├── .github
└── workflows
│ └── test-basic.yml
├── .gitignore
├── LICENSE
├── README.md
├── awesome_autodl
├── __init__.py
├── bins
│ ├── __init__.py
│ ├── list_email.py
│ ├── list_email_FIE_202203.py
│ ├── show_infos.py
│ └── statistics.py
├── data_cls
│ ├── __init__.py
│ ├── abbrv.py
│ └── paper.py
├── raw_data
│ ├── __init__.py
│ ├── abbrv.bib
│ ├── abbrv.yaml
│ └── papers
│ │ ├── Automated_Data_Engineering.yaml
│ │ ├── Automated_Deployment.yaml
│ │ ├── Automated_Maintenance.yaml
│ │ ├── Automated_Problem_Formulation.yaml
│ │ ├── Hyperparameter_Optimization.yaml
│ │ └── Neural_Architecture_Search.yaml
└── utils
│ ├── __init__.py
│ ├── check.py
│ ├── filter.py
│ ├── fix_invalid_email.py
│ └── yaml.py
├── setup.py
└── tests
├── test_abbrv.py
└── test_format.py
/.github/workflows/test-basic.yml:
--------------------------------------------------------------------------------
1 | name: Test Black
2 | on:
3 | push:
4 | branches:
5 | - main
6 | pull_request:
7 | branches:
8 | - main
9 |
10 |
11 | jobs:
12 | build:
13 | strategy:
14 | matrix:
15 | os: [ubuntu-18.04, ubuntu-20.04, macos-latest]
16 | python-version: [3.6, 3.7, 3.8, 3.9]
17 |
18 | runs-on: ${{ matrix.os }}
19 | steps:
20 | - uses: actions/checkout@v2
21 |
22 | - name: Set up Python ${{ matrix.python-version }}
23 | uses: actions/setup-python@v2
24 | with:
25 | python-version: ${{ matrix.python-version }}
26 |
27 | - name: Lint with Black
28 | run: |
29 | python -m pip install --upgrade pip
30 | python -m pip install black
31 | python --version
32 | python -m black --version
33 | echo $PWD ; ls
34 | python -m black ./awesome_autodl/bins/* -l 88 --check --diff --verbose
35 | python -m black ./awesome_autodl/utils/* -l 88 --check --diff --verbose
36 |
37 | - name: Install Awesome-AutoDL from source
38 | run: |
39 | python -m pip install . --force
40 |
41 | - name: Run tests with pytest
42 | run: |
43 | python -m pip install pytest
44 | python -m pytest . --durations=0
45 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | .DS_Store
2 | # Byte-compiled / optimized / DLL files
3 | __pycache__/
4 | *.py[cod]
5 | *$py.class
6 |
7 | # C extensions
8 | *.so
9 |
10 | # Distribution / packaging
11 | .Python
12 | env/
13 | build/
14 | develop-eggs/
15 | dist/
16 | downloads/
17 | eggs/
18 | .eggs/
19 | lib64/
20 | parts/
21 | sdist/
22 | var/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 |
27 | # PyInstaller
28 | # Usually these files are written by a python script from a template
29 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
30 | *.manifest
31 | *.spec
32 |
33 | # Installer logs
34 | pip-log.txt
35 | pip-delete-this-directory.txt
36 |
37 | # Unit test / coverage reports
38 | htmlcov/
39 | .tox/
40 | .coverage
41 | .coverage.*
42 | .cache
43 | nosetests.xml
44 | coverage.xml
45 | *,cover
46 | .hypothesis/
47 |
48 | # Translations
49 | *.mo
50 | *.pot
51 |
52 | # Django stuff:
53 | *.log
54 | local_settings.py
55 |
56 | # Flask stuff:
57 | instance/
58 | .webassets-cache
59 |
60 | # Scrapy stuff:
61 | .scrapy
62 |
63 | # Sphinx documentation
64 | docs/_build/
65 |
66 | # PyBuilder
67 | target/
68 |
69 | # IPython Notebook
70 | .ipynb_checkpoints
71 |
72 | # pyenv
73 | .python-version
74 |
75 | # celery beat schedule file
76 | celerybeat-schedule
77 |
78 | # dotenv
79 | .env
80 |
81 | # virtualenv
82 | venv/
83 | ENV/
84 |
85 | # Spyder project settings
86 | .spyderproject
87 |
88 | # Rope project settings
89 | .ropeproject
90 |
91 | # Pycharm project
92 | .idea
93 | snapshots
94 | *.pytorch
95 | *.tar.bz
96 | data
97 | .*.swp
98 | main_main.py
99 | *.pdf
100 | */*.pdf
101 |
102 | # Device
103 | scripts-nas/.nfs00*
104 | */.nfs00*
105 | *.DS_Store
106 |
107 | # logs and snapshots
108 | output
109 | logs
110 |
111 | # snapshot
112 | a.pth
113 | cal-merge*.sh
114 | GPU-*.sh
115 | cal.sh
116 | aaa
117 | cx.sh
118 |
119 | NAS-Bench-*-v1_0.pth
120 | lib/NAS-Bench-*-v1_0.pth
121 | others/TF
122 | scripts-search/l2s-algos
123 | TEMP-L.sh
124 |
125 | .nfs00*
126 | *.swo
127 | */*.swo
128 |
129 | # Visual Studio Code
130 | .vscode
131 | mlruns*
132 | outputs
133 |
134 | pytest_cache
135 | *.pkl
136 | *.pth
137 |
138 | *.tgz
139 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2018 Xuanyi Dong [GitHub: D-X-Y]
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
Awesome AutoDL [](https://awesome.re)
2 |
3 | A curated list of automated deep learning related resources. Inspired by [awesome-deep-vision](https://github.com/kjw0612/awesome-deep-vision), [awesome-adversarial-machine-learning](https://github.com/yenchenlin/awesome-adversarial-machine-learning), [awesome-deep-learning-papers](https://github.com/terryum/awesome-deep-learning-papers), and [awesome-architecture-search](https://github.com/markdtw/awesome-architecture-search).
4 |
5 | Please feel free to [pull requests](https://github.com/D-X-Y/Awesome-AutoDL/pulls) or [open an issue](https://github.com/D-X-Y/Awesome-AutoDL/issues) to add papers.
6 |
7 | ---
8 |
9 | Table of Contents
10 |
11 | - [Awesome Blogs](#awesome-blogs)
12 | - [Awesome AutoDL Libraies](#awesome-autodl-libraies)
13 | - [Awesome Benchmarks](#awesome-benchmarks)
14 | - [Deep Learning-based NAS and HPO](#deep-learning-based-nas-and-hpo)
15 | - [2021 Venues](#2021-venues)
16 | - [2020 Venues](#2020-venues)
17 | - [2019 Venues](#2019-venues)
18 | - [2018 Venues](#2018-venues)
19 | - [2017 Venues](#2017-venues)
20 | - [Previous Venues](#previous-venues)
21 | - [arXiv](#arxiv)
22 | - [Awesome Surveys](#awesome-surveys)
23 |
24 | ---
25 |
26 | # Awesome Blogs
27 |
28 | - [AutoML info](http://automl.chalearn.org/) and [AutoML Freiburg-Hannover](https://www.automl.org/)
29 | - [What’s the deal with Neural Architecture Search?](https://determined.ai/blog/neural-architecture-search/)
30 | - [Google Could AutoML](https://cloud.google.com/vision/automl/docs/beginners-guide) and [PocketFlow](https://pocketflow.github.io/)
31 | - [AutoML Challenge](http://automl.chalearn.org/) and [AutoDL Challenge](https://autodl.chalearn.org/)
32 | - [In Defense of Weight-sharing for Neural Architecture Search: an optimization perspective](https://determined.ai/blog/ws-optimization-for-nas/)
33 |
34 | # Awesome AutoDL Libraies
35 |
36 | - [PyGlove](https://proceedings.neurips.cc/paper/2020/file/012a91467f210472fab4e11359bbfef6-Paper.pdf)
37 | - [NASLib](https://github.com/automl/NASLib)
38 | - [Keras Tuner](https://keras-team.github.io/keras-tuner/)
39 | - [NNI](https://github.com/microsoft/nni)
40 | - [AutoGluon](https://autogluon.mxnet.io/)
41 | - [Auto-PyTorch](https://github.com/automl/Auto-PyTorch)
42 | - [AutoDL-Projects](https://github.com/D-X-Y/AutoDL-Projects)
43 | - [aw_nas](https://github.com/walkerning/aw_nas)
44 | - [Determined](https://github.com/determined-ai/determined)
45 | - [TPOT](https://github.com/EpistasisLab/tpot)
46 |
47 | # Awesome Benchmarks
48 |
49 | | Title | Venue | Code |
50 | |:--------|:--------:|:--------:|
51 | | [NAS-Bench-101: Towards Reproducible Neural Architecture Search](https://arxiv.org/pdf/1902.09635.pdf) | ICML 2019 | [GitHub](https://github.com/google-research/nasbench) |
52 | | [NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr) | ICLR 2020 | [Github](https://github.com/D-X-Y/NAS-Bench-201) |
53 | | [NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search](https://arxiv.org/abs/2008.09777) | arXiv 2020 | [GitHub](https://github.com/automl/nasbench301) |
54 | | [NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural Architecture Search](https://arxiv.org/abs/2001.10422) | ICLR 2020 | [GitHub](https://github.com/automl/nasbench-1shot1) |
55 | | [NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size](https://arxiv.org/abs/2009.00437) | TPAMI 2021 | [GitHub](https://github.com/D-X-Y/NATS-Bench)
56 | | [NAS-Bench-ASR: Reproducible Neural Architecture Search for Speech Recognition](https://openreview.net/forum?id=CU0APx9LMaL) | ICLR 2021 | [GitHub](https://github.com/SamsungLabs/nb-asr) |
57 | | [HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark](https://openreview.net/pdf?id=_0kaDkv3dVf) | ICLR 2021 | [GitHub](https://github.com/RICE-EIC/HW-NAS-Bench) |
58 | | [NAS-Bench-NLP: Neural Architecture Search Benchmark for Natural Language Processing](https://arxiv.org/pdf/2006.07116.pdf) | arXiv 2020 | [GitHub](https://github.com/fmsnew/nas-bench-nlp-release) |
59 | | [NAS-Bench-x11 and the Power of Learning Curves](https://arxiv.org/pdf/2111.03602.pdf) | NeurIPS 2021 | [GitHub](https://github.com/automl/nas-bench-x11) |
60 |
61 | # Deep Learning-based NAS and HPO
62 |
63 | | Type | G | RL | EA | PD | Other |
64 | |:------------|:--------------:|:----------------------:|:-----------------------:|:----------------------:|:----------:|
65 | | Explanation | gradient-based | reinforcement learning | evolutionary algorithm | performance prediction | other types |
66 |
67 | ## 2021 Venues
68 |
69 | | Title | Venue | Type | Code |
70 | |:--------|:--------:|:--------:|:--------:|
71 | | [CATE: Computation-aware Neural Architecture Encoding with Transformers](https://arxiv.org/pdf/2102.07108.pdf) | ICML | O | [GitHub](https://github.com/MSU-MLSys-Lab/CATE) |
72 | | [Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator](https://openaccess.thecvf.com/content/CVPR2021/papers/Huang_Searching_by_Generating_Flexible_and_Efficient_One-Shot_NAS_With_Architecture_CVPR_2021_paper.pdf) | CVPR | G | [Github](https://github.com/eric8607242/SGNAS) |
73 | | [Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition](https://arxiv.org/abs/2102.01063) | ICCV | EA | [Github](https://github.com/idstcv/ZenNAS) |
74 | | [AutoFormer: Searching Transformers for Visual Recognition](https://arxiv.org/pdf/2107.00651.pdf) |ICCV | EA | [GitHub](https://github.com/microsoft/AutoML)
75 | | [LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search](https://arxiv.org/abs/2104.14545) | CVPR | EA | [GitHub](https://github.com/researchmm/LightTrack) |
76 | | [One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking](https://arxiv.org/abs/2104.00597) | CVPR | EA | [GitHub](https://github.com/researchmm/NEAS) |
77 | | [DARTS-: Robustly Stepping out of Performance Collapse Without Indicators](https://openreview.net/pdf?id=KLH36ELmwIB) | ICLR | G | [GitHub](https://github.com/Meituan-AutoML/DARTS-) |
78 | | [Zero-Cost Proxies for Lightweight NAS](https://openreview.net/pdf?id=0cmMMy8J5q) | ICLR | O | [GitHub](https://github.com/SamsungLabs/zero-cost-nas) |
79 | | [Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective](https://openreview.net/forum?id=Cnon5ezMHtu) | ICLR | - | [GitHub](https://github.com/VITA-Group/TENAS) |
80 | | [DrNAS: Dirichlet Neural Architecture Search](https://openreview.net/forum?id=9FWas6YbmB3) | ICLR | G | [GitHub](https://github.com/xiangning-chen/DrNAS) |
81 | | [Rethinking Architecture Selection in Differentiable NAS](https://openreview.net/forum?id=PKubaeJkw3) | ICLR | O | [GitHub](https://github.com/ruocwang/darts-pt) |
82 | | [Evolving Reinforcement Learning Algorithms](https://openreview.net/forum?id=0XXpJ4OtjW) | ICLR | EA | [GitHub](https://github.com/jcoreyes/evolvingrl) |
83 | | [AutoHAS: Differentiable Hyper-parameter and Architecture Search](https://arxiv.org/pdf/2006.03656.pdf) | ICLR-W | G | - |
84 | | [FBNetV3: Joint Architecture-Recipe Search using Neural Acquisition Function](https://arxiv.org/abs/2006.02049) | CVPR | PD | [github](https://github.com/facebookresearch/mobile-vision/blob/main/mobile_cv/arch/fbnet_v2/fbnet_modeldef_cls_fbnetv3.py) |
85 |
86 | ## 2020 Venues
87 |
88 | | Title | Venue | Type | Code |
89 | |:--------|:--------:|:--------:|:--------:|
90 | | [Cream of the Crop: Distilling Prioritized Paths For One-Shot Neural Architecture Search](https://papers.nips.cc/paper/2020/file/d072677d210ac4c03ba046120f0802ec-Paper.pdf) | NeurIPS | - | [GitHub](https://github.com/microsoft/Cream) |
91 | | [PyGlove: Symbolic Programming for Automated Machine Learning](https://proceedings.neurips.cc/paper/2020/file/012a91467f210472fab4e11359bbfef6-Paper.pdf) | NeurIPS | library | - |
92 | | [Does Unsupervised Architecture Representation Learning Help Neural Architecture Search](https://arxiv.org/abs/2006.06936) | NeurIPS | PD | [GitHub](https://github.com/MSU-MLSys-Lab/arch2vec) |
93 | | [RandAugment: Practical Automated Data Augmentation with a Reduced Search Space](https://arxiv.org/abs/1909.13719) | NeurIPS | | [GitHub](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
94 | | [Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians](https://arxiv.org/pdf/2010.13514.pdf) | NeurIPS | G | [GitHub](https://github.com/pomonam/Self-Tuning-Networks) |
95 | | [A Study on Encodings for Neural Architecture Search](https://arxiv.org/abs/2007.04965) | NeurIPS | | [GitHub](https://github.com/naszilla/naszilla) |
96 | | [AutoBSS: An Efficient Algorithm for Block Stacking Style Search](https://proceedings.neurips.cc/paper/2020/file/747d3443e319a22747fbb873e8b2f9f2-Paper.pdf) | NeurIPS | | |
97 | | [Bridging the Gap between Sample-based and One-shot Neural Architecture Search with BONAS](https://proceedings.neurips.cc/paper/2020/file/13d4635deccc230c944e4ff6e03404b5-Paper.pdf) | NeurIPS | G | [GitHub](https://github.com/haolibai/APS-channel-search) |
98 | | [Interstellar: Searching Recurrent Architecture for Knowledge Graph Embedding](https://proceedings.neurips.cc/paper/2020/file/722caafb4825ef5d8670710fa29087cf-Paper.pdf) | NeurIPS | | |
99 | | [Revisiting Parameter Sharing for Automatic Neural Channel Number Search](https://proceedings.neurips.cc/paper/2020/file/42cd63cb189c30ed03e42ce2c069566c-Paper.pdf) | NeurIPS | | |
100 | | [Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search](https://arxiv.org/pdf/2007.00708.pdf) | NeurIPS | MCTS | [GitHub](https://github.com/facebookresearch/LaMCTS) |
101 | | [Neural Architecture Search using Deep Neural Networks and Monte Carlo Tree Search](https://arxiv.org/abs/1805.07440) | AAAI | MCTS | [GitHub](https://github.com/linnanwang/AlphaX-NASBench101) |
102 | | [Representation Sharing for Fast Object Detector Search and Beyond](https://arxiv.org/pdf/2007.12075v4.pdf) | ECCV | G | [GitHub](https://github.com/msight-tech/research-fad) |
103 | | [Are Labels Necessary for Neural Architecture Search?](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123490766.pdf) | ECCV | G | - |
104 | | [Single Path One-Shot Neural Architecture Search with Uniform Sampling](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123610528.pdf) | ECCV | EA | - |
105 | | [Neural Predictor for Neural Architecture Search](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740647.pdf) | ECCV | O | - |
106 | | [BigNAS: Scaling Up Neural Architecture Search with Big Single-Stage Models](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123520681.pdf) | ECCV | G | - |
107 | | [BATS: Binary ArchitecTure Search](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123680307.pdf) | ECCV | - | - |
108 | | [AttentionNAS: Spatiotemporal Attention Cell Search for Video Classification](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123530443.pdf) | ECCV | - | - |
109 | | [Search What You Want: Barrier Panelty NAS for Mixed Precision Quantization](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123540001.pdf) | ECCV | - | - |
110 | | [Angle-based Search Space Shrinking for Neural Architecture Search](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123630426.pdf) | ECCV | - | - |
111 | | [Anti-Bandit Neural Architecture Search for Model Defense](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123580069.pdf) | ECCV | - | - |
112 | | [TF-NAS: Rethinking Three Search Freedoms of Latency-Constrained Differentiable Neural Architecture Search](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123600120.pdf) | ECCV | G | [GitHub](https://github.com/AberHu/TF-NAS) |
113 | | [Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123600460.pdf) | ECCV | G | [GitHub](https://github.com/xiaomi-automl/FairDARTS) |
114 | | [Off-Policy Reinforcement Learning for Efficient and Effective GAN Architecture Search](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123520171.pdf) | ECCV | RL | - |
115 | | [DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123720579.pdf) | ECCV | G | - |
116 | | [Optimizing Millions of Hyperparameters by Implicit Differentiation](https://arxiv.org/abs/1911.02590) | AISTATS | G | - |
117 | | [Evolving Machine Learning Algorithms From Scratch](https://arxiv.org/pdf/2003.03384.pdf) | ICML | EA | - |
118 | | [Stabilizing Differentiable Architecture Search via Perturbation-based Regularization](https://arxiv.org/abs/2002.05283) | ICML | G | [GitHub](https://github.com/xiangning-chen/SmoothDARTS) |
119 | | [NADS: Neural Architecture Distribution Search for Uncertainty Awareness](https://arxiv.org/pdf/2006.06646.pdf) | ICML | - | - |
120 | | [Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data](https://arxiv.org/abs/1912.07768) | ICML | - | - |
121 | | Neural Architecture Search in a Proxy Validation Loss Landscape | ICML | - | - |
122 | | [Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection](https://arxiv.org/pdf/2003.11818v1.pdf) | CVPR | - | [GitHub](https://github.com/ggjy/HitDet.pytorch) |
123 | | [Designing Network Design Spaces](https://arxiv.org/pdf/2003.13678.pdf) | CVPR | - | [GitHub](https://github.com/facebookresearch/pycls) |
124 | | [UNAS: Differentiable Architecture Search Meets Reinforcement Learning](https://openaccess.thecvf.com/content_CVPR_2020/papers/Vahdat_UNAS_Differentiable_Architecture_Search_Meets_Reinforcement_Learning_CVPR_2020_paper.pdf) | CVPR | G/RL | [GitHub](https://github.com/NVlabs/unas) |
125 | | [MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation](https://arxiv.org/pdf/2003.12238.pdf) | CVPR | G | [GitHub](https://github.com/chaoyanghe/MiLeNAS) |
126 | | [A Semi-Supervised Assessor of Neural Architectures](https://openaccess.thecvf.com/content_CVPR_2020/papers/Tang_A_Semi-Supervised_Assessor_of_Neural_Architectures_CVPR_2020_paper.pdf) | CVPR | PD | - |
127 | | [Binarizing MobileNet via Evolution-based Searching](https://arxiv.org/abs/2005.06305) | CVPR | EA | - |
128 | | [Rethinking Performance Estimation in Neural Architecture Search](https://openaccess.thecvf.com/content_CVPR_2020/papers/Zheng_Rethinking_Performance_Estimation_in_Neural_Architecture_Search_CVPR_2020_paper.pdf) | CVPR | - | [GitHub](https://github.com/zhengxiawu/rethinking_performance_estimation_in_NAS) |
129 | | [APQ: Joint Search for Network Architecture, Pruning and Quantization Policy](http://openaccess.thecvf.com/content_CVPR_2020/papers/Wang_APQ_Joint_Search_for_Network_Architecture_Pruning_and_Quantization_Policy_CVPR_2020_paper.pdf) | CVPR | G | [GitHub](https://github.com/mit-han-lab/apq) |
130 | | [SGAS: Sequential Greedy Architecture Search](http://openaccess.thecvf.com/content_CVPR_2020/papers/Li_SGAS_Sequential_Greedy_Architecture_Search_CVPR_2020_paper.pdf) | CVPR | G | [Github](https://github.com/lightaime/sgas) |
131 | | [Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS](http://openaccess.thecvf.com/content_CVPR_2020/papers/Bender_Can_Weight_Sharing_Outperform_Random_Architecture_Search_An_Investigation_With_CVPR_2020_paper.pdf) | CVPR | RL | - |
132 | | [FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions](https://arxiv.org/abs/2004.05565) | CVPR | G | [Github](https://github.com/facebookresearch/mobile-vision) |
133 | | [AdversarialNAS: Adversarial Neural Architecture Search for GANs](https://arxiv.org/pdf/1912.02037.pdf) | CVPR | G | [Github](https://github.com/chengaopro/AdversarialNAS) |
134 | | [When NAS Meets Robustness: In Search of Robust Architectures against Adversarial Attacks](https://arxiv.org/abs/1911.10695) | CVPR | G | [Github](https://github.com/gmh14/RobNets) |
135 | | [Block-wisely Supervised Neural Architecture Search with Knowledge Distillation](https://www.xiaojun.ai/papers/CVPR2020_04676.pdf) | CVPR | G | [Github](https://github.com/changlin31/DNA) |
136 | | [Overcoming Multi-Model Forgetting in One-Shot NAS with Diversity Maximization](https://www.xiaojun.ai/papers/cvpr-2020-zhang.pdf) | CVPR | G | [Github](https://github.com/MiaoZhang0525/NSAS_FOR_CVPR) |
137 | | [Densely Connected Search Space for More Flexible Neural Architecture Search](https://arxiv.org/abs/1906.09607) | CVPR | G | [Github](https://github.com/JaminFong/DenseNAS) |
138 | | [EfficientDet: Scalable and Efficient Object Detection](https://arxiv.org/abs/1911.09070) | CVPR | RL | - |
