├── bokeh-app ├── data │ ├── countries_110m │ │ ├── ne_110m_admin_0_countries.cpg │ │ ├── ne_110m_admin_0_countries.VERSION.txt │ │ ├── ne_110m_admin_0_countries.dbf │ │ ├── ne_110m_admin_0_countries.prj │ │ ├── ne_110m_admin_0_countries.shp │ │ ├── ne_110m_admin_0_countries.shx │ │ └── ne_110m_admin_0_countries.README.html │ ├── ne_10m_admin_0_countries │ │ ├── ne_10m_admin_0_countries.cpg │ │ ├── ne_10m_admin_0_countries.VERSION.txt │ │ ├── ne_10m_admin_0_countries.prj │ │ ├── ne_10m_admin_0_countries.dbf │ │ ├── ne_10m_admin_0_countries.shp │ │ ├── ne_10m_admin_0_countries.shx │ │ └── ne_10m_admin_0_countries.README.html │ ├── ne_110m_admin_0_countries_lakes │ │ ├── ne_110m_admin_0_countries_lakes.cpg │ │ ├── ne_110m_admin_0_countries_lakes.VERSION.txt │ │ ├── ne_110m_admin_0_countries_lakes.prj │ │ ├── ne_110m_admin_0_countries_lakes.dbf │ │ ├── ne_110m_admin_0_countries_lakes.shp │ │ ├── ne_110m_admin_0_countries_lakes.shx │ │ └── ne_110m_admin_0_countries_lakes.README.html │ ├── .DS_Store │ ├── coronavirus.csv │ ├── cases14feb - Sheet1.csv │ └── country_geocodes.csv └── .DS_Store ├── Interactive-choropleth-map-obesity.mov ├── docker-compose.yml ├── docker └── Dockerfile ├── .gitignore └── README.md /bokeh-app/data/countries_110m/ne_110m_admin_0_countries.cpg: -------------------------------------------------------------------------------- 1 | UTF-8 -------------------------------------------------------------------------------- /bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.cpg: -------------------------------------------------------------------------------- 1 | UTF-8 -------------------------------------------------------------------------------- /bokeh-app/data/countries_110m/ne_110m_admin_0_countries.VERSION.txt: -------------------------------------------------------------------------------- 1 | 4.1.0 2 | -------------------------------------------------------------------------------- /bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.VERSION.txt: -------------------------------------------------------------------------------- 1 | 4.1.0 2 | -------------------------------------------------------------------------------- /bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.cpg: -------------------------------------------------------------------------------- 1 | UTF-8 -------------------------------------------------------------------------------- /bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.VERSION.txt: -------------------------------------------------------------------------------- 1 | 4.1.0 2 | -------------------------------------------------------------------------------- /bokeh-app/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/.DS_Store -------------------------------------------------------------------------------- /bokeh-app/data/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/.DS_Store -------------------------------------------------------------------------------- /Interactive-choropleth-map-obesity.mov: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/Interactive-choropleth-map-obesity.mov -------------------------------------------------------------------------------- /bokeh-app/data/countries_110m/ne_110m_admin_0_countries.dbf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.dbf -------------------------------------------------------------------------------- /bokeh-app/data/countries_110m/ne_110m_admin_0_countries.prj: -------------------------------------------------------------------------------- 1 | GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.017453292519943295]] -------------------------------------------------------------------------------- /bokeh-app/data/countries_110m/ne_110m_admin_0_countries.shp: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.shp -------------------------------------------------------------------------------- /bokeh-app/data/countries_110m/ne_110m_admin_0_countries.shx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.shx -------------------------------------------------------------------------------- /bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.prj: -------------------------------------------------------------------------------- 1 | GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.017453292519943295]] -------------------------------------------------------------------------------- /bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.dbf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.dbf -------------------------------------------------------------------------------- /bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp -------------------------------------------------------------------------------- /bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.shx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.shx -------------------------------------------------------------------------------- /bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.prj: -------------------------------------------------------------------------------- 1 | GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.017453292519943295]] -------------------------------------------------------------------------------- /bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.dbf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.dbf -------------------------------------------------------------------------------- /bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.shp: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.shp -------------------------------------------------------------------------------- /bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.shx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.shx -------------------------------------------------------------------------------- /docker-compose.yml: -------------------------------------------------------------------------------- 1 | version: '3.3' 2 | services: 3 | data-science: 4 | build: 5 | context: ./docker 6 | image: shivangi/data-science-python 7 | ports: 8 | - "8888:8888" 9 | - "5006:5006" 10 | volumes: 11 | - ./bokeh-app/:/home/jovyan/work/bokeh-app/ -------------------------------------------------------------------------------- /docker/Dockerfile: -------------------------------------------------------------------------------- 1 | FROM jupyter/datascience-notebook 2 | 3 | RUN pip install --upgrade pip \ 4 | && pip install datapackage \ 5 | && pip install folium \ 6 | && pip install --upgrade seaborn \ 7 | && pip install geopandas 8 | 9 | WORKDIR '/home/jovyan/work/bokeh-app/' 10 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | MANIFEST 2 | build 3 | dist 4 | _build 5 | docs/man/*.gz 6 | docs/source/api/generated 7 | docs/source/config.rst 8 | docs/gh-pages 9 | notebook/i18n/*/LC_MESSAGES/*.mo 10 | notebook/i18n/*/LC_MESSAGES/nbjs.json 11 | notebook/static/components 12 | notebook/static/style/*.min.css* 13 | notebook/static/*/js/built/ 14 | notebook/static/*/built/ 15 | notebook/static/built/ 16 | notebook/static/*/js/main.min.js* 17 | notebook/static/lab/*bundle.js 18 | node_modules 19 | *.py[co] 20 | __pycache__ 21 | *.egg-info 22 | *~ 23 | *.bak 24 | .ipynb_checkpoints 25 | .tox 26 | .DS_Store 27 | \#*# 28 | .