├── .gitignore
├── LICENSE
├── README.md
├── data
├── M10
│ ├── adjedges.txt
│ ├── docs.txt
│ └── labels.txt
├── cora
│ ├── docs.txt
│ ├── edgelist.txt
│ └── labels.txt
└── dblp
│ ├── adjedges.txt
│ ├── docs.txt
│ └── labels.txt
├── example_gcn.py
└── gnn
├── __init__.py
├── data
├── __init__.py
├── dataset.py
├── example.py
├── meta_network.py
└── old_meta_network.py
├── evaluation
└── __init__.py
├── model
├── __init__.py
└── gcn.py
└── util
├── __init__.py
├── evaluation.py
└── sparse.py
/.gitignore:
--------------------------------------------------------------------------------
1 | /.idea/
2 | **/__pycache__/
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # TF-GNN
2 | TensorFlow Implementation of Graph Attention Network and Graph Convolutional Network
3 |
4 | This repository is deprecated. Use [tf_geometric](https://github.com/CrawlScript/tf_geometric) instead: [https://github.com/CrawlScript/tf_geometric](https://github.com/CrawlScript/tf_geometric)
5 |
--------------------------------------------------------------------------------
/data/cora/labels.txt:
--------------------------------------------------------------------------------
1 | 31336 Neural_Networks
2 | 1061127 Rule_Learning
3 | 1106406 Reinforcement_Learning
4 | 13195 Reinforcement_Learning
5 | 37879 Probabilistic_Methods
6 | 1126012 Probabilistic_Methods
7 | 1107140 Theory
8 | 1102850 Neural_Networks
9 | 31349 Neural_Networks
10 | 1106418 Theory
11 | 1123188 Neural_Networks
12 | 1128990 Genetic_Algorithms
13 | 109323 Probabilistic_Methods
14 | 217139 Case_Based
15 | 31353 Neural_Networks
16 | 32083 Neural_Networks
17 | 1126029 Reinforcement_Learning
18 | 1118017 Neural_Networks
19 | 49482 Neural_Networks
20 | 753265 Neural_Networks
21 | 249858 Theory
22 | 1113739 Reinforcement_Learning
23 | 48766 Genetic_Algorithms
24 | 646195 Probabilistic_Methods
25 | 1126050 Reinforcement_Learning
26 | 59626 Theory
27 | 340299 Neural_Networks
28 | 354004 Probabilistic_Methods
29 | 242637 Neural_Networks
30 | 1106492 Rule_Learning
31 | 74975 Case_Based
32 | 1152272 Neural_Networks
33 | 100701 Case_Based
34 | 66982 Neural_Networks
35 | 13960 Reinforcement_Learning
36 | 13966 Reinforcement_Learning
37 | 66990 Neural_Networks
38 | 182093 Reinforcement_Learning
39 | 182094 Genetic_Algorithms
40 | 13972 Reinforcement_Learning
41 | 13982 Theory
42 | 16819 Probabilistic_Methods
43 | 273152 Genetic_Algorithms
44 | 237521 Neural_Networks
45 | 1153703 Case_Based
46 | 32872 Reinforcement_Learning
47 | 284025 Neural_Networks
48 | 218666 Case_Based
49 | 16843 Probabilistic_Methods
50 | 1153724 Case_Based
51 | 1153728 Case_Based
52 | 158098 Probabilistic_Methods
53 | 8699 Theory
54 | 1134865 Genetic_Algorithms
55 | 28456 Theory
56 | 248425 Genetic_Algorithms
57 | 1112319 Theory
58 | 28471 Reinforcement_Learning
59 | 175548 Neural_Networks
60 | 696345 Neural_Networks
61 | 28485 Reinforcement_Learning
62 | 1139195 Case_Based
63 | 35778 Probabilistic_Methods
64 | 28491 Reinforcement_Learning
65 | 310530 Case_Based
66 | 1153784 Genetic_Algorithms
67 | 1481 Case_Based
68 | 1153786 Probabilistic_Methods
69 | 13212 Neural_Networks
70 | 1111614 Case_Based
71 | 5055 Theory
72 | 4329 Probabilistic_Methods
73 | 330148 Neural_Networks
74 | 1105062 Reinforcement_Learning
75 | 4330 Probabilistic_Methods
76 | 5062 Case_Based
77 | 4335 Probabilistic_Methods
78 | 158812 Neural_Networks
79 | 40124 Theory
80 | 1103610 Theory
81 | 688361 Neural_Networks
82 | 302545 Probabilistic_Methods
83 | 20534 Reinforcement_Learning
84 | 1031453 Neural_Networks
85 | 5086 Probabilistic_Methods
86 | 193742 Reinforcement_Learning
87 | 58268 Rule_Learning
88 | 424 Rule_Learning
89 | 40151 Theory
90 | 636098 Theory
91 | 260121 Neural_Networks
92 | 950052 Neural_Networks
93 | 434 Reinforcement_Learning
94 | 1131270 Probabilistic_Methods
95 | 1131274 Probabilistic_Methods
96 | 1131277 Probabilistic_Methods
97 | 1110947 Case_Based
98 | 662279 Neural_Networks
99 | 1139928 Theory
100 | 153063 Probabilistic_Methods
101 | 134199 Genetic_Algorithms
102 | 641956 Neural_Networks
103 | 20584 Neural_Networks
104 | 1130567 Reinforcement_Learning
105 | 171225 Neural_Networks
106 | 714879 Probabilistic_Methods
107 | 37998 Rule_Learning
108 | 50336 Probabilistic_Methods
109 | 50337 Probabilistic_Methods
110 | 15429 Theory
111 | 23448 Neural_Networks
112 | 1122574 Neural_Networks
113 | 1110998 Neural_Networks
114 | 853150 Neural_Networks
115 | 15431 Theory
116 | 646286 Probabilistic_Methods
117 | 1152307 Case_Based
118 | 1115291 Probabilistic_Methods
119 | 1106547 Reinforcement_Learning
120 | 68463 Rule_Learning
121 | 59715 Genetic_Algorithms
122 | 69198 Neural_Networks
123 | 7272 Neural_Networks
124 | 163235 Neural_Networks
125 | 7276 Neural_Networks
126 | 34315 Neural_Networks
127 | 644843 Probabilistic_Methods
128 | 7297 Neural_Networks
129 | 628815 Reinforcement_Learning
130 | 35061 Genetic_Algorithms
131 | 68495 Theory
132 | 1136310 Probabilistic_Methods
133 | 18313 Reinforcement_Learning
134 | 34355 Neural_Networks
135 | 45212 Neural_Networks
136 | 1153091 Rule_Learning
137 | 8703 Rule_Learning
138 | 126920 Probabilistic_Methods
139 | 126927 Probabilistic_Methods
140 | 595157 Genetic_Algorithms
141 | 140005 Theory
142 | 1117476 Genetic_Algorithms
143 | 59798 Neural_Networks
144 | 219446 Neural_Networks
145 | 44514 Neural_Networks
146 | 287787 Genetic_Algorithms
147 | 157401 Neural_Networks
148 | 1154500 Case_Based
149 | 682666 Reinforcement_Learning
150 | 399173 Case_Based
151 | 198866 Case_Based
152 | 51834 Theory
153 | 200630 Neural_Networks
154 | 782486 Neural_Networks
155 | 1136393 Neural_Networks
156 | 137849 Probabilistic_Methods
157 | 1153811 Rule_Learning
158 | 24966 Theory
159 | 11148 Rule_Learning
160 | 51866 Theory
161 | 24974 Neural_Networks
162 | 137868 Probabilistic_Methods
163 | 28542 Reinforcement_Learning
164 | 35 Genetic_Algorithms
165 | 116021 Theory
166 | 348305 Rule_Learning
167 | 10430 Case_Based
168 | 39403 Reinforcement_Learning
169 | 40 Genetic_Algorithms
170 | 282700 Neural_Networks
171 | 1105116 Probabilistic_Methods
172 | 35854 Theory
173 | 63477 Case_Based
174 | 124064 Reinforcement_Learning
175 | 1120431 Neural_Networks
176 | 949318 Neural_Networks
177 | 649944 Rule_Learning
178 | 63486 Theory
179 | 1153866 Rule_Learning
180 | 1140040 Neural_Networks
181 | 1112426 Neural_Networks
182 | 239800 Theory
183 | 1131314 Probabilistic_Methods
184 | 1153891 Case_Based
185 | 1129835 Rule_Learning
186 | 310653 Probabilistic_Methods
187 | 1130600 Reinforcement_Learning
188 | 1111733 Neural_Networks
189 | 210871 Genetic_Algorithms
190 | 210872 Genetic_Algorithms
191 | 1132083 Neural_Networks
192 | 132806 Genetic_Algorithms
193 | 12631 Neural_Networks
194 | 12638 Neural_Networks
195 | 38771 Neural_Networks
196 | 232605 Rule_Learning
197 | 232606 Rule_Learning
198 | 1107312 Reinforcement_Learning
199 | 1114605 Neural_Networks
200 | 68505 Theory
201 | 133553 Neural_Networks
202 | 144408 Neural_Networks
203 | 23502 Neural_Networks
204 | 1108050 Neural_Networks
205 | 23507 Neural_Networks
206 | 83826 Neural_Networks
207 | 133563 Neural_Networks
208 | 85299 Neural_Networks
209 | 49660 Theory
210 | 593060 Genetic_Algorithms
211 | 341188 Reinforcement_Learning
212 | 714975 Probabilistic_Methods
213 | 1115375 Neural_Networks
214 | 95435 Reinforcement_Learning
215 | 145176 Neural_Networks
216 | 1113934 Case_Based
217 | 1132809 Rule_Learning
218 | 22835 Neural_Networks
219 | 1153148 Probabilistic_Methods
220 | 41714 Genetic_Algorithms
221 | 1118245 Reinforcement_Learning
222 | 1152436 Case_Based
223 | 1153166 Case_Based
224 | 1153169 Rule_Learning
225 | 38000 Rule_Learning
226 | 1152448 Case_Based
227 | 1137140 Neural_Networks
228 | 30895 Theory
229 | 5966 Genetic_Algorithms
230 | 1136422 Neural_Networks
231 | 27174 Neural_Networks
232 | 1128407 Case_Based
233 | 1124844 Neural_Networks
234 | 1153195 Neural_Networks
235 | 1113995 Neural_Networks
236 | 1136442 Neural_Networks
237 | 8821 Case_Based
238 | 46079 Genetic_Algorithms
239 | 119761 Neural_Networks
240 | 1111052 Reinforcement_Learning
241 | 315789 Genetic_Algorithms
242 | 1108841 Neural_Networks
243 | 1135746 Theory
244 | 100935 Genetic_Algorithms
245 | 353541 Neural_Networks
246 | 60682 Case_Based
247 | 253762 Probabilistic_Methods
248 | 8872 Reinforcement_Learning
249 | 714260 Probabilistic_Methods
250 | 137956 Rule_Learning
251 | 35922 Probabilistic_Methods
252 | 2354 Theory
253 | 168410 Reinforcement_Learning
254 | 346292 Neural_Networks
255 | 1153933 Neural_Networks
256 | 1119751 Theory
257 | 17798 Case_Based
258 | 400356 Neural_Networks
259 | 10531 Neural_Networks
260 | 1110390 Case_Based
261 | 714289 Probabilistic_Methods
262 | 733167 Neural_Networks
263 | 81714 Case_Based
264 | 428610 Neural_Networks
265 | 552469 Theory
266 | 164885 Genetic_Algorithms
267 | 81722 Case_Based
268 | 111866 Theory
269 | 194617 Neural_Networks
270 | 93318 Neural_Networks
271 | 134307 Probabilistic_Methods
272 | 203646 Neural_Networks
273 | 367312 Neural_Networks
274 | 650814 Genetic_Algorithms
275 | 93320 Reinforcement_Learning
276 | 134315 Probabilistic_Methods
277 | 134316 Probabilistic_Methods
278 | 976334 Reinforcement_Learning
279 | 1095507 Probabilistic_Methods
280 | 134320 Probabilistic_Methods
281 | 662416 Probabilistic_Methods
282 | 194645 Reinforcement_Learning
283 | 1131421 Neural_Networks
284 | 161221 Neural_Networks
285 | 38839 Case_Based
286 | 38846 Case_Based
287 | 133615 Rule_Learning
288 | 1112574 Theory
289 | 521207 Case_Based
290 | 3828 Case_Based
291 | 593105 Genetic_Algorithms
292 | 390693 Neural_Networks
293 | 642847 Probabilistic_Methods
294 | 1122704 Neural_Networks
295 | 4584 Reinforcement_Learning
296 | 7419 Reinforcement_Learning
297 | 30901 Theory
298 | 1115456 Neural_Networks
299 | 7432 Reinforcement_Learning
300 | 573553 Theory
301 | 1022969 Case_Based
302 | 143801 Neural_Networks
303 | 612306 Rule_Learning
304 | 417017 Case_Based
305 | 396412 Neural_Networks
306 | 1107455 Reinforcement_Learning
307 | 91975 Reinforcement_Learning
308 | 180187 Rule_Learning
309 | 27203 Theory
310 | 1152508 Genetic_Algorithms
311 | 69392 Neural_Networks
312 | 1118332 Neural_Networks
313 | 189577 Probabilistic_Methods
314 | 1114777 Case_Based
315 | 75969 Rule_Learning
316 | 1132922 Neural_Networks
317 | 1153254 Rule_Learning
318 | 1117618 Theory
319 | 6767 Case_Based
320 | 27241 Theory
321 | 27246 Neural_Networks
322 | 95589 Reinforcement_Learning
323 | 6771 Theory
324 | 86840 Theory
325 | 108962 Probabilistic_Methods
326 | 6786 Probabilistic_Methods
327 | 108963 Probabilistic_Methods
328 | 108974 Probabilistic_Methods
329 | 1117653 Neural_Networks
330 | 1152569 Genetic_Algorithms
331 | 1132968 Neural_Networks
332 | 370366 Neural_Networks
333 | 108983 Probabilistic_Methods
334 | 399339 Reinforcement_Learning
335 | 64319 Theory
336 | 1110426 Rule_Learning
337 | 1102407 Neural_Networks
338 | 1127812 Neural_Networks
339 | 1128542 Neural_Networks
340 | 65057 Probabilistic_Methods
341 | 159084 Neural_Networks
342 | 159085 Neural_Networks
343 | 65074 Probabilistic_Methods
344 | 33895 Genetic_Algorithms
345 | 2440 Rule_Learning
346 | 1717 Probabilistic_Methods
347 | 249421 Neural_Networks
348 | 3187 Probabilistic_Methods
349 | 591016 Rule_Learning
350 | 1110494 Neural_Networks
351 | 29492 Neural_Networks
352 | 400473 Neural_Networks
353 | 644334 Probabilistic_Methods
354 | 949511 Neural_Networks
355 | 205192 Neural_Networks
356 | 763009 Neural_Networks
357 | 169280 Neural_Networks
358 | 1120643 Genetic_Algorithms
359 | 645088 Probabilistic_Methods
360 | 5348 Neural_Networks
361 | 124296 Neural_Networks
362 | 1121398 Genetic_Algorithms
363 | 950305 Neural_Networks
364 | 567018 Neural_Networks
365 | 52000 Neural_Networks
366 | 52003 Neural_Networks
367 | 52007 Neural_Networks
368 | 58540 Reinforcement_Learning
369 | 436796 Neural_Networks
370 | 948846 Neural_Networks
371 | 8213 Reinforcement_Learning
372 | 671293 Probabilistic_Methods
373 | 1131550 Genetic_Algorithms
374 | 899119 Rule_Learning
375 | 1105394 Reinforcement_Learning
376 | 85452 Theory
377 | 1112686 Probabilistic_Methods
378 | 69418 Neural_Networks
379 | 8224 Theory
380 | 145315 Rule_Learning
381 | 575077 Genetic_Algorithms
382 | 20850 Theory
383 | 44017 Theory
384 | 1135125 Neural_Networks
385 | 286562 Neural_Networks
386 | 1123553 Reinforcement_Learning
387 | 1135137 Neural_Networks
388 | 325314 Neural_Networks
389 | 662572 Neural_Networks
390 | 159897 Probabilistic_Methods
391 | 1130856 Genetic_Algorithms
392 | 96335 Neural_Networks
393 | 755082 Probabilistic_Methods
394 | 1123576 Neural_Networks
395 | 1103979 Neural_Networks
396 | 593260 Genetic_Algorithms
397 | 601567 Rule_Learning
398 | 1119140 Neural_Networks
399 | 189655 Probabilistic_Methods
400 | 31769 Neural_Networks
401 | 1107567 Theory
402 | 88356 Probabilistic_Methods
403 | 1033 Genetic_Algorithms
404 | 1034 Genetic_Algorithms
405 | 1106849 Neural_Networks
406 | 16470 Neural_Networks
407 | 35343 Neural_Networks
408 | 16471 Neural_Networks
409 | 1154074 Neural_Networks
410 | 16476 Neural_Networks
411 | 23774 Reinforcement_Learning
412 | 16485 Neural_Networks
413 | 136665 Reinforcement_Learning
414 | 94953 Neural_Networks
415 | 9708 Case_Based
416 | 38205 Genetic_Algorithms
417 | 645897 Probabilistic_Methods
418 | 216877 Rule_Learning
419 | 18619 Theory
420 | 559804 Probabilistic_Methods
421 | 6898 Neural_Networks
422 | 166420 Theory
423 | 787016 Genetic_Algorithms
424 | 73146 Probabilistic_Methods
425 | 1136634 Theory
426 | 1111230 Reinforcement_Learning
427 | 3218 Rule_Learning
428 | 3229 Neural_Networks
429 | 193347 Rule_Learning
430 | 84020 Probabilistic_Methods
431 | 3231 Theory
432 | 52847 Theory
433 | 193352 Rule_Learning
434 | 193354 Rule_Learning
435 | 1110531 Case_Based
436 | 686532 Neural_Networks
437 | 711598 Theory
438 | 1063773 Neural_Networks
439 | 3243 Theory
440 | 78994 Neural_Networks
441 | 181782 Reinforcement_Learning
442 | 284414 Case_Based
443 | 114189 Probabilistic_Methods
444 | 686559 Neural_Networks
445 | 253971 Neural_Networks
446 | 1106103 Case_Based
447 | 1114125 Reinforcement_Learning
448 | 75318 Neural_Networks
449 | 45599 Genetic_Algorithms
450 | 97892 Case_Based
451 | 446271 Probabilistic_Methods
452 | 1106112 Reinforcement_Learning
453 | 280876 Probabilistic_Methods
454 | 12182 Theory
455 | 175909 Case_Based
456 | 64484 Reinforcement_Learning
457 | 6125 Theory
458 | 1120713 Case_Based
459 | 1114153 Neural_Networks
460 | 12197 Theory
461 | 248823 Reinforcement_Learning
462 | 919885 Neural_Networks
463 | 94229 Neural_Networks
464 | 1120731 Reinforcement_Learning
465 | 23069 Probabilistic_Methods
466 | 6151 Reinforcement_Learning
467 | 6155 Reinforcement_Learning
468 | 23070 Probabilistic_Methods
469 | 644448 Probabilistic_Methods
470 | 1112723 Neural_Networks
471 | 31097 Case_Based
472 | 6169 Reinforcement_Learning
473 | 1106172 Reinforcement_Learning
474 | 6170 Reinforcement_Learning
475 | 211875 Neural_Networks
476 | 1109017 Genetic_Algorithms
477 | 5454 Neural_Networks
478 | 6184 Reinforcement_Learning
479 | 10796 Case_Based
480 | 10798 Case_Based
481 | 1120777 Neural_Networks
482 | 86258 Theory
483 | 154134 Case_Based
484 | 6196 Reinforcement_Learning
485 | 20920 Probabilistic_Methods
486 | 20923 Probabilistic_Methods
487 | 22386 Case_Based
488 | 1131639 Neural_Networks
489 | 77515 Theory
490 | 93555 Neural_Networks
491 | 17201 Reinforcement_Learning
492 | 644494 Probabilistic_Methods
493 | 17208 Reinforcement_Learning
494 | 1125082 Genetic_Algorithms
495 | 1131647 Neural_Networks
496 | 74698 Probabilistic_Methods