139 | | [NAS-BENCH-201: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr) | ICLR | - | [Github](https://github.com/D-X-Y/AutoDL-Projects) |
140 | | [Understanding Architectures Learnt by Cell-based Neural Architecture Search](https://openreview.net/forum?id=BJxH22EKPS) | ICLR | G | [GitHub](https://github.com/shuyao95/Understanding-NAS) |
141 | | [Evaluating The Search Phase of Neural Architecture Search](https://openreview.net/forum?id=H1loF2NFwr) | ICLR | - | |
142 | | [AtomNAS: Fine-Grained End-to-End Neural Architecture Search](https://openreview.net/forum?id=BylQSxHFwr) | ICLR | | [GitHub](https://github.com/meijieru/AtomNAS) |
143 | | [Fast Neural Network Adaptation via Parameter Remapping and Architecture Search](https://openreview.net/forum?id=rklTmyBKPH) | ICLR | - | [GitHub](https://github.com/JaminFong/FNA) |
144 | | [Once for All: Train One Network and Specialize it for Efficient Deployment](https://openreview.net/forum?id=HylxE1HKwS) | ICLR | G | [GitHub](https://github.com/mit-han-lab/once-for-all) |
145 | | Efficient Transformer for Mobile Applications | ICLR | - | - |
146 | | [PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture Search](https://arxiv.org/pdf/1907.05737v4.pdf) | ICLR | G | [GitHub](https://github.com/yuhuixu1993/PC-DARTS) |
147 | | Adversarial AutoAugment | ICLR | - | - |
148 | | [NAS evaluation is frustratingly hard](https://arxiv.org/abs/1912.12522) | ICLR | - | [GitHub](https://github.com/antoyang/NAS-Benchmark) |
149 | | [FasterSeg: Searching for Faster Real-time Semantic Segmentation](https://openreview.net/pdf?id=BJgqQ6NYvB) | ICLR | G | [GitHub](https://github.com/TAMU-VITA/FasterSeg) |
150 | | [Computation Reallocation for Object Detection](https://openreview.net/forum?id=SkxLFaNKwB) | ICLR | - | - |
151 | | [Towards Fast Adaptation of Neural Architectures with Meta Learning](https://openreview.net/pdf?id=r1eowANFvr) | ICLR | - | [GitHub](https://github.com/dongzelian/T-NAS) |
152 | | [AssembleNet: Searching for Multi-Stream Neural Connectivity in Video Architectures](https://arxiv.org/pdf/1905.13209v4.pdf) | ICLR | EA | - |
153 | | How to Own the NAS in Your Spare Time | ICLR | - | - |
154 | | [Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search](https://arxiv.org/pdf/1901.07261.pdf) | ICPR | G | [github](https://github.com/falsr/FALSR) |
155 |
156 | ## 2019 Venues
157 |
158 | | Title | Venue | Type | Code |
159 | |:--------|:--------:|:--------:|:--------:|
160 | | [Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions](https://arxiv.org/abs/1903.03088) | ICLR | - | - |
161 | | [DATA: Differentiable ArchiTecture Approximation](http://papers.nips.cc/paper/8374-data-differentiable-architecture-approximation) | NeurIPS | - | - |
162 | | [Random Search and Reproducibility for Neural Architecture Search](https://arxiv.org/pdf/1902.07638v3.pdf) | UAI | G | [GitHub](https://github.com/D-X-Y/NAS-Projects/blob/master/scripts-search/algos/RANDOM-NAS.sh) |
163 | | [Improved Differentiable Architecture Search for Language Modeling and Named Entity Recognition](https://www.aclweb.org/anthology/D19-1367.pdf/) | EMNLP | G | - |
164 | | [Continual and Multi-Task Architecture Search](https://www.aclweb.org/anthology/P19-1185.pdf) | ACL | RL | - |
165 | | [Progressive Differentiable Architecture Search: Bridging the Depth Gap Between Search and Evaluation](https://arxiv.org/pdf/1904.12760v1.pdf) | ICCV | G | [GitHub](https://github.com/chenxin061/pdarts) |
166 | | [Multinomial Distribution Learning for Effective Neural Architecture Search](https://arxiv.org/pdf/1905.07529v3.pdf) | ICCV | - | [GitHub](https://github.com/tanglang96/MDENAS) |
167 | | [Searching for MobileNetV3](https://arxiv.org/pdf/1905.02244v5.pdf) | ICCV | EA | - |
168 | | [Multinomial Distribution Learning for Effective Neural Architecture Search](http://openaccess.thecvf.com/content_ICCV_2019/papers/Zheng_Multinomial_Distribution_Learning_for_Effective_Neural_Architecture_Search_ICCV_2019_paper.pdf) | ICCV | - | [GitHub](https://github.com/tanglang96/MDENAS) |
169 | | [Fast and Practical Neural Architecture Search](http://openaccess.thecvf.com/content_ICCV_2019/papers/Cui_Fast_and_Practical_Neural_Architecture_Search_ICCV_2019_paper.pdf) | ICCV | | |
170 | | [Teacher Guided Architecture Search](http://openaccess.thecvf.com/content_ICCV_2019/papers/Bashivan_Teacher_Guided_Architecture_Search_ICCV_2019_paper.pdf) | ICCV | | - |
171 | | [AutoDispNet: Improving Disparity Estimation With AutoML](http://openaccess.thecvf.com/content_ICCV_2019/papers/Saikia_AutoDispNet_Improving_Disparity_Estimation_With_AutoML_ICCV_2019_paper.pdf) | ICCV | G | - |
172 | | [Resource Constrained Neural Network Architecture Search: Will a Submodularity Assumption Help?](http://openaccess.thecvf.com/content_ICCV_2019/papers/Xiong_Resource_Constrained_Neural_Network_Architecture_Search_Will_a_Submodularity_Assumption_ICCV_2019_paper.pdf) | ICCV | EA | - |
173 | | [One-Shot Neural Architecture Search via Self-Evaluated Template Network](https://arxiv.org/abs/1910.05733) | ICCV | G | [Github](https://github.com/D-X-Y/NAS-Projects) |
174 | | [Evolving Space-Time Neural Architectures for Videos](https://arxiv.org/abs/1811.10636) | ICCV | EA | [GitHub](https://sites.google.com/view/evanet-video) |
175 | | [AutoGAN: Neural Architecture Search for Generative Adversarial Networks](https://arxiv.org/pdf/1908.03835.pdf) | ICCV | RL | [github](https://github.com/TAMU-VITA/AutoGAN) |
176 | | [Discovering Neural Wirings](https://arxiv.org/pdf/1906.00586.pdf) | NeurIPS | G | [Github](https://github.com/allenai/dnw) |
177 | | [Towards modular and programmable architecture search](https://arxiv.org/abs/1909.13404) | NeurIPS | [Other](https://github.com/D-X-Y/Awesome-NAS/issues/10) | [Github](https://github.com/negrinho/deep_architect) |
178 | | [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) | NeurIPS | G | [Github](https://github.com/D-X-Y/NAS-Projects) |
179 | | [Deep Active Learning with a NeuralArchitecture Search](https://arxiv.org/pdf/1811.07579.pdf) | NeurIPS | - | - |
180 | | [DetNAS: Backbone Search for Object Detection](https://arxiv.org/pdf/1903.10979v4.pdf) | NeurIPS | EA | [GitHub](https://github.com/megvii-model/DetNAS) |
181 | | [SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers](https://arxiv.org/pdf/1905.12107v1.pdf) | NeurIPS | - | - |
182 | | [Efficient Forward Architecture Search](https://arxiv.org/abs/1905.13360) | NeurIPS | G | [Github](https://github.com/microsoft/petridishnn) |
183 | | Efficient Neural ArchitectureTransformation Search in Channel-Level for Object Detection | NeurIPS | G | - |
184 | | [XNAS: Neural Architecture Search with Expert Advice](https://arxiv.org/pdf/1906.08031v1.pdf) | NeurIPS | G | [GitHub](https://github.com/NivNayman/XNAS) |
185 | | [DARTS: Differentiable Architecture Search](https://arxiv.org/abs/1806.09055) | ICLR | G | [github](https://github.com/quark0/darts) |
186 | | [ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware](https://openreview.net/pdf?id=HylVB3AqYm) | ICLR | RL/G | [github](https://github.com/MIT-HAN-LAB/ProxylessNAS) |
187 | | [Graph HyperNetworks for Neural Architecture Search](https://arxiv.org/pdf/1810.05749.pdf) | ICLR | G | - |
188 | | [Learnable Embedding Space for Efficient Neural Architecture Compression](https://openreview.net/forum?id=S1xLN3C9YX) | ICLR | Other | [github](https://github.com/Friedrich1006/ESNAC) |
189 | | [Efficient Multi-Objective Neural Architecture Search via Lamarckian Evolution](https://arxiv.org/abs/1804.09081) | ICLR | EA | - |
190 | | [SNAS: stochastic neural architecture search](https://openreview.net/pdf?id=rylqooRqK7) | ICLR | G | - |
191 | | [NetTailor: Tuning the Architecture, Not Just the Weights](https://arxiv.org/abs/1907.00274) | CVPR | G | [Github](https://github.com/pedro-morgado/nettailor) |
192 | | [Searching for A Robust Neural Architecture in Four GPU Hours](http://xuanyidong.com/publication/gradient-based-diff-sampler/) | CVPR | G | [Github](https://github.com/D-X-Y/NAS-Projects) |
193 | | [ChamNet: Towards Efficient Network Design through Platform-Aware Model Adaptation](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dai_ChamNet_Towards_Efficient_Network_Design_Through_Platform-Aware_Model_Adaptation_CVPR_2019_paper.pdf) | CVPR | - | - |
194 | | [Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search](https://arxiv.org/pdf/1903.03777.pdf) | CVPR | EA | [github](https://github.com/lixincn2015/Partial-Order-Pruning) |
195 | | [FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search](https://arxiv.org/abs/1812.03443) | CVPR | G | - |
196 | | [RENAS: Reinforced Evolutionary Neural Architecture Search](https://arxiv.org/abs/1808.00193) | CVPR | G | - |
197 | | [Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation](https://arxiv.org/pdf/1901.02985.pdf) | CVPR | G | [GitHub](https://github.com/tensorflow/models/tree/master/research/deeplab) |
198 | | [MnasNet: Platform-Aware Neural Architecture Search for Mobile](https://arxiv.org/abs/1807.11626) | CVPR | RL | [Github](https://github.com/AnjieZheng/MnasNet-PyTorch) |
199 | | [MFAS: Multimodal Fusion Architecture Search](https://arxiv.org/pdf/1903.06496.pdf) | CVPR | EA | - |
200 | | [A Neurobiological Evaluation Metric for Neural Network Model Search](https://arxiv.org/pdf/1805.10726.pdf) | CVPR | Other | - |
201 | | [Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells](https://arxiv.org/abs/1810.10804) | CVPR | RL | - |
202 | | [Customizable Architecture Search for Semantic Segmentation](https://arxiv.org/pdf/1908.09550v1.pdf) | CVPR | - | - |
203 | | [Regularized Evolution for Image Classifier Architecture Search](https://arxiv.org/pdf/1802.01548.pdf) | AAAI | EA | - |
204 | | AutoAugment: Learning Augmentation Policies from Data | CVPR | RL | - |
205 | | Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules | ICML | EA | - |
206 | | [The Evolved Transformer](https://arxiv.org/pdf/1901.11117.pdf) | ICML | EA | [Github](https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py) |
207 | | [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/pdf/1905.11946v5.pdf) | ICML | RL | - |
208 | | [NAS-Bench-101: Towards Reproducible Neural Architecture Search](https://arxiv.org/abs/1902.09635) | ICML | Other | [Github](https://github.com/google-research/nasbench) |
209 | | [On Network Design Spaces for Visual Recognition](https://arxiv.org/abs/1905.13214) | ICCV | G | [Github](https://github.com/facebookresearch/nds) |
210 |
211 | ## 2018 Venues
212 |
213 | | Title | Venue | Type | Code |
214 | |:--------|:--------:|:--------:|:--------:|
215 | | [Towards Automatically-Tuned Deep Neural Networks](https://link.springer.com/content/pdf/10.1007%2F978-3-030-05318-5.pdf) | BOOK | - | [GitHub](https://github.com/automl/Auto-PyTorch) |
216 | | [NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications](https://arxiv.org/pdf/1804.03230.pdf) | ECCV | - | [github](https://github.com/denru01/netadapt) |
217 | | [Efficient Architecture Search by Network Transformation](https://arxiv.org/pdf/1707.04873.pdf) | AAAI | RL | [github](https://github.com/han-cai/EAS) |
218 | | [Learning Transferable Architectures for Scalable Image Recognition](http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf) | CVPR | RL | [github](https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet) |
219 | | [N2N learning: Network to Network Compression via Policy Gradient Reinforcement Learning](https://openreview.net/forum?id=B1hcZZ-AW) | ICLR | RL | - |
220 | | [A Flexible Approach to Automated RNN Architecture Generation](https://openreview.net/forum?id=SkOb1Fl0Z) | ICLR | RL/PD | - |
221 | | [Practical Block-wise Neural Network Architecture Generation](http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhong_Practical_Block-Wise_Neural_CVPR_2018_paper.pdf) | CVPR | RL | - | [Efficient Neural Architecture Search via Parameter Sharing](http://proceedings.mlr.press/v80/pham18a.html) | ICML | RL | [github](https://github.com/melodyguan/enas) |
222 | | [Path-Level Network Transformation for Efficient Architecture Search](https://arxiv.org/abs/1806.02639) | ICML | RL | [github](https://github.com/han-cai/PathLevel-EAS) |
223 | | [Hierarchical Representations for Efficient Architecture Search](https://openreview.net/forum?id=BJQRKzbA-) | ICLR | EA | - |
224 | | [Understanding and Simplifying One-Shot Architecture Search](http://proceedings.mlr.press/v80/bender18a/bender18a.pdf) | ICML | G | - |
225 | | [SMASH: One-Shot Model Architecture Search through HyperNetworks](https://arxiv.org/pdf/1708.05344.pdf) | ICLR | G | [github](https://github.com/ajbrock/SMASH) |
226 | | [Neural Architecture Optimization](https://arxiv.org/pdf/1808.07233.pdf) | NeurIPS | G | [github](https://github.com/renqianluo/NAO) |
227 | | [Searching for efficient multi-scale architectures for dense image prediction](https://papers.nips.cc/paper/8087-searching-for-efficient-multi-scale-architectures-for-dense-image-prediction.pdf) | NeurIPS | Other | - |
228 | | [Progressive Neural Architecture Search](http://openaccess.thecvf.com/content_ECCV_2018/papers/Chenxi_Liu_Progressive_Neural_Architecture_ECCV_2018_paper.pdf) | ECCV | PD | [github](https://github.com/chenxi116/PNASNet) |
229 | | [Neural Architecture Search with Bayesian Optimisation and Optimal Transport](https://arxiv.org/pdf/1802.07191.pdf) | NeurIPS | Other | [github](https://github.com/kirthevasank/nasbot) |
230 | | [Differentiable Neural Network Architecture Search](https://openreview.net/pdf?id=BJ-MRKkwG) | ICLR-W | G | - |
231 | | [Accelerating Neural Architecture Search using Performance Prediction](https://arxiv.org/abs/1705.10823) | ICLR-W | PD | - |
232 |
233 | ## 2017 Venues
234 |
235 | | Title | Venue | Type | Code |
236 | |:--------|:--------:|:--------:|:--------:|
237 | | [Neural Architecture Search with Reinforcement Learning](https://arxiv.org/abs/1611.01578) | ICLR | RL | - |
238 | | [Designing Neural Network Architectures using Reinforcement Learning](https://openreview.net/pdf?id=S1c2cvqee) | ICLR | RL | - | [github](https://github.com/bowenbaker/metaqnn) |
239 | | [Neural Optimizer Search with Reinforcement Learning](http://proceedings.mlr.press/v70/bello17a/bello17a.pdf) | ICML | RL | - | [Large-Scale Evolution of Image Classifiers](https://arxiv.org/pdf/1703.01041.pdf) | ICML | EA | - |
240 | | [Learning Curve Prediction with Bayesian Neural Networks](http://ml.informatik.uni-freiburg.de/papers/17-ICLR-LCNet.pdf) | ICLR | PD | - |
241 | | [Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization](https://arxiv.org/abs/1603.06560) | ICLR | PD | - |
242 | | [Hyperparameter Optimization: A Spectral Approach](https://arxiv.org/abs/1706.00764) | NeurIPS-W | Other | [github](https://github.com/callowbird/Harmonica) |
243 | | Learning to Compose Domain-Specific Transformations for Data Augmentation | NeurIPS | - | - |
244 |
245 | ## Previous Venues
246 |
247 | 2012-2016
248 |
249 | | Title | Venue | Type | Code |
250 | |:--------|:--------:|:--------:|:--------:|
251 | | [Speeding up Automatic Hyperparameter Optimization of Deep Neural Networksby Extrapolation of Learning Curves](http://ml.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf) | IJCAI | PD | [github](https://github.com/automl/pylearningcurvepredictor) |
252 |
253 | ## arXiv
254 |
255 | | Title | Date | Type | Code |
256 | |:--------|:--------:|:--------:|:--------:|
257 | | [NSGA-NET: A Multi-Objective Genetic Algorithm for Neural Architecture Search](https://arxiv.org/pdf/1810.03522.pdf) | 2018.10 | EA | - |
258 | | [Training Frankenstein’s Creature to Stack: HyperTree Architecture Search](https://arxiv.org/pdf/1810.11714.pdf) | 2018.10 | G | - |
259 | | [Population Based Training of Neural Networks](https://arxiv.org/abs/1711.09846) | 2017.11 | EA | [GitHub](https://github.com/MattKleinsmith/pbt) |
260 | | [EmotionNAS: Two-stream Architecture Search for Speech Emotion Recognition](https://arxiv.org/pdf/2203.13617v1.pdf) | 2022.3 | G | - |
261 | | [U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search](https://arxiv.org/pdf/2203.12412) | 2022.3 | G | [Github](https://github.com/yuezuegu/UBoostNAS) |
262 |
263 | # Awesome Surveys
264 |
265 | | Title | Venue | Year | Code |
266 | |:--------|:--------:|:--------:|:--------:|
267 | | [A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions](https://arxiv.org/pdf/2006.02903.pdf) | ACM Computing Surveys | 2021 | - |
268 | | [Automated Machine Learning on Graphs: A Survey](https://arxiv.org/pdf/2103.00742v3.pdf) | ICLR-W | 2021 | [GitHub](https://github.com/THUMNLab/AutoGL) |
269 | | [On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice](https://arxiv.org/pdf/2007.15745.pdf) | Neurocomputing | 2020 |[github](https://github.com/LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithms) |
270 | | [AutonoML: Towards an Integrated Framework for Autonomous Machine Learning](https://arxiv.org/pdf/2012.12600.pdf) | arXiv | 2020 | - |
271 | | [Automated Machine Learning](https://link.springer.com/book/10.1007/978-3-030-05318-5) | Springer Book | 2019 | - |
272 | | [Neural architecture search: A survey](http://www.jmlr.org/papers/volume20/18-598/18-598.pdf) | JMLR | 2019 | - |
273 | | [AutoML: A Survey of the State-of-the-Art](https://arxiv.org/pdf/1908.00709.pdf) | arXiv | 2019 | [GitHub](https://github.com/marsggbo/automl_a_survey_of_state_of_the_art) |
274 | | [A Survey on Neural Architecture Search](https://arxiv.org/pdf/1905.01392.pdf) | arXiv | 2019 | - |
275 | | [Taking human out of learning applications: A survey on automated machine learning](https://arxiv.org/pdf/1810.13306.pdf) | arXiv | 2018 | - |
276 | | [IoT Data Analytics in Dynamic Environments: From An Automated Machine Learning Perspective](https://arxiv.org/pdf/2209.08018.pdf) | Engineering Applications of Artificial Intelligence | 2022 |[github](https://github.com/Western-OC2-Lab/AutoML-Implementation-for-Static-and-Dynamic-Data-Analytics) |
277 |
--------------------------------------------------------------------------------
/awesome_autodl/__init__.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.09 #
3 | #####################################################################################
4 | # Automated Deep Learning: Neural Architecture Search Is Not the End, arXiv 2021.12 #
5 | #####################################################################################
6 | # This package is used to analyze the AutoDL-related papers. More detailed reports #
7 | # can be found in the above paper. #
8 | #####################################################################################
9 | from pathlib import Path
10 | from collections import OrderedDict
11 |
12 |
13 | def version():
14 | versions = ["v0.1"] # 2021.09.03
15 | versions = ["v0.2"] # 2021.09.04
16 | versions = ["v0.3"] # 2022.01.17
17 | versions = ["v1.0"] # 2022.01.20
18 | versions = ["v1.1"] # 2022.01.21
19 | versions = ["v1.2"] # 2022.03.20
20 | versions = ["v1.3"] # 2022.03.27
21 | return versions[-1]
22 |
23 |
24 | def autodl_topic2file():
25 | topic2file = OrderedDict()
26 | topic2file["Automated Problem Formulation"] = "Automated_Problem_Formulation.yaml"
27 | topic2file["Automated Data Engineering"] = "Automated_Data_Engineering.yaml"
28 | topic2file["Neural Architecture Search"] = "Neural_Architecture_Search.yaml"
29 | topic2file["Hyperparameter Optimization"] = "Hyperparameter_Optimization.yaml"
30 | topic2file["Automated Deployment"] = "Automated_Deployment.yaml"
31 | topic2file["Automated Maintenance"] = "Automated_Maintenance.yaml"
32 | return topic2file
33 |
34 |
35 | def root():
36 | return Path(__file__).parent
37 |
38 |
39 | def get_data_dir():
40 | return root() / "raw_data"
41 |
42 |
43 | def get_bib_abbrv_file():
44 | return get_data_dir() / "abbrv.bib"
45 |
46 |
47 | def autodl_topic2path():
48 | topic2file = autodl_topic2file()
49 | topic2path = OrderedDict()
50 | xdir = get_data_dir() / "papers"
51 | for topic, file_name in topic2file.items():
52 | topic2path[topic] = xdir / file_name
53 | if not topic2path[topic].exists():
54 | ValueError(f"Can not find {topic} at {topic2path[topic]}")
55 | return topic2path
56 |
57 |
58 | def autodl_topic2papers():
59 | from awesome_autodl.utils import load_yaml, dump_yaml
60 | from awesome_autodl.data_cls import AutoDLpaper
61 |
62 | topic2path = autodl_topic2path()
63 | topic2papers = OrderedDict()
64 | for topic, xpath in topic2path.items():
65 | if not xpath.exists():
66 | ValueError(f"Can not find {topic} at {xpath}.")
