'count': Counter(), 'data': None, 'mask': None}
79 | old_nt2new_nt = {}
80 | old_idx = []
81 | for node_type in self.nodes['count']:
82 | if node_type in keep:
83 | nt = node_type
84 | nnt = new_node_type
85 | old_nt2new_nt[nt] = nnt
86 | cnt = self.nodes['count'][nt]
87 | new_nodes['total'] += cnt
88 | new_nodes['count'][nnt] = cnt
89 | new_nodes['attr'][nnt] = self.nodes['attr'][nt]
90 | new_nodes['shift'][nnt] = new_node_id
91 | beg = self.nodes['shift'][nt]
92 | old_idx.extend(range(beg, beg + cnt))
93 |
94 | cnt_label_train = self.labels_train['count'][nt]
95 | new_labels_train['count'][nnt] = cnt_label_train
96 | new_labels_train['total'] += cnt_label_train
97 | cnt_label_test = self.labels_test['count'][nt]
98 | new_labels_test['count'][nnt] = cnt_label_test
99 | new_labels_test['total'] += cnt_label_test
100 |
101 | new_node_type += 1
102 | new_node_id += cnt
103 |
104 | new_labels_train['num_classes'] = self.labels_train['num_classes']
105 | new_labels_test['num_classes'] = self.labels_test['num_classes']
106 | for k in ['data', 'mask']:
107 | new_labels_train[k] = self.labels_train[k][old_idx]
108 | new_labels_test[k] = self.labels_test[k][old_idx]
109 |
110 | old_et2new_et = {}
111 | new_edge_type = 0
112 | for edge_type in self.links['count']:
113 | h, t = self.links['meta'][edge_type]
114 | if h in keep and t in keep:
115 | et = edge_type
116 | net = new_edge_type
117 | old_et2new_et[et] = net
118 | new_links['total'] += self.links['count'][et]
119 | new_links['count'][net] = self.links['count'][et]
120 | new_links['meta'][net] = tuple(map(lambda x: old_nt2new_nt[x], self.links['meta'][et]))
121 | new_links['data'][net] = self.links['data'][et][old_idx][:, old_idx]
122 | new_edge_type += 1
123 |
124 | self.nodes = new_nodes
125 | self.links = new_links
126 | self.labels_train = new_labels_train
127 | self.labels_test = new_labels_test
128 | return old_nt2new_nt, old_et2new_et
129 |
130 | def get_meta_path(self, meta=[]):
131 | """
132 | Get meta path matrix
133 | meta is a list of edge types (also can be denoted by a pair of node types)
134 | return a sparse matrix with shape [node_num, node_num]
135 | """
136 | ini = sp.eye(self.nodes['total'])
137 | meta = [self.get_edge_type(x) for x in meta]
138 | for x in meta:
139 | ini = ini.dot(self.links['data'][x]) if x >= 0 else ini.dot(self.links['data'][-x - 1].T)
140 | return ini
141 |
142 | def dfs(self, now, meta, meta_dict):
143 | if len(meta) == 0:
144 | meta_dict[now[0]].append(now)
145 | return
146 | th_mat = self.links['data'][meta[0]] if meta[0] >= 0 else self.links['data'][-meta[0] - 1].T
147 | th_node = now[-1]
148 | for col in th_mat[th_node].nonzero()[1]:
149 | self.dfs(now + [col], meta[1:], meta_dict)
150 |
151 | def get_full_meta_path(self, meta=[], symmetric=False):
152 | """
153 | Get full meta path for each node
154 | meta is a list of edge types (also can be denoted by a pair of node types)
155 | return a dict of list[list] (key is node_id)
156 | """
157 | meta = [self.get_edge_type(x) for x in meta]
158 | if len(meta) == 1:
159 | meta_dict = {}
160 | start_node_type = self.links['meta'][meta[0]][0] if meta[0] >= 0 else self.links['meta'][-meta[0] - 1][1]
161 | for i in range(self.nodes['shift'][start_node_type],
162 | self.nodes['shift'][start_node_type] + self.nodes['count'][start_node_type]):
163 | meta_dict[i] = []
164 | self.dfs([i], meta, meta_dict)
165 | else:
166 | meta_dict1 = {}
167 | meta_dict2 = {}
168 | mid = len(meta) // 2
169 | meta1 = meta[:mid]
170 | meta2 = meta[mid:]
171 | start_node_type = self.links['meta'][meta1[0]][0] if meta1[0] >= 0 else self.links['meta'][-meta1[0] - 1][1]
172 | for i in range(self.nodes['shift'][start_node_type],
173 | self.nodes['shift'][start_node_type] + self.nodes['count'][start_node_type]):
174 | meta_dict1[i] = []
175 | self.dfs([i], meta1, meta_dict1)
176 | start_node_type = self.links['meta'][meta2[0]][0] if meta2[0] >= 0 else self.links['meta'][-meta2[0] - 1][1]
177 | for i in range(self.nodes['shift'][start_node_type],
178 | self.nodes['shift'][start_node_type] + self.nodes['count'][start_node_type]):
179 | meta_dict2[i] = []
180 | if symmetric:
181 | for k in meta_dict1:
182 | paths = meta_dict1[k]
183 | for x in paths:
184 | meta_dict2[x[-1]].append(list(reversed(x)))
185 | else:
186 | for i in range(self.nodes['shift'][start_node_type],
187 | self.nodes['shift'][start_node_type] + self.nodes['count'][start_node_type]):
188 | self.dfs([i], meta2, meta_dict2)
189 | meta_dict = {}
190 | start_node_type = self.links['meta'][meta1[0]][0] if meta1[0] >= 0 else self.links['meta'][-meta1[0] - 1][1]
191 | for i in range(self.nodes['shift'][start_node_type],
192 | self.nodes['shift'][start_node_type] + self.nodes['count'][start_node_type]):
193 | meta_dict[i] = []
194 | for beg in meta_dict1[i]:
195 | for end in meta_dict2[beg[-1]]:
196 | meta_dict[i].append(beg + end[1:])
197 | return meta_dict
198 |
199 | def gen_file_for_evaluate(self, test_idx, label, mode='bi'):
200 | if test_idx.shape[0] != label.shape[0]:
201 | return
202 | if mode == 'multi':
203 | multi_label = []
204 | for i in range(label.shape[0]):
205 | label_list = [str(j) for j in range(label[i].shape[0]) if label[i][j] == 1]
206 | multi_label.append(','.join(label_list))
207 | label = multi_label
208 | elif mode == 'bi':
209 | label = np.array(label)
210 | else:
211 | return
212 | dirs = os.path.join(self.path, "preds");
213 | if not os.path.exists(dirs):
214 | os.makedirs(dirs)
215 | file_name = str(int(time.time()))
216 | with open(os.path.join(dirs, file_name), "w") as f:
217 | for nid, l in zip(test_idx, label):
218 | f.write(f"{nid}\t\t{self.get_node_type(nid)}\t{l}\n")
219 |
220 | def evaluate(self, pred):
221 | y_true = self.labels_test['data'][self.labels_test['mask']]
222 | micro = f1_score(y_true, pred, average='micro')
223 | macro = f1_score(y_true, pred, average='macro')
224 | result = {
225 | 'micro-f1': micro,
226 | 'macro-f1': macro
227 | }
228 | return result
229 |
230 | def load_labels(self, name):
231 | """
232 | return labels dict
233 | num_classes: total number of labels
234 | total: total number of labeled data
235 | count: number of labeled data for each node type
236 | data: a numpy matrix with shape (self.nodes['total'], self.labels['num_classes'])
237 | mask: to indicate if that node is labeled, if False, that line of data is masked
238 | """
239 | labels = {'num_classes': 0, 'total': 0, 'count': Counter(), 'data': None, 'mask': None}
240 | nc = 0
241 | mask = np.zeros(self.nodes['total'], dtype=bool)
242 | data = [None for i in range(self.nodes['total'])]
243 | with open(os.path.join(self.path, name), 'r', encoding='utf-8') as f:
244 | for line in f:
245 | th = line.split('\t')
246 | node_id, node_name, node_type, node_label = int(th[0]), th[1], int(th[2]), list(
247 | map(int, th[3].split(',')))
248 | for label in node_label:
249 | nc = max(nc, label + 1)
250 | mask[node_id] = True
251 | data[node_id] = node_label
252 | labels['count'][node_type] += 1
253 | labels['total'] += 1
254 | labels['num_classes'] = nc
255 | new_data = np.zeros((self.nodes['total'], labels['num_classes']), dtype=int)
256 | for i, x in enumerate(data):
257 | if x is not None:
258 | for j in x:
259 | new_data[i, j] = 1
260 | labels['data'] = new_data
261 | labels['mask'] = mask
262 | return labels
263 |
264 | def get_node_type(self, node_id):
265 | for i in range(len(self.nodes['shift'])):
266 | if node_id < self.nodes['shift'][i] + self.nodes['count'][i]:
267 | return i
268 |
269 | def get_edge_type(self, info):
270 | if type(info) is int or len(info) == 1:
271 | return info
272 | for i in range(len(self.links['meta'])):
273 | if self.links['meta'][i] == info:
274 | return i
275 | info = (info[1], info[0])
276 | for i in range(len(self.links['meta'])):
277 | if self.links['meta'][i] == info:
278 | return -i - 1
279 | raise Exception('No available edge type')
280 |
281 | def get_edge_info(self, edge_id):
282 | return self.links['meta'][edge_id]
283 |
284 | def list_to_sp_mat(self, li):
285 | data = [x[2] for x in li]
286 | i = [x[0] for x in li]
287 | j = [x[1] for x in li]
288 | return sp.coo_matrix((data, (i, j)), shape=(self.nodes['total'], self.nodes['total'])).tocsr()
289 |
290 | def load_links(self):
291 | """
292 | return links dict
293 | total: total number of links
294 | count: a dict of int, number of links for each type
295 | meta: a dict of tuple, explaining the link type is from what type of node to what type of node
296 | data: a dict of sparse matrices, each link type with one matrix. Shapes are all (nodes['total'], nodes['total'])
297 | """
298 | links = {'total': 0, 'count': Counter(), 'meta': {}, 'data': defaultdict(list)}
299 | with open(os.path.join(self.path, 'link.dat'), 'r', encoding='utf-8') as f:
300 | for line in f:
301 | th = line.split('\t')
302 | h_id, t_id, r_id, link_weight = int(th[0]), int(th[1]), int(th[2]), float(th[3])
303 | if r_id not in links['meta']:
304 | h_type = self.get_node_type(h_id)
305 | t_type = self.get_node_type(t_id)
306 | links['meta'][r_id] = (h_type, t_type)
307 | links['data'][r_id].append((h_id, t_id, link_weight))
308 | links['count'][r_id] += 1
309 | links['total'] += 1
310 | new_data = {}
311 | for r_id in links['data']:
312 | new_data[r_id] = self.list_to_sp_mat(links['data'][r_id])
313 | links['data'] = new_data
314 | return links
315 |
316 | def load_nodes(self):
317 | """
318 | return nodes dict
319 | total: total number of nodes
320 | count: a dict of int, number of nodes for each type
321 | attr: a dict of np.array (or None), attribute matrices for each type of nodes
322 | shift: node_id shift for each type. You can get the id range of a type by
323 | [ shift[node_type], shift[node_type]+count[node_type] )
324 | """
325 | nodes = {'total': 0, 'count': Counter(), 'attr': {}, 'shift': {}}
326 | with open(os.path.join(self.path, 'node.dat'), 'r', encoding='utf-8') as f:
327 | for line in f:
328 | th = line.split('\t')
329 | if len(th) == 4:
330 | # Then this line of node has attribute
331 | node_id, node_name, node_type, node_attr = th
332 | node_id = int(node_id)
333 | node_type = int(node_type)
334 | node_attr = list(map(float, node_attr.split(',')))
335 | nodes['count'][node_type] += 1
336 | nodes['attr'][node_id] = node_attr
337 | nodes['total'] += 1
338 | elif len(th) == 3:
339 | # Then this line of node doesn't have attribute
340 | node_id, node_name, node_type = th
341 | node_id = int(node_id)
342 | node_type = int(node_type)
343 | nodes['count'][node_type] += 1
344 | nodes['total'] += 1
345 | else:
346 | raise Exception("Too few information to parse!")
