├── bokeh-app
├── data
│ ├── countries_110m
│ │ ├── ne_110m_admin_0_countries.cpg
│ │ ├── ne_110m_admin_0_countries.VERSION.txt
│ │ ├── ne_110m_admin_0_countries.dbf
│ │ ├── ne_110m_admin_0_countries.prj
│ │ ├── ne_110m_admin_0_countries.shp
│ │ ├── ne_110m_admin_0_countries.shx
│ │ └── ne_110m_admin_0_countries.README.html
│ ├── ne_10m_admin_0_countries
│ │ ├── ne_10m_admin_0_countries.cpg
│ │ ├── ne_10m_admin_0_countries.VERSION.txt
│ │ ├── ne_10m_admin_0_countries.prj
│ │ ├── ne_10m_admin_0_countries.dbf
│ │ ├── ne_10m_admin_0_countries.shp
│ │ ├── ne_10m_admin_0_countries.shx
│ │ └── ne_10m_admin_0_countries.README.html
│ ├── ne_110m_admin_0_countries_lakes
│ │ ├── ne_110m_admin_0_countries_lakes.cpg
│ │ ├── ne_110m_admin_0_countries_lakes.VERSION.txt
│ │ ├── ne_110m_admin_0_countries_lakes.prj
│ │ ├── ne_110m_admin_0_countries_lakes.dbf
│ │ ├── ne_110m_admin_0_countries_lakes.shp
│ │ ├── ne_110m_admin_0_countries_lakes.shx
│ │ └── ne_110m_admin_0_countries_lakes.README.html
│ ├── .DS_Store
│ ├── coronavirus.csv
│ ├── cases14feb - Sheet1.csv
│ └── country_geocodes.csv
└── .DS_Store
├── Interactive-choropleth-map-obesity.mov
├── docker-compose.yml
├── docker
└── Dockerfile
├── .gitignore
└── README.md
/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.cpg:
--------------------------------------------------------------------------------
1 | UTF-8
--------------------------------------------------------------------------------
/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.cpg:
--------------------------------------------------------------------------------
1 | UTF-8
--------------------------------------------------------------------------------
/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.VERSION.txt:
--------------------------------------------------------------------------------
1 | 4.1.0
2 |
--------------------------------------------------------------------------------
/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.VERSION.txt:
--------------------------------------------------------------------------------
1 | 4.1.0
2 |
--------------------------------------------------------------------------------
/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.cpg:
--------------------------------------------------------------------------------
1 | UTF-8
--------------------------------------------------------------------------------
/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.VERSION.txt:
--------------------------------------------------------------------------------
1 | 4.1.0
2 |
--------------------------------------------------------------------------------
/bokeh-app/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/.DS_Store
--------------------------------------------------------------------------------
/bokeh-app/data/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/.DS_Store
--------------------------------------------------------------------------------
/Interactive-choropleth-map-obesity.mov:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/Interactive-choropleth-map-obesity.mov
--------------------------------------------------------------------------------
/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.dbf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.dbf
--------------------------------------------------------------------------------
/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.prj:
--------------------------------------------------------------------------------
1 | GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.017453292519943295]]
--------------------------------------------------------------------------------
/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.shp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.shp
--------------------------------------------------------------------------------
/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.shx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.shx
--------------------------------------------------------------------------------
/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.prj:
--------------------------------------------------------------------------------
1 | GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.017453292519943295]]
--------------------------------------------------------------------------------
/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.dbf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.dbf
--------------------------------------------------------------------------------
/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp
--------------------------------------------------------------------------------
/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.shx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.shx
--------------------------------------------------------------------------------
/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.prj:
--------------------------------------------------------------------------------
1 | GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.017453292519943295]]