67 | papers = []
68 | raw_data = load_yaml(xpath)
69 | assert isinstance(
70 | raw_data, (list, tuple)
71 | ), f"invalid type of raw data: {type(raw_data)}"
72 | for per_data in raw_data:
73 | papers.append(AutoDLpaper(per_data))
74 | topic2papers[topic] = papers
75 | print(f"Load {topic} completed with {len(papers)} papers.")
76 | return topic2papers
77 |
78 |
79 | def get_bib_abbrv_obj():
80 | from awesome_autodl.data_cls import BibAbbreviations
81 |
82 | xfile = str(get_bib_abbrv_file())
83 | return BibAbbreviations(xfile)
84 |
--------------------------------------------------------------------------------
/awesome_autodl/bins/__init__.py:
--------------------------------------------------------------------------------
1 | ##################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 #
3 | ##################################################
4 |
--------------------------------------------------------------------------------
/awesome_autodl/bins/list_email.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2022.01 #
3 | ########################################################################################
4 | # python -m awesome_autodl.bins.list_email #
5 | ########################################################################################
6 | import argparse
7 | from collections import OrderedDict, defaultdict
8 | from awesome_autodl import autodl_topic2papers
9 |
10 |
11 | def generate_email(author, counts):
12 | message = (
13 | f"Dear {author},"
14 | + "\n\n"
15 | + "We at the UTS' Complex Adaptive Systems Lab, part of the Data Science Institute in Sydney, Australia, have recently compiled a comprehensive conceptual review of automated deep learning (AutoDL), see initial version at https://arxiv.org/abs/2112.09245."
16 | + "\n\n"
17 | + "The intent of this review is to establish a broader snapshot of the AutoDL field beyond just neural architecture search (NAS), as well as motivate a discussion on how best to evaluate the quality of AutoDL research."
18 | + "\n\n"
19 | )
20 | if counts >= 3:
21 | message += f"In compiling this review, we have found more than {counts} of your works (referenced in the review) to be significant for informing some of the content, and we hope you find the paper of interest."
22 | else:
23 | message += "In compiling this review, we have found your work (referenced in the review) to be significant for informing some of the content, and we hope you find the paper of interest."
24 | message += (
25 | "\n\n"
26 | + "We thus welcome any feedback on the accuracy of our coverage - particularly with regard to your referenced contributions - and invite a broader discussion, if desired."
27 | + "\n\n"
28 | + "If you have moved on from this research area or are otherwise uninterested, we apologise for any inconvenience."
29 | + "\n\n"
30 | + "Best regards,"
31 | + "\n"
32 | + "Xuanyi Dong, David J. Kedziora, Kaska Musial and Bogdan Gabrys"
33 | )
34 | return message
35 |
36 |
37 | if __name__ == "__main__":
38 | parser = argparse.ArgumentParser("Analysis the AutoDL papers.")
39 | parser.add_argument(
40 | "--output_file",
41 | type=str,
42 | help="The path to save the final directory.",
43 | )
44 | args = parser.parse_args()
45 |
46 | author_email_title = []
47 | topic2papers = autodl_topic2papers()
48 | for topic, papers in topic2papers.items():
49 | # print(f'Collect {len(papers)} papers for "{topic}"')
50 | for paper in papers:
51 | if not paper.discussed:
52 | continue
53 | for author, email in paper.author_email.items():
54 | # print(f"{author:25s}, {email:15s} : {paper.title}")
55 | assert email is not None, "f{paper} has a None value for email"
56 | author_email_title.append((author, email.lower(), paper.title))
57 | # print(f"There are {len(author_email_title)} items in total.")
58 |
59 | author2email = OrderedDict()
60 | author2counts = defaultdict(lambda: 0)
61 | for author, email, title in author_email_title:
62 | if author in author2email:
63 | assert (
64 | author2email[author] == email
65 | ), f"{author} : {author2email[author]} vs {email}"
66 | author2email[author] = email
67 | author2counts[author] += 1
68 | # print(f"There are {len(author2email)} unique authors.")
69 |
70 | for author, email in author2email.items():
71 | message = generate_email(author, author2counts[author])
72 | print(f"\n\nemail:to:{email}")
73 | print(f"message:\n{message}")
74 |
--------------------------------------------------------------------------------
/awesome_autodl/bins/list_email_FIE_202203.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2022.03 #
3 | ########################################################################################
4 | # python -m awesome_autodl.bins.list_email_FIE_202203 #
5 | ########################################################################################
6 | import argparse
7 | from collections import OrderedDict, defaultdict
8 | from awesome_autodl import autodl_topic2papers
9 | from awesome_autodl.utils import email_old_to_new_202203
10 | from awesome_autodl.bins.list_email import generate_email
11 |
12 |
13 | if __name__ == "__main__":
14 | parser = argparse.ArgumentParser("Analysis the AutoDL papers.")
15 | parser.add_argument(
16 | "--output_file",
17 | type=str,
18 | help="The path to save the final directory.",
19 | )
20 | args = parser.parse_args()
21 |
22 | author_email_title = []
23 | topic2papers = autodl_topic2papers()
24 | for topic, papers in topic2papers.items():
25 | # print(f'Collect {len(papers)} papers for "{topic}"')
26 | for paper in papers:
27 | if not paper.discussed:
28 | continue
29 | for author, email in paper.author_email.items():
30 | # print(f"{author:25s}, {email:15s} : {paper.title}")
31 | assert email is not None, "f{paper} has a None value for email"
32 | author_email_title.append((author, email.lower(), paper.title))
33 | # print(f"There are {len(author_email_title)} items in total.")
34 |
35 | author2email = OrderedDict()
36 | author2counts = defaultdict(lambda: 0)
37 | for author, email, title in author_email_title:
38 | if author in author2email:
39 | assert (
40 | author2email[author] == email
41 | ), f"{author} : {author2email[author]} vs {email}"
42 | if (
43 | email in email_old_to_new_202203
44 | and email_old_to_new_202203[email] is not None
45 | ):
46 | author2email[author] = email_old_to_new_202203[email]
47 | author2counts[author] += 1
48 | print(
49 | f"During fixing the invalid email issue, there are {len(author2email)} unique authors."
50 | )
51 |
52 | for author, email in author2email.items():
53 | message = generate_email(author, author2counts[author])
54 | print(f"\n\nemail:to:{email}")
55 | print(f"message:\n{message}")
56 |
--------------------------------------------------------------------------------
/awesome_autodl/bins/show_infos.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
3 | ########################################################################################
4 | # python -m awesome_autodl.bins.show_infos --root awesome_autodl/raw_data
5 | ########################################################################################
6 | import argparse
7 | from pathlib import Path
8 | from awesome_autodl.utils import load_yaml
9 | from awesome_autodl.utils import dump_yaml
10 | from awesome_autodl.utils import check_and_sort_by_date
11 | from awesome_autodl.utils import filter_ele_w_value
12 |
13 |
14 | name2file = {
15 | "Automated Problem Formulation": "Automated_Problem_Formulation.yaml",
16 | "Automated Data Engineering": "Automated_Data_Engineering.yaml",
17 | "Neural Architecture Search": "Neural_Architecture_Search.yaml",
18 | "Hyperparameter Optimization": "Hyperparameter_Optimization.yaml",
19 | "Automated Deployment": "Automated_Deployment.yaml",
20 | "Automated Maintenance": "Automated_Maintenance.yaml",
21 | }
22 |
23 | # add abbreviation
24 | name2file["ADE"] = name2file["Automated Data Engineering"]
25 | name2file["NAS"] = name2file["Neural Architecture Search"]
26 | name2file["HPO"] = name2file["Hyperparameter Optimization"]
27 | name2file["AD"] = name2file["Automated Deployment"]
28 | name2file["AM"] = name2file["Automated Maintenance"]
29 |
30 |
31 | def scale(xlist, scale):
32 | for x in xlist:
33 | print(int(x * scale))
34 |
35 |
36 | def show_nas(root):
37 | abbrv = load_yaml(root / "abbrv.yaml")
38 | topic_path = root / "papers" / name2file["NAS"]
39 | assert topic_path.exists(), f"Did not find {topic_path}"
40 | print(f"Process NAS topic from {topic_path}")
41 | data = load_yaml(topic_path)
42 | data = check_and_sort_by_date(data)
43 | print(f"Find {len(data)} papers for NAS")
44 | # Search Space Analysis
45 | nasnet_like_search_space_papers = filter_ele_w_value(data, "search_space", "NASNet")
46 | print(
47 | f"NASNet-like search space: {len(nasnet_like_search_space_papers)}/{len(data)} : {len(nasnet_like_search_space_papers)*100./len(data):.3f}"
48 | )
49 | mbconv_based_search_space_papers = filter_ele_w_value(
50 | data, "search_space", "MBConv"
51 | )
52 | print(
53 | f"MBConv-based search space: {len(mbconv_based_search_space_papers)}/{len(data)} : {len(mbconv_based_search_space_papers)*100./len(data):.3f}"
54 | )
55 | size_based_search_space_papers = filter_ele_w_value(data, "search_space", "size")
56 | print(
57 | f"Size-related search space: {len(size_based_search_space_papers)}/{len(data)} : {len(size_based_search_space_papers)*100./len(data):.3f}"
58 | )
59 | ratio_keys = ["NASNet", "MBConv", "size"]
60 | ratios = [len(filter_ele_w_value(data, "search_space", key)) for key in ratio_keys]
61 | ratios = [float(ratio) / len(data) for ratio in ratios]
62 | ratios.append(1 - sum(ratios))
63 | # Search Strategy
64 | ratio_keys = ["Differential", "RL", "Evolution"]
65 | ratios = [
66 | len(filter_ele_w_value(data, "search_strategy", key)) for key in ratio_keys
67 | ]
68 | ratios = [float(ratio) / len(data) for ratio in ratios]
69 | ratios.append(1 - sum(ratios))
70 | # scale(ratios, 500)
71 |
72 | # Efficient candidate evaluation
73 | weight_sharing_papers = (
74 | filter_ele_w_value(data, "eval_boost", "weight sharing")
75 | + filter_ele_w_value(data, "eval_boost", "HyperNet")
76 | + filter_ele_w_value(data, "eval_boost", "weight i")
77 | + filter_ele_w_value(data, "eval_boost", "Net2Net")
78 | )
79 | print(
80 | f"Weight sharing: {len(weight_sharing_papers)}/{len(data)} : {len(weight_sharing_papers)*100./len(data):.3f}"
81 | )
82 |
83 |
84 | def show_all(root):
85 |
86 | name2data = dict()
87 | total = 0
88 | for name, file in name2file.items():
89 | if len(name) < 10:
90 | topic_path = root / "papers" / file
91 | data = load_yaml(topic_path)
92 | name2data[name] = data
93 | total += len(data)
94 | for name, data in name2data.items():
95 | print(f"{name:5s}: {len(data)}/{total} = {len(data)*1./total:.3f}")
96 |
97 |
98 | if __name__ == "__main__":
99 | parser = argparse.ArgumentParser("Analysis the AutoDL papers.")
100 | parser.add_argument(
101 | "--root",
102 | type=str,
103 | required=True,
104 | help="The path for the data directory.",
105 | )
106 | args = parser.parse_args()
107 | root = Path(args.root)
108 | show_all(root)
109 | # show_nas(root)
110 |
--------------------------------------------------------------------------------
/awesome_autodl/bins/statistics.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
3 | ########################################################################################
4 | # python -m awesome_autodl.bins.statistics --topic "ADE" --root awesome_autodl/raw_data
5 | # python -m awesome_autodl.bins.statistics --topic "NAS" --root awesome_autodl/raw_data
6 | # python -m awesome_autodl.bins.statistics --topic "HPO" --root awesome_autodl/raw_data
7 | # python -m awesome_autodl.bins.statistics --topic "AD" --root awesome_autodl/raw_data
8 | # python -m awesome_autodl.bins.statistics --topic "AM" --root awesome_autodl/raw_data
9 | ########################################################################################
10 | import argparse
11 | from pathlib import Path
12 | from awesome_autodl.utils import load_yaml
13 | from awesome_autodl.utils import dump_yaml
14 | from awesome_autodl.utils import check_and_sort_by_date
15 |
16 |
17 | name2file = {
18 | "Automated Problem Formulation": "Automated_Problem_Formulation.yaml",
19 | "Automated Data Engineering": "Automated_Data_Engineering.yaml",
20 | "Neural Architecture Search": "Neural_Architecture_Search.yaml",
21 | "Hyperparameter Optimization": "Hyperparameter_Optimization.yaml",
22 | "Automated Deployment": "Automated_Deployment.yaml",
23 | "Automated Maintenance": "Automated_Maintenance.yaml",
24 | }
25 |
26 | # add abbreviation
27 | name2file["ADE"] = name2file["Automated Data Engineering"]
28 | name2file["NAS"] = name2file["Neural Architecture Search"]
29 | name2file["HPO"] = name2file["Hyperparameter Optimization"]
30 | name2file["AD"] = name2file["Automated Deployment"]
31 | name2file["AM"] = name2file["Automated Maintenance"]
32 |
33 |
34 | def main(root, topic):
35 | abbrv = load_yaml(root / "abbrv.yaml")
36 | topic_path = root / "papers" / name2file[topic]
37 | assert topic_path.exists(), f"Did not find {topic_path}"
38 | print(f"Process {topic_path}")
39 | data = load_yaml(topic_path)
40 | data = check_and_sort_by_date(data)
41 | print(f"Find {len(data)} papers for {topic}")
42 | dump_yaml(data, path=topic_path)
43 |
44 |
45 | if __name__ == "__main__":
46 | parser = argparse.ArgumentParser("Analysis the AutoDL papers.")
47 | parser.add_argument(
48 | "--root",
49 | type=str,
50 | required=True,
51 | help="The path for the data directory.",
52 | )
53 | parser.add_argument(
54 | "--topic",
55 | type=str,
56 | required=True,
57 | choices=list(name2file.keys()),
58 | help="Choose the AutoDL sub-topic.",
59 | )
60 | args = parser.parse_args()
61 | main(Path(args.root), args.topic)
62 |
--------------------------------------------------------------------------------
/awesome_autodl/data_cls/__init__.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2022.01 #
3 | #####################################################
4 | from awesome_autodl.data_cls.abbrv import BibAbbreviations
5 | from awesome_autodl.data_cls.paper import AutoDLpaper
6 |
--------------------------------------------------------------------------------
/awesome_autodl/data_cls/abbrv.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2022.01 #
3 | #####################################################
4 | import re
5 | import os
6 |
7 |
8 | class BibAbbreviations:
9 | """A class to maintain the paper venue abbreviation."""
10 |
11 | def __init__(self, xfile):
12 | xfile = str(xfile)
13 | assert os.path.isfile(xfile)
14 | with open(xfile) as f:
15 | lines = f.readlines()
16 | lines = [x.strip() for x in lines]
17 |
18 | pattern = r'^@STRING\{([A-Z]|[a-z]|\s|_)*=(\s)*"([A-Z]|[a-z]|\s|\(|\)|\/|\,|\:|\-)*"\}$'
19 | self.prog = re.compile(pattern)
20 | self.abbrv2str = dict()
21 | for index, line in enumerate(lines):
22 | if line:
23 | if self.prog.match(line) is None:
24 | raise ValueError(f"Incorrect line [{index}]: {line}")
25 | key, value = self.decode(line)
26 | if key in self.abbrv2str:
27 | raise ValueError(f"Already defined {key}")
28 | self.abbrv2str[key] = value
29 |
30 | def __contains__(self, key):
31 | return key in self.abbrv2str
32 |
33 | def __getitem__(self, key):
34 | return self.abbrv2str[key]
35 |
36 | def __len__(self):
37 | return len(self.abbrv2str)
38 |
39 | def keys(self, sort=False):
40 | keys = list(self.abbrv2str.keys())
41 | if sort:
42 | keys = sorted(keys)
43 | return keys
44 |
45 | def decode(self, line):
46 | head = "@STRING{"
47 | assert len(line) > len(head)
48 | assert line[: len(head)] == head and line[-1] == "}"
49 | line = line[len(head) : -1]
50 | key, value = line.split("=")
51 | key, value = key.strip(" "), value.strip(" ")
52 | return key, value
53 |
54 | def __repr__(self):
55 | return f"{self.__class__.__name__}(" + f"{len(self)} abbrev pairs)"
56 |
--------------------------------------------------------------------------------
/awesome_autodl/data_cls/paper.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2022.01 #
3 | #####################################################
4 | from typing import Dict, Text, Any
5 | from typing import Optional
6 | import re
7 |
8 |
9 | class AutoDLpaper:
10 | """A class to maintain the paper attribute."""