#* 29 | .coverage 30 | .pytest_cache 31 | src 32 | 33 | *.swp 34 | *.map 35 | .idea/ 36 | Read the Docs 37 | config.rst 38 | 39 | /.project 40 | /.pydevproject 41 | 42 | package-lock.json 43 | geckodriver.log -------------------------------------------------------------------------------- /bokeh-app/data/coronavirus.csv: -------------------------------------------------------------------------------- 1 | Continent,Country / Territory / Area,Confirmed cases,Deaths  2 | Asia,China,37242,812 3 | Asia,Singapore,40,0 4 | Asia,Thailand,32,0 5 | Asia,Japan,26,0 6 | Asia,Republic of Korea,25,0 7 | Asia,Taiwan,18,0 8 | Asia,Malaysia,16,0 9 | Asia,Vietnam,14,0 10 | Asia,United Arab Emirates,7,0 11 | Asia,India,3,0 12 | Asia,Philippines,3,1 13 | Asia,Nepal,1,0 14 | Asia,Sri Lanka,1,0 15 | Asia,Cambodia,1,0 16 | Other,Cases on an international conveyance Japan,64,0 17 | Europe,Germany,14,0 18 | Europe,France,11,0 19 | Europe,Italy,3,0 20 | Europe,United Kingdom,3,0 21 | Europe,Russia,2,0 22 | Europe,Finland,1,0 23 | Europe,Belgium,1,0 24 | Europe,Spain,1,0 25 | Europe,Sweden,1,0 26 | America,United States of America,12,0 27 | America,Canada,7,0 28 | Oceania,Australia,15,0 -------------------------------------------------------------------------------- /bokeh-app/data/cases14feb - Sheet1.csv: -------------------------------------------------------------------------------- 1 | Continent,Country / Territory / Area,Confirmed cases,Deaths,Comments 2 | Asia,China,59865,1368,Including 48206 cases from Hubei povince 3 | Asia,Singapore,50,0, 4 | Asia,Thailand,33,0, 5 | Asia,Japan,29,0, 6 | Asia,Republic of Korea,28,0, 7 | Asia,Taiwan,18,0, 8 | Asia,Malaysia,18,0, 9 | Asia,Vietnam,16,0, 10 | Asia,United Arab Emirates,8,0, 11 | Asia,India,3,0, 12 | Asia,Philippines,3,1, 13 | Asia,Nepal,1,0, 14 | Asia,Sri Lanka,1,0, 15 | Asia,Cambodia,1,0, 16 | Other,Cases on an international conveyance Japan,174,0, 17 | Europe,Germany,16,0, 18 | Europe,France,11,0, 19 | Europe,United Kingdom,9,0, 20 | Europe,Italy,3,0, 21 | Europe,Spain,2,0, 22 | Europe,Russia,2,0, 23 | Europe,Sweden,1,0, 24 | Europe,Finland,1,0, 25 | Europe,Belgium,1,0, 26 | America,United States of America,14,0, 27 | America,Canada,7,0, 28 | Oceania,Australia,15,0, 29 | *Total*,,*60 330*,*1 369*, -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # A Complete Guide to an Interactive Geographical Map using Python 2 | 3 | Ever wondered how these beautiful geographical maps are created? Our World in Data has an extensive collection of interactive data visualizations on aspects dedicated to the global changes in health, population growth, education, culture, violence, political power, technology and several things that we care about. These visualizations help us understand how and why the world has changed over the last few decades. I was intrigued with this wealth of information and motivated to dive deeper. 4 | 5 | [Blog]() 6 | 7 | # Pre-requisites 8 | - [Docker](https://docs.docker.com/install/) 9 | - [Docker Compose](https://docs.docker.com/compose/install/) 10 | 11 | # Directory Layout 12 | 13 | ``` 14 | . 15 | ├── Interactive-choropleth-map-obesity.mov 16 | ├── README.md 17 | ├── bokeh-app 18 | │   ├── data 19 | │   │   ├── countries_110m 20 | │   │   │   ├── ne_110m_admin_0_countries.README.html 21 | │   │   │   ├── ne_110m_admin_0_countries.VERSION.txt 22 | │   │   │   ├── ne_110m_admin_0_countries.cpg 23 | │   │   │   ├── ne_110m_admin_0_countries.dbf 24 | │   │   │   ├── ne_110m_admin_0_countries.prj 25 | │   │   │   ├── ne_110m_admin_0_countries.shp 26 | │   │   │   └── ne_110m_admin_0_countries.shx 27 | │   │   └── obesity.csv 28 | │   └── world_obesity.ipynb 29 | ├── docker 30 | │   └── Dockerfile 31 | └── docker-compose.yml 32 | ``` 33 | 34 | # Running the sample 35 | 36 | ## Step 1 : Starting docker container 37 | 38 | ``` bash 39 | $ git clone 40 | $ cd /root-dir-of-the-repository 41 | $ docker-compose up 42 | ``` 43 | On the console output copy the jupyter notebook url e.g. `http://localhost:8888/token?=xxxx` and paste in your browser. 44 | 45 | ## Step 2 : Execute Code 46 | 47 | Open `world_obesity.ipynb` file and rull all cells. 