347 | shift = 0
348 | attr = {}
349 | for i in range(len(nodes['count'])):
350 | nodes['shift'][i] = shift
351 | if shift in nodes['attr']:
352 | mat = []
353 | for j in range(shift, shift + nodes['count'][i]):
354 | mat.append(nodes['attr'][j])
355 | attr[i] = np.array(mat)
356 | else:
357 | attr[i] = None
358 | shift += nodes['count'][i]
359 | nodes['attr'] = attr
360 | return nodes
361 |
362 | def load_imdb(feat_type=0, random_state=None):
363 | prefix = './datasets/IMDB'
364 | dl = data_loader(prefix)
365 | link_type_dic = {0: 'md', 1: 'dm', 2: 'ma', 3: 'am', 4: 'mk', 5: 'km'}
366 | movie_num = dl.nodes['count'][0]
367 | data_dic = {}
368 | for link_type in dl.links['data'].keys():
369 | src_type = str(dl.links['meta'][link_type][0])
370 | dst_type = str(dl.links['meta'][link_type][1])
371 | data_dic[(src_type, link_type_dic[link_type], dst_type)] = dl.links['data'][link_type].nonzero()
372 | hg = dgl.heterograph(data_dic)
373 |
374 | # author feature
375 | if feat_type == 0:
376 | '''preprocessed feature'''
377 | features = th.FloatTensor(dl.nodes['attr'][0])
378 | else:
379 | '''one-hot'''
380 | # indices = np.vstack((np.arange(author_num), np.arange(author_num)))
381 | # indices = th.LongTensor(indices)
382 | # values = th.FloatTensor(np.ones(author_num))
383 | # features = th.sparse.FloatTensor(indices, values, th.Size([author_num,author_num]))
384 | features = th.FloatTensor(np.eye(movie_num))
385 |
386 | # author labels
387 |
388 | labels = dl.labels_test['data'][:movie_num] + dl.labels_train['data'][:movie_num]
389 | labels = th.FloatTensor(labels)
390 |
391 | num_classes = 5
392 |
393 | train_valid_mask = dl.labels_train['mask'][:movie_num]
394 | test_mask = dl.labels_test['mask'][:movie_num]
395 | train_valid_indices = np.where(train_valid_mask == True)[0]
396 |
397 | # split_index = int(0.7 * np.shape(train_valid_indices)[0])
398 | # train_indices = train_valid_indices[:split_index]
399 | # valid_indices = train_valid_indices[split_index:]
400 |
401 | val_ratio = 0.2
402 | random_index = np.random.permutation(len(train_valid_indices))
403 | split_index = int((1.0 - val_ratio) * len(train_valid_indices))
404 | train_indices = np.sort(train_valid_indices[random_index[:split_index]])
405 | valid_indices = np.sort(train_valid_indices[random_index[split_index:]])
406 |
407 | # val_ratio = 0.2
408 | # np_labels = labels.detach().cpu().numpy()
409 | # if random_state is not None:
410 | # print("split IMDB with random_state = {}".format(random_state))
411 | # train_indices, valid_indices = train_test_split(train_valid_indices, test_size=val_ratio, stratify=np_labels[train_valid_indices], random_state=random_state)
412 | # train_indices = np.sort(train_indices)
413 | # valid_indices = np.sort(valid_indices)
414 |
415 |
416 |
417 |
418 |
419 | train_mask = copy.copy(train_valid_mask)
420 | valid_mask = copy.copy(train_valid_mask)
421 | train_mask[valid_indices] = False
422 | valid_mask[train_indices] = False
423 | test_indices = np.where(test_mask == True)[0]
424 |
425 | meta_paths = [['md', 'dm'], ['ma', 'am'], ['mk', 'km']]
426 | # return hg, features, labels, num_classes, train_indices, valid_indices, test_indices, \
427 | # th.BoolTensor(train_mask), th.BoolTensor(valid_mask), th.BoolTensor(test_mask), meta_paths, dl
428 |
429 | target_node_type = '0'
430 | feature_node_types = [target_node_type]
431 |
432 |
433 | features_dict = dl.nodes["attr"]
434 | return hg, target_node_type, feature_node_types, features, features_dict, labels, num_classes, train_indices, valid_indices, test_indices, \
435 | train_mask, valid_mask, test_mask
436 |
437 |
438 | def load_freebase(feat_type=1, random_state=None):
439 | dl = data_loader('./datasets/Freebase')
440 | link_type_dic = {0: '00', 1: '01', 2: '03', 3: '05', 4: '06',
441 | 5: '11',
442 | 6: '20', 7: '21', 8: '22', 9: '23', 10: '25',
443 | 11: '31', 12: '33', 13: '35',
444 | 14: '40', 15: '41', 16: '42', 17: '43', 18: '44', 19: '45', 20: '46', 21: '47',
445 | 22: '51', 23: '55',
446 | 24: '61', 25: '62', 26: '63', 27: '65', 28: '66', 29: '67',
447 | 30: '70', 31: '71', 32: '72', 33: '73', 34: '75', 35: '77',
448 | 36: '-00', 37: '10', 38: '30', 39: '50', 40: '60',
449 | 41: '-11',
450 | 42: '02', 43: '12', 44: '-22', 45: '32', 46: '52',
451 | 47: '13', 48: '-33', 49: '53',
452 | 50: '04', 51: '14', 52: '24', 53: '34', 54: '-44', 55: '54', 56: '64', 57: '74',
453 | 58: '15', 59: '-55',
454 | 60: '16', 61: '26', 62: '36', 63: '56', 64: '-66', 65: '76',
455 | 66: '07', 67: '17', 68: '27', 69: '37', 70: '57', 71: '-77',
456 | }
457 | book_num = dl.nodes['count'][0]
458 | data_dic = {}
459 | for link_type in dl.links['data'].keys():
460 | src_type = str(dl.links['meta'][link_type][0])
461 | dst_type = str(dl.links['meta'][link_type][1])
462 | data_dic[(src_type, link_type_dic[link_type], dst_type)] = dl.links['data'][link_type].nonzero()
463 | # reverse
464 | if link_type_dic[link_type + 36][0] != '-':
465 | data_dic[(dst_type, link_type_dic[link_type + 36], src_type)] = dl.links['data'][link_type].T.nonzero()
466 | hg = dgl.heterograph(data_dic)
467 |
468 | if feat_type == 0:
469 | '''preprocessed feature'''
470 | features = th.FloatTensor(dl.nodes['attr'][0])
471 | else:
472 | '''one-hot'''
473 | indices = np.vstack((np.arange(book_num), np.arange(book_num)))
474 | indices = th.LongTensor(indices)
475 | values = th.FloatTensor(np.ones(book_num))
476 | features = th.sparse.FloatTensor(indices, values, th.Size([book_num, book_num]))
477 | # author labels
478 |
479 | labels = dl.labels_test['data'][:book_num] + dl.labels_train['data'][:book_num]
480 | labels = [np.argmax(l) for l in labels] # one-hot to value
481 | labels = th.LongTensor(labels)
482 |
483 | num_classes = 7
484 |
485 | train_valid_mask = dl.labels_train['mask'][:book_num]
486 | test_mask = dl.labels_test['mask'][:book_num]
487 | train_valid_indices = np.where(train_valid_mask == True)[0]
488 |
489 | # split_index = int(0.7 * np.shape(train_valid_indices)[0])
490 | # train_indices = train_valid_indices[:split_index]
491 | # valid_indices = train_valid_indices[split_index:]
492 |
493 | # val_ratio = 0.2
494 | # random_index = np.random.permutation(len(train_valid_indices))
495 | # split_index = int((1.0 - val_ratio) * len(train_valid_indices))
496 | # train_indices = np.sort(train_valid_indices[random_index[:split_index]])
497 | # valid_indices = np.sort(train_valid_indices[random_index[split_index:]])
498 |
499 | val_ratio = 0.2
500 | np_labels = labels.detach().cpu().numpy()
501 | if random_state is not None:
502 | print("split Freebase with random_state = {}".format(random_state))
503 | train_indices, valid_indices = train_test_split(train_valid_indices, test_size=val_ratio, stratify=np_labels[train_valid_indices], random_state=random_state)
504 | train_indices = np.sort(train_indices)
505 | valid_indices = np.sort(valid_indices)
506 |
507 |
508 |
509 |
510 | train_mask = copy.copy(train_valid_mask)
511 | valid_mask = copy.copy(train_valid_mask)
512 | train_mask[valid_indices] = False
513 | valid_mask[train_indices] = False
514 | test_indices = np.where(test_mask == True)[0]
515 |
516 | # meta_paths = [['00', '00'], ['01', '10'], ['05', '52', '20'], ['04', '40'], ['04', '43', '30'], ['06', '61', '10'],
517 | # ['07', '70'], ]
518 | # return hg, features, labels, num_classes, train_indices, valid_indices, test_indices, \
519 | # th.BoolTensor(train_mask), th.BoolTensor(valid_mask), th.BoolTensor(test_mask), meta_paths
520 | target_node_type = '0'
521 | feature_node_types = []
522 |
523 | features_dict = dl.nodes["attr"]
524 | return hg, target_node_type, feature_node_types, features, features_dict, labels, num_classes, train_indices, valid_indices, test_indices, \
525 | train_mask, valid_mask, test_mask
526 |
527 |
528 |
529 |
530 | def load_dblp(feat_type=0, random_state=None):
531 | prefix = './datasets/DBLP'
532 | dl = data_loader(prefix)
533 | link_type_dic = {0: 'ap', 1: 'pc', 2: 'pt', 3: 'pa', 4: 'cp', 5: 'tp'}
534 | author_num = dl.nodes['count'][0]
535 | data_dic = {}
536 | for link_type in dl.links['data'].keys():
537 | src_type = str(dl.links['meta'][link_type][0])
538 | dst_type = str(dl.links['meta'][link_type][1])
539 | data_dic[(src_type, link_type_dic[link_type], dst_type)] = dl.links['data'][link_type].nonzero()
540 | hg = dgl.heterograph(data_dic)
541 |
542 | # author feature
543 | if feat_type == 0:
544 | '''preprocessed feature'''
545 | features = th.FloatTensor(dl.nodes['attr'][0])
546 | else:
547 | '''one-hot'''
548 | # indices = np.vstack((np.arange(author_num), np.arange(author_num)))
549 | # indices = th.LongTensor(indices)
550 | # values = th.FloatTensor(np.ones(author_num))
551 | # features = th.sparse.FloatTensor(indices, values, th.Size([author_num,author_num]))
552 | features = th.FloatTensor(np.eye(author_num))
553 |
554 |
555 |
556 | # author labels
557 |
558 | labels = dl.labels_test['data'][:author_num] + dl.labels_train['data'][:author_num]
559 | labels = [np.argmax(l) for l in labels] # one-hot to value
560 | labels = th.LongTensor(labels)
561 |
562 | num_classes = 4
563 |
564 | train_valid_mask = dl.labels_train['mask'][:author_num]
565 | test_mask = dl.labels_test['mask'][:author_num]
566 | train_valid_indices = np.where(train_valid_mask == True)[0]
567 |
568 | # split_index = int(0.7 * np.shape(train_valid_indices)[0])
569 | # train_indices = train_valid_indices[:split_index]
570 | # valid_indices = train_valid_indices[split_index:]
571 |
572 |
573 | # raw version
574 | # val_ratio = 0.2
575 | # random_index = np.random.permutation(len(train_valid_indices))
576 | # split_index = int((1.0 - val_ratio) * len(train_valid_indices))
577 | # train_indices = np.sort(train_valid_indices[random_index[:split_index]])
578 | # valid_indices = np.sort(train_valid_indices[random_index[split_index:]])
579 |
580 |
581 | val_ratio = 0.2
582 | np_labels = labels.detach().cpu().numpy()
583 | if random_state is not None:
584 | print("split DBLP with random_state = {}".format(random_state))
585 | train_indices, valid_indices = train_test_split(train_valid_indices, test_size=val_ratio, stratify=np_labels[train_valid_indices], random_state=random_state)
586 | train_indices = np.sort(train_indices)
587 | valid_indices = np.sort(valid_indices)
588 |
589 |
590 | train_mask = copy.copy(train_valid_mask)
591 | valid_mask = copy.copy(train_valid_mask)
592 | train_mask[valid_indices] = False
593 | valid_mask[train_indices] = False
594 | test_indices = np.where(test_mask == True)[0]
595 |
596 | # meta_paths = [['ap', 'pa'], ['ap', 'pt', 'tp', 'pa'], ['ap', 'pc', 'cp', 'pa']]
597 | # return hg, features, labels, num_classes, train_indices, valid_indices, test_indices, \
598 | # th.BoolTensor(train_mask), th.BoolTensor(valid_mask), th.BoolTensor(test_mask), meta_paths
599 | target_node_type = '0'
600 | feature_node_types = [target_node_type]
601 | # feature_node_types = []
602 | features_dict = dl.nodes["attr"]
603 | return hg, target_node_type, feature_node_types, features, features_dict, labels, num_classes, train_indices, valid_indices, test_indices, \
604 | train_mask, valid_mask, test_mask
605 |
606 |
607 |
608 | def load_hgb_acm(feat_type=0, random_state=None):
609 | dl = data_loader('./datasets/ACM')
610 | link_type_dic = {0: 'pp', 1: '-pp', 2: 'pa', 3: 'ap', 4: 'ps', 5: 'sp', 6: 'pt', 7: 'tp'}
611 | paper_num = dl.nodes['count'][0]
612 | data_dic = {}
613 | for link_type in dl.links['data'].keys():
614 | src_type = str(dl.links['meta'][link_type][0])
615 | dst_type = str(dl.links['meta'][link_type][1])
616 | data_dic[(src_type, link_type_dic[link_type], dst_type)] = dl.links['data'][link_type].nonzero()
617 | hg = dgl.heterograph(data_dic)
618 |
619 | # paper feature
620 | if feat_type == 0:
621 | '''preprocessed feature'''
622 | features = th.FloatTensor(dl.nodes['attr'][0])
623 | else:
624 | '''one-hot'''
625 | features = th.FloatTensor(np.eye(paper_num))
626 |
627 | # author labels
628 |
629 | labels = dl.labels_test['data'][:paper_num] + dl.labels_train['data'][:paper_num]
630 | labels = [np.argmax(l) for l in labels] # one-hot to value
631 | labels = th.LongTensor(labels)
632 |
633 | num_classes = 3
634 |
635 | train_valid_mask = dl.labels_train['mask'][:paper_num]
636 | test_mask = dl.labels_test['mask'][:paper_num]
637 | train_valid_indices = np.where(train_valid_mask == True)[0]
638 |
639 | # split_index = int(0.7 * np.shape(train_valid_indices)[0])
640 | # train_indices = train_valid_indices[:split_index]
641 | # valid_indices = train_valid_indices[split_index:]
642 |
643 | # val_ratio = 0.2
644 | # random_index = np.random.permutation(len(train_valid_indices))
645 | # split_index = int((1.0 - val_ratio) * len(train_valid_indices))
646 | # train_indices = np.sort(train_valid_indices[random_index[:split_index]])
647 | # valid_indices = np.sort(train_valid_indices[random_index[split_index:]])
648 |
649 |
650 | val_ratio = 0.2
651 | np_labels = labels.detach().cpu().numpy()
652 | if random_state is not None:
653 | print("split HGB_ACM with random_state = {}".format(random_state))
654 | train_indices, valid_indices = train_test_split(train_valid_indices, test_size=val_ratio, stratify=np_labels[train_valid_indices], random_state=random_state)
655 | train_indices = np.sort(train_indices)
656 | valid_indices = np.sort(valid_indices)
657 |
658 |
659 | train_mask = copy.copy(train_valid_mask)
660 | valid_mask = copy.copy(train_valid_mask)
661 | train_mask[valid_indices] = False
662 | valid_mask[train_indices] = False
663 | test_indices = np.where(test_mask == True)[0]
664 |
665 | meta_paths = [['pp', 'ps', 'sp'], ['-pp', 'ps', 'sp'], ['pa', 'ap'], ['ps', 'sp'], ['pt', 'tp']]
666 | # return hg, features, labels, num_classes, train_indices, valid_indices, test_indices, \
667 | # th.BoolTensor(train_mask), th.BoolTensor(valid_mask), th.BoolTensor(test_mask), meta_paths
668 |
669 | target_node_type = '0'
670 | feature_node_types = [target_node_type]
671 |
672 | features_dict = dl.nodes["attr"]
673 |
674 | return hg, target_node_type, feature_node_types, features, features_dict, labels, num_classes, train_indices, valid_indices, test_indices, \
675 | train_mask, valid_mask, test_mask
--------------------------------------------------------------------------------
/rphgnn/datasets/load_data.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | import torch
4 | import os
5 | import numpy as np
6 |
7 | from rphgnn.utils.graph_utils import add_random_feats, dgl_add_all_reversed_edges, dgl_remove_edges
8 | from .hgb import load_imdb, load_freebase, load_dblp, load_hgb_acm
9 | from tqdm import tqdm
10 | import pickle
11 | from gensim.models import Word2Vec
12 | import time
13 | import dgl
14 | from ogb.nodeproppred import DglNodePropPredDataset
15 |
16 |
17 |
18 | def load_mag(device):
19 |
20 | # path = args.use_emb
21 | home_dir = os.getenv("HOME")
22 | dataset = DglNodePropPredDataset(
23 | name="ogbn-mag", root=os.path.join(home_dir, ".ogb", "dataset"))
24 | g, labels = dataset[0]
25 |
26 | # my
27 | g = g.to(device)
28 |
29 | splitted_idx = dataset.get_idx_split()
30 | train_nid = splitted_idx["train"]['paper']
31 | val_nid = splitted_idx["valid"]['paper']
32 | test_nid = splitted_idx["test"]['paper']
33 | features = g.nodes['paper'].data['feat']
34 | g.nodes["paper"].data["feat"] = features.to(device)
35 |
36 |
37 | labels = labels['paper'].to(device).squeeze()
38 | n_classes = int(labels.max() - labels.min()) + 1
39 | train_nid, val_nid, test_nid = np.array(train_nid), np.array(val_nid), np.array(test_nid)
40 |
41 |
42 | target_node_type = "paper"
43 | feature_node_types = [target_node_type]
44 |
45 | return g, target_node_type, feature_node_types, labels, n_classes, train_nid, val_nid, test_nid
46 |
47 | def load_dgl_mag(embedding_size):
48 | device = "cpu"
49 |
50 | g, target_node_type, feature_node_types, labels, n_classes, train_index, valid_index, test_index = load_mag(device)
51 |
52 | g.nodes[target_node_type].data["label"] = labels
53 |
54 |
55 | # embedding_size = g.ndata["feat"][target_node_type].size(-1) * 4
56 | g = add_random_feats(g, embedding_size, excluded_ntypes=feature_node_types)
57 |
58 | return g, target_node_type, feature_node_types, (train_index, valid_index, test_index)
59 |
60 | def load_dgl_hgb(dataset, use_all_feat=False, embedding_size=None, random_state=None):
61 |
62 | if dataset == "imdb":
63 | load_func = load_imdb
64 | elif dataset == "dblp":
65 | load_func = load_dblp
66 | elif dataset == "hgb_acm":
67 | load_func = load_hgb_acm
68 | elif dataset == "freebase":
69 | load_func = load_freebase
70 | else:
71 | raise RuntimeError(f"Unsupported dataset {dataset}")
72 |
73 | # dgl_graph, target_node_type, feature_node_types, features, features_dict, labels, num_classes, train_indices, valid_indices, test_indices, train_mask, valid_mask, test_mask = load_func(random_state=random_state)
74 |
75 | dgl_graph, target_node_type, feature_node_types, features, features_dict, labels, _, train_indices, valid_indices, test_indices, _, _, _ = load_func(random_state=random_state)
76 |
77 |
78 | if use_all_feat:
79 | print("use all features ...")