11 |
12 | # required fields, must include
13 | title: Text = None
14 | venue: Text = None
15 | venue_date: Text = None # yyyy.mm
16 | online_date: Text = None # yyyy.mm
17 | contacts: Optional[Dict[Text, Text]] = None # a pair of name and email
18 |
19 | required_fields = ("title", "venue", "venue_date", "online_date", "contacts")
20 |
21 | # none-required fields
22 | search_space: Text = None
23 | search_strategy: Text = None
24 | candidate_evaluation: Text = None
25 |
26 | autodl_aspect_fields = ("search_space", "search_strategy", "candidate_evaluation")
27 |
28 | # non-required fileds
29 | links: Optional[Dict[Text, Text]] = None
30 |
31 | # misc
32 | discussed: bool = None
33 | misc: Text = None
34 |
35 | def __init__(self, data: Dict[Text, Any]):
36 | self.check_raw_data(data)
37 | self.reset_value(data)
38 |
39 | def reset_value(self, data):
40 | # set the basic value
41 | for field in self.required_fields[:-1]:
42 | if not isinstance(data[field], str):
43 | raise TypeError(
44 | f"Expect {field} is str instead of {type(data[field])}."
45 | )
46 | self.title = data["title"]
47 | self.venue = data["venue"]
48 | date_pattern = re.compile("^([0-9]){4}.([0-9]){2}$")
49 | if date_pattern.match(data["venue_date"]) is None:
50 | raise ValueError(f"Invalid venue date ({data['venue_date']}) :: {data}")
51 | if date_pattern.match(data["online_date"]) is None:
52 | raise ValueError(f"Invalid online date ({data['online_date']}) :: {data}")
53 | self.venue_date = data["venue_date"]
54 | self.online_date = data["online_date"]
55 |
56 | # set the contact information
57 | if data["contacts"] is not None:
58 | assert isinstance(data["contacts"], dict)
59 | self.contacts = data["contacts"]
60 | # TODO(xuanyidong): check the email address
61 | # regex = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
62 |
63 | # set the AutoDL aspect fields
64 | for field in self.autodl_aspect_fields:
65 | if data[field] is None:
66 | continue
67 | assert isinstance(data[field], str)
68 | setattr(self, field, data[field])
69 |
70 | # set the misc info
71 | if "discussed" in data:
72 | assert isinstance(
73 | data["discussed"], bool
74 | ), f"The discussed field must be a bool instead of a {type(data['discussed'])}"
75 | self.discussed = data["discussed"]
76 | if "misc" in data and data["misc"] is not None:
77 | assert isinstance(
78 | data["misc"], str
79 | ), f"The misc field must be a str instead of a {type(data['discussed'])}"
80 | self.misc = data["misc"]
81 |
82 | def check_raw_data(self, data):
83 | """Check whether the necessary field is included in `data`."""
84 | if not isinstance(data, dict):
85 | raise TypeError(f"Expect data to be a dict instead of {type(data)}")
86 | for field in self.required_fields:
87 | if field not in data:
88 | raise ValueError(f"Missing {field} in {data}")
89 | for field in self.autodl_aspect_fields:
90 | if field not in data:
91 | raise ValueError(
92 | f"Missing {field} in {data}"
93 | + "Please leave this field as blank if you are not sure about it."
94 | )
95 | all_fields = (
96 | list(self.required_fields)
97 | + list(self.autodl_aspect_fields)
98 | + ["discussed", "misc", "links"]
99 | )
100 | for key in data.keys():
101 | if key not in all_fields:
102 | raise ValueError(f"Find unexpected field: {key} in {data}")
103 |
104 | @property
105 | def author_email(self):
106 | if self.contacts is None:
107 | return dict()
108 | else:
109 | return self.contacts
110 |
111 | def __repr__(self):
112 | return f"{self.__class__.__name__}({self.title})"
113 |
--------------------------------------------------------------------------------
/awesome_autodl/raw_data/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/D-X-Y/Awesome-AutoDL/9fb9fe201d6c2b325ee7df7c12656fe9e2971ce4/awesome_autodl/raw_data/__init__.py
--------------------------------------------------------------------------------
/awesome_autodl/raw_data/abbrv.bib:
--------------------------------------------------------------------------------
1 | @STRING{IEEE_J_IP = "IEEE Transactions on Image Processing (TIP)"}
2 | @STRING{IEEE_J_PAMI = "IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)"}
3 | @STRING{nature = "Nature"}
4 | @STRING{IEEE_TSMC = "IEEE Transactions on Systems, Man, and Cybernetics: Systems (TSMC)"}
5 | @STRING{IEEE_J_TASE = "IEEE Transactions on Automation Science and Engineering (TASE)"}
6 | @STRING{acm_comp_sur = "ACM Computing Surveys (CSUR)"}
7 | @STRING{evo_comp = "Evolutionary Computation"}
8 | @STRING{NeurCom = "Neural Computation"}
9 | @STRING{JAIR = "Journal of Artificial Intelligence Research (JAIR)"}
10 | @STRING{IEEE_J_TCAD = "IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)"}
11 | @STRING{IEEE_NNSP = "IEEE Workshop on Neural Networks for Signal Processing (NNSP)"}
12 | @STRING{NN_ToT = "Neural Networks: Tricks of the Trade"}
13 | @STRING{ISLPED = "IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)"}
14 | @STRING{TACO = "ACM Transactions on Architecture and Code Optimization (TACO)"}
15 | @STRING{eurosys = "Proceedings of the EuroSys Conference (EuroSys)"}
16 | @STRING{CogSci = "Cognitive Science Society (CogSci)"}
17 | @STRING{AAMAS = "Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS)"}
18 | @STRING{Neurocomputing = "Neurocomputing"}
19 |
20 | @STRING{IJCV = "International Journal of Computer Vision (IJCV)"}
21 | @STRING{uai = "The Conference on Uncertainty in Artificial Intelligence (UAI)"}
22 | @STRING{aistats = "The International Conference on Artificial Intelligence and Statistics (AISTATS)"}
23 | @STRING{cvpr = "Proceedings of the IEEE Conference Computer Vision Pattern Recognition (CVPR)"}
24 | @STRING{cvpr_w = "Proceedings of the IEEE Conference Computer Vision Pattern Recognition (CVPR) Workshop"}
25 | @STRING{iclr = "International Conference on Learning Representations (ICLR)"}
26 | @STRING{iclr_w = "International Conference on Learning Representations (ICLR) Workshop"}
27 | @STRING{iccv = "Proceedings of the IEEE International Conference Computer Vision (ICCV)"}
28 | @STRING{iccv_w = "Proceedings of the IEEE International Conference Computer Vision (ICCV) Workshop"}
29 | @STRING{icpr = "Proceedings of the IEEE International Conference Pattern Recognition (ICPR)"}
30 | @STRING{nips = "Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS)"}
31 | @STRING{nips_w = "Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS) Workshop"}
32 | @STRING{eccv = "Proceedings of the European Conference on Computer Vision (ECCV)"}
33 | @STRING{eccv_w = "Proceedings of the European Conference on Computer Vision (ECCV) Workshop"}
34 | @STRING{ecai_w = "The European Conference on Artificial Intelligence (ECAI) Workshop"}
35 | @STRING{ijcai = "International Joint Conferences on Artificial Intelligence (IJCAI)"}
36 | @STRING{miccai = "Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)"}
37 | @STRING{icml = "The International Conference on Machine Learning (ICML)"}
38 | @STRING{icml_w = "The International Conference on Machine Learning (ICML) Workshop"}
39 | @STRING{aaai = "AAAI Conference on Artificial Intelligence (AAAI)"}
40 | @STRING{jmlr = "Journal of Machine Learning Research (JMLR)"}
41 | @STRING{sigkdd = "Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)"}
42 | @STRING{bmvc = "Proceedings of the British Machine Vision Conference (BMVC)"}
43 | @STRING{www = "Proceedings of the International Conference on World Wide Web (WWW)"}
44 | @STRING{mascots = "IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)"}
45 | @STRING{emnlp = "Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)"}
46 | @STRING{wacv = "Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV)"}
47 | @STRING{dac = "The ACM/ESDA/IEEE Design Automation Conference (DAC)"}
48 | @STRING{acl = "The Annual Meeting of the Association for Computational Linguistics"}
49 | @STRING{lion = "Proceedings of the International Conference on Learning and Intelligent Optimization (LION)"}
50 | @STRING{tkde = "IEEE Transactions on Knowledge and Data Engineering (TKDE)"}
51 | @STRING{mlsys = "The Conference on Machine Learning and Systems (MLSys)"}
52 | @STRING{pricai = "The Pacific Rim International Conferences on Artificial Intelligence (PRICAI)"}
53 | @STRING{icann = "Proceedings of the International Conference on Artificial Neural Networks (ICANN)"}
54 | @STRING{ijcnn = "International Joint Conference on Neural Network (IJCNN)"}
55 | @STRING{iccad = "The IEEE/ACM International Conference on Computer-Aided Design (ICCAD)"}
56 | @STRING{ECML_PKDD = "The Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD)"}
57 | @STRING{osdi = "The USENIX Symposium on Operating Systems Design and Implementation (OSDI)"}
58 |
59 | @STRING{automated_machine_learning = "Automated Machine Learning"}
60 | @STRING{arXiv = "arXiv"}
--------------------------------------------------------------------------------
/awesome_autodl/raw_data/abbrv.yaml:
--------------------------------------------------------------------------------
1 | application:
2 | CLS: "classification"
3 | DET: "object detection"
4 | REG: "regression"
5 | SEG: "segmentation"
6 | search_strategy:
7 | RL: "Reinforcement Learning"
8 | Evolution: "Evolutionary Algorithm"
9 | Random: "Random Search"
10 | Differential: ""
11 | BayesOpt: "Bayesian Optimization"
12 | Heuristic: ""
13 |
--------------------------------------------------------------------------------
/awesome_autodl/raw_data/papers/Automated_Data_Engineering.yaml:
--------------------------------------------------------------------------------
1 | - title: "AutoAugment: Learning Augmentation Policies from Data"
2 | venue: "cvpr"
3 | venue_date: "2019.06"
4 | online_date: "2018.05"
5 | contacts: {"Ekin D. Cubuk": "cubuk@google.com", "Barret Zoph": "barretzoph@google.com"}
6 | search_space:
7 | search_strategy:
8 | candidate_evaluation:
9 | discussed: true
10 | misc:
11 | - title: "RandAugment: Practical Automated Data Augmentation with a Reduced Search Space"
12 | venue: "nips"
13 | venue_date: "2020.12"
14 | online_date: "2019.09"
15 | contacts: {"Ekin D. Cubuk": "cubuk@google.com", "Barret Zoph": "barretzoph@google.com"}
16 | search_space:
17 | search_strategy:
18 | candidate_evaluation:
19 | discussed: true
20 | misc:
21 | - title: "Teacher Supervises Students How to Learn from Partially Labeled Images for Facial Landmark Detection"
22 | venue: "iccv"
23 | venue_date: "2019.10"
24 | online_date: "2019.08"
25 | contacts: {"Xuanyi Dong": "xuanyi.dxy@gmail.com"}
26 | search_space:
27 | search_strategy:
28 | candidate_evaluation:
29 | discussed: true
30 | misc:
31 | - title: "Learning to teach"
32 | venue: "iclr"
33 | venue_date: "2018.04"
34 | online_date: "2018.04"
35 | contacts: {"Yang Fan": "fyabc@mail.ustc.edu.cn", "Fei Tian": "fetia@microsoft.com"}
36 | search_space:
37 | search_strategy:
38 | candidate_evaluation:
39 | discussed: true
40 | misc:
41 | - title: "Automated data cleansing through meta-learning"
42 | venue: "aaai"
43 | venue_date: "2017.02"
44 | online_date: "2017.02"
45 | contacts: {"Ian Gemp": "imgemp@cs.umass.edu"}
46 | search_space:
47 | search_strategy:
48 | candidate_evaluation:
49 | discussed: true
50 | misc:
51 | - title: "Learning Active Learning from Data"
52 | venue: "nips"
53 | venue_date: "2017.12"
54 | online_date: "2017.03"
55 | contacts: {"Ksenia Konyushkova": "ksenia.konyushkova@epfl.ch", "Pascal Fua": "pascal.fua@epfl.ch"}
56 | search_space:
57 | search_strategy:
58 | candidate_evaluation:
59 | discussed: true
60 | misc:
61 | - title: "DADA: Differentiable Automatic Data Augmentation"
62 | venue: "eccv"
63 | venue_date: "2020.08"
64 | online_date: "2020.03"
65 | contacts: {"Yongtao Wang": "wyt@pku.edu.cn"}
66 | search_space:
67 | search_strategy:
68 | candidate_evaluation:
69 | discussed: true
70 | misc:
71 | - title: "Fast autoaugment"
72 | venue: "nips"
73 | venue_date: "2019.12"
74 | online_date: "2019.05"
75 | contacts: {"Sungbin Lim": "sungbin.lim@kakaobrain.com", "Ildoo Kim": "ildoo.kim@kakaobrain.com"}
76 | search_space:
77 | search_strategy:
78 | candidate_evaluation:
79 | discussed: true
80 | misc:
81 | - title: "Automatically Learning Data Augmentation Policies for Dialogue Tasks"
82 | venue: "emnlp"
83 | venue_date: "2019.11"
84 | online_date: "2019.09"
85 | contacts: {"Tong Niu": "tongn@cs.unc.edu", "Mohit Bansal": "mbansal@cs.unc.edu"}
86 | search_space:
87 | search_strategy:
88 | candidate_evaluation:
89 | discussed: true
90 | misc:
91 | - title: "Learning to Reweight Examples for Robust Deep Learning"
92 | venue: "icml"
93 | venue_date: "2018.07"
94 | online_date: "2018.03"
95 | contacts: {"Mengye Ren": "mren@cs.toronto.edu"}
96 | search_space:
97 | search_strategy:
98 | candidate_evaluation:
99 | discussed: true
100 | links: {"paper": "https://arxiv.org/abs/1803.09050", "code": "https://github.com/uber-research/learning-to-reweight-examples"}
101 | misc:
102 | - title: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting"
103 | venue: "nips"
104 | venue_date: "2019.12"
105 | online_date: "2019.02"
106 | contacts: {"Jun Shu": "xjtushujun@gmail.com"}
107 | search_space:
108 | search_strategy:
109 | candidate_evaluation:
110 | discussed: true
111 | links: {"paper": "https://arxiv.org/abs/1902.07379", "code": "https://github.com/xjtushujun/meta-weight-net"}
112 | misc:
113 | - title: "Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data"
114 | venue: "icml"
115 | venue_date: "2020.07"
116 | online_date: "2019.12"
117 | contacts: {"Felipe Petroski Such": "fe-lipe.such@gmail.com", "Jeff Clune": "jeffclune@openai.com"}
118 | search_space:
119 | search_strategy:
120 | candidate_evaluation:
121 | discussed: true
122 | links: {"paper": "https://arxiv.org/abs/1912.07768", "code": "https://github.com/uber-research/gtn"}
123 | misc:
124 | - title: "Adaptive Preprocessing for Streaming Data"
125 | venue: "tkde"
126 | venue_date: "2012.07"
127 | online_date: "2012.07"
128 | contacts: {"Indre Zliobaite": "izliobaite@bournemouth.ac.uk", "Bogdan Gabrys": "Bogdan.Gabrys@uts.edu.au"}
129 | search_space:
130 | search_strategy:
131 | candidate_evaluation:
132 | discussed: true
133 | links: {"paper": "https://ieeexplore.ieee.org/document/6247432"}
134 | misc:
135 | - title: "Learning Data Augmentation Strategies for Object Detection"
136 | venue: "eccv"
137 | venue_date: "2020.08"
138 | online_date: "2019.06"
139 | contacts: {"Barret Zoph": "barretzoph@google.com"}
140 | search_space:
141 | search_strategy:
142 | candidate_evaluation:
143 | discussed: true
144 | links: {"paper": "https://arxiv.org/abs/1906.11172", "code": "https://github.com/tensorflow/tpu/tree/master/models/official/detection"}
145 | misc:
--------------------------------------------------------------------------------
/awesome_autodl/raw_data/papers/Automated_Deployment.yaml:
--------------------------------------------------------------------------------
1 | - title: "{TVM}: An Automated {End-to-End} Optimizing Compiler for Deep Learning"
2 | venue: "osdi"
3 | venue_date: "2018.10"
4 | online_date: "2018.10"
5 | contacts: {}
6 | search_space:
7 | search_strategy:
8 | candidate_evaluation:
9 | discussed: true
10 | misc:
11 | - title: "DANCE: Differentiable Accelerator/Network Co-Exploration"
12 | venue: "dac"
13 | venue_date: "2021.12"
14 | online_date: "2020.09"
15 | contacts: {"Kanghyun Choi": "kanghyun.choi@yonsei.ac.kr", "Jinho Lee": "leejinho@yonsei.ac.kr"}
16 | search_space:
17 | search_strategy: "differentiable"
18 | candidate_evaluation:
19 | discussed: true
20 | misc:
21 | - title: "Hardware/Software Co-Exploration of Neural Architectures"
22 | venue: "IEEE_J_TCAD"
23 | venue_date: "2020.04"
24 | online_date: "2019.07"
25 | contacts: {"Weiwen Jiang": "wjiang2@nd.edu"}
26 | search_space:
27 | search_strategy:
28 | candidate_evaluation:
29 | discussed: true
30 | misc:
31 | - title: "A Hierarchical Model for Device Placement"
32 | venue: "iclr"
33 | venue_date: "2018.04"
34 | online_date: "2018.04"
35 | contacts: {"Azalia Mirhoseini": "azalia@google.com"}
36 | search_space:
37 | search_strategy:
38 | candidate_evaluation:
39 | discussed: true
40 | misc:
41 | - title: "Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning"
42 | venue: "nips"
43 | venue_date: "2019.12"
44 | online_date: "2019.06"
45 | contacts: {"Ravichandra Addanki": "addanki@mit.edu"}
46 | search_space:
47 | search_strategy:
48 | candidate_evaluation:
49 | discussed: true
50 | misc:
51 | - title: "A graph placement methodology for fast chip design"
52 | venue: "nature"
53 | venue_date: "2021.06"
54 | online_date: "2021.06"
55 | contacts: {"Azalia Mirhoseini": "azalia@google.com"}
56 | search_space:
57 | search_strategy:
58 | candidate_evaluation:
59 | discussed: true
60 | misc:
61 | - title: "Device placement optimization with reinforcement learning"
62 | venue: "icml"
63 | venue_date: "2017.08"
64 | online_date: "2017.06"
65 | contacts: {"Azalia Mirhoseini": "azalia@google.com"}
66 | search_space:
67 | search_strategy: "RL"
68 | candidate_evaluation:
69 | discussed: true
70 | misc:
71 | - title: "Practical Design Space Exploration"
72 | venue: "mascots"
73 | venue_date: "2019.10"
74 | online_date: "2018.10"
75 | contacts: {"Luigi Nardi": "lnardi@stanford.edu", "Kunle Olukotun": "kunle@stanford.edu"}
76 | search_space:
77 | search_strategy:
78 | candidate_evaluation:
79 | discussed: true
80 | misc:
81 | - title: "Optimus: an efficient dynamic resource scheduler for deep learning clusters"
82 | venue: "eurosys"
83 | venue_date: "2018.04"
84 | online_date: "2018.04"
85 | contacts: {}
86 | search_space:
87 | search_strategy:
88 | candidate_evaluation:
89 | discussed: true
90 | links: {"paper": "https://dl.acm.org/doi/10.1145/3190508.3190517"}
91 | misc:
92 | - title: "A case for efficient accelerator design space exploration via Bayesian optimization"
93 | venue: "ISLPED"
94 | venue_date: "2017.08"
95 | online_date: "2017.08"
96 | contacts: {}
97 | search_space:
98 | search_strategy: "BayesOpt"
99 | candidate_evaluation:
100 | discussed: true
101 | links: {"paper": "https://ieeexplore.ieee.org/document/8009208"}
102 | misc:
103 | - title: "Bayesian Optimization for Efficient Accelerator Synthesis"
104 | venue: "TACO"
105 | venue_date: "2020.12"
106 | online_date: "2020.12"
107 | contacts: {"Atefeh Mehrabi": "atefeh.mehrabi@duke.edu"}
108 | search_space:
109 | search_strategy: "BayesOpt"
110 | candidate_evaluation:
111 | discussed: false
112 | links: {"paper": "https://dl.acm.org/doi/10.1145/3427377"}
113 | misc:
114 | - title: "Co-Exploration of Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple Tasks"
115 | venue: "dac"
116 | venue_date: "2020.07"
117 | online_date: "2020.02"
118 | contacts: {"Weiwen Jiang": "wjiang2@nd.edu"}
119 | search_space:
120 | search_strategy:
121 | candidate_evaluation:
122 | discussed: true
123 | links: {"paper": "https://arxiv.org/abs/2002.04116"}
124 | misc:
125 | - title: "A reinforcement learning approach to job-shop scheduling"
126 | venue: "ijcai"
127 | venue_date: "1995.08"
128 | online_date: "1995.08"
129 | contacts: {}
130 | search_space:
131 | search_strategy:
132 | candidate_evaluation:
133 | discussed: true
134 | links: {"paper": "https://dl.acm.org/doi/10.5555/1643031.1643044"}
135 | misc:
136 | - title: "Rethinking Co-design of Neural Architectures and Hardware Accelerators"
137 | venue: "mlsys"
138 | venue_date: "2022.08"
139 | online_date: "2021.02"
140 | contacts: {"Yanqi Zhou": "yanqiz@google.com"}
141 | search_space:
142 | search_strategy:
143 | candidate_evaluation:
144 | discussed: true
145 | links: {"paper": "https://arxiv.org/abs/2102.08619"}
146 | misc:
--------------------------------------------------------------------------------
/awesome_autodl/raw_data/papers/Automated_Maintenance.yaml:
--------------------------------------------------------------------------------
1 | - title: "Meta-Learning with Adaptive Hyperparameters"
2 | venue: "nips"
3 | venue_date: "2020.12"
4 | online_date: "2020.11"
5 | contacts: {"Sungyong Baik": "dsybaik@snu.ac.kr", "Kyoung Mu Lee": "kyoungmu@snu.ac.kr"}
6 | search_space:
7 | search_strategy:
8 | candidate_evaluation:
9 | discussed: true
10 | misc:
11 | - title: "Adaptation Strategies for Automated Machine Learning on Evolving Data"
12 | venue: "IEEE_J_PAMI"
13 | venue_date: "2021.03"
14 | online_date: "2020.06"
15 | contacts: {"Bilge Celik": "B.Celik.Aydin@tue.nl"}
16 | search_space:
17 | search_strategy:
18 | candidate_evaluation:
19 | discussed: true
20 | misc:
21 | - title: "Sequential Scenario-Specific Meta Learner for Online Recommendation"
22 | venue: "sigkdd"
23 | venue_date: "2019.08"
24 | online_date: "2019.06"
25 | contacts: {"Zhengxiao Du": "duzx16@mails.tsinghua.edu.cn"}
26 | search_space:
27 | search_strategy:
28 | candidate_evaluation:
29 | discussed: true
30 | misc:
31 | - title: "RL2: Fast Reinforcement Learning via Slow Reinforcement Learning"
32 | venue: "arXiv"
33 | venue_date: "2016.11"
34 | online_date: "2016.11"
35 | contacts: {"Yan Duan": "rocky@covariant.ai"}
36 | search_space:
37 | search_strategy:
38 | candidate_evaluation:
39 | discussed: true
40 | misc:
41 | - title: "DACBench: A Benchmark Library for Dynamic Algorithm Configuration"
42 | venue: "ijcai"
43 | venue_date: "2021.08"
44 | online_date: "2021.05"
45 | contacts: {"Theresa Eimer": "eimer@tnt.uni-hannover.de", "Marius Lindauer": "lindauer@tnt.uni-hannover.de"}
46 | search_space:
47 | search_strategy:
48 | candidate_evaluation:
49 | discussed: true
50 | misc:
51 | - title: "Building Upon Neural Models of How Brains Make Minds"
52 | venue: "IEEE_TSMC"
53 | venue_date: "2020.12"
54 | online_date: "2020.12"
55 | contacts: {}
56 | search_space:
57 | search_strategy:
58 | candidate_evaluation:
59 | discussed: true
60 | misc:
61 | - title: "Completely Derandomized Self-Adaptation in Evolution Strategies"
62 | venue: "evo_comp"
63 | venue_date: "2001.06"
64 | online_date: "2001.06"
65 | contacts: {}
66 | search_space:
67 | search_strategy:
68 | candidate_evaluation:
69 | discussed: true
70 | misc:
71 | - title: "Improving Generalization in Meta Reinforcement Learning using Learned Objectives"
72 | venue: "iclr"
73 | venue_date: "2020.04"
74 | online_date: "2019.10"
75 | contacts: {"Louis Kirsch": "louis@idsia.ch", "Sjoerd van Steenkiste": "sjoerd@idsia.ch", "Jurgen Schmidhuber": "juergen@idsia.ch"}
76 | search_space:
77 | search_strategy:
78 | candidate_evaluation:
79 | discussed: true
80 | misc:
81 | - title: "Towards AutoML in the presence of Drift: first results"
82 | venue: "icml_w"
83 | venue_date: "2018.07"
84 | online_date: "2019.07"
85 | contacts: {"Jorge G. Madrid": "jorgegus.93@gmail.com", "Michele Sebag": "michele.sebag@lri.fr"}
86 | search_space:
87 | search_strategy:
88 | candidate_evaluation:
89 | discussed: true
90 | misc: "The AutoML@ICML 2018 website failed, thus the online date is used as the arxiv date."