48 | 49 | ## Step 3 : Start bokeh server 50 | 51 | In the browser using the jupyter notebook go to the `Terminal` 52 | 53 | ``` 54 | bokeh serve --show world_obesity.ipynb 55 | ``` 56 | ## Step 4 : Browse the interactive map 57 | 58 | The interactive map is rendered by bokeh server which can be browsed at `http://localhost:5006/` 59 | -------------------------------------------------------------------------------- /bokeh-app/data/country_geocodes.csv: -------------------------------------------------------------------------------- 1 | Country,Latitude,Longitude 2 | Afghanistan,33.93911,67.709953 3 | Albania,41.153332,20.168331 4 | Algeria,28.033886,1.659626 5 | Andorra,42.506285,1.521801 6 | Angola,-11.202692,17.873887 7 | Antigua and Barbuda,17.060816,-61.796428 8 | Argentina,-38.416097,-63.616672 9 | Armenia,40.069099,45.038189 10 | Australia,-25.274398,133.775136 11 | Austria,47.516231,14.550072 12 | Azerbaijan,40.143105,47.576927 13 | Bahamas,25.03428,-77.39628 14 | Bahrain,26.0667,50.5577 15 | Bangladesh,23.684994,90.356331 16 | Barbados,13.193887,-59.543198 17 | Belarus,53.709807,27.953389 18 | Belgium,50.503887,4.469936 19 | Belize,17.189877,-88.49765 20 | Benin,9.30769,2.315834 21 | Bhutan,27.514162,90.433601 22 | Bolivia,-16.290154,-63.588653 23 | Bosnia and Herzegovina,43.915886,17.679076 24 | Botswana,-22.328474,24.684866 25 | Brazil,-14.235004,-51.92528 26 | Brunei,4.535277,114.727669 27 | Bulgaria,42.733883,25.48583 28 | Burkina Faso,12.238333,-1.561593 29 | Burundi,-3.373056,29.918886 30 | Cabo Verde,15.120142,-23.6051721 31 | Cambodia,12.565679,104.990963 32 | Cameroon,7.369722,12.354722 33 | Canada,56.130366,-106.346771 34 | Central African Republic,6.611111,20.939444 35 | Chad,15.454166,18.732207 36 | Chile,-35.675147,-71.542969 37 | China,35.86166,104.195397 38 | Colombia,4.570868,-74.297333 39 | Comoros,-11.6455,43.3333 40 | Costa Rica,9.748917,-83.753428 41 | Cote d'Ivoire,7.539989,-5.54708 42 | Croatia,45.1,15.2 43 | Cuba,21.521757,-77.781167 44 | Cyprus,35.126413,33.429859 45 | Czech Republic,49.817492,15.472962 46 | Denmark,56.26392,9.501785 47 | Djibouti,11.825138,42.590275 48 | Dominica,15.414999,-61.370976 49 | Dominican Republic,18.735693,-70.162651 50 | Ecuador,-1.831239,-78.183406 51 | Egypt,26.820553,30.802498 52 | El Salvador,13.794185,-88.89653 53 | Equatorial Guinea,1.650801,10.267895 54 | Eritrea,15.179384,39.782334 55 | Estonia,58.595272,25.013607 56 | Ethiopia,9.145,40.489673 57 | Fiji,-17.713371,178.065032 58 | Finland,61.92411,25.748151 59 | France,46.227638,2.213749 60 | Gabon,-0.803689,11.609444 61 | Gambia,13.443182,-15.310139 62 | Georgia,42.315407,43.356892 63 | Germany,51.165691,10.451526 64 | Ghana,7.946527,-1.023194 65 | Greece,39.074208,21.824312 66 | Grenada,12.1165,-61.679 67 | Guatemala,15.783471,-90.230759 68 | Guinea,9.945587,-9.696645 69 | Guinea-Bissau,11.803749,-15.180413 70 | Guyana,4.860416,-58.93018 71 | Haiti,18.971187,-72.285215 72 | Honduras,15.199999,-86.241905 73 | Hungary,47.162494,19.503304 74 | Iceland,64.963051,-19.020835 75 | India,20.593684,78.96288 76 | Indonesia,-0.789275,113.921327 77 | Iran,32.427908,53.688046 78 | Iraq,33.223191,43.679291 79 | Ireland,53.41291,-8.24389 80 | Israel,31.046051,34.851612 81 | Italy,41.87194,12.56738 82 | Jamaica,18.109581,-77.297508 83 | Japan,36.204824,138.252924 84 | Jordan,30.585164,36.238414 85 | Kazakhstan,48.019573,66.923684 86 | Kenya,-0.023559,37.906193 87 | Kiribati,1.8708833,-157.3630262 88 | Kosovo,42.6026359,20.902977 89 | Kuwait,29.31166,47.481766 90 | Kyrgyzstan,41.20438,74.766098 91 | Laos,19.85627,102.495496 92 | Latvia,56.879635,24.603189 93 | Lebanon,33.854721,35.862285 94 | Lesotho,-29.609988,28.233608 95 | Liberia,6.428055,-9.429499 96 | Libya,26.3351,17.228331 97 | Liechtenstein,47.166,9.555373 98 | Lithuania,55.169438,23.881275 99 | Luxembourg,49.815273,6.129583 100 | Macedonia,41.608635,21.745275 101 | Madagascar,-18.766947,46.869107 102 | Malawi,-13.254308,34.301525 103 | Malaysia,4.210484,101.975766 104 | Maldives,1.977247,73.5361034 105 | Mali,17.570692,-3.996166 106 | Malta,35.937496,14.375416 107 | Marshall Islands,6.0683936,171.989379 108 | Mauritania,21.00789,-10.940835 109 | Mauritius,-20.348404,57.552152 110 | Mexico,23.634501,-102.552784 111 | Micronesia,6.8874813,158.2150717 112 | Moldova,47.411631,28.369885 113 | Monaco,43.7384176,7.4246158 114 | Mongolia,46.862496,103.846656 115 | Montenegro,42.708678,19.37439 116 | Morocco,31.791702,-7.09262 117 | Mozambique,-18.665695,35.529562 118 | Myanmar (Burma),21.913965,95.956223 119 | Namibia,-22.95764,18.49041 120 | Nauru,-0.522778,166.931503 121 | Nepal,28.394857,84.124008 122 | Netherlands,52.132633,5.291266 123 | New Zealand,-40.900557,174.885971 124 | Nicaragua,12.865416,-85.207229 125 | Niger,17.607789,8.081666 126 | Nigeria,9.081999,8.675277 127 | North Korea,40.339852,127.510093 128 | Norway,60.472024,8.468946 129 | Oman,21.512583,55.923255 130 | Pakistan,30.375321,69.345116 131 | Palau,7.51498,134.58252 132 | Palestine,31.952162,35.233154 133 | Panama,8.537981,-80.782127 134 | Papua New Guinea,-6.314993,143.95555 135 | Paraguay,-23.442503,-58.443832 136 | Peru,-9.189967,-75.015152 137 | Philippines,12.879721,121.774017 138 | Poland,51.919438,19.145136 139 | Portugal,39.399872,-8.224454 140 | Qatar,25.354826,51.183884 141 | Romania,45.943161,24.96676 142 | Russia,61.52401,105.318756 143 | Rwanda,-1.940278,29.873888 144 | St. Kitts and Nevis,17.357822,-62.782998 145 | St. Lucia,13.909444,-60.978893 146 | St. Vincent and The Grenadines,13.2528179,-61.1971628 147 | Samoa,-13.759029,-172.104629 148 | San Marino,43.94236,12.457777 149 | Sao Tome and Principe,0.18636,6.613081 150 | Saudi Arabia,23.885942,45.079162 151 | Senegal,14.497401,-14.452362 152 | Serbia,44.016521,21.005859 153 | Seychelles,-4.679574,55.491977 154 | Sierra Leone,8.460555,-11.779889 155 | Singapore,1.352083,103.819836 156 | Slovakia,48.669026,19.699024 157 | Slovenia,46.151241,14.995463 158 | Solomon Islands,-9.64571,160.156194 159 | Somalia,5.152149,46.199616 160 | South Africa,-30.559482,22.937506 161 | Republic of Korea,35.907757,127.766922 162 | South Sudan,6.8769919,31.3069788 163 | Spain,40.463667,-3.74922 164 | Sri Lanka,7.873054,80.771797 165 | Sudan,12.862807,30.217636 166 | Suriname,3.919305,-56.027783 167 | Swaziland,-26.522503,31.465866 168 | Sweden,60.128161,18.643501 169 | Switzerland,46.818188,8.227512 170 | Syria,34.802075,38.996815 171 | Taiwan,23.69781,120.960515 172 | Tajikistan,38.861034,71.276093 173 | Tanzania,-6.369028,34.888822 174 | Thailand,15.870032,100.992541 175 | Timor-Leste,-8.874217,125.727539 176 | Togo,8.619543,0.824782 177 | Tonga,-21.178986,-175.198242 178 | Trinidad and Tobago,10.691803,-61.222503 179 | Tunisia,33.886917,9.537499 180 | Turkey,38.963745,35.243322 181 | Turkmenistan,38.969719,59.556278 182 | Tuvalu,-7.4784418,178.6799214 183 | Uganda,1.373333,32.290275 184 | Ukraine,48.379433,31.16558 185 | United Arab Emirates,23.424076,53.847818 186 | United Kingdom,55.378051,-3.435973 187 | United States of America,37.09024,-95.712891 188 | Uruguay,-32.522779,-55.765835 189 | Uzbekistan,41.377491,64.585262 190 | Vanuatu,-15.376706,166.959158 191 | Vatican City,41.902916,12.453389 192 | Venezuela,6.42375,-66.58973 193 | Vietnam,14.058324,108.277199 194 | Yemen,15.552727,48.516388 195 | Zambia,-13.133897,27.849332 196 | Zimbabwe,-19.015438,29.154857 -------------------------------------------------------------------------------- /bokeh-app/data/countries_110m/ne_110m_admin_0_countries.README.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Admin 0 – Countries | Natural Earth 10 | 11 | 12 | 13 | 14 | 15 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 32 | 46 | 47 | 48 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 88 | 89 | 90 | 95 | 96 | 99 | 115 | 116 | 117 | 122 | 123 | 124 | 125 |
126 | 151 | 152 | 162 | 163 |
164 |
165 | 166 | 167 | « 1:110m Cultural Vectors  168 | « Downloads  169 |
170 |