--------------------------------------------------------------------------------
/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.dbf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.dbf
--------------------------------------------------------------------------------
/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.shp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.shp
--------------------------------------------------------------------------------
/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.shx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/CrazyDaffodils/Interactive-Choropleth-Map-Using-Python/HEAD/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.shx
--------------------------------------------------------------------------------
/docker-compose.yml:
--------------------------------------------------------------------------------
1 | version: '3.3'
2 | services:
3 | data-science:
4 | build:
5 | context: ./docker
6 | image: shivangi/data-science-python
7 | ports:
8 | - "8888:8888"
9 | - "5006:5006"
10 | volumes:
11 | - ./bokeh-app/:/home/jovyan/work/bokeh-app/
--------------------------------------------------------------------------------
/docker/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM jupyter/datascience-notebook
2 |
3 | RUN pip install --upgrade pip \
4 | && pip install datapackage \
5 | && pip install folium \
6 | && pip install --upgrade seaborn \
7 | && pip install geopandas
8 |
9 | WORKDIR '/home/jovyan/work/bokeh-app/'
10 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | MANIFEST
2 | build
3 | dist
4 | _build
5 | docs/man/*.gz
6 | docs/source/api/generated
7 | docs/source/config.rst
8 | docs/gh-pages
9 | notebook/i18n/*/LC_MESSAGES/*.mo
10 | notebook/i18n/*/LC_MESSAGES/nbjs.json
11 | notebook/static/components
12 | notebook/static/style/*.min.css*
13 | notebook/static/*/js/built/
14 | notebook/static/*/built/
15 | notebook/static/built/
16 | notebook/static/*/js/main.min.js*
17 | notebook/static/lab/*bundle.js
18 | node_modules
19 | *.py[co]
20 | __pycache__
21 | *.egg-info
22 | *~
23 | *.bak
24 | .ipynb_checkpoints
25 | .tox
26 | .DS_Store
27 | \#*#
28 | .#*
29 | .coverage
30 | .pytest_cache
31 | src
32 |
33 | *.swp
34 | *.map
35 | .idea/
36 | Read the Docs
37 | config.rst
38 |
39 | /.project
40 | /.pydevproject
41 |
42 | package-lock.json
43 | geckodriver.log
--------------------------------------------------------------------------------
/bokeh-app/data/coronavirus.csv:
--------------------------------------------------------------------------------
1 | Continent,Country / Territory / Area,Confirmed cases,Deaths
2 | Asia,China,37242,812
3 | Asia,Singapore,40,0
4 | Asia,Thailand,32,0
5 | Asia,Japan,26,0
6 | Asia,Republic of Korea,25,0
7 | Asia,Taiwan,18,0
8 | Asia,Malaysia,16,0
9 | Asia,Vietnam,14,0
10 | Asia,United Arab Emirates,7,0
11 | Asia,India,3,0
12 | Asia,Philippines,3,1
13 | Asia,Nepal,1,0
14 | Asia,Sri Lanka,1,0
15 | Asia,Cambodia,1,0
16 | Other,Cases on an international conveyance Japan,64,0
17 | Europe,Germany,14,0
18 | Europe,France,11,0
19 | Europe,Italy,3,0
20 | Europe,United Kingdom,3,0
21 | Europe,Russia,2,0
22 | Europe,Finland,1,0
23 | Europe,Belgium,1,0
24 | Europe,Spain,1,0
25 | Europe,Sweden,1,0
26 | America,United States of America,12,0
27 | America,Canada,7,0
28 | Oceania,Australia,15,0
--------------------------------------------------------------------------------
/bokeh-app/data/cases14feb - Sheet1.csv:
--------------------------------------------------------------------------------
1 | Continent,Country / Territory / Area,Confirmed cases,Deaths,Comments
2 | Asia,China,59865,1368,Including 48206 cases from Hubei povince
3 | Asia,Singapore,50,0,
4 | Asia,Thailand,33,0,
5 | Asia,Japan,29,0,
6 | Asia,Republic of Korea,28,0,
7 | Asia,Taiwan,18,0,
8 | Asia,Malaysia,18,0,
9 | Asia,Vietnam,16,0,
10 | Asia,United Arab Emirates,8,0,
11 | Asia,India,3,0,
12 | Asia,Philippines,3,1,
13 | Asia,Nepal,1,0,
14 | Asia,Sri Lanka,1,0,
15 | Asia,Cambodia,1,0,
16 | Other,Cases on an international conveyance Japan,174,0,
17 | Europe,Germany,16,0,
18 | Europe,France,11,0,
19 | Europe,United Kingdom,9,0,
20 | Europe,Italy,3,0,
21 | Europe,Spain,2,0,
22 | Europe,Russia,2,0,
23 | Europe,Sweden,1,0,
24 | Europe,Finland,1,0,
25 | Europe,Belgium,1,0,
26 | America,United States of America,14,0,
27 | America,Canada,7,0,
28 | Oceania,Australia,15,0,
29 | *Total*,,*60 330*,*1 369*,
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # A Complete Guide to an Interactive Geographical Map using Python
2 |
3 | Ever wondered how these beautiful geographical maps are created? Our World in Data has an extensive collection of interactive data visualizations on aspects dedicated to the global changes in health, population growth, education, culture, violence, political power, technology and several things that we care about. These visualizations help us understand how and why the world has changed over the last few decades. I was intrigued with this wealth of information and motivated to dive deeper.