497 | 13652 Neural_Networks
498 | 20942 Theory
499 | 390894 Probabilistic_Methods
500 | 390896 Probabilistic_Methods
501 | 1125092 Reinforcement_Learning
502 | 13656 Neural_Networks
503 | 1116347 Reinforcement_Learning
504 | 13658 Neural_Networks
505 | 114966 Neural_Networks
506 | 120013 Neural_Networks
507 | 1117089 Reinforcement_Learning
508 | 57948 Theory
509 | 334153 Theory
510 | 160732 Rule_Learning
511 | 1154103 Probabilistic_Methods
512 | 12946 Probabilistic_Methods
513 | 1104787 Neural_Networks
514 | 17242 Probabilistic_Methods
515 | 321861 Theory
516 | 189721 Probabilistic_Methods
517 | 1119211 Neural_Networks
518 | 12960 Theory
519 | 95718 Theory
520 | 6910 Neural_Networks
521 | 180373 Neural_Networks
522 | 6917 Rule_Learning
523 | 358884 Theory
524 | 887 Genetic_Algorithms
525 | 180399 Neural_Networks
526 | 358894 Theory
527 | 1154169 Neural_Networks
528 | 120084 Neural_Networks
529 | 1120019 Neural_Networks
530 | 1152711 Neural_Networks
531 | 1154176 Genetic_Algorithms
532 | 424540 Neural_Networks
533 | 1118546 Probabilistic_Methods
534 | 643003 Probabilistic_Methods
535 | 112099 Case_Based
536 | 1104007 Theory
537 | 1120049 Neural_Networks
538 | 175256 Genetic_Algorithms
539 | 45605 Genetic_Algorithms
540 | 15889 Case_Based
541 | 35490 Case_Based
542 | 221302 Case_Based
543 | 562123 Neural_Networks
544 | 1104031 Case_Based
545 | 1129442 Neural_Networks
546 | 1129443 Neural_Networks
547 | 1137466 Genetic_Algorithms
548 | 328370 Neural_Networks
549 | 1103315 Reinforcement_Learning
550 | 12210 Theory
551 | 1104055 Theory
552 | 64519 Reinforcement_Learning
553 | 114 Reinforcement_Learning
554 | 1109873 Neural_Networks
555 | 128 Reinforcement_Learning
556 | 12238 Theory
557 | 1112099 Theory
558 | 18774 Probabilistic_Methods
559 | 18777 Probabilistic_Methods
560 | 130 Reinforcement_Learning
561 | 23116 Theory
562 | 948299 Neural_Networks
563 | 6209 Reinforcement_Learning
564 | 197054 Reinforcement_Learning
565 | 6210 Reinforcement_Learning
566 | 6213 Reinforcement_Learning
567 | 6214 Reinforcement_Learning
568 | 6216 Reinforcement_Learning
569 | 6217 Reinforcement_Learning
570 | 2653 Theory
571 | 2658 Neural_Networks
572 | 753047 Theory
573 | 188318 Neural_Networks
574 | 74700 Probabilistic_Methods
575 | 67415 Theory
576 | 6220 Reinforcement_Learning
577 | 2665 Neural_Networks
578 | 28957 Probabilistic_Methods
579 | 143323 Case_Based
580 | 340075 Neural_Networks
581 | 1949 Case_Based
582 | 1953 Case_Based
583 | 1955 Case_Based
584 | 1959 Case_Based
585 | 390922 Probabilistic_Methods
586 | 22431 Rule_Learning
587 | 1113541 Neural_Networks
588 | 1132418 Neural_Networks
589 | 628500 Reinforcement_Learning
590 | 648106 Neural_Networks
591 | 1104809 Neural_Networks
592 | 4804 Theory
593 | 648112 Neural_Networks
594 | 33301 Case_Based
595 | 33303 Case_Based
596 | 267824 Neural_Networks
597 | 1138970 Theory
598 | 13717 Rule_Learning
599 | 1131719 Rule_Learning
600 | 1120866 Neural_Networks
601 | 1106287 Neural_Networks
602 | 755217 Reinforcement_Learning
603 | 647408 Genetic_Algorithms
604 | 1116410 Case_Based
605 | 1132459 Neural_Networks
606 | 1105574 Neural_Networks
607 | 1133196 Genetic_Algorithms
608 | 307336 Neural_Networks
609 | 906 Neural_Networks
610 | 1131745 Neural_Networks
611 | 1131748 Neural_Networks
612 | 910 Neural_Networks
613 | 943 Case_Based
614 | 31927 Neural_Networks
615 | 101261 Theory
616 | 101263 Theory
617 | 31932 Neural_Networks
618 | 779960 Neural_Networks
619 | 1135358 Theory
620 | 1154230 Probabilistic_Methods
621 | 1135368 Neural_Networks
622 | 28227 Reinforcement_Learning
623 | 32688 Neural_Networks
624 | 189856 Probabilistic_Methods
625 | 27510 Theory
626 | 27514 Neural_Networks
627 | 1154276 Neural_Networks
628 | 27530 Neural_Networks
629 | 1152821 Neural_Networks
630 | 28265 Case_Based
631 | 103430 Neural_Networks
632 | 27543 Neural_Networks
633 | 39126 Probabilistic_Methods
634 | 28278 Reinforcement_Learning
635 | 39131 Case_Based
636 | 10169 Theory
637 | 28287 Reinforcement_Learning
638 | 1129518 Probabilistic_Methods
639 | 1272 Theory
640 | 194223 Probabilistic_Methods
641 | 10177 Theory
642 | 18811 Probabilistic_Methods
643 | 18812 Probabilistic_Methods
644 | 73327 Case_Based
645 | 1117942 Reinforcement_Learning
646 | 15984 Probabilistic_Methods
647 | 202522 Probabilistic_Methods
648 | 1152858 Probabilistic_Methods
649 | 1152859 Neural_Networks
650 | 10183 Case_Based
651 | 81350 Reinforcement_Learning
652 | 259126 Neural_Networks
653 | 13024 Rule_Learning
654 | 1120170 Reinforcement_Learning
655 | 46452 Rule_Learning
656 | 26850 Neural_Networks
657 | 18832 Reinforcement_Learning
658 | 18833 Reinforcement_Learning
659 | 82098 Genetic_Algorithms
660 | 103482 Neural_Networks
661 | 158614 Theory
662 | 46468 Probabilistic_Methods
663 | 71904 Neural_Networks
664 | 80656 Neural_Networks
665 | 29708 Neural_Networks
666 | 1128839 Neural_Networks
667 | 1128846 Neural_Networks
668 | 12330 Neural_Networks
669 | 240321 Neural_Networks
670 | 1128853 Rule_Learning
671 | 219976 Case_Based
672 | 38480 Reinforcement_Learning
673 | 12350 Theory
674 | 1104191 Neural_Networks
675 | 7022 Neural_Networks
676 | 63931 Rule_Learning
677 | 68224 Neural_Networks
678 | 1110768 Neural_Networks
679 | 384428 Neural_Networks
680 | 1107041 Case_Based
681 | 1114352 Neural_Networks
682 | 1107062 Genetic_Algorithms
683 | 288 Reinforcement_Learning
684 | 1107067 Case_Based
685 | 91581 Probabilistic_Methods
686 | 39904 Neural_Networks
687 | 6334 Case_Based
688 | 123825 Neural_Networks
689 | 23258 Reinforcement_Learning
690 | 66805 Genetic_Algorithms
691 | 6346 Case_Based
692 | 55968 Reinforcement_Learning
693 | 368431 Theory
694 | 179702 Neural_Networks
695 | 1140547 Neural_Networks
696 | 1114388 Theory
697 | 90888 Neural_Networks
698 | 510715 Probabilistic_Methods
699 | 33412 Neural_Networks
700 | 188471 Reinforcement_Learning
701 | 1152143 Theory
702 | 1120962 Neural_Networks
703 | 1125258 Neural_Networks
704 | 648232 Neural_Networks
705 | 143476 Probabilistic_Methods
706 | 1152150 Neural_Networks
707 | 1117249 Theory
708 | 25413 Rule_Learning
709 | 1152162 Neural_Networks
710 | 241821 Neural_Networks
711 | 350362 Theory
712 | 1116530 Probabilistic_Methods
713 | 61069 Genetic_Algorithms
714 | 1110000 Probabilistic_Methods
715 | 646809 Genetic_Algorithms
716 | 1105698 Probabilistic_Methods
717 | 1152194 Neural_Networks
718 | 198653 Genetic_Algorithms
719 | 1116569 Neural_Networks
720 | 77758 Neural_Networks
721 | 854434 Neural_Networks
722 | 1128151 Genetic_Algorithms
723 | 1123867 Theory
724 | 191404 Probabilistic_Methods
725 | 1116594 Neural_Networks
726 | 126793 Probabilistic_Methods
727 | 43639 Neural_Networks
728 | 44368 Genetic_Algorithms
729 | 97390 Genetic_Algorithms
730 | 87915 Probabilistic_Methods
731 | 131117 Neural_Networks
732 | 8581 Neural_Networks
733 | 27606 Theory
734 | 1115886 Reinforcement_Learning
735 | 184157 Reinforcement_Learning
736 | 8594 Rule_Learning
737 | 1152904 Neural_Networks
738 | 1120211 Neural_Networks
739 | 28350 Reinforcement_Learning
740 | 1152910 Reinforcement_Learning
741 | 27627 Theory
742 | 649731 Neural_Networks
743 | 308920 Probabilistic_Methods
744 | 289780 Genetic_Algorithms
745 | 289781 Genetic_Algorithms
746 | 19621 Neural_Networks
747 | 1129608 Neural_Networks
748 | 1365 Neural_Networks
749 | 103543 Probabilistic_Methods
750 | 28387 Reinforcement_Learning
751 | 28389 Reinforcement_Learning
752 | 43698 Neural_Networks
753 | 54550 Case_Based
754 | 1129621 Neural_Networks
755 | 46536 Neural_Networks
756 | 1129629 Genetic_Algorithms
757 | 294126 Rule_Learning
758 | 568857 Genetic_Algorithms
759 | 447224 Genetic_Algorithms
760 | 38537 Probabilistic_Methods
761 | 1152975 Case_Based
762 | 34979 Theory
763 | 1104261 Theory
764 | 139865 Neural_Networks
765 | 56709 Genetic_Algorithms
766 | 1128945 Genetic_Algorithms
767 | 19697 Neural_Networks
768 | 107177 Theory
769 | 1131165 Probabilistic_Methods
770 | 1128959 Genetic_Algorithms
771 | 152219 Neural_Networks
772 | 184918 Neural_Networks
773 | 16008 Probabilistic_Methods
774 | 1122425 Reinforcement_Learning
775 | 928873 Neural_Networks
776 | 206259 Reinforcement_Learning
777 | 714748 Probabilistic_Methods
778 | 1131189 Probabilistic_Methods
779 | 217115 Theory
780 | 560936 Neural_Networks
781 | 1131198 Genetic_Algorithms
782 | 1128985 Genetic_Algorithms
783 | 466170 Neural_Networks
784 | 429805 Case_Based
785 | 561674 Neural_Networks
786 | 654177 Case_Based
787 | 95225 Theory
788 | 37884 Probabilistic_Methods
789 | 37888 Probabilistic_Methods
790 | 1128997 Genetic_Algorithms
791 | 545647 Theory
792 | 42207 Theory
793 | 42209 Theory
794 | 82920 Genetic_Algorithms
795 | 128202 Theory
796 | 128203 Theory
797 | 1134056 Neural_Networks
798 | 1102873 Neural_Networks
799 | 42221 Theory
800 | 1107171 Case_Based
801 | 1133338 Genetic_Algorithms
802 | 67633 Case_Based
803 | 375825 Probabilistic_Methods
804 | 48781 Genetic_Algorithms
805 | 75674 Reinforcement_Learning
806 | 289088 Neural_Networks
807 | 1152244 Case_Based
808 | 13917 Reinforcement_Learning
809 | 75695 Neural_Networks
810 | 34257 Neural_Networks
811 | 1117348 Neural_Networks
812 | 574710 Genetic_Algorithms
813 | 34263 Neural_Networks
814 | 1128204 Genetic_Algorithms
815 | 34266 Neural_Networks
816 | 1128208 Genetic_Algorithms
817 | 1116629 Neural_Networks
818 | 110162 Case_Based
819 | 110163 Case_Based
820 | 110164 Case_Based
821 | 628751 Neural_Networks
822 | 708945 Neural_Networks
823 | 1123926 Theory
824 | 1152277 Neural_Networks
825 | 77826 Case_Based
826 | 77829 Case_Based
827 | 8617 Neural_Networks
828 | 242663 Probabilistic_Methods
829 | 8619 Neural_Networks
830 | 628764 Neural_Networks
831 | 628766 Neural_Networks
832 | 1125393 Case_Based
833 | 66986 Neural_Networks
834 | 646913 Genetic_Algorithms
835 | 578309 Neural_Networks
836 | 18251 Case_Based
837 | 1152290 Theory
838 | 954315 Rule_Learning
839 | 212107 Probabilistic_Methods
840 | 578337 Neural_Networks
841 | 907845 Neural_Networks
842 | 1127530 Probabilistic_Methods
843 | 1128267 Reinforcement_Learning
844 | 28412 Reinforcement_Learning
845 | 594387 Genetic_Algorithms
846 | 1127541 Neural_Networks
847 | 44455 Genetic_Algorithms
848 | 45188 Theory
849 | 45189 Theory
850 | 62607 Rule_Learning
851 | 1127551 Probabilistic_Methods
852 | 1123991 Probabilistic_Methods
853 | 1127558 Probabilistic_Methods
854 | 105057 Theory
855 | 1128291 Genetic_Algorithms
856 | 1127566 Probabilistic_Methods
857 | 1154459 Genetic_Algorithms
858 | 218682 Case_Based
859 | 28447 Case_Based
860 | 1153736 Theory
861 | 62634 Genetic_Algorithms
862 | 211432 Theory
863 | 112378 Case_Based
864 | 1113035 Neural_Networks
865 | 1118848 Neural_Networks
866 | 137790 Theory
867 | 217984 Neural_Networks
868 | 949217 Neural_Networks
869 | 28473 Reinforcement_Learning
870 | 1104300 Probabilistic_Methods
871 | 1105033 Reinforcement_Learning
872 | 11093 Probabilistic_Methods
873 | 696342 Neural_Networks
874 | 696343 Neural_Networks
875 | 696346 Neural_Networks
876 | 28487 Reinforcement_Learning
877 | 5038 Theory
878 | 195150 Rule_Learning
879 | 62676 Neural_Networks
880 | 13213 Reinforcement_Learning
881 | 576973 Genetic_Algorithms
882 | 35797 Neural_Networks
883 | 134128 Reinforcement_Learning
884 | 166825 Case_Based
885 | 175576 Theory
886 | 509379 Theory
887 | 1113084 Neural_Networks
888 | 53942 Theory
889 | 642621 Probabilistic_Methods
890 | 1131236 Probabilistic_Methods
891 | 1112369 Neural_Networks
892 | 446610 Probabilistic_Methods
893 | 644093 Probabilistic_Methods
894 | 411092 Rule_Learning
895 | 642641 Probabilistic_Methods
896 | 408885 Probabilistic_Methods
897 | 1131258 Probabilistic_Methods
898 | 1131267 Probabilistic_Methods
899 | 13269 Probabilistic_Methods
900 | 1104379 Neural_Networks
901 | 1114502 Genetic_Algorithms
902 | 1107215 Case_Based
903 | 83725 Genetic_Algorithms
904 | 84459 Theory
905 | 642681 Probabilistic_Methods
906 | 445938 Probabilistic_Methods
907 | 1103676 Neural_Networks
908 | 1130568 Neural_Networks
909 | 1153003 Neural_Networks
910 | 51045 Probabilistic_Methods
911 | 12576 Genetic_Algorithms
912 | 144330 Theory
913 | 105865 Neural_Networks
914 | 51052 Probabilistic_Methods
915 | 746058 Neural_Networks
916 | 1153014 Probabilistic_Methods
917 | 641976 Neural_Networks
918 | 561789 Probabilistic_Methods
919 | 1130586 Neural_Networks
920 | 368605 Neural_Networks
921 | 1133428 Neural_Networks
922 | 1113828 Neural_Networks
923 | 129042 Case_Based
924 | 129045 Case_Based
925 | 6539 Theory
926 | 1153031 Neural_Networks
927 | 1122580 Theory
928 | 1132706 Case_Based
929 | 1152308 Case_Based
930 | 105899 Probabilistic_Methods
931 | 50354 Neural_Networks
932 | 1121867 Theory
933 | 1113852 Theory
934 | 1153056 Reinforcement_Learning
935 | 94641 Genetic_Algorithms
936 | 1153065 Genetic_Algorithms
937 | 1133469 Reinforcement_Learning
938 | 35070 Case_Based
939 | 576257 Genetic_Algorithms
940 | 368657 Neural_Networks
941 | 1129018 Genetic_Algorithms
942 | 263069 Genetic_Algorithms
943 | 1129027 Genetic_Algorithms
944 | 1152358 Genetic_Algorithms
945 | 1125467 Probabilistic_Methods
946 | 1125469 Probabilistic_Methods
947 | 72101 Neural_Networks
948 | 40922 Case_Based
949 | 1153097 Neural_Networks
950 | 1109439 Neural_Networks
951 | 423463 Probabilistic_Methods
952 | 128383 Case_Based
953 | 683360 Probabilistic_Methods
954 | 1129040 Genetic_Algorithms
955 | 52515 Probabilistic_Methods
956 | 41666 Theory
957 | 1128319 Genetic_Algorithms
958 | 1152379 Theory
959 | 1136342 Genetic_Algorithms
960 | 1125492 Genetic_Algorithms
961 | 1108728 Rule_Learning
962 | 265203 Genetic_Algorithms
963 | 628888 Neural_Networks
964 | 1127619 Rule_Learning
965 | 56112 Genetic_Algorithms
966 | 56115 Genetic_Algorithms
967 | 56119 Genetic_Algorithms
968 | 89547 Theory
969 | 51831 Neural_Networks
970 | 91038 Probabilistic_Methods
971 | 96847 Genetic_Algorithms
972 | 521855 Probabilistic_Methods
973 | 594483 Genetic_Algorithms
974 | 1119623 Probabilistic_Methods
975 | 96851 Genetic_Algorithms
976 | 1136397 Neural_Networks
977 | 158172 Probabilistic_Methods
978 | 1127657 Theory
979 | 131315 Neural_Networks
980 | 131318 Neural_Networks
981 | 289945 Neural_Networks
982 | 62718 Case_Based
983 | 229635 Genetic_Algorithms
984 | 56167 Case_Based
985 | 1119654 Case_Based
986 | 51879 Probabilistic_Methods
987 | 10435 Case_Based
988 | 137873 Probabilistic_Methods
989 | 168332 Reinforcement_Learning
990 | 330208 Neural_Networks
991 | 689152 Neural_Networks
992 | 1120444 Case_Based
993 | 1153877 Case_Based
994 | 111770 Probabilistic_Methods
995 | 1153879 Case_Based
996 | 108047 Genetic_Algorithms
997 | 1131300 Probabilistic_Methods
998 | 362926 Rule_Learning
999 | 129896 Probabilistic_Methods
1000 | 129897 Probabilistic_Methods
1001 | 59045 Theory
1002 | 1153889 Case_Based
1003 | 239810 Case_Based
1004 | 20601 Theory
1005 | 20602 Theory
1006 | 416964 Neural_Networks
1007 | 38722 Theory
1008 | 72908 Rule_Learning
1009 | 116081 Rule_Learning
1010 | 1153897 Genetic_Algorithms
1011 | 116084 Rule_Learning
1012 | 116087 Rule_Learning
1013 | 1113182 Reinforcement_Learning
1014 | 1131330 Probabilistic_Methods
1015 | 582139 Neural_Networks
1016 | 561809 Probabilistic_Methods
1017 | 14062 Genetic_Algorithms
1018 | 1104449 Neural_Networks
1019 | 39474 Genetic_Algorithms
1020 | 27895 Theory
1021 | 167670 Probabilistic_Methods
1022 | 1131345 Neural_Networks
1023 | 1131348 Neural_Networks
1024 | 14083 Neural_Networks
1025 | 1103737 Theory
1026 | 65650 Theory
1027 | 93273 Theory
1028 | 65653 Theory
1029 | 5194 Neural_Networks
1030 | 14090 Probabilistic_Methods
1031 | 1131360 Genetic_Algorithms
1032 | 1130634 Neural_Networks