Admin 0 – Countries

171 |
172 |
173 |
countries_thumb
174 |
There are 247 countries in the world. Greenland as separate from Denmark.

175 | 178 | 181 |

182 |
183 |
184 |

countries_banner

185 |

About

186 |

Countries distinguish between metropolitan (homeland) and independent and semi-independent portions of sovereign states. If you want to see the dependent overseas regions broken out (like in ISO codes, see France for example), use map units instead.

187 |

Each country is coded with a world region that roughly follows the United Nations setup.

188 |

Includes some thematic data from the United Nations, U.S. Central Intelligence Agency, and elsewhere.

189 |

Disclaimer

190 |

Natural Earth Vector draws boundaries of countries according to defacto status. We show who actually controls the situation on the ground. Please feel free to mashup our disputed areas (link) theme to match your particular political outlook.

191 |

Known Problems

192 |

None.

193 |

Version History

194 |
    195 |
  • 196 | 4.0.0 197 |
  • 198 |
  • 199 | 2.0.0 200 |
  • 201 |
  • 202 | 1.4.0 203 |
  • 204 |
  • 205 | 1.3.0 206 |
  • 207 |
  • 208 | 1.1.0 209 |
  • 210 |
  • 211 | 1.0.0 212 |
  • 213 |
214 | 215 |

The master changelog is available on Github » 216 |

217 | 218 | 219 |
220 | 221 |
222 | 223 | 224 |
225 | 226 | 227 | 335 | 336 |
337 |
338 | 400 | 401 | 402 | 403 | 404 | -------------------------------------------------------------------------------- /bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.README.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Admin 0 – Countries | Natural Earth 10 | 11 | 12 | 13 | 14 | 15 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 32 | 46 | 47 | 48 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 88 | 89 | 90 | 95 | 96 | 99 | 115 | 116 | 117 | 122 | 123 | 124 | 125 |
126 | 151 | 152 | 162 | 163 |
164 |
165 | 166 | 167 | « 1:110m Cultural Vectors  168 | « Downloads  169 |
170 |

Admin 0 – Countries

171 |
172 |
173 |
countries_thumb
174 |
There are 247 countries in the world. Greenland as separate from Denmark.