4 |
5 | [Blog]()
6 |
7 | # Pre-requisites
8 | - [Docker](https://docs.docker.com/install/)
9 | - [Docker Compose](https://docs.docker.com/compose/install/)
10 |
11 | # Directory Layout
12 |
13 | ```
14 | .
15 | ├── Interactive-choropleth-map-obesity.mov
16 | ├── README.md
17 | ├── bokeh-app
18 | │ ├── data
19 | │ │ ├── countries_110m
20 | │ │ │ ├── ne_110m_admin_0_countries.README.html
21 | │ │ │ ├── ne_110m_admin_0_countries.VERSION.txt
22 | │ │ │ ├── ne_110m_admin_0_countries.cpg
23 | │ │ │ ├── ne_110m_admin_0_countries.dbf
24 | │ │ │ ├── ne_110m_admin_0_countries.prj
25 | │ │ │ ├── ne_110m_admin_0_countries.shp
26 | │ │ │ └── ne_110m_admin_0_countries.shx
27 | │ │ └── obesity.csv
28 | │ └── world_obesity.ipynb
29 | ├── docker
30 | │ └── Dockerfile
31 | └── docker-compose.yml
32 | ```
33 |
34 | # Running the sample
35 |
36 | ## Step 1 : Starting docker container
37 |
38 | ``` bash
39 | $ git clone
40 | $ cd /root-dir-of-the-repository
41 | $ docker-compose up
42 | ```
43 | On the console output copy the jupyter notebook url e.g. `http://localhost:8888/token?=xxxx` and paste in your browser.
44 |
45 | ## Step 2 : Execute Code
46 |
47 | Open `world_obesity.ipynb` file and rull all cells.
48 |
49 | ## Step 3 : Start bokeh server
50 |
51 | In the browser using the jupyter notebook go to the `Terminal`
52 |
53 | ```
54 | bokeh serve --show world_obesity.ipynb
55 | ```
56 | ## Step 4 : Browse the interactive map
57 |
58 | The interactive map is rendered by bokeh server which can be browsed at `http://localhost:5006/`
59 |
--------------------------------------------------------------------------------
/bokeh-app/data/country_geocodes.csv:
--------------------------------------------------------------------------------
1 | Country,Latitude,Longitude
2 | Afghanistan,33.93911,67.709953
3 | Albania,41.153332,20.168331
4 | Algeria,28.033886,1.659626
5 | Andorra,42.506285,1.521801
6 | Angola,-11.202692,17.873887
7 | Antigua and Barbuda,17.060816,-61.796428
8 | Argentina,-38.416097,-63.616672
9 | Armenia,40.069099,45.038189
10 | Australia,-25.274398,133.775136
11 | Austria,47.516231,14.550072
12 | Azerbaijan,40.143105,47.576927
13 | Bahamas,25.03428,-77.39628
14 | Bahrain,26.0667,50.5577
15 | Bangladesh,23.684994,90.356331
16 | Barbados,13.193887,-59.543198
17 | Belarus,53.709807,27.953389
18 | Belgium,50.503887,4.469936
19 | Belize,17.189877,-88.49765
20 | Benin,9.30769,2.315834
21 | Bhutan,27.514162,90.433601
22 | Bolivia,-16.290154,-63.588653
23 | Bosnia and Herzegovina,43.915886,17.679076
24 | Botswana,-22.328474,24.684866
25 | Brazil,-14.235004,-51.92528
26 | Brunei,4.535277,114.727669
27 | Bulgaria,42.733883,25.48583
28 | Burkina Faso,12.238333,-1.561593
29 | Burundi,-3.373056,29.918886
30 | Cabo Verde,15.120142,-23.6051721
31 | Cambodia,12.565679,104.990963
32 | Cameroon,7.369722,12.354722
33 | Canada,56.130366,-106.346771
34 | Central African Republic,6.611111,20.939444
35 | Chad,15.454166,18.732207
36 | Chile,-35.675147,-71.542969
37 | China,35.86166,104.195397
38 | Colombia,4.570868,-74.297333
39 | Comoros,-11.6455,43.3333
40 | Costa Rica,9.748917,-83.753428
41 | Cote d'Ivoire,7.539989,-5.54708
42 | Croatia,45.1,15.2
43 | Cuba,21.521757,-77.781167
44 | Cyprus,35.126413,33.429859