1033 | 976284 Theory
1034 | 1130637 Case_Based
1035 | 593022 Genetic_Algorithms
1036 | 1131374 Genetic_Algorithms
1037 | 975567 Genetic_Algorithms
1038 | 133550 Neural_Networks
1039 | 145134 Neural_Networks
1040 | 1130653 Case_Based
1041 | 1130657 Case_Based
1042 | 1104495 Neural_Networks
1043 | 133566 Neural_Networks
1044 | 133567 Neural_Networks
1045 | 1122642 Neural_Networks
1046 | 1114629 Reinforcement_Learning
1047 | 91852 Case_Based
1048 | 91853 Case_Based
1049 | 376704 Case_Based
1050 | 1153101 Rule_Learning
1051 | 32276 Theory
1052 | 1130678 Neural_Networks
1053 | 83847 Neural_Networks
1054 | 8079 Theory
1055 | 593068 Genetic_Algorithms
1056 | 285675 Neural_Networks
1057 | 1130680 Neural_Networks
1058 | 1106630 Neural_Networks
1059 | 278394 Neural_Networks
1060 | 285687 Neural_Networks
1061 | 69284 Genetic_Algorithms
1062 | 6639 Rule_Learning
1063 | 14807 Theory
1064 | 152483 Genetic_Algorithms
1065 | 683404 Probabilistic_Methods
1066 | 593091 Genetic_Algorithms
1067 | 1117501 Neural_Networks
1068 | 99023 Neural_Networks
1069 | 99025 Neural_Networks
1070 | 513189 Genetic_Algorithms
1071 | 1152421 Genetic_Algorithms
1072 | 1153150 Rule_Learning
1073 | 99030 Neural_Networks
1074 | 1105932 Rule_Learning
1075 | 1153160 Theory
1076 | 1106671 Neural_Networks
1077 | 531348 Probabilistic_Methods
1078 | 577086 Genetic_Algorithms
1079 | 531351 Probabilistic_Methods
1080 | 25702 Neural_Networks
1081 | 87482 Neural_Networks
1082 | 135765 Rule_Learning
1083 | 135766 Rule_Learning
1084 | 1132864 Probabilistic_Methods
1085 | 22886 Case_Based
1086 | 1118286 Rule_Learning
1087 | 162664 Probabilistic_Methods
1088 | 1109542 Probabilistic_Methods
1089 | 1116835 Neural_Networks
1090 | 1116839 Case_Based
1091 | 1103016 Neural_Networks
1092 | 1128425 Neural_Networks
1093 | 1116842 Theory
1094 | 1136446 Neural_Networks
1095 | 1136447 Neural_Networks
1096 | 27199 Theory
1097 | 1125597 Genetic_Algorithms
1098 | 1132887 Probabilistic_Methods
1099 | 593813 Genetic_Algorithms
1100 | 594543 Genetic_Algorithms
1101 | 917493 Neural_Networks
1102 | 1128430 Case_Based
1103 | 51909 Rule_Learning
1104 | 1108834 Neural_Networks
1105 | 1128437 Theory
1106 | 989397 Theory
1107 | 97645 Genetic_Algorithms
1108 | 8832 Case_Based
1109 | 1103031 Probabilistic_Methods
1110 | 346243 Theory
1111 | 1119708 Genetic_Algorithms
1112 | 36620 Case_Based
1113 | 25772 Neural_Networks
1114 | 640617 Genetic_Algorithms
1115 | 8865 Genetic_Algorithms
1116 | 950986 Neural_Networks
1117 | 35905 Neural_Networks
1118 | 8875 Genetic_Algorithms
1119 | 25791 Neural_Networks
1120 | 100961 Neural_Networks
1121 | 738941 Neural_Networks
1122 | 64271 Case_Based
1123 | 3084 Case_Based
1124 | 3085 Case_Based
1125 | 28649 Theory
1126 | 3095 Case_Based
1127 | 3097 Case_Based
1128 | 1153943 Genetic_Algorithms
1129 | 1121254 Probabilistic_Methods
1130 | 74427 Neural_Networks
1131 | 231249 Genetic_Algorithms
1132 | 1105221 Genetic_Algorithms
1133 | 28674 Theory
1134 | 1129907 Probabilistic_Methods
1135 | 650807 Genetic_Algorithms
1136 | 348437 Theory
1137 | 1688 Genetic_Algorithms
1138 | 33013 Reinforcement_Learning
1139 | 38829 Case_Based
1140 | 307015 Genetic_Algorithms
1141 | 127033 Genetic_Algorithms
1142 | 310742 Probabilistic_Methods
1143 | 1694 Genetic_Algorithms
1144 | 650834 Genetic_Algorithms
1145 | 1131420 Neural_Networks
1146 | 193918 Neural_Networks
1147 | 85324 Neural_Networks
1148 | 642827 Probabilistic_Methods
1149 | 38845 Case_Based
1150 | 193931 Neural_Networks
1151 | 193932 Neural_Networks
1152 | 4553 Rule_Learning
1153 | 1116146 Case_Based
1154 | 85352 Genetic_Algorithms
1155 | 261040 Case_Based
1156 | 145215 Case_Based
1157 | 646412 Probabilistic_Methods
1158 | 1131464 Neural_Networks
1159 | 1131466 Probabilistic_Methods
1160 | 574264 Genetic_Algorithms
1161 | 458439 Theory
1162 | 57764 Theory
1163 | 646440 Probabilistic_Methods
1164 | 1111899 Case_Based
1165 | 521252 Theory
1166 | 1115471 Rule_Learning
1167 | 1123493 Theory
1168 | 601462 Genetic_Algorithms
1169 | 421481 Probabilistic_Methods
1170 | 385572 Neural_Networks
1171 | 30934 Theory
1172 | 84695 Neural_Networks
1173 | 189566 Probabilistic_Methods
1174 | 69397 Theory
1175 | 6741 Theory
1176 | 177998 Genetic_Algorithms
1177 | 395725 Neural_Networks
1178 | 61417 Rule_Learning
1179 | 54129 Genetic_Algorithms
1180 | 1118347 Neural_Networks
1181 | 1106764 Rule_Learning
1182 | 102406 Theory
1183 | 75972 Rule_Learning
1184 | 95579 Reinforcement_Learning
1185 | 54132 Genetic_Algorithms
1186 | 27243 Theory
1187 | 1153262 Probabilistic_Methods
1188 | 1153264 Theory
1189 | 30973 Neural_Networks
1190 | 1129208 Theory
1191 | 1106771 Neural_Networks
1192 | 27249 Theory
1193 | 95586 Reinforcement_Learning
1194 | 95588 Reinforcement_Learning
1195 | 255233 Case_Based
1196 | 6775 Neural_Networks
1197 | 129287 Neural_Networks
1198 | 27250 Theory
1199 | 19231 Theory
1200 | 1153275 Theory
1201 | 1132948 Neural_Networks
1202 | 1106789 Probabilistic_Methods
1203 | 95597 Reinforcement_Learning
1204 | 6784 Neural_Networks
1205 | 682815 Genetic_Algorithms
1206 | 1153280 Genetic_Algorithms
1207 | 148170 Genetic_Algorithms
1208 | 263279 Genetic_Algorithms
1209 | 1116922 Rule_Learning
1210 | 1152564 Case_Based
1211 | 1118388 Case_Based
1212 | 851968 Neural_Networks
1213 | 3101 Case_Based
1214 | 1129243 Reinforcement_Learning
1215 | 170798 Case_Based
1216 | 3112 Case_Based
1217 | 503877 Genetic_Algorithms
1218 | 17821 Reinforcement_Learning
1219 | 503883 Genetic_Algorithms
1220 | 561238 Genetic_Algorithms
1221 | 1110438 Neural_Networks
1222 | 575795 Genetic_Algorithms
1223 | 1116974 Neural_Networks
1224 | 272720 Theory
1225 | 415693 Genetic_Algorithms
1226 | 18582 Genetic_Algorithms
1227 | 11325 Rule_Learning
1228 | 11326 Theory
1229 | 1103162 Reinforcement_Learning
1230 | 1111186 Neural_Networks
1231 | 578645 Genetic_Algorithms
1232 | 578646 Genetic_Algorithms
1233 | 578649 Genetic_Algorithms
1234 | 1121313 Case_Based
1235 | 11335 Rule_Learning
1236 | 1102442 Theory
1237 | 11339 Theory
1238 | 52784 Theory
1239 | 11342 Theory
1240 | 1130080 Neural_Networks
1241 | 3191 Probabilistic_Methods
1242 | 3192 Probabilistic_Methods
1243 | 400455 Neural_Networks
1244 | 1135899 Neural_Networks
1245 | 591017 Rule_Learning
1246 | 751408 Neural_Networks
1247 | 1140230 Neural_Networks
1248 | 1140231 Neural_Networks
1249 | 1106052 Case_Based
1250 | 70970 Genetic_Algorithms
1251 | 67245 Neural_Networks
1252 | 67246 Neural_Networks
1253 | 205196 Neural_Networks
1254 | 135130 Reinforcement_Learning
1255 | 123556 Neural_Networks
1256 | 645084 Probabilistic_Methods
1257 | 1786 Rule_Learning
1258 | 66556 Genetic_Algorithms
1259 | 1130808 Neural_Networks
1260 | 4649 Rule_Learning
1261 | 582343 Theory
1262 | 395075 Genetic_Algorithms
1263 | 582349 Neural_Networks
1264 | 20833 Case_Based
1265 | 1131549 Genetic_Algorithms
1266 | 58552 Neural_Networks
1267 | 85449 Neural_Networks
1268 | 49811 Theory
1269 | 77438 Probabilistic_Methods
1270 | 4660 Theory
1271 | 66594 Theory
1272 | 66596 Rule_Learning
1273 | 314459 Neural_Networks
1274 | 1116268 Theory
1275 | 1103960 Genetic_Algorithms
1276 | 49843 Rule_Learning
1277 | 1103969 Probabilistic_Methods
1278 | 593240 Genetic_Algorithms
1279 | 207395 Case_Based
1280 | 593248 Genetic_Algorithms
1281 | 943087 Theory
1282 | 7532 Neural_Networks
1283 | 7537 Neural_Networks
1284 | 25181 Neural_Networks
1285 | 25184 Neural_Networks
1286 | 16437 Neural_Networks
1287 | 1103985 Genetic_Algorithms
1288 | 6814 Probabilistic_Methods
1289 | 6818 Probabilistic_Methods
1290 | 1154042 Neural_Networks
1291 | 23738 Theory
1292 | 1107558 Probabilistic_Methods
1293 | 137359 Rule_Learning
1294 | 16451 Neural_Networks
1295 | 318071 Probabilistic_Methods
1296 | 232860 Neural_Networks
1297 | 1107572 Theory
1298 | 49895 Rule_Learning
1299 | 16474 Neural_Networks
1300 | 1154076 Genetic_Algorithms
1301 | 626999 Neural_Networks
1302 | 137380 Rule_Learning
1303 | 1119178 Case_Based
1304 | 33904 Genetic_Algorithms
1305 | 1119180 Case_Based
1306 | 33907 Genetic_Algorithms
1307 | 174418 Theory
1308 | 70281 Neural_Networks
1309 | 73119 Probabilistic_Methods
1310 | 9716 Theory
1311 | 174425 Theory
1312 | 416455 Genetic_Algorithms
1313 | 18615 Rule_Learning
1314 | 127940 Neural_Networks
1315 | 1152663 Reinforcement_Learning
1316 | 675649 Neural_Networks
1317 | 1117760 Reinforcement_Learning
1318 | 1138091 Case_Based
1319 | 1152673 Neural_Networks
1320 | 321004 Genetic_Algorithms
1321 | 139547 Neural_Networks
1322 | 45533 Neural_Networks
1323 | 3217 Theory
1324 | 1111240 Neural_Networks
1325 | 523574 Probabilistic_Methods
1326 | 1110515 Genetic_Algorithms
1327 | 73162 Probabilistic_Methods
1328 | 52835 Rule_Learning
1329 | 3220 Neural_Networks
1330 | 3223 Theory
1331 | 1129367 Genetic_Algorithms
1332 | 1129368 Genetic_Algorithms
1333 | 1129369 Genetic_Algorithms
1334 | 84021 Genetic_Algorithms
1335 | 1127913 Genetic_Algorithms
1336 | 3233 Probabilistic_Methods
1337 | 3235 Probabilistic_Methods
1338 | 3236 Theory
1339 | 562067 Probabilistic_Methods
1340 | 3240 Theory
1341 | 92065 Neural_Networks
1342 | 213246 Neural_Networks
1343 | 911198 Neural_Networks
1344 | 12158 Theory
1345 | 20178 Case_Based
1346 | 20179 Case_Based
1347 | 80491 Neural_Networks
1348 | 561364 Probabilistic_Methods
1349 | 20180 Case_Based
1350 | 245955 Reinforcement_Learning
1351 | 1102548 Case_Based
1352 | 1817 Genetic_Algorithms
1353 | 31043 Neural_Networks
1354 | 1102550 Genetic_Algorithms
1355 | 20193 Case_Based
1356 | 1110579 Case_Based
1357 | 213279 Neural_Networks
1358 | 1133010 Probabilistic_Methods
1359 | 157761 Theory
1360 | 31055 Neural_Networks
1361 | 12194 Theory
1362 | 1133028 Theory
1363 | 578780 Genetic_Algorithms
1364 | 12198 Theory
1365 | 12199 Theory
1366 | 90655 Neural_Networks
1367 | 6130 Neural_Networks
1368 | 337766 Case_Based
1369 | 112787 Case_Based
1370 | 1133047 Genetic_Algorithms
1371 | 1105428 Rule_Learning
1372 | 785678 Genetic_Algorithms
1373 | 644441 Probabilistic_Methods
1374 | 672064 Neural_Networks
1375 | 41216 Neural_Networks
1376 | 1105433 Probabilistic_Methods
1377 | 1113459 Reinforcement_Learning
1378 | 55770 Case_Based
1379 | 6163 Reinforcement_Learning
1380 | 259701 Genetic_Algorithms
1381 | 259702 Genetic_Algorithms
1382 | 1131607 Probabilistic_Methods
1383 | 430329 Neural_Networks
1384 | 643734 Neural_Networks
1385 | 643735 Neural_Networks
1386 | 656048 Case_Based
1387 | 1131611 Theory
1388 | 617575 Neural_Networks
1389 | 1105450 Theory
1390 | 15076 Neural_Networks
1391 | 10793 Theory
1392 | 1117049 Genetic_Algorithms
1393 | 647315 Genetic_Algorithms
1394 | 33231 Probabilistic_Methods
1395 | 1116328 Neural_Networks
1396 | 1104749 Genetic_Algorithms
1397 | 594025 Genetic_Algorithms
1398 | 315266 Probabilistic_Methods
1399 | 643777 Neural_Networks
1400 | 1130927 Neural_Networks
1401 | 1132385 Theory
1402 | 1108329 Case_Based
1403 | 1130929 Neural_Networks
1404 | 1104769 Probabilistic_Methods
1405 | 594047 Genetic_Algorithms
1406 | 1130931 Neural_Networks
1407 | 1130934 Neural_Networks
1408 | 141868 Case_Based
1409 | 593329 Genetic_Algorithms
1410 | 144701 Genetic_Algorithms
1411 | 574462 Genetic_Algorithms
1412 | 60170 Neural_Networks
1413 | 120039 Case_Based
1414 | 502574 Case_Based
1415 | 293974 Probabilistic_Methods
1416 | 1119216 Probabilistic_Methods
1417 | 1108363 Case_Based
1418 | 191216 Neural_Networks
1419 | 469504 Neural_Networks
1420 | 358866 Probabilistic_Methods
1421 | 1116397 Case_Based
1422 | 191222 Neural_Networks
1423 | 36145 Neural_Networks
1424 | 1115677 Neural_Networks
1425 | 577331 Genetic_Algorithms
1426 | 31863 Probabilistic_Methods
1427 | 566488 Case_Based
1428 | 358887 Probabilistic_Methods
1429 | 6935 Rule_Learning
1430 | 6939 Rule_Learning
1431 | 197783 Neural_Networks
1432 | 34708 Neural_Networks
1433 | 1107674 Genetic_Algorithms
1434 | 248119 Theory
1435 | 318187 Rule_Learning
1436 | 1152714 Neural_Networks
1437 | 1154173 Probabilistic_Methods
1438 | 300071 Probabilistic_Methods
1439 | 1120020 Reinforcement_Learning
1440 | 423816 Genetic_Algorithms
1441 | 1106966 Reinforcement_Learning
1442 | 148341 Genetic_Algorithms
1443 | 136766 Rule_Learning
1444 | 325497 Reinforcement_Learning
1445 | 136767 Theory
1446 | 136768 Rule_Learning
1447 | 409255 Neural_Networks
1448 | 1152740 Reinforcement_Learning
1449 | 1117833 Case_Based
1450 | 309476 Theory
1451 | 1120059 Neural_Networks
1452 | 80515 Neural_Networks
1453 | 65212 Neural_Networks
1454 | 15892 Case_Based
1455 | 1120084 Neural_Networks
1456 | 576691 Genetic_Algorithms
1457 | 148399 Theory
1458 | 175291 Neural_Networks
1459 | 1112071 Probabilistic_Methods
1460 | 117 Reinforcement_Learning
1461 | 157805 Theory
1462 | 300806 Neural_Networks
1463 | 31105 Neural_Networks
1464 | 154982 Probabilistic_Methods
1465 | 141160 Neural_Networks
1466 | 112813 Case_Based
1467 | 98693 Genetic_Algorithms
1468 | 98698 Genetic_Algorithms
1469 | 192734 Theory
1470 | 12247 Theory
1471 | 1109891 Neural_Networks
1472 | 141171 Neural_Networks
1473 | 312409 Neural_Networks
1474 | 608190 Genetic_Algorithms
1475 | 608191 Genetic_Algorithms
1476 | 55801 Case_Based
1477 | 1136791 Genetic_Algorithms
1478 | 815073 Neural_Networks
1479 | 1114222 Probabilistic_Methods
1480 | 173884 Probabilistic_Methods
1481 | 1102646 Neural_Networks
1482 | 63832 Genetic_Algorithms
1483 | 211906 Theory
1484 | 83449 Case_Based
1485 | 2654 Theory
1486 | 815096 Neural_Networks
1487 | 277263 Rule_Learning
1488 | 1105505 Neural_Networks
1489 | 48550 Neural_Networks
1490 | 83461 Rule_Learning
1491 | 48555 Neural_Networks
1492 | 6238 Theory
1493 | 636500 Theory
1494 | 340078 Neural_Networks
1495 | 1113534 Neural_Networks
1496 | 578898 Genetic_Algorithms
1497 | 1951 Case_Based
1498 | 1952 Case_Based
1499 | 1956 Case_Based
1500 | 636511 Neural_Networks
1501 | 463825 Theory
1502 | 1121569 Neural_Networks
1503 | 1105531 Probabilistic_Methods
1504 | 14428 Probabilistic_Methods
1505 | 14429 Probabilistic_Methods
1506 | 74749 Theory
1507 | 14430 Probabilistic_Methods
1508 | 14431 Probabilistic_Methods
1509 | 1132434 Neural_Networks
1510 | 648121 Neural_Networks
1511 | 582511 Theory
1512 | 688849 Neural_Networks
1513 | 1997 Probabilistic_Methods
1514 | 1131728 Case_Based
1515 | 1106298 Theory
1516 | 86359 Reinforcement_Learning
1517 | 647413 Genetic_Algorithms
1518 | 1120880 Neural_Networks
1519 | 1131734 Genetic_Algorithms
1520 | 562940 Rule_Learning
1521 | 230879 Neural_Networks
1522 | 1104851 Theory
1523 | 1152075 Theory
1524 | 58758 Genetic_Algorithms
1525 | 230884 Neural_Networks
1526 | 34082 Probabilistic_Methods
1527 | 1132486 Neural_Networks
1528 | 39890 Probabilistic_Methods
1529 | 66782 Rule_Learning
1530 | 218410 Reinforcement_Learning
1531 | 647447 Genetic_Algorithms
1532 | 1117184 Case_Based
1533 | 66794 Probabilistic_Methods
1534 | 227178 Genetic_Algorithms
1535 | 936 Case_Based
1536 | 940 Case_Based
1537 | 575292 Genetic_Algorithms
1538 | 941 Case_Based
1539 | 1109185 Neural_Networks
1540 | 85688 Rule_Learning
1541 | 28202 Reinforcement_Learning
1542 | 50807 Genetic_Algorithms
1543 | 379288 Case_Based
1544 | 1154229 Probabilistic_Methods
1545 | 1109199 Genetic_Algorithms
1546 | 118682 Probabilistic_Methods
1547 | 153598 Reinforcement_Learning
1548 | 1154251 Neural_Networks
1549 | 62417 Probabilistic_Methods
1550 | 1125909 Probabilistic_Methods
1551 | 79809 Theory
1552 | 739280 Neural_Networks
1553 | 70441 Case_Based
1554 | 70442 Case_Based
1555 | 70444 Case_Based
1556 | 79817 Probabilistic_Methods
1557 | 129558 Case_Based
1558 | 892139 Reinforcement_Learning
1559 | 576725 Genetic_Algorithms
1560 | 28254 Neural_Networks