91 | - title: "Progressive Neural Networks"
92 | venue: "arXiv"
93 | venue_date: "2016.06"
94 | online_date: "2016.06"
95 | contacts: {"Andrei A. Rusu": "andreirusu@google.com"}
96 | search_space:
97 | search_strategy:
98 | candidate_evaluation:
99 | discussed: true
100 | links: {"paper": "https://arxiv.org/abs/1606.04671"}
101 | misc:
102 | - title: "Memory-based Parameter Adaptation"
103 | venue: "iclr"
104 | venue_date: "2018.05"
105 | online_date: "2018.02"
106 | contacts: {"Pablo Sprechmann": "psprechmann@google.com", "Siddhant M. Jayakumar": "sidmj@google.com"}
107 | search_space:
108 | search_strategy:
109 | candidate_evaluation:
110 | discussed: true
111 | links: {"paper": "https://arxiv.org/abs/1802.10542"}
112 | misc:
113 | - title: "Discovery of Useful Questions as Auxiliary Tasks"
114 | venue: "nips"
115 | venue_date: "2019.12"
116 | online_date: "2019.09"
117 | contacts: {"Vivek Veeriah": "hvveeriah@umich.edu"}
118 | search_space:
119 | search_strategy:
120 | candidate_evaluation:
121 | discussed: true
122 | links: {"paper": "https://arxiv.org/abs/1909.04607"}
123 | misc:
124 | - title: "A Greedy Approach to Adapting the Trace Parameter for Temporal Difference Learning"
125 | venue: "AAMAS"
126 | venue_date: "2016.05"
127 | online_date: "2016.07"
128 | contacts: {"Martha White": "martha@indiana.edu", "Adam White": "adamw@indiana.edu"}
129 | search_space:
130 | search_strategy:
131 | candidate_evaluation:
132 | discussed: true
133 | links: {"paper": "https://arxiv.org/abs/1607.00446"}
134 | misc:
135 | - title: "Meta-Gradient Reinforcement Learning with an Objective Discovered Online"
136 | venue: "nips"
137 | venue_date: "2020.12"
138 | online_date: "2020.07"
139 | contacts: {}
140 | search_space:
141 | search_strategy:
142 | candidate_evaluation:
143 | discussed: true
144 | links: {"paper": "https://arxiv.org/abs/2007.08433"}
145 | misc:
146 | - title: "Meta-Gradient Reinforcement Learning"
147 | venue: "nips"
148 | venue_date: "2018.12"
149 | online_date: "2018.05"
150 | contacts: {}
151 | search_space:
152 | search_strategy:
153 | candidate_evaluation:
154 | discussed: true
155 | links: {"paper": "https://arxiv.org/abs/1805.09801"}
156 | misc:
157 |
--------------------------------------------------------------------------------
/awesome_autodl/raw_data/papers/Automated_Problem_Formulation.yaml:
--------------------------------------------------------------------------------
1 | []
2 |
--------------------------------------------------------------------------------
/awesome_autodl/raw_data/papers/Hyperparameter_Optimization.yaml:
--------------------------------------------------------------------------------
1 | - title: "Optuna: A next-generation hyperparameter optimization framework"
2 | venue: "sigkdd"
3 | venue_date: "2019.08"
4 | online_date: "2019.07"
5 | contacts: {"Takuya Akiba": "akiba@preferred.jp"}
6 | search_space:
7 | search_strategy:
8 | candidate_evaluation:
9 | discussed: true
10 | misc: "This is a library/software paper."
11 | - title: "A meta-reinforcement learning approach to optimize parameters and hyper-parameters simultaneously"
12 | venue: "pricai"
13 | venue_date: "2019.08"
14 | online_date: "2019.08"
15 | contacts: {"Abbas Raza Ali": "aali@bournemouth.ac.uk", "Bogdan Gabrys": "bogdan.gabrys@uts.edu.au"}
16 | search_space:
17 | search_strategy:
18 | candidate_evaluation:
19 | discussed: true
20 | misc:
21 | - title: "Learning to learn by gradient descent by gradient descent."
22 | venue: "nips"
23 | venue_date: "2016.12"
24 | online_date: "2016.06"
25 | contacts: {"Marcin Andrychowicz": "marcin.andrychowicz@gmail.com", "Misha Denil": "mdenil@google.com", "Nando de Freitas": "nandodefreitas@google.com"}
26 | search_space:
27 | search_strategy: "differentiable"
28 | candidate_evaluation:
29 | discussed: true
30 | misc:
31 | - title: "Bayesian Optimization of Composite Functions"
32 | venue: "icml"
33 | venue_date: "2019.06"
34 | online_date: "2019.06"
35 | contacts: {"Raul Astudillo": "ra598@cornell.edu", "Peter I. Frazier": "pf98@cornell.edu"}
36 | search_space:
37 | search_strategy: "BayesOpt"
38 | candidate_evaluation:
39 | discussed: true
40 | misc:
41 | - title: "Online Learning Rate Adaptation with Hypergradient Descent"
42 | venue: "iclr"
43 | venue_date: "2018.04"
44 | online_date: "2017.03"
45 | contacts: {"Atılım Gunes Baydin": "gunes@robots.ox.ac.uk", "Robert Cornish": "rcornish@robots.ox.ac.uk", "Frank Wood": "fwood@robots.ox.ac.uk"}
46 | search_space:
47 | search_strategy: "differentiable"
48 | candidate_evaluation:
49 | discussed: true
50 | misc:
51 | - title: "Gradient-Based Optimization of Hyperparameters"
52 | venue: "NeurCom"
53 | venue_date: "2000.08"
54 | online_date: "1999.09"
55 | contacts: {"Yoshua Bengio": "yoshua.bengio@umontreal.ca"}
56 | search_space:
57 | search_strategy: "differentiable"
58 | candidate_evaluation:
59 | discussed: true
60 | misc:
61 | - title: "Algorithms for Hyper-Parameter Optimization"
62 | venue: "nips"
63 | venue_date: "2011.12"
64 | online_date: "2011.12"
65 | contacts: {"James Bergstra": "james.bergstra@uwaterloo.ca", "Balazs Kegl": "balazs.kegl@gmail.com"}
66 | search_space:
67 | search_strategy:
68 | candidate_evaluation:
69 | discussed: true
70 | misc:
71 | - title: "Random search for hyper-parameter optimization"
72 | venue: "jmlr"
73 | venue_date: "2012.02"
74 | online_date: "2012.02"
75 | contacts: {"James Bergstra": "james.bergstra@uwaterloo.ca", "Yoshua Bengio": "yoshua.bengio@umontreal.ca"}
76 | search_space:
77 | search_strategy: "random"
78 | candidate_evaluation:
79 | discussed: true
80 | misc:
81 | - title: "CAVE: Configuration Assessment, Visualization and Evaluation"
82 | venue: "lion"
83 | venue_date: "2018.06"
84 | online_date: "2018.06"
85 | contacts: {"Andre Biedenkapp": "biedenka@cs.uni-freiburg.de", "Frank Hutter": "fh@cs.uni-freiburg.de"}
86 | search_space:
87 | search_strategy:
88 | candidate_evaluation:
89 | discussed: true
90 | misc:
91 | - title: "Speeding up hyper-parameter optimization by extrapolation of learning curves using previous builds"
92 | venue: "ECML_PKDD"
93 | venue_date: "2017.09"
94 | online_date: "2017.09"
95 | contacts: {"Akshay Chandrashekaran": "akshayc@cmu.edu", "Ian R. Lane": "lane@cmu.edu"}
96 | search_space:
97 | search_strategy:
98 | candidate_evaluation:
99 | discussed: true
100 | misc:
101 | - title: "Learning to Learn without Gradient Descent by Gradient Descent"
102 | venue: "icml"
103 | venue_date: "2017.08"
104 | online_date: "2016.11"
105 | contacts: {"Yutian Chen": "yutianc@google.com"}
106 | search_space:
107 | search_strategy:
108 | candidate_evaluation:
109 | discussed: true
110 | misc:
111 | - title: "FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining"
112 | venue: "cvpr"
113 | venue_date: "2021.06"
114 | online_date: "2020.06"
115 | contacts: {"Xiaoliang Dai": "xiaoliangdai@fb.com", "Alvin Wan": "alvinwan@berkeley.edu"}
116 | search_space:
117 | search_strategy:
118 | candidate_evaluation:
119 | discussed: true
120 | misc:
121 | - title: "Mixed-Variable Bayesian Optimization"
122 | venue: "ijcai"
123 | venue_date: "2020.01"
124 | online_date: "2019.07"
125 | contacts: {"Erik Daxberger": "ead54@cam.ac.uk", "Andreas Krause": "krausea@inf.ethz.ch"}
126 | search_space:
127 | search_strategy:
128 | candidate_evaluation:
129 | discussed: true
130 | misc:
131 | - title: "Speeding up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves"
132 | venue: "ijcai"
133 | venue_date: "2015.07"
134 | online_date: "2015.07"
135 | contacts: {"Tobias Domhan": "domhant@cs.uni-freiburg.de", "Frank Hutter": "fh@cs.uni-freiburg.de"}
136 | search_space:
137 | search_strategy:
138 | candidate_evaluation:
139 | discussed: true
140 | misc:
141 | - title: "AutoHAS: Efficient Hyperparameter and Architecture Search"
142 | venue: "iclr_w"
143 | venue_date: "2021.05"
144 | online_date: "2020.06"
145 | contacts: {"Xuanyi Dong": "xuanyi.dxy@gmail.com"}
146 | search_space:
147 | search_strategy:
148 | candidate_evaluation: "weight sharing"
149 | discussed: true
150 | misc:
151 | - title: "Surrogate Benchmarks for Hyperparameter Optimization"
152 | venue: "ecai_w"
153 | venue_date: "2014.08"
154 | online_date: "2014.08"
155 | contacts: {"Katharina Eggensperger": "eggenspk@cs.uni-freiburg.de", "Frank Hutter": "fh@cs.uni-freiburg.de"}
156 | search_space:
157 | search_strategy:
158 | candidate_evaluation:
159 | discussed: true
160 | misc:
161 | - title: "HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO"
162 | venue: "nips"
163 | venue_date: "2021.12"
164 | online_date: "2021.09"
165 | contacts: {"Katharina Eggensperger": "eggenspk@cs.uni-freiburg.de", "Neeratyoy Mallik": "mallik@cs.uni-freiburg.de", "Frank Hutter": "fh@cs.uni-freiburg.de"}
166 | search_space:
167 | search_strategy:
168 | candidate_evaluation:
169 | discussed: true
170 | misc:
171 | - title: "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data"
172 | venue: "icml_w"
173 | venue_date: "2020.07"
174 | online_date: "2020.03"
175 | contacts: {"Nick Erickson": "neerick@amazon.com", "Jonas Mueller": "jonasmue@amazon.com"}
176 | search_space:
177 | search_strategy:
178 | candidate_evaluation:
179 | discussed: true
180 | misc:
181 | - title: "BOHB: Robust and Efficient Hyperparameter Optimization at Scale"
182 | venue: "icml"
183 | venue_date: "2018.07"
184 | online_date: "2018.07"
185 | contacts: {"Stefan Falkner": "sfalkner@informatik.uni-freiburg.de"}
186 | search_space:
187 | search_strategy:
188 | candidate_evaluation:
189 | discussed: true
190 | misc:
191 | - title: "Hyperparameter optimization"
192 | venue: "automated_machine_learning"
193 | venue_date: "2019.12"
194 | online_date: "2019.12"
195 | contacts: {}
196 | search_space:
197 | search_strategy:
198 | candidate_evaluation:
199 | discussed: true
200 | misc: "This is a survey chapter in the book, Automated Machine Learning."
201 | - title: "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks"
202 | venue: "icml"
203 | venue_date: "2017.08"
204 | online_date: "2017.03"
205 | contacts: {"Chelsea Finn": "cbfinn@eecs.berkeley.edu"}
206 | search_space:
207 | search_strategy:
208 | candidate_evaluation:
209 | discussed: true
210 | misc:
211 | - title: "Google Vizier: A Service for Black-Box Optimization"
212 | venue: "sigkdd"
213 | venue_date: "2017.08"
214 | online_date: "2017.06"
215 | contacts: {"Daniel Golovin": "dgg@google.com"}
216 | search_space:
217 | search_strategy:
218 | candidate_evaluation:
219 | discussed: true
220 | misc: "This is a library/software paper."