45 | Czech Republic,49.817492,15.472962
46 | Denmark,56.26392,9.501785
47 | Djibouti,11.825138,42.590275
48 | Dominica,15.414999,-61.370976
49 | Dominican Republic,18.735693,-70.162651
50 | Ecuador,-1.831239,-78.183406
51 | Egypt,26.820553,30.802498
52 | El Salvador,13.794185,-88.89653
53 | Equatorial Guinea,1.650801,10.267895
54 | Eritrea,15.179384,39.782334
55 | Estonia,58.595272,25.013607
56 | Ethiopia,9.145,40.489673
57 | Fiji,-17.713371,178.065032
58 | Finland,61.92411,25.748151
59 | France,46.227638,2.213749
60 | Gabon,-0.803689,11.609444
61 | Gambia,13.443182,-15.310139
62 | Georgia,42.315407,43.356892
63 | Germany,51.165691,10.451526
64 | Ghana,7.946527,-1.023194
65 | Greece,39.074208,21.824312
66 | Grenada,12.1165,-61.679
67 | Guatemala,15.783471,-90.230759
68 | Guinea,9.945587,-9.696645
69 | Guinea-Bissau,11.803749,-15.180413
70 | Guyana,4.860416,-58.93018
71 | Haiti,18.971187,-72.285215
72 | Honduras,15.199999,-86.241905
73 | Hungary,47.162494,19.503304
74 | Iceland,64.963051,-19.020835
75 | India,20.593684,78.96288
76 | Indonesia,-0.789275,113.921327
77 | Iran,32.427908,53.688046
78 | Iraq,33.223191,43.679291
79 | Ireland,53.41291,-8.24389
80 | Israel,31.046051,34.851612
81 | Italy,41.87194,12.56738
82 | Jamaica,18.109581,-77.297508
83 | Japan,36.204824,138.252924
84 | Jordan,30.585164,36.238414
85 | Kazakhstan,48.019573,66.923684
86 | Kenya,-0.023559,37.906193
87 | Kiribati,1.8708833,-157.3630262
88 | Kosovo,42.6026359,20.902977
89 | Kuwait,29.31166,47.481766
90 | Kyrgyzstan,41.20438,74.766098
91 | Laos,19.85627,102.495496
92 | Latvia,56.879635,24.603189
93 | Lebanon,33.854721,35.862285
94 | Lesotho,-29.609988,28.233608
95 | Liberia,6.428055,-9.429499
96 | Libya,26.3351,17.228331
97 | Liechtenstein,47.166,9.555373
98 | Lithuania,55.169438,23.881275
99 | Luxembourg,49.815273,6.129583
100 | Macedonia,41.608635,21.745275
101 | Madagascar,-18.766947,46.869107
102 | Malawi,-13.254308,34.301525
103 | Malaysia,4.210484,101.975766
104 | Maldives,1.977247,73.5361034
105 | Mali,17.570692,-3.996166
106 | Malta,35.937496,14.375416
107 | Marshall Islands,6.0683936,171.989379
108 | Mauritania,21.00789,-10.940835
109 | Mauritius,-20.348404,57.552152
110 | Mexico,23.634501,-102.552784
111 | Micronesia,6.8874813,158.2150717
112 | Moldova,47.411631,28.369885
113 | Monaco,43.7384176,7.4246158
114 | Mongolia,46.862496,103.846656
115 | Montenegro,42.708678,19.37439
116 | Morocco,31.791702,-7.09262
117 | Mozambique,-18.665695,35.529562
118 | Myanmar (Burma),21.913965,95.956223
119 | Namibia,-22.95764,18.49041
120 | Nauru,-0.522778,166.931503
121 | Nepal,28.394857,84.124008
122 | Netherlands,52.132633,5.291266
123 | New Zealand,-40.900557,174.885971
124 | Nicaragua,12.865416,-85.207229
125 | Niger,17.607789,8.081666
126 | Nigeria,9.081999,8.675277
127 | North Korea,40.339852,127.510093
128 | Norway,60.472024,8.468946
129 | Oman,21.512583,55.923255
130 | Pakistan,30.375321,69.345116
131 | Palau,7.51498,134.58252
132 | Palestine,31.952162,35.233154
133 | Panama,8.537981,-80.782127
134 | Papua New Guinea,-6.314993,143.95555
135 | Paraguay,-23.442503,-58.443832
136 | Peru,-9.189967,-75.015152
137 | Philippines,12.879721,121.774017
138 | Poland,51.919438,19.145136