1561 | 1246 Reinforcement_Learning
1562 | 237376 Theory
1563 | 27531 Neural_Networks
1564 | 397488 Genetic_Algorithms
1565 | 42847 Neural_Networks
1566 | 42848 Genetic_Algorithms
1567 | 155736 Theory
1568 | 155738 Theory
1569 | 39124 Case_Based
1570 | 39127 Rule_Learning
1571 | 39130 Case_Based
1572 | 1153577 Genetic_Algorithms
1573 | 335733 Genetic_Algorithms
1574 | 28290 Reinforcement_Learning
1575 | 18815 Case_Based
1576 | 1136814 Genetic_Algorithms
1577 | 1120169 Theory
1578 | 82087 Genetic_Algorithms
1579 | 178209 Rule_Learning
1580 | 139738 Neural_Networks
1581 | 82090 Genetic_Algorithms
1582 | 18834 Reinforcement_Learning
1583 | 39165 Probabilistic_Methods
1584 | 190698 Neural_Networks
1585 | 1125992 Case_Based
1586 | 1109957 Reinforcement_Learning
1587 | 46470 Theory
1588 | 46476 Rule_Learning
1589 | 1129570 Genetic_Algorithms
1590 | 1071981 Reinforcement_Learning
1591 | 1129573 Genetic_Algorithms
1592 | 39199 Neural_Networks
1593 | 12337 Neural_Networks
1594 | 29723 Probabilistic_Methods
1595 | 694759 Genetic_Algorithms
1596 | 46491 Theory
1597 | 1128856 Rule_Learning
1598 | 1107010 Case_Based
1599 | 643199 Genetic_Algorithms
1600 | 1104182 Reinforcement_Learning
1601 | 12347 Neural_Networks
1602 | 63915 Neural_Networks
1603 | 519353 Probabilistic_Methods
1604 | 608292 Genetic_Algorithms
1605 | 1121603 Neural_Networks
1606 | 1130356 Theory
1607 | 12359 Neural_Networks
1608 | 192850 Theory
1609 | 7032 Probabilistic_Methods
1610 | 1128881 Rule_Learning
1611 | 140569 Neural_Networks
1612 | 1114331 Genetic_Algorithms
1613 | 7041 Neural_Networks
1614 | 561581 Probabilistic_Methods
1615 | 561582 Probabilistic_Methods
1616 | 192870 Neural_Networks
1617 | 1113614 Reinforcement_Learning
1618 | 1102761 Case_Based
1619 | 116528 Theory
1620 | 561595 Probabilistic_Methods
1621 | 94416 Rule_Learning
1622 | 5600 Case_Based
1623 | 1000012 Rule_Learning
1624 | 1114364 Neural_Networks
1625 | 1121659 Probabilistic_Methods
1626 | 66809 Reinforcement_Learning
1627 | 6343 Case_Based
1628 | 212777 Rule_Learning
1629 | 583318 Genetic_Algorithms
1630 | 709518 Neural_Networks
1631 | 350319 Neural_Networks
1632 | 116553 Genetic_Algorithms
1633 | 170338 Reinforcement_Learning
1634 | 179706 Neural_Networks
1635 | 1112929 Neural_Networks
1636 | 656231 Case_Based
1637 | 14531 Case_Based
1638 | 1106370 Neural_Networks
1639 | 1109208 Genetic_Algorithms
1640 | 1114398 Neural_Networks
1641 | 95188 Case_Based
1642 | 510718 Probabilistic_Methods
1643 | 208345 Case_Based
1644 | 6378 Reinforcement_Learning
1645 | 22563 Neural_Networks
1646 | 10981 Neural_Networks
1647 | 110041 Genetic_Algorithms
1648 | 14549 Theory
1649 | 95198 Case_Based
1650 | 6385 Reinforcement_Learning
1651 | 575331 Genetic_Algorithms
1652 | 568045 Rule_Learning
1653 | 1136110 Neural_Networks
1654 | 1131828 Case_Based
1655 | 67584 Probabilistic_Methods
1656 | 243274 Neural_Networks
1657 | 135464 Neural_Networks
1658 | 1105672 Neural_Networks
1659 | 93755 Theory
1660 | 756061 Neural_Networks
1661 | 522338 Probabilistic_Methods
1662 | 219239 Theory
1663 | 61073 Genetic_Algorithms
1664 | 262178 Genetic_Algorithms
1665 | 686015 Neural_Networks
1666 | 1110024 Case_Based
1667 | 613409 Probabilistic_Methods
1668 | 686030 Neural_Networks
1669 | 227286 Neural_Networks
1670 | 45061 Theory
1671 | 646836 Genetic_Algorithms
1672 | 1108551 Theory
1673 | 13885 Neural_Networks
1674 | 1104999 Genetic_Algorithms
1675 | 566653 Case_Based
1676 | 1127430 Genetic_Algorithms
1677 | 299197 Neural_Networks
1678 | 1135455 Neural_Networks
1679 | 97377 Theory
1680 | 592826 Rule_Learning
1681 | 566664 Case_Based
1682 | 633030 Probabilistic_Methods
1683 | 633031 Probabilistic_Methods
1684 | 686061 Theory
1685 | 592830 Rule_Learning
1686 | 573964 Genetic_Algorithms
1687 | 1155073 Rule_Learning
1688 | 17476 Reinforcement_Learning
1689 | 17477 Genetic_Algorithms
1690 | 190706 Genetic_Algorithms
1691 | 28336 Genetic_Algorithms
1692 | 573978 Genetic_Algorithms
1693 | 1107861 Theory
1694 | 17488 Reinforcement_Learning
1695 | 1128198 Genetic_Algorithms
1696 | 1108597 Case_Based
1697 | 103515 Genetic_Algorithms
1698 | 27623 Neural_Networks
1699 | 200480 Case_Based
1700 | 103529 Case_Based
1701 | 649730 Neural_Networks
1702 | 39210 Neural_Networks
1703 | 46501 Theory
1704 | 27632 Reinforcement_Learning
1705 | 649739 Neural_Networks
1706 | 1119471 Theory
1707 | 103531 Case_Based
1708 | 470511 Case_Based
1709 | 509233 Theory
1710 | 236759 Neural_Networks
1711 | 237489 Neural_Networks
1712 | 1152944 Reinforcement_Learning
1713 | 1118764 Theory
1714 | 643221 Probabilistic_Methods
1715 | 212097 Probabilistic_Methods
1716 | 608326 Genetic_Algorithms
1717 | 643239 Probabilistic_Methods
1718 | 1131116 Genetic_Algorithms
1719 | 202639 Neural_Networks
1720 | 141324 Genetic_Algorithms
1721 | 294145 Rule_Learning
1722 | 1128927 Rule_Learning
1723 | 561610 Probabilistic_Methods
1724 | 561611 Probabilistic_Methods
1725 | 147870 Neural_Networks
1726 | 248395 Neural_Networks
1727 | 1128935 Rule_Learning
1728 | 241133 Theory
1729 | 141342 Genetic_Algorithms
1730 | 141347 Genetic_Algorithms
1731 | 1128946 Genetic_Algorithms
1732 | 1131164 Probabilistic_Methods
1733 | 12439 Neural_Networks
1734 | 1131167 Probabilistic_Methods
1735 | 1129683 Genetic_Algorithms
1736 | 359067 Case_Based
1737 | 117315 Genetic_Algorithms
1738 | 117316 Genetic_Algorithms
1739 | 144212 Genetic_Algorithms
1740 | 1106401 Theory
1741 | 1134022 Genetic_Algorithms
1742 | 13193 Reinforcement_Learning
1743 | 1131192 Probabilistic_Methods
1744 | 1107136 Genetic_Algorithms
1745 | 1131195 Neural_Networks
1746 | 1128982 Genetic_Algorithms
1747 | 121792 Neural_Networks
1748 | 653441 Probabilistic_Methods
1749 | 385251 Theory
1750 | 1126011 Probabilistic_Methods
1751 | 1134031 Rule_Learning
1752 | 642593 Neural_Networks
1753 | 1115166 Case_Based
1754 | 737204 Neural_Networks
1755 | 118079 Reinforcement_Learning
1756 | 1122460 Neural_Networks
1757 | 1114442 Genetic_Algorithms
1758 | 589923 Probabilistic_Methods
1759 | 1121739 Reinforcement_Learning
1760 | 626574 Probabilistic_Methods
1761 | 1126037 Neural_Networks
1762 | 645452 Probabilistic_Methods
1763 | 753264 Theory
1764 | 1126044 Neural_Networks
1765 | 74920 Probabilistic_Methods
1766 | 74921 Probabilistic_Methods
1767 | 1105718 Neural_Networks
1768 | 48764 Reinforcement_Learning
1769 | 48768 Reinforcement_Learning
1770 | 1113742 Genetic_Algorithms
1771 | 74937 Neural_Networks
1772 | 575402 Genetic_Algorithms
1773 | 168958 Neural_Networks
1774 | 78508 Neural_Networks
1775 | 289085 Neural_Networks
1776 | 78511 Genetic_Algorithms
1777 | 308232 Rule_Learning
1778 | 682508 Probabilistic_Methods
1779 | 75691 Neural_Networks
1780 | 75693 Reinforcement_Learning
1781 | 75694 Reinforcement_Learning
1782 | 155158 Rule_Learning
1783 | 1105764 Reinforcement_Learning
1784 | 1152259 Probabilistic_Methods
1785 | 579008 Genetic_Algorithms
1786 | 1128201 Genetic_Algorithms
1787 | 1133390 Theory
1788 | 1118083 Neural_Networks
1789 | 78549 Neural_Networks
1790 | 604073 Neural_Networks
1791 | 595056 Genetic_Algorithms
1792 | 1118092 Reinforcement_Learning
1793 | 1125386 Theory
1794 | 78552 Neural_Networks
1795 | 78555 Neural_Networks
1796 | 78557 Neural_Networks
1797 | 646900 Genetic_Algorithms
1798 | 595063 Genetic_Algorithms
1799 | 648369 Neural_Networks
1800 | 1128227 Genetic_Algorithms
1801 | 89416 Probabilistic_Methods
1802 | 578306 Neural_Networks
1803 | 683294 Probabilistic_Methods
1804 | 440815 Probabilistic_Methods
1805 | 126867 Case_Based
1806 | 126868 Case_Based
1807 | 72056 Neural_Networks
1808 | 1119505 Genetic_Algorithms
1809 | 1128256 Theory
1810 | 1108656 Case_Based
1811 | 71336 Neural_Networks
1812 | 1109392 Neural_Networks
1813 | 40886 Neural_Networks
1814 | 1115959 Neural_Networks
1815 | 578347 Neural_Networks
1816 | 284023 Neural_Networks
1817 | 345340 Reinforcement_Learning
1818 | 621555 Neural_Networks
1819 | 118873 Neural_Networks
1820 | 8687 Rule_Learning
1821 | 226698 Neural_Networks
1822 | 578365 Neural_Networks
1823 | 1135589 Neural_Networks
1824 | 8696 Theory
1825 | 1118823 Theory
1826 | 411005 Neural_Networks
1827 | 509315 Genetic_Algorithms
1828 | 171954 Theory
1829 | 230300 Reinforcement_Learning
1830 | 1105011 Probabilistic_Methods
1831 | 1121057 Case_Based
1832 | 592973 Genetic_Algorithms
1833 | 592975 Genetic_Algorithms
1834 | 48066 Theory
1835 | 248431 Genetic_Algorithms
1836 | 1121063 Theory
1837 | 592986 Genetic_Algorithms
1838 | 48075 Rule_Learning
1839 | 289885 Probabilistic_Methods
1840 | 592993 Genetic_Algorithms
1841 | 592996 Genetic_Algorithms
1842 | 28489 Reinforcement_Learning
1843 | 590022 Probabilistic_Methods
1844 | 111676 Case_Based
1845 | 13205 Reinforcement_Learning
1846 | 13208 Reinforcement_Learning
1847 | 102938 Neural_Networks
1848 | 102939 Neural_Networks
1849 | 416867 Theory
1850 | 72805 Rule_Learning
1851 | 574009 Genetic_Algorithms
1852 | 294239 Neural_Networks
1853 | 1131223 Probabilistic_Methods
1854 | 77108 Theory
1855 | 5064 Case_Based
1856 | 5069 Case_Based
1857 | 1131230 Probabilistic_Methods
1858 | 40125 Probabilistic_Methods
1859 | 1123215 Theory
1860 | 20526 Reinforcement_Learning
1861 | 20528 Case_Based
1862 | 77112 Theory
1863 | 107251 Theory
1864 | 107252 Theory
1865 | 5075 Case_Based
1866 | 126128 Neural_Networks
1867 | 734406 Neural_Networks
1868 | 40131 Neural_Networks
1869 | 703953 Probabilistic_Methods
1870 | 40135 Neural_Networks
1871 | 1131257 Probabilistic_Methods
1872 | 1123239 Neural_Networks
1873 | 1129778 Genetic_Algorithms
1874 | 662250 Neural_Networks
1875 | 711994 Neural_Networks
1876 | 273949 Theory
1877 | 1131266 Probabilistic_Methods
1878 | 1130539 Case_Based
1879 | 377303 Genetic_Algorithms
1880 | 179180 Neural_Networks
1881 | 1129798 Genetic_Algorithms
1882 | 1114512 Rule_Learning
1883 | 1110950 Case_Based
1884 | 12558 Genetic_Algorithms
1885 | 853114 Neural_Networks
1886 | 853115 Neural_Networks
1887 | 853116 Neural_Networks
1888 | 853118 Neural_Networks
1889 | 1114526 Theory
1890 | 212930 Neural_Networks
1891 | 206371 Genetic_Algorithms
1892 | 105856 Neural_Networks
1893 | 463 Case_Based
1894 | 20592 Neural_Networks
1895 | 51049 Probabilistic_Methods
1896 | 20593 Neural_Networks
1897 | 83746 Neural_Networks
1898 | 124734 Theory
1899 | 106590 Probabilistic_Methods
1900 | 1133417 Probabilistic_Methods
1901 | 1125402 Probabilistic_Methods
1902 | 1153024 Probabilistic_Methods
1903 | 853155 Neural_Networks
1904 | 1118120 Neural_Networks
1905 | 1105810 Case_Based
1906 | 1113831 Genetic_Algorithms
1907 | 646289 Probabilistic_Methods
1908 | 1106546 Probabilistic_Methods
1909 | 31479 Probabilistic_Methods
1910 | 31483 Probabilistic_Methods
1911 | 31489 Probabilistic_Methods
1912 | 94639 Genetic_Algorithms
1913 | 631015 Neural_Networks
1914 | 645571 Probabilistic_Methods
1915 | 1106568 Neural_Networks
1916 | 430711 Neural_Networks
1917 | 7296 Neural_Networks
1918 | 1132731 Genetic_Algorithms
1919 | 1153064 Theory
1920 | 93923 Rule_Learning
1921 | 1134197 Neural_Networks
1922 | 87363 Genetic_Algorithms
1923 | 395540 Probabilistic_Methods
1924 | 395547 Neural_Networks
1925 | 50381 Theory
1926 | 1129015 Genetic_Algorithms
1927 | 126909 Probabilistic_Methods
1928 | 143676 Neural_Networks
1929 | 395553 Neural_Networks
1930 | 752684 Neural_Networks
1931 | 1129021 Genetic_Algorithms
1932 | 19045 Genetic_Algorithms
1933 | 631052 Neural_Networks
1934 | 126912 Probabilistic_Methods
1935 | 116790 Probabilistic_Methods
1936 | 5869 Neural_Networks
1937 | 579108 Genetic_Algorithms
1938 | 683355 Probabilistic_Methods
1939 | 1105877 Probabilistic_Methods
1940 | 59772 Neural_Networks
1941 | 243483 Genetic_Algorithms
1942 | 126926 Probabilistic_Methods
1943 | 155277 Probabilistic_Methods
1944 | 1128314 Genetic_Algorithms
1945 | 1105887 Rule_Learning
1946 | 1110209 Probabilistic_Methods
1947 | 307656 Genetic_Algorithms
1948 | 199571 Neural_Networks
1949 | 1152394 Neural_Networks
1950 | 60560 Neural_Networks
1951 | 595193 Genetic_Algorithms
1952 | 990075 Case_Based
1953 | 119686 Neural_Networks
1954 | 1154520 Neural_Networks
1955 | 28504 Reinforcement_Learning
1956 | 1154524 Rule_Learning
1957 | 1154525 Rule_Learning
1958 | 1129096 Reinforcement_Learning
1959 | 1128369 Genetic_Algorithms
1960 | 96845 Genetic_Algorithms
1961 | 380341 Neural_Networks
1962 | 8766 Rule_Learning
1963 | 1110256 Theory
1964 | 55403 Rule_Learning
1965 | 389715 Theory
1966 | 1153816 Genetic_Algorithms
1967 | 131317 Neural_Networks
1968 | 260979 Theory
1969 | 264556 Neural_Networks
1970 | 35852 Reinforcement_Learning
1971 | 1119671 Neural_Networks
1972 | 1153853 Genetic_Algorithms
1973 | 1112417 Probabilistic_Methods
1974 | 1153860 Genetic_Algorithms
1975 | 1153861 Neural_Networks
1976 | 35863 Reinforcement_Learning
1977 | 1121176 Case_Based
1978 | 1131301 Probabilistic_Methods
1979 | 1131305 Probabilistic_Methods
1980 | 1105148 Reinforcement_Learning
1981 | 134219 Genetic_Algorithms
1982 | 671052 Neural_Networks
1983 | 1131312 Probabilistic_Methods
1984 | 156794 Probabilistic_Methods
1985 | 1153896 Genetic_Algorithms
1986 | 1153899 Genetic_Algorithms
1987 | 167656 Theory
1988 | 239829 Case_Based
1989 | 1104435 Probabilistic_Methods
1990 | 187260 Case_Based
1991 | 231198 Neural_Networks
1992 | 1131334 Probabilistic_Methods
1993 | 1131335 Probabilistic_Methods
1994 | 142268 Probabilistic_Methods
1995 | 504 Probabilistic_Methods
1996 | 506 Probabilistic_Methods
1997 | 228990 Neural_Networks
1998 | 228992 Neural_Networks
1999 | 1132073 Neural_Networks
2000 | 654326 Genetic_Algorithms
2001 | 1116044 Probabilistic_Methods
2002 | 1131359 Genetic_Algorithms
2003 | 643485 Probabilistic_Methods
2004 | 654339 Genetic_Algorithms
2005 | 1107319 Theory
2006 | 132821 Theory
2007 | 360028 Theory
2008 | 214472 Reinforcement_Learning
2009 | 646334 Probabilistic_Methods
2010 | 653628 Rule_Learning
2011 | 1107325 Case_Based
2012 | 166989 Theory
2013 | 1111788 Theory
2014 | 151708 Neural_Networks
2015 | 118259 Reinforcement_Learning
2016 | 32260 Theory
2017 | 137130 Probabilistic_Methods
2018 | 92589 Probabilistic_Methods
2019 | 118260 Reinforcement_Learning
2020 | 124828 Neural_Networks
2021 | 141596 Neural_Networks
2022 | 197452 Neural_Networks
2023 | 646357 Probabilistic_Methods
2024 | 1153106 Neural_Networks
2025 | 30817 Neural_Networks
2026 | 642798 Probabilistic_Methods
2027 | 1130676 Neural_Networks
2028 | 1107355 Reinforcement_Learning
2029 | 1118209 Theory
2030 | 987188 Neural_Networks
2031 | 87417 Genetic_Algorithms
2032 | 23545 Theory
2033 | 23546 Rule_Learning
2034 | 1113926 Neural_Networks
2035 | 94713 Probabilistic_Methods
2036 | 1107367 Case_Based
2037 | 987197 Theory
2038 | 521183 Case_Based
2039 | 1114664 Case_Based
2040 | 69296 Genetic_Algorithms
2041 | 51180 Theory
2042 | 43165 Neural_Networks
2043 | 1132815 Neural_Networks
2044 | 1107385 Neural_Networks
2045 | 100197 Neural_Networks
2046 | 520471 Rule_Learning
2047 | 215912 Neural_Networks
2048 | 61312 Genetic_Algorithms
2049 | 1129106 Case_Based
2050 | 43186 Neural_Networks
2051 | 1129111 Neural_Networks
2052 | 41732 Reinforcement_Learning
2053 | 22869 Case_Based
2054 | 9513 Theory
2055 | 9515 Theory
2056 | 119712 Genetic_Algorithms
2057 | 270456 Neural_Networks
2058 | 5959 Case_Based
2059 | 576362 Genetic_Algorithms
2060 | 1153183 Theory
2061 | 22874 Case_Based
2062 | 22875 Case_Based
2063 | 22876 Case_Based
2064 | 1124837 Probabilistic_Methods
2065 | 1132857 Probabilistic_Methods
2066 | 594511 Genetic_Algorithms
2067 | 22883 Theory
2068 | 238401 Theory
2069 | 1136449 Neural_Networks
2070 | 714208 Probabilistic_Methods
2071 | 9559 Rule_Learning
2072 | 135798 Case_Based