221 | - title: "A Survey of Methods for Explaining Black Box Models"
222 | venue: "acm_comp_sur"
223 | venue_date: "2018.08"
224 | online_date: "2018.02"
225 | contacts: {"Riccardo Guidotti": "riccardo.guidotti@di.unipi.it"}
226 | search_space:
227 | search_strategy:
228 | candidate_evaluation:
229 | discussed: true
230 | misc: "This is a survey work"
231 | - title: "Learning to Learn Using Gradient Descent"
232 | venue: "icann"
233 | venue_date: "2001.08"
234 | online_date: "2001.08"
235 | contacts: {}
236 | search_space:
237 | search_strategy:
238 | candidate_evaluation:
239 | discussed: true
240 | misc:
241 | - title: "Evolved Policy Gradients"
242 | venue: "nips"
243 | venue_date: "2018.12"
244 | online_date: "2018.02"
245 | contacts: {"Rein Houthooft": "rein.houthooft@openai.com"}
246 | search_space: "RL loss"
247 | search_strategy: "evolution"
248 | candidate_evaluation:
249 | discussed: true
250 | misc:
251 | - title: "Sequential model-based optimization for general algorithm configuration"
252 | venue: "lion"
253 | venue_date: "2011.01"
254 | online_date: "2011.01"
255 | contacts: {"Frank Hutter": "fh@cs.uni-freiburg.de"}
256 | search_space:
257 | search_strategy:
258 | candidate_evaluation:
259 | discussed: true
260 | misc:
261 | - title: "ParamILS: an automatic algorithm configuration framework"
262 | venue: "JAIR"
263 | venue_date: "2009.09"
264 | online_date: "2009.09"
265 | contacts: {"Frank Hutter": "fh@cs.uni-freiburg.de"}
266 | search_space:
267 | search_strategy:
268 | candidate_evaluation:
269 | discussed: true
270 | misc:
271 | - title: "Population Based Training of Neural Networks"
272 | venue: "arXiv"
273 | venue_date: "2017.11"
274 | online_date: "2017.11"
275 | contacts: {}
276 | search_space:
277 | search_strategy:
278 | candidate_evaluation:
279 | discussed: true
280 | misc:
281 | - title: "Non-stochastic Best Arm Identification and Hyperparameter Optimization"
282 | venue: "aistats"
283 | venue_date: "2016.05"
284 | online_date: "2015.02"
285 | contacts: {"Kevin Jamieson": "kjamieson@eecs.berkeley.edu", "Ameet Talwalkar": "talwalkar@cmu.edu"}
286 | search_space:
287 | search_strategy:
288 | candidate_evaluation:
289 | discussed: true
290 | misc:
291 | - title: "Bayesian Optimization with Tree-structured Dependencies"
292 | venue: "icml"
293 | venue_date: "2017.08"
294 | online_date: "2017.08"
295 | contacts: {"Rodolphe Jenatton": "jenat-ton@amazon.de", "Matthias Seeger": "matthias@amazon.de"}
296 | search_space:
297 | search_strategy: "BayesOpt"
298 | candidate_evaluation:
299 | discussed: true
300 | misc:
301 | - title: "Hyp-RL : Hyperparameter Optimization by Reinforcement Learning"
302 | venue: "arXiv"
303 | venue_date: "2019.06"
304 | online_date: "2019.06"
305 | contacts: {"Hadi S. Jomaa": "jomaah@ismll.uni-hildesheim.de", "Lars Schmidt-Thieme": "lars@ismll.uni-hildesheim.de"}
306 | search_space:
307 | search_strategy:
308 | candidate_evaluation:
309 | discussed: true
310 | misc:
311 | - title: "Gaussian Process Bandit Optimisation with Multi-fidelity Evaluations"
312 | venue: "nips"
313 | venue_date: "2016.12"
314 | online_date: "2016.12"
315 | contacts: {"Kirthevasan Kandasamy": "kandasamy@cs.cmu.edu"}
316 | search_space:
317 | search_strategy:
318 | candidate_evaluation:
319 | discussed: true
320 | misc:
321 | - title: "AutonoML: Towards an Integrated Framework for Autonomous Machine Learning"
322 | venue: "arXiv"
323 | venue_date: "2020.12"
324 | online_date: "2020.12"
325 | contacts: {"David Jacob Kedziora": "david.kedziora@uts.edu.au"}
326 | search_space:
327 | search_strategy:
328 | candidate_evaluation:
329 | discussed: true
330 | misc:
331 | - title: "Design and regularization of neural networks: the optimal use of a validation set"
332 | venue: "IEEE_NNSP"
333 | venue_date: "1996.09"
334 | online_date: "1996.09"
335 | contacts: {}
336 | search_space:
337 | search_strategy:
338 | candidate_evaluation:
339 | discussed: true
340 | misc:
341 | - title: "Adaptive Regularization in Neural Network Modeling"
342 | venue: "NN_ToT"
343 | venue_date: "2002.03"
344 | online_date: "2002.03"
345 | contacts: {}
346 | search_space:
347 | search_strategy:
348 | candidate_evaluation:
349 | discussed: true
350 | misc:
351 | - title: "A Generalized Framework for Population Based Training"
352 | venue: "sigkdd"
353 | venue_date: "2019.08"
354 | online_date: "2019.02"
355 | contacts: {"Ang Li": "anglili@google.com"}
356 | search_space:
357 | search_strategy: "PBT"
358 | candidate_evaluation:
359 | discussed: true
360 | misc:
361 | - title: "Learning to Optimize"
362 | venue: "iclr"
363 | venue_date: "2017.04"
364 | online_date: "2016.06"
365 | contacts: {"Ke Li": "ke.li@eecs.berkeley.edu", "Jitendra Malik": "malik@eecs.berkeley.edu"}
366 | search_space:
367 | search_strategy:
368 | candidate_evaluation:
369 | discussed: true
370 | misc:
371 | - title: "Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization"
372 | venue: "jmlr"
373 | venue_date: "2018.04"
374 | online_date: "2016.03"
375 | contacts: {"Lisha Li": "lishal@cs.cmu.edu", "Ameet Talwalkar": "talwalkar@cmu.edu"}
376 | search_space:
377 | search_strategy:
378 | candidate_evaluation:
379 | discussed: true
380 | misc:
381 | - title: "Optimizing Millions of Hyperparameters by Implicit Differentiation"
382 | venue: "aistats"
383 | venue_date: "2020.08"
384 | online_date: "2019.11"
385 | contacts: {"Jonathan Lorraine": "lorraine@cs.toronto.edu", "David Duvenaud": "duvenaud@cs.toronto.edu"}
386 | search_space:
387 | search_strategy:
388 | candidate_evaluation:
389 | discussed: true
390 | misc:
391 | - title: "CMA-ES for Hyperparameter Optimization of Deep Neural Networks"
392 | venue: "iclr_w"
393 | venue_date: "2016.05"
394 | online_date: "2016.04"
395 | contacts: {"Ilya Loshchilov": "ilya@cs.uni-freiburg.de", "Frank Hutter": "fh@cs.uni-freiburg.de"}
396 | search_space:
397 | search_strategy:
398 | candidate_evaluation:
399 | discussed: true
400 | misc:
401 | - title: "Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters"
402 | venue: "icml"
403 | venue_date: "2016.06"
404 | online_date: "2015.11"
405 | contacts: {"Jelena Luketina": "jelena.luketina@aalto.fi", "Tapani Raiko": "tapani.raiko@aalto.fi"}
406 | search_space:
407 | search_strategy:
408 | candidate_evaluation:
409 | discussed: true
410 | misc:
411 | - title: "Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions"
412 | venue: "iclr"
413 | venue_date: "2019.05"
414 | online_date: "2019.03"
415 | contacts: {"Matthew MacKay": "mmackay@cs.toronto.edu", "Paul Vicol": "pvicol@cs.toronto.edu"}
416 | search_space:
417 | search_strategy:
418 | candidate_evaluation:
419 | discussed: true
420 | misc:
421 | - title: "Gradient-based Hyperparameter Optimization through Reversible Learning"
422 | venue: "icml"
423 | venue_date: "2015.07"
424 | online_date: "2015.02"
425 | contacts: {"Dougal Maclaurin": "maclaurin@physics.harvard.edu"}
426 | search_space:
427 | search_strategy:
428 | candidate_evaluation:
429 | discussed: true
430 | misc:
431 | - title: "Exploring Opportunistic Meta-knowledge to Reduce Search Spaces for Automated Machine Learning"
432 | venue: "ijcnn"
433 | venue_date: "2021.05"
434 | online_date: "2021.07"
435 | contacts: {"Tien-Dung Nguyen": "TienDung.Nguyen-2@student.uts.edu.au", "Bogdan Gabrys": "bogdan.gabrys@uts.edu.au"}
436 | search_space:
437 | search_strategy:
438 | candidate_evaluation:
439 | discussed: true
440 | misc:
441 | - title: "PABO: Pseudo Agent-Based Multi-Objective Bayesian Hyperparameter Optimization for Efficient Neural Accelerator Design"
442 | venue: "iccad"
443 | venue_date: "2019.11"
444 | online_date: "2019.06"
445 | contacts: {"Maryam Parsa": "mparsa@purdue.edu", "Kaushik Roy": "kaushik@purdue.edu"}
446 | search_space:
447 | search_strategy:
448 | candidate_evaluation:
449 | discussed: true
450 | misc:
451 | - title: "Hyperparameter optimization with approximate gradient"
452 | venue: "icml"
453 | venue_date: "2016.06"
454 | online_date: "2016.02"
455 | contacts: {"Fabian Pedregosa": "f@bianp.net"}
456 | search_space:
457 | search_strategy:
458 | candidate_evaluation:
459 | discussed: true
460 | links: {"paper": "https://arxiv.org/pdf/1602.02355.pdf", "code": "https://github.com/fabianp/hoag"}
461 | misc:
462 | - title: "AutoML-Zero: Evolving Machine Learning Algorithms From Scratch"
463 | venue: "icml"
464 | venue_date: "2020.07"
465 | online_date: "2020.03"
466 | contacts: {"Esteban Real": "ereal@google.com"}
467 | search_space:
468 | search_strategy: "evolution"
469 | candidate_evaluation:
470 | discussed: true
471 | links: {"paper": "https://arxiv.org/abs/2003.03384"}
472 | misc:
473 | - title: "Automatic Composition and Optimization of Multicomponent Predictive Systems With an Extended Auto-WEKA"
474 | venue: "IEEE_J_TASE"
475 | venue_date: "2018.11"
476 | online_date: "2016.12"
477 | contacts: {"Manuel Martin Salvador": "manuel@blinkeye.ai"}
478 | search_space:
479 | search_strategy:
480 | candidate_evaluation:
481 | discussed: true
482 | links: {"paper": "https://arxiv.org/abs/1612.08789"}
483 | misc:
484 | - title: "Truncated Back-propagation for Bilevel Optimization"
485 | venue: "aistats"
486 | venue_date: "2019.04"
487 | online_date: "2018.10"
488 | contacts: {}
489 | search_space:
490 | search_strategy:
491 | candidate_evaluation:
492 | discussed: true
493 | links: {"paper": "https://arxiv.org/abs/1810.10667"}
494 | misc:
495 | - title: "Practical Bayesian Optimization of Machine Learning Algorithms"
496 | venue: "nips"
497 | venue_date: "2012.12"
498 | online_date: "2012.06"
499 | contacts: {"Jasper Snoek": "jasper@cs.toronto.edu", "Ryan P. Adams": "rpa@seas.harvard.edu"}
500 | search_space:
501 | search_strategy:
502 | candidate_evaluation:
503 | discussed: true
504 | links: {"paper": "https://arxiv.org/abs/1206.2944"}
505 | misc:
506 | - title: "Adapting bias by gradient descent"
507 | venue: "aaai"
508 | venue_date: "1992.10"
509 | online_date: "1992.10"
510 | contacts: {"Richard S. Sutton": "sutton@gte.com"}
511 | search_space:
512 | search_strategy:
513 | candidate_evaluation:
514 | discussed: true
515 | links: {"paper": "https://www.aaai.org/Papers/AAAI/1992/AAAI92-027.pdf"}
516 | misc:
517 | - title: "Freeze-Thaw Bayesian Optimization"
518 | venue: "arXiv"
519 | venue_date: "2014.06"
520 | online_date: "2014.06"
521 | contacts: {}
522 | search_space:
523 | search_strategy: "BayesOpt"
524 | candidate_evaluation:
525 | discussed: true
526 | links: {"paper": "https://arxiv.org/abs/1406.3896"}
527 | misc:
528 | - title: "Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms"
529 | venue: "sigkdd"
530 | venue_date: "2013.08"
531 | online_date: "2012.08"
532 | contacts: {"Chris Thornton": "cwthornt@cs.ubc.ca"}
533 | search_space:
534 | search_strategy:
535 | candidate_evaluation:
536 | discussed: true
537 | links: {"paper": "https://arxiv.org/abs/1208.3719", "code": "http://www.cs.ubc.ca/labs/beta/Projects/autoweka"}
538 | misc:
539 | - title: "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions"
540 | venue: "cvpr"
541 | venue_date: "2020.06"
542 | online_date: "2020.04"
543 | contacts: {"Alvin Wan": "alvinwan@berkeley.edu"}
544 | search_space:
545 | search_strategy:
546 | candidate_evaluation:
547 | discussed: true
548 | links: {"paper": "https://arxiv.org/abs/2004.05565", "code": "https://github.com/facebookresearch/mobile-vision"}
549 | misc:
550 | - title: "Learning to reinforcement learn"
551 | venue: "CogSci"
552 | venue_date: "2017.07"
553 | online_date: "2016.11"
554 | contacts: {"JX Wang": "wangjane@google.com"}
555 | search_space:
556 | search_strategy:
557 | candidate_evaluation:
558 | discussed: true
559 | links: {"paper": "https://arxiv.org/abs/1611.05763"}
560 | misc:
561 | - title: "On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice"
562 | venue: "Neurocomputing"
563 | venue_date: "2020.11"
564 | online_date: "2020.07"
565 | contacts: {"Li Yang": "lyang339@uwo.ca", "Abdallah Shami": "abdallah.shami@uwo.ca"}
566 | search_space:
567 | search_strategy:
568 | candidate_evaluation:
569 | discussed: true
570 | links: {"paper": "https://arxiv.org/abs/2007.15745", "code": "https://github.com/LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithms"}
571 | misc:
572 | - title: "Hyper-Parameter Optimization: A Review of Algorithms and Applications"
573 | venue: "arXiv"
574 | venue_date: "2020.03"
575 | online_date: "2020.03"
576 | contacts: {"Tong Yu": "yutong01@inspur.com", "Hong Zhu": "zhuhongbj@inspur.com"}
577 | search_space:
578 | search_strategy:
579 | candidate_evaluation:
580 | discussed: true
581 | links: {"paper": "https://arxiv.org/abs/2003.05689"}
582 | misc: "This is a survey work"
583 | - title: "Towards Automated Deep Learning: Efficient Joint Neural Architecture and Hyperparameter Search"
584 | venue: "icml_w"
585 | venue_date: "2018.07"
586 | online_date: "2018.07"
587 | contacts: {"Arber Zela": "zelaa@cs.uni-freiburg.de", "Frank Hutter": "fh@cs.uni-freiburg.de"}
588 | search_space:
589 | search_strategy:
590 | candidate_evaluation:
591 | discussed: true
592 | links: {"paper": "https://arxiv.org/abs/1807.06906", "code": "https://github.com/arberzela/EfficientNAS"}
593 | misc:
--------------------------------------------------------------------------------
/awesome_autodl/raw_data/papers/Neural_Architecture_Search.yaml:
--------------------------------------------------------------------------------
1 | - title: "Zero-Cost Proxies for Lightweight NAS"
2 | venue: "iclr"
3 | venue_date: "2021.05"
4 | online_date: "2021.01"
5 | contacts: {"Mohamed S. Abdelfattah": "mohamed1.a@samsung.com"}
6 | search_space: "RNS"
7 | search_strategy:
8 | candidate_evaluation: "zero-cost proxy"
9 | discussed: true
10 | misc:
11 | - title: "Designing Neural Network Architectures using Reinforcement Learning"
12 | venue: "iclr"
13 | venue_date: "2017.04"
14 | online_date: "2016.11"
15 | contacts: {"Bowen Baker": "bowen@mit.edu", "Otkrist Gupta": "otkrist@mit.edu", "Nikhil Naik": "naik@mit.edu", "Ramesh Raskar": "raskar@mit.edu"}
16 | search_space:
17 | search_strategy:
18 | candidate_evaluation:
19 | discussed: true
20 | misc:
21 | - title: "Accelerating Neural Architecture Search using Performance Prediction"
22 | venue: "iclr_w"
23 | venue_date: "2018.05"
24 | online_date: "2017.05"
25 | contacts: {"Bowen Baker": "bowen@mit.edu", "Otkrist Gupta": "otkrist@mit.edu", "Ramesh Raskar": "raskar@mit.edu", "Nikhil Naik": "naik@mit.edu"}
26 | search_space:
27 | search_strategy:
28 | candidate_evaluation: "predictor"
29 | discussed: true
30 | misc:
31 | - title: "Evolving Memory Cell Structures for Sequence Learning"
32 | venue: "icann"
33 | venue_date: "2009.09"
34 | online_date: "2009.09"
35 | contacts: {"Justin Bayer": "bayer.justin@googlemail.com", "Daan Wierstra": "daan@idsia.ch", "Julian Togelius": "julian@idsia.ch", "Jurgen Schmidhuber": "juergen@idsia.ch"}
36 | search_space:
37 | search_strategy: "evolution"
38 | candidate_evaluation:
39 | discussed: true
40 | misc:
41 | - title: "Understanding and simplifying one-shot architecture search"
42 | venue: "icml"
43 | venue_date: "2018.07"
44 | online_date: "2018.07"
45 | contacts: {"Gabriel Bender": "gbender@google.com"}
46 | search_space:
47 | search_strategy:
48 | candidate_evaluation:
49 | discussed: true
50 | misc:
51 | - title: "Can weight sharing outperform random architecture search? An investigation with TuNAS"
52 | venue: "cvpr"
53 | venue_date: "2020.06"
54 | online_date: "2020.06"
55 | contacts: {"Gabriel Bender": "gbender@google.com", "Hanxiao Liu": "hanxiaol@google.com"}
56 | search_space: "MBS"
57 | search_strategy: "REINFORCE"
58 | candidate_evaluation: "weight sharing"
59 | discussed: true
60 | misc:
61 | - title: "SMASH: one-shot model architecture search through hypernetworks"
62 | venue: "iclr"
63 | venue_date: "2018.05"
64 | online_date: "2017.08"
65 | contacts: {"Andrew Brock": "ajb5@hw.ac.uk", "Theodore Lim": "t.lim@hw.ac.uk", "J.M. Ritchie": "j.m.ritchie@hw.ac.uk"}
66 | search_space:
67 | search_strategy:
68 | candidate_evaluation: "hypernetwork"
69 | discussed: true
70 | misc:
71 | - title: "BATS: Binary architecture search"
72 | venue: "eccv"
73 | venue_date: "2020.08"
74 | online_date: "2020.03"
75 | contacts: {"Adrian Bulat": "adrian@adrianbulat.com", "Brais Martinez": "brais.mart@gmail.com", "Georgios Tzimiropoulos": "g.tzimiropoulos@qmul.ac.uk"}
76 | search_space:
77 | search_strategy:
78 | candidate_evaluation:
79 | discussed: true
80 | misc:
81 | - title: "Once-for-All: Train One Network and Specialize it for Efficient Deployment"
82 | venue: "iclr"
83 | venue_date: "2020.04"
84 | online_date: "2019.08"
85 | contacts: {"Han Cai": "hancai@mit.edu", "Song Han" : "chuangg@mit.edu"}
86 | search_space:
87 | search_strategy:
88 | candidate_evaluation:
89 | discussed: true
90 | misc:
91 | - title: "Path-Level Network Transformation for Efficient Architecture Search"
92 | venue: "icml"
93 | venue_date: "2018.07"
94 | online_date: "2018.06"
95 | contacts: {"Han Cai": "hancai@mit.edu"}
96 | search_space:
97 | search_strategy:
98 | candidate_evaluation:
99 | discussed: true
100 | misc:
101 | - title: "ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware"
102 | venue: "iclr"
103 | venue_date: "2019.05"
104 | online_date: "2018.12"
105 | contacts: {"Han Cai": "hancai@mit.edu", "Ligeng Zhu": "ligeng@mit.edu", "Song Han" : "chuangg@mit.edu"}
106 | search_space: "MBS"
107 | search_strategy: "differentiable, RL"
108 | candidate_evaluation: "weight sharing"
109 | discussed: true
110 | misc:
111 | - title: "Neural architecture search on imagenet in four gpu hours: A theoretically inspired perspective"
112 | venue: "iclr"
113 | venue_date: "2021.05"
114 | online_date: "2021.02"
115 | contacts: {"Wuyang Chen": "wuyang.chen@utexas.edu", "Zhangyang Wang": "atlaswang@utexas.edu"}
116 | search_space:
117 | search_strategy:
118 | candidate_evaluation: "zero-cost proxy"
119 | discussed: true
120 | misc:
121 | - title: "DetNAS: Backbone Search for Object Detection"
122 | venue: "nips"
123 | venue_date: "2019.12"
124 | online_date: "2019.03"
125 | contacts: {"Yukang Chen": "yukang.chen@nlpr.ia.ac.cn", "Xiangyu Zhang": "zhangxiangyu@megvii.com"}
126 | search_space:
127 | search_strategy:
128 | candidate_evaluation:
129 | discussed: true
130 | misc:
131 | - title: "FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining"
132 | venue: "cvpr"
133 | venue_date: "2021.06"
134 | online_date: "2020.06"
135 | contacts: {"Xiaoliang Dai": "xiaoliangdai@fb.com", "Alvin Wan": "alvinwan@berkeley.edu"}
136 | search_space:
137 | search_strategy:
138 | candidate_evaluation:
139 | discussed: true
140 | misc:
141 | - title: "Bayesian Learning of Neural Network Architectures"
142 | venue: "aistats"
143 | venue_date: "2019.04"
144 | online_date: "2019.01"
145 | contacts: {"Justin Bayer": "bayer.justin@googlemail.com"}
146 | search_space:
147 | search_strategy: "BayesOpt"
148 | candidate_evaluation:
149 | discussed: true
150 | misc:
151 | - title: "More is Less: A More Complicated Network with Less Inference Complexity"
152 | venue: "cvpr"
153 | venue_date: "2017.07"
154 | online_date: "2017.03"
155 | contacts: {"Xuanyi Dong": "xuanyi.dxy@gmail.com"}
156 | search_space:
157 | search_strategy:
158 | candidate_evaluation:
159 | discussed: true
160 | misc:
161 | - title: "NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size"
162 | venue: "IEEE_J_PAMI"
163 | venue_date: "2021.01"
164 | online_date: "2020.09"
165 | contacts: {"Xuanyi Dong": "xuanyi.dxy@gmail.com", "Bogdan Gabrys": "Bogdan.Gabrys@uts.edu.au"}
166 | search_space:
167 | search_strategy:
168 | candidate_evaluation:
169 | discussed: true
170 | links: {"paper": "https://arxiv.org/abs/2009.00437", "code": "https://github.com/D-X-Y/NATS-Bench"}
171 | misc:
172 | - title: "AutoHAS: Efficient Hyperparameter and Architecture Search"
173 | venue: "iclr_w"
174 | venue_date: "2021.05"
175 | online_date: "2020.06"
176 | contacts: {"Xuanyi Dong": "xuanyi.dxy@gmail.com"}
177 | search_space:
178 | search_strategy:
179 | candidate_evaluation: "weight sharing"
180 | discussed: true
181 | links: {"paper": "https://arxiv.org/pdf/2006.03656.pdf"}
182 | misc:
183 | - title: "Network Pruning via Transformable Architecture Search"
184 | venue: "nips"
185 | venue_date: "2019.12"
186 | online_date: "2019.05"
187 | contacts: {"Xuanyi Dong": "xuanyi.dxy@gmail.com"}
188 | search_space: "size"
189 | search_strategy: "differentiable"
190 | candidate_evaluation: "weight sharing"
191 | discussed: true
192 | links: {"paper": "https://arxiv.org/abs/1905.09717", "code": "https://github.com/D-X-Y/AutoDL-Projects"}
193 | misc:
194 | - title: "One-Shot Neural Architecture Search via Self-Evaluated Template Network"
195 | venue: "iccv"
196 | venue_date: "2019.10"
197 | online_date: "2019.10"
198 | contacts: {"Xuanyi Dong": "xuanyi.dxy@gmail.com"}
199 | search_space: "RNS"
200 | search_strategy: "differentiable"
201 | candidate_evaluation:
202 | discussed: true
203 | misc:
204 | - title: "Searching for A Robust Neural Architecture in Four GPU Hours"
205 | venue: "cvpr"
206 | venue_date: "2019.06"
207 | online_date: "2019.06"
208 | contacts: {"Xuanyi Dong": "xuanyi.dxy@gmail.com"}
209 | search_space: "RNS"
210 | search_strategy: "differentiable"
211 | candidate_evaluation:
212 | discussed: true
213 | links: {"paper": "https://arxiv.org/abs/1910.04465", "code": "https://github.com/D-X-Y/AutoDL-Projects"}
214 | misc:
215 | - title: "NAS-bench-201: Extending the scope of reproducible neural architecture search"
216 | venue: "iclr"
217 | venue_date: "2020.04"
218 | online_date: "2020.01"
219 | contacts: {"Xuanyi Dong": "xuanyi.dxy@gmail.com"}
220 | search_space:
221 | search_strategy:
222 | candidate_evaluation:
223 | discussed: true
224 | links: {"paper": "https://arxiv.org/abs/2001.00326", "code": "https://github.com/D-X-Y/NAS-Bench-201"}
225 | misc:
226 | - title: "Neural architecture search: A survey"
227 | venue: "jmlr"
228 | venue_date: "2019.03"
229 | online_date: "2018.08"
230 | contacts: {"Thomas Elsken": "thomas.elsken@de.bosch.com", "Jan Hendrik Metzen": "janhendrik.metzen@de.bosch.com", "Frank Hutter": "fh@cs.uni-freiburg.de"}
231 | search_space:
232 | search_strategy:
233 | candidate_evaluation:
234 | discussed: true
235 | misc: "This is a survey work"
236 | - title: "Densely Connected Search Space for More Flexible Neural Architecture Search"
237 | venue: "cvpr"
238 | venue_date: "2020.06"
239 | online_date: "2019.06"
240 | contacts: {"Jiemin Fang": "jaminfong@hust.edu.cn"}
241 | search_space:
242 | search_strategy:
243 | candidate_evaluation:
244 | discussed: true
245 | misc:
246 | - title: "Spatially Adaptive Computation Time for Residual Networks"
247 | venue: "cvpr"
248 | venue_date: "2017.07"
249 | online_date: "2016.12"
250 | contacts: {"Michael Figurnov": "michael@figurnov.ru", "Maxwell D. Collins": "maxwellcollins@google.com"}
251 | search_space:
252 | search_strategy:
253 | candidate_evaluation:
254 | discussed: true
255 | misc:
256 | - title: "The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks"
257 | venue: "iclr"
258 | venue_date: "2019.05"
259 | online_date: "2018.03"
260 | contacts: {"Jonathan Frankle": "jfrankle@csail.mit.edu", "Michael Carbin": "mcarbin@csail.mit.edu"}
261 | search_space:
262 | search_strategy:
263 | candidate_evaluation:
264 | discussed: true
265 | misc:
266 | - title: "NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection"
267 | venue: "cvpr"
268 | venue_date: "2019.06"
269 | online_date: "2019.04"
270 | contacts: {"Golnaz Ghaisi": "golnazg@google.com"}
271 | search_space:
272 | search_strategy:
273 | candidate_evaluation:
274 | discussed: true
275 | misc:
276 | - title: "Single Path One-Shot Neural Architecture Search with Uniform Sampling"
277 | venue: "eccv"
278 | venue_date: "2020.08"
279 | online_date: "2019.04"
280 | contacts: {"Zichao Guo": "guozichao@megvii.com", "Xiangyu Zhang": "zhangxiangyu@megvii.com"}
281 | search_space:
282 | search_strategy:
283 | candidate_evaluation:
284 | discussed: true
285 | misc:
286 | - title: "Dynamic Neural Networks: A Survey"
287 | venue: "arXiv"
288 | venue_date: "2021.02"
289 | online_date: "2021.02"
290 | contacts: {"Yizeng Han": "hanyz18@mails.tsinghua.edu.cn"}
291 | search_space:
292 | search_strategy:
293 | candidate_evaluation:
294 | discussed: true
295 | misc: "This is a survey work"
296 | - title: "Macro Neural Architecture Search Revisited"
297 | venue: "nips_w"
298 | venue_date: "2018.12"
299 | online_date: "2018.12"
300 | contacts: {"Hanzhang Hu": "hanzhang@cs.cmu.edu"}
301 | search_space:
302 | search_strategy:
303 | candidate_evaluation:
304 | discussed: true
305 | misc:
306 | - title: "Auto-Keras: An Efficient Neural Architecture Search System"
307 | venue: "sigkdd"
308 | venue_date: "2019.08"
309 | online_date: "2018.06"
310 | contacts: {"Haifeng Jin": "jin@tamu.edu", "Qingquan Song": "song_3134@tamu.edu", "Xia Hu": "xiahu@tamu.edu"}
311 | search_space:
312 | search_strategy:
313 | candidate_evaluation:
314 | discussed: true
315 | misc: "This is a library/software paper."