139 | Portugal,39.399872,-8.224454
140 | Qatar,25.354826,51.183884
141 | Romania,45.943161,24.96676
142 | Russia,61.52401,105.318756
143 | Rwanda,-1.940278,29.873888
144 | St. Kitts and Nevis,17.357822,-62.782998
145 | St. Lucia,13.909444,-60.978893
146 | St. Vincent and The Grenadines,13.2528179,-61.1971628
147 | Samoa,-13.759029,-172.104629
148 | San Marino,43.94236,12.457777
149 | Sao Tome and Principe,0.18636,6.613081
150 | Saudi Arabia,23.885942,45.079162
151 | Senegal,14.497401,-14.452362
152 | Serbia,44.016521,21.005859
153 | Seychelles,-4.679574,55.491977
154 | Sierra Leone,8.460555,-11.779889
155 | Singapore,1.352083,103.819836
156 | Slovakia,48.669026,19.699024
157 | Slovenia,46.151241,14.995463
158 | Solomon Islands,-9.64571,160.156194
159 | Somalia,5.152149,46.199616
160 | South Africa,-30.559482,22.937506
161 | Republic of Korea,35.907757,127.766922
162 | South Sudan,6.8769919,31.3069788
163 | Spain,40.463667,-3.74922
164 | Sri Lanka,7.873054,80.771797
165 | Sudan,12.862807,30.217636
166 | Suriname,3.919305,-56.027783
167 | Swaziland,-26.522503,31.465866
168 | Sweden,60.128161,18.643501
169 | Switzerland,46.818188,8.227512
170 | Syria,34.802075,38.996815
171 | Taiwan,23.69781,120.960515
172 | Tajikistan,38.861034,71.276093
173 | Tanzania,-6.369028,34.888822
174 | Thailand,15.870032,100.992541
175 | Timor-Leste,-8.874217,125.727539
176 | Togo,8.619543,0.824782
177 | Tonga,-21.178986,-175.198242
178 | Trinidad and Tobago,10.691803,-61.222503
179 | Tunisia,33.886917,9.537499
180 | Turkey,38.963745,35.243322
181 | Turkmenistan,38.969719,59.556278
182 | Tuvalu,-7.4784418,178.6799214
183 | Uganda,1.373333,32.290275
184 | Ukraine,48.379433,31.16558
185 | United Arab Emirates,23.424076,53.847818
186 | United Kingdom,55.378051,-3.435973
187 | United States of America,37.09024,-95.712891
188 | Uruguay,-32.522779,-55.765835
189 | Uzbekistan,41.377491,64.585262
190 | Vanuatu,-15.376706,166.959158
191 | Vatican City,41.902916,12.453389
192 | Venezuela,6.42375,-66.58973
193 | Vietnam,14.058324,108.277199
194 | Yemen,15.552727,48.516388
195 | Zambia,-13.133897,27.849332
196 | Zimbabwe,-19.015438,29.154857
--------------------------------------------------------------------------------
/bokeh-app/data/countries_110m/ne_110m_admin_0_countries.README.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 | Admin 0 – Countries | Natural Earth
10 |
11 |
12 |
13 |
14 |
15 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
32 |
46 |
47 |
48 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
88 |
89 |
90 |
95 |
96 |
99 |
115 |
116 |
117 |
122 |
123 |
124 |
125 |
126 |
151 |
152 |
162 |
163 |
164 |
165 |
166 |
167 | «
1:110m Cultural Vectors
168 | «
Downloads
169 |
170 |
Admin 0 – Countries
171 |
172 |
183 |
184 |
185 |
About
186 |
Countries distinguish between metropolitan (homeland) and independent and semi-independent portions of sovereign states. If you want to see the dependent overseas regions broken out (like in ISO codes, see France for example), use map units instead.
187 |
Each country is coded with a world region that roughly follows the United Nations setup .
188 |
Includes some thematic data from the United Nations, U.S. Central Intelligence Agency, and elsewhere.