2073 | 1152490 Neural_Networks
2074 | 1109566 Theory
2075 | 1103038 Case_Based
2076 | 177115 Case_Based
2077 | 523394 Probabilistic_Methods
2078 | 1128453 Genetic_Algorithms
2079 | 1109581 Probabilistic_Methods
2080 | 101660 Rule_Learning
2081 | 101662 Theory
2082 | 9581 Probabilistic_Methods
2083 | 9586 Genetic_Algorithms
2084 | 1135750 Neural_Networks
2085 | 51934 Neural_Networks
2086 | 762980 Neural_Networks
2087 | 1153900 Genetic_Algorithms
2088 | 593859 Genetic_Algorithms
2089 | 714256 Probabilistic_Methods
2090 | 8874 Genetic_Algorithms
2091 | 25794 Neural_Networks
2092 | 75121 Case_Based
2093 | 28632 Theory
2094 | 1153922 Neural_Networks
2095 | 1119742 Probabilistic_Methods
2096 | 63549 Neural_Networks
2097 | 1138619 Rule_Learning
2098 | 1102364 Probabilistic_Methods
2099 | 28640 Theory
2100 | 28641 Theory
2101 | 409725 Rule_Learning
2102 | 292277 Genetic_Algorithms
2103 | 606479 Genetic_Algorithms
2104 | 1153942 Genetic_Algorithms
2105 | 1153945 Genetic_Algorithms
2106 | 1153946 Neural_Networks
2107 | 709113 Rule_Learning
2108 | 194609 Neural_Networks
2109 | 90470 Probabilistic_Methods
2110 | 820661 Neural_Networks
2111 | 820662 Theory
2112 | 1105231 Genetic_Algorithms
2113 | 73712 Neural_Networks
2114 | 54844 Theory
2115 | 684972 Probabilistic_Methods
2116 | 134314 Probabilistic_Methods
2117 | 735303 Genetic_Algorithms
2118 | 824245 Neural_Networks
2119 | 195361 Reinforcement_Learning
2120 | 529165 Neural_Networks
2121 | 1131414 Neural_Networks
2122 | 617378 Neural_Networks
2123 | 1120563 Case_Based
2124 | 47570 Case_Based
2125 | 684986 Neural_Networks
2126 | 735311 Neural_Networks
2127 | 187354 Rule_Learning
2128 | 1132157 Probabilistic_Methods
2129 | 58436 Case_Based
2130 | 278403 Neural_Networks
2131 | 58453 Genetic_Algorithms
2132 | 58454 Case_Based
2133 | 206524 Rule_Learning
2134 | 593104 Genetic_Algorithms
2135 | 133628 Theory
2136 | 46887 Neural_Networks
2137 | 49720 Probabilistic_Methods
2138 | 1131471 Case_Based
2139 | 643597 Probabilistic_Methods
2140 | 1107418 Genetic_Algorithms
2141 | 1129994 Probabilistic_Methods
2142 | 573535 Theory
2143 | 814836 Rule_Learning
2144 | 1119004 Neural_Networks
2145 | 1134320 Probabilistic_Methods
2146 | 1116181 Theory
2147 | 1108167 Theory
2148 | 1108169 Neural_Networks
2149 | 49753 Probabilistic_Methods
2150 | 57773 Rule_Learning
2151 | 7430 Reinforcement_Learning
2152 | 521251 Case_Based
2153 | 593155 Genetic_Algorithms
2154 | 642894 Probabilistic_Methods
2155 | 1126315 Neural_Networks
2156 | 1108175 Neural_Networks
2157 | 1059953 Theory
2158 | 521269 Case_Based
2159 | 1118302 Rule_Learning
2160 | 1130780 Probabilistic_Methods
2161 | 1134346 Probabilistic_Methods
2162 | 1134348 Probabilistic_Methods
2163 | 1135082 Neural_Networks
2164 | 899085 Rule_Learning
2165 | 124952 Probabilistic_Methods
2166 | 240791 Genetic_Algorithms
2167 | 189571 Probabilistic_Methods
2168 | 189572 Probabilistic_Methods
2169 | 1126350 Theory
2170 | 189574 Probabilistic_Methods
2171 | 177993 Genetic_Algorithms
2172 | 27230 Rule_Learning
2173 | 1119078 Theory
2174 | 128540 Genetic_Algorithms
2175 | 308529 Reinforcement_Learning
2176 | 54131 Genetic_Algorithms
2177 | 75983 Neural_Networks
2178 | 15670 Genetic_Algorithms
2179 | 33818 Neural_Networks
2180 | 95594 Reinforcement_Learning
2181 | 6782 Theory
2182 | 33823 Neural_Networks
2183 | 25805 Theory
2184 | 1153287 Reinforcement_Learning
2185 | 596075 Case_Based
2186 | 817774 Neural_Networks
2187 | 18532 Neural_Networks
2188 | 18536 Neural_Networks
2189 | 235670 Rule_Learning
2190 | 235678 Rule_Learning
2191 | 235679 Rule_Learning
2192 | 739707 Neural_Networks
2193 | 17811 Genetic_Algorithms
2194 | 503871 Genetic_Algorithms
2195 | 235683 Rule_Learning
2196 | 1128531 Rule_Learning
2197 | 594649 Genetic_Algorithms
2198 | 1128536 Theory
2199 | 1102400 Theory
2200 | 593921 Genetic_Algorithms
2201 | 486840 Genetic_Algorithms
2202 | 1127810 Neural_Networks
2203 | 503893 Genetic_Algorithms
2204 | 399370 Neural_Networks
2205 | 387795 Genetic_Algorithms
2206 | 220420 Genetic_Algorithms
2207 | 593942 Genetic_Algorithms
2208 | 8961 Reinforcement_Learning
2209 | 645016 Probabilistic_Methods
2210 | 481073 Reinforcement_Learning
2211 | 11337 Theory
2212 | 578650 Genetic_Algorithms
2213 | 1130069 Neural_Networks
2214 | 1127851 Rule_Learning
2215 | 124224 Neural_Networks
2216 | 37483 Case_Based
2217 | 578669 Genetic_Algorithms
2218 | 1127863 Rule_Learning
2219 | 1135894 Neural_Networks
2220 | 645046 Probabilistic_Methods
2221 | 22229 Genetic_Algorithms
2222 | 149669 Probabilistic_Methods
2223 | 365294 Reinforcement_Learning
2224 | 169279 Neural_Networks
2225 | 1138755 Neural_Networks
2226 | 323128 Theory
2227 | 22241 Genetic_Algorithms
2228 | 156977 Neural_Networks
2229 | 763010 Neural_Networks
2230 | 1120650 Rule_Learning
2231 | 1105344 Neural_Networks
2232 | 59244 Case_Based
2233 | 286500 Genetic_Algorithms
2234 | 567005 Neural_Networks
2235 | 644361 Probabilistic_Methods
2236 | 644363 Probabilistic_Methods
2237 | 154023 Neural_Networks
2238 | 286513 Genetic_Algorithms
2239 | 459206 Genetic_Algorithms
2240 | 671269 Neural_Networks
2241 | 1105360 Rule_Learning
2242 | 1112650 Probabilistic_Methods
2243 | 632796 Probabilistic_Methods
2244 | 47682 Neural_Networks
2245 | 47683 Case_Based
2246 | 47684 Case_Based
2247 | 4637 Theory
2248 | 642920 Neural_Networks
2249 | 634902 Genetic_Algorithms
2250 | 459213 Genetic_Algorithms
2251 | 459214 Genetic_Algorithms
2252 | 634904 Genetic_Algorithms
2253 | 459216 Genetic_Algorithms
2254 | 20821 Rule_Learning
2255 | 178718 Genetic_Algorithms
2256 | 1108209 Genetic_Algorithms
2257 | 1112665 Neural_Networks
2258 | 1104647 Genetic_Algorithms
2259 | 1140289 Neural_Networks
2260 | 66563 Genetic_Algorithms
2261 | 67292 Neural_Networks
2262 | 66564 Genetic_Algorithms
2263 | 154047 Neural_Networks
2264 | 642930 Neural_Networks
2265 | 654519 Genetic_Algorithms
2266 | 178727 Genetic_Algorithms
2267 | 1135108 Probabilistic_Methods
2268 | 593201 Genetic_Algorithms
2269 | 162075 Neural_Networks
2270 | 593209 Genetic_Algorithms
2271 | 107569 Neural_Networks
2272 | 1123530 Genetic_Algorithms
2273 | 1135115 Neural_Networks
2274 | 1132285 Theory
2275 | 1131557 Genetic_Algorithms
2276 | 162080 Neural_Networks
2277 | 3932 Case_Based
2278 | 593210 Genetic_Algorithms
2279 | 118424 Neural_Networks
2280 | 1135122 Neural_Networks
2281 | 634938 Genetic_Algorithms
2282 | 1131565 Neural_Networks
2283 | 20857 Rule_Learning
2284 | 118435 Neural_Networks
2285 | 118436 Neural_Networks
2286 | 643695 Probabilistic_Methods
2287 | 1130847 Genetic_Algorithms
2288 | 1111978 Probabilistic_Methods
2289 | 1154012 Probabilistic_Methods
2290 | 1108258 Case_Based
2291 | 49844 Rule_Learning
2292 | 49847 Rule_Learning
2293 | 189620 Probabilistic_Methods
2294 | 189623 Probabilistic_Methods
2295 | 1108267 Case_Based
2296 | 1050679 Genetic_Algorithms
2297 | 634975 Genetic_Algorithms
2298 | 1114838 Theory
2299 | 577227 Genetic_Algorithms
2300 | 28026 Case_Based
2301 | 601561 Rule_Learning
2302 | 24476 Probabilistic_Methods
2303 | 1026 Genetic_Algorithms
2304 | 95642 Case_Based
2305 | 270600 Neural_Networks
2306 | 145384 Reinforcement_Learning
2307 | 16461 Neural_Networks
2308 | 35335 Neural_Networks
2309 | 1138027 Case_Based
2310 | 1035 Reinforcement_Learning
2311 | 1114864 Case_Based
2312 | 1154068 Probabilistic_Methods
2313 | 449841 Rule_Learning
2314 | 1154071 Probabilistic_Methods
2315 | 1106854 Neural_Networks
2316 | 210309 Theory
2317 | 801170 Genetic_Algorithms
2318 | 251756 Genetic_Algorithms
2319 | 645870 Probabilistic_Methods
2320 | 144679 Case_Based
2321 | 1138043 Theory
2322 | 86923 Neural_Networks
2323 | 342802 Neural_Networks
2324 | 1152633 Probabilistic_Methods
2325 | 711527 Theory
2326 | 684372 Neural_Networks
2327 | 216878 Theory
2328 | 62274 Theory
2329 | 72406 Reinforcement_Learning
2330 | 101811 Theory
2331 | 246618 Genetic_Algorithms
2332 | 1136631 Theory
2333 | 1152676 Genetic_Algorithms
2334 | 235776 Theory
2335 | 57119 Genetic_Algorithms
2336 | 119956 Neural_Networks
2337 | 948147 Neural_Networks
2338 | 739816 Neural_Networks
2339 | 3222 Case_Based
2340 | 1117786 Rule_Learning
2341 | 1110520 Neural_Networks
2342 | 36802 Probabilistic_Methods
2343 | 3232 Theory
2344 | 3237 Probabilistic_Methods
2345 | 1111265 Neural_Networks
2346 | 695284 Theory
2347 | 37541 Theory
2348 | 1110546 Genetic_Algorithms
2349 | 71736 Probabilistic_Methods
2350 | 1135955 Neural_Networks
2351 | 12155 Theory
2352 | 258259 Neural_Networks
2353 | 1114118 Neural_Networks
2354 | 606647 Genetic_Algorithms
2355 | 12165 Theory
2356 | 1110563 Neural_Networks
2357 | 12169 Theory
2358 | 1133004 Neural_Networks
2359 | 1133008 Neural_Networks
2360 | 1102567 Case_Based
2361 | 12195 Theory
2362 | 28851 Genetic_Algorithms
2363 | 644427 Probabilistic_Methods
2364 | 1113438 Genetic_Algorithms
2365 | 1121459 Case_Based
2366 | 689439 Rule_Learning
2367 | 633585 Probabilistic_Methods
2368 | 31083 Theory
2369 | 6152 Reinforcement_Learning
2370 | 1119987 Case_Based
2371 | 1114184 Neural_Networks
2372 | 82664 Case_Based
2373 | 82666 Case_Based
2374 | 672070 Neural_Networks
2375 | 672071 Neural_Networks
2376 | 632874 Probabilistic_Methods
2377 | 1114192 Neural_Networks
2378 | 644470 Probabilistic_Methods
2379 | 5462 Neural_Networks
2380 | 594011 Genetic_Algorithms
2381 | 20924 Probabilistic_Methods
2382 | 1131634 Neural_Networks
2383 | 1120786 Neural_Networks
2384 | 1112767 Neural_Networks
2385 | 180301 Probabilistic_Methods
2386 | 160705 Neural_Networks
2387 | 628458 Neural_Networks
2388 | 628459 Neural_Networks
2389 | 1130915 Neural_Networks
2390 | 1116336 Probabilistic_Methods
2391 | 390889 Neural_Networks
2392 | 57922 Theory
2393 | 594039 Genetic_Algorithms
2394 | 13654 Neural_Networks
2395 | 57932 Neural_Networks
2396 | 73972 Case_Based
2397 | 198443 Genetic_Algorithms
2398 | 60159 Neural_Networks
2399 | 101143 Case_Based
2400 | 101145 Case_Based
2401 | 763181 Neural_Networks
2402 | 44121 Probabilistic_Methods
2403 | 593328 Genetic_Algorithms
2404 | 259772 Case_Based
2405 | 189708 Probabilistic_Methods
2406 | 60169 Neural_Networks
2407 | 24530 Reinforcement_Learning
2408 | 467383 Genetic_Algorithms
2409 | 20972 Reinforcement_Learning
2410 | 13686 Neural_Networks
2411 | 152731 Neural_Networks
2412 | 118558 Reinforcement_Learning
2413 | 118559 Reinforcement_Learning
2414 | 1154123 Neural_Networks
2415 | 1154124 Neural_Networks
2416 | 1126503 Case_Based
2417 | 40583 Probabilistic_Methods
2418 | 95719 Probabilistic_Methods
2419 | 693143 Theory
2420 | 36131 Probabilistic_Methods
2421 | 1123689 Probabilistic_Methods
2422 | 6913 Probabilistic_Methods
2423 | 256106 Neural_Networks
2424 | 36140 Theory
2425 | 1115670 Rule_Learning
2426 | 1108389 Probabilistic_Methods
2427 | 6923 Rule_Learning
2428 | 6925 Neural_Networks
2429 | 36162 Probabilistic_Methods
2430 | 62329 Genetic_Algorithms
2431 | 36167 Reinforcement_Learning
2432 | 6941 Rule_Learning
2433 | 245288 Reinforcement_Learning
2434 | 62333 Neural_Networks
2435 | 189774 Probabilistic_Methods
2436 | 1133846 Neural_Networks
2437 | 167205 Rule_Learning
2438 | 62347 Reinforcement_Learning
2439 | 267003 Neural_Networks
2440 | 1114992 Neural_Networks
2441 | 1112026 Neural_Networks
2442 | 1119295 Rule_Learning
2443 | 1111304 Reinforcement_Learning
2444 | 964248 Probabilistic_Methods
2445 | 45603 Reinforcement_Learning
2446 | 1109830 Neural_Networks
2447 | 1152761 Genetic_Algorithms
2448 | 62389 Case_Based
2449 | 444191 Neural_Networks
2450 | 263482 Rule_Learning
2451 | 263486 Rule_Learning
2452 | 263498 Genetic_Algorithms
2453 | 675756 Neural_Networks
2454 | 1125895 Reinforcement_Learning
2455 | 627024 Neural_Networks
2456 | 12211 Theory
2457 | 643069 Probabilistic_Methods
2458 | 1112075 Neural_Networks
2459 | 884094 Probabilistic_Methods
2460 | 120817 Neural_Networks
2461 | 1110628 Probabilistic_Methods
2462 | 18770 Probabilistic_Methods
2463 | 18773 Probabilistic_Methods
2464 | 173863 Probabilistic_Methods
2465 | 1130243 Probabilistic_Methods
2466 | 1102625 Case_Based
2467 | 63812 Case_Based
2468 | 18781 Theory
2469 | 18785 Probabilistic_Methods
2470 | 1129494 Neural_Networks
2471 | 578845 Genetic_Algorithms
2472 | 68115 Case_Based
2473 | 293271 Reinforcement_Learning
2474 | 63835 Case_Based
2475 | 1919 Probabilistic_Methods
2476 | 164 Theory
2477 | 293285 Theory
2478 | 12275 Neural_Networks
2479 | 1103383 Genetic_Algorithms
2480 | 1114239 Genetic_Algorithms
2481 | 6215 Reinforcement_Learning
2482 | 288107 Theory
2483 | 385067 Case_Based
2484 | 1121537 Theory
2485 | 1103394 Case_Based
2486 | 6224 Reinforcement_Learning
2487 | 2663 Neural_Networks
2488 | 104840 Theory
2489 | 632935 Probabilistic_Methods
2490 | 1106236 Case_Based
2491 | 375605 Genetic_Algorithms
2492 | 1132406 Neural_Networks
2493 | 28964 Probabilistic_Methods
2494 | 308003 Rule_Learning
2495 | 47839 Reinforcement_Learning
2496 | 753070 Theory
2497 | 563613 Neural_Networks
2498 | 1132416 Neural_Networks
2499 | 2695 Neural_Networks
2500 | 2696 Neural_Networks
2501 | 2698 Neural_Networks
2502 | 1105530 Neural_Networks
2503 | 1113551 Case_Based
2504 | 688824 Neural_Networks
2505 | 1138968 Genetic_Algorithms
2506 | 1120858 Neural_Networks
2507 | 40605 Probabilistic_Methods
2508 | 1132443 Neural_Networks
2509 | 1999 Theory
2510 | 33325 Theory
2511 | 644577 Probabilistic_Methods
2512 | 66751 Theory
2513 | 594119 Genetic_Algorithms
2514 | 1132461 Neural_Networks
2515 | 1115701 Probabilistic_Methods
2516 | 1131741 Genetic_Algorithms
2517 | 270085 Genetic_Algorithms
2518 | 1136040 Neural_Networks
2519 | 1131752 Genetic_Algorithms
2520 | 1131754 Genetic_Algorithms
2521 | 4878 Case_Based
2522 | 1123756 Genetic_Algorithms
2523 | 1135345 Neural_Networks
2524 | 1107728 Neural_Networks
2525 | 1154232 Probabilistic_Methods
2526 | 1154233 Probabilistic_Methods
2527 | 17363 Neural_Networks
2528 | 1213 Rule_Learning
2529 | 149139 Theory
2530 | 28230 Probabilistic_Methods
2531 | 50838 Neural_Networks
2532 | 1125906 Probabilistic_Methods
2533 | 32698 Probabilistic_Methods
2534 | 754594 Neural_Networks
2535 | 1133930 Rule_Learning
2536 | 1115790 Neural_Networks
2537 | 28249 Reinforcement_Learning
2538 | 1237 Neural_Networks
2539 | 684531 Neural_Networks
2540 | 238099 Rule_Learning
2541 | 131042 Neural_Networks
2542 | 444240 Genetic_Algorithms
2543 | 1112106 Neural_Networks
2544 | 27535 Probabilistic_Methods
2545 | 28267 Case_Based
2546 | 1120138 Neural_Networks
2547 | 1117920 Probabilistic_Methods
2548 | 1125944 Case_Based
2549 | 1118658 Theory
2550 | 263553 Neural_Networks
2551 | 1125953 Rule_Learning
2552 | 114308 Reinforcement_Learning
2553 | 630817 Neural_Networks
2554 | 687401 Neural_Networks
2555 | 594900 Genetic_Algorithms
2556 | 10174 Theory
2557 | 73323 Case_Based
2558 | 46431 Neural_Networks
2559 | 202520 Probabilistic_Methods
2560 | 15987 Probabilistic_Methods
2561 | 10186 Theory
2562 | 294030 Probabilistic_Methods
2563 | 675847 Neural_Networks
2564 | 190697 Genetic_Algorithms
2565 | 576795 Genetic_Algorithms
2566 | 1125993 Case_Based
2567 | 519318 Probabilistic_Methods
2568 | 1120197 Neural_Networks
2569 | 1152896 Case_Based
2570 | 1122304 Neural_Networks
2571 | 2702 Neural_Networks
2572 | 1129572 Neural_Networks
2573 | 1112194 Neural_Networks
2574 | 29738 Probabilistic_Methods
2575 | 1128868 Neural_Networks
2576 | 633721 Probabilistic_Methods
2577 | 630890 Neural_Networks
2578 | 1123068 Probabilistic_Methods
2579 | 561568 Probabilistic_Methods
2580 | 733534 Neural_Networks
2581 | 1102751 Theory
2582 | 1114336 Case_Based
2583 | 1123087 Neural_Networks
2584 | 6311 Theory
2585 | 116512 Neural_Networks