316 | - title: "Neural Architecture Search with Bayesian Optimisation and Optimal Transport"
317 | venue: "nips"
318 | venue_date: "2018.12"
319 | online_date: "2018.02"
320 | contacts: {"Kirthevasan Kandasamy": "kandasamy@cs.cmu.edu", "Eric P Xing": "epxing@cs.cmu.edu"}
321 | search_space:
322 | search_strategy:
323 | candidate_evaluation:
324 | discussed: true
325 | misc:
326 | - title: "Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization"
327 | venue: "arXiv"
328 | venue_date: "2019.05"
329 | online_date: "2019.05"
330 | contacts: {"Aaron Klein": "kleinaa@cs.uni-freiburg.de", "Frank Hutter": "fh@cs.uni-freiburg.de"}
331 | search_space:
332 | search_strategy:
333 | candidate_evaluation:
334 | discussed: true
335 | misc:
336 | - title: "HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark"
337 | venue: "iclr"
338 | venue_date: "2021.05"
339 | online_date: "2021.03"
340 | contacts: {"Chaojian Li": "cl114@rice.edu", "Yingyan Lin": "yingyan.lin@rice.edu"}
341 | search_space:
342 | search_strategy:
343 | candidate_evaluation:
344 | discussed: true
345 | misc:
346 | - title: "Random Search and Reproducibility for Neural Architecture Search"
347 | venue: "uai"
348 | venue_date: "2020.08"
349 | online_date: "2019.02"
350 | contacts: {"Liam Li": "me@liamcli.com", "Ameet Talwalkar": "talwalkar@cmu.edu"}
351 | search_space:
352 | search_strategy:
353 | candidate_evaluation:
354 | discussed: true
355 | misc:
356 | - title: "Best Practices for Scientific Research on Neural Architecture Search"
357 | venue: "jmlr"
358 | venue_date: "2020.11"
359 | online_date: "2019.09"
360 | contacts: {"Marius Lindauer": "lindauer@tnt.uni-hannover.de", "Frank Hutter": "fh@cs.uni-freiburg.de"}
361 | search_space:
362 | search_strategy:
363 | candidate_evaluation:
364 | discussed: true
365 | misc: "This is a discussion paper."
366 | - title: "Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation"
367 | venue: "cvpr"
368 | venue_date: "2019.06"
369 | online_date: "2019.01"
370 | contacts: {}
371 | search_space:
372 | search_strategy:
373 | candidate_evaluation:
374 | discussed: true
375 | misc:
376 | - title: "Progressive Neural Architecture Search"
377 | venue: "eccv"
378 | venue_date: "2018.09"
379 | online_date: "2017.12"
380 | contacts: {}
381 | search_space:
382 | search_strategy:
383 | candidate_evaluation:
384 | discussed: true
385 | misc:
386 | - title: "Evolving Normalization-Activation Layers"
387 | venue: "nips"
388 | venue_date: "2020.12"
389 | online_date: "2020.04"
390 | contacts: {"Hanxiao Liu": "hanxiaol@google.com"}
391 | search_space:
392 | search_strategy: "evolution"
393 | candidate_evaluation:
394 | discussed: true
395 | misc:
396 | - title: "DARTS: Differentiable Architecture Search"
397 | venue: "iclr"
398 | venue_date: "2019.05"
399 | online_date: "2018.06"
400 | contacts: {"Hanxiao Liu": "hanxiaol@google.com"}
401 | search_space:
402 | search_strategy:
403 | candidate_evaluation:
404 | discussed: true
405 | misc:
406 | - title: "Neural Architecture Optimization"
407 | venue: "nips"
408 | venue_date: "2018.12"
409 | online_date: "2018.08"
410 | contacts: {"Renqian Luo": "lrq@mail.ustc.edu.cn", "Fei Tian": "fetia@microsoft.com"}
411 | search_space:
412 | search_strategy:
413 | candidate_evaluation:
414 | discussed: true
415 | misc:
416 | - title: "Neural Architecture Search without Training"
417 | venue: "icml"
418 | venue_date: "2021.07"
419 | online_date: "2020.06"
420 | contacts: {"Joseph Mellor": "joe.mellor@ed.ac.uk"}
421 | search_space:
422 | search_strategy:
423 | candidate_evaluation:
424 | discussed: true
425 | misc:
426 | - title: "PyGlove: Symbolic Programming for Automated Machine Learning"
427 | venue: "nips"
428 | venue_date: "2020.12"
429 | online_date: "2020.12"
430 | contacts: {"Daiyi Peng": "daiyip@google.com"}
431 | search_space:
432 | search_strategy:
433 | candidate_evaluation:
434 | discussed: true
435 | misc: "This is a library/software paper."
436 | - title: "Efficient Neural Architecture Search via Parameters Sharing"
437 | venue: "icml"
438 | venue_date: "2018.07"
439 | online_date: "2018.02"
440 | contacts: {"Hieu Pham": "hy-hieu@cmu.edu", "Melody Y. Guan": "mguan@stanford.edu"}
441 | search_space:
442 | search_strategy:
443 | candidate_evaluation:
444 | discussed: true
445 | links: {"paper": "https://arxiv.org/pdf/1802.03268.pdf"}
446 | misc:
447 | - title: "Designing Network Design Spaces"
448 | venue: "cvpr"
449 | venue_date: "2020.06"
450 | online_date: "2020.03"
451 | contacts: {}
452 | search_space:
453 | search_strategy:
454 | candidate_evaluation:
455 | discussed: true
456 | links: {"paper": "https://arxiv.org/pdf/2003.13678.pdf", "code": "https://github.com/facebookresearch/pycls"}
457 | misc:
458 | - title: "Searching for Activation Functions"
459 | venue: "arXiv"
460 | venue_date: "2017.10"
461 | online_date: "2017.10"
462 | contacts: {"Prajit Ramachandran": "prajit@google.com"}
463 | search_space:
464 | search_strategy:
465 | candidate_evaluation:
466 | discussed: true
467 | links: {"paper": "https://arxiv.org/pdf/1710.05941.pdf"}
468 | misc:
469 | - title: "Regularized Evolution for Image Classifier Architecture Search"
470 | venue: "aaai"
471 | venue_date: "2019.01"
472 | online_date: "2018.02"
473 | contacts: {"Esteban Real": "ereal@google.com"}
474 | search_space:
475 | search_strategy: "evolution"
476 | candidate_evaluation:
477 | discussed: true
478 | links: {"paper": "https://arxiv.org/abs/1802.01548"}
479 | misc:
480 | - title: "Large-Scale Evolution of Image Classifiers"
481 | venue: "icml"
482 | venue_date: "2017.08"
483 | online_date: "2017.03"
484 | contacts: {"Esteban Real": "ereal@google.com"}
485 | search_space:
486 | search_strategy: "evolution"
487 | candidate_evaluation:
488 | discussed: true
489 | links: {"paper": "https://arxiv.org/abs/1703.01041"}
490 | misc:
491 | - title: "A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions"
492 | venue: "acm_comp_sur"
493 | venue_date: "2021.05"
494 | online_date: "2020.06"
495 | contacts: {"Pengzhen Ren": "pzhren@foxmail.com"}
496 | search_space:
497 | search_strategy:
498 | candidate_evaluation:
499 | discussed: true
500 | links: {"paper": "https://arxiv.org/abs/2006.02903"}
501 | misc: "This is a survey work"
502 | - title: "Neural Architecture Generator Optimization"
503 | venue: "nips"
504 | venue_date: "2020.12"
505 | online_date: "2020.04"
506 | contacts: {"Binxin Ru": "robin@robots.ox.ac.uk"}
507 | search_space:
508 | search_strategy:
509 | candidate_evaluation:
510 | discussed: true
511 | links: {"paper": "https://arxiv.org/abs/2004.01395", "code": "https://github.com/rubinxin/vega_NAGO"}
512 | misc:
513 | - title: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search"
514 | venue: "arXiv"
515 | venue_date: "2020.08"
516 | online_date: "2020.08"
517 | contacts: {"Julien Siems": "siemsj@cs.uni-freiburg.de", "Lucas Zimmer": "zimmerl@cs.uni-freiburg.de", "Frank Hutter": "fh@cs.uni-freiburg.de"}
518 | search_space:
519 | search_strategy:
520 | candidate_evaluation:
521 | discussed: true
522 | links: {"paper": "https://arxiv.org/abs/2008.09777", "code": "https://github.com/automl/nasbench301"}
523 | misc:
524 | - title: "The Evolved Transformer"
525 | venue: "icml"
526 | venue_date: "2019.06"
527 | online_date: "2019.01"
528 | contacts: {"David R. So": "davidso@google.com"}
529 | search_space: "transformer"
530 | search_strategy: "evolution"
531 | candidate_evaluation:
532 | discussed: true
533 | links: {"paper": "https://arxiv.org/abs/1901.11117", "code": "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py"}
534 | misc:
535 | - title: "Primer: Searching for efficient transformers for language modeling"
536 | venue: "nips"
537 | venue_date: "2021.12"
538 | online_date: "2021.09"
539 | contacts: {"David R. So": "davidso@google.com"}
540 | search_space: "transformer"
541 | search_strategy: "evolution"
542 | candidate_evaluation:
543 | discussed: true
544 | links: {"paper": "https://arxiv.org/abs/2109.08668", "code": "https://github.com/google-research/google-research/tree/master/primer"}
545 | misc:
546 | - title: "Searching the Search Space of Vision Transformer"
547 | venue: "nips"
548 | venue_date: "2021.12"
549 | online_date: "2021.11"
550 | contacts: {}
551 | search_space: "transformer"
552 | search_strategy: "evolution"
553 | candidate_evaluation:
554 | discussed: true
555 | links: {"paper": "https://arxiv.org/abs/2111.14725", "code": "https://github.com/microsoft/Cream"}
556 | misc:
557 | - title: "MnasNet: Platform-aware neural architecture search for mobile"
558 | venue: "cvpr"
559 | venue_date: "2019.06"
560 | online_date: "2018.07"
561 | contacts: {"Mingxing Tan": "tanmingxing@google.com"}
562 | search_space:
563 | search_strategy:
564 | candidate_evaluation:
565 | discussed: true
566 | links: {"paper": "https://arxiv.org/abs/1807.11626", "code": "https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet"}
567 | misc:
568 | - title: "EfficientNetV2: Smaller models and faster training"
569 | venue: "icml"
570 | venue_date: "2021.07"
571 | online_date: "2021.04"
572 | contacts: {"Mingxing Tan": "tanmingxing@google.com"}
573 | search_space:
574 | search_strategy:
575 | candidate_evaluation:
576 | discussed: true
577 | links: {"paper": "https://arxiv.org/abs/2104.00298", "code": "https://github.com/google/automl/tree/master/efficientnetv2"}
578 | misc:
579 | - title: "HAQ: Hardware-aware automated quantization with mixed precision"
580 | venue: "cvpr"
581 | venue_date: "2019.06"
582 | online_date: "2018.11"
583 | contacts: {"Kuan Wang": "kuanwang@mit.edu"}
584 | search_space:
585 | search_strategy:
586 | candidate_evaluation:
587 | discussed: true
588 | links: {"paper": "https://arxiv.org/abs/1811.08886"}
589 | misc:
590 | - title: "APQ: Joint Search for Network Architecture, Pruning and Quantization Policy"
591 | venue: "cvpr"
592 | venue_date: "2020.06"
593 | online_date: "2020.06"
594 | contacts: {}
595 | search_space:
596 | search_strategy:
597 | candidate_evaluation:
598 | discussed: true
599 | links: {"paper": "https://arxiv.org/abs/2006.08509", "code": "https://github.com/mit-han-lab/apq"}
600 | misc:
601 | - title: "Neural Predictor for Neural Architecture Search"
602 | venue: "cvpr"
603 | venue_date: "2020.06"
604 | online_date: "2019.12"
605 | contacts: {"Wei Wen": "wei.wen@duke.edu", "Hanxiao Liu": "hanxiaol@google.com"}
606 | search_space:
607 | search_strategy:
608 | candidate_evaluation:
609 | discussed: true
610 | links: {"paper": "https://arxiv.org/abs/1912.00848"}
611 | misc:
612 | - title: "BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search"
613 | venue: "aaai"
614 | venue_date: "2021.02"
615 | online_date: "2019.10"
616 | contacts: {"Colin White": "colin@abacus.ai"}
617 | search_space:
618 | search_strategy:
619 | candidate_evaluation:
620 | discussed: true
621 | links: {"paper": "https://arxiv.org/abs/1910.11858", "code": "https://github.com/naszilla/naszilla"}
622 | misc:
623 | - title: "FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search"
624 | venue: "cvpr"
625 | venue_date: "2019.06"
626 | online_date: "2018.12"
627 | contacts: {"Bichen Wu": "wbc@fb.com"}
628 | search_space:
629 | search_strategy: "differentiable"
630 | candidate_evaluation:
631 | discussed: true
632 | links: {"paper": "https://arxiv.org/abs/1812.03443"}
633 | misc:
634 | - title: "Mixed Precision Quantization of ConvNets via Differentiable Neural Architecture Search"
635 | venue: "arXiv"
636 | venue_date: "2018.12"
637 | online_date: "2018.12"
638 | contacts: {"Bichen Wu": "wbc@fb.com"}
639 | search_space:
640 | search_strategy: "differentiable"
641 | candidate_evaluation:
642 | discussed: true
643 | links: {"paper": "https://arxiv.org/abs/1812.00090"}
644 | misc:
645 | - title: "Exploring Randomly Wired Neural Networks for Image Recognition"
646 | venue: "iccv"
647 | venue_date: "2019.10"
648 | online_date: "2019.04"
649 | contacts: {}
650 | search_space:
651 | search_strategy:
652 | candidate_evaluation:
653 | discussed: true
654 | links: {"paper": "https://arxiv.org/abs/1904.01569"}
655 | misc:
656 | - title: "SNAS: Stochastic Neural Architecture Search"
657 | venue: "iclr"
658 | venue_date: "2019.05"
659 | online_date: "2018.12"
660 | contacts: {"Sirui Xie": "xiesirui@sensetime.com"}
661 | search_space:
662 | search_strategy:
663 | candidate_evaluation:
664 | discussed: true
665 | links: {"paper": "https://arxiv.org/abs/1812.09926", "code": "https://github.com/SNAS-Series/SNAS-Series"}
666 | misc:
667 | - title: "Resource Constrained Neural Network Architecture Search: Will a Submodularity Assumption Help?"