80 | for int_ntype, value in features_dict.items():
81 | ntype = str(int_ntype)
82 | if value is None:
83 | print("skip None ntype: ", ntype)
84 | else:
85 |
86 | print("set feature for ntype: ", ntype, dgl_graph.num_nodes(ntype), value.shape)
87 | dgl_graph.nodes[ntype].data["feat"] = torch.tensor(value).to(torch.float32)
88 |
89 | if embedding_size is None:
90 | embedding_size = features.size(-1)
91 |
92 | dgl_graph = add_random_feats(dgl_graph, embedding_size,
93 | excluded_ntypes=[ntype for ntype in dgl_graph.ntypes if "feat" in dgl_graph.nodes[ntype].data]
94 | )
95 |
96 | else:
97 | if len(feature_node_types) == 0:
98 | dgl_graph = add_random_feats(dgl_graph, embedding_size, excluded_ntypes=None)
99 | else:
100 | dgl_graph.nodes[target_node_type].data["feat"] = features
101 | if embedding_size is None:
102 | embedding_size = features.size(-1)
103 |
104 | dgl_graph = add_random_feats(dgl_graph, embedding_size,
105 | excluded_ntypes=[ntype for ntype in dgl_graph.ntypes if "feat" in dgl_graph.nodes[ntype].data]
106 | )
107 |
108 | dgl_graph.nodes[target_node_type].data["label"] = labels
109 |
110 | return dgl_graph, target_node_type, feature_node_types, (train_indices, valid_indices, test_indices)
111 |
112 | def load_dgl_hgb_acm(use_all_feat=False, embedding_size=None, random_state=None):
113 | return load_dgl_hgb("hgb_acm", use_all_feat=use_all_feat, embedding_size=embedding_size, random_state=random_state)
114 |
115 | def load_dgl_imdb(use_all_feat=False, embedding_size=None, random_state=None):
116 | return load_dgl_hgb("imdb", use_all_feat=use_all_feat, embedding_size=embedding_size, random_state=random_state)
117 |
118 | def load_dgl_dblp(use_all_feat=False, embedding_size=None, random_state=None):
119 | return load_dgl_hgb("dblp", use_all_feat=use_all_feat, embedding_size=embedding_size, random_state=random_state)
120 |
121 | def load_dgl_freebase(use_all_feat=False, embedding_size=None, random_state=None):
122 | return load_dgl_hgb("freebase", use_all_feat=use_all_feat, embedding_size=embedding_size, random_state=random_state)
123 |
124 | def load_oag(device, dataset, data_path="datasets/nars_academic_oag"):
125 | import pickle
126 | # assert args.data_dir is not None
127 |
128 |
129 | if dataset == "oag_L1":
130 | graph_file = "graph_L1.pk"
131 | predict_venue = False
132 | elif dataset == "oag_venue":
133 | graph_file = "graph_venue.pk"
134 | predict_venue = True
135 | else:
136 | raise RuntimeError(f"Unsupported dataset {dataset}")
137 | with open(os.path.join(data_path, graph_file), "rb") as f:
138 | dataset = pickle.load(f)
139 | n_classes = dataset["n_classes"]
140 | graph = dgl.heterograph(dataset["edges"])
141 | graph = graph.to(device)
142 | train_nid, val_nid, test_nid = dataset["split"]
143 |
144 |
145 | with open(os.path.join(data_path, "paper.npy"), "rb") as f:
146 | # loading lang features of paper provided by HGT author
147 | paper_feat = torch.from_numpy(np.load(f)).float().to(device)
148 | graph.nodes["paper"].data["feat"] = paper_feat[:graph.number_of_nodes("paper")]
149 |
150 | if predict_venue:
151 | labels = torch.from_numpy(dataset["labels"])
152 | else:
153 | labels = torch.zeros(graph.number_of_nodes("paper"), n_classes)
154 | for key in dataset["labels"]:
155 | labels[key, dataset["labels"][key]] = 1
156 | train_nid, val_nid, test_nid = np.array(train_nid), np.array(val_nid), np.array(test_nid)
157 |
158 | # return graph, labels, n_classes, train_nid, val_nid, test_nid
159 |
160 | target_node_type = "paper"
161 | feature_node_types = [target_node_type]
162 |
163 | return graph, target_node_type, feature_node_types, labels, n_classes, train_nid, val_nid, test_nid
164 |
165 | def load_dgl_oag(dataset, data_path="datasets/nars_academic_oag", embedding_size=None):
166 | g, target_node_type, feature_node_types, labels, n_classes, train_index, valid_index, test_index = load_oag(device="cpu", dataset=dataset, data_path=data_path)
167 |
168 | target_node_type = "paper"
169 |
170 | g = add_random_feats(g, embedding_size, excluded_ntypes=[target_node_type])
171 |
172 | g.nodes[target_node_type].data["label"] = labels
173 |
174 |
175 | return g, target_node_type, feature_node_types, (train_index, valid_index, test_index)
176 | # return dgl_graph, target_node_type, (train_index, valid_index, test_index)
177 |
178 | def nrl_update_features(dataset, hetero_graph, excluded_ntypes,
179 | nrl_pretrain_epochs=40, embedding_size=512):
180 |
181 | start_time = time.time()
182 | nrl_cache_path = os.path.join("./cache/{}.p".format(dataset))
183 |
184 | if os.path.exists(nrl_cache_path):
185 | print("loading cache: {}".format(nrl_cache_path))
186 | with open(nrl_cache_path, "rb") as f:
187 | nrl_embedding_dict = pickle.load(f)
188 | else:
189 |
190 | vocab_corpus = []
191 | for ntype in hetero_graph.ntypes:
192 | for i in tqdm(range(hetero_graph.num_nodes(ntype))):
193 | vocab_corpus.append(["{}_{}".format(ntype, i)])
194 |
195 |
196 | corpus = []
197 | for etype in hetero_graph.canonical_etypes:
198 | if etype[1].startswith("r."):
199 | print("skip etype: ", etype)
200 | continue
201 | row, col = hetero_graph.edges(etype=etype)
202 | for i, j in tqdm(zip(row, col)):
203 | corpus.append(["{}_{}".format(etype[0], i), "{}_{}".format(etype[2], j)])
204 |
205 | print("start training word2vec")
206 | # word2vec_model = Word2Vec(sentences=vocab_corpus, vector_size=embedding_size, window=2, min_count=0, workers=4)
207 | word2vec_model = Word2Vec(sentences=vocab_corpus, vector_size=embedding_size, window=2, min_count=0, workers=4)
208 | for i in tqdm(range(nrl_pretrain_epochs)):
209 | print("train word2vec epoch {}".format(i))
210 | word2vec_model.train(corpus, total_examples=len(corpus), epochs=1)
211 |
212 | # word2vec_model = Word2Vec(sentences=vocab_corpus, vector_size=embedding_size, window=2, min_count=0, workers=4, negative=20)
213 |
214 | # print("train word2vec ...")
215 | # word2vec_model.train(corpus, total_examples=len(corpus), epochs=nrl_pretrain_epochs)
216 |
217 | nrl_embedding_dict = {}
218 | for ntype in hetero_graph.ntypes:
219 | embeddings = np.array([word2vec_model.wv["{}_{}".format(ntype, i)] for i in range(hetero_graph.num_nodes(ntype))])
220 | nrl_embedding_dict[ntype] = embeddings
221 |
222 | print("saving cache: {}".format(nrl_cache_path))
223 | with open(nrl_cache_path, "wb") as f:
224 | pickle.dump(nrl_embedding_dict, f, protocol=4)
225 |
226 |
227 |
228 | print("nrl time: ", time.time() - start_time)
229 |
230 |
231 | for ntype in list(hetero_graph.ntypes):
232 | if ntype not in excluded_ntypes:
233 | print("using NRL embeddings for featureless nodetype: {}".format(ntype))
234 | # hetero_graph.x_dict[node_type] = nrl_embedding_dict[node_type]
235 | hetero_graph.nodes[ntype].data["feat"] = torch.tensor(nrl_embedding_dict[ntype])
236 |
237 | return hetero_graph
238 |
239 | def load_dgl_data(dataset, use_all_feat=False, embedding_size=None, use_nrl=False, random_state=None):
240 |
241 |
242 | batch_size = 10000
243 | num_epochs = 510
244 | patience = 30
245 | validation_freq = 10
246 | convert_to_tensor = True
247 |
248 | if dataset == "mag":
249 | hetero_graph, target_node_type, feature_node_types, (train_index, valid_index, test_index) = load_dgl_mag(embedding_size=embedding_size)
250 |
251 | convert_to_tensor = False
252 | num_epochs = 100
253 | patience = 10
254 |
255 | elif dataset in ["oag_L1", "oag_venue"]:
256 |
257 | batch_size = 3000
258 | if embedding_size is None:
259 | embedding_size = 128 * 2
260 |
261 | hetero_graph, target_node_type, feature_node_types, (train_index, valid_index, test_index) = load_dgl_oag(dataset, embedding_size=embedding_size)
262 |
263 | convert_to_tensor = False
264 |
265 | num_epochs = 200
266 | patience = 10
267 |
268 |
269 |
270 | elif dataset == "imdb":
271 |
272 | if embedding_size is None:
273 | embedding_size = 1024
274 |
275 | hetero_graph, target_node_type, feature_node_types, (train_index, valid_index, test_index) = load_dgl_imdb(use_all_feat=use_all_feat,
276 | embedding_size=embedding_size, random_state=random_state)
277 |
278 | etypes_to_remove = set()
279 | for etype in hetero_graph.canonical_etypes:
280 | etype_ = etype[1]
281 | items = list(etype_)
282 | print("items: ", items)
283 | if items[0] > items[1]:
284 | etypes_to_remove.add(etype)
285 | print("remove items: ", items)
286 |
287 | print("etypes_to_remove: ", etypes_to_remove)
288 |
289 | hetero_graph = dgl_remove_edges(hetero_graph, etypes_to_remove)
290 | print("remaining etypes: ", hetero_graph.canonical_etypes)
291 |
292 | num_epochs = 500
293 | patience = 200
294 |
295 | validation_freq = 1
296 |
297 | elif dataset == "dblp":
298 |
299 | if embedding_size is None:
300 | embedding_size = 1024
301 | hetero_graph, target_node_type, feature_node_types, (train_index, valid_index, test_index) = load_dgl_dblp(use_all_feat=use_all_feat, embedding_size=embedding_size, random_state=random_state)
302 | # hetero_graph, target_node_type, feature_node_types, (train_index, valid_index, test_index) = load_dgl_dblp(embedding_size=256)
303 |
304 | print("raw etypes: ", hetero_graph.canonical_etypes)
305 | etypes_to_remove = set()
306 | for etype in hetero_graph.canonical_etypes:
307 | etype_ = etype[1]
308 | items = list(etype_)
309 | print("items: ", items)
310 | if items[0] > items[1]:
311 | etypes_to_remove.add(etype)
312 | print("remove items: ", items)
313 |
314 | print("etypes_to_remove: ", etypes_to_remove)
315 |
316 | hetero_graph = dgl_remove_edges(hetero_graph, etypes_to_remove)
317 |
318 | print("remaining etypes: ", hetero_graph.canonical_etypes)
319 |
320 | # hetero_graph = dgl_add_duplicated_edges(hetero_graph, 3)
321 | # print("edges update duplication: ", hetero_graph.canonical_etypes)
322 |
323 | num_epochs = 500
324 | patience = 30
325 | # validation_freq = 1
326 |
327 |
328 | # hetero_graph = hetero_graph.add_reversed_edges(inplace=True)
329 |
330 | elif dataset == "hgb_acm":
331 |
332 | if embedding_size is None:
333 | embedding_size = 512
334 |
335 | hetero_graph, target_node_type, feature_node_types, (train_index, valid_index, test_index) = load_dgl_hgb_acm(use_all_feat=use_all_feat, embedding_size=embedding_size, random_state=random_state)
336 | # hetero_graph = hetero_graph.add_reversed_edges(inplace=True)
337 |
338 | num_epochs = 100
339 | patience = 20
340 |
341 | validation_freq = 1
342 | batch_size = 1000
343 |
344 | # for etype in hetero_graph.etypes:
345 | # print(etype)
346 | etypes_to_remove = set()
347 | for etype in hetero_graph.canonical_etypes:
348 | etype_ = etype[1]
349 | items = list(etype_)
350 | print("items: ", items)
351 | if etype_[0] == "-" or items[0] > items[1]:
352 | etypes_to_remove.add(etype)
353 | print("remove items: ", items)
354 |
355 | print("etypes_to_remove: ", etypes_to_remove)
356 |
357 | hetero_graph = dgl_remove_edges(hetero_graph, etypes_to_remove)
358 | print("remaining etypes: ", hetero_graph.canonical_etypes)
359 |
360 |
361 | elif dataset == "freebase":
362 | num_epochs = 200
363 | patience = 20
364 | # validation_freq = 1
365 | # hetero_graph, target_node_type, (train_index, valid_index, test_index) = load_dgl_freebase(embedding_size=128)
366 | if embedding_size is None:
367 | embedding_size = 512
368 | hetero_graph, target_node_type, feature_node_types, (train_index, valid_index, test_index) = load_dgl_freebase(use_all_feat=use_all_feat, embedding_size=embedding_size, random_state=random_state)
369 |
370 |
371 |
372 | etypes_to_remove = set()
373 | for etype in hetero_graph.canonical_etypes:
374 | etype_ = etype[1]
375 | items = [int(c) for c in list(etype_)]
376 | print("items: ", items)
377 | if items[0] > items[1]:
378 | etypes_to_remove.add(etype)
379 | print("remove items: ", items)
380 |
381 | print("etypes_to_remove: ", etypes_to_remove)
382 |
383 | hetero_graph = dgl_remove_edges(hetero_graph, etypes_to_remove)