2586 | 6318 Case_Based
2587 | 7047 Reinforcement_Learning
2588 | 1123093 Rule_Learning
2589 | 1103499 Probabilistic_Methods
2590 | 151430 Rule_Learning
2591 | 431206 Probabilistic_Methods
2592 | 372862 Rule_Learning
2593 | 561593 Probabilistic_Methods
2594 | 1106330 Case_Based
2595 | 1105603 Neural_Networks
2596 | 1132505 Neural_Networks
2597 | 74821 Probabilistic_Methods
2598 | 6344 Case_Based
2599 | 116545 Genetic_Algorithms
2600 | 733576 Neural_Networks
2601 | 1112911 Genetic_Algorithms
2602 | 1105622 Neural_Networks
2603 | 1102794 Rule_Learning
2604 | 262108 Neural_Networks
2605 | 116552 Genetic_Algorithms
2606 | 41417 Case_Based
2607 | 1140543 Neural_Networks
2608 | 14529 Case_Based
2609 | 1117219 Neural_Networks
2610 | 1107095 Rule_Learning
2611 | 1140548 Neural_Networks
2612 | 523010 Neural_Networks
2613 | 42156 Neural_Networks
2614 | 262121 Genetic_Algorithms
2615 | 22564 Case_Based
2616 | 14545 Neural_Networks
2617 | 22566 Case_Based
2618 | 1106388 Rule_Learning
2619 | 429781 Theory
2620 | 335042 Neural_Networks
2621 | 219218 Probabilistic_Methods
2622 | 610529 Neural_Networks
2623 | 250566 Case_Based
2624 | 1104946 Theory
2625 | 195792 Genetic_Algorithms
2626 | 1152179 Neural_Networks
2627 | 89308 Case_Based
2628 | 350373 Theory
2629 | 628667 Reinforcement_Learning
2630 | 628668 Reinforcement_Learning
2631 | 102061 Genetic_Algorithms
2632 | 430574 Neural_Networks
2633 | 1107808 Neural_Networks
2634 | 1110028 Theory
2635 | 45052 Probabilistic_Methods
2636 | 89335 Case_Based
2637 | 252715 Rule_Learning
2638 | 4983 Genetic_Algorithms
2639 | 646837 Genetic_Algorithms
2640 | 1139009 Neural_Networks
2641 | 252725 Rule_Learning
2642 | 593544 Genetic_Algorithms
2643 | 299195 Neural_Networks
2644 | 593559 Genetic_Algorithms
2645 | 1108570 Theory
2646 | 272345 Case_Based
2647 | 593560 Genetic_Algorithms
2648 | 70520 Reinforcement_Learning
2649 | 131122 Neural_Networks
2650 | 8591 Rule_Learning
2651 | 217852 Rule_Learning
2652 | 264347 Theory
2653 | 7867 Case_Based
2654 | 27612 Theory
2655 | 1152917 Probabilistic_Methods
2656 | 28359 Reinforcement_Learning
2657 | 103528 Case_Based
2658 | 46500 Theory
2659 | 27631 Case_Based
2660 | 289779 Genetic_Algorithms
2661 | 103537 Probabilistic_Methods
2662 | 633081 Probabilistic_Methods
2663 | 255628 Neural_Networks
2664 | 397590 Rule_Learning
2665 | 1129610 Genetic_Algorithms
2666 | 50980 Case_Based
2667 | 28385 Reinforcement_Learning
2668 | 427606 Genetic_Algorithms
2669 | 616336 Rule_Learning
2670 | 1120252 Probabilistic_Methods
2671 | 1152958 Neural_Networks
2672 | 1152959 Neural_Networks
2673 | 1385 Neural_Networks
2674 | 254923 Genetic_Algorithms
2675 | 34961 Neural_Networks
2676 | 46547 Theory
2677 | 13136 Neural_Networks
2678 | 1131137 Probabilistic_Methods
2679 | 233106 Neural_Networks
2680 | 561613 Probabilistic_Methods
2681 | 1131149 Neural_Networks
2682 | 1104258 Neural_Networks
2683 | 1152991 Probabilistic_Methods
2684 | 447250 Neural_Networks
2685 | 115188 Neural_Networks
2686 | 102879 Theory
2687 | 1131150 Neural_Networks
2688 | 56708 Reinforcement_Learning
2689 | 1128943 Genetic_Algorithms
2690 | 134060 Theory
2691 | 102884 Theory
2692 | 1131163 Neural_Networks
2693 | 4274 Case_Based
2694 | 1131172 Probabilistic_Methods
2695 | 767763 Theory
2696 | 152226 Theory
2697 | 152227 Theory
2698 | 626530 Probabilistic_Methods
2699 | 626531 Probabilistic_Methods
2700 | 1131180 Probabilistic_Methods
2701 | 1130454 Probabilistic_Methods
2702 | 1131184 Neural_Networks
2703 | 1128974 Genetic_Algorithms
2704 | 1128975 Genetic_Algorithms
2705 | 1128977 Genetic_Algorithms
2706 | 1128978 Genetic_Algorithms
2707 | 117328 Case_Based
2708 | 24043 Neural_Networks
2709 |
--------------------------------------------------------------------------------
/example_gcn.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | from gnn.data.dataset import GraphDataset, WhiteSpaceTokenizer
3 | from gnn.data.example import load_M10, load_cora, load_dblp
4 | from gnn.model.gcn import GCN, GCNTrainer
5 | import tensorflow as tf
6 |
7 | # eager mode must be enabled
8 | from tensorflow.contrib.eager.python import tfe
9 |
10 | import os
11 | os.environ["CUDA_VISIBLE_DEVICES"] = "0"
12 |
13 | tfe.enable_eager_execution()
14 |
15 | # read graph dataset: data/M10 data/dblp
16 | # dataset = GraphDataset("data/dblp", ignore_featureless_node=True)
17 | dataset = load_M10("data/M10", ignore_featureless_node=True)
18 |
19 | adj = dataset.adj_matrix(sparse=True)
20 | feature_matrix, feature_masks = dataset.feature_matrix(bag_of_words=True, sparse=True)
21 | labels, label_masks = dataset.label_list_or_matrix(one_hot=False)
22 |
23 | train_node_indices, test_node_indices, train_masks, test_masks = dataset.split_train_and_test(training_rate=0.3)
24 |
25 | gcn_model = GCN([16, dataset.num_classes()], drop_rate=0.1)
26 | gcn_trainer = GCNTrainer(gcn_model)
27 | gcn_trainer.train(adj, feature_matrix, labels, train_masks, test_masks, learning_rate=1e-3, l2_coe=1e-3)
28 |
--------------------------------------------------------------------------------
/gnn/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrawlScript/TF-GNN/dd72d190759d00e935221c32aa139950f460dfdb/gnn/__init__.py
--------------------------------------------------------------------------------
/gnn/data/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrawlScript/TF-GNN/dd72d190759d00e935221c32aa139950f460dfdb/gnn/data/__init__.py
--------------------------------------------------------------------------------
/gnn/data/dataset.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | import os
4 | import numpy as np
5 | import re
6 |
7 | from scipy.sparse import csr_matrix
8 |
9 | from gnn.data.meta_network import MetaNetwork, N_TYPE_NODE, N_TYPE_LABEL, IdIndexer
10 |
11 |
12 | class Tokenizer(object):
13 | def __init__(self):
14 | self.token_id_index_dict = {}
15 | self.token_index_id_dict = {}
16 |
17 | # get token_index if token_id exists
18 | # otherwise create token_index for token_id
19 | def get_or_create_token_index(self, token_id):
20 | if token_id in self.token_id_index_dict:
21 | return self.token_id_index_dict[token_id]
22 | else:
23 | token_index = self.num_tokens()
24 | self.token_index_id_dict[token_index] = token_id
25 | self.token_id_index_dict[token_id] = token_index
26 | return token_index
27 |
28 | def get_token_index(self, token_id):
29 | return self.token_id_index_dict[token_id]
30 |
31 | def num_tokens(self):
32 | return len(self.token_id_index_dict)
33 |
34 | # sentence:str => words:list[str]
35 | def tokenize(self, s):
36 | raise NotImplementedError()
37 |
38 | def tokenize_to_indices(self, s, create_token_index=True):
39 | token_ids = self.tokenize(s)
40 | if create_token_index:
41 | token_indices = [self.get_or_create_token_index(token_id) for token_id in token_ids]
42 | else:
43 | token_indices = [self.get_token_index(token_id) for token_id in token_ids if token_id in self.token_id_index_dict]
44 | return token_indices
45 |
46 |
47 | # default tokenizer, splitting by white spaces
48 | class WhiteSpaceTokenizer(Tokenizer):
49 | def tokenize(self, s):
50 | return s.split()
51 |
52 |
53 | class EnglishWordTokenizer(Tokenizer):
54 | def __init__(self):
55 | super().__init__()
56 | self.punc_re = re.compile("[^a-zA-Z]")
57 |
58 | def tokenize(self, s):
59 | s = s.lower()
60 | s = self.punc_re.sub(" ", s)
61 | return s.split()
62 |
63 |
64 | # construct dataset from a data directory
65 | # the data directory should contain:
66 | # - adjedges.txt or edgelist.txt
67 | # - docs.txt
68 | # - labels.txt
69 | class GraphDataset(object):
70 | FORMAT_ADJEDGES = "adjedges"
71 | FORMAT_EDGELIST = "edgelist"
72 |
73 | # read data from data_dir
74 | # if ignore_featureless_node is True, nodes without content or features will be ignored
75 | def __init__(self, data_dir, data_format=FORMAT_ADJEDGES, ignore_featureless_node=True,
76 | tokenizer=None,
77 | label_indexer=None,
78 | fit_dataset=True):
79 | super().__init__()
80 | self.network = MetaNetwork()
81 | self.label_indexer = IdIndexer() if label_indexer is None else label_indexer
82 | self.data_dir = data_dir
83 | self.data_format = data_format
84 | self.ignore_featureless_node = ignore_featureless_node
85 |
86 | self.fit_dataset = fit_dataset
87 |
88 | self.num_nodes_with_features = 0
89 |
90 | if tokenizer is None:
91 | self.tokenizer = EnglishWordTokenizer()
92 | else:
93 | self.tokenizer = tokenizer
94 |
95 | # read document first such that nodes with content will have small index
96 | self._read_docs()
97 | self._read_labels()
98 | self._read_structure()
99 | self.network.build_cache()
100 |
101 | def _read_structure(self):
102 | if self.data_format == GraphDataset.FORMAT_ADJEDGES:
103 | self._read_adjedges()
104 | else:
105 | self._read_edgelist()
106 |
107 | def _read_adjedges(self):
108 | adjedges_fpath = os.path.join(self.data_dir, "adjedges.txt")
109 | with open(adjedges_fpath, "r", encoding="utf-8") as f:
110 | for line in f:
111 | node_ids = line.split()
112 | node_id0 = node_ids[0]
113 | if self.ignore_featureless_node and not self.network.has_node_id(N_TYPE_NODE, node_id0):
114 | continue
115 | node_index0 = self.network.get_node_index(N_TYPE_NODE, node_id0, create=True)
116 | for node_id1 in node_ids[1:]:
117 | if self.ignore_featureless_node and not self.network.has_node_id(N_TYPE_NODE, node_id1):
118 | continue
119 | node_index1 = self.network.get_node_index(N_TYPE_NODE, node_id1, create=True)
120 | if node_index0 != node_index1:
121 | self.network.add_edges((N_TYPE_NODE, N_TYPE_NODE), node_index0, node_index1, 1.0)
122 |
123 | def _read_edgelist(self):
124 | edgelist_fpath = os.path.join(self.data_dir, "edgelist.txt")
125 | with open(edgelist_fpath, "r", encoding="utf-8") as f:
126 | for line in f:
127 | items = line.split()
128 | node_id0 = items[0]
129 | node_id1 = items[1]
130 | if len(items) == 3:
131 | weight = float(items[2])
132 | else:
133 | weight = 1.0
134 | if self.ignore_featureless_node and not self.network.has_node_id(N_TYPE_NODE, node_id0):
135 | continue
136 | node_index0 = self.network.get_node_index(N_TYPE_NODE, node_id0, create=True)
137 | if self.ignore_featureless_node and not self.network.has_node_id(N_TYPE_NODE, node_id1):
138 | continue
139 | node_index1 = self.network.get_node_index(N_TYPE_NODE, node_id1, create=True)
140 | if node_index0 != node_index1:
141 | self.network.add_edges((N_TYPE_NODE, N_TYPE_NODE), node_index0, node_index1, weight)
142 |
143 | def _read_docs(self):
144 | docs_fpath = os.path.join(self.data_dir, "docs.txt")
145 | with open(docs_fpath, "r", encoding="utf-8") as f:
146 | for line in f:
147 | node_id, sentence = re.split(r"\s+", line, 1)
148 | node_index = self.network.get_node_index(N_TYPE_NODE, node_id, create=True)
149 | token_indices = self.tokenizer.tokenize_to_indices(sentence, create_token_index=self.fit_dataset)
150 | self.network.set_node_attr(N_TYPE_NODE, node_index, "features", token_indices)
151 | self.num_nodes_with_features += 1
152 |
153 | def _read_labels(self):
154 | labels_fpath = os.path.join(self.data_dir, "labels.txt")
155 | with open(labels_fpath, "r", encoding="utf-8") as f:
156 | for line in f:
157 | node_id, label_id = line.split()
158 | if self.ignore_featureless_node:
159 | node_index = self.network.get_node_index(N_TYPE_NODE, node_id)
160 | else:
161 | node_index = self.network.get_node_index(N_TYPE_NODE, node_id, create=True)
162 | label_index = self.label_indexer.get_index(label_id, create=self.fit_dataset)
163 | # label_index = self.network.get_node_index(N_TYPE_LABEL, label_id, create=True)
164 | self.network.set_node_attr(N_TYPE_NODE, node_index, "label", label_index)
165 |
166 | def feature_matrix(self, bag_of_words=False, sparse=True):
167 | # if bag of words, return sparse
168 | if bag_of_words:
169 | feature_dim = self.tokenizer.num_tokens()
170 | num_nodes = self.num_nodes()
171 | data = []
172 | row = []
173 | col = []
174 | feature_masks = []
175 | for node_index in range(num_nodes):
176 | if self.has_features(node_index):
177 | token_indices = self.network.get_node_attr(N_TYPE_NODE, node_index, "features")
178 | for token_index in token_indices:
179 | data.append(1)
180 | row.append(node_index)
181 | col.append(token_index)
182 | feature_masks.append(1)
183 | else:
184 | feature_masks.append(0)
185 |
186 | feature_matrix = csr_matrix((data, (row, col)), shape=(num_nodes, feature_dim))
187 | if not sparse:
188 | feature_matrix = feature_matrix.todense().astype(np.float32)
189 | return feature_matrix, np.array(feature_masks)
190 |
191 | # feature_matrix = np.zeros((num_nodes, feature_dim), dtype=np.float32)
192 | # for node_index in range(num_nodes):
193 | # token_indices = self.get_node_attr(N_TYPE_NODE, node_index, "features")
194 | # feature_matrix[node_index][token_indices] = 1.0
195 | # return feature_matrix
196 |
197 | else:
198 | raise NotImplementedError()
199 |
200 | def num_classes(self):
201 | return len(self.label_indexer)
202 |
203 | def num_nodes(self):
204 | return self.network.num_nodes(N_TYPE_NODE)
205 |
206 | def label_list_or_matrix(self, one_hot=False):
207 | # label_indices = self.network.get_node_attrs(N_TYPE_NODE, range(self.network.num_nodes(N_TYPE_NODE)), "label")
208 | label_indices = []
209 | label_masks = []
210 | num_nodes = self.network.num_nodes(N_TYPE_NODE)
211 | for node_index in range(num_nodes):
212 | if self.has_label(node_index):
213 | label_indices.append(self.get_label_index(node_index))
214 | label_masks.append(1)
215 | else:
216 | label_indices.append(0)
217 | label_masks.append(0)
218 | if one_hot:
219 | label_matrix = np.zeros((num_nodes, self.num_classes()), dtype=np.int32)
220 | label_matrix[np.arange(num_nodes), label_indices] = 1
221 | return label_matrix
222 | else:
223 | return np.array(label_indices), np.array(label_masks)
224 |
225 | def adj_matrix(self, sparse=False):
226 | return self.network.adj_matrix((N_TYPE_NODE, N_TYPE_NODE), sparse)
227 |
228 | def get_label_index(self, node_index):
229 | return self.network.get_node_attr(N_TYPE_NODE, node_index, "label")
230 |
231 | def has_label(self, node_index):
232 | return self.network.has_node_attr(N_TYPE_NODE, node_index, "label")
233 |
234 | def has_features(self, node_index):
235 | return self.network.has_node_attr(N_TYPE_NODE, node_index, "features")
236 |
237 | def split_train_and_test(self, training_rate=0.3):
238 | def func_should_mask(node_index):
239 | return self.has_label(node_index)
240 | return self.network.split_train_and_test(N_TYPE_NODE, training_rate, func_should_mask)
241 |
242 |
--------------------------------------------------------------------------------
/gnn/data/example.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | from gnn.data.dataset import GraphDataset, WhiteSpaceTokenizer
3 |
4 |
5 | def load_cora(data_dir):
6 | return GraphDataset(data_dir, data_format=GraphDataset.FORMAT_EDGELIST, tokenizer=WhiteSpaceTokenizer())
7 |
8 |
9 | def load_M10(data_dir, ignore_featureless_node=True):
10 | return GraphDataset(data_dir, ignore_featureless_node=ignore_featureless_node)
11 |
12 |
13 | def load_dblp(data_dir, ignore_featureless_node=True):
14 | return GraphDataset(data_dir, ignore_featureless_node=ignore_featureless_node)
15 |
--------------------------------------------------------------------------------
/gnn/data/meta_network.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | from scipy.sparse import csr_matrix, _sparsetools
3 | import numpy as np
4 | import random
5 | from multiprocessing.dummy import Pool as ThreadPool
6 |
7 | # N_TYPE denotes node type