175 | 178 | 181 |

182 |
183 |
184 |

countries_banner

185 |

About

186 |

Countries distinguish between metropolitan (homeland) and independent and semi-independent portions of sovereign states. If you want to see the dependent overseas regions broken out (like in ISO codes, see France for example), use map units instead.

187 |

Each country is coded with a world region that roughly follows the United Nations setup.

188 |

Includes some thematic data from the United Nations, U.S. Central Intelligence Agency, and elsewhere.

189 |

Disclaimer

190 |

Natural Earth Vector draws boundaries of countries according to defacto status. We show who actually controls the situation on the ground. Please feel free to mashup our disputed areas (link) theme to match your particular political outlook.

191 |

Known Problems

192 |

None.

193 |

Version History

194 |
    195 |
  • 196 | 4.0.0 197 |
  • 198 |
  • 199 | 2.0.0 200 |
  • 201 |
  • 202 | 1.4.0 203 |
  • 204 |
  • 205 | 1.3.0 206 |
  • 207 |
  • 208 | 1.1.0 209 |
  • 210 |
  • 211 | 1.0.0 212 |
  • 213 |
214 | 215 |

The master changelog is available on Github » 216 |

217 | 218 | 219 |
220 | 221 |
222 | 223 | 224 |
225 | 226 | 227 | 335 | 336 |
337 |
338 | 400 | 401 | 402 | 403 | 404 | -------------------------------------------------------------------------------- /bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.README.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Admin 0 – Countries | Natural Earth 10 | 11 | 12 | 13 | 14 | 15 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 31 | 45 | 46 | 47 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 87 | 88 | 89 | 94 | 95 | 98 | 114 | 115 | 116 | 121 | 122 | 123 | 124 |
125 | 150 | 151 | 161 | 162 |
163 |
164 | 165 | 166 | « 1:10m Cultural Vectors  167 | « Downloads  168 |
169 |

Admin 0 – Countries

170 |
171 |
172 |
countries_thumb
173 |
There are 247 countries in the world. Greenland as separate from Denmark. Most users will want this file instead of sovereign states.

174 | 177 | 180 |

181 |
182 |
183 |

About

184 |

Countries distinguish between metropolitan (homeland) and independent and semi-independent portions of sovereign states. If you want to see the dependent overseas regions broken out (like in ISO codes, see France for example), use map units instead.

185 |

Each country is coded with a world region that roughly follows the United Nations setup.

186 |

Countries are coded with standard ISO and FIPS codes. French INSEE codes are also included.

187 |

Includes some thematic data from the United Nations (1), U.S. Central Intelligence Agency, and elsewhere.

188 |

countries_banner

189 |

Disclaimer

190 |

Natural Earth Vector draws boundaries of countries according to defacto status. We show who actually controls the situation on the ground. Please feel free to mashup our disputed area themes to match your particular political outlook.

191 |

Known Problems

192 |

None.

193 |

Version History

194 |
    195 |
  • 196 | 4.0.0 197 |
  • 198 |
  • 199 | 3.1.0 200 |
  • 201 |
  • 202 | 3.0.0 203 |
  • 204 |
  • 205 | 2.0.0 206 |
  • 207 |
  • 208 | 1.4.0 209 |
  • 210 |
  • 211 | 1.3.0 212 |
  • 213 |
  • 214 | 1.3 215 |
  • 216 |
  • 217 | 1.0.0 218 |
  • 219 |
220 | 221 |

The master changelog is available on Github »

222 |
223 | 224 | 225 |
226 | 227 |
228 | 229 | 230 |
231 | 232 | 233 | 341 | 342 |
343 |
344 | 406 | 407 | 408 | 409 | 410 | --------------------------------------------------------------------------------