384 |
385 | print("etypes: ", hetero_graph.canonical_etypes)
386 |
387 |
388 |
389 | # hetero_graph = dgl_add_label_nodes(hetero_graph, target_node_type, train_index)
390 | hetero_graph = dgl.add_reverse_edges(hetero_graph, ignore_bipartite=True)
391 | hetero_graph = dgl_add_all_reversed_edges(hetero_graph)
392 |
393 |
394 |
395 |
396 | if use_nrl:
397 |
398 | if dataset == "freebase":
399 | excluded_ntypes = []
400 | else:
401 | excluded_ntypes = [target_node_type]
402 |
403 | hetero_graph = nrl_update_features(dataset, hetero_graph, excluded_ntypes)
404 |
405 |
406 | return hetero_graph, target_node_type, feature_node_types, (train_index, valid_index, test_index), \
407 | batch_size, num_epochs, patience, validation_freq, convert_to_tensor
408 |
--------------------------------------------------------------------------------
/rphgnn/global_configuration.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | import torch
3 |
4 | class GlobalConfig(object):
5 | def __init__(self) -> None:
6 |
7 | self.embedding_generator = None
8 | self.rand_proj_generator = None
9 |
10 | self.torch_random_project = None
11 | self.torch_random_project_create_kernel = None
12 |
13 |
14 |
15 | global_config = GlobalConfig()
--------------------------------------------------------------------------------
/rphgnn/layers/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrawlScript/RpHGNN/1a1779a747a28ac8d936280a6b96951636183965/rphgnn/layers/__init__.py
--------------------------------------------------------------------------------
/rphgnn/layers/rphgnn_encoder.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | import torch
4 | import torch.nn as nn
5 | from itertools import chain
6 | import torch.nn.functional as F
7 |
8 | from rphgnn.layers.torch_train_model import CommonTorchTrainModel
9 |
10 |
11 |
12 | class PReLU(nn.Module):
13 |
14 | __constants__ = ['num_parameters']
15 | num_parameters: int
16 |
17 | def __init__(self, num_parameters: int = 1, init: float = 0.25,
18 | device=None, dtype=None) -> None:
19 | factory_kwargs = {'device': device, 'dtype': dtype}
20 | self.num_parameters = num_parameters
21 | super().__init__()
22 |
23 | # use alpha instead of weight
24 | self.alpha = nn.parameter.Parameter(torch.empty(num_parameters, **factory_kwargs).fill_(init))
25 |
26 | def forward(self, input: torch.Tensor) -> torch.Tensor:
27 | return F.prelu(input, self.alpha)
28 |
29 | def extra_repr(self) -> str:
30 | return 'num_parameters={}'.format(self.num_parameters)
31 |
32 |
33 | class Lambda(nn.Module):
34 | def __init__(self, func) -> None:
35 | super().__init__()
36 |
37 | self.func = func
38 |
39 | def forward(self, x):
40 | return self.func(x)
41 |
42 | def create_act(name=None):
43 |
44 | if name is None:
45 | return nn.Identity()
46 | elif name == "relu":
47 | return nn.ReLU()
48 | elif name == "prelu":
49 | return PReLU()
50 | elif name == "softmax":
51 | return nn.Softmax(dim=-1)
52 | elif name == "sigmoid":
53 | return nn.Sigmoid()
54 | elif name == "identity":
55 | return Lambda(lambda x: x)
56 | else:
57 | raise Exception()
58 |
59 |
60 | class Linear(nn.Linear):
61 | def reset_parameters(self) -> None:
62 | nn.init.xavier_normal_(self.weight)
63 | nn.init.zeros_(self.bias)
64 |
65 |
66 | class Conv1d(nn.Conv1d):
67 | def reset_parameters(self) -> None:
68 | nn.init.xavier_normal_(self.weight)
69 | nn.init.zeros_(self.bias)
70 |
71 |
72 | class MLPConv1d(nn.Module):
73 | """
74 | another implementation of Conv1d
75 | """
76 | def __init__(self, in_channels, out_channels):
77 | super().__init__()
78 | self.linear = Linear(in_channels, out_channels)
79 |
80 | def forward(self, x):
81 | h = torch.permute(x, (0, 2, 1))
82 | h = self.linear(h)
83 | h = torch.permute(h, (0, 2, 1))
84 | h = h.contiguous()
85 | return h
86 |
87 |
88 | class MLP(nn.Module):
89 |
90 | def __init__(self,
91 | channels_list,
92 | input_shape,
93 | drop_rate=0.0,
94 | activation=None,
95 | output_drop_rate=0.0,
96 | output_activation=None,
97 | kernel_regularizer=None,
98 | *args, **kwargs):
99 |
100 | super().__init__(*args, **kwargs)
101 |
102 | self.kernel_regularizer = kernel_regularizer
103 |
104 | in_channels = input_shape[-1]
105 | channels_list = [in_channels] + channels_list
106 |
107 | layers = []
108 | for i in range(len(channels_list) - 1):
109 | layers.append(Linear(channels_list[i], channels_list[i + 1]))
110 | if i < len(channels_list) - 2:
111 | layers.append(create_act(activation))
112 | layers.append(nn.Dropout(drop_rate))
113 | else:
114 | layers.append(create_act(output_activation))
115 | layers.append(nn.Dropout(output_drop_rate))
116 |
117 |
118 | self.layers = nn.Sequential(*layers)
119 |
120 |
121 |
122 | def forward(self, x):
123 | return self.layers(x)
124 |
125 |
126 |
127 | class GroupEncoders(nn.Module):
128 |
129 | def __init__(self,
130 | filters_list,
131 | drop_rate,
132 | input_shape,
133 | kernel_regularizer=None,
134 | *args, **kwargs):
135 | super().__init__(*args, **kwargs)
136 | self.hop_encoders = None
137 | self.filters_list = filters_list
138 | self.drop_rate = drop_rate
139 | self.kernel_regularizer = kernel_regularizer
140 | self.real_filters_list = None
141 |
142 | num_groups = len(input_shape)
143 | self.group_sizes = [group_shape[1] for group_shape in input_shape]
144 | self.real_filters_list = [self._get_real_filters(i) for i in range(num_groups)]
145 |
146 | self.group_encoders = nn.ModuleList([
147 | nn.Sequential(
148 | Conv1d(group_size, real_filters, 1, stride=1),
149 | # # if too slow, comment MyConv1d (above) and uncomment MyMLPConv1d (below)
150 | # MLPConv1d(group_size, real_filters),
151 | Lambda(lambda x: x.view(x.size(0), -1))
152 | )
153 | for _, (group_size, real_filters) in enumerate(zip(self.group_sizes, self.real_filters_list))
154 | ])
155 |
156 |
157 | def _get_real_filters(self, i):
158 |
159 | if self.group_sizes[i] == 1:
160 | return 1
161 | elif isinstance(self.filters_list, list):
162 | return self.filters_list[i]
163 | else:
164 | return self.filters_list
165 |
166 |
167 | def forward(self, x_group_list):
168 | group_h_list = []
169 |
170 | for i, (x_group, group_encoder) in enumerate(zip(x_group_list, self.group_encoders)):
171 |
172 | h = x_group
173 | group_h = group_encoder(h)
174 | group_h_list.append(group_h)
175 |
176 | return group_h_list
177 |
178 |
179 |
180 | class MultiGroupFusion(nn.Module):
181 |
182 | def __init__(self,
183 | group_channels_list,
184 | global_channels_list,
185 | merge_mode,
186 | input_shape,
187 | drop_rate=0.0,
188 | activation="prelu",
189 | output_activation=None,
190 | *args, **kwargs):
191 | super().__init__(*args, **kwargs)
192 |
193 | self.group_fc_list = None
194 | self.global_fc = None
195 |
196 | self.group_channels_list = group_channels_list
197 | self.global_channels_list = global_channels_list
198 | self.merge_mode = merge_mode
199 | self.drop_rate = drop_rate
200 |
201 | self.use_shared_group_fc = False
202 | self.group_encoder_mode = "common"
203 |
204 | num_groups = len(input_shape)
205 | self.num_groups = num_groups
206 |
207 | self.group_fc_list = nn.ModuleList([
208 | MLP(
209 | group_channels_list,
210 | input_shape=group_input_shape,
211 | drop_rate=drop_rate,
212 | activation=activation,
213 | output_drop_rate=drop_rate,
214 | output_activation=activation
215 | )
216 | for group_input_shape in input_shape
217 | ])
218 |
219 | if merge_mode in ["mean", "free"]:
220 | global_input_shape = [-1, group_channels_list[-1]]
221 | elif merge_mode == "concat":
222 | global_input_shape = [-1, group_channels_list[-1] * num_groups]
223 | else:
224 | raise Exception("wrong merge mode: ", merge_mode)
225 |
226 | self.global_fc = MLP(self.global_channels_list,
227 | input_shape=global_input_shape,
228 | drop_rate=self.drop_rate,
229 | activation=activation,
230 | output_drop_rate=0.0,
231 | output_activation=output_activation)
232 |
233 |
234 | def forward(self, inputs):
235 |
236 | x_list = inputs
237 | group_h_list = [group_fc(x) for x, group_fc in zip(x_list, self.group_fc_list)]
238 |
239 | if self.merge_mode == "mean":
240 | global_h = torch.stack(group_h_list, dim=0).mean(dim=0)
241 | elif self.merge_mode == "concat":
242 | global_h = torch.concat(group_h_list, dim=-1)
243 | else:
244 | raise Exception("wrong merge mode: ", self.merge_mode)
245 |
246 | h = self.global_fc(global_h)
247 |
248 | return h
249 |
250 |
251 |
252 | class RpHGNNEncoder(CommonTorchTrainModel):
253 |
254 | def __init__(self,
255 | filters_list,
256 | group_channels_list,
257 | global_channels_list,
258 | merge_mode,
259 | input_shape,
260 | *args,
261 | input_drop_rate=0.0,
262 | drop_rate=0.0,
263 | activation="prelu",
264 | output_activation=None,
265 | **kwargs):
266 |
267 | super().__init__(*args, **kwargs)
268 |
269 | self.input_dropout = nn.Dropout(input_drop_rate)
270 | self.input_drop_rate = input_drop_rate
271 |
272 | group_encoders_input_shape = input_shape
273 | self.group_encoders = GroupEncoders(filters_list, drop_rate, group_encoders_input_shape)
274 |
275 | multi_group_fusion_input_shape = [[-1, group_input_shape[-1] * filters]
276 | for group_input_shape, filters in zip(group_encoders_input_shape, self.group_encoders.real_filters_list)]
277 | self.multi_group_fusion = MultiGroupFusion(
278 | group_channels_list, global_channels_list,
279 | merge_mode,
280 | input_shape=multi_group_fusion_input_shape,
281 | drop_rate=drop_rate,
282 | activation=activation,
283 | output_activation=output_activation)
284 |
285 | def forward(self, inputs):
286 |
287 | x_group_list = inputs
288 | dropped_x_group_list = [F.dropout(x_group, self.input_drop_rate, training=self.training, inplace=False) for x_group in x_group_list]
289 |
290 | h_list = self.group_encoders(dropped_x_group_list)
291 | h = self.multi_group_fusion(h_list)
292 |
293 | return h
294 |
--------------------------------------------------------------------------------
/rphgnn/layers/rphgnn_pre.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | import torch
4 | import dgl
5 |
6 | import numpy as np
7 | from rphgnn.utils.random_project_utils import *
8 | from itertools import chain
9 | import logging
10 | from rphgnn.global_configuration import global_config
11 |
12 | logger = logging.getLogger()
13 |
14 |
15 |
16 |
17 | def torch_svd(x):
18 | u, s, vh = torch.linalg.svd(x)
19 |
20 | print("svd: ", x.size(), u.size(), s.size(), vh.size())
21 | h = u[:, :s.size(0)] * torch.sqrt(s)
22 | return h
23 |
24 |
25 |
26 | def get_raw_etype(etype):
27 | etype_ = etype[1]
28 | if etype_.startswith("r."):
29 | return get_reversed_etype(etype)
30 | else:
31 | return etype
32 |
33 | def rphgnn_propagate_then_update(g, current_k, inner_k, input_x_dim_dict, target_node_type, squash_strategy, norm=None, squash_even_odd="all", squash_self=True, collect_even_odd="all", diag_dict=None, train_label_feat=None):
34 |
35 | with g.local_scope():
36 |
37 | # propagate
38 | for etype in g.canonical_etypes:
39 | last_key = "feat"
40 | for k_ in range(1, inner_k + 1):
41 | # print("etype: ", etype, "inner_k_: ", k_)
42 | odd_or_even = "odd" if k_ % 2 == 1 else "even"
43 | key = (odd_or_even, k_, etype)
44 | prop_etype = etype if odd_or_even == "odd" else get_reversed_etype(etype)
45 |
46 | # print("prop_etype: ", prop_etype)
47 |
48 | if norm == "mean":
49 |
50 | g.update_all(
51 | dgl.function.copy_u(last_key, "m"),
52 | dgl.function.mean("m", key),
53 |
54 | # message_func,
55 | # dgl.function.sum("m", key),
56 |
57 | etype=prop_etype
58 | )
59 | last_key = key
60 |
61 | else:
62 | sp = torch.tensor(norm[2])
63 | dp = torch.tensor(norm[4])
64 |
65 | def message_func(edges):
66 | # return {'m': edges.src[last_key]}
67 | return {'m': edges.src[last_key] * \
68 | torch.pow(edges.src[("deg", get_reversed_etype(prop_etype))].unsqueeze(-1) + 1e-8, sp) * \