8 | N_TYPE_NODE = "N_NODE"
9 | N_TYPE_LABEL = "N_LABEL"
10 |
11 |
12 | def dict_get_or_create_value(dict_object, key, default_value):
13 | if key in dict_object:
14 | return dict_object[key]
15 | else:
16 | dict_object[key] = default_value
17 | return default_value
18 |
19 |
20 | class IdIndexer(object):
21 | def __init__(self):
22 | self.id_index_dict = {}
23 | self.index_id_dict = {}
24 |
25 | def get_index(self, id, create=False):
26 | if not create or id in self.id_index_dict:
27 | return self.id_index_dict[id]
28 | index = len(self.id_index_dict)
29 | self.id_index_dict[id] = index
30 | self.index_id_dict[index] = id
31 | return index
32 |
33 | def get_indices(self, ids):
34 | return [self.get_index(id) for id in ids]
35 |
36 | def get_id(self, index):
37 | return self.index_id_dict[index]
38 |
39 | def get_ids(self, indices):
40 | return [self.index_id_dict[index] for index in indices]
41 |
42 | def has_id(self, id):
43 | return id in self.id_index_dict
44 |
45 | def list_ids(self):
46 | return list(self.id_index_dict)
47 |
48 | def list_indices(self):
49 | return list(self.index_id_dict)
50 |
51 | def __len__(self):
52 | return len(self.id_index_dict)
53 |
54 |
55 |
56 |
57 | class Adj(object):
58 | def __init__(self):
59 | self.data = []
60 | self.row = []
61 | self.col = []
62 | self.cached_csr = None
63 | self.cached_sample_list = None
64 |
65 | def build_cache(self, shape=None):
66 | self.cached_csr = self.to_csr(shape=shape)
67 | self.cached_sample_list = self.get_sample_list()
68 |
69 | def to_csr(self, shape):
70 | return csr_matrix((self.data, (self.row, self.col)), shape=shape)
71 |
72 | def add_edge(self, node_index0, node_index1, weight=1.0):
73 | self.data.append(weight)
74 | self.row.append(node_index0)
75 | self.col.append(node_index1)
76 |
77 | def add_edges(self, node_index0, node_index1, weight=1.0):
78 | self.add_edge(node_index0, node_index1, weight)
79 | self.add_edge(node_index1, node_index0, weight)
80 |
81 | def get_neighbor_dict(self, node_index):
82 | return {col_index: self.cached_csr[node_index, col_index] for col_index in self.get_neighbors(node_index)}
83 |
84 | def get_neighbors(self, node_index):
85 | return [col_index for col_index in self.cached_csr.getrow(node_index).indices]
86 |
87 | def get_sample_list(self):
88 | return list(set(self.row))
89 |
90 | def sample_node(self, excluded_node_indices=None):
91 | while True:
92 | node_index = self.cached_sample_list[random.randrange(0, len(self.cached_sample_list))]
93 | if excluded_node_indices is None or node_index not in excluded_node_indices:
94 | return node_index
95 |
96 | def sample_neighbor(self, node_index):
97 | neighbors = self.get_neighbors()
98 | if len(neighbors) == 0:
99 | return None
100 | return neighbors[random.randrange(0, len(neighbors))]
101 |
102 | def sample_triple(self, node_a=None):
103 | if node_a is None:
104 | node_a = self.sample_node()
105 | neighbors = self.get_neighbors(node_a)
106 | node_b = self.sample_neighbor(node_a)
107 | excluded = set([node_a] + neighbors)
108 | node_neg = self.sample_node(excluded_node_indices=excluded)
109 | return node_a, node_b, node_neg
110 |
111 |
112 |
113 | # Heterogeneous Network
114 | # edges are based on meta-paths
115 | class MetaNetwork(object):
116 |
117 | # read data from data_dir
118 | # if ignore_featureless_node is True, nodes without content or features will be ignored
119 | def __init__(self):
120 | self.node_type_indexer_dict = {}
121 | self.meta_adj_dict = {}
122 | # node_type:str => node_index:int => node_attrdict: dict
123 | self.node_type_index_attrdict_dict = {}
124 | # node_type0:str => node_type1:str => node_index:int => neighbor_node_indices:list
125 | self.meta_neighbors_dict = {}
126 | # key0: node_type0 => key1: node_type1 => key2: node_index0 => key3 => node_index1 => value: weight
127 | self.meta_adj_dict = {}
128 | # key0: node_type0 => key1: node_type1 => sample_list: list[int]
129 | self.meta_sample_list_dict = {}
130 |
131 | def get_indexer(self, node_type, create=False):
132 | if not create or node_type in self.node_type_indexer_dict:
133 | return self.node_type_indexer_dict[node_type]
134 | indexer = IdIndexer()
135 | self.node_type_indexer_dict[node_type] = indexer
136 | return indexer
137 |
138 | def get_adj(self, meta, create=False):
139 | if not create or meta in self.meta_adj_dict:
140 | return self.meta_adj_dict[meta]
141 | adj = Adj()
142 | self.meta_adj_dict[meta] = adj
143 | return adj
144 |
145 | def list_node_ids(self, meta):
146 | return self.get_indexer(meta).list_ids()
147 |
148 | def list_node_indices(self, meta):
149 | return self.get_indexer(meta).list_indices()
150 |
151 | def get_node_attrdict(self, node_type, node_index, create=False):
152 | if not create:
153 | return self.node_type_index_attrdict_dict[node_type][node_index]
154 | node_index_attrdict = dict_get_or_create_value(self.node_type_index_attrdict_dict, node_type, {})
155 | attrdict = dict_get_or_create_value(node_index_attrdict, node_index, {})
156 | return attrdict
157 |
158 | def get_node_attr(self, node_type, node_index, attr_name, return_none_if_not_exist=False):
159 | try:
160 | return self.get_node_attrdict(node_type, node_index, create=False)[attr_name]
161 | except Exception as e:
162 | if return_none_if_not_exist:
163 | return None
164 | else:
165 | raise e
166 |
167 | def has_node_attr(self, node_type, node_index, attr_name):
168 | return self.get_node_attr(node_type, node_index, attr_name, return_none_if_not_exist=True) is not None
169 |
170 | def get_node_attrs(self, node_type, node_indices, attr_name, return_none_if_not_exist=False):
171 | return [self.get_node_attr(node_type, node_index, attr_name, return_none_if_not_exist) for node_index in node_indices]
172 |
173 | def set_node_attr(self, node_type, node_index, attr_name, attr_value):
174 | attrdict = self.get_node_attrdict(node_type, node_index, create=True)
175 | attrdict[attr_name] = attr_value
176 |
177 | # get node_index if node_id exists
178 | # otherwise create node_index for node_id
179 | def get_node_index(self, node_type, node_id, create=False):
180 | return self.get_indexer(node_type, create).get_index(node_id, create)
181 |
182 | def get_node_indices(self, node_type, node_ids):
183 | return self.get_indexer(node_type, create=False).get_ids(node_ids)
184 |
185 | def get_node_id(self, node_type, node_index, create=False):
186 | return self.get_indexer(node_type, create).get_id(node_index)
187 |
188 | def get_node_ids(self, node_type, node_indices):
189 | return self.get_indexer(node_type, create=False).get_ids(node_indices)
190 |
191 | def has_node_id(self, node_type, node_id):
192 | return self.get_indexer(node_type, create=False).has_id(node_id)
193 |
194 | def add_edge(self, meta, node_index0, node_index1, weight=1.0):
195 | self.get_adj(meta, create=True).add_edge(node_index0, node_index1, weight=weight)
196 |
197 | def add_edges(self, meta, node_index0, node_index1, weight=1.0):
198 | self.get_adj(meta, create=True).add_edges(node_index0, node_index1, weight=weight)
199 |
200 | def num_nodes(self, node_type):
201 | return len(self.get_indexer(node_type, create=False))
202 |
203 | # if sparse, return a csr_matrix
204 | def adj_matrix(self, meta, sparse=False):
205 | csr = self.get_adj(meta, create=False).cached_csr
206 | return csr if sparse else csr.todense()
207 |
208 | def split_train_and_test(self, node_type, training_rate, func_should_mask=None):
209 | masked_node_indices = []
210 | num_nodes = self.num_nodes(node_type)
211 | if func_should_mask is not None:
212 | for node_index in range(num_nodes):
213 | if func_should_mask(node_index):
214 | masked_node_indices.append(node_index)
215 | random_node_indices = np.random.permutation(masked_node_indices)
216 | else:
217 | random_node_indices = np.random.permutation(num_nodes)
218 |
219 | training_size = int(len(random_node_indices) * training_rate)
220 | train_node_indices = random_node_indices[:training_size]
221 | test_node_indices = random_node_indices[training_size:]
222 |
223 | train_masks = np.zeros([num_nodes], dtype=np.int32)
224 | train_masks[train_node_indices] = 1
225 | test_masks = np.zeros([num_nodes], dtype=np.int32)
226 | test_masks[test_node_indices] = 1
227 | return train_node_indices, test_node_indices, train_masks, test_masks
228 |
229 | def sample_node(self, node_type, excluded_node_indices=None):
230 | indexer = self.get_indexer(node_type, create=False)
231 | while True:
232 | node_index = random.randrange(0, len(indexer))
233 | if excluded_node_indices is None or node_index not in excluded_node_indices:
234 | return node_index
235 |
236 | def sample_meta_node(self, meta, excluded_node_indices=None):
237 | return self.get_adj(meta, create=False).sample_node(excluded_node_indices)
238 |
239 | def sample_meta_neighbor(self, meta, node_index):
240 | return self.get_adj(meta, create=False).sample_neighbor(node_index)
241 |
242 | def random_walk(self, node_types, start_node_index=None, padding=True):
243 | if start_node_index is None:
244 | start_node_index = self.sample_meta_node(tuple(node_types[:2]))
245 | path = [start_node_index]
246 | for i, node_type in enumerate(node_types[:-1]):
247 | meta = tuple(node_types[i:i+2])
248 | node_index0 = path[-1]
249 | node_index1 = self.sample_meta_neighbor(meta, node_index0)
250 | if node_index1 is None:
251 | break
252 | path.append(node_index1)
253 |
254 | while len(path) < len(node_types):
255 | node_type = node_types[len(path)]
256 | random_node_index = self.sample_node(node_type, excluded_node_indices=path)
257 | path.append(random_node_index)
258 | return path
259 |
260 | def multi_random_walk(self, node_types, start_node_indices=None, num_paths=None, num_threads=None):
261 | if (start_node_indices is None) == (num_paths is None):
262 | print("please specify either 'start_node_indices' or 'num_paths'")
263 | if start_node_indices is None:
264 | start_node_indices = [None] * num_paths
265 | if num_threads is None:
266 | num_paths = num_paths
267 |
268 | def random_walk_func(start_node_index):
269 | return self.random_walk(node_types, start_node_index)
270 |
271 | pool = ThreadPool(4)
272 | paths = pool.map(random_walk_func, start_node_indices)
273 |
274 | return paths
275 |
276 | def get_adj_shape(self, meta):
277 | return [self.num_nodes(meta[0]), self.num_nodes(meta[1])]
278 |
279 |
280 | def build_cache(self):
281 | for meta, adj in self.meta_adj_dict.items():
282 | adj.build_cache(shape=self.get_adj_shape(meta))
283 |
284 | def sample_triple(self, meta, node_a=None):
285 | return self.get_adj(meta, create=False).sample_triple(node_a)
286 |
287 | def sample_triples(self, meta, num):
288 | samples = []
289 | for i in range(num):
290 | samples.append(self.sample_triple(meta))
291 | return [list(t) for t in list(zip(*samples))]
292 |
293 |
--------------------------------------------------------------------------------
/gnn/data/old_meta_network.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | from scipy.sparse import csr_matrix
3 | import numpy as np
4 | import random
5 | from multiprocessing.dummy import Pool as ThreadPool
6 |
7 | # N_TYPE denotes node type
8 | N_TYPE_NODE = "N_NODE"
9 | N_TYPE_LABEL = "N_LABEL"
10 |
11 |
12 | def dict_get_or_create_value(dict_object, key, default_value):
13 | if key in dict_object:
14 | return dict_object[key]
15 | else:
16 | dict_object[key] = default_value
17 | return default_value
18 |
19 |
20 | # Heterogeneous Network
21 | # edges are based on meta-paths
22 | class MetaNetwork(object):
23 |
24 | # read data from data_dir
25 | # if ignore_featureless_node is True, nodes without content or features will be ignored
26 | def __init__(self):
27 | # node_type:str => node_id:str => node_index:int
28 | self.node_type_id_index_dict = {}
29 | # node_type:str => node_index:int => node_id:str
30 | self.node_type_index_id_dict = {}
31 | # node_type:str => node_index:int => node_attrdict: dict
32 | self.node_type_index_attrdict_dict = {}
33 | # node_type0:str => node_type1:str => node_index:int => neighbor_node_indices:list
34 | self.meta_neighbors_dict = {}
35 | # key0: node_type0 => key1: node_type1 => key2: node_index0 => key3 => node_index1 => value: weight
36 | self.meta_adj_dict = {}
37 | # key0: node_type0 => key1: node_type1 => sample_list: list[int]
38 | self.meta_sample_list_dict = {}
39 |
40 | def list_node_ids(self, node_type):
41 | return list(self.node_type_id_index_dict[node_type].keys())
42 |
43 | def list_node_indices(self, node_type):
44 | return list(self.node_type_index_id_dict[node_type].keys())
45 |
46 | def get_or_create_adj_dict(self, node_type0, node_type1):
47 | sub_meta_adj_dict = dict_get_or_create_value(self.meta_adj_dict, node_type0, {})
48 | adj_dict = dict_get_or_create_value(sub_meta_adj_dict, node_type1, {})
49 | return adj_dict
50 |
51 | def get_adj_dict(self, node_type0, node_type1):
52 | return self.meta_adj_dict[node_type0][node_type1]
53 |
54 | # neighbor_weight_dict
55 | def get_weight_dict(self, node_type0, node_type1, node_index):
56 | return self.get_adj_dict(node_type0, node_type1)[node_index]
57 |
58 | def get_or_create_neighbors_dict(self, node_type0, node_type1):
59 | sub_meta_neighbors_dict = dict_get_or_create_value(self.meta_neighbors_dict, node_type0, {})
60 | neighbors_dict = dict_get_or_create_value(sub_meta_neighbors_dict, node_type1, {})
61 | return neighbors_dict
62 |
63 | def get_or_create_neighbors(self, node_type0, node_type1, node_index):
64 | neighbors_dict = self.get_or_create_neighbors_dict(node_type0, node_type1)
65 | neighbors = dict_get_or_create_value(neighbors_dict, node_index, [])
66 | return neighbors
67 |
68 | def get_neighbors(self, node_type0, node_type1, node_index):
69 | return self.meta_neighbors_dict[node_type0][node_type1][node_index]
70 |
71 | def get_or_create_node_id_index_dict(self, node_type):
72 | return dict_get_or_create_value(self.node_type_id_index_dict, node_type, {})
73 |
74 | def get_or_create_node_index_id_dict(self, node_type):
75 | return dict_get_or_create_value(self.node_type_index_id_dict, node_type, {})
76 |
77 | def get_node_id_index_dict(self, node_type):
78 | return self.node_type_id_index_dict[node_type]
79 |
80 | def get_node_index_id_dict(self, node_type):
81 | return self.node_type_index_id_dict[node_type]
82 |
83 | def get_or_create_node_attrdict(self, node_type, node_index):
84 | node_index_attrdict = dict_get_or_create_value(self.node_type_index_attrdict_dict, node_type, {})
85 | attrdict = dict_get_or_create_value(node_index_attrdict, node_index, {})
86 | return attrdict
87 |
88 | def get_or_create_node_attr(self, node_type, node_index, attr_name, attr_value):
89 | attr_dict = self.get_or_create_node_attrdict(node_type, node_index)
90 | if attr_name in attr_dict:
91 | return attr_dict[attr_name]
92 | else:
93 | attr_dict[attr_name] = attr_value
94 | return attr_value
95 |
96 | def get_node_attrdict(self, node_type, node_index):
97 | return self.node_type_index_attrdict_dict[node_type][node_index]
98 |
99 | def get_node_attr(self, node_type, node_index, attr_name):
100 | return self.get_node_attrdict(node_type, node_index)[attr_name]
101 |
102 | def has_node_attr(self, node_type, node_index, attr_name):
103 | node_index_attrdict_dict = self.node_type_index_attrdict_dict[node_type]
104 | if node_index not in node_index_attrdict_dict:
105 | return False
106 | attrdict = node_index_attrdict_dict[node_index]
107 | return attr_name in attrdict
108 |
109 | def get_node_attrs(self, node_type, node_indices, attr_name):