668 | venue: "iccv"
669 | venue_date: "2019.10"
670 | online_date: "2019.04"
671 | contacts: {"Yunyang Xiong": "yxiong43@wisc.edu"}
672 | search_space:
673 | search_strategy:
674 | candidate_evaluation:
675 | discussed: true
676 | links: {"paper": "https://arxiv.org/abs/1904.03786", "code": "https://github.com/yyxiongzju/RCNet"}
677 | misc:
678 | - title: "PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture Search"
679 | venue: "iclr"
680 | venue_date: "2020.04"
681 | online_date: "2019.07"
682 | contacts: {"Yuhui Xu": "yuhuixu@sjtu.edu.cn"}
683 | search_space:
684 | search_strategy:
685 | candidate_evaluation:
686 | discussed: true
687 | links: {"paper": "https://arxiv.org/abs/1907.05737", "code": "https://github.com/yuhuixu1993/PC-DARTS"}
688 | misc:
689 | - title: "NAS-Bench-x11 and the Power of Learning Curves"
690 | venue: "nips"
691 | venue_date: "2021.12"
692 | online_date: "2021.11"
693 | contacts: {"Shen Yan": "yanshen6@msu.edu", "Colin White": "colin@abacus.ai", "Frank Hutter": "fh@cs.uni-freiburg.de"}
694 | search_space:
695 | search_strategy:
696 | candidate_evaluation:
697 | discussed: true
698 | links: {"paper": "https://arxiv.org/abs/2111.03602", "code": "https://github.com/automl/nas-bench-x11"}
699 | misc:
700 | - title: "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning"
701 | venue: "cvpr"
702 | venue_date: "2017.07"
703 | online_date: "2016.11"
704 | contacts: {"Tien-Ju Yang": "tjy@mit.edu"}
705 | search_space:
706 | search_strategy:
707 | candidate_evaluation:
708 | discussed: true
709 | links: {"paper": "https://arxiv.org/abs/1611.05128", "code": "http://eyeriss.mit.edu/energy.html"}
710 | misc:
711 | - title: "NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications"
712 | venue: "eccv"
713 | venue_date: "2018.09"
714 | online_date: "2018.04"
715 | contacts: {"Tien-Ju Yang": "tjy@mit.edu"}
716 | search_space:
717 | search_strategy:
718 | candidate_evaluation:
719 | discussed: true
720 | links: {"paper": "https://arxiv.org/abs/1804.03230"}
721 | misc:
722 | - title: "Searching for Low-Bit Weights in Quantized Neural Networks"
723 | venue: "nips"
724 | venue_date: "2020.12"
725 | online_date: "2020.09"
726 | contacts: {"Zhaohui Yang": "zhaohuiyang@pku.edu.cn"}
727 | search_space:
728 | search_strategy:
729 | candidate_evaluation:
730 | discussed: true
731 | links: {"paper": "https://arxiv.org/abs/2009.08695"}
732 | misc:
733 | - title: "NAS-Bench-101: Towards Reproducible Neural Architecture Search"
734 | venue: "icml"
735 | venue_date: "2019.06"
736 | online_date: "2019.02"
737 | contacts: {"Chris Ying": "contact@chrisying.net", "Aaron Klein": "kleinaa@cs.uni-freiburg.de"}
738 | search_space:
739 | search_strategy:
740 | candidate_evaluation:
741 | discussed: true
742 | links: {"paper": "https://arxiv.org/abs/1902.09635", "code": "https://github.com/google-research/nasbench"}
743 | misc:
744 | - title: "BigNAS: Scaling Up Neural Architecture Search with Big Single-Stage Models"
745 | venue: "eccv"
746 | venue_date: "2020.08"
747 | online_date: "2020.03"
748 | contacts: {"Jiahui Yu": "jiahuiyu@google.com"}
749 | search_space:
750 | search_strategy:
751 | candidate_evaluation:
752 | discussed: true
753 | links: {"paper": "https://arxiv.org/abs/2003.11142"}
754 | misc:
755 | - title: "Slimmable Neural Networks"
756 | venue: "iclr"
757 | venue_date: "2019.05"
758 | online_date: "2018.12"
759 | contacts: {"Jiahui Yu": "jiahuiyu@google.com"}
760 | search_space:
761 | search_strategy:
762 | candidate_evaluation:
763 | discussed: true
764 | links: {"paper": "https://arxiv.org/abs/1812.08928", "code": "https://github.com/JiahuiYu/slimmable_networks"}
765 | misc:
766 | - title: "Evaluating the Search Phase of Neural Architecture Search"
767 | venue: "iclr"
768 | venue_date: "2020.04"
769 | online_date: "2019.02"
770 | contacts: {"Kaicheng Yu": "kaicheng.yu@epfl.ch", "Christian Sciuto": "christian.sciuto@daskell.com"}
771 | search_space:
772 | search_strategy:
773 | candidate_evaluation:
774 | discussed: true
775 | links: {"paper": "https://arxiv.org/abs/1902.08142", "code": "https://github.com/kcyu2014/eval-nas"}
776 | misc:
777 | - title: "Neural Ensemble Search for Uncertainty Estimation and Dataset Shift"
778 | venue: "icml_w"
779 | venue_date: "2020.07"
780 | online_date: "2020.06"
781 | contacts: {"Sheheryar Zaidi": "szaidi@stats.ox.ac.uk", "Arber Zela": "zelaa@cs.uni-freiburg.de"}
782 | search_space:
783 | search_strategy:
784 | candidate_evaluation:
785 | discussed: true
786 | links: {"paper": "https://arxiv.org/abs/2006.08573", "code": "https://github.com/automl/nes"}
787 | misc:
788 | - title: "Understanding and Robustifying Differentiable Architecture Search"
789 | venue: "iclr"
790 | venue_date: "2020.04"
791 | online_date: "2019.09"
792 | contacts: {"Arber Zela": "zelaa@cs.uni-freiburg.de", "Frank Hutter": "fh@cs.uni-freiburg.de"}
793 | search_space:
794 | search_strategy:
795 | candidate_evaluation:
796 | discussed: true
797 | links: {"paper": "https://arxiv.org/abs/1909.09656", "code": "https://github.com/automl/RobustDARTS"}
798 | misc:
799 | - title: "NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural Architecture Search"
800 | venue: "iclr"
801 | venue_date: "2020.04"
802 | online_date: "2020.01"
803 | contacts: {"Arber Zela": "zelaa@cs.uni-freiburg.de", "Julien Siems": "siemsj@cs.uni-freiburg.de", "Frank Hutter": "fh@cs.uni-freiburg.de"}
804 | search_space:
805 | search_strategy:
806 | candidate_evaluation:
807 | discussed: true
808 | links: {"paper": "https://arxiv.org/abs/2001.10422", "code": "https://github.com/automl/nasbench-1shot1"}
809 | misc:
810 | - title: "Retiarii: a deep learning exploratory-training framework"
811 | venue: "osdi"
812 | venue_date: "2020.11"
813 | online_date: "2020.11"
814 | contacts: {}
815 | search_space:
816 | search_strategy:
817 | candidate_evaluation:
818 | discussed: true
819 | links: {"paper": "https://www.usenix.org/conference/osdi20/presentation/zhang-quanlu", "code": "https://github.com/microsoft/nni/tree/retiarii_artifact"}
820 | misc: "This is a library/software paper."
821 | - title: "Practical Block-wise Neural Network Architecture Generation"
822 | venue: "cvpr"
823 | venue_date: "2018.06"
824 | online_date: "2017.08"
825 | contacts: {"Zhao Zhong": "zhao.zhong@nlpr.ia.ac.cn"}
826 | search_space:
827 | search_strategy:
828 | candidate_evaluation:
829 | discussed: true
830 | links: {"paper": "https://arxiv.org/abs/1708.05552"}
831 | misc:
832 | - title: "BayesNAS: A Bayesian Approach for Neural Architecture Search"
833 | venue: "icml"
834 | venue_date: "2019.05"
835 | online_date: "2019.05"
836 | contacts: {"Wei Pan": "wei.pan@tudelft.nl"}
837 | search_space:
838 | search_strategy: "BayesOpt"
839 | candidate_evaluation:
840 | discussed: true
841 | links: {"paper": "https://arxiv.org/abs/1905.04919"}
842 | misc:
843 | - title: "Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL"
844 | venue: "IEEE_J_PAMI"
845 | venue_date: "2021.03"
846 | online_date: "2020.06"
847 | contacts: {"Lucas Zimmer": "zimmerl@cs.uni-freiburg.de", "Marius Lindauer": "lindauer@tnt.uni-hannover.de", "Frank Hutter": "fh@cs.uni-freiburg.de"}
848 | search_space:
849 | search_strategy:
850 | candidate_evaluation:
851 | discussed: true
852 | links: {"paper": "https://arxiv.org/abs/2006.13799", "code": "https://github.com/automl/Auto-PyTorch"}
853 | misc: "This is a library/software paper."
854 | - title: "Neural Architecture Search with Reinforcement Learning"
855 | venue: "iclr"
856 | venue_date: "2017.04"
857 | online_date: "2016.11"
858 | contacts: {"Barret Zoph": "barretzoph@google.com"}
859 | search_space:
860 | search_strategy:
861 | candidate_evaluation:
862 | discussed: true
863 | links: {"paper": "https://arxiv.org/abs/1611.01578"}
864 | misc:
865 | - title: "Learning Transferable Architectures for Scalable Image Recognition"
866 | venue: "cvpr"
867 | venue_date: "2018.06"
868 | online_date: "2017.07"
869 | contacts: {"Barret Zoph": "barretzoph@google.com"}
870 | search_space:
871 | search_strategy:
872 | candidate_evaluation:
873 | discussed: true
874 | links: {"paper": "https://arxiv.org/abs/1707.07012"}
875 | misc:
--------------------------------------------------------------------------------
/awesome_autodl/utils/__init__.py:
--------------------------------------------------------------------------------
1 | ##################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 #
3 | ##################################################
4 | from awesome_autodl.utils.yaml import load_yaml
5 | from awesome_autodl.utils.yaml import dump_yaml
6 | from awesome_autodl.utils.check import check_paper_and_correct_format
7 | from awesome_autodl.utils.check import check_and_sort_by_date
8 | from awesome_autodl.utils.filter import filter_ele_w_value
9 |
10 | from awesome_autodl.utils.fix_invalid_email import email_old_to_new_202203
11 |
--------------------------------------------------------------------------------
/awesome_autodl/utils/check.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
3 | #####################################################
4 | from copy import deepcopy
5 |
6 |
7 | def check_paper_and_correct_format(paper):
8 | assert isinstance(paper, dict), f"Expect dict than {type(paper)}"
9 | paper = deepcopy(paper)
10 | necessary_keys = (
11 | "title",
12 | "search_space",
13 | "search_strategy",
14 | "eval_boost",
15 | "online_date",
16 | "venue",
17 | # "application",
18 | )
19 | for key in necessary_keys:
20 | assert (
21 | key in paper
22 | ), f"Did not find {key} in {paper['title']} {list(paper.keys())}"
23 | if key != "title" and isinstance(paper[key], str):
24 | paper[key] = ",".join(paper[key].split(", "))
25 | search_strategies = (
26 | "RL",
27 | "Evolution",
28 | "Random",
29 | "Differential",
30 | "BayesOpt",
31 | "Heuristic",
32 | "Manual",
33 | )
34 | for search_strategy in paper["search_strategy"].split(","):
35 | assert (
36 | search_strategy in search_strategies
37 | ), f"This paper {paper} has a different search strategy than {search_strategies}"
38 | assert len(paper["online_date"]), "This paper has empty online_date"
39 | return paper
40 |
41 |
42 | def check_and_sort_by_date(paper_list):
43 | assert isinstance(paper_list, list)
44 | xlist = list()
45 | for paper in paper_list:
46 | paper = check_paper_and_correct_format(paper)
47 | xlist.append(paper)
48 | return sorted(xlist, key=lambda x: x["online_date"])
49 |
--------------------------------------------------------------------------------
/awesome_autodl/utils/filter.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
3 | #####################################################
4 | from copy import deepcopy
5 |
6 |
7 | def filter_ele_w_value(paper_list, key, value):
8 | assert isinstance(paper_list, list)
9 | xlist = list()
10 | for paper in paper_list:
11 | if value in paper[key]:
12 | xlist.append(deepcopy(paper))
13 | return xlist
14 |
--------------------------------------------------------------------------------
/awesome_autodl/utils/fix_invalid_email.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2022.03 #
3 | #####################################################
4 |
5 | email_old_to_new_202203 = {
6 | "sutton@gte.com": None,
7 | "ww129@win.duke.edu": None,
8 | "rpa@seas.harvard.edu": "rpa@princeton.edu",
9 | "martha@indiana.edu": "whitem@ualberta.ca",
10 | "adamw@indiana.edu": "amw8@ualberta.ca",
11 | "hvveeriah@umich.edu": "vveeriah@umich.edu", # TODO: fix the raw file later
12 | "duzx16@mails.tsinghua.edu.cn": "zx-du20@mails.tsinghua.edu.cn",
13 | "cwthornt@cs.ubc.ca": None,
14 | "maclaurin@physics.harvard.edu": "d.maclaurin@gmail.com",
15 | "ilya@cs.uni-freiburg.de": "ilya.loshchilov@gmail.com",
16 | "tapani.raiko@aalto.fi": None,
17 | "jelena.luketina@aalto.fi": "jelena.luketina@cs.ox.ac.uk",
18 | "anglili@google.com": "nju.angli@gmail.com",
19 | "kjamieson@eecs.berkeley.edu": "jamieson@cs.washington.edu",
20 | "rein.houthooft@openai.com": "rein.houthooft@gmail.com",
21 | "domhant@cs.uni-freiburg.de": "domhant@amazon.com",
22 | "krausea@inf.ethz.ch": "krausea@ethz.ch",
23 | "akshayc@cmu.edu": "web@akshayc.com",
24 | "james.bergstra@uwaterloo.ca": None,
25 | "aali@bournemouth.ac.uk": "abbas.raza.ali@gmail.com",
26 | "zhao.zhong@nlpr.ia.ac.cn": "zorro.zhongzhao@huawei.com",
27 | "kuanwang@mit.edu": "kuanwang@gatech.edu",
28 | "xiesirui@sensetime.com": "srxie@ucla.edu",
29 | "siemsj@cs.uni-freiburg.de": "siems@ifi.uzh.ch",
30 | "prajit@google.com": None,
31 | "mguan@stanford.edu": None,
32 | "hy-hieu@cmu.edu": "hyhieu@google.com",
33 | "guozichao@megvii.com": None,
34 | "ajb5@hw.ac.uk": "ajbrock@deepmind.com",
35 | "julian@idsia.ch": "julian@togelius.com",
36 | "izliobaite@bournemouth.ac.uk": "indre.zliobaite@gmail.com",
37 | "daan@idsia.ch": "wierstra@google.com",
38 | "otkrist@mit.edu": "otkrist.gupta@lendbuzz.com",
39 | "mohamed1.a@samsung.com": "mohamed@cornell.edu",
40 | "fe-lipe.such@gmail.com": "felipe.such@gmail.com", # TODO: fix in the raw file later
41 | "sungbin.lim@kakaobrain.com": "sungbin@unist.ac.kr",
42 | "imgemp@cs.umass.edu": "imgemp@google.com",
43 | "ksenia.konyushkova@epfl.ch": "kksenia@deepmind.com",
44 | "fetia@microsoft.com": "feitia@fb.com",
45 | }
46 |
--------------------------------------------------------------------------------
/awesome_autodl/utils/yaml.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
3 | #####################################################
4 | import yaml
5 | from pathlib import Path
6 |
7 |
8 | def load_yaml(file_path):
9 | with open(str(file_path), "r") as cfile:
10 | data = yaml.safe_load(cfile)
11 | return data
12 |
13 |
14 | def dump_yaml(data, indent=2, path=None):
15 | class NoAliasSafeDumper(yaml.SafeDumper):
16 | def ignore_aliases(self, data):
17 | return True
18 |
19 | xstr = yaml.dump(
20 | data,
21 | None,
22 | allow_unicode=True,
23 | Dumper=NoAliasSafeDumper,
24 | indent=indent,
25 | sort_keys=False,
26 | )
27 | if path is not None:
28 | parent_dir = Path(path).resolve().parent
29 | parent_dir.mkdir(parents=True, exist_ok=True)
30 | with open(str(path), "w") as cfile:
31 | cfile.write(xstr)
32 | return xstr
33 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.09 #
3 | #####################################################
4 | """The setup function for pypi."""
5 | # The following is to make nats_bench avaliable on Python Package Index (PyPI)
6 | #
7 | # conda install -c conda-forge twine # Use twine to upload nats_bench to pypi
8 | #
9 | # python setup.py sdist bdist_wheel
10 | # python setup.py --help-commands
11 | # twine check dist/*
12 | #
13 | # twine upload --repository-url https://test.pypi.org/legacy/ dist/*
14 | # twine upload dist/*
15 | # https://pypi.org/project/awesome_autodl
16 | #
17 | #
18 | # or install from local: `pip install . --force`
19 | #
20 | import os
21 | import glob
22 | from pathlib import Path
23 | from setuptools import setup, find_packages
24 | from awesome_autodl import version
25 |
26 | NAME = "awesome_autodl"
27 | REQUIRES_PYTHON = ">=3.6"
28 | DESCRIPTION = "Package for Automated Deep Learning Paper Analysis"
29 |
30 | VERSION = version()
31 |
32 |
33 | def read(fname="README.md"):
34 | with open(
35 | os.path.join(os.path.dirname(__file__), fname), encoding="utf-8"
36 | ) as cfile:
37 | return cfile.read()
38 |
39 |
40 | # What packages are required for this module to be executed?
41 | REQUIRED = ["pyyaml>=5.0.0"]
42 |
43 | packages = find_packages(exclude=("tests", "checklist", "docs"))
44 | print(f"packages: {packages}")
45 |
46 |
47 | def endswith(xstring, targets):
48 | assert isinstance(
49 | targets, (list, tuple)
50 | ), f"invalid type of targets: {type(targets)}"
51 | for target in targets:
52 | if xstring.endswith(target):
53 | return True
54 | return False
55 |
56 |
57 | def recursive_find_file(xdir, cur_depth=1, max_depth=1, suffixs=None):
58 | assert isinstance(suffixs, (list, tuple)) and len(
59 | suffixs
60 | ), f"invalid suffixs of {suffixs}"
61 | xdirs = []
62 | for xfile in Path(xdir).glob("*"):
63 | if xfile.is_dir() and cur_depth < max_depth:
64 | xdirs += recursive_find_file(xfile, cur_depth + 1, max_depth, suffixs)
65 | elif endswith(xfile.name, suffixs):
66 | xdirs.append(str(xfile))
67 | return xdirs
68 |
69 |
70 | def find_yaml(xstring):
71 | return recursive_find_file(xstring, suffixs=(".yaml",))
72 |
73 |
74 | def find_yaml_bib(xstring):
75 | return recursive_find_file(xstring, suffixs=(".yaml", ".bib"))
76 |
77 |
78 | setup(
79 | name=NAME,
80 | version=VERSION,
81 | author="Xuanyi Dong",
82 | author_email="dongxuanyi888@gmail.com",
83 | description=DESCRIPTION,
84 | license="MIT Licence",
85 | keywords="NAS Dataset API DeepLearning",
86 | url="https://github.com/D-X-Y/Awesome-AutoDL",
87 | include_package_data=True,
88 | packages=packages,
89 | package_data={
90 | f"{NAME}/raw_data": find_yaml_bib(f"{NAME}/raw_data"),
91 | f"{NAME}/raw_data/papers": find_yaml(f"{NAME}/raw_data/papers"),
92 | },
93 | install_requires=REQUIRED,
94 | python_requires=REQUIRES_PYTHON,
95 | long_description=read("README.md"),
96 | long_description_content_type="text/markdown",
97 | classifiers=[
98 | "Programming Language :: Python",
99 | "Programming Language :: Python :: 3",
100 | "Topic :: Database",
101 | "Topic :: Scientific/Engineering :: Artificial Intelligence",
102 | "License :: OSI Approved :: MIT License",
103 | ],
104 | )
105 |
--------------------------------------------------------------------------------
/tests/test_abbrv.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2022.01 #
3 | #####################################################
4 | # pytest ./tests/test_abbrv.py -s #
5 | #####################################################
6 | import os
7 | from awesome_autodl import get_bib_abbrv_file
8 | from awesome_autodl.data_cls import BibAbbreviations
9 |
10 |
11 | class TestAbbrv:
12 | """Test the bib file for Abbreviations."""
13 |
14 | def test_init(self):
15 | xfile = str(get_bib_abbrv_file())
16 | assert os.path.isfile(xfile)
17 | obj = BibAbbreviations(xfile)
18 | assert len(obj) == 58
19 | print(obj)
20 |
--------------------------------------------------------------------------------
/tests/test_format.py:
--------------------------------------------------------------------------------
1 | #####################################################
2 | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2022.01 #
3 | #####################################################
4 | # pytest ./tests/test_format.py -s #
5 | #####################################################
6 | from awesome_autodl import autodl_topic2papers
7 | from awesome_autodl import get_bib_abbrv_obj
8 | from awesome_autodl.data_cls import AutoDLpaper
9 |
10 |
11 | class TestFormat:
12 | """Test the format of the raw data."""
13 |
14 | def test_simple(self):
15 | topic2papers = autodl_topic2papers()
16 |
17 | bib_abbrev = get_bib_abbrv_obj()
18 | for topic, papers in topic2papers.items():
19 | print(f'Collect {len(papers)} papers for "{topic}"')
20 | for paper in papers:
21 | if paper.venue not in bib_abbrev:
22 | raise ValueError(f"Did not find {paper.venue} in {bib_abbrev}")
23 |
--------------------------------------------------------------------------------