69 | torch.pow(edges.dst[("deg", prop_etype)].unsqueeze(-1) + 1e-8, dp)}
70 |
71 | g.update_all(
72 | message_func,
73 | dgl.function.sum("m", key),
74 | etype=prop_etype
75 | )
76 | last_key = key
77 |
78 |
79 | new_x_dict = {}
80 |
81 |
82 | for ntype in g.ntypes:
83 | # print("deal with {} ...".format(ntype))
84 |
85 | # sort keys by (etype, k)
86 | # [(odd, 1, etype0), (even, 2, etype0), (odd, 3, etype0), (even, 4, etype0),
87 | # (odd, 1, etype1), (even, 2, etype1), (odd, 3, etype1), (even, 4, etype1)]
88 | keys = [key for key in g.nodes[ntype].data.keys()
89 | if isinstance(key, tuple) and key[0] in ["even", "odd"]]
90 | sort_index = sorted(list(range(len(keys))), key=lambda i: (get_raw_etype(keys[i][-1]), keys[i][1]))
91 | sorted_keys = [keys[i] for i in sort_index]
92 |
93 |
94 | x = g.ndata["feat"][ntype]
95 |
96 | # collect for each ntype
97 | h_list = []
98 |
99 | for key in sorted_keys:
100 | # print(key, g.nodes[ntype].data[key].size())
101 | h = g.nodes[ntype].data[key]
102 |
103 | # label prop for target node type
104 | if ntype == target_node_type and diag_dict is not None:
105 |
106 | if key[0] == "even":
107 | diag = diag_dict[key[-1]]
108 | # diag = np.expand_dims(diag, axis=-1)
109 | h = (h - x * diag) / (1.0 - diag + 1e-8)
110 |
111 | if train_label_feat is not None:
112 | zero_mask = (h.sum(dim=-1) == 0.0)
113 | h[zero_mask] = torch.ones_like(h[zero_mask]) / h.size(-1)
114 | print("diag zero to mean for: {} {} {}".format(ntype, key, zero_mask.sum()))
115 |
116 | print("diag====", key)
117 | print("remove diag for: {} {}".format(ntype, key))
118 |
119 |
120 | h_list.append(h)
121 |
122 |
123 |
124 |
125 | # each even_odd_iter covers an odd and an even, such as (1,2) or (3, 4)
126 | def get_even_odd_iter(data_list, i):
127 | """
128 | input: [(odd, 1, etype0), (even, 2, etype0), (odd, 3, etype0), (even, 4, etype0), (odd, 1, etype1), (even, 2, etype1), (odd, 3, etype1), (even, 4, etype1)]
129 |
130 | output: odd+even of a given iteration i
131 |
132 | For exampe, if i == 0:
133 | output => [(odd, 1, etype0), (even, 2, etype0), (odd, 1, etype1), (even, 2, etype1)]
134 | """
135 | return list(chain(*list(zip(data_list[i * 2::inner_k], data_list[i * 2 + 1::inner_k]))))
136 |
137 | even_odd_iter_h_list_list = []
138 |
139 | for hop in range(inner_k // 2):
140 | even_odd_iter_h_list = get_even_odd_iter(h_list, hop)
141 | even_odd_iter_h_list_list.append(even_odd_iter_h_list)
142 | even_odd_iter_sorted_keys = get_even_odd_iter(sorted_keys, hop)
143 | # print("hop sorted keys: ", hop_sorted_keys)
144 |
145 |
146 | even_odd_iter_sorted_keys = [(key[0], key[2]) for key in even_odd_iter_sorted_keys]
147 |
148 | # push into outputs
149 | if ntype == target_node_type:
150 | # print("collect outputs for {}".format(ntype))
151 |
152 | target_h_list_list = [[h.detach().cpu() for h in hop_h_list]
153 | for hop_h_list in even_odd_iter_h_list_list]
154 | target_sorted_keys = even_odd_iter_sorted_keys
155 |
156 | if collect_even_odd != "all":
157 | target_h_list_list = [[target_h for target_h, key in zip(target_h_list, target_sorted_keys) if key[0] == collect_even_odd]
158 | for target_h_list in target_h_list_list]
159 | target_sorted_keys = [key for key in target_sorted_keys if key[0] == collect_even_odd]
160 |
161 |
162 |
163 |
164 | squash_keys = [("self", )] if squash_self else []
165 | squash_h_list = [x] if squash_self else []
166 |
167 | for h, key in zip(even_odd_iter_h_list_list[0], even_odd_iter_sorted_keys):
168 | key_even_odd = key[0]
169 |
170 | use_key = None
171 | if squash_even_odd == "all":
172 | use_key = True
173 | elif squash_even_odd in ["even", "odd"]:
174 | use_key = key_even_odd == squash_even_odd
175 | else:
176 | raise ValueError("squash_even_odd must be all, even or odd")
177 |
178 | if use_key:
179 | squash_keys.append(key)
180 | squash_h_list.append(h)
181 |
182 | if squash_strategy == "sum":
183 | new_x = torch.stack(squash_h_list, dim=0).sum(dim=0)
184 |
185 | elif squash_strategy == "mean":
186 | new_x = torch.stack(squash_h_list, dim=0).mean(dim=0)
187 |
188 | elif squash_strategy == "norm_sum":
189 | normed_squash_h_list = [torch_normalize(h) for h in squash_h_list]
190 | new_x = torch.stack(normed_squash_h_list, dim=0).sum(dim=0)
191 |
192 | elif squash_strategy == "norm_mean":
193 | normed_squash_h_list = [torch_normalize(h) for h in squash_h_list]
194 | new_x = torch.stack(normed_squash_h_list, dim=0).mean(dim=0)
195 |
196 | elif squash_strategy == "norm_mean_norm":
197 | normed_squash_h_list = [torch_normalize(h) for h in squash_h_list]
198 | h = torch.stack(normed_squash_h_list, dim=0).mean(dim=0)
199 | h = torch_normalize(h)
200 | new_x = h
201 |
202 | elif squash_strategy == "project_norm_sum":
203 | new_x = torch_random_project_then_sum(
204 | squash_h_list,
205 | input_x_dim_dict[ntype],
206 | norm=True
207 | )
208 |
209 | elif squash_strategy == "project_norm_mean":
210 | new_x = torch_random_project_then_mean(
211 | squash_h_list,
212 | input_x_dim_dict[ntype],
213 | norm=True
214 | )
215 | else:
216 | raise ValueError("wrong squash_strategy: {}".format(squash_strategy))
217 |
218 | new_x_dict[ntype] = new_x
219 |
220 | # print("update ndata")
221 | for ntype, new_x in new_x_dict.items():
222 | g.nodes[ntype].data["feat"] = new_x
223 |
224 | if target_node_type is None:
225 | target_sorted_keys = None
226 | target_h_list_list = None
227 |
228 | return (target_h_list_list, target_sorted_keys), g
229 |
230 |
231 | def compute_deg_dict(g):
232 |
233 | with torch.no_grad():
234 |
235 | deg_dict = {}
236 | def message_func(edges):
237 | return {'m': torch.ones([len(edges)])}
238 |
239 | for etype in g.canonical_etypes:
240 | key = ("deg", etype)
241 | g.update_all(
242 | message_func,
243 | dgl.function.sum("m", key),
244 | etype=etype
245 | )
246 | deg = g.ndata[key][etype[-1]]
247 | deg_dict[etype] = deg
248 |
249 | return deg_dict
250 |
251 |
252 | def compute_diag_dict(g):
253 | import scipy.sparse as sp
254 | import numpy as np
255 |
256 | diag_dict = {}
257 |
258 | def norm_adj(adj):
259 | deg = np.array(adj.sum(axis=-1)).flatten()
260 | inv_deg = 1.0 / deg
261 | inv_deg[np.isnan(inv_deg)] = 0.0
262 | inv_deg[np.isinf(inv_deg)] = 0.0
263 |
264 | normed_adj = sp.diags(inv_deg) @ adj
265 | return normed_adj
266 |
267 | with torch.no_grad():
268 |
269 | for etype in g.canonical_etypes:
270 | src, dst = g.edges(etype=etype)
271 | src = src.detach().cpu().numpy()
272 | dst = dst.detach().cpu().numpy()
273 |
274 | shape = [g.num_nodes(etype[0]), g.num_nodes(etype[-1])]
275 |
276 | adj = sp.csr_matrix((np.ones_like(src), (src, dst)), shape=shape)
277 |
278 |
279 | diag = (norm_adj(adj).multiply(norm_adj(adj.T).T)).sum(axis=-1)
280 | diag = np.array(diag).flatten().astype(np.float32)
281 |
282 | diag = np.expand_dims(diag, axis=-1)
283 | diag_dict[etype] = torch.tensor(diag)
284 |
285 | # print("compute diag for {}: {}".format(etype, diag))
286 |
287 |
288 | return diag_dict
289 |
290 |
291 |
292 |
293 | def rphgnn_propagate_and_collect(g, k, inner_k, alpha, target_node_type, use_input_features, squash_strategy, train_label_feat, norm, squash_even_odd, collect_even_odd, squash_self=False, target_feat_random_project_size=None, add_self_group=False):
294 |
295 | with torch.no_grad():
296 |
297 | raw_input_target_x = g.ndata["feat"][target_node_type]
298 |
299 | with g.local_scope():
300 |
301 | featureless_node_types = [ntype for ntype in g.ntypes if ntype != target_node_type]
302 | embedding_size = g.ndata["feat"][featureless_node_types[0]].size(-1)
303 |
304 | if target_feat_random_project_size is not None:
305 | new_x = global_config.torch_random_project(raw_input_target_x, target_feat_random_project_size, norm=True)
306 | g.nodes[target_node_type].data["feat"] = new_x
307 | print("random_project_target_feat {} => {}...".format(raw_input_target_x.size(-1), new_x.size(-1)))
308 |
309 | if train_label_feat is not None:
310 |
311 | num_classes = train_label_feat.size(-1)
312 | for ntype in g.ntypes:
313 | if ntype == target_node_type:
314 | g.nodes[ntype].data["feat"] = train_label_feat
315 | else:
316 | g.nodes[ntype].data["feat"] = torch.ones([g.num_nodes(ntype), num_classes]) / num_classes
317 |
318 | diag_dict = compute_diag_dict(g)
319 |
320 | else:
321 | diag_dict = None
322 |
323 | input_x_dim_dict = {
324 | ntype: g.ndata["feat"][ntype].size(-1)
325 | for ntype in g.ntypes
326 | }
327 |
328 | input_x_dict = {
329 | ntype: g.ndata["feat"][ntype] for ntype in g.ntypes
330 | }
331 |
332 |
333 |
334 | input_target_x = g.ndata["feat"][target_node_type]#.detach().cpu().numpy()
335 | target_h_list_list = []
336 | for k_ in range(k):
337 | # print("start propagate {} ...".format(k_))
338 |
339 | print("start {} propagate-then-update iteration {} ...".format("feat" if train_label_feat is None else "pre-label", k_))
340 | (target_h_list_list_, target_sorted_keys), g = rphgnn_propagate_then_update(g, k_, inner_k, input_x_dim_dict, target_node_type, squash_strategy=squash_strategy, norm=norm, squash_even_odd=squash_even_odd, collect_even_odd=collect_even_odd, squash_self=squash_self, diag_dict=diag_dict, train_label_feat=train_label_feat)
341 |
342 | target_h_list_list.extend(target_h_list_list_)
343 |
344 |
345 | for ntype in g.ntypes:
346 | g.nodes[ntype].data["feat"] = g.nodes[ntype].data["feat"] * (1 - alpha) + input_x_dict[ntype] * alpha
347 |
348 |
349 | target_h_list_list = [list(target_h_list) for target_h_list in zip(*target_h_list_list)]
350 |
351 |
352 | target_sorted_keys_ = target_sorted_keys[:]
353 | target_h_list_list_ = target_h_list_list[:]
354 |
355 |
356 | if train_label_feat is not None:
357 |
358 | target_sorted_keys = []
359 | target_h_list_list = []
360 | for key, target_h_list in zip(target_sorted_keys_, target_h_list_list_):
361 | if key[0] == "even":
362 | target_sorted_keys.append(key)
363 | target_h_list_list.append(target_h_list)
364 | elif key[0] == "odd":
365 | etype = key[-1]
366 | if etype[0] == etype[-1]:
367 | print("add homo for label: ", key)
368 | target_sorted_keys.append(key)
369 | target_h_list_list.append(target_h_list)
370 |
371 | target_h_list_list = [target_h_list[-1:] for target_h_list in target_h_list_list]
372 |
373 |
374 | if use_input_features:
375 | for target_h_list, key in zip(target_h_list_list, target_sorted_keys):
376 | if key[0] in ["even", "self"]:
377 |
378 | print("add input x to {}".format(key))
379 | x = input_target_x
380 | x = x.detach().cpu()
381 |
382 | target_h_list.insert(0, x)
383 |
384 |
385 | # for target_h_list in target_h_list_list:
386 | # print("context: ")
387 | # for target_h in target_h_list:
388 | # print(target_h.shape)
389 |
390 | if add_self_group:
391 | target_h_list_list.append([raw_input_target_x.detach().cpu()])
392 | target_sorted_keys.append(("self",))
393 |
394 | print("target_sorted_keys: ", target_sorted_keys)
395 | target_h_list_list = [torch.stack(target_h_list, dim=1) for target_h_list in target_h_list_list]
396 |
397 | return target_h_list_list, target_sorted_keys
398 |
399 |
400 |
401 | def rphgnn_propagate_and_collect_label(hetero_graph, target_node_type, y, train_label_feat):
402 |
403 | label_target_h_list_list, _ = rphgnn_propagate_and_collect(hetero_graph,
404 | 1,
405 | 2,
406 | 0.0,
407 | target_node_type, use_input_features=False,
408 | squash_strategy="mean",
409 | train_label_feat=train_label_feat,
410 | norm="mean",
411 | squash_even_odd="all",
412 | collect_even_odd="all"
413 | )
414 |
415 |
416 | return label_target_h_list_list
--------------------------------------------------------------------------------
/rphgnn/layers/torch_train_model.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Facebook, Inc. and its affiliates.
2 | # All rights reserved.
3 | #
4 | # This source code is licensed under the license found in the
5 | # LICENSE file in the root directory of this source tree.