110 | return [self.get_node_attr(node_type, node_index, attr_name) for node_index in node_indices]
111 |
112 | def set_node_attr(self, node_type, node_index, attr_name, attr_value):
113 | attrdict = self.get_or_create_node_attrdict(node_type, node_index)
114 | attrdict[attr_name] = attr_value
115 |
116 | # add_edge by node indices and node types
117 | def add_edge(self, node_type0, node_type1, node_index0, node_index1, weight=1.0):
118 | adj_dict = self.get_or_create_adj_dict(node_type0, node_type1)
119 | weight_dict = dict_get_or_create_value(adj_dict, node_index0, {})
120 |
121 | if node_index1 not in weight_dict:
122 | neighbors = self.get_or_create_neighbors(node_type0, node_type1, node_index0)
123 | neighbors.append(node_index1)
124 |
125 | weight_dict[node_index1] = weight
126 |
127 | def add_edges(self, node_type0, node_type1, node_index0, node_index1, weight=1.0):
128 | self.add_edge(node_type0, node_type1, node_index0, node_index1, weight=weight)
129 | self.add_edge(node_type1, node_type0, node_index1, node_index0, weight=weight)
130 |
131 | # get node_index if node_id exists
132 | # otherwise create node_index for node_id
133 | def get_or_create_node_index(self, node_type, node_id):
134 | node_id_index_dict = self.get_or_create_node_id_index_dict(node_type)
135 | if node_id in node_id_index_dict:
136 | return node_id_index_dict[node_id]
137 | else:
138 | node_index = self.num_nodes(node_type)
139 | node_id_index_dict[node_id] = node_index
140 | node_index_id_dict = self.get_or_create_node_index_id_dict(node_type)
141 | node_index_id_dict[node_index] = node_id
142 | return node_index
143 |
144 | # will raise exception when node_id does not exist
145 | def get_node_index(self, node_type, node_id):
146 | node_id_index_dict = self.get_node_id_index_dict(node_type)
147 | return node_id_index_dict[node_id]
148 |
149 | def get_node_indices(self, node_type, node_ids):
150 | return [self.get_node_index(node_type, node_id) for node_id in node_ids]
151 |
152 | def get_node_id(self, node_type, node_index):
153 | node_index_id_dict = self.get_node_index_id_dict(node_type)
154 | return node_index_id_dict[node_index]
155 |
156 | def get_node_ids(self, node_type, node_indices):
157 | return [self.get_node_id(node_type, node_index) for node_index in node_indices]
158 |
159 | def has_node_id(self, node_type, node_id):
160 | node_id_index_dict = self.get_node_id_index_dict(node_type)
161 | return node_id in node_id_index_dict
162 |
163 | def num_nodes(self, node_type):
164 | return len(self.node_type_id_index_dict[node_type])
165 |
166 | # if sparse, return a csr_matrix
167 | def adj_matrix(self, node_type0, node_type1, sparse=False):
168 | data = []
169 | row = []
170 | col = []
171 | adj_dict = self.get_adj_dict(node_type0, node_type1)
172 | for node_index0 in adj_dict:
173 | weight_dict = adj_dict[node_index0]
174 | for node_index1 in weight_dict:
175 | data.append(weight_dict[node_index1])
176 | row.append(node_index0)
177 | col.append(node_index1)
178 | adj = csr_matrix((data, (row, col)), shape=(self.num_nodes(node_type0), self.num_nodes(node_type1)))
179 | if sparse:
180 | return adj
181 | else:
182 | return adj.todense()
183 | # if sparse:
184 | # adj = csr_matrix((self.num_nodes(), self.num_nodes()), dtype=np.float32)
185 | # else:
186 | # adj = np.zeros((self.num_nodes(), self.num_nodes()), dtype=np.float32)
187 | #
188 | # for node_index0 in self.adj_dict:
189 | # weight_dict = self.adj_dict[node_index0]
190 | # for node_index1 in weight_dict:
191 | # adj[node_index0, node_index1] = weight_dict[node_index1]
192 | # return adj
193 |
194 | def split_train_and_test(self, node_type, training_rate, func_should_mask=None):
195 | masked_node_indices = []
196 | num_nodes = self.num_nodes(node_type)
197 | if func_should_mask is not None:
198 | for node_index in range(num_nodes):
199 | if func_should_mask(node_index):
200 | masked_node_indices.append(node_index)
201 | random_node_indices = np.random.permutation(masked_node_indices)
202 | else:
203 | random_node_indices = np.random.permutation(num_nodes)
204 |
205 | training_size = int(len(random_node_indices) * training_rate)
206 | train_node_indices = random_node_indices[:training_size]
207 | test_node_indices = random_node_indices[training_size:]
208 |
209 | train_masks = np.zeros([num_nodes], dtype=np.int32)
210 | train_masks[train_node_indices] = 1
211 | test_masks = np.zeros([num_nodes], dtype=np.int32)
212 | test_masks[test_node_indices] = 1
213 | return train_node_indices, test_node_indices, train_masks, test_masks
214 |
215 | def random_node_index(self, node_type, excluded_node_indices=None):
216 | while True:
217 | random_node_index = random.randint(0, self.num_nodes(node_type) - 1)
218 | if excluded_node_indices is not None and random_node_index in excluded_node_indices:
219 | continue
220 | return random_node_index
221 |
222 | def random_neighbor_node_index(self, node_type0, node_type1, node_index):
223 | neighbors = self.get_or_create_neighbors(node_type0, node_type1, node_index)
224 | if len(neighbors) == 0:
225 | return None
226 | i = random.randint(0, len(neighbors) - 1)
227 | return neighbors[i]
228 |
229 | def random_walk(self, node_types, start_node_index=None, padding=True):
230 | if start_node_index is None:
231 | start_node_index = self.random_node_index(node_types[0])
232 | path = [start_node_index]
233 | for i, node_type in enumerate(node_types[:-1]):
234 | node_type0 = node_types[i]
235 | node_type1 = node_types[i+1]
236 | node_index0 = path[-1]
237 | node_index1 = self.random_neighbor_node_index(node_type0, node_type1, node_index0)
238 | if node_index1 is None:
239 | break
240 | path.append(node_index1)
241 |
242 | while len(path) < len(node_types):
243 | node_type = node_types[len(path)]
244 | random_node_index = self.random_node_index(node_type, excluded_node_indices=path)
245 | path.append(random_node_index)
246 | return path
247 |
248 | def multi_random_walk(self, node_types, start_node_indices=None, num_paths=None, num_threads=None):
249 | if (start_node_indices is None) == (num_paths is None):
250 | print("please specify either 'start_node_indices' or 'num_paths'")
251 | if start_node_indices is None:
252 | start_node_indices = [None] * num_paths
253 | if num_threads is None:
254 | num_paths = num_paths
255 |
256 | def random_walk_func(start_node_index):
257 | return self.random_walk(node_types, start_node_index)
258 |
259 | pool = ThreadPool(4)
260 | paths = pool.map(random_walk_func, start_node_indices)
261 |
262 | return paths
263 |
264 | def build_sample_list(self):
265 | for node_type0 in self.meta_adj_dict:
266 | sub_meta_sample_list_dict = {}
267 | self.meta_sample_list_dict[node_type0] = sub_meta_sample_list_dict
268 | for node_type1 in self.meta_adj_dict[node_type0]:
269 | sub_meta_sample_list_dict[node_type1] = list(self.meta_adj_dict[node_type0][node_type1].keys())
270 |
271 | def sample_node(self, node_type):
272 | num_nodes = self.num_nodes(node_type)
273 | return random.randint(0, num_nodes - 1)
274 |
275 | def meta_sample_node(self, node_type0, node_type1):
276 | sample_list = self.meta_sample_list_dict[node_type0][node_type1]
277 | return sample_list[random.randint(0, len(sample_list) - 1)]
278 |
279 | def sample_triple(self, node_type0, node_type1, node_a=None):
280 | if node_a is None:
281 | node_a = self.meta_sample_node(node_type0, node_type1)
282 | neighbors = self.get_neighbors(node_type0, node_type1, node_a)
283 | node_b = neighbors[random.randint(0, len(neighbors)) - 1]
284 | while True:
285 | node_neg = self.sample_node(node_type1)
286 | if node_neg in neighbors or node_neg == node_a:
287 | continue
288 | else:
289 | break
290 | return node_a, node_b, node_neg
291 |
292 | def sample_triples(self, node_type0, node_type1, num):
293 | samples = []
294 | for i in range(num):
295 | samples.append(self.sample_triple(node_type0, node_type1))
296 | return [list(t) for t in list(zip(*samples))]
297 |
298 |
--------------------------------------------------------------------------------
/gnn/evaluation/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrawlScript/TF-GNN/dd72d190759d00e935221c32aa139950f460dfdb/gnn/evaluation/__init__.py
--------------------------------------------------------------------------------
/gnn/model/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrawlScript/TF-GNN/dd72d190759d00e935221c32aa139950f460dfdb/gnn/model/__init__.py
--------------------------------------------------------------------------------
/gnn/model/gcn.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 |
3 | import numpy as np
4 | import tensorflow as tf
5 | from tensorflow.python import keras
6 | import scipy.sparse as sp
7 | from scipy.sparse.base import spmatrix
8 |
9 | from gnn.util.evaluation import evaluate
10 |
11 |
12 | class GCNLayer(keras.Model):
13 |
14 | def __init__(self, num_units, activation=tf.nn.relu, *args, **kwargs):
15 | super().__init__(*args, **kwargs)
16 | self.num_units = num_units
17 | self.activation = activation
18 | self.W = None
19 | self.b = None
20 |
21 | def build(self, input_shape):
22 | input_dim = int(input_shape[1][1])
23 | self.W = self.add_weight("W", shape=[input_dim, self.num_units],initializer=tf.glorot_uniform_initializer)
24 | self.b = self.add_weight("b", shape=[self.num_units], initializer=tf.zeros_initializer)
25 | super().build(input_shape)
26 |
27 | def call(self, inputs, training=None, mask=None):
28 | A, H = inputs
29 | A_is_sparse = isinstance(A, tf.SparseTensor)
30 | H_is_sparse = isinstance(H, tf.SparseTensor)
31 |
32 | if H_is_sparse:
33 | HW = tf.sparse_tensor_dense_matmul(H, self.W) + self.b
34 | else:
35 | HW = tf.matmul(H, self.W) + self.b
36 |
37 | if A_is_sparse:
38 | AHW = tf.sparse_tensor_dense_matmul(A, HW)
39 | else:
40 | AHW = tf.matmul(A, HW)
41 |
42 | if self.activation is not None:
43 | AHW = self.activation(AHW)
44 | return AHW
45 |
46 | def l2_loss(self):
47 | return tf.nn.l2_loss(self.W)
48 |
49 |
50 | class GCN(keras.Model):
51 | def __init__(self, num_units_list, drop_rate, *args, **kwargs):
52 | super().__init__(*args, **kwargs)
53 | self.num_units_list = num_units_list
54 | self.drop_rate = drop_rate
55 | self.gcn_funcs = []
56 |
57 | for i, num_units in enumerate(num_units_list):
58 | activation = tf.nn.relu if i < len(num_units_list) - 1 else None
59 | gcn_func = GCNLayer(num_units, activation)
60 | setattr(self, "gcn_func{}".format(i), gcn_func)
61 | self.gcn_funcs.append(gcn_func)
62 |
63 | self.dropout_layer = keras.layers.Dropout(drop_rate)
64 |
65 | def l2_loss(self):
66 | return tf.add_n([gcn_func.l2_loss() for gcn_func in self.gcn_funcs])
67 |
68 | def call(self, inputs, training=None, mask=None):
69 | A, H = inputs
70 | for i, gcn_func in enumerate(self.gcn_funcs):
71 | H = gcn_func([A, H], training=training)
72 | if i < len(self.gcn_funcs) - 1:
73 | H = self.dropout_layer(H, training=training)
74 | return H
75 |
76 | @classmethod
77 | def gcn_kernal(cls, adj):
78 | inv_D = np.array(adj.sum(axis=1)).flatten()
79 | inv_D = np.power(inv_D, -0.5)
80 | inv_D[np.isinf(inv_D)] = 0.0
81 | inv_D = sp.diags(inv_D)
82 | return inv_D.dot(adj).dot(inv_D) + sp.eye(inv_D.shape[0])
83 |
84 | @classmethod
85 | def gcn_kernal_tensor(cls, adj, sparse=True):
86 | adj = GCN.gcn_kernal(adj)
87 | if sparse:
88 | A = adj.tocoo().astype(np.float32)
89 | A = tf.SparseTensor(indices=np.stack((A.row, A.col), axis=1), values=A.data, dense_shape=A.shape)
90 | else:
91 | A = tf.Variable(adj.todense().astype(np.float32), trainable=False)
92 | return A
93 |
94 |
95 | class GCNTrainer(object):
96 | def __init__(self, gcn_model):
97 | self.model = gcn_model
98 |
99 | def train(self,
100 | adj,
101 | feature_matrix,
102 | labels,
103 | train_masks,
104 | test_masks,
105 | steps=1000,
106 | learning_rate=1e-3,
107 | l2_coe=1e-3,
108 | drop_rate=1e-3,
109 | show_interval=20,
110 | eval_interval=20):
111 |
112 | if test_masks is None:
113 | test_masks = 1 - np.array(train_masks)
114 |
115 | A = GCN.gcn_kernal_tensor(adj, sparse=True)
116 | num_classes = self.model.num_units_list[-1]
117 | one_hot_labels = tf.one_hot(labels, num_classes)
118 | optimizer = tf.train.AdamOptimizer(learning_rate)
119 |
120 | if feature_matrix is None:
121 | feature_matrix = sp.diags(range(adj.shape[0]))
122 |
123 | if isinstance(feature_matrix, spmatrix):
124 | coo_feature_matrix = feature_matrix.tocoo().astype(np.float32)
125 | x = tf.SparseTensor(indices=np.stack((coo_feature_matrix.row, coo_feature_matrix.col), axis=1),
126 | values=coo_feature_matrix.data, dense_shape=coo_feature_matrix.shape)
127 | else:
128 | x = tf.Variable(feature_matrix, trainable=False)
129 |
130 | num_masked = tf.cast(tf.reduce_sum(train_masks), tf.float32)
131 | for step in range(steps):
132 | with tf.GradientTape() as tape:
133 | logits = self.model([A, x], training=True)
134 | losses = tf.nn.softmax_cross_entropy_with_logits(
135 | logits=logits,
136 | labels=one_hot_labels
137 | )
138 | losses *= train_masks
139 | mean_loss = tf.reduce_sum(losses) / num_masked
140 | loss = mean_loss + self.model.l2_loss() * l2_coe
141 |
142 | watched_vars = tape.watched_variables()
143 | grads = tape.gradient(loss, watched_vars)
144 | optimizer.apply_gradients(zip(grads, watched_vars))
145 |
146 | if step % show_interval == 0:
147 | print("step = {}\tloss = {}".format(step, loss))
148 |
149 | if step % eval_interval == 0:
150 | preds = self.model([A, x])
151 | preds = tf.argmax(preds, axis=-1).numpy()
152 | accuracy, macro_f1, micro_f1 = evaluate(preds, labels, test_masks)
153 | print("step = {}\taccuracy = {}\tmacro_f1 = {}\tmicro_f1 = {}".format(step, accuracy, macro_f1, micro_f1))
154 |
--------------------------------------------------------------------------------
/gnn/util/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrawlScript/TF-GNN/dd72d190759d00e935221c32aa139950f460dfdb/gnn/util/__init__.py
--------------------------------------------------------------------------------
/gnn/util/evaluation.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | import numpy as np
3 | from sklearn.metrics import accuracy_score, f1_score
4 |
5 |
6 | def evaluate(preds, labels, masks):
7 | masked_node_indices = np.nonzero(masks)
8 | masked_preds = preds[masked_node_indices]
9 | masked_labels = labels[masked_node_indices]
10 |
11 | accuracy = accuracy_score(masked_labels, masked_preds)
12 | macro_f1 = f1_score(masked_labels, masked_preds, pos_label=None, average='macro')
13 | micro_f1 = f1_score(masked_labels, masked_preds, pos_label=None, average='micro')
14 |
15 | return accuracy, macro_f1, micro_f1
16 |
17 | # corrects = (masked_preds == masked_labels).astype(np.float32)
18 | # accuracy = corrects.mean()
19 | # return accuracy
20 |
21 |
22 |
--------------------------------------------------------------------------------
/gnn/util/sparse.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | import numpy as np
3 | import tensorflow as tf
4 | import scipy.sparse as sp
5 |
6 |
7 | def dense_to_sparse_tensor(dense_matrix, dtype=np.float32):
8 | coo_matrix = sp.coo_matrix(dense_matrix, dtype=dtype)
9 | return coo_to_sparse_tensor(coo_matrix)
10 |
11 |
12 | def csr_to_sparse_tensor(csr_matrix, dtype=np.float32):
13 | coo_matrix = csr_matrix.tocoo().astype(dtype)
14 | return coo_to_sparse_tensor(coo_matrix)
15 |
16 |
17 | def coo_to_sparse_tensor(coo_matrix):
18 | t = tf.SparseTensor(indices=np.stack((coo_matrix.row, coo_matrix.col), axis=1), values=coo_matrix.data, dense_shape=coo_matrix.shape)
19 | return t
--------------------------------------------------------------------------------