189 |
Disclaimer
190 |
Natural Earth Vector draws boundaries of countries according to defacto status. We show who actually controls the situation on the ground. Please feel free to mashup our disputed areas (link) theme to match your particular political outlook.
191 |
Known Problems
192 |
None.
193 |
Version History
194 |
195 |
196 | 4.0.0
197 |
198 |
199 | 2.0.0
200 |
201 |
202 | 1.4.0
203 |
204 |
205 | 1.3.0
206 |
207 |
208 | 1.1.0
209 |
210 |
211 | 1.0.0
212 |
213 |
214 |
215 |
The master changelog is available on Github »
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
335 |
336 |
337 |
338 |
400 |
401 |
402 |
403 |
404 |
--------------------------------------------------------------------------------
/bokeh-app/data/ne_110m_admin_0_countries_lakes/ne_110m_admin_0_countries_lakes.README.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
Admin 0 – Countries | Natural Earth
10 |
11 |
12 |
13 |
14 |
15 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
32 |
46 |
47 |
48 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
88 |
89 |
90 |
95 |
96 |
99 |
115 |
116 |
117 |
122 |
123 |
124 |
125 |
126 |
151 |
152 |
162 |
163 |
164 |
165 |
166 |
167 | «
1:110m Cultural Vectors
168 | «
Downloads
169 |
170 |
Admin 0 – Countries
171 |
172 |
183 |
184 |
185 |
About
186 |
Countries distinguish between metropolitan (homeland) and independent and semi-independent portions of sovereign states. If you want to see the dependent overseas regions broken out (like in ISO codes, see France for example), use map units instead.
187 |
Each country is coded with a world region that roughly follows the United Nations setup .
188 |
Includes some thematic data from the United Nations, U.S. Central Intelligence Agency, and elsewhere.
189 |
Disclaimer
190 |
Natural Earth Vector draws boundaries of countries according to defacto status. We show who actually controls the situation on the ground. Please feel free to mashup our disputed areas (link) theme to match your particular political outlook.
191 |
Known Problems
192 |
None.
193 |
Version History
194 |
195 |
196 | 4.0.0
197 |
198 |
199 | 2.0.0
200 |
201 |
202 | 1.4.0
203 |
204 |
205 | 1.3.0
206 |
207 |
208 | 1.1.0
209 |
210 |
211 | 1.0.0
212 |
213 |
214 |
215 |
The master changelog is available on Github »
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
335 |
336 |
337 |
338 |
400 |
401 |
402 |
403 |
404 |
--------------------------------------------------------------------------------
/bokeh-app/data/ne_10m_admin_0_countries/ne_10m_admin_0_countries.README.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
Admin 0 – Countries | Natural Earth
10 |
11 |
12 |
13 |
14 |
15 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
31 |
45 |
46 |
47 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
87 |
88 |
89 |
94 |
95 |
98 |
114 |
115 |
116 |
121 |
122 |
123 |
124 |
125 |
150 |
151 |
161 |
162 |
163 |
164 |
165 |
166 | «
1:10m Cultural Vectors
167 | «
Downloads
168 |
169 |
Admin 0 – Countries
170 |
171 |
182 |
183 |
About
184 |
Countries distinguish between metropolitan (homeland) and independent and semi-independent portions of sovereign states. If you want to see the dependent overseas regions broken out (like in ISO codes, see France for example), use map units instead.
185 |
Each country is coded with a world region that roughly follows the United Nations setup .
186 |
Countries are coded with standard ISO and FIPS codes. French INSEE codes are also included.
187 |
Includes some thematic data from the United Nations (1 ), U.S. Central Intelligence Agency, and elsewhere.
188 |
189 |
Disclaimer
190 |
Natural Earth Vector draws boundaries of countries according to defacto status. We show who actually controls the situation on the ground. Please feel free to mashup our disputed area themes to match your particular political outlook.
191 |
Known Problems
192 |
None.
193 |
Version History
194 |
195 |
196 | 4.0.0
197 |
198 |
199 | 3.1.0
200 |
201 |
202 | 3.0.0
203 |
204 |
205 | 2.0.0
206 |
207 |
208 | 1.4.0
209 |
210 |
211 | 1.3.0
212 |
213 |
214 | 1.3
215 |
216 |
217 | 1.0.0
218 |
219 |
220 |
221 |
The master changelog is available on Github »
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
341 |
342 |
343 |
344 |
406 |
407 |
408 |
409 |
410 |
--------------------------------------------------------------------------------