6 |
7 | import numpy as np
8 | from sklearn.metrics import accuracy_score, f1_score
9 | import torch
10 | import torch.nn as nn
11 | from itertools import chain
12 | import torch.nn.functional as F
13 | from tqdm import tqdm
14 | import time
15 |
16 | from rphgnn.utils.metrics_utils import LogitsBasedMetric
17 | # x = torch.randn(350)# * 0.1
18 |
19 | # # x = torch.zeros(10)
20 | # # x[1] = 1.0
21 |
22 | # print(x)
23 | # x = F.softmax(x)
24 |
25 | # # print(x)
26 | # print(x.max())
27 | # print(x.argmax())
28 |
29 |
30 | # print("===========")
31 |
32 | # x = torch.pow(x * 350, 4.0)
33 | # # print(x)
34 | # x = F.softmax(x)
35 | # # print(x)
36 | # print(x.max())
37 | # print(x.argmax())
38 |
39 | # sdfsdf
40 |
41 | # x = torch.randn(100, 5, 40).to("cuda")
42 |
43 | # layer = torch.nn.Conv1d(6, 10, 1, 1).cuda()
44 |
45 | # print(layer(x))
46 | # asdfasdf
47 |
48 |
49 |
50 |
51 | class TorchTrainModel(nn.Module):
52 | def __init__(self, metrics_dict=None, learning_rate=None, scheduler_gamma=None) -> None:
53 |
54 | super().__init__()
55 |
56 | self.metrics_dict = metrics_dict
57 | self.learning_rate = learning_rate
58 | self.scheduler_gamma = scheduler_gamma
59 | self.stop_training = False
60 |
61 | use_float16 = False
62 |
63 | if use_float16:
64 | self.autocast_dtype = torch.float16
65 | self.scalar = torch.cuda.amp.GradScaler()
66 | else:
67 | self.autocast_dtype = torch.float32
68 | self.scalar = None
69 |
70 | self.optimizer = None
71 |
72 |
73 | def predict(self, data_loader, training=False):
74 | last_status = self.training
75 | if training:
76 | self.train()
77 | else:
78 | self.eval()
79 |
80 | with torch.no_grad():
81 | with torch.autocast(device_type=self.device, dtype=self.autocast_dtype):
82 | batch_y_pred_list = []
83 | for step, (batch_x, batch_y) in enumerate(tqdm(data_loader)):
84 | batch_logits = self(batch_x)
85 | batch_y_pred = self.output_activation_func(batch_logits)
86 | # if multi_label:
87 | # batch_y_pred = (F.sigmoid(batch_logits) > 0.5).float()
88 | # else:
89 | # batch_y_pred = torch.argmax(batch_logits, dim=-1)
90 |
91 | # batch_y_pred_list.append(batch_y_pred.detach().cpu().numpy())
92 |
93 | batch_y_pred_list.append(batch_y_pred.cpu())
94 |
95 | # y_pred = np.concatenate(batch_y_pred_list, axis=0)
96 |
97 | y_pred = torch.concat(batch_y_pred_list, dim=0)
98 |
99 | self.train(last_status)
100 | return y_pred
101 |
102 |
103 |
104 | def evaluate(self, data_loader, log_prefix):
105 | self.eval()
106 |
107 | # for metric_name, metric in self.metrics_dict.items():
108 | # metric.reset()
109 | # print("reset metric for evaluation: {}".format(metric_name))
110 |
111 | with torch.no_grad():
112 | with torch.autocast(device_type=self.device, dtype=self.autocast_dtype):
113 | batch_y_pred_list = []
114 | batch_y_list = []
115 | losses_list = []
116 | for step, (batch_x, batch_y) in enumerate(tqdm(data_loader)):
117 | batch_logits = self(batch_x)
118 |
119 | batch_losses = self.loss_func(batch_logits, batch_y)
120 |
121 | if self.multi_label:
122 | batch_y_pred = (torch.sigmoid(batch_logits) > 0.5).float()
123 | else:
124 | batch_y_pred = torch.argmax(batch_logits, dim=-1)
125 |
126 | if self.metrics_dict is not None:
127 | for metric in self.metrics_dict.values():
128 | if isinstance(metric, LogitsBasedMetric):
129 | metric(batch_logits, batch_y)
130 | else:
131 | metric(batch_y_pred, batch_y)
132 |
133 | losses_list.append(batch_losses.detach().cpu().numpy())
134 | batch_y_pred_list.append(batch_y_pred.detach().cpu().numpy())
135 | batch_y_list.append(batch_y.detach().cpu().numpy())
136 |
137 | losses = np.concatenate(losses_list, axis=0)
138 | loss = losses.mean()
139 |
140 | # y_pred = np.concatenate(batch_y_pred_list, axis=0)
141 | # y_true = np.concatenate(batch_y_list, axis=0)
142 |
143 |
144 | # accuracy = accuracy_score(y_true, y_pred)
145 |
146 | # if dataset != "mag":
147 | # micro_f1 = f1_score(y_true, y_pred, average="micro")
148 | # macro_f1 = f1_score(y_true, y_pred, average="macro")
149 |
150 |
151 | logs = {}
152 |
153 | logs["{}_loss".format(log_prefix)] = loss
154 | # logs["{}_accuracy".format(log_prefix)] = accuracy
155 |
156 | # if dataset != "mag":
157 | # logs["{}_micro_f1".format(log_prefix)] = micro_f1
158 | # logs["{}_macro_f1".format(log_prefix)] = macro_f1
159 |
160 | if self.metrics_dict is not None:
161 | with torch.no_grad():
162 | for metric_name, metric in self.metrics_dict.items():
163 | logs["{}_{}".format(log_prefix, metric_name)] = metric.compute().item()
164 | metric.reset()
165 |
166 | return logs
167 |
168 |
169 |
170 |
171 | def train_step(self, batch_data):
172 | return {}
173 |
174 |
175 |
176 | def train_epoch(self, epoch, train_data_loader):
177 | self.train()
178 |
179 | batch_results_dict = {}
180 | step_pbar = tqdm(train_data_loader)
181 | for step, batch_data in enumerate(step_pbar):
182 | batch_result = self.train_step(batch_data)
183 | with torch.no_grad():
184 | for key, value in batch_result.items():
185 | if key not in batch_results_dict:
186 | batch_results_dict[key] = []
187 | batch_results_dict[key].append(value)
188 |
189 | step_pbar.set_postfix(
190 | {key: "{:.4f}".format(value.item()) for key, value in batch_result.items()}
191 | )
192 |
193 |
194 | if self.scheduler is not None:
195 | self.scheduler.step()
196 | print("current learning_rate: ", self.scheduler.get_last_lr())
197 |
198 | with torch.no_grad():
199 | logs = {
200 | key: torch.stack(value, dim=0).mean().item() for key, value in batch_results_dict.items()
201 | }
202 |
203 | return logs
204 |
205 |
206 |
207 |
208 | def fit(self, train_data,
209 | epochs,
210 | validation_data,
211 | validation_freq,
212 | callbacks=None,
213 | initial_epoch=0,
214 | ):
215 |
216 | if self.optimizer is None:
217 | self.optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
218 | print("create optimizer ...")
219 |
220 | if self.scheduler_gamma is not None:
221 | self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=1, gamma=self.scheduler_gamma)
222 | else:
223 | self.scheduler = None
224 |
225 | if callbacks is None:
226 | callbacks = []
227 |
228 | for callback in callbacks:
229 | callback.model = self
230 |
231 | for callback in callbacks:
232 | callback.on_train_begin()
233 |
234 | for epoch in range(initial_epoch, epochs):
235 | logs = {"epoch": epoch}
236 | self.train()
237 | print("start epoch {}:".format(epoch))
238 | train_logs = self.train_epoch(epoch, train_data)
239 | # train_logs = {"train_{}".format(key): value for key, value in train_logs.items()}
240 | logs = {
241 | **logs,
242 | **train_logs
243 | }
244 |
245 | # if epoch % validation_freq == 0:
246 |
247 | if (epoch + 1) % validation_freq == 0:
248 | self.eval()
249 | eval_start_time = time.time()
250 | validation_logs = self.evaluate(validation_data, log_prefix="val")
251 | logs = {
252 | **logs,
253 | **validation_logs
254 | }
255 | print("==== eval_time: ", time.time() - eval_start_time)
256 |
257 |
258 | for callback in callbacks:
259 | callback.on_epoch_end(epoch, logs)
260 |
261 |
262 | if (epoch + 1) % validation_freq == 0:
263 | # np_logs = {key: np.array(value) for key, value in logs.items()}
264 | print("epoch = {}\tlogs = {}".format(epoch, logs))
265 |
266 | if self.stop_training:
267 | print("early stop ...")
268 | break
269 |
270 |
271 |
272 |
273 |
274 |
275 | class CommonTorchTrainModel(TorchTrainModel):
276 | def __init__(self, metrics_dict=None, multi_label=False, loss_func=None, learning_rate=None, scheduler_gamma=None, train_strategy="common", num_views=None, cl_rate=None) -> None:
277 |
278 | super().__init__(metrics_dict, learning_rate, scheduler_gamma)
279 |
280 | self.multi_label = multi_label
281 | self.train_strategy = train_strategy
282 | self.num_views = num_views
283 | self.cl_rate = cl_rate
284 | self.device = "cuda"
285 |
286 | if loss_func is not None:
287 | self.loss_func = loss_func
288 | else:
289 | if self.multi_label:
290 | self.loss_func = torch.nn.BCEWithLogitsLoss(reduction="none")
291 | self.output_activation_func = torch.nn.Sigmoid()
292 | else:
293 | self.loss_func = torch.nn.CrossEntropyLoss(reduction="none")
294 | self.output_activation_func = torch.nn.Softmax(dim=-1)
295 |
296 |
297 |
298 | def weighted_cross_entropy(logits, labels):
299 | probs = F.softmax(logits, dim=-1)
300 | probs = probs[torch.arange(0, probs.size(0)), labels]
301 | probs = probs.detach()
302 |
303 | weights = torch.ones_like(probs)
304 | weights[probs > 0.8] = 0.0
305 |
306 |
307 | scale = torch.tensor(weights.size(0)).float() / (weights.sum() + 1e-8)
308 | weights *= scale
309 |
310 | losses = self.loss_func(logits, labels)
311 | loss = (losses * weights).mean()
312 | return loss
313 |
314 |
315 | self.optimizer = None
316 |
317 |
318 | def compute_kl_loss(self, logits, batch_x):
319 | batch_label_x = batch_x[-self.num_class_groups:]
320 | pseudo_label_list = [torch.stack(h_list, dim=0).mean(dim=0) for h_list in batch_label_x]
321 | pseudo_label = torch.stack(pseudo_label_list, dim=0).mean(dim=0)
322 |
323 | kl_loss = self.loss_func(logits, pseudo_label).mean()
324 | return kl_loss
325 |
326 | def compute_l2_loss(self):
327 | l2_loss = 0.0
328 | for name, param in self.named_parameters():
329 | if "weight" in name:
330 | l2_loss += (param ** 2).sum() * 0.5
331 | print("l2_loss = {}".format(l2_loss.item()))
332 | return l2_loss * 1e-5
333 |
334 |
335 | def common_forward_and_compute_loss(self, batch_x, batch_y):
336 |
337 | logits = self(batch_x)
338 | losses = self.loss_func(logits, batch_y)
339 | loss = losses.mean()
340 |
341 | # l2_loss = self.compute_l2_loss()
342 | # loss += l2_loss
343 |
344 | # if self.num_class_groups is not None and self.num_class_groups > 0:
345 | # kl_loss = self.compute_kl_loss(logits, batch_x)
346 | # loss += kl_loss * 0.5
347 |
348 | # print("kl_loss = {}".format(kl_loss.item()))
349 |
350 | return logits, loss
351 |
352 | def cl_forward_and_compute_loss(self, batch_x, batch_y, batch_train_mask):
353 |
354 |
355 | ce_loss_list = []
356 | y_pred_list = []
357 |
358 | logits_list = [self(batch_x) for _ in range(self.num_views)]
359 | ce_loss_list = [self.loss_func(logits[batch_train_mask], batch_y[batch_train_mask]).mean()
360 | for logits in logits_list]
361 |
362 | # ce_loss_list = [self.weighted_loss(logits[batch_train_mask], batch_y[batch_train_mask])
363 | # for logits in logits_list]
364 |
365 | ce_loss = torch.stack(ce_loss_list, dim=0).sum(dim=0)
366 |
367 |
368 | y_pred_list = [self.output_activation_func(logits) for logits in logits_list]
369 |
370 |
371 | # self.eval()
372 | # y_pred_list.append(self.output_activation_func(self(batch_x)).detach())
373 | # self.train()
374 |
375 | stacked_y_preds = torch.stack(y_pred_list, dim=1)
376 | mean_y_pred = stacked_y_preds.mean(dim=1)
377 |
378 | pseudo_y = torch.argmax(mean_y_pred, dim=-1)
379 |
380 | # def compute_pseudo_acc(y_pred):
381 | # pseudo_y = y_pred.argmax(dim=-1)
382 | # unlabeled_peudo_y = pseudo_y[~batch_train_mask]
383 | # cl_acc = (unlabeled_peudo_y == batch_y[~batch_train_mask]).float().mean()
384 | # return cl_acc
385 |
386 | # for i, logits in enumerate(logits_list):
387 | # print("logits{}_acc = {}".format(i, compute_pseudo_acc(logits).item()))
388 | # print("cl_acc = {}".format(compute_pseudo_acc(mean_y_pred).item()))
389 |
390 | # ce for cl
391 | cl_loss_list = [self.loss_func(logits, pseudo_y).mean()
392 | for logits in logits_list]
393 | cl_loss = torch.stack(cl_loss_list, dim=0).sum(dim=0)
394 |
395 |
396 | loss = ce_loss + cl_loss * self.cl_rate
397 |
398 |
399 | # if self.num_class_groups is not None and self.num_class_groups > 0:
400 | # kl_loss_list = [self.compute_kl_loss(logits, batch_x) for logits in logits_list]
401 | # kl_loss = torch.stack(kl_loss_list, dim=0).sum(dim=0)
402 | # loss += kl_loss * 0.5
403 |
404 | # # print("kl_loss = {}".format(kl_loss.item()))
405 |
406 | return logits_list[0], loss
407 |
408 | def train_step(self, batch_data):
409 |
410 | # train_start_time = time.time()
411 | self.train()
412 | with torch.autocast(device_type=self.device, dtype=self.autocast_dtype):
413 |
414 | if self.train_strategy == "common":
415 | batch_x, batch_y = batch_data
416 | logits, loss = self.common_forward_and_compute_loss(batch_x, batch_y)
417 |
418 | elif self.train_strategy == "cl":
419 | batch_x, batch_y, batch_train_mask = batch_data
420 | logits, loss = self.cl_forward_and_compute_loss(batch_x, batch_y, batch_train_mask)
421 |
422 | elif self.train_strategy == "cl_conf":
423 | batch_x, batch_y, batch_train_mask = batch_data
424 | logits, loss = self.cl_conf_forward_and_compute_loss(batch_x, batch_y, batch_train_mask)
425 |
426 | elif self.train_strategy == "cl_cos":
427 | batch_x, batch_y, batch_train_mask = batch_data
428 | logits, loss = self.cl_cos_forward_and_compute_loss(batch_x, batch_y, batch_train_mask)
429 |
430 | elif self.train_strategy == "cl_soft":
431 | batch_x, batch_y, batch_train_mask = batch_data
432 | logits, loss = self.cl_soft_forward_and_compute_loss(batch_x, batch_y, batch_train_mask)
433 | elif self.train_strategy == "cl_weighted":
434 | batch_x, batch_y, batch_train_mask, weights = batch_data
435 | logits, loss = self.cl_weighted_forward_and_compute_loss(batch_x, batch_y, batch_train_mask, weights)
436 |
437 | else:
438 | raise Exception("not supported yet")
439 |
440 | # print("forward_time: ", time.time() - train_start_time)
441 |
442 | self.optimizer.zero_grad()
443 | if self.scalar is None:
444 | loss.backward()
445 | self.optimizer.step()
446 | else:
447 | self.scalar.scale(loss).backward()
448 | self.scalar.step(self.optimizer)
449 | self.scalar.update()
450 |
451 | with torch.no_grad():
452 | with torch.autocast(device_type=self.device, dtype=self.autocast_dtype):
453 | if self.multi_label:
454 | batch_y_pred = logits > 0.0
455 | else:
456 | batch_y_pred = logits.argmax(dim=-1)
457 |
458 | batch_corrects = (batch_y_pred == batch_y).float()
459 | batch_accuracy = batch_corrects.mean()
460 |
461 | return {
462 | "loss": loss,
463 | "accuracy": batch_accuracy
464 | }
465 |
466 |
467 |
468 |
469 |
470 |
471 |
472 |
473 |
--------------------------------------------------------------------------------
/rphgnn/losses.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | import torch.nn.functional as F
4 |
5 | def kl_loss(y_pred, y_true):
6 | y_pred = F.log_softmax(y_pred, dim=-1)
7 | losses = F.kl_div(y_pred, y_true, reduction='none').sum(dim=-1)
8 | return losses
--------------------------------------------------------------------------------
/rphgnn/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrawlScript/RpHGNN/1a1779a747a28ac8d936280a6b96951636183965/rphgnn/utils/__init__.py
--------------------------------------------------------------------------------
/rphgnn/utils/argparse_utils.py:
--------------------------------------------------------------------------------
1 | def parse_bool(bool_str):
2 | if bool_str == "True":
3 | return True
4 | elif bool_str == "False":
5 | return False
6 | else:
7 | raise Exception("wrong bool_str: ", bool_str)
--------------------------------------------------------------------------------
/rphgnn/utils/graph_utils.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | import dgl
4 | import numpy as np
5 | import torch
6 | from rphgnn.global_configuration import global_config
7 |
8 | def dgl_remove_edges(g, etypes_to_remove):
9 | etypes_to_remove = set(etypes_to_remove)
10 |
11 | edge_dict = {}
12 | for etype in list(g.canonical_etypes):
13 | if etype not in etypes_to_remove:
14 | edge_dict[etype] = g.edges(etype=etype)
15 |
16 | new_g = dgl.heterograph(edge_dict)
17 |
18 | for key in g.ndata:
19 | print("key = ", key)
20 | value = {ntype: data for ntype, data in g.ndata[key].items() if ntype in new_g.ntypes}
21 | new_g.ndata[key] = value
22 |
23 | return new_g
24 |
25 | def dgl_add_all_reversed_edges(g):
26 | edge_dict = {}
27 | for etype in list(g.canonical_etypes):
28 | col, row = g.edges(etype=etype)
29 | edge_dict[etype] = (col, row)
30 |
31 | if etype[0] != etype[2]:
32 | new_etype = (etype[2], "r.{}".format(etype[1]), etype[0])
33 | edge_dict[new_etype] = (row, col)
34 |
35 | new_g = dgl.heterograph(edge_dict)
36 |
37 | for key in g.ndata:
38 | print("key = ", key)
39 | new_g.ndata[key] = g.ndata[key]
40 |
41 | return new_g
42 |
43 |
44 | def add_random_feats(hetero_graph, embedding_size, excluded_ntypes=None):
45 | def normalize(x):
46 | return x / np.linalg.norm(x, axis=-1, keepdims=True)
47 |
48 | def create_embedding_for_node_type(ntype):
49 | num_nodes = hetero_graph.num_nodes(ntype)
50 | print("start random feature")
51 | embeddings = torch.randn([num_nodes, embedding_size], generator=global_config.embedding_generator) / np.sqrt(embedding_size)
52 | return embeddings
53 |
54 | for ntype in list(hetero_graph.ntypes):
55 | if excluded_ntypes is None or ntype not in excluded_ntypes:
56 | print("set data: ", ntype)
57 | hetero_graph.nodes[ntype].data["feat"] = create_embedding_for_node_type(ntype)
58 |
59 | return hetero_graph
60 |
--------------------------------------------------------------------------------
/rphgnn/utils/metrics_utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | import torchmetrics
4 |
5 | def dcg_at_k(r, k):
6 | r = np.asfarray(r)[:k]
7 | if r.size:
8 | return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1)))
9 | return 0.
10 |
11 |
12 | def ndcg_at_k(r, k):
13 | dcg_max = dcg_at_k(sorted(r, reverse=True), k)
14 | if not dcg_max:
15 | return 0.
16 | return dcg_at_k(r, k) / dcg_max
17 |
18 |
19 | def mean_reciprocal_rank(rs):
20 | rs = (np.asarray(r).nonzero()[0] for r in rs)
21 | return np.mean([1. / (r[0] + 1) if r.size else 0. for r in rs])
22 |
23 |
24 | def ndcg_mrr(pred, labels):
25 | """
26 | Compute both NDCG and MRR for single-label and multi-label. Code extracted from
27 | https://github.com/acbull/pyHGT/blob/f7c4be620242d8c1ab3055f918d4c082f5060e07/OAG/train_paper_venue.py#L316 (single label)
28 | and
29 | https://github.com/acbull/pyHGT/blob/f7c4be620242d8c1ab3055f918d4c082f5060e07/OAG/train_paper_field.py#L322 (multi-label)
30 | """
31 | test_res = []
32 | if len(labels.shape) == 1:
33 | # single-label
34 | for ai, bi in zip(labels, pred.argsort(descending = True)):
35 | test_res += [(bi == ai).int().tolist()]
36 | else:
37 | # multi-label
38 | for ai, bi in zip(labels, pred.argsort(descending = True)):
39 | test_res += [ai[bi].int().tolist()]
40 | ndcg = np.mean([ndcg_at_k(resi, len(resi)) for resi in test_res])
41 | mrr = mean_reciprocal_rank(test_res)
42 | return ndcg, mrr
43 |
44 |
45 | ###############################################################################
46 | # Fast re-implementation of NDCG and MRR for a batch of nodes.
47 | # We provide unit test below using random input to verify correctness /
48 | # equivalence.
49 | ###############################################################################
50 |
51 | def batched_dcg_at_k(r, k):
52 | assert(len(r.shape) == 2 and r.size != 0 and k > 0)
53 | r = r[:, :k].float()
54 | # Usually, one defines DCG = \sum\limits_{i=0}^{n-1}\frac{r_i}/{log2(i+2)}
55 | # So, we should
56 | # return (r / torch.log2(torch.arange(0, r.shape[1], device=r.device, dtype=r.dtype).view(1, -1) + 2)).sum(dim=1)
57 | # However, HGT author implements DCG = r_0 + \sum\limits_{i=1}^{n-1}\frac{r_i}/{log2(i+1)}, which makes DCG and NDCG larger
58 | # Here, we follow HGT author for a fair comparison
59 | return r[:, 0] + (r[:, 1:] / torch.log2(torch.arange(1, r.shape[1], device=r.device, dtype=r.dtype).view(1, -1) + 1)).sum(dim=1)
60 |
61 |
62 | def batched_ndcg_at_k(r, k):
63 | dcg_max = batched_dcg_at_k(r.sort(dim=1, descending=True)[0], k)
64 | dcg_max_inv = 1.0 / dcg_max
65 | dcg_max_inv[torch.isinf(dcg_max_inv)] = 0
66 | return batched_dcg_at_k(r, k) * dcg_max_inv
67 |
68 |
69 | def batched_mrr(r):
70 | r = r != 0
71 | # torch 1.5 does not guarantee max returns first occurrence
72 | # https://pytorch.org/docs/1.5.0/torch.html?highlight=max#torch.max
73 | # So we get first occurrence of non-zero using numpy max
74 | max_indices = torch.from_numpy(r.cpu().numpy().argmax(axis=1))
75 | max_values = r[torch.arange(r.shape[0]), max_indices]
76 | r = 1.0 / (max_indices.float() + 1)
77 | r[max_values == 0] = 0
78 | return r
79 |
80 |
81 | # def batched_ndcg_mrr(pred, labels):
82 | # pred = pred.argsort(descending=True)
83 | # if len(labels.shape) == 1:
84 | # # single-label
85 | # labels = labels.view(-1, 1)
86 | # rel = (pred == labels).int()
87 | # else:
88 | # # multi-label
89 | # rel = torch.gather(labels, 1, pred)
90 | # return batched_ndcg_at_k(rel, rel.shape[1]), batched_mrr(rel)
91 |
92 | def compute_batched_ndcg(pred, labels):
93 | pred = pred.argsort(descending=True)
94 | if len(labels.shape) == 1:
95 | # single-label
96 | labels = labels.view(-1, 1)
97 | rel = (pred == labels).int()
98 | else:
99 | # multi-label
100 | rel = torch.gather(labels, 1, pred)
101 | return batched_ndcg_at_k(rel, rel.shape[1])
102 |
103 | def compute_batched_mrr(pred, labels):
104 | pred = pred.argsort(descending=True)
105 | if len(labels.shape) == 1:
106 | # single-label
107 | labels = labels.view(-1, 1)
108 | rel = (pred == labels).int()
109 | else:
110 | # multi-label
111 | rel = torch.gather(labels, 1, pred)
112 | return batched_mrr(rel)
113 |
114 |
115 | class LogitsBasedMetric(torchmetrics.Metric):
116 | pass
117 |
118 |
119 | class NDCG(LogitsBasedMetric):
120 | def __init__(self):
121 | super().__init__()
122 | self.add_state("ndcg_sum", default=torch.tensor(0.0), dist_reduce_fx="sum")
123 | self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
124 |
125 | def update(self, logits: torch.Tensor, target: torch.Tensor):
126 | batch_ndcgs = compute_batched_ndcg(logits, target)
127 | self.ndcg_sum += batch_ndcgs.sum()
128 | # self.total += target.numel()
129 | self.total += target.size(0)
130 |
131 | def compute(self):
132 | return self.ndcg_sum / self.total.float()
133 |
134 |
135 | class MRR(LogitsBasedMetric):
136 | def __init__(self):
137 | super().__init__()
138 | self.add_state("mrr_sum", default=torch.tensor(0.0), dist_reduce_fx="sum")
139 | self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
140 |
141 | def update(self, logits: torch.Tensor, target: torch.Tensor):
142 | batch_mrrs = compute_batched_mrr(logits, target)
143 | self.mrr_sum += batch_mrrs.sum()
144 | # self.total += target.numel()
145 | self.total += target.size(0)
146 |
147 | def compute(self):
148 | return self.mrr_sum / self.total.float()
--------------------------------------------------------------------------------
/rphgnn/utils/nested_data_utils.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 |
4 | def nested_map(data, func):
5 | if isinstance(data, list):
6 | return [nested_map(item, func) for item in data]
7 | else:
8 | return func(data)
9 |
10 | def gather_h_y(target_h_list_list, y, index):
11 | def func(data):
12 | return data[index]
13 |
14 | target_h_list_list_, y_ = nested_map(target_h_list_list, func), nested_map(y, func)
15 |
16 | return target_h_list_list_, y_
17 |
18 |
19 | def nested_gather(nested_data, index):
20 | def func(data):
21 | return data[index]
22 | return nested_map(nested_data, func)
23 |
--------------------------------------------------------------------------------
/rphgnn/utils/random_project_utils.py:
--------------------------------------------------------------------------------
1 | from dataclasses import dataclass
2 | import torch
3 | import torch.nn.functional as F
4 | import numpy as np
5 | from rphgnn.global_configuration import global_config
6 |
7 |
8 |
9 |
10 |
11 | def torch_normalize_l2(x):
12 | return F.normalize(x, dim=-1)
13 |
14 | torch_normalize = torch_normalize_l2
15 |
16 | def get_reversed_etype(etype):
17 |
18 | if etype[0] == etype[2]:
19 | return etype
20 |
21 | reversed_etype_ = etype[1][2:] if etype[1].startswith("r.") else "r.{}".format(etype[1])
22 | return (etype[2], reversed_etype_, etype[0])
23 |
24 |
25 | def create_func_torch_random_project_create_kernel_sparse(s=3.0):
26 |
27 | def torch_random_project_create_kernel_sparse(x, units, input_units=None, generator=None):
28 |
29 | if input_units is None:
30 | input_units = x.size(-1)
31 | shape = [input_units, units]
32 |
33 | stddev = 1.0
34 |
35 | if generator is None:
36 | probs = torch.rand(shape)
37 | else:
38 | print("generate fast random projection kernel with generator")
39 | probs = torch.rand(shape, generator=generator)
40 |
41 |
42 | fill = torch.ones(shape) * torch.sqrt(torch.tensor(s)) * stddev
43 |
44 | kernel = torch.zeros(shape)
45 | kernel = torch.where(probs >= (1.0 - 0.5 / s), fill, kernel)
46 | kernel = torch.where(probs < (0.5 / s), -fill, kernel)
47 |
48 | return kernel
49 |
50 | return torch_random_project_create_kernel_sparse
51 |
52 |
53 | def torch_random_project_create_kernel_xavier(x, units, input_units=None, generator=None):
54 | if input_units is None:
55 | input_units = x.size(-1)
56 | shape = [input_units, units]
57 | stddev = torch.sqrt(torch.tensor(2.0 / (shape[0] + shape[1])))
58 | kernel = torch.randn(shape) * stddev
59 | return kernel
60 |
61 |
62 | def torch_random_project_create_kernel_xavier_no_norm(x, units, input_units=None, generator=None):
63 | if input_units is None:
64 | input_units = x.size(-1)
65 | shape = [input_units, units]
66 |
67 | stddev = 1.0
68 | kernel = torch.randn(shape) * stddev
69 | return kernel
70 |
71 |
72 | def torch_random_project_common(x, units, activation=False, norm=True, kernel=None, generator=None):
73 |
74 | if kernel is None:
75 | kernel = global_config.torch_random_project_create_kernel(x, units, generator=generator)
76 |
77 | h = x @ kernel
78 |
79 | if norm:
80 | h = torch_normalize(h)
81 |
82 | return h
83 |
84 |
85 | global_config.torch_random_project = torch_random_project_common
86 | global_config.torch_random_project_create_kernel = create_func_torch_random_project_create_kernel_sparse(s=3.0)
87 |
88 |
89 |
90 |
91 | def torch_random_project_then_sum(x_list, units, norm=True, generator=None):
92 | h_list = [global_config.torch_random_project(x, units, norm=norm, generator=generator)
93 | for x in x_list]
94 | h = torch.stack(h_list, dim=0).sum(dim=0)
95 | return h
96 |
97 |
98 |
99 | def torch_random_project_then_mean(x_list, units, norm=True, num_samplings=None):
100 |
101 | h_list = [global_config.torch_random_project(x, units, norm=norm)
102 | for x in x_list]
103 | h = torch.stack(h_list, dim=0).mean(dim=0)
104 |
105 | return h
106 |
107 |
108 |
--------------------------------------------------------------------------------
/rphgnn/utils/random_utils.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | import random
4 | import numpy as np
5 | import torch
6 |
7 | def reset_seed(seed):
8 | print("set seed: {} ...".format(seed))
9 | random.seed(seed)
10 | torch.manual_seed(seed)
11 | np.random.seed(seed)
12 |
13 | torch.cuda.manual_seed_all(seed)
14 | torch.backends.cudnn.deterministic = True
--------------------------------------------------------------------------------
/rphgnn/utils/torch_data_utils.py:
--------------------------------------------------------------------------------
1 |
2 | import torch
3 | from rphgnn.utils.nested_data_utils import nested_map
4 | import numpy as np
5 |
6 | def get_len(data):
7 | if isinstance(data, list):
8 | return get_len(data[0])
9 | else:
10 | return data.size(0)
11 |
12 | def get_device(data):
13 | if isinstance(data, list):
14 | return get_device(data[0])
15 | else:
16 | return data.device
17 |
18 |
19 | class NestedDataset(torch.utils.data.Dataset):
20 |
21 | def __init__(self, nested_data, device=None) -> None:
22 | self.nested_data = nested_data
23 | self.device = device
24 |
25 | def __getitem__(self, idx):
26 |
27 | def func(x):
28 | batch_data = x[idx]
29 | if self.device is not None:
30 | batch_data = batch_data.to(self.device)
31 | return batch_data
32 |
33 | batch_data = nested_map(self.nested_data, func)
34 |
35 | return batch_data
36 |
37 | def __len__(self):
38 | return np.ceil(get_len(self.nested_data)).astype(np.int32)
39 |
40 |
41 | class NestedDataLoader(torch.utils.data.DataLoader):
42 | def __init__(self, nested_data, batch_size, shuffle, device) -> None:
43 | dataset = NestedDataset(nested_data, device)
44 | if shuffle:
45 | sampler = torch.utils.data.RandomSampler(dataset)
46 | else:
47 | sampler = torch.utils.data.SequentialSampler(dataset)
48 |
49 | sampler = torch.utils.data.BatchSampler(sampler, batch_size=batch_size, drop_last=False)
50 |
51 | super().__init__(
52 | dataset=dataset,
53 | sampler=sampler,
54 | collate_fn=lambda batch: batch[0],
55 | )
56 |
57 |
58 |
59 |
60 |
--------------------------------------------------------------------------------
/scripts/run_ACM.sh:
--------------------------------------------------------------------------------
1 | SEED=1
2 | GPU=0
3 | DATASET=hgb_acm
4 | METHOD=rphgnn
5 | USE_NRL=False
6 | TRAIN_STRATEGY=common
7 | USE_INPUT=True
8 | ALL_FEAT=True
9 | INPUT_DROP_RATE=0.8
10 | DROP_RATE=0.7
11 | HIDDEN_SIZE=64
12 | SQUASH_K=6
13 | EPOCHS=500
14 | MAX_PATIENCE=100
15 | EMBEDDING_SIZE=256
16 | USE_LABEL=False
17 | EVEN_ODD="all"
18 |
19 | python -u main_rphgnn.py \
20 | --method ${METHOD} \
21 | --dataset ${DATASET} \
22 | --use_nrl ${USE_NRL} \
23 | --use_label ${USE_LABEL} \
24 | --even_odd ${EVEN_ODD} \
25 | --train_strategy ${TRAIN_STRATEGY} \
26 | --use_input ${USE_INPUT} \
27 | --input_drop_rate ${INPUT_DROP_RATE} \
28 | --drop_rate ${DROP_RATE} \
29 | --hidden_size ${HIDDEN_SIZE} \
30 | --squash_k ${SQUASH_K} \
31 | --num_epochs ${EPOCHS} \
32 | --max_patience ${MAX_PATIENCE} \
33 | --embedding_size ${EMBEDDING_SIZE} \
34 | --use_all_feat ${ALL_FEAT} \
35 | --output_dir outputs/${DATASET}/${METHOD}/ \
36 | --seed ${SEED} \
37 | --gpus ${GPU}
38 |
--------------------------------------------------------------------------------
/scripts/run_DBLP.sh:
--------------------------------------------------------------------------------
1 | SEED=1
2 | GPU=0
3 | DATASET=dblp
4 | METHOD=rphgnn
5 | USE_NRL=False
6 | TRAIN_STRATEGY=common
7 | USE_INPUT=False
8 | ALL_FEAT=True
9 | INPUT_DROP_RATE=0.8
10 | DROP_RATE=0.8
11 | HIDDEN_SIZE=512
12 | SQUASH_K=5
13 | EPOCHS=500
14 | MAX_PATIENCE=30
15 | EMBEDDING_SIZE=1024
16 | USE_LABEL=False
17 | EVEN_ODD="all"
18 |
19 | python -u main_rphgnn.py \
20 | --method ${METHOD} \
21 | --dataset ${DATASET} \
22 | --use_nrl ${USE_NRL} \
23 | --use_label ${USE_LABEL} \
24 | --even_odd ${EVEN_ODD} \
25 | --train_strategy ${TRAIN_STRATEGY} \
26 | --use_input ${USE_INPUT} \
27 | --input_drop_rate ${INPUT_DROP_RATE} \
28 | --drop_rate ${DROP_RATE} \
29 | --hidden_size ${HIDDEN_SIZE} \
30 | --squash_k ${SQUASH_K} \
31 | --num_epochs ${EPOCHS} \
32 | --max_patience ${MAX_PATIENCE} \
33 | --embedding_size ${EMBEDDING_SIZE} \
34 | --use_all_feat ${ALL_FEAT} \
35 | --output_dir outputs/${DATASET}/${METHOD}/ \
36 | --seed ${SEED} \
37 | --gpus ${GPU}
38 |
--------------------------------------------------------------------------------
/scripts/run_Freebase.sh:
--------------------------------------------------------------------------------
1 | SEED=1
2 | GPU=0
3 | DATASET=freebase
4 | METHOD=rphgnn
5 | USE_NRL=False
6 | TRAIN_STRATEGY=common
7 | USE_INPUT=False
8 | ALL_FEAT=False
9 | INPUT_DROP_RATE=0.7
10 | DROP_RATE=0.7
11 | HIDDEN_SIZE=256
12 | SQUASH_K=6
13 | EPOCHS=150
14 | MAX_PATIENCE=50
15 | EMBEDDING_SIZE=512
16 | USE_LABEL=False
17 | EVEN_ODD="all"
18 |
19 | python -u main_rphgnn.py \
20 | --method ${METHOD} \
21 | --dataset ${DATASET} \
22 | --use_nrl ${USE_NRL} \
23 | --use_label ${USE_LABEL} \
24 | --even_odd ${EVEN_ODD} \
25 | --train_strategy ${TRAIN_STRATEGY} \
26 | --use_input ${USE_INPUT} \
27 | --input_drop_rate ${INPUT_DROP_RATE} \
28 | --drop_rate ${DROP_RATE} \
29 | --hidden_size ${HIDDEN_SIZE} \
30 | --squash_k ${SQUASH_K} \
31 | --num_epochs ${EPOCHS} \
32 | --max_patience ${MAX_PATIENCE} \
33 | --embedding_size ${EMBEDDING_SIZE} \
34 | --use_all_feat ${ALL_FEAT} \
35 | --output_dir outputs/${DATASET}/${METHOD}/ \
36 | --seed ${SEED} \
37 | --gpus ${GPU}
38 |
--------------------------------------------------------------------------------
/scripts/run_IMDB.sh:
--------------------------------------------------------------------------------
1 | SEED=1
2 | GPU=0
3 | DATASET=imdb
4 | METHOD=rphgnn
5 | USE_NRL=False
6 | TRAIN_STRATEGY=common
7 | USE_INPUT=True
8 | ALL_FEAT=True
9 | INPUT_DROP_RATE=0.8
10 | DROP_RATE=0.7
11 | HIDDEN_SIZE=256
12 | SQUASH_K=3
13 | EPOCHS=500
14 | MAX_PATIENCE=50
15 | EMBEDDING_SIZE=1024
16 | USE_LABEL=False
17 | EVEN_ODD="all"
18 |
19 | python -u main_rphgnn.py \
20 | --method ${METHOD} \
21 | --dataset ${DATASET} \
22 | --use_nrl ${USE_NRL} \
23 | --use_label ${USE_LABEL} \
24 | --even_odd ${EVEN_ODD} \
25 | --train_strategy ${TRAIN_STRATEGY} \
26 | --use_input ${USE_INPUT} \
27 | --input_drop_rate ${INPUT_DROP_RATE} \
28 | --drop_rate ${DROP_RATE} \
29 | --hidden_size ${HIDDEN_SIZE} \
30 | --squash_k ${SQUASH_K} \
31 | --num_epochs ${EPOCHS} \
32 | --max_patience ${MAX_PATIENCE} \
33 | --embedding_size ${EMBEDDING_SIZE} \
34 | --use_all_feat ${ALL_FEAT} \
35 | --output_dir outputs/${DATASET}/${METHOD}/ \
36 | --seed ${SEED} \
37 | --gpus ${GPU}
38 |
--------------------------------------------------------------------------------
/scripts/run_OAG-L1-Field.sh:
--------------------------------------------------------------------------------
1 | SEED=0
2 | GPU=0
3 | DATASET=oag_L1
4 | METHOD=rphgnn
5 | USE_NRL=False
6 | TRAIN_STRATEGY=common
7 | USE_INPUT=False
8 | ALL_FEAT=True
9 | INPUT_DROP_RATE=0.3
10 | DROP_RATE=0.5
11 | HIDDEN_SIZE=512
12 | SQUASH_K=3
13 | EPOCHS=200
14 | MAX_PATIENCE=0
15 | EMBEDDING_SIZE=384
16 | USE_LABEL=False
17 | EVEN_ODD="all"
18 |
19 | python -u main_rphgnn.py \
20 | --method ${METHOD} \
21 | --dataset ${DATASET} \
22 | --use_nrl ${USE_NRL} \
23 | --use_label ${USE_LABEL} \
24 | --even_odd ${EVEN_ODD} \
25 | --train_strategy ${TRAIN_STRATEGY} \
26 | --use_input ${USE_INPUT} \
27 | --input_drop_rate ${INPUT_DROP_RATE} \
28 | --drop_rate ${DROP_RATE} \
29 | --hidden_size ${HIDDEN_SIZE} \
30 | --squash_k ${SQUASH_K} \
31 | --num_epochs ${EPOCHS} \
32 | --max_patience ${MAX_PATIENCE} \
33 | --embedding_size ${EMBEDDING_SIZE} \
34 | --use_all_feat ${ALL_FEAT} \
35 | --output_dir outputs/${DATASET}/${METHOD}/ \
36 | --seed ${SEED} \
37 | --gpus ${GPU}
38 |
--------------------------------------------------------------------------------
/scripts/run_OAG-Venue.sh:
--------------------------------------------------------------------------------
1 | SEED=0
2 | GPU=0
3 | DATASET=oag_venue
4 | METHOD=rphgnn
5 | USE_NRL=False
6 | TRAIN_STRATEGY=common
7 | USE_INPUT=True
8 | ALL_FEAT=True
9 | INPUT_DROP_RATE=0.5
10 | DROP_RATE=0.5
11 | HIDDEN_SIZE=512
12 | SQUASH_K=3
13 | EPOCHS=200
14 | MAX_PATIENCE=0
15 | EMBEDDING_SIZE=256
16 | USE_LABEL=False
17 | EVEN_ODD="all"
18 |
19 | python -u main_rphgnn.py \
20 | --method ${METHOD} \
21 | --dataset ${DATASET} \
22 | --use_nrl ${USE_NRL} \
23 | --use_label ${USE_LABEL} \
24 | --even_odd ${EVEN_ODD} \
25 | --train_strategy ${TRAIN_STRATEGY} \
26 | --use_input ${USE_INPUT} \
27 | --input_drop_rate ${INPUT_DROP_RATE} \
28 | --drop_rate ${DROP_RATE} \
29 | --hidden_size ${HIDDEN_SIZE} \
30 | --squash_k ${SQUASH_K} \
31 | --num_epochs ${EPOCHS} \
32 | --max_patience ${MAX_PATIENCE} \
33 | --embedding_size ${EMBEDDING_SIZE} \
34 | --use_all_feat ${ALL_FEAT} \
35 | --output_dir outputs/${DATASET}/${METHOD}/ \
36 | --seed ${SEED} \
37 | --gpus ${GPU}
38 |
--------------------------------------------------------------------------------
/scripts/run_OGBN-MAG.sh:
--------------------------------------------------------------------------------
1 | SEED=2
2 | GPU=0
3 | DATASET=mag
4 | METHOD=rphgnn
5 | USE_NRL=False
6 | TRAIN_STRATEGY=common
7 | USE_INPUT=True
8 | ALL_FEAT=True
9 | INPUT_DROP_RATE=0.0
10 | DROP_RATE=0.5
11 | HIDDEN_SIZE=512
12 | SQUASH_K=5
13 | EPOCHS=200
14 | MAX_PATIENCE=30
15 | EMBEDDING_SIZE=512
16 | USE_LABEL=False
17 | EVEN_ODD="all"
18 |
19 | python -u main_rphgnn.py \
20 | --method ${METHOD} \
21 | --dataset ${DATASET} \
22 | --use_nrl ${USE_NRL} \
23 | --use_label ${USE_LABEL} \
24 | --even_odd ${EVEN_ODD} \
25 | --train_strategy ${TRAIN_STRATEGY} \
26 | --use_input ${USE_INPUT} \
27 | --input_drop_rate ${INPUT_DROP_RATE} \
28 | --drop_rate ${DROP_RATE} \
29 | --hidden_size ${HIDDEN_SIZE} \
30 | --squash_k ${SQUASH_K} \
31 | --num_epochs ${EPOCHS} \
32 | --max_patience ${MAX_PATIENCE} \
33 | --embedding_size ${EMBEDDING_SIZE} \
34 | --use_all_feat ${ALL_FEAT} \
35 | --output_dir outputs/${DATASET}/${METHOD}/ \
36 | --seed ${SEED} \
37 | --gpus ${GPU}
38 |
--------------------------------------------------------------------------------
/scripts/run_leaderboard_OGBN-MAG.sh:
--------------------------------------------------------------------------------
1 | GPU=0
2 | DATASET=mag
3 | METHOD=rphgnn
4 | USE_NRL=True
5 | TRAIN_STRATEGY=cl
6 | USE_INPUT=True
7 | ALL_FEAT=True
8 | INPUT_DROP_RATE=0.1
9 | DROP_RATE=0.4
10 | HIDDEN_SIZE=512
11 | SQUASH_K=3
12 | EPOCHS=500
13 | MAX_PATIENCE=50
14 | EMBEDDING_SIZE=512
15 | USE_LABEL=True
16 | EVEN_ODD="all"
17 |
18 |
19 | mkdir cache
20 |
21 | for SEED in $(seq 0 9)
22 | do
23 | SEED=11
24 | echo $SEED
25 | python -u main_rphgnn.py \
26 | --dataset ${DATASET} \
27 | --method ${METHOD} \
28 | --use_nrl ${USE_NRL} \
29 | --use_label ${USE_LABEL} \
30 | --even_odd ${EVEN_ODD} \
31 | --train_strategy ${TRAIN_STRATEGY} \
32 | --use_input ${USE_INPUT} \
33 | --input_drop_rate ${INPUT_DROP_RATE} \
34 | --drop_rate ${DROP_RATE} \
35 | --hidden_size ${HIDDEN_SIZE} \
36 | --squash_k ${SQUASH_K} \
37 | --num_epochs ${EPOCHS} \
38 | --max_patience ${MAX_PATIENCE} \
39 | --embedding_size ${EMBEDDING_SIZE} \
40 | --use_all_feat ${ALL_FEAT} \
41 | --output_dir outputs/leaderboard_mag/ \
42 | --gpus ${GPU} \
43 | --seed ${SEED} > nohup_leaderboard_mag_${SEED}.out 2>&1
44 | done
45 |
--------------------------------------------------------------------------------